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Abstract

Production systems are complex structures. The growing need for customized
mass-goods and decreasing life cycles of consumer goods imposes the demand
for flexible manufacturing systems and frequent changes to deployed plants.
Different disciplines are involved in their creation. More and more functiona-
lities are covered by automatic control software. Hence, its share in terms of
costs and development time is ever increasing. However, in prevalent, seriali-
sed development workflows, automatic control development is one of the last
disciplines involved. This imposes pressure regarding functionality, costs, and
also commissioning time on automatic control engineers. Model-based engi-
neering is a promising approach to improve this situation as it enables and
fosters the collaboration of all involved disciplines.

The aim of this thesis is to introduce a new multi-disciplinary approach
for the specification, development, and validation of production systems. The
core of the proposed approach is the modelling infrastructure, which is inspi-
red by the Model Driven Architecture (MDA). A set of models, each for dif-
ferent engineering aspects, is linked to provide coherent, multi-disciplinary
data that is relevant for the implementation of production systems. Functional
modules, so called Automation Components, are introduced. These are the
building blocks of automated production systems. Furthermore, they facili-
tate the specification and implementation process, as the re-use of Automation
Components reduces the engineering effort. Furthermore, once specified and
implemented components usually have higher quality.

The proposed workflow targets the simultaneous system specification in
all involved disciplines. Currently used engineering tools, such as CAD tools
or PLC programming tools, shall be integrated and model-transformation fa-
cilities are used to extract engineering data. The availability of a comprehen-
sive specification early in the engineering workflow allows the parallelized
implementation in the involved disciplines (e.g. mechanical construction, pro-
gramming of the automatic control system). Hence, the overall development
and implementation time can be reduced. For further reconfiguration activi-
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ties it is important to keep the specification of the automated system accurate
and coherent with the actual implementation. The hierarchical aggregation
of Automation Components, with clearly defined interfaces and encapsulated
behaviour, support this task, as changes are locally confined.

The direct inclusion of plant behaviour simulation in the specification and
development workflow is an innovation. This allows also to keep the simula-
tion model of the automated plant coherent with the actual (or planned) plant
configuration. Implementation can already be started without the physical
availability of the controlled plant. The simulation environment provides a vir-
tual representation of the plant and allows the validation of automatic control
applications (i.e. virtual commissioning).

The simulation framework is based on the IEC 61499 compliant runtime
environment FORTE. Its event based execution semantics is suitable for dis-
crete event simulation. Also the modular aggregation of functionality—based
on Function Blocks—facilitates the modeling of modular plant models (with
the same structure as the Automation Components). The automatic control
application and the plant simulation application are executed on the same au-
tomatic control system (one or multiple automatic control devices). First, cou-
pling plant simulation and automatic control is possible without communica-
tion overhead. Second, the execution of the automatic control application is
not restricted, as it is the same type of runtime environment they are deployed
to later in the field. Different scenarios, such as full simulation, hybrid simula-
tion, inclusion of external simulation tools, and finally operation and testing,
support automatic control engineers during various phases of the automatic
control development.

Finally, test cases from three different domains are selected. Discrete ma-
nufacturing plants, robotics applications, and process technology are covered.
Each domain has unique requirments that have to be fulfilled by the propo-
sed engineering process. For the evaluation of the proposed approach all re-
levant elements of the workflow are implemented. The feasibility of an in-
tegrated engineering and simulation workflow is validated with the help of
these three test cases. Different models and interfaces (between the disciplines)
are maintained through the collaboration of experts from multiple disciplines.
Automatic control engineers gain access to the well-suited validation tool of
discrete event simulation with little additional specification effort by reusing
specification data for the automatic generation of simulation models. This
helps to reduce the unproductive, and thus costly, commissioning and ramp-
up time. With the establishment of comprehensive libraries of Automation
Components the engineering effort, across all involved disciplines, is signifi-
cantly reduced. Hence, the engineering cycles for the creation of production
systems or their adaptation to meet new requirements are shortened.



Kurzfassung

Produktionssysteme sind komplexe Strukturen. Der steigende Bedarf an indi-
vidualisierten Produkten und die gleichzeitige Reduktion der Lebenszyklen
von Konsumgütern erfordern Adaptionen der Fertigungssysteme. Deshalb
sind häufige Änderungen an den eingesetzen Produktionsanlagen zu erwar-
ten.

An ihrer Entstehung wirken unterschiedliche Disziplinen (z.B. Mecha-
nik, Elektrik, Pneumatik, Steuerungstechnik) mit. Immer mehr Funktionen,
die früher mechanisch oder elektromechanisch bereitgestellt wurden, werden
nun durch Steuerungssysteme übernommen. Daher steigt auch der Anteil
der Steuerungstechnik an den Gesamtkosten stetig. In häufig eingesetzen
Entwicklungsworkflows, die eine serielle Bearbeitung vorsehen, ist der steue-
rungstechnische Entwurf der letzte Entwicklungsschritt vor der Inbetriebnah-
me. Daher lastet hoher Druck auf den Entwicklerinnen und Entwicklern der
Steuerungssysteme, sowohl in Bezug auf Funktionalität, als auch bezüglich
Kosten und Inbetriebnahmetermin. Modell-basierte Entwicklung ist ein viel-
versprechender Ansatz, um eine kooperative Entwicklung aller involvierten
Disziplinen zu ermöglichen.

Das Ziel dieser Arbeit ist es, einen neuen, multi-disziplinären Ansatz für
die Spezifikation, Entwicklung und Validierung von Produktionsanlagen zu
entwickeln. Die Infrastruktur zur Modellierung, angelehnt an die Model Dri-
ven Architekture (MDA), ist der zentrale Punkt des vorgeschlagenen Ansat-
zes. Eine Reihe von Modellen, die jeweils unabhängig voneinander Platz für
unterschiedliche Aspekte aus den verschiedenen Domänen bieten, wird spezi-
fiziert. Zur Erhöhung der Wiederverwendbarkeit und zur Vereinfachung der
Spezifikation und Implementierung wurden funktionelle Module, sogenann-
te Automationskomponenten (Automation Components), eingeführt. Diese sind
die Bausteine für den Aufbau von automatisierten Produktionssystemen.

Der vorgeschlagene Entwurfsprozess zielt auf eine konzentrierte, simul-
tane Systemspezifikation aller beteiligten Disziplinen ab. Derzeit verwen-
dete Entwurfswerkzeuge (z.B. CAD Programme, Steuerungsentwicklungs-
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umgebungen) sollen integriert werden und Modell-Transformationen sollen
zur automatischen Extraktion von Entwurfsdaten genutzt werden Die frü-
he Verfügbarkeit umfassender Spezifikationsdaten ermöglicht eine weitge-
hend parallelisierte Implementierung in allen Disziplinen (z.B. mechanische
Konstruktion, Steuerungsentwicklung). Dadurch kann eine Reduktion der
Entwicklungs- und Implementierungszeit erreicht werden. Auch für spätere
Rekonfigurations-Tätigkeiten ist es wichtig, die Spezifikation und die tatsäch-
liche Anlagenkonfiguration synchron zu halten. Die hierarchische Aggrega-
tion der Automationskomponenten mit ihren klar definierten Schnittstellen
und gekapseltem Verhalten unterstützt diese Aufgabe, da Änderungen rein
lokal beschränkt sind.

Die direkte Einbeziehung der Verhaltenssimulation der Anlage in den
Spezifizierungs- und Entwicklungsprozess von Produktionsanlagen ist eine
Innovation. Dies erlaubt die Simulationsmodelle der automatisierten Anlagen
synchron mit den tatsächlichen (oder geplanten) Anlagenkonfiguration zu
halten. Die Implementierung des Steuerungssystems kann bereits ohne die
physische Verfügbarkeit der projektierten Anlage begonnen werden.

Das vorgeschlagene Simulations-Framework basiert auf der IEC 61499-
konformen Laufzeitumgebung FORTE. Durch ihre ereignis-basierte Ausfüh-
rungssemantik ist sie für diskrete Ereignissimulation geeignet. Auch die mo-
dulare Aggregation von Funktionalitäten, auf Basis von Funktionsbausteinen,
erleichtert die Modellierung von modularen Anlagen und Komponenten.
Steuerungsanwendungen und die Anlagensimulation wird auf dem selben
Steuerungssystem (eine oder mehrere Steuerungen) ausgeführt. Dies erlaubt
einerseits eine einfache Kopplung von Simulation und Steuerungsanwen-
dung ohne Kommunikationsoverhead. Andererseits wird die Ausführung der
Steuerungsanwendung nicht beschränkt, da das selbe Steuerungssystem (in-
kl. Laufzeitsystem) wie im Betrieb verwendet wird. Verschiedene Szenarien,
von der vollständigen Simulation, über die hybride Simulation, der Einbe-
ziehung externer Simulationsanwendungen bis hin zu Tests und operativem
Betrieb, unterstützen den Steuerungstechniker in den verschiedenen Phasen
der Entwicklung von Steuerungsanwendungen.

Zur Validierung des vorgestellten Ansatzes werden Testfälle aus drei
verschiedenen Bereichen vorgestellt. Diskrete Fertigungsanlagen, Robotik-
Anwendungen und Prozesstechnik werden abgedeckt. Jede Domäne hat
eigene Anforderungen, die vom vorgestellten Entwicklungsprozess erfüllt
werden müssen. Für die Evaluierung des vorgeschlagenen Ansatzes werden
alle relevanten Elemente des Workflows implementiert. Die Machbarkeit ei-
nes integrierten Entwurfs- und Simulationsprozesses wird anhand dieser drei
Testfälle gezeigt. Die Modellierungsinfrastruktur unterstützt eine klare Auf-
gabenteilung. Verschiedene Modelle und Schnittstellen (zwischen den Diszi-
plinen) werden kooperativ von Expertinnen und Experten aus unterschied-
lichen Disziplinen spezifiziert. Das gut geeignete Validierungswerkzeug der
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diskreten Ereignissimulation wird durch die Wiederverwendung von Spe-
zifikationsdaten zur automatischen Erstellung der Simulationsmodelle ohne
großen Zusatzaufwand erschlossen. Dies ermöglicht unproduktive, und daher
kostenintensive, Inbetriebnahmephasen zu verkürzen. Mit dem Aufbau von
umfangreichen Bibliotheken von Automationskomponenten kann der Ent-
wicklungsaufwand aller involvierten Disziplinen signifikant reduziert wer-
den. Daher können Entwurfszyklen für den Aufbau neuer sowie den Umbau
bestehender Produktionssysteme verkürzt werden.
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CHAPTER 1

Introduction

Manufacturing industries are facing many challenges today. On the one hand,
labour-intensive production is moved to emerging markets. On the other
hand, customer demands and requirements with respect to quantity—mass-
customization down to lot-size one production—, quality, and delivery time
are hard to fulfil with currently deployed rigid plant structures. To cope with
this situation European industries are forced to install and operate flexible
and cost effective production systems. Such flexible manufacturing systems
are able to adapt to these future requirements [1]. Adaptivity of production
systems requires changeability of the mechanical structures of the plant [2].
However, changes to the mechanical setup also infer changes of the electrical
setup and the automatic control software application [3].

The automation and control of production plants take a huge amount of de-
velopment time and costs. In the automotive sector these software and system
related tasks currently make up about 55% of the total costs [4]. These costs are
predicted to rise even higher. Especially in the industrial sector, the reusability
of software is a crucial, yet not well addressed point. Often previously used
automation software is used as a template, which is adapted to the new plant.
The monolithic structure and the absence of a systematic approach, however,
often lead to sub-optimal automatic control systems. Furthermore, system in-
tegrators and plant operators are often forced to use engineering tools from
multiple device vendors, since many of today’s production plants consist of
multi-vendor devices. Each plant or system can be seen as a prototype.

A component and model based approach will result in a higher level
of quality. Experts from multiple domains (e.g. electrical, mechanical, and
control engineers) are involved in the development process. In the currently
used development approaches friction losses between the domains due to
unclear or unspecified interfaces impose a high risk to keep schedules and
budgets. The composition of a multi-domain development team (and tool),
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already starting in the specification phase, imposes a higher effort at the begin-
ning, but bears the chance to reduce the overall project time and to implement
a solution that is closer to a global optimum [5]. Diverse methodologies and
implementation technologies have to be integrated in order to enable an effi-
cient engineering cycle of industrial automation and control systems.

The overall efficiency can also be increased by reducing the time for com-
missioning and ramp up. This also helps to reduce down-times during re-
configuration tasks. Simulation is well accepted as validation methodology in
multiple engineering disciplines. However, currently there exist no simulation
frameworks that allow to simulate the manufacturing system including the
automatic control system. Hence, a simulation framework on the basis of an
industrial automatic control environment is presented that allows to validate
both the behaviour of the plant as well as the automatic control application.

1.1 Background

“The market increasingly demands products that are customised, yet avai-
lable with short delivery times. Urgent attention to knowledge enginee-
ring is necessary to decrease time-to-market and cut delivery delays. Fur-
thermore, ‘rapid manufacturing’ technologies will be needed to manufac-
ture customised products.” Manufuture High-Level Group [1]

The production paradigm in western industrial countries is currently chan-
ging. Plants for mass production of goods are to be replaced by plants which
allow mass customization or even the production with lot size one. The pro-
duced goods as well as the production process have to fulfil requirements
demanded by the customers. The strategic research agenda of the Manufu-
ture High-Level Group [1] states that manufacturing systems have to become
“adaptive, digital, networked, and knowledge based” in order to cope with the im-
posed requirements (e.g. small lot sizes, short lead time, reliable production
systems).

1.1.1 Manufacturing Systems Concepts

Many concepts for manufacturing systems have been developed and deployed
since the beginning of industrial production [6, 7, 8]. The central parts of ma-
nufacturing systems are the production machines, including tools and fixtures.
But also material handling and human workers (operating and managing the
system) are important factors in manufacturing systems [6]. In modern manu-
facturing systems computer based control and management systems are de-
ployed to support the human operators [9].
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Splitting the production process into (small) tasks is a principal paradigm
of manufacturing systems [7, 10]. Efficiency of the production process can
be significantly increased, because single workstations can be more speciali-
zed on performing these tasks. Semi-finished goods have to be transferred
between the involved workstations. In the early days of manufacturing the
workstations as well as the material handling have been performed by human
workers [6].

The first step towards automated manufacturing systems has been the in-
troduction of automated material handling systems, for example conveyor
belts. The manual assembly line, consisting of automated material handling
systems and workstations, operated by human workers, brought a boost in
efficiency [6]. These highly specialised manufacturing systems enabled the ef-
ficient, high-volume production of identical goods. Henry Ford’s well known
quotation is a good indicator on the rigid structure of such dedicated manu-
facturing systems:

“Any customer can have a car painted any colour that he wants so long
as it is black.” Henry Ford [11]

As next step also the workstations have been automated. At the cost of
flexibility the throughput of the machines has been further increased. These
automated workstations, also called machine cells, have been optimized for
the goods that shall be produced. They are the central elements of automated,
dedicated manufacturing systems. If the high-volume production of goods, al-
ready known at the design time of the production system, is the aim, dedicated
manufacturing systems are and will remain the most efficient choice.

The Flexible Manufacturing System (FMS) concept—introduced in the
1960s—was the first manufacturing system to integrate information techno-
logy [6]. Based on the Computer Numerical Control (CNC), it was the first
manufacturing system which could cope with the challenges of product va-
riety. It allows the machining of different products in medium volume on the
same system. Highly sophisticated machine cells and a material handling sys-
tem, which allows the transport of goods—in most cases from every machine
cell to any other machine cell—provide this flexibility [6]. The hardware in
such FMS is fixed. Also the hardware-related software (e.g. runtime envi-
ronments, firmware) is fixed. However, product-related software (e.g. CNC
programs) may be changed. Thus job scheduling can be modified and the
machining of new parts is enabled. An advantage of the fixed hardware is the
fast changeover, since only software has to be replaced. But it is also obvious
that the mechanical system has to provide more functions than needed for
the products targeted during the commissioning. Otherwise usage scenarios
in which unpredicted products have to be machined would not be possible.
This strives for complex machines, comprising of expensive hardware and
control systems. Due to the fixed setup of the FMS it is not possible to replace
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or update it only partly. The complexity of the machines requires complex
programs, which are hard to maintain. Therefore the deployed FMS are “quite
unreliable” [3].

In the 1990s the trend to mass customization urged the need for new manu-
facturing systems. The Reconfigureable Manufacturing System approach aims
at the flexibility of the production system. If new functionalities or process
technologies are needed for the machining of the new product, basic process
modules can be added, removed or upgraded [3]. These modules comprise
hardware and software. With intrinsic continuous change in the Reconfigu-
reable Manufacturing System concept, the system is “open ended” [3]. Thus the
current setup of the system is well suited for the currently produced goods,
which it has been adapted for.

Another component based approach is the Holonic Manufacturing System
(HMS) concept [12, 13]. The HMS was developed within the Intelligent Ma-
nufacturing System (IMS)1 program [14]. The main focus of the HMS concept
lies on a new control architecture that is based on a modern software archi-
tecture. Modularisation and component based design breaks with the pre-
dominant monolithic software solutions for industrial automation [13]. The
modularity of the software increases the maintainability. Clearly defined in-
terfaces allow the modification or replacement of modules without affecting
the other modules. To increase reusability the software modules are chosen to
represent the physical components that comprise the production system [14].
The unity of hardware and software fostered the use of Distributed Control
Systems (DCSs). Automatic control functionalities are executed collaborati-
vely by multiple communicating entities. Such DCSs that allow to integrate
automatic control functionality directly into the physical components, build
the basis for the holonic architecture. Proponents of the HMS concept were
also involved in the development of the international standard on distributed
control—IEC 61499 Function Blocks (IEC 61499) [13]. On top of this DCS a
self-organising, service oriented layer is used. For this purpose Multi-Agent
Systems (MASs), based on standards introduced by the Foundation for Intel-
ligent Physical Agents (FIPA)2, are proposed [14]. Software Agents—the buil-
ding blocks of MAS—are autonomous, interacting and flexible software com-
ponents [15]. Multiple research groups are currently investigating the applica-
bility of the proposed multi-layer approach with MAS. Merdan et al. [16, 17]
provide evidence for the feasibility of the HMS approach for intra-logistic sys-
tems. Leitao et al. [18] show the applicability of MAS based control systems
for manufacturing machines. Colombo et al. [19] provide a transition path to

1For more information on the IMS research and development program see
http://www.ims.org (last access: 04.09.2012).

2FIPA was founded in 1996 as an independent organisation. Since 2005 FIPA is part of the
IEEE Computer society and one of its standardisation committees. For more information on
FIPA or its standards visit http://www.fipa.org (last access: 04.09.2012).
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Figure 1.1: Selection criteria for manufacturing systems concepts.

stepwise switch the control of manufacturing machines and other components
in manufacturing sites (e.g. intra-logistic components) to a MAS based control.
Furthermore, cooperating software agents are also able to plan the reconfigu-
ration of the plant itself [12, 20].

Both the DCS as well as the MAS concept integrate a component based
approach. Thus it is possible to replace or remove modules, which are not
necessary or apt for a product. Whenever necessary the open control archi-
tecture also allows integrating new machines in the system. But not only the
production machines have to be flexible, but also the material handling sys-
tem, which is connecting the single manufacturing entities. A flexible material
handling system can highly increase the productivity in case of disturbances or
break-down of machine or material handling components [16, 17]. Thus there
are many possibilities to design or optimize a manufacturing system, since all
entities have to be taken into consideration. Figure 1.1 provides a classifica-
tion of the presented manufacturing systems concepts regarding the two most
influencing criteria: production volume and product variants. Those two cri-
teria contradict each other and cannot be met at the same time. High volume
production requires well optimised plants. For example the masses that have
to be moved should be low to allow higher acceleration rates. Specialiced, op-
timised tools can fulfill such a requirement. On the other hand high number
of different products (or product variants) requires adaptations of the plant.
Hence, the average production rate is either reduced by reconfiguration tasks
(i.e. unproductive down-times) or general purpose tools, which restrict for
example the acceleration rate due to higher moved masses.
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1.1.2 Manufacturing Systems Design

The products are the central elements in production system design. Starting
from the product design, the production process is split into single manufac-
turing and assembly operations (e.g. turing, milling, glueing, moving) [21].
These tasks are then put into relation—some tasks can be performed indepen-
dently from each other, others are dependent and have to be performed conse-
cutively. Product variants also have to be considered, since the manufacturing
process has to be adapted. Some tasks will have to be replaced or modified.
Therefore, the overall system has to be flexible in order to handle such product
variation [21].

The identified manufacturing and assembly operations form the basis
for the selection of production machines and material handling components.
Other criteria include the expected number of products, number of variants, or
quality. To set up an efficient manufacturing system layout, some a priori esti-
mations are possible for example with line balancing algorithms [22, 23]. These
algorithms allow to calculate the average load of the included modules and to
identify bottlenecks in the planned layout [6]. Furthermore the throughput of
the manufacturing system can be determined. Additionally economic criteria
have to be considered during the design of the manufacturing systems. The
selection of the modules and the layout of the manufacturing system are not
trivial tasks, since a wide range of different criteria has to be considered [24].
Better suited (e.g. higher efficiency, faster change-over times) production sys-
tem structures could be provided by integrating sophisticated selection and
planning algorithms in software tools (e.g. manufacturing support systems)
[6, 25]. Such tools are only able to operate efficiently, and provide good results,
if all existing data (explicitly including requirements) are available during the
design process. However, much data do still only exist in domain-specific,
segregated tools.

Several approaches try to close this gap. The Computer Integrated Ma-
nufacturing (CIM) approach aims at the integration of various tools, which
cover distinct areas of the manufacturing process [26]: Production Planning
and Control, Computer Aided Design, Computer Aided Planning, Computer
Aided Manufacturing, Computer Aided Quality Assurance, and Maintenance.
This high-level approach is a first integration step. Nevertheless, even within
the various areas an integration is necessary. The integration of engineering
data is a goal of many engineers and managers in the manufacturing environ-
ment. Popular concepts like the Product Lifecycle Management (PLM) and the
“digital factory” approach are also based on data and tool integration [27, 28].
PLM tool chains are available from various vendors for special domains (e.g.
automotive, aeronautics). However, the integration of software tools from dif-
ferent vendors—the usual situation in industrial environments—is hard to ac-
complish.
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Instead of the integration of different engineering tools, the AutomationML
initiative [29] is focusing on a data exchange format based on XML (Extensible
Markup Language). The topology of the plant is modelled in the open data for-
mat CAEX (Computer Aided Engineering Exchange), which is standardized in
IEC 62424 [30]. The automation logic of the components, described in Auto-
mationML, is provided in the PLCopen XML exchange format. Geometric and
kinematic information on the plant components are also within the scope of
AutomationML. These data are specified in the COLLADA (COLLAborative
Design Activity) data format. Additional aspects of plant components can be
included easily. Links between the aspects are provided in the central CAEX-
model, which is seen as “glue for seamless automation engineering” by the
developers of AutomationML [31]. However, the loose coupling of the data
renders semantic correct data exchange impossible without additional guide-
lines or meta-models.

1.2 Motivation

Product and production system design are separated processes, which in-
fluence each other. The missing integration of the processes leads to a lack of
immediate feedback for design changes in either of the processes. Therefore
important characteristics, such as lead-time, costs or producibility, can only be
estimated or calculated after another design iteration. Such design iterations
can be time consuming, as non-automated steps have to be repeated as well.

Even more, the implementation processes lack tool-integration. Currently
production system design and production system implementation are often
linked by requirements and specification documents in natural language. Na-
tural language provides a high level of expressiveness, but confusion can be
generated by different interpretations. Interfaces between the experts from
different disciplines based on such documents are error prone and inefficient.
The missing tool and data integration leads to rigid engineering workflows.
The different disciplines work on the implementation of the manufacturing
system in consecutive order in order to reduce friction losses. Additional ite-
rations are expensive and take a long time in such an engineering workflow.
Changes in the mechanical or electrical design (e.g. removing sensors) can
cause high effort for the implementation of the control software.

In software engineering the concurrent development process highly increa-
sed quality of the product while reducing the development time. The enablers
for this new development process are common planning, source code mana-
gement systems, and software tests for validation [32, 33].

The concurrent design process for production systems design and imple-
mentation is necessary to reduce the design and implementation time (inclu-
ding ramp up) and reach more efficient production systems [5]. As a first step



1.2. Motivation 8

of integration of the disciplines a transition from domain specific change ma-
nagement to a system-assisted cross-discipline change management is neces-
sary [34]. Changes in one domain would be immediately provided to experts
from all other involved domains.

The data-integration of the “digital factory” and CIM concepts would solve
these problems. However, existing implementations of these approaches only
partly cover the engineering workflow. Information on the products which
shall be produced (variants, amount, schedule) are provided by enterprise re-
source planning as well as production planning and control systems. These
software tools are only loosely coupled or integrated [35]. Unidirectional in-
formation transfer prohibits timely feedback to customers or sales personnel.

Experts from multiple domains are involved in the design, implementa-
tion and commissioning of plants. An integrating workflow helps to overcome
existing hinders and to improve the quality of the provided solution. The com-
munication of experts from multiple disciplines, involved in the implementa-
tion and commissioning of plants, is facilitated. Furthermore, the inclusion of
simulation in the design process increases the efficiency during the develop-
ment of industrial automatic control applications:

• Saving commissioning time: The automatic control engineer is able to
start the implementation and the commissioning of the control software
earlier. Thus the need for expensive on-site time can be reduced.

• More reliable control application: The simulation of the plant behaviour
allows earlier implementation and thorough testing of the automatic
control application.

• Validation of fault recovery procedures: The simulation of the plant be-
haviour enables the injection of faults in the nominal behaviour. Thus the
reaction of the automatic control system and its fault recovery strategy
can be validated. Injuries and damages to the plant or the environment
can be avoided and down times are reduced.

• Reuse of already existing models: In the development cycle of complex
plants, often simulation is used to validate the mechanical design or che-
mical process. The integration of these models in the validation of the
automatic control application will reduce the modelling effort and in-
crease the quality of the simulation results.

Currently, tests and functional validation of plants are conducted during
commissioning and ramp-up. Simulation-supported validation allows to
identify problems earlier and save precious commissioning time. The integra-
tion of simulation in an model-based engineering workflow is promissing to
improve the overall engineering efficiency.
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1.3 Goal

The goal of this thesis is to improve the development and change of production
systems. The proposed engineering workflow takes into account the multi-
disciplinarity of the engineering process. Experts of all involved disciplines
shall maintain a common model. This model acts as specification, which is
accurately representing the current (or currently planned) automated system.
Similar as in modern software engineering approaches this common model
shall also be the source for code generation. Re-use of previously implemen-
ted, tested, and deployed units in a systematic, component-oriented approach
improves the engineering efficiency. The direct integration of simulation in
this engineering workflow facilitates the parallelization of the implementation
tasks of the different disciplines. The proposed simulation framework for the
design of industrial automatic control applications uses models of the control-
led plants that are provided in the common engineering model. Hence, the va-
lidation by simulation is available during all phases of design, implementation
and commissioning of automatic control applications. The control engineers
shall be enabled to validate early the structure of the automatic control system
as well as the automatic control application. To raise the trust in the results
of the simulation efforts the validated control application shall be deployable
without changes.

1.4 Guideline through the work

The remainder of this thesis is structured as follows.
Chapter 2 elaborates relevant concepts and approaches in modern soft-

ware engineering. Languages in industrial automatic control environments
and their specialities compared to general purpose programming languages
are investigated. Furthermore, the application of simulation in manufacturing
systems design is analysed and a detailed view on simulation techniques is
presented. The deduction of 5 research questions concludes this chapter.

The proposed multi-disciplinary engineering approach is presented in
Chapter 3. Automation Components are introduced as building blocks for
automated systems, which can be put together hierarchically. The models,
which act as the backbone of the multi-disciplinary workflow, are elaborated
in detail. Furthermore, the integration of existing tools along the workflow is
presented.

Chapter 4 introduces the simulation framework, which can be used for the
validation of automatic control applications. Different scenarios, from pure si-
mulation to deployment and testing are presented. A methodology for the spe-
cification of plant behaviour in the component oriented engineering workflow
is investigated. The idea to use event-based automatic control environments,
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which are compliant to IEC 61499, is analysed. Special focus is put on the
coupling of simulation and automatic control. The proposed Instrumentation-
and Control Point concept as well as well-structured automatic control appli-
cations facilitate the engineering and transition from simulation to operation.

The implementation of the proposed modelling infrastructure is presented
in Chapter 5. The integration of external specification tools, and the implemen-
tation of models is shown. Furthermore, implementation details on the code
generation facilities for the automated creation of automatic control applica-
tion and plant simulation applications by means of model transformation are
provided. Also the simulation execution system, which is based on an event-
based runtime environment is presented, including the integration of external
simulation tools and the implementation of special simulation functionalities.
The validation and evaluation of the proposed approach by the means of three
test cases from different domains conclude this chapter.

Finally, Chapter 6 concludes this thesis and gives answers to the research
questions on the successful evaluation of the proposed engineering and si-
mulation approach. Future work as well as potential new applications of the
proposed approach are provided.



CHAPTER 2

State of the Art

2.1 Software Design

Software has been taking over more and more functionality in industrial au-
tomation during the last decades. However, due to the close relationship to
the automatic controllers, such as Programmable Logic Controller (PLC), and
the controlled hardware, the methodology for the development of control ap-
plications is still at a low abstraction level. On the other hand, methodologies
for pure software products (e.g. business software) have greatly improved ef-
ficiency. Reuse of previously developed functionalities and a higher software
quality have been reached [36, 37].

2.1.1 Model Based Design

Models are used for a long time in most engineering disciplines (e.g. aerody-
namics). They represent entities of the real world and can be used as a basis
for a common design process and for validation purposes.

Also in computer science and software engineering models are used in the
design process. Model Driven Software Development (MDSD) is a widely
used term for the application of models in the design process of software pro-
ducts. As many artefacts of a software system as possible shall be generated
automatically from formal models [38, 39].

Formal Model Different kinds of models are used in software projects for
various purposes. Some sketches or Unified Modeling Language (UML) dia-
grams on paper may represent design aspects. However, not all models are
suitable as basis for MDSD, due to the lack of an appropriate formal basis [39].
A formal model has a defined grammar, which includes its structure (syntax)

11
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as well as its meaning (semantic). Thus a formal model is able to describe a
distinct aspect of the software in a complete and unambiguous manner. All
stakeholders of a software development project shall be able to understand
the model. These requirements imply that a single model does not have to and
will not be able to describe the whole system. But it has to be clear, what is
included in the model [39].

Artefacts The most important result of MDSD is executable software. There-
fore, artefacts that are derived from the formal model include source code of a
programming language (e. g., C++, Java, C#). But also files and data required
at the runtime of the software can be generated, such as configuration files.
The third group of artefacts support the development process itself. Software
tests and documentation, for example, are part of this group [38].

Automatic Transformation The step from the formal models to executable
software is automated to a large extend in MDSD [40]. The need for manual
programming (i.e. transformation from specification to code) is replaced by a
model transformation infrastructure. Model transformation rules describe the
interdependencies of unambiguously defined entities in the formal source mo-
del and entities (e.g. code fragments) in the target environment. Hence, later
changes and refinements in the model can be easily, and repeatedly transfor-
med into executable code [38, 39].

MDSD Approaches

Model-Integrated Computing Model-Integrated Computing (MIC) is a de-
velopment approach that advocates the systematic use of Domain Specific
Languages (DSLs) throughout the system development process and lifecycle
[41, 42, 43]. The field of application ranges from small-scale real-time embed-
ded systems to large-scale enterprise applications. In the MIC paradigm, ap-
plication developers model an integrated view of the entire application, in-
cluding the interdependencies of its components (software and hardware).
Models are placed in the centre for the entire life-cycle of computing sys-
tems, including specification, design, development, verification, integration,
and maintenance. Using MIC technology one can capture the requirements,
actual architecture, and the environment of a computing system, generally in
the form of high-level models. Validation and verification of functional as well
as non-functional requirements is of high importance in this approach [42]

Generative Programming Generative Programming is a software enginee-
ring paradigm that has the goal to automatically build optimized software
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products [39]. For supported platforms, elementary, reusable implementa-
tion components exist. They provide each specific functionalities, with a mini-
mum level of redundancy. Furthermore, these components can be combined in
many different ways to provide the specified functionality. The (static) gene-
rating entity has detailed knowledge on the pre-existing, elementary software
components of a platform. Thus it is able to decide, if the requested configu-
ration can be produced for the platform, and if so, to provide the optimized
product [39]. C++-Template-Metaprogramming is implementing the Genera-
tive Programming paradigm [44, 45].

Model-Driven Architecture Model-Driven Architecture (MDA) is an open
standard which is provided and maintained by the Object Management Group
(OMG) [46, 47]. The main goals of MDA are interoperability, portability and
reusability through architectural separation of concerns [39]. For that reason
MDA introduces (at least three) different models: Computation Independent
Model (CIM), Platform Independent Model (PIM), and Platform Specific Mo-
del (PSM). The CIM captures system requirements as well as the situation in
which the system is expected to be used. Domain experts shall be involved in
the creation of this model, which is independent from technical feasibility of a
later system implementation [38, 48]. Requirements for the system are brought
to a technical level in the PIM. Due to the technical (platform independent)
feasibility further requirements are added to the previously specified require-
ments (i.e. provided by the CIM). The PIM describes the system, but does not
show any details about its use of a platform [48]. The PSM captures all tech-
nical details of the system for a specific platform. The PSM is gained from the
PIM by transformation. Additional information about the specific platform is
added during the transformation process. The MDA is open about the source
of these additional data. It might come from Platform Models (PMs) or trans-
formation patterns [48]. The transformation process within MDA can be done
manually, computer assisted or fully automatically. The main idea of MDA is
to provide reusable, platform independent specifications of systems in form of
models. MDA is tightly linked with other OMG standards like UML (Unified
Modeling Language) or CORBA (Common Object Request Broker Architec-
ture) [49].

Modelling

The different MDSD approaches use models with diverse scopes. These mo-
dels have to represent the captured concepts unambiguously. General purpose
languages are capable to do so, but a more efficient approach is to use specia-
lized modelling languages. These modelling languages have been developed
for the description of specific aspects, setting the contained information in a
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special context. Therefore modelling languages are able to reach a high level
of expressiveness [38].

“We do not believe that a single modeling language is suitable for all em-
bedded systems. Rather, embedded systems should be modeled using Do-
main Specific Modeling Languages (DSMLs) that are tailored to the needs
of the particular domain.” Karsai et al. [42]

Each language, which can be formally described and is accessible to gene-
rators, is a modelling language [38]. Graphical languages, textual languages
as well as tables are apt, as long as the syntax and semantics of the content are
following rules.

Modelling languages are usually defined in meta-models.

Meta-Modelling

A meta-model has the same relation to a model as the real world to this specific
model. Therefore a meta-model is a higher level model, describing another
model. The meta-model includes information about the structure, relations
and limitations of a specific model. The abstract syntax as well as the static
semantic of a modelling language has to be defined in the meta-model [38].

Meta-modelling techniques are an important building block of MDSD. The
meta-modelling infrastructure is the enabler of a formalisation of modelling.
Models which are clearly defined on the basis of a detailed meta-model can
be automatically interpreted and evaluated. Fields of application in MDSD
include [38]:

• definition of modelling languages,

• validation of models,

• model transformation,

• code generation, and

• software tool integration.

Domain Specific Languages

Domain specific modelling is the abstraction of facts of a concrete problem
space, using a modelling language apt for this specific domain [38]. A DSL
is a modelling, programming or specification language which is built for and
restricted to a particular problem domain [50]. This focus as well as an ap-
propriate notation allows the efficient abstraction of domain specific concepts.
“The limited expressiveness of DSLs makes it harder to say wrong things and easier
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to see you’ve made an error.” [50]. The formal nature of DSLs allows domain
experts as well as machines to understand the captured content of the model
[38]. Thus DSLs facilitate communication between domain experts and other
project members, who are involved in the system development process. Ho-
wever, the focus of a DSL to a certain domain or even problem class within a
domain (with the limited expressiveness) does not allow to describe concepts
of other domains.

Model Transformation

Model transformation is a process that creates something else (e.g. model,
code, text) from a formal model [39]. Therefore model transformation is an
important element in MDSD as it facilitates the linking of different models.
For an automated and reproducible model transformation a formal definition
of transformation rules is necessary [38]. There exist two different kinds of
model transformation:

• Model-to-Code (M2C) / Model-to-Text (M2T) transformation: M2C
transformation generates source code out of a formal model. There-
fore it is also called code generation. This kind of transformation is
necessary for the last step from models to platform dependent artefacts
and is therefore a core element in all MDSD approaches.

• Model-to-Model (M2M) transformation: M2M transformations trans-
form one or more formal source models into a target model. For the for-
mal definition of the transformation rules meta-models of all involved
models are required. The models may be based on the same meta-model
or different meta-models.

2.1.2 Component-Based Development

Component-Based Development (CBD), also known as Component-Based
Software Engineering (CBSE) or Software Componentry, is another branch
of the software engineering discipline. CBD emphasises the separation of
concerns by decomposing engineered systems into functional or logical soft-
ware components with well-defined interfaces [51].

Components are independent units that are not sharing internal states or
data. Only explicit communication using the interfaces to exchange messages
and data is allowed. Therefore components can easily operate with other com-
ponents or applications [51]. Components are system elements that provide
pre-defined services. They can be deployed independently and are subject to
composition by third parties [51]. Furthermore, components build entities of
deployment, which cannot be deployed partially [51].
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Interfaces are the only possibility of components to exchange data and mes-
sages with their environment. An interface is a set of operations or services.
Clients can invoke these operations, whose semantics are specified [51]. The
interface specifications act as contracts. Providers and clients both have to ful-
fil the interface specification to enable interoperability without knowledge of
the implementation of the other component. This aspect is important espe-
cially for the reuse of components and the composition by third parties.

A e-commerce system can be used as example for such a composed sys-
tem [52, 53]. Different aspects and services (e.g. order system, shopping cart,
payment process) are provided by different components [53]. Different com-
ponents that provide equivalent services (e.g. payment service) may be used
or exchanged as long as they provice compatible interfaces [52]. They may
support different payment methods (e.g. credit cards, direct bank transfer),
but provide the same service to the e-commerce system that uses them.

Components and their interfaces are abstract parts for the modelling of
complex systems, hiding concrete implementations. The description of these
components can be separated in into component and interface models [54].
In contrast to the abstract component and the interfaces, the implementations
of functionality and interfaces may use states. States are energy or informa-
tion storages that resemble input and output behaviour. The states can apply
constraints and interdependencies of input and output ports, dependent on
previous operations and communication with the environment [54].

2.2 Languages for Industrial Automation

In each domain special methodologies exist to specify and describe the ap-
plication. In industrial automation the desired behaviour was implemented
with pure mechanical (e.g. cam-based timing) or electro-mechanical (e.g. re-
lay technology) solutions for a long period. Since the invention of the PLC
around 1970 [6] control software has gained its place in industrial automation.
Most of today’s industrial automation solutions incorporate PLCs. Other solu-
tions build upon Programmable Automation Controllers (PACs) or Industrial
PCs (IPCs) running a softPLC runtime environment.

Programming tools for PLCs are widely used and accepted in the domain
of industrial automation. These engineering tools have a status that is equiva-
lent to DSLs in the MDSD concept previously introduced in Section 2.1.1.

2.2.1 Programming Languages in IEC 61131-3

In the domain of industrial automation the prevalent languages are defined
in the IEC 61131-3 standard. This standard was first adopted in 1993 [55] and
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representatives from all major vendors of PLCs have been involved in the stan-
dardisation process. One of the main goals of the standard was to harmonize
the diverging languages and guide their further development [56].

The selection and standardisation of the 5 languages for industrial auto-
mation was a compromise. Both textual languages (Instruction List (IL) and
Structured Text (ST)) as well as graphical languages (Ladder Diagram (LD),
Function Block Diagram (FBD), and Sequential Function Chart (SFC)) are in-
cluded in IEC 61131-3 [55].

Instruction List IL is an assembler-like programming language [6]. An exe-
cutable command (instruction) is described within a single line [57]. An ins-
truction consists of the following elements [55]:

• Label (optional): jump marker in order to reach the instruction

• Operator/Function: IL operator (e.g. loading or storing variable, mas-
king, jumping) with optional modifier or function (e.g. calculations)

• Operands: constants or variables for the operator or input parameters
for the function (none, one or several)

• Comment (optional)

Listing 2.1: Addition of two Integer values in IL syntax.
LabelAdd : (∗ Label ∗ )
LD ValueA (∗ Load f i r s t value i n t o accumulator ∗ )
ADD ValueB (∗ Add second value to value in accumulator ∗ )
ST Resul t (∗ Store value i n t o Var iab le Resul t ∗ )

Listing 2.1 shows an IL programme for the addition of two integer values.
IL can usually be directly executed by the PLC [6]. Hence, it is often used as
intermediate language to execute programs written in the other languages [57].

Structured Text ST is a high-level programming language for PLCs. Its syn-
tax is comparable to PASCAL [57]. Hence, more complex statements can be
expressed efficiently (compared to IL). The same functionality (addition of two
integer values) as in Listing 2.1 is provided in ST Syntax in Listing 2.2.

Listing 2.2: Addition of two Integer values in ST syntax.
Resul t := ValueA + ValueB ;
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Non-Boolean values (e.g. integer, floating point) can be handled (easier)
with ST [6]. Furthermore, ST allows a clear construction of programs [57].
Hence, a higher level of reuse of functionality is possible.

Like general purpose high-level programming languages ST also provides
control structures (e.g. loops and selection) [55, 57].

Programs written in ST cannot be executed directly. They have to be trans-
lated into machine code. There are little to no possibilities to influence the com-
piler in the translation task. Therefore, the same doubts in the efficiency of the
compiled programs exist for ST like for all high-level programming languages
[57]. Nevertheless, this disadvantage usually only affects special applications
in industrial automation.

Ladder Diagram The graphical LD language stems from the relay techno-
logy and its wiring diagrams [56]. Thus the language is convenient for the
shop floor personnel, which maintains the plant and is familiar with wiring
diagrams [6]. Pure LD language allows the creation of Boolean applications
and is sometimes also called Ladder Logic Diagram. Networks connect the
power rails, on the left and right of the LD [55]. Boolean input variables (e.g.
switches, relay contacts) are represented by Contacts [57]. Results are stored in
Coils, which represent for example motors or solenoids which are actuated [6].

Additional functionality (e.g. timers, counters) can be integrated by using
functions or even function blocks within LDs [55]. In this programming
method it is hardly possible to clearly structure the control application [56].
Hence, extending or reusing existing applications is difficult, as the access to
input and output variables is not limited to application parts [56].

Function Block Diagram The FBD language has its origins in the field of
signal processing. Handling integer and floating point values is important in
this field. In the meantime this graphical language has become a universally
usable language in the domain of industrial automation [57].

A Function Block (FB) is the basic building block in the FBD [55]. It en-
capsulates functionality (algorithm and data) in a reusable way [56]. This me-
thodology is an analogy to integrated circuits (ICs) in electronics design [56].
FBs provide a specified interface, where parameters and input variables are
provided to and output variables set from the FB. More complex functiona-
lity is reached by combining multiple FBs to a Function Block Network (FBN).
Outputs from one FB can be connected to the input of other FBs. The order
of execution of the FBs is evaluated by the engineering tool. Data dependen-
cies are used for the calculation. Feedback loops (i.e. circle dependencies) are
either solved with layout information (top-left to bottom-right) or by manual
intervention [57].
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Sequential Function Chart The SFC language is the third programming lan-
guage specified within IEC 61131-3. SFC has its roots in the Grafcet language
[58]. Grafcet was the first widespread specification language to describe au-
tomation systems by several states and transitions [57]. SFC allows to parti-
tion a complex program into smaller manageable units (steps) and transitions,
which are directly connected [55]. Each step has an associated set of actions,
which are executed as long as the step is active. Each transition has a transi-
tion condition, whose fulfilment ends the execution of the previous step. Thus
SFC graphically specifies the sequence of execution and even allows parallel
processing of these units [57].

The actions in an SFC program can be specified in any of the 5 languages
mentioned above; transitions conditions can only be specified by the other 4
languages (i.e. IL, ST, LD, and FBD) [55].

Several factors influence the selection of a specific language or a combination
of languages by the users: First, the education and knowledge of the program-
mers and existing applications within the company. Second, the application
domain and its specific requirements (e.g. sequencing). But there are also
regional preferences in the choice of programming languages [57]. German
programmers preferably use the textual languages IL and ST; SFC is the pre-
valent language in France; Asian and US users mainly use LD and SFC [57].
Also control system vendors differentiate in the support of the different lan-
guages. However, these choices are closely related to their “home” markets’
preferences.

2.2.2 IEC 61499 for Distributed Control Applications

Shortly after the adoption of the first edition of the IEC 61131-3 standard, the
same standardisation committee started to work on a standard for distribu-
ted control, the IEC 61499. To avoid time synchronisation issues in distributed
control programs (e.g. due to cyclic execution), a more general execution pa-
radigm, the event-driven execution, has been introduced. Hence, application
parts running on different control devices can be triggered by events that are
transmitted via a communication network [59]. But events may also be useful
for applications which run on a single device. Especially if circle dependen-
cies (i.e. feedback paths for data) are present in a programme, the execution
order of FBs cannot be unambiguously determined by the means of IEC 61131-
3 [57, 59]. Events allow the explicit specification of the control flow and the
execution order in a portable and consistent way [59].

For being able to visualize and grasp the events, an adopted FBD has been
introduced [57]. This is the only specified language for control applications.
Functionalities are encapsulated in FBs. The FBs feature event in- and outputs
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additionally to the data in- and outputs (like IEC 61131-3 conform FBs). To
ensure distributability global variables are prohibited in IEC 61499, as these
would require to synchronise them on multiple devices [59]. Data exchange
within control applications is only allowed via the specified interfaces of the
FBs. This increases the reusablity of the FBs, but also brings the FB-based
language closer to Object-Oriented Programming (OOP).

Functionalities provided by IEC 61499 compliant FBs can be more com-
plex as IEC 61131-3 compliant ones. FBs can contain multiple algorithms [59].
The algorithms may be specified in any language as this would be beyond
the scope of IEC 61499 [60]. However, often languages defined in IEC 61131-
3—especially ST—are used [57]. The Execution Control Chart (ECC) has been
introduced to specify their internal execution behaviour dependent on input
events and conditions [60]. Another type of FB can contain further FBs. Thus
hierarchical function aggregation is possible. The control applications are bet-
ter structured and reusability is further increased.

During the control application design multiple FBs are instantiated and in-
puts and outputs (i.e. for both events and data) are connected. At this level
there is a clear separation of interface design and the implementation of the
functionality. For the user of the FBs it is important to understand the beha-
viour of an FB. Service sequence diagrams have been introduced to describe
the behaviour of FBs at their interface. This is helpful, as it supports a clear
separation of interface specification and internal behaviour implementation.

2.2.3 Evaluation

The programming languages defined in IEC 61131-3 are well accepted in the
domain of automatic control. Their abstraction level is comparable to early
general purpose programming languages (e.g. PASCAL). Due to this low abs-
traction level, modern software development and design techniques (e.g. ob-
ject oriented programming) are hardly applicable. Furthermore, the architec-
ture in IEC 61131-3 based automatic control systems is based on global va-
riables (e.g. for I/O access). This renders re-use of parts of previously imple-
mented automatic control application an complicated task.

The modelling language of IEC 61499 is targeting a clear design and reuse
of functionalities. Such functionalities are encapsulated in FBs, the interface
and expected behaviour are clearly specified. Hidden interfaces, like global
variables are banned, as they hinder an easy reuse of previously defined and
implemented functionalities. However, the standard imposed no restrictions
regarding the languages for the implementation of the provided functiona-
lities. So any programming language of IEC 61131-3 as well as any general
purpose programming language may be used. The guiding principle of dis-
tributed control requires a possibility to specify a control flow across multiple
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devices. Therefore, events are introduced that allow to unambiguously spe-
cify the execution order of FBs in the automatic control application. However,
event-based execution also has some disadvantages. First, event-based execu-
tion and the management functionalities, that allow online reconfiguration of
the automatic control applications, introduce an overhead in the execution of
the automatic control applications [61]. Second, the calculation of an overload
of the execution system, which is necessary for the guarantees regarding real-
time execution, require a higher effort than scan-based execution semantics
[62]. To overcome these challenges, Yoong et al. propose to compile the auto-
matic control applications, that have been specified with means of IEC 61499,
to a static application without a runtime environment [61]. However, this eli-
minates valuable management functionalities, that can be used for online re-
configuration of automatic control applications [17, 62, 63, 64, 65], and neglects
the principle of configurability (i.e. any compliant tool shall be able to confi-
gure any compliant runtime environment) [60]. Configurability is considered
in the standard IEC 61499 as multi-vendor setups are expected to be common
in future manufacturing systems.

2.3 Simulation in Manufacturing Systems Design

“The purpose of simulation is insight, not numbers.” Banks et al. [66]

In the engineering field the term “simulation” is usually referred to the ac-
tivity of modelling a real component, a system, or a specific behaviour of a
system with some kind of mathematical means, along with its solution. For
simulation we nowadays normally intend “computer simulation”, i.e. model-
ling a system on a computer. Currently, computer simulation is typically used
when we are not able to obtain a closed form for the solution of a mathematical
model, and if real world experiments are not possible [66, 67, 68]. “Simulations
are expected to provide numerical measures of performance, such as throughput under
a given set of conditions, but the major benefit of simulation comes from the insight
and understanding gained regarding system operations.” [66]

Before choosing a simulation based engineering approach, the applicability
of simulation, especially for economic aspects and scalability, has to be tested
[66, 69]. Simulation has the potential to replace costly prototypes and thus
shorten engineering cycles [27]. Iterations in the development are easier and
shorter. Thus the resulting manufacturing system is potentially better.

Currently simulation is mainly used in two distinct areas of manufacturing
systems engineering [70]. On one hand design and optimization tasks on the
factory level are supported by simulation. On the other hand, simulation sup-
port for the engineering of closed loop control (e.g. of drives) is widely used.
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2.3.1 Factory level simulation

The simulation at factory level is an important enabler for the digital factory
concept. Starting from available engineering information, the effectiveness of
the modelled factory is validated. By means of simulation, measures for sys-
tem performance are evaluated, (e.g. [66]):

• throughput under average and peak loads;

• system cycle time (how long it takes to produce one part);

• utilization of resources, labour, and machines;

• bottlenecks and choke points;

• queuing at work locations;

• queuing and delays caused by material-handling devices and systems;

• effectiveness of scheduling systems.

For the abovementioned system performance measurements, only coarse
models of the plant components are needed. By representing machines, work
cells and material transport systems as abstract models, the simulation of big
plants or factories can be performed in a reasonable time.

The pre-simulation analysis and simulation planning have to ensure that
the abstract models, representing the plant components, have the same beha-
viour as the plant components with respect to the simulation scenario.

The simulation projects are often realized in specialized simulation envi-
ronments, such as Arena [68, 71] or Plant Simulation [72]. However, many
other general purpose simulation environments, especially discrete-event si-
mulation tools (e.g. Enterprise Dynamics [73], AnyLogic [74]), are apt to in-
vestigate factory logistics and material flow.

Plant simulation methods are also an integral part of most digital factory
concepts, which emerged during the last decade [75, 76]. The digital factory
concept is evolving from descriptive tools, based on digital models, towards a
basis for plant optimisation already during the plant design phase [75]. Digi-
tal Factory was put on the strategic research agenda of the European Factories
of the Future Research Association (EFFRA) by representatives from both in-
dustry and academia [77]. The most benefit from such a concept is expected
in industries with static factory layouts and high volume production, such as
the automotive industry. However, the functional behaviour of the machines
is usually represented by simplified models [78].

In all simulation environments Manufacturing systems have to be model-
led by simulation engineers. However, most tools already offer comprehensive
component libraries for material flow and logistics simulation. The selected
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components have to be configured according to the real plant. To gain reliable
results from the simulation, the selection and parameterisation of the plant
components in the simulation model is essential. Therefore, expert knowledge
on the chosen simulation tool as well as on the modelled plant is required.
Most of the simulation frameworks offer a graphical representation of the mo-
del and the simulation results. 2D and 3D visualisation helps to understand
the results of the simulation project and present them to a larger audience.
With the availability of a comprehensive simulation model, consequences of
design choices can be evaluated early and regularly during the plant design
process. The effects of changes in the factory layout (physical placement of
machines or logical, like a changed material flow) can be evaluated without
the need of moving machines, stopping the operation of the plant, or even
without an existing plant.

Comprehensive product design is provided by PLM tools. Manufactu-
ring processes, especially assembly, are tackled from the product development
perspective. PLM tools also allow high level simulation of such production
processes. However, product and production design are still quite distinct
fields of application. Further integration, like proposed by digital produc-
tion concepts [27, 28, 79], would allow the evaluation of producability. The
simulation system could be used as support system in order management and
customer communication. Before taking an order an estimation on lead time,
production time, and costs could be given.

2.3.2 Simulation in Automatic Control Design

The requirements in the automatic control domain are constantly increasing.
Energy efficiency or higher throughput for example demand a systematic de-
sign approach. The identification of the controlled system allows creating a
comprehensive (mathematical) model. Based on the model of the plant, the
automatic control system (e.g. controller, sensors) can be selected.

In addition to explicit mathematical solutions, simulation is a widely used
tool for that task. The comprehensible presentation of simulation results is
another reason for the application of simulation. Changes to parameters can
be validated without the risk of damaging the plant, workers or the environ-
ment. The use of simulation allows to repeatedly performing reproducible
evaluations. Thus optimization algorithms may be applied to identify the best
control strategy.

A classification of 4 different simulation and operation-scenarios for vali-
dating and commissioning the automatic control of machines is presented in
Figure 2.1 [80]:

• Testing,

• “Reality in the Loop”,
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• “Soft-Commissioning”, and

• offline simulation.

All of these validation methodologies have their field of application.

Control System

Plant Simulated Plant

Simulated or Emulated 
Control System

Manufacturing System

1 4
2 3

Reality Simulation

Figure 2.1: Simulation and operational scenarios [80]. 1: operation and
conventional testing; 2: Soft-Commissioning and Hardware-in-the-Loop si-
mulation; 3: Reality in the Loop; 4: offline simulation.

Testing

In this scenario the implemented control system is operating and connected to
the real plant or a physical prototype. Hence, testing can only be used during
or after the commissioning phase. Both the built up plant and the final automa-
tic control system have to be available. The tests have to ensure that the speci-
fied behaviour of the automated plant and quality measures (e.g. throughput,
cycle time) are fulfilled. The results either trigger further improments or allow
the ramp-up of the plant. Furthermore, changes in the plant or control system
at later points of the lifecycle (e.g. maintenance phase) can be assessed.

Reality in the Loop Simulation

For Reality-in-the-Loop (RIL) simulation the controlled plant has to be present.
The real plant is controlled by the simulated control system. RIL simula-
tion can be used to evaluate non-functional requirements (e.g. real-time
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constraints) for the control system [81]. The RIL approach is also used to
optimize control systems (open and closed loop) under real-world conditions.
The interface between the controlled process and the development environ-
ment (usually PC based) can be realized either by special, real-time capable
hardware or with fieldbuses or industrial Ethernet connections. Real-time
interfaces and prototyping hardware is provided for example by dSPACE [82]
or National Instruments [83]. Inputs and outputs can be directly accessed
in the according software environment. Such RIL setups are also used for
the identification of plant characteristics for control design (e.g. closed loop
control).

Hardware in the Loop Simulation

Prototyping and simulation coexisted for a long time isolated from each other
[84]. Hardware-in-the-Loop (HIL) simulation connects these two approaches.
The real controller, loaded with the developed control code, is connected to a
simulation environment. The simulation environment is running a model of
the controlled system and replacing the plant, interacting with the real control-
ler. HIL simulation has its origin in the aerospace industry, where it is used
since flight control systems’ safety is critically affected by software [85]. But
also testing the functionality of electronic control units used in vehicles is an
early application of HIL simulation [85]. The need for extensive testing (e.g.
aggressively driving the vehicle, driving in desserts) has been reduced. HIL
simulation also has the advantage of reproducibility.

The use of HIL simulation in manufacturing systems design is motivated
by several reasons:

• The need to shorten the development cycles [84] and reduce of time to
market [86] is pressing for the manufacturing industry.

• To fulfil safety requirements and to prevent costly failures during the
operation of the plant A thorough testing of automatic control systems,
with constantly increasing complexity, is desired [84, 85].

• Increased reuse of existing components and systems is demanded due
to the economic pressure and the expected reduced costs [84, 85]. The
compatibility of these components has to be pre-tested to ensure a stable
operation.

• The training of operators has been identified as a possible field of appli-
cation [87]. Reaction in critical operating situations which could damage
the machines or harm personnel can be repeatedly simulated.

The HIL simulation system has to react on events of the control system in
the same way and time as the real plant. An efficient real-time computing sys-
tem is needed as well as a detailed model of the plant [87]. Many experts of
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different domains are involved in the manufacturing systems design. There-
fore the model generation, which needs good knowledge on the plant, is not an
easy task in this field of application. Furthermore, the high level of details in
the models does hinder the scaling to bigger systems, like plants or factories. A
large amount of resources is required to execute detailed models of such large
systems. Hence, real-time requirements, imposed by HIL simulation require
high performance computing. That is the main hinder for HIL simulation be-
coming a common method in manufacturing systems design and operation.
An early implementation of HIL simulation in manufacturing systems design,
the Soft-Commissioning architecture, is running a commercial discrete event
simulation software on general purpose PCs, which are connected to the PLC
[80]. Round trip times smaller than 100 ms are reached, which is sufficient for
the virtual commissioning of many components [88].

Maturana et al. [89] directly include into a PLC a special simulation device,
which provides virtual I/O data via the backplane. However, such direct inte-
gration requires support from device vendors. Fieldbusses are used to provide
I/O access between the controller and the controlled plant. Ferrarini et al. [90]
also use the fieldbus to connect the simulated plant to the real controller. The
simulator provides the virtual sensor values and actuator interfaces via Mod-
bus/TCP. Besides the presented HIL setup, fieldbusses can also be used for
coupling the real controlled process with simulated controllers (i.e. RIL simu-
lation). Switching between simulation and operation can be done by recon-
figuring the fieldbus system. However, not all fieldbus systems can be used
in HIL setups without adaptations. In particular the requirement for a single
master or the availability of the specifications limit the choice of fieldbus sys-
tems. Moreover, the selection of a fieldbus system also restricts the choice of
the target control system, which imposes a big restriction early in the design
process.

Offline Simulation

Offline simulation is the last validation methodology. Neither the control hard-
ware with process inputs and outputs nor the controlled plant are necessary
for the offline-simulation. In the industrial control systems design the simula-
tion of the whole system, including control system and plant, modelled within
a single model can be found quite seldom. Ogurek et al. [91] introduce a spe-
cial block in MATLAB/Simulink [92], which is able to interpret a subset of the
Structured Text language defined in IEC 61131-3 [55]. They use it to validate
control programs and provide evidence for the applicability in the design and
optimization of automatic control systems for process technology and muni-
cipal sewage systems [91]. However, full support for Structured Text is not
possible due to restrictions from MATLAB/Simulink. Frey et al. use a Mode-
lica based model of distributed control systems to evaluate the influence of the



2.3. Simulation in Manufacturing Systems Design 27

network topology on the temporal behaviour [93, 94]. Usual means and tools
can be used for the development of the automatic control applications also for
these Software-in-the-Loop (SIL) setups. A simulated controller is running the
application and interacting with a simulated machine within the simulation
environment [87].

Realistic Robot Simulators follow such an SIL simulation approach. Seve-
ral vendors of industrial robots provide simulation environments that allow
operating their products within a virtual environment. For example ABB pro-
vides the Robot Studio software tool [95]; KUKA is offering KUKA.sim for
offline programming and testing [96]. The robot program can be downloaded
into the virtual robot controllers as it would be done with the real ones. Thus
testing can be done without endangering the working cell, workers or the ro-
bot itself.

For more general applications SoftPLCs can be used. SoftPLCs are pro-
grams for normal PC hardware that are able to execute PLC code. Combined
with industrial PCs and fieldbus interfaces SoftPLCs are a recognised alterna-
tive to dedicated PLCs. For SIL simulation the plant simulation has to be cou-
pled either via the fieldbus interface—similar to HIL simulation without the
need for dedicated control hardware—or the control code has to be adapted
to be connected to simulation tools, which can have influence on the execu-
tion. A drawback of using SoftPLCs for SIL simulation is that the execution
semantics as well as the supported commands vary for different PLC vendors.
Even more there exist incompatibilities between different products and pro-
duct lines of established PLC vendors. Therefore the usage of SoftPLCs for va-
lidation purposes is only reasonable if the same SoftPLCs or compatible PLCs
will be finally deployed in the plant.

Kain et al. [97] emulate the plant behaviour within an PLC or SoftPLC. The
control task and the simulation task run on the same PLC using cyclic execu-
tion semantics of IEC 61131-3. The process image (global variables within the
PLC) is the abstract representation of the plant (sensors and actuators). The
simulation task is reacting on outputs of the control task (related to actuators)
and changing inputs for the control task (setting sensor signals). For diagnostic
purposes the plant simulation task can be operated in parallel to the real plant
without changing sensor values. The simulation output (virtual sensor values)
should match the real sensor values from the plant for normal operation [97].

Ferreira et al. [98, 99] present an object based engineering approach for nu-
merical control systems. In their engineering environment EMBench for me-
chanical engineering they integrate the IEC 61499 based control engineering
environment FBDK and a JAVA based graphical simulation tool. Although the
control is modelled with IEC 61499 FBs the integrated, centralized simulation
does not take distribution into consideration. A similar approach is presented
by Rooker et al. [100], who integrate a commercial simulation environment
with an IEC 61499 runtime environment to validate the movement of a com-
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ponent based robot.

Hybrid plant operation and simulation

Simulation and testing can be mixed for the validation of changes to existing
plants or of the applicability of a specific component (e.g. cell) in an existing se-
tup. Such a combination reveals further challenges. Gu et al. [84] identified the
tight integration of real and virtual parts of the plant as an open issue. Most
implementations only allow the interaction on the direct information layer,
neglecting the spatial physical interaction and the physical exchange. Some
approaches for the hybrid operation of the plant exist (i.e. partly simulated
and partly operational), that take the physical exchange into account, exist.
Harrison et al. [101] suggest continuing to simulate parts which would have
been altered in the simulated part of the plant. As a consequence the ope-
rational parts of the plant are required like for the testing scenarios, whereas
“only” simulation results can be obtained. In the Pabadis-Promise project buf-
fers have been included between the simulated and the real parts of the plant
[102]. Hence, real parts in the desired state enter the manufacturing system
after the simulated machines. The results of such hybrid simulation scenarios
reaches the reliability of testing for operational parts of the plant. However,
the inclusion of buffers alters the plant setup and requires additional commis-
sioning effort.

2.3.3 Identified Shortcomings

In current manufacturing systems design, process simulation is mostly used
for validation purposes at higher levels, such as material flow simulation. At
the machine level simulation is rarely used for automatic control design. An
important reason is that automatic control design itself is lacking reuse [103].
The “copy and modify” methodology, i. e., taking an old control project as ba-
sis and adopting it for new needs, leads to unique, prototype-like implemen-
tations. These software implementations suffer from decreased maintainabi-
lity and poor quality. Dead code, inefficient and unreliable implementations
are inherent with this methodology. The same problems apply for simula-
tion models. Hence, either unreliable simulation results have to be expected
or some effort has to be put into maintenance and development of simula-
tion models. Thus the effort for simulation based validation is too high to be
thoroughly used. A suitable methodology that enables the reuse of validated
components is a key requirement for an efficient use of simulation for valida-
tion purposes. The fact, that manufacturing systems are built from parts and
control systems provided by multiple vendors, also hinders system validation
by simulation. HIL as well as SIL simulation based on SoftPLCs are vendor
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specific techniques that cannot easily be applied to other parts of the manufac-
turing system validation [84]. Current approaches which integrate graphical
simulation environments with IEC 61499 compliant runtime environments ne-
glect the important aspect of distribution [100]. A single simulation entity is
coupled with the control application.

For the reconfiguration of existing plants the hybrid operation is an inter-
esting approach. However, the presented methods still lack maturity. One of
the presented approaches only works for a specific control system [104]. Signal
emulation, presented in another approach [101], requires the modification of
exisiting and operational control applications. The support of control system
vendors is required, which would reduce or event take away such effort [101].

2.4 Simulation Techniques

The field of simulation is very broad. Many methodologies and techniques
are considered as simulation. Depending on the examined system and the
simulation focus these techniques are quite distinct.

For many technical problems mathematical models can be found. These
equations are either solved or estimated by computer programs. Systems of
differential equations are for example commonly used for closed loop control
applications. Also in mechanical engineering and the simulation of fields
(e.g. electromagnetism, fluidics) differential equations build the mathematical
foundation. The finite element method is a well known approach for finding
approximate solutions. Hence, calculation time can be drastically reduced
compared to an exact solution.

Figure 2.2 provides a classification of simulation techniques regarding
three important characteristics: presence of time, basis of value, and beha-
viour [105].

Simulation

Presence of Time Basis of Value Behaviour

static dynamic continuous discrete deterministic probabilistic

Figure 2.2: Classification of Simulation Approaches by three important pro-
perties based on [105]: Presence of Time, Basis of Value, and Behaviour.

For the simulation of control and automation systems, dynamic simulation
is commonly used. The system behaviour over time is the most investigated
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characteristic. The simulation of chemical processes, where equilibrium states
shall be reached (e.g. constant mass flows), often relies to static (steady-state)
simulation approaches.

Discrete event simulation is already used in industrial practice for planning
and optimization of production plants. Herein the focus of the simulation is on
the interaction of the different parts within the plant and the temporal order
of operations within the overall system. Instead of differential equations the
models can be described by more or less simple behaviour descriptions in a
discrete manner. Automatas and state machines often form the basis for such
simulation approaches.

Dependent on the method of time management dynamic simulation can be
classified as presented in Figure 2.3.

Dynamic Simulation

Continuous Time Discrete Event

Time-driven Event-driven

Figure 2.3: Classification of dynamic simulation by time management methods
based on [105] and [106].

2.4.1 Continuous Time Simulation

The main characteristic of continuous simulation is that the models have conti-
nuously changing states. In general a number of differential equations make
up these models [67]. Starting from a known initial configuration, the sys-
tem states in the future are calculated and evaluated. Variables in the models
assume real values and are computed for special time instants, which are sepa-
rated by fixed or variable intervals. Besides the choice of the time interval also
the choice of algorithms for the numerical integration is of essential impor-
tance to avoid instability and numerical errors in the results and gain reliable
simulation results [67]. Based on the purpose of the simulation a trade-off has
to be made between fast, but possibly inaccurate results due to simple algo-
rithms with long intervals, and precise but computationally expensive results
by utilizing sophisticated algorithms with short intervals.

2.4.2 Discrete Event Simulation

In discrete event simulation the states within the given system can only change
at special points in time. For time-driven discrete event simulation these points
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in time can be expected periodically. Hence, difference equations can be used
in the simulation models. In event driven discrete event simulation beha-
vioural descriptions of the system are used to determine the times of the state
changes (i. e., events) as well as the discrete changes of the states. Future events
(i. e., events that occur at a later point in time) are determined by currently ac-
tive activities. During the run of a discrete event simulation, time advances
to the next future event, if all calculations and state changes have taken place
at the current point in (simulation) time. The complexity of the model has a
big influence on the number of events and thus on the required computational
costs.

World Views

In discrete event simulation the focus can be laid on different entities in the
simulation model. Three world views are prevalent in the discrete event sys-
tem simulation: event scheduling, activity scanning, and process interaction
[66]. Each of these world views presumes contextual information, which is not
included in the simulation model.

Event Scheduling For the creation of a simulation model following the
event scheduling approach, events and their effects on the system states are
the main concerns. Time advancement is based on the future event list which
also guarantees that events occur in the chronological order. If no more action
is necessary at a point in time, the time advance algorithm advances to the
point of time, specified in the first entry on the future event list. The immi-
nent event is executed and the system state updated accordingly. If necessary,
future events are generated and inserted on the future event list. Eventually
the time further advances. The advancement of time is only dependent on the
events in the future event list; therefore variable intervals occur [66].

Process Interaction Processes in the system are the main concern in the
process interaction world view. Simulation models are based on entities or
objects and their life cycle as they flow through the system. They demand
resources or queue in order to wait for resources. A single entity’s life cycle is
a process [66]. This process consists of various events and activities. Limited
resources require processes to interact (e.g. queue). Many processes may be
active simultaneously in a model, causing quite complex interaction between
these processes. Underlying implementations of the process interaction are
usually hidden from the modellers’ view; they are often based on scheduled
events. Within this world view also a variable time advance, like the event
scheduling world view, is used. The process interaction world view has been
adopted by many simulation packages, especially in the US.



2.4. Simulation Techniques 32

Activity Scanning With this world view the modeller concentrates on the
activities of a model and conditions that allow an activity to begin [66]. Follo-
wing each clock advance the conditions for each activity are checked. Activity
scanning is a simple concept and leads to modular models. This improves
comprehensibility and maintainability of the simulation models. However,
the scanning approach results in longer simulation times than the other world
views. An improved approach, called three-phase approach, is introduced,
which uses features of event scheduling to allow for variable time advances
also in this world view, but also keeps the main advantages. A number of
activity scanning packages are popular in Europe [66].

Parallel and Distributed Discrete Event Simulation

Parallelisation of the simulation is a possibility to reduce the time demand
for simulation. The concept of parallel and distributed simulation dates back
to the 1970s [107]. Simulation is mainly used by engineers for analysis, for
example evaluation of design changes for complex systems, as decision sup-
port system for estimating consequences of alternative options, or as basis
for virtual environments, for training, evaluation, or entertainment purposes
[108]. Parallel Discrete Event Simulation (PDES) and Distributed Discrete
Event Simulation (DDES) can greatly improve the application of simulation in
these fields by the reduction of execution time, separation of concern as well
as increased fault tolerance [108, 109].

The division of the simulation model into smaller sub-models which are
run concurrently allows reducing the overall simulation time. These sub-
models ideally represent independent and only loosely coupled system en-
tities. Thus also the simulation models are loosely coupled. The simulation
sub-models may operate concurrently as long as the real world counterparts
of the simulation sub-models operate autonomously [107]. The reduction of
overall execution time is ideally proportional to the number of simulator ins-
tances, which means the execution scales well [108]. Simulation is distributed
over multiple computers in both PDES and DDES. On one hand PDES is exe-
cuted on tightly coupled computers, such as symmetric multiprocessing (SMP)
systems and massively parallel processing (MMP) systems [105]. On the other
hand DDES is executed on loosely coupled computers. Typically the frequency
of interaction is smaller than 1000 per second. Failures of single simulation de-
vices (such as failure of a processor) are tolerated in PDES or DDES as long as
critical parts of the overall simulation do not fail [108].

Splitting up the simulation model imposes the need for coordination [110].
Above all, time management is necessary, ensuring that the execution of the
simulation is synchronized. Time management algorithms expect that time-
stamped messages or events are exchanged by the sub-models [108]. The
correct execution order of the events by each sub-model, the local causality
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constraint, is ensured by synchronisation algorithms. If the local causality
constraint is adhered by each sub-model, the results of parallel or distributed
simulations are the same as of sequentially executed simulations [108]. In the
late 1970s the first synchronisation algorithms were introduced [111]. These
are nowadays referred to as conservative synchronisation algorithms. The se-
quence of execution is enforced by conservative synchronisation algorithms
with additional synchronisation messages, which control the time advance.

Optimistic synchronisation algorithms, the second family of synchroni-
sation algorithms, allow the violation of local causality. Consequences that
would arise from this violation have to be inhibited by the algorithms. The
Time Warp mechanism is a well-known representative of an optimistic algo-
rithm. Whenever causality is violated, a rollback of time to a state, where
causality is reinstated, is performed [112]. Historic information, that is all
intermediate states and messages, has to be saved requiring additional me-
mory [108]. Reverse computation is another technique to reinstate causality.
Rollbacks are realized by performing the inverses of the individual (stored)
operations [113].

2.4.3 Co-Simulation

In interdisciplinary development teams it is difficult or even impossible that
experts from all domains use the same simulation tools as the engineering and
analysis approaches are fundamentally different [114]. Although there exist
some simulation environments that include aspects of different domains (e. g.,
Matlab/Simulink, Dymola/Modelica, Ptolemy) specialized tools provide hi-
gher functionality with less effort to domain experts [115]. However, the tight
integration of the different disciplines is necessary for optimal system desi-
gns. The aspects from multiple domains are interdependent because of physi-
cal coupling [116]. Co-Simulation is the coupling of multiple simulation tools,
each maintaining its own model, for an integrated simulation [117]. The set-up
of a co-simulation environment needs expert knowledge [116]. The tool spe-
cific models have to be adjusted and unique interfaces between the involved
simulation tools have to be defined and implemented [116, 117]. The synchro-
nisation of the connected entities is a main issue [118].

The use of middleware can leverage the integration task [119, 120]. The
middleware replaces direct interfaces between tools, which have to be defined
and implemented for data exchange and synchronisation. The general pur-
pose CORBA middleware3 was used to connect a commercial SoftPLC and
Matlab/Simulink. An additional tool orchestrates and synchronises the simu-

3Common Object Request Broker Architecture. CORBA is a communication middleware
which is specified and maintained by the Object Management Group (OMG). Further infor-
mation at: http://corba.org (last access: 20.09.2011)
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lation tools with a project-specific message exchange protocol [119].
The IEEE standard 1516 - High Level Architecture for Modelling and Si-

mulation (HLA) - defines the infrastructure and an interface specification that
simulation tools have to follow in order to interoperate [121]. Multiple imple-
mentations of the according middleware HLA-RTI (run time infrastructure)
exist, commercial as well as open source implementations. The HLA infra-
structure and interface definition have proven the syntactic interoperability of
commercial tools [120]. However, the models have to be adjusted to allow this
interoperation [122]. Furthermore simulation experts have to ensure the se-
mantic integration of tools, providing a common meaning of the exchanged
data [120, 122].

These limitations lead to scarce application in production and process sys-
tems design, although the introduction of co-simulation has a large potential
as support for concurrent engineering [123].

2.5 Research Questions

The creation as well as the reconfiguration of manufacturing systems requires
expertise from multiple disciplines. Dependent on the target products the
resulting manufacturing systems and plants can become complex systems,
which require high engineering effort. Due to missing tool support the de-
sign and development steps of the involved disciplines are still mostly organi-
sed sequentially. Hence, the design choices of engineers later in the sequence
are already restricted by previous decisions. Suboptimal solutions are the re-
sult. The automatic control engineers, which are usually the last in the design
workflow, have to ensure, that the specifications are met.

Despite the high effort in control engineering, the existing tools for pro-
gramming control applications are based on old software engineering metho-
dologies. Primitive programming languages like IL and ST are widely used.
These hinder the systematic reuse of existing and tested control software parts.
Often system integrators use previously programmed control applications as
basis for new manufacturing systems. However, this “copy and modify” ap-
proach is often limited to the same control hardware. Porting to different
control systems (probably even from the same vendor) requires the programs
to be written from scratch.

In software engineering new methodologies have been introduced. CBSE
and MDSD have proven to increase efficiency in the field of business software
development. Furthermore, the maintenance of reusable software components
helps to increase the software quality and to reduce defects. From this the first
research question (RQ) of this thesis arises.
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RQ1: Is a model-driven approach feasible for the design of manufacturing systems,
with a special focus on control applications?

Model-driven approaches help to reduce the design-time in software de-
velopment projects. In particular the reuse of previously developed models
and components as well as the parallelizing of the specification increase the
efficiency. However, CBSE and MDSD cannot be directly used in industrial
automation. In particular the multi-disciplinarity (e.g. interaction with hard-
ware) brings additional requirements such as stateful components and inter-
faces. But also various design methodologies are used in the disciplines, which
are well accepted. Hence, the second RQ emerges.

RQ2: Is MDA apt to build the basis for an integrative engineering approach, that
allows to parallelize the work of experts from multiple disciplines?

Simulation and emulation are valuable methods to check the feasibility of
proposed alternative implementations in many engineering fields. These me-
thods have the potential to support the development of industrial control ap-
plications at an early state (i.e. without an existing implementation of the phy-
sical plant). This provides the control engineers the possibility to systemati-
cally develop the control application at an earlier point in the development
cycle. Hence, the resulting control applications can have higher quality at the
beginning of the commissioning phase. Nevertheless, currently available si-
mulation frameworks (commercial as well as academic) require changes to
the control system or application. Either the control algorithms need to be
re-implemented on the target control system (e.g. for pure simulation ap-
proaches), or the I/O access, for example, needs to be changed for the tran-
sition from HIL setups. Changes to the automatic control applications before
the deployment may introduce faults, which are not assessable with simula-
tion and emulation. This leads to the third RQ.

RQ3: Is it possible to validate by simulation a automatic control application and
deploy it to the target control system without any change?

Kain et al. [97] present their approach to emulate the plant behaviour on
the SoftPLC. However, the implementation is based on cyclic execution of the
used PLCs and therefore has some major disadvantages for simulation and
emulation of large plants. First, only time-driven discrete simulation is pos-
sible. Second, if the simulation has to be distributed to multiple PLCs the syn-
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chronisation of the devices is hard to solve. Event based execution is currently
emerging for automatic control systems. From this the forth RQ arises.

RQ4: Is an event-based automatic control runtime environment apt for the execu-
tion of distributed, discrete event simulation?

Currently simulation is already used for the validation of specific problems
in various engineering disciplines for production system design. To gather re-
liable simulation results discipline specific simulation environments and tools
are used, leading to incompatible simulation models. There exist some ap-
proaches that try to model and simulate automatic control systems in a single
tool [91, 93, 94, 97]. However, there exist aspects in most simulation environ-
ments which are not well covered. A co-simulation setup that couples different
simulation environments could help to reuse existing simulation models and
to reduce the specification effort. However, setting up co-simulation environ-
ments usually requires expert knowledge and additional engineering effort
[116]. Especially for hybrid simulation scenarios the integration of deployed
automatic control systems has to be ensured. Hence, the fifth RQ emerges.

RQ5: Is it possible to efficiently integrate other simulation tools (e.g. network si-
mulator, continuous process simulator) into a co-simulation environment based on an
event-based automatic control runtime environment?



CHAPTER 3

Collaborative Model-based System-Design Methodology

Experts from multiple disciplines, like mechanical engineers, electrical engi-
neers and automatic control engineers, are involved in the design of manufac-
turing systems. The constantly increasing demand for small lot sizes requires
unique, flexible production systems [124, 125]. Thus it is hardly possible to
reuse existing designs without modifications.

Furthermore the multi-disciplinary approach provides a wider field of so-
lutions. Optimisations of the manufacturing system are therefore also possible
in all involved disciplines. However, such discipline-specific optimizations
might yield a suboptimal solution for the whole system. Experts in the dif-
ferent disciplines have unique knowledge. Also the approaches and methodo-
logies to solve problems and to design systems differ. These differences im-
ply that the experts use tools, for example software, which are supporting the
specific approach, but may not be suitable in the other involved disciplines.
Changes and decisions in one discipline have influence on the specification
and implementation in the other disciplines as well (e.g. additionally required
functionalities). A change of the mechanical structure for example will most
probably also induce changes in the electrical and control sub-systems [3].

For the efficient use of resources during the manufacturing system design
a co-ordination of the involved experts is necessary. The current practice is to
sequentially develop the plant. This approach has two major drawbacks. First
a globally optimal solution will hardly be reached, since all experts focus on
the local optimum. Second the duration of the design process can hardly be
reduced. Another important aspect is that the software development is tur-
ning into the most cost intensive discipline in manufacturing systems design
[4, 126]. However, currently control software development may have limited
design options due to the design decisions taken in the other disciplines at an
earlier step.

37
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Figure 3.1: Discipline specific goals and needs in the plant design hinder the
collaboration.

3.1 Envisaged Workflow for the Multi-disciplinary
Engineering of Plants

An important improvement is the strengthening of the cooperation of experts
from the different disciplines during the specification and design phases. With
common discussions and integrative design workflows the design of the ma-
nufacturing systems will be more efficient [5]. Since the specification is done
together also the implementation can be done in parallel. Thus a shortening
of the time-to-production, that is the time from specification to ramping-up
the plant, could be reached. Also the efficiency of the plant design might be
increased.

3.1.1 Integrative Data Model

In each discipline different needs and design goals are prevalent. Figure 3.1
illustrates such discipline specific goals for the design of production plants.
For fruitful discussions during the design process it is important that the
needs and approaches can be clearly communicated between all involved ex-
perts. The involved designers apply different approaches and methodologies
to reach their discipline specific goals. These differences lead to models that
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Figure 3.2: Overview on the envisaged workflow for the design and enginee-
ring of plants.

are hardly understood by experts from the other disciplines.
This challenge is tackled with an integrative data model for automation

applications. This data model, the Automation Component Model (ACM), is
incorporating the engineering data of all involved disciplines. The integrative
data model is the central element in the envisaged design and engineering
workflow (see Figure 3.2). Information provided by the various disciplines
shall be linked within the data model and accessible for the other disciplines.
Hence, the common data model of the designed system helps to foster the com-
munication of the experts. However, since the model will represent and encap-
sulate the design data of very diverse disciplines, it will hardly be directly un-
derstood by any of the involved experts. Therefore, model transformation will
be facilitated to make the stored information accessible in discipline specific
form.

3.1.2 Integration of Computer Aided Engineering tools

Computer Aided Engineering (CAE) tools are well accepted throughout the
various engineering disciplines. They allow the modelling with a domain spe-
cific approach and methodology. For instance mechanical structures are desi-
gned with Computer Aided Design (CAD) tools. But also engineering envi-
ronments for automatic control are CAE tools. CAE tools capture discipline
specific engineering data in data models. It is proposed to link the tool spe-
cific data models and the integrative ACM. Hence, the design-relevant data
is captured by these tools and provided to the integrative data model. Rele-
vant changes in the ACM have to be brought back to the discipline specific
tools. Such they can be presented in all affected disciplines. The extraction
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Figure 3.3: The integrative data model as well as information extraction and
conversion allow the continued use of discipline specific engineering tools.

of information from the integrated data model and conversion to well-known
discipline specific representations can foster the cooperation during the design
phase. Furthermore, a continued use of the tools, integrating them in the pro-
posed model based engineering approach, seems important for the acceptance
of practitioners. Figure 3.3 provides an overview on the integration of disci-
pline specific tools in the design process. The central integrative data model
is exchanging the relevant engineering data with these discipline specific CAE
tools.

Hence, the users of these domain specific engineering tools receive relevant
information on changes in the other disciplines in their own methodology.
Needs for changes in their discipline are thus easily grasped. Nevertheless,
due to different levels of expressiveness of the discipline specific engineering
tools not all information and changes can be visualized and checked in these
tools. Hence, the modelling infrastructure has to provide a generic model vie-
wer and ensure the consistency of the model.

3.1.3 Consistency Checks and Validation of the Model

If multiple engineering tools access the same data model at the same time,
inconsistencies could occur. To prevent problems during the implementation
phase, potential inconsistencies or invalid specifications shall be identified as
soon as possible. For this reason discipline specific as well as discipline inde-
pendent validation approaches have to be used. Basic consistency checks and
appropriate reports can be directly applied to the integrative data model. Such
checks could provide information on sensors or actuators that are not connec-
ted (electrically) to the control system, for example. Also the use of sensors
and actuators within the modelling of the control behaviour can be analysed
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(e.g. unused sensors, multiply used actuators). Additionally well-established
approaches for the validation should be used (e.g. simulation, verification).

These provide a basic confidence in the specification gathered within the
integrative data model. But even more, the specification can be tested more
precisely if for example boundary conditions, which are usually set by the
user of the validation methodology, are extracted also from the integrative
data model. An important goal is also to enable simulation or verification
in disciplines, which currently do not use such approaches.

3.1.4 Parallel Implementation

A consistent and complete specification for all involved disciplines is provi-
ded after the application of the checks and validation methods. Thus, the dis-
ciplines can start with the implementation within the boundaries of the spe-
cification. Opposing to currently used consecutive workflows, the disciplines
will be able to work on the implementation in parallel [5].

Whenever changes in common parts of the specification are needed, the
affected disciplines can cooperatively find a suitable solution. As depicted on
the right hand side of Figure 3.2 the integrative data model can be used as ba-
sis for the implementation and deployment. The tools for the implementation
process gather their information from the data model. Depending on the dis-
cipline these tools provide (on the basis of the common specification process)
for example:

• Bill of Material (BoM),

• Schematics,

• I/O-Lists, and

• Control Code (Stubs).

3.1.5 Structuring the Plant Specification

The introduction of a model based engineering approach alone is not sufficient
to foster the reuse of engineering knowledge and data. The data model has
to provide means to cooperatively develop a common structure of the plant,
which represents needs and knowledge of the involved experts. Thus it acts
as guidance for the communication and inputs. The experts have to split the
designed plant into independently deployable units—this property has to be
fulfilled in all involved disciplines. These units have to provide a specified
interface (including all involved disciplines) and internal structure (e.g. beha-
viour, sub-units, electrical, mechanical design).
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As with other modelling and design tasks, the choice of borders has an
important role. Splitting the plant into smaller units allows thorough testing
and validation. Furthermore the encapsulated functionality is graspable more
easily. Interdependencies within the designed manufacturing system become
visible by the introduction of borders and interfaces. This clear separation
gives the chance to replace parts of the plant by equivalent components. The
interfaces provide variation points and as long as the replacement units fulfil
the interface contract the overall behaviour of the manufacturing system will
remain the same. Section 3.2 will provide a detailed specification of the envi-
saged structure of reusable components for plant design.

3.1.6 Reuse of Previous Designs and Re-engineering Plants

In the software engineering domain CBD is recognized for increased reuse and
better code quality (see Section 2.1.2). As soon as a set of independently de-
ployable units is fully specified and tested, it can be used as library for future
design tasks. The initial top-down-approach of splitting the functionality of
the plant into smaller units can be complemented by a bottom-up-approach.
Pre-existing units can be put together to provide the specified interfaces and
fulfil other requirements. Hence, reusing units which have been specified and
validated earlier reduces the design time and increases the system quality. Li-
braries containing the required engineering data could be provided by com-
ponent vendors to support the design and integration process.

Due to the defined interfaces it is possible to replace one unit by another
unit, which provides the same (required) interface. Thus, this approach is also
applicable in the operation, maintenance, and adaptations of plants. The inte-
grative data model can act as single source for requirements, specifications,
and documentation, as long as the data is put under revision control. In-
fluences of new, planned plant configurations on the existing plant are clearly
visible. The selection of components during the reconfiguration of the plant is
supported by the existing and maintained engineering data, representing the
current state of the plant configuration.

3.2 Generic Automation Component

Manufacturing systems are built from engineered artefacts from different dis-
ciplines that have to be combined and whose operation has to be coordinated
To increase the comprehension we split the system into independent units.
These units have to be independently deployable in all involved disciplines.
An important aspect of components for automated production systems is the
controlled hardware. For that reason the mechanical structure of a manufac-
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turing system provides a good guidelines for splitting the system into inde-
pendent units.

These independent, automated units have interfaces (e.g. mechanical
connectors, electrical connectors) and provide services. Combined and en-
riched with the corresponding engineering data such a unit comprises a so
called Automation Component (AC), which is a building block in the pro-
posed engineering approach. Software components have properties, which
make them suitable as basis for the proposed design approach for automated
systems. Independent deployment and third party composition are also im-
portant in this domain. However, software components, as they are coined
by Szyperski [51], do not provide externally observable states. That means,
a given component at all times provides the same output to the same given
input. Hence, the same component (i.e. only a single instance) can be used
multiple times in a system, if its functionality is needed. There is no need to
provide multiple (software) components of the same type.

Within physical systems, like manufacturing systems, multiple instances of
the same component (e.g. robots) have to be available and usable. Even more,
hiding states from the component interface is also limiting. The positions of
mechanical parts, which interact with the environment, are already providing
state information. Furthermore, diagnostic data (e.g. error states) might be
considered for passing it to other components.

Figure 3.4 depicts an example for a basic AC—a PowerCube rotating mo-
dule from Schunk4. Engineering data from design domains, in this case me-
chanical, electrical and control engineering, are provided together with the
physical module. This allows to provide the AC across company borders,
where they can be used to build manufacturing systems. However, not all
engineering data that are necessary for engineering the internals of such a Po-
werCube, will be provided to customers. It is sufficient to provide detailed
interface and service descriptions. To protect Intellectual Property (IP) the pro-
vided engineering data can be reduced. Then the component can be used as
is, but changes to the internals of the AC are restricted.

More generally, an AC is characterized by its exposed interface (elements
from all involved disciplines), its services (i.e. the behaviour that is related to
given inputs at its interfaces), its concrete implementation as physical module,
and the corresponding engineering data,

AC = {ACInter f ace, Services, PhysModule, EngineeringData} . (3.1)

As previously defined, an AC has to be a deployable unit in all involved
engineering disciplines. All interfaces exposed by the different disciplines (e.g.

4The German company Schunk has been an industrial partner in the EU funded project
MEDEIA [127]. Schunk provides modular robot-components, which can be used for the as-
sembly of customized robot applications (e.g. for laboratory automation).
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Figure 3.4: Automation Component: The rotating PowerCube module, de-
picted in the center, is provided together with the mechanical model (at the
bottom right), the electrical model (at the bottom left), and the control model
(at the top).

connectors, flanges) build up the Interfaces set,

Inter f aces = MechIF ∪ ElectrIF ∪ . . . ∪ ContrIF. (3.2)

The externally exposed interface of the AC can be reduced to a subset,

ACInter f ace ⊆ Inter f aces. (3.3)

Nevertheless, the internal (i.e. not exposed) interface elements are available for
coupling the implementations of the different disciplines. To allow the reuse
of ACs and the corresponding models in a collaborative manner a thorough
modelling of all interfaces is important. Hidden interfaces, which are not in-
cluded in the models, break the component concept, hinder reuse, and might
even affect the stability of the composed system.

Services of the components are specific behaviour (i.e. output) based on
the input at the component’s interface. ACs provide services in each disci-
pline. For instance the PowerCube shown in Figure 3.4 provides a service for
the rotational movement, which can be seen as its main service. However, ad-
ditional services are also provided like for reading and setting position data
and running mode (e.g. inhibited, operable).

SubServices = MechServices ∪ ElectrServices ∪ . . . ∪ ContrServices. (3.4)

The previous set comprises of all discipline specific services. However, new
additional services will be provided by the ACs. For example the rotational
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movement will not be triggered by applying voltage to the motor, but a target
speed or position is set via the control interface. Different sub-services,

SubService ∈ SubServices, (3.5)

are used as building blocks for these new services.

Service = {SubService1, SubService2, ...SubServicen} . (3.6)

Thus, an AC is more than just the collection of discipline specific data, as
new services are the result of collaboration during engineering and design.
The set of services provided at an ACs interface,

Services = {Service1, Service2, ...Servicen} , (3.7)

might be, but does not have to be, a subset of SubServices (as defined in 3.4).
The last aspect, which completes the AC (see Eqn. 3.1), is its physical part.

PhysModule = {MechModule, ElectrModule, ContrApp, ...} (3.8)

An ACs Physical Module comprises of all discipline specific implementations
(i.e. modules). These modules are the providers of the discipline specific in-
terfaces and sub-services. Also computational hardware, which is needed for
the execution of the control applications, must not be neglected.

ACs are designed to provide specific services with their physical module
and interface. By combining multiple ACs new tasks can be fulfilled.

For illustration purposes a 4 degrees-of-freedom (DOF) robot on the basis
of three separate ACs is presented in Figure 3.5. Two rotating PowerCubes
(each 1 DOF) and one tilting and rotating PowerCube (2 DOF) comprise the
robot.

Equivalent to basic ACs also this newly created entity is characterized by
its interface, services, physical module, and engineering data. Hence, this hie-
rarchically aggregated entity is called composite AC.

ACcmp =
{

Inter f acecmp, Servicescmp, PhysModulecmp, EngineeringDatacmp
}

.
(3.9)

The approach is comparable to modules or sub-assemblies in the produc-
tion of goods. The aggregation shall be done only following functional criteria.
Hence, reusable components are reached, whose functionality can be clearly
specified and provided by a self-contained component. Based on the desired
(i.e. specified) functionality of a composite AC existing, or at least specified,
ACs are selected and put together in a bottom-up approach.

ACcomposite =
{

ACsub1 , ACsub2 , . . . ACsubn

}
(3.10)
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Figure 3.5: Composite Automation Component: 4 degrees-of-freedom robot
hierarchically built up by aggregation of 3 ACs. The electrical, mechanical,
and control parts of the composite AC emerge from linking the sub-ACs.

For the aggregation itself, engineers can concentrate on the interfaces and ser-
vices, which are provided by the sub-components, to realize the specified be-
haviour of the AC.

The interface of the newly created composite AC is based on the interfaces
of the contained ACs. Since parts of the sub-ACs interfaces are used to connect
them and build the composite-AC only a subset is exposed by the composite
AC.

ACInter f acecmp ⊆ ACInter f acesub1 ∪ ACInter f acesub3 ∪ ACInter f acesub3 .
(3.11)

Furthermore, the same statements, which apply for the basic ACs (i.e. 3.2 and
3.3) also apply for composite ACs.

Also the services provided by a composite AC are composed from services
provided by its contained ACs, e.g. movements of the PowerCubes. Howe-
ver, composite ACs need to provide tasks for the coordination of the services
of the sub-ACs. Coordinated movement of the axes of the robot (i.e. com-
posite AC) is such a new service, which is using the movement services of
the contained axes (i.e. contained ACs). Such management or coordination
services have to be added in the composite ACs. These services would contra-
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dict the premise, that a composite AC’s services are just a combination of its
sub-ACs services. Two possibilities have been identified to reach a consistent
modelling approach. First, additional modelling elements for such services
could be introduced specifically for composite ACs. Second, the coordination
services could be encapsulated in a new, pure functional AC, which is added
as sub-AC in the composite AC. Pure functional ACs are components without
a hardware interface. They just provide logic functionality to coordinate ser-
vices of other ACs at the same hierarchical level (e.g. coordinated movement
of PowerCubes).

The second approach can build on meta-models which are specified for
basic ACs. Hence, it is prefered for the implementation of the meta-model for
composite ACs.

For the creation of composite ACs from other ACs the nature of the used
components (i.e. basic or composite AC) shall not matter. Both, basic and
composite ACs are characterized by their respective interface, services, physi-
cal module and corresponding engineering data (see 3.1 and 3.9), which follow
the same scheme. Only the interface and the services, that are provided at the
interface of an AC, are of importance for the aggregation. Hence, the num-
ber of aggregation levels (i.e. composite ACs containing composite ACs) is
not limited in the proposed engineering approach. Furthermore, the focus on
the interface and the provided services allow replacing an AC by another AC
as long as the (used) interface-elements and services are also provided by the
replacement AC.

3.3 Proposed Engineering Data Models

An AC is composed of the actual implementation and all related engineering
data. Services and interfaces of the AC are provided by the implementation,
which is an outcome of the specification process.

For an increased reusability the MDA paradigm showed its potential in
the software engineering domain (also see Section 2.1.1). The separation of
concerns in the MDA approach also leads to multiple separate models: PIM,
PM, and PSM.

In the PIM the functionality is described and specified without influence of
and dependency on the targeted execution system. Hence, in pure software
engineering projects the PIM if free of any hardware specific aspects.

For the automation domain the term platform has to be carefully specified.
Automated processes and manufacturing systems design are based on mecha-
nical and electrical systems that manipulate the real world in order to produce
goods. Hence, the automated equipment is part of the functional design of
manufacturing systems. Engineering data related to the design of the automa-
ted equipment is included in the PIM. To address the changed scope, the PIM
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Automation Component Model 
(Platform Independent Model)

Automation Component 
Implementation Model 

(Platform Specific Model)

Execution System Model 
(Platform  Model)

Mapping Model 
(Platform Specific)

Figure 3.6: Models for the Model Driven Automation Systems Design. Three
main models and their dependencies in the modelling workflow are provided:
a) Automation Component Model (ACM), b) Execution System Model (ESM),
and c) Automation Component Implementation Model (ACIM). Each of the
models covers different engineering aspects following the MDA approach.

is named ACM within the proposed approach (see Figure 3.6).
The execution system, which finally runs the automation application, shall

be replaceable. Thus, it shall not have influence on the functionality and may
be considered late in the engineering process. Therefore, the engineering data
related to the execution system shall be included in the PM during the auto-
mation systems design.

Following the related MDA approach the combination of PIM and platform
relevant information (e.g. PM) leads to the PSM. The resulting model—the Au-
tomation Component Implementation Model (ACIM)—is therefore the closest
representation of the deployable AC. This model acts as the source model for
code generation tasks. The influence of the execution system and the func-
tionality of the AC are available within a single model for the first time in the
modelling process. Hence the validation and verification of the manufacturing
system as a whole is best done starting from the ACIM.

In the following sub-sections, the introduced models, their contained sub-
models and data will be elaborated.

3.3.1 Platform Independent Aspects

The ACM is the core model in the proposed model driven design approach for
automation systems. Basically it incorporates the functionality of an AC and
sets requirements which have to be fulfilled by the platform. The functionality
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Figure 3.7: Separation of concerns in the Automation Component Model. The
UML Class Diagram shows the relations of the Automation Component Mo-
del and its sub-models. Behaviour Model, Plant Model, and Diagnostic Model
are included for distinct, complementing engineering aspects. For better rea-
dability the term “Model” is neglected in the specification of the Automation
Component Model.

of an AC is established by quite distinct characteristics, including the automa-
ted hardware. To accommodate the different nature of the related engineering
data, the ACM is split into three sub-models (see Figure 3.7): Behaviour Mo-
del (BehM), Plant Model (PlaM), and Diagnostics Model (DiagM). However,
the sub-models have to be coupled closely on well-defined interfaces in order
to enable an efficient engineering workflow.

Plant Model

The PlaM is responsible for hardware related engineering data. As shown in
Figure 3.8 the plant behaviour, interfaces, the physical design (i.e. mechanical
and electrical designs), and the aggregation into more complex composite ACs
are of relevance in the PlaM.

The physical part of an AC includes mainly mechanical and electrical as-
pects. To facilitate the integration of ACs in manufacturing systems the explicit
modelling of physical interfaces is of high importance. For the specification of
the AC itself, component-internal interfaces between the disciplines are of ut-
most relevance. The interface between the hardware specified in the PlaM and
the logical aspects of the AC, which are encapsulated in the BehM includes
abstract representations of sensors and actuators. Hence, the actual interface
of sensors and actuators is hidden from the specification of the component
behaviour, which can thus be really platform independent.
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Figure 3.8: The plant model is representing the automated parts of the ACs.
The specification of interfaces and the behaviour as well as the mechanical
and electrical design are covered.

For the aggregation of ACs (i.e. building composite ACs) only the exter-
nally provided interfaces of the sub-ACs are relevant. Within the plant specifi-
cation especially the mechanical and electrical interfaces are important. These
are a subset of the AC’s interface as defined in Eqn. 3.3.

During the aggregation also physical services of the ACs (e.g. material
handling, kinematic movements) have to be connected. The connections spe-
cify the use of physical services at the level of the composite AC dependent
on the mechanical composition. The material flow and kinematic chains have
been identified as relevant for the domain of manufacturing and robotics. The-
refore, the according interfaces are explicitly provided in Figure 3.8. Further
interfaces and services can be integrated later, as long as a separation in beha-
viour and interface is possible at the AC level.

The possibility for a separation into and linking of mechanical designs of
ACs and sub-ACs is also important. This allows to create mechanical models
of the designed manufacturing systems from multiple ACs, as well as feeding
back changes to the affected ACs. Since CAD is well used, many different tools
and data formats exist. Hence, the use of an already existing CAD data format
is promissing. Two data formats, which are mainly used for data exchange,
fulfill the given requirements, and are suitable for the integration into the PlaM

• COLLADA is an open industry standard [30]. It supports to store both
exact geometrical information and tessellated boundaries for the visua-
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lisation. Data are stored in XML files. Referencing other files allows to
aggregate larger components [30]. The AutomationML initiative [29] is
using COLLADA and is actively improving this data format for the ap-
plication in the automation domain.

• JT (Jupiter Tesselation) has been developed for the automation domain
[128]. The geometrical data are stored as binary data, additional data
and aggregation information is stored in XML files. JT is directly sup-
ported by Siemens PLM software products, but also software from other
vendors in the automation domain (e.g. Dassault Systems) is supporting
this data format [128].

Besides the interface specifications for the physical as well as logical in-
terfaces and the geometric data, also the behaviour of the physical parts with
respect to changes at the interfaces is important. Automation engineers who
implement the control behaviour of the ACs need to know the expected reac-
tions of the component with respect to changes at the logicalPlantInterface. For
instance sensor values (e.g. angular position of the PowerCube unit) are de-
pendent on the state of the AC. The description of the functional behaviour
is necessary for that purpose. Service Sequence Diagrams and Activity Diagrams
that are part of the UML-family [129] are apt. Both diagram types also allow
introducing non-functional aspects, like timing, in the behaviour description.

Behaviour Model

The BehM is the most important model for the automatic control engineer.
The overall behaviour at the component interface, the specification of the lo-
gical component interface (including I/Os), and the internal (controlled) com-
ponent behaviour comprise the BehM, as shown in Figure 3.9. Following the
MDA approach, taking into consideration multiple distinct execution plat-
forms (e.g. scan based, event based), a neutral behaviour description model
is desired. Requirements for the specification of the behaviour have been ga-
thered in the MEDEIA project in an extensive requirements engineering phase
in four automation domains [130]: manufacturing systems, modular robotics,
energy production, and packaging industry. The industrial partners provided
valuable information on each domain, which built the basis for the specifica-
tion of the behaviour model. Hence, during the specification of the BehM the
balance between expressiveness on the one hand and support for reliable code
generation for various execution platforms was important.

Specification of internal component behaviour: Timed state diagrams are
well suited for the specification of the desired behaviour of an AC. On one
hand, the envisaged modelling approach presented in Section 3.1 shall support
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Figure 3.9: Overview on the main classes of the AC Behaviour Model. This
meta-model allows to describe the functional behaviour of ACs.

multiple distinct tools. On the other hand, verification tools like UPPAAL [131]
are based on flat automaton models. Hence, the flat structure of the timed state
diagrams is a compromise in conciseness and expressiveness with respect to
the envisaged engineering workflow. Furthermore, hierarchical structuring
and concurrency which have been introduced with hierarchical state charts
[132] are covered by the aggregation within composite ACs.

Within the states interface elements can be altered. That means, actuators in
the controlled plant are used (viaPlantInterfaceElement), services from sub-ACs
are requested (via ComponentInterfaceElement), or service responses are com-
municated to higher-level ACs (via ComponentInterfaceElement). Reading ac-
cess to all interface elements is provided both in states and transitions. Hence,
transistion conditions can also use statuses of lower levels (i.e. aggregated ACs
and plant) as well as requests from higher levels. Furthermore, the algorithms
executed directly after entry into the states can use all available statuses and
requests.

This way specified internal component behaviour provides information on
how the plant and sub-ACs are used in order to provide the desired functio-
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nalities (e.g. services).

Specification of external component behaviour at the interface: To support
the use and reuse of ACs in the engineering process it is necessary to know,
how to use these ACs. The specification of the external component behaviour
that is included in the ACM is important to grasp the functionality of the ACs.

The interface behaviour specification is independent from the implemen-
tation. That means, it must not have any influence on the specified interface
behaviour whether the AC is a basic AC, which is directly interacting with the
plant, or a composite AC, which is using sub-ACs to fulfil its functionality. In
a top down approach the external component behaviour specification can act
as a guide for the implementation of the AC’s internal behaviour.

The external component behaviour specification is a contract of provided
functionality and services. Opposed to pure software components, ACs may
have stateful behaviour at their interfaces. Only the ComponentInterfaceEle-
ments of the AC itself are available for the specification. Hence, the interface
behaviour specification has a smaller (or equal) number of states and transi-
tions as the specification of the internal behaviour. Therefore, it is feasible to
use the same specification method, the timed state diagram.

However, it is crucial that the promised interface behaviour (i.e. external
component behaviour) is compatible with the implementation. Verification
methods, like model checking, may be used to ensure this compatibility [133].

Specification of the Interface: The specification of the interface in the (logi-
cal) behaviour model comprises of InterfaceElements of two kinds: Componen-
tInterfaceElement and PlantInterfaceElement.

First the ComponentInterfaceElements build up the ControlInterface of the AC.
The ControlInterface is a sub-set of an AC’s interface. Together with other inter-
faces (e.g. the mechanical and electrical interfaces) it comprises the ACInter-
face (see 3.2 and 3.3). Higher level composite ACs use the ControlInterface to
control and coordinate the sub-ACs. Electrical and mechanical interfaces are
specified in an AC’s plant model.

Second the interface specification also includes InterfaceElements of control-
led entities. ComponentInterfaceElements of sub-ACs allow the coordination of
provided services. Also the sensors and actuators of the controlled plant are
represented as PlantInterfaceElements in the internal interface. Hence, these In-
terfaceElements can be used within the specification of the internal behaviour.

3.3.2 Platform Aspects

In an MDA approach aspects regarding the execution platform are gathered in
the Platform Model. Many of the currently used engineering approaches for
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automated control development and deployment provide MDA-like mecha-
nisms. Labelling I/Os and using the label instead of the address in application
design is a first step of abstraction provided by engineering tools. The map-
ping of I/Os, which are connected to the control system via a fieldbus, into the
process image also separates engineering from implementation. IEC 61499,
which allows using multiple devices to execute a control application, has even
more properties of an MDA approach [134]. The control application is develo-
ped independently from the execution devices in the Application Model, which
is thus comparable to the PIM. The System Model, equivalent to the PM, is des-
cribing a particular hardware configuration (e.g. control devices, execution
resources, network segments, network links) [60].

However, the models in the aforementioned engineering approaches are of
limited expressiveness. Usually the programming tools and execution devices
are provided by the same vendor. Therefore, explicit platform models can be
replaced by implicit ones, which are inaccessibly embedded in the engineering
tools.

To overcome these limitation a more comprehensive model is proposed.
The proposed modelling and engineering approach supports a distribution of
the specified AC behaviour, which is hierarchically aggragated up to the ma-
nufacturing system level, onto multiple control devices. Also different control
paradigms (e.g. scan based, event based) shall be supported within the same
project. This requires to explicitly model the execution system in the envisaged
engineering approach.

Execution System Model

The Execution System Model (ESM) shall provide all relevant platform data
for heterogeneous control systems. Some of the currently available descrip-
tion languages (e.g. architecture description languages, hardware description
languages) do not provide means to all relevant aspects of heterogeneous exe-
cution systems. The neglected aspects are implicitly available in their field of
application (e.g. homogeneous hardware platform, single fieldbus system).
The specialized configuration and modeling tools are therefore not dependent
on this information. However, explicit modelling of all relevant aspects is de-
manded to ensure openness and the possiblility to integrate different hard-
ware platforms, communication systems, or the like. Amoung the descrip-
tion languages those with a generic and extensible model (e.g. Field Device
Configuration Markup Language (FDCML), CAEX) allow the integration of
additional modeling information. FDCML already allows to describe most as-
pects of automated control systems. It is an implementation and extension of
the ISO 15745 reference model [135]. The standardized base model and the
expressiveness of FDCML provide a good basis for the definition of the ESM.

Figure 3.10 provides an overview on the entities which comprise the ESM.
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The main elements within the ESM are (networked) control devices and in-
terconnecting networks. An execution system consisting of a single control
device does not necessarily also contain a Network element. However, even
backplanes in control devices are treated as networks, as they are based on the
same mechanisms. Some device vendors also allow extending the backplane
to decentralized I/O devices (e.g. Beckhoff’s EtherCAT). Information on the
used fieldbuses is not only needed for referencing them in the device specifi-
cations, but most fieldbus systems also need to be configured before use (e.g.
setting IDs). Each of the network protocols needs specific parameters.

In order to improve the readability and to simplify the model transforma-
tion process separate classes for the network protocols have been included in
the ESM (see Figure 3.10). This imposes the need to extend the ESM if new net-
work protocols shall be supported. Such extensions do not influence existing
specifications, as they are included as additional modelling elements.

The other main model element in the ESM is the Device. At least one device
is needed in the execution system to being able to operate the plant. A device
comprises of 4 elements:

• The Description entity is used to specify and identify a piece of control
hardware. This is necessary if multiple devices are used in a control ap-
plication and supports the maintenance of the plant.

• In FDCML the Function entity captures network-independent informa-
tion and services. The function of a pressure sensor for example is to
provide 0..10 V at its output, representing pressures from 0..10 bar.

• The DeviceManager contains all information regarding the configuration
of the device.

• All hardware Interfaces of the device are encapsulated by the Structure
entity.

Network interfaces (e.g. network interface cards), which can be used to
interact with other (control) devices are represented by CommunicationPort ele-
ments are managed by the DeviceManager as all other hardware elements. IO-
Port elements represent terminals, where sensors and actuators are directly
connected to a device. Furthermore, a device can provide extension slots (Slot
entity). Additional modules can be inserted in the slot and provide additional
functionality (e.g. I/O modules) to the control device. For the specification
of such modules Module elements are used. These use the same specification
means as devices. Hence, the Module class is a specialisation of the Device class.

Besides the existence of compatible CommunicationPort elements two de-
vices also need to support the same protocols in order to enable the exchange
of information. From the electric specification for example DeviceNet, CANo-
pen and other network systems based on Controller Area Network (CAN) are
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compatible. Nevertheless, differences in the exchanged data (e.g. encoding)
and organisation of the network (e.g. IDs, Network Master) prohibit their in-
tegration. Therefore, supported protocols are important for the deployment
of control applications and the control system integration. The according in-
formation is contained by the DeviceManager in form of CommunicationProtocol
elements.

For the deployment and the execution of control applications other, more
internal characteristics of the control devices are important. The DeviceMa-
nager provides Resource elements to specify relevant data. OperatingSystem,
Processor, FPGA, and Memory are of high importance if the result of the code
generation process shall be directly executable on the target device (e.g, gene-
ral purpose programming language C). In cases where a RuntimeEnvironment
is used, the hardware related elements allow estimating the load and memory
usage on the target system. However, if a runtime environment is used to
execute the control application, a more detailed description is needed to al-
low efficient control code generation. Operators and functionalities which are
provided by the respective runtime environment can increase efficiency (e.g.
reduced size of the programme, reduced number of CPU cycles) if they are
appropriately used. Hence, for both general purpose frameworks (e.g. Java,
.NET) or frameworks specialised for industrial automation (e.g. 4DIAC run-
time environment, PLCs) additional specifications (e.g. version, available li-
braries) are necessary. Control functionalities supported by the runtime envi-
ronment (e.g. encapsulated in libraries) facilitate an efficient generation of the
executable control applications. Furthermore, supported execution semantics
(event-based or scan-based) have to be considered during the code generation
process. It is possible to mimic event-based semantics with scan-based sys-
tems, and vice versa [136, 137].

3.3.3 Platform Specific Aspects

In MDA approaches the creation of the PSM is the last step before the genera-
tion of executable code. The PIM and the PM are combined and may need to be
enriched with additional information (e.g. library elements, or functions that
are maintained outside of the modelling infrastructure) to tailor the PSM. Thus
a specific functionality is provided by a clearly specified execution platform.

Mapping Model

The Mapping Model (MM) is provided as auxiliary model to specify necessary
mappings. It links the platform independent ACM with the chosen platform
provided by the ESM. For the full picture on the automated system it is not suf-
ficient to distribute the functionality (i.e. ACs) to the appropriate devices. This
is a common task in MDA approaches, however, in the design of automated
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Figure 3.11: The platform specific Mapping Model links the platform inde-
pendent Automation Component Model with the Execution System Model.

systems also the process interfaces towards the plant are part of the design.
Therefore, the generic I/Os from the device independent BehM need to be
mapped to real I/Os defined in the ESM. For the I/O mapping it is important
to match the expected range of values in the logical system with the actual va-
lues in the physical system (e.g. current, voltage) and vice versa. Hence, the
MM provides the ValueAdoption class to specify the necessary adjustments and
calculations to link I/Os with their representations in the logical system. A full
overview on the MM with links to the other involved models is provided in
Figure 3.11.

Automation Component Implementation Model

The ACIM represents the PSM within the MDA approach. All aspects regar-
ding the implementation of an AC are specified in the previously elaborated
models. Hence, the ACIM is incorporating all these models. By model wea-
ving [138] the information gathered within ACM, ESM, and MM is linked (see
Figure 3.12) and the ACIM is created. The ACIM provides all information that
is needed for the creation and implementation of the AC. Both physical pro-
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Automation Component Implementation Model

AutomationComponent

Mappings

ExecutionSystem

AutomationComponentImplementation

«uses» «uses»

«uses»

Figure 3.12: The platform specific Automation Component Implementation
Model is composed of the platform independent Automation Component Mo-
del, the platform describing Execution System Model, and the linking Map-
ping Model by model weaving.

perties (i.e. mechanical and electrical setup) as well as logical properties (i.e.
specified control behaviour) are provided. Hence, this PSM is the basis for the
implementation; also the implementation of the control software starts from
the ACIM. The provided specification allows to automatically generate code
or at least to generate a program skeleton with appropriate stubs.

The ACIM encapsulates all information regarding a specific implementa-
tion, both platform independent model and platform model are included and
used. Hence, it is the model which is provided together with the implemented
AC to customers. Thus the all the engineering data which has been specified
and is necessary for the integration of an AC into bigger plants is available to
the system integrators.

3.4 Domain Specific Engineering Tool Integration

The previous sections provide a good overview on the potential workflow and
a detailed insight in the central modelling infrastrucure of the workflow. Ho-
wever, the arrows in the envisaged engineering workflow (see Figure 3.2 and
Figure 3.3) hide the complexity of linking various models and tasks (from spe-
cification to code generation). In MDA approaches model transformation is
used for this purpose [138].

Domain experts shall be enabled to continue using their discipline specific



3.4. Domain Specific Engineering Tool Integration 60

tools. First, they are able to efficiently use these tools. Second, already existing
specifications and designs can be further used.

In order to make the information, which is gathered by these enginee-
ring tools, accessible for other disciplines in the ACM Model-to-Model (M2M)
transformation is applied. On the other end of the workflow either code (e.g.
executable control application) or models (e.g. verification model, simulation
model) are generated. For these tasks Model-to-Code (M2C) or M2M transfor-
mation are used respectively. For the automatic transformation the data have
to be represented in a well defined structure. Hence, meta-models of source
and target models are mandatory.

For the central engineering repository the meta-models of the Automation
Component Model are elaborated in Section 3.3. The provision of appropriate
meta-models for all involved tools throughout the engineering workflow is re-
quired. Furthermore, semantic information on the relation of entities in the
according meta-models is needed. This can be either encapsulated in transfor-
mation rules—if semantics in the models are fixed—or requested as additional
user input during the transformation process [138].

3.4.1 Information Extraction

Reliable extraction of information from existing engineering data is crucial for
the acceptance of the proposed collaborative engineering approach. Due to the
huge variety of software tools a comprehensive integration of all these tools is
not possible. Various restrictions apply. In some commercial tools models and
data are exposed only to a small extent. Nevertheless, it is feasible to extract
at least basic information, which is sufficient for the collaboration of different
disciplines’ experts. Dependent on the openness of the domain specific source
tools, three integration approaches have been identified: direct tool integra-
tion, external transformation (vendor-specific), and external transformation
(via vendor-neutral intermediate format). Barth et al. recently investigated
on the openness of engineering tools [139].

Direct Tool Integration: Tight Integration of Discipline Specific Tool and
Information Extraction

The direct integration of the information extraction process into a discipline
specific tool is the optimal solution. First, the users do not have to leave the
well known engineering environment. The interpretation of the data and in-
formation extraction can be triggered by just another entry in the menu. Se-
cond, the chance for a semantically correct interpretation of the gathered infor-
mation is high. Tool developers, who would be responsible for the integration
of the information extraction process, have the best knowledge about the tool
internal data structures and their meaning. Nevertheless, restrictions for the
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design process itself might be necessary to allow a semantic correct, automatic
transformation process. Such restrictions could be design guidelines, rules, or
profiles (e.g. profiles in UML modelling).

Direct tool integration is highly dependent on the tool vendors/providers.
Some commercial tools offer application programming interface (API) access
or some plug-in infractructure. Thus, external tools can be seamlessly integra-
ted. For open source projects the integration is feasible, if access to the used
models and the meta-models is provided. Figure 3.13 provides a schematic
of the direct information exchange between the discipline specific engineering
tool and the ACM.

Discipline Specific 
Tool

Automation 
Component Model

Figure 3.13: Tight integration of information extraction process in discipline
specific tools.

External Transformation (Vendor-specific): Information Extraction from Pro-
prietary Data Format

The second possible workflow to extract engineering information from disci-
pline specific tools is based on proprietary data files. An additional tool can be
implemented for the information extraction process and included in the work-
flow (as depicted in Figure 3.14).

The external transformation tools need an appropriate meta-model of the
included information. Such meta-models are usually not exposed. Hence, only
a limited set of information can be extracted without cooperating tool vendors.
Furthermore, changes to the specifications of tool or vendor specific data for-
mats are usually also not publicly announced. For that reason, external model
transformation tools have to be closely bound to a specific version of the dis-
cipline specific tool.
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Discipline Specific 
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save

External 
Transformation 

Tool

Figure 3.14: Information extraction from a proprietary, tool specific data for-
mat.

External Transformation (Vendor-neutral): Data Exchange via Vendor-
neutral Intermediate Format

In many disciplines vendor-neutral data formats exist. Their main purpose is
to enable the exchange of engineering data between similar tools. However,
these intermediate data formats limit the expressiveness compared to direct
data access within tools. The engineering workflow requires an additional
step. First, the export to the vendor-neutral format has to be triggered. The
data transformation in this step is usually provided by the tool vendors. Se-
cond, an external transformation and data extraction tool has to be used to
bring the available information into the central engineering repository. The
proposed information extraction workflow including a vendor-neutral inter-
mediate data format is presented in Figure 3.15.

Although information might get lost through the two separate transforma-
tion processes, the vendor-neutral data format provides a fixed interface. Only
a single set of transformation rules is necessary from this intermediate format
(e.g. PLCopenXML, AutomationML, COLLADA) to the ACM. Furthermore,
discipline specific tools often offer facilities for the export and import of inter-
mediate formats. For instance PLCopenXML is supported by various PLC ven-
dors [140]. In this case the first transformation process (from vendor-specific
to vendor-neutral format) is implemented and maintained by the tool vendors.
Hence, extracting information from such an vendor-neutral data format helps
to integrate a larger number of discipline specific tools at once.

Summary

Currently many manual translation steps are needed in the design of automa-
ted plants. For instance printed documentation has to be interpreted and mo-
dels and implementations are created by experts. To overcome such manual
processes model transformation is a promissing approach. However, expli-
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Figure 3.15: Information extraction workflow including a vendor-neutral data
exchange format.

cit knowledge on the structure of the discipline specific engineering models
is needed. For semantically correct interpretation of the engineering data and
extraction of information, engineering tools have to strictly adhere to the meta-
models. But this alone might not be enough. For example UML is a powerful
and rich language. Its syntax is specified [129]. However, its semantic expres-
siveness needs to be limited (e.g. by a profile) in order to allow an automatic
interpretation and transformation. Similar restrictions in the use of modelling
elements may also be necessary in other discipline specific tools.

Three approaches for the information extraction process have been presen-
ted. Dependent on the openness of the discipline specific engineering tools the
appropriate approach shall be chosen. The best integration of existing tools in
a multidisciplinary engineering approach can be reached by directly integra-
ting the information extraction and model-transformation into these existing
tools. However, as cooperation of tool vendors is necessary to reach this inte-
gration level, further approaches that base on proprietary and vendor-neutral
data formats have been presented.

3.4.2 Model and Code Generation

Model and code generation is the opposite workflow as compared to informa-
tion extraction. The specified ACM acts as the source model. This provides a
stable and well defined basis for the transformations. All entities in the source
model are well known. Starting from the ACM several targets are proposed:

• discipline specific engineering tools,

• implementation specific documentation (e.g. BoM, schematics, I/O-
lists),

• verification model,
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• simulation model and code, and

• structured, executable code (or code stubs).

Dependent on the nature of the target, either M2M or M2C and M2T trans-
formation is applied to the ACM.

Discipline Specific Engineering Tools

For a fruitful collaboration of experts from different disciplines at least colla-
boratively developed structures of the automated system have to be shared.
Initial models or alterations shall not be brought into discipline specific mo-
dels manually, as this is current practice [30] and bears the risk to introduce
errors in the models. Hence, the discipline specific models have to receive this
information as input form the central ACM. Dependent on the openness of the
discipline specific tools, the transformation process from ACM to these tools is
the inverse process of the previously described information extraction process.
Only data in the ACM that can be represented in the discipline specific tool are
used in the transformation process.

Semantic information is needed for an automatic information exchange bet-
ween tools and the ACM. Transformation rules, based on entities of the source
and target meta-models, statically encapsulate semantic information. To en-
able automatically providing discipline specific models from the ACM the
ACM would need to accommodate any information provided by any invol-
ved discipline. Engineering data, which cannot be automatically interpreted
as information at the time of transformation can be included in the model as
uninterpreted legacy data (cf. Drath and Barth [141]) or stay with the tool.
Such legacy data may be parsed and interpreted at a later moment. Further-
more, they can be included in the transformation from the ACM to the disci-
pline specific tool, as long as the related data is unchanged. However, changes
in other engineering disciplines may result in the need for changes in a dis-
cipline specific tool as well. These needed changes cannot be automatically
determined with missing semantic information. Hence, inconsistent enginee-
ring models might occur. Ontology merging and mapping, which deal with
similar problems, are currently investigated in the computer science domain
[142, 143, 144, 145, 146]. Even semi-automatic approaches for mapping and
merging are complex and challenging [147, 148].

Documentation

An important requirement for engineering processes is an accurate documen-
tation, which has to be provided. Following the proposed workflow, the ACM
acts as the central engineering data repository. Information which is necessary
for the generation of documentation is collected. The most recent engineering
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information is the basis for such documents. Hence, it is easily possible to
regularly retrieve I/O-lists, BoM for control systems, and the like. Changes,
which might occur during commissioning of the automated system shall be
brought back to the ACM. It is desired that also this step happens automati-
cally via model transformation mechanisms. However, such documents are
usually provided on paper. This renderes the automatic correction of the mo-
del to represent the actual implementation difficult to impossible. Neverthe-
less, DSLs which are tailored for the input of corrections by commissioning
staff could be feasible.

Code Generation

A benefit for using a model driven engineering approach is the possibility to
automatically generate code for different platforms. Verification tools and si-
mulation environments are just additional platforms. To facilitate the genera-
tion process, meta-models and transformation rules have to be provided for
each (hardware) platform. Changes in the ACM are reflected automatically to
all target platforms. Hence, the typically error prone manual synchronisation
becomes obsolete.

Control Code (Stubs) Retrieving control code for the automated plant is one
of the core features of this proposed model driven engineering approach. Un-
fortunately each control device vendor (or even more, each device family of a
vendor) is expecting different syntax of the applications, even if the internatio-
nally accepted standard IEC 61131-3 is used [149]. PLCopen provides a speci-
fication for a vendor neutral exchange of control applications for IEC 61131-3
control devices [140]. Control appications are not limited to automated control
related languages defined in IEC 61131-3 (see Section 2.2.1) or IEC 61499 speci-
fic Function Blocks (see Section 2.2.2). General purpose languages (e.g. C, C++,
Java) or specialized hardware definition languages (e.g. VHDL, VERILOG)
are also potential target languages. Within a single automation application
different hardware and thus different control software can be used. Hence,
mapping information in the ACM as well as the device description provided
in ACM’s Execution System Model shall be used to provide control software
for the selected devices.

The expressiveness of each of the target specific languages and the source
model ACM is different. Therefore the transformation rules of the M2C trans-
formations have to be implemented accordingly and only use relevant data
(see Section 5.2). Hence, for optimization purposes manual changes in the
generated code may be necessary. Furthermore, it may not be possible to pro-
vide transformation rules that provide correct code for any possible target lan-
guage. In such cases only code stubs (i.e. a template for the final implemen-
tation) and the according documentation (e.g. behaviour specification) will
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be generated. Compared to completely manual implementation this approach
provides better guidance. Relevant documentation and specification is served
where it is needed.

Verification Model Verification is valuable for the validation of software
[133]. Formal models (e.g. state diagram, Petri Net) are required as input.
Based on these models, properties of the described software component can
be evaluated. Deductive verification is usually performed by experts. Based
on the specification verification properties are formulated, that can be checked
efficiently by theorem provers [150]. The task of finding such properties can
hardly be automated. Model checking on the other hand is stronlgy based on
software tools. All possible system states as well as the transitions between
the states are found and evaluated. However, with increasing numbers of
states and transitions the computational effort for model checking drastically
increases. This effect is called state-space explosion [151]. In the reachability
graph possible deadlocks and livelocks can be detected. Also the conditions
for such unwanted behaviour is provided to the user. Hence, the user can
change the software to avoid them. Some tools (e.g. UPPAAL [131], Kronos
[152]) also allow to add timing information. Verification on timed state dia-
grams also allows to validate timeliness, which is important in control systems
design. However, usually only a limited number of data types (i.e. Boolean,
Integer) is supported in order to reduce the complexity of the verification tasks
(for instance state-space explosion).

Based on the specification in the ACM a timed model of the internal beha-
viour of the AC can be generated, which is compatible with UPPAAL. Hence,
it can be verified that the specified internal behaviour of an Automation Com-
ponent and its external behaviour at the interface are compatible.

Simulation Model/Code Simulation is recognized as valuable method for
the validation of technical systems. However, in the validation of automatic
control system implementation simulation is used only for selected evalua-
tions (see also Section 2.3). One of the main hinders is the fact that currently
simulation models have to be separately created. This additional effort is avoi-
ded, if other validation methods (like testing) can be applied, even if they do
not give full coverage. Simulation could provide insight on the behaviour of
the overall system, including hardware elements, even in harmful or dange-
rous situations.

Sufficient information for the generation of simulation models of the plant
behaviour is available in the ACM and ESM. The information is captured du-
ring the collaborative engineering phase. An extensive concept for a better
integration of simulation in the implementation phase of industrial, automa-
ted control systems is provided in Chapter 4.
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Simulation models and executable code are generated from the central en-
gineering models for the proposed simulation framework. However, also the
generation of (partly incomplete) simulation models for additional simulation
tools and frameworks (e.g. network simulation) is possible. Adding further
modelling elements and semantic links would allow to integrate also other
simulation models (e.g. based on differential equations).

3.4.3 Discipline Specific Engineering Tools in the Collabora-
tive Engineering Approach

Engineers in the different disciplines use domain specific tools in their work
(e.g. E-CAD, CAD, PLC programming environment). Hence, currently engi-
neering data and information is distributed accross all involved disciplines.
Integrating diverse, existing and used tools in the collaborative engineering
workflow is a major step towards the acceptance of the proposed workflow.
Domain experts can continue using of well known tools.

On the one hand, engineering information shall be extracted from exis-
ting data kept by engineering tools. For an automatic processing of the data,
knowledge on the syntax but also on the semantics is neccessary. Hence, meta-
models and transformation rules which incorporate semantic knowledge form
the basis for the information extraction. Restrictions for different disciplines
may need to be applied. UML for instance offers profiles that allow to prohibit
or limit the usage of certain modelling elements [129]. Such restrictions act as
guidelines in the specification process, limiting the freedom of the engineer,
but enabing automatic interpretation and information extraction.

On the other hand, discipline specific tools shall also receive data. Invol-
ved domains shall be kept synchronised via the central engineering repository
ACM. Hence, additonal transformation rules are required for the reverse path.
But also verification and simulation tools are discipline specific tools which ac-
cess engineering data of the ACM. Finally, programming environments, such
as PLC programming and confirguration tools, process automatically genera-
ted code that is provided by code generators on the basis of engineering data.

The integration of discipline specific tools, their models, and metamodels
is crucial for a multi-disciplinary model-based engineering approach. Speci-
fications, which are needed for the implementation, are available consistently
and early in the development cycle.

3.5 Summary

Increasing the collaboration of experts from multiple disciplines is a must to
speed up the engineering process. The proposed model-based engineering ap-
proach is able to play a central role in such multi-disciplinary environments.
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Feedback and discussions early in the specification process for manufactu-
ring systems help not only to speed up the specification and implementation
phases but also to increase overall efficiency. To ensure a smooth transition
from currently used engineering workflows, the use of discipline specific en-
gineering tools shall be continued. Information and engineering data, which
is needed by multiple disciplines, is gathered in the central repository ACM.

A major aspect of the proposed approach is to split the functionality of a
plant into smaller, graspable units—Automation Components. These compo-
nents have to exist as self-contained units in all involved disciplines. Hence,
the interfaces between the disciplines can be defined early in the specifica-
tion phase. Another advantage of modular components is the increased re-
usability. In a hierarchical aggregation approach more complex ACs can be
built from other ACs. The according models resemble this structure. Hence,
the ACMs of the contained ACs are included in the ACMs of the composite
AC.

The engineering data is automatically extracted from discipline specific en-
gineering tools with model-transformation facilities. Syntactic information has
to be provided according to meta-models for each source data model. Se-
mantic relationships are to be encapsulated within the transformation rules.
Three different approaches for the information extraction have been presen-
ted: direct integration of discipline specific tools, information extraction from
vendor-specific data format, and information extraction from vendor-neutral
data format. The application of these approaches is mainly dependent on the
discipline specific engineering tools which shall be integrated in the enginee-
ring workflow.

The main target discipline with respect to the currently defined meta-
models and transformation rules is automatic control. Automatic control
engineers are currently involved in the engineering process quite late. Hence,
the boundary conditions for automatic control are mostly set by other disci-
plines. Furthermore, an increasing number of functionalities in manufacturing
systems is provided by software. Nevertheless, such software is often desi-
gned and developed in a way that does not allow efficient reuse. Hence, costs
for automatic control engineering are steadily increasing.

The proposed model-based approach, including the workflow and meta-
models, fosters the reuse of functionalties (including hardware and software).
Despite the strong focus on automatic control, the approach is not limited to
generation of artifacts for automatic control (e.g. automatic control applica-
tions, simulation models, verification models). Since information and data is
collected in a multi-disciplinary way, data can be semantically linked and pro-
vided to all involved engineering disciplines. For instance, BoM and I/O-lists
can be directly extracted from the currently proposed meta-models.



CHAPTER 4

A New Distributed Simulation Framework for Automatic
Control Implementation and Validation

In the currently prevalent sequential workflows, the implementation of auto-
matic control applications is the last step before the ramp up of plants. In-
complete automatic control applications are delivered, tested at the plant, and
improved shortly before the deployment of the plant or even on site [80, 153].
The quality of the automatic control software is often poor because of such last
minute changes.

Plant simulation enables the development and validation of automatic
control applications even without the presence of the physical plant. Different
scenarios, from full testing/operation to full simulation, are presented. It is
proposed to integrate the modelling of the plant behaviour and the interfaces
in the model-based development workflow presented in the previous chapter.
This helps to greatly reduce the effort for modelling as well as for the gene-
ration and maintenance of the simulation models. Design information from
multiple disciplines can be used to automatically generate simulation models
to a large extent (see previous Section 3.4.2).

A further novelty is the use of an event-based automatic control environ-
ment (compliant to IEC 61499) for the behaviour simulation and coupling of
the simulation to the automatic control application. In order to get readable ap-
plications, which can be transfered easily from simulation to operation, struc-
turing guidelines are presented. These guidelines can be applied both for the
manual implementation of automatic control applications and for the automa-
tic generation in the model-based environment.

69



4.1. Validation of Automatic Control Through Simulation 70

4.1 Validation of Automatic Control Through Si-
mulation

Multiple methods can be applied to ensure the functionality of a system.
Clarke et al. [133] identify simulation, verification, and testing as complemen-
tary validation approaches for software. As elaborated in Section 2.3 simula-
tion is currently only used for specific applications in automation control de-
sign and implementation. However, reliable validation results by simulation
and testing can only be reached, if the whole manufacturing system (including
plant and control hardware) is equal to the later deployed system, or at least
reasonably close. Automatic control is bridging the software domain with the
real world (e.g. mechanical systems, electrical systems). Hence, the system
boundaries in simulation approaches for automatic control implementation
have to be set carefully.

Inputs and outputs of the control hardware resemble the process inter-
faces and are the junction of the controlled plant (hardware) and the automatic
control application (software). For that reason they are a suitable and well re-
cognizable border. Various simulation setups based on this definition of the
system border are presented in Figure 2.1 and elaborated in Section 2.3.2. HIL-
simulation approaches are apt for the analysis of automatic control. However,
changes in the automatic control application are currently required to be repre-
sented at the interfaces (i.e. connected to simulation or plant). Changes to the
finally deployed automatic control application are therefore necessary. During
this process errors may occur, which cause faults in the controlled plant.

For the use of simulation as validation approach, changes to the control ap-
plication itself shall not be necessary. If the need for changes cannot be avoi-
ded, such changes have to be easily grasped by the engineers who perform the
simulation and who deploy the application during the commissioning phase.

4.1.1 Scenarios

Currently the most used and trusted validation scenario in automated control
implementation is testing at the plant. Factory Acceptance Tests and Site Ac-
ceptance Tests are common. However, these tests are only available late in
the development cycle. Identifying and fixing faults at that stage is delaying
the ramp up and for that reason higher costs are imposed than earlier in the
development cycle. The final control system as well as the final plant setup
is required for tests. Figure 4.1 shows the components and their connections
required for testing of control applications.

Restrictions to the applicability of this scenario may apply. Especially
handling of fault conditions of the plant or robustness of the automated plant
for breakdown of control devices need to be validated. If people or the en-
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Figure 4.1: Final setup of the automated plant for deployment and testing.
The final execution system and the implemented plant have to be available
and operational for reliable testing results.

vironment would be endangered due to faults or errors testing may not be
applied (e.g. reactor control of nuclear power plant).

During the development cycle of automated plants and automation sys-
tems different simulation scenarios may be applied.

Full Simulation Scenario The full simulation scenario is the first to be ap-
plied in the work flow. For this approach neither the plant, nor the real exe-
cution system has to be available. The control (& diagnostic) application will
be generated from the Automation Component Model using previously de-
fined transformation rules (see Section 5.2). These transformation rules have
to ensure, that the generated control application (e.g. code) meets the beha-
viour specification provided by the model. Hence, the interface behaviour
of any generated control application shall be replaceable by equivalent im-
plementations. Also the simulation model for the plant is created by model
transformation. Without knowledge on the target execution system and desi-
red mapping, the control application is created for a single control device, that
is used for HIL-simulation (see Figure 4.2(a)). The control device may be re-
placed by a fully compatible runtime environment for automatic control (e.g.
softPLC). This allows the highest flexibility in simulation time advancement.
It is facilitated to run the simulation with increased, decreased, or flexible time
advancement (based on a future event list), because the need for time syn-
chronisation is greatly reduced. Later, if information on the execution system
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Figure 4.2: Simulation scenarios for the validation of automated control. The
plant behaviour is provided by a simulation tool that is coupled to control de-
vices (either physical or virtual) via the I/O-Sim interface. (a) can be used for
a coarse validation of the plant behaviour while the execution system specifi-
cation or mapping information is inexistent or incomplete. (b) shows the si-
mulation scenario with better knowledge on the final execution system setup
(including for instance networking).

and the mapping of the applications is available, the number of devices will
meet the number in the defined execution system (see Figure 4.2(b)). Also
in this sub-scenario it is possible to replace physical control devices with vir-
tual ones (e.g. softPLCs). Hence, also the influence of the mapping decision
on the effectivity of the control application can be investigated. Network and
fieldbus infrastructure is also covered with this multi-control device scenario.
Communication between devices might induce delays, jitter, or overload on
the network connections, whose effects are usually only discovered during the
commissioning phase.

For some components which are foreseen to be used in the plant, simu-
lation models for specialised simulation tools (e.g. MATLAB/Simulink, Dy-
mola, Modelica) exist. Also these models shall be integrated in the plant si-
mulation, if they are useful for the validation of the plant behaviour. For that
reason these simulaton tools need to be integrated in a co-simulation setup.
In particular time synchronisation and data exchange between the simulation
tools require good knowledge on the involved simulation tools.
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The above described scenarios are available early in the design and imple-
mentation workflow. No part of the plant nor the control hardware needs to
be physically available.

But simulation can be applied during the whole lifecycle of automation
systems. Automated manufacturing systems have to be adapted to new requi-
rements by changing their structure. Validation is also needed during reconfi-
guration phases to ensure the functionality of the target system.

Hybrid Simulation Scenario Hybrid simulation is apt to validate reconfigu-
red or extended plants. The characteristic of hybrid simulation is the combi-
nation of simulated components and operational components. The coordina-
tion of operational components and simulated components has similar requi-
rements as the co-simulation use-case. Since physically available components
operate at nominal time, also simulated components have to use nominal time
advancement. Physical interactions of the components (e.g. material flow)
have to be considered from case to case. Manual intervention, like replacing
manipulated parts, might be necessary [101, 102].

Two extreme scenarios can be identified for hybrid simulation:

• The new component is physically present and operating normally while
the rest of the plant is simulated.

• The existing plant is operating normally, while components which shall
be added are simulated.

The first scenario can be used for the commissioning and testing of the
new components at the developer’s site. Figure 4.3 provides an overview of
the required simulation setup. The surrounding environment (i.e. the already
existing plant where the new component will be integrated) and its interaction
with the new components are provided by simulation while the new com-
ponent is pysically present and operational.

The second scenario is suitable to check the behaviour of the target plant
(including extensions) during the specification phase. Different potential solu-
tions for new components can be virtually integrated in the existing plant, as
shown in Figure 4.4. The benefit of such a scenario compared to pure simula-
tion is that no extensive simulation models of the existing plant are required.
However, the simulation of the new component might be supported by simu-
lated interfaces (e.g. physical, network). Hence, this scenario is mainly sup-
ported for the sake of completeness of the proposed simulation framework.

However, in between these two extreme scenarios any combination of ope-
rational and simulated components is possible. This is useful to reduce the
complexity of interfaces between simulation and operation (e.g. need for ma-
nual intervention for part manipulation).
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Figure 4.3: Hybrid Simulation for the commissioning and testing of a single
components. The control and diagnostic application is executed on the target
execution system, consisting of real control devices.

4.2 Plant Behaviour Modelling and Specification

Simulation is a well accepted validation methodology for the specification and
implementation phases in multiple disciplines. However, a major requirement
for the application of simulation in the automatic control domain is a reliable
specification at the interface between the automatic control application and the
plant. These interfaces are represented by I/O-Access and I/O-Sim entities in the
Figures 4.1–4.4.

For reliable simulation results the behaviour at these interfaces has to be the
same for simulation and operation. The automatic control application must
not be able to determine if it is interacting with the simulated plant or the real
process. For that reason, the model for the specification of the plant behaviour
has to incorporate enough details for such a stateful behaviour description at
the plant interface.

4.2.1 Behaviour at the Plant Interface

Knowledge on the expected plant behaviour is essential for the specification
and implementation of automated control applications. However, related in-
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Figure 4.4: Hybrid Simulation for the validation of the integration of additio-
nal components into the automated plant.

formation is often provided in non-formal way. To reduce the overall enginee-
ring effort the specification shall be made more formalized.

Modern automated control systems are based on digital microcontrollers.
This requires that inputs are sampled and discretized. But also the values for
the outputs are provided by the automated control system in a time discrete
manner. The time intervals for sampling may vary from system to system—
from the µs to the s-range (or even larger). The inevitable discretisation at
the interface makes a time discrete behaviour description at the interface suf-
ficient. Furthermore, the interfaces between plant and automated control sys-
tem may have a stateful behaviour. If, for example, the plant is in a fault-state,
it will react differently to signals (i.e. outputs) of the automated control system
than in normal operation.

The behaviour of the plants at their interfaces can be specified in timed
state charts. This specification methodology is able to cope with the stateful
behaviour as well as with time discrete inputs and outputs. First the nominal
behaviour needs to be captured. In order to deal with deviations in expected
timing and sensor values, probabilities and standard variances shall be anno-
tated to the according numbers. The reason for such deviations, which are still
within nominal behaviour, can be external or internal to the automated com-
ponent. Changing voltages due to varying load situations or variable pres-
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sure in the pneumatic system are examples for external uncertainty sources.
Reduced lubrication or wear out conditions are regarded as possible internal
reasons for deviations.

4.2.2 State Chart Diagram for Behaviour Modelling

The plant behaviour model holds information on the behaviour of an Auto-
mation Component’s mechanical part from the interface point of view.

Harel [132] introduced the state chart diagram as suitable modelling me-
thod for reactive systems. Timed transitions and hierarchical aggregation of
states are included. However, the presented diagram is a generic concept
that has been implemented differently in the last decades. Instead of crea-
ting a new, tailored state chart, an already existing model is used as starting
point. One of the descendants of the Harel State charts is the UML State Chart
Diagram [129]. This diagram type offers a high level of expressiveness and
concepts (e.g. on-entry actions, on-exit actions). However, UML also foresees
to limit the syntactic expressiveness of the general purpose diagram types with
UML profiles [129]. Hence, common UML editors (e.g. the open source editor
StarUML [154]) can be used to model the plant behaviour.

Within a single AC concurrently executed states are deemed not necessary
for two reasons. First the diagnostic approach is based on the automaton pa-
radigm [155]. Second, the same information can be expressed with additional
states. Furthermore, the proposed engineering workflow also foresees model
transformation to be used. Model transformation rules can cope with the crea-
tion or merging of additional states.

To keep the models smaller and more graspable, hierarchical structuring is
obtained outside of the plant behaviour model. The plant behaviour model is
embedded in hierarchically structured ACMs. Interaction of the plant compo-
nents is obtained by physicalPlantInterface and logicalPlantInterface entities.

4.2.3 Adaptation of Automation Component Models

To reflect the needs for the specification and modelling of the plant behaviour
the Plant element of the ACM needs to be refined. First the PlantBehaviour ele-
ment of the plant model (presented in Section 3.3.1) needs to be implemented
as timed state chart. Second, the modelling of interactions of Plant Compo-
nents (i.e. physical plant elements of ACs) with other entities in the automated
plant (i.e. automatic control, other plant components) has to be enabled.

Plant Component Interfaces

The behaviour of a Plant Component (PlC) is affected by “external” events.
An AC’s control application is interacting with the PlC based on the specifica-
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tion of the control behaviour. Data and events are exchanged bidirectionally
via PlantInterfaceElements. Also physical links influence the overall behaviour
of an AC. Since these links are not represented in the control behaviour, they
have to be modelled at the PlC level. The types of the physical links are de-
pendent on the domain and the plant. In the primary application domains (i.e.
discrete manufacturing and industrial robotics) material flow and kinematics
are identified as most important physical links. For each type of physical link
providing and accepting ports have to be added to the PlCs’ interfaces. The
ports represent for example flanges or other connectors. In the containing AC
these ports have to be connected to represent the actual physical link.

Plant Behaviour Meta Model

For the specification of the plant behaviour of an AC a state diagram is chosen.
Due to the event based interaction of the PlC with its environment (e.g. other
PlCs, control application) a simplified version of the UML State Chart Diagram
(see [129]) is used as template.

Only a single state can be active at one time. Transitions from one state to
another are modelled with Transition elements. For the activation of a tran-
sition the according transition condition has to be fulfilled. Either data from
other physical components or the controlling automation application can be
used as guarding condition. Furthermore, also timed transitions (e.g. the time
to extract a pneumatic axis) are implemented in the meta model.

Changes of a PlC’s internal states are promoted at its interfaces in Action
elements. Physical interactions as well as changes in sensor values are provi-
ded either via the physical interface or the control interface. Actions can only
be provided for state entry and state exit. Actions, which are executed within a
state, circumvent the event-based execution. Changes at the interfaces by such
an Action are not clearly related to an event (e.g. condition at the interface,
timed condition). Furthermore, such actions can be replaced by additional
states with Actions either on state entry or on state exit without loss of expres-
siveness. Variable changes that would occur within a state (e.g. movement of
axis) can be modelled at the state exit, where the environment is notified of the
change (e.g. position sensor).

Figure 4.5 is providing the class diagram (meta model) of the State Chart
Diagram for the specification of the behaviour at the plant interface. The hie-
rarchical aggregation of PlCs is reached by aggregation of the enclosing AC.

Additional simulation models

Industrial users already apply simulation for selected problems and plants.
For efficiency reasons (i.e. avoiding the repetition of the modelling task) such
existing simulation models are integrated in the proposed models. Hence, the
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Figure 4.5: Meta model of State Chart Diagram for Plant Behaviour modelling.

plant behaviour of certain ACs is additionally represented by external models.
External simulation tools may use different methodologies for the represen-
tation of the behaviour. For that reason these external behaviour models are
included as additional models in the PlantModel. However, these included mo-
dels are not semantically checked and are only provided to the external tool.
Another option is the information extraction from such external models and
representation in the provided behaviour model. However, the second option
requires additional research, especially a thorough analysis on the models and
the underlying concepts for each external tool.

4.3 Aptness of the Generic IEC 61499 Concepts for
Discrete-Event Simulation

Industrial automation systems, even if controlling continuous processes, have
a discrete character. Hence, discrete-event simulation is a suitable metho-
dology for the validation of automation systems. The analysis of available
discrete-event simulation environments (e.g. AnyLogic [74], Enterprise Dyna-
mics [73]) has shown four important properties:

• Events: Discrete events are the central paradigm. They allow variable
time advancement and also facilitate the coupling of multiple systems
(see Section 2.4).

• Component based modelling: Functionalities are encapsulated modules
that are parametrized.
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• Hierarchical aggregation: Multiple components can be combined in a
new module to model more sophisticated functionalities. Hence, the si-
mulation model remains graspable.

• Clearly aranged simulation models: All interactions of two simulation
components can be integrated in a single connection.

However, commercially available discrete-event simulation environments
are not capable to directly run and validate automatic control applications.
Automatic control engineers will be the main user group for the application
of validation to automated control systems. Prevalent knowledge of this user
group reinforces the investigation, whether industrial automation runtime en-
vironments are apt to be used as basis for a simulation framework.

IEC 61499 sets requirements for industrial control that make it also inter-
esting as basis for simulation execution. The following section investigates
the applicability of IEC 61499 based runtime environments for that purpose.
General concepts and commonly accepted methodologies are analysed first.

The standard IEC 61499 and compliant runtime environments are inhe-
rently apt for distributed execution. The coordinated, distributed execution
of automated control applications was a major driving force for its creation.
The absence of global variables, the encapsulation of functionalities in func-
tion blocks, hierarchical aggregation, and the event based execution mark the
most distinguishing changes from previous standards and implementations.

4.3.1 Application-Centric Engineering

A driving force for the creation of IEC 61499 was the increasing complexity
of control systems. Multiple control devices, possibly from different vendors,
are typically used for automated control in industrial processes. With device
centric engineering each of the control devices has to be programmed indi-
vidually. Coordination of the controllers and communication between the
controllers has to be specified and implemented separately on all involved
devices. To reduce this effort, a paradigm shift towards application centric
engineering has been introduced with IEC 61499. Application engineers can
focus on the target functionalities of the control system, instead of the targe-
ted execution system structure. The engineered functionalities are then split
and mapped to a system of heterogeneous control devices. Interoperability—a
key principle of IEC 61499—ensures that devices from multiple vendors can
be used within a single automation application. The second key principle—
configurability—provides the possibility to use a single engineering tool to
develop and distribute the control applications to these heterogeneous sys-
tems. The third key principle—portability—allows the application exchange
among various engineering tools.



4.3. Generic IEC 61499 Concepts for Discrete-Event Simulation 80

4.3.2 Events

Industrial automatic control systems react to changes of states of the plant.
Therefore most industrial systems (e.g. manufacturing systems, logistic sys-
tems) can be represented as discrete event systems [21]. IEC 61499 promotes an
event-based execution of the automatic control applications [59]. The reasons
for such a shift in execution paradigms—compared to continuous execution of
relay systems and scan-based, cyclic execution of previous PLC systems—are
diverse. First, the introduction of events allows the specification of the execu-
tion order of function blocks within an application [57]. The explicit specifica-
tion helps engineers during the implementation of automatic control applica-
tions for a single automation device as well as for distributed control systems
with multiple automation devices [156]. If needed, also scan based execution
can be realized with event-based execution, as this execution paradigm is more
general [59, 157]. Second, in distributed automatic control environments ef-
fects caused by aliasing and jitter are avoided. These can occur if the cycles
or clocks) on multiple networked devices are asynchronous and an automatic
control application is executed across these devices.

4.3.3 Components

In the IEC 61499 design methodology functionalities are encapsulated in so
called Function Blocks (FBs). These FBs are components with well-defined
interfaces [158]. In the prevalent modelling languages of the IEC 61131-3 stan-
dard, global variables are a central element. For example the I/O access is
provided via global variables. Global variables, and thus potential hidden
interfaces, hinder reuse of functionalities. Also the multiple instantiation of
such components within a single application implies drawbacks and pitfalls.
Hence, global variables are prohibited in IEC 61499. Hidden interfaces and
invisible interdependencies of functionalities are restricted. FBs well resemble
the components of the model-based engineering approach presented in Chap-
ter 3.

Three main types of FBs are defined:

• Basic Function Block (BFB): The behaviour of BFBs is determined by the
so called Execution Control Chart (ECC), which is a state machine and
algorithms that are executed on state entry. These algorithms can only
access internal variables and data which are provided at the FB interface.

• Service-Interface Function Block (SIFB): This type encapsulates functio-
nalities which are provided by the underlying system (e.g. timer, I/O,
network). This type can only be treated as a component, if the interface
behaviour is well defined and documented [158].
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• Composite Function Block (CFB): CFBs are encapsulating other FBs.
Thus the functionality is determined by the functionality of the contai-
ned FBs and their connections. As long as all contained FBs can be
treated as components, also the CFBs fulfil the according properties.

Only SIFBs are able to break the component concept. Also CFBs that
contain such SIFBs are rendered non-components. Therefore a closer look is
taken at SIFBs.

Service Interface Function Blocks

Access to external data and events is provided by SIFBs. These external data
and events include inputs and outputs (i.e. the process interface), hardware
or operating system functionalities (e.g. network or timer), and functionalities
provided by the runtime environment. This close relationship to services of
the hosting control device or process is limiting the instantiation of SIFBs to
certain control devices. If services of a different device are needed, the proxy
design pattern, which has been adopted by Christensen [159] for IEC 61499, is
applicable. Also functionalities of non-compliant devices can be encapsulated
in and represented by SIFBs in IEC 61499 based automatic control systems
[159]. By such means, external simulation tools can be integrated.

There exist two stereotypes of SIFB: passive requesters and active respon-
ders. Requesters are actively triggered from the automatic control application.
Responders are triggered by the runtime environment and indicate external
events. SIFBs provide and request all data and events via their well-defined
FB interface. Automatic control applications explicitly use external functiona-
lities via SIFBs and thus avoid hidden interfaces.

The explicit access via SIFBs is a big advantage of IEC 61499 for hybrid si-
mulation. In hybrid simulation parts of a control application are accessing real
I/Os while other parts are interacting with simulated I/Os. Hidden access,
for example via global variables, imposes a higher effort in setting up the si-
mulation environment. Such access can be found in IEC 61131 based runtime
environments. An intermediate mapping application (decoupling the auto-
matic control application from the I/O access) can be used in such setups to
facilitate switching from simulated to real I/Os and vice versa.

4.3.4 Hierarchical Aggregation

In engineering disciplines, like mechanical engineering, hierarchical aggrega-
tion (e.g. assembling) of components and assembly groups is known and used
for a long time. Standardised and reusable parts and components increase
maintainability and reduce costs (e.g. fewer types of parts have to be kept in
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the magazines, higher volumes of standardized parts can be bought). Hierar-
chical aggregation has been introduced for the structuring of ACs in order to
gain the same advantages (see Section 3.2).

For increased comprehensiveness of automated control applications (i.e.
software) the standard IEC 61499 provides means to structure control applica-
tions in a hierarchical way. Functionality provided by FBs can be aggregated
by two different structural elements: CFBs and Sub-Applications (Sub-Apps).
Both, CFBs and Sub-Apps are reusable entities, which can be subject to testing
and/or verification methodologies to increase software quality [160, 161]. Al-
though both mechanisms can be used to encapsulate FBs and corresponding
event and data connections, they have different properties.

A CFBs provides a well-defined interface, which is static as for any other FB
type. Instances of CFBs are units that cannot be split and deployed to different
resources. Due to this limiting property CFBs shall only be used to encapsulate
well defined functionality and not for structuring purposes [162, 163].

The purpose of Sub-Apps is to group parts of control applications [60]. To
other entities in a control application, a Sub-App provides an FB-like interface.
However, these interfaces can be modified during application design (i.e. not
as strict as FB interfaces). A Sub-App interface can include any interface ele-
ment of an encapsulated FB or Sub-App. Even more, Sub-Apps may be split
and the contained function blocks can be mapped to multiple resources or de-
vices. These properties recommend Sub-Apps for hierarchically structuring
applications (i.e. automatic control and simulation) in the same way as in the
referring models.

4.3.5 Coupling Entities with Adapter Interfaces

The adapter concept is an elegant way to simplify the definition of FB and
Sub-App interfaces [164]. A specific set of event and data inputs and outputs
builds up an adapter interface [60]. This common interface is used in FBs and
Sub-Apps either as provider (i.e. plug) or as acceptor (i.e. socket) [59]. Plugs
and sockets of the same type can then be interconnected by a single “cable”—
the adapter connection—which encapsulates all event and data connections
provided by the adapter type. The great reduction of connections in automatic
control application design, which avoids scattering, is often seen as the main
advantage of adapters [59, 164].

However, the strict separation of both sides (i.e. the provider and the ac-
ceptor) is also a great benefit. Both components can be specified, implemented,
and tested independently from each other. Furthermore, as long as the same
interface (i.e. adapter) is used, components can be easily replaced or used in
different applications.

Lewis [59] shows the application of the adapter concept for I/O access of
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automatic control applications. The provided example separates the analogue
data processing (e.g. linearization, filtering) from the analogue sensor inter-
action (e.g. access to the transducer interface). This prevents from direct use
of raw values, which might differ from setup to setup (e.g. different voltage
ranges).

4.3.6 Summary

The concepts of IEC 61499 (and the compliant runtime environments) provide
a suitable basis for the implementation of a distributed discrete-event simula-
tion framework for industrial automation systems, as discrete-event simula-
tion tools use similar modelling and execution paradigms. For co-simulation
and hybrid simulation environments the aptness for real-time execution is im-
portant. The external events (e.g. timer, network, process) can be directly
mapped to events in discrete-event simulation.

The SIFB concept allows a good separation of the process and the automa-
tic control application as well as the implementation of clear interfaces. Such
clear interfaces are the key to switch from simulation to operation with little
engineering effort. Furthermore, additional data types—extending the data
types specified in IEC 61131-3 (e.g. BOOL, INT, LREAL, STRING)—can be
easily defined and used in IEC 61499 applications.

4.4 Execution Semantics: Choice of Runtime Envi-
ronment

Events in event-based industrial automatic control systems originate from ex-
ternal sources. The most important external source is the controlled plant or
process. Sensors capture such changes and trigger actions in the automatic
control systems. Other external sources include for example the system clock
or network interfaces. The controlled process sets the maximum number of
events that can occur during a defined period. The automatic control system
has to be able to process the process related occurance rate of events. Higher
rates (also called event showers) are related to a fault (e.g. broken, flickering
sensor) and may lead to an overload of the automatic control system [62].

The implementation of events in IEC 61499 compliant runtime environ-
ments is not regulated by the standard. Therefore, multiple variants for the
event handling have been implemented by the architects of the available run-
time environments. Differences in the execution semantics are relevant for the
capability to implement the different world views for discrete-event simula-
tion (see Section 2.4.2). Sünder et al. [136] as well as Čengić and Åkesson [165]
have compared execution semantics of different runtime implementations:
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• Non-pre-emptive Multi-Threaded Resource: In this execution model,
SIFBs act as event sources within the automatic control application.
Other FBs which are connected via events are successively called. The
execution of the event source (i.e. SIFB) as well as all called FBs is ter-
minated when no further output events are sent by any of the FBs. This
implementation reduces the effort for data latching, as the further exe-
cution of a once called FBs is blocked until the termination of the event.
However, this also causes problems with feedback loops, where at least
one FB should be triggered at least twice by the same event source. Also
event splitting has been recognised as problematic with this execution
model [166]. The best known runtime environment which implements
this execution model is the Function Block RunTime (FBRT), which is
part of Function Block Development Kit (FBDK) [167].

• Cyclic buffered execution model: All FBs in an application are activa-
ted in a pre-defined order. The bigger an application is, the more time
is needed to activate all FBs, even if they have not received an input
event. This execution model is similar to IEC 61131 scan based execu-
tion. Hence, a runtime environment with this execution model is capable
to run IEC 61131 applications and event based IEC 61499 applications
alike. IsaGRAF has implemented this execution model in its runtime en-
vironment [168].

• Event Dispatcher: The third described execution model is using an event
dispatcher. Each occurrence of a sent event is put into a FIFO queue.
Multiple Event Dispatchers can be used within a resource. This allows
to have different priorities (e.g. real-time constraints) mixed in a single
resource. Hence, an FB instance might be called by multiple execution
contexts (e.g. threads). Therefore, an FB has to fetch its input data when
it receives an event, and then executes the according algorithms. The
runtime environment FORTE has incorporated the Event Dispatcher me-
thod. The execution order of the FBs in an application is solely determi-
ned by the events. As input data is latched at the occurence of an input
event an FB can also be triggered multiple times as a result of the same
external event (i.e. feedback loops are supported). Furthermore, the exe-
cution of the control application, started by an external event, can be pre-
empted. This increases the schedulability and allows keeping real-time
constraints [169].

Zoitl [169] shows that also with event-based execution real-time constraints
can be met. Hence, a carefully designed automatic control application execu-
ted on suitable runtime environments (e.g. FORTE) is able to fulfil real-time re-
quirements of discrete-event system simulation in hybrid environments. That
and the possibility to implement or adapt execution features are the reasons
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for the choice of the runtime environment FORTE. Therefore a closer look on
the underlying concepts of this IEC 61499 compliant runtime environment is
taken.

4.4.1 Event Handling in FORTE

In principle FBs can be considered passive entities in automatic control appli-
cations. They remain inactive until an input event is triggering their execution.
In the runtime environment FORTE the activation of FBs is done by the event
dispatcher.

How are events generated within FORTE?

Some special types of SIFBs—responder FBs—do not stay passive. They are
either always active to gather information on the controlled process or are ac-
tivated by entities different from the event dispatcher. Responder FBs trigger
the execution of the control applications. Hence, they are also called Event
Source Function Blocks (ESFBs), as all events in automatic control applications
originate from them [170]. E_RESTART is cleary recongnizable as ESFB. The
missing input events indicate that this FB is generating events independently
from the automatic control application, only dependent on the current state of
the control device. But also timed FBs (e.g. E_CYCLE, E_DELAY), receiving
network FBs (e.g. subscriber, server), or SIFBs providing access to inputs (e.g.
sensors, push buttons) are ESFBs. A selection of ESFBs, which are available on
all devices, is provided in Figure 4.6.
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Figure 4.6: Various Event Source Function Blocks trigger events in the applica-
tion dependent on external events. (a) The E_RESTART FB indicates the start
and stop of the control device. (b) The timed FB E_CYCLE repeatedly trig-
gers application events. (c) Network FBs like the SUBSCRIBE_1 FB indicate
the reception of data over the network.
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Event Chains

Zoitl [169, 170] introduces the event chain concept for IEC 61499 automatic
control applications. Automatic control applications have the need for mul-
tiple ESFBs. ESFBs are the sources of events within an automatic control appli-
cation. All further events in the automatic control application are subsequently
issued by FBs as a result of the first events issued by the ESFBs. Even more,
for any event the original ESFB-triggered event can be identified. All events
that stem from the same ESFB-triggered event are part of the same event chain.
Multiple event chains may be active at the same time. For real-time execution
the different event chains in an application are prioritized and scheduled to
meet the previously specified real-time constraints.

Termination of Event Chains

FBNs, and more specifically event chains, represent control algorithms. De-
terminism of these algorithms is essential, as processes have to be influenced
under real-time constraints. Hence, event chains have to terminate, to provide
a result, and to allow schedulability. Multiple execution of a single FB within a
single event chain (i.e. feedback loop) has to be carefully used to avoid endless
loops, which contradict the requirement for termination of the algorithms.

Three ways to terminate event chains have been identified [170]:

• Obviously an FB without output events is unable to trigger further
events. Therefore, an event chain is terminated by such an FB.

• Also FBs which do have output events, but where no event connections
are attached, terminate the further execution of an event chain.

• The third possibility to end an event chains is a FB, which does not send
output events due to an internal state or algorithm (e.g. E_PERMIT). This
case imposes the highest effort for the a priori analysis of the event chain
termination.

The knowledge on the termination of event chains is necessary for the a
priori calculation of execution times and the planning of execution schedules.
Hence, real-time execution of applications can be guaranteed on compliant
event-based runtime environments (e.g. FORTE) [169].

Handling of External Events

As illustrated earlier, automatic control applications composed of FBs remain
passive, until they are triggered by external events. ESFBs are the proxies who
bring these external events into the automatic control applications and start
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event chains. Hence, external events are the reason for all events that occur
in automatic control applications. Mainly for reasons of portability the system
architecture of the runtime environment FORTE is grounded on a hardware
abstraction layer (HAL) [171]. The HAL provides the same interface towards
hardware resources (e.g. timer) independently from the concrete hardware
platform (e.g. PC running Windows, embedded device running Linux).

As further step towards hardware independence, the resource handlers
also provide sophisticated management functionality. FBs register at the ap-
propriate resource handler to indicate their need for a specific service. The
manager is able to list those FBs and coordinate the access to the managed
service.

The timer handler only requires a single hardware timer, whereas an imple-
mentation without such a coordinator would use one timer for each FB which
needs timer functionality. This optimization is essential for portable, embed-
ded software, as hardware timers are a scarce resource on embedded systems5.
Furthermore, the timer handler has a similar functionality as the future event
list of discrete event simulators (see Section 2.4.2).

Similar restrictions as for timer access also apply for network connections.
FBs waiting to receive data from a communication partner (e.g. server, subscri-
ber) have to either block their execution entity until they receive data or have
to regularly poll for received data. Either an execution entity (e.g. task, thread)
is needed per receiving FB or execution time is wasted to check for received
data. Both mechanisms are expensive in embedded software development. A
central network handler is able to efficiently provide the same functionality
with only a single execution entity per device [171].

As soon as the ESFBs is initialised, it registers itself, dependent on its own
class, at the according manager function. Whenever an external event (e.g.
hardware timer notification, received network data) occurs, the manager iden-
tifies the appropriate FB and triggers its execution. The notified ESFB trans-
lates this external event into an output event and thus starts an event chain.
Figure 4.7 provides an overview of the layered architecture of FORTE. Inde-
pendent of the number of ESFBs or resources within the device, only a single
handler per managed functionality is provided. Via the HAL, which virtua-
lizes the hardware and operating system functions in a unified way, the requi-
red functionalities are accessed.

The HAL and the resource managers, above all the timer manager, can be
adopted to provide time advancement functionalities as they are required by
discrete event simulation environments (implementation details are provided
in Section 5.3.1). The HAL is also a suitable entity to transparently provide a
clock synchronisation service that is required if more than one device are used

5Micro-controllers usually provide 2-6 hardware timers, that can be used by application
software.
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for simulation execution.

FORTE

Hardware / Operating system

Hardware Abstraction Layer (HAL)
Timer, I/O, Network, ...

ResourceA

Timer-Handler Network-Handler

ResourceB ResourceC

Figure 4.7: Overview of the FORTE architecture. Hardware access is provided
via a hardware abstraction layer. Management functionalities, that only exist
once per control device, trigger event source FBs on the occurrence of external
events.

4.4.2 Summary

FORTE is an IEC 61499 compliant runtime environment. As such it provides
all generic concepts of IEC 61499 that are needed for discrete-event simulation
(see Section 4.3). Also advanced features of discrete-event simulation frame-
works (e.g. variable time advancement) can be realized with the runtime envi-
ronment FORTE. The central manager for timed FBs allows skipping simula-
tion time to the appearance of the next event (compare to the event scheduling
world view in Section 2.4.2). The managed list of timer events is equivalent to
the Future Event List of simulation environments. For the scenario involving
only a single runtime environment for the execution of the automatic control
application and the simulation of the process this is a simple task. For distribu-
ted simulation the timer handlers of all involved runtime environments need
to be coordinated, which can be transparently handled within the HAL.
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4.5 Validation of Behaviour with Event-based Au-
tomatic Control Applications

In the previous section we could see the aptness of the automatic control run-
time environment FORTE for discrete-event simulation. Hence, FORTE will
be the core element of the simulation framework for the validation of the be-
haviour of Automation Components (ACs). The goal is to deploy the valida-
ted automatic control application to the target platform. Therefore, both the
control behaviour and the plant behaviour of the AC need to be included in
the validation process. However, a clear separation of both aspects is essential.
Changes to a validated automatic control application have to be kept minimal,
as each change can introduce errors. Therefore, different applications shall be
used for the automatic control and the plant simulation. SIFBs in both appli-
cations link them and enable the overall simulation.

The plant behaviour simulation has to resemble the (expected) behaviour
at the process interface. The control application shall not notice any differences
from the operation (with the real plant). Apart from the nominal behaviour—
when everything is working fine—also known faults of the plant shall be si-
mulated. Dependent on the automated process, faults may arise with low
probability6. Using such realistic probabilities could prevent faults to occur
during simulation runs. However, simulation is not apt to detect all errors in
software specification, design, and implementation [133]. The fault handling
for previously unknown plant behaviour cannot be validated due to missing
specifications. However, the robustness of the automatic control application
and the effectiveness of fault management functionalities can be validated for
known or expected faults.

The main application of the presented simulation approach is in model-
based automation system development. Both the automatic control applica-
tion as well as the plant behaviour simulation application has to be generated
from the provided model. Model transformation techniques are utilized for
that step. Both generated applications shall be deployable without the need
for adaptations by control engineers. Nevertheless, these experts have to be
able to capture the functionality and identify problems and errors. A clear
structure, resembling the hierarchical AC structure, helps to trace errors back
to the ACM. For a good visibility of the interfaces, these SIFBs should not be
hidden deeply in CFBs.

In the following section guidelines for a structured application design will
be presented.

6 Robot vendors for example state mean time between failures (MTBF) values of up to
80.000 hours (that is more than 9 years in 24/7 operation) for some robotic applications [172,
173]
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4.5.1 Structuring Automatic Control Applications

Many different stakeholders get in contact with the automatic control appli-
cations during the lifecycle of an automated plant (e.g. component developer,
system integrator, control engineer of the plant, operator, maintenance per-
sonnel). For this reason—apart from software quality criteria—it is important
to provide automatic control applications that are easily graspable by any of
these stakeholders. Well-structured applications reduce the effort to review
and assess such applications. Confidence in the provided solution—backed
by simulation—increases the efficiency of the commissioning phase for new
plants or the integration of new components.

In case of breakdowns and errors of the plant, maintenance personnel
needs to identify the causes. As automated plants are highly sophisticated,
multi-disciplinary applications, also automatic control applications, need to
be checked. In this phase scattered control applications can cause longer
downtimes, which are potentially costly.

Furthermore, modern automated plants are evolving over the time, as they
get adopted to meet new requirements. Also the according automatic control
software is changing. Software changes that are necessary to fix discovered er-
rors during ramp-up or maintenance phases need to be represented also in the
central data-repository. Hidden interfaces (e.g. global variables, hidden com-
munication channels) have to be avoided. They impede the comprehension of
the functionality but also reduce reusability of components using such hidden
interfaces.

For all these tasks a clear, comprehensible structure of the automatic control
application is useful. This structure has to resemble the hierarchical structure
of the ACs. Relationships of parts of the automatic control application with
the specification and documentation provided by the ACM have to be clearly
visible.

Different concepts—CFBs and Sub-App—are available to implement hie-
rarchical aggregation. Furthermore, hierarchical aggregation is clearly restric-
ting the use of component interfaces. Only connections to a single component
in the next higher level and to components in the next lower level are allo-
wed. Especially connections within a hierarchical level are forbidden. This re-
sembles the concept of hierarchical aggregation using sub-components. It also
helps to keep interfaces between components well-defined and stable. The
component of the next higher level can pass required data and events to other
components of the same level (i.e. coordination functionality).

Adapters (and adapter connections) are suitable for these inter-component
interfaces, and are proposed for this purpose. Resulting automatic control
applications—either generated or created manually—are less scattered. A
single adapter connection encapsulates multiple data and event connections
(in both directions). Only point-to-point connections between exactly one
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plug and one socket are allowed and possible. Errors resulting in missing or
misconnected data or event connections are prevented by the typed nature of
adapters.

From a logical point of view there is no preference, which side of the com-
ponent interface is represented by plug or socket. Whether the higher or the
lower abstraction level shall be represented by plugs or sockets is merely a
matter of taste. A flow from left to right, as for writings, can be considered as
criterion [163, 174]. Combined with a top-down approach in grasping and un-
derstanding things this leads to the following convention: Top-most levels in
the hierarchical aggregation are placed on the left-hand side, lower-level im-
plementations to the right. Hence, higher composition levels are represented
by plugs and lower composition levels by sockets. The use of Sub-Apps and
adapters for the hierarchical aggregation and structuring of automatic control
applications is shown in Figure 4.8.

B
IF_D >>

IF_E >>

>> IF_B
D

>> IF_D

E
>> IF_E

IF_B
DATA_FROM_B

CMD_B_2RSP_B_2

DATA_TO_B

CMD_B_1RSP_B_1

C
>> IF_C

A
IF_B >>

IF_C >>

>> IF_A

Figure 4.8: Hierarchical Structuring of automatic control applications: The
sub-applications (A, B, C, D, E) provide bi-directional interfaces in form of
adapters (e.g. IF_B, presented in bottom left). These adapters may include
multiple event and data interfaces. By connecting compatible adapters with
adapter connections (i.e. connection lines between the sub-applications) all
data and event interfaces, that are provided by the adapters, are also connec-
ted.
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4.5.2 Process Interfaces for Automatic Control Applications

Increasing reusability, and thus reducing development effort, is a driving force
in automatic control research. This issue is tackled by the creators of IEC 61499
with the paradigm of device independent modelling of distributed automa-
tic control applications [59]. Finished applications are later distributed (i.e.
mapped) to the available control devices. This methodology is also known as
application-centric engineering.

However, the mere presence and knowledge of this paradigm is not en-
ough. Exploiting runtime specific mechanisms, which influence the behaviour
of automatic control applications, has to be avoided. Also the inclusion of
hardware-access functionalities in automatic control applications is rendering
automatic control applications hardware specific. Separate steps—hardware-
independent development and mapping to specific devices and available
I/Os—are often intertwined. A major reason is the limitation in available
execution platforms and control devices. Hence, methods and design patterns
are needed to increase portability and reusability.

Nested Inputs and Outputs SIFBs which provide access to I/Os can be di-
rectly included in automatic control applications [160, 175]. This approach
leads to fast results when the targeted execution platform (including for
example fieldbuses or internal backplanes) is well known. However, pos-
sible usage on different hardware is limited. A review of the automatic control
applications regarding the used SIFBs is necessary. Either the same SIFBs can
be used or other SIFBs which provide the functionality on the new control plat-
form have to replace the unsupported ones. Engineering tools do not support
this re-engineering process well [176]. But what is even worse is, that hard-
ware dependencies can be hidden in CFBs. SIFBs can be used like any other
FB. Therefore, they can also be used to define the internal behaviour of CFBs.
However, such hidden interfaces inhibit the use of such CFBs on different
platforms. All inner FBNs of CFBs included in an automatic control appli-
cation need to be checked for hardware-dependencies. As a CFB may also
include other CFBs this has to be done recursively during a re-engineering
process. Hence, only hardware-independent functionality should be included
in CFBs [162, 163]. Hardware-dependent functionalities have to be added to
the automatic control application and need to be connected to the hardware-
independent parts via clearly defined interfaces (i.e. FB interfaces).

However, such a re-engineering process to adopt an automatic control ap-
plication for a new hardware configuration does not solve the problem per-
manently. Each platform change triggers a new adaptation process. Even for
automatically generated automatic control applications some manual checks
need to be done by automatic control engineers.

Generic I/O SIFBs can help to overcome the need to review and replace
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hardware specific SIFBs if the control platform is changed [176, 177]. SIFBs
with standardised interfaces (e.g. analogue input, digital output) have to be
provided on multiple platforms. Hence, no major changes to the FBN are nee-
ded before they are deployed to another platform. Ebenhofer et al. [176] have
shown the feasibility of such an approach on 4 different hardware platforms.
Hollow shells are provided for the generic SIFBs—digital input and output as
well as analogue input and output. Device-specific code is included during
the configuration and porting of the runtime environment FORTE to a specific
hardware platform. Hence, hardware dependencies are moved from the au-
tomatic control application into the runtime environment. For each runtime
environment the effort of porting has to be taken. SIFBs with stable, generic
interfaces do not need to be replaced within the application. However, the run-
time system needs information, where to write or read process data. Configu-
ration data, which is dependent on the actual implementation (e.g. port, slot,
module), needs to be provided as parameters. To hand this information to the
runtime system, such data can be encoded into a single parameter input [176].
As a consequence only configuration parameters have to be adopted when
moving hardware-dependent SIFBs to another platform. With improved tool
support this task is easier to perform than searching and replacing FBs.

Local Multicast Pattern The separation of I/O access from the automatic
control application is another approach to increase portability. Thrambouli-
dis [178] introduces the concept of Industrial Process Parameters (IPP). These
are a set of parameters of the underlying process, which are used in the auto-
matic control application. They are linked to a Process Interface FB Diagram.
The actual I/O access is modeled in this separate application also by means
of IEC 61499 FBs. Landsteiner et al. [179] also propose the separation into
two applications: (i) a control application, and (ii) an I/O application. Hard-
ware dependent FBs are banned from the control application. SIFBs within the
I/O application provide the hardware access. Hardware independent SIFBs
are used to link both applications. The Local Multicast design pattern using
the PUBL/SUBL SIFBs is proposed in [179]. In the Local Multicasting me-
chanism data is published (by a PUBL-FB) together with an ID on a common
channel within the device (e.g. shared memory). Any potential recipient (i.e.
SUBL-FB), who uses the same ID receives the data. This is an 1 to many data
exchange mechanism. Replacing these links by network communication (e.g.
using UDP multicast) is easily possible. Hence, also different devices can be
used for I/O access and control application. Big effort has to be put in the
configuration of the communication channels, as the correct IDs have to be
used by all communication FBs. Furthermore, a data-type mismatch is only
recognized during runtime. Also here, the SIFBs can be hidden within several
layers of CFBs.
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The industrial runtime implementation of nxtControl, which is based on
FORTE, is using so-called SymLinks [180]. They are based on the local mul-
ticast pattern and automatically provide unique communication channels on
the automatic control application side. Hence, only on the I/O access applica-
tion side the communication channels have to be configured, greatly reducing
the effort.

For all approaches based on the (local) multicast pattern the interfaces to
the I/Os are hidden within the automatic control application and not directly
visible. It is not easily possible to identify the parts of the automatic control
application, which are interacting with the process. Hence, grapsing the func-
tionality (e.g. in case of maintenance) is impaired, which potentially prolongs
down-times. Even more, these approaches reintroduce global variables, which
have been banned for good reasons, in a slightly more regulated form. Poten-
tial pitfalls are also multiply connected/used inputs and outputs. Further-
more, data type inconsistencies can be hardly checked.

Instrumentation- and Control-Points The concept of Instrumentation- and
Control-Points (ICPs) has been introduced for the abstraction of plant in-
terfaces [181]. ICPs provide—equivalent to measurement points in process
control engineering—a unified interface to specific, well-defined parts of the
plant (e.g. component, module). All relevant hardware access functionality
(i.e. sensors and actuators) are encapsulated by the ICP. Towards the au-
tomatic control logic these functionalities shall be represented by adapters.
Hence, a clear separation of logical and hardware-access functionalities with a
well-defined interface is reached.

For the adapter interface (i.e. the ICP) functional requirements, and to
a limited extent also non-functional requirements (e.g. timing), as well as
constraints can be defined and visualised. The interaction of the automatic
control application and the controlled process can be specified with service se-
quence diagrams. Timing of the interactions can be specified with extensions
to service sequence diagrams. During the hardware independent develop-
ment of the automatic control application, the hardware access is represented
by the ICP (i.e. plug). Within the hierarchical structure of the automatic control
application only the lowest levels have access to hardware via the well-defined
interfaces of the ICPs (see Figure 4.9).

Another advantage of these well-defined interfaces is, that the ICPs also act
as variation points for the concrete hardware implementation. Hardware com-
ponents that provide compatible implementations together with compliant in-
terfaces towards the automatic control application (i.e. the same adapter type
as ICP) are interchangeable. Further requirements for the provided services,
that are not be specified for the ICP (e.g. force, momentum, range), have to be
taken into consideration though.
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Figure 4.9: The hardware-access functionality is extracted from the lo-
west control level into special Sub-Applications. These Sub-Applications
are connected with adapters, which represent Instrumentation- and Control
Points (ICP).

Adaptation of ICPs to Control Hardware and Platform Hardware access
functionality has to be provided by the control devices. As interface towards
the automatic control application the socket of the ICP is used. Hardware ac-
cess Sub-Apps encapsulate SIFBs, which either directly access attached equip-
ment or provide access to equipment that is connected via fieldbus systems
[164]. The possibility to change the interface (except the adapters themselves)
as well as the internal FBN even late in the implementation process (e.g. even
after the mapping to the devices took place) is the biggest advantage of Sub-
Apps over CFBs.

Additional functionality for the adjustment of sensor values can be added,
if the data format of the values received from the hardware interface does not
match the expected format at the ICP. If in the automatic control application a
temperature value in floating point representation (data type REAL) is expec-
ted and the temperature sensor only provides a voltage signal at the hardware
interface a value transformation between the two representations has to be ad-
ded (e.g. based on sensor characteristics or look-up table) [59]. The hardware-
access Sub-App can be adjusted during the deployment process to meet the
actual situation in the plant (e.g. change of port for a specific sensor). Hard-
ware interfaces that may be used by multiple logical components (e.g. fieldbus
access) can be integrated in a single hardware-access Sub-App which provides
multiple ICPs.

Finally, also ICPs which provide access to a plant simulation application
can be implemented [177]. The explicit connection to either the process inter-
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face or the simulation by ICPs on the basis of adapters offers an elegant way
to hybrid simulation.

4.5.3 Simulation of Plant Behaviour

The runtime environment FORTE is used as basis for the simulation frame-
work, as it provides concepts that are needed by discrete event simulation
environments on the one hand and is able to directly run automatic control
applications on the other hand. Hence, also the plant behaviour is simula-
ted with this runtime environment. The simulation application, which mimics
the behaviour of the automated plant, has to be provided as FBN. The same
structuring principles as for automatic control applications apply also for si-
mulation applications (see Section 4.5.1).

Starting from the hierarchical ACM a hierarchically structured plant simu-
lation application is logical. Hence, in parallel to the automatic control appli-
cation, which follows the ACM hierarchy, the plant simulation application is
created. However, these applications are not independent from each other. In
a validation scenario (i.e. with the simulation of the plant behaviour) the au-
tomatic control application is interacting with the plant simulation. Sensors
and actuators act as coupling elements. In the automatic control application
these coupling elements are encapsulated and provided by ICPs. With well-
structured applications only the lowest levels in the control layer have direct
access to the hardware.

From the plant simulation application these hardware functionalities—
sensors and actuators, either directly attached or integrated via fieldbus—have
to be provided. But in contrast to the automatic control application sensors
have to be treated as outputs in the simulation application and actuators are
inputs. Also in the simulation application the interaction with the automatic
control application is restricted to the lowest level. Both applications can then
be conceptualised as triangles or pyramids. The number of components is de-
creasing for higher levels (due to the integration of multiple sub-components).
The simulation application and the automatic control application are both
hierarchically structured and allow interaction with each other only via well-
defined interfaces. These interfaces, the ICPs, are located at the lowest level
(i.e. the base of the pyramid). Figure 4.10 visualises the integration of both
applications for an exhaustive validation of the automatic control behaviour.

Implementation of Timed State Charts The behaviour specification of plant
components rests upon timed state charts (see Section 3.3.1). Physical changes
of plant components due to services requested by the automatic control layer
are affected with time coefficients. In discrete-event based notation delays are
sufficient for modelling the process. For the implementation of timed state
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Figure 4.10: Automatic Control Application and Plant Simulation are integra-
ted with Instrumentation- and Control Points.

charts with means of IEC 61499 FBs two feasible methods exist:

• New FB type: A new FB type could directly use the timed state chart as
specification of the internal behaviour. Hence, the transition from mo-
delling to executing the plant behaviour simulation is simple. However,
such an FB type also needs to interact with timers. Timers are provi-
ded by the runtime environment (and the underlying operating system
or hardware, dependent on the target platform). Such a new FB type is
therefore based on the SIFB type. The additional behaviour description
method of timed state charts limits engineers in the choice of engineering
tools (i.e. violate the configurability principle [60]).

• Existing FB types: The timed state chart (excluding the timing informa-
tion) can be transformed to an ECC of a BFB. ECCs are finite state machi-
ned based on Moore machines. Moore machines do not support exit ac-
tions, which are triggered when leaving a state. However, the behaviour
specification of the proposed engineering approach (see Section 3.3.1 and
Section 4.2.2) makes use of exit actions to keep the specification compact.
Hence, additional states need to be added in the ECC. Timed transitions
are realised by adding additional input and output events at the BFB.
External E_DELAY FBs are connected to these event I/Os and provide
timing information to the BFB. Transitions without timing information
as well as actions are directly implemented within the BFB. To improve
readability, the BFB and the additional E_DELAY FBs are encapsulated
in a CFB.

The second implementation alternative is available on different runtime
environments and platforms. Furthermore, any available engineering tool,
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which is IEC 61499 compliant is able to read and modify such implemented
FBs. As the state charts of the behaviour specification and the ECC have dif-
ferent semantics, model transformation has to be applied. The first option
would allow to directly use the unmodified plant behaviour specification. Ho-
wever, its use would limit the engineers to a single engineering tool. For confi-
gurability reasons, the use of existing FB types is the preferred implementa-
tion.

Physical Interfaces and Links Physical links are a complimentary concept to
the logical behaviour of plant components. Within the physical plant additio-
nally to the data and information exchange also physical exchange takes place.
Physical interactions of the components includes for example material trans-
port, forces, and movements. For the simulation of such interactions, physical
interfaces have to be added to the components of the plant behaviour simula-
tion application.

The physical exchange is modelled by connections of compatible physical
interfaces (i.e. material transport is only possible via the connection of 2 Ma-
terialFlowPorts). Even more, the physical interaction is not limited to the same
hierarchy as the logical aggregation of ACs.

The physical interfaces of the plant components (e.g. flanges) are repre-
sented by adapters. The physical links (i.e. the connection of physical inter-
faces) are implemented by adapter connections. Adapter interfaces only allow
a 1:1 connection, which is equivalent to the real world, physical interfaces. As
the plant simulation applications are mostly generated automatically from the
specification provided in the ACM, good readability and understanding is en-
sured. Furthermore, only compatible adapters (i.e. plugs and sockets of the
same type) can be connected, which helps to prevent errors.

Currently two types of physical interfaces have been incorporated into the
plant model: material flow and kinematic chains for modular robotic applica-
tions. These show the feasibility of the proposed approach (see Chapter 5).

Material flow The material flow is an important physical interaction in pro-
duction systems. Hence, the inclusion in plant simulation approaches is es-
sential. The operation of sensors, which indicate the presence of material (e.g.
a palette in a palette transportation system), triggers events in the automa-
tic control application. Material flow between two components is represented
by a data exchange in the simulation model. This data exchange has a di-
rection corresponding to the movement of the material from one component
to the other. Furthermore, components have a distinct number of interfaces,
where they are able to receive material or send it to another component. Each
of these interfaces is represented by a Material Port—an adapter interface in
the IEC 61499 based plant simulation application. Hence, adapter connec-
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tions are providing the links between two components. These links are logical
links only. Such a link between plant components, which represents the ma-
terial transfer, does not provide space for the material itself. If for example a
conveyor belt is completely filled with palettes, it is not able to accept additio-
nal material. For that reason, a handshake protocol for the simulated material
exchange between plant components is necessary. Hence, material can only be
sent to the next component, if this is ready to receive the material.

The internal material handling has to be specified dependent on the type of
plant component. A component can represent a buffer for a specific number of
pieces (e.g. example aggregating conveyor belts) or change the type of material
(e.g. assemble multiple parts to a new part, drill holes in a part). Material
handling and manipulation operations have to be specified within the plant
behaviour specification.

Kinematic chains For the validation of flexible, reconfigurable manufactu-
ring systems, robotic modules are an important component class. The pose
(position and orientation) of a component is dependent on the poses of all pre-
vious components in the kinematic chain. Movements of the machines, built
from multiple components, require kinematic chains to calculate the absolute
position of all components. Interfaces, where components can be connected,
are also represented by adapters. The calculation of position and orientation
for each connector of a component is calculated using forward kinematics and
the geometrical displacements from the component’s base (also variable if de-
pendent on actuators provided by the plant component). A widespread me-
thodology for the direct calculation of forward kinematics, based on matrices,
has been introduced by Denavit and Hartenberg [182]. The pose at the com-
ponent’s base (in reference to a base coordinate system) is the same as the
“output” pose of the (directly connected) previous component. If the pose of
a component changes (due to movements requested by the automatic control
application), the poses of all downstream components (i.e. towards the end-
effector) are recalculated. Since building kinematic chains is a process with an
explicit direction, adapter interfaces and adapter connections are well suited
as representation in the IEC 61499 based plant simulation applications. Other-
wise, multiple data and event interfaces as well as according connections are
needed, which results in scattered applications.

Simulation coordination For some components or plants detailed simula-
tion models exist. The reuse of these models for the validation of the automatic
control applications could faster lead to simulation results, which are reliable
and trusted. Existing know-how on the external, specialised simulation tools
(e.g. Arena, Dymola, OpenModelica, Matlab/Simulink) can be used as exten-
sion to the behaviour specification via timed state charts, which is the core
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specification method in the ACM7. Nevertheless, not all aspects (e.g. conti-
nuous, internal behaviour) can be described with this method. Furthermore,
the external simulation tools and their models are well known to domain spe-
cialists. However, the integration of external simulation tools requires some
adaptation of the simulation models and the coordination of the simulation
execution:

• Interfaces between the external simulation application and the plant si-
mulation application (i.e. IEC 61499 based application) have to be inclu-
ded. The purpose of such interfaces is the provision of a control-interface
within the simulation application. Hence, access to (virtual) sensors and
actuators has to be provided. Three possibilities for the implementation
of such interfaces (events and data) exist. First, if the external simulation
tool already provides the possibility to exchange data over the network
the en- and decoding can be implemented in FORTE. Second, standard
network interfaces as provided by all IEC 61499 runtime environments
can be used. This requires additional functionalities (e.g. data enco-
ding) to be implemented for the external simulation tool. Third, an inde-
pendent communication platform (e.g. communication middleware) can
be used. Adaptations on both sides are necessary in this case. The choice
of the integration method is mainly dependent on the external simula-
tion tool and its interfacing capabilities.

• Synchronous time is a prerequisite, when multiple simulation execution
systems are used in the same simulation scenario. Dependent on the
possibilities of the external simulation tools and the scenario the time
advancement method has to be chosen. For hybrid simulation (i.e. parts
of the automated control system are already operational) it is necessary
that all simulation tools are running at normal speed (i.e. at world time).
In pure simulation mode, with an external simulation tool included, the
conservative time synchronisation mechanism can be used, if it is sup-
ported by the external simulation tool. This would allow advancing at
variable speed. In all other cases, a constant time advancement has to
be used throughout the whole simulation scenario. Either nominal time,
increased or decreased time advance can be used to meet the simulation
requirements.

4.5.4 Execution System

The ICPs previously introduced represent the plant interface in automatic
control applications. The hardware access functionality, either hardware de-

7The focus lies on the interface behaviour, which can be sufficently modelled with timed
state charts.
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pendent process interfaces or coupling logic to the plant simulation appli-
cation in form of SIFBs, is connected to the control logic via typed adapter
connections.

Integration of automatic control and simulation execution in a single device
Using the same runtime environment as basis for the execution of the auto-
matic control application and the plant simulation application makes it even
possible to run both applications on the same devices (see Section 5.4). The
adopted simulation scenario is shown in Figure 4.11. The restriction of I/O-Sim

Control Device
&

Simulation Device

Control Device
&

Simulation Device

Figure 4.11: The automatic control application and the plant simulation appli-
cation are executed on the same devices.

interfaces to single devices opens the possibility to limit the hardware access
functionality for coupling the automatic control application and the plant si-
mulation application to the local multicast pattern. The local multicast pattern
allows to link applications or application parts in different resources on the
same device. It is comparable to variables which are globally accessible within
a single device. Hence, the naming of the variables (i.e. the channel ID) has to
be well chosen to avoid multiple usage of the same link.

Interaction of Plant Behaviour Simulation and Automatic Control Appli-
cation Generic hardware access FBs can be used in the “normal” hardware
access Sub-Apps. Such generic hardware access FBs can then be replaced with
local multicast mechanisms by the runtime environment. The configuration
parameters of the generic hardware access FBs can then also act as unique ID
for the local communication channel. However, the runtime environment has
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to know, when the real hardware access or the simulation access needs to be
used. A manual replacement of the hardware access Sub-Apps is possible.
This allows the application of the simulation approach also with runtime en-
vironments and engineering tools which cannot be adapted to perform the
changes automatically. However, an automatic process helps to reduce the en-
gineering effort for switching from simulation to operation. Four possibilities
for automatically changing the target of the generic hardware access FBs are
feasible:

• Special device type: With the introduction of a special device for the exe-
cution of plant simulation special versions of the generic hardware access
FBs for linking automatic control with simulation can be included in the
device. The modification of the HAL completely takes away the need
to modify the automatic control application. The switching between si-
mulation and operation is only dependent on mapping to the according
target device. Through the modification of the HAL it is not possible to
access the real process from such a special device. Hence, it is not pos-
sible to perform hybrid simulation with only one device.

• Special resource type: It is also possible to provide two implementa-
tions for the hardware access FBs in a single device. The decision, which
version—direct hardware access or simulation access—can be done ac-
cording to the resource type. Modifications to the device manager func-
tionality of the runtime environment are necessary. With such a modi-
fied runtime environment it is possible to perform hybrid simulation on
a single device. Only the change of mapping is necessary to switch bet-
ween normal operation and simulation. Furthermore, the same control
device can be used for normal operation of the plant, without further
adoptions to the runtime environment.

• Additional Boolean flag for the generic hardware access FBs: The swit-
ching process can also be implemented in the generic hardware access
SIFBs. Either as an additional data input (e.g. a flag) or integrated in the
parameter input the mode selection can be communicated to the generic
FB. During its initialisation phase the selected behaviour is selected. This
approach allows mixing access to the real process and the simulated pro-
cess within a single resource. Changing the parameters is only slightly
less effort to replacing the hardware access Sub-Apps. The generic hard-
ware access FBs are more complex, since code for both cases (i.e. access
to hardware and access to simulation) needs to be provided. However, in
contrast to replacing FBs in a running application, the change of parame-
ters and re-initialization of FBs is easier (i.e. requires less reconfiguration
commands) [62].
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• Deployment mechanism of engineering tool changed: Instead of modi-
fying the runtime environment the replacement may also be managed
by the engineering tool. During the deployment process a different FB
type may be instantiated in the runtime environment. This can be done
transparently for the automatic control engineer.

Time Management For simulation environments the time management is a
core feature. It allows adopting the time advancement to the activity in the si-
mulation model. Hence, the simulation time can advance independently from
the world time either at decreased, increased, or at variable speed.

Conservative time management maintains a common list of future events
(comparable to the list maintained by the time manager of FORTE). Time is
then advanced to the next event in this list. Optimistic algorithms require the
implementation of sophisticated roll-back mechanisms, as the causality may
be violated (see Section 2.4). Such a feature is specific to discrete event simula-
tion. The integration in an existing runtime environment for automatic control
requires extensive changes in the software architecture. Hence, the conserva-
tive time management methodology is best suited for the integration in the
existing runtime environment.

In a single instance of the runtime environment FORTE the functionality
of the future event list is provided by the timer handler. Even networked
FBs—another class of ESFBs—only provide (passive) communication services,
if they are used within the boundaries of the validated system. Therefore, all
events are originating from timed FBs.

However, for the determination of activity within the device—multiple
event chains may be active in parallel—and for the coordination of multiple
runtime environments the time management functionality is implemented in
the event chain and the timer manager classes.

Evaluation of Network Influence In the design of discrete and distributed
control applications network communication between the devices has an im-
portant influence. Nevertheless, this influence is hardly considered in the de-
sign of automatic control systems [183]. Communication systems between the
controllers are often treated as ideal at the time of automatic control appli-
cation engineering. Packet loss, jitter, limited bandwidth, like many other
properties of real communication systems are not taken into consideration.
For specific fieldbus types configuration tools provide analysis features. Such
tools are mostly aiming at scan-based systems with periodic data exchange,
for example time-triggered communication protocols [157]. However, worst
case assumption can also be used for event-based communication. Neverthe-
less, tools for the configuration and analysis of fieldbus and network systems
are not integrated in the automatic control application design. Feedback is
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not provided during the development of the application and the mapping de-
cision. Hence, the influence can be experienced for the first time during the
commissioning phase. Changes to the mapping, the introduction of more po-
werful communication systems, or other measures to reach a reliable automa-
tic control system at such a late point in time are costly.

Network simulation has emerged and is currently quite mature. There exist
commercial network simulation tools and reliable, academically used and de-
veloped open source simulation environments alike (e.g. OPNET Suite [184],
ns-2 [185], ns-3 [186]) The mentioned simulators already provide a huge va-
riety of models. Hence, they are applied for the simulation of global backbones
(internet) as well as for local wireless applications [186].

Integrating network simulation in the simulation scenarios for the valida-
tion of automatic control applications provides feedback on design decisions
in a more timely manner. Changes in the mapping and the execution system
can be thoroughly planned and alternatives can be evaluated. For that reason
network simulation is included in the simulation framework for distributed
control systems.

4.6 Summary

Simulation is a validation method that is seldom used during the development
of automatic control applications for manufacturing systems. Commercially
available simulation frameworks do not allow to thoroughly validate the later
deployed automatic control applications. Three scenarios that need to be co-
vered by validation methods for automatic control have been identified: full
simulation, hybrid simulation, and testing of the commissioned plant.

The plant behaviour specification is also included in the ACM, which is the
central engineering data repository (see Chapter 3). Timed state machines are
fulfilling the requirements for the behaviour specification. Also physical in-
teractions of the plant components are included, which directly influence the
behaviour of automated plants. From the specified plant behaviour a plant si-
mulation application is generated with similar means as the automatic control
application in a hierarchical structure.

As available simulation frameworks are not suitable to validate automa-
tic control applications the aptness of event-based automatic control runtime
environments compliant with the international standard IEC 61499 is evalua-
ted. The execution semantics of the runtime environment FORTE makes it
suitable as basis for a simulation framework. Event based execution is a more
general approach than the scan-based execution [59, 157]. Therefore, it is pos-
sible to emulate scan-based execution on event-based runtime environments.
For that reason, it is feasible to validate the behaviour of control applications,
which have been engineered with the model-based approach presented in the
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Chapter 3. Wenger [187] provides strong evidence, that functional equivalence
of event-based and scan-based automatic control applications can be reached.
Hence, appropriate and well tested model transformations are sufficient for
a reliable validation of automatic control applications using only event based
execution.

Using the same runtime environment for the operation and the validation
is a conveniant solution. This allows to use the same automatic control ap-
plication (without the need to change) in both simulation and operation. Fur-
thermore, real control devices can be used also in simulation scenarios as soon
as they are available. Hence, the final execution system setup, including the
communication network, is already used and assessed before the commissio-
ning phase. Both, dedicated simulation devices as well as special simulation
resources in normal devices can be provided for any platform that is suppor-
ted by FORTE. The time management functionality is a necessity for the full-
simulation scenario. Implementation options for its integration in simulation
devices, based on FORTE, are presented.

For both applications, plant behaviour simulation application as well as
automatic control application, a clear presentation of the functionality to dis-
cipline experts (i.e. automatic control engineers) is necessary. Guidelines for
the creation of hierarchically structured applications using strict interfaces (i.e.
adapters) are presented. ICPs are introduced to represent the plant interfaces.
These also facilitate switching from accessing the simulated plant to the real
plant.

Finally, modelling elements for the implementation of plant simulation ap-
plications are presented. FBs, whose behaviour is represented by timed-state
charts, are used as representation of plant components. Also methods to re-
present physical interactions of plant components (e.g. material flow, move-
ments) are provided. These modelling elements, as well as the application
guideline, build the basis for the implementation of (semi-)automatic model
transformation facilities for the application of code generation.



CHAPTER 5

Implementation and Experiments

In order to validate the modelling and simulation concept presented in the pre-
vious chapters all relevant elements of the engineering and simulation frame-
work have to be implemented. Hence, the modelling infrastructure from disci-
pline and domain specific engineering tools to the common Automation Com-
ponent Model is ellaborated. A second aspect is the automatic code generation
from the Automation Component Model by means of model transformation
facilities. This process is demonstrated for the target language IEC 61499. Si-
milar model transformation rules are used for both the automatic control ap-
plication and the plant simulation application.

The proposed development approach offers the possibility to validate the
designed plant setup early in the development process. Special focus is put on
the integration of simulation as validation methodology.

Finally, test cases from three different application domains are presented:
discrete manufacturing plants, robotic applications, and process technology.
These test cases show the feasibility of the proposed model-based engineering
approach and the integration of various simulation scenarios in the model-
based engineering environment, from full simulation via hybrid simulation to
full operation as presented in Section 4.1.

5.1 Developed Modelling Infrastructure

In this section implementation details regarding the modelling of plants are
presented. This includes

• the integration of discipline specific engineering tools,

• the integrative Automation Component Model, and
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• the model transformations to gather information from the engineering
tools and bring it into the Automation Component Model.

5.1.1 Integration of Modelling Tools

There is a large number of tools which are used by domain experts to specify
plants. With the proposed modelling approach relevant engineering data is
extracted from such tools and combined in the ACM. Based on the selected
test cases two different tools are integrated for demonstration:

• StarUML: StarUML is an open source UML-Editor [154]. It supports dif-
ferent diagram types, which can be limited or extended by UML profiles.

• Schunk ViroCon: ViroCon is a configuration tool for robotic applications
built of components from the company Schunk [188]. It supports the
provision of text-file based BoMs as well as movement specifications.

StarUML

StarUML is an open source UML Editor [154]. The software is able to pro-
vide many useful functionalities which are also provided by commercial UML
tools. It allows to define and use UML profiles. Hence, it is a well suited can-
didate to show the integration of a Unified Modeling Language (UML) tool in
the modelling workflow.

The structure of component based plants can be described with Class Dia-
grams. The Class Diagram is one of 7 structural UML diagrams, usually used
for software development. It is best suited to describe the entities (classes),
their relationships, and their interfaces [189, 190]. Only little adaptations are
necessary for an automatic interpretation of the model, including hardware
information. The behaviour specification of the automated systems can be
provided by Statechart Diagrams (see also Section 4.2.2). From the available
diagram types two UML diagram types have been chosen:

• UML Class Diagram, and

• UML Statechart Diagram.

Existing UML concepts are used to represent and model building blocks
of automated systems. There is no unique way for linking UML concepts to
modelling elements, as UML is a general purpose modelling language [189].
Therefore, a semantic fundament has been created with industrial experts in
form of a UML profile [189, 191]. It allows unambiguous interpretation of the
models and also automatic data extraction. The enriched UML diagrams are a
powerful and expressive Domain Specific Language (DSL) for the modelling
process of Automation components.
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Structural design of the automated systems The UML Class Diagram,
which has been concretized by the UML profile, is well suited as DSL for
the specification and description of the building blocks of component-based
automation systems. A component type (i.e. Automation Component (AC))
is represented by a Class in the diagram. Two stereotypes that ease modelling
and data extraction have been introduced:

• Class stereotype Basic, and

• Class stereotype Composite.

Basic ACs have a direct process interface, which enables them to inter-
act with the plant. However, they are not allowed to contain further ACs.
Composite ACs on the other hand consist of other ACs. The contained sub-
components are represented as classes, which are linked to the composite AC
by a composition. Cardinality measures indicate the number of contained ele-
ments of the same type. Composite ACs are not allowed to directly interact
with the plant and therefore use services that are provided by the contained
components.

For modelling interactions within a composite component, all contained
components are modelled as distinct Objects in the Class Diagram. Interactions
are represented by Links between these objects.

Interface design for a component type The Class Diagram also offers
concepts that can be used for the specification of interfaces [189]. UML Ope-
rations are used for that purpose [191]. Stereotypes have been introduced to
distinguish the different interface elements of an AC:

• IN: is an inter-component interface element, where the component is re-
ceiving information from another component.

• OUT: This stereotype marks an interface element, which provides infor-
mation for other components.

• PlantPort: is an interface element that provides the process interface. It is
also used to link the plant simulation model with the control model.

• MaterialFlowPortIN and MaterialFlowPortOUT: These stereotypes desi-
gnate physical ports of the controlled plant, where material can be recei-
ved from or provided to other components.

• KinematicPortIN and KinematicPortOUT: UML operations with these ste-
reotypes represent physical connectors of the plant, where components
can be joined.
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Modelling control behaviour The behaviour of composite ACs is defined by
the included components. For basic ACs the behaviour needs to be explicitly
defined. Apart from the model of the component structure (including the in-
terfaces) UML is also apt to specify the behaviour of components. The UML
Statechart Diagram is well suited to describe discrete behaviour.

For the modelling of control behaviour the expressiveness of UML Sta-
techart Diagrams is limited by the defined UML profile [191]. Only Moore
machines shall be supported by the modelling language. Hence, only entry
actions of the states are considered for the specification of the component be-
haviour. For a deterministic behaviour, one of the states is designated as initial
state by the UML pseudostate “initialstate” together with a transition to this
state. States and transitions do not require any further extensions or limita-
tions by the UML profile.

Within entry actions, which are executed whenever a state becomes active,
interface elements can be changed. The Tagged Value concept of UML profiles is
used to define the syntax of such changes. PortChange is the according concept,
which has been defined for the specification of the component behaviour.

State transitions are in most cases dependent on a condition, which has
to be met. Such a condition may either be a value of an interface element or a
time delay. Each case is designated with a stereotype on the Transition element:
PortCondition, or DelayCondition.

Modelling plant behaviour Statechart diagrams are also used to specify the
plant behaviour. Plant behaviour and control behaviour modelling is done in
separate diagrams. A stereotype PlantModel is used to distinguish plant beha-
vour specifications from other diagrams. The same semantics as for the control
behaviour specification are applied. However, different interface elements are
used to interact with other components.

The PlantPort elements are used to interact with the related control ap-
plication. Physical ports, such as kinematic ports and material-flow ports,
are connected to compliant ports to model physical interaction of the ACs.
Changes to the data, for example coordinate change as a consequence of com-
ponent movement or material handling, have to be modelled in the entry ac-
tions of the states.

ViroCon

The ViroCon tool allows to specify and validate robotic structures composed
of robotic components from Schunk [188]. A comprehensive catalogue of avai-
lable components, including information on mechanical connectors, bounda-
ries of movement, and 3D models, is supporting the specification. The works-
pace of the configured kinematic structure can be calculated and visualised.
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Furthermore, movements of the components can be simulated, collisions are
detected, and motion plans can be created.

The list of components is provided as XML file. The created motion plan,
with movements of the single components, is provided as text-file with a fixed
structure.

5.1.2 Developed Models

The Eclipse framework offers an open and extensible infrastructure [192].
Hence, it is used for many software development projects. The Eclipse Mo-
delling Framework (EMF) project uses the Eclipse Framework as basis and
provides extensions [193]. EMF provides a powerful meta-modelling infra-
structure. Furthermore, comprehensive editing functionalities are provided,
which allow the manipulation of the models as well as a tight integration in
model-based engineering approaches [193].

These properties make EMF a suitable basis for the implementation of the
models presented previously (see Sections 3.3 and 4.2). All meta-models of
the proposed models have been implemented as graphical ecore diagrams.
The resulting ecore class diagram for the Plant Model (PlaM) is shown in
Figure 5.1.

Additional classes have been added to enable model management func-
tonalities. Many elements have been implemented as named elements. Fur-
thermore, the separate models, which represent different aspects of the speci-
fied automation project (e.g. control behaviour, plant behaviour), need to be
integrated. The top-element in the integrating Automation Component Im-
plementation Model (ACIM) is the AutomationProject element. Within this uni-
fied model, links between different modelling elements can be established (e.g.
PlantPort elements). These links allow traversing through the whole model.

The implemented models have been included in a stand-alone applica-
tion, the MEDEIA Engineering and Configuration Environment (MECE) [194].
MECE provides basic functionality for specifying, reviewing, and refining au-
tomation component models. The information is presented in a tree-based
editor, which resembles the class relations of the modelling elements. For the
PlaM both the PlantComponentInterface and the PlantBehaviourModel have to be
provided. Figure 5.2 provides an insight on the model editor for an example
of a PlantComponent.

The basic modelling environment is provided as open source project at
SourceForge [194, 195]. Additional functionalities, which are needed for the
proposed engineering workflow, can be directly integrated in this tool. Data-
import and code-generation facilities can be provided as Eclipse plug-ins with
full access to the models.
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Figure 5.2: Model editor for specifying, reviewing, and refining the automa-
tion component model.

5.1.3 Data Extraction

An important step in the proposed engineering workflow is the extraction of
relevant engineering data from the discipline and domain specific engineering
tools. StarUML with the proposed UML profile follow a well-defined meta-
model. Hence, it is possible to implement a model-to-model transformation
to gather data from the well-defined StarUML model and integrate it into the
modelling environment of the central engineering tool. A two stage approach
for the data extraction has been implemented:

1. The XML-based file format of StarUML is parsed and saved into an in-
termediate model, which can be randomly accessed.

2. A model-to-model transformation facility is used for filtering and trans-
fering relevant data into the respective model in the ACIM.

The syntax of XML allows to hierarchically structure data. Such data can be
presented as tree, the Document Object Model (DOM). Within this model each
element is of the same class. Strings (e.g. tags, values) are used to distinguish
the elements. The text-to-model transformation adds a classification of the
model elements. A hierarchical model of UML entities—represented as Java-
objects—is the result of this step.

In the second step, the hierarchical model is interpreted syntactically and
semantically. The previously defined stereotypes provide the necessary se-
mantic frame. Information gathered from selected UML models (i.e. Class
diagram and Statechart diagram) is relevant for the Behaviour Model (BehM)
as well as the PlaM (see Table 5.1).

The transformation process is implemented as PlugIn for the abovemen-
tioned MECE tool. The import wizard, whose user interface is shown in Fi-
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Table 5.1: UML diagram to ACIM entity mapping.

UML diagram ACIM sub-
model

ACIM model element

Class diagram BehM and
PlaM

Only the content of Class diagrams is
imported.

Statechart diagram BehM Behaviour Specification
«PlantModel» Statechart dia-
gram

PlaM Plant Behaviour Specification

Figure 5.3: User interface of StarUML import wizard.

gure 5.3, is provided as Java class. Hence, the import wizard can directly access
the models via model manipulation functions provided by the MECE tool.

Equivalent modelling elements, which are contained in the Class diagram,
are created in the according models (see Table 5.2). After creating the automa-
tion component types, the behaviour specification is imported. This can either
be a Statechart diagram for basic components or instantiated and connected
sub-components for composite components.

The statecharts defined in separate UML Statechart diagrams are used to
specify the behaviour of either the control behaviour or the plant component.
A common meta-model TimedStateChartModel is used. Hence, the same import
facilities and mappings can be used. These are shown in Table 5.3.
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Table 5.2: UML Class Diagram entity to ACIM entity mapping.

UML Class ACIM sub-
model

ACIM model element

«Composite» UMLClass BehM Composite Automation Component
PlaM Composite Plant Component

«Basic» UMLClass BehM Basic Automation Component
PlaM Basic Plant Component

«IN» UMLOperation BehM Inter Component Interface of Automa-
tion Component

«OUT» UMLOperation BehM Inter Component Interface of Automa-
tion Component

«PlantPort» UMLOperation BehM Process Interface of Basic Automation
Component, attribute direction used
for distinction of sensors and actuators

PlaM Process Interface of Basic Plant Com-
ponent, attribute direction used for dis-
tinction of sensors and actuators

«KinematicPortIN»
UMLOperation

PlaM Pose at the base of the Plant Com-
ponent

«KinematicPortOUT»
UMLOperation

PlaM Pose at interface to other Plant Compo-
nents (multiple ports per Plant Com-
ponents are allowed)

«MaterialFlowPortIN»
UMLOperation

PlaM Receiving Materialflow interface ele-
ment

«MaterialFlowPortOUT»
UMLOperation

PlaM Outgoing Materialflow interface ele-
ment

Links PlaM or
BehM

connect linked interface elements of
sub-components within containing
composite component

Table 5.3: UML Statechart entity to TimedStateChart entity mapping.

UML element ACIM model element
State State
InitialState State with attribute InitialState
OnEntryAction Algorithm
«PortCondition» Transition Transition with link to an interface element of the

containing component
«DelayCondition» Transition Transition with timed condition

The presented mappings of UML entities facilitate the fully automatic in-
formation extraction from UML diagrams. Automation Components specified
with StarUML can be brought into the developed ecore models without loss of
information.



5.2. Generation of Control and Simulation Code 115

5.2 Generation of Control and Simulation Code

Like the data extraction functionalities, code generation functionalities can be
integrated in the Eclipse-based modelling tool. The wizard for the genera-
tion of the the simulation application is depicted in Figure 5.4. The genera-
tion of the related automatic control application is selectable via a checkbox in
the user interface. The presented wizard is providing Model-to-Model (M2M)
and Model-to-Code (M2C) transformation. The provided model transforma-
tion framework as well as the workflows for the generation of FBs, automatic
control applications, and simulation applications are presented in this Section.

Figure 5.4: Export-Wizard for the creation of the simulation application.

5.2.1 Model Transformation Framework

The source models for the model-transformation are the previously defined
ecore diagrams (i.e. the ACIM and its sub-models) that are provided by the
extended MECE. For a M2M transformation also a meta-model of the target
model is needed. The according meta-model for IEC 61499, which is provided
in Backus-Naur Form (BNF) [60], has been translated to an ecore model in the
MEDEIA project. This allows to automatically generate Java-classes and mani-
pulation methods for all IEC 61499 modelling elements (e.g. devices, resource,
FBs, connections).

Although the transformation algorithms can be implemented directly as
Java program, a more efficient way has been chosen. The Modeling Workflow
Engine (MWE) is provided specifically for model manipulation and transfor-
mation tasks [196]. The generic representation of the workflow, which is used
for the creation of automatic control applications from a specified ACIM (for a
specific AC), is shown in Figure 5.5.

The process steps within the workflow are defined in XML syntax. Meta-
models, which are used within this step are explicitly specified. Each step in
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ACIM
Normalize Names

Create FBs
FB Library

Create Automatic 
Control Application

Modified 
ACIM

Automatic Control 
Application

Input Output

Figure 5.5: Workflow for the generation of automatic control applications (i.e.
control code).

the workflow has one output slot, which receives the results of the model-
transformation or model-manipulation steps. Finally, model-transformation
functionality is called (with the invoke command), and the according input mo-
dels are provided as parameters. The workflow element, which is normalizing
the names within the input model, is provided as example in Listing 5.1. It is
the first step in the implemented workflow (depicted in Figure 5.5).

Listing 5.1: Process Element for the Normalization of Names in Model Trans-
formation Workflow.
< !−− change MEDEIA model f o r f u r t h e r s t e p s −−>
<component c l a s s =" org . e c l i p s e . xtend . XtendComponent ">

<metaModel id="ecoreMM"
c l a s s =" org . e c l i p s e . xtend . typesystem . emf . EmfMetaModel ">

<metaModelPackage value=" $ {medeiaMM} "/>
</metaModel>
<invoke

value=" adaptModel::mmBuild::changeModel ( medeiaModelOrig ) "
/>

<outputS lo t value=" medeiaModel " />
</component>

The process steps within the workflow are implemented with a domain
specific language for the model transformation—XTEND with model trans-
formation extensions. This specialized high level specification language fea-
tures often needed methods. Iterations over multiple siblings in the model, for
example, can be easily performed by MWE and XTEND. In general purpose
languages, such as Java, the same tasks would require more complex control
structures and recursive methods. Hence, the domain specific language leads
to better readible transformation functions, which is an important reason for
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the introduction of DSLs in general [50]. The iteration to adapt the names in
ACs to meet requirements of IEC 61499, for example remove whitespaces or
unsupported characters, is shown in Listing 5.2. This is the method, which is
called from the workflow element previously presented.

Listing 5.2: Iteration over all Components in an AutomationProject.
apmm : : AutomationProject changeModel (apmm : : AutomationProject

ap ) :
l e t apn = ap : / / D u p l i c a t e Automation P r o j e c t
apn . a p p l i c a t i o n s . automationComponents . changeBMcompos ( )−>

/ / Change C o n t r o l Par t o f Components in s e p a r a t e method
apn . a p p l i c a t i o n s . plantComponents . changePMcompos ( )−>

/ / Change P l a n t B e h a v i o u r Par t o f Components in s e p a r a t e
method

apn ; / / r e t u r n changed Automation P r o j e c t

5.2.2 Generation of IEC 61499 Modelling Elements Library

The next step for both the automatic control and the plant simulation is the
creation of the FB library. A basic set of modelling elements (e.g. adapters,
FBs), which are a requirement for the implementation of specific functionalities
modelled in the ACIM, is automatically added to the library. However, nei-
ther automatic control nor simulation applications can be automatically built
only from pre-defined modelling elements. The behaviour of ACs (plant and
control) can be defined by arbitrary statechart diagrams. Furthermore, inter-
faces of ACs may be freely defined during the specification phase. Hence, new
FBs and Adapters have to be included in the library. These are automatically
deducted from the interface and behaviour specification of the ACs. For both
applications distinct FBs providing different functional aspects are created.

Especially the simulation of physical interactions of the defined ACs re-
quires FBs and Adapters. Currently two kinds of physical interactions are
implemented throughout the modelling and simulation workflow: kinematic
chains and material flow.

Kinematic Chains

The implementation of kinematic chains is facilitated by Adapters (i.e. Kine-
maticPort), which are added to the interfaces of the Plant Components. But
also the calculation of Denavit-Hartenberg parameters [182] at the physical
connectors is a functionality which is needed multiple times. Hence, an FB
KinematicCalc is provided for the calculation of kinematic transformations (i.e.
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Matrix calculations). It accepts the pose at the base of the component as well
as the displacement (e.g. extension, rotation) to the kinematic connector (e.g.
flange), where the next component or end-effector is located (see Figure 5.6(b)).
Kinematic chains (i.e. forward kinematics) are calculated from the base point
towards the end-effector in a uni-directional manner.

If multiple branches are connected to the same base, kinematic parame-
ters have to be shared. Adapters, which are used to implement the kinema-
tic chains, only allow one-to-one connections [59, 60]. This limitation stems
from the possibility to exchange data in a bi-directional way. Data inputs may
only receive data from a single source. A so-called fan-in (i.e. multiple input
connections) would lead to ambiguous values at the data inputs. However,
the limiting factor given by the bidirectional data exchange, is not needed for
the calculation of kinematic chains. Hence, an FB KinematicSplit is provided,
which allows to connect two branches to the same kinematic base.

The interfaces of the abovementioned Adapter and FBs are presented in
Figure 5.6.

(a) (b)

(c)

Figure 5.6: Provided Adapter and Function Blocks for modelling Kinematic
Chains. (a) Adapter Interface. (b) SIFB for the matrix calculation of kinematic
transformations. (c) FB for providing kinematic parameters to two kinematic
branches.

Materialflow

The simulation of the materialflow in an automated plant also requires a set of
Adapters and FBs.

FIFO-queues for material with configureable size (FB MaterialflowQueue,
presented in Figure 5.7(c)) are provided for the implementation of input and
output queues of ACs. For the manipulation of a single piece of material wi-
thin an AC the MaterialHandling FB is added to the library (see Figure 5.7(b)).
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More complex scenarios (e.g. putting together two or more pieces to a single
new piece) can be implemented with the according behaviour implementation
of the plant component. Multiple pieces are received at the according Mate-
rialflowInput ports and only a single piece is put into the output queue.

The MaterialflowPort Adapter acts as interface element within an AC for
accepting material from and providing to other ACs. It implements a bi-
directional data flow. In one direction the data on the material is provided.
In the other direction an indication if material is accepted by the receiving
component (e.g. full queue) is provided. The interface of the implemented
IEC 61499 Adapter type is shown in Figure 5.7(a).

(a) (b)

(c)

Figure 5.7: Provided Adapter and Function Blocks for modelling Materialflow.
(a) Adapter Interface. (c) FIFO Queue with variable size. (b) FB for the mani-
pulation of material within ACs.

Other Required Function Blocks

The generated library of IEC 61499 modelling elements shall be sufficient to
model and deploy the automatic control and simulation applications. Apart
from the IEC 61499 modelling elements that are required for the implementa-
tion of physical interactions of ACs also other common FBs (e.g. E_DELAY)
are added to the library.
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5.2.3 Generation of Modelling Elements

For the automatic control and simulation of ACs specific FBs are generated
and later added to the library. During the generation process the hierarchical
design guideline is applied, which was elaborated in Section 4.5 and which is
shown in Figure 4.9. Inter-component interfaces are implemented as Adap-
ters. However, Sub-Apps are currently, to the author’s best knowledge, only
supported by a single engineering tool, the 4DIAC-IDE [197]. Hence, CFBs
are used to implement the ACs. Due to the high granularity and separation
of concerns with the use of structured interfaces (i.e. Adapters) this change is
not restricting. Sub-Applications can still be used within supported enginee-
ring tools to reduce the number of visible modelling elements (comparable to
folding mechanisms in programming environments) [60].

The generation process is a two-step process. First the interface elements
are generated. This step is the same for basic and composite ACs. Then the
FB, interface and internal behaviour, is generated, based on the specification
in the ACIM.

Interface Elements: Adapters

Adapters are a good way to structure the interfaces of FBs. Multiple data
and event connections can be encapsulated within a single adapter connec-
tion. Furthermore, adapters are typed modelling elements of IEC 61499. This
means that only sockets and plugs, which are compatible (i.e. the same type),
can be connected. Hence, less scattered automatic control applications are the
result.

The interfaces of FBs that implement ACs are mainly reduced to adapters.
Each FB provides its interface elements to higher hierarchical levels in a single
plug. Interfaces to specified sub-components are integrated in form of sockets
of the according sub-component type. Hence, a single connection is sufficient
to connect two ACs in a hierarchical structure. Even more, as long as alterna-
tive implementations of sub-components provide the same interface (i.e. plug)
they can be used without modifying upper hierarchical levels (i.e. top-down
development is supported). To facilitate a gradual deployment of the automa-
tic control application only interface elements needed for the initialisation and
deinitialisation are provided in addition to adapter interface elements.

The creation of adapter types, based on the specified component inter-
faces, is a requirement for the generation of FBs. Hence, adapters for inter-
component interfaces as well as plant interfaces are added as first generated
elements to the library.
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Behaviour Implementation: Function Blocks

Basic ACs and Composite ACs need to be treated differently. The behaviour
specification of Basic ACs is based on a timed state chart model. Furthermore
Basic ACs are also the only point of interaction between controlled hardware
and automatic control application. Only this type of AC may contain ICPs.
The behaviour of Composite ACs is solely defined by the combination and
interconnection of sub-components. Physical interactions of plant components
are also limited to the basic building blocks. Composite plant components are
only a logical structuring method, which only exposes the physical interfaces
of contained sub-components.

The generation process for the modelling elements for both automatic
control and simulation is structured similarly, as both follow exactly the same
AC structure. However, since different models and entities are used, a sepa-
rate set of transformation rules is provided.

Basic Automation Component Basic ACs are characterised by two proper-
ties:

1. their behaviour is specified by timed state chart diagrams, and

2. only they can provide interactions to the process.

The most portable way to implement timed state chart diagrams with avai-
lable mechanisms of IEC 61499 is to transform the state chart without timing
information into an ECC of a BFB (see Figure 5.8(a)). Timed transitions are
implemented as event-triggered transitions. An additional event output—to
trigger the start of the transition—and also an event-input, which indicates
that the specified time has elapsed, are added to the interface of the BFB (see
Figure 5.8(b)). Within the encapsulating CFB (see Figure 5.9) per timed tran-
sition an E_DELAY-FB is added and connected to the additional event in- and
output (see Figure 5.9(a)). The socket, which provides the interface to higher
hierarchical levels, as well as the plug, which provides the ICP, where appro-
priate, are also accessible within the encapsulating CFB. To allow the interac-
tion of the behaviour implementation (i.e. the BFB) with higher hierarchical
levels and also the physical process the interface of the BFB provides all inter-
face elements as data and event inputs and outputs.

Hence, two FBs are added to the library for Basic ACs without process
interaction. As soon as a Basic AC also includes plant interface elements a
third FB, also a CFB, is provided as encapsulation of the hardware access FBs.
A suitable ICP is used to model the interface between the CFBs.
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(a)

(b)

Figure 5.8: Implementation of the Basic AC Axis: (a) Based on the specifi-
cation of the timed state chart, the ECC of a Basic FB is generated. (b) The
automatically generated interface of this Basic FB has interface elements (e.g.
MovingINStart, MovingINDT, and MovingINDelay) to allow bringing time
information in the transitions of the ECC.



5.2. Generation of Control and Simulation Code 123

(a
)

(b
)

Fi
gu

re
5.

9:
Im

pl
em

en
ta

ti
on

of
th

e
Ba

si
c

A
C

A
xi

s:
(a

)T
im

in
g

in
fo

rm
at

io
n

fr
om

th
e

sp
ec

ifi
ca

ti
on

in
th

e
ti

m
ed

st
at

ec
ha

rt
is

ad
de

d
as

E_
D

EL
A

Y
FB

s.
Th

es
e

an
d

th
e

ac
co

rd
in

g
da

ta
an

d
ev

en
tc

on
ne

ct
io

ns
ar

e
au

to
m

at
ic

al
ly

in
cl

ud
ed

in
th

e
FB

N
of

th
e

C
om

po
si

te
FB

.I
nt

er
fa

ce
el

em
en

ts
A

xi
s

(t
ow

ar
ds

th
e

hi
gh

er
hi

er
ar

ch
ic

al
le

ve
l)

an
d

PI
A

xi
s

(p
la

nt
in

te
rf

ac
e)

ar
e

al
so

co
nn

ec
te

d
au

to
m

at
ic

al
ly

to
th

e
Ba

si
c

FB
.(

b)
Th

e
in

te
rf

ac
e

of
th

e
C

om
po

si
te

FB
th

at
re

pr
es

en
ts

th
e

Ba
si

c
A

C
A

xi
s.



5.2. Generation of Control and Simulation Code 124

Composite Automation Component Composite ACs are also implemented
as CFBs for portability reasons8. The behaviour implementation is reduced to
the interconnection of interface elements of sub-components and provision of
a stable interface for higher level ACs. Management functionality and more
complex behaviour is modelled in a separate sub-AC (see Section 3.2). The-
refore, the CFB’s internal Function Block Network (FBN) only contains the
plugs for the interaction with lower hierarchical levels and a socket, which is
the interface towards higher levels.

The available interface elements are connected as specified in the AC’s be-
haviour specification. All data and event interface elements provided by the
adapters are accessible individually.

Hence, only a single CFB is generated for the implementation of a Compo-
site AC and added to the IEC 61499 modelling element library.

5.2.4 Generation of Automatic Control and Simulation Appli-
cation

The last step in the generation is the creation of an automatic control applica-
tion and the related simulation application. The hierarchical structure of ACs
is the basis for the generation of the automatic control application. FBs are ins-
tantiated accordingly and their adapter interfaces are automatically connected
by the application generation mechanism as specified.

As the (fully) automatic application generation is mainly targeted at the si-
mulation, the hardware access FBs are based on local multicast communication
FBs. The CFBs contain PUBL- and SUBL-FBs. Hence, the automatic control
application can be coupled with the related simulation application. Only the
hardware access FB and the communication FB within the simulation applica-
tion need to be deployed to the same automatic control device.

However, it is also feasible to automatically provide hardware access FBs,
which provide the real process interfaces. Data from the ESM and the MM
can be used as additional inputs for the model transformation process. Since
the ICPs provide stable interfaces, the hardware access FBs can be replaced
(dependent on the target control device) without need for further changes in
higher levels.

The simulation application is also generated automatically. It has the same
hierarchical structure as the related automatic control application. For the in-
teraction with the automatic control application, an FB with the “mirrored”
functionality of the previously described hardware access FB with PUBL- and
SUBL-FBs is generated. The local multicast channels are connected by using
the same unique IDs in both applications (e.g. for the same sensor or actuator).

84DIAC-IDE and FORTE are currently the only environment that supports Adapters in
BFBs.
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The FBs generated for the plant simulation also feature adapters for the
modelling of physical interfaces. These have to be connected according to the
specification in the PlaM. Currently kinematic chains and material flows are
the only supported physical interactions.

5.3 Simulation Execution System

In Section 4.5 the simulation of the plant behaviour by means of coupled auto-
matic control applications is proposed. An event-based runtime environment
for industrial automation, like the open-source runtime environment FORTE,
is sufficient for the simulation of plant behaviour in nominal time. However,
certain simulation scenarios require modifications of the used runtime envi-
ronment. Furthermore, co-simulation setups (i.e. the integration of external
simulation tools) are important for additional insight on the behaviour of the
automated systems. Changes, both in the runtime environment but also the
external tools might be necessary. The feasibility is shown with the integration
of two different simulation environments: a network simulator and a conti-
nuous simulation environment.

5.3.1 Adaptation of Runtime Environment FORTE for Simu-
lation

Time Advancement

An important feature of simulation environments is a time advancement that is
independent of the nominal time [66, 67]. Both increased and decreased time
advancement have their justification, dependent on the simulation scenario.
Two different implementations for the time advancement have been provided:
fixed rate of the nominal time (e.g. half or double advancement rate compared
to nominal time) and variable time advancement rate [111].

Fixed Rate A fixed rate acceleration or deceleration of the time advancement,
is reached by modifying the platform specific timer handler of the runtime en-
vironment FORTE. Within a special thread the nominal time is read from the
operation system or hardware. After a specified amount of time has elapsed,
the timer handler is notified. Hence, the modification of the time, which has to
elapse before the notification is sent, results in the desired acceleration or de-
celeration. To prevent overload of the runtime environment (e.g. event-chains
that cannot accept additional event-entries) in accelerated mode, the accele-
ration factor has to harmonize with the utilization (e.g. size of the automatic
control application). Calculations of the Worst Case Execution Time (WCET)
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can be applied for the automatic control application and the simulation ap-
plication. Zoitl shows that keeping the real-time execution constraints can be
guaranteed as long as the synthetic utilization is less than 58.6% [62].

Decelerated operation should not face that problem, since the runtime en-
vironment has more time to execute than in normal operation mode. This
mode may be necessary if a co-simulation setup with an external simulation
tools, which runs at decelerated time advancement, is desired. If the external
tool and FORTE run both at exactly the same time advancement rate, clock
synchronisation can be neglected. Hence, built-in functionalities are used for
setting the time adavancement rate and modifications of the commercial simu-
lation environments (e.g. clock management functionality) are not necessary.
Communication and data exchange between the involved simulation environ-
ments is done in an event-based manner. For hybrid simulation scenarios all
simulators have to run at nominal time, like the involved operational parts of
the plant and automatic control system.

Variable Rate A variable time advancement rate is possible, if the whole ap-
plication (i.e. simulation and automatic control application) is deployed to a
single device, or all devices support time synchronsation. The timer-handler
can take the functionality of the Future Event List. Both the simulated plant as
well as the automatic control application are reactive systems. Within the sys-
tem boundaries any behaviour is modelled by timed statecharts. In that case
external event sources other than the timer handler can be neglected.

As soon as no FB in the simulation or automatic control application is ac-
tive, and no further FBs are to be activated due to events in the event chains,
the timer-handler advances the clock of the runtime to the due time of the
next timer event (i.e. timed FB). Hence, waiting time between timer events is
skipped and accelerated time advancement is reached.

The synchronisation of multiple simulation devices running FORTE re-
quires the exchange of the next entry in the timer-handler of any involved
runtime environment. As soon as a runtime environment goes idle, the next
entry is sent to a multicast channel, which all runtime environments have sub-
scribed.

Simulation Resource

The implementation of a special Simulation Resource (see Section 4.5.4), which
is based on the standard EMB_RES, enables a better transistion between simu-
lation and operation and vice versa. It features a modified object handler. The
object handler is responsible for the management (e.g. instantiation, deletion)
of IEC 61499 modelling elements (e.g. FBs, connections) within an execution
entity.



5.3. Simulation Execution System 127

For an FB that needs to be changed for simulation (e.g. a hardware access
FB) a related FB-type has to be provided, for example FB1 and SIM_FB1. Du-
ring the instantiation of new FBs the prefix “SIM_” is added automatically to
the FB-type by the object handler. If a simulation specific FB-type is present,
it is instantiated. Otherwise the failed instantiation is repeated without the
prefix, and the general FB-type (i.e. hardware independent FB) is instantiated.
This is an implementation of the factory method design pattern that is known
in software engineering [198].

Hence, no functional changes to the automatic control application are ne-
cessary in the engineering tool. The change of the mapping is sufficient to
switch between simulation and operation mode.

5.3.2 Network Simulation

The influence of network-properties is relevant in case of decentralized and
distributed execution of automatic control applications, as multiple automatic
control devices or I/O interfaces have to communicate via fieldbus systems or
(industrial) networks. The inclusion of a specialised network simulator helps
to estimate and validate the utilisation of these networks, and the influence of
delays or jitter to the behaviour of networked automatic control applications.
Hence, this analysis can be brought from the commissioning phase, where it
currently is done [183], to the implemenation phase.

For this purpose the open source network simulator ns3 has been included
in the simulation execution system [186]. It has been developed mainly by aca-
demic users and is actively maintained and developed. Its modular structure
and rich libraries allow the creation of comprehensive and complex network
models. Furthermore, it is easily possible to modify modules dependent on
the needs of the simulation scenario.

On basis of the ns3 network simulator, the ns3-DCE (Direct Code Execution
Environment) has been provided by researchers of INRIA9 [200, 201]. An abs-
traction layer is introduced, which redirects all network related system calls
towards the network simulation. However, the presented project is only ope-
rational on specific Linux distributions, since dependencies with the system
libraries of Linux occur.

Nevertheless, it is a promissing approach to introduce real applications,
which use network communication, into network simulation. With only mi-
nor modifications to the source code of FORTE it was possible to include the
runtime environment into a network simulation scenario. Multiple instances
of the IEC 61499 runtime environment operate in a simulated network envi-

9The French Institute for Research in Computer Science and Automation (Institut national
de recherche en informatique et en automatique, INRIA) is a founding member of the NS3
consortium [186, 199].
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ronment as virtual automatic control devices. Hence, effects of the distribu-
tion can be evaluated. The simulation parameters of the virtual network that
is coupling the virtual automatic control devices can be easily adjusted. So it
is possible to investigate the influence of the network onto the behaviour of
the automatic control system. The computer running the network simulation
is acting as gateway device, as can be seen in Figure 5.10. This functionality
is needed at least for the deployment of the automatic control applications,
as Java-based tools currently cannot be executed within the ns3-DCE environ-
ment [201]. However, it is even possible to combine the simulated network
with a real network, where other automatic control devices are attached to.
Hence, the network simulation can also be used in full as well as hybrid simu-
lation scenarios.

Figure 5.10: Network simulation scenario with 3 virtual ns3-DCE devices, the
gateway device (i.e. simulation computer), and a real automatic control de-
vice. Via the gateway device automatic control applications can be deployed
to virtual as well as to real automatic control devices. The effect of the network
and mapping decisions can be evaluated in depth, as the network parameters
(e.g. packet loss, network utilization, bandwith) can be easily adjusted to re-
semble realistic or even worst case behaviour.

5.3.3 Integration of Dymola

Dymola [202] is a powerful tool for the simulation of continuous processes.
Hence, many reliable models and modelling libraries exist and are widely ac-
cepted. To make this models accessible in automatic control development,
but also to provide a realistic and reliable behaviour of automatic control to
process engineers, Dymola has been included in the simulation environment.
Therefore, Dymola and FORTE have to be connected to being able to exchange
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events and data. Furthermore, the time of both simulation entities has to be
kept synchronous.

Connecting FORTE and Dymola

Network based communication is used to couple the simulation execution of
Dymola with FORTE. To reduce the communication effort on the one hand and
to allow to adjust the number of exchanged data points on the other hand the
link between the two programs is established via a string-based protocol. On
the Dymola side the network communication is provided by a static library
programmed with Visual C++, which is linked to the simulation execution
program. As there does not exist a standard encoding in Dymola, the data
encoding specified in IEC 61499-1 [60] and the IEC 61499 Compliance Profile
for Feasibility Demonstrations [203] is applied. Hence, the TCP Client within
Dymola can be directly connected to an unmodified SERVER_1_1 communi-
cation FB. One STRING datatype in each direction is sufficient to send and
receive the encoded data.

The elementary datatypes in Dymola are: Boolean, 32-bit Integer, and
64-bit Float. These are equivalent to the IEC 61131 datatypes BOOL, DINT,
and LREAL. The Dymola modeling element IEC61499DataInterface, which is
shown in Figure 5.11(a), provides a configureable number of Boolean, In-
teger and Real inputs at the left side, and outputs on the right side (see
Figure 5.11(b)). Values from Dymola to IEC61499 and vice versa are trans-
formed to a String and concatenised. On the receiving end, the string is split
into 3 Strings (each for a datatype) and further evaluated. Finaly the values
are provided as single value, which can be directly connected to the according
model (IEC61499 or Dymola).

Time Synchronisation

Dymola provides interfaces to synchronise the time with external tools. Ho-
wever, the time synchronisation mechanism of Dymola cannot be generalized
for other tools. Therefore, a fixed ratio of time advancement is used. The ex-
ternal model JPAARealTime [204] provides an interface to include such a fixed
time advancement in Dymola (see Figure 5.12). Its main purpose is to ensure
realtime execution of the simulation model, but also other factors than 1 can
be used. Hence, increased or decreased time advancement can be reached.
The time advancement of the coupled FORTE runtime environment just has to
be set to the same value. The JPAARealTime model also provides a diagram,
which shows the deviation from the desired time advancement. If the execu-
tion of the simulation model takes longer than desired then time deviations
increase during the simulation run. The JPAARealTime model is only able to
modify the virtual simulation time when the simulator is in idle mode. Hence,
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(a) (b)

Figure 5.11: Configureable Dymola modelling element for data exchange with
IEC 61499 automatic control applications. (a) Representation in Dymola simu-
lation model. (b) Configurable parameters of modelling element.

the solver or model can be changed that less time is needed for the calcula-
tion of the model. However, this also influences the results of the simulation
run. Another possibility to keep the simulation clocks syncronous is to chose
another time advancement rate.

5.4 Evaluation Test Cases

The proposed engineering and simulation approach is mainly focused on the
automation of (discrete) manufacturing systems. However, also the automa-
tion of (continuous) process engineering plants shall be feasible. Test cases
from three domains—discrete manufacturing plants, robotic applications, and
process engineering—are used to evaluate the feasibility ot the developed
concept. Each domain specific test case covers special aspects and require-
ments, which have to be fulfilled by the modelling and simulation workflow.

5.4.1 Discrete Manufacturing Plants

Discrete manufacturing plants will have to adopt to changing requirements
[21]. Flexibility to produce various goods—with lot-size one production in
focus—will result in ever-changing manufacturing systems. Hence, the vali-
dation of changed setups by means of simulation is a promising approach to
reduce downtimes during reconfiguration of the plants.
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(a) (b)

Figure 5.12: Configureable Dymola modelling element for time synchroni-
sation with realtime clock. (a) Representation in Dymola simulation model.
(b) Configurable parameters of modelling element.

Test Case Description

A representative example within this domain is the part sorting machine. The
part sorting machine represents a single working cell and is presented in Fi-
gure 5.13. This machine, which is available at ACIN, can be operated as stand-
alone application or integrated in a more complex manufacturing system with
a palette transfer system. The part sorting machine features:

• Part identification: Parts, which are transported on palettes, can be clas-
sified by either a colour sensor or an inductive sensor.

• Part handling: Two identical 2-DOF handling units, each consisting of 2
pneumatic axes and a pneumatic gripper, are able to move parts from the
transportation palette to a part depot.

• Internal transportation: Within the machine a conveyor belt provides
transportation services for the palettes. To allow the identification and
handling of parts stoppers are used for the fixation of the palettes.

With the selected discrete manufacturing machine the following aspects of
the design and simulation approach can be validated:

• Control behaviour modelling process: Starting from discipline specific
engineering tools, the control behaviour of the plant is specified. This test
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Figure 5.13: Laboratory application “Part Sorting Machine” is used as example
for a discrete manufacturing process.

case allows to evaluate the feasibility of reuse or multiple instantiation of
similar components (e.g. axes, handling units).

• Control application generation: The control application is to be automa-
tically generated from the ACIM for the specified and available control
platform.

• Plant behaviour modelling: The applicability of the proposed simulation
approach—from behaviour modelling to the generation of the plant si-
mulation application—can be evaluated with the provided test case. Full
simulation as well as hybrid simulation (e.g. one handling unit simula-
ted) scenarios can be applied.

• Material handling: The modelling as well as the implementation of mate-
rial flows in simulated plants can be tested with the intra-process logistic
process in the part sorting machine.

• Simulation application generation: The simulation application which re-
presents the plant behaviour (including material handling) shall be auto-
matically generated as IEC 61499 application that is linked to the related
control application.

Experiments and Evaluation

The mechanical structure of the test case was already available. Nonetheless,
the machine has been logically split into self-contained entities in a top-down
approach. The resulting module structure is presented in Figure 5.14.
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Part 
Identification

Part Transportatation

Part Sorting Machine

Identification
Manipulation

Handling Unit

Transport

Conveyor
Presence Sensor
Stopper
Presence Sensor
Stopper

HorizontalAxis

Handling Unit

VerticalAxis
Gripper

2-DOF Part 
Handling

Unit

2-DOF Part 
Handling

Unit

Stopper

Stopper

Presence Sensor

Presence Sensor

Figure 5.14: Schematic and hierarchical structure of the laboratory application
“Part Sorting Machine”.

The structure, the interfaces, and the behaviour of the identified compo-
nents have been modelled with UML diagrams with StarUML. The UML Class
Diagram that specifies the interface of the AC HandlingUnit and generically de-
fines the contained sub-components is presented in Figure 5.15. The concrete
setup for a specific AC instance is provided in form of a UML Object Dia-
gram. This diagram type allows to include multiple sub-components of the
same type and model their interaction (see Figure 5.17). The behaviour of ACs
is modelled with UML Statechart Diagrams. The behaviour specification for
the AC Axis is presented in Figure 5.16. This AC is a Basic AC, with hard-
ware interaction, and a sub-component of the HandlingUnit. The same model-
ling methodology has been applied for the specification of both the automatic
control and the plant simulation applications.

This fact has been deemed useful by the users. However, the same users
were responsible for modelling both aspects in this test case and all compa-
rable test cases for discrete manufacturing plants. On the one hand, the UML
profile acts as limitation in the expressiveness and requires additional model-
ling effort (e.g. additional windows to set properties). On the other hand,
these restrictions enabled a highly automated information extraction process
with little to no need for manual changes in the resulting ACM.

All modelling tasks for this test case are done from scratch. Due to the
additional structuring tasks, which increase the reusability, the initial effort
is higher than the direct automatic control application programming would
be. As a result of the proposed engineering approach, components with well
defined behaviour and interfaces are created. Industrially applied automatic
control applications require well documented process interfaces anyway. The
automatically generated simulation application, which allows to test the im-
plementation of the automatic control application early in the development
cycle, can be reached with little additional effort. Especially information on
physical connections have to be specified explicitly in the proposed approach.
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entry/setAxisMove
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entry/resetAxisMove
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Out

entry/setReachedOut
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MoveIn
<<PortCondition>>
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<<PortCondition>>

MoveIn
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entry/ResetSensor_X0
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Figure 5.16: Behaviour Model in form of a UML Statechart Diagram for the
Automation Component Axis. (a) Specification of the automatic control beha-
viour of the generic AC Axis without error handling functionalities. (b) Speci-
fication of the plant behaviour for the AC Axis, which is used for the simula-
tion.
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HandlingUnitManager : HandlingUnitManagerHorizontalAxis : Axis

VerticalAxis : Axis

VacuumGripper : Gripper

+GripPart+GripPart

+DropPart+DropPart
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+DropOK+DropOK

+MoveIn

+MoveUp

+MoveOut
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+GripperPartIn
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+GripperPort

+UnitPartOut

+GripperPartOut

Figure 5.17: UML Object Model for Automation Component "Handling Unit",
composed of 2 Axes and 1 Gripper.

These are often inaccessible or well hidden from automatic control designers.
Based on the explicit specification material flow is automatically added to the
plant simulation application. In the test case material is provided to one input
and can leave the machine at three different outputs.

The full simulation scenario, including material flow simulation, has been
initially performed on a PC with the adapted FORTE runtime environment.
Changes of the target platform are easily possible with the proposed model-
based engineering and modelling framework. Later, the full simulation sce-
nario has been executed on the target execution system, consisting of 3 valve
terminals from FESTO. Finally, the automatically generated automatic control
application (see Figure 5.18) has been deployed to the automatic control sys-
tem of the plant in the laboratory. The same functionality as with the ma-
nually programmed automatic control application has been observed. The
generic automatic control application generation results in slightly more ove-
rhead compared to applications manually programmed specific for an appli-
cation. However, the generated applications (both automatic control as well as
simulation) are well structured and readible.

This test case, although only covering a single machine, already revealed
the benefit of component reuse. Within a single handling unit two axes are
used. Although they differ mechanically, the same component type has been
used as basic model. They both offer the same interface to the higher hierarchi-
cal levels. Only the interface to the plant has to be modified. Both the timing
of the plant and the I/O configuration change.
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Figure 5.18: Part of the automatically generated, hierarchical automatic control
application for the "Part Sorting Machine".

For the validation of the behaviour simulation for the horizontal axis, with
a special focus on the extraction and retraction times, simulation assumptions
and results are compared to experimental results. Under laboratory condi-
tions, that means constant pressure of 4 bar and room temperature, a sample
of 500 cycles is drawn. The histograms of the measured times is shown in Fi-
gure 5.19(a) and Figure 5.19(b) respectively. According to the results of these
measurements a large number of samples show a high degree of repeatability
for extraction (e.g. 76,6% within a range of 5 ms for extraction of the axis)
whereas the variance and also absolute times are higher for the retraction. The
reason for the different behaviour for extraction and retraction are probably
related to the construction of the axis. However, a further analysis for the rea-
sons of the axis’ behaviour is not in the scope of this thesis.

In the sample of 500 measured cycles all time values (extraction and re-
traction) lie below 1000 ms, which has been used as time during the simula-
tion. Hence, the chosen time frame clearly represents a worst case scenario,
and the gained results are representative under the given conditions. Howe-
ver, another sample of 100 cycles has been drawn under different conditions
(pressure of 3.8 bar and temperature of approx. 5 degrees Celsius). The first
cycles under these conditions show major deviations from laboratory condi-
tions. During ramp up of the axis the first 20 cycles require up to 1900 ms.
These deviations seem to stem from viscous lubrication and viscous oil in the
dampers that dampen the movement at both end positions. However, after the
warm up phase all further measured times drop significantly. For this reason,
simulation results for the movement of the axis are reasonable for sufficiently



5.4. Evaluation Test Cases 138

800 850 900 950 1000

0
50

10
0

15
0

20
0

25
0

Horizontal Axis: Extraction

time in ms

fr
eq

ue
nc

y

(a)

600 620 640 660 680

0
10

0
20

0
30

0
40

0

Horizontal Axis: Retraction

time in ms

fr
eq

ue
nc

y

(b)

Figure 5.19: Histogram of measured times for 500 cylcles of extraction and
retraction of the horizontal axis under laboratory conditions.

high number of cycles or for steady operation.
The efficiency in the development with the proposed approach is expec-

ted to increase and outperform the currently used development approaches as
soon as a comprehensive library of components has been created.

5.4.2 Robotic Applications

Robotic and kinematic applications are also important in flexible manufactu-
ring systems. Both discrete pick-and-place operations and continuous path-
following operations are in the focus. Robotic components are commonly me-
chatronic components, which include the physical component (mechanics and
electrics) but also control functionalities and well-defined interfaces.

Test Case Description

Representative examples for robotic components are provided by Schunk.
Their Powercubes and Powerballs provide 1 or 2-DOF movement. Each com-
ponent is self-contained and provides a control interface via CAN fieldbus.
Larger components can be created by putting together multiple of such ele-
mentary robotic components. For the evaluation of the proposed engineering
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Figure 5.20: Robotic Application built from multiple elementary robotic com-
ponents from Schunk. The test setup is depicted in Schunk’s configuration tool
for the creation and validation of robotic applications ViroCon.

and simulation approach a test setup built from multiple elementary robotic
components (i.e. 3 rotating units, 1 linear unit, 1 gripper) has been available as
depicted in Figure 5.20.

The presented robotic test application is able to cover a set of important
engineering and simulation aspects, that go further than the previous test case:

• Hierarchical aggregation of components: Existing components are used
to create the desired robotic application.

• The lower level components cannot be altered. commercial-of-the-shelf
(COTS) components (e.g. provided by different vendors) are integrated
by using their services. A fieldbus system (i.e. CAN) is used to provide
the interfaces to the integrating level. Hence, the interface between si-
mulation and control is also put at this abstraction level.

• The simulation of kinematic chains, using Denavit-Hartenberg parame-
ters, can be well evaluated with this module-based robotic application.

Experiments and Evaluation

The configuration tool for robotic applications ViroCon is used as domain spe-
cific tool. Based on the information provided by this tool—a list of robotic
components (see Listing 5.3 and component movements—an AC is created.

The AC includes a sub-AC for the manager functionality, which spe-
cifies the coordinated movements of all sub-components. The other sub-
components represent basic robotic components provided by Schunk.
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Listing 5.3: XML-based listing of robotic components provided by ViroCon.
<?xml vers ion=" 1 . 0 " encoding=" ISO−8859−1" ?>
−<module_l is t>
+<module name="PAM112">
−<module name=" PR90 ">

<parameter name=" ID " value=" PR90 "/>
<parameter name="max" value=" 175 "/>
<parameter name="min " value="−175"/>

</module>
+<module name="PAM110">
{ . . . }

For each basic robotic component type, an AC is provided. These Basic ACs
do not have their own specific behaviour specification. Templates are provided
by the ViroCon import functionality (see Figure 5.21 and Figure 5.22).

The Basic ACs only act as proxies for the components. Hence, the module
behaviour specifications are only needed for the behaviour simulation. All
robotic components of Schunk share the same interface towards the automatic
control application, which cannot be altered.

The plant model further includes probabilistic timing information to pro-
vide realistic simulation results. Dependent on the movements of the robotic
components the kinematic chain is recalculated. The correctness of the calcu-
lation of the position and orientation of the end-effector has been validated in
multiple simulation runs, which have been compared to runs on the real plant.

Also the transition from simulation to operation has been proven to be fea-
sible. In this case, not only the I/O access FBs are replaced. The robotic com-
ponents only act as proxies for the real components. Hence, also the lowest
level in the automatic control application is not deployed.

5.4.3 Process Technology

Modernisation of automation equipment of continuous processes is an impor-
tant application field for model-based engineering and simulation approaches.
Such process plants include for example electrical power or petro-chemical
plants. Due to possible hazardous results of failures in operating plants si-
mulation is often used during the development process. The integration of
available simulation models (e.g. for Dymola/Modelica) provides a reliable
abstraction of the plant behaviour during the development of discrete auto-
mation applications.
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PowercubeRotary
<<Basic>>

<<IN>>+INIT(CHID: Integer, MODID: Integer)
<<IN>>+POWER(ENABLE: Boolean)
<<IN>>+HOME()
<<IN>>+MOVE(POS: Float, VEL: Float, ACC: Float)
<<IN>>+RESET()
<<PlantPort>>+INITpp(out CHID: Integer, out MODID: Integer, retval: Boolean)
<<PlantPort>>+POWERpp(out ENABLE: Boolean, retval: Boolean)
<<PlantPort>>+HOMEpp(out qualifier: Boolean, retval: Boolean)
<<PlantPort>>+MOVEpp(out POS: Float, out VEL: Float, out ACC: Float, retval: Boolean)
<<PlantPort>>+RESETpp(out qualifier: Boolean, retval: Boolean)
<<KinematicPortOUT>>+KinPortOUT()
<<KinematicPortIN>>+KinPortIN()

(a)

PowercubeLineary
<<Basic>>

<<IN>>+INIT(CHID: Integer, MODID: Integer)
<<IN>>+POWER(ENABLE: Boolean)
<<IN>>+HOME()
<<IN>>+MOVE(POS: Float, VEL: Float, ACC: Float)
<<IN>>+RESET()
<<PlantPort>>+INITpp(out CHID: Integer, out MODID: Integer, retval: Boolean)
<<PlantPort>>+POWERpp(out ENABLE: Boolean, retval: Boolean)
<<PlantPort>>+HOMEpp(out qualifier: Boolean, retval: Boolean)
<<PlantPort>>+MOVEpp(out POS: Float, out VEL: Float, out ACC: Float, retval: Boolean)
<<PlantPort>>+RESETpp(out qualifier: Boolean, retval: Boolean)
<<KinematicPortOUT>>+KinPortOUT()
<<KinematicPortIN>>+KinPortIN()

(b)

Figure 5.21: Generic UML Class Diagrams for (a) rotary and (b) linear Power-
Cube Modules.

Test Case Description

For the evaluation of the engineering approach, a Dymola simulation model
of the chilling circle of a thermal power plant has been available. An existing
feedback control algorithm for the regulation of the temperature (regulating
and switching valves are accessible) has to be transferred to a new control
platform. The Dymola model has been provided by EDF10 for the evaluation
of the proposed approach. Due to IPR reasons the model is not included in
this thesis.

This test case allows to validate:

• Integration of an external simulation tool (i.e. Dymola) in the plant si-
mulation application.

10The French company Électricité de France (http://www.edf.com) was an industrial part-
ner in the MEDEIA project.
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Figure 5.22: Generic UML Statechart Diagrams for PowerCube Modules: (a)
Behaviour Model and (b) Plant Behaviour Model.
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Experiments and Evaluation

The feedback control algorithm is already available as specified AC. The auto-
matic control application is automatically generated with the available model
transformation facilities. However, an automatic coupling of the legacy Dy-
mola model and the automatic control application is not feasible. Therefore,
the I/O access FB is manually implemented. Its internal FBN, which is shown
in Figure 5.23 is encoding the values into a STRING and sends it to the Dymola
application via a standard SERVER FB. STRING values received from Dymola
are decoded and provided at the interface of the I/O access FB. The exchanged
values represent sensor values, which are provided by the Dymola model, and
actuator values, which are sent to Dymola.

Figure 5.23: I/O access FB for coupling FORTE and Dymola.

As actuators in the primary circuit two manually actuated, binary valves
(open/close) and a controlable proportional valve are available. The Dymola
model provides various process values, like temperature and pressure values.
But only values required in the feedback controller (specified in the ACM) are
exchanged: Position values of valves and the temperature value as feedback
value.

The process model also includes a secondary circuit, which is coupled via
a heat exchange to the primary circuit. By manipulating the valves in the pri-
mary circuit, the temperature in the secondary circuit has to be kept in an
allowed band.

Although the model has a reduced complexity, compared to the real sys-
tem, the thermodynamical calculations require high calculation power. The
Dymola simulation model is hardly able to run at nominal speed. To allow
synchronous exectution of Dymola and the runtime environment FORTE, the
time advancement rates of both execution systems are synchronised. Hence,
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reliable simulation results, which meet the real plant behaviour, have been rea-
ched.

With this test case the feasibility of setting up a co-simulation environment,
including external simulation tools, is shown. Nevertheless, methods for in-
teraction cannot be generalized, as they are specific to each simulation tool.

5.5 Conclusion and Summary

The selected test cases cover all relevant features of the proposed engineering
and simulation workflow. Furthermore, different fields of manufacturing and
production system design have been included in the evaluation.

Starting from different domain specific engineering tools data is extracted
and stored in the central engineering model. The proposed models have been
implemented and are provided by an Eclipse-based engineering environment.
As there exist many discipline or domain specific tools it is not feasible to inte-
grate all of them. Hence, the evaluation is based on the integration of selected
external tools (i.e. StarUML, ViroCon, Dymola). All required model trans-
formation rules for the information extraction have been prototypically imple-
mented and included in a model transformation workflow. Their functionality
has been proven within the selected test cases.

At the first look the engineering effort seems to be slightly higher in com-
parison to other design methodologies. However, the effort is only shifted to-
wards a collaborative specification phase, which is placed early in the overall
engineering cycle. Other acitivities, like documentation, can be shortened due
to the explicit, multi-disciplinary specification. Furthermore, the strong focus
on well defined components, with stable interfaces fosters an easier reuse of
once specified components. Hence, it is likely that the engineering effort is
further reduced, if a comprehesive component library is available.

As shown for the robotics test case, also COTS components, like the Schunk
PowerCubes, can be easily integrated in the approach. Even more, the internal
specification and implementation can be hidden and thus the IP for the encap-
sulated functionalities can be protected. Only the behaviour at the interfaces
needs to be specified, which has to be provided to customers anyway.

From the component-based specification of the production system, inclu-
ding both automation system independent aspects and the automation execu-
tion system description, executable code is created. This process can be highly
automated. However, in case of faults in the automated plant, the maintenance
personnel will usually work directly on the generated applications to keep
downtimes short. Hence, there is the need for well-readible automatic control
applications. The implemented and presented model-transformations pro-
vide hierarchically structured automatic control applications. Furthermore,
the clear separation of automatic control functionalities and hardware access
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facilitates the diagnosis.
Even more, behaviour simulation is made accessible as a helpful enginee-

ring support tool with neglectable effort. For industrial projects interfaces and
behaviour at the interfaces have to be documented anyhow. However, the late
documentation is replaced by an early specification in the proposed workflow.
The gathered information is the core of the automatically generated plant si-
mulation application.

The generated plant simulation applications follow the same design guide-
line as the generated automatic control applications. Hence, the interfaces to
the automatic control are clearly separated from the simulation logic.

The test cases show that the plant simulation applications are scaling in
the same way as the related automatic control applications. The execution
system for automatic control systems is composed of multiple control devices
to meet requirements with respect to computational power. The hierarchical
structure allows to easily deploy parts of the automatic control application to
different devices. This leads to the assumption that also the plant simulation
applications scale well.

To connect the automatic control application to the simulated plant (i.e. the
plant simulation application) only the hardware access FBs have to be replaced
by simulation access FBs. This allows validation and testing of the automatic
control functionalities, even if the real, physical plant is not (yet) accessible. In
such scenarios both applications (i.e. plant simulation and automatic control)
can be deployed to the same devices. Variable time advancement can then
speed up the behaviour simulation.

Even external simulation tools can be included. They can either be accessed
from replaced hardware access FBs, like shown for the process technology test
case, or from the plant simulation application. The later would allow to set up
and coordinate more comprehensive co-simulation scenarios.

Switching between simulation and operation is easily possible by just de-
ploying the automatic control application to a different resource. The simu-
lation resource in FORTE makes the necessary switching of hardware access
FBs automatically. For the validation of the influence of the communication
network, the network simulator ns3 has been included in the simulation exe-
cution system. Parts of the automatic control application can be deployed to
virtual devices, which are located within the ns3 environment. The easy swit-
ching between simulation and operation also facilitates hybrid simulation.

The results of all these simulation activities, which are facilitated by the
proposed workflow, lead to a higher efficiency in the commissioning phase,
especially for changes of existing plants.



CHAPTER 6

Conclusion and Outlook

6.1 Conclusion

The trend towards mass-customization, high numbers of variants and descrea-
sing product life cycles is evident for consumer goods (e.g. cellular phones).
On the other hand, production systems are durable and expensive plants with
long-term depreciation. Hence, the production systems will undergo multiple
reconfigurations within their life cycles. Each reconfiguration task, like the ini-
tial design and development phase, is a multi-disciplinary one. For that reason
efficiency gains in the engineering process are crucial. Automatic control de-
sign and implementation already make up for more than 50% of the project
costs in some domains. Hence, it is important to include automatic control
engineering early in the development cycle for beeing able to significantly re-
duce the effort. Gaps and long established interfaces between the involved
disciplines have to be reduced, to foster a fruitful collaboration of experts from
the involved disciplines.

This thesis presents a model-based engineering approach for the collabo-
rative design of automated production systems. The model-based and com-
ponent oriented development paradigms of software engineering are already
well accepted for business IT development projects. The presented work is
a first, but significant step to introduce these design and development para-
digms in the multi-disciplinary environment of automatic control systems de-
sign.

A comprehensive engineering workflow is presented in Chapter 3. As a
first step elementary building blocks of plants—graspable units named Auto-
mation Components (ACs)—are introduced. Interfaces between ACs, but also
between the different disciplines within a single AC, have to be specified in
a collaborative manner. The definition of the Automation Component Model
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(ACM) follows the principle of separation of concerns. Multiple, linked engi-
neering models provide facilities to gather different aspects of the provided en-
gineering data. For a smooth transition from existing workflows a continued
use of discipline specific engineering tools and their models for the specifica-
tion is foreseen. Model transformation rules for selected tools are included in
the modelling and configuration environment MECE, which has been an out-
come of the MEDEIA project. After the specification of the automated system
(including both the plant and control functionality) is completed, the presen-
ted workflow promotes the automatic code generation. The implementation
of a code generator for the event-based automatic control devices compliant to
the IEC 61499 standard is shown. It follows the structuring guidelines for well
structured and readible code. Hence, experienced automatic control designers
can easily grasp the functionality of the generated automatic control applica-
tion. This is important in the commissioning phase but also for maintenance.

Simulation of the plant behaviour is presented as a methodology for the
validation of automatic control applications in Chapter 4. A simulation fra-
mework on the basis of IEC 61499 is presented. The event-based execution
semantics of IEC 61499 compliant runtime environments make them highly
suited also for discrete event simulation. A huge advantage of using industrial
automatic control runtime environments for simulation is the easy coupling of
the automatic control application with the plant behaviour simulation. Four
scenarios, full simulation, hybrid simulation, simulation with the inclusion
of external simulation tools, and normal operation (or testing) are presented.
The clear separation of hardware access from automatic control functionality
(i.e. hardware access Function Blocks (FBs)) prove to facilitate switching from
simulation to hardware access and vice versa. The simulation resource, provi-
ded for the open source runtime environment FORTE, even provides an auto-
matic mechanism to switch to simulation coupling without the need to modify
the automatic control application. The feasibility of a distributed, component
based simulation execution with FORTE is shown. This opens the possibility
to distribute the automatic control application and the related plant simula-
tion application onto multiple automatic control devices. Interaction between
different simulation components is limited to the modeling of physical inter-
actions. Physical interactions (e.g. kinematic chains, material flow) are well
handled by the proposed and presented simulation framework. Two external
simulation tools, Dymola and the network simulator ns3, are also included in
the simulation execution system.

The integration of the proposed simulation approach into the model-based
engineering workflow reveals further advantages. For documentation pur-
poses the interfaces between automatic control applications and the control-
led process need to be specified. Timed state charts are chosen to model the
plant behaviour within the ACM. Model-transformation facilities are imple-
mented to automatically generate portable IEC 61499 plant simulation appli-
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cations from the provided specification. These simulation applications can be
used to validate the automatic control applications before deploying them to
the real plant. Hence, the quality of the automatic control applications can be
ensured earlier and the cost-intensive commissioning phase can be shortened.

Experiments on three different test cases from different domains are
conducted to validate the proposed design and simulation methodology.
First, the modelling and specification workflow is tested. Engineering data
is extracted from two different tools reliably. Previously defined components
can be re-used easily. Second, executable automatic control applications and
plant simulation applications are generated automatically from the models.
These can be opened with two different engineering tools, the 4DIAC-IDE and
FBDK. Third, different simulation scenarios are executed. The simulation of
physical connections works reliably.

After implementing and testing the proposed approach, the research ques-
tions can be answered as follows:

RQ1: Is a model-driven approach feasible for the engineering of manufacturing sys-
tems? Yes: In future manufacturing systems will be changed multiple times
during their lifecycle in order to being able to produce the desired products.
For that reason a systematic engineering methodology helps to reduce the en-
gineering effort and thus costly down-times. The evaluation of the propo-
sed engineering workflow with the help of test cases from different domains
clearly shows the feasibility of such a model-based approach.

RQ2: Is MDA apt to build the basis for an integrative engineering approach, pa-
rallelizing work of experts from multiple disciplines? Yes: The separation of en-
gineering concerns and the proposed modelling infrastructure with multiple
models foster the multi-disciplinary specification and implementation work.
The Automation Components provide the interfaces within the disciplines.
Furthermore, special attention is put to the interfaces between the involved
disciplines. As long as these stay unchanged, the work can be done parallely.

RQ3: Is it possible to validate by simulation and deploy the same control appli-
cation without change? Yes: The provision of two sets of hardware access
FBs—one providing process interfaces, the other providing access to the plant
simulation—in conjunction with the simulation resource enable this feature.
Switching between simulation and operation is done by deploying the appli-
cation, or parts of the application, to a different type of IEC 61499 resource (i.e.
EMB_RES or SIM_EMB_RES).

RQ4: Is an event-based automatic control runtime environment apt for the exe-
cution of distributed, discrete event simulation? Yes: IEC 61499 (or compliant
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runtime environments like FORTE) provide all significant features of discrete
event simulation environment. Missing features, like time advancement regu-
lation (at fixed or variable rate) can be implemented as extensions. Hence, a
runtime environment that is capable to run automatic control applications and
simulation applications likewise can be created.

RQ5: Is it possible to integrate other simulation tools into a co-simulation environ-
ment (e.g. network simulator, continuous process simulator) efficiently? Both ns3
and Dymola were included in test scenarios. For network simulation only dif-
ferent devices—virtual devices within the simulated (i.e. virtual) network—
have to be used as target during the deployment. Interaction with real devices
is still possible. For the interaction with Dymola only communication FBs and
some FBs for en-/decoding of the exchanged values have to be included in the
plant interface FBs (or the plant simulation application). Although the inte-
gration of these distinct tools is working efficiently, it is not possible to make a
general statement about the possibility to integrate any other simulation tool
in the proposed co-simulation environment. However, it seems feasible to in-
tegrate also other external simulation tools, if a communication channel bet-
ween the external simulation tool and the co-simulation environment based
on FORTE can be established, data-types are compatible, and simulation time
can be kept synchron (e.g. all entities running at nominal time or time syn-
chronisation facilities).

The author is confident that the work presented in this thesis is an important
step towards a more efficient engineering of production systems. This new ap-
proach covers all aspects from collaborative specification to the commissioning
of the plants. It can be used for either the initial setup of a new plant or for re-
configuration of existing plants. Different validation scenarios, applicable in
various development phases, may be used to increase the quality of the deve-
loped automatic control functionality. The simulation framework on basis of
the IEC 61499 compliant runtime environment FORTE helps to validate auto-
matic control applications directly on the selected execution platform. Hence,
platform aspects, which might have influence on the overall behaviour of the
automated system, are included in the validation process.

6.2 Outlook

The presented work is a first step towards an efficient engineering workflow
for production systems. The inclusion of simulation in the engineering work-
flow helps to increase the quality of the automatic control applications and
also decrease the overall engineering time frame to deployment. The selected
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test cases, steming from distinct domains, prove the feasibility of the presen-
ted approach in large areas of production systems design. Nevertheless, there
are still open points that need attention and further investigation before a full
industrial use of the presented concepts is possible.

Modelling Environment

The central engineering models have been well thought of. Nevertheless, ad-
ditional information (e.g. mechanical data) has to be included and further
links within the models have to be established. For better acceptance, also ad-
ditional specification tools have to be included in the workflow. This requires
a thorough analysis of the data provided by the tools. Model transformation
rules have to be created for data extraction.

A possible step towards the integration of additional tools could be a two-
phased model transformation process for the information extraction. An in-
termediate model could act as common point for multiple, similar enginee-
ring tools. Hence, the effort for creating model transformation rules could be
significantly reduced.

Besides the integration of additional third party tools also the creation of
a Domain Specific Language (DSL) for the hierarchical modelling, especially
using already existing components, is urging for the successful adoption of the
proposed engineering approach. Support for the explicit specification of errors
and error-handling mechanisms is also missing. Instead of specifying these
aspects with the nominal behaviour of an automated component, a separation
of concerns should be reached. A separate sub-workflow and the integration
of specialized tools should be aimed at. Nonetheless, such specified error-
handling mechanisms have to be considered during the code generation and
included in the automatic control applications.

The current practice for the maintenance of automation systems, which is
focused on getting the plant operational as soon as possible, is to fix faults di-
rectly on the controllers in the plant. PLC programming environments are able
to detect modifications and the upload functionality can be used to synchro-
nize the deployed programme with the engineering tool. Correctly extracting
information from freely programmed code (for PLCs and other control de-
vices) to bring it into structured engineering models is hardly possible. Howe-
ver, at least support functionalties to link the generated code with the models
has to be available in a model-based engineering approach.

External Simulation Tools

In some of the involved disciplines simulation models and tools are applied for
the analysis of design alternatives. However, only the selected solution is pro-
vided to the other disciplines. The presented model-based engineering work-
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flow supports the creation of multiple ACs which provide the same or similar
functionality. Possible design alternatives should be included in the central
engineering model repository. The alternative solutions are variation points
in the design of the automated system. A selection of the AC to being im-
plemented shall be done collaboratively. Nevertheless, additional data needs
to be included in these model to satisfy the requirements. The model-based
engineering infrastructure should not be a parallel system, but the central sys-
tem. Hence, external simulation models and results should be integrated in
the models as well.

The improvement and extension of the simulation tool independent plant
behaviour model, could be further investigated. Including more data in this
model would further facilitate a simulation tool independent modelling. Si-
milar to the development of automatic control applications the tool-specific
simulation models could be generated via model-transformation.

Another possibility for integrating external simulation tools in the develop-
ment cycle for production systems could be the establishment of a specialized
middleware for production system simulation. Unified interfaces, datatypes,
and object definitions (e.g. material) could facilitate the combiniation of arbi-
trary simulation and control environments.

Simulation Framework

For the validation of larger, and distributed automatic control application with
means of distributed simulation on the same control devices the time mana-
gement functionalities have to be improved. Currently all devices run at the
same clock advancement rate. For hybrid simulation scenarios this is not a
problem, as the operational parts run at nominal speed anyway. The synchro-
nisation of the Future Event List on the involved control devices could help to
speed up the simulation runs for full simulation scenarios. If external simu-
lation tools are included, the synchronisation facility also has to include them
for reliable results.

Simulation results are currently provided via log-files and the integration
into SCADA systems. Hence, the simulation results have to be evaluated by
an expert on the basis of these historic data. To further foster the collabora-
tion of multiple disciplines the visual presentation of results, directly included
in the simulation/automatic control runtime environment could help. Game
graphics engines provide according APIs which could be used to provide a
3D simulation environment. Furthermore, such engines also include realistic
physics models and simulations, which could be used for collission detection
and other purposes. Compared to available 3D Simulation applications these
game engines provide more open APIs.
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Simulation-based Diagnosis

The availablity of plant simulation on the control devices is an enabler for
model-based diagnosis in automated systems in the production domain. The
need for additional devices, configuration of communication interfaces and
the like is compensated. The introduction of model-based diagnosis on a broad
basis can help to improve the maintenance of the plants, decrease outages and
downtimes and hence operate the production systems more efficiently.
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