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Abstract

While genotypes are defined as the set of genes an organism holds, its phenotype is defined as
the set of its observable characteristics. To determine the correlation of genotype and phenotype
or how a phenotype is affected by environmental conditions, an evaluation on large datasets is
needed. An automatic analysis of image data and extraction of characteristics allows for large-
scale evaluations.
This thesis presents a comparison of two types of graph-based image representations: medial
axis transformation and Reeb graphs and evaluates the feasibility of using this representations
in image based plant phenotyping.
A presegmented binary image of roots (of the plant Arabidopsis thaliana) is the basis for gen-
erating the well-known medial axis and the Reeb graphs. For phenotyping of plants their root
structure is analyzed. The main characteristics used here are branching points, branch endings
as well as the length and width of individual branches. These characteristics are captured by the
presented graph representations. For the computation of the Reeb graphs two different Morse
functions are used: height function and geodesic distance.
As the roots are pictured as 2D image data, the projection of a 3D structure to a 2D space might
result in an overlap of branches in the image. One major advantage, when analyzing roots based
on Reeb graphs, is posed by the ability to immediately distinguish between branching points and
overlaps in the root structure as the overlap introduces a cycle and thereby a certain type of node
(saddle - merge) in the Reeb graph. This differentiation is not as easily possible by a medial axis
representation or by an analysis solely based on contours.
In order to use the advantages of different representations and the characteristics provided by
them, a possibility to combine different graph representations of one root image is needed.
Therefore the equality of graphs is evaluated. This thesis shows that all three representations
of a root are either isomorphic graphs or isomorphic subgraphs. For isomorphic graphs the char-
acteristics, the nodes are attributed with, such as length or width, can be directly combined for
matching nodes. For isomorphic subgraphs only the attributes of the matching subgraphs can be
combined.
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Kurzfassung

Ähnlich zu den, als Menge der Gene eines Organismus definierten Genotypen, sind Phänotypen
definiert als die Menge der beobachtbaren Eigenschaften dieses Organismus. Um den Zusam-
menhang von Genotypen und Phänotypen sowie den Einfluss von Umweltbedingungen auf den
Phänotyp zu bestimmen, werden große Datensätze evaluiert. Eine automatische Analyse von
Bilddaten und Extraktion von Charakteristiken ermöglichen die Auswertung dieser großange-
legten Studien.
Diese Diplomarbeit widmet sich dem Vergleich zweier graphbasierter Bild-Repräsentation: Me-
dial Axis Transformation und Reeb Graphen und analysiert die Einsatzmöglichkeit dieser Ab-
bildungen in der bildbasierten Pflanzen Phänotypisierung.
Ein segmentiertes Binärbild der Wurzeln (der Pflanze Arabidopsis thaliana) bildet die Grund-
lage zur Berechnung der bekannten Medial Axis und der Reeb Graphen. Zur Phänotypisierung
von Pflanzen wird ihre Struktur analysiert. Die wichtigsten Charakteristiken dabei sind: Ver-
zweigungen, Enden von Zweigen, sowie die Länge bzw. Dicke der einzelnen Zweige. Diese
Eigenschaften werden von den verwendeten Graph-Repräsentationen erfasst. Zur Berechnung
der beiden Reeb Graphen werden zwei unterschiedliche Morse Funktionen verwendet: die Hö-
henfunktion sowie die geodätische Distanz.
Da die Pflanzen als 2D Datensatz abgebildet werden, findet eine Projektion der 3D Wurzelstruk-
tur in den 2D Raum des Bildes statt. Diese Projektion kann in Überlappungen einzelner Wurzel-
zweige enden. Ein bedeutender Vorteil der Reeb Graph Repräsentationen ist durch die Möglich-
keit, Verzweigungspunkte sofort von Überlappungen unterscheiden zu können, gegeben. Dies
beruht auf der Eigenschaft der Reeb Graphen, dass durch die Überlappungen der Wurzlen im
Bild, Zyklen in der Graphstruktur entstehen. Diese Zyklen erzeugen einen Konten vom Typ
saddle (merge) im Graph. Eine Unterscheidung zwischen Überlappungen und Verzweigungen
ist für eine Darstellung basierend auf der Medial Axis oder einer Analyse der Wurzelstruktur
anhand der Kontur nicht so leicht möglich.
Um die Vorteile verschiedener Darstellungen und die entsprechenden Charakteristiken zu ver-
wenden, wird eine Kombination der unterschiedlichen graphbasierten Repräsentationen benö-
tigt. Dazu muss die Gleichwertigkeit der Graphen bewertet werden. Im Rahmen dieser Diplom-
arbeit zeigt sich, dass die Graphen aller drei Darstellungen entweder isomorph sind oder iso-
morphe Teilgraphen enthalten. Für isomorphe Graphen können Attribute für jeweils überein-
stimmender Knoten direkt für alle Knoten kombiniert werden. Für isomorphe Teilgraphen ist
dies nur für die Knoten der übereinstimmenden Teilgraphen möglich.
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CHAPTER 1
Introduction

The problem of shape analysis and representation within the context of image based plant phe-
notyping is addressed in this thesis.
A first definition of phenotypes was given by Johannsen in 1911 in [19]: “All “types” of organ-
isms, distinguishable by direct inspection or only be finer methods of measuring or description,
may be characterized as “phenotypes”.” While an organism’s genotype is defined as the set of
genes this organism holds, its phenotype is the defined by its observable characteristics (from
Greek: phainein = to show).
Gregor Mendel first introduced the concept of dominance, which stated that some inherited traits
were dominant over others as a heterozygot (genotype consisting of two different alleles) off-
spring could show the same phenotype as its homozygot (genotype consisting of two identical
alleles) parent. However, the relationship between genotypes and phenotypes proved to be more
complex than this simple dominant pattern described by Mendel [27].
Moreover, while the phenotype of an organism is based on its genes, it is just as well influenced
by environmental conditions. While the genome of certain plants or animals (so called model
organism) is completely characterized [33], their phenome (the full set of phenotypes of an in-
dividual) can never be completely characterized as phenotypes vary strongly [17].
Apart from this application in molecular biology, this thesis is set within the field of image pro-
cessing, more precisely within the area of topological image analysis and shape representation.
The following keywords describe the overall context:

• Graph Theory

• Topological Image Analysis

• Shape Extraction, Representation and Comparison

1



1.1 Problem Statement

To address this major questions in biology, how genotypes translate into phenotypes, the ability
to phenotype a large number of individuals is needed. Therefore an efficient extraction and rep-
resentation of characteristics is needed.
For phenotyping of plants their root development, the architecture of their root systems and
thereby root characteristics such as branches and branch endings are analyzed.The root of the
small plant Arabidopsis thaliana is excellently suitable for large-scale non-invasive phenotyping
because it can be grown on transparent media in large numbers and its projections of the young
root essentially capture all the important biological features at the organ level. For analysis of
the plant development, the plants are imaged on several successive days of their growth cycle.
The root characteristics used in plant phenotyping, for example branching points or length of
branches, can be captured and described by a graph based shape representation.
Branches in the root structure depict a change in the topology of the structure. Reeb graphs
describe these changes in topology in the represented structure. As the 3D structure of the root
is projected to the 2D image space, overlaps of branches may occur in the root images. These
overlaps need to be distinguished from branching points. Here an advantage of Reeb graphs is
that such overlaps can be immediately detected, as they introduce a particular type of node in
the graph. Reeb graphs are based on Morse theory and analyze the image content according to
a function (Morse function). An important question in this context is to determine how much
an where two or more functions defined on the same model differ [4]. A normalized graph rep-
resentation overcomes these differences of various representations and allows to combine the
advantages of multiple representations.
In the context of plant phenotyping, a normalized representation is needed to compare plants or
their development based on various characteristics and thereby various representations.

1.2 Aim of the Work

In order to simplify the examination of root characteristics and enable an efficient comparison
of roots, a representation of imaged root data by Reeb graphs is introduced in this thesis.
Reeb graphs capture the topology of the represented structure - in this case the locations of
branches and branch endings of the roots - and form a skeletal graph representation of the un-
derlying image data in this way. The computation of the Reeb graphs on the root images is
based on a Morse function. For the root images a Reeb graph representation based on the height
function and the geodesic distance is presented. The well known medial axis transformation was
applied for a third representation. Based on these three representation the following characteris-
tics of the roots can be acquired:

• number of branches

• number of branch endings

• length of branches

2



• width of branches

• branching pattern (according to a main stem)

To allow for an efficient comparison of different plants or of one plant in different stages of its
development, a normalized representation is defined.
Graphs provide a representation that allows to compare and match shapes. However, for such
comparisons it is usually assumed that all graphs were computed based on the same method. In
order to combine characteristics based on all three mentioned graph representations, to obtain
the final normalized representation, the equality respectively similarity of representations based
on different functions is measured.

1.3 Contribution

Based on three graph based shape descriptors an approach to represent root structures is de-
scribed in this thesis. A popular shape descriptor for branched structures such as roots, is the
medial axis transformation. In this thesis a representation of branched structures based on Reeb
graphs is introduced. In order to combine characteristics of different representations, the equal-
ity respectively the difference between various types of representations is evaluated. A definition
for the comparison and matching of two different graph representations forms a central part of
this work. The derived root representations are compare to the representations computed with
the recently published tool “Root System Analyser” [24].

1.4 Structure of the Thesis

An overview on graph based shape representations in general and the theoretical background
particularly needed for the introduction of Reeb graphs are given in Chapter 2. Based on this
knowledge the state of the art regarding (Reeb) graph based representations as well as the state
of the art in image based plant phenotyping are discussed in Chapter 3. Chapter 4 presents the
dataset used within the scope of this thesis. Details on the presented approach for Reeb graph
based root representations are given in Chapter 5 while results are discussed in Chapter 6. A
comparison with the recently published tool “Root System Analyser” [24] is given in Section
6.3. The possibility of a combination of the different representations is discussed in Chapter 7.
Chapter 8 concludes this diploma thesis and gives an outlook to future work.
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CHAPTER 2
Graph based Shape Representation

2.1 Graphs and Skeletons

In shape representation a skeleton is a thinned version of a shape with equal distance to the
boundaries of the shape. Morphological skeletons, well known as medial axis, are the most
common skeletons. Sometimes the terms skeleton and medial axis are used interchangeable as
synonyms. However, Figure 2.1 shows a comparison of two different types of skeletons. Fig-
ure 2.1a shows an example for a medial axis skeleton, while Figure 2.1b shows another type of
skeleton: a straight line skeleton.

A graph G is a tupel (V,E) where V is the set of vertices (nodes) of the graph and E the set
of edges connecting the vertices in the graph. Edges in a graph may be directed or undirected.
A digital image is formed by a set of pixels. A graph on such an image can be defined by map-

(a) medial axis skeleton (b) straight line skeleton

Figure 2.1: Shape representation: skeleton
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(a) 10x10 px image - one node
per pixel

(b) graph based on 4-connected
grid

(c) graph based on 8-connected
grid

Figure 2.2: Graphs on image pixels.

ping a node to each pixel and connecting nodes of neighboring pixels with edges. Figure 2.2
shows an example for such a graph assuming a 4-connected pixel grid and an 8-connected one.
For graph-based image representations nodes may not be assigned to every pixel in the graph.

Pixels are rather grouped and each group is represented by a single node in the graph. The ar-
rangement of pixels into groups can be based on similarity of an assigned label or value as for
example their color-value. An example for such a graph is shown in Figure 2.3a. This graph is
a region-adjacency-graph (RAG): each region is represented by one node, the edges represent
adjacency between regions. In such a way graphs can for example be used in segmentation ap-
proaches.
For the description of shapes, nodes are place at characteristic positions of a shape and connected
according to it. The triangle image in Figure 2.3b is represented by 3 nodes at the vertices of the
triangle and edges according to the triangle edges.

(a) RAG - nodes represent regions,
edges their adjacency

(b) representation of shape - nodes
describe characteristic locations

Figure 2.3: Two examples for graph based image representation.

6



(a) edge contraction (b) subdivision (c) smoothing

Figure 2.4: Operations on graphs. The top half shows the original graphs with changing parts
labeled blue, the bottom half of the images show the altered graphs.

Operations on graphs

To remove or insert vertices or edges in a graph the following operations are defined (Figure 2.4
shows examples):

1. Edge contraction:
removes an edge from the graph by merging the two vertices that were connected by the
edge (see Figure 2.4a).

2. Subdivision:
divides an edge into two edges by introducing a new vertex that is adjacent to the two
vertices of the original edge (see Figure 2.4b).

3. Smoothing:
removes a vertex from the graph by removing the edges connecting it to other vertices
and establishing edges between these vertices (see Figure 2.4c). This operation is only
possible for nodes of degree 2 (nodes adjacent to two other nodes).

Subgraphs and Graph Isomorphism

• Graph isomorphism:
Graph isomorphism is defined as a bijection between the vertex sets of two graphs G1 and
G2. The bijective function f : G1 7→ G2 is called isomorphism [6]. The two graphs in
Figure 2.5b are isomorphic graphs, corresponding nodes are colored the same way.

• Subgraphs:
The vertex set of a subgraph G′ = (V ′, E′) of a graph G = (V,E) is a subset of of the
vertex set ofG. The edge set of the subgraphG′ is the subset of the edge set ofG restricted
to the vertices in V ′: V ′ ⊆ V and E′ = E ∩ (V ′ × V ′) [6]. Figure 2.5a shows graph G1

as a subgraph of G2, the corresponding edges of the subgraph are colored in blue.

7



(a) G1 is a subgraph of G2 (edges of the
subgraph are marked in blue)

(b) G1 and G2 are isomorphic graphs

Figure 2.5: Definition of subgraphs and graph isomorphism

• Isomorphic subgraphs:
A subgraph isomorphism from G to G′ is defined as the injective function on the two
graphs G = (V,E) and G′ = (V ′, E′): f : G 7→ G′ if there exists a subgraph S ⊆ G′

so that f is a graph isomorphism from G to S [6]. In Figure 2.5a there is a subgraph
isomorphism from G1 to G2.

Figure 2.6: Computation of a medial axis by inscription of maximal circles.
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(a) shape 1 (b) distance transfor-
mation

(c) shape 2 (d) distance transfor-
mation

Figure 2.7: Distance transformation computed for two shapes. Red indicates high distance
values, blue indicate low distance values.

2.2 Medial Axis Transformation

The medial axis transformation (MAT) was introduced by Blum in 1967 [5] and has since been
widely used in shape analysis and representation.
A skeleton (the medial axis) is computed on a shape. For a shape S (for example a polygon)
the medial axis M(S) is defined as the set of points {p} inside S, for which at least two points
in the boundary of S are closest and equidistant to {p} [23]. The skeleton derived based on the
MAT therefore is a symmetric axis of the shape.
Using a geometric description: the medial axis is formed by the center of maximal circles that
are inscribed into the shape at any position. Figure 2.6 shows an example. Therefore the MAT
further provides a measurement of width, as for each point on the medial axis, a radius (the
distance to the boundary of the shape) is associated with this point [23]. The shape can be
reconstructed based on the medial axis and the width information stored with each skeleton
point.
A distance transformation on a shape labels each foreground pixel width the distance to the next

background pixel. The medial axis corresponds with the ridges formed by the local maximum
values in the distance transformation. Figure 2.7 shows the values of a distance transformation
computed for two shapes.
The medial axis skeleton can be used as an intermediate step to build a graph representation of a

Figure 2.8: Graph representation of a shape derived based on the medial axis skeleton.

9



shape. In order to compute a graph based on the skeleton, branching points and endpoints in the
skeleton need to be detected. These are used as the nodes in the graph. For the medial axis graph
the nodes are connected by edges according to the skeleton. The medial axis skeleton computed
on a shape, along with the corresponding graph is shown in Figure 2.8.

2.3 Morse Theory and Reeb Graphs

Reeb graphs are compact shape descriptors that preserve the topological characteristics of the
described shape [4]. Reeb graphs are named after the French mathematician Georg Reeb and are
based in Morse theory. The topological characteristics of interest are the number of connected
components and the number of holes in the 2D structure. These two characteristics are the first
two Betti numbers b0 and b1. b0 is defined as the number of connected components of a topo-
logical space and b1 as the number of its 2-dimensional holes.
Based on critical points according to a scalar function a Reeb graph describes the topological
structure that is the connectivity of level sets of e.g. 2D or 3D content [10]. In order to build a
Reeb graph, critical points, of the structure to be represented, need to be computed.
A point (a, b) of a function f(x, y) is called a critical point if both derivatives fx(a, b) and
fy(a, b) are equal to 0 or if one of these partial derivatives does not exist [34].
Such a critical point either be degenerate or non-degenerate. These two cases can be distin-
guished via the Hessian matrix. The determinant of the Hessian matrix at a critical point x is
then called the discriminant. If this determinant is zero then x is called a degenerate critical
point of f (or non-Morse critical point of f ). Otherwise it is non-degenerate (or Morse critical
point of f ).

A smooth, real-valued function f :Md → R is called a Morse function if it satisfies the fol-
lowing conditions for a d manifold Md with or without boundary:

• all critical points of f are non-degenerate and lie inside Md,

• all critical points of f restricted to the boundary of Md are non-degenerate,

• for all pairs of distinct critical points p and q, f(p) 6= f(q) must hold [9].

Critical points of such a real-valued function are those points where the gradient becomes zero.
The topological information of a shape described by a Reeb graph based on a function is related
to the level sets of this function on the shape [4]. A change in topology appears with a change
in the number of connected components in a level set. At regular points no topology changes
occur. Topological changes occur at critical points only.
Vertices of the Reeb graph correspond to critical points of the function (points where the topol-
ogy ofM changes), edges describe topological persistence [4]. In other words: All nodes having
the same function value are represented by one node in the graph, connections between nodes
describe connections between segments of the underlying structure. A first example for such
a Reeb graph is shown in Figure 2.9. The white foreground region is here analyzed top down.
With a change in the number of connected components at a certain height a node is introduced

10



Figure 2.9: Critical points computed based on the height function (downwards) and correspond-
ing Reeb graph. The white image region shows the foreground region described by the Reeb
graph, black parts are background.

in the graph.

Reeb graphs are originally defined for the continuous space, but have been extended to the
discrete domain: Here the Reeb graph is defined on a piecewise linear Morse function [10]. As
the approach presented in this thesis provides an analysis of 2D image content, it is based in the
discrete domain (image pixels). The Reeb graphs that are built on the root images are therefore
discrete Reeb graphs and are based on the following definitions. In order to define a discrete
Reeb graph, connective point sets and level-set curves are defined first:

• Two point sets are connected if there exists a pair of points (one point of each point sets)
with a distance between these two points below a fixed threshold.

• If all non-empty subsets of a point set, as well as its complements, are connected, such a
point set is called connective.

• A group of points that have the same Morse function value and that form a connective
point set, is called a level-set curve [35].

The nodes in a discrete Reeb graph represent level-set curves, the edges connect two adjacent
level-set curves, therefore the underlying point sets are connected [35].

The critical points are computed on the shape according to a Morse function. The most
popular function in this scope is the height function. But distance functions as for example the
geodesic distance are suitable as well.

• The height function in 2D is defined as the function f that associates for each point p =
(a, b) of a function f(x, y) the value b as the height of this point p: f(x, y) 7→ y.

11



(a) height function (b) geodesic distance (c) height function (d) geodesic distance

Figure 2.10: Example images for the two Morse functions: the height function is computed top-
down, the seed point for the geodesic distance is in the center of the topmost pixel line of the
foreground. The input images are shown in Figure 2.7a and 2.7c. Red indicates high function
values, blue low function values.

• The geodesic distance is defined as the shortest distance measured between two points.
Within the scope of this paper the geodesic distance is measured between any point of the
root and the starting point of the root which is located at the center pixel of the topmost
foreground pixel-line.

A comparison of the function values generated by these two Morse functions is shown in
Figure 2.10. While for Figure 2.10a and 2.10b the function values are very similar, the Figures
2.10c and 2.10d show an example where the function values for height function and geodesic
distance vary strongly.

In 2D critical points and corresponding nodes in the Reeb graph are minima, maxima or sad-
dles [9]. The saddle nodes can be further distinguished: a saddle node that appears with a
reduction in the number of connected components is further called merge (saddle) node, a split
(saddle) node describes an increase in the number of connected components. When consider-
ing these two different types of saddle nodes that might appear in a Reeb graph, four different
types of critical points and according nodes in the graph can be distinguished: maximum node,
minimum node, split (saddle) node, merge (saddle) node. Besides these nodes corresponding to
critical points, regular nodes can be added at any position and along any edge in the Reeb graph
as they do not describe a change in topology. Nevertheless regular nodes can, for example, be
used to describe changes in the color of the foreground region (see [3]).
Figure 2.9 shows an example for a Reeb graph based on a height function, containing all five
types of nodes and the actual image the graph was computed on. Each edge in the Reeb graph
describes a connected component. Therefore the edges of a Reeb graph are formed by con-
necting the node representing the birth of a connected component to the corresponding node
representing the death of this component.
Another example Reeb graph containing all possible types of nodes is shown in Figure 2.11. The
nodes in this graph correspond to the critical points of two Morse functions: the height function
(going downwards) as well as the geodesic distance (the source pixel is located in the center of
the top foreground pixel line) both result in this set of nodes.

12



Figure 2.11: Reeb graph, computed for the white foreground region, according to height function
(going downwards) and the geodesic distance (the source pixel is located in the center of the top
foreground pixel line). Here both Morse functions generate identical critical point.
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CHAPTER 3
State of the Art

This thesis addresses two main areas of research: image based plant phenotyping and graph
based shape representations.

3.1 Image Based Plant Phenotyping

In the research area of plant phenotyping the (semi-)automatic extraction of traits from image
data allows for an analysis of large numbers of images / individuals. Table 3.1 shows an overview
of available applications 1 that allow for a description of root systems or measurements on the
roots. A very recent approach to describe root structures based on a skeleton representation of
2D image data and a 3D root reconstruction that allows for comparisons of root systems are
discussed in the following sections.

Root System Analyser

The 2014 in [24] published tool “Root System Analyser” recovers root architectural parameters
based on 2D images of the roots. The root system is represented as a graph in this approach.
The approach proceeds based on the following operations:

1. Skeleton representation:
The root image is transformed into a medial axis skeleton in a first step.

2. Graph representation:
The branching points and end points are detected in order to form the nodes of the graph.
As neighboring nodes are connected in the graph, an adjacency matrix is created, that
stores this neighborhood information. The coordinates of edges are stored in an edge-list.
Figure 3.1 shows four different root input images, the color indicates the age of the root,

1http://www.plant-image-analysis.org/
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Table 3.1: Available root system analysis and measurement applications.

Root system analysis tools
Name Analysis / measurements Published in
DART length, insertion, topology [22]
EZ-Rhizo length, insertion, topology, insert.-angle, #branches [1]
GiA Roots convex hull, length, perimeter, surface, volume,

#branches, depth
[12]

GrowScreen-Root length, insert.-angle, #branches [28]
IJ-Rihzo length, diameter [30]
RootFly length, diameter, color [36]
RootNav length, count, convex-hull, insertion, insert.-angle [31]
RooTrak 3D reconstruction [26]
RootReader 2D #branches, length, topology, depth [7]
RootReader 3D length, width, depth, volume, surface, convex-hull,

#branches, orientation, insert.-angle
[8]

RootScape shape [32]
Root System Analyser length, insertion, insert.-angle, diameter, count [24]
RootTrace length, curvature, #branches [11]
SmartRoot diameter, insertion, insert.-angle, length, orienta-

tion, #branches, topology
[25]

WinRhizo / WinRhizo TRON color, diameter, length, topology, volume, surface [2]

Figure 3.1: Images A-D show root input images, colors indicate the age of the root, with red
labeling the oldest parts of the root. The corresponding graph representation of image A is
shown in image E, individual branches of the root system are marked in the images F-H. Image
taken from [24].
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Figure 3.2: User interface of the “Root System Analyser”. Image taken from [24].

with red parts being the oldest parts of the root. For image A the nodes forming the graph
are labeled in image E.

3. Root tracking:
To determine individual branches an underlying dynamic root architecture model is ap-
plied. The algorithm starts at predefined tips of roots and estimates the growth of the root
for a small time step. All possible paths for this time step are found in the graph. The op-
timal growth path is determined dependent on the following characteristics: straightness
and average diameter and it is penalized if an edge is already assigned to a root. Based
on this method, overlaps and branching points can be distinguished. Figure 3.1 shows the
marked individual branches of input images B-D in the images F-H.

A graphical user interface allows the user to select individual branches, characteristics of
these branches as for example length or width of the branch are then displayed. Moreover the
user is able to correct the root system to a certain degree, by deleting roots or adding roots.
Figure 3.2 shows an example for this graphical user interface.

Reconstruction of 3D Plant Root Shape

A related work on the analysis of branching patterns of roots based on a 3D reconstruction of the
root architecture of rice plants is provided in [37].The aim of this work is to build a 3D model
of the branching pattern of roots based on 2D images. This 3D model allows for a comparison
of the root systems of plants with different genotypes. The approach progresses in three steps:

1. Harmonic Background Substraction:
For the separation of the foreground (the root) from the background (the rest of the im-
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(a) grayscale input
root image

(b) normalized in-
tensities

(c) harmonic back-
ground model

(d) segmented root
image

Figure 3.3: Segmentation process to separate foreground (root) from background. Image taken
from [37].

age) the background is modeled according to a harmonic function. The foreground is
constructed using the difference between an image and the background model. Figure
3.3 illustrates this segmentation process. The authors showed, that this approach more
reliably preserves fine root structures than a single threshold or hysteresis thresholding.

2. Regularized Visual Hull:
3D shapes are often reconstructed from 2D images by the visual hull method. In this ap-
proach the visual hull is extended by a regularization term to a regularized visual hull. The
visual hull can be defined as the set of voxels, that maximizes the total consistency. When
v ∈ π−1k (Fk) is the maximal set of voxels with projection Fk: “Define the consistency of
a voxel v with the k-th image as:

consk(v) =

{
1 if v ∈ π−1k (Fk),

-N otherwise.
(3.1)

and its total consistency as cons(v) =
∑N

k=1 consk(v). Then the visual hull is the set of
voxels that maximizes the total consistency:

V = arg m
S
ax

∑
v∈S

cons(v).” [37] (3.2)

Additionaly one of the root images is used to improve the 3D reconstruction based on a
regularization parameter λ ≥ 0. This one image guides the 3D reconstruction dependent
from λ. If λ is small, the influence of this image is low. The standard visual hull V is
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computed and taken as a first regularized visual hull Vλ. Each pixel in the foreground
of the “regularization image” Fi is visited next. If pixel u is not covered, a voxel with
maximal consistency measure cons(v) in the set of all voxels with projection Fi is found.
cons(v) is negative here as u is not covered yet. If cons(v) + λ is positive, v is added to
Vλ, otherwise v is discarded.

3. Repairing Connectivity:
As the regularized visual hull can consist of more than one connected component, the
connectivity is repaired in a final step of the reconstruction. This is done by solving an
optimization problem: as a solution a connected set of voxels U is required that minimizes
the maximum distance to Vλ and the minimum inconsistency with the 2D images. This
is done by building a graph that describes the connectivity of the voxels in the 3D recon-
struction. The weights of the edges are set as the larger inconsistency value of the two
nodes of the edge. Based on this, a minimum spanning tree is computed. The minimum
cost path describes the path between two voxels that minimizes the weight of the edges
in between. A voxel that lies on such a path is called a separating voxel. The solution
to the optimization problem consists of all voxels in Vλ and all separating voxels of the
minimum spanning tree.

3.2 Graph Based Shape Description

Skeletons and graph structures are widely used for shape representation and comparison.
The medial axis was introduced as a shape descriptor by Harry Blum in 1967 [5]. It has since
been used in a multitude of various applications and developed into a standard approach for a
simple shape representation. While the medial axis provides a skeleton representation that can
serve as a basis for a graph representation, Reeb graphs derive a graph directly on the image
data (as shown in [13]). For the representation of 3D data Reeb graphs can be efficiently derived
from meshes (as shown in [35]) or from point clouds (presented in [29]). The following sections
discuss a Reeb graph based approach to derive a skeleton representation based on a point set
as input data and an approach for skeletonization of 3D scan data. Both approaches use the
geodesic distance as a basic function to compute the Reeb graph. Besides the height function,
the geodesic distance is as well used for the Reeb graph computation in the approach presented
in this thesis.

Data skeletonization via Reeb graphs

The basic idea of the approach presented in [13] is to find a hidden space in discrete samples that
has a graph-like geometric structure. A skeleton graph is therefore computed based on a point
set as input data. An example of a skeletonization of a 2D image obtained through this approach
is shown in Figure 3.4. The proposed method proceeds as follows:

1. Simplicial complex K:
The hidden domain, the input points are sampled from, needs to be approximated. This is
done using a simplicial complex K. First a proximity graph is constructed. All input points

19



Figure 3.4: Reeb graph based skeletonization result of the input data in gray. Image taken
from [13].

are therefore connected to their neighbors based on either the k-nearest neighborhood
(the k neighbors that are closest to a point) or the r-neighborhood (the neighbors within
distance r from a point) definition. All points and edges from this proximity graph are
added to the simplicial complex. For any three points that are pairwise connected in the
proximity graph, a triangle is added to the simplicial complex.

2. Reeb graph computation:
The Reeb graph is computed on the simplicial complex K using the geodesic distance
according to a base point b ∈ K. This base point b is obtained by taking an arbitrary point
v ∈ K and defining b as the point furthest away from v. The geodesic distance function
is here approximated by the shortest distance in the proximity graph. The (augmented)
Reeb graph is computed according to the approach described in [15]: for a point q and the
connected component Cq that holds q all triangles of the simplicial complex that intersect
Cq are collapsed onto q and its adjacent edges. This procedure is repeated for all vertices
in the simplicial complex K.

3. Post-processing:
In case the represented data was not already embedded in 2D or 3D, the input points
are projected to R3. The projected points are connected according to the Reeb graph

Figure 3.5: Reeb graph based skeletonization (left to right): input points in yellow - augmented
Reeb graph - iterative smoothing - post-processing: adding missing links (top) and removing
spurious branches and loops (bottom). Image taken from [13].
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connectivity and are iteratively smoothed by substituting the position of a point by the
average of its neighbors. Missing links are added by connecting pairs of degree-1 nodes
with a distance smaller than a certain threshold. To remove spurious branches or loops
in the Reeb graph features and their persistence are computed on the graph. The graph is
simplified by merging features with a persistence smaller than a predefined threshold.

Figure 3.5 shows an example images for the methodological sequence described above.

Human body scan segmentation based on Reeb graphs

The overall goal of the approach presented in [35] is to segment a 3D human body scan into sub-
sets which correspond to functional body parts. As this segmentation is done pose-independent,
a graph representation is computed on the 3D data first. The approach is divided into the follow-
ing operations:

1. Computation of Morse functions:
For the computation of the Reeb graph two Morse functions are used: the geodesic dis-
tance between a point and a source point and the sum of geodesic distances for one point
as the sum of geodesic distances to all other points of the surface. The geodesic distance
to a source point is computed on the voxels using a wavefront approach: starting from a
source point in each iteration all neighboring voxels are taken as a level set with the same
distance to the source. In this way the level-sets are already extracted while computing the
Morse function. The sum of geodesic distances requires the computation and summation
of the geodesic distance for all voxels with the current voxel as source point.

2. Decomposition into level-set curves:
Based on the extracted level-sets the Reeb graph is constructed by representing each level-
set curve, a iso-valued connective point set, by a node in the graph. The edges in the Reeb
graph are formed according to the connection of level-set curves with each other and
connect nodes of two adjacent level-set curves.

3. Extraction of branches:
In order to extract branches corresponding to body parts, critical nodes in the Reeb graph
need to be detected. The main problem here is that noise in the data leads to false positives,
critical nodes that only describe noise. Critical nodes are divided into three types of nodes:
O-type (loop), λ-type (split) and Y-type (merge). While the O-type consist of two saddle
nodes connected by two edges, the types λ and Y are both consistent of one saddle node
connected to two leaf nodes. While these two types are topologically equivalent, they
can be distinguished when taking the direction of the Morse function into account. The
human body topology can not produce O-type saddle nodes. Based on the direction of the
Morse function one of the two saddle nodes λ-type and Y-type can not occur for a human
body as well. These nodes are therefore caused by data corruption and can be discarded.
Furthermore, it is assumed that a branch associated to a true either λ-type or Y-type saddle
node may not be smaller than the size of the smallest body part. In this way false critical
nodes are discarded and the true critical nodes are detected. This nodes represent the

21



Figure 3.6: Segmentation results of simulated scans. Image taken from [35].

bottom of the feet, the groin, hand tips, armpits and top of the head. Body parts are
identified based on the branches between the nodes and the 3D data is segmented into legs
(branches between feet and groin) and arms (branches between hands and armpits). The
rest of the data corresponds to the torso and head segment.

Figure 3.6 shows the final segmentation for synthetic 3D data.
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CHAPTER 4
Dataset and Pre-Processing

The images of the root dataset were acquired by the Gregor Mendel Institute of Molecular Plant
Biology (GMI). For this dataset images of the plant Arabidopsis thaliana were taken. This plant
is a model organism, which is widely used in plant sciences, due to the small size of its genome,
the small size of the plant itself and its rapid life-cycle [16].

The whole set of plant images used here consists of 9 sets of time series. Each set holds 6
images of one plant taken over time (day 1, day 4, day 8, day 12, day 16 and day 20 of the
growth period). Of these 54 images, 34 images (day 4 -day 20) are analyzed, the other images
are too early in the growth process and therefore to small in structure to be represented by a
non-trivial Reeb graph.

4.1 Image Acquisition

At the GMI the seeds are planted on a nutrient containing agar gel surface in plastic petri dishes
/ plates. One of these petri dishes holds 24 plants (2 rows of 12 plants each). Figure 4.1 shows
on of these petri dishes, the plants in this image are already 20 days old. These plates are
stored vertically in growth chambers that allow for controlled conditions as constant temperature,
illumination or humidity. The vertical orientation of the plates is based on the fact that roots
grow primarily in the direction of gravity. The amount of water, or for example certain nutrients,
further affect the speed of the growth process of the roots.

The images are taken using an image scanner. A special fixture allows for two datasets /
plates to be placed in an exact known position inside the scanner. A ruler at this fixture is im-
aged together with the plate and serves as a reference marker. This allows for later measurements
on the image to be converted from pixel measurements to real world dimensions as for example
millimeter. The images are acquired with a scan at 1200 dpi resolution with 8bit color depth,
therefore one image is of approximately 6000x6000 pixels in size. The images are stored as bmp
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Figure 4.1: Plants grown inside a petri dish, picture on day 20 of their growth cycle. The ruler
at the bottom of the image is used as a reference marker for measurements on the image.

(a) day 8 (b) day 12 (c) day 16 (d) day 20

Figure 4.2: Example images of the root dataset: root004 on several days during the growth cycle.
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files of about 150MB.
Along time several successive images are acquired this way, as each plate is scanned at several
successive days of the growth process. A 3D stack of 2D images over time is thus created for
each root. An example for such successive images of one plant is shown in Figure 4.2

4.2 Pre-Processing

As a first step in the process of a graph based root representation pre-processing methods need
to be applied.
The plants are pictured in a set of 24 plants in one petri dish. Therefore each of these images
needs to be cut to single plant images. The size of these single plant images is determined based
on the image of the last day of the growth cycle. All younger plants are extracted accordingly.
For the images in Figure 4.2 this pre-processing step has already been carried out.

As the approach presented in this thesis requires a pre-segmented image as in an input, the
single plant images are segmented in the next pre-processing step. For this segmentation proce-
dure a pyramid based approach is used. Image pyramids describe an image at multiple levels of
resolution. The bottom level of the pyramid corresponds to the high resolution of the original
image. For higher levels the resolution decreases based on a reduction function applied to the
pixels within the reduction window [20]. The segmentation approach is presented in [14]. It
takes an arbitrary image as input and returns a hierarchy of segmented images. In a next step
the user can modify the segmentation: The user has the possibility to merge regions or prevent
them from being merged in higher levels of the hierarchical segmentation. For changes made
by the user the pyramid is recomputed to adapt the underlying combinatorial maps [14]. All
images of the root dataset used in this thesis were segmented using this interactive, hierarchical
segmentation tool.

The segmented images of the root dataset consist of 2 foreground regions (leaves and roots,
only the roots are analyzed for this approach) and up to 2 holes in the foreground structure. For
reasons of this needed preceded segmentation, the dataset is restricted in its size, as this semi-
automatic segmentation approach is costly in terms of time. For the quite thin root structures a
high amount of user interaction is needed to generate a suitable segmentation result. Figure 4.3
shows the segmentation results for the root images shown in Figure 4.2.
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(a) day 8 (b) day 12 (c) day 16 (d) day 20

Figure 4.3: Segemented images of root004, day 4 to day 20.
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CHAPTER 5
Graphs on Root Images

Within the scope of this thesis, root images are represented by three graph based representations:
graphs based on a medial axis skeleton, Reeb graphs based on the height function as Morse
function and Reeb graphs based on the geodesic distance as Morse function.

Figure 5.1: Example root with characteristic locations labeled and a possible graph representa-
tion.
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This graph representations capture characteristics of the roots such as branching points and end
points of branches. Figure 5.1 shows an example image of a root, with the characteristic points
labeled.
An overview of the implementation is given as pipeline for the three approaches presented in
this thesis in Figure 5.2. The approaches are discussed in detail in the following sections.

Figure 5.2: Implementation pipeline for the three approaches.
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5.1 Computation of Medial Axis Graph

For the computation of the medial axis an iterative thinning approach is applied to the foreground
region of the segmented image. For each pixel three conditions are checked in two sub-iterations,
if all three of them hold, the pixel is removed. If one ore more of the three conditions do not
hold, the pixel is identified as a skeleton pixel and kept. Moreover for each skeleton pixel the
shortest distance to the background is stored as a width.
The conditions are checked on the neighborhood of a pixel p, the east-neighbor is labeled x1,
the others are labeled with successive numbers counter-clockwise as illustrated by the following
Figure 5.3:

Figure 5.3: Pixel neighborhood.

According to [21] the conditions are:

1. sub-iteration: the pixel is deleted if the conditions G1, G2 and G3 hold:

• G1:
∑4

i=1 bi = 1, with:

bi =

{
1 if x2i−1 = 0 and (x2i = 1 or x2i+1 = 1),

0 otherwise.

• G2: 2 ≤ min(n1(p), n2(p)) ≤ 3, with:
n1(p) =

∑4
k=1 x2k−1 ∨ x2k

n2(p) =
∑4

k=1 x2k ∨ x2k+1

• G3: (x2 ∨ x3 ∨ ¬x8) ∧ x1 = 0

2. sub-iteration: the pixel is deleted if the conditions G1, G2 and G′3 hold:

• G1: same as for sub-iteration 1

• G2: same as for sub-iteration 1

• G′3: (x6 ∨ x7 ∨ ¬x4) ∧ x5 = 0

For each computed skeleton branching points and endpoints of branches are detected ac-
cording to their neighborhood-structure. These are used as nodes of the graph. An endpoint
is detected as a pixel with only one neighboring pixel (see Figure 5.4b), a branching point has
more than two neighboring pixels (see Figure 5.4a).
The actual graph is then computed on the skeleton using line tracing and stored as an adjacency
matrix. For each branching point all skeleton connections are followed until another branching
point or an endpoint is reached. If a branching point or endpoint is reached, the according entry
in the adjacency matrix is set to one.
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(a) branching point (b) endpoint

Figure 5.4: Branching point in a medial axis skeleton marked red, endpoint marked pink.

5.2 Computation of Reeb Graph (Height Function)

For the computation of the critical points according to the height function the basic idea is, to
analyze the border of flat-regions in the image. The foreground region borders are therefore
analyzed with regard to horizontal borders as these might describe a change in the number of
components. Critical points indicate topology changes and these changes might only occur at
the border of a region but not within a region.
For each horizontal border its endpoints are checked for connected vertical borders:

• no change in topology - no critical point: one endpoint connected to a vertical border
going up, the other connected to a vertical border going down

• split or birth: both endpoints connected to a vertical border going down

• merge or death: both endpoints connected to a vertical border going up

The so found critical points are located at the center of such a horizontal border. Figure 5.5
shows examples for computed critical points.

Correction of critical points

Due to the resolution of the image, the discretization of the root and further distortions during
the segmentation process, two critical points may be computed at the same height. Critical

(a) maximum / birth (b) saddle (split) (c) minimum / death (d) saddle (merge)

Figure 5.5: Four different types of critical points, computed according to the height function
[18].
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points with the same Morse function value contradict the third criteria of Morse theory (defined
in Section 2.3). Thus, a Reeb graph can not be built in such a case. Figure 5.6a illustrates the
problem: solid lines indicate well-defined connections in the graph, the dashed lines indicate
possible connections. From these possible connections, one connection from the black center
node to a red node is needed and the green node needs to be connected to one of the red nodes
as well. In order to determine a correct set of edges between the nodes, the following technique
is used to solve the ambiguous connections for critical points on the same height:
For two critical points on the same height, a rotation is applied by adding a factor f , 0 ≤ f < 1.
A critical point p = (x, y) is rotated to p′ = (x, y + f) with f computed as f = 1

w (̇x − 1).
The order of heights is preserved by this controlled rotation as only critical points that were
primarily at the same height are changed. The critical points are mathematically discriminative
after applying this correction, while staying in the actual pixel line, when rounding down the
y-coordinate of such a critical point to an integer value [18].
The configuration of the nodes in Figure 5.6a is rotated to the configuration in 5.6b. As the
critical points are now on different heights, a unique Reeb graph can be built. The Reeb graph
for Figure 5.6a after application of this correction is drawn in Figure 5.6b.

Construction of graph

The critical points function as nodes in the Reeb graph. As a final step the edges of the graph
need to be computed. The edges are stored as adjacency matrix.
In order to obtain the connections between vertices, all critical points are sorted according to
their height. Starting with the topmost critical point an approach similar to the flood fill algo-
rithm is deployed for all nodes:

1. The pixel line of the current critical point is followed to the right until a critical point in
the same pixel line or a background pixel is reached.

(a) critical points on same
height

(b) rotated critical points

Figure 5.6: For critical points on the same height a unique Reeb graph can not be built, as the
connections of the nodes in the graph are ambiguous [18].
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(a) critical points

(b) edge P1P2 (c) cycle P2P3

Figure 5.7: Computation of edges in Reeb graph

2. In case a background pixel was reached, the searched is moved one row down and this
pixel line is followed to the left, until a critical point or a background pixel is reached.

3. In case a background pixel was reached, the search again moves one row down and pro-
gresses to the right until a critical point or background pixel is reached.

4. Step 2 and 3 are repeated until a critical point is found.

Once a critical point is found the adjacency matrix is set to one for the according edge. In case
the searched started from a critical point of type saddle (split) the search for critical points is
done twice, once starting to the right of the critical point and once to the left. Figure 5.7 shows
how the connections are computed for the critical points P1 (Figure 5.7b) and P2 (Figure 5.7c)
in the white foreground region of Figure 5.7a.
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5.3 Computation of Reeb Graph (Geodesic Distance)

For each foreground pixel the geodesic distance to one predefined source pixel is computed. For
the root images the distance is computed from the center pixel of the topmost pixel row. As a
distance measurement for computing the critical points the Chebyshev (chessboard) distance is
used.
There is only one node of type maximum in a Reeb graph based on the geodesic distance, which
is the seed point (distance = 0). Minimum nodes are found as the position of a maximum distance
in a branch (local maxima). Saddle points are determined as locations at which foreground parts
with the same distance to the source are split in two connected components or are merged from
two into one connected component. Figure 5.8 shows an example for a critical point of type
split. The source pixel is locate in the top right corner (distance 0), at distance 8 the structure
is split into two connected components, this would result in a critical point of type split at
distance 7. The split in Figure 5.8 would not be determined as a critical point when analyzing
the structure according to the height function, as the number of connected components stays one
for all heights in this structure. The geodesic distance is more flexible in the identification of
critical points, a alignment of the analyzed structure to the perpendicular axis is not needed.

Correction of critical points

As for the Reeb graphs based on the height function, critical points with the same function value
(in this case distance to a source pixel) may occur. However, for this Reeb graph there is no di-
rect correction applied to the critical points. The critical points are rather connected as described
in the next section, to the next critical point that is encountered while tracing back the fore-
ground structure from one critical point towards the source pixel. However, if two critical points
at exactly the same distance are encountered - this might for example happen when computing

Figure 5.8: Geodesic distances are computed using the chessboard distance, the source pixel is
located in the top right corner. At distance 8 the foreground is split into two connected compo-
nents, this would result in a critical point of type split at distance 7.
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Figure 5.9: Geodesic distance computed as chessboard distance from the center pixel leads to
concentric squares. The euclidean distance is described by the concentric circles.

to closest point to the maximum node -a second distance measurement is used for the decision.
Starting from the source pixel the geodesic distance is computed based on the euclidean dis-
tance. The risk of encountering two critical points in the same branch having the same euclidean
geodesic distance to a source pixel is negligibly small.
For two critical points at the same Chebyshev distance from the source pixel, we can use the
euclidean distance. Both critical points are in any case at same chessboard distance, the decision
is based on the differing euclidean distances. The values obtained by the euclidean distance are
always larger than the chessboard distance as the euclidean distance is described by the incircle
of the square formed by the chessboard distance (see Figure 5.9).
However, these decisions based on the euclidean distance may result in wrong decisions, one
saddle node may have four adjacent nodes while another one only has two adjacent nodes. As
illustrated in the “geodesic distance” branch in Figure 5.2 a correction procedure is applied to
repair the graph in case of incorrect decisions.

Construction of graph

The connections in the Reeb graph are obtained in two steps:

1. First all critical points of type saddle or merge are connected. Therefore, for each saddle
node the foreground structure is traced backwards. This means starting at a saddle node
P with distance x to the source node, the algorithm moves from the region with distance
x − 1 that is reachable from P to x − 2 etc. until a critical point is reached. Figure 5.10
demonstrates this procedure for the critical point P2 at distance 19. For saddle nodes of
type merge this is done for both branches and two connections are found.

2. As a second step, the maximum node (source node) in the geodesic distance Reeb graph
is connected to the node closest to it. All minimum nodes are connected to the closest
split or merge node. Again the foreground structure is traced backwards (in the direction
of decreasing distance) until a critical point is found.
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(a) critical points (b) distances (c) 1st iteration

(d) 2nd iteration (e) 3rd iteration (f) critical point found

Figure 5.10: Example for the computation of edges in the geodesic distance Reeb graph. The
connection between critical point P2 and P1 is built.

3. For two critical points at the same distance, wrong decisions may be taken during the
second step of this process. Therefore the correctness of the graph is checked after both
steps are finished. In case a saddle node is adjacent to four other nodes, there needs to be
a second saddle node with only two adjacent nodes. For a saddle node with four adjacent
nodes, the minimum or maximum node, that is at the largest distance from the saddle node
is deleted from the adjacency of the saddle node and connected to the closest saddle node
that has only two adjacent nodes.

All edges that are computed in that way are stored in an adjacency matrix.

5.4 Improvements on the Graphs

During preprocessing the image is segmented. This segmentation procedure may generate frayed
borders in the foreground region. These artefacts introduce additional, spurious nodes in the
graphs. In order the use the graphs as a representation of the root structure, these additional
branches need to be removed. A simple graph pruning approach is applied for this purpose.
Branches and endpoints are discarded according to certain criteria. If needed, nodes are relinked
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after pruning. Saddle nodes that are reduced to a degree-2 node by the pruning process are
smoothed out and therefore removed from the graph.

Pruning based on length

This approach dismisses branches with an euclidean distance between the endpoints of less then
1.5% of the image height. The images are cut in a preprocessing step to single plant images.
The size of the image is fro each plant based on the latest day of its growth cycle. All earlier
images of this plant are cut to the same size. The image height therefore is directly linked to
the length of the longest branch as this determines the image size. The threshold of 1.5% of the
image height was determined empirically.

Pruning based on width

For the medial axis graph a second pruning approach based on the width of branches was tested.
The basic idea here is that branches due to segmentation artefacts are in most cases only 1 or
2 pixels wide. True branches that resemble the spurious branches in length are mostly broader
than that. However, the pruning process can not be based on the width of branches only, as
especially longer branches tend to be thin in the end part and may be discarded during pruning.
Therefore pruning candidates are detected using the length based pruning approach described
before. These pruning candidates are verified for pruning by checking the average width of the
branch between the endpoints of the edge forming the branch. This can be easily done, as the
width of the foreground structure is stored with the medial axis skeleton. In case the average
width is below 7 pixels the pruning candidate is verified and the according branch discarded.
The width threshold again was determined empirically.
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CHAPTER 6
Results

Figure 6.1 shows results for root 09, day 20. Here the Reeb graph based on the height function
produces the best result, as the root is well aligned with the perpendicular axis and the response
to the artefacts introduced by the segmentation approach is lower for this Reeb graph. This is
based on the restriction of the critical points, as these only occur with horizontal borders/gaps
in the foreground structure. The medial axis responds very sensitive to noise in the foreground
borders, the high number of spurious branches shows this.
By application of graph pruning most the spurious branches can be detected and discarded.

(a) medial axis graph (b) Reeb graph (height func-
tion)

(c) Reeb graph (geodesic dis-
tance)

Figure 6.1: Resulting graphs for root 09, day 20.
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(a) medial axis graph (b) medial axis graph
width pruning

(c) Reeb graph (height
function)

(d) Reeb graph
(geodesic distance)

Figure 6.2: Resulting graphs for root 09, day 20 - length based graph pruning was applied to the
results shown in Figure 6.1. For the medial axis based representation the width pruning approach
was applied as well.

Figure 6.2 shows again the resulting images for root 09, day 20 with length based graph pruning
applied. The resulting graphs based on the Reeb graph approaches after pruning capture the
characteristics that were intended to be obtained, well: start and endpoints of the roots are found,
as well as the two branching points. For the medial axis approach under pruning according to
length, the actual startpoint (for the medial axis it is just one of the endpoints and therefore
not secure under pruning) was discarded in the pruning approach. This created a regular node
(degree 2) for the higher branching points which thus was discarded as well. While the startpoint
and one branching point are missing, one spurious branch was kept. By application of width
based pruning described in 5.4, the missing startpoint and branching point are kept, but two
more spurious branches (in total three spurious branches) are kept just as well (see Figure6.2b.)

Table 6.1: Branches wrongly discarded (false negative) and wrongly accepted (false positive) in
the graph pruning approach.

Wrong decisions on graph pruning
representation # images # false negatives # false positives

RG height function 8 10 0
RG geodesic distance 7 7 2

medial axis 17 11 16
medial axis width pruning 18 4 29
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6.1 Pruning Effect

For the comparison of the three different graph representations used in this thesis, the numbers of
nodes computed for the graphs are compared. As illustrated by the Figures 6.1 and 6.2 spurious
branches may be introduced due to segmentation artefacts. Due to these segmentation artefacts
the number of nodes is in general high for all three representations, but can be reduced by up to
70% under the application of graph pruning (see Table 6.2).The applied graph pruning is able to
remove most of the branches. However, spurious branches may still be accepted under applica-
tion of graph pruning (false positives), while true branches that resemble the spurious branches
(in length or width) are therefore discarded during the pruning process (false negatives). Table
6.1 shows the number of false positives or negatives that occur for each of the discussed ap-
proaches. The medial axis approach introduces the most false positives, especially the width
pruning approach is very likely to accept spurious branches. However, the number of false nega-
tives is lowest under this pruning approach. The best results are obtained using the Reeb graphs
based on the geodesic distance in combination with the length based graph pruning. While al-
most all false positives are correctly discarded during graph pruning, only few true branches
(false negatives) are missing. The graphs in Figure 6.3 show that the Reeb graph according to
the geodesic distance approximates the ground truth best.
Table 6.2 shows the numbers of nodes for all root images in the dataset and the reduction of the
node numbers when using graph pruning. Figure6.3 shows the according graphs to th results
presented in Table 6.2.

The abbreviations used in Table 6.2:

• RG1: Reeb graph based on height function

• RG1 + P: Reeb graph based on height function including pruning

• RG2: Reeb graph based on geodesic distance

• RG2 + P: Reeb graph based on geodesic distance including pruning

• MAG: Medial axis graph

• MAG + P: Medial axis graph including pruning

• MAG + WP: Medial axis graph including width based pruning

• RSA: Result from the Root System Analyser tool [24]

• GT: Human generated ground truth
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Table 6.2: Overview: numbers of nodes for the different graphs representations.

Numbers of nodes in the graph
Image RG1 RG1

+ P
RG2 RG2

+ P
MAG MAG

+ P
MAG
+ WP

RSA GT

root04, day 8 8 2 8 2 6 2 2 5 2
root04, day 12 14 4 14 4 12 2 4 6 6
root04, day 16 36 6 32 6 42 4 8 25 6
root04, day 20 24 8 32 8 52 6 6 32 8
root05, day 8 6 2 4 4 6 2 4 2 4
root05, day 12 8 4 12 4 10 6 8 7 6
root05, day 16 36 4 32 6 38 4 4 15 4
root05, day 20 12 8 24 8 30 6 10 21 8
root07, day 8 4 2 4 2 6 4 4 6 2
root07, day 12 8 6 12 6 12 8 8 11 6
root07, day 16 12 6 14 6 12 10 10 9 6
root07, day 20 12 8 20 8 18 14 14 18 8
root09, day 8 4 2 2 2 4 2 2 2 2
root09, day 12 18 6 18 6 20 10 10 17 6
root09, day 16 24 6 18 6 24 4 6 16 6
root09, day 20 14 6 22 6 29 6 12 24 6
root12, day 8 4 2 2 2 4 2 2 3 2
root12, day 12 10 4 8 6 4 4 4 4 6
root12, day 16 18 6 14 6 20 4 4 14 6
root12, day 20 28 12 46 14 54 12 14 40 18
root17, day 12 4 2 8 2 6 2 2 4 2
root17, day 16 14 6 10 6 14 6 6 10 6
root17, day 20 10 6 12 6 14 4 6 12 6
root19, day 8 4 6 2 2 10 2 2 4 2
root19, day 12 4 4 6 4 6 2 4 4 4
root19, day 16 14 8 18 8 18 6 10 12 10
root19, day 20 38 14 42 14 48 12 14 28 14
root20, day 8 2 2 4 2 2 2 2 2 2
root20, day 12 8 4 6 4 6 2 2 3 4
root20, day 16 14 4 14 4 18 2 6 13 4
root20, day 20 30 12 20 10 20 8 12 12 10
root24, day 12 6 2 6 2 8 2 2 5 2
root24, day 16 10 4 10 4 14 4 6 8 4
root24, day 20 20 10 24 10 22 8 8 13 8
Sum 478 184 524 188 609 174 218 407 196
Reduction 61.5% 64.1% 71.4% 64.2%
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6.2 Overlapping Branches

The roots are imaged as a projection of a 3D structure (the root) to the 2D image space. Branches
may therefore overlap in the 2D image. One major advantage when analyzing roots based on
Reeb graphs is posed by the ability to immediately distinguish between branching points and
overlaps in the root structure [18]. An overlap introduces a cycle in the graph and therefore a
saddle node of type merge in the set of critical points. For a medial axis based graph there are
only two types of nodes: endpoints and branching points. Therefore a merge of the foreground
structure can not be immediately distinguished from a split of the structure based on the type of

(a) medial axis graph (b) Reeb graph
(height function)

(c) Reeb graph
(geodesic distance)

Figure 6.4: Resulting graphs for root 12, day 20: branches overlap in the image and form a cycle
in the graphs. The saddle node of type merge is marked in red in the two Reeb graphs.
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(a) merge node based on height function (b) merge node based on geodesic distance

Figure 6.5: Comparison of position of merge nodes in the two Reeb graphs.

node in the graph.
Figure 6.4 shows an example of such an overlap of branches and the computed graphs for this
image. There is a cycle in all three images, however only in the Reeb graph representations the
overlap is explicitly marked by the merge node (in Figure 6.4 marked in red).
For Reeb graph representations based on the geodesic distance, the saddle node of type merge
may not always be at/near the location of the actual overlap of branches as it is computed at the
location of a merge of connected components with the same distance. As illustrated in Figure
6.5b this position can be inside on of the branches forming the cycle. For the Reeb graph based
on the height function, the merge node is locate as shown in Figure 6.5a. However, for the height
function saddle nodes of type merge may be introduced without any cycle in the graph. For the
height function more than one maximum node may appear in the graph, these maximum nodes
are connected to the foreground structure by a saddle node of type merge , without any cycle in
the graph (respectively hole in the foreground structure).

6.3 Comparison: Root System Analyser

The root dataset was evaluated using the tool “Root System Analyser” (RSA) [24] as well.
The number of nodes computed by RSA is listed in Table 6.2 in column “RSA”. Although a
smoothing is applied, a large number of nodes that represent noise is kept by this approach. This
is indicated by the high number of nodes needed for the root dataset (compare: 407 nodes RSA
to 188 nodes geodesic distance Reeb graph with pruning to 196 nodes human ground truth).
Nodes of degree 2 that have no influence on the topology of the foreground structure are kept in
the representation as well.
The representation shown in Figure 6.6 was computed using RSA. The main branches of the
root are well represented, some small branches due to noise are kept in the final representation.
While both Reeb graph representations presented in this thesis use 6 nodes and 3 branches (see
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Figure 6.6: Result for root09 day 20, computed using the “Root System Analyser”. Some small
branches due to noise are kept in the final representation.

Figure 6.2) which conforms to the human ground truth, the RSA uses 23 nodes and detects 12
branches.

Figure 6.7 shows a comparison of the representation computed by RSA and a representation
computed using the geodesic distance based Reeb graph approach as presented in this thesis. The
RSA representation (Figure 6.7a) detects 16 branches, using 40 nodes for the representation. The
Reeb graph representation based on the geodesic distance with pruning (Figure 6.7b), needs 14
nodes for the representation and computes a total of 6 branches. However, two small branches
are wrongly discarded during the graph pruning as is the end part of one of the overlapping
branches. Just as the Reeb graph based representations, the Root System Analyser Tool detects
overlaps of branches in the image and tries to reestablish the correct connectivity of the branches.
However, in this process incorrect decisions are likely to be taken. For Figure 6.7a this is shown
as a detail. The overlap of two branches is split into four branches here, none of them overlap,
but two of them share an endpoint.
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(a) RSA result (b) geodesic distance
Reeb graph incl. pruning

Figure 6.7: Results for root12, day 20. While some minor branches due to noise are wrongly
kept in the final representation of the RSA tool, three small true branches are wrongly discarded
in the pruning of the Reeb graph approach. The overlap of branches is wrongly dissolved by the
RSA tool.
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CHAPTER 7
A Normalized Root Representation

The three graph representations provide different characteristics of the root. The length of a root
in the Reeb graph based on the height function is determined by the height of the endpoint of a
root in the image. Additional length of the root due to curvature is not taken into account. This
is however done for the geodesic distance, as the length is measured as the intrinsic length of the
root structure. Compared to the Reeb graphs used in this thesis, the medial axis representation is
the only representation, that captures the width of the roots. In order to combine the advantages
of several representations, a measurement of equality of graph representations is needed.
Based on this graph equality, the characteristics of various representations can be collected for a
combined description of the root.

7.1 Equality of Graphs

Within the scope of this thesis two graph representations of the same image are considered
equal, if the graphs are isomorphic. Two representations that are not equal (their graphs are not
isomorphic) can be compared using the distance between these graphs. This distance can be
measured based on the maximal common subgraph, as presented in [6]. For two graphs G1 and
G2 and their maximal common subgraph Gmcs the number of nodes in these graphs is denoted
as |G1| respectively |G2| and |Gmcs|. The distance between the graphs G1 and G2 is defined as:

d(G1, G2) = 1− |Gmcs|
max(|G1|, |G2|)

. (7.1)

The definition of subgraph and subgraph isomorphism needs to be further specified respectively
altered for the scope of this thesis:
A general subgraph is a graph built from the subset of the vertices and corresponding edges of a
graph. Within this thesis nodes of degree 2 are smoothed out of the graph. A subgraph is there-
fore derived as a general subgraph which is altered by smoothing of nodes. Figure 7.1 shows the
process of deriving such a subgraph.
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(a) graph G1 (b) graph G2 (c) G1 (blue) as a
subgraph of G2

(d) smoothing the
marked node

(e) subgraph of G2

Figure 7.1: Based on the definition in this thesis graph G1 is a subgraph of G2. G2 is subgraph
isomorphic to G1

Based on this definition of a subgraph and the distance measurement given in equation 7.1, the
distance between the graphs G1 and G2 in Figure 7.1 is given as:
d(G1, G2) = 1− |G1|

|G2| = 1− 4
6 = 0.33 .

Graph isomorphism respectively subgraph isomorphism (using the subgraph definition includ-
ing smoothing) were used to compare and evaluate the graph representations of the root dataset.
Table 7.1 shows this comparison. For all images in the root dataset two representations are in
each case compared. Graph isomorphism is indicated by the sign Xin Table 7.1. All pairs of
graphs that are not isomorphic, share a subgraph. If one of the graphs already forms such a
subgraph the acronym of this graph is given in the table cell. If both graphs contain isomorphic
subgraphs, the according cell of the table is labeled “both”.

The abbreviations used in Table 7.1 and Table 7.2:

• RG1 + P: Reeb graph based on height function including pruning

• RG2 + P: Reeb graph based on geodesic distance including pruning

• MA + P: Medial axis graph including pruning

• MA + WP: Medial axis graph including width based pruning
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Table 7.1: Graph isomorphism and isomorphic subgraphs in the root dataset.

Equality of graphs
Image RG1+P /

RG2+P
RG1+P /
MA+P

RG1+P /
MA+WP

RG2+P /
MA+P

RG2+P /
MA+WP

MA+P /
MA+WP

root04, day 8 X X X X X X
root04, day 12 X MA+P both MA+P both MA+P
root04, day 16 X MA+P both MA+P both MA+P
root04, day 20 X MA+P MA+WP MA+P MA+WP X
root05, day 8 R2+P X R1+P R2+P X MA+P
root05, day 12 X R1+P R1+P R2+P R2+P MA+P
root05, day 16 R1+P X X MA+P MA+WP X
root05, day 20 X MA+P R1+P MA+P R2+P MA+P
root07, day 8 X R1+P R1+P R2+P R2+P X
root07, day 12 X R1+P R1+P R2+P R2+P X
root07, day 16 X both both both both X
root07, day 20 X R1+P R1+P R2+P R2+P X
root09, day 8 X X X X X X
root09, day 12 both both both R1+P R2+P X
root09, day 16 X MA+P X MA+P X MA+P
root09, day 20 X MA+P R1+P MA+P R2+P MA+P
root12, day 8 X X X X X X
root12, day 12 R1+P both both MA+P MA+WP X
root12, day 16 X MA+P MA+WP MA+P MA+WP X
root12, day 20 R1+P both both both both MA+P
root17, day 12 X X X X X X
root17, day 16 X X X X X X
root17, day 20 X MA+P both MA+P both MA+P
root19, day 8 X X X X X X
root19, day 12 X MA+P X MA+P X MA+P
root19, day 16 X MA+P both MA+P both MA+P
root19, day 20 both MA+P X MA+P both MA+P
root20, day 8 X X X X X X
root20, day 12 X MA+P MA+WP MA+P MA+WP X
root20, day 16 X MA+P R1+P MA+P R2+P MA+P
root20, day 20 R2+P R1+P both R2+P R2+P MA+P
root24, day 12 X X X X X X
root24, day 16 X X R1+P X R2+P MA+P
root24, day 20 X MA+P MA+WP MA+P MA+WP X
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Table 7.2: Distances between the graph representations

Distances between the graphs
Image RG1+P /

RG2+P
RG1+P /
MA+P

RG1+P /
MA+WP

RG2+P /
MA+P

RG2+P /
MA+WP

MA+P /
MA+WP

root04, day 8 0.00 0.00 0.00 0.00 0.00 0.00
root04, day 12 0.00 0.50 0.50 0.50 0.50 0.50
root04, day 16 0.00 0.50 0.63 0.50 0.63 0.63
root04, day 20 0.00 0.25 0.25 0.25 0.25 0.00
root05, day 8 0.50 0.00 0.50 0.50 0.00 0.50
root05, day 12 0.00 0.33 0.50 0.33 0.50 0.25
root05, day 16 0.33 0.00 0.00 0.33 0.33 0.00
root05, day 20 0.00 0.25 0.20 0.25 0.20 0.40
root07, day 8 0.00 0.50 0.50 0.50 0.50 0.00
root07, day 12 0.00 0.25 0.25 0.25 0.25 0.00
root07, day 16 0.00 0.50 0.50 0.50 0.50 0.00
root07, day 20 0.00 0.43 0.43 0.43 0.43 0.00
root09, day 8 0.00 0.00 0.00 0.00 0.00 0.00
root09, day 12 0.50 0.70 0.70 0.40 0.40 0.00
root09, day 16 0.00 0.33 0.00 0.33 0.00 0.33
root09, day 20 0.00 0.33 0.50 0.33 0.50 0.50
root12, day 8 0.00 0.00 0.00 0.00 0.00 0.00
root12, day 12 0.33 0.50 0.50 0.33 0.33 0.00
root12, day 16 0.00 0.33 0.33 0.33 0.33 0.00
root12, day 20 0.14 0.33 0.43 0.50 0.50 0.14
root17, day 12 0.00 0.00 0.00 0.00 0.00 0.00
root17, day 16 0.00 0.00 0.00 0.00 0.00 0.00
root17, day 20 0.00 0.33 0.33 0.33 0.33 0.33
root19, day 8 0.00 0.00 0.00 0.00 0.00 0.00
root19, day 12 0.00 0.50 0.00 0.50 0.00 0.50
root19, day 16 0.00 0.25 0.40 0.25 0.40 0.40
root19, day 20 0.14 0.14 0.00 0.14 0.14 0.14
root20, day 8 0.00 0.00 0.00 0.00 0.00 0.00
root20, day 12 0.00 0.50 0.50 0.50 0.50 0.00
root20, day 16 0.00 0.50 0.33 0.50 0.33 0.66
root20, day 20 0.17 0.33 0.17 0.17 0.17 0.33
root24, day 12 0.00 0.00 0.00 0.00 0.00 0.00
root24, day 16 0.00 0.00 0.33 0.00 0.33 0.33
root24, day 20 0.00 0.20 0.20 0.20 0.20 0.00
Average 0.06 0.25 0.26 0.25 0.25 0.17
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For all pairs of graphs in Table 7.1 the distance between the graphs was computed as well.
These distances are given in Table 7.2. The distances of all subgraph isomorphic graphs are
computed based on the distance definition given before. A distance of 0 indicates graph isomor-
phism.

7.2 Combined Root Representation

As the root images are taken as time series, several images of a root on different days of the
growth cycle can be used for a normalized representation. Therefore the images will be aligned
based on the starting point of the latest image in a time series and orientated according to the
longest edge from the starting point of the latest image.
In order to combine the characteristics of the three graph based representations, corresponding
nodes in the graphs have to be obtained by matching of the graphs as discussed in Section 7.1.
The graph is built based on one representation, here the geodesic distance based Reeb graph is
a good choice, as this representation approximates the ground truth best (see Chapter 6.1). As
additional information the number of nodes, branches, and the width and length of branches can
be provided. Figure 7.2 shows an example for such a representation.

Figure 7.2: Combined Characteristics for root09, day 20.
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CHAPTER 8
Conclusion

In this thesis the possibility of a Reeb graph based representation of roots was inquired. Inter-
mediate results on the representation of root structures by Reeb graphs have been published in
the Computer Vision Winter Workshop 2014 [18].
For phenotyping of plants the length of branches, numbers of branches in a root structure and
the width of branches are analyzed characteristics. All these traits are captured by the presented
graph representations.
Two Reeb graph based approaches as well as an approach based on the medial axis were eval-
uated and compared to human generated ground truth. For all three approaches the graphs are
based on a set of nodes and the adjacency between the nodes. The nodes are obtained by ei-
ther analyzing the shape according to a (Morse) function to obtain the critical points that form
the nodes in the Reeb graphs or by computing a medial axis skeleton and detecting branching
points and endpoints, that form the nodes of the medial axis graph. For the Reeb graph based
approaches two Morse functions were used: the height function and the geodesic distance. Ac-
cording to the nodes, the connections in the graphs are obtained by analyzing the structure. The
root is traced from one critical point to the next in order to compute the adjacency of the nodes.
Reeb graphs according to a height function are able to describe a root correctly, if its general
direction does not strongly deviate from the vertical direction.The length of branches in such
a Reeb graph is measured considering the height function. Additional length in a branch due
to curvature of the branch is not taken into account. Therefore Reeb graphs according to the
geodesic distance proved to be better suited for the task of length measurement, as in this case
the intrinsic length of the root structure is measured. Reeb graphs according to the geodesic
distance captured the branching pattern of the root as well as the length of individual branches.
The width of a branch can be measured using a medial axis transformation. Although a graph
can be built based on the medial axis as well, a combination of geodesic distance Reeb graph and
medial axis should be used to correctly describe the root, as the medial axis graph (especially in
combination with graph pruning) does not capture all branching points correctly.
All three representations are very sensitive to noise in the segmented image and introduce spu-
rious branches in the graphs. These spurious branches are discarded in a graph pruning process.
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However when choosing a parameter for graph pruning that removes the spurious branches,
some true branches may be discarded as well.
As the roots are imaged through the projection of the 3D structure (the root) to the 2D image
space, branches may overlap in the image. These overlaps introduce a cycle in all graph repre-
sentations. One major advantage when using a Reeb graph based representation compared to a
medial axis representation is, that due to the different types of nodes in a Reeb graph, an overlap
generates a merge node in the graph. Therefore an overlap can be immediately detected based
on the type of the corresponding node in the graph.

The results show that the Reeb graph based on the geodesic distance approximates the human
generated ground truth best, regarding the number of nodes in the representation as well as the
structure of the graph generated.
To include parameters from several representations, as for example the width of branches based
on the medial axis, the Reeb graph can be combined with the medial axis representation. In order
to allow for this combination of different graphs based representations, a distance based equality
measurement was introduced. For isomorphic graphs the characteristics of corresponding nodes
can be combined immediately, for isomorphic subgraphs this is only possible for the nodes of
the subgraphs.
For future work the segmentation that is done as a preprocessing step proved to be a major draw-
back in the attempt to automatically analyze large datasets. The semi-automatic segmentation
method used for the creation of the root dataset presented in this thesis, needs to be changed
to either a fully automatic approach or a semi-automatic one, that is optimized with respect to
computation time and needed user interaction. This would reduce the time and human input
needed for the preprocessing step. Moreover the current segmentation approached introduced
artefacts in the form of frayed borders, that generate spurious branches in the graphs. Although
these spurious branches can be discarded using graph pruning, true branches may be removed
in the graph pruning process as well. A reduction of this noise by either using a better suited
segmentation method or by application of smoothing on the segmentation result may reduce this
problem.
For future work the temporal correlation of the root images should be taken into account. The
roots are imaged on several days of their growth cycle, therefore the development of a route in
a certain time frame is captured by such an image sequence. To distinguish a small true branch
from a spurious branch may for example not be possible based on one image. A later image of
the same root may help with this decision: in case there is a branch at this position in a later
image, the branch is detected as a true branch, otherwise it is discarded as a spurious branch.
Thus, the information and knowledge about a root gained on the images of later days in the
growth cycle can be used for decisions on earlier images.
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