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Kurzfassung 
 
Ziel dieser Arbeit war die Entwicklung eines “A FPGA based DAQ system for mobile robot use” 
(FPGA basierendes Datenerfassungssystem für den Einsatz an mobilen Robotern). 
Obwohl dieses Gerät für eine Vielzahl von Anwendungen genutzt werden kann, war das primäre Ziel 
ein Datenerfassungssystem für Ultraschallsensoren welche auf einem mobilen Roboter befestigt sind. 
Um die Verwendbarkeit in einem weiten Bereich zu ermöglichen, wurde ein universeller Ansatz  bei 
der Entwicklung des Hard- und Softwarekonzepts gewählt. 
 
Die Hauptanforderungen für eine Verwendung mit Ultraschallsensoren sind: Ein digital zu analog und 
vier analog zu digital Konverter mit präziser Zeitmessung um Ultraschallsignale senden und 
empfangen zu können, bei denen Pulskompressionsverfahren für hochauflösende Laufzeitmessungen 
zum Einsatz kommen. Durch diese hochauflösenden Laufzeitmessungen kann die 3D Position des 
reflektierenden Objekts berechnet werden. Die Verwendung mehrerer Kanäle erhöht dabei die 
Zuverlässigkeit des Systems. 
 
Anforderungen an das System sind: ein definierter und stabiler Phasengang, gleichzeitiges Abtasten 
auf allen Kanälen, geringes Kanalübersprechen, ein hoher Dynamikbereich (10Bit ADC) und hohe 
Abtastraten (>10MSPS). Um eine maximale Flexibilität des Systems zu erreichen wurde ein FPGA 
mit „Softcore“ und eine USB Schnittstelle verwendet. Durch den Einsatz des FPGA können 
rechenintensive Operationen in Hardware abgebildet werden, wodurch der Mikroprozessor entlastet 
wird. Die USB Schnittstelle ermöglicht eine einfache Verbindung mit einem PC und  MATLAB. 
 
Der Prototyp welcher in dieser Arbeit entwickelt wurde, erlaubt es Datenraten von 400MBit/s pro 
Kanal zu verarbeiten, wodurch sich eine Systembandbreite von 1,6GBit/s ergibt. Durch die 
Verwendung von pinnkompatiblen Komponenten sind Datenraten bis zu 4,8GBit/s möglich. 

 
 

Abstract 
 
Goal of this thesis was to develop a working prototype of an “A FPGA based DAQ system for mobile 
robot use”. Such a device is suitable for a wide variety of applications although our primary target 
was a data acquisition (DAQ) system for an ultrasonic sensor mounted on a mobile robot. To assure 
applicability in a larger number of projects a more universal approach was chosen for the design of 
the hard- and software concept. 
 
The primary requirements for the ultrasonic sensors are: One digital to analog converter and four 
analog to digital converters, with precise timing to transmit and receive ultrasonic signals. These are 
further post processed using pulse compression methods for high resolution time-of-flight (ToF) 
measurements. Using such high resolution time-of-flight measurements the 3D position of a reflection 
point can be calculated. Additional channels can be used for enhancing the reliability of such a sensor.  
 
Desirable properties of such a DAQ system are: well defined and stable phase, synchronous sampling 
on all channels, low channel crosstalk, high input dynamic range (10Bit ADC) and a high sample rate 
(>10MSPS). For maximum application flexibility a FPGA with a softcore and a USB interface was 
used. Using an FPGA allows implementation of computation expensive processes in hardware 
offloading the MCU load. The USB interface allows easy connection to a PC running MATLAB. 
 
The prototype developed in this work allows data rates of 400MBit/s per channel resulting in a total 
system bandwidth of 1,6GBit/s. Using the same software in combination with pin-compatible 
components data rates up to 4,8GBit/s are feasible. 
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Abbreviations 
 
ADC  Analog to Digital Converter 
ASIC  Application Specific Integrated Circuit 
A/D  Analog / Digital 
BGA  Ball Grid Array 
DAC  Digital to Analog Converter 
DAQ  Data Acquisition 
DDR  Double-Data-Rate 
DMA  Direct Memory Access 
DSP  Digital Signal Processor 
D/A  Digital / Analog 
EMCE  Institute of Electrodynamics, Microwave and Circuit Engineering 
ESL  Equivalent Series Inductivity 
ESR  Equivalent Series Resistance 
FPGA  Field Programmable Gate Array 
FTDI  Future Technology Devices International Ltd. 
GPIO  General Purpose Input/Output 
IEEE  Institute of Electrical and Electronics Engineers 
IP  Intellectual Property 
ISE  Integrated Software Environment 
MPMC Multi Port Memory Controller 
MSG  Message 
MSPS  Mega-Samples per Second 
NPI  Native Port Interface 
PCB  Printed Circuit Board 
PHY  Physical Layer 
PLB  Processor Local Bus 
RAM  Random Access Memory 
RISC  Reduced Instruction Set Computing 
SD  Synchronous Dynamic 
SDRAM Synchronous Dynamic Random Access Memory 
THD  Total Harmonic Distortion 
THT  Through Hole Technology 
ToF  Time of Flight 
UART  Universal Asynchronous Receiver Transmitter 
USB  Universal Serial Bus 
VGA  Variable Gain Amplifier 
VHDL  Very High Speed Integrated Circuit Hardware Description Language 
VCA  Voltage Controlled Amplifier 
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1. Introduction 
 
Sound waves, which are above the human audibly range, are called ultrasonic waves. The 
wide range of applications, simplicity, robustness and competitive component pricing of 
ultrasonic systems often make them the first choice for a lot of applications. 
 
The workgroup “Measurement and Control” at the Institute of Electrodynamics, Microwave 
and Circuit Engineering, focuses on the application and development of ultrasonic sensors for 
measurement and control. 
 
Goal of this thesis is to develop “A FPGA based DAQ system for mobile robot use”. It has to 
be especially tailored for this purpose to allow synchronously triggered sending and receiving 
of analog signals. This is required for time-of-flight (ToF) measurements. The system has to 
provide four analog inputs and one analog output with a minimum resolution of 
10Bit@10MSPS at each channel. Small size, low power consumption and a USB interface 
are also required for this application. 
 
A detailed research on existing systems providing the required functionality at an affordable 
price was the starting point of the development. It turned out that no existing hardware was 
available to fulfill these requirements. The FPGA evaluation boards for >10MSPS including 
multiple converters are located in the high performance end of the product spectrum and tend 
to cost more than one thousand Euros. Furthermore they are usually equipped with high end 
FPGAs, which are not supported by any free evaluation tools (e.g. Virtex family from 
XILINX is not supported by ISE-WebPACK[1]). 
 
The following section gives a brief introduction into time discrete systems and sampling 
theory and may be skipped by the profound reader.  
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1.1. Theory about time discrete systems 
 
When analog signals need to be processed they are most of the time first converted into a 
digital signal. The sampling of an analog signal is typically performed at equidistant time 
spaces ∆T. The sampling frequency ��	is the reciprocal value of the sampling time ∆T. The 
amplitude resolution is defined by �, the number of bits available for the digitalization, as 
well as the full scale range � = �^�. After digitalization the analog value		 of the signal is 
represented by the closest available digital value 
. 
 

	 → 
 = � ∗
�

�
 , � ≤ � 

 
The difference between the analog signal value and the corresponding digital signal value is 
the quantization error. To keep this error low, the resolution should be as high as possible. 
Contrary to this requirement, high resolution requires complex analog to digital converters 
which are more expensive. 
 
An important aspect to keep quantization error as low as possible is to adjust the input signal 
to match the full scale input voltage of the ADC. This pre-processing step ensures the 
maximum achievable dynamic range at the output of the ADC (see Fig.1 for an example). 

 
Fig.1: Example of a voltage controlled amplifier to use full scale at small input signals 

 

An example of the quantization can be seen in  

Fig.2. If small input signals are forwarded to the ADC without amplification to match the full 
scale of the input of the ADC, the quantization error is very high. By amplification of these 
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small signals before forwarding them to the ADC, the quantization error can be reduced 
drastically. 

 

 

 

Fig.2: Quantization error at different resolutions 

 
 
Beside the correct amplification of the input signal, filtering is important to fulfill the 
sampling theorem of Nyquist- Shannon. If the sampling frequency �� does not match the 
filter cut off frequency	�� < 2 ∗ ��, the sampled signal cannot be reconstructed correctly. In 
case of signal processing the base band signal contains aliased signal components which can 
impact further processing steps. 
 
Depending on the type of analog to digital converter the resolution and sampling frequency 
are limited due to technological limitations. Fast conversion is typically done by parallel 
converters. These generate the corresponding digital value by comparing the input signal 
with ��	internally generated reference values. As there are also �� comparators necessary, 
these converters are used at applications with low amplitude resolution (typical <10Bit). The 
conversion of the analog input signal is done within one clock cycle and the digital output 
value is provided directly at the parallel outputs. Therefore these converters are very fast. 
 
Serial analog to digital converters require less than	��	comparators and usually have lower 
prices. There are several different architectures possible like the Single-Slope-Converter, the 
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Sigma-Delta-Converter or the Successive approximation ADC. The serial converters process 
the analog input signal in several steps to generate the corresponding digital output value. 
They are typically much slower in conversion compared to the parallel ones. 
Analog to digital converters obtain the digital signal by using a “sample and hold process”. 
This means the analog input is sampled at the clock edge and is held for digitalization until 
the next clock edge arises. Therefore the clock edge directly defines the moment when the 
analog signal is sampled. Looking at stationary input signals, a variation of the sampling 
point does not influence the conversion result. At transient signals a variation in the clock 
signal leads to an error in the digital signal. In this case the sampling at different time point’s 
results in different digital signal values. A clock jitter therefore can lead to unwanted 
distortions in the digital output signal and needs to be kept as low as possible. 
 
When looking at several ADCs working next to each other (like in the configuration used for 
this thesis) another error can occur. Unwanted coupling of the input signal from one channel 
to other channels generates errors at the output of the ADCs. There are several possible ways 
for the input signal to couple from one channel to others: 
 

• coupling at the common power supply 
• ground loops 

• capacitive and inductive coupling in the layout and integrated circuits 
 
The crosstalk attenuation is the “isolation” between the inputs of the system. As the coupling 
effects are frequency dependent and often appear in combination, the crosstalk attenuation 
needs to be examined at the full frequency range which the circuit was designed for. 
 
 

1.2. Hardware / Software Codesign 
 
The hardware / software codesign is described by [2] as a synonym for the development of 
the digital part of a complex system in software and hardware. During the concept phase it is 
necessary to define which parts need to be realized in software and which in hardware. 
 
The “co” of codesign can be interpreted as “together” or as “coordinated”. To find the 
optimal split between software and hardware, several different design approaches have to be 
taken into consideration. An assessment of each design approach leads to the most practical 
realization for the system under the given circumstances. 
 
Due to continuous progress in technology of integrated circuits, it is possible to implement 
more complex tasks into integrated systems and therefore gain performance and lower cost 
simultaneously. 
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Complex functions can be realized by using a variety of components that differ in their 
characteristics regarding: 
 
 

• time to market 
• flexibility (capable to handle different applications) 

• device cost 
• performance 

 
Components which can be used to realize the required functions are: 
 
 

• RISC processors 
• DSPs 
• FPGAs 

• ASICs 
 
 
 
RISC processors do have much higher flexibility compared to DSPs or FPGAs. 
Short development time and low device cost at low quantities make it first choice for a lot of 
applications. They are typically designed for controlling of processes and do have 
comparatively low data throughput. 
 
When looking at performance and data throughput, an ASIC is the most efficient way to 
realize a defined function. It is optimized to fulfill the required tasks and has no unnecessary 
functions which are not used. The device costs are lowest at high volumes. The disadvantages 
are the necessity for big investments during the development and a long time to market as the 
silicon is a custom design. Once an ASIC is designed it can only be used to realize the 
defined functions. A change in the required functionality leads to a redesign of the ASIC. 
 
Performance and flexibility cannot be maximized at the same time and form the trade-off at 
the realization. Other criteria as time-to-market and power consumption also need to be taken 
into consideration as they can exclude some type of ICs at some applications. 
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1.3. Theory about FPGA & VHDL 
 
A Field Programmable Gate Array is an integrated circuit consisting of matrix organized 
logic blocks with horizontal and vertical connection structures in between. It has 
programmable interconnect points for the required connections between the blocks. At the 
edges of this matrix so called I/O blocks are placed to connect the logical cells to the 
periphery (see Fig.3). 

 
 

 
Fig.3: Basic setup of an FPGA [3] 

 
 
Basically any logical function can be generated by combining simple NAND gates. But the 
number of necessary NAND gates rises drastically with increasing complexity of the logical 
function. The logical blocks inside an FPGA are much more complex than simple NAND 
gates. They allow realization of simple and also complex functions with a reasonable number 
of logical blocks in combination. As the logical blocks can be combined in any order, it is 
possible to generate several functions completely independently from each other in one single 
FPGA chip. They are acting like several individual chips inside one package. 
 
Without any program inside, an FPGA does not have any function at all. It just consists of 
unconnected logical blocks. During programming of the FPGA the interconnect points are set. 
Furthermore the configuration of the I/O blocks and logical blocks is done to realize the 
desired function. The huge amount of logical blocks in a state of the art FPGA makes it 
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possible to realize very complex functions, e.g. a complete microcontroller inside an FPGA. 
Even several independent microcontrollers can be realized inside one single FPGA. 
 
The I/O blocks are also programmable and beside the configuration as input and output, they 
can be configured to work with different pull up/down resistors, voltage levels and 
impedances. The program containing the configuration is a binary file generated by a 
compiler. Depending on the manufacturer and type of FPGA, there are several different 
compilers available on the market. Nevertheless there is a manageable amount of 
programming languages for FPGAs (input for the compiler) which are popular. One of the 
most common programming languages, which is used for programming FPGAs, beside some 
other applications, is VHDL. 
 
VHDL is the acronym for Very High Speed Circuit Hardware Description Language. It is a 
hardware description language which allows describing the behavior of digital systems in text 
form. VHDL is defined since 1987 in the IEEE 1076 standard [4].  



 

 

Concept  13 

2. Concept 
 
When designing the “FPGA based DAQ system for mobile robot use” with respect to the 
requirements which were given, a top down design was started with a black box (see Fig.4). 

 
Fig.4: Black box approach with defined interfaces 

The first idea was to use a microcontroller in combination with four A/D, one D/A converter, 
a fast RAM and an FPGA to perform the required signal processing. As the data rates at the 
required sampling frequency and resolution get very high when recording four channels in 
parallel (400MBit/s), a realization by using a microcontroller for handling the data seemed to 
be not feasible. Furthermore the RAM had to be either dual ported or all data had to be 
forwarded to the FPGA by the microcontroller (see Fig.5). 

 
Fig.5: Block diagram of the setup with uC handling all data 
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Although state of the art microcontrollers provide DMA in combination with external 
memory, a better approach seemed to be using an integration of the microcontroller into the 
FPGA – a so called “softcore”. In this case the microcontroller can be bypassed for the data 
transfer during recording and is not occupied with the handling of the data during recording. 
The data can furthermore directly be pre-processed by any functions implemented in the 
FPGA before storing it to the memory. At this approach a closer look to the correct 
Hardware/software codesign was the next logical step. 
 

2.1. Hardware/Software Codesign 
 
The hardware/software codesign defines which parts of the necessary function are handled by 
hardware and which in software. Using an FPGA allows high flexibility regarding the 
implementation of some logical functions into the FPGA instead of placing them on the PCB 
as real physical components. As an FPGA was part of the concept from the beginning for 
data processing, it was obvious to implement further functions inside the FPGA in order to 
reduce the number of external components. Some of the advantages and disadvantages of 
using an FPGA for this application can be seen in Tab. 1. 

Advantage Disadvantage Comment 
Performance 

 
Sampling rates >> 10MSPS can be achieved 

Flexibility 
 

“Hardware” can be easily changed by 
reprogramming the FPGA 

Custom IP 
 

User defined functions like clock-, memory and 
address generation or complex signal processing 
can easily be implemented 

Pre-defined IP’s 
 

Customizable “softcores” and memory interface 
including DDR refresh pre-defined available 

 

High power consumption 
/ several different 
voltages required 

High efficient switching power supply 
necessary to keep total power consumption low 

(Cost) Cost 

Basic FPGA necessary for signal processing. 
But additional cost to increase FPGA size to 
implement additional functions, are lower than 
external components required for this functions 

 
BGA package at 
“mid size” FPGA 

Use of evaluation boards including minimal 
functionality and workable pin out required 

 
Complex development 

tools 
Reduce project setup to a minimum inside the 
development tools, to keep effort manageable 

Tab. 1: Advantages and Disadvantages of an FPGA for this application 
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The analog input signal pre-processing as well as the A/D converter need to be realized as 
external components, but when it comes to controlling these external components and 
processing the input data, many functions can be implemented in form of programmable HW 
inside the FPGA. 
 
The development tools from Xilinx provide some predefined softcores acting as a 
customizable complete microcontroller. Implementing such a softcore can avoid an 
additional external microcontroller and gives very high flexibility, as the HW of this 
microcontroller inside the FPGA can easily be tailored to the required function. Although a 
microcontroller would not be necessary for this application, as the complete functions could 
be implemented in VHDL as well, it is much more convenient to use one programmed in C 
(compilers are available inside the Xilinx development tools). Other IPs provided by Xilinx 
can be used for interfacing the external memory (see a block diagram of this setup in Fig.6). 
 
Last but not least a custom generated IP programmed in VHDL can take care of the data 
processing and handling of the data transfer from the ADC/DAC interface to the memory 
interface to avoid high loads at the microcontroller. 
 

A/D

A/D

A/D

A/D

FPGA

RAM

uC

Softcore
D/A

Supply

USB

Custom

IP

Memory

controller

 

Fig.6: Block diagram of setup with uC inside FPGA,  
all data handled by memory controller and custom IP 

 
To optimize the function blocks inside the FPGA a suitable partitioning of these blocks has to 
be done. This partitioning will be discussed in the next chapter. 
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2.2. Partitioning 
 
At the design of complex digital circuits the process of clustering objects into groups in a 
way that the object given function is optimized with respect to a set of design constraints is 
called partitioning. 
 
During concept phase the functions which had to be handled inside the FPGA to reduce 
external components and increase performance and flexibility, were defined. A list of these 
functions can be seen in Tab. 2(Functions implemented as custom IP are marked in green). 
 

Function Description 
Memory interface Physical interface to the installed memory 
PC Interface Interface to the external USB driver chip 
PLL Reference clock generation (single external crystal clock source) 
Clock generator for 
A/D & D/A 
conversion 

Generation of user selectable clock rates for external A/D and 
D/A converters (low jitter required for precise data acquisition) 

Softcore Microcontroller to control the data acquisition and communicate 
with the PC 

Timer Peripheral device for the softcore for time dependent tasks 
Reset Ensure correct startup of IPs inside the FPGA 
Cache  Buffer of data from and to the DDR memory (buffer refresh 

cycles of DDR) 
Address generator Required for complete decoupling of softcore from memory 

during fast data acquisition 
Data interface Mapping of 40 bit input data to the 16 bit memory interface 

(possibility for data pre- processing) 
GPIO Providing digital inputs and outputs (e.g. to configure external 

assembled integrated circuits) 

Tab. 2: List of functions implemented in the FPGA 

 
 

Fig.7 shows a block diagram of the function blocks inside the FPGA. The blocks marked in 
red are responsible for handling the data during conversion. These blocks need to be fast and 
capable of processing high data rates. Except the memory interface, all red blocks are 
realized as one custom IP having one dedicated data and address bus for handling high data 
rates independently from the other blocks. 
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Fig.7: Block diagram of functions implemented in the FPGA. 
Blocks marked in red are involved during high speed data recording. 

 
 

2.3. Hardware Concept 
 
The HW can basically be split into six main sub elements: 
 

• FPGA 
• Power Supply 

• PC Interface 
• ADC 
• Analog interface and VGA 

• DAC 
 
For each of these elements an investigation based on the requirements was made to evaluate 
the components that suit best for a universal design concept including an ultrasonic signal 
processing application. 
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2.3.1. FPGA 
 
To develop a complete hardware including a layout for an FPGA and RAM is a very time 
consuming task as most of the FPGAs are available only in a BGA package. This makes the 
layout very complex and fast prototyping almost impossible. Not only the package is critical 
to handle, but also certain layout rules to keep the required track impedances and lengths 
required by state of the art DDR memories need to be followed with great caution. To shorten 
this process it was decided to use an “off the shelf” FPGA evaluation board to avoid the 
complex layout and assembly of the FPGA and memory chip. 
 
As there is a very high variation of these boards available on the market some criteria had to 
be defined to sort out the suitable boards. A list of these criteria can be found in Tab. 3. 
 

Criteria Reason 
small size Suitable for mobile application 
Interfacing connectors on main board 
manageable for hand soldering 

Benefit of easy manufacturing is lost otherwise 

min 30MB RAM Capability of recording an ultrasonic signal at 4 
channels with 10Bit@10MSPS for ~ 500ms 

Fast RAM interface Storage of unprocessed data at 400MBit/s 
Affordable price No need to argue 

Tab. 3: List of criteria for selection of the FPGA evaluation board 

 
The two market leaders for FPGAs are Xilinx [5] and Altera [6]. One of the advantages from 
Xilinx is the availability of a big IP catalogue including several different memory controllers. 
The Spartan 6 family includes also an integrated memory controller block to provide optimal 
memory performance without allocating a big amount of logical cells for this function. 
Therefore Xilinx Spartan 6 was preferred at the research of evaluation boards. One of the 
most promising boards for this purpose seemed to be a board from ZTEX [7]. They are 
available in several FPGA and RAM sizes. It is also possible to generate a complete stand 
alone device as some of their boards do have an SD card connector to store the FPGA 
configuration. An external microcontroller with EEPROM is also onboard to install the boot 
loader. For the development of the prototype finally the ZTEX board “1.11c” was chosen [8]. 
The FPGA assembled on this board is a XILINX Spartan 6 XC6SLX25 in combination with 
a 64MB DDR SD RAM which can handle data rates up to 800MByte/s. More powerful but 
still pin compatible versions of the board are also available at some higher costs. They are 
equipped for example with up to 128MB DDR2 RAM and XILINX Spartan 6 XC6SLX150 
which has six times more logical cells than the XC6SLX25. During the software 
development it was confirmed that the XC6SLX25 is big enough to handle all required 
functions.  
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2.3.2. Power supply 
 
Although there is a power supply unit available from ZTEX which matches to the USB-
FPGA-Module, it was decided to attach a new design for the switching power supply. The 
reason for this was the concern about interference of the ZTEX power supply with the front 
end amplifier. The ultrasonic signals which will be received by the microphones and 
amplified with the front end are in the range of 50-100 kHz. The ZTEX power supply uses 
fixed off-time, current-mode-controlled buck switching regulators which may generate 
distortions in a similar frequency range as there is no fixed switching frequency defined. 
Furthermore the design consists of three independent regulators which are not synchronized. 
Therefore the generated ripple of each single converter has an undefined phase shift to the 
others and can therefore generate unpredictable frequency components.  
 
Another reason is the power supply of the components which are not placed on the ZTEX 
board need to be provided as well (e.g. A/D and D/A converters). To reduce possible 
distortions and the required layout space, a triple output step-down switching regulator with 
550 kHz fixed switching frequency from Allegro was chosen (A4490). 
 
 

2.3.3. PC Interface 
 
The interface to a PC is required to enable down- and upload of data to and from the 
memory, and to send commands from and to the electronic. 
 
The control interface does not need to be fast as only simple commands are sent from the PC 
to the electronic and back. When looking at the down and upload of data, speed does matter 
as the required amount of data is in a range of several megabytes (the chosen FPGA board 
from ZTEX does have 64MB RAM which can be increased to higher values at different 
board versions).Therefore a dedicated USB 1.0 interface was added to the design by using an 
FT232RL from FTDI (see [9]). It is used as standard serial interface with a data rate of 
921,6kBit/s. It can easily be controlled at the PC (virtual com port) and also at the FPGA 
(standard UART at the softcore). 
 
For higher data transfer rates, the onboard USB 2.0 interface of the ZTEX board can be used 
(up to 480MBit/s). To do so there is no change in the hardware necessary, but some 
modifications in the software on the PC (USB 2.0 driver) and in the FPGA binaries. 
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2.3.4. Analog to Digital Converter 
 
Due to the high number of IO’s of the FPGA board, the interface of the A/D and D/A 
converter can be a parallel interface. This increases the number of tracks but nevertheless 
reduces layout complexity. Most of the FPGA (also Spartan 6 which is used here) do have 
high speed serial interfaces onboard which can handle data rates up to several GBit/s. 
Nevertheless when it comes to designing a layout for these interfaces, the design gets very 
tricky due to the impedance requirements of these tracks. A parallel interface reduces the 
clock frequencies dramatically and simplifies the layout as no specific impedances are 
necessary for the data lines. The clock line still needs to be routed carefully to avoid 
reflections which can lead to multiple clock triggers at low rise times.  
 
The chosen analog to digital converter for this application is a MAX1183. It is designed for 
high-resolution imaging, multichannel IF sampling and also ultrasound application. The 
resolution provided is 10Bit at a conversion speed of 40Msps. There are several pin-
compatible versions available. The speed grade can be increased by simply replacing the chip 
(up to 120Msps is possible by using MAX1190).  
Further advantages for this device are: low power consumption, 59.6dB SNR at fIN = 20MHz, 
a compact design (two converters in one 48-pin TQFP package) and 0.02dB Gain and 0.25° 
Phase matching of the converters at 20MHz. (see also datasheet [10]) 
 
 

2.3.5. Analog interface and Variable Gain Amplifier 
 
To keep the distortions as low as possible the input of the analog to digital converter is 
differential. All disturbances which are picked up at the differential signal lines are attached 
to both lines equally and therefore do not affect the signal as long as the maximum input 
level of the next stage is not exceeded. The input signal coming from the connected 
microphones is single ended and the signal level does not match to the dynamic range of the 
ADC. Therefore an amplifier is necessary to match the input signal to the converter. As the 
signal level provided by the microphones may vary depending on the acoustic attenuation of 
the sent signal, a variable gain amplifier makes it possible to match the received signal level 
to the full scale input of the ADC. The additional equivalent noise caused by the quantization 
error of the ADC can therefore be reduced and the total performance of the system during the 
measurement increased. Furthermore when looking at other applications a higher dynamic 
range is more feasible. 
 
In this application a variable gain amplifier with integrated input buffer from Burr-Brown 
(Texas Instruments) was chosen to provide the necessary amplification and input matching 
(single ended input – differential output). 
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At the input and output of the amplifier appropriate filters were placed to reduce the 
influence of low frequency distortion (below 20kHz) as well as anti aliasing effects at the 
ADC. These hardware filters may need to be adapted when using the system for other 
applications. 
 
 

2.3.6. Digital to Analog Converter 
 
The digital to analog converter is necessary to generate an output signal which can be sent in 
the final application as “ping”. As the waveform of this signal shall be “free programmable”, 
a real digital to analog converter which gets its data from the memory seemed to be most 
suitable. As there are no special requirements to this converter a 10 Bit type with 20Msps and 
parallel interface was chosen (AD5433 from Analog Devices [10]). 
Also in this case the chosen type has the benefit to provide pin-compatible versions with 
higher bandwidth and data rates. To decouple the output pin from the DAC and provide a low 
impedance board output with some ESD protection, a simple rail to rail amplifier was added 
at the output. 
 

 

2.4. Software Concept 
 
There are three different types of software necessary to implement the requested functionality 
(three different programming languages): 
 

• The user interface on the PC shall be provided in MATLAB  
• The configuration and communication with the PC is done by using a softcore 

microprocessor inside the FPGA programmed in C (necessary compilers are provided 
by the Xilinx development environment) 

• The custom IP which handles the data transfer, cache, address mapping and clock 
generation is “programmed” in VHDL  

 
 
The main functions supported by the interface between MATLAB and the softcore were 
defined during the concept phase of the development. Every main function can be started by 
a single command and is proceeding according a defined protocol afterwards. An overview of 
the commands supported by the softcore can be found in Tab. 4. 
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Main function Description 
Power on Switch on power supply for preamplifier, external 2.5V and 5V supply, 

enable VCA, enable ADC and DAC 
Standby Switch off supplies and disable VCA, ADC and DAC 
Config Enter configuration mode: 

In this mode the softcore expects the configuration information about 
requested sampling rates, number of samples to be transmit and received 
and the digital gain settings of the preamplifier 

Download Start download procedure (transfer data from PC to onboard memory) 
Upload Start upload procedure (transfer data from onboard memory to PC) 
Measure Start measurement (output and input of DAC/ADC data at the configured 

sampling rate and number of samples) 
Reset Reset system 

Tab. 4: List of main functions supported by the softcore 

 
The interface between the softcore and the custom IP is more simple but was defined at a 
later stage in the development because the design of the IP, as well as the memory interface 
had to be changed several times to achieve the required functionality. Nevertheless the 
configuration shall be mentioned here as follows: 
 
It was realized with two HW signals as well as ten 32Bit registers. The first HW signal is 
connected to a GPIO pin on the softcore (configured as output) and also to a physical IO port 
pin of the FPGA to trigger the measurement. The second HW signal is connected to an 
interrupt pin at the softcore to provide an interrupt signal as soon as the measurement is 
finished. Four of the ten 32Bit registers are used to set the start and stop address of the 
transmit and receive data signals in the memory.  The other six registers are used for the 
configuration of the clock speed for the A/D and D/A converters, as well as diagnosis and 
feedback during SW development.  
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3. Details on the Hardware Design 
 
The main PCB has two layers with SMD components placed on both sides. The placement of 
the integrated circuits and signal paths on one side and only minor tracks and a ground plane 
on the other side result in a very robust design. The power supply filtering capacitors were 
placed as close as possible to the integrated circuits on both sides of the PCB. The FPGA 
evaluation board from ZTEX can be placed piggyback on the main PCB by THT connectors. 
The sensitive analog signal processing consists of the filter and amplifier for each channel 
and had to be placed at some distance to the switching power supply to avoid coupling of 
distortion signals. The digital to analog converter and the USB interface are less distortion 
sensitive and do not have placing restrictions. Beside the switching power supply, a linear 
voltage regulator provides 5V and 2.5V to supply the preamplifier and if necessary also the 
MEMS microphones with a low noise supply voltage. Fig.8 shows a general block diagram 
of the main PCB with the ZTEX FPGA Module. 
 

 

Fig.8: Block diagram of hardware (complete setup) 
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A more detailed block diagram of the functions included on the main PCB can be found in 
Fig.9. The control lines of the ADC and DAC as well as the data lines are all connected to the 
FPGA module and are routed inside the FPGA to the softcore. 
 
Beside the interfaces to the converters, amplifiers and USB driver some additional interfaces 
for trigger, power signal and debug are required. The trigger line is an output signal from the 
softcore which indicates the start of a measurement. Once an ultrasonic sound signal is 
transmitted, it is continuously attenuated during propagation. To enable some compensation 
of this attenuation a simple capacitor charging circuit provides a time dependent voltage 
(exponential function) which can be used to increase the gain of the voltage controlled 
amplifier during the measurement. The input voltage for the VCA can also be set to a 
stationary value which is adjusted by a simple potentiometer on the PCB. 
 
When using the device for ultrasonic applications at the EMCE an external high voltage 
amplifier has to be used to drive the ultrasonic transmitter. 
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Fig.9: Detailed block diagram of hardware 
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3.1. FPGA Board 
 
As mentioned in the concept the “ZTEX USB
design. See Fig.10 for a block diagram and 
Further details can be found on the ZTEX website
 
 

Fig.10: ZTEX USB

 
 
 

on the Hardware Design  

As mentioned in the concept the “ZTEX USB-FPGA-Module 1.11c” [8]
for a block diagram and Fig.11for a picture of the real device.

Further details can be found on the ZTEX website [7]. 

 

: ZTEX USB-FPGA-Module 1.11 block diagram 
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[8] was used for the 
for a picture of the real device. 

 

 [8] 
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Fig.11: Picture of ZTEX USB-FPGA-Module 1.11c [8] 

 
 
The FPGA which is assembled on the Xilinx USB-FPGA-Module 1.11c is a Spartan 6 
“XC6SLX25” containing 24,051 Logic Cells [11]. Detailed data can be found at [5]. Directly 
attached to the Spartan 6 is a 64MB DDR SD RAM from Micron which can handle data rates 
up to 800MByte/s. The Cypress microcontroller, as well as the flash and EEPROM memory 
are necessary to enable stand alone operation. During power up the microcontroller starts 
with a boot loader which is stored in the EEPROM. The “bitstream” for the FPGA is then 
loaded from the micro SD flash card into the FPGA. The FPGA can also be programmed by a 
JTAG interface which is connected to a JTAG connector on the main PCB. This interface 
was also used during development as it is very convenient for debugging. It was disabled 
after finalization of the software (prototype operates in standalone mode). For measurements 
at mobile robot application the device had to be able to run in a standalone mode, using a 
single connection to the PC only for controlling the device. 
 
The onboard USB 2.0 interface is used for downloading the boot loader to the EEPROM and 
the “bitstream” to the micro SD Flash memory. It is also possible to extend the software of 
the Cypress microcontroller and use this USB 2.0 interface for communication with the 
FPGA at high speed rates (up to 480MBit/s). As the software effort increases drastically in 
this case also on the PC to handle the USB high speed interface, this option was not used for 
the prototype. 
 

3.2. Power Supply 
 
The power supply of the device contains a linear and a switching power supply. As the board 
should have low power consumption, most of the supply voltages are provided by the 
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switching voltage regulator. The linear voltage regulator is only used for supplying the 
analog frontend as well as the external active microphones (in case of ultrasonic application). 
As these parts only need to be supplied during a measurement the disadvantage of a very low 
efficiency at high input voltages can be accepted. The big advantage of a low distortion 
power supply at these parts of the circuit prevails. The linear regulation is done in a first step 
to 5.0V by using a L4941BDT low drop voltage regulator (450mV drop voltage @ 1A typ.) 
followed by a TPS73025 2.5V regulator. The 2.5V voltage is enabled by a control signal 
from the softcore inside the FPGA. The 5V remains on all time as the analog frontend 
amplifier supports a power down mode with low current consumption (<2mA per channel). 
This linear voltage regulator together with the used polarity protection diode defines the 
minimum and maximum supply voltage of the electronic (VCCmin= 6.1V, VCCmax= 30V). 
 
The main current is provided by the switching power supply. It is used to supply all other 
parts including the FPGA, except the analog pre amplifier. The IC used for this circuit is the 
A4490 from Allegro (capable to handle input voltages from 4.5V to 35V).The converter 
topology is a classic buck converter with external passive freewheeling diodes but internal 
power FETs. Due to its 4x4mm QFN package it is very compact in size. It provides three 
independent outputs which are clocked by a fixed frequency of 550 kHz at different pulse 
widths, to individually control the output voltages. The three clock signals are shifted 120° in 
phase to reduce the current ripple and distortions on the power input. The maximum output 
current is internally limited to 2.0A per channel. 
 
Appropriate voltage dividers are used to generate the required voltages with respect of the 
regulator feedback voltage of 0.8V: 

 

4k7 & 1k5:  
�.��∗(���������)

����
= 3.307  

4k7 & 2k2:  
�.��∗(�����!!��)

!!��
= 2.509  

500R & 1k:  
�.��∗(��������)

����
= 1.2  

 
As switching power supplies always include high current paths, ripple and distortion signals 
are highly dependent on the used components and the correct layout. To minimize these 
effects the coils, freewheeling diodes and filter capacitors were selected carefully to match 
for this application. 
 
Coils: “IHPL-2525” series from Vishay -> high current, shielded setup and lowest DCR/µH 
in this package. 
 
Freewheeling diodes: “DFLS230L” from Diodes Incorporated -> “Schottky Barrier” type 
with high current capability and low forward voltage drop. 
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Filter capacitors: “GRM Series” from Murata -> Low ESR and ESL 
 
The layout recommendations in the datasheet of the A4490 were tried to be considered to 
minimize the current flow path during on and off phase of the internal FET [12]. 
 

 
 

Fig.12: Current flow path at FET on [12] 

 

 
 

Fig.13: Current flow path at FET off [12] 

 
It was possible to reduce the size of the complete switching power supply layout below 
25x20mm by using both side assembly (see Fig.14 for a picture of the switching power 
supply layout area in ~ 1:1 scale). 
 

 
 

Fig.14: Layout of switching power supply 
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3.3. PC Interface 
 
The PC interface was kept as simple as possible as there is an existing high speed USB 
interface available on the FPGA evaluation board from ZTEX. A simple UART to USB chip 
from FTDI [9] seemed to be the most convenient solution to enable a simple interface to the 
PC and the electronic. The used FT232RL allows data rates up to 1MBit/s on the UART 
interface of the electronic (available as part of the softcore), and a virtual com port on the PC 
side (drivers for Windows provided by FTDI). 
 

3.4. Digital to Analog Converter 
 
The DAC used in the setup (AD5433) is a typical R-2R digital to analog converter with a 
parallel interface and a resulting current output. In Fig.15 [10] the setup of the R-2R network 
inside the DAC can be seen. 
 

 
 

Fig.15: R-2R network inside the digital to analog converter [10] 

 
The output of the DAC in the standard configuration is a current signal. To get a 
corresponding voltage signal, a voltage switching mode has to be used. By using this 
configuration a positive reference voltage results in a positive output voltage. Therefore a 
single supply operation is possible. The output voltage of this configuration is directly 
dependent on the connected impedance. To avoid this dependency and to provide an 
independent low impedance output, an additional buffer is necessary. This buffer can also be 
used to amplify the output signal. As the input is directly connected with the resistor network, 
the impedance of the input is dependent on the code seen by the R-2R network. Therefore the 
input has to be driven by a low impedance source to provide correct corresponding output 
voltages at different codes. At the prototype the input is driven directly by the supply voltage 
(+5V) buffered by a low impedance L/C filter. 
 
A rail-to-rail, single supply, wideband operational amplifier (AD8601) is used to buffer the 
output of the DAC and amplify by a factor two. The maximum dynamic range of the output 
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in this DAC configuration is only 0…VIN/2 if no amplification is used. In Fig.16 the 
connection of the impedance buffer as mentioned in the datasheet [10] can be seen (At the 
prototype VIN is connected to +5V, R1 and R2 are 10k Ohm each). 
 
 

 
The digital 10 Bit interface of the AD5433 does also provide a read-back function which can 
be helpful in some applications, but was not used in the SW as the data interface is directly 
connected to the softcore. To increase resolution a pin compatible version with a 12 Bit 
interface can be assembled as well (AD5445, see also [10]). The schematic, layout and SW 
were prepared to handle the 8, 10 and 12 Bit version (for the prototype the 10 Bit version was 
assembled). 
 
Beside the parallel data interface there are only two more lines necessary to control the DAC. 
One CS and one R/W signal. The R/W signal is used to configure read or write mode of the 
input latch. The CS signal can be seen as a clock line. At a low signal data can be written to 
the input latch. At rising edge of CS, data is latched and transferred to the DAC register. The 
DAC latches are not transparent, therefore a write sequence must include a falling and a 
rising edge to ensure that data is loaded into the DAC registers. The digital value is written 
into the DAC registers and output directly as analog value by using the R-2R network. 
 

3.5. Analog to Digital Converter 
 
The ADC used in the electronic is a dual 10 Bit analog to digital converter from Maxim 
(MAX1183). It uses a nine-stage pipelined architecture (see Fig.17) which allows high speed 
conversion. The input voltage is “stored” by a “track and hold circuit” at the input and 
processed through the pipeline. As it is shifted to the next stage every half clock cycle the 
total latency of the conversion is 5 clock cycles. Each stage consists of a one and a half bit 
flash ADC to convert the input voltage of the stage into a digital code. A digital to analog 
converter in each stage converts the digital result back into an analog voltage, which is then 
subtracted from the input signal. Before it is forwarded to the next stage the resulting voltage 
is multiplied by two to match the next input stage.  
 

Fig.16: Connection of DAC to impedance buffer [10] 
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Fig.17: Nine-stage pipelined architecture of ADC [13] 

 
The full-scale range is dependent on the configuration of the chip. For the setup of the 
prototype the “Internal reference mode” (see datasheet [13]) was used, by connecting the 
REFOUT to the REFIN pin with a 1kΩ resistor. The resulting full-scale range in this 
configuration is the difference of (VDD/2+VREFIN/4) and (VDD/2-VREFIN/4). As VDD is 3,3V 
and the internal reference of the ADC is 2.048V the full-scale input range is 2,276V. 
(The full-scale input values here correspond to the peak to peak value of the input signal, not 
to the RMS value) 
 
Same as for the other components, also for the analog to digital converter, the chosen IC is 
available in other pin compatible versions, which allow higher performance. The version 
assembled on the prototype is a MAX1183 (10Bit 40Msps). Other versions like the 
MAX1182, 1181, 1180 or 1190 allow sampling rates up to120Msps at 10Bit, but do have 
higher prices. 
 

3.6. Analog input with Voltage Controlled Amplifier 
 
The Voltage Controlled Amplifier used in the circuit is a VCA2614. It has two analog 
channels including an input buffer, a voltage controlled attenuator and a programmable gain 
amplifier at each channel (see Fig.18) 
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Fig.18: Block diagram of dual channel VCA [14] 

 
All internal blocks are AC-coupled. The coupling into the PGA stage requires an external 
capacitor if frequencies below 75kHz should be passed on to the PGA. By assembling a 10nF 
capacitor the usable bandwidth of the VCA was set from 40kHz to 40MHz (the output PGA 
rolls off at around 40MHz).The three MSG bits do not only select the gain of the PGA but 
also select the maximum attenuation of the VCA. The MSG therefore selects the overall gain 
range, while the VCA control voltage defines the actual gain as an ideal dB-linear transfer 
function (see Fig.19) 
 

 
 

Fig.19: Swept Attenuator Characteristics [14] 

 
For each selected digital gain code the maximum VCA attenuation (selected by 
VCACNTL=0V) is the inverse of the selected PGA gain. Therefore at an input voltage of 0V 
the VCA + PGA gain is always 0dB, independent from the digital selected gain. 
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As a result of this the overall gain per channel is selectable by the MGS settings and the 
analog input voltage. Fig.20 shows some plots of the gain as a function of the input voltage at 
different MGS codes. 
 

 
 

Fig.20: Plot of Gain vs. control voltage at different MSG[14] 

 
 
At the prototype the gain control voltage can be either selected to be adjusted by a 
potentiometer, or set to the output of a buffered C charging circuit which is triggered by the 
start of the measurement. In case of using external microphones this allows to compensate 
some part of the propagation attenuation of the ultrasonic signal. As the output of the IC 
provides a differential signal it matches perfectly to the input of the analog to digital 
converter. A first order low pass filter with a cut off frequency of 21Mhz was used to avoid 
aliasing effects. The input is single ended and therefore can be directly connected to a single 
ended signal source (like the ultrasonic microphones). 
 
To avoid unwanted distortion signals, frequencies below 40kHz were cut off by using a high 
pass filter at the input. In combination with the AC coupling capacitor at the PGA, a band 
pass characteristic was achieved in total with an attenuation of 40dB/decade at lower 
frequencies and a cut off frequency of 40kHz. The attenuation at higher frequencies is 
20dB/decade with a cut off frequency of 21MHz. 
 
The complete VCA2614 is supplied with 5V. Therefore the digital interface was assumed to 
expect also 5V digital signals (digital interface levels are not mentioned in the datasheet). To 
ensure proper functionality a 3V3 to 5V level shifter (74LVX4245) was used to match the 
logical voltage levels between the FPGA operating at 3V3 and the VCA operating at 5V. 
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3.7. Programmable VHDL Hardware 
 
The exact configuration of the VHDL hardware defined by the configuration of the IP cores 
as well as the VHDL source codes were asked not to be disclosed in this thesis. Nevertheless 
the reader should get a good overview about the system and the approach of resolving the 
requested problem.   
 
The programmable VHDL hardware (defined by the VHDL code and the ISE project setup) 
was the most time consuming part of this thesis due to two reasons: 
 

• The Xilinx development tools allow designing highly complex systems, but starting 
without any training it is a long way to get familiar with all necessary settings and to 
get a 3rd party hardware running in stand-alone mode. 

• The high variety of IP cores, which should be chosen wisely at the beginning to 
achieve the required performance. 

 
The Xilinx development tools contain several programs to setup and maintain a project 
including simulation, optimization, debugging, programming and versioning (Xilinx ISE 
v14.3 was used for the development of the software of the prototype). There are a lot of 
tutorials available in the internet, which allow new users to get a simple VHDL code running 
within a few clicks (e.g. [15]). The drawback from my point of view is the high number of 
different possibilities to put a simple VHDL code into practice in the Xilinx ISE, resulting in 
a huge number of “HowTo’s and Tutorials” looking all very different. Another problem is the 
limitation of some tutorials to implement only some VHDL code on a specific target HW by 
using dedicated programming tools. The implementation of pre-defined IPs, custom IPs and a 
softcore running in stand-alone mode without any PC connection was only possible with the 
help of the online support from the Xilinx and ZTEX team.  
 
As mentioned in chapter 2 “Concept”, a very first approach for the setup was to use a 
physical external microprocessor with a dual ported memory for connecting the RAM to the 
microcontroller and the FPGA. By changing the concept to an integration of the 
microcontroller into the FPGA as a softcore, the question arose: How to access the memory? 
As the FPGA evaluation board from ZTEX was the most promising board to get good 
performance at reasonable costs, the physical memory chip was defined. The memory 
controller inside the FPGA was the only variance remaining. Coming from a first idea of a 
discrete setup with the memory attached directly to the controller and missing the second 
physical memory interface to the FPGA due to HW constrains, the self-evident concept was 
to use a memory controller to attach the RAM to the microcontroller, and DMA to transfer 
the data to the RAM at the desired speed. In this configuration, the data interface to the 
external ADCs is realized by IO pins of the softcore, same as for the interface to the DAC. 
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The DMA configuration is well known and used in many applications to transfer high 
amount of data to and from the memory. This setup was put into practice with reasonable 
time effort and seemed to be performing well at the first tests. A closer look and tests with 
higher data rates soon revealed that the data transfer from the IOs of the softcore to the 
memory by using DMA was not sufficient to achieve the required data rates. 
 
After a lot of investigations on the available memory controllers, a multi port memory 
controller (mpmc_v6_06_a see [16]) seemed to be the best solution to integrate a multi port 
configuration in the FPGA. For the correct interfacing a custom IP was necessary to provide 
the direct connection between the external ADC’s and the DAC to the memory controller. It 
was also obvious that the clock signals cannot be provided by the softcore and have to be 
derived from the main clock. To get selectable clock frequencies, the custom IP was extended 
by a clock processing function, to provide programmable clock frequencies. The 24MHz 
crystal assembled on the ZTEX FPGA board is used as a common clock source for all 
functions. 
 

3.7.1. MicroBlaze Softcore 
 
The softcore which was used for the prototype was a Xilinx MicroBlaze [17]. It is a 32-Bit-
RISC processor providing features which can be configured, activated or deactivated before 
synthesizing [18]. Some of the main features are: 
 

• Floating Point Unit 

• Memory Management Unit 
• Instruction and Data Cache 
• 3 to 5 Stage Pipeline 

• Barrel Shifter 
• Integer Multiplier 

• Integer Divider 
• Pattern Comparator 

• Hardware Breakpoints 
• JTAG control via debug support core 
• Interrupt signaling 

 

3.7.2. Peripheral IP’s 
 
Additionally to the list of functions of the MicroBlaze, several peripherals had to be 
implemented to get similar functionality like an external microcontroller. These IP’s are not 
directly located inside the MicroBlaze as they are individual IP blocks, but can be seen as 
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part of the microprocessor inside the FPGA. In Tab. 5 those IP blocks are listed including the 
version number used for the prototype. 
 

IP Block Version used in the SW 

UART interface xps_uartlite_v1_02_a 
GPIO’s xps_gpio_v2_00_a 
Timer xps_timer_v1_02_a 
Interrupt service controller xps_intc_v2_01_a 
Reset controller proc_sys_reset_v3_00_a 
BRAM controller bram_block_v1_00_a 
MicroBlaze debug module mdm_v2_10_a 
LMB BRAM Interface controller lmb_bram_if_cntlr_v3_10_b 
Clock generator clock_generator_v4_03_a 

Tab. 5: MicroBlaze peripheral IP blocks 

 

3.7.3. Multiport Memory Controller 
 
The MPMC (mpmc_v6_06_a) from Xilinx [19] can be used to access the attached memory 
with several different interfaces [20]. The configuration of the physical memory interface 
itself was done according the datasheet t[21] of the DDR2 memory chip that is assembled on 
the ZTEX FPGA board. Two ports were enabled to access the memory from the softcore and 
from the custom IP independently from each other. The interface to the softcore is a standard 
PLBv64 (XILINX Processor Local Bus [22]) interface running at a bus width of 32Bit. This 
interface is just connected to the PLB bus used in the setup to communicate with the other 
IPs (no dedicated PLB bus was used). Although it is not the fastest bus available, it is fast 
enough to transfer the data from the PC to the memory and vice versa, as the bottleneck of 
the data transfer in this case is the UART. In Fig.21 a block diagram of the used 
configuration can be seen. 
 
The big advantage of this configuration is the direct read/write access to the memory. The 
MicroBlaze can easily access the data, by accessing the mapped memory address. The second 
port was configured as NPI (Native Port Interface) at a bus width of 64Bit (see datasheet 
[16]). Using this port configuration enables a very low-level direct access to the memory 
controller core, resulting in very high data rates but requiring also more complex 
configurations to control the interface. 
 
The clock rates of the PLB and NPI bus were set to 75MHz, but can be increased to higher 
values if necessary. Due to constrains of the MPMC, the NPI must run at the same or at 
double frequency of the PLB bus. Therefore at double rate frequency, data rates of close to 
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10GBit are possible, even without changing the PLB frequency. In this case the DDR2 
memory would be the bottleneck of the system. 
 
The PHY memory clock frequency of the prototype was set to 300MHz. When using other 
boards than the 1.11cfrom ZTEX, also faster memory components are available (DDR3). 
Those still can be operated at their maximum clock frequency by using the architecture 
described in this thesis. 
 

 

Fig.21: FPGA IP bus structure 

 

3.7.4. Custom IP 
 
The custom IP is a custom configured hardware part programmed in VHDL. Although it is 
really “programmed” during each start-up, it is mentioned here in the hardware chapter, as 
the code is only describing the behavior of the hardware. 
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The main functions are: 
 

• Provide configurable clock signal for the external ADCs 

• Provide configurable clock signal for the external DAC 
• Transfer data from RAM to DAC 

• Transfer data from ADCs to RAM 
 
The above mentioned functions seem to be simple, but when using the NPI to access the 
MPMC things become more complex.  
 
The clock signals for the DAC and ADC have to be generated in a defined sequence. As the 
ultrasonic application is based on very precise time of flight measurements of echo signals, 
the timing of the transmitted and received signals has to be very precise. It was a requirement 
to be able to adjust the length of the transmitted signal as well as the length of the recording 
of the echo. The recording of the echo received by the microphones and digitized by the 
ADCs has to start exactly after the last clock cycle of the DAC which generates the 
transmission signal. The duration of the transmission is defined by the number of samples 
divided by the sampling rate (same for the duration of the recording). The configuration of 
the duration of the clock signals and the clock frequencies have to be provided by the 
softcore (interface see chapter 4.2). The generation of the correct output clock was realized 
by a counter, counting the edges of the clock signal provided by the “Clock Generator IP” 
(see chapter 3.7.2). It is set back to zero every time it reaches a compare value. At each reset 
to zero the clock output from the IP toggles. The compare value for the counter is configured 
by the softcore. As the IP only gets a compare value, the input clock speed has to be defined 
also in the C code of the softcore to allow calculation of the compare values for the desired 
output clock frequencies. Within the test software this input clock frequency was set to 
75MHz. 
 
To signalize the start of a measurement, the trigger signal is used. The trigger signal is an 
output GPIO of the softcore. It is set by the softcore once the measurement command is 
received from the MATLAB interface. At a rising edge on the trigger line the custom IP 
starts to load the internal data buffers. Once the buffers are ready loaded, it starts to count the 
input clock and provides the required DAC output clock. In parallel the data is loaded on the 
parallel interface on every clock edge. The number of clock cycles at the output is again 
counted and monitored. When reaching a certain value (compare value provided by the 
softcore) the clock output of the DAC is stopped. At the last rising edge of the DAC clock 
output, the output for the ADC clock is started using the same principle. This time the data is 
read at every falling clock edge and stored to the internal buffers. Once the defied number of 
samples for the ADC is reached the IP signalizes the softcore the successful data transfer (see 
chapter 4.2). 
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To ensure correct routing of the clock signals inside the FPGA all clock signals were 
declared explicitly as “clock signals”. A clock forward technique (ODDR2 buffer) was used 
to forward the clock signals from the clock generator to the custom IP and also to the external 
components (see [23]). 
 
The DDR2 RAM stores the information in form of small charges which can be charged or 
discharged, representing 1 or 0. As these charges are volatile, the complete RAM needs to be 
refreshed continuously even if there is no modification to preserve the information stored. 
This refreshing is done automatically by the MPMC. The necessary information for correct 
refreshing timing is provided by the datasheet of the DDR2 RAM IC [21] and was set at the 
configuration of the MPMC IP. During refreshing of the RAM cells there is no reading or 
writing possible to the data inside the RAM cells. The MPMC is equipped with a read/write 
FIFO which can be used to cache some data in this case. To realize a continuous data transfer 
between the RAM and the external converters, some additional buffers were required beside 
the internal FIFO. The MPMC IP provides several data transfer sizes when using the 64 Bit 
NPI interface. Furthermore it is possible to choose between a “burst” or “cacheline” transfer. 
 
For a write process at “cacheline” as well as “burst mode”, first the FIFO needs to be filled 
with data (see datasheet [16]). Once the FIFO is full, the MPMC starts to store the data to the 
RAM. The finalization of the transfer from the FIFO to the RAM is signalized by a certain 
signal on the NPI interface. As the refresh cycles of the RAM are independent of this write 
process, the time until the FIFO can be accessed again can vary. Although the RAM interface 
is clocked with 300MHz the required time until the FIFO can be accessed again can take 
some time (several cycles). Therefore a continuous data transfer to the RAM cannot be 
guaranteed. At a read process the situation is similar. After addressing a certain RAM area, it 
takes some time until the NPI interface signalizes that the FIFO is fully loaded and ready for 
read out, as there can be refresh cycles occurring during load of the FIFO. Again a 
continuous transfer of data cannot be guaranteed. Beside this, the latency time is signalized at 
some extra lines and needs to be awaited as well, before accessing data in the FIFO. 
 
For the custom IP the “32-Word, Burst Read/Write” transfer mode was used. It should be 
mentioned that Xilinx defines a “word” as 32 Bit. Therefore a “32-Word, Burst Read/Write” 
transfers from or to the FIFO on the 64 Bit bus requires 16 clock cycles. 
 
To ensure continuous data transfer, additional buffer stages had to be implemented. The 
reload strategy was kept very simple and is described on the next pages: 
 
Once a positive edge is seen at the trigger line, and no data transfer is processed (positive 
edge on the trigger line would be ignored in this case), the start of a measurement is indicated. 
First data from the RAM needs to be forwarded to the external DAC (cached by the FIFO 
and the internal buffers). To load the data from the RAM to the FIFO, the correct address 
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needs to be provided to the MPMC on the NPI interface. The exact handling of the interface 
can be found in the MPMC datasheet from Xilinx (see [16]). The initial starting address is 
provided by the softcore. At the end of every RAM read procedure the read address is 
increased by the FIFO size, to access the correct data at the next read process. 
 
After the read from the DDR2 RAM the data is forwarded from the FIFO into the buffer 
which has double size of the FIFO (256 Byte). This copy process takes place at the NPI clock 
rate of 75MHz with 64Bits transferred per clock cycle (64 Bit bus width of NPI). The read 
out of the buffer is done at the desired DAC clock speed and it is therefore independent from 
the writing process of the buffer. After the trigger signal indicates the start, first the complete 
buffer is filled with data. Once the buffer is full, the DAC clock cycle is started and the data 
is output to the DAC. When the first half of the buffer is completely forwarded to the DAC, it 
is reloaded with the next data from the MPMC FIFO. During this reload process the second 
half of the buffer is put out to the DAC. Once the second half is completely transferred to the 
DAC the data is read again from the first half of the buffer and the second half is reloaded 
with data from the FIFO. This procedure repeats until the required number of data has been 
put out to the DAC. This is the case when the end address of the read process (address 
provided by the softcore) is reached. As the total reload time of the FIFO is much shorter 
than the read out time of half of the buffer, the data can be continuously transferred to the 
DAC at the configured DAC clock rate. 
 
The time which is necessary to transfer data from the FIFO to the buffer at the 75MHz 64Bit 
NPI interface is 213ns + additional access times due to refresh cycles. The time to transfer 
the same amount of data at a sampling rate of 10MSPS to the DAC, is 6µs (one 12 Bit DAC 
data word is stored as two Byte inside the RAM). Even at high RAM access times due to 
refresh cycles and worse case latency times (max 3 NPI clock cycles) the buffer is filled 
much faster than read out again. See Fig.22 for an overview of the data transfer. 
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Fig.22: Buffer concept at output of data from RAM to DAC 

 

After the last edge of the DAC clock cycle the output of the ADC clock is started. The 
principle of buffering is the same as used for the DAC, except the data widths and clock rates 
from the buffer to the ADC. See Fig.23 for an overview. 
 
As the transfer of data from the FIFO to the buffer during RAM read is only triggered by the 
position of the pointer reading out the data from the buffer, the clock signals for the NPI can 
be completely independent to the DAC clock. The only restriction is the maximum clock 
frequency to ensure the reload process is finished before the dedicated buffer is accessed 
again. The same applies for the analog to digital converter. 
 
As there were three clock lines implemented in the custom IP (one for each ADC and one for 
the DAC) even an external clock can be used to clock the data output. Minor modifications 
would be necessary in the VHDL code to change one of the two ADC clock outputs to an 
input and provide the clock for both external ADCs by one single output pin. 
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(limited by input clock of ADC)

 

Fig.23: Buffer concept at input of data 

 

In the following section I will take a closer look at the maximum clock rates: The clock rates 
used in this setting, their interrelation and possible maximum configurations are critical for 
successful data transfer. Therefore the individual limitations observed within the prototype 
shall be outlined here in detail. 
 
The 40 Bit (4 x 10Bit) data from the external ADCs are stored as 64Bit data blocks inside the 
RAM. As the readout from the buffer to the RAM is done at a clock rate of 75MHz, the 
40MHz maximum clock speed of the assembled ADC converter can be handled without 
problems. For higher data rates (at e.g. other ADCs) the NPI clock frequency needs to be 
increased. The clock rates of the NPI interface needs to be the same or double the clock rate 
of the PLB interface. The PLB interface whereas needs to be the same clock rate as the 
softcore, which is limited to 100MHz. The resulting maximum NPI clock rate therefore is 
200MHz (at 64 Bit per clock cycle!). 
 
Providing only 16 Bit data bus width, the bottleneck in this setup is the physical interface to 
the assembled DDR2 RAM which can only be increased to a clock rate of 400MHz (different 
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ZTEX FPGA boards provide DDR3 memories with higher clock rates, but the achieved data 
transfer rates are still far below the limits of the NPI bus). 
 
The correct procedure of reading and writing according to the NPI interface specification as 
well as the output of the data from and to the buffer was realized in VHDL by using several 
state machines. 
 
The realization shown above is the simplest form of a ring buffer containing only double 
buffering. For well defined data rates the number of buffers, the length of the read/write 
bursts, and clock rates on NPI and PHY can be changed to optimize the buffer size and 
consequently also the current consumption and number of cells inside the FPGA. 
 
It should be mentioned here that the most time consuming part during the development of the 
custom IP was to find out how to implement a custom IP in Xilinx Platform Studio including 
a dedicated NPI bus to the MPMC and registers, accessible on the PLB bus for 
“communication” with the softcore.  



 

 

Details on the Software Design  45 

4. Details on the Software Design 
 
The software for the “Low cost high speed USB DAQ system” can be split into three blocks: 
 

• The MATLAB  (including the user interface) 
• The softcore processor (code written in C) 

• The VHDL  “software” for the custom IP which was described already in chapter 3.7 
 
The software design was also done by a top down method. First the user interface was 
defined including the supported commands and the protocol for each task. Afterwards the 
software in MATLAB and C was written to fulfill the defined functions. 
 

4.1. Interface PC <-> Softcore (uC) 
 
The connection between the PC software (MATLAB) and the softcore was realized by a 
serial interface at a speed of 921,6kBit/s (USB used as virtual COM port). To be able to test 
the software with a standard terminal program, only single commands were used to start the 
different subroutines in the softcore. After power up of the softcore the correct configuration 
has to be made as no default values were defined in the source code. The protocol for the 
configuration can be seen in Fig.24. 
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Fig.24: Configuration protocol 

 
If any unexpected character is received by the softcore, an error message is sent back and the 
configuration sequence is stopped. In this case the sequence has to be started again from the 
beginning. 
 
For the upload and download of data, a similar protocol was defined (see Fig.25). When 
using terminal programs the transfer of data was working without any problems in both 
directions. When implementing the software in MATLAB by using the USB virtual COM 
port and treating the interface as serial interface at a speed of 921,6kBit/s, problems during 
upload occurred. During transfer of large data, packages were lost. When receiving the data 
on two different PCs in parallel (split TX line of serial interface to receive data on second PC 
in parallel) it was observed that terminal programs do receive all data, whereas MATLAB 
seems to continuously lose some data packages. To avoid this problem acknowledgement 
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messages were implemented. As the minimum buffer size of the serial interface on a PC was  
found through trial and error to be at 512 Byte, the acknowledgement for upload was 
implemented after every 512 Bytes. At the download of data no problems were recognized, 
but the acknowledgements were implemented there as well to prevent a dead lock if the 
softcore would stop due to unexpected reasons. After implementation of the 
acknowledgement messages no problems were observed anymore. A drawback was  some 
reduction of the achieved transfer speed. 

 

Fig.25: Up- and Download protocol 

 

It is obvious that the length of the download data does not need to be the same length as the 
data to be transmitted to the DAC. Same is valid for upload data and data received by the 
ADC. Taking this into account, it is possible to e.g. upload only a part of the received data, 
analyze it and proceed with the upload if necessary. It is also possible to download a large 
amount of data but only output some part of it to the DAC (e.g. download several periods of a 
signal, but send only a burst containing a certain number of periods). 
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The protocol for “Power On”, “Enter Standby”, “Measure” and “Reset” can be seen in Fig.26. 

 

Fig.26: Power, Standby, Measure and Reset command protocol 

 

During development some additional commands were implemented to make the debugging 
of the softcore and the custom IP easier. 
 

4.2. Interface Softcore (uC) <-> custom IP 
 
The interface between the softcore and the custom IP was realized by two HW signals as well 
as ten 32 Bit registers. The first hardware signal is the “trigger” signal. It is an output signal 
of the softcore which can also be accessed outside the FPGA (it is also used to trigger the 
external time dependent voltage for the voltage controlled amplifier). The second line is an 
input at the softcore and directly connected to the interrupt controller. At the end of a 
measurement this signal was planned to provide an interrupt at the softcore to enable the 
softcore working on different tasks during the measurement. For the prototype the interrupt 
signal was not used as the information on finalization of the measurement is also provided in 
a register. This register is polled continuously and no other tasks are pending for the softcore 
during the measurement. This information is sufficient for a prototype and the registers can 
directly be accessed on the PLB bus by any device. The function of the register can be seen 
in Tab. 6.  
  



 

 

Details on the Software Design  49 

Reg. Function Read/Write Comment 
0 Control register Write Only used during SW development 

1 Status register Read 
Bit 0 (LSB): 

ADC end address reached (active high) 
2 Debug register Read/Write Only used during SW development 
3 DAC start address Write 32 Bit Memory address 
4 DAC end address Write 32 Bit Memory address 
5 ADC start address Write 32 Bit Memory address 
6 ADC end address Write 32 Bit Memory address 
7 DAC clock prescaler value Write 32 Bit value 
8 ADC clock prescaler value Write 32 Bit value 
9 Not used - - 

Tab. 6: Custom IP registers description 

 

4.3. PC Software (MATLAB) 
 
The MATLAB Interface was generated to automatically perform a complete measurement. 
This includes the configuration-, download-, measurement- and upload- procedure. The 
interface was kept simple as it is only for demonstration purpose. Inputs in MATLAB are the 
configuration data as well as the data of the signal to be sent (read out from an input file 
“download.bin”). For test purpose a sine including several periods was generated and stored 
into the download file. The output of the MATLAB program after a measurement are the 
recorded and uploaded signals provided as “upload.bin” file and plot on the screen. 
 
The configurations can be changed in the “ultrasonic.m”. All sub tasks were split into 
separate files: “config.m”, “upload.m”, “download.m”, “measure.m”, “ADCDAC_power.m” 
and “enter_standby.m” 
 
An example for generation of the download file can be found in the 
“generate_download_file.m”. 
 
To measure the frequency response of the complete circuit an additional program was 
generated which periodically performs a measurement at different frequencies, measures the 
amplitude of the received signal and plots the frequency response of all channels. For full 
automation of this measurement procedure an arbitrary waveform generator from Agilent 
with USB interface was used. The signal generator is controlled in MATLAB by using the 
Agilent IO Libraries. 
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4.4. uC Software (C) 
 
The software of the softcore was programmed in C. The compiler for the MicroBlaze is 
provided with the Xilinx Software Development Kit. When exporting the softcore hardware 
to the Software Development Kit, all necessary header files are generated automatically. The 
external DDR2 memory attached to the PLB bus by the MPMC can directly be accessed by 
addressing the mapped address range in the C code. The GPIOs, timers, UART and Interrupt 
IP’s which are connected to the PLB bus, can also directly be accessed by the mapped 
addresses. 
 
The test software consists of a simple state machine following the protocol described in 
chapter 4.1. Every data transfer for up- or download is handled by using direct access to the 
RAM via the PLB bus. The faster NPI interface on the MPMC is only used by the custom IP 
during measurements.  
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5. Measurements & Results 
 
Although the electronic can be used for data acquisitions for a lot of different purposes, the 
ultrasonic application was kept in focus during the development. The following 
measurements of the characteristics do also focus on properties which are most relevant for 
ultrasonic sound applications. 
 

5.1. Measurements of ADC & DAC 
 
For ultrasonic data acquisition the performance of the analog frontend as well as the analog 
to digital converter are crucial. Furthermore the performance of the digital to analog 
converter including the output buffer amplifier is important for signal generation. All 
measurements in the following chapters were made at a sampling rate of 37,5 MHz for the 
ADC and 9,375 MHz for the DAC.  
 

5.2. ADC Frequency Response 
 
The frequency response is mainly dependent on the input filter, the voltage controlled 
amplifier and the aliasing filter at the input of the analog to digital converter. The filter cut 
off frequency was selected with respect to the ultrasonic application to filter unwanted 
acoustic signals which may interfere with the echo of the transmitted signal. The frequency 
response was measured at different gain levels to see if the variable gain amplifier has the 
same frequency response and thus gain independent phase (see Fig.27, Fig.28 and Fig.29). 
 

 

Fig.27: Frequency response of all channels (VCA=3V3, dig. gain = 1) 
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Fig.28: Frequency response of all channels (VCA=3V3, dig. gain = 5) 

 

 

Fig.29: Frequency response of all channels (VCA=3V3, dig. gain = 7) 

 
The plots show that the frequency response is very stable from one channel to the other, but 
there is a very high dependency on the digital gain selection. Especially at the lower 
frequency range (10-60kHz) a significant “gain peaking” appears at higher digital gain 
selections. 
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5.2.1. ADC Noise 
 
The ADC noise was measured at different gain levels to see if the noise is caused by the 
amplifier or by the analog to digital converter (see Fig.30, Fig.31, Fig.32 and Fig.33). 
 

 

Fig.30: Measured noise at all inputs set to GND (VCA=0V dig. gain = 1) 

 

 

Fig.31: Measured noise at all inputs set to GND (VCA=0V dig. gain = 7) 
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Fig.32: Measured noise at all inputs set to GND (VCA=3V3 dig. gain = 1) 

 

 

Fig.33: Measured noise at all inputs set to GND (VCA=3V3 dig. gain = 7) 

 
As the noise is increasing at higher gain settings of the VCA, it is obvious that it is not 
generated by the ADC. Measurements with a high speed oscilloscope have shown that the 
data transfer from the analog to digital converter to the FPGA generates a lot of distortions. 
Fig.34 shows the record of the DAC output signal and the AC coupled supply voltage of the 
VCA. The block of higher noise level after the output of the DAC (sine) is appearing exactly 
during the transfer of the data on the parallel interface from the ADC to the FPGA. These 
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distortions can be found at several points in the circuit and are most probably the reason for 
the output noise seen at higher gain settings. 
 

 

Fig.34: Noise measured with oscilloscope at GND close to ADC during sampling 

 

5.2.2. Input Channel Crosstalk 
 
The ADC crosstalk was measured on the complete frequency range and at different gain 
settings. As already observed at the frequency response measurements, a very high 
dependency of the selected gain was measured also at the crosstalk behavior. In the datasheet 
of the VCA2614 “LOW CROSSTALK: 10dB at Max Gain, 5MHz” [14] is mentioned as a 
feature of the chip. A closer look on the diagram at page 7 of the datasheet “Crosstalk vs. 
Frequency” confirmed the much lower values which were measured at different gain settings. 
 
Following figures show the channel crosstalk at different gain configurations: 
 

• Fig.35: Channel Crosstalk at single input signal (VCA=0V, dig. gain = 1) 

• Fig.36: Channel Crosstalk at single input signal (VCA=1V, dig. gain = 1) 
• Fig.37: Channel Crosstalk at single input signal (VCA=2V, dig. gain = 1) 
• Fig.38: Channel Crosstalk at single input signal (VCA=3V3, dig. gain = 1) 
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• Fig.39: Channel Crosstalk at single input signal (VCA=0V, dig. gain = 7) 
• Fig.40: Channel Crosstalk at single input signal (VCA=1V, dig. gain = 7) 

• Fig.41: Channel Crosstalk at single input signal (VCA=2V, dig. gain = 7) 
• Fig.42: Channel Crosstalk at single input signal (VCA=3V3, dig. gain = 7) 

 
 

 

Fig.35: Channel Crosstalk at single input signal (VCA=0V, dig. gain = 1) 

 
 

 

Fig.36: Channel Crosstalk at single input signal (VCA=1V, dig. gain = 1) 
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Fig.37: Channel Crosstalk at single input signal (VCA=2V, dig. gain = 1) 

 

 

Fig.38: Channel Crosstalk at single input signal (VCA=3V3, dig. gain = 1) 
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Fig.39: Channel Crosstalk at single input signal (VCA=0V, dig. gain = 7) 

 

 

Fig.40: Channel Crosstalk at single input signal (VCA=1V, dig. gain = 7) 
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Fig.41: Channel Crosstalk at single input signal (VCA=2V, dig. gain = 7) 

 

 

Fig.42: Channel Crosstalk at single input signal (VCA=3V3, dig. gain = 7) 

 

5.2.3. DAC Measurements 
 
To test the DAC a sine wave signal was generated in MATLAB. The amplitude of the signal 
was chosen to match the full scale of the DAC (10Bit). Fig.43 shows a typical burst signal as 
it can be used for ultrasonic applications. 
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Fig.43: DAC output sine burst signal 

 
At higher frequencies the voltage change from one digital value to the next one can be seen. 
See Fig.44 for an example of an output sine signal with 100kHz at a sampling rate of 
9,375MHz. 
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Fig.44: DAC output sine - time zoom view 

 
 

5.3. Measurements of power supply 
 
For mobile applications it is very important to know the current consumption of the 
electronic to estimate the load on the battery. Also for stationary operation it is important to 
know which power supply is sufficient to ensure the required supply current. 
 

5.3.1. Current consumption at different operating modes 
 
Although the current consumption of the electronic is highly dependent on the implemented 
functions inside the FPGA, some typical values at different operating modes and input 
voltages are mentioned here to get an overview about the necessary power supply for the 
prototype (see Tab. 7). 
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input voltage 
current consumption 

@ power enabled 
current consumption 
@ sampling of data 

6.1 V 160 mA 330 mA 
8 V 140 mA 310 mA 
10 V 130 mA 300 mA 
12 V 120 mA 290 mA 
15 V 110 mA      280 mA 

Tab. 7: Current consumption at different supply voltages 

 

5.4. Data Transfer times 
 
The data transfer times of the up- and download theoretically should only be dependent on 
the used transfer speed of the serial interface. As acknowledgement messages had to be 
inserted to ensure all data is transferred correctly during upload, the achieved overall data 
rate is beyond this calculated theoretical value. Therefore some measurements on the transfer 
speed were made with the test software on the prototype. The upload speed was measured at 
112kBit/s and the download speed was measured at 208kBit/s for large data transfers. 
 

5.5. Discussion of measurements 
 
Exceptionally high effort was invested in the measurement of the frequency response, as this 
behavior is very important for ultrasonic applications. Unfortunately the results were not as 
good as expected. The high variation of the frequency response was not expected as the 
datasheet of the voltage controlled amplifier includes only information about one single 
digital gain selection. There is also some crosstalk between the two chips, with a maximum at 
approximately 40kHz (at digital gain of 7). The same maximum can be observed at the 
crosstalk between the two channels inside one chip. Furthermore at the frequency response of 
each channel a “gain peaking” can be detected at the same frequency. 
 
As all measurements were made with input signals which use almost full scale at the pass 
band area, highest input signal amplitudes were applied at lowest gain selection. The chip to 
chip crosstalk nevertheless decreased at higher input signal amplitudes (lower gain settings). 
Coupling from one chip to the other on the supply and ground lines therefore seems to be 
low. The observed behavior indicates some resonance effects at the frequency of 40kHz, 
which is damped depending on the gain settings of the chip due to the different FET 
resistance of the voltage controlled attenuator inside the chip. 
 
A variation of the gain settings during a measurement to compensate the attenuation caused 
by the propagation of the ultrasonic signals would result in unpredictable phase shifts of the 
received signals. Although these phase shifts would be stable from one channel to the other, 
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the gain dependant crosstalk still can lead to signals which are not received by the 
microphones but are generated as a result of the crosstalk at the VCA. The best performance 
was observed at a digital gain setting of 1 and an analog gain control voltage of 3.3V. In this 
case the crosstalk is >60dB at the frequency range of 40kHz – 1MHz, which is also suitable 
for ultrasonic applications.  
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6. Outlook& Conclusion 
 
Despite careful planning, two mistakes were made during the layout of the prototype: 
 

• The level shifter which is used to convert the 3.3V digital interface of the FPGA to 
the voltage controlled amplifier, which is operating at a supply voltage of 5V, can be 
set to work in both directions. Nevertheless the voltage at port A and B cannot be 
chosen independently. At the prototype port A and B were mixed and had to be 
rerouted with wires on the PCB. 

 

• The power diodes which were used at the switching power supply did not exist in the 
library of the used layout software. Therefore the footprint had to be generated. 
Unfortunately anode and cathode were mixed up. At the PCB it was easily possible to 
solder the diodes also in the other direction. For the next layout this mistake can 
easily be reworked. 

 
Furthermore some recommendations shall be given for future improvements: 
 
As mentioned in the datasheet the clock lines of the ADC are very sensitive regarding 
distortions and should be routed separately from the data signals. Although no problems were 
observed, the routing recommendation may be taken into consideration on the next layout. 
 
Another recommendation in the datasheet is to use low pass filters on all data lines close to 
the ADC to avoid distortions caused by the low impedance parallel data interface of the ADC 
to the FPGA. Although it will occupy a lot of space on the PCB, this filters should be 
implemented as the rise time of the ADC data outputs are very high and generate a lot of 
distortions. These distortion signals were measured with a high speed oscilloscope at several 
points on the PCB during sampling of data (see chapter 5.2.1). 
 
Due to bad performance of the voltage controlled amplifier, another chip should be chosen 
for the rework of the prototype. The measurements have shown that the channel crosstalk is 
highly related to this chip. 
 
Another improvement can be made at the USB interface. As discussed in chapter 4.1 
acknowledgement messages had to be implemented to ensure secure data transfer. To ensure 
the problem is related to the acknowledgement messages, tests at different block sizes were 
performed. They have clearly shown that higher transfer speed rates are possible as the 
acknowledgement message is very time consuming at the transmission. To achieve the 
maximum possible data rate of 921,6kBit/s and avoid transmission errors, the virtual COM 
port should be replaced by the FTDI MATLAB interface. The acknowledgement messages 
can easily be removed in the C code of the softcore. 
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By reworking the software of the softcore as well as the software of the Cypress 
microcontroller it is also possible to change to USB 2.0 full speed (480MBit/s). In this case a 
higher effort is necessary as an USB interface driver needs to be prepared to connect to the 
FPGA board with USB 2.0.  
 
Realizing the optimizations described here during a rework of hardware and software will 
ensure the functionality that is required for the use with a mobile robot as well as a lot of 
other applications. 
 
The prototype which was built and tested for this diploma thesis fulfils all the requirements 
that where desired from the implementation. The main effort was the evaluation of the best 
suitable configuration in HW and SW. Especially the setup of the project in the Xilinx 
development environment and the implementation of the custom IP with the bus structure for 
high data rates were very time consuming and only possible after a deep study on manuals 
and datasheets about the Xilinx Development Studio and the used IP cores. All this 
information including source codes, project files and the working prototype was provided to 
the workgroup “Measurement and Control” at the Institute of Electrodynamics, Microwave 
and Circuit Engineering at the Technical University of Vienna after completion of the thesis 
for implementation with a mobile robot.  
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Schematic part I 
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Schematic part II 
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Layout 
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Picture of Prototype 
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Pin list of ZTEX evaluation board and FPGA 
 

Pin Name 
(Eagle-Sch.) 

FPGA Port Port Name (XPS) Function 

ADC_AB_CLK B10~IO_L35P_GCLK17_0 ADC1_CLK Clock out (custom IP) 

ADC_AB_SLEEP D11~IO_L66P_SCP1_0 Generic_GPIO 0 
MicroBlaze GPIO ADC 

SLEEP 

ADC_AB_T/B A13~IO_L63N_SCP6_0 Generic_GPIO 1 
MicroBlaze GPIO ADC 

T/B 

ADC_AB_PD D12~IO_L66N~SCP0_0 Generic_GPIO 2 
MicroBlaze GPIO ADC 

PD 

ADC_AB_OE! C11~IO_L39P_0 Generic_GPIO 3 
MicroBlaze GPIO ADC 

OE! 

ADC_A0 C9~IO_L38P_0 ADC_data 0 ADC Data (custom IP) 

ADC_A1 A9~IO_L34N_GCLK18_0 ADC_data 1 ADC Data (custom IP) 

ADC_A2 D9~IO_L40N_0 ADC_data 2 ADC Data (custom IP) 

ADC_A3 D8~IO_L38P_0 ADC_data 3 ADC Data (custom IP) 

ADC_A4 C8~IO_L38N_VREF_0 ADC_data 4 ADC Data (custom IP) 

ADC_A5 A8~IO_L33N_0 ADC_data 5 ADC Data (custom IP) 

ADC_A6 B8~IO_L33P_0 ADC_data 6 ADC Data (custom IP) 

ADC_A7 E8~IO_L36N_GCLK14_0 ADC_data 7 ADC Data (custom IP) 

ADC_A8 N9~IO_L14P_D11_2 ADC_data 8 ADC Data (custom IP) 

ADC_A9 M9~IO_L29P_GCLK3_2 ADC_data 9 ADC Data (custom IP) 

ADC_B0 F9~IO_L40P_0 ADC_data 10 ADC Data (custom IP) 

ADC_B1 B12~IO_L62P_0 ADC_data 11 ADC Data (custom IP) 

ADC_B2 A12~IO_L62N_VREF_0 ADC_data 12 ADC Data (custom IP) 

ADC_B3 A10~IO_L35N_GCLK17_0 ADC_data 13 ADC Data (custom IP) 

ADC_B4 C10~IO_L37N_GCLK12_0 ADC_data 14 ADC Data (custom IP) 

ADC_B5 E10~IO_L37P_GCLK13_0 ADC_data 15 ADC Data (custom IP) 

ADC_B6 C13~IO_L63P_SCP7_0 ADC_data 16 ADC Data (custom IP) 

ADC_B7 A11~IO_L39N_0 ADC_data 17 ADC Data (custom IP) 

ADC_B8 E11~IO_L64N_SCP4_0 ADC_data 18 ADC Data (custom IP) 

ADC_B9 F10~IO_L64P_SCP5_0 ADC_data 19 ADC Data (custom IP) 

ADC_CD_CLK P8~IO_L30P_GCLK1_D13_2 ADC2_CLK Clock out (custom IP) 

ADC_CD_SLEEP R9~IO_L23P_2 Generic_GPIO 4 
MicroBlaze GPIO ADC 

SLEEP 

ADC_CD_T/B T9~IO_L23N_2 Generic_GPIO 5 
MicroBlaze GPIO ADC 

T/B 

ADC_CD_PD M10~IOL16N_VREF_2 Generic_GPIO 6 
MicroBlaze GPIO ADC 

PD 

ADC_CD_OE! T12~IO_L52N_M1DQ15_1 Generic_GPIO 7 
MicroBlaze GPIO ADC 

OE! 

ADC_C0 M11~IOL2N_CMPMOSI_2 ADC_data 20 ADC Data (custom IP) 
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ADC_C1 R15~IO_L49P_M1DQ10_1 ADC_data 21 ADC Data (custom IP) 

ADC_C2 P15~IO_L48P_HDC_M1DQ8 ADC_data 22 ADC Data (custom IP) 

ADC_C3 M15~IO_L46P_FCS_B_M1DQ2_1 ADC_data 23 ADC Data (custom IP) 

ADC_C4 P16~IO_L48N_M1DQ9_1 ADC_data 24 ADC Data (custom IP) 

ADC_C5 N16~IO_L45N_A0_M1LDQSN_1 ADC_data 25 ADC Data (custom IP) 

ADC_C6 M16~IO_L46N_FOE_B_M1DQ3_1 ADC_data 26 ADC Data (custom IP) 

ADC_C7 L16~IO_L47N_LDC_M1DQ1_1 ADC_data 27 ADC Data (custom IP) 

ADC_C8 K16~IO_L44N_A2_M1DQ7_1 ADC_data 28 ADC Data (custom IP) 

ADC_C9 R16~IO_L49N_M1DQ11_1 ADC_data 29 ADC Data (custom IP) 

ADC_D0 T15~IO_L50N_M1UDQSN_1 ADC_data 30 ADC Data (custom IP) 

ADC_D1 L14~IO_L47P_FWE_B_M1DQ0 ADC_data 31 ADC Data (custom IP) 

ADC_D2 K15~IO_L44P_A3_M1DQ6_1 ADC_data 32 ADC Data (custom IP) 

ADC_D3 N14~IO_L45P_A1_M1LDQS_1 ADC_data 33 ADC Data (custom IP) 

ADC_D4 R14~IO_L50P_M1UDQS_1 ADC_data 34 ADC Data (custom IP) 

ADC_D5 L13~IO_L53N_VREF_1 ADC_data 35 ADC Data (custom IP) 

ADC_D6 M13~IO_L74P_AWAKE_1 ADC_data 36 ADC Data (custom IP) 

ADC_D7 L12~IO_L53P_1 ADC_data 37 ADC Data (custom IP) 

ADC_D8 M12~IO_L2P_CMPCLK_2 ADC_data 38 ADC Data (custom IP) 

ADC_D9 R12~IO_L52P_M1DQ14_1 ADC_data 39 ADC Data (custom IP) 

VCA_A_PD N6~IO_L64N_D9_2 Generic_GPIO 8 
MicroBlaze GPIO VCA 

PD 

VCA_A1 R7~IO_L32P_GCLK29_2 Generic_GPIO 9 
MicroBlaze GPIO VCA 

MSG 

VCA_A2 P7~IO_L31P_GCLK31_D14_2 Generic_GPIO 10 
MicroBlaze GPIO VCA 

MSG 

VCA_A3 M7~IO_L31N_GCLK30_D15_2 Generic_GPIO 11 
MicroBlaze GPIO VCA 

MSG 

VCA_B_PD T8~IO_L30N_GCLK0_USERCCLK_2 Generic_GPIO 12 
MicroBlaze GPIO VCA 

PD 

VCA_B1 N8~IO_L29N_GCLK2_2 Generic_GPIO 13 
MicroBlaze GPIO VCA 

MSG 

VCA_B2 T7~IO_L32N_GCLK28_2 Generic_GPIO 14 
MicroBlaze GPIO VCA 

MSG 

VCA_B3 P9~IO_L14N_D12_2 Generic_GPIO 15 
MicroBlaze GPIO VCA 

MSG 

TRIGGER B14~IO_L65P_SCP3_0 Generic_GPIO 16 MicroBlaze GPIO Trigger 

DAC_R/W! E7~IO_L36P_GCLK15_0 Generic_GPIO 17 
MicroBlaze GPIO DAC 

R/W! 

DAC_CS! B6~IO_L5P_0 DAC_CLK 
MicroBlaze GPIO DAC 

CS! 

DAC0 A5~IO_L2N_0 DAC_data 0 DAC Data (custom IP) 

DAC1 B5~IO_L2P_0 DAC_data 1 DAC Data (custom IP) 

DAC2 A4~IO_L1N_VREF_0 DAC_data 2 DAC Data (custom IP) 

DAC3 D6~IO_L7P_0 DAC_data 3 DAC Data (custom IP) 
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DAC4 C6~IO_L7N_0 DAC_data 4 DAC Data (custom IP) 

DAC5 F7~IO_L5P_0 DAC_data 5 DAC Data (custom IP) 

DAC6 E6~IO_L5N_0 DAC_data 6 DAC Data (custom IP) 

DAC7 C7~IO_L6P_0 DAC_data 7 DAC Data (custom IP) 

DAC8 A7~IO_L6N_0 DAC_data 8 DAC Data (custom IP) 

DAC9 A6~IO_L4N_0 DAC_data 9 DAC Data (custom IP) 

DAC10 D5~IO_L3P_0 DAC_data 10 DAC Data (custom IP) 

DAC11 C5~IO_L3N_0 DAC_data 11 DAC Data (custom IP) 

ANALOG-
Supply_EN 

A14~IO_L65N_SCP2_0 Generic_GPIO 18 
MicroBlaze GPIO Supply 

EN 

LED1 M6~IO_L46P_D8_2 
fpga_0_LEDS_GPIO_IO 

_O_pin 0 
MicroBlaze GPIO LED1 

LED2 P4~IO_L63P_2 
fpga_0_LEDS_GPIO_IO 

_O_pin 1 
MicroBlaze GPIO LED2 

FTDI_TXD P6~IO_L47P_2 fpga_0_RS232_TX_pin MicroBlaze UART 

FTDI_RXD T6~IO_L47N_2 fpga_0_RS232_RX_pin MicroBlaze UART 

 


