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Deutsche Kurzfassung

Evolutionsgleichungen spielen eine zentrale Rolle in vielen Anwendungsgebieten.

Ein Beispiel für eine solche Evolutionsgleichung ist die Fokker-Planck-Gleichung,

eine partielle Differentialgleichung für die zeitliche Entwicklung einer Wahrschein-

lichkeitsdichte, das heißt einer Funktion, die zum Beispiel die Verteilung von

Teilchen im Raum beschreibt. Die Fokker-Planck-Gleichung findet in vielen

Naturwissenschaften Anwendung, unter anderem in der Festkörperphysik, Quan-

tenoptik, chemischen Physik und theoretischen Biologie [57]. Sie wird auch in

der Finanzmathematik verwendet, dort allerdings in stochastischer Formulierung

unter dem Namen Ornstein-Uhlenbeck-Prozess, um Zinsraten, Währungswech-

selraten und die preisliche Entwicklung von Gütern zu modellieren. Neben

den Standardfragestellungen bezüglich Existenz und Regularität von Lösungen

sind im Umfeld von Evolutionsgleichungen typischerweise die Existenz und Ein-

deutigkeit von Stationärzuständen sowie das Langzeitverhalten der Lösungen

(zum Beispiel Abklingen zum Stationärzustand und die zugehörige Abkling-

rate) interessant. In dieser Dissertation behandeln wir diese Fragestellungen für

Fokker-Planck-Gleichungen vom Typ

∂tf = Lf := div(D∇f + Ff) on (0,∞)× R
d,

f(t = 0) = f0 ∈ L1(Rd),
∫

Rd

f0 dx = 1, f0 ≥ 0.

Hierbei ist F : R
d → R

d ein Vektorfeld und D = DT ≥ 0 eine posi-

tiv (semi-)definite Matrix in R
d×d. Ist D singulär, wie zum Beispiel in der

kinetischen Fokker-Planck-Gleichung [57], gibt es eine mathematisches Problem,

welches in den letzten Jahren zunehmend in den Fokus der Forschung gerückt

ist: Im Term div(D∇f) zweiter Ordnung, der eine wesentliche Rolle für das

Verhalten von Lösungen spielt, fehlen Ableitungen in einem Teil der Ortsvari-

ablen. Daher ist die Gleichung nicht mehr voll parabolisch, sondern degeneriert
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parabolisch, und viele der bekannten Resultate über voll parabolische Gleichun-

gen lassen sich nicht anwenden (oder zumindest nicht direkt). Es gibt zwei es-

sentielle Eigenschaften für voll parabolische Gleichungen: Regularisierung, das

heißt glatte Lösungen selbst bei unstetigen Anfangsdaten, und (unter Bedingun-

gen an den Term erster Ordnung oder den Definitionsbereich) Koerzivität. Ko-

erzivität impliziert ein Abklingen der Lösungen gegen einen Stationärzustand.

Beide Eigenschaften sind im Allgemeinen für degeneriert parabolische Gleichun-

gen aufgrund fehlender zweiter Ableitungen nicht zu erwarten. Voraussetzun-

gen, unter denen Regularisierung auch für degeneriert parabolische Gleichungen

gilt, wurden in den 60er- und 70er-Jahren primär von Hörmander [42] etabliert.

Diese Ergebnisse, die unter das Konzept Hypoelliptizität fallen, werden wir in

der vorliegenden Arbeit verwenden. Die Existenz von Stationärzuständen und

das Abklingen der Lösungen im degenerierten Fall haben in den letzten Jahren

wachsendes Interesse unter dem Begriff Hypokoerzivität geweckt, vor allem durch

die Arbeit von Villani [67]. In der vorliegenden Dissertation werden wir Be-

dingungen beweisen, unter denen die Fokker-Planck-Gleichung hypokoerziv ist,

und zudem einen eindeutigen (normalisierten) Stationärzustand sowie scharfe

Abklingraten für Lösungen gegen diesen Stationärzustand berechnen.

Zu diesem Zweck werden wir eine Entropiemethode für lineare Fokker-Planck-

Gleichungen mit linearen Driftkoeffizienten F entwickeln, die es erlaubt, scharfe

Abklingraten für L1-Anfangsdaten mit endlicher relativer Entropie (eine schwä-

chere Bedingung als L2-Anfangsdaten) zu berechnen. Dazu benötigen wir die

Regularität und Positivität von Lösungen, die wir in Abschnitt 1.1 beweisen.

Diese Eigenschaften folgen aus der Hypoelliptizität der Gleichung, die wir zusam-

men mit der Hypokoerzivität in Lemma 1.3 charakterisieren. Die erhaltenen Be-

dingungen verwenden wir in Abschnitt 1.2 um den eindeutigen (normalisierten)

Stationärzustand f∞ zu berechnen und den Operator L auf L2(Rd, f−1
∞ ), dem

Standardraum für Fokker-Planck-Gleichungen, zu betrachten. Abschnitt 1.3

enthält das Hauptresultat der vorliegenden Arbeit, Satz 1.27: Mithilfe einer

adaptierten Entropiemethode aus [6] berechnen wir eine scharfe Abklingrate für

Lösungen in relativer Entropie. Die Schärfe der Rate wird in Satz 1.28 be-

wiesen. Außerdem diskutieren wir kurz das Verhalten der Fishermatrix, das

bisher in diesem Kontext nicht untersucht wurde. In Abschnitt 1.4 berechnen

wir das Spektrum von L auf dem gewichteten Raum L2(Rd, f−1
∞ ). Anhand dreier

charakteristischer Beispiele diskutieren wir die Ergebnisse dann in Abschnitt 1.5.

Abschnitt 1.6 enthält einen alternativen Beweis für die Hypokoerziviät von L

beruhend auf einer Methode aus [67]. Abschließend diskutieren wir einige Ergeb-

nisse und Probleme, die auftreten, wenn man nichtlineare Driftkoeffizienten F

zulässt.
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Introduction

Evolution equations play a central role in many applications. One such partial

differential equation (PDE) is the Fokker-Planck equation, which describes the

time evolution of a probability density (a function describing e.g. the likelyhood

of finding particles under investigation in a certain region). The Fokker-Planck

equation is employed in different fields of natural science, including solid-state

physics, quantum optics, chemical physics and theoretical biology [57]. It also

appears in financial mathematics as an Ornstein-Uhlenbeck process, used to

model interest rates, currency exchange rates and commodity prices; though in

this context it is usually found in a stochastic formulation. Besides the usual

questions of existence and smoothness of solutions, typical questions in the

context of evolution equations are existence and uniqueness of stationary states

and long-term behaviour of solutions, such as decay towards the stationary state

and the speed of such decay. In this thesis, we shall investigate these questions

for Fokker-Planck equations of the form

∂tf = Lf := div(D∇f + Ff) on (0,∞)× R
d, (1)

f(t = 0) = f0 ∈ L1(Rd),
∫

Rd

f0 dx = 1, f0 ≥ 0.

Here, F : R
d → R

d is a vector field and D = DT ≥ 0 is a positive

(semi-)definite matrix in R
d×d. If D is not regular (such as in the case of the

kinetic Fokker-Planck equation [57]), there is a mathematical difficulty that has

received growing attention in recent years: The second order term div(D∇f),
which plays a crucial role in the behaviour of solutions, does not contain deriva-

tives in all space variables. Thus, the equation is not fully parabolic, but de-

generate parabolic, and many of the results for fully parabolic equations do not

apply (at least not directly). There are two fundamental properties one can

expect from fully parabolic equations: regularisation, that is smooth solutions

even for non-smooth initial data, and (under conditions on the domain or first-

1



2 INTRODUCTION

order terms) coercivity, which implies decay of solutions towards a stationary

state. Both of these do not in general apply to degenerate parabolic equations

due to the missing second-order terms. Conditions for the first property, i.e.

regularisation, to apply to degenerate parabolic equations were established in

the 60’s and 70’s, primarily by Hörmander. These run under the concept of hy-

poellipticity, and we will make use of these results in our calculations. Existence

of stationary states and decay of solutions in the degenerate case have received

growing attention in recent years, and the emerging umbrella term is hypoco-

ercivity, introduced primarily by the works of Villani [67]. In this thesis, we

shall characterise when (1) exhibits hypocoercivity, and additionally establish

stationary states and sharp rates of decay for solutions towards the stationary

state.

To do so, we extend the entropy method, a powerful tool in the large-time-

analysis of fully parabolic equations, to the case of degenerate Fokker-Planck

type equations. The central idea of the entropy method is using the physical

relative entropy between a solution and the stationary state as a Lyapunov

functional, that is, a measurement of distance that is monotonously decreasing

in time, and thus can be used to gain decay estimates. Another often used

candidate for Lyapunov functionals is the physical energy of the system, but

since the energy contains derivatives of the solutions, using it as a Lyapunov

functional mandates higher regularity for the initial conditions. Employing the

entropy method, one can reduce the regularity requirement for initial data to

finite relative entropy, a requirement “between” L1 and L2. Another approach

to decay estimates is the spectral method, where one computes a lower bound on

the real part of the spectrum of L (on the orthogonal complement of its kernel,

of course). The spectral approach requires a fixed setting, usually H1 ⊂ L2 to

make use of their Hilbert space properties, and decay estimates thus obtained

do not directly transfer to initial data with less regularity. Furthermore, the

spectral method is usually only applicable for linear PDEs, whereas Lyapunov

functionals (and the entropy method) have been successfully employed in many

non-linear models (e.g. [4], [16], [17], [24], [25], [23], [28], [55]).

We remark that, in (1), the matrix D only appears in front of the gradient,

whereas in most of the literature, the operator is usually written in the form

div(D(∇f + Ff)).

This is equivalent for a regular D, but if D is singular, the above form will

not allow an entropy method: The operator then only acts on some subset of

R
d – to be precise, the complement of the kernel of D – and there will never

be a unique steady state. While this difference in notation is necessary, it is
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important to keep in mind when comparing this thesis with literature on non-

degenerate equations.

For most of this thesis, we make the additional assumption

F : Rd → R
d, x 7→ Cx with C ∈ R

d×d.

So we consider the degenerate parabolic Fokker-Planck equation

∂tf = Lf := div(D∇f + Cxf) = div(D∇f) + xTCT∇f +Tr(C)f, (2)

and analyse solutions that satisfy f(t, ·) ∈ L1(Rd) along with
∫

Rd

f(t, x) dx = 1

for all t > 0.

A change of variables y :=Mx for some orthogonal M (i.e., MT =M−1), leads

to the equation

∂tf = div(MDMT∇f +MCMT yf).

Since D is symmetric and positive definite, there exists anM such thatMDMT

is diagonal. Rescaling the space variable then yields

D = diag{1, . . . , 1
︸ ︷︷ ︸

k

, 0, . . . , 0
︸ ︷︷ ︸

d−k

},

k := rankD, 1 ≤ k ≤ d. We will thus assume w.l.o.g. that D has this simple

form. The case k = d has been studied extensively, see for example [6].

In the case k < d, the operator L is not elliptic, and classical parabolic

results will not apply for (2). This motivates investigating hypoellipticity and

hypocoercivity for the operator L in (2). We shall see that in this case, hypoco-

ercivity requires hypoellipticity. That is not always the case, as for example

with the linear relaxation terms considered in [29].

A very good, broad discussion of hypocoercivity can be found in [67], which

also contains a precise definition of hypocoercivity:

Definition 0.1. Let H be a Hilbert space, L an unbounded operator on H with

kernel K. Let H̃ be another Hilbert space, which is continuously and densely

embedded in K⊥. Then −L is said to be hypocoercive on H̃ if and only if there

is λ > 0 and some constant c such that

∀h ∈ H̃ : ‖etLh‖H̃ ≤ ce−λt‖h‖H̃ .
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[67] also establishes a general criterion for exponential convergence of so-

lutions for a class of hypocoercive evolution equations, based on a Lyapunov

functional equivalent to a weighted H1-norm. While the main theorem in [67]

covers a wide class of problems, the price paid is in the estimate for the decay

rate, which is off by orders of magnitude.

In the last few years several papers dealt with the large-time behaviour of

hypocoercive equations. But to our knowledge, sharp decay rates were only con-

sidered in [34] for two specific toy models, using the spectral decomposition of

their generators. In [52] several collisional kinetic models (including the Fokker-

Planck equation, linearised Boltzmann and Landau) are analysed on the torus

(in the spatial variable): Exponential convergence to the steady state is shown

in the H1–norm. In [51], a decay estimate is obtained for a 2-dimensional ki-

netic Fokker-Planck model using higher order time derivatives of the L2-norm of

solutions and their space derivative. Also [31] and [10] study dissipative kinetic

models (i.e. with k = d
2 ) in H1. While [31] uses a macro-micro decomposition

of the models, [10] is based on an (augmented) Γ2–calculus and local computa-

tions (in contrast to the integrated functionals used by most other authors), cf.

also [13]. [30] and [10] also analyse much more general hypocoercive equations.

Along with [31] they require the following restriction on the interaction between

the degenerate dissipative part and the non-symmetric part of L: It is assumed

that the map CT does not map any subspace of the kernel of D into the kernel

of D (which is equivalent to using only first order Hörmander-commutators to

span all of Rd, cf. §3 in [10]). But this condition is more restrictive than nec-

essary. In this paper and in [67], only the weaker condition (A) (see Definition

1.1 below) shall be imposed.

The common approach to study the long-term behaviour of hypocoercive

equations has been via a Lyapunov functional - usually on a weighted H1-space,

but [67] also contains (in Theorem 28) a Lyapunov functional based on the log-

arithmic entropy. In [30], the authors get rid of the H1-regularity restriction

on initial states and prove decay towards the steady state using a modified L2-

norm. In [67], it is shown that even for methods based upon H1-functionals, one

can often get rid of the regularity assumptions by using the regularisation of the

semigroup etL. So far, there is no knowledge on the decay of general entropies

“between” logarithmic and quadratic, nor on sharp decay rates for equations of

types (2). In this paper we shall modify the entropy method (see [6], [13]- [15])

to achieve all three results for equations of type (2): no H1-regularity require-

ment for the initial state, sharp decay rates, and decay for a wide class of relative

entropies.
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The strategy of the standard entropy method is to derive first a differential

inequality between the first and second time derivative of the relative entropy

(of the solution w.r.t. the equilibrium state). Their time evolution in a proto-

typic situation is shown in Fig. 1a. Integration in time of the inequality then

allows to deduce exponential decay of the relative entropy. But this approach

is not feasible for degenerate Fokker-Planck equations, since the entropy dissi-

pation can vanish for states other than the equilibrium. Hence, the second time

derivative of the entropy may change its sign along a trajectory, see Fig. 1b.

Therefore, we shall introduce an auxiliary functional – structurally related to

the entropy dissipation, but in general larger than the latter. A Bakry-Emery-

type estimate then yields exponential decay of this auxiliary functional, and

consequently also of the entropy dissipation. A convex Sobolev inequality with

the auxiliary functional as its relative Fisher information [6] finally yields the

exponential decay of the relative entropy. Initially, this approach shall need

an additional regularity assumption for the initial state. But this can then be

removed using the regularisation of the parabolic equation (2), as in [67].

Figure 1: Prototypical behaviour of the relative entropy e(t), its first and second
derivatives.

(a) Non-degenerate case: The inequalities
e′ ≤ −µe, e′′ ≥ −µe′ can be obtained.

(b) Degenerate case: The inequalities e′ ≤
−µe, e′′ ≥ −µe′ are wrong, in general.

There is a well understood connection between convex Sobolev inequali-

ties [36], [37] related to the measure µ = f∞ dx, decay of solutions towards

the unique stationary state f∞ = cV exp(−V ) in relative entropy, and a Bakry-
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Émery condition of the form ∂2V
∂x2 ≥ λ1D

−1. In the case k = d, a convex

Sobolev inequality implies decay in the corresponding relative entropy. Con-

versely, decay in relative entropy implies a convex Sobolev inequality (see [6],

§3). The Bakry-Émery condition implies both, but it is not a necessary require-

ment. For k < d, the (classical) Bakry-Émery condition on V can not hold

due to the singularity of D. As can be seen from figure 1b, (2) will also not

give rise to such inequalities along solution trajectories, as for k = d. There

is still a convex Sobolev inequality related to the measure µ = f∞ dx, but it

no longer directly implies decay of relative entropy. It still relates the relative

entropy to a modified entropy production, and we shall make use of that in §1.3.

This thesis is split in two parts. First, in §1, we establish an entropy method

for (2) that proves sharp decay rates for L1-initial data with finite relative en-

tropy (a weaker condition than L2-initial data). We start by deriving regularity

and positivity of solutions in §1.1. In this case, they derive from the hypoellip-

ticity of L, which we characterise in Lemma 1.3. §1.2 follows this up by explicitly

giving the unique (up to normalisation) steady state f∞ and discussing the op-

erator L in L2(Rd, f−1
∞ ), the standard space for Fokker-Planck equations. In

§1.3, we state our main result in Theorem 1.27: a modified entropy method

from [6] allows to compute an explicit decay rate for solutions of (2) in relative

entropy. We also briefly discuss decay of the Fisher information matrix, which

has not yet been done in this context. The sharpness of the decay rate will be

shown in Theorem 1.28. In §1.4 we compute the spectrum of L on the weighted

space L2(Rd, f−1
∞ ). In §1.5, we discuss our result for three archetypical exam-

ples. §1.6 provides an alternative proof for the hypocoercivity of L, adapted

from [67]. Finally, we will discuss a few results and problems that appear when

generalising to nonlinear drift coefficients F in §1.7. Most of the results in §1
will be published in a separate paper [33].

In the second part, §2, we investigate a possible entropy method for open

quantum systems in Lindblad form. Details and an introduction are given in

the outline of the same chapter, §2.1.



Chapter 1

Hypocoercive

Fokker-Planck equations

1.1 Hypoellipticity of L

If D is not regular, the operator L is neither coercive nor elliptic. In general,

such an operator does not lead to a unique normalised stationary state in (2).

We thus need additional assumptions on the parameters in L, which shall be

assumed throughout §1.1-1.5:

Definition 1.1. The operator L from (2) fulfils condition (A) if and only if

(i) there is no nontrivial CT -invariant subspace of kerD,

(ii) the matrix C ∈ R
d×d is positively stable1.

Condition (A) is stricter than necessary for the existence of solutions to (2):

the extra condition, positive stability of C, means that the drift part acts as a

confinement potential. While there are solutions even without condition (A.ii),

there will be no steady state (compare the heat equation on R
d). Indeed, The-

orems 1.12 and 1.27 show that condition (A) is both sufficient and necessary

for the existence of a unique normalised steady state for (2) and exponential

convergence of solutions to the steady state.

1A matrix is positively stable iff all eigenvalues have real part greater than zero.

7



8 CHAPTER 1. HYPOCOERCIVE FOKKER-PLANCK EQUATIONS

1.1.1 Existence of solutions

Proposition 1.2. Let f0 ∈ L1(Rd). Then there is a unique solution f ∈
C∞(R+ × R

d) of (2) iff no non-trivial subspace of kerD is invariant under

CT .

Proof: The assumption that no non-trivial subspace of kerD is invariant

under CT is equivalent to the hypoellipticity of L. We refer to page 148 of [42]

for a proof. �

If the condition in Proposition 1.2 does not hold, (2) clearly also has a

unique solution, but it would be less regular. Due to the special form of D, we

conclude that C cannot be diagonal unless k = d. A heuristic explanation of this

condition is that the solution cannot stay in the kernel of the dissipative part,

and therefore the evolution under (2) acts dissipative in all space directions: If

one considers merely the drift part of the equation,

ft = (Cx) · ∇f, (1.1)

the solution is f(t, x) = f0(e
Ctx). So, for the dissipative part to ”extend” to the

whole space, one needs that eCtx reaches the whole space R
d for all x ∈ imD

(imD being the image of D), or conversely, that eC
T tx evolves into imD for all

x ∈ kerD . This is, in fact, an alternative characterisation of the hypoellipticity

of L, as shown in Lemma 1.3.

We recall that some approaches from the literature require a stricter condi-

tion than in Proposition 1.2: That no subspace of the kernel of D be mapped

into the kernel of D by CT . To illustrate this restriction, consider the examples

D1 =









1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0









; CT1 =









1 0 −1 0

0 1 0 −1

1 0 0 0

0 1 0 0









and

D2 =









1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0









; CT2 =









1 0 0 0

0 1 −1 0

0 1 0 −1

0 0 1 0









.

In both cases, there exists a unique steady state and all solutions converge
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exponentially to the steady state. For the case of D1 and C1, the condition

given in [30], [31] and [10] hold:

∀ 0 6= U ⊂ kerD : CTU 6⊂ kerD. (1.2)

In the case of D2 and C2, the same condition does not hold, even though the

problems seem very ’similar’. The difference can be seen as follows: consider a

vector of the form (0, 0, 0, a)T . If we apply CT1 to this vector, it is moved out

of the kernel of D. However, if we apply CT2 , it is not. In order to move it out

of the kernel of D, we need to apply CT2 twice (i.e. multiply by (CT2 )
2). More

precisely, the following weaker version of (1.2) holds:

∀ 0 6= U ⊂ kerD : CTU 6⊂ U.

So the condition given in [67], [42] and here is less strict. As will be shown

in §1.2.1, condition (A) is equivalent to the existence of a unique normalised

steady state.

In the following lemma, we shall give four equivalent characterisations of

the hypoellipticity of L. This will allow us to use either characterisation where

required. For example, we shall use (iv) for a proof of the positivity of solutions

in §1.1.2, and (iii) in the proof of the regularisation for the semigroup eLt in

Theorem 1.26.

Lemma 1.3. The following four statements are equivalent:

(i) No non-trivial subspace of kerD is invariant under CT .

(ii) No eigenvector v of CT fulfils Dv = 0.

(iii) There exists τ ∈ {1, . . . , d− k} and κ > 0 such that

τ∑

j=0

CjD(CT )j ≥ κ Id, (1.3)

where k = rankD.

(iv) For any t ∈ R, h > 0, it holds that

∀0 6= ξ ∈ kerD ∃s ∈ [t, t+ h] ∃η ∈ imD : 〈eCT sξ, η〉 = 1.

Proof: (i)⇒(ii): If 0 6= v 6∈ iRd is an eigenvector of CT with Dv = 0, then

span{v + v, v − v} is a non-trivial subspace of kerD invariant under CT .

(ii)⇒(i): If V ⊂ kerD is invariant under CT , then so is its extension to a
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subspace in C
d. But in C

d, any non-trivial subspace invariant under CT contains

at least one eigenvector of CT .

(i)⇒(iii): All matrices CjD(CT )j are symmetric and positive semidefinite, since

D is symmetric and positive semidefinite. It suffices to show that for any vector

v 6= 0, there exists j ≤ d − k with D
1
2 (CT )jv = D(CT )jv 6= 0, since then

τ∑

j=0

(C)jD(CT )j is regular for τ := max
v 6=0

min
j∈N

{j|D 1
2 (CT )jv 6= 0}.

If v /∈ kerD, we choose j = 0, and hence Dv 6= 0. So let now 0 6= v ∈
kerD. Then either CT v /∈ kerD, in which case DCT v 6= 0, or CT v ∈ kerD.

Repeating this procedure, we see that either there is j ≤ d−k such that (CT )jv /∈
kerD or ∀0 ≤ j ≤ d − k : (CT )jv ∈ kerD. Assume the latter. Since the

dimension of kerD is d− k, the d− k+1 vectors (CT )jv, 0 ≤ j ≤ d− k are not

linearly independent. Thus, ∃ l ∈ {1, ..., d−k} such that span{v, . . . , (CT )lv} =

span{v, . . . , (CT )l−1v}. Hence, span{v, . . . , (CT )lv} is a CT -invariant subspace

of kerD, which has to be trivial due to condition (A). But then v = 0, which is

a contradiction.

(iii)⇒(i): If 0 6= v ∈ kerD, then by (ii) there is a j ∈ {1, . . . , τ} such that

D
1
2 (CT )jv 6= 0, i.e. (CT )jv 6∈ kerD. Thus, no non-trivial subspace of kerD can

be invariant under CT .

(i)⇒(iv): Let 0 6= ξ ∈ kerD. To proceed by contradiction we assume

∀s ∈ [t, t+ h] ∀η ∈ imD : 〈eCT sξ, η〉 = 0. (1.4)

This implies

∀s ∈ [t, t+ h] : eC
T sξ ∈ kerD,

and therefore in particular ν := eC
T tξ ∈ kerD. Differentiating (1.4) with respect

to s yields

∀s ∈ [t, t+ h] ∀η ∈ imD : 〈eCT sCT ξ, η〉 = 0. (1.5)

But this implies CT ν ∈ kerD. Differentiating (1.5) repeatedly with respect to

s yields (CT )jν ∈ kerD for any 0 ≤ j ≤ d− 1. Hence span{ν, . . . , (CT )d−1ν} ⊂
kerD is a CT -invariant subspace of kerD. That is a contradiction to condition

(A).

(iv)⇒(i): Let ξ 6= 0 be in a CT -invariant subspace of kerD, i.e. (CT )jξ ∈ kerD

for any j ∈ N0. Since CT ∈ R
d×d, eC

T s is a polynomial in CT (albeit with

s-dependent coefficients) and (iv) immediately gives a contradiction. �

Remark 1.4. If τ is the minimal constant for which Lemma 1.3 holds, then L
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fulfils the finite rank Hörmander condition of order τ (see [42] Theorem 1.1).

Using τ = d−k summands in (1.3) actually covers the worst-case scenario. But

in many examples,
τ∑

j=0

(C)jD(CT )j with τ < d − k is already positive definite.

This is the case in the kinetic approaches discussed in [10], and [31], which

require τ = 1 and k = d
2 . Also in [30], τ = 1 is assumed.

We also want our solution to be in C(R+
0 , L

1(Rd)), since then the normali-

sation

∫

Rd

f(t, x) dx = 1

holds for all t due to the divergence form of the operator. This fact follows

from the existence of a Green’s function for (2), which we will construct in the

following lemma. We note that this construction has already been done in [42],

with slightly different notation.

Lemma 1.5. Let condition (A.i) be fulfilled. Then the Green’s function g to

(2) is given by

g(t) =
1

(2π)
d
2 det(W (t))

exp(−xTW (t)−1x),

where

W (t) =

t∫

0

eC(s−t)DeC
T (s−t) ds

is positive definite for all t > 0.

Proof: The Fourier transform of (2) is

ĝt = −(ξTDξ)ĝ − (ξTC∇)ĝ. (1.6)

We are looking for a solution to the initial condition ĝ0 ≡ 1. As an ansatz, we

take

ĝ(t, ξ) := exp(−ξTW (t)ξ)

with a symmetric matrix W that is positive definite for all t > 0 and fulfills

W (t = 0) = 0. Inserting this into (1.6), we get

−(ξTWtξ)ĝ = (−ξTDξ)ĝ + 2(ξTCWξ)ĝ,
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which implies due to g̃ > 0

ξTWtξ = ξTDξ − ξT (CW +WCT )ξ.

This can only be fulfilled if

Wt = D − CW −WCT . (1.7)

Equation (1.7) together with the initial condition W (t = 0) = 0 has the unique

solution

W (t) =

t∫

0

eC(s−t)DeC
T (s−t) ds.

We need to prove: g(t, ·) ∈ L1(Rd) and g(t, x) > 0 for t > 0, x ∈ R
d. To this

end it remains to show that W (t) > 0 for all t > 0. Clearly W (t) ≥ 0, since

it is an integral over positive semidefinite matrices. So assume that W (t0) is

singular for some t0 > 0, i.e. there exists 0 6= ξ ∈ R
d such that

0 = ξTW (t0)ξ =

t0∫

0

ξT ec(s−t0)DeC
T (s−t0)ξ ds,

where the integrand is non-negative. Due to the continuity of the matrix expo-

nential, this can only hold if

ξT (eC(s−t0)DeC
T (s−t0)ξ = 0

for all s ∈ [0, t0]. Since D = D2, this implies

De−C
T rξ = 0

for all r ∈ [0, t0], in particular ξ ∈ kerD. But this is a contradiction to Lemma

1.3. Hence, W (t) > 0 for all t > 0, and an inverse Fourier transformation of ĝ

gives

g(t, x) =
1

(2π)
d
2 det(W (t))

exp(−xTW (t)−1x).

�
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We now state an existence result on solutions in Lp, which is similar to

Corollary 3.1 from [62]:

Corollary 1.6. Let condition (A.i) be fulfilled. Let f0 ∈ L1(Rd) ∩ Lp(Rd),

for a p ∈ [1,∞]. Then there exists a unique classical solution f to (2) with

f ∈ C([0,∞), Lp(Rd))∪C∞(R+×R
d). If

∫

Rd

f0 dx = 1, it follows
∫

Rd

f(t) dx = 1

for all t > 0.

Proof: From Proposition 1.2 we already have that a solution f is smooth

for any t > 0. With the Green’s function from Lemma 1.5 we obtain

f(t, ·) = g(t, ·) ∗ f0.

Applying Young’s inequality yields

‖f(t)‖Lp(Rd) = ‖g(t) ∗ f0‖Lp(Rd) ≤ ‖f0‖Lp(Rd)‖g(t)‖L1(Rd).

From the proof of Lemma 1.5 we obtain ‖g(t)‖L1(Rd) = 1. The desired normal-

isation then follows from the divergence form of the operator. �

This answers the question of existence of solutions.

1.1.2 Global positivity

For a non-degenerate Fokker-Planck equation, the solution is globally positive

for any t > 0. This follows from a strong maximum principle supplied by the

fully parabolic operator. In our degenerate case, a strong classic maximum

principle does not hold. From a weak maximum principle, we obtain that the

solution is nonnegative. However, global positivity is important, since most

admissible entropies are only defined on positive functions. Under condition

(A.i), we can derive global positivity of solutions from the hypoellipticity of L:

Theorem 1.7. Let condition (A.i) hold and f0 ∈ L1
+(R

d). Let f be the solution

to (2). Then

∀t > 0 ∀x ∈ R
d : f(t, x) > 0.

This theorem follows directly from the strict positivity of the Green’s func-

tion g from Lemma 1.5. However, we give a second proof via a sharp maximum

principle from [41]. As the second approach is more general, it is more promis-

ing for an extension of these results to a nonlinear coefficient F . We need to

introduce some notation.



14 CHAPTER 1. HYPOCOERCIVE FOKKER-PLANCK EQUATIONS

First, we rewrite our operator in degenerate elliptic form:

L̃f :=





(

∂t

∇

)T

D̃

(

∂t

∇

)

 f + b ·
(

∂t

∇

)

f,

where

D̃ :=

(

0 0

0 D

)

∈ R
(d+1)×(d+1),

b(x) :=

(

−1

Cx

)

∈ R
d+1.

Comparing this with our original operator L, we have

L̃f = Lf − ft − Tr(C)f. (1.8)

Due to the special form of D, the rows dj of D̃ are of the form

(dj)l = δjl

for 2 ≤ j ≤ k + 1 (k = rankD) and dj = 0 for j = 1, k + 1 < j ≤ d + 1. With

this notation, we shall now introduce drift and diffusion trajectories:

Definition 1.8. Let Ω be a connected open set in R
d+1, p0 ∈ Ω.

• If p(s) is the solution to

d
dsp(s) = dj ,

p(0) = p0,

with some 2 ≤ j ≤ k + 1, and if p(s) ∈ Ω for s1 ≤ s ≤ s2 with some

s1 < 0 < s2, then we call Γ := {p(s)|s1 ≤ s ≤ s2} a diffusion trajectory

running through p0.

• If p(s) is the solution to

d
dsp(s) = b(p(s)),

p(0) = p0,
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with b(p(s)) 6= 0, and if p(s) ∈ Ω for 0 ≤ s ≤ s′ with some s′ > 0, then we

call Γ := {p(s)|0 ≤ s ≤ s′} a drift trajectory starting at p0.

Remark: Drift trajectories are oriented at p0 in the direction b(p0); they

do not run both ways. Diffusion trajectories are not oriented, they run in both

directions. In our special case of a diagonal D, each diffusion trajectory moves

along one of the canonical unit vectors in imD.

Next, we introduce the propagation set:

Definition 1.9. Let Ω ⊂ R
d+1. Two points p, q ∈ R

d+1 are connected by a

diffusion trajectory in Ω iff there is some diffusion trajectory Γ ⊂ Ω with p, q ∈ Γ.

q is connected to p by a drift trajectory in Ω iff there is a drift trajectory Γ ⊂ Ω

starting at p with q ∈ Γ.

For any point p ∈ Ω, the propagation set S(p,Ω) consists of all q ∈ Ω that are

connected to p by a finite series of drift and diffusion trajectories.

Again, note that drift trajectories are oriented and cannot connect points

in the ’backward direction’. Therefore, it is possible that q ∈ S(p,Ω) while

p /∈ S(q,Ω).

With this notation, we can restate the interior maximum principle from Theorem

1 of [41]:

Theorem 1.10. Let p = (t, x) ∈ Ω ⊂ R
d+1, t > 0. Let the function f ∈ C2(Ω)

satisfy L̃f ≤ 0 on the propagation set S(p,Ω) and

inf
S(p,Ω)

f ≥ 0.

If f(p) = 0, then f = 0 in S(p,Ω).

The propagation set corresponding to equation (2) can be characterised as

follows:

Lemma 1.11. Let p = (t, x) ∈ R
d+1. Then S(p,Rd+1) = [0, t)×R

d∪ {(t, x0)}×
R
k, where x0 is the orthogonal projection of x onto the kernel of D.

Proof: First, note that only drift-trajectories are non-constant in time,

since the first row of D̃ is zero. A drift trajectory ξ(s) = (t(s), v(s)) starting at

ξ0 = (t0, v0) has the form

d
dsξ =

(

−1

Cv

)

,

ξ(0) = ξ0.
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The solution to this equation is

ξ(s) =

(

t0 − s

eCsv0

)

.

This means that drift trajectories move backwards in time linearly. Thus, for a

point q = (t′, y) to be connected to p in the time-variable, it is necessary that

t′ ≤ t. This is to be expected, as it is also the case for the classical maximum

principle for parabolic equations.

Since the diffusion trajectories span the subspace R
τ = imD ⊂ R

d, we write

p = (t, xD, x0) and q = (t′, yD, y0), where x0 and y0 are the projection of x

and y onto the kernel of D. Without moving backwards in time, we can only

connect via diffusion trajectories. This implies

S(p,Rd+1) ∩ {(t̃, x) ∈ R
d+1|t̃ = t} = {(t, x0)} × R

τ .

It remains to show that any point q = (t′, y) with t′ < t can be connected to p.

The strategy here is the following: Since we can freely move around in imD, we

only need to connect q and p in the kernel of D and in time. To achieve this, we

employ Lemma 1.3, (iv). We will proceed in a series of trajectories: A number

of drift trajectories (equal to µ := dimkerD + 1 = d − k + 1), each of them

followed by up to k = rankD diffusion trajectories. Starting at ξ0 = (t, x), such

a series of two drift and 2k diffusion trajectories will arrive at

(
t− s1 − s2, e

Cs2 [eCs1x+ z1] + z2
)
,

where z1, z2 ∈ imD are the results of shifts by diffusion trajectories and 0 ≤
s1, s2. Thus, a series of µ trajectories will arrive at

(
t−

µ
∑

j=1

sj , exp(C

µ
∑

j=1

sj)x+

µ−1
∑

j=1

exp(C

µ
∑

l=1+j

sl)zj + zµ
)
,

where zj ∈ imD, 1 ≤ j ≤ µ. Setting this equal to our target point q = (t′, y)

and rearranging terms, we obtain the following requirements:

µ
∑

j=1

sj
!
= t− t′,

µ−1
∑

j=1

eCrjzj + zµ
!
= y − eC(t−t′)x,

with rj ∈ [0, t − t′], rj =
µ∑

l=j+1

sl, sj ≥ 0. The projection of this equation onto
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imD can always be solved by setting zµ accordingly. For the projection onto

kerD, we get

(Id−D)

µ−1
∑

j=1

eCrjzj
!
= (Id−D)(y − eC(t−t′)x) =: v0 ∈ kerD.

The left-hand side can be seen as a linear mapping from (imD)µ−1 to kerD,

since each of the matrix exponentials can take an arbitrary argument zj ∈ imD.

So we need to show that

((Id−D)eCrj )1≤j≤µ : (imD)µ−1 → kerD, (1.9)

(zj)1≤j≤µ−1 7→ (Id−D)

µ−1
∑

j=1

eCrjzj

is surjective for some choice of 0 ≤ rµ−1 < rµ−2 < · · · < r1 ≤ t − t′. Let

r1 ∈ [ t−t
′

2 , t− t′]. Then either

(Id−D)eCr1 : imD → kerD

is surjective, or there is ξ ∈ kerD with ξ ⊥ (Id−D)eCr1 imD (since the image

of a linear map is always a linear subspace). But then from Lemma 1.3 there is

r2 ∈ (0, r1) and η ∈ imD with

〈(Id−D)eCr2η, ξ〉 = 〈η, eCT r2ξ〉 = 1.

Now, since ξ 6⊥ (Id−D)eCr2 imD, we have

dim span
[
(Id−D)eCr1 imD, (Id−D)eCr2 imD

]
> dim(Id−D)eCr1 imD.

Then either

(
(Id−D)eCr1 , (Id−D)eCr2

)
: imD × imD → kerD.

is surjective, or we repeat the process. Each repetition increases the dimension

of the reachable subspace of kerD by at least one. Thus, we will need at most

µ− 1 = dimkerD iterations, and hence (1.9) is surjective. �

To see that the solution f of (2) fulfils f ≥ 0, one can employ the same

method used for the classical maximum principle for non-degenerate parabolic

equations. Now we give the proof of Theorem 1.7 via the sharp maximum prin-

ciple from [41]:
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Proof (of Theorem 1.7): Let f ∈ C2(R+ × R
d) be a solution to (2) for

some f0 ≥ 0 with
∫

Rd

f0 dx = 1. Then

g(t) := e−βtf(t),

with β > |Tr(C)|, solves

gt − div(D∇g)− (Cx)T∇g + (β − Tr(C))g = 0, (1.10)

g(t = 0) = f0 ≥ 0,

where β−Tr(C) > 0. The classical maximum principle then shows that g(x, t) ≥
0 for t ≥ 0. From (1.8), we have

L̃g = Lg − gt − Tr(C)g = (−Tr(C)− β)g ≤ 0,

since β > |Tr(C)|. Assume g(t′, x′) = 0 for some t′ > 0, x′ ∈ R
d. Then Theorem

1.10 gives g = 0 on [0, t′) × R
d and in particular g(0) = f0 = 0. But this is a

contradiction to

∫

Rd

f0(x) dx = 1.

Hence, g(x, t) > 0 and also f(t, x) > 0 for all t > 0, x ∈ R
d. �

1.2 Steady State, weighted L
2-space

1.2.1 Existence of a steady state

In light of Theorem 1.7, we are looking for a steady state f∞ of (2) that fulfils

the conditions

∫

Rd

f∞(x) dx = 1, ∀x ∈ R
d : f∞(x) > 0. (1.11)

In fact, the existence of such a steady state is equivalent to condition (A):
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Theorem 1.12. There exists a unique steady state f∞ ∈ L1(Rd) of (2) fulfilling

(1.11) iff condition (A) holds.

Moreover, this steady state is of the (non-isotropic) Gaussian form

f∞(x) = cK exp(−xTK−1x
2 ),

where K is the unique, symmetric, and positive definite solution to the contin-

uous Lyapunov equation

2D = CK +KCT , (1.12)

and cK is the normalisation constant.

For the proof of Theorem 1.12 we consider the Fourier transform of (2):

f̂t(t, ξ) = −(ξTDξ)f̂(t, ξ)− (CT ξ) · (∇ξ f̂(t, ξ)), (1.13)

f̂(t = 0) = f̂0.

A steady state f∞ ∈ L1(Rd) implies f̂∞ ∈ C0(R
d). Also note that

f̂∞(0) =

∫

Rd

f∞(x) dx = 1

for the normalised steady state.

Thus, the steady state equation in Fourier space reads

0 = (ξTDξ)f̂∞(ξ) + (CT ξ) · ∇ξ f̂∞(ξ), (1.14)

f̂∞(0) = 1.

The problem at hand is closely related to the stationary Fokker-Planck equa-

tion in section 2.2 in [4]. But for k < d, the singularity of D requires a more

careful analysis.

We will split the proof of Theorem 1.12 into three lemmas: In Lemmas 1.13

and 1.15 we establish that existence of a steady state is equivalent to condition

(A). Lemma 1.14 establishes that the steady state is Gaussian. In the proof of

these Lemmas, we shall switch between the equivalent characterisations (i) and

(ii) for condition (A.i) in Lemma 1.3.

Lemma 1.13. Let (1.14) have a unique solution f̂∞ ∈ C0(R
d). Then condition

(A) holds.
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Proof: First, we shall show that CT is regular: if CT has a non-trivial

kernel, (1.14) restricted to the kernel of CT reads

∀ξ ∈ kerCT : (ξTDξ)f̂∞(ξ) = 0. (1.15)

Now, either kerCT ⊂ kerD, which would mean that both drift and diffusion in

(2) only act on a proper subspace of Rd and there would be no unique steady

state; or (1.15) implies

∃v ∈ R
d : ∀s ∈ R\{0} : f̂∞(sv) = 0.

Hence, f∞(0) = 0 by continuity, which is a contradiction to f̂∞(0) = 1. So CT

is regular.

Next, we will show that C is positively stable, i.e. that all eigenvalues have

a strictly positive real part. The characteristic equations for (1.14) are

ξ̇(s) = CT ξ(s), s ∈ R, (1.16)

ż(s) = −(ξ(s)TDξ(s))z(s), s ∈ R,

(z(0), ξ(0)) = (z0, ξ0) ∈ R
d+1.

The solutions to these equations are

ξ(s) = eC
T sξ0,

z(s) = z0 exp



−
s∫

0

ξ(τ)TDξ(τ) dτ



 .

Assume that C has an eigenvalue λ with ℜ{λ} < 0. Let v be a corresponding

eigenvector of CT , i.e. CT v = λv, chosen such that v /∈ iRd. Consider the

characteristic curve starting at ξ0 := v + v̄ 6= 0:

ξ(s) = eλsv + eλ̄sv̄.

Then

|ξ(s)| = eℜ{λ}s|v + e2iℑ{λ}sv̄| → ∞, s→ −∞,

which implies

∀s ≤ 0 : |z(s)| = |z0| exp





0∫

s

ξ(τ)TDξ(τ) dτ



 ≥ |z0|
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due to D being positive semidefinite. If z0 6= 0, this is a contradiction to

|f̂∞(ξ)| → 0, |ξ| → ∞. If z0 = 0, we can take the limit s → ∞ and obtain a

contradiction to f̂∞(0) = 1 and the continuity of f̂∞. So C cannot have eigen-

values with negative real part.

Now assume that C has a purely imaginary eigenvalue. Then there exist char-

acteristics ξ(s) which form circles. Due to

z(s) = z0 exp



−
s∫

0

ξ(τ)TDξ(τ) dτ





and the continuity of f̂∞, one of the following statements has to hold on any

such characteristic curve:

(a) ∀s ∈ R : ξ(s) ∈ kerD,

(b) z0 = 0.

If (a) holds, then we have z(s) = z0 on this characteristic. Since the character-

istic is closed, there will be no uniqueness of f̂∞.

So (b) holds, and for any ε we can find such a characteristic starting at a vector

ξ0 with |ξ0| < ε. But then f̂∞(ξ(s)) = z0 = 0, which is a contradiction to the

continuity of f̂∞ at 0.

This shows that C has to be positively stable. It remains to show the second

part of condition (A). So assume CT has an eigenvector v 6∈ iRd with Dv = 0.

Then Dv̄ = 0, and for the characteristic starting at ξ(0) = v + v̄, we have

ξ(s) = eλsv + eλ̄sv̄,

z(s) = z(0) exp



−
s∫

0

(eλτv + eλ̄τ v̄)TD(eλτv + eλ̄τ v̄) dτ



 = z(0).

This means that z is constant on the characteristic ξ. Now, since C is positively

stable,

lim
s→∞

|ξ(s)| = ∞,

lim
s→−∞

|ξ(s)| = 0.

So we would need z(0) = 1 because of the continuity in 0, and z(0) = 0 because

f̂∞ ∈ C0(R
n). That is a contradiction, so there can be no eigenvector v of CT

with Dv = 0. �
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Lemma 1.14. Let C be positively stable. Then, the function

f̂∞(ξ) := exp(− ξTKξ
2 )

is a solution to (1.14), where K ≥ 0 is the unique solution of (1.12).

Furthermore, K is regular iff no eigenvector v of CT satisfies Dv = 0. In this

case, f∞ is Gaussian and hence in L1(Rd).

Proof: We insert the ansatz

f̂∞(ξ) = exp(− ξTKξ
2 )

with a symmetric matrix K ∈ R
d×d into (1.14) and obtain

∀ξ ∈ R
d : 0 =

(

ξTDξ − (CT ξ) · (Kξ)
)

f̂∞,

which holds iff

∀ξ ∈ R
d : 0 = ξT (D − CK)ξ.

This in turn holds iff D − CK is antisymmetric, which is equivalent to

D − CK = KCT −D,

and thus to (1.12). This continuous Lyapunov equation has a unique, symmetric

and positive semidefinite solution K since C is positively stable (see Theorem

2.2 in [61], Theorem 2.2.3 in [44]).

Now assume that K is not regular. Then there is a v 6= 0 with Kv = 0 and

(1.12) implies

2vTDv = vTCKv + vTKCT v = 0.

⇒ 0 = 2Dv = CKv +KCT v = KCT v,

so CT v is also an eigenvector of K to the eigenvalue 0. Since v 6= 0 and CT is

regular, CT v 6= 0. Repeating this calculation with CT v instead of v, we can see

that CT v is in the kernel of D, and thus (CT )2v is in the kernel of K. A proof

by induction then gives (CT )kv ∈ kerD ∩ kerK for all k ∈ N. Therefore, the

space

V := span[v, . . . , (CT )d−1v]

is a CT -invariant subspace of kerD. So K is regular if there is no eigenvector v

of CT with Dv = 0.
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For the reversed implication, assume that there is an eigenvector v of CT (cor-

responding to the eigenvalue λv) with Dv = 0. This implies

0 = 2vTDv = vTCKv + vTKCT v = λvv
TKv + λvv

TKv

= 2ℜ{λv}vTKv.

Since ℜ{λv} > 0 for all eigenvalues of CT , it follows that vTKv = 0 and thus,

since K is symmetric, it is not regular. �

Lemma 1.15. Let condition (A) hold. Then the steady state f∞ from Lemma

1.14 is unique.

Proof: We will show that the characteristic equations (1.16) have a unique

solution fulfilling (1.11). As the starting manifold for the characteristics, we

take Γ := {ξ0 ∈ R
d : |ξ0| = 1}, which is admissible since C is positively stable.

The characteristic curve starting at ξ0 is

ξ(s) = eC
T sξ0.

This implies

|ξ(s)|2 = 〈ξ0, eCseC
T sξ0〉,

which yields with the positive stability of C:

eη|ξ0| ≤ |ξ(s)| ≤ eη̃|ξ0|.

Here, 0 < η is the smallest real part of the eigenvalues of C, and η̃ the largest.

Hence

lim
s→∞

|ξ(s)| = ∞,

lim
s→−∞

|ξ(s)| = 0,

and the characteristic curves cover all of Rd.

The value of solutions along the characteristics is

z(s) = z(0) exp



−
s∫

0

ξ(τ)TDξ(τ) dτ



 .
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So taking

z(0) = exp



−
0∫

−∞

ξ(τ)TDξ(τ) dτ





as initial condition implies 1 = lim
s→−∞

z(s) = f̂∞(0). Since ξ(s) decays expo-

nentially for s→ −∞, z(0) is always finite and there is a unique solution z(s). �

This lemma completes the proof of Theorem 1.12.

1.2.2 Decomposition of the generator L

In analogy to the entropy method for linear, nondegenerate Fokker-Planck

equations presented in [6], we now consider (2) in the weighted space L2 :=

L2(Rd, f−1
∞ ) with inner product 〈·, ·〉. On this space, the operator L = div(D∇·

+Cx·) can be decomposed very naturally.

Theorem 1.16. Let (2) fulfil condition (A). Consider L on the weighted space

L2. Then L can be decomposed into its symmetric part Ls and its antisymmetric

part Las as

Lsf = div(D∇f +DK−1xf) = div(D∇( f
f∞

)f∞),

Lasf = xTT∇f = div(R∇( f
f∞

)f∞). (1.17)

Here, R := 1
2 (CK − KCT ) is antisymmetric, K is the covariance matrix of

f∞ from Theorem 1.12, and T := −K−1R = 1
2 (C

T − K−1CK) ∈ R
d×d with

Tr(T ) = 0.

Remark: 1. Note that the steady state f∞ fulfils both Lsf∞ = 0 and Lasf∞ =

0.

2. R 6= 0 and hence (2) is non-symmetric in L2. Otherwise (1.12) would imply

D = KCT and kerD = kerCT , which contradicts condition (A).

Proof (of Theorem (1.16):

We compute

〈Lf, g〉 =
∫

Rd

(Lf)g exp(x
TK−1x

2 ) dx

= −
∫

Rd

[D∇f + Cxf ] · [∇g +K−1xg] exp(x
TK−1x

2 ) dx
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=

∫

Rd

f div
[

(D∇g +DK−1xg) exp(x
TK−1x

2 )
]

dx

−
∫

Rd

fxTCT
[
∇g +K−1xg

]
exp(x

TK−1x
2 ) dx

=

∫

Rd

f
[
div(D∇g +DK−1xg) + xTK−1D∇g

]
exp(x

TK−1x
2 ) dx

+

∫

Rd

f
[
xTK−1DK−1xg − xTCT∇g − xTCTK−1xg

]
exp(x

TK−1x
2 ) dx.

Using (1.12), we have K−1DK−1 − CTK−1 = K−1RK−1. Since R is antisym-

metric it follows that xT (K−1DK−1 − CTK−1)x = 0 and hence

L∗g = div(D∇g +DK−1xg) + xTK−1D∇g − xTCT∇g.

Furthermore, Tr(DK−1−C) = Tr((D−CK)K−1) = 0, since D−CK = −R is

antisymmetric and K−1 is symmetric. Thus we can write (using (1.12) in the

last step)

L∗g = div(D∇g +DK−1xg + (DK−1 − C)xg)

= div(D∇g + (2DK−1 − C)xg)

= div(D∇g + (KCTK−1x)g).

So we get, again using (1.12),

Lsf = L+L∗

2 f

= div(D∇f + 1
2 (C +KCTK−1)xf) = div(D∇f +DK−1xf)

= div(D∇( f
f∞

)f∞);

Lasf = L−L∗

2 f

= div( 12 (C −KCTK−1)xf) = div(RK−1xf)

= div(R∇( f
f∞

)f∞),

where we have used div(R∇f) = 0 for the last equality. �
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1.3 Entropy Method

In this section, we will prove decay of solutions f of (2) to f∞ in relative entropy

under condition (A). We will also compute a sharp rate for this decay. To do

so, we consider relative entropies, as in [6]. We will see that, unlike in the

fully parabolic case, a direct entropy-entropy dissipation estimate cannot be

obtained. Instead, we establish an auxiliary functional that bounds the entropy

dissipation (in §1.3.1). We then prove decay of this modified functional in §1.3.3
by establishing a replacement for the classical Bakry-Émery condition. By a

convex Sobolev inequality, this still implies a decay rate for the relative entropy,

initially at the price of additional regularity requirements on the initial state

f0. In §1.3.4, we adapt a regularisation result from [67], which is then employed

in §1.3.5 to obtain the sharp decay rate for solutions with finite initial entropy.

The sharpness of this rate is shown by establishing special solutions in §1.3.6.
As for the classical method, the Csiszár-Kullback inequality ( [26], [46])

‖f1 − f2‖2L1(Rd) ≤
2

ψ′′(1)
eψ(f1|f2)

yields L1-decay of solutions from decay in relative entropy (Theorem 1.27).

With the notations of §1.2.1 we introduce the relative entropy:

Definition 1.17. Let 0 6≡ ψ ∈ C(R+
0 ) ∩ C4(R+), ψ(1) = ψ′(1) = 0, ψ′′ ≥ 0 on

R
+, (ψ′′′)2 ≤ 1

2ψ
′′ψIV on R

+. Let f ∈ L1
+(R

d) with
∫
f dx = 1. Then

eψ(f |f∞) :=

∫

Rd

ψ( f
f∞

)f∞ dx

is called an admissible relative entropy with generating function ψ.

The entropy method is based on computing a bound on the first two time-

derivatives of the relative entropy eψ(f(t)) := eψ(f(t)|f∞) with f the solution

to (2). Formally,

d
dteψ(f(t)) = −

∫

Rd

ψ′′(
f

f∞
)∇(

f

f∞
)TD∇(

f

f∞
)f∞ dx =: −Iψ(f) ≤ 0. (1.18)

However, there may be a technical problem if f(t, x) = 0 (which can happen

at the initial state f0). For example, ψ′′(s) = 1
s for the logarithmic entropy

ψ(s) = s ln s− s+ 1, and this would lead to a division by zero. For this reason,

we use a trick from [6] (see Remark 2.12) to rewrite (1.18):
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Definition 1.18. Let ψ generate an admissible entropy, and let f0 ∈ L1
+(R

d)

(or f0 ∈ L1(Rd) for quadratic ψ) with
∫

Rd

f0 dx = 1. Define

w(x) :=

f0
f∞

(x)
∫

1

√

ψ′′(s) ds. (1.19)

Then we call f0 a ψ-compatible initial state iff ∇w ∈ L2(Rd, f∞).

With Definition 1.18, (1.18) can be written as

Iψ(f) =

∫

Rd

(∇w)TD(∇w)f∞ dx. (1.20)

Whenever f 6= 0, this is equivalent to (1.18). However, now there is no longer

a problem when f = 0, since the integral in (1.19) is Hölder continuous at 0

with exponent 1
2 . The assumptions of Definition 1.18 clearly imply that a ψ-

compatible initial state has finite entropy dissipation. It also has finite relative

entropy, as we shall prove in Corollary 1.21 below.

Remark: The integral in Definition 1.18 can be calculated explicitly for the

most common entropies:

For the quadratic entropy, ψ(s) = α(s− 1)2 for some α > 0, and thus

w =
√
2α( f0f∞ − 1). (1.21)

For the logarithmic entropy, with

ψ(s) = α(s+ β) ln( s+β1+β )− α(s− 1) (1.22)

for some α > 0, β ≥ 0, we have

w = 2
√
α(
√

f0
f∞

+ β −
√

1 + β). (1.23)

For the p-entropies, 1 < p < 2, ψ(s) = α[(s+β)p− (1+β)p−p(1+β)p−1(s−1)]

for some α > 0, β ≥ 0, and thus

w = 2
√

α(p−1)
p (( f0f∞ + β)

p
2 − (1 + β)

p
2 ).



28 CHAPTER 1. HYPOCOERCIVE FOKKER-PLANCK EQUATIONS

1.3.1 Modified entropy dissipation

There is another, in fact systematic problem with the entropy dissipation (1.18):

Since D is singular for k < d, this functional is “lacking information” on some

partial derivatives of f
f∞

. But this information would be vital for the (standard)

entropy method to work. More precisely, the functional Iψ vanishes not only

for f = f∞. As shown in Corollary 1.31, for any t∗ ≥ 0 there are initial

conditions such that Iψ(f(t
∗)) = 0. Also, due to the monotonicity of eψ(f(t)),

Iψ(f(t
∗)) = 0 for some t∗ ≥ 0 implies I ′ψ(f(t

∗)) = 0. So, for degenerate Fokker-

Planck equations, eψ(f(t)) is not a convex function of t – in contrast to the non-

degenerate case from [6]. The possibility of having Iψ(f(t
∗)) = I ′ψ(f(t

∗)) = 0

for f(t∗) 6= f∞ also shows that the standard entropy method cannot be carried

over directly to the degenerate case in (2).

We therefore introduce the modified functional

Sψ(f) :=

∫

Rd

(∇w)TP (∇w)f∞ dx =

∫

f
f∞

>0

ψ′′(
f

f∞
)∇(

f

f∞
)TP∇(

f

f∞
)f∞ dx,

(1.24)

where we replace the matrix D in Iψ with a regular, symmetric matrix P . P

will be chosen in such a way that it provides an estimate between d
dtSψ(f(t))

and Sψ(f(t)) for solutions f to (2), as shown later in this section. Moreover,

since P is positive definite, there is a constant cP > 0 with P ≥ cPD, and

hence Sψ ≥ cP Iψ. The choice of P has to be done carefully: Simply choosing

any positive definite matrix will retain information on all derivatives, but will

in general not give a decay estimate (see §1.5, Example 1).

Remark: Introducing the functional Sψ differs from the modified entropy dis-

sipation approach in [27]. There one considers an “intermediate functional”

K(f), which measures the distance of f to the set of stationary states of the

symmetric part (Ls in our case). It is constructed in such a way that, whenever

K becomes small, but the relative entropy e does not, there is a mechanism that

increases K again. One then aims for an inequality like

d
dte(f(t)|f∞) ≤ −K(f(t)).

While the right-hand side is still zero for some f 6= f∞, due to the construction

of K this can no longer happen along trajectories f(t).

Choosing the matrix P is the crucial ingredient for the definition of our

modified entropy dissipation Sψ:
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Lemma 1.19. Let Q := KCTK−1. Let µ := min{ℜ{λ}|λ is an eigenvalue of

C}. Due to condition (A), µ > 0. Let {λm|1 ≤ m ≤ m0} be all the eigenvalues

of C with µ = ℜ{λm}, only counting their geometric multiplicity.

(i) If λm is non-defective2 for all m ∈ {1, . . . ,m0}, then there exists a sym-

metric, positive definite matrix P ∈ R
d×d with

QP + PQT ≥ 2µP. (1.25)

(ii) If λm is defective for at least one m ∈ {1, . . . ,m0}, then for any ε > 0

there exists a symmetric, positive definite matrix P = P (ε) ∈ R
d×d with

QP + PQT ≥ 2(µ− ε)P. (1.26)

(iii) For any such matrix P , and for any ψ-compatible function f0,

Sψ(f0) <∞.

Proof: The idea behind the construction of P is the following: If Q is

not defective and w1, . . . , wd are its eigenvectors, then one can choose P as the

weighted sum

P :=

d∑

j=1

bj wj ⊗ wj , (1.27)

with bj ∈ R
+, j = 1, . . . , d. As {wj}j=1,...,d is a basis of C

d, P is positive

definite. If any wj is complex, its complex conjugate wj is also an eigenvector

of Q, since Q is real. By taking the same coefficient bj for both, we obtain a

real matrix P since

wj ⊗ wj + wj ⊗ wj

is real. For P from (1.27), we obtain

QP + PQT =

d∑

j=1

bj
(
Qwj ⊗ wj + wj ⊗ wjQ

T
)

=

d∑

j=1

bj(λj + λj)wj ⊗ wj =

d∑

j=1

2ℜ{λj}bj wj ⊗ wj

≥ 2µ
d∑

j=1

bj wj ⊗ wj = 2µP .

2An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic

multiplicity.



30 CHAPTER 1. HYPOCOERCIVE FOKKER-PLANCK EQUATIONS

This also implies that (1.25) is an equality iff all eigenvalues of Q are non-

defective and have real part µ.

If at least one of the eigenvalues of Q is defective, then there is no basis of Cd

consisting of eigenvectors of Q, and the sum in (1.27) will have less summands

and not be regular. One can still construct P in a similar fashion using the

basis of Cd consisting of generalised eigenvectors of Q, but the computations

are no longer as straightforward. To this end, we consider the Jordan normal

form J of QT , given by the similarity transformation AQTA−1 = J with some

A ∈ C
d×d. Let J have N Jordan blocks, each of length ln; n = 1, . . . , N .

(i) By assumption, all Jordan blocks corresponding to eigenvalues with ℜ{λn} =

µ are trivial, i.e. of length 1. Corresponding to the structure of J , we define

Bn := diag(blnn , . . . , b
1
n) , n = 1, . . . , N,

and the positive diagonal matrix

B := diag(B1, . . . , BN ),

where c1 := 1, cj := 1 + (cj−1)
2; j = 2, . . . , ln,

bjn := cj (τn)
2(1−j) , j = 1, . . . , ln , (1.28)

and τn := 2(ℜ{λn} − µ) ≥ 0 for n = 1, . . . , N . This yields for the n-th Jordan

block Jn in the case ln = 1: Bn = I and

JHn Bn +BnJn = (λn + λn)Bn ≥ 2µBn.

Here, JHn denotes the Hermitian adjoint of Jn. In the case ln > 1, we have

τn > 0 and

JHn Bn +BnJn − 2µBn

=










2(ℜ{λn} − µ)blnn bln−1
n

bln−1
n 2ℜ({λn} − µ)bln−1

n

. . .

. . .
. . . b1n

b1n 2(ℜ{λn} − µ)b1n










≥ 0.
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The last inequality follows from

Mm :=










τ3−2mcm τ4−2mcm−1

τ4−2mcm−1 τ5−2mcm−1
. . .

. . .
. . . c1

c1 τc1










≥ 0, m = 1, . . . ,max
n

(ln),

for any τ > 0, which can be verified by induction overm := ln using the principal

minor test:

m = 2:

M2 =

(

2τ−1
n 1

1 τn

)

> 0.

m > 2: Let Mn ≥ 0 hold for ln ≤ m with detMn = τ
1−(ln−1)2

n . Then

Mm+1 =

(

τnb
n
1 bn2

bn2 Mm

)

and we compute, using Laplace’s formula for the first column

detMm+1 = τnb
n
1 detMm − (bn2 )

2 detMm−1

= τ1−2m
n [1 + (cn2 )

2]τ1−(m−1)2

n − (cn2 )
2τ4−4m
n τ1−(m−2)2

n

= τ1−m
2

n > 0.

In total, we have JHB +BJ ≥ 2µB, and hence

(A−1)HQAHB +BAQTA−1 ≥ 2µB,

which implies

QAHBA+AHBAQT ≥ 2µAHBA.

The claim then follows with P := AHBA.

(ii) In this case, there exists a non-trivial Jordan block Jñ corresponding to

an eigenvalue with ℜ{λñ} = µ. In the above computation, we choose τñ :=

2(ℜ{λñ} − µ+ ε) > 0 for some ε > 0. Hence, JHñ Bñ +BñJñ ≥ 2(µ− ε)Bñ and

the result follows. However, in this case P depends on ε.

(iii) This follows just like for (1.24). �
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Remarks:

(i) In general, the matrix P in Lemma 1.19 is not uniquely determined.

(ii) From (1.28), we see that for a defective eigenvalue λñ (i.e. P = P (ε)),

∀1 < j ≤ lñ : lim
ε→0

bjñ = ∞

and thus

lim
ε→0

Sψ(f0, ε) = ∞,

with Sψ(f0, ε) :=
∫

Rd

(∇w)TP (ε)∇wf∞ dx.

(iii) (1.25) can be rewritten as (Q−µ)P +P (QT −µ) ≥ 0, which bears a close

resemblance to the continuous Lyapunov equation from Theorem 1.12. If

we assume equality in (1.25) and if Q−µ were positively stable, then there

would be a unique solution P = 0, see e.g. [44]. But since µ is the real

part of an eigenvalue of Q, Q − µ is not positively stable. This explains

why we can find a non-trivial solution of (1.25) at the price of uniqueness.

There is equality in (1.25) iff all eigenvalues of Q have the same real part

µ and are non-degenerate. For additional details, we refer to [44], [61].

We shall later make use of convex Sobolev inequalities related to the measure

µ = f∞ dx:

Lemma 1.20. Let f ∈ L1
+ (f ∈ L1 for quadratic ψ). Then

eψ(f |f∞) ≤ 1

2λP
Sψ(f), (1.29)

where both sides may be infinite and λP is the largest constant such that

K−1 ≥ λPP
−1

holds.

Proof: Consider the Fokker-Planck operator

LP f := div(P∇(
f

f∞
)f∞)

on L2. Then LP is symmetric due to the symmetry of P , and f∞ spans the

kernel of LP . One easily checks that

d
dteψ(f̃(t)|f∞) = −Sψ(f̃(t))
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for a solution f̃(t) to f̃t = LP f̃ . As shown in Corollary 2.17, [6], this sym-

metric, non-degenerate Fokker-Planck equation leads to an exponential decay

of the relative entropy, and in parallel to a convex Sobolev inequality: Using

the notation f∞(x) := cKe
−V (x), V (x) := xTK−1x

2 , we have the Bakry-Émery

condition

∂2V

∂x2
= K−1 ≥ λPP

−1,

where the constant λP > 0 is chosen as large as possible. Hence, all g ∈ L1
+(R

d)

with
∫

Rd

g dx = 1 satisfy the convex Sobolev inequality

eψ(g|f∞) ≤ 1

2λP
Sψ(g),

where both sides may be infinite. This completes the proof. �

Lemma 1.20 implies that any ψ-compatible f also has finite relative entropy

generated by ψ:

Corollary 1.21. Let f be ψ-compatible. Then it holds that

eψ(f |f∞) <∞.

Proof: Since f is ψ-compatible, we have Sψ(f) < ∞, f ∈ L1
+(R

d) and
∫

Rd

f dx = 1. Applying (1.29) completes the proof. �

1.3.2 Fisher information matrix

While it is perfectly possible to derive a decay estimate for S and directly show

its decay, we take a detour at this point and introduce the Fisher matrix. For

a direct estimate on S, we refer to [33].

Definition 1.22. For any ψ generating an admissible entropy (see Definition

1.17), the Fisher matrix Σψ of f with respect to f∞ is defined as

Σψ :=

∫

Rd

ψ′′(
f

f∞
)u⊗ uf∞ dx,

where u := ∇ f
f∞

.

The Fisher matrix (sometimes also Fisher information matrix or Fisher in-

formation, though the latter also applies to the scalar version) is for example
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used to predict the precision of measurements (e.g. particle production rate

in some physical system) taking into account covariance (the non-diagonal en-

tries) of observables. For a brief introduction from a physics standpoint, we

refer to [68] and references therein.

For the entropy method, we are interested in the time-dependent Fisher matrix

Σψ(t) along a solution trajectory f(·). We compute

Tr(DΣψ(t)) =

∫

Rd

ψ′′(∇f(t)

f∞
)Tr(D(u(t)⊗ u(t)))f∞ dx

=

∫

Rd

ψ′′(∇f(t)

f∞
)

d∑

j,l=1

Djlul(t)uj(t)f∞ dx

=

∫

Rd

ψ′′(∇f(t)

f∞
)(∇f(t)

f∞
)TD∇f(t)

f∞
f∞ dx = Iψ(f(t)),

so the entropy dissipation Iψ(f(t)) can be recovered from Σψ(t). But Σψ(t)

contains more information than the entropy dissipation. Since u(t) ⊗ u(t) is a

positive semidefinite matrix, it follows that Σψ(t) ≥ 0, and hence

Sψ(t) = Tr(PΣψ) ≥ 0 (1.30)

for any P ≥ 0. Here, we have used that the trace of a product of two positive

semidefinite matrices is non-negative. In Lemma 1.23, we compute a bound on
d
dtΣψ. Since

d
dtTr(PΣψ) = Tr(P d

dtΣψ),

this has two applications: First, if one can prove the estimate d
dtΣψ(t) ≤

−2µΣψ(t), decay of the Fisher matrix with rate 2µ follows. The Fisher ma-

trix has not yet been studied in the context of Fokker-Planck equations, and

conditions for its decay - even though they are very restrictive, see Theorem

1.24 - are new. Second, even if there is no decay estimate on Σψ itself, one can

try to find a matrix P such that Tr(P d
dtΣψ) ≤ −2µTr(PΣψ) holds. In fact, we

will prove in §1.3.3 that the matrix P from Lemma 1.19 has this property.

Lemma 1.23. Let f0 be a ψ-compatible initial state, and let f(t) be the corre-

sponding solution to (2). Let u := ∇ f
f∞

. Then the estimate

d

dt
Σψ(t) ≤ −

∫

Rd

ψ′′(∇f(t)

f∞
)
(
QT [u(t)⊗ u(t)] + [u(t)⊗ u(t)]Q

)
f∞ dx
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holds for all t > 0, where

Q := (D −R)
∂2V

∂x2
.

Proof: By Corollary 1.6, the solutions of (2) have the required regularity

to perform all the computations in this proof for t > 0. We compute, leaving

out the argument t for ease of reading,

ut = −∂
2V

∂x2
(D +R)u− ∂u

∂x
(D −R)∇V + (∇TD∇)u.

Hence,

d
dtΣψ =

∫

Rd

ψ′′′(
f

f∞
)ftu⊗ u dx

︸ ︷︷ ︸

=:(I)

∫

Rd

ψ′′(
f

f∞
) (ut ⊗ u+ u⊗ ut) f∞ dx

︸ ︷︷ ︸

=:(II)

.

We introduce the short-hand notations f,j := ∂f
∂xj

and f,js := ∂2f
∂xj∂xs

. For the

(r, s)-entry of (I), 1 ≤ r, s ≤ d, we obtain

∫

Rd

ψ′′′(
f

f∞
) div(f∞(D +R)u)urus dx =

∫

Rd

ψ′′′(
f

f∞
)urus(f∞(D +R)ljuj),l dx

= −
∫

Rd

ψ′′′(
f

f∞
)urus(D +R)ljujV,lf∞ dx+

∫

Rd

ψ′′′(
f

f∞
)urus(D +R)ljuj,lf∞ dx.

Examining the last term, we compute, using the antisymmetry of R and the

symmetry of ∂u∂x ,

∫

Rd

ψ′′′(
f

f∞
)urus(D +R)ljuj,lf∞ dx

=

∫

Rd

ψ′′′(
f

f∞
)urusDljuj,lf∞ dx

= −
∫

Rd

ujDlj

(

ψ′′′(
f

f∞
)urusf∞

)

,l

dx

= −
∫

Rd

ψIV ujDljulurusf∞ dx−
∫

Rd

ψ′′′(
f

f∞
)ujDljur,lusf∞ dx

−
∫

Rd

ψ′′′(
f

f∞
)ujDljurus,lf∞ dx+

∫

Rd

ψ′′′(
f

f∞
)ujDljurusV,lf∞ dx.
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Hence,

(I) = −
∫

Rd

ψIV (
f

f∞
)
[
uTDu

]
[u⊗ u] f∞ dx

−
∫

Rd

ψ′′′(
f

f∞
)

[(
∂u

∂x
Du

)

⊗ u+ u⊗
(
∂u

∂x
Du

)]

f∞ dx

−
∫

Rd

ψ′′′(
f

f∞
)
[
(∇V )TRu

]
[u⊗ u] f∞ dx. (1.31)

Next, we compute

∫

Rd

ψ′′(
f

f∞
)ur,tusf∞ dx

= −
∫

Rd

ψ′′(
f

f∞
)V,rl(D +R)ljujusf∞ dx−

∫

Rd

ψ′′(
f

f∞
)ur,l(D +R)jlV,jusf∞ dx

+

∫

Rd

ψ′′(
f

f∞
)Dljur,ljusf∞ dx

︸ ︷︷ ︸

=:(III)

. (1.32)

Integrating (III) by parts yields

(III) = −
∫

Rd

Dljur,l(ψ
′′(

f

f∞
)usf∞),j dx

= −
∫

Rd

ψ′′′(
f

f∞
)Dljur,lujusf∞ dx−

∫

Rd

ψ′′(
f

f∞
)Dljus,jur,lf∞ dx

+

∫

Rd

ψ′′(
f

f∞
)Dljur,lusV,jf∞ dx

and thus, reinserting into (1.32)

∫

Rd

ψ′′(
f

f∞
)ur,tusf∞ dx

= −
∫

Rd

ψ′′(
f

f∞
)V,rl(D +R)ljujusf∞ dx (1.33)

−
∫

Rd

ψ′′(
f

f∞
)ur,l ((D +R)−D)jl V,jusf∞ dx

−
∫

Rd

ψ′′′(
f

f∞
)Dljur,lujusf∞ dx−

∫

Rd

ψ′′(
f

f∞
)Dljus,jur,lf∞ dx.
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Again using R = −RT , we obtain

∫

Rd

ψ′′(
f

f∞
)ut ⊗ uf∞ dx

= −
∫

Rd

ψ′′(
f

f∞
)

[(
∂2V

∂x2
(D +R)u

)

⊗ u

]

f∞ dx

+

∫

Rd

ψ′′′(
f

f∞
)

[(
∂u

∂x
R∇V

)

⊗ u

]

f∞ dx

−
∫

Rd

ψ′′′(
f

f∞
)

[(
∂u

∂x
Du

)

⊗ u

]

f∞ dx−
∫

Rd

ψ′′(
f

f∞
)
∂u

∂x
D
∂u

∂x
f∞ dx (1.34)

Next, we consider

−
∫

Rd

ψ′′(
f

f∞
)ur,lRjlV,jusf∞ dx

=

∫

Rd

urRjl

(

ψ′′(
f

f∞
)usV,jf∞

)

,l

dx

=

∫

Rd

ψ′′′(
f

f∞
)urulRjlV,jusf∞ dx+

∫

Rd

ψ′′′(
f

f∞
)urRjlus,lV,jf∞ dx

+

∫

Rd

ψ′′(
f

f∞
)urRjlV,ljusf∞ dx−

∫

Rd

ψ′′(
f

f∞
)urusRjlV,lV,jf∞ dx.

Since R is antisymmetric, the sums RjlV,lj and RjlV,lV,j are 0, and we obtain

for (1.34):

∫

Rd

ψ′′(
f

f∞
)ut ⊗ uf∞ dx

= −
∫

Rd

ψ′′(
f

f∞
)

[(
∂2V

∂x2
(D +R)u

)

⊗ u

]

f∞ dx

+

∫

Rd

ψ′′′(
f

f∞
)
[
(∇V )TRu

]
[u⊗ u] f∞ dx

−
∫

Rd

ψ′′′(
f

f∞
)

[(
∂u

∂x
Du

)

⊗ u

]

f∞ dx−
∫

Rd

ψ′′(
f

f∞
)
∂u

∂x
D
∂u

∂x
f∞ dx (1.35)

−
∫

Rd

ψ′′′(
f

f∞
)

[

u⊗
(
∂u

∂x
R∇V

)]

f∞ dx.

The computations for the term with u⊗ ut are the same; combining (1.34) and
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(1.35) for both yields

(II) =

∫

Rd

ψ′′(
f

f∞
) [ut ⊗ u+ u⊗ ut] f∞ dx

= −
∫

Rd

ψ′′(
f

f∞
)

[(
∂2V

∂x2
(D +R)u

)

⊗ u+ u⊗
(
∂2V

∂x2
(D +R)u

)]

f∞ dx

(1.36)

−
∫

Rd

ψ′′′(
f

f∞
)

[(
∂u

∂x
Du

)

⊗ u+ u⊗
(
∂u

∂x
Du

)]

f∞ dx

− 2

∫

Rd

ψ′′(
f

f∞
)
∂u

∂x
D
∂u

∂x
f∞ dx+

∫

Rd

ψ′′′(
f

f∞
)
[
(∇V )TRu

]
[u⊗ u] f∞ dx.

Finally, we can add (1.31) and (1.36) and obtain

d
dtΣψ = −

∫

Rd

ψ′′(
f

f∞
)

[(
∂2V

∂x2
(D +R)u

)

⊗ u+ u⊗
(
∂2V

∂x2
(D +R)u

)]

f∞ dx

− 2

∫

Rd

ψ′′′(
f

f∞
)

[(
∂u

∂x
Du

)

⊗ u+ u⊗
(
∂u

∂x
Du

)]

f∞ dx

− 2

∫

Rd

ψ′′(
f

f∞
)
∂u

∂x
D
∂u

∂x
f∞ dx−

∫

Rd

ψIV (
f

f∞
)
[
uTDu

]
[u⊗ u] f∞ dx.

(1.37)

Now, let

Λ :=

(

2ψ′′( f
f∞

) Id 2ψ′′′( f
f∞

) Id

2ψ′′′( f
f∞

) Id ψIV ( f
f∞

) Id

)

∈ R
2d×2d,

U :=

(

D ∂u
∂x

D [u⊗ u]

)

∈ R
d×2d.

Then we obtain, using D = D2 and the symmetry of u⊗ u,

UTΛU = 2ψ′′(
f

f∞
)
∂u

∂x
D
∂u

∂x
+ 2ψ′′′(

f

f∞
) [u⊗ u]

[

D
∂u

∂x

]

+ 2ψ′′′(
f

f∞
)

[
∂u

∂x
D

]

[u⊗ u] + ψIV [u⊗ u]D [u⊗ u] .

We compute

[u⊗ u]D [u⊗ u] =
[
uTDu

]
[u⊗ u] ,

[
∂u

∂x
D

]

[u⊗ u] =

(
∂u

∂x
Du

)

⊗ u,
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and hence (1.37) implies:

d
dtΣψ = −

∫

Rd

ψ′′(
f

f∞
)

[(
∂2V

∂x2
(D +R)u

)

⊗ u+ u⊗
(
∂2V

∂x2
(D +R)u

)]

f∞ dx

−
∫

Rd

UTΛU dx.

Since ψ′′ ≥ 0, ψ′′ψIV − 2(ψ′′′)2 ≥ 0, we obtain Λ ≥ 0, and hence

d
dtΣψ ≤ −

∫

Rd

ψ′′(
f

f∞
)

[(
∂2V

∂x2
(D +R)u

)

⊗ u+ u⊗
(
∂2V

∂x2
(D +R)u

)]

f∞ dx

(1.38)

= −
∫

Rd

ψ′′(
f

f∞
)

([
∂2V

∂x2
(D +R)

]

[u⊗ u] + [u⊗ u]

[

(D −R)
∂2V

∂x2

])

f∞ dx.

�

Lemma 1.23 motivates to define a Bakry-Émery-type condition that leads

to exponential decay of the Fisher information matrix.

Theorem 1.24. The following two conditions are equivalent:

(i) There exists µ > 0 such that for all ψ-compatible f0 and corresponding

solutions f(t) to (2),

d

dt
Σ(t) ≤ −2µΣ(t) (1.39)

holds.

(ii) There exists µ > 0 such that

∂2V

∂x2
(D +R) = µ Id .

Proof: (ii)⇒(i) follows immediately from Lemma 1.23.

To see (i)⇒(ii), we first consider the case d = 2. From Lemma 1.23, we have

d
dtΣψ(t) ≤ −

∫

Rd

ψ′′(
f(t)

f∞
)
(
QT [u(t)⊗ u(t)] + [u(t)⊗ u(t)]Q

)
f∞ dx.

If we want to bound this above by a negative multiple of Σψ for any possible
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solution trajectory, we need to investigate the estimate

QT (u⊗ u) + (u⊗ u)Q ≥ λ(u⊗ u)

for some Q ∈ R
2×2 and all u ∈ R

2. Q does not need to be symmetric; in fact,

in the hypocoercive case it is not. So let

Q :=

(

r t2

t1 s

)

, u =

(

u1

u2

)

.

Then

Q(u⊗ u) + (u⊗ u)QT =

(

2ra2 + 2t1ab (r + s)ab+ t1b
2 + t2a

2

(r + s)ab+ t1b
2 + t2a

2 2sb2 + 2t2ab

)

.

Note that the right hand side of (1.39) is negative semidefinite. Thus, to have

any chance of obtaining (1.39), we need that Q(u⊗ u) + (u⊗ u)QT is positive

(semi-)definite. A necessary (but not sufficient) condition for that is det(Q(u⊗
u) + (u⊗ u)QT ) ≥ 0 for all u, i.e. for all a, b ∈ R. We compute

det
(
Q(u⊗ u) + (u⊗ u)QT

)

= 4
[
(ra2 + t1ab)(sb

2 + t2ab)
]
−
(
(r + s)ab+ t2a

2 + t1b
2
)2

= 4
[
rsa2b2 + t1t2a

2b2 + (rt2a
2 + st1b

2)ab
]

−
[
(r + s)2a2b2 + (t2a

2 + t1b
2)2 + 2(r + s)ab(t2a

2 + t1b
2)
]

= −(r − s)2a2b2 − (t2a
2 − t1b

2)2 + 2
[
(r − s)t2a

2 + (s− r)t1b
2
]
ab.

If a = 0 or b = 0, we immediately see that t1 = t2 = 0 is necessary, or the

determinant is negative. But if t1 = t2 = 0, we see from the case a = b that

r = s is also necessary. So we need that Q = µ Id for some µ ∈ R. From (i), it

then follows that µ > 0. This concludes the second implication for d = 2.

The case d > 2 directly follows from the case d = 2: for 1 ≤ α < β ≤ d, choose

uα = a, uβ = b and uj = 0 for α 6= j 6= β. Then one gets the same expression

as above with r = Qαα, s = Qββ , t1 = Qαβ and t2 = Qβα. Repeating this for

all choices of α, β yields (i)⇒(ii).

As an interesting side note, if Q is not a multiple of Id, then Q(u⊗u)+(u⊗u)QT
is indefinite for most u. If, for example, Q is diagonal (t1 = t2 = 0), then if

Q(u⊗u)+(u⊗u)QT is (semi-)definite for any u 6= 0, it follows that either r = s

or the determinant of Q(u⊗u)+(u⊗u)QT is negative, which is a contradiction

to definiteness. �
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Under our assumption of linear drift coefficients, ∂
2V
∂x2 (D+R) = K−1CK = µ Id

would imply C = µ Id, which would be a contradiction to condition (A). So

Theorem 1.24 is not applicable in the case k < d. In fact, a decay estimate for

Σψ implies a decay estimate for Iψ, which as demonstrated in the introduction

can not hold under (2), so this result should not be surprising. From (1.30), it

even follows that a decay estimate for Σψ would imply a decay estimate for the

norm of any directional derivative v · ∇, v ∈ R
d. So it is not surprising that

such an estimate only holds in the most simple case.

1.3.3 Decay of the modified entropy dissipation

We now return to the modified entropy dissipation Sψ. Since Sψ can be recov-

ered from the Fisher matrix, see (1.30), it is straightforward to utilize Lemma

1.23 for a decay estimate on the modified entropy production Sψ (Lemma 1.19):

Proposition 1.25. Assume condition (A). Let ψ generate an admissible en-

tropy and let f be the solution to (2) with a ψ-compatible initial state f0, µ :=

min {ℜ{λ}|λ is an eigenvalue of C}. Let P , Sψ(f0) be defined as in Lemma

1.19, {λm|1 ≤ m ≤ m0} be the eigenvalues of C with µ = ℜ{λm}.

(i) If all λm, 1 ≤ m ≤ m0, are non-defective, then

Sψ(f(t)) ≤ Sψ(f0)e
−2µt, t ≥ 0.

(ii) If λm is defective for at least one m ∈ {1, . . . ,m0}, then

Sψ(f(t)) ≤ Sψ(f0, ε)e
−2(µ−ε)t, t ≥ 0,

for any ε ∈ (0, µ).

Proof: For P from Definition 1.19, we compute

Tr(Σψ(t)P ) =

∫

Rd

ψ′′(
f

f∞
)uTPuf∞ dx = Sψ(t).

With Lemma 1.23, this yields

d
dtSψ(t) = Tr(P d

dtΣψ(t)) ≤ −
∫

Rd

ψ′′(
f

f∞
)uT (QP + PQT )uf∞ dx,

where Q = KCTK−1. By the definition of P (see (1.25)), we obtain

d
dtSψ(t) ≤ −2ηSψ(t),
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where η = µ in case (i), and η = µ − ε, ε ∈ (0, µ) in case (ii). Applying Gron-

wall’s Lemma completes the proof. �

Remark: This result holds for all matrices P chosen according to Lemma

1.19. Clearly, the rate µ is independent of the choice of P .

Using (1.29), this result already implies exponential decay of the relative en-

tropy – but under the (too strong) assumption that Sψ(f0) < ∞. This will be

improved in Theorem 1.27 below.

In the standard entropy method for fully parabolic equations, one derives

decay of the relative entropy from the decay of the entropy dissipation by in-

tegrating the inequality d2

ds2
eψ(f(s)) ≥ − d

dseψ(f(s)) over (t,∞). This requires

a-priori knowlegde that eψ(f(t = ∞)) = 0, which, as shown in [3], can be de-

rived from the decay of S (which is the entropy dissipation functional for fully

parabolic equations). However, since the inequality d2

ds2
eψ(f(s)) ≥ − d

dseψ(f(s))

is in general wrong for the degenerate case, this approach won’t work.

1.3.4 Regularisation in relative entropy

We will now prove a regularisation result that allows us to extend the result

of Proposition 1.25 to initial states with (only) finite relative entropy. The

fundamental concept is that hypoelliptic operators regularise, though at a slower

rate than fully elliptic ones. Local estimates of this sort first appeared in the

proof by Hörmander [42] as well as in [45], [59]. Our result generalises Theorems

A.12, A.15 in [67] (expressed for quadratic and logarithmic entropies) to all

admissible ψ-entropies. Those results, in turn, used an idea developed by Hérau

[40]. The regularisation depends on the order τ of the finite rank Hörmander

condition for L (cf. Remark 1.4).

Theorem 1.26. Let condition (A) hold, f0 ∈ L1
+(R

d) with
∫

Rd

f0 dx = 1 and

eψ(f0|f∞) <∞. Let f(t) be the solution of (2) with initial condition f0, and let

τ be the minimal constant such that Lemma 1.3 holds. Then there is a positive

constant cr > 0 such that

∀t ∈ (0, 1] : Sψ(f(t)) ≤ crt
−(2τ+1)eψ(f0|f∞). (1.40)

Proof: The idea of the proof is to construct a decaying-in-time functional

F that is a (positive) linear combination of both sides of (1.40) – multiplied by

t2τ+1.



1.3. ENTROPY METHOD 43

Step 1 (construction of F): With Q := KCTK−1 from Lemma 1.19, let

Mj := QjD(QT )j ≥ 0, Nj := QjD(QT )j+1 +Qj+1D(QT )j

for j = 0, . . . , τ+2. Since QT = K−1CK = 2K−1D−CT , we can apply Lemma

1.3 (iii) to
τ∑

j=0

Mj and obtain

τ∑

j=0

Mj ≥ c0 Id

for some c0 > 0. Thus there is c1 > 0 such that

Mτ+2 ≤ c1

τ∑

j=0

Mj . (1.41)

We compute

QMj +MjQ
T = Nj , (1.42)

QNj +NjQ
T = 2Mj+1 +QjD(QT )j+2 +Qj+2D(QT )j . (1.43)

Using D2 = D, we have for any ε > 0:

0 ≤
(

1√
ε
QjD ±

√
εQj+2D

)(
1√
ε
D(QT )j ±

√
εD(QT )j+2

)

=
1

ε
Mj + εMj+2 ±

(
QjD(QT )j+2 +Qj+2D(QT )j

)
. (1.44)

Then (1.42) and the analogue of (1.44) with j + 2 replaced by j + 1 yield the

estimate

±Nj ≤
1

ε
Mj + εMj+1. (1.45)

Further, (1.44) yields

±
(
QjD(QT )j+2 +Qj+2D(QT )j

)
≤ 1

ε
Mj + εMj+2. (1.46)

Now let

P (t) :=
τ+1∑

j=0

(
ajt

2j+1Mj

)
+

τ∑

j=0

(
bjt

2j+2Nj
)
,
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with P (0) = 0. As (positive) coefficients, we first choose aτ+1 := 1
c1
,

bτ :=
2

3
[1 + aτ+1(2τ + 4)] , aτ := 2

b2τ
aτ+1

.

Then we choose iteratively, starting with j = τ and finishing with j = 1:

bj−1 :=
2

3

[

2 + c1 + aj(2j + 1) + b2j +
2(bj(2j + 2)− aj)

2

bj

]

, aj−1 := 8
b2j−1

aj
.

(1.47)

Using (1.45) with ε =
2bjt
aj

, 0 ≤ j ≤ τ , we obtain

∀j = 0, . . . , τ : bjt
2j+2Nj ≥ −aj

2
t2j+1Mj −

2b2j
aj
t2j+3Mj+1,

and thus

τ∑

j=0

bjt
2j+2Nj ≥ −a0

2
tM0 −

τ∑

j=1

(

[
aj
2

+
2b2j−1

aj−1
]t2j+1Mj

)

− 2b2τ
aτ

t2τ+3Mτ+1

= −a0
2
tM0 −

τ∑

j=1

(
3aj
4
t2j+1Mj

)

− aτ+1t
2τ+3Mτ+1,

where we have used (1.47). Inserting this into P (t) yields

P (t) ≥ a0
2
tM0 +

τ∑

j=1

aj
4
t2j+1Mj .

Writing c3 := min{a02 ,
a1
4 , . . . ,

aτ
4 }, this implies for t ∈ [0, 1]:

P (t) ≥ t2τ+1c3

τ∑

j=0

Mj ≥ c0c3t
2τ+1 Id . (1.48)

So P (t) is positive definite for all t > 0, and we define the functional

F(t) := γeψ(f(t)|f∞) +

∫

Rd

ψ′′(
f

f∞
)uTP (t)uf∞ dx ≥ 0,

with some γ > 0 to be chosen later.

Step 2 (decay of F): For F , we can repeat all the computations in the proof
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of Proposition 1.25 and arrive at

d
dtF(t) ≤ −γIψ(f(t)|f∞) +

∫

Rd

ψ′′(
f

f∞
)uT

[

Ṗ (t)−
(
QP (t) + P (t)QT

)]

uf∞ dx

=

∫

Rd

ψ′′(
f

f∞
)uT

[

Ṗ (t)−
(
QP (t) + P (t)QT

)
− γM0

]

uf∞ dx.

We compute

Ṗ (t) =
τ+1∑

j=0

(
aj(2j + 1)t2jMj

)
+

τ∑

j=0

(
bj(2j + 2)t2j+1Nj

)

and further, using (1.42), (1.43), and (1.46) with ε := t2

bj
:

−
(
QP (t) + P (t)QT

)
= −

τ+1∑

j=0

(
ajt

2j+1Nj
)
− 2

τ∑

j=0

(
bjt

2j+2Mj+1

)

−
τ∑

j=0

(
bjt

2j+2[QjD(QT )j+2 +Qj+2D(QT )]
)

≤ −
τ+1∑

j=0

(
ajt

2j+1Nj
)
− 2

τ∑

j=0

(
bjt

2j+2Mj+1

)

+

τ∑

j=0

bjt
2j+2

(
bj
t2
Mj +

t2

bj
Mj+2

)

= −
τ+1∑

j=0

(
ajt

2j+1Nj
)
− 2

τ∑

j=0

(
bjt

2j+2Mj+1

)

+
τ∑

j=0

(
t2jb2jMj

)
+
τ+2∑

j=2

(
t2jMj

)
.

This implies

Ṗ (t)−
(
QP (t) + P (t)QT

)
− γM0

≤
(
a0 + b20 − γ

)
M0 +

(
3a1 + b21 − 2b0

)
t2M1

+

τ∑

j=2

(
[aj(2j + 1) + 1 + b2j − 2bj−1]t

2jMj

)

+ (aτ+1(2τ + 3) + 1− 2bτ )t
2τ+2Mτ+1

+

τ+1∑

j=0

(
αjt

2j+1Nj
)
+ t2(τ+2)Mτ+2,
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where αj := −aj + bj(2j + 2), 0 ≤ j ≤ τ ; ατ+1 := −aτ+1. Using

∀j = 0, . . . , τ : ±Nj ≤
2|αj |
bjt

Mj +
bjt

2|αj |
Mj+1,

Nτ+1 ≤ 1

t
Mτ+1 + tMτ+2,

we obtain

τ+1∑

j=0

(
αjt

2j+1Nj
)

≤
τ∑

j=0

(

2α2
j

bj
t2jMj +

bj
2
t2j+2Mj+1

)

+ aτ+1t
2τ+2Mτ+1 + aτ+1t

2τ+4Mτ+2

=
2α2

0

b0
M0 +

τ∑

j=1

(

2α2
j

bj
+
bj−1

2

)

t2jMj + (
bτ
2

+ aτ+1)t
2τ+2Mτ+1 + aτ+1t

2τ+4Mτ+2.

Thus, we finally arrive at

Ṗ (t)−
(
QP (t) + P (t)QT

)
− γM0

≤
(

a0 + b20 +
2α2

0

b0
− γ

)

M0 +

(

3a1 + b21 +
2α2

1

b1
+
b0
2

− 2b0

)

t2M1

+

τ∑

j=2

(

aj(2j + 1) + 1 + b2j +
2α2

j

bj
+
bj−1

2
− 2bj−1

)

t2jMj

+ (aτ+1(2τ + 4) + 1 +
bτ
2

− 2bτ )t
2τ+2Mτ+1 + (aτ+1 + 1)t2τ+4Mτ+2.

We use (1.41) and obtain for t ∈ [0, 1]:

Ṗ (t)−
(
QP (t) + P (t)QT

)
− γM0

≤
[

c1(aτ+1 + 1) + a0 + b20 +
2α2

0

b0
− γ

]

M0

+

[

c1(aτ+1 + 1) + 3a1 + b21 +
2α2

1

b1
− 3b0

2

]

t2M1

+

τ∑

j=2

([

c1(aτ+1 + 1) + aj(2j + 1) + 1 + b2j +
2α2

j

bj
− 3bj−1

2

]

t2jMj

)

+

[

aτ+1(2τ + 4) + 1− 3bτ
2

]

t2τ+2Mτ+1.

Using (1.47), we obtain that all the coefficients in square brackets are non-

positive for sufficiently large γ, and thus

Ṗ (t)−
(
QP (t) + P (t)QT

)
− γM0 ≤ 0
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This implies that F(t) is monotonously decreasing, and thus F(t) ≤ F(0) =

γeψ(f0|f∞) for all t in [0, 1]. Together with (1.48), we obtain

c0c3t
2τ+1

∫

Rd

ψ′′(
f

f∞
)|u|2f∞ dx ≤ γeψ(f0|f∞),

which completes the proof using Lemma 1.19 (iii). �

1.3.5 Decay of admissible relative entropies

With this regularisation result, we can finally prove exponential decay of the

relative entropy:

Theorem 1.27. Assume condition (A). Let ψ generate an admissible relative

entropy and let f be the solution to (2) with initial state f0 ∈ L1
+(R

d) such

that eψ(f0|f∞) < ∞. Let {λm|1 ≤ m ≤ m0} be the eigenvalues of C with

µ = ℜ{λm}, and let

e(t) := eψ(f(t)|f∞).

Then

(i) If all λm, 1 ≤ m ≤ m0, are non-defective, then there is a constant c > 0

such that

∀t ≥ 0 : e(t) ≤ ce−2µteψ(f0|f∞).

(ii) If λm is defective for at least one m ∈ {1, . . . ,m0}, then for all ε ∈ (0, µ),

there is cε > 0 such that

∀t ≥ 0 : e(t) ≤ cεe
−2(µ−ε)teψ(f0|f∞).

Proof: Let P , Sψ(f0) be defined as in Lemma 1.19. Let κ = µ in case

(i), and κ = µ − ε in case (ii). Let δ > 0. Using (1.29), Proposition 1.25 and

Theorem 1.26, we compute for t ≥ δ:

eψ(t) ≤
1

2λP
Sψ(f(t)) ≤

1

2λP
Sψ(f(δ))e

−2κ(t−δ)

≤ e2κδ
cr

2λP δ2τ+1
eψ(0)e

−2κt. (1.49)
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For t ≤ δ, it follows from the monotonicity of eψ (cf. (1.18)) that

eψ(t) ≤ eψ(0) . (1.50)

Writing cδ := e2κδmax{1, cr
2λP δ2τ+1 } and combining (1.49), (1.50) yields

∀t ≥ 0 : eψ(t) ≤ cδeψ(0)e
−2κt.

cδ can now be optimized for δ > 0, completing the proof. �

Remark: Let us add a remark on an alternative approach to the above in-

equality

eψ(t) ≤
1

2λP
Sψ(t). (1.51)

Since Sψ(f(t)) ≥ cP Iψ(f(t)), we could also integrate the inequality

− d
dteψ(f(t)) ≤

1

cP
Sψ(f0)e

−2κt

on (t,∞), which resembles the procedure in the standard entropy method [6].

This would yield a constant 1
2cPκ

instead of 1
2λP

in (1.51). However, this con-

stant is never better. To prove this, we observe that

CK +KCT = 2D ≤ 2

cP
P

≤ 1

cPκ

(
QP + PQT

)
=

1

cPκ

(
KCTK−1P + PK−1CK

)
.

Multiplying by K−1 > 0 from left and right yields

K−1C + CTK−1 ≤ 1

cPκ

(
CTK−1PK−1 +K−1PK−1C

)
,

which implies (since cPκ > 0)

0 ≤
(
K−1PK−1 − cPκK

−1
)
C + CT

(
K−1PK−1 − cPκK

−1
)
=:W.

This means that K−1PK−1−cPκK−1 is a solution to the continuous Lyapunov

equation

MC + CTM =W. (1.52)
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But since C is positively stable andW ≥ 0, (1.52) has a unique positive semidef-

inite solution M (see Theorem 2.2 in [61], Theorem 2.2.3 in [44]). So

(
K−1PK−1 − cPκK

−1
)
≥ 0,

which implies

P ≥ cPκK.

Since λP is chosen as the largest constant such that

P ≥ λPK,

it follows that λP ≥ cPκ and thus

1

2cPκ
≥ 1

2λP
.

�

1.3.6 Special solutions and sharp decay rate

In this section, we investigate the sharpness of the decay rate obtained in Theo-

rem 1.27 under condition (A). In particular, we show that the rate is optimal for

both the quadratic entropy e2 and the logarithmic entropy e1. As shown in [6],

all admissible entropies are bounded below by a logarithmic entropy and above

by a quadratic one. Thus, the rate we obtained is optimal for all admissible

entropies.

Theorem 1.28. Let µ := min{ℜ{λ}|λ ∈ σ(C)}, where σ(C) denotes the spec-

trum of C.

(i) If µ is a (real) eigenvalue of C, then there exist initial conditions f0, g0

(different from f∞) such that for the corresponding solutions f(t), g(t) of

(2), it holds that

e1(f(t)) = e−2µte1(f0), e2(g(t)) = e−2µte2(g0), t ≥ 0.

(ii) If C has a complex conjugate eigenvalue pair with ℜ{λ1,2} = µ, then

there are initial conditions f0, g0 (different from f∞) such that for the

corresponding solutions f(t), g(t) of (2), it holds that

e1(f(t)) ≤ ce−2µte1(f0), e2(g(t)) ≤ ce−2µte2(g0), t ≥ 0, (1.53)
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with some c > 0, and equality holds for t = t0 + nτ , t0 ≥ 0, τ > 0,

n ∈ N0. So the right hand sides of 1.53 are the sharp exponential envelope

functions for the entropy decay.

(iii) If C has a defective eigenvalue λ with ℜ{λ} = µ, then there are initial con-

ditions f0, g0 (different from f∞) such that for the corresponding solutions

f(t), g(t) of (2), it holds that

e1(f(t)) = c0e
−2µt(e1(f0) +

c1
2
t+

c2
2
t2),

e2(g(t)) = c0e
−2µt(e2(g0) + c1t+ c2t

2)

for t ≥ 0 and some c0, c2 > 0, c1 ∈ R.

In all cases, f0 is ψ1-compatible and g0 is ψ2-compatible.

Remark: In the defective case (iii), the decay rate is indeed reduced to

2(µ− ε) for an arbitrarily small ε > 0 – as announced in Theorem 1.27.

The proof of Theorem 1.28 is based on special solutions of (2), which will be

computed in the next two lemmas. These computations are inspired by Theo-

rem 3.11 in [6], where the sharpness of the convex Sobolev inequality (1.29) is

discussed.

Lemma 1.29. Let v0 ∈ R
d. Then

(i)

f0(x) := cK exp(−V (x) + vT0 x− vT0 Kv0
2

)

is in L1
+ with

∫

Rd

f0 dx = 1. Here, V (x) = xTK−1x
2 from Theorem 1.12,

f∞ = cKe
−V . Furthermore, f0 is ψ-compatible for the logarithmic en-

tropies (1.22).

(ii) If v(t) solves

v̇(t) = −K−1CKv(t), v(t = 0) = v0,

then

f(t, x) =: exp(−V (x) + v(t)Tx− v(t)TKv(t)

2
)

is a solution to (2) with initial condition f0.
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(iii) For the relative logarithmic entropy e1(t) := e1(f(t)|f∞), it holds that

e1(t) =
v(t)TKv(t)

2
.

Proof:

(i): We have from (1.23) that

w = 2
√
α

(√

f0
f∞

+ β −
√

1 + β

)

= 2
√
α

(√

exp(vT0 x+ cg) + β −
√

1 + β

)

for some α, β > 0. This implies

∇w =

√
αv0 exp(v

T
0 x+ cg)

√

exp(vT0 x+ cg) + β
∈ L2(Rd, f∞),

so f0 is ψ-compatible for logarithmic ψ by Definition 1.18.
∫

Rd

f0 dx = 1 is easily

checked.

(ii): We insert f(t, x) into (2) and obtain

ft =
(
xT v̇(t)− v(t)TKv̇(t)

)
f(t),

div(f∞(D +R)∇ f

f∞
) = div

[

f∞CK∇ exp(v(t)Tx− v(t)TKv(t)

2
)

]

= div[f(t)CKv(t)] = (∇f(t)) · CKv(t)
=
(
−xTK−1CKv(t) + v(t)TCKv(t)

)
f(t),

where we have used D +R = CK and the symmetry of K.

(iii): Setting α = 1, β = 0 for ease of computation, it is ψ1(s) = s ln(s)−s+1.

We compute

e1(f(t)) =

∫

Rd

[
f(t)

f∞
ln(

f(t)

f∞
)− f(t)

f∞
+ 1

]

f∞ dx

=

∫

Rd

f(t) ln(
f(t)

f∞
) dx

=

∫

Rd

ln

(

exp

(

v(t)Tx− v(t)TKv(t)

2

))

f(t) dx

=

∫

Rd

(

v(t)Tx− v(t)TKv(t)

2

)

f(t) dx.
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For fixed t ≥ 0, it holds that

∂Kv(t)f(t, x) := v(t)TK∇f(t, x) = v(t)TK
(
−K−1x+ v(t)

)
f(t, x)

=
(
−v(t) · x+ v(t)TKv(t)

)
f(t, x).

Since

∫

Rd

∂Kv(t)f(t, x) dx = 0,

we obtain

e1(t) =
v(t)TKv(t)

2

∫

Rd

f(t) dx =
v(t)TKv(t)

2
.

�

Lemma 1.30. Let v0 ∈ R
d. Then

(i)

f0(x) = (1 + xT v0)f∞

is in L1(Rd) with
∫

Rd

f0 dx = 1. Furthermore, f0 is ψ-compatible for the

quadratic case ψ(s) = (s− 1)2.

(ii) If v(t) solves

v̇(t) = −K−1CKv(t), v(t = 0) = v0,

then

f(t, x) := (1 + xT v(t))f∞

is a solution to (2) with initial condition f0.

(iii) For the quadratic relative entropy e2(t) := e2(f(t)|f∞), it holds that

e2(t) = v(t)TKv(t).

Proof: First, we note that f0 ≥ 0 does not hold here. This is not a problem,

since we don’t need positivity of the solution to define the quadratic entropy.
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(i): Since f∞(x) = f∞(−x), we have

∫

Rd

vT0 xf∞ dx = 0,

and
∫

Rd

f0 dx = 1 follows from the normalisation of f∞. We recall from (1.21)

that for quadratic ψ,

w =
√
2α(

f0
f∞

− 1) =
√
2αvT0 x

for some α > 0. Then

∇w =
√
2αv0 ∈ L2(Rd, f∞),

and thus f0 is ψ-compatible for quadratic ψ by Definition 1.19.

(ii): We insert f(t, x) into (2) and obtain

ft(t, x) = xT v̇(t)f∞,

div(f∞(D +R)∇f(t, x)

f∞
) = div(f∞CKv(t)) = xTK−1CKv(t)f∞,

where we again used D +R = CK.

(iii): For a quadratic entropy with ψ2(s) = α(s− 1)2, we compute

e2(f(t)) = α

∫

Rd

(
f(t, x)

f∞
− 1)2f∞ dx = α

∫

Rd

(xT v(t))2f∞ dx.

For fixed t ≥ 0, it holds that

∂Kv(t)f∞ = −v(t)TKK−1xf∞ = −xT v(t)f∞.

It follows that

e2(f(t)) = −α
∫

Rd

(xT v(t))∂Kv(t)f∞ dx = α

∫

Rd

f∞∂Kv(t)(x
T v(t)) dx

= αv(t)TKv(t)

∫

Rd

f∞ dx = v(t)TKv(t).

�
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From Lemmas 1.29 and 1.30, we see that we can reduce the discussion of

sharp decay rates for relative entropies to discussing the term v(t)TKv(t), where

v0 ∈ R
d and

v̇(t) = −K−1CKv(t), v(t = 0) = v0. (1.54)

A direct consequence is

Corollary 1.31. Let condition (A) hold, and let t∗ ∈ R
+
0 . Then there is an

initial condition f0 [g0] distinct from f∞ such that for the solution f(t) [g(t)] to

(2), the entropy dissipation Iψ1
[Iψ2

] (see (1.18)) for the logarithmic [quadratic]

entropy vanishes at t∗, i.e. Iψ1
(f(t∗)) = 0 [Iψ2

(g(t∗)) = 0].

Proof: We take the time derivative of v(t)TKv(t), where v fulfils (1.54),

and obtain

d
dt

[
v(t)TKv(t)

]
= −v(t)TKCT v(t)− v(t)TCKv(t) = −2v(t)TDv(t),

where we have used (1.12). Let 0 6= w ∈ kerD. Setting v0 := exp(K−1CKt∗)w

implies v(t∗) = w, which completes the proof. �

We will now use Lemmas 1.29 and 1.30 to prove Theorem 1.28.

Proof (of Theorem 1.28):

(i): There is 0 6= v0 ∈ R
d with K−1CKv0 = µv0. So the solution of (1.54)

is v(t) = e−µtv0, and thus

v(t)TKv(t) = e−2µtv0Kv0.

(ii): There is 0 6= w ∈ C
d with K−1CKw = λw, λ ∈ C, ℜ{λ} = µ > 0,

ℑ{λ} = ω 6= 0. We can choose w 6∈ iRd. Then w fulfils K−1CKw = λw, since

K−1CK is real. Moreover v0 := w + w ∈ R
d, and v1 := i(w − w) ∈ R

d. One

easily verifies that v(t) := e−µt (cos(ωt)v0 + sin(ωt)v1) is the solution to (1.54).

We define

c := sup
t∈R

+
0

(cos(ωt)v0 + sin(ωt)v1)
T
K (cos(ωt)v0 + sin(ωt)v1) > 0,

since K is positive definite. Since v(t) is 2π
ω -periodic, the value c is attained for
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t = t0 + k 2π
ω , t0 ∈ R

+
0 . It follows that

v(t)TKv(t) = e−2µt (cos(ωt)v0 + sin(ωt)v1)
T
K (cos(ωt)v0 + sin(ωt)v1) ≤ ce−2µt,

with equality for t = t0 + k 2π
ω .

(iii): We confine ourselves here to the case λ = µ ∈ R; the general case can

be obtained by an extension of (ii). So, let w, h ∈ R
d with K−1CKw = µw,

K−1CKh = µh + w. Let v0 := h, then v(t) := e−µt(h − tw) is the solution to

(1.54), and

v(t)TKv(t) = e−2µt(h− tw)TK(h− tw) = exp(−2µt)(vT0 Kv0 + c1t+ c2t
2).

�

From the proof of Theorem 1.28, we see that the constant c in the estimate

eψ(f(t)) ≤ ce−2µt does not derive from the initial state in a straightforward way,

unless all eigenvalues of C are real and non-defective. For case (ii), if |v1| ≫ |v0|,
then c can be very large in comparison to eψ(f0); for case (iii), the same holds

for |w| ≫ |h|.

1.4 Spectral analysis

We now give a characterisation of the spectrum of L in L2. Let λ1, . . . , λd be the

eigenvalues of C, counted with their algebraic multiplicity. Let P(Rd) denote

the polynomials over Rd (with complex coefficients) and let Q := P(Rd)f∞. Q
is dense in L2(Rd, f−1

∞ ), and it is the natural space for eigenfunctions of the

(symmetric) Fokker-Planck operator (see for example [39] or [57]).

Theorem 1.32. Assume condition (A). Then the following holds:

(i) The spectrum of L in L2 is given by

σ(L) = σp(L) =
{

−
d∑

j=1

αjλj

∣
∣
∣α = (αj) ∈ N

d
0

}

⊂ {0} ∪
(
R

− × iR
)
.

(ii) The eigenspace to 0 is one-dimensional and spanned by f∞. For each

eigenvalue ν of L with ℜ{ν} < 0, the corresponding eigenfunctions and

generalised eigenfunctions span a finite dimensional subspace of Q.
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(iii) If C is not defective, then the eigenfunctions of L form a basis of Q.

(iv) If C is defective, then the eigenfunctions and generalised eigenfunctions

of L form a basis of Q.

Remark: As we will see in Lemma 1.34, all eigenfunctions and generalised

eigenfunctions of L can be computed explicitly.

The proof of Theorem 1.32 is split into three lemmas. First, we show in

Lemma 1.33 that L only has a point spectrum by proving the compactness of

the resolvent of L. In Lemma 1.34, we explicitly compute the (generalised)

eigenfunctions of L in Q. Finally, in Lemma 1.36 we establish an orthogonal

decomposition of L2 into finite dimensional subspaces, which allows us to prove

that the (generalised) eigenfunctions from Lemma 1.34 are indeed all the (gen-

eralised) eigenfunctions of L.

The main difficulty here is that the eigenfunctions of L will are not orthogonal,

in contrast to the symmetric, fully parabolic case. They do, however, generate

L–invariant and mutually orthogonal subspaces of Q, and this fact can be ex-

ploited in the proof of Lemma 1.36 (see also [34], [5]).

In the next lemma we shall need a weighted H1-space:

H := {f ∈ L2|∇( f
f∞

) ∈ (L2(Rd, f∞))d},

‖f‖2H :=

∫

Rd

|f |2f−1
∞ dx+

∫

Rd

|∇ f

f∞
|2f∞ dx = ‖ f

f∞
‖2H1(Rd,f∞) .

Lemma 1.33. Under condition (A), the operator L has a compact resolvent on

L2(Rd, f−1
∞ ).

Proof: For a (uniformly) elliptic operator, compactness of the resolvent can

be shown by establishing that the embedding H →֒ L2 is compact. For a degen-

erate elliptic operator, the resolvent will in general not map into H, so one has

to work in spaces with fractional derivatives. For this proof, we shall therefore

proceed in three steps. First we establish the space we work in, then we extend

the regularisation result from Theorem 1.26 for the solution semigroup eLt on

L2. Finally, we use these two results to show compactness of the resolvent of L.

Step 1 (interpolation spaces Hr): We start by introducing the spaces Hr, 0 <

r < 1, between L2 and H. We remark that, for any f ∈ L2,

‖f‖L2 = ‖ f

f∞
‖L2(Rd,f∞).



1.4. SPECTRAL ANALYSIS 57

By definition of H, this implies that for any f ∈ H,

‖f‖H = ‖ f

f∞
‖H1(Rd,f∞).

An orthonormal basis {zj |j ∈ N
d
0} of L2(Rd, f∞) is given by the “polynomial

part” of the eigenfunctions of the (uniformly) elliptic Fokker-Planck operator

LIdf := div(∇(
f

f∞
)f∞)

in L2. It satisfies

LId(zjf∞) = −|j|zjf∞,

with |j| the degree of the multi-index j. In the case of gaussian f∞, the zj are

the standard Hermite polynomials. For f ∈ H it holds

‖f‖2L2 =
∑

j∈Nd
0

|cj |2, ‖f‖2H =
∑

j∈Nd
0

(1 + |j|)|cj |2,

where cj is the coefficient of f
f∞

along zj . We thus define

Hr := {f ∈ L2|
∑

j∈Nd
0

(1 + |j|)r|cj |2 <∞}, (1.55)

Using Hölder’s inequality with p = 1
r , q =

1
1−r , we obtain

‖f‖2Hr
=
∑

j∈Nd
0

(1 + |j|)r|cj |2r|cj |2−2r

≤




∑

j∈Nd
0

(1 + |j|)|cj |2




r


∑

j∈Nd
0

|cj |2




1−r

.

This yields the interpolation inequality

‖f‖Hr
≤ ‖f‖rH‖f‖1−rL2 . (1.56)

Step 2 (regularisation from L2 to Hr): Since L generates a contraction semi-

group on L2, we have

∀t ≥ 0 : ‖eLtf‖L2 ≤ ‖f‖L2 . (1.57)

In the following estimate, we shall use the L2-orthogonal decomposition f =
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f̃ + f∞
∫

Rd

f dx with
∫

Rd

f̃ dx = 0, and the scaled version of (1.40) for quadratic

ψ:

∫

Rd

(∇f(t)

f∞
)TP∇f(t)

f∞
f∞ dx ≤ ct−(2τ+1)

∫

Rd

(

f − f∞

∫

Rd

f dx
)2

f−1
∞ dx.

We have:

‖eLtf‖2H = ‖eLtf‖2L2 +
∥
∥
∥∇eLtf

f∞

∥
∥
∥

2

L2(Rd,f∞)

= ‖eLtf‖2L2 +
∥
∥
∥∇eLtf̃

f∞

∥
∥
∥

2

L2(Rd,f∞)

≤ ‖f‖2L2 + ct−(2τ+1)‖f̃‖2L2

≤ (1 + ct−(2τ+1))‖f‖2L2 ,

where we have used the L2-contractivity of eLt and that P is positive definite.

We thus get

∀0 < t ≤ 1 : ‖eLtf‖H ≤ c̃t−(τ+ 1
2 )‖f‖L2 (1.58)

for all f ∈ L2. By combining (1.56) – (1.58), we obtain

∀0 < t ≤ 1 : ‖eLtf‖Hr
≤ βt−r(τ+

1
2 )‖f‖L2 , (1.59)

with β := c̃r.

Step 3 (compact resolvent): For r := 1
τ+1 > 0, we can integrate (1.59) on (0, 1).

This yields

‖
1∫

0

eLtf dt‖Hr
≤ c‖f‖L2 . (1.60)

By a well-known result for semigroups (see e.g. [32], section II.1, Lemma 1.3

or [56], section 1.2, Theorem 2.4), for any λ > 0 it holds that

∀f ∈ D(L) ∀t > 0 :

t∫

0

e(L−λ)s(L− λ)f ds = e(L−λ)tf − f.

Due to (1.57), e(L−λ)t decays exponentially and we conclude

∞∫

1

e(L−λ)t(λ− L)f dt = eL−λf (1.61)
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for all f ∈ D(L). Moreover (see e.g. [32], section II.1, Theorem 1.10 or [56],

section 1.3, Theorem 3.1), the resolvent R(λ, L) := (λ−L)−1 has the represen-

tation

R(λ, L) =

∞∫

0

e(L−λ)t dt =

1∫

0

e(L−λ)t dt+

∞∫

1

eL−λ)t dt.

We apply this representation to (1.60) and obtain

c‖f‖L2 ≥ ‖[R(λ, L)−
∞∫

1

e(L−λ)t]f dt‖Hr
,

which yields

‖R(λ, L)f‖Hr
≤ c‖f‖L2 + ‖

∞∫

1

e(L−λ)tf dt‖Hr
. (1.62)

For g ∈ D(L), we replace f in (1.62) by (λ− L)g and obtain, using (1.61),

‖g‖Hr
≤ c‖(λ− L)g‖L2 + ‖

∞∫

1

e(L−λ)t(λ− L)g dt‖Hr

= c‖(λ− L)g‖L2 + e−λ‖eLg‖Hr
.

Applying (1.59) with t = 1 to the last term yields

‖g‖Hr
≤ c‖(λ− L)g‖L2 + βe−λ‖g‖L2 .

Choosing λ > lnβ allows to “absorb” the last term into the left-hand side. Due

to the spectral representation of Hr in (1.55), the embedding Hr →֒ L2 is com-

pact for r > 0. Hence, R(λ, L) is compact for the chosen λ, and by the first

resolvent formula then also for all λ in the resolvent set. �

Remark: For r = 1, the compactness of the embedding can also be shown

by the method in [38].

In the next lemma, we compute (generalised) eigenfunctions of L. Here we

shall use the following notation for multi-indexes. Let α ∈ N
d
0 be a multi-index.

We write |α| =
d∑

j=1

αj , ∇α :=
d∑

j=1

∂
αj

j . We also introduce the notation αl− and
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αl+:

(αl+)j := αj (j 6= l), (αl+)l := αl + 1,

(αl−)j := αj (j 6= l), (αl−)l := αl − 1 if αl > 1,

αl− := 0 ∈ N
d
0 if αl = 0.

So αl−, αl+ denote the multi-index that one gets by lowering or raising the l-th

entry of α by 1. Analogously we define iterated index shifts like, e.g., (αl−)m−.

Lemma 1.34. There is a bijection Φ between N
d
0 and the (generalised) eigen-

functions ϕ ∈ Q of L. For α ∈ N
d
0, the polynomial part of Φ(α) has degree |α|,

and the eigenvalue corresponding to Φ(α) is

να := −
d∑

l=1

αlλl.

Proof: We make the following ansatz for the eigenfunctions of L:

ϕ(x) = q(x)f∞ ∈ Q,

and obtain, using D +R = CK (see section 1.2.1):

Lϕ = div(f∞(D +R)∇( ϕ
f∞

))

= div(f∞(D +R)∇q) = f∞ div((D +R)∇q)− f∞(xTK−1(D +R)∇q)
= f∞

[
div(D∇q)− xTK−1CK∇q

]
.

This implies that we need to find a q ∈ P(Rd) such that

LPq(x) := ∇TD∇q(x)− xTK−1CK∇q(x) = νq(x).

Since the eigenvalues of C (and thus of Q) may be complex, we shall consider

the polynomial q in the space P(Cd) in the sequel. As in Lemma 1.19, we shall

now use the Jordan normal form J of QT = K−1CK, with A−1JA = QT for

some regular A ∈ C
d×d.

We introduce the (complex) coordinate transformation

y := (A−1)Tx, with y ∈ C
d,

p(y) := q(AT y) = q(x) ∈ P(Cd).
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It follows that

∂xj
q = (∂ylp)

∂yl
∂xj

= [(A−1)T ]lj∂ylp,

and thus

∇xq = A−1∇yp.

From this we have

xTQT∇xq = yTAQTA−1∇yp = yTJ∇yp

and

∇T
xD∇xq = ∇T

y (A
−1)TDA−1∇yp.

So we obtain the following equation for the (transformed) eigenfunctions of LP :

L̃Pp(y) := ∇T
y (A

−1)TDA−1∇yp(y)− yTJ∇yp(y) = νp(y). (1.63)

A basis of the polynomials (over C) of degree n or lower is given by the mono-

mials {yα|α ∈ N
d
0, |α| ≤ n}. We order this basis by increasing degree, and

in decreasing lexicographic order for monomials of the same degree. Next, we

compute the matrix representation MP of L̃P with respect to this basis. Let el

denote the l-th unit vector in C
d, and Idef be the set of all l ∈ {1, . . . , d} for

which el is not an ordinary eigenvector of J . We compute

L̃Pyα = [∇T (A−1)TDA−1 − yTJ ]

d∑

l=1

(αlely
αl−)

=
d∑

l,m=1

(

[αm − δlm]αle
T
m(A−1)TDA−1ely

(αl−)m−

)

−
d∑

l=1

(αlλly
α)−

∑

l∈Idef
αly

T el−1y
αl−

=

d∑

l,m=1

(

dlm(α)y(αl−)m−

)

+ ναy
α −

∑

l∈Idef
αly

(αl−)(l−1)+ , (1.64)

where dlm(α) := [αm− δlm]αle
T
m(A−1)TDA−1el. The first term of the r.h.s. has

degree max(|α| − 2, 0). The second and the third term both have degree |α|,
but the exponents of the third term come “earlier” in lexicographic order. Due

to our ordering of the basis {yα| |α| ≤ n}, this implies that MP is an upper
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triangular matrix. The entries on the diagonal are just the να, which are hence

the eigenvalues of L̃P and hence of LP . It follows that, by transforming MP

into Jordan form, one can find a basis of the polynomials of degree n or lower

consisting of (generalised) eigenfunctions of L̃P .

If αl = 0 for all l ∈ Idef , then (1.64) only contains terms of lower order besides

of ναy
α. Hence, yα will be the leading term of an ordinary eigenfunction of L̃P .

To define Φ, we observe that for any β ∈ N
d
0, the set {yα

∣
∣ |α| ≤ |β|}⋂{yα

∣
∣ |α| =

|β|, α ≥ β lexicographically} is still the basis of an L̃P -invariant subspace Uβ

of P(Cd) – due to the upper triangular form of MP . Further, if α follows β in

the order introduced above for multiindices, then Uα has dimension 1 greater

than Uβ . Hence, Uα contains one additional (generalised) eigenfunction over

Uβ , which has to include the term yα (else it would be in Uβ). Setting Φ(α) as

this (generalised) eigenfunction completes the proof. �

An immediate consequence of Lemma 1.34 is:

Corollary 1.35. There are only finitely many eigenfunctions ϕ ∈ Q of L to

a given eigenvalue µ. The (generalised) eigenfunctions of L from Lemma 1.34

form a basis of Q.

Proof: Since L has compact resolvent and 0 is an eigenvalue, σ(L) = σp(L).

Moreover, the eigenvalues have no accumulation point, and all eigenspaces are

finite dimensional. The (generalised) eigenfunctions of L form a basis of Q since

Φ from Lemma 1.34 is a bijection. �

With Lemma 1.34 and Corollary 1.35, we have characterised the spectrum of

L|Q. We will now show that this is the same as the spectrum of L in L2(Rd, f−1
∞ ).

To do so, we introduce a change of coordinates. Let

y := K− 1
2x,

g0(y) := f∞(K
1
2 y) = cK exp(−|y|2

2
).

Now let

gα(y) := ∇αg0(y), α ∈ N
d
0,

Vm := span
{
gα
∣
∣ |α| = m

}
⊂ Q̃ := P(Rd)g0, m ∈ N0 .

Note that the gα are in Q̃, and the polynomial part of gα has degree |α|. From
[39], [57] we know that {gα}α∈Nd

0
forms an orthogonal basis of L2(Rd, g−1

0 ).

Hence, the subspaces Vm are also mutually orthogonal.
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Acting on the transformed function g(y) := f(K
1
2 y) ∈ L2(Rd, g−1

0 ), L has the

form

L̃g := div[(D̃ + R̃)(∇g + yg)],

D̃ := K− 1
2DK− 1

2 ,

R̃ := K− 1
2RK− 1

2 .

Lemma 1.36. For every m ∈ N0, Vm is invariant under both L̃ and its adjoint

L̃† (w.r.t. L2(Rd, g−1
0 )).

Proof: Note that the following properties of D, R, and C also hold for the

transformed versions (with C̃ := K− 1
2CK− 1

2 ):

2D̃ = C̃K +KC̃T , R̃T = −R̃.

The adjoint of L̃ has the form

L̃†g = div[(D̃ − R̃)(∇g + yg)].

Now compute

∂lgα(y) = ∇α∂lg0(y) = −∇α(ylg0(y))

= −αlgαl−
(y)− ylgα(y).

So we have, writing hα := (αlgαl−
(y))l=1,...,d,

∇gα(y) = −hα(y)− ygα(y).

Inserting this into L̃ gives

L̃gα = div[(D̃ + R̃)(−hα(y)− ygα(y) + ygα(y))]

= − div(D̃hα(y))− div(R̃hα(y)),

L̃†gα = − div(D̃hα(y)) + div(R̃hα(y)).

Compute further

div(D̃hα) =

d∑

j,l=1

∂j

(

D̃jlαlgαl−

)

(y) =

d∑

j,l=1

αlD̃jlg(αl−)j+(y),

div(R̃hα) =
d∑

j,l=1

αlR̃jlg(αl−)j+(y) .
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Thus we get, using R = 1
2 (CK −KCT ) and D = 1

2 (CK +KCT ),

L̃gα = −
d∑

j,l=1

αl(D̃ + R̃)jlg(αl−)j+(y)

= −
d∑

j,l=1

αl(K
− 1

2CK
1
2 )jlg(αl−)j+(y),

L̃†gα = −
d∑

j,l=1

αl(K
1
2CTK− 1

2 )jlg(αl−)j+(y).

We see that L̃gα, L̃
†gα are linear combinations only of terms gβ , β ∈ N

d
0, with

|β| = |α|. This completes the proof. �

We now have the tools to prove Theorem 1.32:

Proof (of Theorem 1.32):

With Lemmas 1.33, 1.34 we have already established that

σ(L) = σp(L) ⊃
{

−
d∑

j=1

αjλj

∣
∣
∣α ∈ N

d
0

}

. (1.65)

All that remains to show is that there are no further eigenvalues in the point

spectrum of L or, equivalently, of L̃. Assume there were an additional eigenvalue

λ of L̃ with L̃g = λg for some g ∈ L2(Rd, g−1
0 ). Then g has a unique L2–

decomposition in {Vm}:

g =

∞∑

m=0

gm , with gm ∈ Vm .

By the orthogonality and L̃–invariance of the Vm we have L̃gm = λgm ∀m ∈ N0.

By Lemma 1.34, all eigenfunctions of L̃ in Vm satisfy

ν = −
d∑

j=1

αjλj

for some α ∈ N
d
0 with |α| = m. Hence, ℜ{ν} ≤ −µm with µ = min

j=1,...,d
ℜ{λj} >

0. This implies gm = 0 for all m > m̃ := −ℜ{λ}
µ . Thus, g = qg0, with a poly-

nomial q of deg q ≤ m̃. Hence, g ∈ Q̃, and λ is already included in the r.h.s. of

(1.65). �
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1.5 Examples

In this section, we study three 2-dimensional toy problems to illustrate our re-

sults and some of the mechanisms behind hypocoercive behaviour.

As first model, in Example 1 we discuss a degenerate Fokker-Planck equation

with a confinement potential whose gradient lines are not aligned with the dis-

sipative subspace. Hence, they cross this subspace at a non-zero angle, which

yields (A.i). (A.ii) is provided by the confinement potential. In this case, C is

symmetric and has a full complement of real eigenvectors and eigenvalues, and

thus the spectrum of L is real.

In Example 2, we study as a second model the case of a defective C, where the

dissipative subspace is a generalised eigenspace of C. Hence the degeneracy sub-

space of the dissipation is not invariant under CT , and the model fulfils (A.i).

(A.ii) again comes from a confinement potential. The spectrum of L remains

real, but, as seen in Theorem 1.27, there is no precise sharp rate due to the

defectiveness and generalised eigenfunctions.

As a last model, we discuss in Example 3 a kinetic equation with a skew-

symmetric transport between the two variables, but diffusion only in the first

variable. Here, (A.i) is due to a “mixing” of space variables by the transport

terms, which is also responsible for “extending” the confinement by the poten-

tial (which only depends on x1) to the whole space. Depending on the scaling

of the transport term, this example exhibits the same behaviour as the first two

or gives rise to two complex conjugate eigenvalues of C. This is the standard

kinetic Fokker-Planck-model often used in literature (see e.g. [30], [10], [31]),

with x1 = v and x2 = x.

Example 1. Let L be defined as in (2) with

D :=

(

1 0

0 0

)

, C :=

(

4 1

1 1

)

.

Then the unique normalised steady state from Theorem 1.12 is

f∞ =
15

2π
√
3
exp(−5x21 + 10x1x2 + 20x22

2
),

and the sharp decay rate from Theorem 1.27 is µ = 5−
√
13

2 .
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Figure 1.1: Example 1: Symmetric drift coefficients from a skew-aligned poten-
tial. Figure (b) shows that the correct choice of P is crucial.
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(a) Field plot of the drift coefficient x 7→

Cx.

(b) Plot of the modified entropy dissipa-
tion S and the functional F obtained by
replacing P in S with Id.

Proof: To find the unique normalised steady state, we have to solve (1.12).

So let

K =

(

k1 k2

k2 k3

)

.

We obtain the equations

2 = 8k1 + 2k2,

0 = k1 + 5k2 + k3,

0 = 2k2 + 2k3,

which have the solution

K =
1

15

(

4 −1

−1 1

)

, K−1 = 5

(

1 1

1 4

)

.

This means the normalised steady state has the form

f∞ =
15

2π
√
3
exp(−5x21 + 10x1x2 + 20x22

2
).
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For the rate of decay, we compute the eigenvalues of C as λ± = 5±
√
13

2 . From

Theorem 1.27, we thus know that µ = 5−
√
13

2 is the sharp convergence rate. The

eigenvectors of KCTK−1 to λ± are

v+ =

(

1

− 7−
√
13

18

)

,

v− =

(

1

− 7+
√
13

18

)

.

From this, we can compute P as

P = v+v
T
+ + v−v

T
− =

(

2 − 7
9

− 7
9

31
81

)

.

The behaviour of S for the initial condition

f0 = (x1 + x2 + 1)f∞

(see also Lemma 1.30) is shown in Figure 1.1b. Also shown is the behaviour of

the functional F one obtains by replacing D in Iψ (see (1.18)) with Id. This

is analogous to P = Id in the definition of S (1.19) and retains information on

all derivatives. As can be seen from the graph, there is no hope of obtaining a

decay estimate on F since the functional is not monotonous. This shows that

one has to be careful in choosing P . �

Example 2. Let L be defined as in (2) with

D =

(

1 0

0 0

)

, C =

(

1 0

1 1

)

.

Then the unique normalised steady state from Theorem 1.12 is

f∞ =
1

π
exp(−2x21 + 4x1x2 + 4x22

2
),

and the decay rate from Theorem 1.27 is µ = 1− ε for any ε ∈ (0, 1).
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Figure 1.2: Example 2: Defective matrix for the drift coefficient.
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(a) Field plot of the drift coefficient x 7→

Cx for Example 2.
(b) Comparison of effective decay rates for
eψ and Sε, with ε = 0.5 and ε = 0.1.

Proof: As equations for

K =

(

k1 k2

k2 k3

)

we obtain from (1.12):

2 = 2k1,

0 = k1 + 2k2,

0 = 2k2 + 2k3.

This has the solution

K =
1

2

(

2 −1

−1 1

)

, K−1 = 2

(

1 1

1 2

)

,

so the normalised stationary state is

f∞ =
1

π
exp(−2x21 + 4x1x2 + 4x22

2
).

C has the defective eigenvalue 1, so there is no exact sharp rate, and the best we

can achieve is 1− ε for ε ∈ (0, 1), see Theorem 1.27. To obtain P , we compute

the eigenvector v and generalised eigenvector h of Q = KCTK−1 as

v =

(

−2

1

)

,
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h =

(

1

−1

)

.

We then set, for ε ∈ (0, 1),

Pε := vvT + ε2hhT .

One easily verifies that

QPε + PεQ
T ≥ 2(1− ε)Pε.

For the initial condition

f0 = (x2 + 1)f∞,

one can expect the defectiveness of the eigenvalue to show in the decay rate

(compare Theorem 1.28 (iii)).

The effective decay rate for the entropy e on the interval [0, s] can be computed

as

λeff (s) :=
1

s
log

e(s)

e(0)
.

In Figure 1.2b, the effective decay rate for e is shown alongside the effective

decay rate for two modified entropy dissipation functionals S corresponding to

Pε for ε = 0.5 and ε = 0.1. The estimated rate for Sε is 2(1 − ε). As can be

seen, the estimated decay rate is not optimal (this could also be seen from the

fact that the “remainder” Mn in the proof of Lemma 1.19 is positive definite,

not positive semidefinite), as the depicted rates are better than the estimate.

For small s the effective decay rate is better for modified entropy dissipation

functionals, improving as ε→ 0. However, this comes at the price of increasing

the constant cε in the estimate from Theorem 1.27.

�
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Example 3. Let 0 6= ν ∈ R and L be defined as in (2) with

D =

(

1 0

0 0

)

, C =

(

1 −ν
ν 0

)

.

The unique normalised steady state from Theorem 1.12 is

f∞ =
1

2π
exp(−|x|2

2
),

and the decay rate from Theorem (1.27) depends on ν in the following way:

• If |ν| < 1
2 , then µ = 1−

√
1−4ν2

2 .

• If |ν| = 1
2 , then the eigenvalue with smallest real part is defective, and we

can obtain the rate µ = 1
2 − ε for ε ∈ (0, 12 ).

• If |ν| > 1
2 , then µ = 1

2 .

Figure 1.3: Example 3: Rotation and a one-dimensional Fokker-Planck operator.
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(a) Field plot of the drift coefficient x 7→

Cx for Example 3, with ν = 1. (b) Plot of the relative entropy for initial
conditions k0, h0, as well as the bound
from the log-Sobolev inequality (1.29)

Proof: As equations for

K =

(

k1 k2

k2 k3

)
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we get from (1.12):

2 = 2k1 − 2νk2

0 = k2 + ν(k1 − k3)

0 = 2νk2

The solution is K = Id, and we obtain the steady state

f∞ = exp(−|x|2
2

).

The eigenvalues of K−1CK = C are

λ+ =
1 +

√
1− 4ν2

2
, λ− =

1−
√
1− 4ν2

2
.

If

|ν| = 1
2 ,

both eigenvalues are 1
2 , but there is only one eigenvector

v =

(

1

1

)

,

so the eigenvalue 1
2 is defective. We thus get three cases:

• If 0 < |ν| < 1
2 , both eigenvalues are real; we are in the same situation as

the first example, and the rate is µ = 1−
√
1−4ν2

2 < 1
2 .

• If |ν| = 1
2 , there is a single, real defect eigenvalue, so the situation is the

same as in the second example, with the rate 1
2 − ε for ε ∈ (0, 12 ).

• If |ν| > 1
2 , both eigenvalues are complex, and the from Theorem 1.27 is

µ = 1
2 .

We compute P for the case ν = 1. In this case, λ := 1
2 ± i

√
3
2 , and KCTK−1 =

CT has the eigenvector

v :=

(

−λ
1

)
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to the eigenvalue λ, and v to λ. Thus, we can set

P := vvH + vvH =

(

2 −1

−1 2

)

.

In this case, the constant λP from (1.29) is 1. We compare the logarithmic

entropy for the two initial conditions

h0 := (x1 + 1)f∞, k0 := (x2 + 1)f∞.

k0 is in the kernel of Ls, and h0 − f∞ in its complement. Shown in Fig. 1.3b

is the relative quadratic entropy for both cases, as well as the bound S
2λP

from

(1.29) with the modified entropy dissipation S. In this case, the bound is sharp.

However, this bound requires the initial condition f0 to have finite modified

entropy dissipation S, which in general will not be true. The general bound

from Theorem 1.27 is strictly greater. �

1.6 Another proof of hypocoercivity

In this section, we establish exponential convergence towards the unique nor-

malised steady state (see Theorem 1.12) in a weighted H1-norm under condition

(A). We follow a method established by Villani in [67], reformulating his The-

orem 24 in a version tailored to our specific problem. As in [67], we are here

not interested in a sharp decay rate, which we have already established in §1.3.
Instead, the idea is to present another approach to the problem.

Before we start, we briefly elaborate on the strategy and idea behind the proof.

The symmetric part of L can be written as A∗A. Due to the semidefiniteness

and singularity of D, this is coercive on kerA = kerA∗A, which is strictly larger

than kerL. In his proof of hypoellipticity, Hörmander [42] uses iterated commu-

tators F1 := [A,B], F2 := [[A,B], B], . . . , where B = −B∗ is the antisymmetric

part of L. Associate with A, Fj the vector fields a(x), fj(x) of their coefficients

(i.e, replacing ∂j with the unit vectors ej). The hypoellipticity then follows if

a(x), f1(x), f2(x), . . . span the whole of Rd for all x ∈ R
d. The idea is now

to consider the operators A∗A, F ∗
1 F1, F

∗
2 F2, . . . , all of which are coercive only

on “too small” a subset of H = {f ∈ L2|∇( f
f∞

) ∈ (L2(Rd, f∞))d}. However, if

their sum is coercive on kerL⊥, they can then be used to construct a Lyapunov

functional that yields decay in a H1-norm. As it turns out, this is the case

exactly iff condition (A) is fulfilled.

We recall that, under condition (A), L decomposes on the weighted space L2 as
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Ls + Las,

Lsf = div(D∇( f
f∞

)f∞),

Lasf = xTT∇f =: Bf,

where

T := 1
2 (C

T −K−1CK) ∈ R
d×d (1.66)

with Tr(T ) = 0 (see Theorem 1.16).

We work in the weighted H1-space H = {f ∈ L2|∇( f
f∞

) ∈ (L2(Rd, f∞))d},
‖f‖2H =

∫

Rd

|f |2f−1
∞ dx+

∫

Rd

|∇ f
f∞

|2f∞ dx from Lemma 1.33. Let A : H ⊂ L2 →

(L2)d, f 7→ D
1
2∇( f

f∞
)f∞. Then we get for g ∈ (H1(Rd, f−1

∞ ))d:

〈Af, g〉 =
∫

Rd

D
1
2∇( f

f∞
)f∞gf

−1
∞ dx

= −
∫

Rd

div(D
1
2 g)ff−1

∞ dx.

Hence, A∗g = − div(D
1
2 g) and L = −A∗A+B, with the Operator B := xTT∇

as introduced in (1.17). Note that ‖Af‖ ≤ c̃1‖f‖H.

Now, we can state the main result of this section: The operator L is hypocoer-

cive in the sense of [67] (see also Definition 0.1).

Theorem 1.37. Let condition (A) hold. Then there exist λ > 0 and C > 1

such that all solutions of (2) with f0 ∈ H satisfy

∀t ≥ 0 : ‖f(t)− f∞‖H ≤ C exp(−λt)‖f0 − f∞‖H.

Before we begin the proof of Theorem 1.37, we repeat the notations for com-

mutators used in [67]. In this paper, the domain of all operators contains C∞
0 ,

and thus the commutators can always be defined on C∞
0 and then be closed.

For a proof of the density of C∞
0 in L2, see [50], Theorem 8.1.26.

For two operators X : D(X) ⊂ L2 → L2, Y : D(Y ) ⊂ L2 → L2, the

commutator [X,Y ] is defined as the closure of

C∞
0 ⊂ L2 → L2,

f 7→ XY f − Y Xf.
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If X : D(X) ⊂ (L2)d → L2, g = (gj)1≤j≤d 7→
d∑

j=1

Xjgj and Y : D(Y ) ⊂ L2 →

L2, we define [X,Y ] as the closure of

(C∞
0 )d ⊂ (L2)d → L2,

g = (gj)1≤j≤d 7→
d∑

j=1

[Xj , Y ]gj ∈ L2.

Similarly, if X : D(X) ⊂ L2 → (L2)d, g 7→ (Xjg)1≤j≤d and Y : D(Y ) ⊂ L2 →
L2, we define [X,Y ] as the closure of

C∞
0 ⊂ L2 → (L2)d,

g 7→ ([Xj , Y ]g)1≤j≤d ∈ (L2)d.

Finally, if X : D(X) ⊂ L2 → (L2)d, g 7→ (Xjg)1≤j≤d and either Y : D(Y ) ⊂
L2 → (L2)d, g 7→ (Yjg)1≤j≤d or Y : D(Y ) ⊂ (L2)d → L2, g = (gj)1≤j≤d 7→
d∑

j=1

Yjgj , we define [X,Y ] as the closure of

C∞
0 ⊂ L2 → (L2)d×d

g 7→ ([Xj , Yk]g)1≤j,k≤d ∈ (L2)d×d.

In the next lemma, we compute the iterated commutators for the Lyapunov

functional.

Lemma 1.38. Let F0 := A, and for j ∈ N0 let Fj+1 := [Fj , B]. Then

Fj : H ⊂ L2 → (L2)d, (1.67)

f 7→ D
1
2T j∇((

f

f∞
)f∞.

Proof: We proceed by induction. For j = 0, F0 = A has the postulated

form. So let j ≥ 0, and M := D
1
2T j . Then

Fjf =M∇( f
f∞

)f∞ =

(
d∑

p=1

Mlp(f,p + (K−1x)pf)

)

l=1,...,d

,

Bf = xTT∇f =

d∑

r,s=1

xrTrsf,s.
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This implies

B(Fj)lf =
d∑

r,s,p=1

xrTrsMlp(f,p + (K−1x)pf),s

=

d∑

r,s,p=1

xrTrsMlp(f,ps +K−1
ps f + (K−1x)pf,s),

(Fj)lBf =

d∑

r,s,p=1

MlpTrs
(
(xrf,s),p + (K−1x)pxrf,s

)

=
d∑

r,s,p=1

MlpTrs
(
δrpf,s + xrf,sp + (K−1x)pxrf,s

)
,

and thus

[(Fj)l, B]f =

d∑

r,s,p=1

MlpTrs
(
δrpf,s − xrK

−1
ps f

)
,

Fj+1f =MT∇f −MK−1TTxf =M(T∇f −K−1TTK(K−1x)f)

=MT (∇f +K−1xf) =MT∇( f
f∞

)f∞,

where we have used the form of T from Theorem 1.16. �

Corollary 1.39. For j ∈ N0 it holds:

F ∗
j = − div((TT )jD

1
2 ·), (1.68)

Fjf∞ = 0, (1.69)

∀f ∈ H : ‖Fjf‖2 ≤ cj‖f‖2H with cj := ‖D‖‖T‖2j > 0. (1.70)

Proof: Using (1.67), an integration by parts immediately yields (1.68).

(1.69) follows from Af∞ = Bf∞ = 0, and (1.70) from Lemma 1.38. �

As mentioned, the proof of Theorem 1.37 relies on analysing a Lyapunov

functional that incorporates the iterated commutators Fj . The idea is to “com-

plete” the degenerate diffusion term A∗A in L by adding more diffusion oper-

ators of the form F ∗
j Fj . The next lemma establishes that a finite sum of these

operators will always be sufficient for the diffusion to act on the whole of Rd:
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Lemma 1.40. Let T be defined as above. Let condition (A) be fulfilled. Then

there exists κ > 0 such that

d−k∑

j=0

(TT )jDT j ≥ κ Id,

where k = rankD.

Proof: This is a direct consequence of Lemma 1.3, replacing CT by T =
1
2 (C

T −K−1CK) = CT −K−1D and noting that Tv = CT v for v ∈ kerD. �

Corollary 1.41. It holds that
d−k∑

j=0

‖Fjf‖2 ≥ γ‖f − f∞‖2H for some γ > 0.

Proof: Lemma 1.40 gives

d−k∑

j=0

‖Fjf‖2 =

d−k∑

j=0

〈f, F ∗
j Fjf〉

= −〈f, div(
d−k∑

j=0

(TT )jDT j∇(
f

f∞
)f∞)〉

= 〈∇(
f

f∞
)f∞,

d−k∑

j=0

(TT )jDT j∇(
f

f∞
)f∞〉

≥ γ′
∫

Rd

|∇ f

f∞
|2f∞ dx

≥ γ′λ1
1 + λ1





∫

Rd

|∇ f

f∞
|2f∞ dx+ ‖f − f∞‖2



 ,

where we used Lemma 1.20. �

Finally, we need an estimate on two more commutators that will appear in

our Lyapunov functional:

Lemma 1.42. The operators Fj defined in (1.67) satisfy

[Fj , A] = 0, (1.71)

‖[Fj , A∗]f‖ ≤ αj‖f‖, (1.72)

for some αj > 0.
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Proof: Remember our notational convention: [Fj , A] is the closure of an

operator from C∞
0 to (L2)d×d, as is [Fj , A∗].

Now let j ∈ N0 be fixed. Since Fjf = M∇( f
f∞

)f∞ for some matrix M , we get

for the components of our operators, using D
1
2 = D,

(Fj)lf =

d∑

p=1

Mlpf,p + (MK−1)lpxpf,

Arf =

d∑

s=1

Drsf,s + (DK−1)rsxsf,

A∗
rf = −

d∑

s=1

Drsf,s.

Denote by ml the l-th row of M , by dr the r-th row of D. Then we have for

f ∈ C∞
0 :

(Fj)lAr = ml · ∇(f−1
∞ dr · ∇

f

f∞
)f∞ = (ml)

T [ ∂
2

∂x2

f

f∞
]drf∞.

Since the matrix ∂2

∂x2
f
f∞

is symmetric, it follows that [(Fj)l, Ar] = 0. Similarly,

we have

[(Fj)l, A
∗
r ]f = −ml · ∇(

dr · ∇f
f∞

)f∞ + dr · ∇(ml · ∇(
f

f∞
)f∞

= −Tr(dTr ⊗ml · ∇ ⊗ (
∇f
f∞

)f∞ +Tr(mT
l ⊗ dr · ∇ ⊗ (∇(

f

f∞
)f∞))

= −Tr(dTr ⊗ml · ∇ ⊗ ∇f∞
f∞

)f

which proves the inequality

‖[Fj , A∗]f‖ ≤ c(M,K,D)‖f‖.

�

With these results, we can prove convergence to equilibrium under condition

(A):

Proof: (of Theorem 1.37)

We reiterate the proof of Theorems 18 and 24 in [67] tailored to (2). Re-
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member that ‖·‖ and 〈·, ·〉 refer to the norm and scalar product on the weighted

L2-space. Let N := d− k. For a solution f to (2) let

L(f) := c‖f − f∞‖2 +
N∑

j=0

aj‖Fjf‖2 − 2

N−1∑

j=0

bj〈Fjf, Fj+1f〉,

where the positive constants aj , bj , c are yet to be determined. We will show

that L is a Lyapunov functional. First, we shall need

L(f) ≥ c̃2‖f − f∞‖2H, (1.73)

L(f) ≤ c̃3‖f − f∞‖2H (1.74)

with some c̃2, c̃3 > 0 still to be chosen. For (1.73), we can choose

ajaj+1 > 4b2j (1.75)

and obtain:

N∑

j=0

aj‖Fjf‖2 − 2

N−1∑

j=0

bj〈Fjf, Fj+1f〉

=
a0
2
‖F0f‖2 +

aN
2

‖FNf‖2 +
N−1∑

j=0

aj
2
‖Fjf‖2 − 2bj〈Fjf, Fj+1f〉+

aj+1

2
‖Fj+1f‖2

≥ c̃4

d−k∑

j=0

‖Fjf‖2 ≥ c̃2‖f − f∞‖2H,

where we have used Corollary 1.41 for the last inequality.

With (1.69) we get

L(f) = c‖f − f∞‖2 +
N∑

j=0

aj‖Fj(f − f∞)‖2 − 2

N−1∑

j=0

bj〈Fj(f − f∞), Fj+1(f − f∞)〉

≤ c‖f − f∞‖2 + c̃5

N∑

j=0

‖Fj(f − f∞)‖2 ≤ c̃3‖f − f∞‖2H,

where we have used (1.70) for the last inequality.

Our aim is now to prove that d
dtL(f) ≤ −

N∑

j=0

γj‖Fjf‖2 for some γj > 0.

This will give the desired result with Corollary 1.41, since L is equivalent to



1.6. ANOTHER PROOF OF HYPOCOERCIVITY 79

‖·‖2H. So compute, using
∫

Rd

ft dx = 0 and (1.71):

d
dt‖f − f∞‖2 = 2〈f, ft〉 = −2‖Af‖2,
d
dt‖Fjf‖

2 = 2〈Fjf, Fjft〉 = −2〈Fjf, FjA∗Af〉+ 2〈Fjf, FjBf〉
= −2〈Fjf, [Fj , A∗]Af〉 − 2〈AFjf, FjAf〉+ 2〈Fjf, [Fj , B]f〉+ 2〈Fjf,BFjf〉
= −2〈Fjf, [Fj , A∗]Af〉 − 2‖AFjf‖2 + 2〈Fjf, Fj+1f〉,

d
dt 〈Fjf, Fj+1f〉

= 〈Fjft, Fj+1f〉+ 〈Fjf, Fj+1ft〉
= −〈FjA∗Af, Fj+1f〉+ 〈FjBf, Fj+1f〉 − 〈Fjf, Fj+1A

∗Af〉+ 〈Fjf, Fj+1Bf〉
= −〈[Fj , A∗]Af, Fj+1f〉 − 〈FjAf,AFj+1f〉+ 〈FjBf, Fj+1f〉 − 〈Fjf, [Fj+1, A

∗]Af〉
− 〈AFjf, Fj+1Af〉+ 〈Fjf, [Fj+1, B]f〉+ 〈Fjf,BFj+1f〉

= −〈[Fj , A∗]Af, Fj+1f〉 − 2〈AFjf,AFj+1f〉 − 〈Fjf, [Fj+1, A
∗]Af〉

+ ‖Fj+1f‖2 + 〈Fjf, Fj+2f〉.

Using this we get

1
2

d
dtL(f)

= −c‖Af‖2 −
N∑

j=0

aj
(
‖AFjf‖2 − 〈Fjf, Fj+1f〉 − 〈Fjf, [Fj , A∗]Af〉

)
(1.76)

+

N−1∑

j=0

bj

(

〈[Fj , A∗]Af, Fj+1f〉+ 2〈AFjf,AFj+1f〉+ 〈Fjf, [Fj+1, A
∗]Af〉

)

−
N−1∑

j=0

bj

(

‖Fj+1f‖2 − 〈Fjf, Fj+2f〉
)

. (1.77)

Note that

0 ≥ −
N∑

j=0

aj‖AFjf‖2 +
N−1∑

j=0

2bj〈AFjf,AFj+1f〉

due to (1.75). We further estimate, using (1.72),

|〈Fjf, Fj+1f〉| ≤ aj
2 ‖Fjf‖2 + 1

2aj
‖Fj+1f‖2,

|〈Fjf, [Fj , A∗]Af〉| ≤ αjaj
2 ‖Af‖2 + 1

2aj
‖Fjf‖2,

|〈[Fj , A∗]Af, Fj+1f〉| ≤ αjbj
2 ‖Af‖2 + 1

2bj
‖Fj+1f‖2,

|〈Fjf, [Fj+1, A
∗]Af〉| ≤ αj+1bj

2 ‖Af‖2 + 1
2bj

‖Fjf‖2,

|〈Fjf, Fj+2f〉| ≤ bj
2 ‖Fjf‖

2 + 1
2bj

‖Fj+2f‖2.
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Inserting these estimates into (1.76) yields

d
dtL(f) ≤ −2c‖Af‖2 +

N∑

j=0

(
a2j‖Fjf‖2 + ‖Fj+1f‖2 + αja

2
j‖Af‖2 + ‖Fjf‖2

)

+
N−1∑

j=0

(

αjb
2
j‖Af‖2 + ‖Fj+1f‖2 + αj+1b

2
j‖Af‖2 + ‖Fjf‖2

)

+

N−1∑

j=0

(

b2j‖Fjf‖2 + ‖Fj+2f‖2
)

−
N∑

j=1

2bj−1‖Fjf‖2. (1.78)

Note that there are two terms containing ‖FN+1‖. With FN+1f∞ = 0, (1.70),

and Corollary 1.41 we get

‖FN+1f‖2 ≤ cN+1‖f − f∞‖2H ≤ β

N∑

j=0

‖Fjf‖2

with some β > 0. Now we analyse the coefficients of ‖Fjf‖2, 0 ≤ j ≤ N (recall

F0 = A): on the right hand side of (1.78):

‖Af‖2 : − 2c+ a20 +

N∑

j=0

αja
2
j +

N−1∑

j=0

(
αjb

2
j + αj+1b

2
j

)
+ b20 + 2 + 2β,

(1.79)

‖F1f‖2 : − 2b0 + a21 + b21 + 4 + 2β, (1.80)

‖Fjf‖2, 2 ≤ j < N : − 2bj−1 + a2j + b2j + 5 + 2β, (1.81)

‖FNf‖2 : − 2bN−1 + a2N + 4 + 2β. (1.82)

We can choose aN := 1, bN−1 := 6+2β
2 , so the term (1.82) is −1. Then, we

successively set aj :=
4b2j+1

aj+1
to fulfil (1.75) and bj−1 :=

6+2β+a2j+b
2
j

2 , b0 :=

5+2β+a21+b
2
1

2 , so the terms in (1.81), (1.80) are −1. Finally, we can choose c > 0

such that the term (1.79) is also −1 and obtain

d
dtL(f) ≤ −

N∑

j=0

‖Fjf‖2.

Using (1.41) and (1.74), this directly yields

d
dtL(f) ≤ −κ‖f − f∞‖2H ≤ − κ

c̃3
L(f).
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Using Gronwall’s inequality we obtain the exponential decay of L(f), and thus

with (1.73), (1.74),

‖f(t)− f∞‖2H ≤ 1
c̃2
L(f(t)) ≤ 1

c̃2
L(f0) exp(− κ

c̃3
t) ≤ c̃3

c̃2
‖f0 − f∞‖2H exp(− κ

c̃3
t)

for all t > 0. �

Remark: We did not keep track of the decay rate in this theorem - it is

far from optimal, as it is also in the general theorem given in [67]. In his book,

Villani remarks that in some cases, it is possible to get a better rate (that is

only “wrong” by one order of magnitude) by tailoring more specifically to the

particular form of the operators A, B. In this thesis, we get a sharp rate from

the modified entropy method (§1.3).

1.7 Extension to Nonlinear Drift terms

In this section, we investigate how the results of §1.1-§1.3 extend to nonlinear

drift coefficients F . We do not reproduce the results of the previous sections;

instead, the aim is to show some of the difficulties that arise and present an

idea for a relatively strict, but simple extension of condition (A) (see Definition

1.1). We consider the equation

ft = Lf := div(D∇f + Ff), (1.83)

f(t = 0) = f0.

We assume
∫

Rd

f0 dx = 1 and analyse solutions in L1
+(R

d). We still assume

D = diag(1, . . . , 1
︸ ︷︷ ︸

k

, 0, . . . , 0
︸ ︷︷ ︸

d−k

),

but we no longer assume that F is linear in the space variable x.

1.7.1 Existence of solutions and stationary states

To guarantee existence of stationary state and a contraction semigroup etL, we

make some assumptions on F . They take the following form:
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Definition 1.43. The operator L from (1.83) fulfils condition (B) iff F is

smooth and

(i) ∂F
∂x is uniformly positively stable, i.e. there is a µ > 0 such that for all

x ∈ R
d, the spectrum σ

(
∂F
∂x (x)

)
is contained in [µ,∞)× iR.

(ii) There exists a matrix R = −RT ∈ R
d×d constant in x such that D+R is

invertible and

(D +R)−1 ∂F

∂x
(1.84)

is symmetric for all x ∈ R
d.

These conditions are inspired by (1.1): We still want a confinement potential

(i), and (ii) ensures that there is an easily computable stationary state for 1.83.

In contrast to condition (A), condition (B) is not equivalent to existence of

stationary states and exponential decay for etL. In particular, the assumption

that the matrix R in (1.84) should be constant is very strict. In §1.7.3, we

compute two examples for coefficients F that fulfil condition (B).

Proposition 1.44. Let L fulfil condition (B). Then the following holds:

(i) There is a smooth solution V to

(D +R)∇V = F, (1.85)

which is unique up to a constant. Further,

f∞ := cV e
−V ∈ L1

+(R
d) ∩ L2(Rd),

where cV > 0 is such that
∫

Rd

f∞ dx = 1.

(ii) On the Hilbert space

H := {f ∈ L2(Rd, f−1
∞ )|∇ f

f∞
∈ L2(Rd, f∞)},

the kernel of L is spanned by f∞.

(iii) Lf = div(f∞[D +R]∇ f
f∞

).

Proof:

(i) From (B.ii), it follows that

(D +R)−1F
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is a gradient field. Differentiating (1.85) yields

∂2V

∂x2
= (D +R)−1 ∂F

∂x
=
∂F

∂x

T

(D −R)−1. (1.86)

This implies that ∂2V
∂x2 is regular and smooth, since both ∂F

∂x and D + R are.

Furthermore, ∂
2V
∂x2 is a (pointwise) solution to the continuous Lyapunov equation

(D +R)
∂2V

∂x2
+
∂2V

∂x2
(D +R)T =

∂F

∂x
+
∂F

∂x

T

.

Since D + R is regular and vT (D + R)v = vTDv ≥ 0 for all v ∈ R
d, D + R

is positively stable. Since ∂F
∂x is positively stable for any x ∈ R

d, the right

hand side is positive semidefinite; this means that ∂2V
∂x2 is positive semidefinite,

too. With the regularity of V , it follows that ∂2V
∂x2 is positive definite for any

x ∈ R
d (see [44] Theorem 2.2.3, [61] Theorem 2.2). In fact, since ∂F

∂x is uniformly

positively stable, ∂
2V
∂x2 is uniformly positive definite. It then follows that V grows

at least quadratically for |x| → ∞ and thus exp(−V ) ∈ L1
+(R

d) ∩ L2(Rd).

(ii) Inserting f∞ into L yields

div(f∞(−D∇V + F )) = f∞ [(∇V ) · (D∇V − F )− div(D∇V − F )] .

Applying (1.85), we obtain

Lf∞ = −f∞ [(∇V ) · (R∇V )− div(R∇V )] = 0.

So f∞ is in the kernel of L. Compute

div

(

f∞(D +R)∇ f

f∞

)

= div ((D +R)∇f + (D +R)∇V f) = div(D∇f + Ff).

Thus we can write

Lf = div

(

f∞(D +R)∇ f

f∞

)

.

This proves (iii). Now assume Lf = 0. It follows that for all g ∈ H,

0 = 〈Lf, g〉 = −
∫

Rd

[(D +R)∇ f

f∞
] · [∇ g

f∞
]f∞ dx.

Since D +R is regular, this implies ∇ f
f∞

= 0 and thus f = αf∞. �
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Remark: The matrix R from condition (B) is unique and can be computed

explicitly: Multiplying (1.86) by D +R from left and D −R from right yields

∂F

∂x
D − ∂F

∂x
R = D

∂F

∂x

T

+R
∂F

∂x

T

,

which can be rearranged into the continuous Lyapunov equation

∂F

∂x
R+R

∂F

∂x

T

=
∂F

∂x
D −D

∂F

∂x

T

(1.87)

for the unknown matrix R. Point (ii) of condition (B) implies that (1.87) has a

unique solution, since ∂F
∂x is positively stable for any x ∈ R

d. This solution can

be written as

R =

∞∫

τ=0

exp(−τ ∂F
∂x

)(
∂F

∂x
D −D

∂F

∂x

T

) exp(−τ ∂F
∂x

T

) dτ,

which immediately confirms that R will be skew-symmetric. The restriction of

condition (B) is that R should be independent of x; examples are given at the

end of this section.

We also remark that a split such as in Proposition 1.44.(iii) is to be expected

for (1.83) if there is a unique normalised stationary state:

Lemma 1.45. Let f∞ be the unique normalised steady state of L from (1.83),

with

∀x ∈ R
d : f∞(x) > 0.

Then there exists R = R(x) ∈ R
d×d such that R(x) = −R(x)T and

Lf = div[f∞[D +R(x)]∇ f

f∞
] (1.88)

in L2(Rd, f−1
∞ ).

Proof: Since f∞ is strictly positive, we write f∞(x) = exp(−A(x)). We

compute, writing R̃(x) := f∞R(x),

div[f∞[D +R(x)]∇ f

f∞
] = div[D(∇f + f∇A)] + div[R̃(x)∇ f

f∞
]

= div[D(∇f + f∇A)] + (div R̃(x)) · ∇ f

f∞
], (1.89)

where we have used Tr(R̃(x) ∂
2

∂x2
f
f∞

) = 0 due to the antisymmetry of R̃. We
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know that

Lf∞ = div[(F −D∇A)f∞] = 0. (1.90)

This implies

div[(F −D∇A)f ] = div[(F −D∇A)f∞
f

f∞
) = (∇ f

f∞
) · (F −D∇A)f∞.

(1.91)

Writing

Lf = div[D(∇f + f∇A) + (F −D∇A)f ] = div[f∞D∇ f

f∞
] + div[(F −D∇A)f ],

we conclude that (1.88) holds if

div[(F −D∇A)f ] = div[f∞R∇
f

f∞
].

With (1.89), (1.91), this can be written as

(∇ f

f∞
) · (F −D∇A)f∞ = (div R̃(x)) · ∇ f

f∞
,

which is equivalent to

div(R̃(x)) = (F −D∇A)f∞.

This can always be solved: The right-hand side has divergence 0 due to (1.90),

and for the left-hand side we obtain

div(div(R̃(x))) =

d∑

i,j=1

∂i∂j r̃ij = 0

due to the antisymmetry of R̃. �

Proposition 1.46. Assume condition (B). Then L generates a contraction

semigroup on L2.

Proof: We compute

〈Lf, f〉 =
∫

Rd

div

(

f∞(D +R)∇ f

f∞

)
f

f∞
dx = −

∫

Rd

(∇ f

f∞
)TD∇ f

f∞
f∞ dx ≤ 0.

Thus, L is a dissipative operator on L2. The adjoint L∗ of L is easily computed
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as

L∗f = div

(

f∞(D −R)∇ f

f∞

)

.

It then follows that L∗ is dissipative, as well, and thus L generates a contraction

semigroup (see e.g. Corollary 3.17 in §II of [32]). �

Corollary 1.47. Let 0 ≤ f0 ∈ L2, ‖f0‖L1(Rd) = 1. Then the solution f of

(1.83) is in L1 and fulfils

∀t ≥ 0 : f(t) ≥ 0, ‖f(t)‖L1(Rd) = 1.

Proof: f(t) ≥ 0 holds due to the weak maximum principle for degenerate

parabolic equations.

We compute

‖f(t)‖L1(Rd) =

∫

Rd

f(t) dx =

∫

Rd

f(t)f
− 1

2∞ f
1
2∞ dx

≤





∫

Rd

|f(t)|2f−1
∞ dx





1
2




∫

Rd

f∞ dx





1
2

= ‖f(t)‖L2 .

This shows L2 →֒ L1, so f(t) ∈ L1 for all t ≥ 0. The norm preservation then

follows from the divergence form of L. �

1.7.2 Entropy method

In the case of a linear drift coefficient F , we considered the modified entropy

functional

S(f) :=

∫

Rd

ψ′′(
f

f∞
)uTPuf∞ dx (1.92)

where 0 < P ∈ R
d is carefully chosen such that inequality (1.25) holds:

QP + PQT ≥ µP.

There, Q is computed from the stationary state as Q := (D − R)∂
2V
∂x2 . In the

case of non-linear drift, the computations leading to Proposition 1.25 can all be

repeated (under regularity assumptions on the solution). However, the potential

V will not be quadratic, and thus Q is no longer a constant matrix. The linear
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method can still be used for a perturbation result:

Proposition 1.48. Let f be a solution to (1.83) under condition (B). Let

∂F

∂x
= C0 + Cr(x), (1.93)

where C0 ∈ R
d is positively stable with µ := min{ℜλj |λj ∈ σ(C0)} > 0. Further,

assume that for the matrix P from Lemma 1.19 corresponding to C0, it holds

that

∀x ∈ R
d : Qr(x)P + PQr(x)

T ≥ −νP (1.94)

for some ν ∈ [0, µ). Then the modified entropy production corresponding to P

(see (1.24)) fulfils

∀t ≥ 0 : S(t) ≤ S(0) exp((ν − µ)t).

Proof: From (1.93), (1.86) we obtain

Q = (D −R)
∂2V

∂x2
= (D −R)

∂F

∂x

T

(D −R)−1

= (D −R)C0(D −R)−1

︸ ︷︷ ︸

=:Q0

+(D −R)Cr(x)(D −R)−1

︸ ︷︷ ︸

:=Qr(x)

.

Hence, Q0 is similar to C0 and therefore also positively stable. We can apply

Lemma 1.19 and obtain a symmetric P > 0 such that

Q0P + PQT0 ≥ µP.

Since we assumed

Qr(x)P + PQr(x)
T ≥ −νP,

it follows that

QP + PQT ≥ (µ− ν)P,

and decay of S with rate µ− ν follows as in Proposition 1.25. �

The rate obtained by the perturbation result is not going to be sharp. Also, it

only covers cases where the growth of ∂F∂x – and thus of V – is at most quadratic.

As we will see in the examples of the next subsection, for faster-growing poten-

tials it is in general impossible to obtain inequalities using a constant matrix
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P . The next logical step would be to use a non-constant matrix P in S. In

the following Proposition, we compute the time-derivative of the resulting mod-

ified entropy dissipation. While this result leads to a decay estimate in the form

A(P ) ≥ µP , it is only of theoretical value without an example that this estimate

can actually work.

Proposition 1.49. Let condition (B) hold. Let f be a solution to (1.83) such

that f(t) > 0 for all t ≥ 0, and let

P : Rd → R
d×d

be a smooth function such that P (·) ≥ p0 Id uniformly. Then the modified

entropy dissipation

S(t) :=

∫

Rd

ψ′′(
f

f∞
)uTPuf∞ dx

fulfils

− d

dt
S(f(t)|f∞) ≥ −

∫

Rd

ψ′′( f
f∞

)uTA(P )uf∞ dx,

where

A(P ) = (D −R)
∂2V

∂x2
P + P

∂2V

∂x2
(D +R)− [∇V (D −R)∇]P + [∇T (D −R)∇]P.

Proof: Define u := ∇ f
f∞

, then we have

Lf = div((D +R)uf∞) = [(Dlk +Rlk)ukf∞],l

= Dlkuk,lf∞ − (Dlk +Rlk)ukV,lf∞,

and thus, using uk,lj = uj,lk,

uj,t = (
ft
f∞

),j = (
Lf

f∞
),j

= [Dlkuk,l − (Dlk +Rlk)ukV,l],j

= Dlkuj,lk − (Dlk +Rlk)uk,jV,l − (Dlk +Rlk)ukV,lj .

We compute

Zψ(f(t)) :=
d
dtSψ(f(t))
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= 2

∫

Rd

ψ′′( f
f∞

)(ut)
TPuf∞ dx

︸ ︷︷ ︸

=:(I)

+

∫

Rd

ψ′′′( f
f∞

)uTPuft dx

︸ ︷︷ ︸

=:(II)

,

where we have used the symmetry of P . We have

(I) = 2

∫

Rd

ψ′′( f
f∞

)(ut)
TPuf∞ dx

= 2

∫

Rd

ψ′′( f
f∞

)Dlkuj,lkPjrurf∞ dx− 2

∫

Rd

ψ′′(
f

f∞
)(Dlk +Rlk)uk,jV,lPjrurf∞ dx

− 2

∫

Rd

ψ′′(
f

f∞
)(Dlk +Rlk)ukV,ljPjrurf∞ dx.

For the first term, compute

2

∫

Rd

ψ′′( f
f∞

)Dlkuj,klPjrurf∞ dx

= −2

∫

Rd

Dlkuj,k(ψ
′′( f
f∞

)Pjrurf∞),l dx

= −2

∫

Rd

ψ′′′( f
f∞

)Dlkuj,kulPjrurf∞ dx− 2

∫

Rd

ψ′′( f
f∞

)Dlkuj,kPjrur,lf∞ dx

+ 2

∫

Rd

ψ′′( f
f∞

)Dlkuj,kV,lPjrurf∞ dx− 2

∫

Rd

ψ′′(
f

f∞
)Dlkuj,kPjr,lurf∞ dx.

This implies, again using uj,k = uk,j

(I) = −2

∫

Rd

ψ′′′( f
f∞

)Dlkuj,kulPjrurf∞ dx− 2

∫

Rd

ψ′′( f
f∞

)Dlkuj,kPjrur,lf∞ dx

+ 2

∫

Rd

ψ′′( f
f∞

)Dlkuj,kV,lPjrurf∞ dx− 2

∫

Rd

ψ′′(
f

f∞
)Dlkuj,kPjr,lurf∞ dx

− 2

∫

Rd

ψ′′(
f

f∞
)(Dlk +Rlk)uk,jV,lPjrurf∞ dx

− 2

∫

Rd

ψ′′(
f

f∞
)(Dlk +Rlk)ukV,ljPjrurf∞ dx

= −2

∫

Rd

ψ′′′( f
f∞

)Dlkuj,kulPjrurf∞ dx− 2

∫

Rd

ψ′′( f
f∞

)Dlkuj,kPjrur,lf∞ dx
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− 2

∫

Rd

ψ′′(
f

f∞
)Dlkuj,kPjr,lurf∞ dx− 2

∫

Rd

ψ′′(
f

f∞
)Rlkuk,jV,lPjrurf∞ dx

− 2

∫

Rd

ψ′′(
f

f∞
)(Dlk +Rlk)ukV,ljPjrurf∞ dx.

Next, we investigate the term

−
∫

Rd

ψ′′( f
f∞

)V,lRlkuj,kPjrurf∞ dx

=

∫

Rd

uj(RlkPjrV,lurf∞ψ
′′( f
f∞

)),k dx

=

∫

Rd

ψ′′(
f

f∞
)ujPjr,kV,lurf∞ dx+

∫

Rd

ψ′′( f
f∞

)RlkV,lkujPjrurf∞ dx

+

∫

Rd

ψ′′( f
f∞

)V,lRlkur,kPjrujf∞ dx−
∫

Rd

ψ′′( f
f∞

)V,lRlkV,kujPjrurf∞ dx

+

∫

Rd

ψ′′′( f
f∞

)V,lRlkukujPjrurf∞ dx

=

∫

Rd

ψ′′(
f

f∞
)ujPjr,kRlkV,lurf∞ dx+

∫

Rd

ψ′′( f
f∞

)V,lRlkur,kPjrujf∞ dx

+

∫

Rd

ψ′′′( f
f∞

)V,lRlkukujPjrurf∞ dx.

Here we have used the skew-symmetry of R to conclude RlkV,lk = V,lRlkV,k = 0.

We obtain

− 2

∫

Rd

ψ′′( f
f∞

)V,lRlkuj,kPjrurf∞ dx

=

∫

Rd

ψ′′′( f
f∞

)V,lRlkukujPjrurf∞ dx+

∫

Rd

ψ′′(
f

f∞
)ujPjr,kRlkV,lurf∞ dx.

So we arrive at

(I) = −2

∫

Rd

ψ′′′( f
f∞

)Dlkuj,kulPjrurf∞ dx− 2

∫

Rd

ψ′′( f
f∞

)Dlkuj,kPjrur,lf∞ dx

− 2

∫

Rd

ψ′′(
f

f∞
)Dlkuj,kPjr,lurf∞ dx

− 2

∫

Rd

ψ′′(
f

f∞
)(Dlk +Rlk)ukV,ljPjrurf∞ dx
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+

∫

Rd

ψ′′′( f
f∞

)V,lRlkukujPjrurf∞ dx+

∫

Rd

ψ′′(
f

f∞
)ujPjr,kRlkV,lurf∞ dx.

(1.95)

Next, we compute

(II) =

∫

Rd

ψ′′′( f
f∞

)urPrjujLf dx

=

∫

Rd

ψ′′′( f
f∞

)urPrjuj(Dlk +Rlk)uk,lf∞ dx

−
∫

Rd

ψ′′′( f
f∞

)urPrjujV,l(Dlk +Rlk)ukf∞ dx.

Take a closer look at

∫

Rd

ψ′′′( f
f∞

)urPrjuj(Dlk +Rlk)uk,lf∞ dx

=

∫

Rd

ψ′′′( f
f∞

)urPrjujDlkuk,lf∞ dx

= −
∫

Rd

ukDlk(Prjurujf∞ψ
′′′( f

f∞
)),l dx

= −
∫

Rd

ψ′′′( f
f∞

)ukDlkur,lPrjujf∞ dx−
∫

Rd

ψ′′′( f
f∞

)ukDlkuj,lPrjurf∞ dx

−
∫

Rd

ψIV ( f
f∞

)ukDlkulurPrjujf∞ dx+

∫

Rd

ψ′′′( f
f∞

)ukDlkV,lurPrjujf∞ dx

−
∫

Rd

ψ′′′(
f

f∞
)ukDlkPrj,lurujf∞ dx,

and it follows that

(II) = −
∫

Rd

ψ′′′( f
f∞

)ukDlkur,lPrjujf∞ dx−
∫

Rd

ψ′′′( f
f∞

)ukDlkuj,lPrjurf∞ dx

−
∫

Rd

ψIV ( f
f∞

)ukDlkulurPrjujf∞ dx+

∫

Rd

ψ′′′( f
f∞

)ukDlkV,lurPrjujf∞ dx

−
∫

Rd

ψ′′′(
f

f∞
)ukDlkPrj,lurujf∞ dx

−
∫

Rd

ψ′′′( f
f∞

)urPrjujV,l(Dlk +Rlk)ukf∞ dx
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= −2

∫

Rd

ψ′′′( f
f∞

)ukDlkur,lPrjujf∞ dx−
∫

Rd

ψIV ( f
f∞

)ukDlkulurPrjujf∞ dx

−
∫

Rd

ψ′′′( f
f∞

)urPrjujV,lRlkukf∞ dx−
∫

Rd

ψ′′′(
f

f∞
)ukDlkPrj,lurujf∞ dx.

(1.96)

Combining (1.95) and (1.96), we obtain

Zψ(f(t)) = −2

∫

Rd

ψ′′′( f
f∞

)Dlkuj,kulPjrurf∞ dx

− 2

∫

Rd

ψ′′( f
f∞

)Dlkuj,kPjrur,lf∞ dx− 2

∫

Rd

ψ′′(
f

f∞
)Dlkuj,kPjr,lurf∞ dx

− 2

∫

Rd

ψ′′(
f

f∞
)(Dlk +Rlk)ukV,ljPjrurf∞ dx

+

∫

Rd

ψ′′′( f
f∞

)V,lRlkukujPjrurf∞ dx+

∫

Rd

ψ′′(
f

f∞
)ujPjr,kRlkV,lurf∞ dx

− 2

∫

Rd

ψ′′′( f
f∞

)ukDlkur,lPrjujf∞ dx−
∫

Rd

ψIV ( f
f∞

)ukDlkulurPrjujf∞ dx

−
∫

Rd

ψ′′′( f
f∞

)urPrjujV,lRlkukf∞ dx−
∫

Rd

ψ′′′(
f

f∞
)ukDlkPrj,lurujf∞ dx

= −4

∫

Rd

ψ′′′( f
f∞

)ulDlkuj,kPjrurf∞ dx− 2

∫

Rd

ψ′′( f
f∞

)Dlkuj,kPjrur,lf∞ dx

− 2

∫

Rd

ψ′′(
f

f∞
)Dlkuj,kPjr,lurf∞ dx− 2

∫

Rd

ψ′′(
f

f∞
)(Dlk +Rlk)ukV,ljPjrurf∞ dx

+

∫

Rd

ψ′′(
f

f∞
)ujPjr,kRlkV,lurf∞ dx−

∫

Rd

ψIV ( f
f∞

)ukDlkulurPrjujf∞ dx

−
∫

Rd

ψ′′′(
f

f∞
)ukDlkPrj,lurujf∞ dx.

We compute

∫

Rd

ψ′′(
f

f∞
)Dlkuj,kPjr,lurf∞ dx

= −
∫

Rd

(

ψ′′(
f

f∞
)Pjr,lurf∞

)

,k

Dlkuj dx

= −
∫

Rd

ψ′′′(
f

f∞
)Pjr,lukDlkurujf∞ dx−

∫

Rd

ψ′′(
f

f∞
)Pjr,lkurDlkujf∞ dx
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−
∫

Rd

ψ′′(
f

f∞
)Pjr,lur,kDlkujf∞ dx+

∫

Rd

ψ′′(
f

f∞
)Pjr,lurV,kf∞Dlkuj dx.

Since P = PT , this implies

− 2

∫

Rd

ψ′′(
f

f∞
)Dlkuj,kPjr,lurf∞ dx

=

∫

Rd

ψ′′(
f

f∞
)urDlkPjr,lkujf∞ dx+

∫

Rd

ψ′′′(
f

f∞
)Pjr,lukDlkurujf∞ dx

−
∫

Rd

ψ′′(
f

f∞
)Pjr,lurV,kf∞Dlkuj dx,

and thus

Zψ(f(t)) = −4

∫

Rd

ψ′′′( f
f∞

)ulDlkuj,kPjrurf∞ dx

− 2

∫

Rd

ψ′′( f
f∞

)Dlkuj,kPjrur,lf∞ dx

+

∫

Rd

ψ′′(
f

f∞
)urDlkPjr,lkujf∞ dx+

∫

Rd

ψ′′′(
f

f∞
)Pjr,lukDlkurujf∞ dx

−
∫

Rd

ψ′′(
f

f∞
)Pjr,lurV,kf∞Dlkuj dx

− 2

∫

Rd

ψ′′(
f

f∞
)(Dlk +Rlk)ukV,ljPjrurf∞ dx

+

∫

Rd

ψ′′(
f

f∞
)ujPjr,kRlkV,lurf∞ dx−

∫

Rd

ψIV ( f
f∞

)ukDlkulurPrjujf∞ dx

−
∫

Rd

ψ′′′(
f

f∞
)ukDlkPrj,lurujf∞ dx

= −4

∫

Rd

ψ′′′( f
f∞

)ulDlkuj,kPjrurf∞ dx− 2

∫

Rd

ψ′′( f
f∞

)Dlkuj,kPjrur,lf∞ dx

+

∫

Rd

ψ′′(
f

f∞
)urDlkPjr,lkujf∞ dx

−
∫

Rd

ψ′′(
f

f∞
)Pjr,kurV,lf∞(Dlk −Rlk)uj dx

− 2

∫

Rd

ψ′′(
f

f∞
)(Dlk +Rlk)ukV,ljPjrurf∞ dx
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−
∫

Rd

ψIV ( f
f∞

)ukDlkulurPrjujf∞ dx

= −2

∫

Rd

Tr(XY )f∞ dx−
∫

Rd

ψ′′(
f

f∞
)Pjr,kurV,lf∞(Dlk −Rlk)uj dx

+

∫

Rd

ψ′′(
f

f∞
)urDlkPjr,lkujf∞ dx

− 2

∫

Rd

ψ′′(
f

f∞
)(Dlk +Rlk)ukV,ljPjrurf∞ dx.

Here, the matrices X, Y are given as (cf. Lemma 2.13 in [6])

X =

(

ψ′′( f
f∞

) ψ′′′( f
f∞

)

ψ′′′( f
f∞

) 1
2ψ

IV ( f
f∞

)

)

, Y =

(

Tr(D ∂u
∂xP

∂u
∂x ) uTD ∂u

∂xPu

uTD ∂u
∂xPu (uTPu)(uTDu)

)

.

Due to the assumptions on ψ (cf. Definition 1.17), X ≥ 0. To see Y ≥ 0, we use

the Cauchy-Schwarz inequality for the Hilbert-Schmidt norm and the symmetry

of D, P to obtain

(uTD
∂u

∂x
Pu)2 = Tr

(√
PuuT

√
D ·

√
D
∂u

∂x

√
P

)2

≤ Tr
(√

PuuT
√
D
√
DuuT

√
P
)

Tr

(√
D
∂u

∂x

√
P
√
P
∂u

∂x

√
D

)

= [uTDu][uTPu]Tr

(

D
∂u

∂x
P
∂u

∂x

)

.

This implies Tr(XY ) ≥ 0, and thus

Zψ(f(t)) ≤
∫

Rd

ψ′′(
f

f∞
)urDlkPjr,lkujf∞ dx

−
∫

Rd

ψ′′(
f

f∞
)Pjr,kurV,lf∞(Dlk −Rlk)uj dx

− 2

∫

Rd

ψ′′(
f

f∞
)(Dlk +Rlk)ukV,ljPjrurf∞ dx

= −
∫

Rd

ψ′′( f
f∞

)uT (D −R)
∂2V

∂x2
Puf∞ dx

−
∫

Rd

ψ′′( f
f∞

)uTP
∂2V

∂x2
(D +R)uf∞ dx

−
∫

Rd

ψ′′(
f

f∞
)uT ([∇V (D −R)∇]P )uf∞ dx (1.97)
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+

∫

Rd

ψ′′(
f

f∞
)uT ([∇T (D −R)∇]P )uf∞ dx.

�

1.7.3 Examples

As a last part of this subsection, we give two simple prototype examples that

fulfil condition (B).

Definition 1.50. Let

v, w, a, b ∈ C∞(R).

We define the drift coefficients

F1(x) :=

(

v′(x1) + w′(x2)

−v′(x1)

)

, (1.98)

F2(x) :=

(

βa′(βx1 + x2) + b′(x1 + βx2)

a′(βx1 + x2) + βb′(x1 + βx2)

)

. (1.99)

Further, let

D :=

(

1 0

0 0

)

.

Then we define the two Fokker-Planck type operators

Lj := div(D∇f + Fjf), j = 1, 2. (1.100)

First, we investigate condition (B) for both cases:

Lemma 1.51. Condition (B) holds for L1, L2 iff a, b, v, w are strictly convex.

Proof: We compute, leaving out the arguments for sake of readability

∂F1

∂x
=

(

v′′ w′′

−v′′ 0

)

,

∂F2

∂x
=

(

β2a′′ + b′′ β(a′′ + b′′)

β(a′′ + b′′) a′′ + β2b′′

)

.
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It follows that, at any given x ∈ R
2, the eigenvalues of ∂F1

∂x are

λ1,1/2 =
1

2

(

v′′ ±
√

v′′(v′′ − 4w′′)
)

.

For positive stability, it is thus necessary that v′′ > 0 and w′′ > 0 for all x,

which means that v, w are convex. Since ∂F2

∂x is symmetric, positive stability

simply means that the matrix is positive definite. That requires by the principal

minor criterion

0 < β2a′′ + b′′, 0 < (1− β2)2a′′b′′.

Again we conclude a′′, b′′ > 0, as well as β2 6= 1. If these conditions are fulfilled,

it follows immediately that both matrices don’t leave the subspace {0} × R

invariant.

It remains to find the skew-symmetric, constant matrix R that fulfils (1.84).

The subspace of skew-symmetric matrices in R
2×2 is one-dimensional, and thus

R = α

(

0 −1

1 0

)

for some α ∈ R. It follows that D +R is invertible iff α 6= 0, and

(D +R)−1 =
1

|α|2

(

0 α

−α 1

)

.

Using this, we compute

(D +R)−1 ∂F1

∂x
=

1

|α|2

(

−αv′′ 0

−αv′′ − v′′ −αw′′

)

,

(D +R)−1 ∂F2

∂x
=

1

|α|2

(

αβ(a′′ + b′′) α(a′′ + β2b′′)

β(a′′ + b′′)− α(β2a′′ + b′′) a′′ + β2b′′ − αβ(a′′ + b′′)

)

.

So (D+R)−1 ∂F1

∂x is symmetric iff α = α1 := −1. In the second case, we get the

condition

α(a′′ + β2b′′) = β(a′′ + b′′)− α(β2a′′ + b′′),

which is equivalent to

(α− β + αβ2)(a′′ + b′′) = 0.
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We thus need

α =
β

1 + β2
,

since a′′, b′′ > 0. This excludes β = 0 (else α = 0 and D+R is not invertible). �

We can now compute the kernel of L1, L2 as in Proposition 1.44.

Lemma 1.52. Let

f1(x) := exp(−v(x1) + w(x2)

2
), f2(x) := exp(−a+ β2b

1 + β2
). (1.101)

Then f1 spans the kernel of L1, and f2 the kernel of L2.

Proof: In the proof of Lemma 1.51, we have already computed the skew-

symmetric matrices

R1 =

(

0 1

−1 0

)

,

R2 =
β

1 + β2

(

0 −1

1 0

)

for which (D +Rj)
−1 ∂Fj

∂x is symmetric. From there, one obtains the equations

∇V1 = (D +R1)
−1F1 =

(

v′(x1)

w′(x2)

)

,

∇V2 = (D +R2)
−1F2 =

1

1 + β2

(

βa′(βx1 + x2) + β2b′(x1 + βx2)

a′(βx1 + x2) + β3b′(x1 + βx2)

)

.

This implies

V1 = v(x1) + w(x2) + c1,

V2 =
a(βx1 + x2) + β2b(x1 + βx2)

1 + β2
+ c2.

with constants c1, c2 determined by the normalisation. �

A straight-forward computation now yields the matrices

Qj := (D −Rj)
∂Fj
∂x

T

(D −Rj)
−1

that appear in §1.3.1, (1.25).
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Lemma 1.53. It is

Q1 =

(

v′′ −w′′

v′′ 0

)

, (1.102)

Q2 =

(

β2(a′′ + 2b′′) + 2a′′ + b′′ 1
β [2β

4b′′ + β2(a′′ + b′′) + 2a′′]

−β(a′′ + b′′) −a′′ − β2b′′

)

. (1.103)

As a last result, we show that a constant matrix P for the modified entropy

dissipation will in general not suffice:

Corollary 1.54. Let v, w grow faster than quadratic as |x| → ∞. Then for

any positive definite, symmetric P ∈ R
2×2, there is xP ∈ R

d such that

Q1(xP )P + PQT1 (xP )

is indefinite.

Proof: We set

P :=

(

p1 pn

pn p2

)

∈ C
d×d

constant, where p1, p2 > 0, p2n < p1p2. This yields

Q1P + PQT1 =

(

2p1v
′′(x1)− 2pnw

′′(x2) (p1 + pn)v
′′(x1)− p2w

′′(x2)

(p1 + pn)v
′′(x1)− p2w

′′(x2) 2pnv
′′(x1)

)

.

For this matrix to be positive definite, we need 2pnv
′′(x1) > 0 and thus pn > 0.

But then it follows that, since v′′(x1) and w′′(x2) are not bounded, the first

entry will not have a sign independent of x. �

1.8 Conclusion, open questions

For linear Fokker-Planck type equations (2),

∂tf = Lf = div(D∇f + Cxf),

we established a characterisation of the hypoellipticity and hypocoercivity of L

in terms of C and D (see condition (A), Definition 1.1). Condition (A) also

turned out to be equivalent to L possessing a unique normalised ground state

f∞ = cK exp(−x
TK−1x

2
),
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where the covariance matrix K is computed from

2D = CK +KCT .

We have extended the entropy method to deal with a singular D. As seen

in Theorem 1.27, one can still obtain sharp decay rates in general admissible

entropies, at the price of a constant c > 1 on the right hand side of the estimate

eψ(f(t)|f∞) ≤ ceψ(f0|f∞) exp(−2µt).

Our method does not guarantee that c is optimal. In fact, it is almost certainly

not (the optimal c in §1.5, Example 3 is only valid for ψ-compatible initial data).

So there is space for improvement with the constant c in Theorem 1.27.

The Bakry-Émery-analogon for the degenerate parabolic case turned out to be

the matrix inequality (1.25):

QP + PQT ≥ 2µP,

where Q = KCTK−1 is computed from the stationary state and the drift coef-

ficient C.

As seen in §1.7, this structure does not easily translate to the case where the

drift coefficients are not linear, and further research in this direction is required

to extend it. A first step would be to consider the commonly found kinetic case

R
d = R

d
2
x × R

d
2
v , d ∈ 2N, and

f∞(x, v) = c∞ exp(−|v|2
2

− V (x)),

where V is not quadratic in x and fulfils the condition

‖∂
2V

∂x2
‖ ≤ c(1 + ‖∇V ‖)

for some c > 0 (see [10], [67]). Here, as seen in Corollary 1.54, one cannot use a

constant matrix P for the modified entropy dissipation S ((1.24), Lemma 1.19).

We remark that it is entirely possible to apply these results to the case k = d.

In this case, there is already an established decay rate from the entropy method

for symmetric operators (see e.g. §2.4 of [6]; [3]). As it turns out, the rate

computed in this thesis is different and in general better. In fact, the two rates

describe different phenomena: The rate λ1 from the symmetric method gives a

“local” decay rate, applicable at any point t and with the estimate

e(t) ≤ e(0) exp(−2λ1t).
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In contrast, the rate µ established in this chapter is a “global” rate, best un-

derstood as the average rate of decay around which the actual rate oscillates.

It holds true for estimates

e(t) ≤ c exp(−2µt),

where c > e(0). Both rates help characterise the behaviour of solutions. In the

case k < d, the “local” rate λ1 is zero and thus not generally considered (of

course this in itself is an interesting behaviour, see also Corollary 1.31). This

difference between “local” and “global” rate is discussed in more depth in the

paper version [33].



Chapter 2

Discrete open quantum

systems

2.1 Outline

This chapter presents some work of the author on an entropy method for finite

dimensional open quantum systems in Lindblad form. The equations are given

as

ρt = Dρ := i[H, ρ] +
∑

k

[Lkρ, L
†
k] + [Lk, ρL

†
k], (2.1)

ρ(t = 0) = ρ0 ∈ C
d×d.

Here [·, ·] denotes the commutator of two matrices. The term

∑

k

[Lkρ, L
†
k] + [Lk, ρL

†
k]

is called the Lindblad part of D. We look for solutions in the space of density

matrices, which in finite dimension are matrices ρ ∈ C
d×d which are hermitian,

positive semidefinite and have trace 1. The operator D from (2.1) generates a

semigroup of completely positive, trace-preserving maps called a quantum dy-

namical semigroup. In fact, it is the general form for a generator of quantum

dynamical semigroups, as has been established in [49] (for bounded genera-

tors), [35] (for finite dimensional systems).

The aim of the presented research was to establish a-priori estimates on the

rate of convergence to the equilibrium via study of the relative entropy. As

a first step, we show that equation (2.1) can be rewritten to closely resemble

101
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the Fokker–Planck equation from Chapter 1, both for k = d and k < d. How-

ever, while this approach looks quite promising, it fails at two major obstacles:

First, the non-commutativity of the underlying space Cd×d, and second, the fact

that D has no simple decomposition such as L in §1.2.2. As such, this chap-

ter gives an overview of the idea and a collection of some results, as well as a

discussion of the problems facing an entropy method for open quantum systems.

A recent review on the origins and motivation of (2.1) can be found in [1],

while [58] provides a good compact introduction. For a more in-depth discussion

of open quantum systems, we refer to the books by Breuer and Petruccione [18]

as well as Attal, Joye and Pillet [7]- [9]. A general discussion of quantum dy-

namical semigroups can be found in the book by Alicki and Lendi [2].

General interest in systems of the form (2.1) has resurged with the emergence

of quantum engineering; one of the main problems with this idea is decoherence -

that is, a move to a diagonal density matrix due to observation of the system by

its environment. This phenomenon is unique to open systems. Mathematically,

it is due to the influence of the Lindblad term in (2.1). For a good overview,

we refer to [69]. Decoherence need not, however, be detrimental in nature - see

e.g. [66], where it is shown that such behaviour can also drive the system in a

desired direction.

A comprehensive study regarding stationary states and long term behaviour

of (2.1) has been given in [11], [12]. The relative entropy of open quantum

systems has been studied since their emergence, notably in [48], [47], [63] and

[64]. Back then, the entropy method did not exist, and the results focus on the

convexity of the entropy, not on Gronwall inequalities between first and second

time derivative of the relative entropy of solutions with respect to the stationary

state. In the classic case, there is a well-understood connection between convex

Sobolev inequalities, hypercontractivity and the decay of relative entropies (see

the Introduction). In the non-commutative case, hypercontractivity and convex

Sobolev inequalities have been studied before (see for example [54]). However,

there has only very recently been progress towards a connection of logarithmic

Sobolev inequalities and decay of relative entropies, see [22] and [19].

2.2 Existence of solutions and stationary states

In this section, we discuss the existence of solutions and stationary states. Since

the operator D generates a quantum dynamical semigroup, we always have a

smooth solution which has some fundamental properties:
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Lemma 2.1. Let 0 ≤ ρ0 ∈ C
d×d be hermitian with Tr(ρ0) = 1. Then there

exists a unique solution ρ ∈ C([0,∞),Cd×d) ∩ C∞((0,∞),Cd×d) to (2.1) with

the properties

(i) ρ(t) ≥ 0 is hermitian.

(ii) Tr(ρ(t)) = 1, t ≥ 0.

Proof: This is a consequence of the fact that the operator D from (2.1)

generates a quantum dynamical semigroup, that is a semigroup which is com-

pletely positive - implying (i) - and trace preserving (ii). We remark that for our

problem, requiring positivity instead of complete positivity would be sufficient.

For details we refer to [35], [49]. �

With the existence of solutions established, we turn towards the question of

stationary states:

Lemma 2.2. The kernel of the operator D from (2.1) has at least dimension 1.

Proof: See proposition 5 of [12]. �

Lemma 2.2 implies that the discussion of stationary states need only focus

on uniqueness, not on existence of stationary states. In general, the kernel of

D can be quite large. It also turns out that the stationary state ρ∞ is not

necessarily invertible; as a simple example consider the case d = 2, H = 0,

L =

(

0 1

0 0

)

.

Then the unique normalised stationary state is ρ∞ = diag(1, 0). We give a

result on convergence to non-invertible stationary states:

Proposition 2.3. Let D from (2.1) be given as

Dρ =
1

2
([Lρ,L†] + [L, ρL†]),

where L ∈ C
d×d is such that

(1) LL†L = αL for some 0 < α ∈ R,

(2) Lk = 0, Lk−1 6= 0 for some k > 1.

Then it holds that

(i) The kernel of D is spanned by the density matrices η with Lη = 0. If k = d,

then there is a unique normalised stationary state ρ∞ = (Id−cL†L) with

c ∈ R such that Tr(ρ∞) = 1.
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(ii) For any hermitian 0 ≤ ρ0 ∈ C
d×d, let ρ be the solution to ρ̇ = Dρ,

ρ(t = 0) = ρ0. Then the projection of ρ onto the orthogonal complement

of the kernel of D (in the standard Hilbert-Schmidt space Cd×d) decays to

0 exponentially with rate at least α− ε for any ε ∈ (0, α).

Proof: (i): This is a reformulation of a result from [11]. Let η be a density

matrix such that Dη = 0. It follows that

0 = Lk−1Dη(L†)k−1 = Lk−1[LηL† − 1

2
(L†Lη + ηL†L)](L†)k−1

=

[

Lkη(L†)k − 1

2
(Lk−1L†Lη(L†)k−1 + Lk−1ηL†L(L†)k−1)

]

= −αLk−1η(L†)k−1. (2.2)

Thus, Lk−1η(L†)k−1 = 0, and from (2) we have Ld−1 6= 0. We can now compute

LjDηLj iteratively for j = k−2, k−3, . . . , 1 and obtain, as in (2.2), Ljη(L†)j = 0

for j ≥ 1. η has a hermitian square root 0 ≤ ν ∈ C
d×d, η = ν†ν. Then we have

Ljη(L†)j = [Ljν†][Ljν†]† = 0,

which implies Ljν† = 0 and thus Ljη = 0 for all j ≥ 1, which proves the first

part of (i). If k = d, (2) implies that there is v ∈ R
d such that the vj := Ljv

are linearly independent - or, in other words, the kernel of L is one dimensional.

But then Lη = 0 implies that the image of η is in the kernel of L, and trace

normalisation yields that η is the projector onto the kernel of L:

η = PkerL =
Id− 1

αL
†L

Tr(Id− 1
αL

†L)
.

(ii): Let ρ be a density matrix. From (i), we know that L†LρL†L is the projec-

tion of ρ onto the orthogonal complement of the kernel of D. We consider the

Hilbert-Schmidt norm of this projection, which with (1) is

E(ρ) := Tr(LρL†LρL†).

We compute.

0 ≤ Tr([εA− 1

ε
B]†[εA− 1

ε
B]) = ε2Tr(A†A)− Tr(A†B +B†A) +

1

ε2
Tr(B†B),

which implies the inequality

Tr(A†B +AB†) ≤ ε2Tr(A†A) +
1

ε2
Tr(B†B). (2.3)
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Using (2.3) and (1), we obtain

d
dtE(ρ) = 2Tr(LDρL†LρL†)

= 2Tr(L2ρ(L†)2LρL†)− 2Tr(L†LL†LρL†Lρ)

= 2Tr(L2ρ(L†)2LρL†)− 2αE(ρ)

≤ −2(α− ε)E(ρ) +
2

ε
Tr(L2ρ(L†)2L2ρ(L†)2)

If k = 2, L2 = 0 and we are done. If k > 2, let

Fj(ρ) := Tr(Ljρ(L†)jLjρ(L†)j) ≥ 0.

We compute

d
dtFk = 2Tr(Lj+1ρ(L†)j+1Ljρ(L†)j)− 2αFk

≤ −2(α− ε

2
)Fj +

4
εFj+1.

From (2), we have Fj = 0 for j ≥ k. Now let

F (ρ) := E(ρ) +

k−1∑

j=2

CjFj ≥ E(ρ)

with some constants Cj > 0 to be specified. Then

d
dtF (ρ) ≤ −2(α− ε)E(ρ) +

k−1∑

j=2

([

−2Cj(α− ε

2
) +

4Cj−1

ε

]

Fj

)

,

where C1 := 1. Now we iteratively choose Cj :=
4
ε2Cj−1 such that

−2Cj(α− ε

2
) +

4Cj−1

ε
= −2Cj(α− ε).

Then

d
dtF (ρ) ≤ −2(α− ε)F (ρ)

which implies with Gronwall’s Lemma:

E(ρ) ≤ F (ρ) ≤ F (ρ0)e
−2(1−ε)t

and thus gives decay of E with rate 2(1− ε). �
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2.3 Transformation

In this section, we show how the equation (2.1) can be rewritten in a form

that closely resembles the Fokker-Planck equations discussed in the previous

two chapters. The underlying idea is to define discrete derivatives using com-

mutators (see [53], in particular chapter 2, for more on this concept). We then

introduce a special basis of Cd×d inspired by the Pauli matrices. This basis

allows the transformation of the operator while identifying some fundamental

properties of the Lindblad part.

2.3.1 Setting, preliminary results

As setting for the transformation, we use the Hilbert space Cd×d equipped with

the Hilbert-Schmidt norm. We denote by A† the hermitian adjoint of A ∈ C
d×d.

Lemma 2.4. Let H := C
d×d, and define

∀A,B ∈ H : 〈A,B〉d := Tr(AB†)

∀A = (Ak)k=1,...,d2 , B = (Bk)k=1,...,d2 ∈ Hd2 : 〈A,B〉d2 :=

d2∑

k=1

Tr(AkB
†
k).

Let {Ej |j = 1, . . . , d2} ⊂ H be given as

Ej = (δljδkj)l,k, j = 1, . . . , d;

Ej =
1√
2
(δlrjδksj + δkrjδlsj )l,k, j = d+ 1, . . . , d

2+d
2 ;

Ej =
1√
2
(−iδlrjδksj + iδkrjδlsj )l,k j = d2+d

2 + 1, . . . , d2,

where rj runs from 2 to d with increasing j, and for fixed rj, sj runs from 1 to

rj − 1. Then the following holds:

(i) (H, 〈·, ·〉d) and (Hd2 , 〈·, ·〉d2) are Hilbert spaces.

(ii) {Ej |j = 1, . . . , d2} is an orthonormal basis of H. In addition, it is an

R-basis of all hermitian d× d-matrices.

Proof:

(i) is a well-known result, the details of which can be found in many books

on matrix algebra. We refer to the classic book by Horn, Johnson [43].

(ii) Since one easily checks that Ej is hermitian for 1 ≤ j ≤ d2, all we need
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to show is

Tr(EjEk) = δjk, 1 ≤ j, k ≤ d2.

We compute the case j, k > d2+d
2 :

Tr(EjEk) =
1
2Tr





d2∑

l=1

[
(−iδmrjδlsj + iδlrjδmsj )(−iδlrkδnsk + iδnrkδlsk)

]

m,n





= 1
2

d2∑

l,m=1

(
−δmrjδlsjδlrkδmsk + δlrjδmsjδlrkδmsk

)

+ 1
2

d2∑

l,m=1

(
δmrjδlsjδmrkδlsk − δlrjδmsjδmrkδlsk

)

= −δrjskδsjrk + δrjrkδsjsk .

Since rj = sk implies sj < rj = sk < rk, the first term is always zero. The

second term is nonzero iff rj = rk and sj = sk, which implies j = k. The

computation for the other cases is completely analogous, and thus the proof is

complete. �

Example: In 3d, the basis is formed by the following matrices:

E1 :=






1 0 0

0 0 0

0 0 0




, E2 :=






0 0 0

0 1 0

0 0 0




, E3 :=






0 0 0

0 0 0

0 0 1




,

E4 := 1√
2






0 1 0

1 0 0

0 0 0




, E5 := 1√

2






0 0 1

0 0 0

1 0 0




, E6 := 1√

2






0 0 0

0 0 1

0 1 0




,

E7 := 1√
2






0 −i 0

i 0 0

0 0 0




, E8 := 1√

2






0 0 −i
0 0 0

i 0 0




, E9 := 1√

2






0 0 0

0 0 −i
0 i 0




.

Next, we define discrete versions of differential operators on H.

Definition 2.5. The discrete divergence divd, discrete gradient ∇d and discrete

Laplacian ∆d are defined as

divd : Hd2 → H

K = (Kj)j=1,...,d2 7→ i

d2∑

j=1

[Kj , Ej ],
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∇d : H → Hd2

K 7→ (i[K,Ej ])j=1,...,d2 ,

∆d : H → H

K 7→ divd(∇dK) =

d2∑

j=1

[Ej , [K,Ej ]].

Some fundamental properties of these operators are easily obtained:

Proposition 2.6. The following holds:

(i) For any hermitian matrix η ∈ H, the components of ∇dη ∈ Hd2 are

hermitian. For any matrix K = (Kj)j ∈ Hd2 with hermitian components

Kj, divdK is hermitian.

(ii) divd is the adjoint to −∇d and vice versa.

(iii) A set of eigenvectors (with corresponding eigenvalues) of ∆d is the follow-

ing:

d∑

k=1

Ek = Idd (λ = 0),

Ek(k > d) (λ = −2d),

El − El+1(l = 1, . . . , d− 1) (λ = −2d).

These form a basis of H.

(iv) There is a discrete Poincaré equality arising from the spectral gap in ∆d:

∀ρ ∈ H : ‖∇dρ‖2Hd2 + 2|Tr(ρ)|2 = 2d‖ρ‖2H (2.4)

Proof:

(i): We compute for hermitian A,B:

(i[A,B])† = −i(AB −BA)† = −i(BA−AB) = i[A,B].

(ii): Let A ∈ H, B ∈ Hd2 . Then

〈∇dA,B〉Hd2 =
d2∑

k=1

iTr([A,Ek]Bk) =
d2∑

k=1

−iTr(A[Bk, Ek])

=
d2∑

k=1

−〈A, divdB〉H.
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(iii): Id is an eigenvector of ∆d to the eigenvalue 0, since [Idd, Ek] = 0 for

1 ≤ k ≤ d2. On the other hand, since the Ek form a basis of H, it follows that

[A,Ek] = 0 for 1 ≤ k ≤ d2 implies [A,B] = 0 for all B ∈ H, and thus A is a

multiple of Idd. This shows that Idd spans the kernel of ∆d.

To compute the other eigenvectors, we expand ∆dA as

∆dA =
d2∑

j=1

[Ej , [A,Ej ]] =
d2∑

j=1

(
2EjAEj − (E2

jA+AE2
j )
)

= 2

d2∑

j=1

EjAEj −
(

[

d2∑

j=1

E2
j ]A+A[

d2∑

j=1

E2
j ]
)

. (2.5)

First, we look at the term
d2∑

j=1

E2
j .

Since E2
j = Ej , 1 ≤ j ≤ d, it is

d∑

j=1

E2
j = Idd. For Ej ,

d2+d
2 ≥ j > d, we obtain

(E2
j )l,k =

d∑

α=1

(Ej)l,α(Ej)α,k

= 1
2

d∑

α=1

(δlrδαs + δlsδαr)(δαrδks + δαsδkr)

= 1
2

(
d∑

α=1

(δlrδαsδαrδks + δlsδαrδαsδkr)

︸ ︷︷ ︸

=0, r 6=s

+

d∑

α=1

(δlrδαsδαsδkr + δlsδαrδαrδks)
)

= 1
2 (δlrδkr + δlsδks)

Thus

E2
j =

1

2
(Er + Es),

where d ≥ r > s ≥ 1 from the definition of Ej . We conclude that

d2+d
2∑

j=d+1

E2
j =

d∑

r=2

r−1∑

s=1

1

2
(Er + Es) =

d− 1

2
Idd .
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The computations for Ej ,
d2+d

2 < j ≤ d2 are analogous, and we obtain

d2∑

j=1

E2
j = d Idd .

Inserting this into (2.5) yields

∆dA = 2

d2∑

k=1

(EkAEk)− 2dA. (2.6)

Now consider the term 2
d2∑

k=1

(EkAEk). We first assume A = Ej for some j ∈

{1, . . . , d2} and make a distinction by case.

(a) If A = Ej , j ≤ d, we compute for m ≤ d

EmEjEm = δjmEj .

For d2+d
2 ≥ m > d, we obtain

(EjEm)l,k =
d∑

α=1

(Ej)l,α(Em)α,k

= 1√
2

d∑

α=1

δljδαj(δαrδks + δkrδαs)

= 1√
2
(δljδjrδks + δljδkrδjs) =

1√
2







0, j 6= r, s

δlrδks, j = r

δlsδkr, j = s

(2.7)

and thus

(EmEjEm)l,k =
d∑

α=1

(Em)l,α(EjEm)α,k

= 1
2







d∑

α=1
(δlrδαs + δαrδls)δαrδks = δksδls, j = r

d∑

α=1
(δlrδαs + δαrδls)δαsδkr = δkrδlr, j = s

,

which means

EmEjEm =







0, j 6= r, s
1
2Es, j = r
1
2Er, j = s

.
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This implies

d2+d
2∑

m=d+1

EmEjEm =

j−1
∑

s=1

1

2
Es +

d∑

r=j+1

1

2
Er =

1

2
(Idd−Ej),

where the term
j−1∑

s=1

1
2Es represents all the contributions for j = r, and the term

d∑

r=j+1

1
2Er all those for j = s. The computations for m > d2+d

2 are once again

analogous, and we obtain

d2∑

k=1

EkEjEk = Ej + Id−Ej = Id .

Thus (2.6) yields

∆dEj = Idd−2dEj , (j ≤ d). (2.8)

From (2.8), we see that for 1 ≤ l < k ≤ d it is

∆d(El − Ek) = −2d(El − Ek),

so El − Ek is an eigenvector of ∆d to the eigenvalue −2d for any l 6= k ∈
{1, . . . , d}.
(b) Now, consider the case A = Ej ,

d2+d
2 ≥ j > d. We have for 1 ≤ m ≤ d,

using (2.7)

(EmEjEm)l,k =
d∑

α=1

(EmEj)lα(Em)αk

= 1√
2







d∑

α=1
δlrδαsδmαδmk, m = r

d∑

α=1
δlsδαrδmαδmk, m = s

= 0 (2.9)

For d < m ≤ d2+d
2 , we obtain

(EmEj)l,k =

d∑

α=1

(Em)l,α(Ej)α,k

=
1

2

d∑

α=1

(δlrδαs + δlsδαr)(δαuδkv + δαvδku); u > v, r > s ∈ {1, . . . , d}
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=
1

2

d∑

α=1

(δlrδαsδαuδkv + δlrδαsδαvδku + δlsδαrδαuδkv + δlsδαrδαvδku)

=
1

2

d∑

α=1

(δlrδsuδkv + δlrδsvδku + δlsδruδkv + δlsδrvδku)

and thus

(EmEjEm)l,k =
n∑

α=1

(EmEj)l,α(Em)α,k

=
1

2
√
2

d∑

α=1

(δlrδsuδαv + δlrδsvδαu + δlsδruδαv + δlsδrvδαu)(δαrδks + δαsδkr)

=
1

2
√
2

d∑

α=1

(δlrδsuδαvδαrδks + δlrδsvδαuδαrδks + δlsδruδαvδαrδks + δlsδrvδαuδαrδks

+ δlrδsuδαvδαsδkr + δlrδsvδαuδαsδkr + δlsδruδαvδαsδkr + δlsδrvδαuδαsδkr)

=
1

2
√
2

d∑

α=1

(δlrδsuδvrδks
︸ ︷︷ ︸

=0,u>v&s<r

+δlrδsvδurδks + δlsδruδvrδks
︸ ︷︷ ︸

=0,u>v

+ δlsδrvδurδks
︸ ︷︷ ︸

=0,u>v

+ δlr δsuδvsδkr
︸ ︷︷ ︸

=0,u>v

+ δlrδsvδusδkr
︸ ︷︷ ︸

=0,u>v

+δlsδruδvsδkr + δlsδrvδusδkr
︸ ︷︷ ︸

=0,r>s&u>v

)

=
1

2
√
2
δurδvs(Ej)l,k. (2.10)

Finally, for d2 ≥ m > d2+d
2 we compute

(EmEj)l,k =
n∑

α=1

(Em)l,α(Ej)α,k

=
1

2

d∑

α=1

(−iδlrδαs + iδlsδαr)(δαuδkv + δαvδku); u > v, r > s ∈ {1, . . . , d}

=
1

2

d∑

α=1

(−iδlrδαsδαuδkv − iδlrδαsδαvδku + iδlsδαrδαuδkv + iδlsδαrδαvδku)

=
1

2

d∑

α=1

(−iδlrδsuδkv − iδlrδsvδku + iδlsδruδkv + iδlsδrvδku).

Using this, we obtain

(EmEjEm)l,k =

n∑

α=1

(EmEj)l,α(Em)α,k

=
1

2
√
2

d∑

α=1

(−iδlrδsuδαv − iδlrδsvδαu + iδlsδruδαv + iδlsδrvδαu)(−iδαrδks + iδαsδkr)
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=
1

2
√
2

d∑

α=1

(−δlrδsuδαvδαrδks − δlrδsvδαuδαrδks + δlsδruδαvδαrδks + δlsδrvδαuδαrδks

+ δlrδsuδαvδαsδkr + δlrδsvδαuδαsδkr − δlsδruδαvδαsδkr − δlsδrvδαuδαsδkr)

=
1

2
√
2

d∑

α=1

(− δlrδsuδvrδks
︸ ︷︷ ︸

=0,u>v&s<r

−δlrδsvδurδks + δlsδruδvrδks
︸ ︷︷ ︸

=0,u>v

+ δlsδrvδurδks
︸ ︷︷ ︸

=0,u>v

+ δlr δsuδvsδkr
︸ ︷︷ ︸

=0,u>v

+ δlrδsvδusδkr
︸ ︷︷ ︸

=0,u>v

−δlsδruδvsδkr − δlsδrvδusδkr
︸ ︷︷ ︸

=0,r>s&u>v

)

= − 1

2
√
2
δurδvs(Ej)l,k. (2.11)

Adding together (2.9), (2.10) and (2.11) yields

d2∑

m=1

EmEjEm = 0.

This implies for d < j ≤ d2+d
2

∆dEj = −2dEj , j > d, (2.12)

and thus Ej is an eigenvector to the eigenvalue −2d. The computations for
d2+d

2 < j ≤ d2 are analogous.

The eigenvectors Idd and Ej − Ek, 1 ≤ j, k ≤ d span the same space as

{Ej |1 ≤ j ≤ d}. This means we have a basis of eigenvectors, which completes

the proof of (iii). Note that in the case d > 2, the eigenfunctions we have chosen

are not orthogonal.

(iv): First, assume Tr(ρ) = 0. If we develop ρ along the eigenfunctions of

∆d, the part along the identity vanishes (since all other eigenfunctions have

trace 0). So ρ is in the eigenspace of ∆d to the eigenvalue −2d, and it follows

that

‖∇dρ‖2Hd2 = 〈∇dρ,∇dρ〉Hd2 = −〈ρ,∆dρ〉H
= 2d〈ρ, ρ〉H = 2d‖ρ‖2H.

Now, if Tr(ρ) 6= 0, we can write ρ = α Id+ρ0, with Tr(ρ0) = 0, α = Tr(ρ)
d . Since

∇d Id = 0 we obtain

‖∇dρ‖2Hd2 = ‖∇dρ0‖2Hd2 = 2d‖ρ0‖2H.
= 2d〈ρ− α Id, ρ− α Id〉H
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= 2d
(

‖ρ‖2H − α 〈ρ, Id〉
︸ ︷︷ ︸

=Tr(ρ†)

−α 〈Id, ρ〉
︸ ︷︷ ︸

=Tr(ρ)

+|α|2〈Id, Id〉
)

= 2d
(
‖ρ‖2H − 1

d |Tr(ρ)|
2
)

= 2d‖ρ‖2H − 2|Tr(ρ)|2.

�

Remarks: 1. There is a reason why this spectral gap gets larger with in-

creasing dimension: While ∇dρ = 0 is equivalent to ρ = c Id, the same holds

if one replaces ∇dρ with the discrete derivatives (i[ρ,Eγ(l)])l=1,...,lmax
along a

carefully chosen subset of {Ej |j = 1, . . . , d2}, where lmax ≈ d. If we were to

define the operators ∇d, divd as the commutators with only such a subset of

{Ej |j = 1, . . . , d2} that contains d elements, the factor d vanishes. However,

there is then no natural way to proceed in Theorem 2.9, as such a subset would

not be a basis of H.

2. For d = 2 the eigenfunctions of ∆d are Id and the Pauli matrices

σ1 = E1 − E2, σ2 =
√
2E3, σ3 =

√
2E4, (2.13)

which fulfill

[σj , σl] = cjlσr, (2.14)

l 6= r 6= j, with cjl ∈ {−1, 1} for j 6= l and cjj = 0. This raises the valid question

why we do not use these matrices as the basis for H.

The answer is that they do not extend as nicely into d > 2. For d = 3 one gets

the following 3 matrices as extensions for σ1:






1 0 0

0 −1 0

0 0 0




 ,






0 0 0

0 1 0

0 0 −1




 ,






−1 0 0

0 0 0

0 0 1




 .

As can be easily seen from the fact that their sum is 0, they span a subspace

of dimension 2. Thus, for a basis, one would have to choose 2 matrices from

that subspace. There is, however, no natural way to decide which matrices to

choose. In fact, for d = 3, whatever subset one chooses for the basis, there

is no “simple” relation to E2
j and [Ej , Ek], 3 < j, k ≤ 9. With the basis we

chose, the commutators between off-diagonal basis matrices, and the squares

of off-diagonal matrices, can always be written as a sum of two diagonal basis

matrices – a very homogeneous result, which we exploited in the computation
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of the eigenvectors to the Laplacian in Proposition 2.6.

Not all properties of continuous derivatives are shared by the discrete ver-

sions we introduced. In particular, the next lemma establishes that discrete

partial derivatives do not commute:

Lemma 2.7. Let

∂jld ρ := i[i[ρ,Ej ], El] = [El, [ρ,Ej ]]

for 1 ≤ j, l ≤ d2 be the second partial discrete derivative of ρ with respect to j

and l. Then for any l, j ∈ {1, . . . , d2}, there exist r ≥ 1, 1 ≤ k1, . . . , kr ≤ d2

and s1, . . . , sr ∈ R such that

∂jld ρ− ∂ljd ρ =

r∑

m=1

sm∂
km
d ρ :=

r∑

m=1

smi[ρ,Ekm ].

That is, the commutator between two second partial derivatives is given by a

linear combination of first order partial derivatives.

Proof: Compute

i[i[ρ,Ej ], El]− i[i[ρ,El], Ej ]

= −ρEjEl + ElEjρ− ElρEj − EjρEl − ρElEj − EjElρ+ EjρEl + ElρEj

= −([El, Ej ]ρ+ ρ[Ej , El]) = i[ρ, i[El, Ej ]].

Since i[El, Ej ] is hermitian, its coefficients along the basis {Ek} are real. This

completes our proof. �

A direct consequence of Lemma 2.7 is that, unlike in the continuous case, in

general it holds that divd(R∇dρ) 6= 0 for skew-symmetric matrices R ∈ C
d3×d3 .

Corollary 2.8. Let R = (rjk)j,k ∈ R
d2×d2 , R = −RT , R := R⊗ Idd ∈ R

d3×d3 .

Then there exists c ∈ R
d2 such that for C := c⊗ Idd ∈ R

d3×d it holds that

divd(R∇dρ) = divd(Cρ).

Proof: We compute

divd(R∇dρ) = divd(

d2∑

k=1

rjki[ρ,Ek])j=1,...,d2
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=

d2∑

j,k=1

rjki[i[ρ,Ek], Ej ] =

d2∑

j=1

d2∑

k=j+1

rjk ([Ej [ρ,Ek]]− [Ek, [ρ,Ej ]]) .

Now we can use Lemma 2.7 and obtain

divd(R∇dρ) =

d2∑

j=1

d2∑

k=j+1

rjk





r(j,k)
∑

m=1

sm(j, k)i[ρ,Elm(j,k)]





=

d2∑

j=1

d2∑

k=j+1

r(j,k)
∑

m=1

i[rjksm(j, k)ρ,Elm(j,k)].

This can be rewritten as

d2∑

τ=1

i[cτρ,Eτ ]

by adding together all the coefficients rjksm(j, k) for every τ = lm(j, k), τ ∈
{1, . . . , d2}. �

2.3.2 Transformation of the equation

With the Hilbert space H and discrete derivatives established, we can now state

our main result.

Theorem 2.9. (2.1) can be written as

ρ̇ = Lρ = divd(D∇dρ+ {F , ρ}d). (2.15)

Here F = F(Lk, H) has hermitian components, D = D(Lk) is real and positive

semidefinite and

{F , ρ}d := ({Fj , ρ})j=1,...,d2 = (Fjρ+ ρFj)j=1,...,d2 ∈ Hd2

is the component-wise anticommutator.

Proof: The proof is structured into three parts. First, we discuss the

transformation of a single Lindblad term, than of the Hamiltonian. Finally, we

use the linearity of the equation to derive the general case from the first two.

(a) We start with a single Lindblad term

DL(ρ) := [Lρ,L†] + [L, ρL†]
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Writing L =
d2∑

j=1

ljEj , lj ∈ C, we compute

[L, ρL†] =
d2∑

j=1

lj [Ej , ρL
†] =

d2∑

j,k=1

lj lk[Ej , ρEk],

[Lρ,L†] =
d2∑

j=1

lj [Lρ,Ej ] = −
d2∑

j,k=1

lj lk[Ej , Ekρ].

Let lj lk =: djk + ifjk, then it follows that

DL(ρ) =
1

2
([L, ρL†] + [Lρ,L†])

=

d2∑

j,k=1

(
1

2
[djk + ifjk][Ej , ρEk]−

1

2
[djk − ifjk][Ej , Ekρ]

)

=

d2∑

j,k=1

(
1

2
djk[Ej , [ρ,Ek]] +

1

2
ifjk[Ej , {ρ,Ek}]

)

= divd(
d2∑

k=1

i
djk
2

[ρ,Ek]−
fjk
2

{ρ,Ek})j=1,...,n

Define the diffusion matrixD(L) := (
djk
2 )j,k=1,...,d2⊗Idd ∈ C

d3×d3 ⊂ L(Hd2 ,Hd2),

i.e. for A = (Aj)j=1,...,d2 ∈ Hd2 it is

D(L)A := (

d2∑

k=1

djk
2
Ak)j=1,...,d2 ∈ Hd2 .

Then we get

DL(ρ) = divd(

d2∑

k=1

idjk[ρ,Ek]− fjk{ρ,Ek})j=1,...,d2

= divd

(

D(L)∇dρ−
d2∑

k=1

{ρ, fjkEk}
)

j=1,...,d2

= divd

(

D(L)∇dρ+ {F(L), ρ}
)

with the drift term F(L) := (Fj)j=1,...,d2 ∈ Hd3 , Fj = −
d2∑

k=1

fjk
2 Ek.

(b) Now we consider the hamiltionian part i[H, ρ]. Writing H =
d2∑

k=1

hkEk,
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αk ∈ R, we compute

i[H, ρ] =

d2∑

k=1

hki[Ek, ρ] = −
d2∑

k=1

i[hkρ,Ek]

= divd(−hkρ)k=1,...,d2 = divd{F(H), ρ}

where F(H) = (−hk

2 Id)k=1,...,d2 is an additional drift term.

(c) For a general operator consisting of an Hamiltonian and m Lindblad opera-

tors, D = i[H, ρ] +
m∑

j=1

DLj
, we obtain from (a), (b)

D(ρ) = − divd(D(∇dρ) + {F , ρ})

where

D =

m∑

j=1

D(Lj), F =

m∑

j=1

F(Lj) + F(H).

D is positive semidefinite: Recall that D = (djk)j,k ⊗ Idd, so D is positive

semidefinite iff (djk)j,k is. However,

djk = ℜ(lj lk) = 1
2 (lj lk + lj lk) ⇒ D = 1

2 (l ⊗ l + l ⊗ l)

where l = (lj)j is the vector formed by the lj . We then get for any u ∈ C
d2 ,

with u† = uT ,

u†Du = 1
2 (u

†(l ⊗ l)u+ u†(l ⊗ l)u)

= 1
2 (‖l

†u‖22 + ‖lTu‖22) ≥ 0.

This implies that D is positive semidefinite. Finally, the components of F are

hermitian since all hk, fjk are real. �

2.3.3 An example

In this section, we study a two-dimensional example for the transformation in

Theorem 2.9. This example already highlights some of the differences to the

continuous case. It also serves as a reference for the discussion of L on weighted

spaces in Section 2.4.
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Proposition 2.10. Let H = 0, L1 = iE1 +
1
2E3, and

D = i[H, ρ] +
1

2
[L1, ρL

†
1] + [L1ρ, L

†
1].

Then for the transformed operator from Theorem 2.9, we have that

(i)

D = diag(
1

2
, 0,

1

8
, 0)⊗ Id2 ∈ R

8×8,

F =









− 1
4E3

0
1
4E1

0









∈ C
8×2.

(ii)

ρ∞ =
1

10

(

1 2
√
2i

−2
√
2i 9

)

(2.16)

spans the kernel of L.

Proof: (i): From the proof of Theorem 2.9, we obtain with l1 = i, l3 = 1
2 :

d11 =
1

2
ℜ{ii} =

1

2
, d33 =

1

2
ℜ{1

2

1

2
} =

1

8
,

d13 =
1

2
ℜ{i1

2
} = 0 = d31, f13 =

1

2
ℑ{i1

2
} =

1

4
= −f31.

(ii): For a stationary state, we make the ansatz ρ∞ =
4∑

j=1

αjEj , αj ∈ C. We

expect to find that αj ∈ R holds, since a stationary state should be a density

matrix and thus hermitian.

Compute

D∇dρ =









i 12 [ρ,E1]

0
i
8 [ρ,E3]

0









=
1

2









α3E4 − α4E3

0
α2−α1

4 E4 +
α4

4 (E1 − E2)

0









(2.17)
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and

{F , ρ}d =









− 1
4{ρ,E3}

0
1
4{ρ,E1}

0









=
1

2









−α1+α2

2 E3 − α3

2 (E1 + E2)

2ρ

α1E1 +
α3

2 E3 +
α4

2 E4

0









. (2.18)

From (2.17), (2.18) we obtain

D∇dρ+ {F , ρ}d =
1

2









−α3

2 E1 − α3

2 E2 − α1+α2+2α4

2 E3 + α3E4

0
4α1+α4

4 E1 − α4

4 E2 +
α3

2 E3 +
α1−α2+2α4

4 E4

0









.

If D∇dρ + {F , ρ}d = 0, it follows from the linear independence of the Ej that

ρ = 0. So the stationary state does not fulfil D∇dρ∞ + {F , ρ∞} = 0. Compute

divd(D∇dρ+ {F , ρ}d)

=
i

2
[α3(E4 −

1

2
(E1 − E2))−

α1 + α2 + 2α4

2
E3, E1]

+
i

2
[
4α1 + α4

4
E1 −

α4

4
E2 +

α3

2
E3 +

α2 − α1 + 2α4

4
E4, E3]

= −α3

2
E3 −

α1 + α2 + 2α4

4
E4

− 4α1 + α4

8
E4 −

α4

8
E4 +

α2 − α1 + 2α4

8
(E1 − E2)

=
−α1 + α2 + 2α4

8
(E1 − E2)−

α3

2
E3 −

3α1 + α2 + 3α4

4
E4.

With the restraint α1 + α2 = 1 from trace normalisation, this has the unique

solution

α1 =
1

10
, α2 =

9

10
, α4 = −2

5
.

So

ρ∞ = α1E1 + α2E2 + α4E4,

which completes the proof. �
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This shows two important properties of L: First, we can in general not expect

that D∇dρ∞ + {F , ρ∞}d = 0, and second, there may be a unique normalised

stationary state even if D does not have full rank. Neither should be surprising,

as it is the same for the classic equation, at least in the hypocoercive case

discussed in §1. As we will see in the next sections, the first property appears

fundamental to our approach; see Conjecture 2.14. The fact that D need not

have full rank for uniqueness of a stationary state should also be expected from

the first remark following Theorem 2.6.

2.4 Symmetry, weighted Hilbert space

In this section, we investigate some properties of the transformed equation (2.15)

on the Hilbert space H. In the classic case, the natural space to investigate the

Fokker-Planck operator is the weighted Hilbert space L2(Rd, f−1
∞ ) (see §1). We

discuss the problems that arise in transferring this idea to the operator L, and
conditions on F and D compared to the symmetric classic operator.

In particular, we provide some results indicating that the only case where L
is symmetric on a weighted Hilbert space is the case ρ∞ = 1

d Id – but then the

weight ρ−1
∞ has no effect. This indicates that in the quantum mechanical case,

the operator L is essentially non-symmetric in the “interesting” case where its

kernel is not spanned by Id. This can be compared to the hypocoercive case

in §1, where the non-symmetry of the operator on the weighted space was also

essential.

Our first result is for the case divF = 0, which arises for example when all

the Lindblad operators are either hermitian or skew-hermitian.

Proposition 2.11. Consider the operator L from (2.15) with divF = 0. Then

(i) L is symmetric on H and 〈ρ,L(ρ)〉H ≤ 0.

(ii) Idd is in the kernel of L.

(iii) If D ≥ λ Idd3 , then the kernel of L is spanned by Idd. Furthermore, the

solution ρ(t) to (2.15) with hermitian initial condition 0 ≤ ρ0 ∈ C
d×d,

Tr(ρ0) = 1, converges to ρ∞ = 1
d Id exponentially with rate at least 2dλ.
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Proof: (i): We compute, using ∇d(ρ
2) = {ρ,∇dρ}d,

〈ρ,L(ρ)〉H = 〈ρ, divd(D∇dρ+ {F , ρ}d)〉H
= −〈∇dρ,D∇dρ〉Hd2 + 〈ρ, divd{F , ρ}d〉H

〈ρ, divd{F , ρ}〉H = Tr(ρdivd{F , ρ}d) = 2Tr(ρ2 divd F) + Tr(F{ρ,∇dρ}d)
= 2Tr(ρ2 divd F) + Tr(F∇dρ

2)

= Tr(ρ2 divd F) = 0.

This implies

〈ρ, L(ρ)〉H = −〈∇dρ,D∇dρ〉Hd2 ≤ 0,

since D ≥ 0. Since D = DT ∈ R
d3×d3 , L is self-adjoint.

(ii): Compute

L(Idd) = divd (D∇d(Idd) + {F , Idd}d) = 2 divd F = 0.

(iii): We know that the solution fulfils ρ(t) ≥ 0, is hermitian and has Tr(ρ(t)) =

Tr(ρ0) = 1. We compute

‖ρ(t)− 1
d Id‖

2
H = Tr((ρ(t)− 1

d Id)
2) = Tr(ρ(t)2 − 2

dρ(t) +
1
d2 Id)

= ‖ρ(t)‖2H − 1
d .

With the discrete Poincaré inequality (2.4), this implies

d
dt‖ρ(t)− 1

d Id‖
2
H = 2〈ρ(t), D(ρ(t))〉H

= −2〈∇dρ(t),D∇dρ(t)〉Hn2 ≤ −2λ‖∇dρ(t)‖2Hd2

= −4dλ‖ρ(t)‖2H + 4λ|Tr(ρ(t))|2 = −4dλ‖ρ(t)‖2H + 4λ

= −4dλ(‖ρ(t)− 1
d Id‖

2
H).

Applying Gronwall’s Lemma yields

‖ρ(t)− 1
d Id‖H ≤ ‖ρ0 − 1

d Id‖H exp(−2dλt).

In particular, this implies that the kernel of L is spanned by Id. Thus the proof

is complete. �
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Remark: As mentioned before, the condition D ≥ λ Idd3 is stricter than

necessary.

Next, we consider the case where there is a unique, positive definite nor-

malised steady state ρ∞ 6= Id. Since ρ∞ > 0, there exists a positive definite

and symmetric square root ρ
1
2∞ of ρ∞. From Proposition 2.11, it follows that

divF 6= 0. We aim to compute the adjoint of L on the weighted space H(ρ−1
∞ ).

However, since the elements of H are non-commutative, it is not obvious how

to insert the weight into the scalar product:

Lemma 2.12. Let ρ∞ > 0 be hermitian. Define the scalar products

〈ρ, η〉1 := Tr(ρρ−1
∞ η†),

〈ρ, η〉2 := Tr(ρη†ρ−1
∞ ),

〈ρ, η〉ρ−1
∞

:= Tr(ρρ
− 1

2∞ η†ρ
− 1

2∞ ).

Then the following holds:

(i) There exist hermitian matrices ρ, η such that

〈ρ, η〉1 6∈ R, 〈ρ, η〉2 6∈ R. (2.19)

(ii) For all hermitian matrices ρ, η: 〈ρ, η〉ρ−1
∞

∈ R.

Proof: (i): We only need to find one example. So take the stationary state

from Proposition 2.10. Then

ρ−1
∞ = 100(

9

10
E1 +

1

10
E2 +

2

5
E4).

Now let ρ := 1
2 Id2 +E3, η := E4. Then

〈ρ, η〉1 = Tr(ρ−1
∞ E4) + Tr(E4E3ρ

−1
∞ ) = −10 + 20i,

〈ρ, η〉2 = Tr(E4ρ
−1
∞ ) + Tr(E3E4ρ

−1
∞ ) = −10− 20i.

(ii): Let ρ, η be hermitian. Then

〈ρ, η〉ρ−1
∞

= Tr(ρρ
− 1

2∞ η†ρ
− 1

2∞ ) = Tr(ρ
− 1

4∞ ρρ
− 1

2∞ ηρ
− 1

4∞ ).

Since Tr(AT ) = Tr(A) and Tr(AB) = Tr(BA), it follows that

Tr
(

ρ
− 1

4∞ ρρ
− 1

2∞ ηρ
− 1

4∞
)

= Tr
(

ρ
− 1

4∞ ηρ
− 1

2∞ ρρ
− 1

4∞
)

= Tr

([

ρ
− 1

4∞ ρρ
− 1

2∞ ηρ
− 1

4∞
]†)
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= Tr
(

ρ
− 1

4∞ ρρ
− 1

2∞ ηρ
− 1

4∞
)

.

Here, A† denotes the hermitian adjoint of A. This implies

〈ρ, η〉ρ−1
∞

∈ R.

�

The scalar products 〈·, ·〉1, 〈·, ·〉2 are unsuited to our agenda, since there is

no guarantee that

〈ρ,L1ρ〉1 ∈ R

for some operator L1 such that L1ρ is hermitian. But this is exactly what we

would expect for the self-adjoint part of L on (H, 〈·, ·〉1). So we choose the

weighted Hilbert space H(ρ−1
∞ ) := (H, 〈·, ·〉ρ−1

∞
). This space is also used for non-

commutative logarithmic Sobolev inequalities, see for example [60], [54].

We obtain the following result for L on H(ρ−1
∞ ):

Proposition 2.13. Assume that the kernel of the operator L from (2.15) is

spanned by ρ∞. Let

K := F −DV, V := (ρ
1
2∞i[ρ

− 1
2∞ , Ej ])j=1,...,d2 = (ρ

1
2∞(∇dρ

− 1
2∞ )j)j=1,...,d2 .

Then

(i)

Lρ = divd

(

ρ
1
2∞
[

D∇d(ρ
− 1

2∞ ρρ
− 1

2∞ )
]

ρ
1
2∞ +Kρ+ ρK†

)

.

(ii) On H(ρ−1
∞ ), the adjoint of L is given by

L∗ρ = divd

(

ρ
1
2∞
[

D∇d(ρ
− 1

2∞ ρρ
− 1

2∞ )
]

ρ
1
2∞
)

−
[

ρ
1
2∞K†∇d(ρ

− 1
2∞ ρρ

− 1
2∞ )ρ

1
2∞ + ρ

1
2∞∇d(ρ

− 1
2∞ ρρ

− 1
2∞ )Kρ

1
2∞
]

.

Proof:

(i): We compute

divd(D∇dρ+ Fρ+ ρF) = divd(Dρ
1
2∞ρ

− 1
2∞ (∇dρ)ρ

− 1
2∞ ρ

1
2∞ + Fρ+ ρF)

= divd

(

ρ
1
2∞
[

D∇d(ρ
− 1

2∞ ρρ
− 1

2∞ )
]

ρ
1
2∞ + [F −Dρ

1
2∞(∇dρ

− 1
2∞ )]ρ+ ρ[F − (D∇dρ

− 1
2∞ )ρ

1
2∞]
)
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= divd

(

ρ
1
2∞
[

D∇d(ρ
− 1

2∞ ρρ
− 1

2∞ )
]

ρ
1
2∞ +Kρ+ ρK†

)

.

(ii) We split the computation of the adjoint of L on H(ρ−1
∞ ) into two parts.

First,

〈divd
(

ρ
1
2∞
[

D∇d(ρ
− 1

2∞ ρρ
− 1

2∞ )
]

ρ
1
2∞
)

, η〉ρ−1
∞

= Tr
(

divd

(

ρ
1
2∞
[

D∇d(ρ
− 1

2∞ ρρ
− 1

2∞ )
]

ρ
1
2∞
)

ρ
− 1

2∞ η†ρ
− 1

2∞
)

= −Tr
((

ρ
1
2∞
[

D∇d(ρ
− 1

2∞ ρρ
− 1

2∞ )
]

ρ
1
2∞
)

· ∇d(ρ
− 1

2∞ η†ρ
− 1

2∞ )
)

= −Tr
(

∇d(ρ
− 1

2∞ ρρ
− 1

2∞ ) ·
(

ρ
1
2∞
[

D∇d(ρ
− 1

2∞ η†ρ
− 1

2∞ )
]

ρ
1
2∞
))

= Tr
(

ρ
− 1

2∞ ρρ
− 1

2∞ divd

(

ρ
1
2∞
[

D∇d(ρ
− 1

2∞ η†ρ
− 1

2∞ )
]

ρ
1
2∞
))

= 〈ρ, divd
(

ρ
1
2∞
[

D∇d(ρ
− 1

2∞ ηρ
− 1

2∞ )
]

ρ
1
2∞
)

〉ρ−1
∞
.

Further,

〈divd(Kρ+ ρK†), η〉ρ−1
∞

= Tr
(

divd(Kρ+ ρK†)ρ
− 1

2∞ η†ρ
− 1

2∞
)

= −Tr
(

[Kρ+ ρK†]∇d(ρ
− 1

2∞ η†ρ
− 1

2∞ )
)

= −Tr
(

ρ
[

K†∇d(ρ
− 1

2∞ η†ρ
− 1

2∞ ) +∇d(ρ
− 1

2∞ η†ρ
− 1

2∞ )K
])

= −Tr
(

ρ
− 1

2∞ ρρ
− 1

2∞
[

ρ
1
2∞K†∇d(ρ

− 1
2∞ η†ρ

− 1
2∞ )ρ

1
2∞ + ρ

1
2∞∇d(ρ

− 1
2∞ η†ρ

− 1
2∞ )Kρ

1
2∞
])

= −〈ρ, ρ
1
2∞K†∇d(ρ

− 1
2∞ ηρ

− 1
2∞ )ρ

1
2∞ + ρ

1
2∞∇d(ρ

− 1
2∞ ηρ

− 1
2∞ )Kρ

1
2∞〉ρ−1

∞
.

We obtain

L∗ρ = divd

(

ρ
1
2∞
[

D∇d(ρ
− 1

2∞ ρρ
− 1

2∞ )
]

ρ
1
2∞
)

−
[

ρ
1
2∞K†∇d(ρ

− 1
2∞ ρρ

− 1
2∞ )ρ

1
2∞ + ρ

1
2∞∇d(ρ

− 1
2∞ ρρ

− 1
2∞ )Kρ

1
2∞
]

.

�

Proposition 2.13 implies that L is self-adjoint on H(ρ−1
∞ ) if K = 0. But we

have

Proposition 2.14. Let L be given as in Proposition (2.13). Assume D = Idd3 .

Then K = 0 iff F = 0 and ρ∞ = c Id for some c ∈ R.

Proof: If K = 0, then it follows that

0 = K −K† = F − V − F + V†.
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This implies 0 = V − V†, so

0 = iρ
1
2∞[ρ

− 1
2∞ , Ej ]− i[ρ

− 1
2∞ , Ej ]ρ

1
2∞ = i[[ρ

− 1
2∞ , Ej ], ρ

1
2∞].

for j = 1, . . . , d2. It follows that

0 = −iTr(i[[ρ−
1
2∞ , Ej ], ρ

1
2∞]ρ

− 1
2∞ Ejρ

− 1
2∞ ) = Tr([ρ

− 1
2∞ , Ej ](Ejρ

− 1
2∞ − ρ

− 1
2∞ Ej))

= Tr([ρ
− 1

2∞ , Ej ][Ej , ρ
− 1

2∞ ]) = Tr((i[ρ
− 1

2∞ , Ej ])(i[ρ
− 1

2∞ , Ej ])
†) = ‖∇dρ

− 1
2∞ ‖2Hd2 .

This implies ∇dρ
− 1

2∞ = 0, so ρ
− 1

2∞ = c̃ Id. �

It follows that the situation of the example from Proposition 2.10, where the

stationary state did not fulfil D∇dρ∞ + Fρ∞ + ρ∞F = 0, is the general case

for non-constant stationary states:

Corollary 2.15. Let ρ∞ be invertible with ∇dρ∞ + Fρ∞ + ρ∞F = 0. Then

ρ∞ = Idd, F = 0.

Proof: Compute

∇dρ∞ + Fρ∞ + ρ∞F = ρ
1
2∞∇dρ

1
2∞ + ρ∞F + (∇dρ

1
2∞)ρ

1
2∞ + Fρ∞

= ρ∞[ρ
− 1

2∞ ∇dρ
1
2∞ + F ] + [(∇dρ

1
2∞)ρ

− 1
2∞ + F ]ρ∞

= ρ∞[F − (∇dρ
− 1

2∞ )ρ
1
2∞] + [F − ρ

1
2∞∇dρ

− 1
2∞ ]ρ∞

= ρ∞K† +Kρ∞.

Since ρ∞ is invertible and positive definite, we conclude that ρ∞K† +Kρ∞ = 0

iff K = 0. Applying Proposition 2.14 completes our proof. �

So the only case where L is symmetric onH(ρ−1
∞ ) is the case ρ∞ = c Id, which

defeats the purpose of considering H(ρ−1
∞ ) instead of H. This means that, if

we can transfer the entropy method, we have to do it for the more complicated

non-symmetric case.

2.5 The case d = 2

In this section, we consider the lowest-dimensional case, d = 2. Some properties

of L can already be seen on this level, and the results give some indication what

to expect for higher dimensions. This case has, of course, been studied before

for (2.1). See for example [20], [21], which discuss the case d = 2 from the

standpoint of (2.1), with a focus on decoherence.
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For d = 2, our basis is

E1 =

(

1 0

0 0

)

, E2 =

(

0 0

0 1

)

,

E3 =
1√
2

(

0 1

1 0

)

, E4 =
1√
2

(

0 i

−i 0

)

.

We are interested in investigating long-term behaviour of solutions and existence

of stationary states for (2.15):

ρt = divd(D∇dρ+ {F , ρ}).

For ease of computation, and since we are mostly interested in the role of F , we

assume D = diag(d11, d22, d33, d44)⊗ Id2. We also assume H = 0, which means

that F will have no coefficients along Id2 in any component (see the proof of

Theorem 2.9). In light of Proposition 2.6, we develop a density matrix ρ with

Tr(ρ) = 1 along the eigenfunctions of ∆d, which are Id and the Pauli matrices

(2.13). The condition Tr(ρ) = 1 implies ρ(t) = 1
2 Id+ρ0(t), since the Pauli

matrices have trace 0. We obtain:

Proposition 2.16. A density matrix

ρ(t) =
1

2
Id2 +α1(t)σ1 + α2(t)σ2 + α3(t)σ3

is a solution to (2.15) iff

d

dt






α1

α2

α3




 = (M +R)






α1

α2

α3




+ β,

where β = 2divd(F) ∈ R
3, M = M(D) is a negative semidefinite diagonal

matrix and R = R(F) is antisymmetric.

Proof: We compute

∇dρ =









i[ρ,E1]

i[ρ,E2]

i[ρ,E3]

i[ρ,E4]









=









α2σ3 − α3σ2

−α2σ3 + α3σ2√
2α3σ1 −

√
2α1σ3

−
√
2α2σ1 +

√
2α1σ2









.



128 CHAPTER 2. DISCRETE OPEN QUANTUM SYSTEMS

This implies

divd(D∇dρ) = d11[E1, [ρ,E1]] + d22[E2, [ρ,E2]] + d33[E3, [ρ,E3]] + d44[E4, [ρ,E4]]

= −2(d33 + d44)α1σ1 − (d11 + d22 + 2d44)α2σ2 − (d11 + d22 + 2d33)α3σ3

Introducing the notation d1 := 2(d33 + d44), d2 := d11 + d22 + 2d44 and

d3 := d11 + d22 + 2d33, this simplifies to

divd(D∇dρ) = −d1α1σ1 − d2α2σ2 − d3α3σ3. (2.20)

This exemplifies the remark below Proposition 2.6: The operator is fully dissi-

pative even if D is not regular and F = 0, since ∆d contains more terms than

“necessary”.

We now compute divd({F , ρ}d). In general,

F =









F1

F2

F3

F4









=









f12E2 + f13E3 + f14E4

−f12E1 + f23E3 + f24E4

−f13E1 − f23E2 + f34E4

−f14E1 − f24E2 − f34E3









,

fjk ∈ R. It follows that

{F , ρ}d

=









{F1, ρ}
{F2, ρ}
{F3, ρ}
{F4, ρ}









=









[√
2(α2f13 + α3f14) + ( 12 − α1)f12

]
Id2 +(α1 − 1

2 )f12σ1
[√

2(α2f23 + α3f24)− ( 12 + α1)f12
]
Id2 −( 12 + α1)f12σ1

[√
2α3f34 − ( 12 + α1)f13 + (α1 − 1

2 )f23
]
Id2 +[ f23−f132 − α1(f13 + f23)]σ1

−
[
( 12 + α1)f14 +

√
2α2f34 + ( 12 − α1)f24

]
Id2 −[ f14−f242 + (f14 + f24)α1]σ1









+









( f13√
2
+ α2f12)σ2 + ( f14√

2
+ α3f12)σ3

( f23√
2
− α2f12)σ2 + ( f24√

2
− α3f12)σ3

−α2(f13 + f23)σ2 +
f34√
2
− α3(f13 + f23)σ3

−[(f14 + f24)α2 +
f34√
2
]σ2 − (f14 + f24)α3σ3









.

Since ∇dρ has coefficient 0 along Id2 in all components, for D∇dρ+{F , ρ}d = 0

to hold, we would need the coefficients of Id2 to vanish in all components of

{F , ρ}d. But since D is diagonal, and all components of ∇dρ lack σj for one
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j ∈ {1, 2, 3}, we would also need those coefficients to vanish, i.e.

f12 = 0, f13 = −f23, f14 = −f24.

Numerically solving the remaining equations then leads to F = 0, ρ = 1
2 Id,

which is exactly what is claimed in Conjecture 2.18.

We further compute

divd({F , ρ}d) =
[

2f34 −
√
2α3(f13 + f23) +

√
2α2(f14 + f24)

]

σ1

+

[

2
f24 − f14√

2
−
√
2α1(f14 + f24)− 2α3f12

]

σ2

+

[

2
f13 − f23√

2
+
√
2α1(f13 + f23) + 2α2f12

]

σ3.

Introducing the notations

r1 := −
√
2(f13 + f23), r2 :=

√
2(f14 + f24), r3 := −2f12,

β1 := 2f34, β2 := 2
f24 − f14√

2
, β3 := 2

f13 − f23√
2

,

this simplifies to

divd({F , ρ}d) = (r1α3 + r2α2 + β1)σ1 + (−r2α1 + r3α3 + β2)σ2 (2.21)

+ (−r1α1 − r2α2 + β3)σ3.

From comparing the coefficients in (2.20), (2.21) with those in

d
dtρ = α̇1σ1 + α̇2σ + α̇3σ3,

we obtain

α̇(t) = (M +R)α(t) + β,

where

α(t) =






α1(t)

α2(t)

α3(t)




 , β =






β1

β2

β3






M =






d1 0 0

0 d2 0

0 0 d3




 , R =






0 r2 r1

−r2 0 r3

−r1 −r3 0




 .

It is β = 2divd(F), as can be seen from (2.21) with α = 0. This completes the
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proof. �

For sake of completeness, we remark that letting H 6= 0 only modifies the

matrix R from Proposition 2.16 (see also Corollary 2.8). From Proposition 2.16,

we can extract some properties of (2.15) for d = 2:

Corollary 2.17. Let ρ solve (2.15) with initial condition ρ0 (ρ0 a density ma-

trix). Let α, M , R and β be given as in Propostion 2.16. Then it holds that

(i) There is a unique normalised stationary state ρ∞ 6= c Id iff div(F) 6= 0

and M +R is invertible.

(ii) All solutions converge to the set of invariant states with rate at least µ,

where µ2 is the smallest eigenvalue of (M +R)†(M +R).

Proof: (i): From Proposition 2.16, we have that there is a unique normalised

stationary state iff M + R is invertible. If β 6= 0, this stationary state is not

c Id. From Proposition 2.16, we have that β 6= 0 iff divd(F) 6= 0. Since djj = 0

implies fjk = 0 for all k, any R that would lead to invertibility of M +R would

have to come from the Hamiltonian H.

(ii): Let γj := (M +R)−1βj . Then ρ∞ = 1
2 Id2 +

∑
j = 13γjσj , and due to the

orthogonality of Id2, σj (j = 1, 2, 3) in H we obtain that

‖ρ− ρ∞‖2H = 4

3∑

j=1

(αj − γj)
2 = 4|α− γ|2,

where we have used ‖σj‖H = 2, 1 ≤ j ≤ 3. We also get

d
dt (α− γ) = α̇ = (M +R)α− β = (M +R)(α− γ).

So for the solution ρ, we have

(α(t)− γ) = e(M+R)t(α0 − γ),

where α0 is the coefficient vector for the initial condition ρ0. This implies

|α(t)− γ| = |e(M+R)t(α0 − γ)| ≤ ‖e(M+R)t‖2 |α0 − γ| ≤ e−µt|α0 − γ|.

Here, ‖e(M+R)t‖2 is the spectral norm of e(M+R)t and we have used ‖eA‖ ≤ e‖A‖

with

µ = ‖M +R‖2 =
√
λ,
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where λ > 0 is the smallest eigenvalue of (M +R)†(M +R). �

These results closely resemble the situation discussed in §1. If there is “full

dissipation” (D has full rank), then the antisymmetric part is not necessary

for existence of unique stationary states, though it can influence the stationary

state itself as well as the rate of decay. In the case where D does not have full

rank, the antisymmetric part of F has to be “compatible” for the equation to

still have existence of a unique stationary state. This compatibility takes the

form of condition (A) in §1, and of the condition “M + R invertible” for this

2-dimensional case.

2.6 Conclusion, open questions

With the results of Section 2.4, we can not expect to establish an entropy method

for symmetric operators L, a scenario that would correspond to the “canonic”

entropy method for symmetric Fokker-Planck equations. Since chapter 1 shows

that the entropy method can be transferred to non-symmetric equations, this is

not the end for a quantum entropy method; it merely implies that one would

have to take non-symmetric terms into account.

A problem in doing so is the result of Lemma (2.7): discrete partial deriva-

tives do not commute, at least not with the chosen definition. Even worse, we

have

Corollary 2.18. Let ρ ∈ C
d×d. Then all discrete partial derivatives

∂jdρ := i[ρ,Ej ]

commute iff ρ = c Idd for some c ∈ C.

Proof: From Lemma (2.7), we have that

∂ld(∂
j
dρ)− ∂jd(∂

l
dρ) = i[ρ,

r∑

m=1

smEkm ].

From the computations in the proof of Proposition 2.16, we have that
r∑

m=1
smEkm

spans at least E3, E4, and that a matrix that commutes with E3 and E4 is a

multiple of the identity. So the assumption follows for d = 2, and by extension

for d > 2. �

In the classical case, commutation of second partial derivatives is used for
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computing the Gronwall inequality between first and second time derivative of

the relative entropy. Since this does not hold in the quantum case, we can not

expect to be able to transfer this computation; this inequality would have to be

found another way.

This result and Corollary 2.8 indicate that the approach used in chapter

1 for the entropy method for non-symmetric Fokker Planck equations can not

easily be transferred: Neither is divd(R∇d(ρ)) = 0 for R = −RT , nor can we

expect to obtain our stationary state from the equation

(D +R)∇dρ∞ + Fρ∞ + ρ∞F = 0.

So one would have to find another approach to handle the non-symmetric terms

that appear in any operator L with a kernel not spanned by Idd.

Another fundamental difference is apparent from Theorem 2.11 and Propo-

sition 2.16: The rate of convergence is mainly influenced by the diffusion matrix

D; the drift part of 2.15 seems to only contribute a rotation that mixes eigenval-

ues. In contrast, for the classical case discussed in chapter 1, the diffusion matrix

D merely influences the shape of the stationary state; the rate of convergence is

solely determined by the eigenvalues of the drift part. This, combined with the

fact that there can be constant non-trivial stationary states, indicates that the

finite dimensional problem might be more closely connected with Fokker-Planck

equations on bounded domains than those on the whole space.

In conclusion, the presented approach allows a discussion of (2.1) in terms

that more closely resemble the techniques used in partial differential equations

than the statistical approach generally used for (2.1). While ultimately un-

successful in its endeavour to establish an entropy method for open quantum

systems, we are hopeful that it can serve as a basis for future research and to

identify some of the similarities and differences between (2.1) and (1).
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[22] R. Carbone, E. Sasso, V. Umanità, Decoherence for quantum markov semi-

groups on matrix algebras, Annales Henri Poincaré 14 (2013), 681–697.
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Probab. 9 (1981), 533–535.

[27] L. Desvillettes, Hypocoercivity: The example of linear transport, Contem-

porary Mathematics 409: Recent Trends in Partial Differential Equations

(2006), 33–53.

[28] J. Dolbeault, M. del Pino, Generalized Sobolev inequalities and asymptotic

behaviour in fast diffusion and porous medium problems, Preprint Ceremade

(1999).

[29] J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoercivity for kinetic equations

with linear relaxation terms, Comptes Rendu Mathematics 347 (2009), 511–

516.

[30] J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoercivity for linear kinetic

equations conserving mass, to appear in Trans. AMS.

[31] R. Duan, Hypocoercivity of Linear Degenerately Dissipative Kinetic Equa-

tions, Nonlinearity 24 (2011), 2165–2189.

[32] K.-J. Engel, R.Nagel, A Short Course on Operator Semigroups, Springer

2006.

[33] J. Erb, A. Arnold, Sharp entropy decay for hypocoercive Fokker-Planck

equations with linear drift, Preprint 2014.

[34] S. Gadat, L. Miclo, Spectral decompositions and L2-operator norms of toy

hypocoercive semi-groups, Kinetic and Related Models 2 (2013), 317–372.

[35] V. Gorini, A. Kossakowsi, E.C.G. Sudar shan, Completely positive dynam-

ical semigroups of N-level systems, J. Math. Phys. 17 (1976), 821–825.

[36] L. Gross, Logarithmic Sobolev inequalities, American Journal of Mathemat-

ics 97 (1975), 1061–1063.

[37] L. Gross, Logarithmic Sobolev inequalities and Contractivity Properties of

Semigroups, Lecture Notes in Mathematics 1563, E. Fabes et al. (Eds.)

“Dirichlet Forms”, Springer (1993).

[38] P. Gurka, Ar-condition for two weight functions and compact imbeddings

of weighted Sobolev spaces, Czechoslovak Mathematical Journal 38 (1988),

611–617.



136 BIBLIOGRAPHY

[39] B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-

Planck operators and Witten Laplacians, Lecture Notes in Mathematics 1862

(2005).
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