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Kurzfassung

In den unterschiedlichsten naturwissenschaftlichen und wirtschaftlichen Disziplinen spielt die
Diffusion eine wichtige Rolle. In der Biologie wird beispielsweise die Reaktionsgleichung dazu
benutzt, tierische Musterbildung nachzubauen. Auch in der Wirtschaft wird Diffusion verwendet
um den Ankauf und Verkauf von Aktienfonds zu berechnen. Diese Arbeit widmet sich der so-
genannten Smoluchowski Gleichung und wurde von einem Benchmark der europäischen Simu-
lationsgemeinschaft inspiriert. Dieser Benchmark befasst sich mit der Thematik der Grundwas-
serverschmutzung und deren Simulation. Man stelle sich einfach eine Schmutzquelle inmitten
eines beliebigen Gewässers vor. Diese Quelle emittiert immerwährend oder auch nur zeitweise
Schmutzpartikel welche sich im Folgenden auf dem ganzen Gebiet verteilen. Um dieses Ver-
halten simulieren zu können benötigt man die zugrunde liegende mathematische Gleichung. In
diesem Fall handelt es sich um die Analyse von diffusem Verhalten unter Einfluss von Geschwin-
digkeitsfeldern. Diverse Ansätze, beginnend bei analytischen Lösungen bis hin zu chaotischen
Bewegungssimulationen, werden verwendet um dieses Verhalten abzubilden.

Der erste Teil der Arbeit beschäftigt sich ausschließlich mit der Problemanalyse auf einem ein-
dimensionalen Gebiet. Im zweiten Teil wird das Gebiet zu einem zweidimensionalen Raum
erweitert. In jeder Dimension werden grundsätzlich drei verschiedene Ansätze verfolgt. Als ers-
tes wird auf dem angegebenen Gebiet und unter unterschiedlichen Voraussetzungen nach einer
analytischen Lösung gesucht. Da analytische Lösungen in der Regel nicht einfach aufzufinden
sind, konzentriert sich die zweite Herangehensweise auf numerische Lösungen. Diesbezüglich
können zwei wichtige Verfahren genannt werden, die finite Differenzen und die finite Elemente
Methode. Stochastische Prozesse als auch das Prinzip des Random Walks werden im dritten Teil
verwendet um Diffusion zu simulieren. Diese alternativen Methoden beschäftigen sich mit der
chaotischen Bewegung kleinster Teile.

Im Fokus dieser Arbeit steht der Vergleich dieser verschiedenen Ansätze in Hinblick auf Effi-
zienz, Handhabung und Implementierung. Es werden sowohl Vorzüge als auch Nachteile, Ge-
meinsamkeiten sowie Unterschiede herausgearbeitet werden. Das Zusammenspiel der einzelnen
Parameter und deren Auswirkungen auf die Simulationszeiten und -ergebnisse wird untersucht.
Verfahren, die sich für diese Art von Aufgabenstellung weniger eignen, werden in dieser Arbeit
ebenfalls angesprochen. Da in der hier betrachteten Problemstellung eine analytische Lösung
angegeben werden kann, können die verschiedenen Methoden mit dieser als ultimativer Bestap-
proximation verglichen werden.
Zum Abschluss werden alle verwendeten Methoden und ihre Eigenschaften nochmals Revue
passieren und ein Ausblick auf weitere mögliche Ansätze und Methoden gegeben.
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Abstract

The theme of this master thesis was motivated by a benchmark of the Federation of European
Simulation Societies, EUROSIM. The Benchmark deals with the problem of groundwater pol-
lution. A two-dimensional domain filled with water may be considered. In the middle of this
area a pollution source is located. This source emits solid constantly or at certain points in
time. The distribution of this pollution on the regarded domain is analyzed. For simulation
some mathematical background is summarized. The basic equation for pollution distribution
is the diffusion equation. Different kinds of this equation are used. In chemistry as well as in
biology the reaction-diffusion equation plays a very important role. Of course there are also
physical applications of the diffusion, e.g. the heat equation. However, diffusion is also used
to foresee the behavior of buyers of stocks in the financial market. In this work the focus is on
the convection-diffusion equation. Using this equation the distributive behavior of the pollution
influenced by a velocity field is described. Several approaches, ranging from analytical solutions
to some chaotic particle movement, are used for realization.

In the first part of this thesis the problem definition is restricted to a one-dimensional domain.
The second part deals with the already mentioned two-dimensional analysis. In both parts there
are three different kinds of simulations used. Analysis always starts with an analytical solution
of the equation using certain conditions. In reality it is not always possible to find such analytical
solutions. Therefore the second approach covers two commonly used numerical methods, the
finite differences and finite element method. Alternative implementations are given using the
principle of microscopic particle movements, also known as Brownian motion, as well as the
random walk. These processes can be described using stochastic theory including probability
theory.

An important part of this work is the comparison of these different approaches regarding ef-
ficiency, accuracy and implementation. All the disadvantages and advantages will be shown.
Also the similarities and differences between them are lined out. The interaction of the different
parameters and their influences regarding simulation time and results are examined. This work
also includes methods which are not appropriate to simulate diffusion in a useable way. For most
of the used conditions an analytical solution can be given. Therefore an exact prototype for the
perfect approximation is given and can be used for comparison.
In the end all the different used approaches and their properties are summarized. Also an outlook
to other possible implementations is given.
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CHAPTER 1
Introduction

The famous second order diffusion differential equation occurs in various different fields. For
example in physics an application of diffusion would be the heat transport. The physical quan-
tity is temperature and heat flow, respectively. Heat is transported from regions with higher
temperature to regions with lower temperature. Consider a room with a heating source, e.g. a
radiator. Every radiator is made of metal and filled with water. If the sensor signals that the
room temperature is too low water is heated and leaded to the radiator. Due to the fact that the
radiator is leaded the heat of the hot water is emitted the surrounding air. The distribution of the
heat from the radiator into the room can be described with the heat equation.

∂u

∂t
− α∇2u = 0 (1.1)

Another application can be found in biology. Pattern formation on fish’s skin or cat fur look
as if they are random [Bon97]. In fact the strips and points obey mathematical rules. Basis for
these mathematical rules are reaction-diffusion simulations reproducing color patterns found in
nature. [Tur52]

∂q

∂t
= D∇2q +R(q) (1.2)

The reaction-diffusion mechanism is based on interactions of a short-range self-enhancing re-
action and a long-range antagonistic reaction, in other words an activator A and its inhibitor B.
The behavior of activator and inhibitor is defined by certain reaction-diffusion equations with
different diffusion coefficients DA and DB . Considering condition DA � DB , B disappears
from regions around reaction centers of A and a pattern formation arises. [Mur89]

Similar to the application in biology, chemistry also uses reaction-diffusion equations (1.2).
Additional to a diffusive part as in (1.1) the equation describes reactions between different ele-
ments. Reactions of two different substances can lead to new chemical bounds, thus new occur-
ring elements. Therefore simulation based on reaction-diffusion are mainly used to describe the

1



2 CHAPTER 1. INTRODUCTION

distribution of different substances over a certain time. Reactions only take place at some local
sites. [SMF10]

Diffusion is not only useful to analyze problems in natural science. In the last centuries the
importance of the financial market has increased. The Black Schole Model is an implementation
based on diffusion used in the financial market. This model is based on a convection-reaction-
diffusion equation.

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (1.3)

Quantity is the price of a derivative V as a function of stock price S and time t. [Coe02] The
coefficient σ and r define the standard deviation of the stock’s returns and the force of interest.
The Black Schole Model focuses on the price variation of financial instruments, e.g. the Euro-
pean call option.

The four examples above show a part of the applications using mathematical equations contain-
ing diffusion. The research areas are widespread and involve important fields of study influ-
encing various scientific discoveries. The basic idea of this work is the usage of diffusion for
analyzing pollution in groundwater. In a minimized environment simplifying assumptions will
result in different models and implementations reflecting diffusive behavior. More precisely the
convection-diffusion equation will be used to simulate the expansion of soil injected by a source
of pollution. Two different case studies are considered. On the one hand an instantaneous source
is used. On the other hand the case of a constantly releasing source is regarded.

1.1 Modeling and Simulation

History of Modeling and Simulation.
The following paragraph is based on [AEM98]. Since the early stages of modeling and simula-
tion in the 1920s a fascinating evolution happened. In that former times the needed technology
was available only at a handful of university groups. Nowadays every engineer can choose which
simulation tool fits best for his purpose. Between 1920 and 1950 analog techniques dominated
this field. The significant change took place when digital computers where available.
The first simulators were analog and based on ordinary differential equations and block dia-
grams. The basic idea was developing a physical device that obeys differential equations. The
first tool simulating dynamical systems, the mechanical differential analyzer, was developed
around 1931 by V. Bush. In 1947 a paper of Ragazzini demonstrated that simulations can be
done electronically instead of mechanically. That paper had a great impact on technology. Me-
chanics were replaced by electronics. Triggered by Selfridge digital computers appeared around
1955. Selfridge showed that differential analyzers could be replaced by digital computers. By
1967 more than 23 different programs for digital computers were available. The first appearance
of a graphical environments representing models in block structure was in the mid 1970s. Due
to the limited input-output facilities they were rarely used. After the development of modern
work stations and raster graphics these environments got more popular. In 1980s matrix envi-
ronments which additionally provided modeling tools appeared, e.g. MATLAB. The graphical
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block diagram modeling was established in different languages around 1991. Another approach
focused on the power of symbolic computations. This leads to an evolution of object-oriented
languages, starting around 1973. Due to this development environments like Dymola which
offered complete components for simulation (1990s) were established. Nowadays the modern
approaches build on non-causal modeling with mathematical equations and use object-oriented
constructs to facilitate reuse of modeling knowledge.

Classification of models.
In general models can be classified in different ways. First of all one can differ between static
and dynamic models. An analysis of recorded data belongs to the group of static models. There
are data of an observed system before and after certain changes but no data regarding the actual
change. A model providing also the behavior of a system during changes as well as before and
after, is called a dynamic model.
Additional to the separation between static and dynamic models other classifications concerning
the observed parameter can be made. [IK03]

· time continuous

· time discrete

· spatial continuous

· time and spatial continuous

Models which are continuous in time are described by a differential equation as a function of
time. Therefore this equation enables to calculate the state of a system at any point in time. Not
every process can be reproduced using a time continuous model. As opposed to that there are
time discrete models. In some cases it happens that data can only be measured at certain points
in time. Another reason for discrete models are data which can not be continuous, e.g. thinking
of population elicitation data only contains integers. These data are called discrete and so does
the type of model. For modeling these problem data can sometimes be transformed into a differ-
ential equation using time series analysis. If a model concernes not only changes in time but also
behavior in a continuous space it is called spatial continuous model. These kind of models are
based on partial differential equations. An example for this class of models would be simulating
vibration of strings with the wave equation.
The last class are stochastic models. In nature not all processes are predictable e.g. the de-
cay of radioactive materials. There are assumptions and expectations how much material will
be decayed after a certain amount of time but no one knows when it will happen exactly. The
underlying mathematics belong to the theory of probability. Such models are based on differ-
ential equations whereas quantity is a stochastic process and therefore the equation describes a
stochastic process itself.

In Modeling and Simulation depending on the focus different model approaches can be used
for a certain problem. Even if the problem can be solved analytically most of the time it is
helpful to find other formulations of the problem. Also the regarded diffusion problem can be
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simulated with different models. The underlying partial differential equation suggests the use of
spatial continuous models. In the following chapters different spatial continuous models using
different methods will be introduced. Additionally a stochastic approach is implemented using
the principle of Random Walk.

1.2 Motivation

There are many different interesting applications for diffusion but the motivation for this master
thesis was a benchmark [Cra75] prepared by a German speaking research group for modeling
and simulation. This benchmark deals with the pollution of groundwater in a simplified way.
In the following considered surroundings and circumstances are described. Instead of using a
difficult realistic geometry of a groundwater flux a rectangle is used. This rectangle is embedded
in a Cartesian coordination system. In the origin of this coordinate system a source of pollution
is placed as shown in figure 1.1.

Figure 1.1: A schematic illustration of the described area.

There are two different scenarios discussed in this thesis. On the one hand a constantly
releasing source is observed. This is also the case which is described in the mentioned bench-
mark. On the other hand a different approach analyzes an instantaneous source of pollution.
This process describing the spread out of pollution in the rectangle can be implemented with the
diffusion equation.

∂c

∂t
= D · ∇2c (1.4)

In equation (1.4) the variable c stands for the concentration of pollution. The concentration
is a function of time t and space x. In general the dimension of space is arbitrary n ≥ 1. The
parameter D stands for the diffusion coefficient. This coefficient influences the reduction of the
peak and the spreading of pollution. The intuitive result of the pollution expansion is given in
figure 1.2.

Additional to diffusion of pollution there exists a flow in positive x-direction, also called
convection. Due to this flow the equation (1.4) has to be adapted. It results in the convection-
diffusion equation, usually called Smoluchowski equation. [Cra75]



1.2. MOTIVATION 5

Figure 1.2: Diffusion of the pollution injected constantly by the source.

∂c

∂t
= D · ∇2c− v · ∇c (1.5)

The flux effects the pollution expansion. Instead of a distribution around the source a move-
ment towards the right boundary occurs. In case of a natural flow there would by an inlet and
outlet for the fluid. Therefore domain changes from a finite to a semi-finite domain are ob-
served. That means that every kind of reflection is neglected. The illustration of the regarded
area changes are shown in figure 1.3.

Figure 1.3: Convected diffusion in a semi-finite domain is shown.

In the benchmark a special diffusion equation is given. Compared to (1.5) the given equation
has a different form.

∂c

∂t
− u

R

∂c

∂t
=
αLu

R

∂2c

∂x2
+
αTu

R

∂2c

∂y2
− λc (1.6)

One can see immediately that the convection part is missing because no first derivate is
found. Instead of that a retardation factor λ is given. The retardation factor could stand for
a pump or anything else responsible for discharging pollution. Regarding the focus of this
work discharging is no point of interest so the parameter λ can be set to zero. Concerning
dispersive constants αL and αT , which stand for the dispersion in x-direction - longitudinal -
and y-direction - transverse, respectively, another assumption can be made. These two constants
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are assumed to be equal, therefore we define α = αL = αT . Hence, the equation (1.6) can be
written as:

(
1− u

R

)
· ∂c
∂t

=
αu

R
·
(
∂2c

∂x2
+
∂2c

∂y2

)
(1.7)

The diffusion coefficient D regarding (1.5) can be defined after a small transformation. In
(1.7) the convective transport is missing. In this context the considerable variable for flux veloc-
ity is v.

∂c

∂t
= D∆c− v∇c (1.8)

D =
αu

R− u
(1.9)

Due to the fact that the flow is considered only along x-direction, ∇c can be replaced by
∂c
∂x independently of actual space dimension. In the following the mathematical and physical
derivation respectively of the regarded convection-diffusion equation are described.

1.3 Convection-Diffusion Equation

The process of transport can be separated into two different parts. On the one hand there is an
oriented transport process named convection. On the other hand there is a chaotic process, the
diffusion. The diffusive transport is a consequence of many randomized individual motions. In
fact the motion of every single molecule itself is randomized and minimal but taking into account
all molecules, a uniform movement from regions with higher to regions with lower concentration
occurs. This behavior is mathematically formalized in Fick’s First Law:

Jd : Rn → Rn with Jd(x) = −D(x) · ∇c(x) (1.10)

In 1855 the physiologist Adolf Fick first talked about his laws for transporting mass through
a diffusive medium. Fick’s First Law describes the relation between diffusive flux and concentra-
tion under a steady state assumption. It declares that the flux is proportional to the concentration
gradient going from regions with high concentration to regions with low concentration. [LT05]
In (1.10) Jd stands for the diffusion flux. It is a function of space x influenced by the diffusion
coefficient D and the concentration c. In general the diffusion coefficient varies in space. In the
following cases only constant diffusion coefficients are established. The negative sign in (1.10)
entails diffusion in opposite direction to the gradient of concentration - from a region with high
to a region with low concentration. According to the Einstein-Smoluchowski-relation the diffu-
sion coefficient depends on the mobility µ of particles and the temperature T . The variable kB
terms the Boltzmann constant. This relation can also be formulated in a microscopic way where
λ stands for the length a particle jumps during diffusion within time frame τ . Therefore λ

τ can
be taken as mean velocity of the particle and λ as the mean travel path.
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D = µ · kB · T =
λ2

2τ
(1.11)

The oriented part of the transport, the convection, accrues due to a flux. The flux can be
quantified by a velocity field v describing the flow in all directions. This velocity field can be
a function of space but in the following study a constant velocity v is considered. Due to flux
velocity the concentration c of a certain substance at point x will be transported to the place
x + tv after time step t. Therefore the convective flux of mass Jc : Rn → Rn can be written as:

Jc(x) = v · c(x). (1.12)

In a closed system the conservation law claims that a particular measurable property does
not change even if physical or chemical processes happen. In this case this law describes the
relation between the time rate of change regarding the concentration of a certain quantity c and
the change in space regarding the flux J .

∂c

∂t
+∇ · J(x) = 0 (1.13)

The combination of diffusion and convection results in the sum of both flux equations (1.10)
and (1.12). Replacing the flux J in equation (1.13) with J = Jc + Jd leads to the diffusion
equation.

∂c

∂t
+∇ · J = 0⇒ ∂c

∂t
+∇ (−D · ∇c+ v · c) = 0 (1.14)

⇒ ∂c

∂t
= ∇ (D · ∇c)−∇ (v · c) (1.15)

For a constant diffusion coefficient and a constant velocity field the diffusion equation can
be written as:

∂c

∂t
= D · ∇2c− v · ∇ (c) . (1.16)

Concerning the described problem in section 1.2 the convection-diffusion equation will be
needed in two dimensions with a flux only in x-direction. In this work not only the two dimen-
sional case but also the simplified problem in one dimension is a point of interest.

∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2

)
− v ∂c

∂x
(1.17)

∂c

∂t
= D

∂2c

∂x2
− v ∂c

∂x
(1.18)
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1.4 Mathematics of Diffusion

In this section some common equation and theorems important for diffusion are summarized.
Regarding characterizing convection-diffusion equations the French physicist Jean Claude Eu-
gène Péclet introduced the Péclet number. It describes the interaction of convection and diffu-
sion and is defined as the ratio of convection to diffusion of a certain quantity. For diffusion of
particles the formula can be written as:

Pe =
convective transport rate
diffusive transport rate

⇒ Pel =
vl

D
(1.19)

The variables stand for the convection field v, the characteristic length l and the mass dif-
fusion coefficient D. A high Péclet number results in a prevalent convective transport whereas
a small number leads to dominant diffusive behavior. Another important equation regarding the
flow description is an analogue to Fick’s Law, Darcy’s Law.

Q = −K ·A · dh
dl

(1.20)

Equation (1.20) represents a special solution of the homogenous Navier-Stokes equation.
It describes the flow of a fluid trough a porous medium and is derived form the constitutive
equation. In other words, it is the proportional relation between the pressure decrease over
a given distance and the flow rate through a perforated medium. K describes the hydraulic
conductivity, Q is the rate of flow and A the cross section area. Therefore dh

dl describes the
hydraulic gradient with respect to length l.
Regarding stochastic differential equations the Langevin equation describes Brownian motion.

In particular the random movement of particles in a fluid is indicated. Thereby collisions with
the molecules of the fluid are taken into account.

m
d2x

dt2
= −λdx

dt
+ η(t) (1.21)

The variables m, λ and η in (1.21) represent the mass of a particle, damping coefficient
and the effect of collision of molecules in a fluid, respectively. The force η(t) has a Gaussian
probability distribution.

1.5 Partial Differential Equations

This section is based on lecture notes [J0̈8]. All the applications at the beginning use differ-
ent implementations of diffusion. Regardless of whether the convection-diffusion, reaction-
diffusion or pure diffusion equation is considered, the basic theory are partial differential equa-
tions. The difference between an ordinary and a partial differential equation is that the function’s
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derivatives with respect to only a part of the variables are used, also called partial derivatives.
The diffusion equation (1.18) is a linear partial differential equation of second order which
means that the maximal order of occurring partial derivatives is two and all the terms are linear.
Therefore the solution of the diffusion equation has to be differentiable twice, in other words
u ∈ C2(Ω,R). In most cases the partial differential equations are not continuous and no such
solutions u ∈ C2(Ω,R) can be found. In these cases a generalized solution also called weak
solution can be given. This method will be introduced later on.
Three different types of partial differential equations can be distinguished named elliptic, parabolic
and hyperbolic. For defining the three classes a quasilinear second order partial differential equa-
tion is considered.

L(u) :=

n∑
i,j=1

aij
∂2u

∂xi∂xj
= f (1.22)

Matrix A = (ai,j)i,j≤n in (1.22) is symmetric and can depend on spatial coordinates x, the
regarded quantity u and its gradient ∇u. In the following cases the Matrix A is constant. Its
eigenvalues λi characterize the equation.

Definition 1.5.1. · (1.22) is called elliptic if λi > 0 for all i ∈ (1, 2, .., n).

· (1.22) is called hyperbolic if there is a j with λj > 0 and λi < 0 for all i 6= j or vice
versa.

· (1.22) is called parabolic if there is a j with λj = 0 and λi for all i 6= j have the same
algebraic sign.

Regarding the general formulation of the diffusion equation

ut −∆u = f

the matrix A for the variables (t, x1, x2, .., xn) can be written as

A =


0 0 0 . . . 0
0 −1 0 . . . 0

0 0 −1
...

...
...

. . . 0
0 . . . 0 0 −1

 .

Comparing the eigenvalues with the definition from above the equation of interest is classi-
fied as a parabolic differential equation.
Partial differential equations are usually defined on an open but bounded region Ω. The edge of
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this region is denoted as ∂Ω. In this context the Gauss divergence theorem is introduced.

Theorem 1.5.2.
Given is an open and bounded region Ω with ∂Ω ∈ C1 and v is the outward pointing unit normal
field of the boundary ∂Ω. Let u be ∈ C1

(
Ω,Rn

)
∫

Ω
divF dx =

∫
∂Ω
F · v ds (1.23)

whereas the right hand side is a surface integral.

Hence, the partial integration can be derived using div(Fu) = ∇u · F + u divF :∫
Ω
u · divF dx = −

∫
Ω
∇u · F dx+

∫
∂Ω
u (F · v) ds.

This theorem will be used for the weak solution of the convection-diffusion equation. In
order to get a unique solution of a partial differential equation some conditions are necessary.
On the one hand an initial condition is given, in this case the concentration at c(x, 0) = c0(x).
One the other hand the interaction with the environment is defined by boundary conditions. One
can differ between three different types of boundary conditions:

· Dirichlet boundary condition: c = g1 on ∂Ω

· Neumann boundary condition: −κ∇ · v = h1 on ∂Ω

· Robin boundary condition: −κ∇ · v = αc+ h2 on ∂Ω

The Dirichlet boundary condition gives values at the boundaries themselves but the Neu-
mann and Robin conditions determine the flux of heat going through ∂Ω. In the analyzed case
studies the Dirichlet and Neumann boundary conditions will be used depending on the formula-
tion of the problem.

Considering a non continuous right hand side f in (1.22) no classical two times differentiable
solution can be found. The term solution is expanded by so-called weak solutions. In order
to get such solutions a weak formulation of the regarded partial differential equation is neces-
sary. To motivate this method the following partial differential equation with Dirichlet boundary
conditions is considered.

−∆u+ u = f (1.24)
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The equation is multiplied by a so-called test function ϕ ∈ H := {ϕ ∈ C1(Ω) : ϕ =
0 on ∂Ω}. Using the Gauss theorem for integration over Ω (1.24) results in the weak formulation.

∫
Ω

(∇u∇ϕ+ uv)dx =

∫
Ω
fϕ dx

Now the solution u of this equation has to fulfill u ∈ H . Looking closely at this formulation
it can be shown that the right hand side is a scalar product and the lhs is a continuous and
linear functional. Therefore the Riesz representation theorem can be used to guarantee a unique
solution of the weak formulation. But this theorem takes effect only if H is a Hilbert space. In
order to characterize such spaces a new scalar product and norm on C∞(Ω) are introduced.

(u, v)Hk =
∑
|α|≤k

∫
Ω
DαuDαvdx |u|Hk(Ω) =

√
(u, u)kH with k ∈ N (1.25)

The closure of C∞(Ω) and of C∞0 (Ω), respectively regarding the norm in (1.25) is called
Sobolev space. For the first closure a different characterization can be given.

Hk = C∞(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for all |α| ≤ k}

Hk
0 = C∞0 (Ω)

In order to get the weak formulation and its solution the Sobolev space plays an important
role. In the section concerning finite element method the Sobolev space will be used.





CHAPTER 2
Convective Diffusion in one

Dimension

In the following the convection-diffusion equation in one dimension is considered. The one
dimensional problem deals with two different initial conditions. On the one hand the source
releases pollution only at the beginning t = 0. On the other hand the initial condition describes
a constantly releasing source of pollution which is actually only used in 2.1.2.

∂c

∂t
= D

∂2c

∂x2
− v ∂c

∂x
(2.1)

This chapter covers everything from the derivation of an analytical solution to the point
of different mathematical respectively numerical methods to solve equation (2.1). In the first
section an analytical solution of the convection-diffusion equation on both an infinite and a semi-
finite domain is discussed. In the second section numerical solutions of the equation are shown.
Two methods are used, the finite difference method and the finite element method. Different
random walk approaches are the focus of the third section. These approaches are connected to
stochastic perspectives of equation (2.1).

2.1 Analytical Solution

In this section the analytical solutions for the Smoluchowski equation under different conditions
are described. First of all the solution of diffusion on an infinite domain is observed.

2.1.1 Infinite Domain

The infinite solution is based on [SK00]. In this case an infinite domain is considered. That
means that x ∈ (−∞,∞) and the Dirichlet boundary condition is used. The initial condition

13
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describes an instantaneous release of pollution. The according equation system can be written
as follows.

∂c

∂t
= D

∂2c

∂x2
− v ∂c

∂x
with c(x, t) = δ(x)

lim
x→±∞

c(x, t) = 0.
(2.2)

In order to solve (2.2) two variables are introduced.

τ = Dt, b =
v

D
.

With these new variables the convection-diffusion equation can be written as

D · ∂c(x, τ)

∂τ
= D · ∂

2c(x, τ)

∂x2
−Db · ∂c(x, τ)

∂x
(2.3)

⇔ ∂c(x, τ)

∂τ
=
∂2c(x, τ)

∂x2
− b∂c(x, τ)

∂x
. (2.4)

Time-dependent coordinates are set as

y = x− bτ, y0 = bτ0.

Inserting the spatial variables into (2.4) gives

∂c(y, τ)

∂τ
− b∂c(y, τ)

∂y
=
∂2c(y, τ)

∂y2
− b∂c(y, τ)

∂y
(2.5)

⇔ ∂c(y, τ)

∂τ
=
∂2c(y, τ)

∂y2
. (2.6)

This simplified equation can be solved with the Laplace-Transformation method. The equa-
tion (2.6) will be multiplied by e−pτ and integrated over τ . The partial differential equation
transforms into an ordinary differential equation.

c(y, τ) =
1

p

∂2c(y, τ)

∂y2
, (2.7)

whereas the Laplace transform of c(y, τ) is given as

c(y, τ) =

∫ ∞
0

e−pt c(y, τ)dτ.
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Equation (2.7) can be solved with the approach e−Ay. Regarding the boundary conditions
one receives

c(y, τ) = e−
√
py (2.8)

After an inverse Laplace-Transformation of (2.8) and the substitution to the origin parame-
ters a solution for the initial problem (2.2) can be given.

c(x, t) =
1√

4πDt
e−

(x−vt)2
4Dt (2.9)

In the chapter 1.3 the equation was separated into an oriented transport and a randomized
one. In the following figure this idea is taken up again. The left picture shows the effect based on
the convective transport. Over certain time steps the Gaussian curve is moving to the right due to
the velocity field of the flux. In the right picture the diffusion part is outlined. The time steps are
the same as in the convection graphic and show the shrinking amplitude of the Gaussian curve.

Figure 2.1: left: convection part of (2.9), right: diffusion part of (2.9)

The basis equations for creating the graphics in figure 2.1 are adaptions of the solution (2.9).
To receive the convection without any diffusive movement the parameter t in the pre-exponential
factor 1√

4πDt
has to be considered constant. The time t in the exponential function itself takes on

different values to visualize the development of this solution. Regarding the diffusive movement
the modification of the equation is easy to understand. The term v · t containing the velocity
field of the flow is eliminated. Figure 2.1 shows the modified solutions for different time steps
t = 100, 200,..,1000. The flux velocity v and the diffusion coefficient D are set arbitrary to the
value 0.02[m/s].

Figure 2.2 shows (2.9) for the same time steps as in 2.1. The flux velocity v and diffusion
coefficient c are also equally chosen. Due to the diffusion the peak decreases over time. The
influence of the convection part is clearly visible. There is an initial peak set at t = 0 in x = 0.
For t > 0 no further pollution is injected in the system. Therefore the positive velocity of the
fluid transports the diffusing pollution to the right.
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Figure 2.2: The convected diffusion of the pollution injected by the source is shown.

[a]

[b]
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[c]

Figure 2.3: One dimensional analytical solutions using differnet velocities.

Figure 2.3 shows three plots of the analytical solution over time. In figure [a] the parameter
setting is velocity v = 0.2 and diffusion coefficient D = 0.2. Compared to the setting of the
two dimensional figures before these two variables are increased by 10 times. The simulation
sketches the progress of the pollution concentration over tend = 250s. One can see that all
pollution leaves the region of interest in the time span t ∈ (100, 200). As a consequence the
velocity is defined as v = 0.02 for plot [b]. This graphic shows the process from the time
axis point of view. No pollution leaves the area but its dissemination on the regarded region is
becoming more homogenous. In other words the maximum of the bell curve decreases under a
value of c < 0.06. Figure [c] shows the progress from x-direction in inverse chronology. In the
back the peak of the initial condition is visible. In the front, in other words the concentration
curve at t = 250s is nearly equal to the x-axis. The different plots show the different aspects of
the convection-diffusion equation. Plot [a] focuses on the influence of convection whereas [b]
and [c] show the diffusive movement from different viewing angles.

2.1.2 Semi-finite Domain

Based on [OB61] the analytical solution of convection-diffusion on a semi-finite domain is
derivated. The concentration in the medium is zero at t = 0 except at the source at x = 0.
There the initial concentration c0 is set. The mathematical formulation of the problem is given.

∂c

∂t
= D

∂2c

∂x2
+ v

∂c

∂x
with c(0, t) = c0, t ≥ 0

c(x, 0) = 0, x ≥ 0

lim
x→∞

c(x, t) = 0, t ≥ 0

(2.10)

If the substitution c(x, t) = Γ(x, t) exp
(
ux
2D −

u2t
4D

)
= Γ(x, t)f(x, t) is introduced the

derivatives change to the following.
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∂c(x, t)

∂t
=
∂Γ(x, t)

∂t
f(x, t)− Γ(x, t)

u2

4D
f(x, t)

∂c(x, t)

∂x
=
∂Γ(x, t)

∂x
f(x, t) + Γ(x, t)

u

2D
f(x, t)

∂2c(x, t)

∂x2
=
∂2Γ(x, t)

∂x2
f(x, t) +

u

D

∂Γ(x, t)

∂x
f(x, t) + Γ(x, t)

u2

4D2
f(x, t)

These changed derivatives inserted in the equation (2.10) give a new differential equation
with modified boundary conditions.

∂Γ(x, t)

∂t
= D

∂2Γ(x, t)

∂x2
with Γ(0, t) = c0 exp

u2t

4D
, t ≥ 0

Γ(x, 0) = 0, x ≥ 0

lim
x→∞

Γ(x, t) = 0, t ≥ 0

The Dunhamel’s theorem says that the solution of the initial value problem can be used
to find the solution for the inhomogeneous problem whereas φ(λ) symbols the solution of the
modified initial value problem. The solution of the problem with time-independent boundary
conditions can be formulated as an integral of the solution of a time-independent problem. Using
the Duhamel’s theorem the following boundary conditions are considered. [CJ70]

∂Γ(x, t)

∂t
= D

∂2Γ(x, t)

∂x2
with Γ(0, t) = 1, t ≥ 0

Γ(x, 0) = 0, x ≥ 0

Γ(∞, t) = 0, t ≥ 0

(2.11)

Γ(x, t) =

∫ t

0
φ(λ)

∂

∂t
F (x, t− λ)dλ (2.12)

In (2.12) F stands for the solution of the adapted problem corresponding to Duhamel’s
theorem. Similar to the analytical solution for an infinite domain the Laplace-Transformation is
used.

Γ(x, p) =

∫ ∞
0

Γ(x, t) e−pt dt

Every term of equation (2.12) multiplied by e−pt and then integrated transforms the equation
into an ordinary differential equation.

Γ(x, t) =
p

D

∂2Γ(x, t)

∂x2
(2.13)
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A general solution of this equation (2.13) can be given.

Γ(x, t) = Ae−
√

p
D
x +Be

√
p
D
x with Γ(0, t) =

1

p
, t ≥ 0

Γ(x, 0) = 0, x ≥ 0

Γ(∞, t) = 0, t ≥ 0

Due to the boundary condition Γ(x, t) = 0 if x → ∞ the constant B has to be zero.
Regarding the initial condition Γ(0, t) = 1

p the constant A is given as A = 1
p . Therefore a

solution for (2.13) is obtained.

Γ(x, t) =
1

D
e−
√

p
D
x

To receive the solution Γ(x, t) the inverse Laplace-Transformation is applied. Due to the
table of Laplace-Transformations [Cra75] the solution can be written as

Γ(x, t) = 1− erf

(
x

2
√
Dt

)
=

2

π

∫ ∞
x

2
√
Dt

e−η
2
dη

Hence, the solution of the adapted probelm (2.12) is

Γ(x, t) =

∫ t

0
φ(τ)

∂

∂t

 2

π

∫ ∞
x

2
√
D(t−τ)

e−η
2
dη

 dτ. (2.14)

The function e−η
2

is continuous therefore it is possible to differentiate within the integral.
Hence, (2.14) results in

Γ(x, t) =
x

π
√
D

∫ t

0
φ(τ) e

−x2

4D(t−τ)
dτ

(t− τ)
3
2

. (2.15)

Defining a new parameter

λ =
x

2
√
D(t− τ)

and considering that φ(t) = C0 e
u2t
4D is the certain solution mentioned in Duhamel’s theorem

the equation (2.15) can be written as
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Γ(x, t) = C0
2√
π
e
u2t
4D

∫ ∞
x

2
√
Dt

e
−x2u2

16D2λ2 dλ (2.16)

= C0
2√
π

e
u2t
4D

[∫ ∞
0

e
−ε2
λ2 −λ2

dλ−
∫ α

0
e
−ε2
λ2 −λ2

dλ

]
(2.17)

with α =
x

2
√
Dt

and ε =
xu

4D
(2.18)

Dividing the solution in (2.18) into two separate integrals I1 and I2 the following results can
be assumed [PF56], [OB61].

I1 =

∫ ∞
0

e
−ε2
λ2 dλ =

√
π

2
e−2ε

I2 =

∫ α

0
e
−ε2
λ2 −λ2

dλ =

√
π

4

[
e−2ε

(
1 + erf

(
α− ε

α

))
− e2ε

(
erfc

(
α+

ε

α

))]
I1 − I2 =

√
π

4

[
e−2ε erfc

(
α− ε

α

)
+ e2ε erfc

(
α+

ε

α

)]

⇒ Γ(x, t) =
C0

2
e
u2t
4D

[
e−2ε erfc

(
α− ε

α

)
+ e2ε erfc

(
α+

ε

α

)]
.

(2.19)

With (2.19), the inverse substitution of the parameter defined in (2.18) and remembering
c(x, t) = Γ(x, t) exp

(
ux
2D −

u2t
4D

)
the finial solution is

C(x, t) =
C0

2

[
erfc

(
x− ut
2
√
Dt

)
+ e

ux
D erfc

(
x+ ut

2
√
Dt

)]
. (2.20)

[a]

Figure 2.4: Plot of (2.20) showing the concentration
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[b]

[c]

Figure 2.5: the modification of (2.20) is shown.

In 2.4 and 2.5 the solution of the semi-definite problem and its modification for different
time steps is shown. Despite the first five time steps are the same as in figure 2.2 t = 100,
200,..,500 the output is different. Velocity v and diffusion coefficient D are also set to the same
values, respectively. Due to the fact that the boundary condition differs in the infinite domain
and semi-finite domain problem the concentration curves look different. The initial condition is
set to c(0, t) = C0 = 1, t ≥ 0. Compared to the analytical solutions on infinite domain the
source is constantly injecting pollution. The left boundary changes from x = −∞ to x = 0. The
part left of x = 0 can be imagined as a pollution filled area with a blockade at x = 0. In other
words at t = 0 the concentration would look like a mirrored Heaviside function. When diffusion
starts the blockade disappears and the pollution spreads into the considered area, the positive
x-direction. This behavior also explains that the curve has nearly the same slope at any time.
The shape would change if another diffusion coefficient would be used but again not over time.
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In the semi-finite case a certain point in time exists where the whole area is filled uniformly with
pollution equal to the initial pollution.
In figure 2.4 the red curve represents a modification of the original solution. For this curve the
right term in equation (2.20) is neglected. For observation of diffusion in the region of flow the
second term can be ignored without major effects. [OB61] In fact the exponential function in this
term can be written as exp

(
x·v
D

)
which leads to the following condition x(1− v) < 35.5. If this

condition is not fulfilled this term reaches values near∞ due to the accuracy of MATLAB. In
other words the viewable range of solution depends on the flux velocity. Neglecting the second
term the concentration at every x-value can be given. As shown in figure 2.4 the uncertainty of
the modification is minimal. The maximal error is lower than 10−1 and decreases exponentially
which shows that at least one of the regarded functions changes minimally over time.

2.2 Numerical Solution

Numerical solutions are very important in cases of mathematical problems which cannot be
solved analytically. Especially problems dealing with partial differential equations require nu-
merical methods. There are many numerical approaches regarding ordinary differential equa-
tions. Different solver are defined to satisfy all the various needs of the varying mathematical
challenges regarding ordinary differential equations. When it comes to partial differential equa-
tion there are two mainly used methods. One of them is the finite difference method (FDM)
which was invented first. This method is based on using grid points to approximate the solu-
tion. In this approximations the derivative of the differential equation is approached by taking
the difference quotient of the neighboring grid points. The method is easy to use but slightly
weak concerning the accuracy. The second method is called finite element method (FEM) and
is based on formulating variations of the differential equation. FEM determines approximated
solutions consisting of piecewise defined polynomials on a fine resolution of the domain. The
advantage of FEM is the suitability for any geometry. The method is particularly used for elliptic
and parabolic partial differential equations.

2.2.1 Finite Difference Method

The finite difference method is a simple technique used for approximating derivations of func-
tions. A function c(x) in an one dimensional domain is considered. Three equidistant different
x-values and their function values c(x) are given. The distance between the x-values is written
as dx.

The first derivative of the function at point xi can be calculated in three different ways.

c′(xi) =
ci+1 − ci−1

2dx
central

c′(xi) =
ci+1 − ci

dx
forward dx = xi+1 − xi

c′(xi) =
ci − ci−1

dx
backward



2.2. NUMERICAL SOLUTION 23

Figure 2.6: Schematic graphic for finite differences.

For the gradient of the concentration according to convection backward differences are used
because the flux transports the concentration from left to right. Regarding the convection-
diffusion equation also the second derivative is necessary. For this derivative the central finite
difference method will be used. The repeated usage of this method on the first derivative gives
the approximation of the second.

c′′(xi) =
ci+1 − 2ci + ci−1

dx2

These two approximations for both the first and the second derivative can now be inserted
in convection-diffusion equation (2.1). The partial differential equation ends up in an ordinary
differential equation with only the time derivative left.

dc

dt
= D · ci+1 − 2ci + ci−1

x2
− v · ci − ci−1

dx
(2.21)

Therefore the simulation of this approximation can be done with different numerical ap-
proaches for ordinary differential equations, e.g. Euler method, Runge-Kutta etc. The first
application uses the explicit Euler method. The algorithm starts at a certain point t in time. The
value of c at the next time step t+ ∆t is then calculated by

c(t+ ∆t) = c(t) + ∆t · ċ(t). (2.22)

To implement the regarded partial differential equation an initial condition is necessary. In
the following figures the initial concentration is zero everywhere except the origin. At x = 0 the
initial concentration is set to c0. The implementation is ensured in MATLAB.

In figure 2.7 the results of the explicit Euler method are shown. For the numerical meth-
ods it is not possible to choose a certain point in time for calculation. In fact the simulation
always starts at t = 0 and iterates the concentration for every time step until tend is reached.
In both figures the simulation time is tend = 10000. The ten different lines show the progress

after t = 100, 200,
. . .,1000. To visualize the effect of convection two different velocity values
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Figure 2.7: Simulation of convection-diffusion using the Explicit Euler.

v1 = 0.01 and v2 = 0.02 are chosen. Due to the increasing velocity v1 · 2 = v2 one can see that
the peak of the last line moves from x = 10 to x = 20.

The second application uses the implicit Euler method. It is well known that the implicit
Euler offers a stability which is not given in the explicit algorithm. To realize the implicit Euler
the notation of the finite difference scheme has to be modified. Therefore equation 2.21 is
transformed into a matrix vector product.
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dc

dt︸︷︷︸
ck+1−ck

∆t

=


− D
h2 + v

h
2D
h2 − v

h 0 . . . 0
D
h2 + v

h
2D
h2 − v

h
D
h2 . . . 0

0 . . .
...

...
... D

h2 + v
h

2D
h2 − v

h
D
h2

0 . . . 0 − D
h2 + v

h
D
h2 − v

h


︸ ︷︷ ︸

=:S

·


c1

c2

c3
...
cn


︸ ︷︷ ︸

=:ck

(2.23)

In order to receive the iteration ck+1 for the next time step equation 2.23 is rearranged.

ck+1 = (∆tS + I)ck (2.24)

I stands for the identity matrix. Instead of implementing the finite difference method using
a for-loop as described in (2.22) the expression 2.24 enables matrix calculations.

Figure 2.8: Convection diffusion simulation using explicit Euler.

In figures 2.8 velocity and diffusion coefficient are set v = D = 0.02. The running time is
tend = 500s. In figure 2.8 the spatial step size is ∆x = 1

2 . The upper plot shows the development
of concentration over time. The lower graphic presents three concentration lines in a distance of
time t = tend

3 .
In figure 2.9 the step size changes to ∆x = 1

5 . The other parameters are the same as in figure
2.8. Due to the bad condition of matrix S the explicit Euler algorithm is unstable and causes
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Figure 2.9: Oscillating explicit Euler method for small ∆x.

oscillations. For both plots 2.8 and 2.9 the used time step is ∆t = 1. It is well known the the
implicit Euler is stable for every choice of ∆x and ∆t.The new matrix notation (2.23) helps to
formulate the implicit Euler algorithm of the finite difference method.

ck+1 = (I −∆tS)−1ck (2.25)

Figure 2.10: Simulation of convection-diffusion using the Implicit Euler.

The implementation of the implicit Euler algorithm in figure 2.10 is stable for all possible
choices of step size ∆x as shown later on. In this case it is set ∆x = 1

10. In the graphics the used
parameter setting is D = 0.02, ∆t = 1 and tend = 500s. These figures outline the influence of
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increasing velocity values, v1 = 0.01 left and v2 = 0.02 right. Regarding stability and efficiency
reference is made to chapter 3.

2.2.2 Finite Element Method

The finite element method (FEM) was invented from engineers in the 1960s. Nowadays it is one
of the most important numerical methods regarding partial differential equations, in particular
for elliptic and parabolic equations. The method is based on the formulation of a variation of the
boundary value problem and approximates the solution with piecewise polynomial functions.
In contrast to the finite difference method it is much easier to match the FEM to the considered
geometry. To use this method some mathematical definitions and methods are summarized. First
of all the considered problem and its condition is presented. The condition in (2.26) is again the
Dirichlet boundary condition as mentioned in 1.5.

∂c

∂t
−D ∂2c

∂x2
+ v

∂c

∂x
= 0 in Ω

c = 0 on ∂Ω

(2.26)

Weak Formulation. This formulation was introduced by pure mathematicians to proof the
existence and uniqueness of a solution. Several numerical schemes, also FEM, are based on this
weak formulation. The Sobolev space H1

0 as mentioned in 1.5 will be used. By picking a so
called test function φ ∈ H1

0 , multiplying (2.26) with it and integrating all terms over the domain
Ω results in

∫
Ω

∂c

∂t
φdΩ−

∫
Ω

(
D
∂2c

∂x2
+ v

∂c

∂x

)
φdΩ = 0. (2.27)

In order to get rid of the second derivative in (2.27) the Gauß divergence theorem 1.5 for
integrating by parts is used. The resulting equation is the weak formulation of (2.26).

∫
Ω

∂c

∂t
φdΩ +

∫
Ω
D∇c∇φdΩ−

∫
∂Ω
D∇c · nφds︸ ︷︷ ︸
=0, φ∈H1

0

+

∫
Ω
v∇cφdΩ = 0

⇒
∫

Ω

∂c

∂t
φdΩ +

∫
Ω

(D∇c∇φ+ v∇cφ) dΩ = 0

(2.28)

Galerkin Method. The finite element method uses (2.28) instead of (2.26) for discretiza-
tion. The Galerkin method names the approximation of the solution using linear combination
of base functions. In the following these base functions are named ϕj ∈ H1

0 . The Galerkin
approximation of the solution can be written as

cn(x) =
n∑
j=1

cjϕj(x) + c0(x) (2.29)
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whereas cj are unknown and have to be determined. The basis functions have to be linearly
independent. Formulated as conditions for one dimensional problems ϕj(x) and c0(x) have to
fulfill the following equations.

c0(x) = 0 on ∂Ω

ϕj(xi) = δji and ϕj(x) linear

ϕj(x) = 0 on ∂Ω

(2.30)

These conditions lead to linear base functions used in a one-dimensional domain. Depending
on the wanted behavior the solution should have, base functions of other structure are possible
also.

ϕi(x) = xi+1−x
hi

ϕi+1(x) = x−xi
hi

hi = xi+1 − xi

Figure 2.11: Definition of the hat-functions

In the linear case they are usually called ’hat-functions’ and are defined in equations 2.11. It
is also possible to use quadratic functions instead of linear ones.

φ(x) = ϕi(x) (2.31)

In order to determine all cj the test function φ is set as a function in space spanned by these
base functions (2.31). Using substitution (2.31) for test function φ in (2.28) a linear system of
n equations with n unknowns, called the Galerkin formulation, results. [Seg12]

ne∑
j=1

∂cj
∂t

∫
Ωek

ϕj ϕidΩ +

ne∑
j=1

cj

∫
Ωek

(D∇ϕj∇ϕi +∇ϕjϕi) dΩ = 0 (2.32)

In equation (2.32) ne is the number of elements in the regarded finite element and Ωek is the
domain of element ek. (2.32) can be written in a short form as follows.

ċ ·M + c · S = 0 with

mij =

∫
Ωek

ϕi ϕjdΩ

sij =

∫
Ωek

(D∇ϕi∇ϕj +∇ϕiϕj) dΩ

(2.33)
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The matrices of (2.33) are called mass matrix M and stiffness matrix S. Considering the
typical elements shown in figure 2.11 it is clear, that only a few of the possible integrals are
unequal to zero. Those basis function which correspond to the corner points of the element will
lead to non trivial results. Looking at all non-zero elements of the matrices M and S, a certain
profile appears. Because the element i is connected to i−1 and i+ 1 the profile is a band matrix
with width three. The partial matrices of the mass and stiffness matrix of one single element can
be written down in particular. Considering an equidistant grid with distance h the integrals in
(2.33) can be calculated.

Mp =

(
mjj mjj+1

mj+1j mj+1j+1

)
=

(
h
3

h
6

h
6

h
3

)
Sp =

(
sjj sjj+1

sj+1j sj+1j+1

)
=

(
D
h −

v
2 −D

h + v
2

−D
h −

v
2

D
h + v

2

) (2.34)

(2.34) presents a system of ordinary differential equations. In order to solve this system well
known methods for ordinary differential equation can be used. First of all the time derivative
will be replaced by a forward difference discretization:

ċ =
ck+1 − ck

∆t
(2.35)

where ck is the concentration at the present time and ck+1 the concentration one time step
ahead. In all numerical methods a decision regarding explicit or implicit methods has to be
made. Explicit methods only use the results of the present time-step to calculate the next. In
implicit methods an algebraic equation appears due to the fact of using the future time-step in
the calculation part of the equation. The θ-method will be used to present implicit and explicit
methods for solving (2.34) [Seg12].

θ-method : M
ck+1 − ck

∆t
+ θSck+1 + (1− θ)Sck = 0 , 0 ≤ θ ≤ 1 (2.36)

The most common values for θ are:

· θ = 0, Explicit Euler

· θ = 1, Implicit Euler

· θ = 1
2 , Implicit Heun

First the Explicit Euler will be implemented. Setting θ = 0 in 2.36 gives

M
ck+1 − ck

∆t
+ Sck = 0

⇒Mck+1 = (M −∆tS)ck
(2.37)
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Hence, the coefficients ck+1 of the next time step have to be calculated by multiplying with
the inverse matrix M−1. Comparing notation (2.37) with FDM formulation (2.25) matrix M
has to be set I to gain equivalence. In MATLAB Matrix inverting can be realized by using the
’backslash’ operator. It would also be possible to use the Thomas-algorithm which is especially
configured to invert band matrices efficiently. The iteration of ck+1 is repeated until tend is
reached. Then the approximated solution can be determined with (2.29). Due to the fact that
linear base functions are used and only two of these functions are non zero on every element
equation (2.34) results in the calculated functions cj .

a)

b)

Figure 2.12: The results of FEM using Explicit Euler are shown.

In figure 2.12 the parameter setting for the Explicit Euler is as follows: velocity v = 0.02,
diffusion coefficient D = 0.02 and simulation time tend = 250s. In fact both figures are created
with the same variable values except one parameter. The reason for the different appearance is
the choice of the grid size. In figure a) the element size is ∆x = 1 and in b) ∆x = 1

5 . Although
the scales of the figures changes the diffusive movement is very obvious. Even if it is not a great
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shift to the right the convection is also working.
It is well-known that the Explicit Euler method often causes oscillations in results. The smaller
the elements the more oscillations appear if step size ∆t is not readjusted. To avoid such be-
havior an implicit method is used, in this case the implicit Euler and Heun method respectively.
Therefore θ is set to 1 and 1

2 in (2.36). θ = 1 results in the following equation.

(M + ∆tS)ck+1 = M ck (2.38)

As in the explicit case the backslash operator is used to solve this equation numerically.

[a] [b]

[c]

Figure 2.13: The implicit Euler method is shown.

In figure 2.13 the element size is set ∆x = 1
10 without causing any oscillations. The other

parameters including velocity and diffusion are equal to figure 2.12. In graphics [a] and [b] the
end time differs, [a] shows 250s and [b] 500s. The five lines show the concentration after every
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fifth of tend. In figure 2.13 [c] the progress over time is shown. The convection of the concen-
tration is identifiable. The concentration beam processes not parallel to the time axis but slight
diagonal. The influence of the diffusion coefficient is obvious especially in the fist 100s.

As mentioned before also the implicit Heun algorithm can be used to simulate convective diffu-
sion. Plugging θ = 1

2 in (2.36) the necessary equation can be written as

ck+1 = (M +
∆t

2
S)−1(M − ∆t

2
S)ck (2.39)

Figure 2.14: The results using the Implicit Heun method are shown.

The implicit Heun method used in figure 2.14 shows the same stability as the implicit Euler.
The simulation time tend = 500s is the same for both illustrations. The only difference can be
found in the doubled velocity in the right simulation. Due to this increase the coordinate of the
fifth peak is also doubled. The different properties of all used methods are discussed in chapter
3.

2.3 Random Walk

Conventional numerical methods need a very high grid resolution and in addition a small time
step to generate useable results. This leads to long execution times even with the available com-
puter performance nowadays. This problem also occurs regarding the simulation of diffusion.
All the numerical methods describe the convection-diffusion in a macroscopic way. An alterna-
tive for simulating transport is the use of random walk. This approach is contrary to the numer-
ical solutions before. The focus changes to the microscopic behavior of diffusion by analyzing
single particles. The term ’random walk’ was first introduced by Karl Pearson in 1905. Proba-
bility theory is an important basis of random walk. Regarding this theory transition probabilities
are focused on. To define a transition it is necessary to put a grid on the regarded domain. In the
two-dimensional problem in chapter 4 random walk approaches using a grid will be introduced
in detail.
The next two solutions are implemented without using any grid. The velocity field is chosen to
be constant. As in the analytical and numerical simulations it is independent from the particle’s
position.
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2.3.1 Intuitive Approach

The intuitive approach describes a model which uses no grid or collision rules. At the beginning
t = 0 all the particles are placed in the origin presenting a source of pollution. The pollution
injection happens only at t = 0. The simulation focuses on the convection and diffusion behavior
of these initial particles. The domain is one dimensional which, in parricular the whole x-axis.
The plotted area is an interval [−10, 30] for x as used before. In this simulation the movement
of particles is described through:

pnew = pold + r + v · dt
r = X ·∆x

(2.40)

The particle motion in (2.40) consists of three parts. In order to get the new position pnew
at t + dt these three components are added. pold stands for the position at time t. Seconds are
used as time unit. The velocity field v is given in [m/s] therefore it has to be multiplied by the
step size. The variable r describes the diffusive movement of a particle for one time step and is
added to the old particle position pold. The second equation in (2.40) defines the movement r in
particular. It consists of the step size in space ∆x and a normally distributed random variable
X with mean zero and unit variance. In every time step the new position of every particle is
calculated with equation (2.40). The simulation ends when the chosen simulation time tend is
reached.

Figure 2.15: Intuitive random walk approach of diffusion

In the left figure in 2.15 the velocity v is neglected to illustrate only the diffusive behavior
of the intuitive random walk approach. The right graphic shows the progress of the convection-
diffusion equation. In these simulation runs the number of particles is set to N = 8000. The
other parameters are ∆t = 1

2 , ∆x = 1
15 left and ∆x = 1

10 right. In order to visualize the
development of diffusion over time the duration of simulation is set to tend = 500s. Every fifth
the concentration curve is plotted.

For the purpose of comparability the parameters used to create figure 2.16 are analog to the
figures of analytical and numerical solutions. The influence of the convective part of equation
(2.40) is obvious. Only the parameter tend differs in figure 2.16. In the left plot it is 250s left
and 500s in the right. The shift to the right can be risen by using a greater velocity. It influences
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Figure 2.16: Intuitive random walk approach of convection-diffusion

the movement directly, whereas diffusion itself is affected by the value of ∆x. The diffusive
movement depends on the normally distributed random variable X .

In all figures of the intuitive approach the distribution of the particles are plotted using the
histogram function of MATLAB as shown in red. This histogram can be influenced by the
choice of step size ∆x. The smaller the step size the smoother the curve. The black fitting curve
approximates the related bell curve. This curve averages the particle number of each bar using
the neighboring particle numbers. This approximation will be used to compare the concentration
results with the analytical solution. Due to the minimized randomization of the walking direction
compared to two-dimensional random walk, positive or negative x-direction vs. α = 360 ◦,
the intuitive approach for one dimension produces not such regular results regarding diffusion.
Whereas the convection can be shown very well by setting v arbitraryly.

2.3.2 Gaussian-based Approach

The second approach is based on an equation whose principle is similar to the intuitive equation
but the choice of the coefficient is different. This random walk implementation is connected
to the analytical solution of the convection-diffusion equation with the following initial and
boundary conditions.

∂c

∂t
= D

∂2c

∂x2
− v ∂c

∂x
lim

x→+∞
c(x, t) = 0 lim

x→−∞
c(x, t) = 0

c(x, 0) = δ(x)

(2.41)

As already deduced in 2.1.1 the solution of (2.41) is given as

c(x, t) =
1√

4πDt
e−

(x−vt)2
4Dt . (2.42)

Considering the probability density function of a normal or Gaussian distribution
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f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.43)

the formal equivalence to (2.42) is obvious. The parameters used in 2.43 stand for the
mean value µ and the standard deviation σ which characterize the position and the width of the
Gaussian bell curve in a unique way. Therefore the according parameters in (2.42) can be read
out. [SFGGH06]

µ = v · t
σ2 = 2 ·Dt

(2.44)

Due to the properties and meaning of these parameters (2.44) the height and width of the
concentration peak dependent on time is given. The corresponding particle movement using
(2.44) can now be formulated.

pnew = pold + v∆t+
√

2 ·D∆tX (2.45)

Figure 2.17: Gaussian based random walk for convection-diffusion

Again X symbolizes a normally distributed random number with the same mean and vari-
ance as before. X is newly generated in every step for each particle. Identifiable by the velocity
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v the second term stands for the convective motion. This term is equal to the term of the intuitive
approach. The radical term gives the diffusive motion and is based on the standard derivation.

In figure 2.17 three different results of the implementation are shown. The parameters
are similar to the intuitive approach to enable comparability. Therefore the setting is velocity
v = 0.02, diffusion coefficient D = 0.02, number of particles N = 8000 and ∆t = 0.5. There
is one difference regarding the spatial step size but this parameter is only used for preparing the
graphical outputs. Hence, the only change is the precision of the plot. The various durations of
simulation in the upper plots are again 250s and 500s. The simulation time in the right plot is
twice as long as the left one and therefore the center of the concentration moves twice as far.
The increase of width shows the effects of diffusion. The linear relation of velocity and time are
detectable. In the third figure the progress in time is shown.



CHAPTER 3
One-dimensional Results

In this chapter the different solutions of the one dimensional convection-diffusion equation are
compared. All the approaches have different advantages and disadvantages but the analysis fo-
cuses on the certainty and efficiency of the various solutions. Two different error values are
inspected. On the one hand the maximal concentration difference of all x-values at the end of
simulation is observed. Mathematical speaken the uniform norm ‖.‖∞ is calculated. The second
value of interest is the difference of the integral values, the norm ‖.‖1. Both results are evaluated
for different spatial step sizes ∆x and time steps ∆t.
In addition a study on the different calculation times is conducted. Comparing the various meth-
ods and their performance times is the second focus of this chapter.

3.1 Analytical vs. Numerical

The different numerical implementations and the analytical solution are compared. The numeri-
cal solutions are iterative procedures therefore it is not possible to calculate the error at a certain
point in time. The simulation always starts at t = 0 and iterates every time step until tend is
reached.

3.1.1 Finite Difference Method

First of all the results of the finite difference method are considered. In the following all different
algorithm are discussed.

In figure 3.1 there are two different plots. The left plot shows the analytical solution colored
in blue and the numerical solution using the finite difference method in red. In this comparison
the algorithm using the for-loop for iteration is used. The difference in the concentration values
is obvious. In fact this difference has a reasoned explanation. In the analytical solution the initial
condition of the according partial differential equation is a Dirac-function. In other words this
function is equal to∞ at t = 0. Such a value can not be implemented in the numerical solution.
The initial value in the numerical implementation at t = 0 is c0 = 1 and zero everywhere else.

37
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Figure 3.1: Comparing analytical solution and FDM using Explicit Euler.

In the right picture the error value of the numerical solution over time is shown. At every point
in time the maximal variation is given. The regarded time interval is [0, 500]. Starting with
an error value err < 1.9 it decreases after tend = 500s to err < 0.1. In order to decrease
the error the initial condition of the numerical method can be adjusted. One property of the
Direac-function is that it has a unit surface area. Due to the fact that the numerical method uses
a spatial discretization ∆x the value at x = 0 has to lead to a unit surface area. The numerical
approximation of the acreage uses a linear connection line to the adjoining discretization points.
A triangle occurs. Therefore the initial concentration at x = 0 has to be c0 = 1

∆x . Using this
values the error concerning the analytical solution decreases.

Figure 3.2 verifies the modified initial condition for the finite difference method. The er-
ror decreases from err < 1.9 in the beginning and err < 0.1 in the end to err < 0.7 and
err < 0.01. In addition to the modified initial condition the Explicit Euler using matrix calcu-
lation is used. The based equation and principle are the same but the implementation facilitates.
As already shown in chapter 2 the Explicit Euler algorithm has to fulfill a certain condition
to produce stable results. Using matrix calculation instead of for-loops the stability condition
restricts the choice of parameter even more as shown in a tabular later on.

The ultra stable Implicit Euler algorithm is used to produce figure 3.3. All these figures com-
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Figure 3.2: Comparing analytical solution and FDM with adapted initial conditions.

paring analytical solution and FDM use the same parameter setting: simulation time t = 500,
diffusion coefficient D = 0.02, velocity v = 0.02 and ∆t = 1. The spatial step size is chosen
∆x = 1

4 to assure stability of the Explicit Euler. Compared to the error of the Explicit Euler
above the right plot shows the new error range err ∈ [0.005, 0.2].

∆t ∆x Explicit Euler Explicit Euler∗ Implicit Euler∗

1 1
2 0.12183 0.01254 0.025233

1 1
4 0.23165 0.04048 0.07208

1
2

1
2 0.23465 0.03641 0.06059

1
2

1
4 0.46153 0.10132 0.16312

1
4

1
4 0.91544 0.29568 0.41167

Table 3.1: Simulation times for FDM using Explicit and Implicit Euler are shown.

Table 3.1 shows the different calculation times for various parameter. The values for the Ex-
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Figure 3.3: Comparison of the analytical solution and FDM using matrix notation.

plicit Euler approximation using loops for implementation show the linear behavior in time and
space. If any of the step size halves the CPU-time increases to the double. A inversely propor-
tional relation is described. In case of the explicit and Implicit Euler using matrix calculations
no linear or other relation can be found. Due to the fact that the algorithm needs to invert the
stiffness matrix the values increase more than doubled.

Explicit Euler Explicit Euler∗ Implicit Euler∗

∆t ∆x ‖.‖∞ ‖.‖1 ‖.‖∞ ‖.‖1 ‖.‖∞ ‖.‖1
1 1 0.0231 7.0381E−6 0.016 4.2305E−4 0.0164 4.7529E−4

1 1
2 0.0396 5.8884E−6 0.0091 1.4039E−4 0.0097 1.6002E−4

1
2

1
4 0.0577 6.7739E−6 0.005 0.831E−5 0.0053 7.3229E−5

1
2

1
16 .E173 .E172 NaN NaN 0.0016 3.5306E−5

Table 3.2: Depending on the used FDM two different error values are shown.

After readjusting the initial condition the FDM approximates the analytical solution in an
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appropriate way. As mentioned in the beginning there are two values of interest. The left value
is the maximal error of the concentration value for t = 500 and the right one represents the
surface area at that time. All parameters which are not mentioned in the table are set as in
the figures above. In table 3.2 some error values are noted. In the last row the instability of
the Explicit Euler is shown. The Explicit Euler using matrix inverting is more unstable than
the step implementation. The Implicit Euler is stable for all chosen values. In order to receive
useable results for Explicit Euler the fineness of ∆t and ∆x and their relation have to be chosen
carefully. If spatial step size is halved the step size size in time should be minimized too.

3.1.2 Finite Element Method

The same analysis can be made with the numerical solutions using different FEM approaches.
Due to the fact that the Explicit Euler causes oscillations as mentioned in 2.2.2 the error study
for Implicit Euler is neglected. Because of the oscillations the error plot would jump as well.
Therefore the FEM solution using Implicit Euler method is analyzed.

Figure 3.4: The error for the Implicit Euler algorithm of the FEM is shown.

The two figures 3.4 and 3.5 are generated using the Implicit Euler method to solve the
finite element equation. In the left graphic the concentration at five different points in time
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Figure 3.5: Error surface plot of FEM using Implicit Euler over time is outlined.

is plotted. The difference is hard to see but there is still a small one. Compared to the FDM an
improvement is measurable. In the right plot the maximal error values for every single time step
are sketched. The certainty of this graphic results in an error value err = 0 after approximately
t = 270. In figure 3.5 the progress of the concentration error is shown. It looks similar to the
convection-diffusion simulation of chapter 2. Due to the Dirac-function there is a greater error
at the beginning. The velocity field moves the concentration to the right and therefore the error
moves slightly to the right as well. The approximation of convection-diffusion using FEM is
very exactly.

Another approximation is given using the Implicit Heun algorithm. In the right graphic the
blue line shows the analytical solution. The approximation is very close to the analytical solu-
tion. Compared to FEM using Implicit Euler the error plot right starts at a lower value. Again
after a certain time the error value is not distinguishable and seems to be zero. The exact values
are shown in a table later on. The necessary parameter used for both studies (FDM, FEM) are the
same as in most of the graphics of chapter 2. The velocity and diffusion coefficient are v = 0.02
and D = 0.02. This enables steeper curves and a better illustration of the error. The time step
size is t = 1 and the step in space ∆x = 0.5. In order to look closer to the convergence of the
error the simulation duration is tend = 500s.

Table 3.3 shows the different calculation times for various parameter. The values of all
algorithm show a linear behavior regarding time. If any of the step size in time halves the CPU-
time increases to the double. A inversely proportional relation is described. Regarding the spatial
step size no linear relation is described. The values increase more than doubled. The Implicit
Euler method is the fastest algorithm independent of time and space. The star in the second row
marks an unstable Explicit Euler solution. The condition for a stable Explicit Euler algorithm
used for finite element method restricts the useable combination of step sizes to a minimum.

The parameter setting and the description of the shown values in 3.4 are the same as in the
analysis of the finite difference method. Left the maximal error of the concentration value and
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Figure 3.6: The error of the Implicit Heun algorithm is shown.

∆t ∆x Explicit Euler Implicit Euler Implicit Heun

1 1
2 0.05850 0.02389 0.02781

1 1
4 0.19921∗ 0.10158 0.11113

1
2

1
2 0.10152 0.04469 0.05162

1
2

1
4 0.33960 0.15108 0.21392

1
4

1
2 0.20158 0.08706 0.10085

1
4

1
4 0.68343 0.31987 0.41167

Table 3.3: In this table the different calculation times for FEM using different algorithm are
shown.

right the error of surface area for t = 500 are shown. In the last row an unstable example of the
Explicit Euler is given. Again the high sensibility of this algorithm regarding FEM is empha-
sized. Concerning the first error value the Implicit Heun yields the best results but takes more
time then the Implicit Euler. In general the approximation of the convection-diffusion equation
using any of these FEM algorithm works very well. Due to oscillation implicit methods are
preferred.
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Explicit Euler Implicit Euler Implicit Heun
∆t ∆x ‖.‖∞ ‖.‖1 ‖.‖∞ ‖.‖1 ‖.‖∞ ‖.‖1
1 1 7.1787E−4 3.1557E−5 9.9512E−4 3.0271E−5 6.3571E−4 3.1862E−5

1 1
2 6.23E−4 8.6035E−5 6.0942E−4 8.5411E−5 3.3217E−4 8.5838E−5

1
2

1
4 3.1307E−4 1.0201E−4 2.7349E−4 1.0143E−4 1.4622E−4 1.0174E−4

1
2

1
8 NaN NaN 2.4876E−4 1.0468E−4 1.3088E−4 1.0507E−4

Table 3.4: Depending on the used FEM the error values are shown.

3.2 FDM vs. FEM

In this section a direct comparison of the two different numerical approaches is done. Regarding
certainty an intuitive assumption favors the finite element over the finite difference method.

In figure 3.7 the red line marks the approximation using FEM and blue using FDM. The
used parameter setting is velocity v = 0.02, diffusion coefficient D = 0.02 and simulation time
tend = 500s. To justify the comparison in both methods the Implicit Euler algorithm is used.
Using different step sizes the error can be minimized. In the left plot the time step size is ∆t = 1
and ∆t = 1

8 right. Also the spatial step is changed from ∆x = 1
4 to ∆x = 1

16 . Comparing the
two tables 3.1 and 3.3 concerning various calculation times excluding the Explicit Euler using
loops the FDM is faster than the FEM.
It is well known that the Explicit Euler algorithm is not as stable as any implicit algorithm.
Therefore a stability criterion for Explicit Euler can be formulated.

∆t ≤ C∆x2 (3.1)

Dependent on, C an arbitrary but positive constant, the Explicit Euler is stable. On the
contrary the Implicit Euler belongs to the class of ultra-stable methods. Generally speaking
implicit methods are more stable than explicit ones.

Implicit Euler Implicit Euler
∆t ∆x ‖.‖∞ ‖.‖1 ∆t ∆x ‖.‖∞ ‖.‖1
1 1

4 0.005 1.7781E−4 1
2

1
8 0.026 1.5083E−4

1
2

1
4 0.005 1.7466E−4 1 1

16 0.013 1.4193E−4

1 1
8 0.026 1.5288E−4 1

2
1
16 0.013 1.0433E−4

Table 3.5: Error values of FDM to FEM are given.

In table 3.5 the maximum according to amount of error at t = 500 is shown. The pattern in
this table is remarkable. The left error value changes only if the spatial step size halves. There
is a linear relation between ∆x and the error value, both are halved. It seems as if the error is
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Figure 3.7: Comparison of FDM and FEM

independent of the time modifications. Concerning the surface area a small decreasing can be
noticed. Although the finite element method, using any implicit algorithm for solving, is slower

than finite difference methods it is the best approximation for the convection diffusion equation.

3.3 Random Walk

Before the comparison with the analytical solution can be done the two random walk approaches
are analyzed.

Figure 3.8 shows both applications. The used particle number is N = 3000. In the intuitive
approach the velocity is set to v = 0.02. After t = 250s the finial concentration is given. As
explained in Chapter 2 only the stochastic approach uses the diffusion coefficient set D = 0.02.
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Figure 3.8: Comparison of intuitive and stochastic based random walk are shown.

The two step sizes are chosen ∆t = 0.5 and ∆x = 1
16 . In both implementation the center of

the peak moves to x = 5 at t = 250. There is a difference in the diffusive distribution differs.
Due to the fact that the diffusion in the intuitive approach depends on the spatial step size and
the stochastic approach uses ∆t and D for calculation a the parameter D has to be adjusted.

∆xX =
√

2d∆tX

⇒ D =
∆x2

2∆t

(3.2)

Figure 3.9: stochastic based and intuitive random walk with modified diffusion coefficient
are shown.

In 3.9 the adjusted diffusion coefficient introduced in (3.2) is used. The resemblance of the
two random walk approaches is now obvious.

In table 3.6 the calculation time of different parameter settings is analyzed. The CPU-time of
both approaches is approximately the same. The linear relation in all the parameters is obvious.
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∆t ∆x tend N intuitive RW stochastical RW

1 1
10 500 4000 30.61838 29.55086

1 1
10 500 8000 60.28040 59.58526

1
2

1
10 500 8000 119.1364 119.480

1
2

1
15 250 8000 59.3995 61.18594

1
2

1
20 500 8000 120.8230 119.6362

Table 3.6: In this table the different simluation durations for the two random walk approaches
are shown.

If the particle number doubles or the step size in time or space halves the needed calculation
time doubles as well. Also a change regarding duration shows the same behavior. Compared to
the numerical methods the calculation time of the random walk, influenced by the great number
of particles, ascends extremely.

Figure 3.10: Comparison of the two random walk approaches are shown.

In figure 3.10 both random walk approaches are sketched. The red line shows the intuitive
and the blue line the Gaussian-based approach. To receive this results the diffusion coefficient
is determined as introduced before (3.2). The other parameter are set to velocity v = 0.02,
simulation time tend = 250s and the step sizes ∆t = 0.5 and ∆x = 1

10 .

In table 3.7 the error values dependent on different parameter settings are shown. A great
number of particles is necessary to create a good approximation. Therefore a long execution time
follows. Due to the fact that both random walk approaches use normally distributed numbers the
results of one simulation can not be reproduced exactly. Using more particles not necessarily
leads to a better result. However the fineness of the step sizes impacts the result of the maximal
occurring error positively. The values of the surface area are behaving contrary.
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random walk
∆t ∆x N ‖.‖∞ ‖.‖1
1 1

5 6000 8.75E−4 8.3267E−17

1 1
10 6000 0.0011 3.9583E−5

1
2

1
5 6000 0.0011 3.9583E−5

1
2

1
10 6000 8.5417E−4 4.1633E−17

1
2

1
15 6000 8.3333E−4 6.9389E−17

1 1
5 8000 0.0013 2.7756E−17

1 1
10 8000 7.9688E−4 5.5511E−17

Table 3.7: In this table the comparison of the two random walk approaches are shown.

3.4 Analytical vs. Random

In the following section the two random walk implementations are compared to the analytical
solution.

Figure 3.11: Comparison of intuitive and stochastic based random walk are shown.
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The two graphics in figure 3.11 show both random walk approaches in red and the analytical
solution in blue. In the left plot the intuitive implementation is shown. The right plot sketches
the Gaussian-based version of random walk. Due to the In the two plots the number of particles
is set to N = 6000. In the left plot the step sizes are not the same as in the right one. The
spatial step size is ∆x = 1

15 and ∆t = 0.5. The other parameters for the right plot are v = 0.02,
∆x = 1

10 and ∆t = 1. In the numerical comparisons the simulation time is tend = 500s. Due to
long execution times for the particle movement this parameter is reduced to tend = 250s. The
diffusion coefficient is usually set to D = 0.02 but modifies if the intuitive approach is used.

intuitive random walk Gaussian random walk
∆t ∆x N D∗ ‖.‖∞ ‖.‖1 ‖.‖∞ ‖.‖1
1 1

5 6000 0.01 0.0071 8.9482E−7 0.0121 8.9482E−7

1 1
10 6000 0.005 0.0142 4.4409E−16 0.0084 9.7072E−7

1
2

1
5 6000 0.04 0.0057 3.3423E−5 0.0074 8.9482E−7

1
2

1
10 6000 0.01 0.0094 8.4185E−12 0.0103 9.7072E−7

1
2

1
15 6000 0.0045 0.0156 8.8818E−16 0.0090 9.9693E−7

1 1
5 8000 0.01 0.0100 0.9482E−7 0.0068 8.9482E−7

1 1
10 8000 0.005 0.0153 6.6613E−16 0.0053 9.7072E−7

Table 3.8: Comparison of the random walk approaches and the analytical solution.

The table 3.8 shows all the error results of the parameter study comparing the analytical
solution and both random walk approaches. Adapting the diffusion coefficient both approaches
fues into one single random walk implementation. The diffusion coefficient for the Gaussian-
based algorithm is set to D = 0.02. Using the intuitive approach the diffusion coefficient of
the analytical solution changes to D∗ to enables comparability. Due to the dependency on ∆x
and ∆t the intuitive random walk cannot reach its performance. On contrary a parameter study
would be necessary to find for all step size combinations the perfect variable value to perform this
algorithm. Therefore for the simulation of the convection-diffusion equation the implementation
of the Gaussian-based random walk fits better.





CHAPTER 4
Convective Diffusion in two

Dimensions

This chapter deals with an enlarged problem. The convection-diffusion on a two dimensional
domain will be discussed. Similar to chapter 1 two different initial conditions are used. As from
now the considered equation is the following.

∂c

∂t
=

αu

R− u
·
(
∂2c

∂x2
+
∂2c

∂y2

)
− u · ∂c

∂x
(4.1)

In this chapter different approaches to simulate and analyze the convection-diffusion equa-
tion are introduced. The structure will be related to chapter 2. First the analytical solution in two
dimensions is discussed. This chapter also contains the two frequently used numerical approx-
imations FDM and FEM. The last section covers different implementations and interpretations
of the random walk.

4.1 Analytical Solution

In this section two different analytical solutions will be given. The difference between these
solutions is not a different boundary condition like in 2.1 but various initial conditions. As
mentioned in chapter 2 the scenario can either be an instantaneous release of all pollution or a
steady source. The first solution will focus on the instantaneous release of pollution in the origin.
The regarded equation and the according conditions are given in the following equation.

51
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∂c

∂t
= D · ∂

2c

∂x2
+D · ∂

2c

∂y2
− v · ∂c

∂x
withc(x0, y0, 0) = δ(x)δ(y)

lim
x,y→∞

c(x, y, t) = 0

lim
x,y→−∞

c(x, y, t) = 0.

(4.2)

The initial condition in (4.2) stands for an instantaneous release at (x0, y0). In order to solve
(4.2) a solution of the following form is assumed. [ZK99]

c(x, y, t) = g1(x, x0, t)g2(y, y0, t) (4.3)

where g1 and g2 are solution of the one-dimensional convection-diffusion equation with
constant coefficient. Therefore g1 and g2 can be taken from the section of one-dimensional
analytical solutions 2.1.1.

g1(x, x0, t) =
A1

2
√
Dπt

exp

(
−(x− x0 − vt)2

4Dt

)
(4.4)

g2(y, y0, t) =
A2

2
√
Dπt

exp

(
−(y − y0)2

4Dt

)
(4.5)

In (4.5) g2 has no velocity term because the flux is only along x-direction. Function g1 is
the known solution of the convection-diffustion equation in one dimension. In the next step the
coefficient A1 and A2 are determined. Due to the fact that the source has unit mass A1 and A2

can be reckoned.

∫ ∞
−∞

∫ ∞
−∞

c(x, y, t)dxdy = 1

⇒
∫ ∞
−∞

g1(x, x0, t)dx

∫ ∞
−∞

g2(y, y0, t)dy = 1

The source of pollution is placed at the origin so x0 and y0 can be set to zero.

∫ ∞
−∞

A1

2
√
Dπt

exp

(
−(x− vt)2

4Dt

)
dx

∫ ∞
−∞

A2

2
√
Dπt

exp

(
−y2

4Dt

)
dy = 1 (4.6)

The coefficients in (4.6) can be rearranged. Formally these two integrals are Gaussian bell
curves. Due to the fact the every normal distribution is normalized the result of these integrals
is 1. Using the following substitution and the integral result

z =
x− vt√

2Dt

(
z =

y√
2Dt

)
∫ ∞
−∞

e−
1
2x

2

dx =
√

2π
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for both integrals the normalizing statement can be proved.

∫ ∞
−∞

1

2
√
Dπt

exp

(
−(x− vt)2

4Dt

)
dx =∫ ∞

−∞

1

2
√
Dπt

exp

(
−z2

2

)
dz ·
√

2Dt = 1

The solution of (4.2) can be given.

A1A2 = 1

⇒c(x, y, t) =
1

4Dπt

1

erfc
(
−vt

2
√
Dt

) exp

(
−(x− vt)2 − y2

4Dt

)
(4.7)

In order to analyize the behavior for positive x-values another approach can be applied.

∫ ∞
0

A1

2
√
Dπt

exp

(
−(x− vt)2

4Dt

)
dx

∫ ∞
−∞

A2

2
√
Dπt

exp

(
−y2

4Dt

)
dy = 1 (4.8)

According to the proof above the second integral is again 1. In order to solve (4.8) a new
parameter is introduced.

η =
x− vt
2
√
Dt

dη = dx
1

2
√
Dt

(4.9)

Using (4.9) equation (4.8) can be written as

A1

2
√
Dπt

∫ ∞
− vt

2
√
Dt

eη
2
dη2
√
Dt

∫ ∞
−∞

A2

2
√
Dπt

exp

(
−y2

4Dt

)
dy =

A1A2√
π

∫ ∞
− vt

2
√
Dt

eη
2
dη = 1

(4.10)

The complementary error function is defined as erfc(x) = 2√
π

∫∞
x e−t

2
dt. Inserting this

definition into (4.10) gives

A1A2 · erfc

(
−vt

2
√
Dt

)
= 2

⇒ c(x, y, t) =
1

2Dπt

1

erfc
(
−vt

2
√
Dt

) exp

(
−(x− vt)2 − y2

4Dt

) (4.11)
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Under certain conditions this equation can be simplified. Within the accuracy of MATLAB
erfc(z) = 2 if z < −3 and approximately zero if z > 27. Regarding the argument of the
complementary error function in (4.7) one gets

v
√
t

D
> 6 : c(x, y, t) =

1

4Dπt
exp

(
−(x− vt)2 − y2

4Dt

)
−54 <

v
√
t

D
< 6 : c(x, y, t) =

1

2Dπt

1

erfc
(
−vt

2
√
Dt

) exp

(
−(x− vt)2 − y2

4Dt

)
v
√
t

D
< −54 : c(x, y, t)→∞.

The analysis of the part with positive x-values results in the same equation validated for the
whole regarded domain. An explanation for this behavior is the development of concentration
due to the convection-diffusion equation. After a certain point in time nearly all pollution reaches
the positive half of the domain and there the results of both calculation have to agree.

Figure 4.1: Two dimensional diffusion using (4.7) for different time steps

In figure 4.1 the analytical solution for the convection-diffusion equation in case of an in-
stantaneous release of all pollution is shown. The parameter setting is similar to the simulation
in one dimension. For velocity v = 0.02, for diffusion D = 0.02 and for simulation time the
following values are chosen from left to right t = 250s, t = 500s and t = 750s. These three
graphics show the concentration as a function of x and y. The effect caused by the diffusion
coefficient is clearly visible. In the first plot the diameter of the bell curve is approximately 15
units of length which changes to more than 20 in the second and out of boundaries in the third.
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Without measuring the flattening of the curve’s peak is obvious. The height starts at 0.035, goes
to 0.016 and ends at 0.012. The convective movement can be measured with the position of
the peak which switches from 5 and then 10 to 15. The choice of the parameter shows a good
balance between convective and diffusive transport.

Figure 4.2: Analytical solution on the rectangle.

Figure 4.2 shows three different aspects of the analytical solution. The two Gaussian curves
sketch the diffusive progress from the x- and y-axis point of view. The red one shows the
convection of the concentration peak moving from x = 0 at the beginning to x = 10 in the end.
In the right plot the peak of the green bell curve is still at y = 0 because there is no velocity
along the y-direction. The third plot shows the concentration dependent on x and y as in figure
4.1, which offers a three dimensional view of the red and green curves. The first illustration
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can be seen as the aerial perspective of the third graphic. The different colors mark the grade of
pollution. The duration of this simulation is t = 500s. All other parameters are the same as in
figure 4.1, velocity v = 0.02 and the diffusion coefficient D = 0.02.

4.2 Numerical Solution

In the following sections the numerical methods used in chapter 2 will be modified for the two
dimensional problem.

4.2.1 Finite Difference Method

The finite difference method for one dimension was introduced in 2.2.1. The same principle will
be used to apply the FDM for a two dimensional domain. Consider the finite domain from the
introduction 1.2 covered with an equidistant grid.

Figure 4.3: Equidistant grid in the two dimensional domain.

Remembering the FDM in one dimension one can imagine how the first partial derivatives
of the function c(x, y) look like 4.12. To establish second derivatives again the central finite
difference method is used.

∂c

∂x
=
cx+1,y − cx−1,y

2dx
∂c

∂y
=
cx,y+1 − cx,y−1

2dy

(4.12)

Repeating FDM for the first derivative of two neighboring points leads to the second deriva-
tive for variable x of c(x, y). The partial derivatives for y can be defined analog. Combining
these two equations and assuming using a grid of equal-sized squares, dx = dy, one receives
the needed form.
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∂2c

∂x2
=
cx+1,y − 2cx,y + cx−1,y

dx2

∂2c

∂y2
=
cx,y+1 − 2cx,y + cx,y−1

dx2

⇒∆c =
cx+1,y + cx−1,y − 4cx,y + cx,y+1 + cx,y−1

dx2

(4.13)

For simulating the convection-diffusion equation an approximation of the convection is nec-
essary. Due to the fact that the the velocity field is still only parallel to the x-axis the convection
consists of the first derivative in x as explained and defined in equation (4.12). The concentra-
tion c depends on the spatial coordinates as well as time. Hence, the equation (4.1) using FDM
can be written as:

ct =
dc

dt
= D · cx+1,y + cx−1,y − 4cx,y + cx,y+1 + cx,y−1

dx2
− v cx,y − cx−1,y

dx
(4.14)

In (4.14) the time derivative can be written with dt instead of ∂t because FDM transforms
the equation into an ordinary differential equation. The numerical method which is used to
calculate the next time step is called Euler method. This method calculates the next time step by
using the last one and adding the derivative of the function times step size h.

cx,y(t+ ∆t) = cx,y(t) + h · dc
dt

(4.15)

The equation (4.14) is implemented in MATLAB using the explicit Euler method (4.15).
For Figure 4.4 the parameter setting is: velocity v = 0.02, diffusion coefficient D = 0.02

and the duration time is t = 250s left and t = 500s right. Except the simulation time the
same parameters are used to enable comparability. The center of pollution after 250s is at
(x, y) = (5, 0) and the height is approximately c(5, 0) = 1.8. The right figure shows the
same parameter set running for 500s. The height decreases and the center of peak changes to
(x, y) = (10, 0).

As mentioned at the beginning different initial scenarios are simulated. In the following a change
from an instantaneously to a steady releasing source take place. The steady source of pollution
is realized by adding partial pollution to the concentration value at (0, 0) which leads to c0,0 =
c0,0 + prate ·∆t in every time step, whereas prate stands for the added constantly pollution rate.

The velocity and diffusion coefficient in figure 4.5 are v = 0.02 and D = 0.02. They are
equal to the parameters in figure 4.1. The pollution rate was set to prate = 1

tend
. In doing so the

same amount of pollution as in the simulations with in instantaneous source is distributed. In
the left image the running time is tend = 500s and in the right tend = 1000s. Regardless of how
long the simulation runs the maximum of pollution is always at the source itself. The influence
of the flux is obvious. As mentioned in the introduction the absence of flow in y-direction causes
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Figure 4.4: Numerical solution using FDM for a two-dimensional domain with instantaneous
source.

Figure 4.5: Numerical solution using FDM for a two-dimensional domain with steady source.

a cone-shaped pollution in x-direction. The upper graphic shows again a color map of the grade
of pollution. The steep peak in the lower illustration pictures that the pollution rate added every
time step is bigger than the moved pollution. Therefore some pollution stays near the source for
minimal one more time step which causes this peak.
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4.2.2 Finite Element Method

Numerical approaches need much computing time due to high accuracy needed to generate use-
able outputs. The finite element method for two-dimensional regions is more complicated than
for one dimension. Putting a grid on the domain expanses the number of elements to the power
of two. For the basis function a linear or quadratic approximation can be used. An direct imple-
mentation of the algorithms in MATLAB would be very time-consuming. Instead the software
called COMSOL, formerly FEMLAB, is used. It is qualified for physical simulations and is
based on the interaction of differential equations. The actual solving algorithm of COMSOL
uses the finite element method. COMSOL is a widespread language which is used in education,
research and development. It is a software that eases the linking of different physical problems.
Coupled equations can be solved simultaneously.
The simulation software contains different packages for various fields of natural sciences. COM-
SOL was originally a toolbox of MATLAB dealing with partial differential equations. The
current version offers points of interactions with MATLAB as well as Simulink, software for
designing electric systems, reaction and electric circuit simulators. Connections to graphical de-
sign programs for creating difficult geometries as well as statistical programs to analyze output
data are given.

After opening COMSOL the dimension of the problem is asked. As already mentioned COM-
SOL offers many different toolboxes. In this case the mathematical package without any addi-
tional physical specification is used. In the next step the obtained geometry has to be designed.
In this study it is only rectangular but in case of an natural application it can be necessary to
include a difficult shape. Therefore the connection to graphical design programs can be used
and to import the exact geometry. The global variables are defined next.

∂u

∂t
+∇(−D∇u) + v∇u = f (4.16)

The mathematical toolbox offers some prepared equations. The convection-diffusion equa-
tion in the following form (4.16) is one of them. The missing point source is located at (0, 0).
For the following simulations the function f is set to zero. The simulation time for all parameter
choices is tend = 500 and the concerning ∆t = 1

4 .
Before the simulation starts the regarded domain is covered with a fine grid. This grid adapts

to the certain conditions. The element size is chosen very small to avoid mathematical errors at
critical points. Due to the fact that a point source is used the grid refines at its location.

Figure 4.7 shows the simulation of the convection-diffusion equation using the software
COMSOL. The based method is FEM. In the first plot the parameters are set D = 0.02 and v =
2. The velocity dominates the diffusive motion. Therefore the concentration distribution shape
is only a beam. Comparing these values to the usual variable values a difference is recognizable.
Due to the fact that COMSOL can distinguish different physical meanings of the equation the
same variables have another effect to the visualization. In the second graphic the diffusion
coefficient is changed to D = 0.2. The results looks more like the numerical solution outputs.
The convection is still dominating but also the diffusive effect can be found. In the third plot the
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Figure 4.6: Grid used in the FEM calculations.

Figure 4.7: FEM solution realized using COMSOL.

relation between diffusion and convection is completely different. The parameter are set D = 2
and v = 1. This parameter choice already shows the domination of diffusion. In the graphic the
effects of convection disappears.

Figure 4.8 shows the second plot of firgue 4.7 from another angle. The pollution distribution
from the x point of view is presented. Due to the different physical interpretation this solution
is not compared to any other approach. For prospective studies COMSOL can play a big role.
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Figure 4.8: A surface plot of the COMSOL results is shown.

Especially for complex geometries it is a very comforting application.

4.3 Random Walk

The introduction concerning random walk can be found in section 2.3. The simulation of diffu-
sion using random walk is based on particle tracking. These particles are moving minimally and
randomly but by taking account of all particles a diffusive movement appears. In the following
sections different random walk approaches are discussed. In contrast to the random walk in sec-
tion 2.3 a two dimensional domain is considered. This leads unavoidably to the question how to
deal with the second dimension.
An important difference regarding analytical simulations are the boundary conditions. In the
following models a Neumann boundary of kind − ∂c

∂xn = 0 is used. This means that there is no
flow through the boundaries. All particles remain in the domain the whole simulation. Due to
the fluid flow the worst scenario would be a reflection of all particles at the right boundary and
their gathering there. In the following during the simulation time there won’t occur reflections
at all.
One suggestion for the realization of the two dimensional random walk is to use a grid with high
resolution. This approach is closely connected to the numerical approach FEM. A disadvantage
of using a grid is the restricted movement from one node to another. On the other hand it is very
easy to realize complex structures using collision and other motion rules. Implementations deal-
ing with random walk on a grid are introduced later on. The first two approaches are technically
expansions of the implementations in section 2.3.1 and 2.3.2.

4.3.1 Intuitive Approach

This first implementation of random walk follows intuitive gestures. The problem domain is
given as shown in the motivation 1.2.

As pictured in figure 4.9 a finite domain with a source of pollution at its origin is given.
The convection-diffusion equation consists of the oriented transport caused by the flux and
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Figure 4.9: A schematic illustration of the described area.

the chaotic transport of diffusion. The velocity field v is constant and only nonzero along x-
direction. The movement of the particles especially the tracking of the movement is realized
without using a grid. In this implementation the possibility of collisions is neglected. The model
contains three important steps:

· initialization of particles

· random movement of diffusion

· x oriented movement due to flux

The number of particles joined to the system is N . Initially all the particles are set at the
origin (x, y) = (0, 0) where the source of pollution is located. There is no initial velocity
but there is an initial direction d0 to start the random walk algorithm. The next step concerns
the diffusive motion. The chaotic transport is realized by using a normally distributed random
variable X and a uniformly distributed random number U . X is used to generate a random
length and U chooses a coincidental direction.

r = X ·∆x α = U · 2π

d0 =

(
1
0

)
dn+1 =

(
cosα − sinα
sinα cosα

)
· dn

(4.17)

In (4.17) r stands for the distance the particle moves in a certain time step. The influence
of this parameter is similar to the diffusion coefficient. X is the mentioned normally distributed
random variable and ∆x describes the step size in space. The second equation of (4.17) sets the
direction for the particle’s next move. The initial direction d0 is only necessary for the recursive
definition. During simulation the direction of the last movement is used to calculate the next
one. The convection is realized by a move in direction of the flow. The final formula for the
random walk movement can be given as follows

pnew = pold + d · r + vdt. (4.18)
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Starting with the actual position of the particle pold the new position pnew contains the di-
rection multiplied by the distance the particle will move. Then the move regarding flux velocity
is added. The random variables X and U are newly created in every time step for each particle.
These movement steps are repeated for all particles in every step.

Figure 4.10: Gaussian random walk for convection-diffusion with instantaneous source

In figure 4.10 the parameters are set to v = 0.02, ∆x = 1
16 and the number of particles are

N = 8000. The simulation times are t = 250s and 500s. The upper plot places every single
particle at its position. In the middle a histogram of the concentration is given. Every pillar of
the histogram presents the amount of the particles in each square of a chosen size. In the lower
plot the aerial perspective of the histogram is shown. The brighter the higher is the pollution in
this area. Comparing the centers of pollution in these two illustrations with the outputs of the
numerical solutions using the finite difference method a correlation can be found. After 250s
the peak moves from x = 0 to x = 5 and at t = 500 the final position x = 10 is reached.

The steady source used in the numerical approaches can be realized with random walk as
well. Instead of placing all the particles at x = 0 in the beginning the amount of particles is
divided over the regarded time span.

The figure 4.11 uses the same parameter setting as in figure 4.10. The difference is the choice
of initial condition. The steady source of pollution is obvious. The maximum of solid is at the
source itself. The maximal reached x-values are related to the peak location in the instantaneous
release figures above.

4.3.2 Gaussian-based Approach

The second approach can be seen as expansion of the model in one dimension, see section 2.3.2.
The random walk implementation is connected to the two-dimensional analytical solution (4.7)
of the diffusion equation with the following initial and boundary conditions.
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Figure 4.11: Intuitive random walk for convection-diffusion with instantaneous source

∂c

∂t
= D

∂2c

∂x2
− v ∂c

∂x
with c(x, 0) = δ(x) (4.19)

lim
x,y→±∞

c(x, y, t) = 0 (4.20)

lim
x→∞

lim
y→−∞

c(x, y, t) = 0 (4.21)

lim
x→−∞

lim
y→+∞

c(x, y, t) = 0 (4.22)

Looking at the simplified but differently arranged analytical solution (4.7)

c(x, y, t) =
1

2
√
Dπt

exp
(
−(x− vt)2

4Dt

)
1

2
√
Dπt

exp
(
−y2

4Dt

)
(4.23)

the equation parts belonging to the movement along x on the one hand and y on the other
hand become visible. Once more the connection to the Gaussian distribution is obvious.

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

There is a formal equivalence to parts of equation (4.23). The parameters for mean value µ
and standard deviation σ are the same as in the one dimensional case.

µ = v · t
σ2 = 2 ·Dt
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Therefore the concentration can be approximated using the information of height and width
given by the Gaussian parameter. The corresponding particle movement in x and y-direction
can be defined.

pnewx = poldx + v∆t+
√

2 ·D∆tXx

pnewy = poldy +
√

2 ·D∆tXy

(4.24)

Xx and Xy stand for independent normally distributed random numbers which are newly
generated in every step for each particle. The term v∆t describes the convective transport par-
allel to x. Due to the fact that the diffusion coefficient is equal for the x- and y-direction the
diffusive movement

√
2 ·D∆t in the random walk definition (4.24) is also the same.

Figure 4.12: Gaussian random walk for convection-diffusion with instantaneous source

In figure 4.12 two results of the implementation are shown. The parameters are similar to the
intuitive approach to enable comparability. Therefore the setting is velocity v = 0.02, diffusion
coefficientD = 0.02, number of particlesN = 8000 and time step ∆t = 1. The spatial step size
∆x = 1 is used to calculate the velocity part for every time step. The simulation time differs,
t = 250 left and t = 500 right.

This approach is also used to approximate the convection-diffusion equation in case of a
steady polluting source. This is realized by releasing N

tend
1
dt

particles every time step.

Figure 4.13 shows the Gaussian random walk approach with a steady source. The parameter
setting is similar to figure 4.12. Comparing figure 4.12 and 4.13 the difference using various
sources is clear. In spite of all distinctions a correlation in the range of particles can be found.
The choice of source influences the maximal x-value of a bunch of particles in a nonlinear way.
The longer the duration of the simulations the more these maximums diverge.
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Figure 4.13: Gaussian random walk for convection-diffusion with steady source

4.3.3 Stochastic approach

Based on [SFGGH06] the results of the Gaussian-based approach 4.3.2 can be explained in
a more general way. The underlying theory is the stochastic analysis. At first the regarded
transport equation is given.

∂c

∂t
= ∇(D∇c)−∇(vc) (4.25)

The diffusion coefficient is usually defined as

D = (αT |v|+Dm)I + (αL − αT )
vvT

|v|
(4.26)

where αL and αT are the dispersion in x-direction (longitudinal) and y-direction (trans-
verse). As mentioned in 1.2 they are equal. v is the velocity vector and Dm the diffusion
coefficient known as D. Therefore (4.26) is reduced to

D = (α|v|+D)I. (4.27)

Due to the fact that v is a two dimensional matrix with only one nonzero entry at v(1, 1),
defining the velocity along x-direction, the determinant of this matrix is zero. Hence equation
(4.27) can be written as

D = D.

The Îto-Taylor integration scheme describes the displacement of a particle in the following
way [SFGGH06]:
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Xp(t+ ∆t) = Xp(t) + A(Xp, t)∆t+ B(Xp, t)ξ(t)
√

∆t. (4.28)

The ’drift’ vector A and the displacement matrix B are depending on the point in time t
and the position of the particle Xp(t). There is also a normally distributed random variable
named ξ(t) with mean zero and unit variance. In order to determine the displacement matrix
B a connection to the Fokker-Planck equation is established. In 1951 Îto demonstrated that
the particle density distribution obtained from equation (4.28) converges to the Fokker-Planck
equation assuming an infinite number of particles and an infinitesimal step size. The particle
density distribution stands for the probability to find a particle in the interval [Xp,Xp + dXp]
at a certain time t. The Fokker-Planck equation describes the motion of the particle density
distribution f defined as

∂f

∂t
+∇(vf) = ∇∇ : (Df) (4.29)

Equation (4.25) and (4.29) both consist of a convection and and diffusion part. To realize
this equality an adapted velocity is inserted into a modified version of equation (4.25).

∂c

∂t
+∇(vc) +∇ · (c∇D) = ∇∇ : (Df)

v∗ = v +∇ · D

⇒ ∂c

∂t
+∇(v∗c) = ∇∇ : (Df)

(4.30)

Substituting the drift vector with velocity v∗ leads to

Xp(t+ ∆t) = Xp(t) + (v(Xp, t) +∇ · D(Xp, t)) ∆t+ B(Xp, t)ξ(t)
√

∆t. (4.31)

Due to the constant diffusion D the final notation of equation (4.31) can be written as

Xp(t+ ∆t) = Xp(t) + v(Xp, t)∆t+ B(Xp, t)ξ(t)
√

∆t. (4.32)

where the displacement matrix B is a related to the diffusion according to the following
relationship

2D = B · BT

The matrix D is diagonal matrix therefore the matrix B is unitary. The displacement matrix
can be given as follows
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B =

( √
2D 0

0
√

2D

)
(4.33)

Equation (4.32) can be split into the x and y-coordinate of the movement using the deter-
mined matrix B of (4.33).

xp(t+ ∆t) = xp(t) + v∆t+
√

2 ·D∆tξx(t)

yp(t+ ∆t) = yp(t) +
√

2 ·D∆tξy(t)
(4.34)

Comparing this equation system with (4.24) the equivalence is obvious.

4.3.4 Lattice Random Walk

The next two approaches are focusing on random walk simulations using a regular grid. The al-
ready known two dimensional area is covered with an individual fine grid. This solution is based
on the principles of a cellular automaton. Every cell of the grid can have two different states.
The cell can be filled with particles or not. According to the initial condition of the connected
mathematical problem all particles start in the cell located at the origin of the coordinate system.
The movement of the particles is defined by transmission probabilities to the neighboring cells.
This mechanism should simulate the movement from regions with higher to regions with lower
concentration.

Figure 4.14: The Neumann and Moore neighborhoods are shown.

Regarding the possible neighborhoods two very common structures are used in the follow-
ing. The first one is the Neumann neighborhood which has nothing to do with the identically
named boundary condition. The particle can only move in one of the four cardinal directions
as shown in figure 4.14. The second solution will use the Moore neighborhood. The definition
enables a particle to move into any touching cell.
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The question is how to realize the diffusive and convective motion using this grid. As already
mentioned transmission probabilities are used controlled by a random variable. This principle is
reminiscent of a Markov models. Every particle is described by a markov process and can have
one of n×m states.

Figure 4.15: The Neumann neighboorhood and the transmission probabilities are shown.

For the Neumann neighborhood only 2 different probabilities are chosen as shown in figure
4.15. The variable pd stands for the diffusive motion and pc for the convective. This probabilities
are not changing during the simulation. The stochastic behavior of the particles is realized using
a random variable. This variable decides if a particle leaves the cell and in which direction. This
decision is individual made for each particle in every time step. Due to the fact that a particle
can move maximal one cell forward in every time step a fine resolution should be used. In this
simulations the convective movement is not only influenced by the probability pc but also by the
spatial step size ∆x.

Figure 4.16: Simulating Convection diffusion using lattice random walk with Neumann neigh-
borhoods.

In figure 4.16 two different results are shown. The number of particles is N = 8000. The
probabilities are set to pd = pc = 0.02. In both graphics the center of concentration is at x = 5
but the used parameter ∆t and ∆x are chosen different. To reach x = 5 the relation between
these two values has to be dx

dt = 1
2 for t = 500. The finer the spatial steps the subtler the time

steps. Using this knowledge the influence of pc can be studied.
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Figure 4.17: The influence of the convection is shown.

Due to the certain used neighborhood a slight rectangle can be found in all three pictures.
To avoid this shape the spatial step size has to be chosen small. In the next implementation the
Moore neighborhood is used.

Figure 4.18: The Moore neighborhood and the transmission probabilities are shown.

Regarding the Moore neighborhood a new probability is introduced poverlined as shown in
4.18. It is not the same as pd. Due to the longer way towards these cells the probability to
reach this cell has to be lower. The parameter pd can either be calculated using pd or be chosen
arbitrary. In the following simulation results the value was chosen dependent of pd.

pd =
1

2
pd

Despite the same simulation duration is used in all three graphics in figure 4.19 the results
are different. In the first picture the relation dx

dt is 1
2 . Therefore the concentration center is located

at x = 5. In the second graphic the pollution distribution is greater than in the first one. The
concentration center is at t = 10 due to the fact that the ratio changed to dx

dt = 1. In the last
figure other parameter are used and the perspective changed. The new used ratio is dx

dt = 1
4 and

therefore the center is located at x = 5
2 . One can see that there is a linear connection between

the location of the center and the relation of both step sizes.
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Figure 4.19: Simulating Convection diffusion using lattice random walk with Moore neigh-
borhoods.

4.3.5 Lattice Bolzmann Method

This method was developed in the 1980s and is mainly used for the numerical simulation of
fluids. Depending on the used grid and collision rules these models have special names.
In the following the regarded area is a two dimensional rectangle covered with a certain grid.
The used boundary conditions differ from the analytical and numerical solutions. This time the
Neumann boundary conditions explained in 1.5 are used. That means that there is no flow of
pollution through any boundaries. No particles can leave the area. In case of reaching the edges
the particle is reflected.
Regardless of whether a square, triangle or any other geometry is used to realize the grid the
particles are always arranged in the same way. Every edge leading away form a node can be
occupied by a particle. The allocated edge defines the moving direction of this particle, directed
away from the node. The first used model is called HHP. The connected grid consists of small
squares. There is only one collision rule defined.

Figure 4.20 a) presents the basic principle of the Lattice Bolzmann HPP models. Particles
can occupy all four directions at every node. That means that there are maximal four particles
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Figure 4.20: The schematic illustration of the HPP-model is shown.

per node. Picture b) shows the particle after the next time step. The furthermost right particle
leaves the outlined area due to a move to the right. The other particles jump to the next node
located in the opposite direction of the past node. In part c) and d) the ’head-on’ collision rule
is sketched. Both particles change their direction after the run-in.
Unfortunately no useful results can be produced using the HPP-model. It is not possible to
simulate the convection-diffusion in an appropriate way. The initial complication of the Lattice
Bolzmann method is that only a minimal number of particles can be set at one node. Therefore
the realization of a point source as used in this thesis is not possible. There was a attempt to
realize the source by four particles occupying all directions of node (0, 0) in every time step.
The particles can only move to the next node in one of the four cardinal directions until collision
or reflection changes their direction. The only adjustment of direction happens when a particle
reaches the edge of the domain. Then it is reflected and a collision with particles coming from
the source is possible. In the simulation the particles spread in the shape of a cross and finally
gather at the left and the right edge.

Another form of the Lattice Boltzmann method is the so called LHP-model. In this particular
method a hexagonal grid is used.

This approach has the same disadvantages as the HPP-model. There is one difference re-
garding the distribution of pollution. In figure 4.21 a) the hexagonal grid with some particles is
shown. Instead of spreading in cardinal directions this shape leads to an astral distribution of
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Figure 4.21: The schematic illustration of the LHP-model is shown.

particles. The collision rules are more complex. Picture b) and c) describe one of these rules.
Due to the fact that the movement is again deterministic and along fixed directions towards the
next node using the LHP model it is also not possible to simulate the convection-diffusion equa-
tion with a point source in an appropriate way.

Both methods are very useful to implement flux behavior in general and especially around
obstacles with arbitrary geometry but not expedient for simulating any kind of diffusion prob-
lems.





CHAPTER 5
Two-dimensional Results

In this chapter the results of different convection-diffusion approaches are discussed. In chap-
ter 4 the analytical solution is only given for an instantaneous releasing source. Therefore this
solution is compared to the numerical and the random walk implementation. Due to the fact
that FEM is only realized using COMSOL this approach is not compared. Regarding the ran-
dom walk the stochastic and Gaussian approach, respectively is used for analysis. As shown
in the one-dimensional results the diffusion coefficient has to be modified and included into the
intuitive approach to gain a good approximation. This modification transfers the intuitive into
the Gaussian-based approach. Hence, only the stochastic approach is used for comparison. In
the end both versions of the Lattice random walk approaches are used for analysis. At first the
analytical and numerical solutions are compared.

5.1 Analytical vs. Numerical

Before the analytical and numerical solutions are compared the properties of the finite difference
method are analyzed.

∆t ∆x explicit Euler ∆t ∆x explicit Euler

1 1 0.79489 1
2

1
4 25.7700

1
2 1 1.60922 1

4
1
4 51.68385

1 1
2 3.18382 1

4
1
8 208.9761

1
2

1
2 6.41569 1

4
1
8 412.67604

Table 5.1: The calculation times for different parameters using FDM are listed.

The relation of time step size ∆t and the simulation time is nearly linear. If the step size
is halved the calculation time is approximately doubled. Regarding the spatial step size ∆x the
relation is not linear. Changing ∆x has an greater impact on the simulation time than changing
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∆t. Comparing the execution time in one and two dimensions regarding FDM the difference is
enormous. The number of nodes on the regarded domain enlarges to the power of 2. Therefore
also the duration increases quadratic.

Figure 5.1: The analytical and numerical solution is shown.

The upper surface plot in figure 5.1 shows the concentration of the analytical solution de-
pendent on the coordinates x and y. The lower graphic shows the related numerical result. The
simulation time is set to tend = 250. The other parameters are mostly similar to the figures in
chapter 4. The diffusion coefficient and the velocity are both D = v = 0.02 and the time step is
∆t = 0.5. A small difference can be found in the choice of the spatial step size ∆x. This value
is set to ∆x = 1

2 in the analytical and ∆x = 1
4 in the numerical solution. In the following the

error values are studied in detail.
Table 5.2 shows the error values for different parameter choices. In two cases the disadvan-

tage of the used explicit Euler algorithm is visible. For ∆t = 1 and ∆x = 1
4 the proportion of

these two values causes oscillations using explicit Euler. The scenario occurs also using the val-
ues ∆t = 1

4 and ∆x = 1
8 . If both values are minimized simultaneously no oscillations happen.

The smaller the used step sizes the smaller the error results. Except one result all the simulations
uses the parameter setting v = 0.02, D = 0.02 and tend = 250. The last results are marked with
.∗ which means that the used simulation duration changed to tend = 500. The approximation
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explicit Euler explicit Euler
∆t ∆x ‖.‖∞ ‖.‖1 ∆t ∆x ‖.‖∞ ‖.‖1
1 1 0.0027 1.5624E−4 1

2
1
4 9.1479E−4 1.4640E−5

1 1
2 0.0017 3.7791E−5 1

4
1
8 .E119 .E120

1
2

1
2 0.0016 3.8172E−4 1

8
1
8 4.7570E−4 8.5291E−6

1 1
4 .E32 .E33 1

2
1
4 4.4790E−4∗ 9.7584E−4∗

Table 5.2: The error values for FDM using Explicit Euler are shown.

using the FDM in the two-dimensional domain is working very well.

5.2 Analytical vs. Random

5.2.1 Gaussian Approach

In order to compare the analytical solution to a random walk approach the results have to be
adapted. In the random walk the output describes the smoothed amount of particles in every
cell. Due to the initial Dirac-function the integral at the beginning is 1. The area of the random
walk domain is discretized. Therefore the output has to by divided not only by the number of
particles but also by the area of the cells used for the flattening.

Figure 5.2 shows the concentration results of the analytical solution, in the upper, and the
random walk approach in the lower graphic. The difference between these two implementations
can not be read out exactly. Therefore a closer look to the simulation data itself is given.

Gaussian RW
∆t ∆x r N ‖.‖∞ ‖.‖1
1 1 3 4000 3.3953E−3 6.3494E−4

1 1
2 8 4000 5.0333E−3 3.7366E−5

1
2

1
2 15 4000 1.0632E−2 1.0711E−3

1
2

1
4 15 4000 4.5255E−3 1.0048E−4

1
2

1
8 20 4000 2.8011E−3 2.2063E−3

1 1
4 20 8000 6.7640E−3 3.3383E−5

1
2

1
4 20 8000 6.8246E−3 1.8259E−4

Table 5.3: Error values for the Gaussian approach are shown.

This table 5.3 shows the approximation results. The parameter r describes the used radius
for the flattening. If the spatial step size is decreasing a greater radius r can be used. If r is
chosen to big compared to ∆x the result loses the shape of a bell curve. Compared to the results
of the numerical simulation the random walk approach leads to greater error values but it is a
quite good approximation.
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Figure 5.2: Analytical and Gaussian solution are shown.

∆t ∆x tend N Gaussian RW

1 1
2 250 4000 31.57182

1 1
4 250 4000 31.71316

1
2

1
2 250 4000 62.75965

1
2

1
4 250 4000 64.6670

1
4

1
4 250 4000 129.1143

1 1
4 250 8000 63.9175

1
2

1
4 250 8000 128.57107

Table 5.4: Different simulation times for the Gaussian random walk are shown.

The execution times in table 5.4 show a clear pattern. A change of the spatial step size ∆x
has no or minimal effects on the simulation time, whereas the modification of the time step ∆t
influences the needed time. If ∆t is halved the simulation time doubles. The increasing number
of particles also enlarges the duration. The relation is again linear.
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5.2.2 Lattice Approach

In the following the two different lattice random walk approaches are used for comparison.
Due to the fact that the implementation of both random walks differs only in the amount of
transmission probabilities the simulation duration is nearly the same.

∆t ∆x tend N Neumann RW Moore RW

1 1
2 500 4000 0.152719 0.214491

1 1
4 500 4000 0.163539 0.190734

1
2

1
2 500 4000 0.291376 0.381923

1
2

1
4 500 4000 0.280214 0.385576

1
4

1
4 500 4000 0.559355 0.725062

1 1
4 500 8000 0.290346 0.369469

1
2

1
4 500 8000 0.550393 0.741931

Table 5.5: Different simulation times for the two random walk approaches are shown.

In table 5.5 the execution times of both implementations are shown. Due to the fact that the
iteration steps stay the same no matter if the spatial step size ∆x is changed or not the execution
time remains the same, whereas the modifications of the time step ∆t influences the simulation
time directly. There are more time steps for calculation. If ∆t is halved the simulation time
doubles. The relation of particles and duration is linear. If there are twice as many particles
used for simulation the calculation time doubles. Compared to the Gaussian-based random walk
the execution time is very short. Also the numerical solution needs much more time for all the
calculations. This is a big advantage of the random walk implementations.

Figure 5.3 shows the concentration results of the analytical solution and both lattice random
walk approaches. In the upper row the left image shows the random walk using Neumann and
the right using Moore neighborhood. To validate the behavior simulations for certain parameter
are compared.

Neumann RW Moore RW
∆t ∆x N r ‖.‖∞ ‖.‖1 ‖.‖∞ ‖.‖1
1 1

2 4000 5 0.0048 0.4870 0.0273 3.0004
1
2

1
2 4000 10 0.00417 0.2209 0.0115 1.8126

1
2

1
2 4000 20 0.0107 0.10438 0.0062 1.6583

1
2

1
4 4000 20 0.00481 0.10513 0.1760 9.7079

1
4

1
4 4000 40 0.01079 0.05124 0.0400 9.43712

1
8

1
8 4000 40 0.00636 0.05127 0.7281 40.775

1
4

1
4 8000 20 0.0048 0.10513 0.1287 9.7079

1
8

1
8 8000 40 0.00653 0.05127 0.7162 40.775

Table 5.6: Error values of the two random walk approaches are shown.
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Figure 5.3: Analytical and random approach is shown.

This table 5.6 shows the error values of both random walk approaches. The Lattice ran-
dom walk using the Neumann neighborhood is obviously a better approximation. The Moore
neighborhood moves to fast compared to the analytical solution. One can see that the usage
of different r values influences the error very much. The variable r stands for the used cells
for flattening, in other words the radius. If r is chosen to big the Gaussian shape disappears in
the random walk results. Therefore the error increases. As mentioned in chapter 4 the relation
between ∆x and ∆t has to fulfill a certain condition to approximate the analytical solution. In
this case it is dx

dt = 1. This condition restricts the choice of values enormous. Using the right
relation regarding step sizes and radius the Neumann random walk is a good approximation of
the analytical solution.



CHAPTER 6
Conclusion

Convective-diffusion is a very important topic and used in various scientific disciplines to sim-
ulate or verify many different processes in nature. In this thesis a restriction to the one- and
two-dimensional problem is considered. Regarding the one-dimensional convection-diffusion
equation depending on the initial and boundary conditions different analytical solutions can be
given. If an analytical solution can be found of course all the approximation approaches are not
necessary. In case of difficult geometries and conditions the analytical solution can be hard to
find. Therefore it is important to analysis possible approximations.

In the one-dimensional convection-diffusion equation two different types of approximations are
used. One the one hand the well known numerical methods, the finite difference and finite ele-
ment method, are compared to the analytical solution. Additionally an analysis of the Explicit
vs. Implicit Euler is made. Due to the fact that the Explicit Euler is an unstable algorithm for
certain choices of ∆x and ∆t the comparison to the Implicit Euler is necessary. The results
show that the Implicit Euler is a better approximation and not only because it is a ultra-stable
algorithm. Regarding the finite element method a third algorithm, called Implicit Heun, is used.
Comparing all three algorithms the Implicit Heun implementation yields the best approximation
results. Of course there is a wide range of different possible algorithms which are not used in
this thesis. An enlarged comparison can be worked out for future analysis.
Comparing the finite difference method and the finite element method it is also well known or
expected that the finite element method approximates the analytical solution in a better way.
This part of analysis can be continued regarding the usage of different base functions as well
as different element shapes. This work is focusing only on linear base functions and triangular
elements.

The second part of the analysis is represented by stochastic approaches connected to the Brown-
ian motion. Different implementations of the random walk are used for comparison. The random
walk approach based on the Gaussian curve approximates the analytical solution best. Due to the
fact that the analytical solution is connected to the Gaussian function this result is not surpris-
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ing. An advantage of the random walk approaches is the independence of the spatial step size.
Comparing the error values of the finite element method and the random walk approximation
the finite element approach produces better results. However, the efficiency of the random walk
approaches can be increased using matrix calculations instead of loop implementations. But the
accuracy won’t change.

In the two-dimensional domain the same two implementation types are used. Regarding the
numerical solutions only the finite difference method using Explicit Euler is compared. This ap-
proach has very bad execution times. Using complex matrix structures this disadvantage could
be corrected. Also an implementation of the Implicit Euler and other algorithm would be neces-
sary for further analysis of the numerical solutions.
Due to the instability of the Explicit Euler used for the numerical implementations the random
walk approaches show their advantages. In the two-dimensional case four different random walk
implementations are introduced. Two of them are extensions of the one-dimensional approaches.
One of the new methods is based on the principle of Markov models and uses transmission prob-
abilities to simulate diffusive behavior. This approach has short execution times and quite use-
able results. The forth implementation examines the Lattice Bolzmann method. Unfortunately
this method is not useable for the regarded initial problem. Using a different problem definition
this mehtod could be a useful tool. As expected the comparison of all the results lead to the
same statement as in the one-dimensional case. The Gaussian based random walk is the best
approximation regarding random walk approaches. In general the accuracy of the finite element
method can not be reached using random walk.
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