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Abstract

Safety-critical systems must be carefully designed, developed and maintained in order to ensure
that the threats posed by such systems are acceptably low. Certification demonstrates that these
systems are fit for use. The methods of certification are applied to complete systems according
to the applicable industrial standards. If parts of such a system change, substantial effort is
necessary for re-certification, since the certification processes have to be repeated for the entire
system.

Composability and mixed-criticality are strategies meant to support the integration and ease
certification of safety-critical systems as sub-systems on one common platform, without affect-
ing the safety or availability of the individual sub-systems. The introduction of mechanisms in
order to achieve composability and mixed-criticality requires an additional layer in the archi-
tecture, responsible for the sharing of resources. This strongly affects sub-systems with strict
timing requirements, such as triple-modular-redundant applications, which are widely used for
fault-tolerant safety-critical computation.

This thesis investigates the requirements for achieving composability and mixed-criticality.
It subsequently identifies solutions suitable for controlling the newly introduced effects. An
appropriate system model and the metrics for the applications’ performance are defined in order
to analyze the properties of the proposed solutions. Based on the system model and the analysis
results a contract concept is introduced, which allows the specification of applications, platforms
and integrated systems based on provided and required resources. The validity of the analysis is
evaluated with a prototype and simulation.

The results show that an out-of-the-box solution which guarantees the technical separation
between applications with fast reaction time requirements is only feasible when executing at
most one application per CPU-core for single and multi-core CPUs. Only when accepting
changes in the architecture, applications or the applications’ synchronization mechanisms, are
other solutions available.
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Kurzfassung

Sicherheitskritische Systeme müssen sorgfältig entworfen, entwickelt und gewartet werden, um
zu gewährleisten, dass von ihnen kein Risiko ausgeht. Die Zertifizierung eines Systems zeigt,
dass es geeignet für den Einsatz ist. Die Methoden der Zertifizierung werden für ganze Syste-
me gemäß den relevanten Industriestandards angewendet. Sollte ein Teil eines solchen Systems
geändert werden, so ist erheblicher Aufwand für die Rezertifizierung nötig, da die Zertifizie-
rungsprozesse für das gesamte System wiederholt werden müssen.

Composability und Mixed-Criticality sind Strategien, welche die Integration und Zertifi-
zierung von sicherheitskritischen Systemen als Subsysteme auf einer gemeinsamen Plattform
unterstützen, ohne die Sicherheit oder Verfügbarkeit der einzelnen Subsysteme zu beeinträchti-
gen. Die Einführung von Mechanismen um Composability und Mixed-Criticality zu erreichen,
erfordert einen zusätzlichen Layer in der Architektur, welcher die gemeinsamen Ressourcen
verwaltet. Ein solcher Layer wiederum beeinflusst Subsysteme, welche strikte zeitliche Kriteri-
en haben, wie beispielsweise dreifach redundante Applikationen. Dreifach Redundanz ist eine
weit verbreitete Technik für sicherheitskritische Anwendungen.

Diese Arbeit untersucht die Voraussetzungen um Composability und Mixed-Criticality zu
erreichen. Daraus folgend werden mögliche Lösungen erarbeitet, welche den Einfluss des neu-
en Layers begrenzen. Ein dazugehöriges Systemmodell sowie Metriken zur Messung des Ap-
plikationsverhalten werden definiert, um die Eigenschaften der vorgeschlagenen Lösungen zu
analysieren. Auf Basis des Systemmodells und der Ergebnisse der Analyse wird ein Vertrags-
konzept vorgestellt, mit welchem Applikationen, Plattformen und integrierte Systeme anhand
von verfügbaren und erforderlichen Ressourcen spezifiziert werden können. Die Ergebnisse der
Analyse werden mit Hilfe eines Prototyps und Simulationen überprüft.

Die Ergebnisse zeigen, dass es eine direkte Lösung gibt, die die technische Separierung
zwischen Applikationen mit kurzen Antwortzeitanforderungen garantiert. Maximal eine sicher-
heitskritische Applikation darf pro CPU-Core für Single- und Multicore CPUs integriert werden.
Nur wenn man Änderungen in der Architektur, den Applikationen oder dem Synchronisations-
mechanismus der redundanten Applikationen zulässt, kann man auch von anderen Lösungen
wählen.
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CHAPTER 1
Introduction

We use services controlled by computers and software in our everyday life without even noticing
or being aware of most of them [71]. Some services are used for convenience, such as vending
machines, while others provide the foundation of our way of life, e.g. transportation. In the end,
people develop and maintain these services with the intention of having people using them.

This thesis aims at supporting those responsible for constructing and providing such essential
services.

1.1 Motivation

Failure of a safety-critical system can result in harm to humans and the environment. To ensure
that the resulting threats posed by such a safety-critical system are acceptably low, it has to be
certified according to the applicable industrial standards. These standards define processes in
order to classify systems in levels of criticality with respect to the potential damage a failure of
the system could cause. SIL, ASIL and DAL are examples of classification schemes in standards
of the railway, automotive and avionics domain. These levels define different processes and
methods to be followed during a system’s lifetime in order to keep its probability of failure
acceptably low. Here, SIL4, ASIL D and DAL - Level A require the most effort, as they apply
to systems where failures can have catastrophic consequences.

The methods of certification are applied to the whole system and the system is subsequently
certified in its entirety. Should parts of the system change, substantial effort is necessary for
re-certification. Either the certification process is repeated for the whole system, or, with a
detailed impact analysis all system parts affected by the changes are determined, after which the
certification process is performed on the corresponding parts. This system-centric view logically
originates from the fact that the hazard is posed by the complete system. This results in systems
of systems with federated architectures, possibly utilizing only a small fraction of the underlying
hardware’s performance.

Composability and mixed-criticality promise to reduce this certification effort and increase
the level of integration together with hardware utilization. This can be achieved by merging
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such systems of systems on one platform, thereby creating one integrated system consisting of
sub-systems, as well as by splitting existing systems in different sub-systems, which are then
assigned their specific criticality level. These sub-systems are certified independently according
to their criticality level, and the overall system is certified based on the evidence provided by the
certification process of the sub-systems. For this approach it is crucial, that the independence of
the individual sub-systems is guaranteed. Composability addresses the composition and certifi-
cation of such systems and corresponding sub-systems, whereas mixed-criticality is concerned
with the integration of sub-systems with different levels of criticality.

Increasing computational power and chips incorporating several CPUs enable the tight in-
tegration of numerous functions of a system in the first place. The aim of composability and
mixed-criticality is to achieve this integration without affecting safety and availability of the
individual sub-systems or applications. Consequently, a suitable integration approach must ad-
here to the relevant industrial standards and support different applications, having versatile re-
quirements towards their integrated environment. However, not all industrial standards, e.g.
IEC 61508 [33–35], explicitly support composability and mixed-criticality.

1.2 Problem Statement

The focus of this thesis is the composable integration of fail-safe triple-modular-redundant
(TMR) applications subject to certification. These (existing) applications have strong require-
ments on the properties of the internal communication channels and reactivity of individually
synchronized application instances. Together with their lower-level software, the applications
assume full access to the hardware resources. With the introduction of composability this full
access is inevitably removed, as in fact, the sharing of resources is the key benefit of integration.
The arising problems are now twofold. First, the applications’ timely behaviour is affected due
to the (now) restricted access to hardware resources. Secondly, this restriction changes the basis
of the applications’ safety concepts for certification.

1.3 Aim of the Work

The goal of this work is to provide a technical and conceptual foundation for the (separate) cer-
tification and integration of several such triple modular redundant applications with non-critical
applications. The solution shall combine the benefits of mixed-criticality and composability
with that of reusing existing TMR applications. It must provide a balance between the following
three different objectives:

1. Provide a technical foundation for independent certification (separation and predictabil-
ity),

2. Fulfill the reaction time requirements of the applications (performance), and

3. Efficiently use the available hardware resources to take advantage of the integration (uti-
lization).
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1.4 Methodological Approach

Starting with the general requirements for composability and mixed-criticality, possible ap-
proaches for different kinds of TMR methods replicating software are evaluated. Based on this
evaluation general limits and opportunities of composable architectures are outlined. Within this
general solution space, concepts suitable for fulfilling the requirements imposed by the targeted
safety-critical TMR applications are identified and a corresponding system model for analysis
is defined. Specific software TMR synchronization mechanisms and respective metrics are pre-
sented and justified for use in the composable environment. These strategies are then evaluated
for the different architectures using the metrics and system model. Slightly adapted versions of
the synchronization mechanisms are proposed and analyzed, which offer beneficial properties
within a specific composable setting. Based on these insights, a formal definition of contracts
for the composability approach is given together with a method for evaluating feasibility of ap-
plication integration and architectural changes. Simulations and measurements with prototypes
are used to demonstrate the accuracy of the architectural and synchronization analysis, as well
as the suitability of the contract approach.

1.5 Structure of the Work

In the next chapter an overview of the state-of-the-art of the many related research fields is
given. Chapter 3 presents the general concepts for software composability, followed by the
system properties of contemporary TMR architectures, when extended with composability, as
well as TMR architectures leveraging composability in Chapter 4. The requirements of the
chosen applications subject to integration are presented in Chapter 5, and the according system
model in Chapter 6. Chapter 7 justifies and describes the three synchronization mechanisms
subject to our analysis. The solutions proposed for composable integration of the applications are
presented in Chapter 8, and the corresponding analysis described in Chapter 9 and Chapter 10,
respectively. The contract model for independent certification for these solutions is defined
in Chapter 11. Results of simulation and experimental evaluation are presented and discussed
in Chapter 12. Chapter 13 concludes this thesis, and directions for future work are given in
Chapter 14.
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CHAPTER 2
State of the Art

Providing composability and mixed-criticality for safety-critical applications which use TMR
for fault tolerance has many different aspects. We start with the support of composability in
industrial standards in Section 2.1, followed by partitioning and virtualization, both of them
techniques suitable for separating applications from each other, in Section 2.2. Current ap-
proaches for software abstraction with contracts are presented in Section 2.3. Section 2.4 gives
an in-depth description of TMR systems and Section 2.5 is concerned with scheduling, given
its impact on composable systems. Research regarding software TMR application on top of
partitioned systems is presented in Section 2.6.

2.1 Standards

Concepts and methods for mixed-criticality and composability are already used in the industry.
The avionics domain has adopted the concept of integrated modular avionics (IMA) de-

fined in DO-297 [105] for the integration of different safety-critical components on one hard-
ware/software platform. The ARINC 653 standards [10–12] define an application software stan-
dard interface for development and integration of software functions of mixed-criticality on such
a common platform following the avionics standard [99]. Different roles and tasks are used for a
clean separation of function provider, platform provider and system integrator. Additionally, file
formats for exchanging certification-relevant data with respect to application, platform and sys-
tem behaviour are defined. These standards and guidelines are supported by industrial products
for IMA, e.g. the VxWorks 653 Platform [121].

AUTOSAR is an approach to define a platform standard for the automotive domain. This
includes a common interface for electronic control units and for allowing software reuse by
providing a runtime environment for applications [13, 27, 45]. With the ISO 26262 automotive
standard the concept of SEooC (Safety Element out of Context) can be applied to certify a
safety-critical element in isolation, based on assumptions of the operational context. The final
evaluation is performed when the safety-critical element is used within a specific system, and
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it includes verifying the correlation of the assumed context to the specific context within the
system [41].

For the railway domain, the CENELEC EN standards [28–30] provide generic safety cases
for incremental certification, which are suitable to construct a safety case for composability and
mixed-criticality. The CENELEC EN standards are based on the IEC 61508 standards [33–35].

2.2 Partitioning and Virtualization

Most standards address composability with a partitioning concept to isolate individual compo-
nents for certification. Partitioning can be applied on board, as well as chip or software level.
However, all approaches define clear boundaries between the individual partitions.

Initially, the software separation issue has been discussed by Rushby [106] with the intro-
duction of the concept of separation kernels for security. The idea is to reach the same isolation
for individual programs as with a federated architecture and ensure that the programs executed
within the partitions cannot detect that they are actually located on an integrated platform. An-
other goal is to keep the code base of the separation kernel very small, so as to be able to formally
verify its fulfillment of the separation requirements. This approach was further developed to the
MILS (Multiple Independent Levels of Security) architecture [6, 7, 115] which uses such a sep-
aration kernel at the lowest level. Separation kernels in this architecture are usually based on
microkernels, which also follow the design paradigm to execute most code in user mode and use
partitioning [40,68,112]. This partitioning concept is also the basis of the integration concept for
fail-operational systems suggested by Rushby [107] for avionics. There, the correct and timely
execution of all safety-critical partitions is mandatory, and the system must remain operational
even under (the hypothesized) faults. Time and space partitioning are also the core principles
of the time-triggered architecture (TTA) [74]. In this architecture, clock synchronization and a
system-wide static-cyclic schedule for communication and computation of safety-critical appli-
cations provide the foundation for guaranteed reaction times.

Kopetz et al. [75] developed a time-triggered System-on-Chip architecture that supports
composability by partitioning the chip. Each safety-critical application is assigned its own
processor, which is similar to a federated architecture, but the communication in-between the
processors is provided by a time-triggered Network-on-Chip. This network is managed by a
trusted network authority and only accessible for the individual applications via a trusted inter-
face sub-system, which limits network access to predefined access patterns.

Another hardware-implemented solution for composability has been designed by Hansson
et al. [59]. It achieves predictability by implementing specific schedulers for different resources,
to ensure worst-case access and execution times for all requests made to the resources. The
underlying scheduling strategies have been described in more detail by Akesson et al. [4]. As
in the approach of the time-triggered System-on-Chip, applications do not share individual pro-
cessors in the original design. This has been changed by Molnos et al. [89] by applying the
technique of virtualization to successfully integrate several applications on the same processor.
In the extension, a processor local static-cyclic scheduler provides constant CPU time for appli-
cations. Predictability for communication via the Network-on-Chip is achieved by computing a
worst-case memory access time, since only direct memory access (DMA) requests are used for
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communication.
A prominent separation approach regarding virtualization is the use of hypervisors, also

called virtual machine monitors [16, 86]. A hypervisor shares the same hardware machine be-
tween different operating systems, called guests, by providing each of them a virtual repre-
sentation of the hardware machine, i.e. the virtual machine. The main difference between a
hypervisor and an emulator is that with a hypervisor most of the guests’ instructions are exe-
cuted natively and the hypervisor only interferes with certain operations, which would effect the
hardware state for all guests. Current CPUs provide special hardware functions to support the
isolation between virtual machines and accelerate their interaction with the hypervisor and hard-
ware resources [96]. Performance guarantees and isolation between virtual machines is a con-
cern for both hypervisors used in embedded systems, as well as for server virtualization [56,86].
The Xen hypervisor, most commonly used in non-safety-critical server environments, has also
been extended with an ARINC 653 CPU scheduler and I/O driver to support development of
ARINC 653 applications on regular PCs [114].

As discussed by Heiser and Leslie [60], the precise border between microkernels and hyper-
visors is not that clear and both may use hardware-supported virtualization techniques [58,61]. A
comprehensive state-of-the-art in embedded virtualization has been given by Gu and Zhao [55].
Using virtualization for implementing a primary-backup fault-tolerant system has been sug-
gested by Bressoud and Schneider [26]. Different methods for virtualization and the fundamen-
tal concepts of hardware virtualization support to increase hypervisor performance have been
discussed by Adams and Agnesen [3].

Perez at al. [95] presented a certification strategy for mixed-criticality on a single multi-
core chip. It is a wind power control system subject to the IEC 61508 standard. Several steps
towards their targeted mixed-criticality system are outlined, in which a certified hypervisor is
executed on top of diverse cores (x86 and Leon3 in the example). This hypervisor provides
safety-relevant features such as fault-tolerant synchronization of clocks and safe communication
between partitions. Separate diagnosis partitions are provided for each core executing a safety-
critical partition as well. The diagnosis partitions periodically trigger a watchdog provided for
each individual core. A static-cyclic scheduler ensures sufficient CPU time for the safety-critical
partitions.

The focus of recent research on partitioning is on guarantees for isolation and performance
on multi- and many-core platforms [66, 77].

2.3 Contracts

Various forms of contracts are used in software engineering, but all with the same two goals: a
precise specification, and enabling software (component) reuse through interoperability.

Meyer [87] introduced contracts for object-oriented programming with the design by con-
tract method, to explicitly expose the requirements and guarantees of objects and their clients.
The contracts are expressed in terms of preconditions, postconditions and invariants of classes
and methods. An exception mechanism is used when such contracts are violated.

Component-based software engineering (CBSE), applies the design by contract approach on
a higher abstraction level, where applications are constructed from components within a specific
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component framework. According to the fundamental idea of CBSE, contracts are provided
with components to express quality of service parameters, such as availability, in addition to
their functional behaviour specified in the APIs [14]. However, many industrial standards for
software engineering, e.g. CENELEC EN 50128 [30], have no such notion of contracts, but use
general software component specification and documentation together with tests and reviews in
the development and maintenance processes to ensure software and system quality.

Conmy et al. [36] suggested to add contracts to the IMA concepts, which list matching and
non-matching software components’ requirements and guarantees for composition. These lists
contain statements on a fine granular level and each element is related to a failure mode. The aim
of these contracts is to ensure that the components always provide mitigations for failure modes.
This is the same goal as for applying failure mode and effects analysis for software components
and subsequent specification of safety-related application conditions for safe operation in the
railway standard [29].

The concept of contracts is also used with the Goal Structuring Notation (GSN) [54]. With
GSN safety of a system is documented by step-wise decomposing the overall safety goals of this
system into sub-goals and linking them to elements, which support that these goals are satis-
fied. Contracts are used to define interfaces between elements, as well as goals, to enable local
alteration of the safety argumentation when necessary, without affecting other elements, goals
or contracts [43]. This is an extension of the original GSN and its tabular contracts specified
in [70]. Both types of contracts are used to argue that a certain system or component property is
reached and are not designed for automating the certification process.

Using contracts to enable automatic software updates for individual tasks in a certified fail-
safe system has been presented by Neukircher et al. [91]. This approach was later extended
for mixed-criticality [92]. The feasibility of the configuration change is evaluated based on the
individual contracts before applying the upgrade. Monitoring ensures that the tasks which do
not stay within the limits defined in their provided contracts are terminated. A similar contract
approach has been used by Aldea et al. [5]. Each application provides a contract stating its
scheduling requirements and is deployed only if the overall schedule is found to be feasible.
However, contrary to the monitoring before, bandwidth servers are used to prohibit resource
overconsumption by the individual applications.

Several aspects regarding contracts for system design and component-based design have
been compiled and presented by Beneviste et al. [18]. A mathematical theory, based on the
elements of contract theory [62] is given, for defining and composing contracts, as well as an
overview of several modelling theories. An example regarding the automotive domain and AU-
TOSAR also considers timing guarantees in its contracts. In these contracts, minimum and
maximum times between occurrences of related events and events received via interfaces are
specified using a machine-readable contract specification language.

2.4 Triple Modular Redundancy

Triple modular redundancy (TMR) was originally introduced by von Neumann [118], and the
general concept for software-implemented fault-tolerance by Wensley [120]. In software TMR
systems, software components are replicated to provide the fault-tolerant functionality, as op-
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posed to N-version programming [31], where different software components are developed to
also cover faults regarding the software implementation. Schlichting and Schneider [108] pre-
sented the fail-stop processor, which stops when too many fault occur. It is constructed from
several processors executing the same program and a protocol for reaching consensus. Schnei-
der [109] also suggested the use of replicated state machines for implementing fault-tolerant ser-
vices. An overview of methods and requirements for achieving fault tolerance with replication
has been given by Poledna [97], covering triple modular redundant architectures with hardware
lock-step, as well as software-only solutions on commercial off-the-shelf (COTS) hardware. An
industrial example for a TMR system is the TAS Control Platform [48,72], which provides TMR
for the railway applications built on top of it.

The primary goal of TMR is to keep the system operational in case of a single fault with
respect to the fault hypothesis. The principle is to have three identical modules, or replicas, and
mask the output of one failed replica by the outputs of the remaining two replicas. Such a fault
can have various sources, such as a single event upset or hardware wear-out. Depending on the
degree of independence of these replicas, detection and fail-over can be reached for different
kinds of faults. Consequently, the architecture is separated into three fault containment regions,
and it is essential that only one fails at a time. There are three threats to this principle:

1. In case of near-coincident faults two (or all) replicas fail due to faults of independent
origin, i.e. random faults that happen to occur at about the same time. In theory, this is
ruled out by the single-fault assumption, and in practice, the very low fault rates make this
extremely improbable.

2. In case of common cause failures, we again encounter failures of two (or all) replicas, this
time, however, these originate in the same single fault. An example of a common-cause
fault is a software bug that makes all replicas behave in the same erroneous way. That is
why fault containment between the replicas is so important.

3. In case of spare exhaustion, one replica did not recover from a previous fault and there
are therefore, too few available to mask the current fault with the remaining replicas. This
makes replacement, in case of permanent faults, and recovery, for permanent and transient
faults, of the affected replica essential.

Synchronization in a TMR systems keeps the individual replicas in a comparable (or close)
state regarding the time and value domain [97]. Executing CPUs in lock-step operation and
adding hardware voters in-between them is one option for such a mechanism [122]. Virtual
synchrony, based on group communication and local timeouts, is another approach [25]. It
establishes synchronization within the software layer by ordering messages. A vast number
of protocols and mechanisms have been defined and used for providing virtual synchrony and
fault-tolerance in distributed computing environments [8, 24, 25, 101, 113]. Fault-tolerant syn-
chronization of hardware clocks and subsequent synchronization of input data is a another ap-
proach for achieving synchrony [76, 79, 97]. This is also the basis for TMR synchronization in
the TTA [17].

TMR methods for replicating software can be classified as shown in Figure 2.1. They differ
in properties of fault containment, concurrency, synchrony and resource utilization.
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Figure 2.1: TMR classification for software triplication.

For the time redundant TMR method, instructions or software components are triplicated
and executed one after the other on the same processor. Software-implemented voting over their
results provides protection against transient hardware faults under the assumption that these
affect only one instruction or component in the triple. Based on the same concepts as time re-
dundant TMR, the Time TMR [37] has been developed, which executes some of the triplicated
instructions in different computational units of a VLIW processor, reaching partial concurrency
within the same processor. For hardware lock-step TMR, three CPUs are connected to the same
clock source. The redundant voting is performed in special hardware outside the CPUs, that is
connected via suitable buses. Less tightly coupled TMR systems, where voters are implemented
in software, have to explicitly communicate between the replicas.1 In software lock-step TMR,
all replicated software components compute the same output, and only after voting has been per-
formed do they continue operation. For software incremental TMR, the software components
can be at different states of execution when exchanging their voting data. This full or partial syn-
chronization can be performed periodically or sporadically. However, in both cases timeouts are
needed to detect faulty replicas and guarantee reaction times. Thus, an important characteristic
in these software TMR systems is the time needed for synchronization. Figure 2.2 illustrates
how replicated code is executed in systems based on the presented different TMR methods.

As mentioned before, if long mission times are required, it is essential to provide recovery
in the TMR approach in order to remain operational in the presence of several sporadic transient
failures occurring over time, as well as during repair or replacement of a permanently faulty
hardware module.

1A motivation for implementing redundancy mechanisms in software instead of relying on specialized hardware
has been given by Bernick et al. [20].
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Figure 2.2: Execution of replicated code according to different TMR methods.

2.5 Scheduling

Scheduling of safety-critical real-time applications strongly influences their behaviour, espe-
cially in the time domain. Various scheduling strategies are in use for real-time applications
and composable environments. Liu and Layland [84] provided the task model and initial results
for analysis of dynamic fixed-priority and EDF schedulers for real-time tasks on uniproces-
sors. They proved the optimality of fixed-priority scheduling with rate-monotonic (RM) priority
assignment and preemptive EDF for uniprocessors, i.e. if any algorithm can find a feasible
schedule, then also these schedulers will find one.

ARINC 653 defines a static-cyclic scheduling scheme with major frames and minor frames
for composability. The tasks are assigned slices within this schedule to fulfill their schedul-
ing criteria regarding period and time slice duration. The main challenge during integration
concerning this schedule is to find one which satisfies the scheduling requirements of all tasks.
Additionally, it is possible to switch between different off-line generated schedules to accom-
modate various operating modes. A detailed analysis of implementing this approach on the
operating system level has been conducted by Baldovin et al. [15].

A comparison of static-cyclic with fixed-priority scheduling, for periodic tasks, has been
performed by Locke [85], concluding that RM will result in tasks with higher task schedule jitter
but also provides a better CPU utilization. Preemptive fixed-priority scheduling, together with
runtime feasibility tests and slack sharing are the key characteristics of the scheduler provided
with the real-time OS DEOS for the avionics domain [23]. In the presented examples, it achieves
a significantly better utilization than schedules for a static-cyclic scheduler at the cost of system
scheduling optimization.

Using servers for limiting resource access is an approach to provide guarantees in systems,
where tasks could exceed their designated resource share otherwise [50, 102]. Abeni and But-
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tazzo presented the constant bandwidth server to provide execution share guarantees at the cost
of limiting execution times for EDF scheduled tasks [2].

Vestal showed that in some scenarios other than RM priority assignment can lead to feasible
schedules [116], based on the assumption that applications with a higher criticality are more
pessimistic when estimating their worst-case execution time.

Having several layers of schedulers is the focus of hierarchical scheduling [82, 83]. The
central idea of this approach is to provide each application with its own scheduling strategy,
such that the application-specific schedule and scheduling strategy are preserved when inte-
grating them with other applications and to provide guaranteed resource shares. Integrating
hierarchical scheduling and mixed-criticality in virtual environments has been performed by
Lackorzyński [78]. The virtual guests and hypervisor are adapted to provide sufficient informa-
tion to the hypervisor scheduler by letting the guest choose from a set of scheduling contexts.
A general solution for mapping hierarchical mixed-criticality fixed-priority schedulers to such
a context-aware scheduler setup has been proposed by Völp et al. [117]. Enabling virtual ma-
chines to request different resources during runtime is the focus of the concept suggested by
Groesbrink et al. [53], where conflicts on these resource requests have to be resolved and the
overall schedule of the system adapted accordingly.

A summary on the research regarding real-time scheduling on multi-core systems was given
by Davis and Burns [39]. Naturally, providing guarantees on resource access for multi-core
platforms is important [22]. For multi-core CPUs feasibility tests exist for (global) EDF and
fixed-priority schedulers [9, 21].

2.6 Partitioning and TMR

A fault-tolerant prototype combining software lock-step TMR with the partitioning provided by
an ARINC 653 RTOS (real-time operating system) has been implemented by O’Connel [94].
The RTOS is modified to synchronize the static-cyclic schedules on the three redundant and
fully connected hardware boards. Voting and TMR message exchange for input and output data
are implemented in privileged partitions running in the kernel space. To achieve the targeted
synchronization precision for the schedules, low-level network driver functionality is included
in the RTOS and raw Ethernet MAC frames are used for the periodic clock synchronization. The
prototype does not provide a membership service or means of recovery, but it is suggested that a
partition could be reset, if it reaches a certain threshold of faults. Reintegration would take place,
if it provided valid output values for a certain time after such a reset. With regard to partitioning,
the approach differentiates between Software Fault Containment Regions established by the par-
titioning and Hardware Fault Containment Regions provided by the individual hardware boards.
Integrating several triplicated and independent applications on the same hardware infrastructure
was not within the scope of this prototype.

Bauer and Kopetz [17] demonstrated that transparent software-based TMR for applications
can be provided within the TTA, where the TTA inherently ensures strong time partitioning and
clock synchronization. Synchronizing the schedulers of microkernels (PikeOS) using a time-
triggered network has been presented by Theiling [111].

Miller et al. [88] suggested an approach for synchronizing TMR applications on top of static-
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cyclic scheduled partitions in an IMA compliant system. The synchronization mechanism is
triggered every scheduling round and starts the replicated execution, if a sufficient number of
messages have been received. The fault hypothesis of this approach assumes fail-silent nodes.

An analysis on the influence of composability when applied to various TMR methods and
presented architectures leveraging this approach was conducted, which results are also included
in this thesis [103].
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CHAPTER 3
Software Composability

This chapter gives a general introduction to the fundamental concepts of software composability
and describes the prerequisites of step-wise and independent certification. Furthermore, the
challenges of composable resource sharing and the relation between composability and TMR
are discussed.

Safety is a system property. Therefore, a single system component can only fulfill a safety
property within the context of the whole system application [81]. The intention of composabil-
ity is to allow building safe and certified systems by careful integration of components, some
of which provide safe and (pre)certified functions. As an immediate advantage, this facilitates
the reuse of certified components. We call such a component function-set (FS), to emphasize
that functions are provided by one or more entities, especially in a TMR architecture. These
FSs are then deployed within an integration environment (IE) to build the whole system. Here,
the possibility of sharing the same IE for different (sub-)systems, thus saving cost, space and
energy, represents another advantage. An FS provides a (sub-)service within the application
context and is assigned a criticality level according to the criticality of that service. Obviously,
the proper provision of this service can only be guaranteed on the condition that the IE exhibits
all the properties that have been assumed in the design of the FS. While this is relatively trivial
to establish in the traditional federated architectures (i.e. using a separate IE per FS), it becomes
an issue in integrated approaches, since the properties of the IE, as perceived by a single FS,
are (dynamically) influenced by the other FSs during their execution. Therefore, to enable com-
posability, every FS must be associated with an appropriate function-set contract, specifying its
requirements to the IE for correct execution. We refer to the deterministic availability of re-
sources from the IE as predictability1. This first constituent of composability becomes crucial
when FSs or elements of the IE are to be changed. Note that in the interest of a simple FS
contract static guarantees (i.e. high predictability) are beneficial, while more fine-grained, even
dynamic requirements usually facilitate a better resource utilization. In addition, the former is
easier to enforce by technical means (see later).

1Unlike Akesson et al. [4], we define predictability with respect to available resources for FSs as provided by the
IE and not as predictability of execution times and resource demand of FSs.
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Figure 3.1: Certification strategy using contracts for mixed-criticality and composability.

The second constituent of composability, namely non-interference, concerns undesired ef-
fects that the execution of an FS may have on the IE and consequently on other FSs, specifically
in case of failure. Again, one could, in principle, conduct a fine-grained, application-specific
analysis on malign and non-malign cases to allow for the largest freedom. In practice, however,
the most rigorous approach has proven most effective – a strict failure confinement2. Herein,
each FS forms an individual failure confinement region, the failure of which remains local and
has no effect on any of the others.3 This property cannot be enforced within the FS itself, since
restricting an FS’s failure behavior is normally very expensive, and sometimes even impossi-
ble. Consequently, this task has to be fulfilled by the IE, which needs to implement technical
provisions to separate the FSs from each other.

In the context of mixed-criticality, it is interesting to note that non-interference is a direc-
tional property: One may be very concerned about a non-safety-critical FS undermining the IE’s
assertions for a high-criticality FS, while at the same time it is – by definition – not as critical
when the latter prevents the former from executing correctly. Failure confinement, however,
does not appreciate this directionality; typically, the separation mechanisms are applied equally
to all FSs, irrespective of their criticality.

Ultimately, the composability approach allows to split the certification of a system into three
parts, as illustrated in Figure 3.1:

(A) Each safety-critical FS is certified with respect to its FS contract, which specifies all the
FS’s requirements for safe operation. These requirements may cover computational and
networking resources, as well as separation guarantees and the availability of special ser-
vices such as watchdogs or real-time clocks.

(B) An IE, e.g. hardware boards and middleware, is certified with its integration environment
contract, stating the provided resources, services and failure containment properties, as

2Like the “Gold Standard for Partitioning” defined by Rushby [107].
3Please note that fault containment regions are defined with respect to the fault containment of TMR systems

(see Section 3.3).
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well as its feasibility evaluation method used for integration. The validity of this feasibility
evaluation method is a key element when certifying the IE.

(C) The FS- and IE contracts are specified using generic properties, like network bandwidth, to
enable reusing of FSs in different IEs. A concrete system is then certified by matching the
IE contract with the FS contracts in an integration contract, using the feasibility evaluation
method specified in the IE contract.

Please note that for each safety-critical FS step (A) is performed separately, as is step (B)
for each specific integration environment. Furthermore, for each new or altered system step
(C) must be implemented. This method needs more initial effort than certifying one system as
a whole, Nonetheless, it is more efficient when building several slightly different systems, or
altering existing ones. Additionally, a good utilization of the hardware resources within the IE is
expected. The contracts here are based on the provided resources and features of the IE, unlike
the contracts of contract-based design [19] which specify component interfaces and behaviour,
and subsequently create new ones with various operations performed on other components. It
is important to note that composability in our context is merely concerned with the separation
issue, i.e. protecting one FS from the failure of another that shares resources with it. It is also not
capable of tolerating faults in these resources, which is the goal of triple modular redundancy.

3.1 Attaining Composability

The general idea for constructing an IE is to implement a layer that provides failure confinement
regions (partitions) within the IE, sufficiently mitigating the undesired effects of integration and
independent of the specific hardware setup as shown in Figure 3.2.

Partition 1 ...Partition 2

Resource Partitioning Layer

Common Resources

Partition n

Figure 3.2: Generic resource sharing concept with partitions.

Here, the non-interference and predictability requirements of the individual safety-critical
partitions are fulfilled by the partitioning layer for the hardware resources. This layer takes care
of services like partition scheduling, memory management and provision of virtual I/O services.
This implies that the partitioning layer has more privileges than the partitions in order to maintain
full control over the system. The partitioning could be implemented within an operating system,
which has to ensure that all system calls are composable, e.g. a suitable microkernel OS. In
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such solutions the kernel itself offers only a very limited set of functionality, i.e. inter-partition
communication and direct device access. Consequently, the other shared system services must
also be composable themselves. Alternatively, it is possible to implement such a partitioning
layer using virtualization techniques, e.g. hypervisors. With virtualization, most of the low-
level functionality is provided by the guest OS, which is encapsulated in the same partition as
the application. As already pointed out in Chapter 2, microkernels can also use virtualization
technology and the boundary is not that sharp. However, our focus is composability of TMR
systems and not the actual implementation. As such, we will also not go into detail with possible
security aspects of methods for non-interference.

In the following, we investigate the resources that are typically shared among FSs within a
common integration environment, as well as suitable separation techniques for such resources.

Processing

A typical example here is a single processor that is shared by different FSs4. The clear advantage
of sharing is the better utilization of the processor that may be too powerful for just a single
FS. As the resource sharing is performed in the time domain, the FS contract and integration
environment contract will have to be concerned with providing a suitable share of the processing
power to the individual FSs, in terms of total computation time, as well as the availability of
such computation time at certain instances in time. The mission of separation is to enforce
this time sharing and prevent a failed FS from consuming another FS’s share. This is clearly
a scheduling issue. In the ARINC 653 standard a static-cyclic partition scheduling with major
frames and minor frames is employed [114]. For safety-critical partitions a static-scheduling
scheme has to be guaranteed, whereas other partitions could be scheduled differently. The final
schedules obviously have to fulfill all safety-critical FSs’ timing requirements. As presented
in Chapter 2, many different scheduling strategies have been proposed for composability. One
may also imagine different scheduling schemes, like priority-based scheduling with additional
mechanisms, such as constant bandwidth servers for ensuring predictability on a higher level.

Memory

In contrast to the case of processing treated above, memory is a stateful resource, which is why
time sharing is not applicable. Instead, the physical memory (we refer to RAM in the following)
must exhibit sufficient capacity to store all data from all FSs. The benefit of having one larger
memory instead of several individual smaller ones is (a) saving control logic, and (b) achieving
a reasonable level of occupancy even if individual FSs demand memory sizes that do not fit
well to a power of 2. The mission of partitioning is to ensure that each FS can access only that
portion of memory that has been exclusively assigned to it and is unable to access (in the worst
case corrupt) the memory of other FSs. Typically, a Memory Management Unit (MMU) is used
for this purpose.

4We may as well imagine a set of processors with dynamic dispatching of tasks from different FSs. This is of
course the more generic concept, however, the chosen simple example is sufficient to illustrate the key issues.
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Strict non-interference also requires that CPU caches are either disabled in general, or they
have to be flushed and restored at each partition switch to prevent memory access jitter. This is
only necessary for safety-critical partitions with very stringent timing requirements.

Devices and I/O

For this type of shared resource we choose disk I/O, networking, hardware watchdogs and real-
time clocks to illustrate a wide range of different properties and behaviours.

Basically, I/O resources can either be exclusively assigned to single partitions, in which case
non-interference is trivially guaranteed, or the access has to be managed by the resource parti-
tioning layer. This is typically implemented by providing a “virtual instance” of the resource to
the individual partitions and managing the synchronization of the actual resource either directly
in the partition layer or within a privileged partition. In this sense, disk sharing can be done with
actual or virtual disk drivers. Similarly, networking can rely on the actual network interface or
on virtual network interfaces, virtual switches and virtual routers.

Note that the virtual access is similar to the processing discussed above in that there is only
a single resource available that is shared in a time multiplex fashion. Therefore, the contracts
have to be concerned with bandwidth and transmission time guarantees. Again, additional re-
quirements concerning the instants of availability may apply in a real-time context – hence, the
scheduling issue emerges here again.

The real-time clock (RTC) is a particularly difficult device to share, since it is, by definition,
a stateful device – which rules out its use in a time multiplexed fashion – but at the same time
it cannot be replicated like, e.g., the memory space. Depending on the FS’s requirements, three
different options for the emulation of a RTC are possible:

• FSs requiring only reading the RTC and alarms and timers:
For these FSs, the RTC emulation can be restricted to multiplexed reading of the clock
and handling distribution of alarms and timers.

• FSs requiring reading and writing of the RTC but no preservation of time during power
off:
Here, a clock with higher granularity than the RTC is needed for correct emulation of
writing and reading the RTC. A FS writing a value to its emulated RTC expects the RTC’s
value to increase at a certain time after that. For example, a FS setting the RTC to 00:00:00
and reading its value 100ms later, still expects to get 00:00:00 as time value. Therefore,
offsets between the emulated RTCs differ according to the value and time of occurrence
of the respective FS write.

• FSs requiring reading and writing of the RTC, as well as preservation of time during power
off:
This is the most difficult case, since a clock with higher granularity than the RTC is needed
for write emulation, and the RTC and non-volatile memory are needed for preservation of
the time value and offsets during power off.
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Sharing a hardware watchdog raises similar issues. To enforce non-interference a watchdog
has to be emulated for each partition within the partition layer. Still, a failure in the partition
layer might cause a halt of computation, so an actual hardware watchdog has to be triggered
systematically by the partition layer.

In addition to the regular I/O capabilities, the partitioning layer may provide means of inter-
partition communication. Here, it has to be ensured that these mechanisms are not used to under-
mine the composability concept of the partitioning, e.g. a partition providing non-composable
I/O sharing for other partitions.

Summary

All these methods either have one or both of these demands:

• Extra hardware features, e.g., MMU or CPU support providing the partitioning layer with
full control over the system5, or

• Extra scheduling, e.g., for sharing of the CPU, virtual networking or emulation of devices.

The impact of the presented additional hardware features on TMR applications is linear with
respect to execution time, e.g., setting the MMU costs a few instructions per context switch of
partitions. Consequently, we focus on scheduling in our analysis.

3.2 Requirements for Function-Sets with a Safe State

In applications without a safe state, the correct and timely execution of all safety-critical FSs is
mandatory and the system must remain operational even under (the hypothesized) faults. This
clearly demands uncompromized predictability and strict partitioning.

Safety-critical systems with a safe state, in contrast, can handle cases where no results or
outputs are provided by a safety-critical FS. The important property here is that no incorrect
outputs are produced. This is normally ensured by fault-tolerance measures, e.g. TMR. The
remaining, but very important, requirement on the partitioning layer is not to undermine the
error detection and/or masking capabilities of these measures, e.g., by introducing common-
mode failures.

If this aspect is ensured, the failure confinement regions might otherwise not require as
strong separation as in the fail-operational case, with respect to scheduling and timing. For
example, it may be tolerable to guarantee CPU scheduling with some probability, rather than
cycle-wise assurance. Caches may remain enabled and do not need to be flushed on schedul-
ing switches between partitions as memory access jitter may be tolerated. In case of overload
it might, e.g., be possible to allow safety-critical partitions some CPU time in excess of the
assigned slot, thus increasing the overall robustness of the system.

In the remainder of this thesis, the term composability layer is used rather than partitioning
layer to emphasize that it is not necessarily required to achieve full partitioning in all cases.

5Examples for CPU features enabling full control over the system are trap-and-emulate or a special execution
mode [3].
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Figure 3.3: Function-sets in failure confinement regions and fault containment regions.

3.3 Failure Confinement Regions vs. Fault Containment Regions

Composability is a concept orthogonal to TMR that aims, as already outlined, at achieving better
resource utilization and ease of the certification process upon integration. These benefits equally
apply for composability in TMR architectures. As illustrated in Figure 3.3, the IE may comprise
replicated modules, and we have two orthogonal regions in a composable TMR architecture:

• The replicated hardware modules form fault containment regions required to prevent sin-
gle points of failure in the TMR architecture. With a properly working TMR, the safe
execution of a FS can be ensured even in case of a random fault in its IE.

• Within these hardware modules, each FS forms a failure confinement region. This es-
tablishes the non-interference required for composability. With non-interference, the safe
TMR execution of a FS in presence of other FSs is guaranteed.

In this scheme, a safety-critical FS comprises three entities, each representing a computing
channel. FS 1 and FS 2 are examples of this. Assume the fault containment regions are indepen-
dent hardware boards, then the failure of one is observable as fault of one entity for FS 1 and 2.
In contrast, a single event upset (SEU) in the memory of one entity is only observable by the
affected FS, as the failure confinement regions provide isolation within the fault containment re-
gion.6 Furthermore, if FS 2 fails due to a software error, the failure confinement regions provide
protection for FS 1 and FS 3.

Note that, in our example, FS 3 comprises one computing channel only, as it is not safety-
critical. This already indicates that having three computing channels per FS only illustrates the
fundamental principle of this architecture, and many variations are possible. For the fault toler-
ance scheme, e.g., a simplex or duplex architecture could be chosen instead of TMR as well, as

6This is also the reason we do not use the terms Software Fault Containment Regions and Hardware Fault Con-
tainment Regions as O’Connel [94], since composability may provide separation for software, as well as hardware
faults.
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is appropriate for the needs of the specific FS. More generally, there is a lot of freedom in align-
ing the failure confinement regions of the FSs with the modules’ fault containment regions. One
may, e.g., leverage the error detection capabilities of the applied fault tolerance scheme for local-
izing errors within partitions and only selectively stop and recover the affected partitions rather
than re-booting and testing the complete system. As already described, a potential risk is that
bugs in the composability layer may lead to common-mode failures, thereby undermining the
fault tolerance concept. Strategies against such failures are, e.g., to use a certified composability
layer, or one that is proven-in-use and incorporate suitable measures within the FSs.
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CHAPTER 4
Composability for TMR Architectures

In the course of this chapter, we first take a close look at different TMR architectures and their
behaviour when introducing composability, before discussing existing and novel TMR architec-
tures enabled by the composability approach.

4.1 Contemporary TMR Architectures

In a TMR system three replicas are executed within three different fault containment regions. To
keep the three replicas of a TMR system close in the time and value domain, the following three
key services are necessary:

• Synchronization of the input and output data (and/or state) of the replicas,

• Voting of the synchronized data, and

• Recovery, i.e. reintegration of a new replica or one that experienced a transient fault.

Contemporary TMR architectures vary largely with respect to their fault containment re-
gions and synchronization approaches, as already discussed in Section 2.4. Consequently, when
adding composability, different strategies are needed depending on these individual properties.
We outline these strategies, the incurred overhead and other implications based on the charac-
teristics of the TMR method for time redundant, hardware lock-step and software-based TMR.

Time redundant TMR

For time redundant TMR, software instructions (or components) are triplicated at compile time
and voting instructions (or components) are added automatically. The triplicated instructions
use different memory, which is also assigned during compilation. The fault containment regions
in this architecture are instruction sequences and corresponding memory region for the state. As
time redundant TMR uses only one processor, it can only mask transient hardware faults, e.g.
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SEUs. This method does not require special hardware and can be used on a COTS processor.
The key services from above are established as follows:

• Synchronization is implicitly given with this method due to the order of execution on the
same processor.

• Voting is performed for each instruction sequence or software component separately on
the input data provided by all three replicas of the previous execution.

• For software components, recovery is performed by overwriting the memory of the faulty
component with the voted memory values of the other two components. It is not necessary
for instruction sequences, as all input is voted and these sequences’ local state is only
dependent on the input.

The overhead regarding memory and execution time introduced for voting is strongly de-
pendent on the frequency of it being executed. Naturally, repair and replacement cannot be
performed during the operational phase of the system.

Here, the potential conflict between fault tolerance and composability becomes apparent:
Separation of memory and CPU can be ensured by a composable scheduler and an MMU, re-
spectively. In this setting, however, both the scheduler, as well as the MMU represent single
points of failure from the fault-tolerance point of view. While the scheduler (and potential fur-
ther software-based composability services) can, just like the FSs, be protected by time redun-
dant execution as well, the MMU remains problematic.

In general, the performance impact can be deducted from the scheduling scheme. With
a static-cyclic scheduler, the reaction time can be derived from the maximum time between
scheduled slices of the safety-critical FS entities and the slice duration. However, this can vary
for specific FSs and also depends on the shared I/O devices. Mixed criticality can achieve good
hardware utilization in this architecture, as only safety-critical FSs are triplicated, while non-
critical FSs can use CPU and memory at native speed.

The Time TMR [37] architecture presented in Section 2.4 has the same properties regarding
composability as time redundant TMR. Executing some instructions on different CPU compo-
nents has no advantages regarding composability, when compared to time redundant TMR.

Hardware lock-step TMR

Hardware lock-step architectures are widely used in the industry [63]. They consist of triplicated
CPUs and memory with hardware voters in-between. The software is stored and executed in two
types of fault containment regions: different CPUs and different memory. This architecture tol-
erates both transient and permanent hardware faults. Naturally, as the fault tolerance is provided
by the hardware, such special hardware boards are a prerequisite. Here, the three key services
are provided as:

• Synchronization is achieved by operating the CPUs with the same clock (which is why the
CPUs are sometimes located together on one hardware board), resulting in them issuing
the same memory operation on the bus at the same time.
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• Voting is performed in hardware voters between the CPUs and the memory on the memory
operations and their value.

• Recovery is performed by stopping triple execution and reconstructing the state of the
erroneous CPU from the other two.

A current industrial example for such a hardware lock-step board is the D602 from MEN
Mikro Elektronik GmbH [51].

The inherent triplication of the lock-step architecture is an advantage and a drawback within
the composability context at the same time. Safety critical FSs, as well as non-critical FSs, are
all automatically triplicated and recovered, which degrades resource utilization. Fulfilling the
composability requirements specified in Chapter 3 for each fault containment region locally, i.e.
CPU, memory and I/O, is already sufficient for composability of the triplicated modular redun-
dant system, since the triplication mechanism is not influenced by the composability layer –
rather the composability layer is triplicated. As in the case of time redundant TMR, the perfor-
mance impact is closely related to the composable scheduling and I/O sharing strategy.

Software-based TMR

The two software-based TMR methods discussed in this thesis, software incremental TMR and
software lock-step TMR as presented in Chapter 2, share most of their properties, and so we do
not need to differentiate here1.

In software-based TMR, a middleware software is running on three fully connected hard-
ware boards, controlling the execution of the replicated application on top of it. The three
hardware boards are the three fault containment regions. Such an architecture tolerates transient
and permanent hardware faults, and a set of quasi-random software faults as described in [47].
This architecture has no special requirements on the underlying hardware. Furthermore, this
approach enables to layer the system in such a way that the lower level hardware and OS could
be replaced without much influence on the applications themselves [98]. The three key services
are provided by the middleware:

• Synchronization is achieved by exchanging the input and output data of applications and
time values of the local clocks via messages between the three instances of the middleware
layer.

Defining a range in which the process of synchronization is performed periodically is the
common solution for both event-based and time-triggered computation. For the latter,
periodic synchronization is required by definition, whereas, for the event-based computa-
tion, a minimum period is required against overload and a maximum period to check for
liveness of the individual replicas.

The correct choice of period is crucial for the operation of the TMR system. A short period
leads to lots of message exchanges, scheduling of the middleware and, consequently, less

1The differences of software lock-step and software incremental TMR are explained in detail at the end of
Section 7.1.
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CPU time for the application, while a long period results in long reaction times. It is the
application developer’s task to find the right balance.

The synchronization precision correlates with the reaction times of the individual mid-
dleware processes and communication latencies. Low scheduling latencies and jitter for
the middleware processes on the different hardware boards are just as beneficial for the
synchronization precision, as are low message transmission times and jitter between the
hardware boards.

• Voting is executed on the application data and time values received via messages. Only the
voted data and time values are passed to the application instances. The application must
follow design constraints provided by the middleware to guarantee a replica-deterministic
execution.

• Recovery is performed by the middleware without interruption of the active replicas. For
this purpose, the middleware must know which replicated data needs to be recovered and
has to have enough communication resources in addition to the regular bandwidth required
for synchronization. With recovery and three hardware boards, maintenance actions can
be performed online during system operation.
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Figure 4.1: Software-based TMR without (left) and with (right) composability layer.

Figure 4.1 shows the introduction of the composability layer to software-based TMR below
the triplication middleware, i.e. the TMR layer. While this enforces the desired separation of
the TMR instances, the execution of the latter now relies directly on the composability layer,
more specifically on its scheduling on the hardware boards and the message transmission times
on the (shared!) communication links in-between. Thus, the composability layer has a direct
influence on the TMR layer properties. Local non-interference for partitions, as described in
Chapter 3 for the composability layer, is not sufficient for achieving good reaction times when
integrating several independent triples. The execution of the triplicated applications depends on
the composable scheduler, as well as on the synchronization mechanism of the corresponding
TMR middleware.

The TMR synchronization process of the middleware is affected in the following two new
ways in these architectures:
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Figure 4.2: Additional scheduling with composability layer.

• By resource management in the composability layer, and

• By sharing the same communication interfaces and interconnect with other TMR middle-
ware.

The change of scheduling with the introduction of the composability layer is illustrated in
Figure 4.2. In this example, one instance of the TMR middleware layer sends a message to a
corresponding instance on another board. It is the scenario for the start of the synchronization
process. The additional steps with the composability layer are: scheduling the sending FS in-
stance after the timeout occurred, forwarding the message on the sending side and scheduling the
FS instance forwarding the message on the receiving side. While the time necessary for schedul-
ing processes by the OS scheduler is short, scheduling operations by the composability layer are
more expensive, since more operations are required for the context switch. Measurements re-
garding this difference are presented in Section 12.2 on page 93. Note, that in the illustration
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above no other integrated TMR replicas are active, which could delay the sending and receiving
of messages even more.

The choice of scheduling strategy for the composability layer has a huge impact. Frequently
scheduling the individual FS instances increases their reactivity and reduces the jitter to the
point where the scheduling operations themselves introduce so much overhead, that no longer
sufficient computation time is available. Also here a reasonable balance must be found between
synchronization jitter, scheduling operations and computation time.

An option for reducing the impact of the scheduling by the composability layer on the TMR
mechanism is to provide the synchronization service as part of the composability layer, and in
doing so reduce the indeterminism introduced by another scheduling layer. This will inevitably
also weaken the independence of the integrated FSs. We perform a detailed analysis of such an
approach in Chapter 9.

Still, using software-based TMR in combination with composability and mixed-criticality
can achieve good resource utilization, as non-critical FSs are not replicated.

4.2 TMR Architectures Leveraging Composability

The software-based composability approach enables the creation of a set of new composable
architectures which increase hardware utilization and flexibility while supporting certification
and safety-critical FSs.

Static TMR-Composable Architecture

In the software-based TMR architecture described above, non-triplicated FSs can be added, as
long as there are enough free resources on one of the hardware boards. For FSs using TMR, all
three boards need free resources. If only one of the three boards has insufficient computational
resources, a complete new hardware triple must be added. With composability, it is now possible
to introduce a new kind of architecture, the static TMR-composable architecture. The replicas
and their communication can be statically assigned to any hardware board and communication
links in-between and are no longer fixed by a hardware triple. The composability and triplica-
tion mechanism are the same as for software-based TMR and also COTS hardware boards and
network equipment can be used. This method improves resource utilization and scalability of
the whole system. Figure 4.3(a) illustrates a possible scenario, where adding one TMR-based
FS to a system can be achieved by adding one new hardware board. It depicts the change of
logical interconnect, whereas Figure 4.3(b) and Figure 4.3(c) show options for the extended
physical connection. In the first scenario, direct links fully connect all boards, while in the sec-
ond a redundant network is constructed with two switches, each one alone already connecting all
boards. The simple network structure of the second option is preferable when adding even more
boards, since it requires fewer interfaces per board and can be extended easily. This change of
the connection properties has to be accounted for in the composability model.

With the introduction of more hardware boards, the probability for one of them to fail in-
creases. Since each safety-critical FS still relies only on three boards this is not an issue in
the first place, but once again it has to be ensured that there are no dependencies between the
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(a) Change in logical interconnect.

(b) Physical interconnect with direct links

switch 2

switch 1

(c) Physical interconnect with two switches

Figure 4.3: Change of static deployment when adding a new triple and hardware node.

instances of the composability layer on the hardware boards, undermining fault containment.
Furthermore, the impact of the new networking components on the availability must be ac-
ceptably low in a redundant configuration. Maintenance can still be performed without system
downtime. An existing example of such an architecture is the TMR on top of the time triggered
architecture [73].

Dynamic TMR-Composable Architecture

In contrast to all previously presented TMR architectures, the dynamic TMR-composable archi-
tecture has no static mapping of replicas to hardware boards. An FS manager is dynamically
deploying safety-critical and non-safety-critical FSs in a cluster of redundantly connected hard-
ware boards. Ideally, this cluster can be built from COTS hardware boards and network equip-
ment. The FS manager starts and stops partitions, establishes virtual links in-between them and
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provides load balancing. Starting, stopping and interconnecting safety-critical FS entities is a
safety-critical task, thus the FS manager has to be implemented as a safety-critical component
within the dynamic TMR-composable architecture itself. The management of safety-critical
components is actually subject to certification. For each operation altering the integrated system
a new valid integration contract must be constructed from the FS and IE contracts. To automate
this process, the contracts must be formalized in a machine-readable way. For fail-safe systems,
it may be sufficient to implement mechanisms where the individual triples check whether the re-
quirements specified in their contracts are fulfilled, otherwise they can trigger a safety-reaction.

The composability layer is the same as for software-based TMR. However, as the compos-
ability policies concerning bandwidth guarantees and scheduling are dynamically changed by the
FS manager, it has to be ensured that such changes are covered in the IE contract. Resource us-
age, maintainability and availability are improved in comparison to the static TMR-composable
architecture, since replicas can be moved between hardware boards during operation.

Dynamic TMR-Composable Architecture with Adaptable IE

Extending the previous approach with the ability to add and remove hardware boards during
operation2, even more flexibility is introduced in the system. Such an alteration of the system
effectively changes the IE and the IE contract must be defined accordingly to also handle this
variability. It affects the integration contract established between all currently running FSs and
the IE before the alteration. Thus, the adaptation of the IE must be performed in two phases.
First, the effects of the IE change must be determined and a corresponding new integration
contract derived. Only after a contract is found where all FSs requirements are met, can the IE
start to stepwise integrate or remove hardware and subsequently replace the previous integration
contract. Again, this process is subject to certification and the supervision must be provided by
a component developed according to the highest integrity level supported by the IE.

2The replacement of a faulty hardware board is not considered an alteration of the IE.
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CHAPTER 5
Targeted Applications

This chapter presents the requirements and nature of the existing applications, which are going
to be integrated. We consider these specific applications for three reasons. First, it narrows down
the huge design space regarding applications and requirements, thus allowing for concrete anal-
ysis and solutions. Second, their requirements are still relative generic, since COTS hardware,
TMR, fail-safe behaviour and round-based computation are often seen in practice. Third, they
are based on actual industrial examples.

When designing a composable environment with the aim to integrate existing applications,
which are already being used within certified systems, a major goal is to change these applica-
tions as little as possible so as to reduce development and certification effort for the integration
and keep the trust in the applications established through the operation in the field. Therefore,
the first constraint for the composability approach is:

Constraints 1 Keep the applications unchanged.

The targeted applications themselves must fulfill different requirements according to their
provided functionality and environment. However, all are based on a middleware layer provid-
ing software lock-step TMR or software incremental TMR with the periodic synchronization
algorithm described in detail in Section 7.1. Defined with the synchronization period, this al-
gorithm periodically exchanges messages for synchronization and voting. The applications are
all fail-safe and used within the railway domain. In general, they are rather computation than
communication intensive.

The applications rely on a safety layer, encapsulating the applications’ safety-critical func-
tionality and providing fault tolerance with according supervision for safe execution. This en-
capsulation is ensured by requiring that applications only use the services of the safety layer for
safety-critical communication and restrict their usage of other services. Therefore, it offers a
clean interface, which includes all necessary communication primitives, to the applications. The
TMR middleware together with additional middleware services, e.g. health monitoring, repre-
sents this safety layer. It is developed and maintained according to the highest criticality level of
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the system’s applications. Through additional monitoring of the applications’ behaviour, as well
as testing of the functionality used by safety-critical services, the safety layer can also mitigate
faults of the triplicated lower OS and hardware layers. These lower layers are loosely coupled
since the synchronization mechanism is implemented in the safety layer and only tasks of the
application are replica-deterministically executed. This loose coupling of independent hardware
boards and OS instances ensures strong fault containment. Consequently, the second constraint
for the composable architecture is:

Constraints 2 Embed the synchronization mechanism within the application’s fault contain-
ment regions.

Additionally, the safety layer may impose restrictions on, and require implementation of
certain safety mechanisms within the application, e.g. periodically checking whether all safety-
critical services are still executing or registering tasks at the health monitor after booting. All
safety-critical actions are supervised with timeouts in this safety layer concept, e.g. there are
timeouts for supervising the reaction time of the application or timeouts used for synchroniza-
tion. The applications, together with the safety layer and underlying OS, build the FSs for our
setup, which are then executed on top of the hardware infrastructure.

In the railway domain, applications or sub-systems can be classified in three different cate-
gories:

• On-board systems, located on board of the train, are limited in space, as well as power
consumption as a result of restricted heat dissipation and must be resistant towards vibra-
tions,

• Track-side systems, located along the rail tracks, are subject to harsh environmental con-
ditions and relatively limited space, and

• General control systems, located in distant buildings equipped with server rooms for com-
putation and possibly dedicated HMI (human-machine interface) workplaces.

We will now describe two example application tasks of the railway domain and their impli-
cations, so as to illustrate the wide range of possible application profiles.

5.1 Setting a Train Route

An example of a general control system is an interlocking system, e.g. [69]. The process of
setting a train route is a typical task executed by such a system. Initially, the operator or an
automatic timetabling system requests the interlocking system to set a certain train route. The
interlocking system then checks the availability of all elements of the network. If all are free,
it then reserves each individual element. Afterwards, it commands the switches to move into
the right state and, upon success, to set the signals from red to green. If any step during this
sequence fails to complete, the whole process of setting the route is aborted. This is certainly
a safety-critical task, since a failure can cause a hazard with potential loss of lives, but the
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timing requirements are quite relaxed from the safety point of view, since the safe system state
is ensured by the sequence of operations. The required reaction time here is derived from an
operability criterion and usually in the range of a few seconds.

5.2 Axle Counting

With sensors installed along the track, axle counters, e.g. [65], detect the direction of the train
and, as their name implies, the numbers of axles that pass over it. Together with the topology of
the railway network, it can be deduced:

• In which segments trains are on,

• How they are progressing along their defined routes, and

• Whether trains are complete, i.e. that all wagons are still in place and no axle has been
lost.

Therefore, they are vital components for railway network operation. Their required reaction
times, typically a few hundred milliseconds, are both a result of the operability requirement, as
well as safety-related.
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CHAPTER 6
System Model

The system model presented in this chapter will be extended with a detailed definition of con-
tracts in Chapter 11.

Our architectural model is that of an integration environment (IE) consisting of IE nodes
(hardware boards) and on top of each of these a composability layer is executed. This layer pro-
vides local separation of resources for FS nodes (function set nodes) deployed on the same IE
node as depicted in Figure 6.1. An FS may require one or more FS nodes to provide its function-
ality. Each FSFi is assigned an ID i, while the corresponding FS nodes are referred to asF0

i ,F1
i

and F2
i for FSs using TMR. Based on the targeted applications we only consider software-based

TMR in our system model and subsequent analysis. Here, the hardware redundancy concept
requires that per IE node at most one FS node from an FS is deployed.

IE Node 1

Interconnect

FS Node 10

FS Node mj

...

IE Node 2

FS Node 11

FS Node nk

... ...

Figure 6.1: General IE node and FS node architecture.

The aim of composability is to allow more than one FS node to run on one IE node. This is in
contrast to the federated architecture, where the FS nodes and IE nodes are identical, therefore
not leveraging the full resources of the IE node and not providing flexibility. The resource
sharing of the IE nodes introduces interferences between otherwise independent FS nodes, and
specifically the need for FS scheduling within the IE as described in Chapter 4. This is a major
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focus of the objectives used for the evaluation of possible solutions, which is described in the
next section, followed by the definition of the scheduling parameters and the fault hypothesis.
The influences of scheduling on message transmission times are presented at the end of this
chapter.

6.1 Objectives

Within the system model, the objectives established in Chapter 1, predictability, performance
and utilization are defined as:

1. Predictability and separation

The predictability objective is to provide the technical basis for the feasibility evaluation
method, as well as the method itself, which calculates whether or not the safety-critical
applications can provide their functionality based on the resources offered by the IE. Sep-
aration (non-interference) is a pre-requisite of the technical basis.

2. Performance

The performance objective for integrating safety-critical applications is the maximum ap-
plication reaction time amax. For TMR-based applications this is the time from event
occurrence to reaction (output), during which the event information has to be distributed,
the workload executed, the results exchanged and voting performed.

3. Utilization

Within this domain, the utilization of the IE nodes’ CPUs is most relevant, since it is
the scarcest resource. The applications’ bandwidth requirements for communication are
typically very low compared to the available bandwidths.

6.2 IE Node Scheduling

On each IE node, the deployed FS nodes must be scheduled for sharing the CPUs. Due to the
symmetric workload execution of the FSs, the FS node scheduling parameters are defined iden-
tically for all FS nodes of the same FS. Time parameters of the schedulers are defined within N0

and assumed to be multiples of µs. Naturally, these parameters do not contain IE-specific at-
tributes, such as scheduling overhead. Three different scheduling algorithms are chosen for
analysis: static-cyclic, preemptive fixed-priority and preemptive earliest deadline first (preemp-
tive EDF) scheduling with constant bandwidth server. For each of these algorithms we now give
a short description, motivation and their parameters in our model.

Static-Cyclic Scheduling

As presented in Section 2.5 the use of static-cyclic scheduling is defined in ARINC 653 for inte-
grated modular avionics. According to the ARINC 653 definition, the scheduler cycles stepwise
through a scheduling table to decide which partition to schedule at the current invocation. This
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results in a periodic schedule, with a period equal to the duration of one full cycle though the
table. In practice, this allows the defining of different (periodic) scheduling patterns for various
partitions.

The available CPU time and the scheduling instances for a partition are completely pre-
dictable on an FS node local level and thereby, promise a good foundation for composability.

In our system model, static-cyclic scheduling defines that an FS node of the FS Fi is sched-
uled periodically with the period Ti for the slice duration Si on the IE node it is deployed on.
Consequently, the scheduler periodically assigns the CPU to a partition for the duration of a
scheduling slice. After the designated time for this slice has been reached, the partition is pre-
empted and the next partition scheduled. This definition is only a subset of the instance available
with a scheduling table, but is sufficient for the analysis of the synchronization behaviour of our
TMR mechanisms defined in the next chapter.

Preemptive Fixed-Priority Scheduling

In preemptive fixed-priority scheduling, scheduling decisions are taken upon arrival and com-
pletion of tasks. Each task is assigned a priority and the task, which is ready to execute and has
the highest priority, is scheduled on the CPU. A task is preempted if another task with a higher
priority arrives. The execution of the preempted task is delayed until it is again the ready task
with the highest priority.

As described in Section 2.5, Liu and Layland [84] proved that fixed-priority scheduling
is optimal for scheduling periodic tasks on uniprocessors, if the priorities are assigned rate-
monotonic, i.e. tasks with shorter periods are assigned higher priorities than tasks with longer
periods. Preemptive fixed-priority scheduling provides good CPU utilization and is available
within most operating systems, hypervisors and microkernels. The ability to preempt is required
in order to interrupt the execution of non-critical FS nodes. A composable architecture based on
this scheduling strategy can choose between many different implementations for the compos-
ability layer.

In our model, Pi is the scheduling priority of all FS nodes of the FS Fi.

Preemptive EDF Scheduling

For preemptive EDF, each task has a relative deadline and a minimum inter-arrival time. When a
task arrives its next deadline is set to its arrival time plus the relative deadline. The task with the
closest next deadline is executed. A task is preempted, if another task with closed next deadline
arrives. After a task finishes execution it will not be scheduled until the minimum inter-arrival
time has passed since its last arrival.

With the constant bandwidth server [2] each task is additionally assigned an execution bud-
get or slice. The constant bandwidth server limits the execution time of that task within the
minimum inter-arrival time to at most the execution budget. It also stops a task’s execution, if
it consumes more time than assigned. A task’s budget is refilled after the minimum inter-arrival
time has passed since the last arrival.

This scheduling approach allows to assign FS nodes a share of the CPU, which they cannot
exceed. Schedulability tests for preemptive EDF on single- and multi-core CPUs exist, en-
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abling to determine the feasibility of an FS node deployment on an IE node. Consequently, this
scheduling strategy seems beneficial for constructing a composable system.

The scheduling parameters in our system model for all FS nodes of the FS Fi are defined
as the minimum inter-arrival time or period T E

i , which is also the relative deadline, and the
maximum execution time SE

i .

6.3 Fault Hypothesis

The safety-critical FSs in the final integrated system must be able to tolerate single transient and
permanent random hardware faults on the IE node, as well as quasi-random software faults on
the IE node and FS node level. These faults can exhibit arbitrary (byzantine) fault behaviour
aside from being unable to forge other nodes’ message signatures. Single communication link
faults (transient and permanent) must also be tolerated.

6.4 Message Transmission Times

When sending messages within an IE architecture, the duration of scheduling decisions within
the IE and FS nodes are a significant contribution to the message transmission times. An example
of this is sending a message from one FS node to another upon reaching a timeout for initiating
the synchronization process. Regular network interface controllers (NICs) can not access the
memory of virtual machines. With the exception of systems using special NICs which have this
feature [52, 100], at least the following scheduling decisions must be taken:

1. δFS: After reaching the timeout, the sending FS node has to be scheduled by the sending
side hypervisor.

2. δtask: Within the FS, the task for sending a message has to be scheduled by the OS in the
FS, which then passes the message directly to the virtual network driver.

3. δvdrv: The sending-side hypervisor has to schedule the virtual network driver back-end of
the sending FS node, which forwards the message to the hardware network driver.

4. δDMA: Via direct memory access (DMA) the network driver subsequently forwards the
message to the NIC.

5. δnet: The sending NIC has to schedule the message on the network, sending it to the
receiving NIC.

6. δDMA: The receiving NIC writes the message to the memory via DMA.

7. δdrv: The receiving-side hypervisor has to schedule the network driver, which forwards
the message to the virtual network driver back-end of the receiving side FS node.

8. δvdrv: The receiving-side hypervisor schedules the virtual network driver, which requests
the hypervisor to map the memory containing the received message to the FS node.
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(b) Creating, sending and receiving a message upon a timeout with additional scheduling of the
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Figure 6.2: Additional scheduling operations with hypervisor layer according to the system
model.

9. δFS: The receiving side-hypervisor has to schedule the FS node.

10. δdrv: The OS of the receiving FS node has to schedule the virtual network driver.

11. δtask: The OS of the receiving FS node has to schedule the receiving task.

Figure 6.2 illustrates these scheduling steps in the setups with and without the hypervisor
layer. Five additional scheduling steps have to be taken, which once again highlights that the
scheduling strategy of the hypervisor layer is an important factor. This depiction is the more
detailed version of Figure 4.2 on page 27 according to the system model.
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Depending on the setup, many additional scheduling decisions might have to be inserted into
this list, e.g. soft interrupt request threads, virtual switches or splitting and merging of network
frames. Part of this path in a Linux environment without virtualization has been described by
Wu et al. [123]. Very costly operations with respect to time are the scheduling of FS nodes δFS,
since the CPU core and MMU must be set up for executing the OS of the virtual machine and
shadow page tables must be prepared. Depending on the current execution pattern on the CPUs,
also the scheduling of the virtual driver back-end δvdrv can take time. For our analysis, δDMA,
δnet and δdrv will always be assumed to have no significant influence, since the message trans-
mission time from the memory of one IE node to the other and the scheduling of the interrupt
is negligibly small for the workloads of our example applications from Chapter 5. They send a
limited amount of KiB-sized messages via a full-duplex gigabit Ethernet network with at most
one switch between the participating nodes. Likewise, δtask is also omitted, since our receiving
(synchronization) task in the FS node has the highest priority and the scheduling latency within
the FS node is significantly smaller than scheduling the FS node on IE node level.
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CHAPTER 7
Synchronization Mechanisms

In this chapter, we present the synchronization mechanisms subject to our analysis. Synchro-
nization establishes a consistent view of the environment (input) and system state (time, mem-
bership and output). It is the foundation of replicated computation and voting. The achievable
maximum reaction time amax of a TMR application is strongly dependent on the used synchro-
nization mechanism and the maximum workload computation time wmax.

In accordance with our targeted applications, we consider periodic synchronization for IEs
with a classic TMR architecture in Section 7.1, as well as for dynamic IEs with a redundant
network in Section 7.2. Additionally, a synchronization mechanism based on virtual synchrony
is presented for the latter IE in Section 7.3. This is an approach used in cluster technology [38].
In Afterwards, we outline in Section 7.4 how the layer used for synchronizing influences the
synchronization precision. For the general descriptions, we assume that the synchronization
algorithms are executed directly on the IE node and no FS nodes are present.

7.1 Periodic Synchronization

In our railway example of Chapter 5, periodic synchronization, with a synchronization period
Ts, is the TMR synchronization mechanism currently provided by the middleware to the targeted
applications, which supports software lock-step TMR, as well as software incremental TMR. In
our general description of the mechanism, we focus on periodic TMR synchronization for soft-
ware lock-step TMR, since it has stronger timing requirements towards its environment and is
easier to illustrate than software incremental TMR. Furthermore, we have three fully connected
hardware boards as our three fault containment regions and thereby, (IE) nodes.

Software-based TMR must ensure a replica-deterministic execution for the replicated work-
load processed in the fault containment regions, as well as provide fault detection and isola-
tion [97]. Using periodic synchronization, the operation is split into two phases as shown in
Figure 7.1. During the periodically initiated synchronization phase, the three nodes exchange
messages on the system state, determine the membership state of all nodes, vote on the repli-
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Figure 7.1: Periodic synchronization of software lock-step TMR.

cated input data and advance the logical synchronous time used for replicated computation. The
computation phase is used for calculating the new output based on the replicated input.

R1

R2

R3

timeout

Figure 7.2: Example message exchange during synchronization phase.

More specifically, the synchronization phase for each node starts with initiation of sending a
(synchronization) message1. This occurs either due to the synchronization phase start timeout or
the reception of a message from one of the other nodes. The timeout for the next synchronization
phase start is adapted accordingly, so as to account for clock drifts2. Each node sends out its
state as signed messages to the others (solid arrows in Figure 7.2), and forwards such directly
received messages (dashed arrows), with its own signature appended, to tolerate link faults and
byzantine faults of individual nodes3. As soon as all direct and forwarded messages have been
received (or a timeout is reached), the node performs membership and voting. Afterwards, it
switches to the computation phase again. This phase switch can also be defined relatively to
the synchronization phase start to provide constant (albeit less) computation time. However, our
targeted applications do not make use of such a mechanism.

The example depicted in Figure 7.2 illustrates the influence of the message transmission
times between the nodes on the synchronization phase duration. In fact, membership and vot-
ing need only a fraction of the time necessary for message exchange. For each of these mes-

1We consider the preceding scheduling operations as part of the synchronization phase, but not the duration
between timeout occurrence and the start of this scheduling operation.

2The safety layer monitors local clock drift independently.
3The method of tolerating byzantine faults with (unforgeable) signed messages has been presented in the original

paper on the byzantine generals problem [80].
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sages, many scheduling steps might be necessary as outlined in Section 6.4 on page 38. These
steps introduce jitter in message transmission times and subsequently increase the jitter of the
synchronization phase duration. In doing so they also increase the maximum duration of the
synchronization phase.

shortest synchronization period

longest
sync. phase duration

sync. phase

worst case
computation duration

computation phase

Figure 7.3: Composition of the minimal synchronization period.

The maximum duration of the synchronization phase together with the worst-case execution
time of the replicated workload is the shortest possible duration of the synchronization period for
software lock-step TMR, which in turn is a requirement imposed by the environment. Figure 7.3
illustrates the composition of such a minimal synchronization period.

Fault detection

Depending on the resulting behaviour, faults occurring in single nodes are detected during dif-
ferent tasks of the synchronization period. An erroneous output produced by a node is detected
during voting in the synchronization phase. For detecting crash faults or loss of messages, a
timeout for finishing the synchronization phase limits the reception of messages. This timeout is
derived from the “path” taken by the longest message sequence in presence of a single link fault.
In the worst-case scenario, there is a sequence of four messages, where the node at one side of
the broken link starts the synchronization phase with a message sent upon a timeout and the one
on the other side starts it with the reception of a message. A node is excluded, if its messages
are not delivered to the other nodes before the timeout for finishing the synchronization phase
has expired. The correct setting of this timeout is crucial for the stability of the periodic TMR
synchronization.

Metrics

synchronization period

sync. phase duration

sync. phase

sync. jitter

computation duration

computation start jitter

computation phase

Figure 7.4: Properties used as metrics for periodic TMR synchronization.
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Figure 7.4 illustrates the properties and parameters essential for the periodic synchronization
service provided to the application, and consequently, its reaction time. The elements are: the
synchronization phase duration s, the computation phase duration c, and the respective synchro-
nization jitter sj and computation start jitter cj . This computation start jitter originates in the
task switch from the TMR middleware to the application and is typically very low, since the
task switch is a local OS level scheduling step. The maximum synchronization phase duration
smax increases with sj (smax = smin + sj), while both sj and cj reduce the minimum available
computation time

cmin = Ts − cj − smax,

where the minimum delay until the computation starts after the end of the synchronization phase
is still defined as part of the synchronization phase. Contributors to the jitter sj in an architecture
where the synchronization mechanism is executed on the IE node level is the scheduling of
tasks δtask, drivers δdrv, memory access δDMA and network transmission δnet. These scheduling
steps are depicted in Chapter 6, Figure 6.2(a) on page 39 for sending and receiving of one
message. The costly δFS and scheduling of virtual driver back-ends δvdrv are introduced with the
composable architecture, which are illustrated just below the previous example in Figure 6.2(b)
also for sending and receiving of one message.

If only one computation phase is necessary for generating the new output in response to a
given input, the worst-case reaction time is two synchronization periods plus one synchroniza-
tion phase

amax = 2Ts + smax.

The scenario here is that the input event occurs right after a synchronization phase has been
initiated, and thus, the information about the event is distributed only after the first period has
passed, in the next synchronization phase. The result is then voted in the subsequent synchro-
nization phase and the new output forwarded after its completion.

The application designer’s task is to find a synchronization period suitable for the required
reaction time and providing sufficient computation time for the application. A high jitter sj

causes a long maximum synchronization phase duration smax, and consequently, requires a
long synchronization period to provide enough computation time in the worst case. Therefore,
keeping sj low is essential.

Workload Execution

Figure 7.5 compares workload execution in software lock-step TMR and software incremental
TMR. In this example, the replicated workload execution has to be finished within four synchro-
nization periods after the input event occurred in order to fulfill the reaction time requirement.
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Figure 7.5: Workload execution pattern for periodic synchronization with lock-step and incre-
mental TMR.

In the illustration, the according reaction time limit is aligned to the closest end of the synchro-
nization phase that still satisfies the reaction time requirement. The long rectangles depict the
theoretically available computation time for applications while the narrow ones illustrate the
scheduling of the synchronization task in this scenario. Herein lies the main difference of both
approaches, as it is possible for the incremental TMR to compute while a synchronization phase
is ongoing. It may only be interrupted by the synchronization task itself, which is then handling
messages and performing membership and voting. Therefore, the computation margin for ensur-
ing completion is only required at the last synchronization period before the reaction time limit
is reached in software incremental TMR. This additional computation time can only be used by
the application if tasks are active, i.e. do not have to wait for voted results. Consequently, the
available computation time also depends on the application’s data flow. Also, the ratio of syn-
chronization phase to computation phase and according margins vary strongly with the length of
the synchronization period, such that in some cases these margins and idle times of computation
are negligible for the overall performance.

Recalling the two example applications from Chapter 5, one could use software incremental
TMR for setting the train route and through this enable more relaxed low-level timing require-
ments in the execution, while software lock-step TMR might be used for axle counting. It
remains for the application developer to choose.

7.2 Periodic Synchronization for Redundant Networks

For the dynamic IE, where a redundant network is provided for periodic synchronization, the
algorithm must be adapted. Two separate switches, each of which connected to all IE nodes, is
a simple example of such a redundant network (see Figure 4.3(c) on page 29). The forwarding
of messages is no longer required in order to tolerate single link faults with the redundant inter-
connect. In this case, the shift to a monitoring architecture is necessary for tolerating byzantine
faults. Employing such a FS node local architectural separation of message creation and com-
munication supervision allows the mapping of byzantine faults in one of the two components to
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either fail silent or babbling idiot faults on the local node. This is a weaker fault hypothesis, as
only part of the node can be byzantine faulty. Thus, a fault can result in either

• Erroneously created messages, which are filtered by the communication supervisor, or

• The supervisor itself is faulty and keeps retransmitting correct (unforgeable) signed mes-
sages or messages with invalid signatures to the network.

In the latter case, the FS bandwidth constraints enforced by the IE limits the effects of the
babbling idiot for the whole network. Additionally, the other FS nodes are able to detect these
duplicate or invalid messages and can trigger a safety reaction.

Using this monitoring architecture, the message forwarding step of the periodic synchro-
nization can be eliminated, thereby shortening the duration of the synchronization phase. The
resulting message exchange is that of the synchronization mechanism presented by Miller et
al. [88]. Moreover, the metrics and resulting maximum reaction time amax are the same as for
the original periodic synchronization mechanism with a shorter synchronization phase.

7.3 Token Ring Synchronization with TSM

An alternative approach to periodic synchronization and subsequent ordering of messages for
replica determinism is to define a total order on the FS’s data messages using virtual syn-
chrony [25]. One method for achieving virtual synchrony is to create total message ordering
by constructing a logical token ring and allowing only one node at a time, the token holder, to
assign IDs to its messages. Only local (unsynchronized) timeouts are used for error detection
and the membership service. As opposed to the periodic synchronization, it does not require the
messages to be exchanged simultaneously. This enables resending of lost messages or tokens
and the network load is distributed more evenly, overall promising a more robust synchroniza-
tion method in the composable environment. Examples of token ring protocols achieving such
a total message order are the “Totem Single-Ring Ordering and Membership Protocol” [8], or
the “TPM Protocol” [101]. Both protocols are designed to handle network partitioning, which
is not tolerable in the case of fail-safe safety-critical applications. Consequently, the protocol
required for our TMR synchronization can be simpler. The RTCast protocol [1] claims to have
fast message distribution times, but its fault hypothesis and availability of individual nodes is
not suitable for our approach. This is why we introduce a new token ring protocol, TSM (Token
Synchronized Messages), which aims for short (re-)integration times of individual nodes and
follows an “instant delivery” strategy. Still, it is largely based on the concepts and algorithms of
the former protocols.

We start by describing the membership and message ordering algorithm, followed by the
instant delivery mechanism. Then we outline the strategy for fulfilling the fault hypothesis.
Finally, we show how TMR can be implemented on top of TSM and the according metrics for
its performance. We will not distinguish between elements and their identifiers, if the meaning
is clear from the context.
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Membership

The TSM operation is separated in membership phases and operational phases. Nodes, phases
and messages are all assigned identifiers. Each node has a list of all possible members. Operation
starts with the initial membership phase. During a membership phase, nodes exchange join
messages containing a suggested set of members, a membership phase ID4 and their current
state regarding received and delivered data messages. While in this phase, all nodes set a local
membership timeout relative to their last sent join message, which triggers the sending of a new
join message. Nodes, of which join messages have not been received before the timeout expired,
are excluded from this node’s suggested member set in the newly sent join message. When a
node receives a join message with a higher phase ID, it either answers by sending out a join
message with the same members and phase ID, or one with a new phase ID and extended member
set. The latter is the case, if some of the nodes it already received join messages from within
its current phase, are not included in the join message with the higher phase ID. Agreement
on the member set and phase ID is reached, if a node receives the join messages exactly from
all its suggested members, containing the same set of members and phase ID. It then switches
to the operational mode. Receiving a token message, containing the same set of members and
an operational phase ID equal to the node’s current membership phase ID, also triggers this
mode switch. Network partitioning is avoided by requiring that the member set sufficient for
this mode switch consist of more than half of the nodes. When a node switches to operational
mode, it checks whether it is the one with the smallest node identifier of the member set. In
that case, it generates a token message and sends it to the node with the next higher identifier.
This token contains the membership phase ID as the new operational phase ID, the member set,
the next message sequence number, a token ID, the IDs of sender and receiver, and condensed
information on all members’ received messages. Membership phases are also started when a
non-member node sends a message, or a token loss timeout occurs.

Message Ordering

During the operational phase, a node receiving the token can send out a data message containing
the sequence number provided in the token. This sequence number is incremented when such a
message is sent, defining a total order for all data messages. The token ID is incremented when a
node forwards the token, in order to distinguish between token messages when no data messages
are sent. Gaps within the data message sequence numbers occur only when nodes fail and the
corresponding messages are lost. These gaps are detected during the following membership
phase, where the failed nodes are excluded from the member set.

Instant Delivery

TSM nodes buffer all received data messages so as to provide their copy in case other nodes do
not receive them. Each node updates its received message state in the token upon forwarding it.
When receiving a data message, the node can instantly determine whether it has received all data
messages preceding the current one. This is based on the total order of sequence numbers and the

4Identical to the ring identifier in [8].
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detected gaps of data message IDs during the membership phase. In this case, the data message,
and all so far received follow up messages, are immediately delivered to the application. If a node
misses a message, it can request a resend from another node based on the received data message
information contained in the token. These requests are sent after forwarding the token and are
handled by the buffering node completely independently from the token processing. Messages,
which have been received by all nodes according to the token information, are removed from the
local buffer.

Supervision Architecture

TSM Protocol Handler

Application

Monitoring and
Communication Handler

Communication Media

receive,
members

bcast

bcast,
clear

request
sendToken
retransmitToken

receive

bcast,
send

receive

Figure 7.6: Monitoring architecture of TSM.

The concept of the supervision architecture is analogous to the supervision of periodic syn-
chronization for redundant networks presented in Section 7.2. Figure 7.6 illustrates the TSM
monitoring architecture on each node. TSM is connected to the application (AP) via an interface
for message exchange and membership information, whereas only signed messages are sent via
the communication media (CM). The TSM protocol itself is split into two modules: the “TSM
Protocol Handler” (PH) and the “Monitoring and Communication Handler” (MCH). The PH is
generating all relevant protocol messages and signs them before passing them to the MCH. The
MCH, in turn, checks these signatures and adds an additional signature to the message.

Due to the simplicity of the TSM protocol, the MCH monitoring entity can check the validity
of each message generated by the PH. If it is detected as incorrect, it is not forwarded to the CM,
which is perceived as a “fail silent” behaviour by the other nodes. The MCH must also detect
too early timeouts, e.g., to prevent a PH from continuously sending join messages and thereby,
preventing a switch to the operational phase. If, on the other hand, the MCH is faulty, its only
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options are to either erroneously suppress correct messages received from the PH or CM, or
send multiple copies of it5. The latter “babbling idiot” behaviour is easily detected by the other
nodes or the PH and its effects on the shared network limited through the bandwidth constraints
enforced by the IE, just as for the supervision of the periodic synchronization for redundant
networks.

TMR on TSM

TSM fulfills the properties of FIFO Atomic Broadcast as specified by Hadzilacos and Toueg [57]:
Validity, agreement, integrity, FIFO order and total order. Together with its membership service
and the aim of short interruption times when nodes fail or are reintegrated, it provides a good
foundation for a TMR middleware. The remaining required features are voting and a safe syn-
chronous time.

The synchronous time is constructed using local clocks and periodically sending out time
messages as TSM data messages. The timestamps contained in these messages are used to de-
rive a synchronous time via voting for all other messages in the ordered stream. Timeouts for
the application are also derived from this synchronous time and delivered locally, when the syn-
chronous time progresses. Consistency for the application is given, since the time information
is also based on the total order message stream. An additional time supervision is required for
the synchronous time to ensure that its rate is sufficiently close to the real-time. Either the syn-
chronous time is then fed back to the local clocks to keep them relatively close together for
logging, or a different service, such as NTP [90], can be used.

Voting on regular data messages is performed on the totally ordered message stream and
timeouts for voting are derived from the synchronous time. The voted message is delivered
when a sufficient subset of correct messages is received before the voting timeout is reached.
Otherwise, a voting error is forwarded to the application.

Metrics

token round trip jittertoken round trip time

computation duration

F2F0

F1F0

F0F0

Figure 7.7: Properties of TSM-based TMR synchronization.

Figure 7.7 illustrates the key properties for the TSM-based TMR synchronization during
fault-free operation. The arrows represent the reception of the token, while the messages sent

5Join messages with a phase ID lower than the current one are ignored, just as any other duplicate messages.
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upon reception of the token are omitted in the depiction. In the example, the computation starts
as soon as the FS node has received the last message, which is sent by F2

0 after it received the
token.

The first key parameter for the reaction time achievable with this synchronization mechanism
is the token round trip time r, i.e. the time it takes for the token to circle through all participating
FS nodes. On a node local level it is the time between two token receive events. Also, the token
round trip time jitter rj determines the synchronization quality. Assuming that the computation
time required for calculating an event reaction is feasible within one token round trip and mes-
sage transmission times are symmetric, then the maximum reaction time in the fault-free case
is

amax_nf =
8

3
rmax.

In this scenario, similar to the periodic synchronization, the event occurs just after the token
has been forwarded at the node originally notified of the event. The event information is then
distributed at the next token reception after one rmax. Distribution of results starts with the
token round trip after that (2rmax) and finishes before completing the full round after two token
forwards at 2rmax +

2
3rmax.

Another important characteristic is the regular operation interruption time g when a node
fails. With TSM, this it is the time duration from the last successful token processing of a node
until the next non-faulty node in the original sequence receives the new token after the mem-
bership phase. This is strongly dependent on the token loss timeout and membership timeout.
The token loss timeout must be at least rmax, while the membership timeout has to be at least
twice the message transmission time (m) plus the computation necessary to reply. In case of
regular operation interruption, the worst-case scenario is when the node with the lowest ID of
the member set crashes. Here, the node with the next higher ID, i.e. the next non-faulty node
in the original sequence, emits the initial token after membership and receives the new token
itself only after a full round (with one node less in the member set). This results in a worst-case
interruption time of

gmax = rmax + 2mmax + 2mmax.

Consequently, the worst-case response time during fault occurrence is the sum of the worst
case for the fault free reaction time and operation interruption

amax = amax_nf + gmax.
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Based on the maximum message transmission time mmax and assuming zero time computa-
tion, we can compare the reactions times of the periodic synchronization mechanisms and TSM.
With rmax = 3mmax, we get a worst-case reaction time of

aTSMmax = aTSMmax_nf + gmax = 15mmax

for TSM. While the worst-case reaction time of periodic synchronization with direct links is

apsmax = 2T ps
s + spsmax = 12mmax.

Naturally, periodic synchronization is significantly faster without the message forwarding
step in the redundant network, although the message transmission times themselves are longer
due to the additional network infrastructure

arpsmax = 2T rps
s + srpsmax = 3mmax.

These values should just give a first idea of the possible reaction times. We later evaluate
the performance of the synchronization mechanisms in detail for our composable environments
in Chapters 9 and 10.

Although interruption of message ordering and distribution caused by a node failure and
subsequent membership phase is short in TSM compared to the existing token ring protocols, it
still has a significant influence on the worst-case reaction time. Just as the other synchroniza-
tion algorithms, TSM is strongly dependent on the message transmission times of the chosen
architecture. TMR on top of TSM provides a robust middleware for triplicated applications.
With the message buffering and request mechanisms, TSM is also suited for networks with high
packet loss rates. Rather than immediately triggering a safety reaction when a packet is lost on
the redundant interconnect, packets are resent and other high-level timeouts are used for fault
detection and reaction6. Also, (re-)integration of a node in the membership is fast given that it
requires less than one membership timeout.

6The comparison of reaction times above uses the shortest timeouts and thereby, has no margin for token resend.
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7.4 Influence of the Layer of Synchronization on Synchronization
Precision

We define the synchronization precision as the maximum offset in real time when the replicated
workload’s execution starts. A good synchronization precisions allows timely execution of the
workload and consequently, short reaction times. When considering the definition of the syn-
chronization precision, one factor is significant for the presented synchronization mechanisms:
The message transmission times, including scheduling operations for message delivery. The drift
of the local clocks has no influence in this definition, as timeouts only initiate synchronization
phases for the periodic algorithms and do not trigger sending of data messages in TSM.

The layer in which the synchronization mechanism is located strongly influences the mes-
sage transmission times. The synchronization precision increases with the decrease of synchro-
nization jitter, which in turn decreases as the jitter of the message transmission times gets lower.

Implementing synchronization in a low-level kernel interrupt routine will consequently achieve
a better synchronization precision than synchronizing within processes. For the latter case, the
additional scheduling latency is the main contributor to the message transmission time. Synchro-
nizing within virtual machines increases this scheduling latency even more, as illustrated with
the scheduling steps defined in the system model and illustrated in Figure 6.2(b) on page 39.
Generally, the lower the layer providing the synchronization mechanism is located, the bet-
ter the synchronization precision is. However, implementing the synchronization mechanism
within the FS provides better separation between the FS nodes of an IE node. It also ensures
loose coupling between the IE nodes and thereby, fault containment regions, and allows each FS
to follow its own synchronization strategy.
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CHAPTER 8
Proposed Concepts for Composable

Solutions

The introduction of composability affects most aspects of safety-critical systems. Not only the
certification process and system architecture, but also test procedures, configuration methods
and many other elements and tasks have to be adapted accordingly. Thus, it is of the utmost
importance that the benefit of switching to a composable approach justifies the overall effort.
Based on our targeted applications, we first suggest strategies for the composability layer and
the respective safety concept and certification approach. Afterwards, we present two possible
architectural solutions. The technical aspects of these solutions are evaluated in detail in the
Chapters 9 and 10, and certification based on contracts in Chapter 11.

8.1 Virtualization as Composability Layer

Virtualization is a technique for providing separate virtual machines to several operating sys-
tems, called guests deployed on the same hardware. As described in Section 2.2 on page 6,
hypervisors provide these virtual machines by only interfering with a few of the guest operat-
ing systems’ instructions, i.e. those that would change the hardware state for all guests. As
for composability, isolation between the guests and performance guarantees are both central
features of hypervisors. Adopting this technology as a composability layer allows the use of a
wide range of hypervisors, some of which have a large user base and are thereby, extensively
tested. Also, bundling the existing applications with their operating systems together in virtual
machines leads to requiring only a confined set of functionalities of the composability layer,
since most low-level services are still implemented within the guest operating systems.

This approach naturally introduces a discrepancy between the IE node’s and FS node’s view
of the system and of its state. Using virtualization for composability, the context of applications
and services executed on an FS node are encapsulated within the virtual machine. The host
system and guest operating systems of the virtual machines interact via abstractions of hardware
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Figure 8.1: Limits of separation in a composable system with hypervisor.

mechanisms. This introduces a semantic gap, since neither the host, nor the guest can infer the
“full” system state [32]. Figure 8.1 illustrates this with the border (b) between hypervisor and FS
nodes. This is a very beneficial property for isolation, with a strong restriction of the possible
influence of the hypervisor, but makes scheduling of such synchronized FSs very difficult. A
virtual machine going to sleep might just be waiting for the next synchronization message within
a few µs or it has just finished the replicated workload computation and is waiting for the start of
the next synchronization phase in several ms. Alternatively, it might also have another timeout
set for non-replicated I/O. This is not visible to the scheduler in the IE node.

Closing a part of this semantic gap has been achieved in the case of memory usage for server
virtualization with the ballooning technique [119]. Using a special interface to the hypervisor,
guests can request and deallocate memory as needed. Through this mechanism, the host knows
which memory pages are not needed, and consequently, will not swap them out to the disk in
case of memory overcommitment. Naturally, memory overcommitment and ballooning have
unfavourable properties regarding non-interference to begin with, and are, therefore, avoided for
safety-critical FSs. Other methods have been proposed for scheduling and exposing the guest
state to the host [78, 117], as already outlined in Section 2.2

Not only the semantic gap hides information in this setup, as illustrated in Figure 8.1. Ideally
FS nodes cannot influence each others behaviour in any way, which is depicted as border (a),
being the limit of failure confinement. Border (b) is that of the semantic gap, and the boundary
for fault containment is border (c) between the IE nodes.

The key criteria for selecting the right hypervisor are the performance and predictability
the TMR workload execution and synchronization can attain on top of it. Synchronizing the
schedulers of the hypervisors [94] is functional tightly coupled to the used hardware, system
architecture, and naturally, the hypervisor. This limits the overall flexibility of the integrated
system. Additionally, it might compromise the general separation properties offered by the
hypervisor and the fault containment properties achieved with the loose coupling between the
IE nodes, i.e. border (c).

Preemptive fixed-priority scheduling is provided by all commonly available virtualization
environments, thus, constructing an IE on this basis allows to choose between a wide range of
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preexisting solutions. Furthermore, priority-based scheduling is also preferable for the utiliza-
tion of CPU resources by non-critical FSs, since they can access resources which would be kept
idle with other (composable) scheduling strategies, such as static-cyclic scheduling. Neverthe-
less, static-cyclic, as well as EDF scheduling are widely used in embedded systems with hard
real-time requirements due to their predictable behaviour. Consequently, we explore solutions
with static-cyclic, priority-based and EDF scheduling, which we also stated in Section 6.2.

8.2 Safety Layer

There are two options for safely adopting a (COTS) hypervisor as composability layer. The first
is to have a certified hypervisor, which already provides a safety concept and clearly states its
requirements for safe operation. The second is to be able to tolerate all faults introduced by the
hypervisor.

The safety concept of our targeted applications, described in Chapter 5 on page 31, uses the
second option with the safety layer strategy for integrating the operating system and hardware.
Therefore, reapplying this concept is a continuation of the philosophy followed until now and is
the concept suggested for the solution. It requires that the faults introduced by the hypervisor
must be detectable and partly tolerable by the (distributed) middleware, just as faults for any
other layer below the safety layer with the current approach. This includes random, as well as
systematic faults. One approach here is to conduct a rigorous failure mode and effects analysis
(FMEA) [110] regarding the generic features and properties of the hypervisor. If, based on this
FMEA, measures are found to mitgate all possible hypervisor faults, the existing safety layer
concept can be extended for the hypervisor as well. The task of performing such an FMEA gets
simpler or even just feasible, if both the complexity of the functions required from the hypervisor
layer and the possible influence between the hypervisor instances in different fault containment
regions are low. As mentioned above, synchronizing the hypervisor schedulers is an approach
that weakens the fault containment regions due to the introduction of common cause scenarios.
This most likely results in a system where the safety layer strategy is not applicable, and a
certified hypervisor needs to be used.

A general strategy for the safety layer to detect faults in the composability layer can be
to always twofoldly exchange information through it via different interfaces. This is an ap-
proach similar to diversity [46]. The key assumption here is that a fault will not affect the two
information paths in the same way. An example would be a FS manager instructing the com-
posability layer to start an FS node on a certain hardware board with a virtual disk containing
its configuration and application. After deployment and booting, the FS node registers itself, its
configuration and application at the FS manager with a network message. Thereby, two very
different interfaces are used to exchange the FS information through the composability layer,
the interface for starting FSs and the networking interface. Similar approaches are applicable
for clocks, watchdogs and other resources.

Another class of faults is introduced with composability due solely to the existence of data,
code and configuration of several safety-critical FSs within the same system, which are protected
via the same safety mechanisms. One example scenario is that a FS’s application might recog-
nize another FS’s configuration as valid input. The new safety concept must guarantee that such

55



a situation cannot occur. One approach is to use unique identifiers and signatures to ensure that
within an FS only the corresponding application, configuration and data are identified as correct
by the safety layer.

Provided the mean time between failure is acceptably high, the availability guarantees for
individual FSs and the overall integrated system can be reached. However, the safety layer alone
is only one part of the overall safety concept. The other is contract-based certification.

8.3 Contract-based Certification

By splitting the certification process in three phases, as presented at the beginning of Chapter 3,
FS, IE and the integrated system are certified independently. This approach is essential for our
composable solution. The goal is that the contracts are machine-readable and the composition
contract autonomously constructable by a safety-critical entity, i.e. the FS manager, using the
individual FS contracts, as well as the IE contract. For IEs which support dynamic adapta-
tions, additionally alterations of the IE contracts must be supported to adapt the IE contracts in
accordance with the changes.

The resource representation and feasibility evaluation of the final composed system must
safely reflect the behaviour of the actual IE and FSs, which is a central aspect of the analysis
conducted in the next three chapters.

To support application developers, methods for FSs must additionally be defined within the
contract-based certification concept so as to evaluate whether the resources specified in the FS
contract are sufficient for their execution. The safety layer presented above can detect insuffi-
cient resources and violations of the contract only during execution.

For the machine-readable contract format, we suggest the use of normalized quantities for
resource specifications regarding CPU, Memory, Disk and I/O, and predicates for individual
features provided or properties fulfilled by IEs and FSs alike. Chapter 11 contains a description
of our contract concept.

8.4 Composable Architectures

Within the range of possible solutions we look at two extremes. The first one is to keep the
classic TMR architecture and deploy several FSs within it, with as little adaptations as possible.
In this approach, the hardware setup and synchronization method are kept the same or very close
to the original mechanisms. This architecture and its corresponding behaviour of the middleware
are the focus of the detailed analysis in Chapter 9.

Moving away from the classic TMR architecture to architectures with several nodes requires
a change of the network structure as discussed in Section 4.2 on page 28. As can be seen, the
use of direct links for fully connecting all nodes is not efficient for many nodes. Since the fault
tolerance concept of the synchronization mechanism used so far relies on these direct links, it
must be adapted. This is a major change within the middleware layer, thus, our second proposed
architecture – at the other end of the scale – is the dynamic TMR-composable architecture with
adaptable IE to justify such an extensive change. The analysis regarding this architecture and
middleware is described in Chapter 10.
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CHAPTER 9
IE with Classic TMR Architecture

The classical software-based TMR architecture consists of the three hardware boards with di-
rectly connected dedicated links for synchronization, as presented in Section 4.1 on page 23.
Providing composability and mixed-criticality in this architecture with static FS node to IE node
assignment enables the reuse of existing infrastructure with higher utilization while getting the
benefits of the step-wise certification process as already outlined. It is suitable for systems with
space limitations and no need for dynamic changes. Considering the targeted applications from
Chapter 5 on page 31, on-board systems and track-side systems are potential candidates.

We now discuss the influence of different IE node-scheduling strategies on the synchro-
nization and application performance in this architecture. For comparing the impact on CPU
utilization we consider two applications. The first one, deployed in the FS F10, requires at most
10ms of replicated workload execution, 2ms for processing synchronization messages (includ-
ing voting) and a synchronization period of 100ms. The second application, deployed in FSF20,
requires 20ms for the worst-case replicated workload, 2ms for the synchronization process and
a synchronization period of 50ms. Based on the measurements in Section 12.2 on page 93 the
cost of scheduling an FS node is assumed as 1ms. Without composability, the application of F10

has a utilization of less than 15 percent of the hardware boards’ CPUs, and the application of
F20 of 44 percent.

Since direct links are used for communication, only periodic synchronization is considered
in the analysis.

9.1 Static-Cyclic Scheduling

The schedule for an FS node of Fi is defined for static-cyclic scheduling with the scheduling
period Ti and scheduling slice Si. Static-cyclic scheduling minimizes the variability of resource
access times on a local level. Due to predetermined static scheduling slots provided each period
to an FS, cache load and similar effects can be determined and bounded with suitable FS tests
simulating an IE under maximum load.
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Figure 9.1: Properties of static-cyclic schedulers affecting message transmission times.

Three properties of the static-cyclic schedulers now affect the message transmission times
between the FS nodes: the scheduling period, scheduling slot and the relative offsets between
the slots (as we do not synchronize the schedulers due to Constraint 2 from Chapter 5). An
example is depicted in Figure 9.1, where the dashed arrow illustrates the message transmission,
in case message reception is scheduled immediately. The solid arrow shows the message trans-
mission as perceived with the static-cyclic scheduled FS nodes. Since the synchronization phase
duration depends on these message transmission times (see Section 7.1), static-cyclic scheduling
limits the minimum synchronization period achievable with the periodic TMR synchronization
algorithm. Depending on the ratio between Ti and Si, the lower bound for the maximum (lo-
cal) synchronization phase duration slmax,i, with the assumption that message transmission and
computation times are negligibly small and the full slice is available for computation and com-
munication, is

slmax,i =


2Ti if 3Si ≤ Ti
2(Ti − Si) if 2Si ≤ Ti < 3Si
Ti if 3

2Si ≤ Ti ≤ 2Si
2(Ti − Si) if Ti < 3

2Si

.

This is a result of the different offsets of the local scheduling periods (as we do not syn-
chronize the schedulers due to Constraint 2 from Chapter 5), and the forwarding of messages to
tolerate link faults and byzantine faults of replicas.

Figure 9.2 illustrates the different scenarios for the worst case with zero computation and
message transmission times, where solid lines represent direct messages and dashed lines for-
warded ones. In the worst scheduling scenarios with 3Si ≤ Ti, on the node observing this syn-
chronization phase duration, the first scheduling period is needed for receiving all but the last
forwarded message, which is received after the second period (Figure 9.2(a)). For the worst-case
schedules with Ti < 3Si, we can distinguish three cases. In the first two, with 3

2Si ≤ Ti < 3Si,
one scheduling period is needed for scheduling all FS nodes to send the initial messages and
Ti − 2Si is the additional worst-case delay for forwarding the last messages (Figure 9.2(b). If
Ti − 2Si < 0 all forwarding steps also happen during the first scheduling round and only re-
ceiving is delayed until Ti (Figure 9.2(c)). This results in a maximum synchronization phase
duration of 2(Ti − Si) when 2Si ≤ Ti < 3Si and Ti when 3

2Si ≤ Ti ≤ 2Si. For the last
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Figure 9.2: Worst case scenarios for periodic synchronization under static-cyclic scheduling.

case, with Ti < 3
22Si, the synchronization phase finishes in the worst-case scenario after two

consecutive scheduling gaps of duration Ti − Si, resulting in 2(Ti − Si) (Figure 9.2(d)).
Figure 9.3 shows slmax over the ratio of scheduling slice to scheduling period. We can

deduce that short synchronization phase durations are only achievable, if either a large part of
the scheduling period is assigned to the replicated FS, or the scheduling periods are very short
with respect to the synchronization period.

Sched. Period [ms] Sched. Slice [ms] CPU for δFS Idle CPU Remaining CPU
100 71 1.0% 58.0% 29.0%
90 65 1.1% 59.1% 27.8%
80 32 1.3% 25.5% 61.3%
70 28 1.4% 26.6% 60.0%
60 25 1.7% 28.0% 58.3%
50 21 2.0% 28.0% 58.0%
40 13 2.5% 23.0% 62.5%
30 7 3.3% 8.0% 76.7%
20 5 5.0% 8.0% 75.0%
10 3 10.0% 8.0% 70.0%

Table 9.1: Scheduling parameters and subsequent CPU usage for the example application of
F10 under static-cyclic scheduling with periodic synchronization.
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Figure 9.3: The lower bound of the worst-case synchronization phase duration slmax over the
ratio of static-cyclic scheduling slice S to period T .

Sched. Period [ms] Sched. Slice [ms] CPU for δFS Idle CPU Remaining CPU
50 41 2.0% 36.0% 24.0%
40 35 2.5% 41.0% 12.5%
30 28 3.3% 26.0% 6.7%
20 16 5.0% 31.0% 20.0%
10 7 10.0% 16% 30.0%

Table 9.2: Scheduling parameters and subsequent CPU usage for the example application of
F20 under static-cyclic scheduling with periodic synchronization.

We also see this effect with the example applications. The parameters for the static-cyclic
scheduler are selected such that the requirements of our example application are still met, while
at the same time using the least CPU share. Table 9.1 contains these parameters and resulting
CPU shares on the IE node level for the scheduling operations of one F10 FS node (CPU for
δFS), the dedicated idle time within these FS node (idle CPU) and the time available for other FS
nodes (remaining CPU). Table 9.2 shows the same for F20. The dedicated idle time is the time
assigned to an FS node, which it will not use – even when experiencing the worst-case workload.

Exemplary, the scheduling slices for the scheduling period of 100ms and 10ms are deter-
mined for F10 as follows. After the synchronization phase finishes in the first case, 10ms of the
slice time must be left for computation to fit in the scheduling period of 100ms. Since each FS
node is at most scheduled once within the synchronization period (also 100ms), our worst-case
scenario must be that of Figure 9.2(d). The synchronization phase duration can only be smaller
than the scheduling period, as is required, if the slice duration is at least 2

3T . In the worst case,
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Figure 9.4: Example worst-case schedule for F10 with a scheduling period of 100ms.

the slice-time left after sl,max is S − 2(T − S). This is illustrated in Figure 9.4. The remaining
time needs to be at least the 10ms workload computation and an additional 2ms for computation
required by the synchronization process1. Another 1ms is required for scheduling the FS node
at the beginning of the slice (δFS). Consequently, the shortest feasible slice duration is 71ms,
when scheduling with a granularity of milliseconds. In the case, with a scheduling period of
10ms, it is sufficient if the synchronization phase finishes after two scheduling periods as in the
scenario of Figure9.2(a). This leaves eight slices for computation of the 12ms. Together with the
scheduling overhead, this results in 20ms, which must be scheduled within the remaining eight
slices. This yields a scheduling slice duration of 3ms.

Intuitively, there are more scheduling options for applications with low workloads and long
synchronization phases, that leave a substantial share for integrating additional FS nodes, than
with shorter synchronization phases and higher workload. This is also reflected in the two ta-
bles above where for F10 many parameters yield remaining CPU shares of 60 percent or more,
while 24 percent is the maximum with F20. Consequently, integrating several FSs with vari-
ous requirements on synchronization period and workload can be a difficult, if not impossible
task. In fact, if one integrates F10 and F20, only a scheduling period of 10ms is feasible, with a
scheduling overhead for FS nodes of 20 percent.

Regarding the integration of other FSs, we need to use a more fine grain scheduler (mi-
croseconds) to reduce the slices of F10 to 2.500ms and F20 to 6.667ms. Consequently, we have
0.833ms left for other tasks every 10ms. This is too few for integrating another FS, since it
requires at least 1ms for loading. Assuming now it would fit and the integrated FS is computa-
tionally intensive and executed whenever the others are not, scheduling overhead would rise to
30 percent.

Violating Constraint 2 from Chapter 5 by synchronizing the schedulers of the IE nodes re-
duces the overall scheduling overhead. This comes at the cost of a weaker border (c) between
the IE nodes according to the illustration of limits in Figure 8.1 on page 54. Provided a suitable
scheduling pattern can be found in the integrated system, an FS node needs only one scheduling
operation per synchronization period. The slice duration then consists of the time required for
message exchange, membership, voting, computation and an additional margin to compensate

1This includes signature checks, voting, membership and other tasks.
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for the slice offsets between the corresponding FS nodes, due to imprecision of the synchro-
nized schedulers. This margin is strongly dependent on the used synchronization mechanism
and may range from a few microseconds to milliseconds, depending on the layer in which it is
implemented, as described in Section 7.4 on page 52.

For illustration with our integration example, we assume a margin of 1ms, as well as 1ms
of processing time required for the periodic synchronization of the schedulers. Integrating F10

and F20 on top of such a scheduler yields an overhead for δFS of 3 percent. The remaining CPU
share is 40 percent, and a computationally FS node as above needs 2 percent for scheduling and
can utilize 38 percent of the CPU for computation.

However, the incurred overhead with composability using (unsynchronized) static-cyclic
scheduling is strongly dependent on the integrated FSs. Non-safety-critical FSs may get only
a very reduced share of the CPU, and subsequently, only part of the systems’ resources are
utilized.

9.2 Preemptive Fixed-Priority Scheduling

Naturally, in preemptive fixed-priority scheduling, lower priority tasks are affected by those with
higher priority.

Execution Guarantees

With fixed-priority scheduling of workloads, a very beneficial strategy to assert completion of
the individual FSs is to consider three priority regions within the system:

• The highest priority band is reserved for system essential tasks, such as network interface
handling, scheduling, etc.

• A priority band in the middle range is dedicated to the safety-critical FSs. In principle,
one may consider assigning the highest priority within this band to the most critical FS,
but this is not a prerequisite – after all, a completion guarantee must be given to all critical
FSs requiring it, even the ones with the lowest criticality.

Still, assigning different priority levels assists in enforcing a deterministic sequence of FS
node scheduling, thereby keeping task switches and jitter at a minimum for this scheduling
scheme. This helps maintaining most of the FS nodes’ memory in cache and shadow page
tables available. Apart from assigning the correct priorities to FSs, a supervisor must keep
track of each FS’s resource usage and limit or even stop execution of a misbehaving FS.
This is necessary, since the priority-based approach in principle allows for unbounded
execution time, which distinguishes it most from static-cyclic scheduling.

• The lowest priority band may be dedicated to “best effort” services whose execution is
not critical and may, therefore, be performed according to the availability of remaining
computation time.
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Performance of Synchronization in FS

The direct approach to integrate different replicated FSs is to let each of them use the synchro-
nization service within their failure confinement region, which is a significant advantage since it
does not require more specific protection than an ordinary FS. Furthermore, all FSs can configure
and handle their synchronization completely independently. For the FS nodes where execution
is guaranteed, the lower bound for the worst-case synchronization phase duration, considering
only FS node scheduling, is

slmax,i = 5δFSmax.

The longest sequence of scheduling delays for this slmax,i scenario starts with scheduling the
fastest FS node due to the synchronization timeout, followed by only one FS node receiving its
direct message due to a communication fault. Thus, the third FS node receives the first message
after 3δFSmax and it takes two additional scheduling delays until its message is forwarded to the
fastest FS node. With our example applications, the incurred maximum overhead is 5 percent
CPU load for F10 and 10 percent for F20.

However, this lower bound is only valid for the highest priority FS, e.g. with a setup using a
dual-core CPU for IE nodes, only the two highest priority FS nodes are provided with sufficient
resources for a reasonable synchronization period. FS nodes with lower priority can be blocked
by (misbehaving) higher ones at any time, causing them to miss their synchronization phase or
have insufficient time for computation even with resource usage supervision.

Figure 9.5(a) illustrates such a scenario with F10 having a higher priority than F20. The
case with inversed priority assignment is depicted in Figure 9.5(b). Supervision of CPU usage,
e.g. with a constant bandwidth server, would not prevent either case from occurring. In the
first example, the FS nodes of F10 are all within the limits of their CPU share as they require
at least 12ms for computation and synchronization-related tasks plus 5ms for scheduling in the
synchronization phase (slmax,10). Here, F 0

10 has a fault and is already excluded by F 1
10 and F 2

10.
F 0
10 starts its execution such that F 0

20 fails to receive the other nodes’ messages, misses the end
of its synchronization phase and has to trigger a fault reaction. The second example is unlikely
but possible. Here, each IE node uses a constant bandwidth server locally to limit the execution
time for the FS nodes. The FS nodes are provided with a budget of CPU time to execute. If
an FS node exceeds its budget, its execution is stopped. The constant bandwidth server now
periodically refills these budgets so that the stopped FS nodes can continue execution. In the
depicted scenario, the FS nodes of F20 are triggering a fault reaction, and thereby, exceeding
their regular CPU budgets at some point. There execution is subsequently resumed when the
local refill events occur as indicated. Also, F0

20 is scheduled later than the other nodes, e.g. due
to waiting for a timeout or log-server response. This sequence of events causes F0

10 to have
insufficient computation time.

If the IE reserves a large portion of resources for limiting FS node interference, i.e. one CPU
core per FS node, the FSs’ requirements can indeed be fulfilled by using fixed-priority schedul-
ing. The benefit here, as opposed to the static-cyclic scheduling, is that a non-critical FS can
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Figure 9.5: Violation of FS guarantees due to interfering higher priority FS.

still use the CPU when the critical FSs are not scheduled, and therefore, have a better utilization.
Consequently, caches are most likely empty when FS nodes are scheduled and memory access is
slowed down due to parallel requests. An analysis regarding these influences must be conducted
before certification of the IE, as well as of the FSs. Such an analysis may be based on a suitable
benchmark stressing the IE nodes memory [44, 93].

Synchronization as Integration Environment Service

As discussed in Section 7.4 on page 52 and illustrated for static-cyclic scheduling in the previous
section, implementing the synchronization mechanism on the level of the hypervisor scheduler
provides a better precision than on higher layers of the system. With fixed-priority scheduling a
compromise between synchronization of the hypervisor schedulers and synchronization within
the FS nodes is available: a single synchronization task per IE node. Based on the findings
presented up to now, this approach promises a good synchronization precision, while at the
same time avoids to change the hypervisor itself.

This task executes the periodic synchronization algorithm and, upon completion of the syn-
chronization phase, starts distributing the corresponding data to the individual FS nodes. Voting,
membership and computation is performed within the FS node. When finishing its computation,
the FS node returns the result to the synchronization task. Figure 9.6 illustrates the scheduling
pattern of such a service and the FS nodes on one IE node of our example applications. This
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Figure 9.6: Example schedule of the FS F10 and F20 FS nodes on IE node 0 with a single
synchronization task per IE node.

single synchronization task for all integrated FS nodes provides a more predictable solution.
The synchronization task is assigned a higher priority than all safety-critical FSs, achieving a
better precision of synchronization. This is because message transmission times and subsequent
synchronization phase durations are shortened, while avoiding the additional overhead of the
context switches into the FS nodes during the synchronization phase. In fact, only one δFS is
required per FS node during the FS’s synchronization period, as also depicted in the figure above
for F10 and F20. The synchronization task can also provide the supervision of the FSs’ execu-
tion times, since it determines when the FS node starts execution and receives the FS node’s
result as soon as computation is completed.

This setup is a kind of time-triggered architecture above the hypervisor. It enables the deter-
mination of an upper bound for the synchronization phase and computation duration for several
FSs, and it is, therefore, a composable TMR synchronized architecture, which reuses the already
well-established synchronization mechanism.

The first disadvantage of this solution is the tight coupling between FS nodes of the same
IE node. This violates Constraint 2 from Chapter 5 and may limit the robustness of the failure
confinement regions provided by the IE. Also, a fault in the synchronization task itself now
affects all FS nodes of the respective IE node. Another drawback is the reduced flexibility of the
integrated system, given that the synchronization period of each FS must be a multiple of the
synchronization period of the IE service.

However, this approach still enables integration of more safety-critical FSs than the method
of synchronizing within the individual FS nodes as presented above.

Regarding the performance of non-safety-critical FSs, we again assume one FS with a single
FS node executing a computation intensive task. This FS node can use all remaining CPU time
minus its FS scheduling operations caused by being interrupted by the safety-critical FS nodes
and synchronization task. This occurs once per shortest scheduling period of the integrated FSs.
With our example applications, the scheduling overhead experienced by the non-safety-critical
FS node is 2 percent CPU share.
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9.3 Preemptive EDF Scheduling

A different problem arises for preemptive EDF scheduling. With the EDF’s minimum task
inter-arrival time T E, scheduling an FS node for initially sending or forwarding a message only,
causes a gap of T E until it is scheduled the next time. This actually results in the same maximum
synchronization phase duration as for static-cyclic scheduling

slmax,i =


2T E

i if 3SE
i ≤ T E

i

2(T E
i − SE

i ) if 2SE
i ≤ T E

i < 3SE
i

T E
i if 3

2S
E
i ≤ T E

i ≤ 2SE
i

2(T E
i − SE

i ) if T E
i <

3
2S

E
i

.

In principle, the same solution as for fixed-priority scheduling is available, with applying
synchronization on the IE level. For such a setup the synchronization tasks have a very short
deadline compared to the FS node deadlines and the constant bandwidth server limits the execu-
tion time of the FS nodes.

The problem with EDF in this case is that it is strongly dependent on the job release time
since this specifies the next deadline. If an FS node F0

0 wakes up without having all data for
workload execution available, it will not be scheduled for another T E

0 . This subsequently causes
F0
0 to not be executed as soon as the synchronization phase is complete. It is assumed faulty

and shutdown. Consequently, the FS nodes themselves are not able to use timeouts for internal
supervision, such as for health monitoring, other than for triggering a safety reaction. Thus, the
safety layer and applications within the FSs must be adapted so that they are executed according
to the synchronization process and no longer have their independent timeouts. This is an exten-
sive (certification) effort for the expected integration benefit and a violation of Constraint 1 from
Chapter 5. This approach will be further discussed for the dynamic IE, where the advantages
may justify such changes in the safety layer and applications.

9.4 Comparison of Scenarios Integrating the Example
Applications

The two possible solutions for integrating our example applications are static-cyclic scheduling
and preemptive fixed-priority with synchronization on IE node level. We assume 2ms execu-
tion for the synchronization task within the period of T20 for our comparison. Table 9.3 shows
how the shares of the CPU are used, also by an additional non-critical FS. It illustrates that the
scheduling overhead in the static-cyclic case, together with the dedicated idle time, consumes
most of the CPU share, leaving not enough for the non-critical FS. With fixed-priority schedul-
ing and providing the synchronization service within the IE, the FS scheduling operations are
reduced to the minimum and no such idle time occurs.
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FS type Property Static-cyclic Fixed-priority

Safety-critical FSs
FS scheduling CPU share 20.0% 3.0%
Computing CPU share 56.0% 60.0%
Idle CPU share 15.7% 0.0%
Remaining CPU share 8.3% 37.0%

Non-critical FS
FS scheduling CPU share 8.3% 2.0%
Computing CPU share - 35.0%

Table 9.3: CPU usage with static-cyclic and fixed-priority scheduling (with IE node synchro-
nization service) when integrating the example safety-critical applications F10 and F20 and one
computational intensive non-critical FS.
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CHAPTER 10
Dynamic IE

The adaptable dynamic IE is an extensible architecture. The additional functionalities here are
the dynamic deployment of FSs and the ability of on the fly changing the structure of the IE. The
latter includes adding and removing IE nodes and adapting interconnect during operation. These
features affect the execution of safety-critical services and must, therefore, be implemented as a
service with highest criticality level, i.e. an extended FS manager. Inputs for such a FS manager
are the IE contract and FS contracts, on the basis of which it decides whether or not requested
deployments and IE alterations are feasible. In fact, it makes a new integration contract on the
fly, providing a kind of online certification.

Within the dynamic IE, point to point connections no longer provide sufficient network ca-
pabilities as already illustrated in Section 4.2 on page 28 for the static TMR-composable archi-
tecture. Consequently, the direct connections are replaced by a redundant interconnect, e.g. two
switches connect five IE nodes. This architecture alone requires an adaptation of the periodic
synchronization method in the TMR middleware in order to support redundant networks.

We investigate the synchronization behaviour of periodic synchronization and TSM-based
TMR for the different IE node scheduling strategies. For illustration purposes, we use the exam-
ple applications F10 and F20 described at the beginning of the previous chapter on page 57.

10.1 Periodic Synchronization with Redundant Networks

The message forwarding step, still necessary in the classic TMR architecture, is not required
for periodic synchronization with redundant networks. Consequently, a better synchronization
performance is to be expected for all scheduling strategies of the IE nodes.

Static-Cyclic Scheduling

Figure 10.1(a) shows the (redundant) messages exchanged for the periodic synchronization un-
der static-cyclic scheduling. The synchronization phase starts with the sending of the first mes-
sage and ends with reception of the last, thus, for the depicted (worst-case) scenario each replica
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Figure 10.1: Worst-case synchronization phase duration of periodic synchronization in redun-
dant network using static-cyclic scheduling.

uses one local scheduling slice for synchronization. The lower bound of the worst-case synchro-
nization phase duration for static-cyclic scheduling is

slmax,i =

{
Ti if 2Si ≤ Ti
2(Ti − Si) if Ti < 2Si

With 2Si ≤ Ti, the worst case is Ti as illustrated in Figure 10.1(a), where F0
0 and F2

0 receive
the message of F1

0 after waiting a full scheduling period. For Ti < 2Si, an example scenario
is that the synchronization phase is started by F0

1 right at the beginning of a scheduling gap at
the FS node F1

1 as shown in Figure 10.1(b). F1
1 sends its message when it is scheduled after

T1 − S1, at which point the FS node F0
1 has the start of its scheduling gap. Consequently, F0

1

receives the message of F1
1 after 2(T1 − S1).

As expected, the synchronization phase is shorter than when using message forwarding.
However, it remains still Ti in the scenario where less than half a CPU core is assigned to the FS
node.1

For illustration, the integration of our example applications results in a scheduling period of
10ms and slice durations of 2.3ms for F10 and 6.5ms for F20. The idle time is 12 percent, and
consequently, 3 percent lower than in the classic TMR architecture with the other periodic syn-
chronization mechanism. Integration of a non-safety-critical FS with computationally intensive
workload is now possible with 12 percent remaining CPU time. However, it only gets a CPU
share of 2 percent for computation and needs the other 10 percent for scheduling.

Synchronizing the static-cyclic schedulers in this architecture not only weakens fault con-
tainment between IE nodes, but also introduces correlations on scheduling level between FSs,
which are not even integrated on the same IE nodes. The CPU shares are those of the classic
TMR architecture with synchronized schedulers, with a shorter synchronization phase duration.

1If we allowed the scheduling slice to be executed anytime during the scheduling period, we would have the
same two scheduling periods as presented by Miller et al. [88].
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Figure 10.2: Example schedule of integrated FSs F10 and F20 under EDF with constant band-
width server.

Preemptive Fixed-Priority Scheduling

Providing the periodic synchronization for redundant networks as an IE service, leads to many
synchronization tasks receiving and processing message data, for which they have no local FS
node. Therefore, this synchronization method does not scale when the number of participating
(IE) nodes increases. Consequently, only one solution for the dynamic IE with fixed-priority
scheduling is beneficial: one critical FS node per CPU core and providing synchronization
within the FS, as shown in the last chapter. Since the forwarding step of the algorithm is omitted,
the new lower bound for the worst-case synchronization phase duration is

slmax,i = 3δFSmax.

Therefore, our example applications F10 and F20 experience a scheduling overhead of 3 and
6 percent of CPU time, respectively.

Preemptive EDF-based Solution

As we have seen for the classic TMR architecture, exposing part of the FS internal scheduling
information by providing the synchronization on the IE level, enabled the increase of the overall
predictability at the cost of tighter coupling of unrelated FSs and a weaker separation. The
move to a dynamic IE enables a similar approach with preemptive EDF scheduling, since the
extensive development and certification costs can now be justified by the advantages it brings.
With the preemptive EDF scheduler, the CPU can, unlike in the static-cyclic scheme, be used by
lower critical FSs. At the same time, EDF enables the use of existing and well researched EDF
schedulability tests [21] as reliable basis for the feasibility evaluation method provided by the IE
contract. Also the definitions of EDF with scheduling period and slice fits well to the execution
pattern of the periodically synchronized applications.

The idea is to provide for each FS node a very lightweight FS buffer above the composability
layer, which receives all communication sent to the FS node and has low scheduling overhead.
These buffers periodically deliver the received messages to their FS nodes, ensuring that the FS
nodes are only scheduled when they have enough messages for progress or triggering a safety
reaction. The FS nodes are then scheduled with an EDF scheduler and constant bandwidth
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Figure 10.3: Relation of synchronization parameters for EDF-based scheduling.

server, which ensures that all get their designated share of the CPU before their synchronization
periods finish. For this strategy to work, it is important that the lightweight buffers are not
blocking too long when sending their data to the FS nodes, otherwise the deadline for FS node
execution can be set after the end of the current synchronization period. Also, the FS nodes
execution must not be interrupted by such lightweight buffers. Consequently, this approach is
only feasible when applied on a multi-core CPU. The FS buffers are then scheduled round robin
on a dedicated core, while FS nodes are scheduled with EDF and a constant bandwidth server
on the other available cores. Figure 10.2 illustrates the execution of FS nodes and corresponding
buffers on one IE node for F0

10 and F0
20. The scheduling of the buffers on core 1 is depicted by

the boxes directly above the according dotted line, while the FS nodes are scheduled on core 0
below this line.

Figure 10.3 illustrates how the EDF scheduling period must be defined in relation to the
synchronization period and round robin scheduling delay of the FS buffer.

This method reduces the required number of δFS operations to one per synchronization pe-
riod per FS node, if all FS nodes deployed on the IE node have the same synchronization period.
Otherwise, the number of FS nodes with shorter synchronization phase determines the maximum
additional δFS operations, if one CPU core is available for EDF, with:

imax = δFSmax

∑
∀T E

j :T
E
j <T E

i

⌈
T E
j − T E

i

T E
i

⌉
.

This bound has been presented by Ju et al. [67] for cache related preemption analysis of EDF
scheduled processes. Based on this result, a simple division by the number of cores n provides
a (non-tight) upper bound, if the FSs’ can be executed on more than one CPU core:

iumax = δFSmax


1

n

∑
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Such an overhead must be included in the FS node’s slice. The scheduling overhead incurred
by a non-critical, computationally intensive FS node can be bounded with considering all safety-
critical FSs. In the example from above, it is at most 3 percent of the non-critical FS node’s CPU
time, when it is pinned to the same core as the safety-critical FS nodes.

Some additional restrictions are required when implementing this approach. The periodic
synchronization mechanism for redundant networks within the FS node must be adapted such
that it sends out the synchronization messages as soon as the local computation has finished.
Also, the timebase for periodic message delivery by the buffer partitions must be provided by
the local FS node. This ensures that the functionality provided by the buffers and the resulting
failure modes for these buffers are limited. As already discussed, only one timeout, which
detects the misbehaviour of the FS buffer, must be used within the FS nodes. This requires an
adaptation of the safety layer within the FS node to trigger all safety-related tasks according to
the receiving of messages.

Once the above prerequisites are met, a regular EDF scheduling test can be used for testing
the feasibility of integrating the FS nodes. Also, the worst-case round robin scheduling time of
the FS buffers has to be evaluated in order to determine the synchronization jitter and thereby,
the required margins.

The significant drawback to this approach is the necessity to not only change the safe middle-
ware, but even adapt the applications themselves, since all application specific timeouts and I/O
must be based on the synchronization phase, resulting in a huge development and re-certification
effort for applications. Therefore, this approach effectively violates Constraint 1, not to change
the application. However, since the FS buffer only provides periodic delivery of messages ac-
cording to the time it gets from the FS node and the synchronization mechanism itself is still
implemented in the safety layer of the FS node, Constraint 2 (provide the synchronization mech-
anism within the FSs) is not violated.

Comparison of Scenarios Integrating the Example Applications

FS type Property Static-cyclic EDF

Safety-critical FSs
FS scheduling CPU share 20.0% 3.0%
Computing CPU share 56.0% 60.0%
Idle CPU share 12.0% 0.0%
Remaining CPU share 12.0% 37.0%

Non-critical FS
FS scheduling CPU share 10.0% 3.0%
Computing CPU share 2.0% 34.0%

Table 10.1: CPU usage with static-cyclic and EDF-based scheduling when integrating the ex-
ample safety-critical applications F10 and F20 and one computationally intensive non-critical
FS.

Table 10.1 shows the CPU shares when integrating the example applications F10 and F20 in
a dynamic IE with IE nodes having single-core CPUs. Assuming an overhead of 4 percent for
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Figure 10.4: TSM message exchange under static-cyclic scheduling.

the FS node buffers, the EDF approach has, apart from one percent scheduling overhead for the
non-critical FS, the same CPU shares as the fixed-priority approach with synchronization service
for the IE with classic TMR architecture. The additional interruption of the non-critical FS is a
result of the unsynchronized execution of safety-critical FS nodes for EDF, possibly leaving a
gap in-between them.

In the static-cyclic case, again, the scheduling overhead and dedicated idle time use a signif-
icant amount of the CPU. This results in only 2 percent of CPU time effectively being usable by
the non-critical FS for execution.

10.2 TSM

TSM is based on message exchange for message ordering during fault-free operation. Timeouts
are only used for fault detection and the membership service. Thus, TSM has at message-
ordering level no notion of synchronized time itself, as opposed to the periodic synchronization
algorithms. This prevents an EDF-based solution for TSM, as presented in the previous section.
It is also the reason why TSM can not be used as a single synchronization service for all FSs
integrated on an IE node.

Regarding fixed-priority scheduling, the same restriction applies in case of TSM-synchronized
FSs as for those using the periodic synchronization algorithm: At most one safety-critical FS
node per CPU core can be integrated. Also, here, a higher priority FS node can interrupt a lower
priority one at any time, if they are not provided with different cores.

Consequently, static-cyclic and fixed-priority are the options available for composable schedul-
ing when using TSM for synchronization.

Static-Cyclic Scheduling

Figure 10.4 illustrates the operation of TSM under static-cyclic scheduling. The grey thick boxes
indicate when the slice of an FS node using TSM is scheduled. Token messages are represented
with the arrows connecting the time lines of the replicas. The sending and receiving of data
messages is indicated by arrows pointing from message identifiers to the time line and vice-
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Figure 10.5: Worst-case token round trip time of TSM under static-cyclic scheduling.

versa. All sent data messages are instantly received by the sending replica and omitted in the
diagram for simplicity. In the example schedule, the replicated application, executed on top, can
continue computation as soon as the last sent data message, m2, is received.

The timeouts of TSM must be adapted according to the static-cyclic scheduling. The token
loss timeout is still at least the token round trip time, while the membership timeout is increased
to at least the minimum of the maximum token round trip time and the scheduling period, i.e.
min(rmax,i, Ti).

The token round trip time ri, indirectly determining the reaction time of the replicated FS,
depends on the scheduling period Ti, the scheduling slice Si and the relative offset of the three
schedulers. The lower bound for the maximum token round trip time rlmax,i, again only consid-
ering the effect of FS node scheduling, is

rlmax,i =


2Ti if 3Si ≤ Ti
Ti if 3

2Si ≤ Ti < 3Si
3(Ti − Si) if Ti < 3

2Si

This is also the token round trip jitter, since the round trip time is zero in our model, when
all FS nodes are simultaneously scheduled.

Figure 10.5 illustrates three different examples of worst-case scenarios for the lower bound
rlmax,i of the token round trip time. The solid lines are token messages. In the first one, with
3S0 ≤ T0, the scheduling slice of F2

0 occurs just before that of F1
0 , which itself is just before
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that of F0
0 . Subsequently, the first two token messages each need a time of T0 − S0, while

the last one is 2S0 long. This results in a round trip time of 2T0. In the second scenario, with
2
3S1 ≤ T1 < 3S1, the two token-forwarding events of F1

1 and F2
1 occur during the scheduling

gap of F0
1 , which then receives the token again after T1. In the last scenario, with T2 < 3

2S2,
the three scheduling gaps of the FS nodes occur right after each other in the order in which the
token is forwarded. This causes a token round trip time of three times the scheduling gap, i.e.
3(T2 − S2).

The worst-case reaction time of the FS is also a result of the regular operation interruption
time gi on fault occurrence. Assuming the lowest possible values for these timeouts, the lower
bound in our zero computation and message transmission time model is

glmax,i =


5Ti if 3Si ≤ Ti
4Ti if 3

2Si ≤ Ti < 3Si
5(Ti − Si) if 4

3Ti ≤
3
2Si

2Ti − Si if 5
4Si ≤ Ti <

4
3Si

5(Ti − Si) if Ti < 5
4Si

For the last three cases, the ratio between token loss timeout and slice duration is the defining
parameter, as we now see in the examples.

Figure 10.6 illustrates the example scenarios for the worst-case interruption time with 3
2Si ≤

Ti. The dashed lines are membership messages. For the first case with 3S0 ≤ T0, the first two
scheduling periods are required for detecting the token loss, the third to identify the crashed FS
node and the fourth to generate a token. When receiving the token after the fifth scheduling
period, F1

0 can also resume sending application data. In the scenario with 3
2Si ≤ T1 < 3S1,

the token loss timeout is one scheduling period shorter than for the previous scenario and thus,
the interruption is 4T1. The examples for Ti < 3

2Si are shown in Figure 10.7. In the scenario
depicted for 4

3S2 ≤ T2 < 3
2S2, F2

2 detects the token loss after 3(T2 − S2) and just misses
the membership timeout to propose excluding F0

2 by being interrupted at 4(T2 − S2). Regular
operation is resumed when F2

2 is scheduled again at 5(T2−S2). In the scenario for frac54S3 ≤
T3 < 4

3S3, F2
3 receives the token after T3 − S3 and has the token loss timeout at 3(T3 −

S3). Afterwards, F2
3 is interrupted and F1

3 sends the join message to exclude F0
3 . F2

3 resumes
execution at T3+T3−S3, at which point membership is reached and the token created. The last
scenario with T4 < 5

4S4 has the same sequence of events as that of T2 and S2.
For illustration purposes, let us assume a scheduling period of 10ms and a slice of 3ms. With

this configuration, the regular protocol operation is interrupted for 50ms when a node fails.
Compared with the periodic synchronization algorithms, where the time it takes for de-

tecting a faulty FS node is the maximum synchronization phase duration2, this is a very large
interruption of operation. Under the assumption that the computation of the reaction fits into the
single scheduling slice available during token round trip, we can deduce the lower bound for the
worst-case reaction time without fault occurrence under static-cyclic scheduling as

2The maximum synchronization phase duration for periodic synchronization is T in the worst case for the dy-
namic IE and static-cyclic scheduling.
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Figure 10.6: Worst-case regular operation interruption of TSM under static-cyclic scheduling
with a slice duration of up to two thirds of the scheduling period.

almax_nf,i = 3rlmax,i.

Here, the scenario is similar to the one described in Section 7.3. Again, the first token round
trip is a result of just missing the event at a token forward. Distributing the event and one slice
computation takes another token round trip. The results are sent and voted during the third
token round trip. Compared to the fault-free reaction time in a fixed-priority scheduled system
with sufficient CPU cores, the token round trip time, as well as the relative reaction time are
increased; the latter by 1

3rlmax,i.
Since faults must be tolerated during TMR execution, the lower bound of the worst-case

operation interruption time has to be added to the lower bound of the worst-case response time
of the fault free case

almax,i = almax_nf,i + glmax,i.
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Figure 10.7: Worst-case regular operation interruption of TSM under static-cyclic scheduling
with a slice duration of more than two thirds of the scheduling period.
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Although such a long response time can only be observed when a fault occurs, the application
must be able to tolerate it. TSM is consequently only suitable for applications having relaxed
timing requirements in this scenario. However, TSM still provides a robust synchronization
service, if the application requirements fit.

Sched. Period [ms] Sched. Slice [ms] CPU for δFS Idle CPU Remaining CPU
100 78 1.0% 65.0% 22.0%
90 71 1.1% 65.8% 21.2%
80 64 1.3% 66.8% 20.0%
70 56 1.4% 66.6% 20.0%
60 49 1.7% 68.0% 18.3%
50 17 2.0% 20.0% 66.0%
40 14 2.5% 32.5% 65.0%
30 11 3.3% 21.3% 63.3%
20 5 5.0% 8.0% 75.0%
10 3 10.0% 8.0% 70.0%

Table 10.2: Scheduling parameters and subsequent CPU usage for the example application of
F10 under static-cyclic scheduling with TSM for synchronization.

Sched. Period [ms] Sched. Slice [ms] CPU for δFS Idle CPU Remaining CPU
50 44 2.0% 42.0% 12.0%
40 36 2.5% 43.5% 10.0%
30 29 3.3% 49.3% 3.3%
20 17 5.0% 36.0% 15.0%
10 7 10.0% 16.0% 30.0%

Table 10.3: Scheduling parameters and subsequent CPU usage for the example application of
F20 under static-cyclic scheduling with TSM for synchronization.

Table 10.2 shows the CPU usage by F10 and Table 10.3 by F20. These are the shares during
fault-free operation and under the assumption that the example applications can tolerate the
interruptions caused by faults. An overhead of 2ms for processing the data and time messages is
also included. Apart from the scheduling period of 10ms, both applications synchronized with
TSM require a few more milliseconds slice time than the periodic synchronization in the classic
TMR architecture presented in Section 9.1 on page 57. Also, in the scenario with TSM only a
scheduling period of 10ms is suitable for integrating F10 and F20.
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Preemptive Fixed-Priority Scheduling

With preemptive fixed-priority scheduling the analysis of synchronization performance in Sec-
tion 7.3 on page 49 can be reused. Again, under the assumption that FS scheduling is the most
time intensive and neglecting message transmission times and computation times, the lower
bound for the worst-case token round trip time is

rlmax,i = 3δFS.

Therefore, the token loss timeout must be at least 3δFS long. The membership timeout has
to be at least 2δFS, with one scheduling operation for each message transmission.

The overhead incurred by the scheduling operations for one safety-critical FS node can be
as high as one third of the CPU time with TSM in this setting. This share can be reduced by
delaying the token forwarding at the FS node for a certain time, at the cost of extending the
token round trip time.
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CHAPTER 11
Contracts for Certification

In our approach, contracts are the basis for the independent certification of FSs, IEs and in-
tegrated systems. In this chapter, we define a contract formalism suitable for abstracting the
elements’ behaviour and safely deriving properties of such integrated systems, i.e. whether the
integrated FSs are provided with sufficient resources. This requires that the contracts explicitly
contain all necessary (abstract) information for certification. Although the semantic gap, as de-
scribed in Section 8.1, hinders the fine grain composition of FSs, it is exactly this abstraction that
at the same time enables the definition of contracts which are mainly based on computational
resources.

The IE architecture states additional requirements towards the contracts, as described in
Chapter 4. Refining the certification strategy presented in Chapter 3 with these additional re-
quirements, results in three types of contracts with the following properties:

1. The FS contract specifies the feature and resource requirements for safe operation of a
specific FS.

2. The IE contract defines the available resources within the IE and the feasibility evaluation
method for checking whether a specific configuration of FSs can be safely integrated on
top of the IE. If supported, also the IE alteration operation, which enables changing the
available resources of the IE, is specified in the IE contract.

3. The integration contract defines the integrated system with a mapping between the FSs
contracts and the IE contract.

Such a contract is valid, if it correctly reflects the behaviour of the actual system. Valid-
ity must be shown during the certification processes of the IE and FSs by appropriate means,
e.g. analysis of worst-case execution times. If the stated resource requirements and feasibility
evaluation method are close to the actual requirements, the utilization of resources can be high
for safety-critical FSs. However, as presented in the previous two chapters, the execution time
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available for non-critical FSs is strongly dependent on the scheduler of the IE nodes. The feasi-
bility evaluation method itself may treat non-critical FSs differently and assume less margin for
fulfilling their requirements1.

In the next section, we give a formal definition of the contracts, followed by a section refining
parts of this contract model for TMR-based FSs. We then outline the requirements and effects
regarding operations on these contracts, when altering the IE. At the end of this chapter, we
discuss aspects for finding a feasible integration contract and the limitations of the approach
presented here.

11.1 Formal Contract Definition

Our concepts of component and contracts follow the general ideas presented by Beneviste et
al. [18]. Notations and definitions are tailored and extended for our integration- and resource-
focused setting. Assumptions and guarantees are specified at a high abstraction level. It is
uncommon to include the feasibility evaluation method and operations for contract alteration
within contracts themselves, as they are usually part of the formalism. However, it is necessary
for certification in our solution. We will not argue about the correct implementation of FSs, only
about their required resources.

Figure 11.1 and 11.2 give an overview of the elements of the contract model, which we now
describe in detail.

FS Contract

For each FS Fi with ID i ∈ N0, we define the FS contract CF,i = (CFN,i, CFC,i) as tuple of the set
of corresponding FS node contracts CFN,i and FS interconnect contracts CFC,i.

Each FS node contract is a tuple CrFN,i = (Pr
FN,i,Rr

FN,i), with ID r ∈ N0 of the FS node and
is part of the set CFN,i. It consists of the node’s required node features Pr

FN,i and required node
resourcesRr

FN,i. The required features are a subset of the set of all feature identifiers F. Features
are used twofold in this approach. The first is to provide the FS nodes with a certain functionality,
e.g. a watchdog. The second are architectural requirements such as different_ie_nodes, with
which an FS requires that all its FS nodes are integrated on different IE nodes. The required
resources are a mapping Rr

FN,i : RFN →W ∪ ⊥ of the required resource identifiers RFN to the
quantity or type of resource W. Only if the FS node has no requirement regarding a specific
resource, does the corresponding resource identifier map to ⊥.

An FS interconnect contract is defined as tuple CpFC,i = (Rp
FC,i,L

p
FC,i,V

p
FC,i), has an ID p ∈ N0

and is included in the set CFC,i. It consists of the required connection resources Rp
FC,i, the set of

FS node contracts LpFC,i as required communication partners on this link and the set of excluded
interconnect contracts VpFC,i which must not be deployed on the same IE communication links.
The required connection resources are a mappingRp

FC,i : RFC →W∪⊥ of connection resource
identifiers RFC to the quantity or type of resource W. Again, if the FS has no requirement
regarding a specific communication property, the corresponding property identifier maps to ⊥.
This contract definition reflects the communication requirements between the FS nodes of a

1This approach is similar to that of mixed-criticality scheduling based on worst-case execution times [116].
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Figure 11.1: Structure of the FS and IE contract model.
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Figure 11.2: Structure of the integration contract model.

single FS, as well as between different FSs. External communication to sensors or other systems,
must be modelled using local resources.

IE Contract

For each IE Ej with ID j ∈ N0, the associated IE contract CE,j = (CEN,j , CEC,j , fj , oj) is defined
as tuple of the corresponding set of IE node contracts CEN,j , the set of IE interconnect contracts
CEC,j , the feasibility evaluation method fj and the integration environment alteration method oj .

An IE node contract, with the ID s ∈ N0 and which is an element of the set CEN,j , is a tuple
CsEN,j = (Ps

EN,j ,Rs
EN,j) of the available node features Ps

EN,j and available node resources Rs
EN,j .

The available features are a subset of the set of all feature identifiers F. The IE node contract
offers the features of the IE node to all its integrated FS nodes without consideration of issues
related to its shared use. Consequently, a limited resource must be modeled as an available
resource and not a feature. The available resources are a mappingRs

EN,j : REN →W∪⊥ of the
available resource identifiers REN to the quantity or type of resource W. If the IE node does not
provide a specific resource, the corresponding resource identifier maps to ⊥.

An IE interconnect contract represents a communication link of the IE with two or more
communication partners. The IE interconnect contract, having an ID q ∈ N0 and being an ele-
ment of the set CEC,j , is defined as a tuple CqEC,j = (Rq

EC,j ,L
q
EC,j) of the available communication

resources Rq
EC,j and the set of available IE nodes LqEC,j on this link. The available communica-

tion resources are a mapping Rq
EC,j : REC →W ∪ ⊥ of connection resource identifiers REC to

quantity or type of resource W. Again, ⊥ defines that a communication specific resource is not
available.
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The feasibility evaluation method is a mapping fj : CI → >∪⊥ of integration contracts to
>∪⊥, where a system with a valid integration contract that maps to> provides all integrated FSs
with sufficient resources. Note that, if the integration contract maps to ⊥, it does not necessarily
mean that the FSs will have insufficient resources. The feasibility evaluation method is part of
the IE contract, since feasibility strongly depends on the properties of the actual components
and mechanisms used within the IE and its validity must be ensured during the certification of
the IE.

The integration environment alteration method oj is a mapping from alteration operations to
IE contracts.

Integration Contract

An integration contract CI,k for an integrated system Ik with ID k ∈ N0 is defined as a tuple
CI,k = (CIN,k, CIC,k) of node mapping CIN,k and interconnect mapping CIC,k with CFN as the set
of all FS node contracts, CEN as the set of all IE node contracts andRIN,k as the set of all resource
allocation mappings. The node mapping is defined as CIN,k : CFN → (CEN,RIN,k)∪⊥. Mapping
an FS node contract to ⊥ indicates that the corresponding FS node is not part of the integrated
system. Each mapping Ri,r

IN,k : RIN →W ∪ ⊥ defines the allocated node resources for the FS
node r of FS i with assigning the node resource identifiers RIN a quantity or type of resource
W. Here, ⊥ specifies that the corresponding resources are not allocated.

The interconnect mapping is defined as CIC,k : CFC → (CFC,RIC,k) ∪ ⊥, with CFC as the
set of all FS interconnect contracts, RIC,k as the set of all allocated communication resources
mappings and CEC as the set of all IE interconnect contracts. Again, a mapping to ⊥ indicates
that the FS interconnect is not part of the integrated system. The allocated communication
resource mapping Ri,p

IC,k : RIC →W ∪ ⊥ specifies quantities or types of resources W for the
allocated resources RIC on the communication link p for the FS i. As before, ⊥ specifies that
the according resources are not allocated.

An integration contract is fulfilled, if the contracts of all elements it integrates are valid
and the feasibility evaluation method of the corresponding IE contract evaluates to > for this
integration contract.

Integration contracts do not contain elements such as the feasibility evaluation method, to
ensure that they are not providing safety-critical functionality themselves. As we will later see,
this eases the creation of such contracts.

Figure 11.3 illustrates the elements of contracts for the example FSs F10 and F20 integrated
on an IE E0 with the example node mapping CIN,0. It omits the depiction of allocated resources
and the mapping of communication contracts to provide a simple overview.

11.2 Refinement for our TMR-based FSs

We now refine the general contract definitions for our TMR-based FSs regarding node resources,
node features, networking and the feasibility evaluation method for illustration and integrating
the analysis of the previous chapter within the contract formalism.
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Figure 11.3: Elements of contracts for the example FSs F10 and F20 integrated on IE E0 with
the example node mapping CIN,0.

Resources

r ∈ RFN Description Unit
disk Disk size of FS node. Byte

memory Memory size of FS node. Byte
replicated_load Replicated workload duration of FS. µs

period Minimum inter-arrival time of the replicated workload. µs
sync_algorithm Type of used synchronization algorithm ∈M. 1

Table 11.1: Example list of elements of the resource identifier set RFN for FS node contracts.

Table 11.1 lists the node resource identifiers for FS node contracts with a description and
unit. As our focus is on TMR-based FSs, this definition only covers the replicated workload,
as well as the minimum inter-arrival time for this workload. M is the set of synchronization
algorithms provided by the middleware layer M = {ps, rps, tsm}, where ps provides periodic
synchronization, rps periodic synchronization on top of a redundant network and tsm the TSM-
based synchronization with TMR extension, as described in Chapter 7.

The node resource identifiers for the IE nodes are listed with a description in Table 11.2.
The set of possible schedulers is SEN = {prio, cyclic, edf}.

Table 11.3 lists the allocated resource identifiers for the integration contract. In consistency
with the definitions used in earlier chapters, we define the static-cyclic scheduling period as Ti =
Ri,0

IN,k(sched_cyclic_period) and Si = Ri,0
IN,k(sched_cyclic_slice) as the static-cyclic scheduling

slice of a FS Fi for the integrated system Ik. The definition of the EDF scheduling is similar
with the parameters T E

i = Ri,0
IN,k(sched_edf_period) and SE

i = Ri,0
IN,k(sched_edf_slice).
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r ∈ REN Description Unit
disk Disk size of IE node Byte

memory Memory size of IE node Byte
cpu Count of available CPU cores on IE node 1

sched Scheduler type of IE node ∈ SEN. 1

Table 11.2: Example list of elements of the resource identifier set REN for IE node contracts.

r ∈ RIN Description Unit
sched_prio Scheduling priority for priority scheduling. 1

sched_cyclic_period Scheduling period for static-cyclic scheduling. µs
sched_cyclic_slice Static-cyclic scheduling slice available for FS computation. µs
sched_edf_period Scheduling period for EDF scheduler. µs
sched_edf_slice Scheduling slice for EDF scheduler for FS computation. µs

Table 11.3: Example list of elements of the resource identifier set RIN for integration contracts.

For the resource identifier sets for communication, RFC, REC and RIC are defined as identical
sets consisting of only the bandwidth identifier, as we focus mainly on the CPU in our example.

Features

For illustration purposes, we define the features providing functionality on node level as watchdog
and mmu. The example architectural feature used in the feasibility evaluation method presented
in the following is different_ie_nodes, with which an FS requires that all its FS nodes are inte-
grated on different IE nodes. Consequently, our set of feature identifiers is F = {watchdog,mmu,
different_ie_nodes}.

Feasibility Evaluation Method

The feasibility evaluation method we partly specify here covers integration of safety-critical FSs
only and demonstrates the feature feasibility evaluation. It consists of three parts: feasibility on
nodes (fn), feasibility on interconnect (fi) and consistency of the integration contract (fc):

fj(CI,k) = fnj(CIN,k) ∧ fij(CIC,k) ∧ fcj(CI,k).

Feasibility on nodes, is again split in two parts: feasibility of node features (fnf ) and feasi-
bility of node resources (fnr):
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fnj(CIN,k) = fnfj(CIN,k) ∧ fnrj(CIN,k).

Likewise feasibility on interconnect and consistency of the integration contract can be broken
down.

Let integ_fn(CIN,k, CsEN,j) = {e|e 7→ (CsEN,j , b) ∈ CIN,k} be the set of FS nodes integrated
on the IE node. Feature feasibility for the integrated system is satisfied, if it is satisfied for the
FS nodes on each IE node locally. The function fnfn checks the feasibility of node features for
a single node:

fnfj(CIN,k) =
∧

Cs
EN,j∈CEN,j

fnfnj(CIN,k, CsEN,j).

This local check is separated in the functions for checking the availability of features pro-
viding functionality (fnfn_func) and the fulfillment of architectural features (fnfn_arch):

fnfnj(CIN,k, CEN,j) = fnfn_func(CIN,k, CEN,j) ∧ fnfn_arch(CIN,k, CEN,j)

fnfn_funcj(CIN,k, CsEN,j) =
∧

Cr
FN,i∈integ_fn(CIN,k,Cs

EN,j)

Pr
FN,i ⊆ Ps

EN,j

fnfn_archj(CIN,k, CsEN,j) =
∧

Cr
FN,i∈integ_fn(CIN,k,Cs

EN,j)

indepj(CIN,k, CsEN,j , CrFN,i)

indepj(CIN,k, CsEN,j , CrFN,i) = different_ie_nodes ∈ Pr
FN,i =⇒

∀Pb
FN,a

(
Pb
FN,a ∈ integ_fn(CsEN,j) ∧ a = i =⇒ r = b

)
.

A violation of the feature different_ie_nodes by the integrated system Ik is detected via
the indep function. In case of such a violation, more than one FS node r of the FS i is then
integrated on the IE node s of the IE j. Consequently, not all Pb

FN,a of the deployed nodes of the
FS i have the ID r and subsequently the corresponding implication evaluates to ⊥.

Note that, with the definition of fnfn_func, the IE node contracts must also list that they
provide the architectural features. Likewise, feasibility of resources and interconnect can be
broken down and checked. The scheduling overheads for the CPU assignment can be derived
from the analysis of the previous chapter together with a timing analysis of the actual IE. This
shows that the feasibility evaluation method is strongly dependent on the IE itself.

Since the certified feasibility evaluation method decides whether an integrated system can
satisfy all the FSs’ resource requirements, it must also include a check of the consistency of
the integration contract. With the definition based on mappings, the consistency check consists
of two parts. The first part, checking the consistency of the mapping (fcm), is to to determine
whether all FS nodes (fcmin) and corresponding interconnections (fcmic) are included and
mapped (fcmn, fcmc) only to elements of the associated IE:
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fcmj(CI,k) = fcminj(CIN,k) ∧ fcmicj(CIC,k) ∧ fcmnj(CI,k) ∧ fcmcj(CI,k).

Ensuring that all nodes of the integrated FSs are included, is checked with asserting that
if one node or interconnect contract of an FS is mapped to an IE element, no other node or
interconnect contract of this FS is mapped to ⊥:

fcminj(CIN,k) = ∀CbFN,a
(
CbFN,a 7→ c ∈ CIN,k ∧ c 6= ⊥

=⇒ @CdFN,a
(
CdFN,a 7→ ⊥ ∈ CIN,k

)
∧ @CdFC,a

(
CdFC,a 7→ ⊥ ∈ CIC,k

))
fcmicj(CIC,k) = ∀CbFC,a

(
CbFC,a 7→ c ∈ CIC,k ∧ c 6= ⊥

=⇒ @CdFN,a
(
CdFN,a 7→ ⊥ ∈ CIN,k

)
∧ @CdFC,a

(
CdFC,a 7→ ⊥ ∈ CIC,k

))

Testing whether the integration contract only maps the elements of the integrated FS only
to elements of the IE for which the feasibility evaluation function is defined, is performed by
checking that the ID of the associated IE elements are the same as that of the IE of the feasibility
evaluation method:

fcmnj(CIN,k) = ∀a
(
a 7→ (CcEN,b, d) ∈ CIN,k =⇒ b = j

)
fcmcj(CIC,k) = ∀a

(
a 7→ (CcEC,b, d) ∈ CIC,k =⇒ b = j

)
The second part of evaluating consistency is to check whether the allocated resources are

in accordance with the required resources. For this check, the analysis of the previous chapters
enables us to determine whether the replicated workload can be executed with the allocated CPU
resources. For most other properties it is sufficient to check equivalence.

Provided that the FS contracts and IE contracts of the integrated system are valid, the feasi-
bility evaluation method ensures that no incorrect integration contract can be applied.

11.3 Alterations of the IE

Altering the IE and associated IE contract is a safety-critical task. The risk here is that an oper-
ation on a valid IE contract may result in an invalid IE contract. This may lead to an integrated
system in which the FSs’ requirements are not fulfilled, and therefore, has an increased risk of
causing a hazard. To prevent such a case, these operations must be certified together with the IE
contract and executed by a safety-critical entity, i.e. the FS manager, as already discussed at the
end of Chapter 4 on page 23.
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Based on the definition above, two strategies for certification can now be applied. The first is
to have a limited set of possible IE configurations and associated contracts, using oj to switch in-
between them. During the certification process this limited set of IE configurations and contracts
must then be evaluated. In the second option, a set of operations is defined with the mapping of
oj resulting in new IE contracts. These operations are required to have predictable and bounded
effects on the IE. Here, the certification process must ensure that such IE contracts are valid
with respect to the behaviour of the new IE. This can be achieved defining a range in which
such operations can be applied and by determining the behaviour of the integrated systems at
the boundaries of this range.

11.4 Applying Integration Contracts

Finding an integration contract can be accomplished using any suitable planning or optimization
algorithm [49]. It is neither time- nor safety-critical, since the safety-critical FS manager checks
the feasibility of the integration contract with the method defined in the IE contract before it starts
deployment. Consequently, the validity of the IE and FS contracts provided to the FS manager
is crucial for safety, while non-optimal or incorrect integration contracts must by definition have
no impact on safety. However, as the FS manager is the checking instance it must not be used
as rating function by a planning algorithm itself. Still, fast and correct creation of integration
contracts is beneficial for availability as it ensures that FSs can provide their services soon after
boot or deployment.

11.5 Limitations of the Presented Contract Concept

In our model, we assumed that message latency through the network has only a minor effect
and thus, the contract definition does not include it. Furthermore, only one (undefined) type
of CPU is used. Also, representing the features required by the FSs and provided by the IE
only with unique identifiers is a direct, but ultimately impracticable, approach. Especially with
the adaptable dynamic IE, the IE nodes most likely will not have the same versions of their
provided features. Also, the FS nodes will need a specific or compatible version of a feature.
Consequently, a productive system must extend the concept of feature identifiers with version
numbers. This additionally requires a (safety-critical) mechanism which determines whether the
versions of the features provided by the IE node are compatible to the ones required by the FSs.
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CHAPTER 12
Evaluation

This chapter presents the evaluation of the proposed concepts for composable solutions. It covers
both approaches, namely the classic TMR IE, as well as the dynamic IE. The full solution space,
as presented in Chapter 9 and Chapter 10, is summarized in Table 12.1. Also, examples for
the contracts presented in the previous chapter are provided. Simulations and a setup with a
prototype were used for the evaluation.

Scheduler Classic TMR IE Dynamic TMR IE
static-cyclic inefficient CPU usage inefficient CPU usage
fixed-priority dedicated core solution, or

synchronization as IE ser-
vice solution (violating Con-
straint 2)

dedicated core solution

EDF expensive to implement (vio-
lating Constraint 1)

FS buffer solution (violating
Constraint 1)

Table 12.1: Solution space for IE architecture and scheduler.

The next section specifies the setup of the prototype, followed by a section on the measure-
ment results of the scheduling operations’ duration within the prototype. The simulation results
regarding IEs providing static-cyclic scheduling are described in Section 12.3. The measure-
ment results obtained with the preemptive fixed-priority-based prototype and corresponding IE
network architectures are presented in Section 12.4. Finally, the possibilities for implementing
an EDF-based IE and corresponding FSs are evaluated in Section 12.5.
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Figure 12.1: Prototype setups for different IEs integrating three replicated FSs.

12.1 Prototype Setup

The prototype is based on three P4080 hardware boards. On top of each of these boards Linux,
KVM, Qemu and Open vSwitch provide the composability layer. The recommendations given
by IBM [64] for virtual environments with KVM were followed when applicable. All virtual
machines execute exactly one FS node each. The individual test scenarios ran for approximately
three hours, unless the synchronization algorithm failed during execution.

Communication is based on UDP messages and the hardware boards are connected through
gigabit Ethernet links. These links are either directly connected in the configuration for the
classic TMR IE, or via switches for the dynamic IE as illustrated in Figure 12.1. No bandwidth
restriction is applied in the prototype, given that the applications restrict themselves for the tests,
but VLANs ensure that only the specified communication partners are reachable.

For the various tests the number of available CPU cores was defined using the Linux boot
parameter “maxcpus”. The CPU cores used by the system tasks and FS nodes were not sep-
arated and the FS nodes were not pinned to certain CPU cores. For the purpose of restricting
the scheduling behaviour in this way, the Linux kernel provides the control group mechanism.
However, enabling this feature lead to unpredictable delays for the scheduling operations and
therefore, control groups were not used.
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The TMR applications executed within the prototype are based on the example application
F10 and F20 of Chapter 9 and Chapter 10. Instances of F10 execute for at most 10ms every
100ms and produce an output of 512Bytes each period. The instances of F20 execute for at most
20ms every 50ms and distribute 512Bytes each period, as well.

This specification of the FSs can also be given within the contract model. For the purpose
of illustration, the FS contract CF,20 for the FS F20 when using the periodic synchronization
algorithm, is defined as:

CFN,20 = {C0FN,20, C1FN,20, C2FN,20}
P0
FN,20 = P1

FN,20 = P2
FN,20 = {different_ie_nodes}

R0
FN,20 = R1

FN,20 = R2
FN,20

R0
FN,20(r) =



100MiB if r = disk
210MiB if r = memory
20ms if r = replicated_load
50ms if r = period
ps if r = sync_algorithm
⊥ otherwise

CFC,20 = {C0FC,20, C1FC,20, C2FC,20}
L0FC,20 = {C0FN,20, C1FN,20};L1FC,20 = {C1FN,20, C2FN,20};L2FC,20 = {C0FN,20, C2FN,20}
V0FC,20 = {L1FC,20,L2FC,20};V1FC,20 = {L0FC,20,L2FC,20};V2FC,20 = {L0FC,20,L1FC,20}
R0

FC,20 = R1
FC,20 = R2

FC,20

R0
FC,20(r) =

{
21.28Kbit/s if r = bandwidth
⊥ otherwise

Within the contract, the bandwidth requirements also account for the UDP packet headers
and scheduling is specified according to the period synchronization algorithm’s behaviour. Also,
the required sizes of disk and memory are included in the contract, as well as the necessity that
the FS nodes are executed on different IE nodes.

The next section describes example timing measurements of scheduling operations with this
prototype.

12.2 Example Timing Measurements of Scheduling Operations

With the Linux ftrace interface [104] and the synchronization test setups presented below, as
well as a ping-pong application, the times required for the scheduling operations specified in
Section 6.4 on page 38 were measured and the results listed in Table 12.2. The architecture
column indicates whether the connection between the IE nodes was direct (classic) or via a
switch (dynamic). The architectural type is omitted for IE node local scheduling decisions,
since no networking hardware is involved in this case. During the test for δFS no parallel FS
node schedule occurred, but the cache was empty. The initial setup of the shadow page table
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Scheduling Operations Value Architecture
δdrv + δDMA + δnet + δDMA + δdrv + δtask 148µs classic
δdrv + δDMA + δnet + δDMA + δdrv + δtask 152µs dynamic
δvdrv 171µs -
δdrv + δtask (in FS node) 316µs -
δFS 984µs -

Table 12.2: Example timing measurements of scheduling operations.

creation for the FS node was accounted to δFS, where the page faults occurred with less than
10µs interruption in-between. The first interruption, which was longer than those 10µs, had a
duration of 2ms. As can be seen, δFS is by far the most time consuming operation, taking almost
1ms. The second most time consuming is δdrv + δtask within the FS, which is about a third of
δFS.

12.3 Static-Cyclic Scheduling

Since the Linux kernel does not provide static-cyclic scheduling, simulation was used to evaluate
the synchronization mechanisms’ behaviour under this scheduling scheme. The loading duration
of a partition is assumed as 1ms, in accordance with the measured δFS, which is simply subtracted
from the scheduling slice in the simulation. The transmission times of communication links are
simulated using normal distributed random numbers with a mean of µ = 0.6ms and a standard
deviation of σ = 0.06ms. The mean transmission time was also selected according to the
measurements presented in the section above and taking into account that δtask on IE node level
is included in δvdrv. Zero computation time is accounted for the execution of the algorithms
themselves. The time granularity of all simulations is 10µs and each simulation run covered
5s. All local clocks are perfectly synchronous and the scheduling pattern only differs in the
(initial) offsets of the scheduling slices. In all simulation runs the scheduling period was set to
50ms and the offset of FS node 0 to 0ms. The offsets of the other two FS nodes covered all
permutations in the full range from 0ms to 49ms with steps of 1ms. Since the remaining time
for computation can be deduced from the time required by the synchronization mechanism, the
workloads themselves were not simulated.

Periodic Synchronization

Figure 12.2 shows the simulation results for the maximum synchronization phase durations. The
lower bounds derived with slmax (defined in Section 9.1) are indicated on the y-axis. The scenar-
ios with the scheduling slices S1 to S4 cover the ratios between scheduling slice and scheduling
period differentiated by slmax. As seen in the figure, the maximum synchronization phase dura-
tion is the sum of the network transmission time and the lower bound for the worst case derived
with slmax for S2 and S4. Recalling Figure 9.2 on page 59, these two scenarios are those in
which the sending of the last message is delayed by the scheduler on the sending node. The
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Figure 12.2: Maximum synchronization phase duration of periodic synchronization with direct
links and static-cyclic scheduling slices of 10ms, 20ms, 34ms and 35ms.

delay of the corresponding reception occurs only indirectly. In the other two cases, the last mes-
sage reception is a direct result of the late scheduling of the scheduler on the receiving node
and identical with the value obtained using slmax. Therefore, for periodic synchronization with
a redundant network and static-cyclic scheduling, the lower bound for the maximum synchro-
nization phase duration slmax (defined in Section 9.1) is a good approximation for the actual
maximum synchronization phase duration.

Figure 12.3 shows the maximum synchronization phase duration of periodic synchronization
in a redundant network in correlation to the relative offsets between the FS node schedulers.
These simulation results are the same as the values for the estimated lower bounds slmax defined
in Section 10.1. The late message receptions in the worst case are always a direct result of a
delayed scheduling by the local scheduler. Consequently, the message transmission time has no
influence on the worst-case synchronization phase duration.

TSM

The lower bounds for the maximum token round trip times rlmax (Section 10.2) are a good
approximation for the worst-case token round trip time in the fault-free case, as can be seen with
the simulation results in Figure 12.4. The simulated maximum round trip times for S1 and S2 are
the same as those obtained with rlmax, which are indicated on the y-axis. For S3, as in the case
of some scenarios of periodic synchronization found above, the worst case for the simulation
is caused by the delayed sending of the last message. Consequently, the resulting worst-case
round trip time is rlmax plus the message transmission time. The three scenarios cover all three
different cases of rlmax.
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Figure 12.3: Maximum synchronization phase duration of periodic synchronization with a re-
dundant network and static-cyclic scheduling slices of 10ms and 30ms.
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Figure 12.5: Maximum TSM regular operation interruption when an FS node crashes with
static-cyclic scheduling slices of 10ms, 20ms and 40ms.

The regular operation interruption time when an FS node has crashed is another important
characteristic of TSM, which the application must be able to tolerate, as described in Section 7.3.
Figure 12.5 shows the maximum interruption times obtained by using the same simulation slices
for S1, S2 and S3 as for the token round trip time before and setting the timeouts to their smallest
possible value. Two additional scenarios were added, to cover all cases of glmax. S4 with a slice
duration of 35ms and S5 with a duration of 45ms. The crash behaviour of the FS node was
modeled as fail silent. The interruption times for S1 and S2 correspond to the lower bound for
the regular operation interruption time glmax as specified in Section 10.2 and indicated on the
y-axis. The interruption times for S3 to S5, i.e. the scenarios where the slice to period ratio
is Ti < 3

2Si, are underestimated substantially. While there is the delay of two transmission
times missing for S3, the membership timeouts for S4 and S5 were set to low in the definition of
glmax,i. This originates in the assumption of zero message transmission and computation times
during analysis, which is suitable for the slice to period ratio of S1 and S2. Consequently, a
different formula should be used for determining the regular operation interruption time when
integrating FS nodes with long scheduling slices.

These simulations demonstrate that the example scenarios presented during the analysis for
integrating F10 and F20 provide realistic values for the CPU usage. They also show that, with
the exception of glmax,i for scheduling period to slice ratios of Ti < 3

2Si, these lower bounds
together with a detailed timing analysis of the scheduling operations on the IE node provide a
reliable basis for the feasibility evaluation method defined in the IE contract.
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12.4 Preemptive Fixed-Priority Scheduling

As established in the previous chapters, two composable solutions exist for static IEs providing
fixed-priority scheduling: to reserve a single CPU core per FS node or provide synchronization
as an IE service. For the dynamic IE, the options are reduced to the dedicated core solution1.

Synchronization within FS Nodes
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Figure 12.6: Application start jitter when executing the periodic synchronization mechanism in
three different scenarios.

To illustrate the influence of the composability layer and number of available CPU cores, the
periodic synchronization mechanism has been executed together with one F20 type of applica-
tion in three different scenarios. In the first one, the application and synchronization mechanism
were executed directly on the IE node, i.e. without a virtualization layer, and with one core
enabled on each IE node. For the second scenario, they were executed in the FS node with one
CPU core available on each IE node. Here, the requirement for a dedicated CPU core is violated.
In the last scenario, both were executed within the FS node and two CPU cores were provided on
each IE node. At most one FS node was executed per IE node in this test. Figure 12.6 shows the
different application jitter measurements when executing these scenarios. Here, the additional
overhead of virtualization can be seen with the increase of the jitter from the direct execution

1As described above, this is realized in the prototype by providing the defined number of cores, but without
pinning of FS nodes to cores.
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on the IE node to the execution within the FS node (virtual machine) having two cores enabled.
Another visible aspect is the very large increase in jitter for the case where the synchronization
mechanism and application are executed within the FS nodes but have only one CPU core en-
abled on each IE node. This is caused by scheduling the application within the FS node, before
the last message has been sent on the IE node. This message is sent, as soon as the application
finishes execution. When providing one CPU core for FS node execution and another one for
the IE node’s services, the jitter is only increased by the additional scheduling operation δFS, as
the sending task can be executed in parallel.

In another scenario, where the FS nodes for F10 and F20 are executed also on one CPU core
together with the rest of the IE node’s processes, F20 lost synchronization within a few seconds
after the start. Although it was assigned a higher priority than F10, it could not tolerate the jitter
of more than 25ms.
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Figure 12.7: Maximum application jitter in dependency of the number of integrated FSs with
one CPU core per FS node. Lines drawn to show the trend only.

The strategy for providing one CPU core per FS node and one additional for the IE node’s
services was successful as can be seen with the application jitter for “required number of CPU
cores provided” in Figure 12.7. For the measured tests the jitter increases to 8.1ms with four
integrated FSs and then remains stable. Taking the formula of the lower bound for the synchro-
nization phase duration slmax = 5δFSmax (defined in Section 9.2) and assuming 1ms for δFSmax,
then the lower bound for the maximum jitter in this setup is just below 10ms, depending on
the minimum synchronization phase duration. Consequently, the lower bound slmax is a good
starting point for defining a feasibility evaluation method for an IE with this architecture.
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When providing only one CPU core for each FS node and no separate one for the IE nodes’
tasks, i.e. violating the IE contract defined below, the measured jitter rises, as depicted the
Figure 12.7. A high jitter was measured for the scenarios with two and three FSs, but not for the
others. Here, we see the influence between the FS nodes for the first two cases, where it is certain
that predictability is no longer given. The worst-cases for the test scenarios only occur when the
execution of the FS nodes are aligned. This becomes less likely over the number of FSs, which
is why the observed maximum application jitter decreases over the number of integrated FSs.

These test results show that if FSs provide the synchronization mechanism themselves, the
IE must provide at least one dedicated CPU core on the IE nodes per integrated FS node. This
must be enforced within the feasibility evaluation method of the IE contract.
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Figure 12.8: Maximum application jitter in dependency of the number of integrated FS, with
one CPU core per FS node and periodic synchronization in a redundant network. Lines drawn
to show the trend only.

Similar results are achieved with the periodic synchronization mechanisms for redundant
networks in the dynamic IE. Figure 12.8 shows a reduction of the synchronization jitter in this
setting, when compared with the results above for periodic synchronization with directly con-
nected nodes. Here, the formula for the lower bound for synchronization duration is slmax =
3δFSmax (defined in Section 10.1), which predicts a jitter of just below 6ms, under the same as-
sumptions as for periodic scheduling above. This is also a good starting point for the feasibility
evaluation method.

The measurements concerning a violation of the CPU requirements, showed a high jitter
when integrating three FSs with exactly three CPU cores enabled. Also, here, the worst-cases
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occur with aligned FS executions, which was only observed for the scenario with three integrated
FSs. Similar to Figure 12.7, the measured values can be seen as lower bound of the maximum
application jitter.

Using the TSM algorithm for synchronization within the FS nodes results in a completely
different behaviour of the overall system. In the configuration with only one FS on top of the IE,
the token round trip time stays under 100µs, which causes a significant network load. Here, the
initial assumption, that FSs will have a mostly CPU- and not network-intensive profile, does not
apply any more. Consequently, within our prototype, the lower priority FSs lose synchronization
even when providing one CPU core per FS node. Thus, TSM without a restriction on the token
speed is not suitable for constructing a composable environment with a preemptive fixed-priority
IE.

Contracts for the IE Scenario with Synchronization within the FS node

For illustration, the IE contract for the prototype IE E0 with synchronization service and classic
TMR architecture is:

CE,0 = {CEN,0, CEC,0, f0, ∅}
CEN,0 = {C0EN,0, C1EN,0, C2EN,0}
P0
EN,0 = P1

EN,0 = P2
EN,0 = {mmu, different_ie_nodes}

R0
EN,0 = R1

EN,0 = R2
EN,0

R0
EN,0(r) =


20GiB if r = disk
4GiB if r = memory
8 if r = cpu
prio if r = sched
⊥ otherwise

CEC,0 = {C0EC,0, C1EC,0, C2EC,0}
L0EC,0 = {C0EN,0, C1EN,0};L1EC,0 = {C1EN,0, C2EN,0};L2EC,0 = {C0EN,0, C2EN,0}
R0

EC,0 = R1
EC,0 = R2

EC,0

R0
EC,0(r) =

{
0.5Gbit/s if r = bandwidth
⊥ otherwise

Here, the feasibility evaluation method f0 is specified analog to the example fj presented
in Section 11.2 and only extended by concrete definitions of the functions for determining the
feasibility of node resources fnr0 and feasibility on interconnect fi0. For these additional defini-
tions, the function for determining the integrated FS nodes of an IE node integ_fn(CIN,k, CsEN,j)
is reused. Checking resource feasibility on the node level is performed for each type of resource
in a separate function:
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fnr0(CIN,k) =
∧

Cs
EN,0∈CEN,0

fnrn0(CIN,k, CsEN,0)

fnrn(CIN,k, CsEN,0) =
∧

r∈REN

fnrnr(CIN,k, CsEN,0)

fnrndisk(CIN,k, CsEN,0) = Rs
EN,0(disk) ≥ 100MiB+∑

Cr
FN,i∈integ_fn(CIN,k,Cs

EN,0)

Rr
FN,i(disk) + 0.5MiB

fnrnmemory(CIN,k, CsEN,0) = Rs
EN,0(memory) ≥ 200MiB+∑

Cr
FN,i∈integ_fn(CIN,k,Cs

EN,0)

Rr
FN,i(memory) + 1MiB

fnrncpu(CIN,k, CsEN,0) = 8 ≥ 1 +
∑

Cr
FN,i∈integ_fn(CIN,k,Cs

EN,0)

1

fnrnsched(CIN,k, CsEN,0) = ∀CrFN,i
(
CrFN,i ∈ integ_fn(CIN,k, CsEN,0) =⇒

Ri,r
IC,k(sched_prio) 6= ⊥ ∧ 75 < Ri,r

IC,k(sched_prio) < 90∧

∀CbFN,a
(
CbFN,a ∈ integ_fn(CIN,k, CsEN,0)∧

Ri,r
IC,k(sched_prio) = Ra,b

IC,k(sched_prio) =⇒ a = i ∧ r = b
))

This definition also ensures the availability of the additional resources, which the IE needs
for managing the FS execution. The function fnrnsched tests whether the FS nodes’ priorities
are assigned in the correct scheduling band and that the FS nodes integrated on the same IE node
have different priorities, as we required in Section 9.2.

Let integ_fc(CIC,k, CqEC,j) = {e|e 7→ (CqEC,j , b) ∈ CIC,k} be the set of FS interconnections
integrated on the IE interconnection CqEC,j . The feasibility evaluation method for the interconnect
(fi) checks the availability of the bandwidth (fir) and communication partners (fil), as well as
whether the FSs’ restrictions on sharing physical links are satisfied by the integration contract
(fiv):

fi0(CIC,k) =
∧

Cq
EC,0∈CEC,0

fir(CIC,k, CqEC,0) ∧ fil(CIC,k, C
q
EC,0) ∧ fiv(CIC,k, C

q
EC,0)

fir(CIC,k, CqEC,0) = R
q
EC,0(bandwidth) ≥

∑
Cp
FC,i∈integ_fc(CIC,k,Cq

EC,0)

Rp
FC,0(bandwidth)
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fil(CIC,k, CqEC,0) =
∧

Cp
FC,i∈integ_fc(CIC,k,Cq

EC,0)

LpFC,i ⊆ L
q
EC,0

fiv(CIC,k, CqEC,0) =
∧

Cp
FC,i∈integ_fc(CIC,k,Cq

EC,0)

VpFC,i ∩ L
q
EC,0 = ∅

In this case, the maximum bandwidth with which the IE can guarantee fast message trans-
mission times has already been defined in the IE interconnection contracts. Consequently, the
feasibility evaluation method does not need to enforce an even lower limit.

Finally, the integrated system I2 with two FSs, F10 and F20, has the example integration
contract CI,2:

CIN,2 =
{
C0FN,0 7→ (C0EN,0,R

0,0
IN,2), C

1
FN,0 7→ (C1EN,0,R

0,1
IN,2), C

2
FN,0 7→ (C2EN,0,R

0,2
IN,2)

}
R10,0

IC,2 = R
10,1
IC,2 = R

10,2
IC,2 =

{
79 if r = sched_prio
⊥ otherwise

R20,0
IC,2 = R

20,1
IC,2 = R

20,2
IC,2 =

{
80 if r = sched_prio
⊥ otherwise

CIC,2 =
{
C0FC,0 7→ (C0EC,0,R

0,0
IC,2), C

1
FC,0 7→ (C1EC,0,R

0,1
IC,2), C

2
FC,0 7→ (C2EC,0,R

0,2
IC,2)

}
R10,0

IC,2 = R
10,1
IC,2 = R

10,2
IC,2 = R

20,0
IC,2 = R

20,1
IC,2 = R

20,2
IC,2 =

{
3 · 104 if r = bandwidth
⊥ otherwise

Under the assumption that the definition of the FS contract CF,10 for the FS F10 has similar
requirements as F20, the feasibility evaluation method f0 maps this integration contract to >.

Synchronization as IE service

In the prototype, the periodic synchronization as IE service is implemented with a synchro-
nization server. This server receives the FS nodes’ results as UDP messages and executes the
synchronization mechanism with the smallest synchronization period required by the integrated
FS nodes. This is 50ms according to our example FSs types F20 and F10.

Figure 12.9 shows a scheduling example of the FS nodes and processes on IE node 0, when
executing periodic synchronization as an IE service. First, the synchronization server starts the
synchronization process. As soon as it has finished, it sends the first synchronized message toF0

0

executing a F20 type of workload. After receiving the FS node’s result, it proceeds by sending
the second synchronized message to F0

1 , which executes a workload of type F10, as does F0
2 .

As soon as the synchronization server has received the last synchronization message, the CPU
is occupied with executing the FS nodes and the synchronization server without any break until
the workload is completed. This closes the semantic gap between the virtual machines of the
same IE node.

Figure 12.10 shows the maximum application and synchronization jitter in correspondence
to the number of integrated FSs. Here, the first FS executed a F20 type of workload, while each
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Figure 12.9: FS and process scheduling example on IE node 0 for periodic synchronization as
IE service with one F20 and two F10 workloads.

additional one performed a F10 type of workload. The synchronization jitter remains stable,
while the application jitter increases with the number of integrated FSs. This is caused by the
sequential workload execution and sending of UDP messages in-between. The fact that the ap-
plication jitter does not increase in-between the scenarios from two to three and four to five FSs
is a result of the alternating allocation of the additionally integrated FSs in the synchronization
period of the synchronization server. FS nodes of FS 1 and FS 3 are scheduled every odd syn-
chronization round, while the FS node of FS 2 and FS 4 compute in even rounds. The FS nodes
of FS 0 operate on 50ms and must be served each round.

12.5 Preemptive EDF Scheduling

Seeing that the properties of preemptive EDF and according schedule ability tests have already
been extensively studied, this section concentrates on the evaluation of the practical implemen-
tation with virtualization.

The composability strategy with EDF-based scheduling has strict constraints regarding the
wakeup of FS nodes, i.e. only once per synchronization period. Regarding our prototype, an
EDF scheduler is available since version 3.14 of the Linux kernel mainline. The first version of
this EDF scheduler has been presented in by Faggioli et al. in 2009 [42].

Figure 12.11 shows the wakeup delays within a Linux-based virtual machine on top of our
prototype IE when executing a high priority process. As soon as this process is scheduled, it goes
back to sleep again. It does so with a period of 10ms. The ftrace interface was used to record the
process switches and a sampling time of 16.4s fit in the trace buffer. As can be seen, the virtual
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machine woke up most of the time due to the high priority process. There were only a few other
wake-ups within the recorded time frame. Most of these were caused by receiving network
packets, but not exclusively, e.g. a timeout expired within the init process. From this we can
draw two consequences: first, Linux is not suitable for constructing a composable system with
EDF-based scheduling. Second, other means than network interfaces must be used to exchange
the data between the IE node and FS nodes in such an EDF-based system, since otherwise any
network packet can break the schedule. In the case of an embedded hypervisor, a possible
solution would be to use a message-passing interface. Consequently, virtualization is not a
good foundation for EDF-based composability, since in such a scenario the reuse of legacy
applications and available services within the virtual machine are very limited.
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CHAPTER 13
Conclusion

The aim of this thesis was the integration of existing fail-safe TMR applications using the meth-
ods of composability and mixed-criticality. These applications are subject to certification. The
benefits of this approach are the independent certification of the applications, software reuse
and a better utilization of hardware resources. These goals contradict the strong requirements of
periodically synchronized applications concerning the properties of the communication links be-
tween individual application instances, their reactivity and the existing strategy for certification.
Consequently, a suitable composable solution must provide a balance between the objectives of
independent certification (predictability and separation), the application reaction time require-
ments (performance) and the hardware utilization. The technical and conceptual foundations
were established in this work.

Two additional constraints were identified after studying the practical aspects of the targeted
TMR applications. The first of these is to keep the applications unchanged, which is in line with
the goal for software reuse. The second constraint is to provide the synchronization mechanism
within the application’s fault containment regions. This ensures strict fault containment and
enables the reuse of the existing applications’ safety strategy.

The initial analysis has shown that the concepts of TMR and composability are orthogonal
in that composability requires failure confinement regions, while TMR is based on fault contain-
ment regions. There are multiple ways of combining these two types of regions. The existing
TMR architectures were aligned within this solution space and their benefits and needs were
systematically identified when augmented with a composability layer. Additionally, software-
based TMR schemes that specifically leverage the existence of composability were proposed,
which use the available hardware resources more efficiently.

The scheduling of the CPU has been identified as the most critical resource regarding pre-
dictability and utilization for the targeted software-based TMR applications. The periodically
synchronized applications are strongly affected by the scheduling strategy of the integration en-
vironment, especially if the schedulers between the nodes are not aligned. There are two main
reasons for this. The first is that the integration environment cannot determine the state of the
encapsulated application instances. The second reason is that scheduling of such application
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instances is costly in terms of CPU time.
It was shown that static-cyclic and preemptive EDF scheduling without architectural and

application-specific measures are suitable for applications with relaxed timing requirements,
since this scheduling strategy causes very long execution times of the TMR synchronization
mechanism. Changing the interconnection between the nodes of the integration environment
and adapting the synchronization mechanism to require fewer scheduling operations reduces the
execution time of the TMR synchronization mechanism. The applications’ reaction times are
shortened as well, but still remain substantial. Additionally, a token-ring-based synchronization
mechanism has been proposed, which in this case, is also suitable for applications with long
reaction times. A simulation environment was set up providing static-cyclic scheduling, normal
distributed message transmission times and zero time computation. It was used to validate the
results regarding behaviour of the synchronization mechanisms under static-cyclic scheduling.

Of all analyzed scheduling strategies only preemptive fixed-priority scheduling provides an
out-of-the-box solution. This solution requires that the number of integrated safety-critical ap-
plication instances are at most the available number of CPU cores per node. One possible solu-
tion to overcome this limitation requires a small adaptation of the synchronization mechanism.
Specifically, to provide the synchronization mechanism as a service of the integration environ-
ment, which avoids aligning the schedulers of the nodes themselves. However, it weakens the
separation of application instances and they must operate based on the same synchronization
period. This method also demands that the integration environment have a static assignment of
application instances to nodes and a limited number of these nodes. Measurements with a Linux
and KVM-based prototype confirmed these results.

A different mechanism was suggested for preemptive EDF scheduling, where small buffers
with a timeout determine the release time of application instances. This enables the use of EDF
scheduling tests for integration of applications, while allowing fast reaction times and keeping
the synchronization independent. Here, the adaptations of the synchronization mechanism and
of the applications themselves are mandatory. The prototype was used to determine whether
Linux-based virtual machines are suitable for EDF-based scheduling, which they are not since
one cannot restrict when they wake up.

Based on the architectures of the solutions and the analyses for determining the applica-
tion reaction times, a (formal) contract concept for independent certification has been proposed.
The applications are independently certified together with a contract stating their requirements.
Also, the composable environment is certified with its own contract, which defines its provided
resources. This integration environment contract must additionally specify a feasibility eval-
uation method for checking whether specific configurations of applications can be integrated
without violating their requirements. For an integrated system, an integration contract must then
specify the set of integrated applications and the integration environment. This integrated system
is then certified using only the provided contracts, by checking the feasibility of the integration
contract with the corresponding feasibility evaluation method.

Ultimately, the profiles of the integrated applications and the overall targets for integration
determine which of the presented solutions for composability and mixed-criticality fits best.
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CHAPTER 14
Future Work

The solutions and analyses in this thesis were focused on TMR applications which only need
to exchange small messages. Extending this approach to data-intensive applications must also
incorporate the effects of the network infrastructure. This would have two major benefits. First,
it would enable the integration of such applications which must (timely) exchange a large amount
of data. Second, it would also cover the impact of the accumulated network load in very large
integration environments.

An extension regarding the preemptive EDF-based solution would be to incorporate the
EDF-based mixed-criticality scheduling scheme. This strategy guarantees the availability of
the requested computation time to the application in correlation with its criticality. Applications
with a higher criticality have a higher level of assurance to receive their CPU share. This would
allow for a tighter integration of applications and subsequently, an even better utilization of the
CPU.

As presented, a possible solution to overcome some performance limitations of static-cyclic
scheduling is to align the periods of the schedulers. Here, an in-depth analysis regarding the
effects of such an alignment can provide a basis for identifying possible new failure modes in
otherwise loosely coupled application instances.

The ongoing research regarding the interference between applications on multi-core CPUs
promises a profound understanding of such effects. This can be beneficial for the solution based
on preemptive fixed-priority scheduling with one CPU core per application instance. It could
provide a solid basis for calculating tight bounds for the synchronization mechanisms’ execution
times.
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