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Abstract
Used in industry in manufacturing chains for decades, robots are nowadays entering
their way into private households. Their functionality is still limited to vacuum
cleaning or mowing the lawn. One of the reason why no universally usable robot-
butler has reached marketability, is the limited capability of robot-interaction with
its environment, in specific object manipulation and grasping. This thesis presents
a novel approach to tackle the open grasping problem by learning suitable grasps
from Topographic Features. Factors increasing grasp complexity such as unknown
objects, incomplete object surface data and visually not segmentable object piles
are thereby taken into account.

An integrated system for grasping is presented, capable for grasping known and
unknown single objects, as well as objects from piles or in cluttered scenes, given a
point cloud. The method is based on the topography of a given scene and abstracts
grasp-relevant structures to enable machine learning techniques for grasping tasks.
A description of the Topographic Features, “Height Accumulated Features” (HAF)
and their extension, “Symmetry Height Accumulated Features” (SHAF) is given,
and the approach is motivated. The grasp quality is investigated using an F-score
metric. The gain and the expressive power of HAF is demonstrated by comparing
its trained classifier to one that resulted from training on simple height grids. An
efficient way to calculate HAF is presented. A description is given how the trained
grasp classifier is used to explore the whole grasp space and a heuristic to find the
most robust grasp is introduced. This thesis describes how to use the approach
to adapt the robotic hand opening width before grasping. In robotic experiments
different aspects of the system are demonstrated on four robot platforms: A Schunk
7-DOF arm, a PR2, the mobile service robot Hobbit and a Kuka LWR arm. Tasks
to grasp single objects, autonomously unload a box, clear the table and tidy up the
floor were performed. Thereby it is shown that the approach is easily adaptable
and robust with respect to different robotic hands. As part of the experiments
the algorithm was compared to a state-of-the-art method and showed significant
improvements. Concrete examples are used to illustrate the benefit of the approach
compared to established grasp approaches. Finally, advantages of the symbiosis
between the approach presented and object recognition are shown.





Kurzfassung
Roboter sind dabei, nach Jahrzehnten als Produktionshilfen in der Industrie auch
die privaten Haushalte zu erobern. Allerdings beschränken sich ihre Fähigkeiten im
Allgemeinen auf Staub saugen, Rasen mähen oder die aktive Zuneigungssuche elek-
tronisch augmentierter Plüschtiere. Universal einsetzbare Roboter-Butler finden
sich nur in Kinofilmen. Ein Grund dafür ist die beschränkte Interaktionsfähigkeit
von Robotern mit ihrer Umwelt. Diese Arbeit trägt dazu bei, das Greifprob-
lem zu lösen, indem Robotern ermöglicht wird, passende Greifposen zu erlernen.
Besonders berücksichtigt werden dabei erschwerende Faktoren wie unvollständig
wahrgenommene Oberflächen unbekannter Objekte und visuell nicht segmentier-
bare Objektansamlungen.

Ein Gesamtsystem zum Greifen von Objekten (auch unbekannte oder in Ob-
jekthaufen positionierte) wird präsentiert. Der Ansatz basiert auf der Topogra-
phie einer gegebenen Objektansammlung und abstrahiert relevante Strukturen für
das Greifen mit Hilfe neu entwickelter Features: Height Accumulated Features
(HAF) und Symmetry Height Accumulated Features (SHAF) ermöglichen den Ein-
satz maschinellen Lernens. Ein Greif-Klassifizierer wird mit Hilfe einiger tausend
Beispielszenarien guter und schlechter Greifpunkte trainiert und generalisiert dieses
Wissen mit Hilfe von Support Vector Machines für beliebige Objekte.

In dieser Arbeit werden die topographischen Features (HAF & SHAF) beschrie-
ben und motiviert. Die Qualität ihrer Greif-Klassifizierung wird mit der F-Score-
Metrik analysiert. Zusätzlich wird das Abstrahierungspotential von HAF und der
Informationsgewinn durch den Vergleich eines mit HAF trainierten Klassifizierers
mit einem Klassifizierer der mit diskretisierten Oberflächenpunkten trainiert wurde,
gezeigt. Eine effiziente und namensgebende Berechnung von topographischen Fea-
tures wird vorgestellt. Es folgt eine Beschreibung, wie der Greif-Klassifizierer ver-
wendet wird, um den gesamten Grasp-Space abzudecken. Außerdem wird eine
Heuristik eingeführt um die Robustheit von Greifposen zu optimieren. Eine passende
Öffnungsweite des Manipulators für die Objektannäherung wird mit Hilfe einer
Adaption des präsentierten Ansatzes berechnet. In Experimenten werden ver-
schiedene Aspekte des Systems auf vier verschiedenen Robotern demonstriert: einem
Schunk-Arm, einem PR2-Roboter, einem Kuka LBR Arm, sowie auf unserem selbst
entwickelten Service-Roboter, Hobbit. Verschiedene Aufgaben, wie das Greifen
einzelner Gegenstände, das Abräumen eines Tisches, das autonome Ausräumen
einer Schachtel, oder das Aufräumen eines Wohnzimmerbodens werden durchgeführt.
Dabei wird die Adaptierbarkeit des Ansatzes bezüglich verschiedener Manipula-
toren gezeigt. Als Teil der Tests wird der präsentierte Ansatz mit einem State-
of-the-Art-Verfahren verglichen und eine signifikante Verbesserung von 34% für
freistehende Objekte, beziehungsweise 28, 9% für Objekte aus Objektansammlun-
gen gezeigt. Anhand von Beispielen werden die Vorteile gegenüber etablierten
Greifverfahren erläutert. Abschließend werden die Vorteile einer Kombination mit
bekannten Objektmodellen und Objekterkennungsverfahren erläutert.
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Chapter 1

Introduction

In the near future service robots should be able to aid living comfort by supporting
humans in their daily lives. They should be able to fulfill simple tasks, entertain
the user and cope with known objects. It is desired that robots can extend their
knowledge and learn to handle new tasks in a-priori unknown environments. One
important, probably the major way to interact with their environment is object
manipulation. In this thesis a novel approach for grasping known and unknown
objects, freestanding and in clutter or from piles of objects is presented. It enables
robots to better interact with their environment and enhance their manipulation
skills.

In this chapter the problem of grasping is explained and defined. Three types of
grasping problems are characterized and a short description of state-of-the-art work
is given for each. A formal problem definition then defines the grasping problem in
a technical way. Three main issues for the practical realization of grasping systems,
namely perception, calibration and finding feasible inverse kinematic solutions are
described. The contributions of the thesis are stated dedicated to the grasping
problem types where eligible. A graphical system overview is used to explain the
presented approach and links system modules with the corresponding sections in
this thesis. Finally, an outline of the remaining thesis is given.

1.1 Problem statement

This thesis investigates the problem of grasping objects, defined by detecting
the pose of a robotic hand in the seven-dimensional grasp space (position, orienta-
tion, gripper opening width) where a mechanical gripper has to close for a stable
grasp, and the approach trajectory to reach the final grasp pose (see Fig. 1.1).

In a typical fetch and carry mission autonomous grasping is needed in a variety
of types, depending on the user scenario. For example fetch and carry missions
could start with one of the following user commands:



1. Introduction

Figure 1.1: Problem description: The picture shows the problem this thesis inves-
tigates: An object should be grasped. Therefore the position Px,y,z of the robotic hand
in world coordinates, its orientation Oα,β,γ at the final grasp pose and the hand opening
width when approaching the object have to be determined. In this pose, closing of the hand
leads to a successful grasp. In addition, the approach trajectory has to be determined to
avoid collisions with the object to grasp, and obstacles including supporting planes. Object
data can be given in the form of complete object models or by partial 2.5D object views.

2
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1. “Robot, bring me my favorite cup.”
Problem type A: grasping known object

2. “Robot, pick up the object I am pointing at.”
Problem type B: grasping unknown object

3. “Robot, unload the box.”
Problem type C: grasping objects in clutter

All of these scenarios pose different research problems and challenges for au-
tonomous grasping, which are up to now not fully solved. In the following, a short
description for each of the three grasp problem types is given, mentioning few
important results and summarizing achievements and open problems of state-of-
the-art approaches.

1.1.1 Problem Type A: Grasping known objects

Grasping known objects relies on available object information, such as a CAD
model database and pre-learned grasps. The problem of grasping is divided into
the subproblems of segmenting an object, recognizing the object, estimation of the
six-dimensional object pose, and finally the grasping process.

In the following, a brief overview of state-of-the-art for grasping known objects
is given. In Papazov et al. (2012) a vision-based object recognition and localization
system for impedance controlled grasping is used to grasp known objects. In an
evaluation for grasping single standing objects, 58 out of 60 trials were successfully
executed. A grasp trial was considered successful if the object was correctly recog-
nized, grasped, and carried to a predefined place. Three objects were tested in the
trials with ten repetitions for two different object poses, to test all pre-saved grasp
poses.

In Klank et al. (2009) Time-Of-Flight and RGB cameras are used to fit CAD
models in cluttered table setting scenes for the purpose of grasping with a mobile
manipulator. It is noteworthy to mention, that the object recognition works for
textureless objects and the CAD model matching is in real-time. The system
provides a suitable grasping pose for a mobile manipulator, whereby the grasping
points for a model are estimated offline using OpenRAVE (Diankov and Kuffner,
2008). An experimental grasping evaluation is not given.

According to Prankl (2011), detecting the object instance my cup including 3D
pose alignment is “of course solved”. To verify this statement the paper of Collet
et al. (2009) is referenced. In this work four different objects (can, juice bottle,
rice box, notebook) with simple geometric forms are recognized and the full 6D
pose is estimated from a single view point. The can is only recognized if it was
placed not further than 60cm away from the camera. It seems the notebook was
placed standing upright for recognition and grasping, which is not the most stable

3
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or common orientation for such an object. A grasping success rate of 91% was
achieved. In the follow-up work (Collet and Srinivasa, 2010), a grasp success rate
of 98% could be achieved for five different objects with multi-view input.

To conclude, the task of grasping known objects (“Robot, bring me my favorite
cup.”, see Fig. 1.2) can be seen as solved, given the following restrictions:

Figure 1.2: “Robot, bring me my favorite cup.” Grasping known object

• Object model: Object models must be available for each object a-priori;

• Pre-learned grasps: Grasps have to be learned for each object in advance
(due to different object poses, obstacles, and robot kinematics a high per-
centage of grasps will not be executable in real world scenes, hence these
pre-lerned grasps must be comprehensive);

• Gripper-dependent: The pre-learned grasps are gripper dependent;

• Object perception: The quality of object data from perception devices
must be sufficient (if objects are recognized by 3D shape a drinking glass will
not be visible for a laser-pattern-based sensor like the PrimeSense devices);

• Object features: Objects must posses attributes needed for object recogni-
tion (e.g.: one colored objects will lack features needed for SIFT recognition);

4
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• Number of objects: The number of objects is limited (to obtain discrim-
inability for object recognition);

• Graspable objects: The objects must be graspable regarding size, form,
weight, material (e.g. bowling ball);

• Rigid objects: Objects have to be rigid, otherwise the object model will
not fit in all scenarios (e.g. for clothes).

1.1.2 Problem Type B: Grasping unknown objects

The problem of grasping unknown objects (“Robot, pick up the object I am point-
ing at.”, see Fig. 1.3) is still an open research problem.

Figure 1.3: “Robot, pick up the object I am pointing at.” Grasping unknown object

In Saxena et al. (2008b), local patch-based image and depth features are learned
and used for grasping unknown objects. The method was tested for nine unknown
objects and achieved a success rate of 87.8%. In Jiang et al. (2011) this work was
improved by adding the capability of learning optimal gripper opening width. In
an evaluation for grasping twelve different unknown objects a success rate of 87.9%
was achieved.

5
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In Klingbeil et al. (2011) a grasp detection approach for a two-finger gripper was
used to grasp unknown objects based on raw depth data. The approach is based
on finding a pattern in the scene that fits best into the interior of the end-effector.
In an evaluation with six unknown objects a grasp success rate of 91.6% could be
achieved.

To conclude, the currently available metrics and features to detect grasps are
not sufficient to solve the grasping problem for unknown objects. There is still a
considerable gap in complexity and success rates between arranged testing scenarios
for scientific publications and the human ability to grasp novel objects.

1.1.3 Problem Type C: Grasping objects in clutter

The problem of grasping unknown objects in clutter1 (“Robot, unload the box.” see
Fig. 1.4, “Robot, clear the table.”) is a challenging problem. The perceptible data
is diminished due to occlusions. The solved problem of path planning with obstacle
avoidance for robot manipulators gets harder in practice; similarly the segmentation
and identification of the desired object to grasp becomes more difficult.

In Le et al. (2010) the method from Saxena et al. (2008b) was extended to
accommodate grasps with multiple contacts and a success rate of 80% was achieved
for desk clearing experiments with two to eight objects. Klingbeil et al. (2011)
compared their approach with the two previously mentioned approaches and could
show an improvement for freestanding objects. For objects in clutter 46 out of 50
grasp trials were successfully executed. In Kootstra et al. (2012), edge and texture
based features on 2D images are used in an early cognitive system to build a 3D
object representation. Their system achieved grasp success rates of about 60% for
scenes with up to three objects.

As for grasping freestanding unknown objects, available heuristics or metrics are
not capable to finally solve the task of grasping unknown objects. Available simple
features capable of edge detection (e.g. from Saxena et al. (2008b); Kootstra et al.
(2012)) would need highly developed cognitive processing to solve complex grasping
tasks. Although substantial progress (“Deep Learning”) was achieved during the
last years, available approaches such as neural networks are currently not sufficient
to process simple features in a way that grasping unknown objects in clutter could
be solved. More powerful features can improve state-of-the-art grasping without the
need of highly cognitive systems, or deliver better basis features for such complex
learning systems.

1To clarify the term “clutter” since it is used differently in related work: If a normal projection
to the supporting plane results in a disjunctive partition of object points with boarders between
each part, a scene was not cluttered!

6
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Figure 1.4: “Robot, unload the box.” Grasping objects in clutter.

1.1.4 Formal problem definition

As described above, the problem targeted in this work is the calculation of stable
grasps for given unknown and known objects. In a more formal way, the problem
can be described as follows:

Definition 1 (Problem definition). Given a point cloud PCO ⊂ R3 of one or more
graspable objects in the robot coordinate system CR and a set of obstacles OB. The
problem is defined as finding a stable and executable grasp G for a given robot R.

The point cloud PCO of objects presented by a set of points in the three di-
mensional Cartesian space is registered with color information. It is not limited to
a single view, but can also be generated from multiple views or known object data
models. The point cloud may include multiple objects. If a specific object should
be grasped, or grasps should be positioned at given areas, the point cloud PCO
has to be restricted in advance and partitioned accordingly into PCO and obstacles
OB.

Definition 2 (Obstacles). Obstacles OB are all 3D structures not desired for grasp
actions, including supporting planes such as floors and table tops.

7
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The representation of obstacles is not limited to point clouds. It can also be given
by a structural definition of geometric forms (e.g. the box obstacle in Fig. 1.6).

Definition 3 (Robot). A robot R = (H,A[, P ]) is defined by its active robotic hand
H, the corresponding arm A and optionally a mobile platform P .

To work with robots in simulation, a model of the robot as URDF file (Unified
Robot Description Format) including its mesh and its kinematic model is required.

Definition 4 (Stable Grasp). We define a grasp as stable for a robotic hand H,
if it fulfills the physical requirements for a force or form closure grasp (Mason and
Salisbury Jr., 1985; Li and Sastry, 1988), and results in a stable grasp feasible for
moving an object or other manipulation tasks.

Definition 5 (Executable Grasp). A grasp is considered as executable if the physi-
cal robot R can reach and execute all trajectory points for a calculated grasp action
without any collisions.

Collisions include self-collision of robot links, collisions with the environment,
premature collisions with the object to grasp, and collisions with objects not se-
lected for grasping.

Definition 6 (Adjustable Opening Grasp). A grasp is defined as a vector G =
(P ,O,W) given by the final grasp pose of a robotic hand H specified by its position
P and orientation O, and the gripper opening width W for approaching the object.

IfW is not explicitly specified, a maximal gripper opening width is assumed by
default.

To enhance robustness of grasps and reduce unintentional pre-touching of ob-
jects with the robotic hand due to calibration inaccuracy or incomplete data, the ad-
justable opening grasp G is extended by a pre-grasp position: Gpre = (Ppre,O,W).
The position Ppre is calculated by setting back the hand in approach direction by
the constant CAPoffset without changing the orientation O. An executed grasp has
to reach the pre-grasp position Ppre first, and then approach the object the final
CAPoffset centimeters without changing the gripper’s orientation. This way, finding
inverse kinematic solutions for all trajectory points becomes a harder problem.

Since the approach vector is gripper-specific and CAPoffset a constant, the ad-
ditional parameters for Ppre could be seen as redundant and implicitly contained
in the grasp representation.

1.2 Challenges for grasping systems

When developing the grasping system presented in this thesis, it was emphasized on
an approach that preselects grasps that are executable on real robots (considering
inverse kinematic constraints) and are robust with respect to incomplete data and

8



1. Introduction

inaccurate grasping execution. In the following, these three issues, which make it
more difficult for a system to calculate proper grasps that will succeed in the real
world are discussed.

• Perception: Calculation of grasps for unknown objects has to deal with
incomplete perceived object data. Depending on the perception method,
object surfaces cannot always be determined. Stereo vision fails for textureles
objects. Shiny, transparent or reflective surfaces can hardly be perceived by
most 3D data acquistion methods. In advance, the quality of a perceived
object mesh is often not predictable. As example, Fig.1.5 shows the perceived
data of three objects for a Kinect sensor, which is based on the projection of
a laser pattern. The pictures show a green toy clay block, a yellow toy clay
block, and a yellow toy duck together with the perceived data. The surface of
the green toy clay can be perceived with high quality, for the yellow toy clay
(same brand, size, material) no data is perceived. Interestingly, the toy duck
colored in a very similar yellow than the yellow toy clay is perceived with
high quality. This example shows the difficulty to even predict the quality of
perceived object data.

Figure 1.5: Example of incomplete object data perception that shows the difficulty to
predict perception quality with respect to material and color. left: Picture from camera
perspective of a green and a yellow toy clay and a toy duck. center: The perceived data.
right: Photo of the three objects from the front.

• Inverse Kinematics: As mentioned above, finding kinematic solutions for
defined gripper positions, especially if a trajectory should be followed without
changing the gripper’s orientation is a restrictive condition. Fig. 1.6 shows
an example image of the limited solutions for inverse kinematics of grasping
objects from a box with a 7-DOF arm mounted on a table. Four out of five
depicted grasps could not be executed due to the required orientation and
position for the gripper indicated by the approach direction.

• Calibration: Calibration errors are one reason for failed grasps. If the
camera-robot calibration has to be recalculated this can lead to errors. In

9



1. Introduction

Figure 1.6: The picture shows four infeasible grasps due to the nonexistence of a kinematic
solution. The basket is placed at an optimal position for top grasps regarding kinematic
solutions for the static 7-DOF robot arm.

Fiedler and Müller (2013) the inaccuracy of Kinect sensors was investigated.
The work shows that there is even a time and temperature dependent depth
error (related to the time the camera was plugged in) of up to 2cm for a 1.5m
distance. These results show the need for grasp detection approaches, that
can deal with inaccurate data.

1.3 Contributions

The contribution of this thesis is divided into general contributions respectively
contributions assigned to one of the grasping problem types stated before.

1.3.1 General contributions of this thesis

• Height Accumulated Features: The main contribution of this thesis are
Topographic Features specifically developed for grasping without requiring
a-priori knowledge of the objects: Height Accumulated Features (HAF, Sec-
tion 3.2). The presented method abstracts topographical information from
perceived surfaces of objects, hence enables to learn how to grasp them. The
use of machine learning techniques enables generalization of learned grasping
patterns.

10
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• Integrated autonomous system: In this thesis an integrated system is
presented that works autonomously and robust on four different robot plat-
forms. The process overview diagram in Fig. 1.7 shows eight steps in the

Figure 1.7: System Overview: This process diagram shows eight steps in the grasping
pipeline of the system presented in this thesis. For simplicity, the presentation shows
only a solution for a fixed gripper rotation, tilt angle, and gripper opening width.

grasping pipeline of the system. For simplicity, the presentation shows only
a solution for a fixed hand rotation, tilt angle, and gripper opening width.
The point cloud (Fig. 1.7, step (2)) of a scene (1) is discretized (3) first. To
evaluate different hand roll/tilt angles (explained in Section 4.3) and gripper
opening widths (Chapter 6), the point cloud is transformed before discretiza-
tion (not depicted). For each grasp hypothesis (one hypothesis is indicated
by a red point in (3)), a feature vector of length n (number of features) is cal-
culated (4), see Chapter 3 how features are defined and calculated). Then,
a trained grasp classifier (Section 4.1) is used to get the grasp classifica-
tion grid (5), whereby green indicates possible grasp positions. A weighting
system (Section 4.2) evaluates the grasp quality (6), wherein better grasp
positions are indicated by higher (green) bars. The overall top-rated grasp
(along with estimated roll, tilt, gripper width) is sent to the simulation en-
vironment OpenRAVE (7), in which detailed grasp planning (how close the
hand can approach the object, see Section 4.4) is done. For possible grasps,

11
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OpenRAVE sends the trajectories for path planning to execute grasping on
the actual robot (8), see the experiments in Chapter 8.

Other grasping systems (e.g. Collet et al. (2009),Collet and Srinivasa (2010))
need four different modules that can be sources of error:

1. object segmentation

2. object recognition

3. object pose alignment

4. object grasping

The presented system uses only an object grasping module, which is the key
factor for the high robustness of the approach.

• Symmetry Height Accumulated Features: An extension of HAF to cope
with specific scenarios. (Section 3.3)

• Grasp weighting and selection method: A heuristic to enhance the
robustness of selected grasps, which also is of great importance regarding
inaccurate perception and calibration. (Section 4.2)

• Feature analysis: The analysis and evaluation of Topographic Features with
respect to their grasp classification power using an F-score metric. (Chap-
ter 5)

• Feature-Editor: A GUI based application tool to create, edit and delete
Topographic Features. (Section 3.3)

• Efficient feature calculation method: An efficient method to calculate
Topographic Features using summed area tables. (Section 3.3)

• Grasp training database: A database with scenarios of good and bad
grasps for grasp classifier training, including tools for processing RGB-D data
and for automated generation of similar scenarios.

• A grasp space exploration technique: Explores the grasp space, given a
grasp classifier for fixed hand orientation. (Chapter 4)

• Gripper opening width determination method: An extension for grasp
space exploration calculating gripper opening width for approaching objects.
(Chapter 6)

• State-of-the-art comparison: A comparison with Jiang et al. (2011) shows
improvement of the grasp success rate of 34% for single objects (Section 8.4)
and an improvement of 28.9% for objects in clutter. (Section 8.5)

12
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• State-of-the-art analysis: An external examination for a popular grasp
approach (Jiang et al., 2011). (Section 8.5.3)

• A grasping framework available for the community including the presented
approach and the grasping approach from Jiang et al. (2011) based on 2D
image features.
(available from http : //pr.cs.cornell.edu/grasping/rect data/data.php)

1.3.2 Contribution: Grasping known objects

• Skipping effort for creating pre-grasp database: Manual definition of
grasps per object and robotic gripper can be tedious. The presented approach
for finding grasps can be applied on full object models for online grasp cal-
culation, making a database of grasps per object and gripper obsolete.

• Semi-automatic creation of pre-grasp database: The effort for gen-
erating a database with pre-learned grasps per object and gripper can be
reduced with automatic or semi-automatic grasp generation. Available met-
rics to detect grasps, such as the ε-metric tend to be relatively fragile in the
real world (Diankov, 2010; Balasubramanian et al., 2012; Weisz and Allen,
2012). Our approach can be used for (semi)-automatic grasp generation given
the gripper- and object model.

• Object recognition support by interacting with unrecognized ob-
jects: Due to lightening conditions, occlusions, unlearned views or other
reasons, recognition can fail. The presented approach gives the opportunity
to change object poses by grasping without pre-learned positions, thereby
creating new views that can enable successful object recognition, e.g. for
task specific grasping, where object recognition is crucial.

1.3.3 Contribution: Grasping unknown objects

• Use of known depth regions: no need to guess shapes: The pre-
sented approach focuses on grasps on perceived surfaces where the gripper
approaches objects without the need to estimate the surface of the object
which is facing away from the camera (compare Fig. 3.1).

1.3.4 Contribution: Grasping objects in clutter

• Segmentation independent: The presented approach enables complex
tasks such as autonomously emptying a basket filled with objects without
the need for segmentation. Thereby, it provides a complementary approach
to methods which need segmented input, such as Superquadric fitting.

13
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• Interactive segmentation: The approach provides the ability to work as
a preprocessing module for object recognition by separating one object from
a pile of items.

• Integrated path planning: The majority of recently published grasping al-
gorithms (e.g. Varadarajan and Vincze (2011); Kootstra et al. (2012)) handle
grasp planning and path planning independently. Grasp approach directions
and grasp points are calculated first, path planning with computation of in-
verse kinematics and obstacle avoidance is done afterwards. In contrast, the
presented method learns to select grasp hypotheses which result in collision-
free local paths for the gripper used and the given approach vector.

1.4 Outline

This PHD thesis gives on overview on autonomous grasping of known and unknown
objects in cluttered indoor environments with Topographic Features.
In Chapter 2 further work related to grasping of objects is discussed.
Chapter 3 describes the idea, motivation, and calculation of Height Accumulated
Features and Symmetry Height Accumulated Features.
Chapter 4 explains the process of how the feature values are used to determine
optimal grasp configurations. The machine learning methods used are described,
as well as a weighting heuristic to enhance the robustness of grasps, a technique to
explore the entire grasp space using a trained classifier and the fine calculation of
grasp points using a simulation environment.
In Chapter 5, the most efficient features for grasping are analyzed, the effect
of Symmetry Height Accumulated Features is discussed and the additional gain
obtained from HAF by a comparison to learning grasps directly on height values
is shown.
In Chapter 6 the framework is used to extend grasp options by taking the open-
ing width of the gripper into account, resulting in the adjustable opening grasp
representation.
In Chapter 7 the scalability of the approach regarding different types of robotic
hands is discussed.
In extensive experiments in Chapter 8 the approach is evaluated on four different
robotic platforms considering different aspects of each task.
Finally, Chapter 9 gives a conclusion of the work and discusses future work.
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Chapter 2

Related Work

There are numerous works about grasping of known and unknown objects. Ex-
tensive grasp surveys are given by Shimoga (1996), Bicchi and Kumar (2000) and
more recently by Bohg et al. (2014).

2.1 Grasping known objects

Many current approaches rely on object recognition and the subsequent application
of pre-calculated grasps: Papazov et al. (2012) present a 3D object recognition and
pose estimation approach for grasping known objects in cluttered and occluded en-
vironments. Their approach solely relies on 3D geometry information and is based
on a geometric descriptor, a hashing technique and a localized RANSAC-like sam-
pling strategy. In a variety of tests they show that their proposed method performs
well on noisy, cluttered and unsegmented range scans in which only small parts of
the objects are visible. The experimental validation with a 7 DOF impedance
controlled robot shows how their method can be used for grasping objects from a
complex random stack. Berenson et al. (2007) also considers grasping in cluttered
scenes with known 3D models. Morales et al. (2006) uses the method proposed by
Azad et al. (2007) to recognize an object and estimate its pose from a monocular
image. Given this information, a grasp configuration is selected from a grasp expe-
rience database that has been acquired offline. The whole system is demonstrated
on the robotic platform described in Asfour et al. (2008). Huebner et al. (2009)
demonstrate grasping of known objects on the same humanoid platform and using
the same method for object recognition and pose estimation. The offline selection
of grasp hypotheses is based on a decomposition into boxes.

In Detry et al. (2009) object grasp affordances are learned and represented,
i.e. object-gripper relative configurations that lead to successful grasps. The rep-
resentation consists in a probability density function defined on the 6D gripper
pose space, within an object-relative reference frame. Grasp hypothesis densities
are learned from human imitation as well as from visual cues, and empirical grasp
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densities are learned from physical experience by a robot. In Detry et al. (2010)
a robot learns to grasp specific objects by experience. Instead of human imitation
learning, successful grasping trials are used to build the object-specific empirical
grasp density.

Wohlkinger and Vincze (2010) use object categorization to find objects similar
to known objects and calculates grasps for the given models. Using known models
is one approach to overcome the issue of incomplete data perceived from single
views of a robot. The availability of object models enables the use of force and
form closure grasp quality metrics (Mason and Salisbury Jr., 1985; Li and Sastry,
1988; Pollard, 2004). However, object recognition and in particular segmentation
are still open research problems for grasping, for the latter see Bohg et al. (2014)
and cannot guarantee reliable results for scenarios like the ones depicted in Fig. 1.4.

2.2 Grasping unknown objects

Object shape approximation: A great deal of the work examining the challenge
of grasping unknown objects tries to approximate original object shapes to calculate
grasps on the resulting models. In (Miller et al., 2003; Huebner and Kragic, 2008;
Przybylski et al., 2011) shape primitives like boxes, spheres, cylinders and cones
are used to approximate object shapes. In (Goldfeder et al., 2007; Varadarajan
and Vincze, 2011) this approach is extended by the use of Superquadrics as a more
general basic geometric form for grasping. The resulting shape primitives were
used to limit the number of candidate grasps to find the most stable set of grasp
hypotheses. Approaches from (Bohg et al., 2011; Rao et al., 2010) are based on
the observation that many objects possess symmetries and use this assumption for
object completion before grasp calculation.

Shape matching: Another approach related to the work presented in this thesis
is from Klingbeil et al. (2011). They propose a grasp detection approach for a
two-finger gripper to autonomously grasp unknown objects based on raw depth
data. Their method tries to find a pattern in the scene that fits into the interior
of the end-effector by maximizing the contact area between the robot’s gripper
and the perceived point cloud. This approach treats grasping as a shape matching
problem similar to the work by Li and Pollard (2005), but does not require object
models. Another noteworthy shape-matching approach related to the presented
research is the work from Herzog et al. (2012). They proposed a template-based
grasp selection algorithm operating on heightmaps which uses demonstrated grasp
configurations and generalizes them to grasp novel objects.

Katz et al. (2013) deal with the problem of clearing a table. They achieved a
grasp success rate of 53% for cluttered scenes and learn push and pull actions in
addition. Calli et al. (2011) propose a grasping algorithm which uses curvature
information obtained from the silhouette of unknown objects. In Richtsfeld and
Vincze (2008) a framework is presented to calculate grasp points of unknown objects
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in 2.5D point clouds from laser range data. Their method calculates grasp points
from the top surfaces of objects and can be applied to a reasonable set of objects.
Maldonado et al. (2010) present a system for autonomous rigid-object pick-up
tasks in domestic environments focusing on the gripping of unmodeled objects.
They model the object as a 3D Gaussian. For choosing a grasp configuration, a
criterion is optimized in which the distance between palm and object is minimized
while the distance between fingertips and the object is maximized.
Feature-based learning of grasps: In Saxena et al. (2008a,b), supervised learn-
ing with local patch-based image and depth features for grasping novel objects in
cluttered environments is proposed. This work is improved in Jiang et al. (2011)
by adding the capability of learning optimal gripper opening width. The focus lies
on learning features from 2D images, but one of the features is based on a compar-
ison of object heights in predefined rectangular regions (in the remainder of this
thesis, this method is referred to as the “Rectangle Representation”). This related
feature, the performance and popularity of the approach in recent years and the
ability to work in cluttered scenes made this work an excellent choice to compare
the presented work with. In Le et al. (2010) the method from Saxena et al. (2008b)
is extended to accommodate grasps with multiple contacts and a success rate of
80% is achieved for desk clearing experiments with two to eight objects counting
success/failure of the first grasp attempt for each object. In Kootstra et al. (2012),
edge and texture based features on 2D images are used to build a hierarchical rep-
resentation in 3D and their system is evaluated for scenes with one to three objects
with grasp success rates of about 60%.

Most of the approaches in the last paragraph use learning techniques to optimize
grasping capabilities based on simple features. In the following, powerful features
for grasping are described in more detail. These features can be seen as an enhanced
feature type suitable to replace simpler features for established grasping systems.
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Chapter 3

Topographic Features

In this chapter, two feature types based on the topography of objects or scenes are
introduced and motivated. Height Accumulated Features (HAF) were developed
specifically for abstracting grasp relevant information. Symmetry Height Accumu-
lated Features (in short, Symmetry Features or SHAF) are an additional feature
type, to solve specific problematic cases of the basic classifier trained with HAF
only. The basic concept of HAF was first published in Fischinger and Vincze
(2012a), the concept of SHAF in Fischinger et al. (2013b). In Chapter 5, work
regarding feature selection and performance is discussed.

3.1 Motivation of HAF

In recent years learning of grasps became very popular (Bohg et al., 2014). Ap-
plying machine learning directly to RGB-D data is still impractical due to the
huge number of perceived points in a point cloud and the at least six-dimensional
grasp output space. To reduce the complexity, numerous approaches learn grasping
hypotheses based on 2D images taking into account color and intensity values. Al-
though the human brain can detect potential grasp points from images (and hence
this approach could be promising in the future with sufficient cognitive processing
methods), simple features based on 2D image patches seem to have clear limitations
for grasping (see Section 8.5.3). Therefore, a new feature type is presented in this
thesis which reduces the complexity of point cloud input, increases the structural
value of input information as shown in Section 5.1 and is well suited for grasp-
related machine learning due to the employment of grasp-relevant topographical
information. Another challenge for learning grasps is the (at least) six-dimensional
grasp output space (with three parameters for position and three parameters for
orientation) where all parameters are strongly related. In Section 4.3, the method
to explore the whole grasp space using a trained grasp classifier is described.

The HAF approach is based on the observation that for grasping from top, parts
of the end-effector have to enclose an object and hence go further down than the
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(a) Top view from robot perspective (b) Fragile Grasp (c) Stable Grasp

(d) Box form (e) V-form (f) I-form

Figure 3.1: HAF Motivation: in Fig. 3.1(a) we see two rectangular surfaces of a gray
and a yellow object from a typical robot’s top perspective, no side surfaces are visible.
Fig. 3.1(b) shows an unstable grasp some force closure based simulation environments
would recommend and Fig. 3.1(c) shows a stable top grasp a human would execute even
if only the top surface of the object was perceived. Fig. 3.1(d)-3.1(f) show grasps for
different object shapes, all of which have the same rectangular top surface shape.

top height of the object. Furthermore, unlike other approaches, this approach does
not try to guess the shape of partially visible objects. Firstly, because this can fail
in cluttered scenes or for asymmetrically shaped objects. And secondly, because
the approach is based on the observation that a guess of the object shape is often
not needed, for example if one surface is known and the robotic hand can be placed
around that surface: Fig. 3.1(a) shows a picture from a typical view from a robot.
For one gray and one yellow object, only the rectangular top surfaces are visible.
Fig. 3.1(d)-3.1(f) show different scenarios for grasping when only the top surface
is known and a robotic hand goes down up to the object and closes: in Fig. 3.1(d)
the object is box-shaped and the hand touches the object roughly at the body
center instead of the rim. In Fig. 3.1(e) the hand more or less adapts to the object
form. And even if the object consists primarily of a large top surface and few
encompassing surfaces (see Fig. 3.1(f)) a grasp would succeed if there is enough
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space to place the fingers around it. Despite the knowledge gap, even a human
would not grasp only at the visible object parts like depicted in Fig. 3.1(b) (like
some force closure based simulation environments sometimes recommend, even if
the whole object model is available, compare Fig. 8.25), but would go further down
with his hand and use tactile feedback to stop the closing movement (Fig. 3.1(c)).

3.2 Height Accumulated Features

The idea of Height Accumulated Features (also stated in Fischinger and Vincze
(2012a); Fischinger et al. (2013b)) is to define small regions and compare average
heights of these regions using discretized point cloud data. The height differences
give an abstraction of the shape of the objects that enables the training of a classifier
(using supervised learning) to determine if grasping would succeed for a given scene.
For explanatory reasons consider the special case of top grasps (vertical approach
direction of robotic hand) of an object on a table. The term height can then be
used intuitively and measures the perpendicular distance from the table plane to
the points on the top surface of the object. A force or form closure grasp can only
be achieved if parts of the hand will go further down towards the table than the
top surface of the object. Hence the region of the object top will on an average
be higher than the area where the robotic fingers are positioned. To speed up
calculation, we discretize the point cloud, i.e. we generate a height grid H where
each 1x1cm cell saves the highest z-value of points with corresponding x- and y-
values (see Fig. 3.2). One Height Accumulated Feature is now defined as two, three
or four regions Ri on the height grid together with a weighting factor wi for each
region. A feature value is defined as the weighted sum of all regions. So the jth

HAF value fj is calculated as

fj =

nrRegionsj∑
i=1

wi,j · ri,j (3.1)

with
ri,j =

∑
k,l∈N:(k,l)∈Ri,j

H(k, l) (3.2)

where nrRegionsj is the number of regions for feature fj. Ri,j indicates the ith

region for the jth feature and is defined by the set of all pairs of height grid cell
indices belonging to the region.

The HAF vector f contains the sequence of HAF values:

f = (f1, f2, . . . , fnrFeatures) (3.3)

For the initial set of experiments, the focus was on features with two overlapping
regions, where one region is completely inside the other region and a weighting fac-
tor wi,j is chosen such that the feature value is zero if both regions have the same
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Figure 3.2: Shows the gray height grid resulting from point cloud discretization and an
example feature with two regions. Region R1 is the green inner region, region R2 is
composed of the red and the green area. For each grid cell of the regions the height is
summed up per region. Each region sum is weighted with an individual factor and the
sum (difference) of all regions (here two) gives the feature value.

average height, greater than zero if the inner region is higher, and smaller than
zero if the inner region is lower on an average. For these features, the intuitive
interpretation mentioned earlier holds. In Chapter 5, it is shown that more com-
plex features with three or four regions or Symmetry Features lead to even higher
discriminative results measured in terms of the F-score evaluation (Chen and Lin,
2006) metric. Overall, about 71,000 features (70,000 of them automatically gener-
ated) were tested for the experiments in this thesis. The top 300 to 325 features
were selected with F-score selection to train a classifier weighing up time against
detection performance.

A feature editor (see Fig. 3.4(a)) with graphical user interface for convenient
editing of the number, size, position, and weighting factor of the features’ regions
was developed. Fig. 3.4(a)-Fig. 3.4(c) shows examples of features with two to four
regions.

The representation of height grids is of significant importance to the approach.
To accelerate computation, accumulated height values for given scenes are used.
This principle was first introduced as summed area tables in Crow (1984) for texture
mapping in computer graphics and became popular in the vision community as
”integral images” by Viola and Jones (2004), which are successfully used for real-
time face detection.

Instead of a vanilla height grid H, an accumulated height grid AH is calculated,
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in which each location (x,y) of AH contains the height sum above and to the left
of (x,y) in the grid.

AH(x, y) =
∑

x′≤x,y′≤y

H(x′, y′) (3.4)

Using height accumulated rectangular regions, each region sum can be com-
puted with four or fewer array references, see Fig. 3.3.

Figure 3.3: To calculate the accumulated heights of region A a single AH reference is
needed: AH(A) = AH(x,y), Area D requires four: AH(D) = AH(x2,y2) - AH(x2,y) -
AH(x,y2) + AH(x,y)

To demonstrate the advantage of accumulated heights, we give an example for
the needed calculations: for a fixed gripper orientation and a n ×m cm grid, for
each 1 × 1 cm cell it should be tested if its center is a valid grasp center point.
Therefore, for each feature, the accumulated heights for two to four regions have
to be calculated. The height accumulated table for an n × m cm grid can be
recursively calculated with less than 4 × n ×m calculations. For a simplified but
realistic example we use rounded values, assuming an average feature region size
of 70 grid cells and only two regions per feature:

n = 32

m = 44

#features = 323

#regions = 2

avRegSize = 70

These values result in an estimated number of calculations needed for grasp
classification with fixed gripper orientation for an 32×44 cm area without a height
accumulated grid:

#calcNoAccum = n×m×#features×#regions× avRegSize =

= 32× 44× 323× 2× 70 =

= 63, 669, 760
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And in comparison the number of calculations if a height accumulated grid is used:

#calcAccum = n×m×#features×#regions×#CalcForOneRegion+ #CalcHAGrid =

= 32× 44× 323× 2× 4 + 4× 32× 44 =

= 3, 638, 272 + 5, 632 =

= 3, 643, 904

The quotient of the needed calculations is:

CalcQuot = 63669760/3643904 =

= 17.47

This example shows that the calculation effort for the accumulated height grid is
small compared to the overall needed calculations, and that the initial accumulation
effort reduces the number of calculations by a factor of about 17. This performance
boost is improving the system, especially since the overall number of calculations
needed, taking into account different gripper orientation and gripper width (see
next chapter) easily reaches more than 500 million calculations when a height
accumulated grid is used (or nearly 10 billion calculations without the accumulation
pre-processing).
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(a) HAF-Editor with an example feature with 2 overlapping regions

(b) HAF with 3 regions (c) HAF with 4 regions

Figure 3.4: For editing of Height Accumulated Features a GUI-Editor was developed.
Examples are shown for features with 2-4 regions.
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3.3 Symmetry Height Accumulated Features

For special constellations such as a small object on top of a box on a table
(Fig. 3.5(b)), the HAF approach favors grasps at the edge of the box instead of
grasps at the small object. HAF have the drawback that they are based on average
heights of nested regions, hence there is no symmetry check when feature values
are calculated. The same feature value can be achieved if the center region height
exceeds both side region heights by x or if the center region and one side region
have equal heights and exceed the second side region by 2x (see Fig. 3.5(a) for
illustration).

The feature value is no indication if the two fingers of the gripper (see Fig. 3.5(b))
could go deeper than the object center on opposite sides of the object. This leads
to false positives when using HAF for grasp detection e.g. at the edges of a closed
box. For ”clearing-a-table scenarios” such ”wrong” grasps do not occur due to the
weighting system and the constellation and size of objects. As long as there is an
easily graspable object on the table, this object is grasped first. Nevertheless, it is
a weak point of HAF not taking symmetry into account. As improvement, HAF is
extended by an additional feature type: Symmetry Height Accumulated Features.

(a) HAF-Problem: Equal feature values (b) Impact on grasp estimation

Figure 3.5: SHAF-Motivation (left): For the depicted feature with a green and a red
region the feature value would be equal for both piles of tissues, but only the left pile is
suitable for a grasp with the depicted gripper. The picture on the right shows the impact
of this HAF property: A bad grasp being detected at the edge of a box

Symmetry Features have three disjunctive regions of equal size as depicted in
Fig. 3.6 where rr,rg,rb are the accumulated heights of the region grid. The feature
value f is defined as follows:

f =

{
min(rg-rr, rg-rb) . . . if rg > max(rr, rb)

-1 . . . else

So we assign the minimal distance of accumulated heights between the center
region and the side regions if the average center region height is the largest of the
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Figure 3.6: Symmetry Height Accumulated Feature: A typical example of the new fea-
ture type SHAF that solves the shown deficiency. All SHAFs have three equally sized,
disjunctive regions.

three regions, and −1 otherwise. Note that this function is either positive or −1
and that the regions are not weighted. In Section 5.2 the impact of Symmetry
Features on a grasp classifier is discussed.
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Chapter 4

From Classification to Actual Grasp
Execution

In this section, the process of selecting the best grasp options G in the seven-
dimensional grasp space (with maximal gripper opening width as default value)
using Topographic Features is described. This process was stated in Fischinger
and Vincze (2012a) and is summarized here with additional clarifications. Firstly,
the learning process for grasping (Section 4.1) is described. Then, the weighting
heuristic to achieve more robust grasps (4.2) is explained. Finally, the method to
explore the whole grasp space is described (4.3) and it is shown how fine calculation
of grasp points and path planning is done with the OpenRAVE simulator (4.4).

4.1 Grasp Classification Training

In order to train a grasp classifier, 450 positive and 250 negative grasp scenes were
gathered. A scene is composed of one or more objects on a table with the z-axis
being perpendicular to the table and the origin located on the table surface. For
supervised learning, the 450 positive examples were labeled, to be more specific:
an x,y position was labeled such that a robotic gripper (in this case, an Otto Bock
hand prosthesis) positioned above the objects (with the tool center point at x,y)
and oriented in such a way that the line between the tip of the thumb and the tip of
the forefinger is aligned with the x-axis, would achieve a stable grasp of an object
by approaching it (approach vector of the gripper parallel to z-axis) up to 1cm and
closing the fingers afterwards. Fig. 4.1 illustrates the actual classification task. The
250 negative grasp scenes were labeled at positions with hardly any chance of a
successful grasp. The training set was augmented by scaling, mirroring, truncating,
and inverting the manually labeled positions to generate in all 8300 positive and
12800 negative grasp example scenes. HAF and SHAF values were calculated on
the 21100 examples and used to train an SVM classifier with a radial basis function
kernel from the implementation of LIBSVM (Chang and Lin, 2011).
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Figure 4.1: The grasp classifier learns voxel configurations if a hand motion in approach
direction (black arrow) with subsequent closing of the fingers (1cm before hand-object
collision) would result in a stable grasp at the voxel. Note that the type of gripper only
influences the training examples regarding scale. Training examples will not change for
other two-finger grippers.

Exemplary pictures for positive and negative scenes can be seen in Fig. 4.2
respectively Fig. 4.3. It should be emphasized that the granularity of the dis-
cretization guarantees the genericity of the approach. In other words: we do not
learn grasps for specific object instances or objects similar to the objects used for
training examples.
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Figure 4.2: Positive training examples for the training of the (S)HAF classifier. The
black arrow perpendicular to the table plane indicates the approach vector, the red arrow
parallel to the table plane indicates the closing direction of the gripper.
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Figure 4.3: Negative training examples for the training of the (S)HAF classifier. The
black arrow perpendicular to the table plane indicates the approach vector, the red arrow
parallel to the table plane indicates the closing direction of the gripper.
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4. From Classification to Actual Grasp Execution

4.2 Grasp Selection - Weighting System

For everyday scenes, the trained grasp classifier typically does not return an isolated
grasp position, but a bunch of potential grasp points in a region (i.e. green area in
the Grasp Classification Grid of Fig 4.4, left). Generally, a point centered at such a
grasp region is a good choice for a stable grasp. Therefore, the following weighting
system was developed: Each point classified as a good grasp position is evaluated
by

v(r, c) =
∑
x,y∈N

Igrasp(x, y) · wr,c(x, y) (4.1)

where r, c indicate the actual row and column of the grasp location (grasp hypoth-
esis) in the grid. I is the indicator function for a grasp point:

Igrasp(x, y) =

{
1 if grasp at location (x,y) possible

0 if no grasp at location (x,y) possible

The following table gives the weighting factors wr,c(x, y) for a grasp hypothesis
GH.

Table 4.1: Weighting values for evaluation of grasp hypothesis GH

1 2 3 2 1
2 3 4 3 2

1 1 3 4 GH 4 3 1 1
2 3 4 3 2
1 2 3 2 1

In Bicchi and Kumar (2000), it was identified that there is a lack of grasp ap-
proaches that are robust to positioning errors. This practical weighting method
enhances the robustness and stability of grasps. An example outcome of this
weighting is shown in Fig. 4.4, at the right, wherein the height of the green bars
indicate the quality of a potential grasp.

4.3 Grasp Space Exploration

Using a trained grasp classifier in combination with the weighting system results
in selecting the best grasp point for a given gripper orientation and a top grasp.
In the following the technique used to explore the whole grasp space is described.
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4. From Classification to Actual Grasp Execution

Figure 4.4: Grasp weighting system. left: Grasp classification grid, green indicates possi-
ble grasp positions. right: Grasp evaluation; better grasp positions are indicated by higher
(green) bars.

4.3.1 Roll

To get grasps for different hand rolls β, i.e. different orientations or gripper rotations
about the gripper’s approach direction, we rotate the initial point cloud iteratively
(by rollStep = 15 degrees) about the vertical z-axis up to 180 degrees, generate a
new accumulated height grid and initiate the (S)HAF based grasp point detection
on this data. After selecting the top grasp points for the rotated scene, grasp points
are transformed to the original world coordinate system. By using a roll angle
range [β − rollStep/2, β + rollStep/2] in the simulation environment and testing
with gripper rotation β and β + 180◦ simultaneously, an exhaustive exploration of
all possible rolls is achieved.

4.3.2 Tilt

In order to widen the domain of grasp approaches from those with vertical approach
direction to grasps with oblique approach direction, the point cloud is transformed
analogous to the roll calculation with tiltStep = 20◦. After detecting good grasp
points on this data, the transformation of grasp points and tilted approach vectors
is inverted to obtain coordinates in the original world frame. By combining roll
and tilt manipulations (i.e. consecutive application of the transformation matrices),
grasps from a number of orientations are obtained.
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4. From Classification to Actual Grasp Execution

4.4 Grasp and Path Planning in Simulation

Given grasp classification grids, the weighting algorithm from Section 4.2 is applied
on it and the overall top grasp hypothesis from all roll-tilt combinations is selected.
The OpenRAVE simulator is used for path planning including determination of
an appropriate distance between the gripper and the object before closing the
gripper. OpenRAVE tries to approach the object mesh (i.e. an unsegmented mesh
of all objects in the scene generated from the objects point cloud PCO) using the
calculated approach vector AVO and gripper roll angle until a collision occurs. Then
it sets the gripper position back by a standoff value which is dependent on the object
position: the initial standoff value is 1mm. If this standoff leads to a collision of
the gripper fingers with the table top or the ground, the standoff is increased until
the closing fingers do not collide with the table or the ground anymore. Then the
actual grasp points, i.e. contact points of the fingers with the object mesh in the
simulation, are calculated. From the resulting hand position, OpenRAVE calculates
the hand position 7cm away (CAPoffset = 7cm was selected based on gripper size
and fine tuned using experiments) and searches for a collision free path to place the
manipulator there. For the last 7cm to the object OpenRAVE calculates a straight
path to the object if one exists. 7cm was chosen as a practical trade-off between a
higher grasping robustness (regarding calibration inaccuracy or incomplete data)
achieved by a straight approach trajectory with fixed gripper orientation and the
challenge to find inverse kinematics solutions for such trajectories.

To make the system more flexible, the calculated approach vector and gripper
roll angle are varied by ± 1

2
× tiltStep, respectively ± 1

2
× rollstep degrees, to

improve the possibility of finding a kinematic solution.
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4. From Classification to Actual Grasp Execution

Algorithm 1 Pseudo code of the system for a task such as Clearing-the-Table
(HAF includes HAF and SHAF)

Require: Raw depth data of scene
Ensure: The table top gets cleared
1: PCO ← GetObjectsPointCloudData()
2: while table not cleared do
3: GH = ∅ #GraspHypotheses
4: for αtilt = 0; αtilt < maxTilt; αtilt += tiltStep do
5: for βroll = 0; βroll ≤ 2π; βroll += rollStep do
6: heightGrid←MakeHeightGrid(PCO)
7: accumHeightGrid← Accum(heightGrid)
8: HAF ← CalcHAF (accumHeightGrid)
9: graspGrid← SVMClassifier(HAF )

10: GH ← AppendTopGrasps(GH, graspGrid)
11: end for
12: end for
13: success← false
14: while success == false & GH 6= ∅ do
15: topGH ← GetAndRemoveTopGH(GH))
16: topGrasp← FineCalculation(topGH)
17: success← TryExecuteTopGrasp(topGrasp)
18: end while
19: pc← GetObjectsPointCloudData()
20: end while
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Chapter 5

Evaluation of Features and Classifier

In this section, the Topographic Features and the resulting classifiers are evaluated.
In an evaluation in Section 5.1 the information gain obtained with HAF is shown
by comparing a grasp classifier trained using HAF to a classifier trained directly
on height grids. In Section 5.2, the impact of Symmetry Features on the grasp
classifier is analyzed. In Section 5.3 the feature quality of Topographic Features is
analyzed with the F-score metric from Chen and Lin (2006). The top 20 features
are presented and improvement compared to early work is shown.

5.1 HAF Classifier vs. Classifier trained on Heights

In Fischinger and Vincze (2012a), it was claimed that there is significant additional
information value with the use of HAF features. To prove this statement, in the
following a SVM classifier trained with HAF is compared against an SVM classifier
that was trained using discretized heights only. Grids of the size 14x14cm were
used for training, giving overall 196 Height Features. For training purposes, clearly
distinctive scenarios were used, i.e. simple grasping situations as positive training
examples and impossible grasp execution cases as negative examples. Since the
grasp classifier showed an accuracy of more than 99% for simple scenes, new test
scenes were gathered which were harder to classify, to provide a dataset which
enables meaningful comparison. E.g. a positive grasp example was not centered
exactly at the rim of a bowl, but with a 2− 3cm offset. In practice, this situation
would still lead to a successful grasp, but the classification gets harder. 50 positive
and 50 negative test examples were gathered. Out of it in all 3928 test cases were
generated. Results are shown in Tab. 5.1.

Notably, all HAF values are calculated out of the 196 height values, still the
data processing (HAF generation) results in a 21.69% improvement in classification
success rate on a tough test data set.
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Table 5.1: Grasp classification success rate: HAF vs. Grid-Heights

Feature Type Success Success in %
Grid-Heights 2516/3928 64.05
HAF 3368/3928 85.74

5.2 HAF vs. SHAF

To examine the impact of Symmetry Features, a classifier trained with HAF plus
added Symmetry Features was tested on the test set from Section 5.1. An accuracy
rate of 74.31% could be achieved. The main reason for this surprising outcome
can be attributed to the difference of scenarios in the test and training examples.
For the test data set, many of those test cases were added that motivated the
development of Symmetry Features, such as a big closed box or a pile of books.
However, the training examples were not changed and did not include such scenes.
After adding training examples with similar scenes (e.g. a closed box where a point
at the edge of the box was labeled as a bad grasp center), an accuracy rate of
85.50% was achieved. Clearly, missing training data cannot be considered as a
sufficient explanation why the HAF-classifier achieved a higher accuracy rate than
the classifier trained with HAF and SHAF. Thus, the results were analyzed in
order to gain a deeper understanding of the observed phenomenon. The analysis
exposed that HAF&SHAF classified negative examples with a success rate higher
than 90%, but did perform badly for positive examples. The first person contacting
the author of this thesis referencing this sentence gets a thesis-reading-award of one
hundred euro. A subsequent analysis showed that HAF&SHAF are overall more
sensitive to grasp situations: For example, a rim of a bowl with 2−3cm offset with
respect to the manipulator center easily results in a negative classification, although
a small offset for a bowl would still be sufficient for grasping. Since the presented
system regularly achieved several potential grasps during experiments, tougher
constraints for selecting positive grasps should not be considered a drawback, but
as an improvement for detecting even more reliable grasps.

5.3 Top Feature Analysis for HAF & SHAF

For the experiments in Section 8.2 and Section 8.3 302 out of 35000 features were
selected balancing time performance against classification quality. Feature values
were calculated by (3.1). For the tests presented in Section 8.5 21 additional
Symmetry Features were added to improve classification results. By improving a
generation function for features with two regions and manually defining further
features with three and four regions, including Symmetry Features, new features
with significantly higher F-score values compared to Fischinger et al. (2013b) could
be selected.
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F-score (Chen and Lin, 2006) is a technique which measures the discrimination
power of features. Given training vectors xk, k = 1, ...,m, if the number of positive
and negative instances are n+ and n−, respectively, then the F-score of the ith

feature is defined as

F (i) =
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where xi, x
(+)
i , x

(−)
i are the average of the ith feature of the whole, positive, and

negative data sets, respectively; x
(+)
k,i is the ith feature of the kth positive instance,

and x
(−)
k,i is the ith feature of the kth negative instance. The numerator indicates

the discrimination between the positive and negative sets, and the denominator
indicates the one within each of the two sets. The larger the F-score is, the more
likely this feature is more discriminative.

In Tab. 5.2, F-scores of the 302 features used in Fischinger et al. (2013b) are
compared to the new top 302 features after feature selection. The F-score is evalu-
ated on two datasets. The first dataset had 13692 very clear (easily distinguishable
between possible and impossible grasp) instances. The second dataset included
a total of 17620 positive and negative examples that were more difficult to clas-
sify. Thereby, the average F-score could be increased from 2.04 to 3.78 on the first
dataset and from 0.54 to 1.57 on the second one.

Table 5.2: F-Score comparison between new top 302 features and previous 302 features
from Fischinger et al. (2013b) on two data sets

DataSet F-Score of: MIN MAX MEAN MEDIAN
1 Old Features 1.16 7.69 2.04 1.94
1 New Features 2.16 7.92 3.78 3.73
2 Old Features 0.21 1.88 0.54 0.50
2 New Features 0.80 2.76 1.57 1.60

Using cross validation, it could be shown (Tab. 5.3) that even for the second
dataset the 20 top ranked (new) features are sufficient for a 100 percent success
rate in classification.

In Tab. 5.4, the top 20 (S)HAF are listed, which are also depicted with their
respective F-score values in Fig. 5.1. The necessary weighting factors for regions
of HAF (SHAF have no weighting factors) can be found in Tab. 5.4. From the
top 20 features, 10 are Symmetry Features (9 of which are among the top 12).
Furthermore, from the top 20 features, only two (ranked 19 and 20) were generated
automatically with two regions and allow an intuitive interpretation (”if the center
is higher, it is good to grasp there”). For three other features with two regions
(4, 13, and 14) the weighting emphasis was on the larger region, meaning that the
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Table 5.3: Grasp classification success rate for top ranked features tested on dataset 2

# Features Success rate in percent
2 97.599
3 98.048
5 98.252
6 98.967
10 99.767
12 99.796
20 100.000

Table 5.4: Top Twenty Features ranked by F-score value

Rank F-score SHAF #Reg. wred wgreen wblue wblack
1 14.69 x 3
2 14.23 x 3
3 9.53 x 3
4 7.92 2 1 -3 - -
5 7.91 x 3
6 7.69 3 1 -1 -10 -
7 7.31 x 3
8 6.82 4 1 0.5 -6 -8.25
9 6.56 x 3
10 6.32 x 3
11 6.13 x 3
12 6.09 x 3
13 5.81 2 1 -7 - -
14 5.80 2 1 -10 - -
15 5.77 3 1 -1 -1 -
16 5.73 x 3
17 5.50 4 1 0.5 -5 -8.25
18 5.49 3 -2 6 -2 -
19 5.35 2 -1 9.33 - -
20 5.32 2 -1 10.5 -

inner region had to be higher than the outer region to achieve a feature value of
zero. From the remaining features, 6, 15, and 18 have three regions and 8 and
17 have four. In summary, these results demonstrate that a higher complexity of
features achieves better results, even though an intuitive interpretation is not that
easy anymore.
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1) F-S.: 14.69 2) 14.23 3) 9.53 4) 7.92

5) 7.91 6) 7.69 7) 7.31 8) 6.82

9) 6.56 10) 6.32 11) 6.13 12) 6.09

13) 5.81 14) 5.80 15) 5.77 16) 5.73

17) 5.50 18) 5.49 19) 5.35 20) 5.32

Figure 5.1: Top 20 Topographic Features (HAF, SHAF) with F-score values (from
Tab. 5.4)
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Chapter 6

Pre-Grasp Gripper Width Calculation

In the previous sections, the approach to calculate grasps in a six-dimensional
grasp space (defined by the position and the orientation of the manipulator) was
presented. An initially fully opened manipulator was assumed. In Fig. 6.1 a situa-
tion is depicted were grasping with an initially fully opened manipulator would not
succeed because the manipulator cannot reach the grasp position due to collisions
with obstacles. In this section an extension of the system is presented to learn
grasps in a seven-dimensional grasp space, showing how to determine a suitable
opening width for target approaching of the manipulator by iterative use of the
(S)HAF approach.

Figure 6.1: Motivation of pre-grasp gripper opening width: The picture shows a scenario
where an initially fully opened gripper could not succeed, because gripper-object collisions
would occur while approaching the final grasp position.

The initial idea of HAF is to learn and detect areas where parts of a manipulator
can enclose the center of the object parts. The classifier and the weighting system
identify suitable grasping positions for a gripper with known opening width. To
test if a partly opened manipulator can enclose an object the presented approach
is used with only small adaptations: by scaling the point cloud with respect to the
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degree of manipulator closing, different opening widths can be simulated. For ex-
ample, to test a half-opened manipulator (opening width = max opening width/2),
the point cloud (after rotation and tilt) is scaled by the factor 2. If the system
detects a grasp with a high evaluation score, grasping at that position with a half-
opened manipulator will probably succeed. In other words, to determine the best
opening width, the best grasp hypothesis for different opening widths is iteratively
determined using the scaling factor S for the point cloud PCO by the means of

S =
1

(opening width as fraction ∈ (0, 1])
(6.1)

and finally the grasp hypothesis with the overall best score is selected. In ex-
periments with a newly developed household robot described in Section 8.6, the
procedure was tested with a Festo Fin Ray gripper and it was shown that this
improvement enabled grasping of objects in scenes where grasping was not possible
without optimizing the pre-grasp gripper opening width.

Algorithm 2 Pseudo code of the system for a task such as Clearing-the-Table
(HAF includes HAF and SHAF)

Require: Raw depth data of scene
Ensure: The table top gets cleared
1: PCO ← GetObjectsPointCloudData()
2: while table not cleared do
3: GH = ∅ #GraspHypotheses incl. gripper width
4: for αtilt = 0; αtilt < maxTilt; αtilt += tiltStep do
5: for βroll = 0; βroll ≤ 2π; βroll += rollStep do
6: for width = 0; width ≤ widthmax; width += 1 do
7: PCO ← ScalePCwrtGripperWidth(PCO, width)
8: heightGrid←MakeHeightGrid(PCO)
9: accumHeightGrid← Accum(heightGrid)

10: HAF ← CalcHAF (accumHeightGrid)
11: graspGrid← SVMClassifier(HAF )
12: GH ← AppendTopGrasps(GH, graspGrid, width)
13: end for
14: end for
15: end for
16: success← false
17: while success == false & GH 6= ∅ do
18: topGH ← GetAndRemoveTopGH(GH))
19: topGrasp← FineCalculation(topGH)
20: success← TryExecuteTopGrasp(topGrasp)
21: end while
22: pc← GetObjectsPointCloudData()
23: end while
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Chapter 7

Scalability to Diverse Robotic Hands

The presented approach was evaluated on four different hardware platforms, also to
demonstrate its scalability to diverse robotic grippers (for an overview see Fig. 7.1)
with zero or only minor changes.

(a) SensorHand
Speed

(b) Fin Ray
Gripper

(c) PR2 Gripper (d) Michelangelo Hand

Figure 7.1: Overview of used robotic hands in experiments

For all experiments in the following sections no gripper-specific classifier train-
ing was done. Thereby, it is shown that the grasp classifier is usable for various
robotic grippers. As mentioned earlier no specific grasp points on objects (or ac-
tually the incompletely perceived object surface data of objects) are calculated,
instead an approach vector for the object is calculated. For grasping, this ap-
proach vector is aligned with the gripper specific approach vector. This alignment
with subsequent grasp planning in simulation enables the method to work with
different robotic hands. Crucial for the grasp performance is the definition of the
gripper’s approach vector (position and direction). For the Michelangelo hand
(used in Section 8.7 and Section 8.8), it was challenging to find a suitable approach
vector. Due to the complex finger trajectories a single (hand-specific) approach
vector cannot guarantee perfect positioning of the hand for both objects depicted
in Fig. 7.2 (assumed that the calculated approach vectors intersect with the center
point of each object). Simplified trajectories for the forefinger and the thumb in
two dimensions are depicted in Fig. 7.2.
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(a) Michelangelo hand (b) MH with approach vector

(c) MH with object

Figure 7.2: Michelangelo hand in closed and open position. Top row,center: Michelangelo
hand in perfect position for grasping a small and a long rectangular shaped object (both
green). The red arrows indicate a simplified finger trajectory when the hand is closed.

The green rectangles represent two objects. For both objects, the hand is
optimally positioned such that closing the fingers should result in valid grasps. If
the objects were swapped in position, grasps would fail for both of them. This
exhibits a problem: The (S)HAF approach (ideally) defines the center of these
objects as the center of a grasp (which is equal to the mid point of two grasp
points). Thus, defining one approach vector for the hand can only position the
hand ideally for grasping one of the objects, but not both. During tests for defining
a good approach vector for the Michelangelo hand, a heuristic was developed that
takes the local surface into account and adapts the hand position with respect to
the width of the object mesh in the space between the opened fingers. For these
tests, only a fixed hand orientation was considered. When (pre)tests were started
with all roll angles, it turned out that in practice this heuristic is not even needed
since the evaluation system prefers grasps such that objects are grasped at their
smaller side - so for the longer rectangle the hand would be rotated by 90 degrees.
Finally, it was decided to skip the heuristic and use a single approach vector for
the Michelangelo hand in all experiments, which proves that the presented method
can be used without adaptations for all four robotic grippers (see Fig. 7.2-7.5) used
in the presented experiments.

However, for considerably bigger or smaller grippers, scaling of the input point
cloud prior to the execution of the grasp classifier can enable modification of the
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approach according to the gripper opening with.

(a) Open (b) Closed (c) With
approach
vector

(d) SensorHand Speed with
cover

Figure 7.3: Otto Bock handprosthesis SensorHand Speed with 1 DOF

(a) Fin Ray grip-
per open

(b) Fin Ray gripper
closed

(c) Fin Ray effect for robust grasps

Figure 7.4: Fin Ray gripper with 1 DOF

(a) PR2 gripper open (b) PR2 grip-
per closed

(c) PR2 grip-
per closed with
approach vector

(d) PR2 grasping an
object

Figure 7.5: PR2 gripper with 1 DOF
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Chapter 8

Robotic Experiments and Evaluation

As stated in the grasp review journal paper by Bohg et al. (2014), an important
issue in grasping is the current lack of general benchmarks and performance metrics
suitable for comparing different grasp approaches. Available object-grasp databases
like the Columbia Grasp database (Goldfeder et al., 2009) or the VisGraB data set
(available at http://www.robwork.dk/visgrab/) are not commonly used for com-
parison. As Bohg et al. mention, it has been recognized that traditional metrics
based on analytic formulations, such as the widely used ε-metric proposed by Fer-
rari and Canny (1992), do not cope well with challenges arising in unstructured
environments. The ε-metric is implemented in simulators such as GraspIt! (Miller
and Allen, 2004) and OpenRAVE (Diankov and Kuffner, 2008). However, even the
developer of OpenRAVE claims (Diankov, 2010) that in practice, grasps detected
using this metric tend to be relatively fragile. In Balasubramanian et al. (2012)
a number of grasps were systematically tested in the real world that were stable
according to classical grasp metrics. A similar study by Weisz and Allen (2012)
focused on the ε-metric. Both studies found that the ability of the metrics to
predict stable grasps in the real world is very limited in comparison to the actual
best grasps. This corresponds to the experience of the author with force closure
grasp solutions in simulators (GraspIt!, OpenRAVE), hence it is hypothesized that
for now, the most suitable way to evaluate and compare grasp approaches is to
execute grasps on physical robots. However, grasping is highly dependent on the
employed sensing and manipulation hardware, as well as on the quality of cali-
bration. Therefore, an objective comparison of grasp approaches is very hard to
achieve and normally only done for approaches related to the same research group
(an exception is Section 8.5).

8.1 Goals of experiments

In the following sections, a series of experiments is presented, in which the (S)HAF
approach is evaluated with different robots (see Tab. 8.1 and Fig. 8.1). In each
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Figure 8.1: Robots used for the grasp experiments, clockwise: Hobbit, a household robot
clearing the floor with a 5-DOF arm and a Fin Ray gripper; Schunk 7-DOF arm with
hand prosthesis emptying a box in reality and simulation; Kuka LBR with Michelangelo
hand prosthesis; PR2 clearing the table.

experiment, specific aspects were brought into focus (for an overview see Tab. 8.2).

Table 8.1: Overview of experiments

Exp. Sec. Name Robot-Arm DOF Robotic Hand
1 8.2 Clear Table Schunk 7 OB Hand protheses
2 8.3 Empty Basket Schunk 7 OB Hand protheses
3 8.4 SingleObjects PR2 7 PR2 Gripper
4 8.5 Clear Table PR2 7 PR2 Gripper
5 8.6 GripperWidth IGUS 5 Fin Ray Gripper
6 8.7 SingleObjects Kuka LBR 7 Michelangelo Hand
7 8.8 ObjectRecog. Kuka LBR 7 Michelangelo Hand
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Table 8.2: Overview of aspects focused in the experiments (x). (.) indicates relevance of
the aspect for experiment, but not as primary focus.

ASPECT\Experiment 1 2 3 4 5 6 7
HAF x . . . . . .
6D Exploration x .
Autonomous x x
Box obstacle x
Clutter x x x
SHAF x x . . .
Comparison SOTA (Jiang et al., 2011) x x
Gripper Width x
Scalability to Robotic Hands . . . x .
Deformable objects . . . x
Object recognition gain x

In Section 8.2, an experiment is presented, in which a table with objects was
completely autonomously cleared (aspect: “Autonomous” from Tab. 8.2) using
HAF (“HAF”), without any user input. For this experiment in clutter (“Clutter”),
the use of the grasp space exploration method (“6D Exploration”) was verified. In
Section 8.3, an experiment is presented in which a box of objects (“Box obstacle”)
was autonomously unloaded. Sections 8.4 and 8.5 present experiments performed
on a PR2 in which the approach (“HAF”,“SHAF”) was compared to two other
grasp detection methods and give a detailed comparison between the presented
method and the state-of-the-art approach from Jiang et al. (2011) (“Comparison
SOTA”). In Section 8.6 experiments conducted with the Hobbit platform (a service
robot currently developed in the framework of an FP7-EU project) in a “clearing-
the-floor scenario” is presented, in which the feasibility of the pre-grasp gripper
opening width calculation (“Gripper Width”) is also tested. In Sections 8.7 and
8.8, the presented method is used with a more complex robotic hand (“Scalability
to Robotic Hands”) and the gain in combining the (S)HAF method with object
recognition (“Recognition gain”) is shown.

ROS (Robot Operating System, www.ros.org) was used for module commu-
nication in all experiments. All point cloud manipulations were done with PCL
(Point Cloud Library, www.pointclouds.org).
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8.2 Clearing Table with Schunk Arm

In the first experiment, the capability of the approach is demonstrated by grasping
objects from a table. The grasp classifier was trained with Height Accumulated
Features. The focus of the experiments are on the capability to grasp in clutter
and the autonomy of the system (no user interaction after placing all objects and
starting the system). Tests for eleven different scenarios (Fig. 8.3(a)-8.3(j)) with
five to nine objects were done. The experiments and results are an extension of
work published in Fischinger and Vincze (2012b). Fig. 8.4 shows all 19 objects
used. Most of them are graspable from any configuration. The two bowls become
non-graspable for the robotic hand if grasp manipulations result in an upside down
position.

Figure 8.2: The 7-DOF Schunk arm and the tripods for the two cameras used for the
clearing the table experiments.

8.2.1 Clearing Table with Schunk Arm: Test Setup

For the grasp execution, a Schunk 7-DOF robot arm with an Otto Bock hand
prosthesis “SensorHand Speed” with one degree of freedom was used. For percep-
tion of data two Microsoft Kinect cameras with PrimeSense sensors positioned on
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(a) Test Run 1 (b) Test Run 2 (c) Test Run 3 (d) Test Run 4

(e) Test Run 5 (f) Test Run 6 (g) Test Run 7

(h) Test Run 8 (i) Test Run 9 (j) Test Run 10

Figure 8.3: Test cases for clearing the table

opposite sides of the object pile were used. The two cameras were triggered with
a time offset to overcome overlapping laser pattern projections that lead to lower
data quality.

8.2.2 Clearing Table with Schunk Arm: Results

Tab. 8.3 shows results from the eleven executed trials for clearing the table. In all
cases, the table was successfully cleared after placing the objects and starting the
system without any further intervention from the experimenter. A grasp was rated
as successful if an object was grasped, lifted, and delivered to a plastic box one
meter away from the original position of the object pile. Since object manipulation
for a number of objects in cluttered scenes can lead to situations where grasps are
not possible any more (due to kinematic reachability after moving an object out
of the graspable area or due to missing grasps because of an upside-down bowl)
it was a-priori not granted that the table will be cleared completely in each run.
Videos of the test runs are available at: www.youtube.com/user/clearingthetable.

51



8. Robotic Experiments and Evaluation

Figure 8.4: Objects used for Clearing the Table with a Schunk arm

Table 8.3: Clearing the Table results for all trials

Run Objects Removed Table Cleared Grasp Failures
1 5/5 yes 0
2 5/5 yes 0
3 6/6 yes 1
4 6/6 yes 0
5 7/7 yes 0
6 7/7 yes 0
7 8/8 yes 1
8 8/8 yes 0
9 9/9 yes 0
10 9/9 yes 0
11 7/7 yes 3

Sum 77/77 11/11 5

Tab. 8.4 gives a detailed overview of grasp failures per trial and object. In test
run 7, the plastic bowl was grasped together with the headset. Since the objective
of this experiment was to clear the table top without segmentation of objects,
this grasp was assessed as to have successfully grasped both objects. For the
implementation used, it takes 2-3 seconds to calculate the top grasp and about one
second for grasp and path planning in OpenRAVE. Overall, 77 successful grasps out
of 82 tries (93.9%) for grasping from piles of unknown objects could be achieved.
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Table 8.4: Grasp failures per object for 10 trials. Entry of last column is the number of
failures divided by the number of tries. Hyphen (“-”) indicates that object was not used
for this run.

Obj\Run 1 2 3 4 5 6 7 8 9 10 11 Sum
Ape 0 - - - - - - - - - - 0/1
Ball - - - - - 0 0 0 0 - 0 0/5
Bowl - - - - 0 - 0 - - - 0 0/3
BowlBig - - 0 0 - 0 - 0 0 0 - 0/6
Car - - 0 - - - 0 0 - 0 - 0/4
CarSmall - - - - 0 - - - - - 0 0/2
Cereal - - - - 0 0 - 0 - 0 0 0/5
CuboidFoam 0 0 0 0 - - - - - - - 0/4
Elephant 0 0 - 0 - 0 0 - 0 0 - 0/7
Headset - - - - - 0 1 0 0 0 - 1/6
Lego - - - - 0 - - - 0 - - 0/2
Loco - - - 0 - - - - - - 2 2/4
Pig - - - - 0 0 0 0 0 0 0 0/7
PlayDough - - - 0 - - - - 0 - - 0/2
SelfCutFoam - - 0 - - - - 0 - 0 1 1/5
SoftPads 0 0 0 0 0 0 0 0 0 0 - 0/10
TeaBlue - 0 1 - - - - - 0 - - 1/4
TeaRed - 0 - - - - - - - - - 0/1
Whey 0 - - - 0 - 0 - - 0 - 0/4
Sum 0 0 1 0 0 0 1 0 0 0 3 5/82
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8.3 Emptying a Basket with Schunk Arm

The goal of this follow-up experiment was also to prove the feasibility of the HAF
approach, but this time in a scenario where a basket filled with unknown ob-
jects should be autonomously emptied. The basket as a non-graspable obstacle
with variable position and orientation significantly increases the complexity of the
task compared to the previous experiment of clearing a table, as the number of
executable grasps decreases. Tests for ten different scenarios (see Fig. 8.6) were
performed.

8.3.1 Emptying a Basket with Schunk Arm: Test Setup

For grasp execution, again a Schunk 7-DOF robot arm with an Otto Bock hand
prosthesis “SensorHand Speed” was used. An accurate and robust basket detection
for position and orientation was crucial for these tests. After initially triggering
a scene shot, the orientation and exact x-,y-position of the basket is determined.
Since error probabilities (e.g. for robot accuracy, camera depth calibration, external
camera parameter calibration (=camera position)) have to be multiplied to get the
success probability of the whole complex system, it is important that the basket
detection works in almost all cases. This includes scenarios shown in Fig. 8.5 where

Figure 8.5: The picture shows a filled basket from camera view. Only two separated parts
of one basket face are visible. Basket detection still has to work.

only one face of the basket is visible, and there are overlapping objects which in
addition separate this one face and make its perception incomplete. Developing
this module with 100% reliability and coping with basket occlusions is challenging,
but not the focus of this thesis.
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Perception was again done using two Microsoft Kinect cameras positioned on
opposite sides of the basket.

(a) Test Run 1 (b) Test Run 2 (c) Test Run 7

(d) Test Run 8 (e) Test Run 9 (f) Test Run 10

Figure 8.6: Examples of test scenarios for empty the basket

8.3.2 Emptying a Basket with Schunk Arm: Results

Tab. 8.6 gives a detailed overview of grasp failures per test run and grasped object
type for the ten trials of emptying a basket. Tab. 8.5 gives an overview of grasp
failures per test run. Although the basket increases the complexity of the task
significantly, in all cases the basket was successfully emptied after placing it at
a random position in the graspable area (limited only by the kinematics of the
arm) and starting the system without any further experimenter intervention. In
five out of ten test runs, the basket was emptied without a single grasp failure.
Regarding only first tries to grasp an object, the approach succeeded in 61 out of
70 cases, giving a success rate of 87.1%. The used implementation needed 2 − 3
seconds for grasp calculation and about one second for grasp and path planning
with OpenRAVE.

Tab. 8.7 shows grasp error analysis. Three main issues were identified as causing
grasp failures: Incomplete point cloud data, path planning errors in the simula-
tion, and suboptimal grasp points. For a deeper failure analysis we also refer to
Fischinger and Vincze (2012a).

• Insufficient point cloud data leads to bad grasp hypotheses: On the milk
package (see Fig. 8.8, left) the brand name was covered by a black tape
for TV-recording. The sensor delivered no data for the taped area. Taking
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Figure 8.7: Objects used for emptying the basket experiments

Run Objects Removed (autonomously) Grasp Failures
1 7/7 0
2 7/7 9
3 7/7 0
4 7/7 2
5 7/7 0
6 7/7 0
7 7/7 2
8 7/7 0
9 7/7 7
10 7/7 2

Sum 70/70 22

Table 8.5: Empty the basket results for all trials. The system worked fully autonomously
after it was started and succeeded in all ten test trials to fully unload all items in the box.

into account the object’s relative position adjacent to a neighboring object,
the resulting grasp points looked reasonable in the simulation environment,
but failed in the real world experiments seven times in a row (see Fig. 8.8).
Each time the milk package was moved a bit, until the hard constellation was
cleared and the milk package separated a bit from the adjacent object. Then,
stable grasp points could be found despite the misleading input data.

• Path planning was the reason for grasp failures twice. In both cases, the arm
stopped in simulation before it reached the expected position. This problem
is related to finding kinematic solutions and seems to be a problem of the
implementation of the simulator.

• The HAF learning approach identified grasp points that lead to unstable
grasps in some failure scenarios. Consequently, objects slipped out of the
gripper’s fingers. This happened if objects had no obvious grasp points,
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Table 8.6: Grasp failures per object for 10 trial runs. Last column shows number of
failures divided by number of tries. Hyphen (“-”) indicates that the object was not used
for this run.

Obj\ Run 1 2 3 4 5 6 7 8 9 10 Sum
Ball - - 0 0 0 0 - - 5 0 5/11
Bowl 0 - - - - - - - 0 - 0/2
Car - - - - - - - - 0 1 1/3
Cereal 0 - 0 0 0 - - - - - 0/4
Cube - 0 - - - - - - - - 0/1
CubeFoam - 0 - - - - - 0 - - 0/2
Cuboid 0 0 0 0 0 0 2 0 1 - 3/12
CuboidFoam - - - - - - 0 - - - 0/1
CylinderFoam - - - - - - 0 0 - 0 0/3
EdgeFoam - - - - - - 0 0 - - 0/2
Elephant 0 2 0 0 0 0 0 0 1 0 3/13
Milk - 7 - 2 - - - - - - 9/11
Pig - - - - - 0 - - 0 0 0/3
Play Dough 0 0 0 0 0 0 - - - 1 1/8
SoftPads 0 - 0 0 0 0 0 0 - - 0/7
DrinkBox 0 - - - 0 - - - - - 0/2
Whey - 0 0 - - 0 0 0 0 0 0/7
Sum 0 9 0 2 0 0 2 0 7 2 22/92

e.g., when object top surfaces had the same height and touched each other.
However, for none of the 22 failed grasps calculated, it was obvious already in
simulation for the human observer that the grasp would not succeed. In all
cases, the grasp trials touch at least one object, resulting in a perturbation
of the constellations and thus creating a situation such that autonomous
emptying proceeds further.

An important note is that out of 22 failed grasps, 18 happened when only
one or two objects where left in the basket. Two particularly challenging object
constellations, which caused seven and four grasp failures in a row were responsible
for that. However, this fact also demonstrates that the weighting system for grasp
selection is capable of identifying easily graspable objects first. It also shows that
the basket brings a complication which should not be underestimated, since most
of these 18 grasp failures were related to objects adjacent to the basket border. It
also reveals potentials for enhancements of the grasp learning system. To avoid
obstacles (i.e. basket borders or currently skipped objects), the system chooses
grasp points near the edges of an object, which can result in objects slipping out of
the gripper’s fingers. Fig. 8.8 shows the scenario where grasping failed seven times
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in a row due to a combination of grasps selected near object edges (also because of
missing alternatives) and insufficient point cloud data.

Figure 8.8: Unstable grasp points due to insufficient data. left: misleading hole in data
mesh due to black tape on the milk carton (to cover brand label). center: calculated grasp
points and approach direction. right: grasp execution in simulation; objects slipped out
of the gripper repeatedly when executed on real robot

Table 8.7: Analysis for grasp failures per object and test run. Failures are caused by
insufficient point cloud data (Data), wrong path planning (PP) or unstable grasp points
(HAF)

Run Object Failures Data PP HAF
2 Milk 7 x
9 Ball 4 x
2 Elephant 2 x
4 Milk 2 x x
7 Cuboid 2 x x
9 Ball 1 x
9 Cuboid 1 x
9 Elephant 1 x
10 Car 1 x
10 Play Dough 1 x x

Sum 22 15 2 10
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8.4 Grasping Single Objects with PR2

This experiment was performed in order to compare the (S)HAF approach to a pop-
ular state-of-the-art algorithm, which is learning features from 2D images, where
one of the features is based on comparing object heights in predefined rectangle
regions (Jiang et al., 2011). The similarity of this feature to (S)HAF, the perfor-
mance and popularity of the approach in recent years, and the ability to work in
cluttered scenes made this work an excellent choice to compare the presented work
with. The experiment was based on scenarios of single standing objects and for
the first time SHAF were used for topographic grasping.

8.4.1 Grasping Single Objects with PR2: Test Setup

Symmetry Height Accumulated Features as well as basic HAF were used to train
the grasp classifier for this experiment. The demo scenario was implemented on
a PR2 robot platform (Fig. 8.9) at Cornell University. For grasp execution, the

Figure 8.9: The PR2 with mounted top camera at the head.
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left 7-DOF arm, with a two-finger gripper was used. The grasp classifier (training
and initial tests for the grasp classifier were done for an Otto Bock 1-DOF hand
prosthesis) was not adapted for the PR2 gripper, demonstrating the scalability of
the approach for diverse robotic grippers (see Section 7 for explanation). Point
cloud perception of scenes was done using one Microsoft Kinect camera mounted
at the head of the PR2. After perception of a point cloud, points of the table
surface were deleted automatically as well as points not relevant for grasping, e.g.
points outside of the kinematic reachability of the PR2 arm. From the remaining
point cloud a mesh was generated which was then used in OpenRAVE for path
planning and grasp simulation. The Rectangle Representation method from Jiang
et al. (2011) and the topography-based grasping used the same function for grasp
simulation in OpenRAVE from which the physical robot was also controlled. In
other words, the system was not aware of the method that generated the grasp
hypotheses.

In this experiment on grasping single objects on a table, three methods for
calculating grasps were compared: The first method is the default grasp planner
from the robotics simulation environment OpenRAVE. A detailed description of
the method used can be found in the OpenRAVE documentation about the grasp-
ing module (Diankov, 2012). Note that the grasp calculation with this default
OpenRAVE method is not completely appropriate, since force closure calculation
assumes a complete 3D object model. Despite this shortcoming, this method was
preferred to a more random generation of grasp points and approach vectors as
a basic benchmark algorithm. Due to path planning, inverse kinematic, and per-
formance reasons the OpenRAVE grasp selection method had to be restricted to
grasps with a mainly vertical approach direction (70% vertical). The second grasp
method was the Rectangle Representation from Jiang et al. (2011). The third
method was the presented method, using HAF and SHAF Topographic Features.

Nine out of ten objects for this experiment were chosen from an object box
at Cornell University, of which no object was ever used before for training the
classifier or any other part of the approach. To pick the tenth object, an uninvolved
person was asked to pick an arbitrary object from the lab that fits between the PR2
gripper, which resulted in the picking of a computer mouse. All objects are depicted
in Fig. 8.10 in one of the grasp poses used for this test. For test methods 2 and
3, only top grasps (with vertical approach direction) were used, due to 3 reasons:
First, for a given gripper orientation and a straight approach trajectory in the final
few centimeters approaching an object, it is hard to find an area of 35x40cm for
top grasps where inverse kinematic solutions are possible for all gripper roll angles.
Each allowed deviation from vertical grasp reduces the size of this object region
where grasps can be executed. Second, for test method two no code was available
to calculate grasp hypotheses other than those from the direction of the camera
view. And third, in this test scenario, in contrast to experiments in Sections 8.2
and 8.3 point cloud perception is done by a single camera. Due to incomplete
point cloud data (especially occlusions), path planning gets more unreliable as the
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(a) Baseball (b) Bear (c) Bone (d) Bowl (e) Foam

(f) Glass (g) Glove (h) Mouse (i) Tape (j) Umbrella

Figure 8.10: Test objects used for Clearing the Table with a PR2

approach direction deviates from the camera view direction.
For testing, each object was placed five times in different poses (i.e. varying

orientation and position) in a 35x40cm region where inverse kinematic solutions for
vertical grasps were generally found. This was done manually by the experimenters
for the first five test objects, for the last five objects, this was done by an uninvolved
person. After placing an object in the marked area, photos were taken from different
angles to replicate the scene for all three test methods. A grasp is defined as
successful if the robot arm lifts the object and holds it for at least 15 seconds.

8.4.2 Comments on available Rectangle Representation Code

The provided code (available from (Cor, 2012)) needs as input an image of the
grasping area without objects to grasp and limits the grasp detection to image
regions where objects were placed afterwards by comparing the current and the
former image. There is a need to know how the empty grasp area looks like without
objects from a fixed camera view, which makes the approach inflexible with respect
to camera or robot movements, and hence unsuitable for mobile robotics. For the
experiments in this thesis, the available code was enhanced by using the path
planning of OpenRAVE to find an appropriate distance between the object and
the gripper while grasping instead of using a fixed offset from the detected 3D
point in the center of the rectangle from the Rectangle Representation.

Using the original approach would often have led to a collision between the
gripper and the grasped object because the learned opening width was too narrow
(see Fig. 8.13) or there was simply no space for the gripper fingers since no object
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collision implementation was available to recalculate the fixed offset. To obtain
better results for Rectangle Representation, grasps with maximal opening width
were used (which was still not wide enough to grasp a baseball where the rectangle
was centered usually at the edge of the image and the gripper touched the ball
when approaching: see Fig. 8.15(c)).

8.4.3 Grasping Single Objects with PR2: Results

Results are summarized in Tab. 8.8. The listed average time in seconds for the
OpenRAVE algorithm is the time for grasp calculation. For algorithms 2 and
3, the time is measured from the point of receiving the point cloud data (and
image data for method 2) to the output of the grasp hypothesis. Grasp and path
planning time for the latter two methods is about one second. Being aware that the
presented algorithm will still be superior regarding time performance, a very high
quality threshold parameter was chosen for the algorithm. This quality threshold
stops the algorithm as soon as a grasp evaluation is better than the threshold (so
other grasps are not evaluated anymore). Although with smaller threshold values
good results are achieved, it was decided to go for higher grasp quality than faster
performance.

Table 8.8: Grasp success rate (Suc.) in % and performance time in seconds: OpenRAVE
vs. Rectangle Representation vs. (S)HAF

Method OpenRAVE Rec. Repr. (S)HAF
Item Suc. Time Suc. Time Suc. Time
Baseball 0 15.0 20 33.5 100 9.8
Bear 0 12.4 40 47.1 100 9.8
Bone 0 17.9 100 42.2 100 11.8
Bowl 40 94.9 80 45.5 100 12.7
Foam 40 35.7 80 44.2 100 14.4
Glass 20 18.1 80 47.3 40 12.4
Glove 100 33.6 100 44.5 100 15.0
Mouse 0 13.5 20 45.0 80 10.4
Tape 0 10.3 20 45.7 100 10.4
Umbrella 0 39.3 40 42.6 100 14.0
AVERAGE 20 29.1 58 43.8 92 12.1

The (S)HAF approach succeeded in 46 out of 50 trials, giving a success rate of
92% compared to 58% for Rectangle Representation and 20% for the OpenRAVE
force closure grasp selection. Overall, 8 out of 10 objects were grasped 5 times with-
out a single failure. The Rectangle Representation only achieved a higher success
rate for the Martini glass. For this object the (S)HAF grasps were not optimal and
during the approaching of the gripper, a slight touch of the object caused the lying
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Martini glass to roll away. Reasons why the Rectangle Representation performed
considerably worse are depicted in Fig. 8.13 - Fig. 8.17. Often grasps were detected
at object edges, which was the main reason for the 34% gap in grasp success rate.
Further grasp quality analyses of the main methods is done in Section 8.5.3.

Although significant time was invested finding optimal parameters for the Open-
RAVE method, the algorithm did not grasp more than 1 out of 5 objects success-
fully. In total, for 12 out of 50 grasp tries, this method could not find a force clo-
sure grasp. For additional 5 tries, path planning failed for all found grasp solutions
(although the grasps were restricted to mainly vertical directions). Force closure
detection in simulation for two-finger grippers does not always return promising so-
lutions even if complete object models are available. Furthermore, the calculation
times dramatically increase with the size of the objects mesh (which is consider-
ably bigger for the clearing the table scenario) for this method. Because of this,
the OpenRAVE algorithm was not tested in the next test scenario of Section 8.5.
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8.5 Clearing Table with PR2

The goal of this follow-up experiment was to compare the topography-based ap-
proach using HAF and SHAF to the same Rectangle Representation approach used
in the previous experiment, but this time for a cluttered pile of five to ten objects
on a table. Furthermore, this experiment shows that one camera is not only suf-
ficient for clearing single objects, but also for objects in cluttered scenes, which is
in contrast to the experiment in Section 8.2 where two cameras with different view
angles were used for enhanced data perception.

8.5.1 Clearing Table with PR2: Test Setup

The basic setup is similar to the one stated in Section 8.4.1. After each failed grasp,
the object with the center nearest to the tool center point of the gripper at the
time of closing was removed such that each method has only one try per object.
Each of the two tested methods led to one grasp where two objects were removed
simultaneously. In these two cases, the object with object center further away from
the tool center point of the gripper was replaced in its original position and the
grasp for the other object was assessed as successful. After each grasp the initial
positions of the remaining objects were reestablished using snapshots from different
angles of the initial scene. To enable object readjustment a control instance was
inserted after each grasp trial that waits for a key to be pressed. Barring this
intervention, the system clears the table without further user interaction.

8.5.2 Clearing Table with PR2: Results

Tab. 8.9 shows success rates for all six test cases and the average calculation time
per grasp in seconds. Pictures of all test cases are shown in Fig. 8.11.

Table 8.9: Grasp success rate (Suc.) in % and performance time in seconds: Rectangle
Representation vs. (S)HAF

Method: Rec. Repr. (S)HAF
Test Case #Obj Suc. Time Suc. Time
TC 1 5 4/5 48 5/5 17
TC 2 6 3/6 51 6/6 15
TC 3 7 4/7 45 6/7 16
TC 4 8 6/8 48 7/8 15
TC 5 9 4/9 48 7/9 16
TC 6 10 5/10 47 8/10 15
Sum/Avg. 45 26/45 47.8 39/45 15.7

Using the (S)HAF approach the system successfully grasped 39 objects out of
45 tries, giving an overall success rate of 86.7%. Rectangle Representation achieved
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(a) Test Case 1 (b) Test Case 2 (c) Test Case 3

(d) Test Case 4 (e) Test Case 5 (f) Test Case 6

Figure 8.11: Test cases with 5, 6, 7, 8, 9 and 10 objects for clearing the table

26 out of 45 successful tries, giving an overall success rate of 57.8%. Although,
as mentioned above, the parameter setting was suboptimal with respect to time
performance, the presented algorithm was three times faster than the Rectangle
Representation algorithm. The six grasp failures for the (S)HAF approach had
different underlying reasons. In test case 5, the system failed to grasp the glove
because only for this single case the “integrated path planning” failed and parts of
the bowl prevented the manipulator from approaching the glove as far as needed
in the simulation environment and hence in the real grasp execution. For the other
five failures, non-optimal HAF grasps were each time partly responsible. But in
each of these cases, other factors also contributed to the failure: 3 times the object
(toy bear in TC 3, pink bone in TC 4, Martini glass in TC 5) was touched and
moved by the manipulator out of the initial position. One reason for premature
touching of objects is incomplete data. For the Martini glass and the bowl the
interior region was in general badly perceived as shown in an example of the bowl
in Fig. 8.12. Hence path planning resulted in paths wherein the gripper collided
with the (missing in simulation) interior surface of the bowl or Martini glass when
grasping at the rim.

Videos of all test cases of the clearing the table scenario with PR2 can be
found at www.youtube.com/user/clearingthetable/. The demo code used for the
experiments (along with whole framework, in addition to the core algorithms) for
grasping unknown objects with a PR2 (Rectangle Representation and (S)HAF) is
available as ROS packages. This contribution enables a valid comparison of other
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Figure 8.12: Incomplete perceived point cloud data (depicted is the result of a plastic bowl
from a camera mounted at the robots head) is one reason for failed grasps

grasp detection algorithms with the two methods presented in this section. The
code is available at:

http : //pr.cs.cornell.edu/grasping/rect data/data.php
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8.5.3 Comparison: Topographic Features vs. 2D Image
Features

In Fig. 8.13 to Fig. 8.17, examples are presented to explain why the (S)HAF
approach performed considerably better than the Rectangle Representation with
respect to the grasp success rate. The results presented of the Rectangle Repre-
sentation are mostly taken from above test cases, wherein the rectangle represents
position and opening width of the gripper. The pictures show the top grasp or the
top ten grasps in a scene. A thick violet line is used to indicate the gripper closing
direction.

• Opening width
Fig. 8.13 and the following images demonstrate that using the opening pa-

rameter may negatively affect the grasping and that an initially fully opened
gripper leads to better results for Rectangle Representation. Therefore, the
calculated gripper opening was not used in the experiments.

(a) Top ten grasps with
gripper closing direc-
tion indicated violet

(b) Top ten grasps (c) Top result (d) Top result

Figure 8.13: Calculated gripper width for Rectangle Representation: Examples of the
grasp learning approach - Rectangle Representation which is mainly based on 2D images.
If the robotic gripper approaches an object with an opening width corresponding to the
Rectangle Representation, the gripper would not be able to encompass the object - but
would touch it and hence would be stopped by the path planning routine before it has
reached a position at which closing the gripper would succeed as grasp.

• Shadow sensitive
Fig. 8.14 shows that shadows can have an impact on the Rectangle Repre-

sentation. The (S)HAF approach is completely robust to shadows because
they have no (topographical) impact on objects.

• Edge focused
Images from Fig. 8.15 illustrate that grasp learning of Rectangle Represen-

tation often relies on the existence of edges in the image. For slim objects
such as screwdrivers and pens or objects with thin boarders such as bowls
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(a) Top result (b) Top result (c) Top result (d) Top result

Figure 8.14: Shadow: Rectangle Representation is sensitive to shadows. It happens that
grasps are detected at shadow boarders.

this approach is beneficial, but for bigger objects the center of the grasp may
be placed at the border of the object, which is suboptimal. The approach
is also sensitive to color changes within the given object (see Fig. 8.15(d)).
(S)HAF do not rely on color intensity values.

(a) Top Ten Grasps with closing direction

(b) Top Ten Grasps (c) Top Ten Grasps (d) Top result (e) Top result

Figure 8.15: Edge focused: Rectangle Representation often relies on edges in 2D images.
Color changes often correlate with object boundaries and thereby indicate potential grasp
positions, however, as the examples show this does not necessarily result in stable grasping
points.
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• Surface independent
Fig. 8.16 shows examples of detected grasp hypotheses that illustrates that

it is hard for the features in Rectangle Representation to take the object
surface into account. There is no possibility to grasp an object when the
gripper touches the object before any part of the object is in the area such
that the gripper can surround the object when closing. The (S)HAF approach
takes object surfaces and obstacles into account.

(a) Top result (b) Top result (c) Top result (d) Top result

(e) Top ten grasps with closing direction

Figure 8.16: Surface independent: Rectangle Representation detects grasps at positions
the gripper cannot reach because it would touch parts of the object before the gripper can
successfully close. In Fig. 8.16(e) detected for the baseball and the white toy bear.

• Height dependent
Fig. 8.17(a) shows an example of the top grasp with the Rectangle Represen-

tation of an umbrella at its cord. It makes it clear that the impact of height
related features in this approach is not very strong which is a drawback since
executing robot grasps at strings on planes is very hard. The (S)HAF ap-
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proach learns to prefer grasps at positions with large height differences (for
top grasps) between objects and its surroundings.

• Orientation
Fig. 8.17(b) shows an example where Rectangle Representation delivered a

grasp orientation 90 degrees off to the optimal orientation (see violet line) be-
cause of the color crossing of a screwdriver handle. As the (S)HAF approach
tries to surround objects with the gripper as far as possible before closing,
an appropriate roll angle for slim rectangular objects is achieved.

• Perception
In some cases, the white toy bear depicted in Fig. 8.17(c) could not be

detected on the white background although the Rectangle Representation al-
gorithms compare the current image with the image of an empty table and
the bear possesses contrasting black spots for nose and eyes. In comparison,
the (S)HAF approach relies on perceived point cloud data. With new de-
vices developed in recent years high quality data for a favorable price can
be achieved. But there are still limits for 3D perception which suggests the
combination of 3D and 2D data to overcome perception problems for shiny
or transparent objects (see Section 8.8).

• Obstacle avoidance and path planing In Fig. 8.17(d), the center of the
rectangle is not on the glass, but on the pen behind it. For the path planning,
the glass is an unsurmountable obstacle for grasping the pen with a prede-
fined vertical approach direction and rotation. The (S)HAF approach avoids
grasps blocked by obstacles and tends to pick highest objects first, due to its
“integrated path planning”.

• Object-related grasp points
Fig. 8.17(e) shows an example where the 2D image features identify a grasp
point (center of rectangle) at a position belonging to the table surface instead
of the rim of a bowl. The 2D to 3D mapping would deliver undesirable coor-
dinates, which is especially a problem if for grasp planning a fixed grasp point
offset is used. For the presented method it never occurred that a grasp center
was positioned on the table surface. Furthermore, the implementation for the
(S)HAF approach uses perceived object meshes in simulation to calculate the
final grasp position given an approach vector, thereby minimizing collisions.
This beneficial schema was also used for testing the Rectangle Representation
approach.
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(a) Height dependence (b) Orientation (c) Perception

(d) Path planning (e) Grasp center not on object

Figure 8.17: Examples of Rectangle Representation learning (with top evaluated grasp),
images showing (a) a weak impact of height features, (b) a bad result for grasp orientation,
(c) a scene in which perception of a white toy bear was only possible after augmenting with
supporting texture, (d) a scene which illustrates a potential drawback when grasp detection
relies too much on 2D features: a grasp center detected at a position not belonging to any
object
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8.6 Clearing the Floor with Hobbit robot

The goal of this experiment was to test (S)HAF on a mobile robotic platform
(developed in the framework of the EU project Hobbit) along with an analysis of
possible gripper opening parameters in the context of the applicability of (S)HAF
to the 7-dimensional grasp space. The scenario for this experiment was the task of
tidying up a floor in an apartment. The robot prototype (see Fig. 8.18) was based
on a mobile platform and a 5-DOF IGUS arm with a 1-DOF Festo Fin Ray gripper
(more details on the robot can be found in Fischinger et al. (2013a)).

Figure 8.18: Hobbit clearing the floor by picking up an Aspirin box

8.6.1 Clearing the Floor with Hobbit: Test setup & Results

For experiments, Hobbit had to pick up objects that were dumped on the floor and
place them in its tray. Floor detection is based on detection of horizontal planes at
the expected floor height. 3D points of the floor are filtered out and (S)HAF grasp
detection was tested along with variable opening widths of the gripper before it
closes.

Hobbit was able to detect, approach, and grasp objects on the floor such as
spectacle cases, remote control units, and small boxes. The resulting grasp grid
for the case of an easy scenario with two aspirin boxes on the floor is depicted in
Fig. 8.19(b). This result is for a fixed orientation and fixed gripper opening width.
Green and red points indicate potentially good respectively bad grasping positions.
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(a) Hobbit is grasping a tape in a scenario
where a fully opened gripper would not suc-
ceed.

(b) Grasp grid results for one orientation and
one gripper width for two aspirin boxes

Figure 8.19: Experiments with the Hobbit robot

The red line shows the gripper closing direction at the position of the top vertical
grasp (above the bigger aspirin box).

In order to test the opening width parameter, opening widths of 1, 0.5 and
0.33 times the maximal width were used. Point cloud scaling (to simulate a partly
opened gripper) was done only for the gripper closing axis since the gripper has
only two anti-podal fingers. In test scenarios specially arranged for testing gripper
width, the functioning of the presented approach was verified. Fig. 8.19(a) shows a
scenario where the calculation of a proper gripper opening width is crucial, since a
fully-opened gripper could not approach the object in the required way for grasping.
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8.7 Grasping Unknown Objects with Kuka Arm

The goal of this experiment was to demonstrate the applicability of the (S)HAF
approach on a Kuka arm as a fourth hardware setup with a robotic hand suitable
to validate the scalability claim (see Chapter 7). Furthermore, it was focused on
an error analysis and potential improvements for grasp detection.

8.7.1 Grasping Unknown Objects with Kuka Arm: Test
Setup

The experiment was executed with a 7-DOF Kuka LWR arm and the Michelangelo
hand from Otto Bock with two DOF (see Fig. 8.20). One Kinect device was used
for data acquisition.

Figure 8.20: The setup for grasping unknown objects: A Kuka 7-DOF leight weight
arm with attached Michelangelo Hand with two DOF, a calibration pattern for online
calibration, and a Kinect device for data acquisition.

To show that the (S)HAF grasp detection is also usable with more complex
robotic hands, a test series with ten objects (depicted in Fig. 8.21) and ten tries
per object was performed. For each try, the object was placed in front of the robot
arm with different orientations. Due to safety reasons, the objects were positioned
on foam and the execution of each trajectory was started by pressing enter as
only interaction after starting the grasp processing pipeline. For practical reasons
(e.g. to improve robustness against calibration errors or missing point cloud data)

74



8. Robotic Experiments and Evaluation

(a) Ball (b) Bowl (c) Cap (d) Case

(e) Mammoth (f) Pads (g) Pants

(h) Paper (i) Tape (j) Toy block

Figure 8.21: Test objects for grasping with Kuka arm and Michelangelo hand during
experiments

it was always attempted to approach the final 7cm in a straight line retaining a
constant orientation of the hand. This limits the probability for finding (inverse)
kinematic solutions for specific grasps. This is also the main reason why the grasp
approach direction in these experiments was restricted to mainly vertical approach
rays (apart from small variations to find possible kinematic solutions). This way,
the top-rated grasps can be executed instead of using first possible grasps. The
hand roll steps were chosen to be 15 degrees and grasp calculation was done for all
rotations. In other words, the grasp estimation was not terminated if a good grasp
has already exceeded a threshold value - which could enhance time performance
significantly depending on the selection of the threshold.
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A grasp is classified as successful if the robot arm delivers the grasped object
to a defined position next to the table where the test object was placed.

8.7.2 Grasping Unknown Objects with Kuka Arm: Results

A grasp success rate of 85% was achieved. For detailed success rates for each object
see Tab. 8.10, a more detailed failure analysis is done in Section 8.7.3.

Table 8.10: Grasp success rate in % and performance time in seconds with Michelangelo
hand. For each object ten trials were executed.

Item Success in % Time in sec.
Ball 100 8.8
Bowl 90 10.1
Cap 100 11.0
Case 50 8.1
Mammoth 90 11.2
Pads 100 9.9
Pants 90 14.0
Paper 80 8.4
Tape 90 8.0
Toy block 60 5.8
AVERAGE 85 9.5

8.7.3 Error Analysis and Potential Improvements

Nine out of 15 failed grasps happened when grasping the spectacle case or the
small wooden toy block. Furthermore, the spectacle case slipped out of the hand
prosthesis in five out of ten trials for successful pre-grasps. The rigid convex shape
of the object in combination with relatively strong gripper force and a week friction
due to the object surface material made the spectacle case slip out of the hand in
each of the failure cases.

For the soft pads, the video tape and the newspaper (with the elastic band) the
grasps were sometimes not centered but at the side of the object (see Fig. 8.22). The
resulting torque led in some cases to unstable grasps and grasp failures during the
delivery of the object (e.g. Fig. 8.22(c)-8.22(e) where the tape slid out of the hand
shortly before the delivery position). Therefore, the problem of these suboptimal
grasps was investigated and two sources of error could be identified.

In Fig. 8.23 the mesh of the video tape is shown. The camera could only perceive
the upper surface of the object. This surface is actually flat in real world, but the
mesh generated from the perceived point cloud is rather bumpy. In the depicted
case the grasp was chosen above one of the peeks in the surface. This problem
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(a) Paper
grasp at side

(b) Pads grasp at side (c) Tape grasp at
side (1)

(d) Tape
grasp at side
(2)

(e) Tape grasp at
side (3)

Figure 8.22: Weak grasps at side of paper, soft pads and video tape.

is related with the second source of error which becomes also apparent if objects
like the soft pads lie on a slope: The grasp classifier does not always accept grasp
positions if there are higher (w.r.t top grasps) surface points next to the position
to classify. Therefore, grasps on the sides of objects are returned. Adding training
examples focusing on these surface constellations should improve the performance
of the classifier.

Figure 8.23: Grasp position detected at the side of an object (video tape) due to inaccurate
point cloud data and extremely sensitive grasp classifer w.r.t. height differences
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8.8 Grasping Known Objects with Kuka Arm

The goal of this final experiment was to combine the S(HAF) approach with ob-
ject recognition in order to demonstrate the advantages of the symbiosis and how
(S)HAF can make grasping of known objects more reliable.

State-of-the-art object recognition (e.g. for homogeneously colored, deformable
objects like the trousers in Fig. 8.21(g) and related object segmentation as prereq-
uisite for grasping are quite limiting (e.g. in very cluttered environments) from the
experience of the author. On the other hand, object specific grasp force adapta-
tion or task based grasping and manipulation are needed for future mobile service
robots that should at one time be able to support people in their everyday life.

In Section 8.5.3, the limits of point cloud perception of current sensors for trans-
parent objects were mentioned. Fig. 8.24 shows a transparent plastic bottle with
a label and its perceived point cloud data (i.e. the generated mesh). Insufficient
object data leads to grasps in which the robotic hand would collide with the object
endangering the intactness of the hardware or the object. Using object recognition

(a) Transparent plastic bottle (b) Perceived data of bottle
with calculated grasp

(c) Complete object model due
to recognition

Figure 8.24: The left picture shows a bottle seen from the camera, the center picture
shows the incomplete mesh/point cloud data received from a Kinect laser sensor and the
resulting hand orientation for grasping that would lead to a collision between manipulator
and object that cannot be determined by the system. The right picture shows the resulting
object mesh if the object is recognized (SIFT) and an object model is used as input for
grasping. With object model available, a suitable grasp was found.

from Aldoma et al. (2013) implemented with SIFT on 2D data (from multiple cam-
era views), a complete pre-learned mesh of the object can be achieved. Complete
object models are no guarantee for good grasps as Fig. 8.25 indicates, where valid
grasps for force closure evaluation are shown.

8.8.1 Grasping Known Objects with Kuka Arm: Test Setup

To show the benefit of combining (S)HAF with object recognition in specific cases,
an experiment on grasping the bottle ten times using the (S)HAF method was per-
formed: (1) without object recognition and (2) using an object model perceived by
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Figure 8.25: Complete object models do not guarantee good grasps. The depicted grasps
calculated for complete object models and an Otto Bock “SensorHand Speed” fulfill force
closure criteria evaluated in OpenRAVE. Still, the grasps are not stable in practice.

object recognition. The general test setup is identical to that stated in Section 8.7
for both conditions.

8.8.2 Grasping Known Objects with Kuka Arm: Results

The results are listed in Tab. 8.11: With the conventional approach we could only
grasp the bottle in three out of ten tries. Using object recognition and complete
models of the bottle, each grasp succeeded. For the latter, only tries were considered
where the object recognition module delivered a model. This was not the case for
every try due to reflections from the shiny surface of the bottle (see Fig. 8.26) and

Figure 8.26: Object recognition failed in some cases due to light reflections and structural
degeneration from wear and tear. After the 8th trial we had to exchange the bottle for
better recognition performance.

abrasion of the bottles surface during grasping. These preliminary experiments
could show advantages of combining our method with object recognition. Object
recognition not only improves success rates in grasping using our approach, but
also results in better quality of grasps.
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Table 8.11: (S)HAF vs. (S)HAF&Object Recognition: Grasp success rate and perfor-
mance time in seconds. (*) restart of laptop

Try HAF Suc. Time (sec) HAF&Recog. Time (sec)
1 0 35 1 12
2 1 33 1 12
3 1 30 1 12
4 1 27 1 11
5 0 7* 1 10
6 0 10 1 11
7 0 9 1 13
8 0 7 1 13
9 0 6 1 11
10 0 6 1 11

SUM/AVG 3/10 17* 10/10 11.6
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Chapter 9

Conclusion and Outlook

The human visual perception system is based on simple local features such as
intensity values, color registration for red, green and blue, and a preliminary edge
detection in the ganglion cells (Dhande and Huberman, 2014). This basic signal
input is processed in different parts of the brain to achieve a higher cognitive level
of perception, for example for three-dimensional cognition or object recognition, to
enable interpretation and interaction with the surrounding environment.

Modern grasp approaches try to imitate this process, using simple features
based on edge or texture information in learning- or early-cognitive systems (Koot-
stra et al., 2012). Although repeatedly and medially exploited progress is reported
in the field of neural science, the investigation and simulation of human brain pro-
cesses are nowadays still quite limited. Due to this lack of computational cognitive
processing, grasp approaches based on simple features are limited at present. As
key contribution of this thesis, a new feature type is proposed to enhance exist-
ing early cognitive visual systems specifically for the task of grasping, due to its
abstraction power of grasp-relevant object surface structures.

9.1 Summary

This thesis presents an approach for enabling robots to grasp known and unknown
objects. The algorithm does not rely on object models or segmentation and works
robustly in cluttered scenes. The core contribution of this work is a powerful
feature type called Height Accumulated Features (HAF) particularly suited for the
task of robot grasping and manipulation in domestic environments. Advantages
of this approach are demonstrated compared to other approaches, especially ones
based on 2D color feature. Experiments are conducted in relation to a state-of-
the-art representative and demonstrate the superiority, as well as the advantages
of topographic surface abstracting features based on numerous examples.

The focus of the research presented, is an approach, which is robust to the
numerous and dynamically changing task scenarios in the real world and hence is
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subsequently useful for mobile robotics, being not just based on theoretical simu-
lation. “Integrated path planning” guarantees that the selected grasps do not fail
due to collisions with other objects and a heuristic ensures the robustness of the
grasps with respect to positioning errors.

The abstraction power and information gain obtained from HAF is shown by
comparing it to a classifier trained on point clouds discretized to height grids. The
enhancement of the approach with Symmetry Height Accumulated Features showed
easy extensibility with considerable gain. A thorough analysis of the improved fea-
tures showed that more complex features lead to better grasp classification results
than basic features. Given a trained grasp classifier, a method was introduced to
explore the seven-dimensional grasp space (position, orientation, gripper opening
width).

Tests were implemented on four different robot platforms for different tasks
like grasping single objects, tidying the floor, emptying a box and clearing a table
without gripper specific classifier training, thereby indicating the hardware scala-
bility of the approach (which also relies on the use of a robot model for final grasp
calculation in simulation).

Finally, it is shown how to combine the presented approach with object recog-
nition to overcome the problem of incomplete point cloud data and exploit the ad-
vantages of the presented approach if complete object models are available. Videos
of the experiments and the code from the experiments presented in Sections 8.4
and 8.5 have been made available online.

9.2 Contributions to Research Problems

The overall goal of this thesis was to investigate the problem of grasping objects,
defined by detecting a gripper pose in the seven-dimensional grasp space (position,
orientation, gripper opening width), where a mechanical gripper has to close for a
suitable grasp, and the approach trajectory to reach the final grasp position. For
service robots grasping is needed in various scenarios, which pose different prob-
lems. The research presented in this thesis contributes to three different problem
types:

1. Problem type A: grasping known object

2. Problem type B: grasping unknown object

3. Problem type C: grasping objects in clutter

The task of grasping known objects could up to now only be considered as
solved under very restrictive conditions. With the approach presented in this thesis
it becomes possible to:
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• skip the effort for creating pre-learned grasp database: The pre-
sented approach for finding grasps can be applied on full object models for
online grasp calculation, making a database of grasps per object and gripper
obsolete.

• create a pre-learned grasp database semi-automatically: The effort
for generating a database with pre-learned grasps per object and gripper
can be reduced with semi-automatic grasp generation given the gripper- and
object model.

• enable object recognition by interactive manipulation of unrecog-
nized objects: Due to various reasons (e.g. lightening conditions, occlu-
sions, unlearned views), recognition can fail. The presented approach gives
the opportunity to change object poses by grasping without pre-learned po-
sitions, which could create new conditions and hence enable successful object
recognition, e.g. for task specific grasping, where object recognition is crucial.

The task of grasping unknown objects was still an open research problem. With
the approach presented in this thesis it becomes possible to:

• grasp objects without estimation of unknown shapes: The approach
focuses on grasps on perceived surfaces where the gripper approaches objects
without the need to estimate the surface of the object which is facing away
from the camera.

• significantly improve state-of-the-art grasp detection: A comparison
with Jiang et al. (2011) shows an improvement of the grasp success rate of
34% for single objects (Section 8.4).

The task of grasping unknown objects in clutter was the biggest research challenge
addressed in this thesis and substantial contribution could be made. The (S)HAF
approach:

• significantly improves state-of-the-art grasping: A comparison with
Jiang et al. (2011) shows an improvement of the grasp success rate of 28.9%
in trials with five to ten objects in cluttered scenes (Section 8.5).

• works independent from object segmentation: Complex tasks such
as autonomously emptying a basket can be executed without the need for
segmentation. Thereby, a complementary approach to methods which need
segmented input, such as Superquadric fitting, is provided.

• implicitly learned local path planning: In contrast to recently published
grasping algorithms (Varadarajan and Vincze, 2011; Kootstra et al., 2012)
the (S)HAF approach handles grasp planning and path planning not indepen-
dently. The presented method learns to select grasp hypotheses which result
in collision-free local paths for the gripper used and the given approach vector.
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9.3 Outlook

The presented approach deals with the unresolved problem for optimal gripper
(approach and) placement for robotic grasping. Although the author believes that
the methods and results presented in this thesis serve as a stepping stone on the way
to enhanced cognitive visual systems for grasping, more research will be needed to
regard this important research question as solved. Nevertheless, there are a number
of related aspects and potential extensions that were not discussed in this work.

Using visual and/or tactile feedback during and after grasping can improve fail-
ure handling and hence make the approach more robust. Furthermore, a check if
a grasp was successful after closing the robotic hand can improve the time needed
for successful grasping tasks like clearing the floor with mobile robots. Although
a very efficient way to calculate Topographical Features with accumulated heights
was presented, time performance was not the primary focus of this work. The huge
number of feature values needed to explore the grasp space results in calculation
times of at least a few seconds. Especially, because in the majority of the exper-
iments, the overall best grasp was calculated first and then executed to optimize
the evaluated grasp success rate. A strategy that accepts the first feasible grasp,
combined with the before mentioned online grasp success check and dependent re-
grasping actions in failure cases, can improve both, the grasp success as well as the
average grasping time. By optimizing the implementation, even grasp calculation
in real-time seems to be reasonable. For real-time grasp calculation visual servoing
with relative movement control for the gripper seems to be an interesting approach
for future service robots like the Hobbit robot.

A further potential extension of the presented approach is attention driven
grasping, thereby reducing the desired object or area to grasp by different criteria.
Defining objects by attributes such as color, size, or form can be an example for this
attention driven grasping. The goal is not anymore “grasp anything possible” for
unknown objects, or “grasp exactly this object” for known objects, but something
like “grasp an object that should have a height between 5 and 9cm, has a spherical
form and orange color. Using such attributes enables usage of higher level learning
of objects and at some point a real cognitive learning system for advanced robots.
A simpler, already implemented approach for the second prototype of Hobbit uses
human body detection to limit grasping goals to attention points. A user can point
to an object with his arm, the robot follows the direction of the pointing arm
and the forefinger, and tries to grasp an object intersecting with the imaginary,
extended pointing direction.

Interactive segmentation is a further area where the presented approach could
be used. For a messy pile of objects, the robot could randomly grasp something and
separate it from the pile. This way, the approach can support object recognition
and hence task specific manipulation.

A major area to improve the presented research work are the described fea-
tures. As mentioned in Chapter 5, more complex features achieved better grasp
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performance, respectively higher discriminative values for the grasp classifier. Us-
ing features with more than four regions is only one way to extend the presented
idea.
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