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Deutsche Kurzfassung

Evolutionsgleichungen spielen eine zentrale Rolle in vielen Anwendungsgebieten.
Ein Beispiel fiir eine solche Evolutionsgleichung ist die Fokker-Planck-Gleichung,
eine partielle Differentialgleichung fiir die zeitliche Entwicklung einer Wahrschein-
lichkeitsdichte, das heifit einer Funktion, die zum Beispiel die Verteilung von
Teilchen im Raum beschreibt. Die Fokker-Planck-Gleichung findet in vielen
Naturwissenschaften Anwendung, unter anderem in der Festkorperphysik, Quan-
tenoptik, chemischen Physik und theoretischen Biologie [57]. Sie wird auch in
der Finanzmathematik verwendet, dort allerdings in stochastischer Formulierung
unter dem Namen Ornstein-Uhlenbeck-Prozess, um Zinsraten, Wahrungswech-
selraten und die preisliche Entwicklung von Giitern zu modellieren. Neben
den Standardfragestellungen beziiglich Existenz und Regularitdt von Losungen
sind im Umfeld von Evolutionsgleichungen typischerweise die Existenz und Ein-
deutigkeit von Stationédrzustinden sowie das Langzeitverhalten der Losungen
(zum Beispiel Abklingen zum Stationirzustand und die zugehorige Abkling-
rate) interessant. In dieser Dissertation behandeln wir diese Fragestellungen fiir

Fokker-Planck-Gleichungen vom Typ

Ouf = Lf :=div(DVf + Ff) on (0,00) x RY,
f(t=0) = fo € L'(RY),

/fo dx:lafOZO
R4

Hierbei ist F : RY — R ein Vektorfeld und D = DT > 0 eine posi-
tiv (semi-)definite Matrix in R?*¢. Ist D singulir, wie zum Beispiel in der
kinetischen Fokker-Planck-Gleichung [57], gibt es eine mathematisches Problem,
welches in den letzten Jahren zunehmend in den Fokus der Forschung geriickt
ist: Im Term div(DV f) zweiter Ordnung, der eine wesentliche Rolle fiir das
Verhalten von Losungen spielt, fehlen Ableitungen in einem Teil der Ortsvari-

ablen. Daher ist die Gleichung nicht mehr voll parabolisch, sondern degeneriert

il



iv

parabolisch, und viele der bekannten Resultate iiber voll parabolische Gleichun-
gen lassen sich nicht anwenden (oder zumindest nicht direkt). Es gibt zwei es-
sentielle Eigenschaften fiir voll parabolische Gleichungen: Regularisierung, das
heift glatte Losungen selbst bei unstetigen Anfangsdaten, und (unter Bedingun-
gen an den Term erster Ordnung oder den Definitionsbereich) Koerzivitéit. Ko-
erzivitdt impliziert ein Abklingen der Losungen gegen einen Stationdrzustand.
Beide Eigenschaften sind im Allgemeinen fiir degeneriert parabolische Gleichun-
gen aufgrund fehlender zweiter Ableitungen nicht zu erwarten. Voraussetzun-
gen, unter denen Regularisierung auch fiir degeneriert parabolische Gleichungen
gilt, wurden in den 60er- und 70er-Jahren primér von Hormander [42] etabliert.
Diese Ergebnisse, die unter das Konzept Hypoelliptizitit fallen, werden wir in
der vorliegenden Arbeit verwenden. Die Existenz von Stationédrzustédnden und
das Abklingen der Losungen im degenerierten Fall haben in den letzten Jahren
wachsendes Interesse unter dem Begriff Hypokoerzivitdt geweckt, vor allem durch
die Arbeit von Villani [67]. In der vorliegenden Dissertation werden wir Be-
dingungen beweisen, unter denen die Fokker-Planck-Gleichung hypokoerziv ist,
und zudem einen eindeutigen (normalisierten) Stationdrzustand sowie scharfe

Abklingraten fiir Losungen gegen diesen Stationérzustand berechnen.

Zu diesem Zweck werden wir eine Entropiemethode fiir lineare Fokker-Planck-
Gleichungen mit linearen Driftkoeffizienten F' entwickeln, die es erlaubt, scharfe
Abklingraten fiir L'-Anfangsdaten mit endlicher relativer Entropie (eine schwi-
chere Bedingung als L2-Anfangsdaten) zu berechnen. Dazu benédtigen wir die
Regularitdt und Positivitdt von Losungen, die wir in Abschnitt 1.1 beweisen.
Diese Eigenschaften folgen aus der Hypoelliptizitdt der Gleichung, die wir zusam-
men mit der Hypokoerzivitdt in Lemma 1.3 charakterisieren. Die erhaltenen Be-
dingungen verwenden wir in Abschnitt 1.2 um den eindeutigen (normalisierten)
Stationiirzustand f., zu berechnen und den Operator L auf L?(R%, fZ1), dem
Standardraum fiir Fokker-Planck-Gleichungen, zu betrachten. Abschnitt 1.3
enthélt das Hauptresultat der vorliegenden Arbeit, Satz 1.27: Mithilfe einer
adaptierten Entropiemethode aus [6] berechnen wir eine scharfe Abklingrate fiir
Losungen in relativer Entropie. Die Schéarfe der Rate wird in Satz 1.28 be-
wiesen. Auflerdem diskutieren wir kurz das Verhalten der Fishermatrix, das
bisher in diesem Kontext nicht untersucht wurde. In Abschnitt 1.4 berechnen
wir das Spektrum von L auf dem gewichteten Raum L?(R?, f!). Anhand dreier
charakteristischer Beispiele diskutieren wir die Ergebnisse dann in Abschnitt 1.5.
Abschnitt 1.6 enthélt einen alternativen Beweis fiir die Hypokoerzividt von L
beruhend auf einer Methode aus [67]. AbschlieBend diskutieren wir einige Ergeb-
nisse und Probleme, die auftreten, wenn man nichtlineare Driftkoeffizienten F

zulésst.
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Introduction

Evolution equations play a central role in many applications. One such partial
differential equation (PDE) is the Fokker-Planck equation, which describes the
time evolution of a probability density (a function describing e.g. the likelyhood
of finding particles under investigation in a certain region). The Fokker-Planck
equation is employed in different fields of natural science, including solid-state
physics, quantum optics, chemical physics and theoretical biology [57]. Tt also
appears in financial mathematics as an Ornstein-Uhlenbeck process, used to
model interest rates, currency exchange rates and commodity prices; though in
this context it is usually found in a stochastic formulation. Besides the usual
questions of existence and smoothness of solutions, typical questions in the
context of evolution equations are existence and uniqueness of stationary states
and long-term behaviour of solutions, such as decay towards the stationary state
and the speed of such decay. In this thesis, we shall investigate these questions

for Fokker-Planck equations of the form

Oif = Lf :=div(DVf + Ff) on (0,00) x RY, (1)
f(t=10) = fo € L'(RY),

/fo dx:lafOZO
Rd

Here, F : R? — R? is a vector field and D = DT > 0 is a positive
(semi-)definite matrix in R¥*?, If D is not regular (such as in the case of the
kinetic Fokker-Planck equation [57]), there is a mathematical difficulty that has
received growing attention in recent years: The second order term div(DV f),
which plays a crucial role in the behaviour of solutions, does not contain deriva-
tives in all space variables. Thus, the equation is not fully parabolic, but de-
generate parabolic, and many of the results for fully parabolic equations do not
apply (at least not directly). There are two fundamental properties one can
expect from fully parabolic equations: regularisation, that is smooth solutions

even for non-smooth initial data, and (under conditions on the domain or first-
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order terms) coercivity, which implies decay of solutions towards a stationary
state. Both of these do not in general apply to degenerate parabolic equations
due to the missing second-order terms. Conditions for the first property, i.e.
regularisation, to apply to degenerate parabolic equations were established in
the 60’s and 70’s, primarily by Héormander. These run under the concept of hy-
poellipticity, and we will make use of these results in our calculations. Existence
of stationary states and decay of solutions in the degenerate case have received
growing attention in recent years, and the emerging umbrella term is hypoco-
ercivity, introduced primarily by the works of Villani [67]. In this thesis, we
shall characterise when (1) exhibits hypocoercivity, and additionally establish
stationary states and sharp rates of decay for solutions towards the stationary

state.

To do so, we extend the entropy method, a powerful tool in the large-time-
analysis of fully parabolic equations, to the case of degenerate Fokker-Planck
type equations. The central idea of the entropy method is using the physical
relative entropy between a solution and the stationary state as a Lyapunov
functional, that is, a measurement of distance that is monotonously decreasing
in time, and thus can be used to gain decay estimates. Another often used
candidate for Lyapunov functionals is the physical energy of the system, but
since the energy contains derivatives of the solutions, using it as a Lyapunov
functional mandates higher regularity for the initial conditions. Employing the
entropy method, one can reduce the regularity requirement for initial data to
finite relative entropy, a requirement “between” L' and L?. Another approach
to decay estimates is the spectral method, where one computes a lower bound on
the real part of the spectrum of L (on the orthogonal complement of its kernel,
of course). The spectral approach requires a fixed setting, usually H' C L? to
make use of their Hilbert space properties, and decay estimates thus obtained
do not directly transfer to initial data with less regularity. Furthermore, the
spectral method is usually only applicable for linear PDEs, whereas Lyapunov
functionals (and the entropy method) have been successfully employed in many
non-linear models (e.g. [4], [16], [17], [24], [25], [23], [28], [55])-

We remark that, in (1), the matrix D only appears in front of the gradient,

whereas in most of the literature, the operator is usually written in the form
div(D(Vf + Ff)).

This is equivalent for a regular D, but if D is singular, the above form will
not allow an entropy method: The operator then only acts on some subset of
R? — to be precise, the complement of the kernel of D — and there will never

be a unique steady state. While this difference in notation is necessary, it is
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important to keep in mind when comparing this thesis with literature on non-

degenerate equations.

For most of this thesis, we make the additional assumption
F:RY = R? 22— Cx with C e R™*4,
So we consider the degenerate parabolic Fokker-Planck equation
Ouf = Lf :=div(DVf 4 Caf) = div(DVf) + 2TCTVf + Te(C)f, (2)

and analyse solutions that satisfy f(t,-) € L'(R?) along with [ f(t,x) dz =1
Rd
for all ¢t > 0.

A change of variables y := Mz for some orthogonal M (i.e., M7 = M~1), leads

to the equation
ouf = div(MDMTVf + MCMTyf).

Since D is symmetric and positive definite, there exists an M such that M DM

is diagonal. Rescaling the space variable then yields

D = diag{1,...,1,0,...,0},
—— N——

k d—k

k:=rank D, 1 < k < d. We will thus assume w.l.o.g. that D has this simple

form. The case k = d has been studied extensively, see for example [6].

In the case £ < d, the operator L is not elliptic, and classical parabolic
results will not apply for (2). This motivates investigating hypoellipticity and
hypocoercivity for the operator L in (2). We shall see that in this case, hypoco-
ercivity requires hypoellipticity. That is not always the case, as for example

with the linear relaxation terms considered in [29].

A very good, broad discussion of hypocoercivity can be found in [67], which

also contains a precise definition of hypocoercivity:

Definition 0.1. Let H be a Hilbert space, L an unbounded operator on H with
kernel K. Let H be another Hilbert space, which is continuously and densely
embedded in K+. Then —L is said to be hypocoercive on H if and only if there

is A > 0 and some constant ¢ such that

Vh € H : ||eTh| 5 < ce || 5.
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[67] also establishes a general criterion for exponential convergence of so-
lutions for a class of hypocoercive evolution equations, based on a Lyapunov
functional equivalent to a weighted H'-norm. While the main theorem in [67]
covers a wide class of problems, the price paid is in the estimate for the decay

rate, which is off by orders of magnitude.

In the last few years several papers dealt with the large-time behaviour of
hypocoercive equations. But to our knowledge, sharp decay rates were only con-
sidered in [34] for two specific toy models, using the spectral decomposition of
their generators. In [52] several collisional kinetic models (including the Fokker-
Planck equation, linearised Boltzmann and Landau) are analysed on the torus
(in the spatial variable): Exponential convergence to the steady state is shown
in the H'-norm. In [51], a decay estimate is obtained for a 2-dimensional ki-
netic Fokker-Planck model using higher order time derivatives of the L?-norm of
solutions and their space derivative. Also [31] and [10] study dissipative kinetic
models (i.e. with k = 4) in H'. While [31] uses a macro-micro decomposition
of the models, [10] is based on an (augmented) I'y—calculus and local computa-
tions (in contrast to the integrated functionals used by most other authors), cf.
also [13]. [30] and [10] also analyse much more general hypocoercive equations.
Along with [31] they require the following restriction on the interaction between
the degenerate dissipative part and the non-symmetric part of L: It is assumed
that the map C7" does not map any subspace of the kernel of D into the kernel
of D (which is equivalent to using only first order Héormander-commutators to
span all of R?, cf. §3 in [10]). But this condition is more restrictive than nec-
essary. In this paper and in [67], only the weaker condition (A) (see Definition
1.1 below) shall be imposed.

The common approach to study the long-term behaviour of hypocoercive
equations has been via a Lyapunov functional - usually on a weighted H'-space,
but [67] also contains (in Theorem 28) a Lyapunov functional based on the log-
arithmic entropy. In [30], the authors get rid of the H!-regularity restriction
on initial states and prove decay towards the steady state using a modified L?-
norm. In [67], it is shown that even for methods based upon H'-functionals, one
can often get rid of the regularity assumptions by using the regularisation of the
semigroup e'”. So far, there is no knowledge on the decay of general entropies
“between” logarithmic and quadratic, nor on sharp decay rates for equations of
types (2). In this paper we shall modify the entropy method (see [6], [13]- [15])
to achieve all three results for equations of type (2): no H'-regularity require-
ment for the initial state, sharp decay rates, and decay for a wide class of relative

entropies.
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The strategy of the standard entropy method is to derive first a differential
inequality between the first and second time derivative of the relative entropy
(of the solution w.r.t. the equilibrium state). Their time evolution in a proto-
typic situation is shown in Fig. la. Integration in time of the inequality then
allows to deduce exponential decay of the relative entropy. But this approach
is not feasible for degenerate Fokker-Planck equations, since the entropy dissi-
pation can vanish for states other than the equilibrium. Hence, the second time
derivative of the entropy may change its sign along a trajectory, see Fig. 1b.
Therefore, we shall introduce an auxiliary functional — structurally related to
the entropy dissipation, but in general larger than the latter. A Bakry-Emery-
type estimate then yields exponential decay of this auxiliary functional, and
consequently also of the entropy dissipation. A convex Sobolev inequality with
the auxiliary functional as its relative Fisher information [6] finally yields the
exponential decay of the relative entropy. Initially, this approach shall need
an additional regularity assumption for the initial state. But this can then be

removed using the regularisation of the parabolic equation (2), as in [67].

Figure 1: Prototypical behaviour of the relative entropy e(t), its first and second
derivatives.

60 7
501
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(a) Non-degenerate case: The inequalities (b) Degenerate case: The inequalities e’ <
e < —pe, e’ > —pe’ can be obtained. —pe, ¢’ > —pe’ are wrong, in general.

e - e ——e"m)]

e - e ——e"m] [

There is a well understood connection between convex Sobolev inequali-
ties [36], [37] related to the measure p = foo dx, decay of solutions towards

the unique stationary state fo, = ¢y exp(—V) in relative entropy, and a Bakry-
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Emery condition of the form %2;; > A\ D7 In the case k = d, a convex

Sobolev inequality implies decay in the corresponding relative entropy. Con-
versely, decay in relative entropy implies a convex Sobolev inequality (see [6],
§3). The Bakry—Emery condition implies both, but it is not a necessary require-
ment. For k < d, the (classical) Bakry—Emery condition on V' can not hold
due to the singularity of D. As can be seen from figure 1b, (2) will also not
give rise to such inequalities along solution trajectories, as for & = d. There
is still a convex Sobolev inequality related to the measure p = fo dx, but it
no longer directly implies decay of relative entropy. It still relates the relative

entropy to a modified entropy production, and we shall make use of that in §1.3.

This thesis is split in two parts. First, in §1, we establish an entropy method
for (2) that proves sharp decay rates for L!-initial data with finite relative en-
tropy (a weaker condition than L?-initial data). We start by deriving regularity
and positivity of solutions in §1.1. In this case, they derive from the hypoellip-
ticity of L, which we characterise in Lemma 1.3. §1.2 follows this up by explicitly
giving the unique (up to normalisation) steady state foo and discussing the op-
erator L in L?(R%, f7!), the standard space for Fokker-Planck equations. In
§1.3, we state our main result in Theorem 1.27: a modified entropy method
from [6] allows to compute an explicit decay rate for solutions of (2) in relative
entropy. We also briefly discuss decay of the Fisher information matrix, which
has not yet been done in this context. The sharpness of the decay rate will be
shown in Theorem 1.28. In §1.4 we compute the spectrum of L on the weighted
space L2(R%, 1), In §1.5, we discuss our result for three archetypical exam-
ples. §1.6 provides an alternative proof for the hypocoercivity of L, adapted
from [67]. Finally, we will discuss a few results and problems that appear when
generalising to nonlinear drift coefficients F' in §1.7. Most of the results in §1

will be published in a separate paper [33].

In the second part, §2, we investigate a possible entropy method for open
quantum systems in Lindblad form. Details and an introduction are given in

the outline of the same chapter, §2.1.



Chapter 1

Hypocoercive

Fokker-Planck equations

1.1 Hypoellipticity of L

If D is not regular, the operator L is neither coercive nor elliptic. In general,
such an operator does not lead to a unique normalised stationary state in (2).
We thus need additional assumptions on the parameters in L, which shall be

assumed throughout §1.1-1.5:

Definition 1.1. The operator L from (2) fulfils condition (A) if and only if
(i) there is no nontrivial CT-invariant subspace of ker D,
(ii) the matrix C' € R4*? is positively stable!.

Condition (A) is stricter than necessary for the existence of solutions to (2):
the extra condition, positive stability of C', means that the drift part acts as a
confinement potential. While there are solutions even without condition (A.ii),
there will be no steady state (compare the heat equation on R?). Indeed, The-
orems 1.12 and 1.27 show that condition (A) is both sufficient and necessary
for the existence of a unique normalised steady state for (2) and exponential

convergence of solutions to the steady state.

LA matrix is positively stable iff all eigenvalues have real part greater than zero.

7



8 CHAPTER 1. HYPOCOERCIVE FOKKER-PLANCK EQUATIONS

1.1.1 Existence of solutions

Proposition 1.2. Let fo € LY(R?). Then there is a unique solution f €
C>(R* x R of (2) iff no non-trivial subspace of ker D is invariant under
CcT.

Proof: The assumption that no non-trivial subspace of ker D is invariant
under C7 is equivalent to the hypoellipticity of L. We refer to page 148 of [42]
for a proof. (]

If the condition in Proposition 1.2 does not hold, (2) clearly also has a
unique solution, but it would be less regular. Due to the special form of D, we
conclude that C' cannot be diagonal unless k = d. A heuristic explanation of this
condition is that the solution cannot stay in the kernel of the dissipative part,
and therefore the evolution under (2) acts dissipative in all space directions: If

one considers merely the drift part of the equation,
fo=(Cx)-VFf, (1.1)

the solution is f(t,x) = fo(e“*x). So, for the dissipative part to "extend” to the
whole space, one needs that e“*x reaches the whole space R? for all z € im D
(im D being the image of D), or conversely, that eC"tx evolves into im D for all
x € ker D . This is, in fact, an alternative characterisation of the hypoellipticity

of L, as shown in Lemma 1.3.

We recall that some approaches from the literature require a stricter condi-
tion than in Proposition 1.2: That no subspace of the kernel of D be mapped
into the kernel of D by CT'. To illustrate this restriction, consider the examples

1 0 0 O 1 0 -1 0

01 0 0 01 0 -1
Dy = : (le =

0 0 0 O 1 0 O 0

0 0 0 O 01 0 0

and

1 0 0 O 1 0 0 0

01 0 O 01 -1 0
Dy = : (,*QT —

0 0 0 O o1 0 -1

0 0 0 O 0O 0 1 0

In both cases, there exists a unique steady state and all solutions converge
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exponentially to the steady state. For the case of Dy and C4, the condition
given in [30], [31] and [10] hold:

YO0#U CkerD: CTU ¢ ker D. (1.2)

In the case of Dy and Cs, the same condition does not hold, even though the
problems seem very ’similar’. The difference can be seen as follows: consider a
vector of the form (0,0,0,a)”. If we apply CT to this vector, it is moved out
of the kernel of D. However, if we apply C7, it is not. In order to move it out
of the kernel of D, we need to apply CI twice (i.e. multiply by (C%)?). More

precisely, the following weaker version of (1.2) holds:
VO0#£UCkerD: CTU ¢ U.

So the condition given in [67], [42] and here is less strict. As will be shown
in §1.2.1, condition (A) is equivalent to the existence of a unique normalised

steady state.

In the following lemma, we shall give four equivalent characterisations of
the hypoellipticity of L. This will allow us to use either characterisation where
required. For example, we shall use (iv) for a proof of the positivity of solutions
in §1.1.2, and (#ii) in the proof of the regularisation for the semigroup e** in
Theorem 1.26.

Lemma 1.3. The following four statements are equivalent:
(i) No non-trivial subspace of ker D is invariant under CT .
(ii) No eigenvector v of CT fulfils Dv = 0.

(iii) There exists T € {1,...,d — k} and k > 0 such that

T

> C¢ID(CTY > k1d, (1.3)
j=0

where k = rank D.

() For anyt € R, h > 0, it holds that

VO #EekerD 3s € [t,t+h] Ipeim D : (€ 5¢,n) = 1.

Proof: (i)=(ii): If 0 # v € iR? is an eigenvector of CT with Dv = 0, then
span{v + T,v — T} is a non-trivial subspace of ker D invariant under C7".

(ii)=(i): If V C ker D is invariant under CT, then so is its extension to a
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subspace in C%. But in C?, any non-trivial subspace invariant under C” contains
at least one eigenvector of C'7.

(i)=(iii): All matrices CV D(CT)J are symmetric and positive semidefinite, since
D is symmetric and positive semidefinite. It suffices to show that for any vector
v # 0, there exists j < d — k with D? (CTYv = D(CT)Y v # 0, since then
i (C)D(CT)I is regular for 7 := 111112(})(1}16111\71{‘7|D%(CT)% #0}.

Jj=0

If v ¢ ker D, we choose j = 0, and hence Dv # 0. So let now 0 # v €
ker D. Then either CTv ¢ ker D, in which case DCTv # 0, or CTv € ker D.
Repeating this procedure, we see that either there is j < d—k such that (C7)/v ¢
kerD or VO < j < d—k : (CT)/v € ker D. Assume the latter. Since the
dimension of ker D is d — k, the d — k + 1 vectors (CT)/v, 0 < j < d — k are not
linearly independent. Thus, 31 € {1, ...,d — k} such that span{v, ..., (CT)w} =
spanf{v, ..., (CT)=ty}. Hence, span{v,...,(CT)w} is a CT-invariant subspace
of ker D, which has to be trivial due to condition (A). But then v = 0, which is
a contradiction.

(iii)=(i): If 0 # v € ker D, then by (ii) there is a j € {1,...,7} such that
D= (CTYiv #£0, ie. (CT)Iv & ker D. Thus, no non-trivial subspace of ker D can
be invariant under C'7.

(i)=(iv): Let 0 # ¢ € ker D. To proceed by contradiction we assume
Vs € [t,t+h] ¥y €imD : (e %€ n) = 0. (1.4)
This implies
Vs € [t,t+h] :eC %€ € ker D,

and therefore in particular v := eCTtg € ker D. Differentiating (1.4) with respect
to s yields

Vse[t,t+h|VneimD : (eCTSC’Tf,m =0. (1.5)

But this implies CTv € ker D. Differentiating (1.5) repeatedly with respect to
s yields (CT)Iv € ker D for any 0 < j < d — 1. Hence span{v, ..., (CT)¥" v} C
ker D is a C'T-invariant subspace of ker D. That is a contradiction to condition
(A).

(iv)=(i): Let £ # 0 be in a CT-invariant subspace of ker D, i.e. (CT)¢ € ker D
for any j € Ng. Since CT € R4, ¢C"s i a polynomial in CT (albeit with

s-dependent coefficients) and (iv) immediately gives a contradiction. (]

Remark 1.4. If 7 is the minimal constant for which Lemma 1.3 holds, then L
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fulfils the finite rank Hérmander condition of order 7 (see [42] Theorem 1.1).

Using 7 = d — k summands in (1.3) actually covers the worst-case scenario. But
T

in many examples, Y (C)/D(CT)J with 7 < d — k is already positive definite.
§=0
This is the case in the kinetic approaches discussed in [10], and [31], which

require 7 = 1 and k = 4. Also in [30], 7 = 1 is assumed.

We also want our solution to be in C(R{, L' (R%)), since then the normali-

sation

/f(t,x) de=1
Rd

holds for all ¢t due to the divergence form of the operator. This fact follows
from the existence of a Green’s function for (2), which we will construct in the
following lemma. We note that this construction has already been done in [42],

with slightly different notation.

Lemma 1.5. Let condition (A.i) be fulfilled. Then the Green’s function g to
(2) is given by

where

is positive definite for all t > 0.
Proof: The Fourier transform of (2) is
ge=—(€"DE)g — (€7 CV)g. (1.6)

We are looking for a solution to the initial condition gy = 1. As an ansatz, we
take

9(t,€) = exp(~ETW (1)€)

with a symmetric matrix W that is positive definite for all ¢ > 0 and fulfills
W(t =0) = 0. Inserting this into (1.6), we get

—(£"Wi6)g = (—€" DE)g +2(" CWE)g,



12 CHAPTER 1. HYPOCOERCIVE FOKKER-PLANCK EQUATIONS
which implies due to g > 0
Wi =€"DE— T (OW + WeT)E.
This can only be fulfilled if
W, =D—-CW -wcT. (1.7)

Equation (1.7) together with the initial condition W (¢ = 0) = 0 has the unique

solution

t
W(t) = /ec<5*t>DeCT<S*t> ds.
0

We need to prove: g(t,-) € L*(RY) and g(¢,z) > 0 for t > 0, z € R%. To this
end it remains to show that W (t) > 0 for all ¢ > 0. Clearly W(¢) > 0, since
it is an integral over positive semidefinite matrices. So assume that W (ty) is
singular for some tg > 0, i.e. there exists 0 # ¢ € R? such that

to
0=¢"W(to)é = /gTedS*tO)DeCT(S*to)g ds,
0

where the integrand is non-negative. Due to the continuity of the matrix expo-
nential, this can only hold if
gT(eC(sfto)DeCT(sfto)g -0
for all s € [0,%o]. Since D = D?, this implies
De e =0

for all r € [0, tp], in particular £ € ker D. But this is a contradiction to Lemma
1.3. Hence, W (t) > 0 for all ¢ > 0, and an inverse Fourier transformation of g

gives
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We now state an existence result on solutions in LP, which is similar to
Corollary 3.1 from [62]:

Corollary 1.6. Let condition (A.i) be fulfilled. Let fo € L*(R?) N LP(RY),

for a p € [1,00]. Then there exists a unique classical solution f to (2) with

f€C([0,00), LP(RY))UC®(RT xRY). If [ fo dz =1, it follows [ f(t) dz =1
Ra R4

for allt > 0.

Proof: From Proposition 1.2 we already have that a solution f is smooth

for any ¢t > 0. With the Green’s function from Lemma 1.5 we obtain

Applying Young’s inequality yields

£l ze®ay = l9(t) * foll o ay < [l foll Lo ®ayllg(t) || L1 (may-

From the proof of Lemma 1.5 we obtain ||g(t)||11(re) = 1. The desired normal-

isation then follows from the divergence form of the operator. O

This answers the question of existence of solutions.

1.1.2 Global positivity

For a non-degenerate Fokker-Planck equation, the solution is globally positive
for any ¢t > 0. This follows from a strong maximum principle supplied by the
fully parabolic operator. In our degenerate case, a strong classic maximum
principle does not hold. From a weak maximum principle, we obtain that the
solution is nonnegative. However, global positivity is important, since most
admissible entropies are only defined on positive functions. Under condition

(A.i), we can derive global positivity of solutions from the hypoellipticity of L:

Theorem 1.7. Let condition (A.i) hold and fy € L1.(RY). Let f be the solution
to (2). Then

Vt >0 Ve e R f(t,z) > 0.

This theorem follows directly from the strict positivity of the Green’s func-
tion g from Lemma 1.5. However, we give a second proof via a sharp mazimum
principle from [41]. As the second approach is more general, it is more promis-
ing for an extension of these results to a nonlinear coefficient F'. We need to

introduce some notation.
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First, we rewrite our operator in degenerate elliptic form:
o\ (0o P
Lf:= ¢ D t +b- t ,

Do ( 0 O ) c R(d+1)x(d+1),

b(z) == ( ;; ) € R

Comparing this with our original operator L, we have

where

Lf=Lf— fi —Tx(C)f. (1.8)
Due to the special form of D, the rows d; of D are of the form
(dj)r =0

for2<j<k+1(k=rankD)andd; =0for j=1,k+1<j<d+1 With
this notation, we shall now introduce drift and diffusion trajectories:

Definition 1.8. Let Q be a connected open set in R4+, py € Q.

e If p(s) is the solution to

with some 2 < j < k+ 1, and if p(s) € Q for s < s < so with some
s1 < 0 < sg, then we call T := {p(s)|s1 < s < s2} a diffusion trajectory
running through pg.

e If p(s) is the solution to
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with b(p(s)) # 0, and if p(s) € Q for 0 < s < ' with some s’ > 0, then we
call T := {p(9)|0 < s < &'} a drift trajectory starting at py.

Remark: Drift trajectories are oriented at po in the direction b(pg); they
do not run both ways. Diffusion trajectories are not oriented, they run in both
directions. In our special case of a diagonal D, each diffusion trajectory moves

along one of the canonical unit vectors in im D.

Next, we introduce the propagation set:

Definition 1.9. Let Q C R4t Two points p,q € R4 are connected by a
diffusion trajectory in € iff there is some diffusion trajectory I' C Q with p,q € T".
q is connected to p by a drift trajectory in  iff there is a drift trajectory I' C €
starting at p with g € T'.

For any point p € Q, the propagation set S(p,2) consists of all ¢ € Q that are

connected to p by a finite series of drift and diffusion trajectories.

Again, note that drift trajectories are oriented and cannot connect points
in the "backward direction’. Therefore, it is possible that ¢ € S(p,2) while
p & S(q,Q).

With this notation, we can restate the interior maximum principle from Theorem
1 of [41]:

Theorem 1.10. Let p = (t,z) € Q C R4t > 0. Let the function f € C%(Q)
satisfy Lf <0 on the propagation set S(p, Q) and

inf > 0.
S(p,Q2) f=

If f(p) =0, then f =0 in S(p, Q).

The propagation set corresponding to equation (2) can be characterised as

follows:
Lemma 1.11. Letp = (t,x) € R, Then S(p,R4TY) = [0,t) xRIU {(t,20)} x
RE, where xq is the orthogonal projection of x onto the kernel of D.

Proof: First, note that only drift-trajectories are non-constant in time,

since the first row of D is zero. A drift trajectory £(s) = (t(s),v(s)) starting at
&o = (to,vo) has the form
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The solution to this equation is

(s) = ( . ) .

This means that drift trajectories move backwards in time linearly. Thus, for a
point ¢ = (¢',y) to be connected to p in the time-variable, it is necessary that
t’ < t. This is to be expected, as it is also the case for the classical maximum
principle for parabolic equations.

Since the diffusion trajectories span the subspace R™ = im D C R?, we write
p = (t,xp,zo) and ¢ = (t',yp,yo), where zp and yo are the projection of z
and y onto the kernel of D. Without moving backwards in time, we can only

connect via diffusion trajectories. This implies
Sp, R n{(f,2) e R™E =t} = {(t,20)} x R

It remains to show that any point ¢ = (¢',y) with ¢’ < ¢ can be connected to p.
The strategy here is the following: Since we can freely move around in im D, we
only need to connect ¢ and p in the kernel of D and in time. To achieve this, we
employ Lemma 1.3, (iv). We will proceed in a series of trajectories: A number
of drift trajectories (equal to p := dimker D +1 = d — k + 1), each of them
followed by up to k = rank D diffusion trajectories. Starting at £, = (¢, z), such

a series of two drift and 2k diffusion trajectories will arrive at
(t — 5 — 8276052 [eCs1x + Zl] + 22),

where 21,29 € im D are the results of shifts by diffusion trajectories and 0 <

$1,82. Thus, a series of u trajectories will arrive at

Iz p—1 Iz
(tfsz,eXp(CZSj)Z+ Zexp(c Z s1)zj + 2u),
Jj=1 Jj=1 j=1 I=1+j

where z; € im D, 1 < j < p. Setting this equal to our target point ¢ = (t',y)

and rearranging terms, we obtain the following requirements:

C(t—t")

. !
ecrﬂzj+z#:yfe x,

I
with r; € [0,t —¢'], 7; = Y. s;, s; > 0. The projection of this equation onto
I=j+1
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im D can always be solved by setting z, accordingly. For the projection onto

ker D, we get
p—1
! ’
(Id—D) Z e“miz; = (Id —D)(y — e“@z) =: vy € ker D.
j=1

The left-hand side can be seen as a linear mapping from (im D)*~! to ker D,
since each of the matrix exponentials can take an arbitrary argument z; € im D.

So we need to show that

(Id —D)e“ 7)1 <j<p : (im D)1 — ker D, (1.9)
pn—1
(z)1<j<p-1— (Id=D) Y e“riz
j=1
is surjective for some choice of 0 < 7,1 < ry_o < --- <1 < t—1t. Let

ry € [tg—t/,t —t']. Then either
(Id —=D)e®™ :im D — ker D
is surjective, or there is & € ker D with ¢ L (Id —D)e“™ im D (since the image
of a linear map is always a linear subspace). But then from Lemma 1.3 there is
ro € (0,71) and n € im D with
(14 =D)er2n,€) = (.7 7€) = 1.
Now, since & £ (Id —D)e“"2 im D, we have
dimspan [(Id —D)e“™ im D, (Id —D)e“"* im D| > dim(Id —D)e“"" im D.
Then either
((Id —D)e“™, (Id —D)e“"*) : im D x im D — ker D.

is surjective, or we repeat the process. Each repetition increases the dimension
of the reachable subspace of ker D by at least one. Thus, we will need at most

pu— 1 =dimker D iterations, and hence (1.9) is surjective. O

To see that the solution f of (2) fulfils f > 0, one can employ the same
method used for the classical maximum principle for non-degenerate parabolic
equations. Now we give the proof of Theorem 1.7 via the sharp maximum prin-

ciple from [41]:
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Proof (of Theorem 1.7): Let f € C?>(R* x R?) be a solution to (2) for
some fo > 0 with [ fo dz = 1. Then
Rd

g(t) = e P f (1),
with 8 > |Tr(C)|, solves

gi — div(DVyg) — (Cz)TVg + (8 — Tr(C))g = 0, (1.10)
g(tzo):fﬂzoa

where §—Tr(C) > 0. The classical maximum principle then shows that g(x,t) >
0 for t > 0. From (1.8), we have

Lg=Lg—g:—Te(C)g = (-Tx(C) ~ B)g <0,
since B > |Tr(C)|. Assume g(t',2") = 0 for some t' > 0, 2’ € R?. Then Theorem

1.10 gives ¢ = 0 on [0,#') x R? and in particular g(0) = fo = 0. But this is a

contradiction to

/fo(x) dr = 1.
)

Hence, g(x,t) > 0 and also f(t,x) > 0 for all t > 0,z € R9, O

1.2 Steady State, weighted L>-space

1.2.1 Existence of a steady state

In light of Theorem 1.7, we are looking for a steady state fo of (2) that fulfils

the conditions

/foo(x) de =1, Ve eRY: f(x)>0. (1.11)
]Rd

In fact, the existence of such a steady state is equivalent to condition (A):
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Theorem 1.12. There exists a unique steady state fo, € L*(RY) of (2) fulfilling
(1.11) iff condition (A) holds.

Moreover, this steady state is of the (non-isotropic) Gaussian form

fool) = cx exp(— 2K x)

)

where K is the unique, symmetric, and positive definite solution to the contin-

uwous Lyapunov equation
2D =CK + KC*, (1.12)

and cg 1s the normalisation constant.

For the proof of Theorem 1.12 we consider the Fourier transform of (2):

fi(t,€) = —(€TDE) f(t,€) — (CTE) - (Vef(,€)), (1.13)
f(t =0)= fo.

A steady state foo € LY(R?) implies foo € Co(R%). Also note that

fo(0) = /foom dr =1
Rd

for the normalised steady state.

Thus, the steady state equation in Fourier space reads

0= (£"D€) oo (&) + (CTE) - Ve [ (£), (1.14)

The problem at hand is closely related to the stationary Fokker-Planck equa-
tion in section 2.2 in [4]. But for k < d, the singularity of D requires a more

careful analysis.

We will split the proof of Theorem 1.12 into three lemmas: In Lemmas 1.13
and 1.15 we establish that existence of a steady state is equivalent to condition
(A). Lemma 1.14 establishes that the steady state is Gaussian. In the proof of
these Lemmas, we shall switch between the equivalent characterisations (i) and

(ii) for condition (A.i) in Lemma 1.3.

Lemma 1.13. Let (1.14) have a unique solution fs € Co(R%). Then condition
(A) holds.
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Proof: First, we shall show that CT is regular: if CT has a non-trivial
kernel, (1.14) restricted to the kernel of CT reads

VE e ker CT : (€TDE) fo (€) = 0. (1.15)

Now, either ker C* C ker D, which would mean that both drift and diffusion in
(2) only act on a proper subspace of R? and there would be no unique steady

state; or (1.15) implies
JueR?: Vs e R\{0} : foo(sv) = 0.

Hence, fo(0) = 0 by continuity, which is a contradiction to foo (0)=1. So CT

is regular.

Next, we will show that C' is positively stable, i.e. that all eigenvalues have

a strictly positive real part. The characteristic equations for (1.14) are

E(s) =CTé(s), seR, (1.16)
i(s) = —(&(s)" DE(s))z(s), s €ER,
(2(0),£(0)) = (20, &) € R

The solutions to these equations are
JORT

z(s) = zp exp —/f(T)TDf(T) dr

Assume that C has an eigenvalue A with ®{A\} < 0. Let v be a corresponding
eigenvector of CT, i.e. CTv = \v, chosen such that v ¢ iR%. Consider the

characteristic curve starting at &y := v + v # O:
£(s) = eMu+ M.
Then
1£(s)] = RNy 4 23 M55 5 00, 5 — —o0,

which implies

0
Vs <0 [+(s)] = |zolexp [ ()7 DE(r) ar | = [

S
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due to D being positive semidefinite. If zy # 0, this is a contradiction to
|fs(€)] = 0, |€] = oo. If 2o = 0, we can take the limit s — oo and obtain a
contradiction to foo(O) =1 and the continuity of foo. So C' cannot have eigen-
values with negative real part.

Now assume that C' has a purely imaginary eigenvalue. Then there exist char-

acteristics £(s) which form circles. Due to
S
z(s) = zpexp | — /E(T)TDf(T) dr
0

and the continuity of foo, one of the following statements has to hold on any

such characteristic curve:
(a) Vs € R:&(s) € ker D,
(b) zZo — 0.

If (a) holds, then we have z(s) = zp on this characteristic. Since the character-
istic is closed, there will be no uniqueness of foo.

So (b) holds, and for any ¢ we can find such a characteristic starting at a vector
€o with |&| < e. But then foo(£(s)) = 2z = 0, which is a contradiction to the
continuity of foo at 0.

This shows that C has to be positively stable. It remains to show the second
part of condition (A). So assume C7 has an eigenvector v € iR? with Dv = 0.

Then Do = 0, and for the characteristic starting at £(0) = v + 0, we have

£(s) = eMv + e,
z(s) = z(0)exp | — /(e’\Tv + )T DM + e:\Tz’)) dr | = z(0).
0

This means that z is constant on the characteristic £. Now, since C' is positively
stable,

lim [§(s)| = oo,

S5— 00

lim [£(s)] = 0.

S§——00

So we would need z(0) = 1 because of the continuity in 0, and z(0) = 0 because
foo € Co(R™). That is a contradiction, so there can be no eigenvector v of C7
with Dv = 0. (]



22 CHAPTER 1. HYPOCOERCIVE FOKKER-PLANCK EQUATIONS

Lemma 1.14. Let C be positively stable. Then, the function

Foo(€) := exp(—EEL)

is a solution to (1.14), where K > 0 is the unique solution of (1.12).
Furthermore, K is reqular iff no eigenvector v of CT satisfies Dv = 0. In this

case, foo is Gaussian and hence in L'(R?).

Proof: We insert the ansatz
Fool€) = exp(— 4%
with a symmetric matrix K € R¥? into (1.14) and obtain
vEe R0 = (7DE— (CTE) - (KE)) f,
which holds iff
Ve eRY:0=¢T(D - OK)E.

This in turn holds iff D — C'K is antisymmetric, which is equivalent to

D—-CK =KCT - D,

and thus to (1.12). This continuous Lyapunov equation has a unique, symmetric
and positive semidefinite solution K since C' is positively stable (see Theorem
2.2 in [61], Theorem 2.2.3 in [44]).

Now assume that K is not regular. Then there is a v # 0 with Kv = 0 and
(1.12) implies

20" Dv = vTCKv+ 0T KCTv = 0.
= 0=2Dv=CKv+ KCTv=KCTv,

so CTv is also an eigenvector of K to the eigenvalue 0. Since v # 0 and C7 is
regular, CTv # 0. Repeating this calculation with C”v instead of v, we can see
that CTv is in the kernel of D, and thus (C7)2v is in the kernel of K. A proof
by induction then gives (CT)*v € ker D Nker K for all k € N. Therefore, the

space
V :=spanfo, ..., (CT) 1y

is a OT-invariant subspace of ker D. So K is regular if there is no eigenvector v
of CT with Dv = 0.
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For the reversed implication, assume that there is an eigenvector v of C" (cor-

responding to the eigenvalue A, ) with Dv = 0. This implies

0=20"Dv=0vTCKv+vTKCTv =o' Kv+ Aol Kv
= 2R{\, JoT K.

Since R{\,} > 0 for all eigenvalues of CT, it follows that vI Kv = 0 and thus,

since K is symmetric, it is not regular. O

Lemma 1.15. Let condition (A) hold. Then the steady state foo from Lemma

1.14 1s unique.

Proof: We will show that the characteristic equations (1.16) have a unique
solution fulfilling (1.11). As the starting manifold for the characteristics, we
take I' := {& € R? : |¢y| = 1}, which is admissible since C' is positively stable.

The characteristic curve starting at &g is
£(s) = e 6.
This implies
€()? = (6o, €@ o),

which yields with the positive stability of C":

e"léo] < [€(s)| < €ol-

Here, 0 < 7 is the smallest real part of the eigenvalues of C', and 7 the largest.
Hence

lim [¢(s)] = oo,

5— 00

lim [£(s)] =0,

S—r— 00

and the characteristic curves cover all of RY.

The value of solutions along the characteristics is

2(s) = z(0) exp —/§(T)TD§(T) dr
0
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So taking

0

2(0) = exp | - / £(r)TDE(r) dr

— 00

as initial condition implies 1 = lim 2(s) = fx(0). Since &(s) decays expo-
S—r—00

nentially for s — —o0, z(0) is always finite and there is a unique solution z(s). O

This lemma completes the proof of Theorem 1.12.

1.2.2 Decomposition of the generator L

In analogy to the entropy method for linear, nondegenerate Fokker-Planck
equations presented in [6], we now consider (2) in the weighted space L? :=
L?(R%, f-1) with inner product (-,-). On this space, the operator L = div(DV -

+Cz-) can be decomposed very naturally.

Theorem 1.16. Let (2) fulfil condition (A). Consider L on the weighted space
L2. Then L can be decomposed into its symmetric part Ly and its antisymmetric

part Lqs as

Lyf = div(DVf + DK 'z f) = div(DV(+) fo),
Losf = 2" TV f = div(RV(45) fao)- (1.17)
Here, R := %(C’K — KCOT) is antisymmetric, K is the covariance matriz of

foo from Theorem 1.12, and T := —K 'R = 1(CT — K"'CK) € R with
Tr(T) = 0.

Remark: 1. Note that the steady state f. fulfils both Lsfo = 0 and Lysfoo =
0.

2. R # 0 and hence (2) is non-symmetric in L?. Otherwise (1.12) would imply
D = KCT and ker D = ker CT', which contradicts condition (A).

Proof (of Theorem (1.16):
We compute

(L1.9) = [(LDgess(=5%) da
Rd
T /[DVf +Caf] - [Vg+ K™ aglexp(£E—2) do

Rd
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= /fdiv [(DVg + DK 'zg) exp(mTIg_lz)] dx

Rd

- /szCT [Vg + Kﬁlxg] exp($TIg71w) dx
Rd

- /f [div(DVg + DK '2g) + 27 K~ DVg] exp(2£72) du
R4
* / ! [xTKilDKilxg —2T0Tvg — xTCTKflxg] eXp(leg_lz) dz.

Rd

Using (1.12), we have K"'!DK~! - CTK~! = K"'RK~!. Since R is antisym-
metric it follows that 27 (K"1DK~! — CTK~!)z = 0 and hence

L*g = div(DVg+ DK 'zg) + 2" K~*DVg — 27 C*Vyg.

Furthermore, Tr(DK ' —C) = Tr((D —CK)K~!) = 0, since D —CK = —R is
antisymmetric and K ! is symmetric. Thus we can write (using (1.12) in the

last step)

L*g = div(DVg+ DK ‘zg + (DK~ ' — C)xg)
=div(DVg + (2DK ! — O)xg)
= div(DVg + (KCTK~'2)g).

So we get, again using (1.12),

Lof = &5=f
=div(DVf + 3(C + KCTK Y2 f) = div(DVf + DK 'z f)
= div(DV(£) f);
Losf =55 f
= div(3(C — KCTK ")af) = div(RK 'z f)
= div(RV(4) fx0),

where we have used div(RV f) = 0 for the last equality. (]



26 CHAPTER 1. HYPOCOERCIVE FOKKER-PLANCK EQUATIONS

1.3 Entropy Method

In this section, we will prove decay of solutions f of (2) to f in relative entropy
under condition (A). We will also compute a sharp rate for this decay. To do
so, we consider relative entropies, as in [6]. We will see that, unlike in the
fully parabolic case, a direct entropy-entropy dissipation estimate cannot be
obtained. Instead, we establish an auxiliary functional that bounds the entropy
dissipation (in §1.3.1). We then prove decay of this modified functional in §1.3.3
by establishing a replacement for the classical Bakry-Emery condition. By a
convex Sobolev inequality, this still implies a decay rate for the relative entropy,
initially at the price of additional regularity requirements on the initial state
fo- In §1.3.4, we adapt a regularisation result from [67], which is then employed
in §1.3.5 to obtain the sharp decay rate for solutions with finite initial entropy.
The sharpness of this rate is shown by establishing special solutions in §1.3.6.
As for the classical method, the Csiszar-Kullback inequality ( [26], [46])

2

mew(fﬂfz)

12 = Foll 2y <
yields L'-decay of solutions from decay in relative entropy (Theorem 1.27).
With the notations of §1.2.1 we introduce the relative entropy:

Definition 1.17. Let 0 #Z ¢ € C(R}) N C*HR*), ¢(1) = ¢/'(1) =0, ¥" >0 on
RT, (¢")? < 29"y’ on RT. Let f € L1 (RY) with [ f dz = 1. Then

eolflf) = [0(F) 1 do
Rd

is called an admissible relative entropy with generating function .

The entropy method is based on computing a bound on the first two time-
derivatives of the relative entropy ey (f(t)) := ey(f(¢)|fs) with f the solution
to (2). Formally,

I
foo

f

) Dv(f;

ey (f(t) = —/w”(fimw( Vfoo dz =: —I(f) <0. (1.18)
]Rd

However, there may be a technical problem if f(¢,z) = 0 (which can happen
at the initial state fp). For example, ¢"(s) = % for the logarithmic entropy
Y(s) = slns — s+ 1, and this would lead to a division by zero. For this reason,

we use a trick from [6] (see Remark 2.12) to rewrite (1.18):
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Definition 1.18. Let 1) generate an admissible entropy, and let fy € L} (R?)
(or fo € L*(R?) for quadratic ) with [ fo dz = 1. Define
Rd

w(x) = / V' (s) ds. (1.19)

Then we call fy a ¢-compatible initial state iff Vw € L?(R?, f..).

With Definition 1.18, (1.18) can be written as

Iy(f) = /(Vw)TD(Vw)foo d. (1.20)

Rd

Whenever f # 0, this is equivalent to (1.18). However, now there is no longer
a problem when f = 0, since the integral in (1.19) is Holder continuous at 0
with exponent % The assumptions of Definition 1.18 clearly imply that a -
compatible initial state has finite entropy dissipation. It also has finite relative

entropy, as we shall prove in Corollary 1.21 below.

Remark: The integral in Definition 1.18 can be calculated explicitly for the
most common entropies:

For the quadratic entropy, 1(s) = a(s — 1)? for some a > 0, and thus
w=V2a(£ - 1). (1.21)

For the logarithmic entropy, with

b(s) = als + B) n(35) — a(s — 1) (1.22)
for some o > 0, B > 0, we have
w=2Va(\/£ + 8- /1+8). (1.23)

For the p-entropies, 1 < p < 2, ¥(s) = a[(s+ )P — (1+8)? —p(1+ B)P~L(s —1)]
for some o > 0, 5 > 0, and thus

w=2/ 2D +5)5 - (1+5)2).
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1.3.1 Modified entropy dissipation

There is another, in fact systematic problem with the entropy dissipation (1.18):
Since D is singular for k < d, this functional is “lacking information” on some
partial derivatives of f%o But this information would be vital for the (standard)
entropy method to work. More precisely, the functional I, vanishes not only
for f = fo. As shown in Corollary 1.31, for any t* > 0 there are initial
conditions such that I, (f(t*)) = 0. Also, due to the monotonicity of e, (f(t)),
Ly(f(t*)) = 0 for some t* > 0 implies I;,(f(¢*)) = 0. So, for degenerate Fokker-
Planck equations, ey (f(t)) is not a convex function of ¢ — in contrast to the non-
degenerate case from [6]. The possibility of having I, (f(t*)) = I),(f(t*)) = 0
for f(t*) # fs also shows that the standard entropy method cannot be carried
over directly to the degenerate case in (2).

We therefore introduce the modified functional

Sulf) = / (V)T P(Vaw) foo d = / w"%)wé)%wé)m da,

R4 I
s >0

(1.24)

where we replace the matrix D in I, with a regular, symmetric matrix P. P
will be chosen in such a way that it provides an estimate between &S, (f(t))
and Sy (f(t)) for solutions f to (2), as shown later in this section. Moreover,
since P is positive definite, there is a constant cp > 0 with P > cpD, and
hence Sy, > cply. The choice of P has to be done carefully: Simply choosing
any positive definite matrix will retain information on all derivatives, but will

in general not give a decay estimate (see §1.5, Example 1).

Remark: Introducing the functional Sy, differs from the modified entropy dis-
sipation approach in [27]. There one considers an “intermediate functional”
K(f), which measures the distance of f to the set of stationary states of the
symmetric part (Lg in our case). It is constructed in such a way that, whenever
K becomes small, but the relative entropy e does not, there is a mechanism that

increases K again. One then aims for an inequality like

Le(f(t)|fx) < —K(f(1)).

While the right-hand side is still zero for some f # foo, due to the construction

of K this can no longer happen along trajectories f(t).

Choosing the matrix P is the crucial ingredient for the definition of our

modified entropy dissipation Sy:
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Lemma 1.19. Let Q := KCTK~!. Let p := min{R{\}|\ is an eigenvalue of
C}. Due to condition (A), p> 0. Let {\,|1 <m <mg} be all the eigenvalues
of C with p = R{ A}, only counting their geometric multiplicity.

(i) If A is non-defective® for all m € {1,...,mg}, then there exists a sym-

metric, positive definite matriz P € R4 with

QP + PQT > 2uP. (1.25)

(ii) If A\ is defective for at least one m € {1,...,mg}, then for any ¢ > 0

there exists a symmetric, positive definite matriz P = P(g) € R™< with
QP+ PQT >2(u—¢)P. (1.26)

(iii) For any such matriz P, and for any v¥-compatible function fo,

Sy (fo) < o0.
Proof: The idea behind the construction of P is the following: If @ is
not defective and wy, ..., wy are its eigenvectors, then one can choose P as the

weighted sum

d
Pi=> "bjw; @w;, (1.27)

j=1

with b; € RY, j = 1,...,d. As {w;};—1..4 is a basis of C¢, P is positive
definite. If any w; is complex, its complex conjugate wj is also an eigenvector
of @, since () is real. By taking the same coeflicient b; for both, we obtain a

real matrix P since
U.)j ® U.)j + U)j ® wj

is real. For P from (1.27), we obtain

M=

QP+ PQ™ = b;(Qu; @ w; + w; @ w;QT)
j=1
d d
=D b+ X)w; @5 =Y 2R{N}b; w; ©;
j=1 j=1
d
> 2 bjw; @W; = 2uP.
Jj=1

2An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic
multiplicity.
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This also implies that (1.25) is an equality iff all eigenvalues of @ are non-
defective and have real part p.

If at least one of the eigenvalues of @Q is defective, then there is no basis of C?
consisting of eigenvectors of @, and the sum in (1.27) will have less summands
and not be regular. One can still construct P in a similar fashion using the
basis of C? consisting of generalised eigenvectors of @, but the computations
are no longer as straightforward. To this end, we consider the Jordan normal
form J of Q7 given by the similarity transformation AQT A~! = J with some
A € C™4_ Let J have N Jordan blocks, each of length l,,; n=1,...,N.

(i) By assumption, all Jordan blocks corresponding to eigenvalues with R{\,,} =

W are trivial, i.e. of length 1. Corresponding to the structure of J, we define
B, := diag(bl»,...,bl), n=1,...,N,
and the positive diagonal matrix
B := diag(By,...,Bn),
where ¢ :=1, ¢; := 14 (¢c;—1)% = 2,.. ., Iy,
b= (1,)2 07 =1, 0, (1.28)

and 7, := 2(R{\,} —p) >0 for n =1,..., N. This yields for the n-th Jordan
block J,, in the case [, = 1: B, =1 and

JAB, + BnJy, = (\y + A) By > 2uB,,.

Here, JH denotes the Hermitian adjoint of .J,,. In the case [,, > 1, we have
T, > 0 and

J2B, + B,J, —2uB,
2(R{A} — bl byt
b ! 2R({An} — )bl !
. b

by 2(R{An} — )by,
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The last inequality follows from

for any 7 > 0, which can be verified by induction over m := [,, using the principal

2r-1 1
M2:< n >>0.
1 Tn

m > 2: Let M, > 0 hold for I, < m with det M, = 7.~ Then

b7 bY
Mm+1 = ( bnl ]\; >
2 m

and we compute, using Laplace’s formula for the first column

minor test:

m = 2:

det M, 1 = 7,b} det M,,, — (b%)* det M,,, 4
=10 P () Y ()P

n

2
= Tifm > 0.

In total, we have J” B + B.J > 2B, and hence
(AHHQAYB + BAQTA™! > 2uB,
which implies
QA"BA+ AP BAQT > 2uAT BA.

The claim then follows with P := A¥ BA.

(ii) In this case, there exists a non-trivial Jordan block J5 corresponding to
an eigenvalue with ®{\;} = p. In the above computation, we choose 77 :=
2(R{\a} — u+¢) > 0 for some £ > 0. Hence, J By + BiJi > 2(1 — €)Bj, and
the result follows. However, in this case P depends on €.

(iii) This follows just like for (1.24). O
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Remarks:
(i) In general, the matrix P in Lemma 1.19 is not uniquely determined.

(ii) From (1.28), we see that for a defective eigenvalue A; (i.e. P = P(¢)),
V1<j<lp: limb. =oo
e—0
and thus
gli}(l) Slll(f()a 6) = o0,

with Sy (fo,e) == [ (Vw)TP(e)Vw f da.
R4

(iii) (1.25) can be rewritten as (Q — u)P + P(QT — u) > 0, which bears a close
resemblance to the continuous Lyapunov equation from Theorem 1.12. If
we assume equality in (1.25) and if @ — p were positively stable, then there
would be a unique solution P = 0, see e.g. [44]. But since p is the real
part of an eigenvalue of @), @@ — p is not positively stable. This explains
why we can find a non-trivial solution of (1.25) at the price of uniqueness.
There is equality in (1.25) iff all eigenvalues of @ have the same real part

w and are non-degenerate. For additional details, we refer to [44], [61].

We shall later make use of convex Sobolev inequalities related to the measure

1= foo da:
Lemma 1.20. Let f € L (f € Ly for quadratic 1). Then

ey (flfoo) < isw(f% (1.29)

where both sides may be infinite and Ap is the largest constant such that

K=t>\pP!

holds.

Proof: Consider the Fokker-Planck operator

Lpf:= diV(PV(fé)foo)

on L?. Then Lp is symmetric due to the symmetry of P, and f. spans the

kernel of Lp. One easily checks that

Sep(f()|fs) = =Su(F(1)
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for a solution f(t) to fi = Lpf. As shown in Corollary 2.17, [6], this sym-
metric, non-degenerate Fokker-Planck equation leads to an exponential decay
of the relative entropy, and in parallel to a convex Sobolev inequality: Using
the notation foo(z) := cxe™ V@), V(z) := M%lx, we have the Bakry-Emery
condition

02V

_ —1 -1

where the constant Ap > 0 is chosen as large as possible. Hence, all g € L} (R?)
with [ ¢ dz = 1 satisfy the convex Sobolev inequality

Rd
(9l) < 55=56(0)
e o) < — ,
»\g N p y\g
where both sides may be infinite. This completes the proof. 0

Lemma 1.20 implies that any ¢-compatible f also has finite relative entropy

generated by 1):

Corollary 1.21. Let f be v-compatible. Then it holds that

ey (flfs) < 00.

Proof: Since f is 1-compatible, we have Sy (f) < oo, f € L1 (R?) and

[ f dax = 1. Applying (1.29) completes the proof. O
Rd

1.3.2 Fisher information matrix

While it is perfectly possible to derive a decay estimate for S and directly show
its decay, we take a detour at this point and introduce the Fisher matrix. For

a direct estimate on S, we refer to [33].

Definition 1.22. For any ¢ generating an admissible entropy (see Definition
1.17), the Fisher matriz ¥, of f with respect to foo is defined as

Sy = [0 (st a
R4

b

where u© 1= Vf—.

The Fisher matrix (sometimes also Fisher information matrix or Fisher in-

formation, though the latter also applies to the scalar version) is for example
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used to predict the precision of measurements (e.g. particle production rate
in some physical system) taking into account covariance (the non-diagonal en-
tries) of observables. For a brief introduction from a physics standpoint, we
refer to [68] and references therein.

For the entropy method, we are interested in the time-dependent Fisher matrix

Y, (t) along a solution trajectory f(-). We compute

Te(DS (1) / V(v foo Te(D(u(t) ® u(t))) fro da

/77[’” f Z Djiug (t)u;(t) foo dz

7,l=1
// f() T f() _
/ @@ yrov D as 1,50,

so the entropy dissipation I (f(t)) can be recovered from X, (t). But X,(¢)
contains more information than the entropy dissipation. Since u(t) ® u(t) is a

positive semidefinite matrix, it follows that ¥, () > 0, and hence
Sy(t) =Tr(PXy) >0 (1.30)

for any P > 0. Here, we have used that the trace of a product of two positive
semidefinite matrices is non-negative. In Lemma 1.23, we compute a bound on

%Ew. Since
AT (PSy) = Tr(P L5y,

this has two applications: First, if one can prove the estimate %Zd,(t) <
—2uXy(t), decay of the Fisher matrix with rate 2y follows. The Fisher ma-
trix has not yet been studied in the context of Fokker-Planck equations, and
conditions for its decay - even though they are very restrictive, see Theorem
1.24 - are new. Second, even if there is no decay estimate on X, itself, one can
try to find a matrix P such that Tr(P T 2y) < —2uTr(PXy) holds. In fact, we
will prove in §1.3.3 that the matrix P from Lemma 1.19 has this property.

Lemma 1.23. Let fo be a v-compatible initial state, and let f(t) be the corre-
sponding solution to (2). Let u := Vfi. Then the estimate

450 / (72 (@ o) 9 u(0)] + ) © ()] Q) fr
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holds for all t > 0, where

Proof: By Corollary 1.6, the solutions of (2) have the required regularity
to perform all the computations in this proof for ¢ > 0. We compute, leaving

out the argument ¢ for ease of reading,

w2V D+ Ryu— 24D~ RV + (VT DV)u
T a2 o '
Hence,
/w’” fw@udx/w (ff)(ut®u+u®ut)food:v
Rd -
=:(I) =:(IT)
We introduce the short-hand notations f; := 7 and f ;s == 7 8’;, For the

(r,s)-entry of (I), 1 <r,s <d, we obtain
/w”’ ) div(foo (D + R)u)u,us do = /w’" = )upus(foo (D + R)juj),; da

/¢/// Jurts(D 4 R)jju; Vi foo dx+/w’" 7 ——)upus(D + R)ijuj i foo da.

Examining the last term, we compute, using the antisymmetry of R and the

)
symmetry of
/¢”' Yurus(D + R)jjuj i foo da

:/wlll(r)urulejuj,lfm dz

R,
= /uJDl (w"’(ff Yu,pu Sfoo) dx
R4 > o

= _/qplvulejulurusfoo dz — /’(//H(fi)ulejur,lusfoo dx

f

7 Ju; Dijurus V) foo da.
o0

/W” foo)ulejuruslfoo dx+/w,,,(

Rd
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Hence,

= _/ww(f%o) [u" Du) [u @ u] foo da

Rd
e[ orreo (S0

/¢”’ [(VV)"Ru] [u® u] fx da. (1.31)

Next, we compute

/wu( f )urtusfoo d.’E

I
Rd
=—/w(i)ﬂw+Rm%%nﬂm—/wgémﬂw+RMVu¢mm
Rd Rd
+R{'w”(f‘-](;)Dljur,ljusfoo dx . (132)

=:(IIT)

Integrating (II1) by parts yields

(I11) / Dy (4" ( ff Jusfoo) i

= _/wlll(ff )Dljurlujusfoo dx — /TZJ” Dljus juTlfOO dx

Rd

+/w//(T)Dljur,lustfm dx
R4 >

and thus, reinserting into (1.32)

12; f
/w%gwwkﬂx

Rd
= 7/w//(ff )VTZ(D + R)ljujusfoo dz (133)

Rd
_ /w//(f%)ur,l (D+R)—D); Vjusfo dx
R

me(fio)DljumujUSfOO dz R/dilz”(J{O)Dljus,jumfoo dz.
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T

Again using R = —R*, we obtain

/w" f%o U @ Ufose dz

/w” T [( (D + R)u >®u] foo dz
/w”’ f;) Ka“va> ®u} foo da

/// ,, f é)u ou
/111 I K >®u] foo dzf/z[; T 8:5 o — foo dz (1.34)

Next, we consider
w"(i) RV, d
- f U 1051 7jusfoo €T
R -
_ X " f .
- uerl 1/1 (T)USV]fOO dx
R4 > o
/1/)/// f urulelV usfoo d$+/¢m uTleuSlV foo dx
+/¢/I(T)uerlv,ljusfoo dx_/w,/(T)UTustlVlefm dx.
Rd Rd

Since R is antisymmetric, the sums R;;V;; and R;V,;V; are 0, and we obtain
for (1.34):

/w” fé Ut @ Ufoo da

/1//’ foo K 5 (D + R)u >®u] foo dz

/ " ( f;) [(VV)"Ru] [u® u] fo da

/// _ ,, f 8u ou
/w . [( )@u]foodm /w O fe e (13))

/ W { ( vaﬂ fro da.

The computations for the term with u ® u; are the same; combining (1.34) and
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(1.35) for both yields

(11) =/¢” fi)[ut®u+u®ut]foo da

/z//’ foo [( (D + R)u >®u+u®<gj§(D+R)u)]foo dx

(1.36)
ool oesee (g
Rd
u 0
—2/¢ (fi)G% a—ufood —l—/zl/" [(VV)TRu] [u®u] fao da.

Rd

Finally, we can add (1.31) and (1.36) and obtain

/z//’ . [( (D + R)u >®u+u®(f;‘§(p+3) )]foo do
_QR/W(;‘;) KauDu) Qu+tu® (gZDuﬂ foo dx

_2/1/) (fi)gng“fm dz —/z/;fv(fioo) [u" Du] [u ® u] foo de.

R4 Rd
(1.37)

Now, let

20"(£)1d 47V (L)1

ou
U= D% c R4x24,
D [u ® ul

Then we obtain, using D = D? and the symmetry of u ® u,

20/ (F)1d 29" ({)1d  R2dx2d
&l |

UTAU = 2¢"(fi)@Da—“ + z//”(ff ) [u @ u] [Dgﬂ
f

+2¢”’(foo) [8UD} [u@u] + ¢!V [u@u]Du®ul.

We compute
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and hence (1.37) implies:

e[ (G

- / UTAU dz.

Rd

Since " > 0, "V —2(p"")? > 0, we obtain A > 0, and hence

4y, <-— /1//’ foo [(82V(D+R) )®u+u® <aa2Z(D+R) ﬂ foo dx
(1.38)
/w" = ({aV(D—FR)] w®u] + [u® ] [(D R)?;QDfm dz.

O

Lemma 1.23 motivates to define a Bakry—Emery—type condition that leads

to exponential decay of the Fisher information matrix.
Theorem 1.24. The following two conditions are equivalent:

(i) There exists > 0 such that for all v¥-compatible fy and corresponding
solutions f(t) to (2),

4¥(t) < —2u3(t) (1.39)

holds.

(i) There exists > 0 such that

82

Ee 2(D—i—R) wld.

Proof: (ii)=-(i) follows immediately from Lemma 1.23.

To see (i)=-(ii), we first consider the case d = 2. From Lemma 1.23, we have
a5 < - [T (@7 ) © )] + () 9 (0] Q) £ a.
Rd

If we want to bound this above by a negative multiple of ¥, for any possible
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solution trajectory, we need to investigate the estimate
QT (u®u) + (u®@u)Q > \u® u)

for some @ € R?*? and all v € R%2. @ does not need to be symmetric; in fact,

in the hypocoercive case it is not. So let

Then

Quau)+ (ueu)Q" = ( 2ra® + 2t1ab (r+ s)ab+ t1b? + taa®
-1 .

r+ s)ab + t1b? + toa? 2sb% + 2toab

Note that the right hand side of (1.39) is negative semidefinite. Thus, to have
any chance of obtaining (1.39), we need that Q(u ® u) + (v ® u)Q7 is positive
(semi-)definite. A necessary (but not sufficient) condition for that is det(Q(u ®
u) + (u®@u)QT) > 0 for all u, i.e. for all a,b € R. We compute

det (Q(u®u) + (u®@u)Q")
=4 [(ra® + tiab)(sb® + taab)] — ((r + s)ab + t2a® + t1b2)2
=4 [rsa2b2 + t1t2a?b? + (rtaa® + stle)ab]
— [(r + $)%a®0* + (t20® + t16%) + 2(r + s)ab(t2a® + t1b7)]
= —(r — 8)%a®? — (t2a® — t10%)> + 2 [(r — 8)t2a® + (s — 7)t1b%] ab.

If a = 0 or b = 0, we immediately see that ¢t; = to = 0 is necessary, or the
determinant is negative. But if ¢; = to = 0, we see from the case a = b that
r = s is also necessary. So we need that @ = p1d for some p € R. From (i), it
then follows that p > 0. This concludes the second implication for d = 2.

The case d > 2 directly follows from the case d = 2: for 1 < a < 8 < d, choose
Uy = a,ug = b and u; = 0 for a # j # B. Then one gets the same expression
as above with r = Qna, s = @33, t1 = Qap and to = Q3. Repeating this for
all choices of «, 5 yields (i)=(ii).

As an interesting side note, if @ is not a multiple of Id, then Q(u®u)+ (u@u)QT
is indefinite for most u. If, for example, @ is diagonal (t; = ¢ = 0), then if
Q(u@u)+ (u®u)QT is (semi-)definite for any u # 0, it follows that either r = s
or the determinant of Q(u®u)+ (u®u)Q7 is negative, which is a contradiction

to definiteness. O
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Under our assumption of linear drift coefficients, %1‘2/ (D+R)=K'CK = uld
would imply C' = pId, which would be a contradiction to condition (A). So
Theorem 1.24 is not applicable in the case k < d. In fact, a decay estimate for
Yy implies a decay estimate for I,;, which as demonstrated in the introduction
can not hold under (2), so this result should not be surprising. From (1.30), it
even follows that a decay estimate for > would imply a decay estimate for the
norm of any directional derivative v -V, v € R%. So it is not surprising that

such an estimate only holds in the most simple case.

1.3.3 Decay of the modified entropy dissipation

We now return to the modified entropy dissipation Sy. Since Sy can be recov-
ered from the Fisher matrix, see (1.30), it is straightforward to utilize Lemma

1.23 for a decay estimate on the modified entropy production Sy (Lemma 1.19):

Proposition 1.25. Assume condition (A). Let ¢ generate an admissible en-
tropy and let f be the solution to (2) with a ¥-compatible initial state fo, p:=
min {R{A}A is an eigenvalue of C}. Let P, Sy(fo) be defined as in Lemma
1.19, { |1 <m < mg} be the eigenvalues of C with u = R{\,}.

(i) If all N, 1 < m < my, are non-defective, then
Su(f(t)) < Sy(fo)e™, t>0.
(i1) If A, is defective for at least one m € {1,...,mqg}, then
Sy(f(8)) < Sy(fo,e)e 2791 >0,

for any € € (0, u).

Proof: For P from Definition 1.19, we compute

Tr(3y,(t)P) = /w”(f%)uTPufoo da = Sy (t).
Rd

With Lemma 1.23, this yields

450 = T(PEE.0) <~ [ w"<fi>uT<QP + PQT)ufu dr,
Rd

where Q = KCTK~!. By the definition of P (see (1.25)), we obtain

49,(t) < —2nSy(t),
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where 7 = p in case (i), and n = p — e, € € (0, 1) in case (ii). Applying Gron-

wall’s Lemma completes the proof. 0

Remark: This result holds for all matrices P chosen according to Lemma
1.19. Clearly, the rate p is independent of the choice of P.
Using (1.29), this result already implies exponential decay of the relative en-
tropy — but under the (too strong) assumption that Sy (fy) < oo. This will be
improved in Theorem 1.27 below.

In the standard entropy method for fully parabolic equations, one derives
decay of the relative entropy from the decay of the entropy dissipation by in-
tegrating the inequality ;—;ew(f(s)) > f%ew(f(s)) over (t,00). This requires
a-priori knowlegde that ey (f(t = 00)) = 0, which, as shown in [3], can be de-
rived from the decay of S (which is the entropy dissipation functional for fully
parabolic equations). However, since the inequality %eqp (f(3)) > —Ley(f(s))

is in general wrong for the degenerate case, this approach won’t work.

1.3.4 Regularisation in relative entropy

We will now prove a regularisation result that allows us to extend the result
of Proposition 1.25 to initial states with (only) finite relative entropy. The
fundamental concept is that hypoelliptic operators regularise, though at a slower
rate than fully elliptic ones. Local estimates of this sort first appeared in the
proof by Hérmander [42] as well as in [45], [59]. Our result generalises Theorems
A.12, A.15 in [67] (expressed for quadratic and logarithmic entropies) to all
admissible 1-entropies. Those results, in turn, used an idea developed by Hérau
[40]. The regularisation depends on the order 7 of the finite rank Hormander
condition for L (cf. Remark 1.4).

Theorem 1.26. Let condition (A) hold, fo € LY (RY) with [ fo dz =1 and
Rd
ey (folfoo) < 00. Let f(t) be the solution of (2) with initial condition fo, and let

T be the minimal constant such that Lemma 1.3 holds. Then there is a positive

constant ¢, > 0 such that
Vi€ (0,1]: Sy(f(1) < ert™ @ ey (fol foo)- (1.40)
Proof: The idea of the proof is to construct a decaying-in-time functional

F that is a (positive) linear combination of both sides of (1.40) — multiplied by
t27+1.
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Step 1 (construction of F): With Q := KCTK~! from Lemma 1.19, let

M; = QjD<QT)j >0, Nj:= QjD(QT>j+1 + Qj-‘rlD(QT)j

for j=0,...,7+2. Since Q7 = K"'CK = 2K~'D—CT, we can apply Lemma
1.3 (iii) to > M; and obtain

7=0

K

Mj 2 Co Id
j=0

for some cg > 0. Thus there is ¢; > 0 such that

M7-+2 S (&1 Z Mj. (141)
§=0
We compute
QM; + M;Q" = Nj, (1.42)
QN; + N;Q" =2M; 1 + Q'D(Q") ™ + Q' D(QTY. (1.43)

Using D? = D, we have for any ¢ > 0:

i J j+2 i T\j T\j+2
0< (Je@'p £ vEQ D) (J2D(@"Y £ vED(QTY+)
= DM, 4 My £ (QD(QTP 4 QDQTY) (1.44)

Then (1.42) and the analogue of (1.44) with j + 2 replaced by j + 1 yield the

estimate
1
:|:Nj S gMj + €Mj+1. (145)
Further, (1.44) yields
, , 4 . 1
+ (@' DT+ Q"D < ~M; + M. (1.46)

Now let
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with P(0) = 0. As (positive) coefficients, we first choose a,11 := é,

b2

Ar4+1

2
br = g []— + a7+1(2T + 4)] , Q1= 2

Then we choose iteratively, starting with j = 7 and finishing with j = 1:

2 2(0:(2j +2) —a;)? b3
bj_1 = = 2+cl+aj(2j+1)+b2+ (](J+ ) Cl]) ; Qi1 = 8- 1.
3 J bj aj
(1.47)
Using (1.45) with e = 22;'7", 0 < j <7, we obtain

: _— 207 .
Vi=0,...,r: bt¥IN, > —%W“Mj - LRI,
J

and thus

T ) T ) 2b2_ ) 2b2
Dbt 2 = Mo = 3 (VQJ - Jf“”“““) m o T M
J— T

=0 j=1

aop " (3a; -
= —?tMo - Z <4jt2j+1Mj> — ar 1t M 4,

Jj=1

where we have used (1.47). Inserting this into P(t) yields

a, Ta'-
P@)2—§UWO+§:TfF“HA@.

j=1
Writing c3 := min{%, %, ..., %}, this implies for ¢ € [0, 1]:
P(t) > t2T+1C;3 Z Mj Z 6003t2T+1 Id. (148)

Jj=0

So P(t) is positive definite for all £ > 0, and we define the functional

F(t) = rew (1) foo) + / ¢”(fi)uTP(t)ufoo da > 0,
Rd

with some v > 0 to be chosen later.

Step 2 (decay of F): For F, we can repeat all the computations in the proof




1.3. ENTROPY METHOD 45

of Proposition 1.25 and arrive at
70 < L7015 + [ vt [P - QPO + PORT)] uf do
Rd

_ / 1p”(f%)uT [P(1) — (@P() + P()QT) — 1Mo ufuc d.
Rd

We compute
T+1 T

P(t) = Z (a;j(27 + Dt M;) + ) (b;(25 + 212 TIN)
j=0 =0

and further, using (1.42), (1.43), and (1.46) with € := %:

T4+1 T
—(QP)+ P()QT) = = > (at T N;) =2 (bt 2 M)
j=0 j=0
=3 (0t 2QID(QTYT? + Q7T D(QM)))
=0
T+1 T
<= (atTING) =2 (0t M)
j=0 7=0
o 2542 bj t?
+ ijt J (tQMJ + ij+2)
=0 !
T+1 T
= — Z (ajt2j+1Nj) -2 Z (bjt2j+2Mj+1)
j=0 J=0
T T+2
+(TRM) + > (£ M)
=0 j=2

This implies

P(t) = (QP(t) + P(t)QT) — Moy
< (ao + b% — 'y) My + (3@1 + b% — 2b0) t2M,

+ ) (laj (24 +1) + 1403 — 2b;1]t7 M)
j=2
+ (ar11 (27 +3) + 1 —2b, )22 M, 4

T+1
+ Z (Oéjt2j+1Nj) + t2(T+2)M-,—+2,
7=0
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where o := —a; +0;(2j +2), 0<j < 7; @r4+1 := —ar4+1. Using
2| o b;t
Vi=0,....,7: =+£N, < LM + 2 M;
J ) s T 7= bjt J + 2‘OLJ| j+1
1

N1 < ;Mr-i-l +tM; 4o,

we obtain

T+1

> (05t INg)

T (22 . bi o,
- (b.jt%Mj + EthHQMjH F ar 1t Mo+ a1 tTTM
J

T 2
_ 203 205 bjo1\ o, br 2742 2r 44
= My + Z T) + 72 t Mj + ( 5 + a-,—+1)t MT+1 + arq1t M7-+2.
J

Thus, we finally arrive at

P(t) = (QP(t) + P()Q") — vMo
20 207 b
S <a0+b(2)+;[0—’}/) M0+ (3a1+b%+bal+20—2bo)t2M1
0 1
T 202 b .
+y <aj(2j +1) 4+ 1406+ T] + 171 - 2bj_1> % M
=2 !

bT T T
+(ars1(27+4) + 1+ 5 - 20 )t M1+ (argr + DM .

We use (1.41) and obtain for ¢ € [0, 1]:

P(t) — (QP(t) + P()QT) — v My

5 | 20
< cl(a7+1+1)+ao+bo+ﬁ—'y Mo
202 3b
+ |:Cl(a-r+1 + 1) + 3a1 + b% + % - 20:| t2M1
1

i 202 3b,_ .
+) <[C1(a7+1 +1) +a;(2) + 1) + 146 + L — 321] t“‘JMj)
j=2 J

3b,
+ |:a.,-+1(27' +4)+1— 2} t2TEML

Using (1.47), we obtain that all the coefficients in square brackets are non-

positive for sufficiently large ~, and thus

P(t) ~ (QP(t) + P()QT) — vMo < 0
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This implies that F(¢) is monotonously decreasing, and thus F(t) < F(0) =
ey (fol foo) for all t in [0, 1]. Together with (1.48), we obtain

coeat® ! R/ w”(f%)luﬁfoo dz < ey (fol fro),

which completes the proof using Lemma 1.19 (iii). O

1.3.5 Decay of admissible relative entropies

With this regularisation result, we can finally prove exponential decay of the

relative entropy:

Theorem 1.27. Assume condition (A). Let ¢ generate an admissible relative
entropy and let [ be the solution to (2) with initial state fo € L} (R?) such
that ey (fo|feo) < 00. Let {A\n]l < m < mg} be the eigenvalues of C' with
w=R{A\n}, and let

e(t) == ey (f(t)]foo)-

Then

(i) If all A, 1 < m < myg, are non-defective, then there is a constant ¢ > 0
such that

VE>0:  e(t) < ce ey(folfo)

(i) If A, is defective for at least one m € {1,...,mg}, then for all e € (0, u),
there is c. > 0 such that

VE>0:  e(t) < cee 2t (fol foo).

Proof: Let P, Sy(fy) be defined as in Lemma 1.19. Let £ = p in case
(i), and K = p — € in case (ii). Let § > 0. Using (1.29), Proposition 1.25 and
Theorem 1.26, we compute for ¢ > §:

ey (t) < ﬁsw(f(t)) < isﬂ,( F(8))e2s(=9)

S CQH(Smew(O)e_Z%. (149)
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For t < ¢, it follows from the monotonicity of e, (cf. (1.18)) that

ey (t) < ey (0). (1.50)

Writing ¢s5 := €20

max{1, 5x-F=r} and combining (1.49), (1.50) yields
VE>0:  ep(t) < csey(0)e 2.

¢s can now be optimized for § > 0, completing the proof. (]

Remark: Let us add a remark on an alternative approach to the above in-

equality

eu(t) < isw(t). (1.51)

Since Sy (f(t)) > eply(f(t)), we could also integrate the inequality

—frew(f(1) < isw(fo)e—ut

on (t,00), which resembles the procedure in the standard entropy method [6].
This would yield a constant # instead of ﬁ in (1.51). However, this con-
PK P

stant is never better. To prove this, we observe that
T 2
CK+KC" =2D< —P
Cp

L (QP +PQ") = L (KCTK™'P+ PK'CK).
cpk cpk

<
Multiplying by K~ > 0 from left and right yields
K 'C+CTK 1 < CP%{ (CTK™'PK~'+ K 'PK~'0),
which implies (since cpk > 0)

0< (K 'PK ™' —cpr K™Y C+CT (KT'PK™" — cprK ™) = W.

This means that K~ 'PK ' —cprK ! is a solution to the continuous Lyapunov

equation

MC+CT"M =W. (1.52)
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But since C is positively stable and W > 0, (1.52) has a unique positive semidef-
inite solution M (see Theorem 2.2 in [61], Theorem 2.2.3 in [44]). So

(KT'PK™' —cprK™") >0,
which implies
P > cprK.
Since Ap is chosen as the largest constant such that
P> A\pK,

it follows that Ap > ¢pk and thus

1 1

2cpk — 2)\p '

1.3.6 Special solutions and sharp decay rate

In this section, we investigate the sharpness of the decay rate obtained in Theo-
rem 1.27 under condition (A). In particular, we show that the rate is optimal for
both the quadratic entropy e; and the logarithmic entropy e;. As shown in [6],
all admissible entropies are bounded below by a logarithmic entropy and above
by a quadratic one. Thus, the rate we obtained is optimal for all admissible

entropies.

Theorem 1.28. Let p:= min{R{A\}|A € o(C)}, where o(C) denotes the spec-
trum of C.

(i) If p is a (real) eigenvalue of C, then there exist initial conditions fo, go
(different from fs) such that for the corresponding solutions f(t), g(t) of
(2), it holds that

er(f(t) = e er1(fo), ealg(t)) = e *ex(go), t=0.

(i) If C has a complex conjugate eigenvalue pair with R{ 12} = p, then
there are initial conditions fo, go (different from fo,) such that for the
corresponding solutions f(t), g(t) of (2), it holds that

er(f(1) < ce *ei(fo), eag(t)) <ce *ex(go), t>0,  (1.53)
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with some ¢ > 0, and equality holds for t = tg +nr, tg > 0, 7 > 0,
n € Ng. So the right hand sides of 1.53 are the sharp exponential envelope

functions for the entropy decay.

(iii) If C has a defective eigenvalue X\ with R{\} = p, then there are initial con-
ditions fo, go (different from foo) such that for the corresponding solutions
f(t), g(t) of (2), it holds that

0) = cor H (er(fo) + S+ 20,

ea(g(t)) = coe*(e2(go) + 1t + cat?)

fort >0 and some cy,co >0, ¢c; € R.
In all cases, fy is ¥1-compatible and go is o-compatible.
Remark: In the defective case (iii), the decay rate is indeed reduced to

2(p — ) for an arbitrarily small € > 0 — as announced in Theorem 1.27.

The proof of Theorem 1.28 is based on special solutions of (2), which will be
computed in the next two lemmas. These computations are inspired by Theo-
rem 3.11 in [6], where the sharpness of the convex Sobolev inequality (1.29) is

discussed.

Lemma 1.29. Let vy € R?. Then
(i)

ngU()

fo(z) := cx exp(=V (z) + vi x — 5

)

is in LY with [ fo dv = 1. Here, V(z) = mTKi{lx from Theorem 1.12,
Rd

foo = cxe” V. Furthermore, fy is W-compatible for the logarithmic en-

tropies (1.22).

(ii) If v(t) solves

then
F(t,2) = exp(~V (x) + v(t) z

is a solution to (2) with initial condition fy.
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(iii) For the relative logarithmic entropy e1(t) := e1(f(t)|f), it holds that

v(t)T Ko(t)

el(t) = B)

Proof:

(i): We have from (1.23) that

w:2\/&<,/£‘l+ﬁ—\/1+6>=2\/&<\/exp(v0x+cg +B8—\1+p )

for some «, f > 0. This implies

_— Vavg exp(uvg x + ¢4) € L*(R?, fo),
Vexp(vg z +¢g) +

so fo is ¢-compatible for logarithmic ¢ by Definition 1.18. [ fo do = 1 is easily
Rd
checked.

(i1): We insert f(t,z) into (2) and obtain
fo = (@T0(t) = v(®)" Ko(1)) (1),

f
foo

M)
2

=div[f(t)CKv(t)] = (Vf(t)) - CKv(t)

= (—2"K'CKv(t) + v(t)"CKu(t)) £(t),

div(foo (D + R)V =) = div | foo CKV exp(v(t)Tz —

where we have used D + R = C'K and the symmetry of K.

(iii): Setting o = 1, 8 = 0 for ease of computation, it is 11 (s) = sln(s)—s+1.

We compute

a0 = [ [J;fjln@f) *’;fﬂ} foo do

R

) F)

- / Fo)

= /ln (exp (v(t)Ta: - W)) f(t) dz

Rd
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For fixed ¢t > 0, it holds that

oy f(t,x) = v(t)" KV f(t,z) = v(t)" K (K 'z +v(t)) f(t, )
= (—v(t) -z +v(t)"Ko(t)) f(t,z).

Since

/8Kv(t)f(t,$) dz =0,
R

we obtain

v T v v T v
e = SO [ g, HOTE)
Rd

Lemma 1.30. Let vy € R4, Then
(i)
fo(z) = (1+ 2" vo) foo

is in LY(R?) with [ fo dow = 1. Furthermore, fo is y-compatible for the
Rd
quadratic case 1 (s) = (s — 1)%.

(ii) If u(t) solves
0(t) = —K'CKu(t), v(t=0)=u,
then
f(t2) = (1+2"u(t)) foo

is a solution to (2) with initial condition fy.

(iii) For the quadratic relative entropy es(t) := ea(f(t)|feo), it holds that

ea(t) = v(t) T Ko(t).

Proof: First, we note that fy > 0 does not hold here. This is not a problem,

since we don’t need positivity of the solution to define the quadratic entropy.
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(i): Since foo(2) = foo(—2), we have

/UOTa:foo dz =0,

Rd

and [ fo dz = 1 follows from the normalisation of f.,. We recall from (1.21)
Ra
that for quadratic v,

w = \/7(;—0—1) V2aul 'z

for some o > 0. Then
Vw = v2avy € L*(RY, fo),

and thus fo is ¥-compatible for quadratic ¢ by Definition 1.19.

(ii): We insert f(t,z) into (2) and obtain

ft(t’x) = U( )f007

f(t,x)
foo

where we again used D + R = CK.

div(foo(D + R)V ) = div(foo CKv(t)) = 2T K 'CKv(t) foo,

(iii): For a quadratic entropy with 15(s) = a(s — 1)2, we compute

sy = a | <“};f 1P do = [ @0

Rd Rd

For fixed ¢ > 0, it holds that
6Kv(t)f0<> = _'U(t)TKK_lmfoo =7 U( ) foo-
It follows that

ea(f(t)) = —a/(mTv(t))aKv(t)foo dx = a/fooaKv(t)(xTv(t)) dz

R4 R4

— av(®)TKo(t) / Foo da = v(t)TKu(t).

Rd



54 CHAPTER 1. HYPOCOERCIVE FOKKER-PLANCK EQUATIONS

From Lemmas 1.29 and 1.30, we see that we can reduce the discussion of
sharp decay rates for relative entropies to discussing the term v(t)” Kv(t), where
vo € R? and

o(t) = K 'CKu(t), v(t=0)=uy. (1.54)
A direct consequence is

Corollary 1.31. Let condition (A) hold, and let t* € R{. Then there is an
ingtial condition fo [go] distinct from foo such that for the solution f(t) [g(t)] to
(2), the entropy dissipation Iy, [Iy,] (see (1.18)) for the logarithmic [quadratic]
entropy vanishes at t*, i.e. Ly, (f(t*)) =0 [Iy,(g(t*)) = 0].

Proof: We take the time derivative of v(t)” Kv(t), where v fulfils (1.54),

and obtain

4 )T Kot)] = —v(t)"KCTv(t) — v(t)TCKv(t) = —2v(t)" Du(t),

where we have used (1.12). Let 0 # w € ker D. Setting vy := exp(K " 'CKt*)w
implies v(t*) = w, which completes the proof. O

We will now use Lemmas 1.29 and 1.30 to prove Theorem 1.28.
Proof (of Theorem 1.28):

(i): There is 0 # vy € R? with K~'CKwvy = pvg. So the solution of (1.54)

is v(t) = e "vg, and thus

v(t)T Ko(t) = e v K.

(ii): There is 0 # w € C? with K 'CKw = Mw, A € C, R{\} = u > 0,
3{A\} = w # 0. We can choose w ¢ iR?. Then w fulfils K ~'CKw = M\w, since
K~1CK is real. Moreover vg := w +w € R%, and v; := i(w — w) € R%. One
easily verifies that v(t) := e™#* (cos(wt)vg + sin(wt)vy) is the solution to (1.54).
We define

¢ := sup (cos(wt)vg + sin(wt)vy)" K (cos(wt)vy + sin(wt)vy) > 0,
teRY
21

since K is positive definite. Since v(t) is <7 -periodic, the value c is attained for
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t=1ty+ k‘%’r, ty € Rar. It follows that

v(t)TKo(t) = e 2 (cos(wt)vy + sin(wt)vy)" K (cos(wt)vg + sin(wt)vy) < ce™ 2,
with equality for ¢t = to + k%”

(iii): We confine ourselves here to the case A = 1 € R; the general case can
be obtained by an extension of (ii). So, let w,h € RY with K"'CKw = pw,
K~ 'CKh = ph +w. Let vy := h, then v(t) := e #!(h — tw) is the solution to
(1.54), and

v()TKo(t) = e 2 (h — tw)T K (h — tw) = exp(—2put)(va Kvg + c1t + cot?).

O

From the proof of Theorem 1.28, we see that the constant ¢ in the estimate
ey (f(t)) < ce™2 does not derive from the initial state in a straightforward way,
unless all eigenvalues of C' are real and non-defective. For case (ii), if |v1| > |vgl,
then ¢ can be very large in comparison to ey (fo); for case (iii), the same holds
for Jw| > |h|.

1.4 Spectral analysis

We now give a characterisation of the spectrum of L in L?. Let A1, ..., A\q be the
eigenvalues of C, counted with their algebraic multiplicity. Let P(R¢) denote
the polynomials over R? (with complex coefficients) and let Q := P(R?)f... Q
is dense in L?(RY, fZ!), and it is the natural space for eigenfunctions of the

(symmetric) Fokker-Planck operator (see for example [39] or [57]).

Theorem 1.32. Assume condition (A). Then the following holds:

i) The spectrum of L in L? is given b
g Y

o(L) = op(L) = { - Ed:ajxj‘a = (o) € Ng} c {0} U (R~ x iR).
j=1

(ii) The eigenspace to 0 is one-dimensional and spanned by f. For each
eigenvalue v of L with R{v} < 0, the corresponding eigenfunctions and

generalised eigenfunctions span a finite dimensional subspace of Q.
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(iii) If C is not defective, then the eigenfunctions of L form a basis of Q.

(iv) If C is defective, then the eigenfunctions and generalised eigenfunctions
of L form a basis of Q.

Remark: As we will see in Lemma 1.34, all eigenfunctions and generalised

eigenfunctions of L can be computed explicitly.

The proof of Theorem 1.32 is split into three lemmas. First, we show in

Lemma 1.33 that L only has a point spectrum by proving the compactness of
the resolvent of L. In Lemma 1.34, we explicitly compute the (generalised)
eigenfunctions of L in Q. Finally, in Lemma 1.36 we establish an orthogonal
decomposition of L? into finite dimensional subspaces, which allows us to prove
that the (generalised) eigenfunctions from Lemma 1.34 are indeed all the (gen-
eralised) eigenfunctions of L.
The main difficulty here is that the eigenfunctions of L will are not orthogonal,
in contrast to the symmetric, fully parabolic case. They do, however, generate
L—invariant and mutually orthogonal subspaces of Q, and this fact can be ex-
ploited in the proof of Lemma 1.36 (sec also [34], [5]).

In the next lemma we shall need a weighted H'-space:

Hi={f € L2|V(5) € (L2(RY, fxo))?}.

) ; f
11 =R/ FPAS de +R[ VL fe do = 15 g

Lemma 1.33. Under condition (A), the operator L has a compact resolvent on
L3R4, f21).

Proof: For a (uniformly) elliptic operator, compactness of the resolvent can
be shown by establishing that the embedding H < L? is compact. For a degen-
erate elliptic operator, the resolvent will in general not map into H, so one has
to work in spaces with fractional derivatives. For this proof, we shall therefore
proceed in three steps. First we establish the space we work in, then we extend
the regularisation result from Theorem 1.26 for the solution semigroup e on

L?. Finally, we use these two results to show compactness of the resolvent of L.

Step 1 (interpolation spaces H,): We start by introducing the spaces H,, 0 <
r < 1, between L? and H. We remark that, for any f € L?,

f
I fllz> = ||f;||L2(Rd,foo)'
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By definition of #H, this implies that for any f € H,
f
(AIE" ::H3?7H£P(Rﬁfw)'

An orthonormal basis {z;|j € N&} of L?(RY, f,) is given by the “polynomial

part” of the eigenfunctions of the (uniformly) elliptic Fokker-Planck operator

LIdf = le(V(fi) )

in L2. Tt satisfies

LId(ijOO) = _|j|zjf<>07

with |j| the degree of the multi-index j. In the case of gaussian f, the z; are
the standard Hermite polynomials. For f € H it holds

1F17 = > lesl®s 1B = D (L +1iDles
JENG jENG
where c¢; is the coefficient of fi along z;. We thus define
Hyo={f €L’ > (L+[j)"]e;|* < oo}, (1.55)
JENG

1

1—r> we obtain

Using Holder’s inequality with p = %, q=

115, = D @ 1) e e P

jend
r 1—r
<[ Do+l > el
JjENg jENg
This yields the interpolation inequality
1l < 1IN ANl (1.56)

Step 2 (regularisation from L? to H,): Since L generates a contraction semi-

group on L2, we have
Ve 00 [le" fllzz < [|£llz=. (1.57)

In the following estimate, we shall use the L2-orthogonal decomposition f =



58 CHAPTER 1. HYPOCOERCIVE FOKKER-PLANCK EQUATIONS

f+ feo [ fdz with [ fdz =0, and the scaled version of (1.40) for quadratic

" Rd R?
/(VJE)TPV];(:]%O deCf@ﬁl)/(f_foo/f dx)2f;,1 dz.
J Rd Rd
We have:
|M%%=kﬁN%WWijEmww
= [l fl|72 + Hve;:f‘ QLQ(Rd,foo)

< + et CT DN FIZ
< L+ et CTIf)2s,

where we have used the L2-contractivity of e’

We thus get

and that P is positive definite.

WO <t<T: et fllp < e TR £ s (1.58)
for all f € L2. By combining (1.56) — (1.58), we obtain
Vo<t <1: [ flla, < BT f L, (1.59)
with g :=¢".

Step 3 (compact resolvent): For r := —5 > 0, we can integrate (1.59) on (0,1).
This yields

1
|M&vwms¢mm (1.60)
0

By a well-known result for semigroups (see e.g. [32], section II.1, Lemma 1.3
or [56], section 1.2, Theorem 2.4), for any A > 0 it holds that

VfeD(L)Vt>0: /e(L_)‘)S(L —AN)fds =PV — .
0

Due to (1.57), eZ=Mt decays exponentially and we conclude

oo

/ e LTNYN L) f dt = PN (1.61)

1
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for all f € D(L). Moreover (see e.g. [32], section II.1, Theorem 1.10 or [56],
section 1.3, Theorem 3.1), the resolvent R(\, L) := (A — L)™' has the represen-

tation

oo

1 oo
R\, L) = /e(L_”\)t dt = /e(L_”\)t dt+/eL—W dt.
0 0 1

We apply this representation to (1.60) and obtain

oo

elfllze > RO L) — / (TN F el
1

which yields
o0
IR L) flle, < ellflle> + ||/6(L7A)tf |3, - (1.62)
1
For g € D(L), we replace f in (1.62) by (A — L)g and obtain, using (1.61),

loll, < el = Diglla + 1 [ V40~ Lyg dl,
1
= c[|(A = L)gllzz + e e gl -
Applying (1.59) with ¢ = 1 to the last term yields

lgllz, < ell(X—=L)gllzz + Be gl 2

Choosing A > In 3 allows to “absorb” the last term into the left-hand side. Due
to the spectral representation of H, in (1.55), the embedding H,. < L? is com-
pact for r > 0. Hence, R(\, L) is compact for the chosen A, and by the first

resolvent formula then also for all A in the resolvent set. O

Remark: For r = 1, the compactness of the embedding can also be shown
by the method in [38].

In the next lemma, we compute (generalised) eigenfunctions of L. Here we

shall use the following notation for multi-indexes. Let o € Nd be a multi-index.

d d
We write |a| = Y a;, V= > 8;"1. We also introduce the notation o;_ and
j=1 j=1
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Qg

(ug)j=a; (G#1), (u)=a+l,
(qo)j =0 (J#), (u—)i=aq—1 ifoy>1,
o) ZZOENS if a = 0.

So a;_, a4 denote the multi-index that one gets by lowering or raising the [-th

entry of o by 1. Analogously we define iterated index shifts like, e.g., (aq—)m—.

Lemma 1.34. There is a bijection ® between N& and the (generalised) eigen-
functions ¢ € Q of L. For a € N&, the polynomial part of ®(a) has degree |al,

and the eigenvalue corresponding to ®(a) is
d
Vo 1= — Z QrA].
=1

Proof: We make the following ansatz for the eigenfunctions of L:

p(a) = q(@)fx € Q,
and obtain, using D + R = CK (see section 1.2.1):

L = div(foo(D + R)V(55))
= div(foo(D + R)V) = foo div((D + R)Vq) — foo(a" K~ (D + R)Vq)
= foo [div(DVq) — 2" K~'CKVyq] .

This implies that we need to find a ¢ € P(R?) such that
LPq(z) == VT DVq(z) — 2T K'CKVq(z) = vq(z).

Since the eigenvalues of C' (and thus of @) may be complex, we shall consider
the polynomial ¢ in the space P(C?) in the sequel. As in Lemma 1.19, we shall
now use the Jordan normal form J of Q7 = K~'CK, with A='JA = QT for
some regular A € C4*4,

We introduce the (complex) coordinate transformation

y:= (A N7z, with y € C?,
p(y) = q(ATy) = q(x) € P(CY).
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It follows that

Or;q = (ayzp)T = [(A™H)")1;0u.p,
and thus

Veq=A"1V,p.
From this we have
' Q"Vaq =y"AQTATIVyp = y" IV, p

and

ViDVa.q=V, (A" )Y DAT'V,p.
So we obtain the following equation for the (transformed) eigenfunctions of L”:

LPp(y) == Vi (AT DA™V yp(y) — y" IVyp(y) = vp(y). (1.63)

A basis of the polynomials (over C) of degree n or lower is given by the mono-
mials {y%|a € N¢, |a] < n}. We order this basis by increasing degree, and
in decreasing lexicographic order for monomials of the same degree. Next, we
compute the matrix representation Mp of L” with respect to this basis. Let ¢;

denote the I-th unit vector in C¢, and Ie; be the set of all [ € {1,...,d} for

which e; is not an ordinary eigenvector of J. We compute
) d
L7y = [VT(AH)TDA™ —yT Z agery™
=1

([am - 6lm]a[€£(A_l)TDA_lely(al—)WL—)
1

it

3

(dhy®) = Y oy e 1y
lGIdg-f

= EM&

(dlm(a)y(alf)m_) Frayt = > ay@en (1.64)

l,m=1 l€lgey

3

3

where dj, (@) := [aty — Opm]azel (A~HT DA~ te;. The first term of the r.h.s. has
degree max(|a| — 2,0). The second and the third term both have degree |a],
but the exponents of the third term come “earlier” in lexicographic order. Due

to our ordering of the basis {y*| |a| < n}, this implies that Mp is an upper
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triangular matrix. The entries on the diagonal are just the v, which are hence
the eigenvalues of L” and hence of L”. It follows that, by transforming Mp
into Jordan form, one can find a basis of the polynomials of degree n or lower
consisting of (generalised) eigenfunctions of L”.

If ay =0 for all | € Iy, then (1.64) only contains terms of lower order besides
of vay®. Hence, y* will be the leading term of an ordinary eigenfunction of L”.
To define ®, we observe that for any 3 € Ng, the set {y*| |o| < [B]} {y*| |a| =
|B], « > B lexicographically} is still the basis of an LP-invariant subspace Us
of P(C?%) — due to the upper triangular form of Mp. Further, if a follows 3 in
the order introduced above for multiindices, then U, has dimension 1 greater
than Ug. Hence, U, contains one additional (generalised) eigenfunction over
Up, which has to include the term y® (else it would be in Ug). Setting ®(a) as

this (generalised) eigenfunction completes the proof. O

An immediate consequence of Lemma 1.34 is:

Corollary 1.35. There are only finitely many eigenfunctions ¢ € Q of L to
a given eigenvalue p. The (generalised) eigenfunctions of L from Lemma 1.34

form a basis of Q.

Proof: Since L has compact resolvent and 0 is an eigenvalue, o(L) = o,(L).
Moreover, the eigenvalues have no accumulation point, and all eigenspaces are
finite dimensional. The (generalised) eigenfunctions of L form a basis of Q since

® from Lemma 1.34 is a bijection. (]

With Lemma 1.34 and Corollary 1.35, we have characterised the spectrum of
L|g. We will now show that this is the same as the spectrum of L in L*(R4, f_1).

oo

To do so, we introduce a change of coordinates. Let

1
y:=K 2z,

gdy)ﬁ=fm(K%y)=0Kemﬂ—Egﬁ~

Now let

galy) = V0l(y), €N,
V,n := span {ga‘ la] = m} CQ:= P(Rd)gm m € Np.

Note that the g, are in Q, and the polynomial part of g, has degree |«|. From
[39], [57] we know that {ga},ene forms an orthogonal basis of L2(RY, goh).

Hence, the subspaces V,,, are also mutually orthogonal.
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Acting on the transformed function g(y) := f(Kz2y) e L2(R%, gy!), L has the

form

Lg = div[(D + R)(Vg + yg)],
~ 1 1
D:= K 3DK"3,
_ 1
R:= K 2RK 2

Lemma 1.36. For every m € Ny, V,,, is tnvariant under both L and its adjoint
Lt (wr.t. L2(R?, go ).

Proof: Note that the following propertles of D, R, and C also hold for the
transformed versions (with C := K~ 2 CK™~ 2)

2D=CK+KC", R"=-R.
The adjoint of L has the form

L'g = div[(D — R)(Vg +yg)]-
Now compute

Aga(y) = V*g0(y) = —=V*(y190(v))
= —ga, (Y) — N9a(y).

So we have, writing ha == (9o, (V))i=1,....d

Va(y) = —ha(y) = y9a(y)-

Inserting this into L gives

Lgo = div[(D + R)(—ha(y) — Y9a(y) + ¥9a(y))]
= —div(Dhq(y)) — div(Rha(y)),
Liga = — div(Dha(y)) + div(Rha(y)).

Compute further

d d

div(Dha) = Y 0 ( 100 e, ) (W) = > aDjigia,),. (W),

J,l 1 Jil=1

div(Rhy) Z ARG, ), ()
7,l=1
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Thus we get, using R = (CK — KC") and D = (CK + KCT),
d ~

Lga ==Y ai(D+ R)jig(a,),, ¥)

d 11
=- Z a(K"2CK2)jig(a,),. (),

Jil=

—

d
- 1 o1
Lig, = - Z a(K2CTK™2)j1g(a,,, (1)
ji=1

We see that Lg, Lig, are linear combinations only of terms gg, 8 € N¢, with
|8] = |a|. This completes the proof. O

We now have the tools to prove Theorem 1.32:
Proof (of Theorem 1.32):
With Lemmas 1.33, 1.34 we have already established that

o(L) = 0p(L) > { —zd:aj)\j’ozeNg}. (1.65)

All that remains to show is that there are no further eigenvalues in the point
spectrum of L or, equivalently, of L. Assume there were an additional eigenvalue
A of L with Lg = \g for some g € L?(R% g;'). Then g has a unique L*-

decomposition in {V,,}:
o0
g= ng, with g, € Vi, .
m=0
By the orthogonality and L-invariance of the V., we have f/gm = Agm Vm € Np.

By Lemma 1.34, all eigenfunctions of L in V,, satisfy

d
V= — E CMj)\j
Jj=1

for some o € N with |a| = m. Hence, R{v} < —pm with g = nilin d%{)\j} >
J=1.,

0. This implies g,, = 0 for all m > m := %{/\}. Thus, g = qgo, with a poly-
nomial ¢ of deg ¢ < 7. Hence, g € Q, and \ is already included in the r.h.s. of
(1.65). O
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1.5 Examples

In this section, we study three 2-dimensional toy problems to illustrate our re-
sults and some of the mechanisms behind hypocoercive behaviour.

As first model, in Example 1 we discuss a degenerate Fokker-Planck equation
with a confinement potential whose gradient lines are not aligned with the dis-
sipative subspace. Hence, they cross this subspace at a non-zero angle, which
yields (A.i). (A.ii) is provided by the confinement potential. In this case, C is
symmetric and has a full complement of real eigenvectors and eigenvalues, and
thus the spectrum of L is real.

In Example 2, we study as a second model the case of a defective C', where the
dissipative subspace is a generalised eigenspace of C'. Hence the degeneracy sub-
space of the dissipation is not invariant under CT, and the model fulfils (A.i).
(A.ii) again comes from a confinement potential. The spectrum of L remains
real, but, as seen in Theorem 1.27, there is no precise sharp rate due to the
defectiveness and generalised eigenfunctions.

As a last model, we discuss in Example 3 a kinetic equation with a skew-
symmetric transport between the two variables, but diffusion only in the first
variable. Here, (A.i) is due to a “mixing” of space variables by the transport
terms, which is also responsible for “extending” the confinement by the poten-
tial (which only depends on 1) to the whole space. Depending on the scaling
of the transport term, this example exhibits the same behaviour as the first two
or gives rise to two complex conjugate eigenvalues of C'. This is the standard
kinetic Fokker-Planck-model often used in literature (see e.g. [30], [10], [31]),

with 1 = v and zo = x.

Ezample 1. Let L be defined as in (2) with

- (32) e (11)

Then the unique normalised steady state from Theorem 1.12 is

15 523 + 10z122 + 2023
exp(—
23 2

foo: )a

5—v13

and the sharp decay rate from Theorem 1.27 is p = 2=
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Figure 1.1: Example 1: Symmetric drift coefficients from a skew-aligned poten-
tial. Figure (b) shows that the correct choice of P is crucial.
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X

(a) Field plot of the drift coefficient z 0

Cux.

t
[— — Fy —— s

(b) Plot of the modified entropy dissipa-
tion S and the functional F' obtained by
replacing P in S with Id.

Proof: To find the unique normalised steady state, we have to solve (1.12).

So let
K= ™ F
ko ks

We obtain the equations

2 = 8k + 2k,
0 = ki + 5ka + ks,
0 = 2k + 2ks,

which have the solution

4 -1 11
K:i , K '=5 .
5\ -1 1 1 4

This means the normalised steady state has the form

15 523 + 10z1 22 + 2023
= exp(— )-
27v/3 2

foo



1.5. EXAMPLES 67

For the rate of decay, we compute the eigenvalues of C' as A; = 5i5/ﬁ. From
Theorem 1.27, we thus know that p = 5*2@ is the sharp convergence rate. The

eigenvectors of KCTK~! to Ay are

1
U+ = ( _7-Vi3 )
18

From this, we can compute P as

9 _I
P=vv] vl = S E
—r 4

The behaviour of S for the initial condition

fo=(@ +z2+1)fx

(see also Lemma 1.30) is shown in Figure 1.1b. Also shown is the behaviour of
the functional F' one obtains by replacing D in I, (see (1.18)) with Id. This
is analogous to P = Id in the definition of S (1.19) and retains information on
all derivatives. As can be seen from the graph, there is no hope of obtaining a
decay estimate on F' since the functional is not monotonous. This shows that

one has to be careful in choosing P. (|

Ezample 2. Let L be defined as in (2) with

~(30) e-(11)

Then the unique normalised steady state from Theorem 1.12 is

o= Lo 2t n e
™

);

and the decay rate from Theorem 1.27 is = 1 — ¢ for any € € (0, 1).
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Figure 1.2: Example 2: Defective matrix for the drift coefficient.
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(a) Field plot of the drift coefficient z l e Sos Sou

C for Example 2. (b) Comparison of effective decay rates for

ey and S., with e = 0.5 and € = 0.1.

Proof: As equations for

K= ki ke
ko ks

we obtain from (1.12):

2 — 2%y,
0:k1+2k27
0 = 2%y + 2%y

This has the solution

12 -1 11
K= ., K'=2 ,
2\ -1 1 1 2

so the normalised stationary state is

1 222 + dx 2o + 423
foo = ; eXp(_ ! 2 = )

C has the defective eigenvalue 1, so there is no exact sharp rate, and the best we
can achieve is 1 — ¢ for € € (0, 1), see Theorem 1.27. To obtain P, we compute

the eigenvector v and generalised eigenvector h of Q = KCTK~! as

(1)
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We then set, for ¢ € (0,1),
P.:= vl +2hhT.
One easily verifies that
QP. + P.QT > 2(1 — ¢)P..
For the initial condition

Jo= (2 + 1) foo,

one can expect the defectiveness of the eigenvalue to show in the decay rate
(compare Theorem 1.28 (iii)).

The effective decay rate for the entropy e on the interval [0, s] can be computed
as

Aefr(s) == é log ZES;.

In Figure 1.2b, the effective decay rate for e is shown alongside the effective
decay rate for two modified entropy dissipation functionals S corresponding to
P. for e = 0.5 and € = 0.1. The estimated rate for S; is 2(1 — ). As can be
seen, the estimated decay rate is not optimal (this could also be seen from the
fact that the “remainder” M, in the proof of Lemma 1.19 is positive definite,
not positive semidefinite), as the depicted rates are better than the estimate.
For small s the effective decay rate is better for modified entropy dissipation
functionals, improving as ¢ — 0. However, this comes at the price of increasing
the constant ¢, in the estimate from Theorem 1.27.

O
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Ezample 3. Let 0 # v € R and L be defined as in (2) with

1 0 1 -
D= . C= ",
00 v 0
The unique normalised steady state from Theorem 1.12 is

|z

1
foo = Y GXP(—T)a

and the decay rate from Theorem (1.27) depends on v in the following way:

o If [y < 3, then p = 1= 1=4= V1274”2.

o If || = %, then the eigenvalue with smallest real part is defective, and we

can obtain the rate = 1 — ¢ for e € (0, 1).

o If | > 1, then p = 1.

Figure 1.3: Example 3: Rotation and a one-dimensional Fokker-Planck operator.
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(a) Field plot of the drift coefficient x

Cz for Example 3, with v = 1. (b) Plot of the relative entropy for initial
conditions ko, ho, as well as the bound
from the log-Sobolev inequality (1.29)

Proof: As equations for

K= ki ko
ko ks
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we get from (1.12):

2= 2](}1 - 21/]€2
0= kQ + V(k‘1 — k‘g)
0= 21/]{}2

The solution is K = Id, and we obtain the steady state

2/

foo = exp(fT).

The eigenvalues of K 'CK = C are

_1—1—\/1—41/2 \ _1—\/1—4u2

A o
+ 2 2
If

|l/|:%7

both eigenvalues are %, but there is only one eigenvector

1
v = ,
1
so the eigenvalue % is defective. We thus get three cases:

e If 0 < |v] < 3, both eigenvalues are real; we are in the same situation as

1—vV1—4v? < 1
2 S

the first example, and the rate is u = 5

o If || = %, there is a single, real defect eigenvalue, so the situation is the

same as in the second example, with the rate 1 — e for € € (0, 3).

e If [v| > I, both eigenvalues are complex, and the from Theorem 1.27 is

p= 3.

We compute P for the case v = 1. In this case, A := % + i@, and KCTK—! =
CT has the eigenvector
—-A
V=
1
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to the eigenvalue ), and T to A. Thus, we can set

2 -1
Pi=wf oo = .
-1 2

In this case, the constant Ap from (1.29) is 1. We compare the logarithmic

entropy for the two initial conditions
ho := ((El + 1)foo» ko := (3?2 + 1)foo

ko is in the kernel of Ly, and hy — fo in its complement. Shown in Fig. 1.3b
is the relative quadratic entropy for both cases, as well as the bound % from
(1.29) with the modified entropy dissipation S. In this case, the bound is sharp.
However, this bound requires the initial condition f; to have finite modified
entropy dissipation S, which in general will not be true. The general bound

from Theorem 1.27 is strictly greater. O

1.6 Another proof of hypocoercivity

In this section, we establish exponential convergence towards the unique nor-
malised steady state (see Theorem 1.12) in a weighted H!-norm under condition
(A). We follow a method established by Villani in [67], reformulating his The-
orem 24 in a version tailored to our specific problem. As in [67], we are here
not interested in a sharp decay rate, which we have already established in §1.3.
Instead, the idea is to present another approach to the problem.

Before we start, we briefly elaborate on the strategy and idea behind the proof.
The symmetric part of L can be written as A*A. Due to the semidefiniteness
and singularity of D, this is coercive on ker A = ker A* A, which is strictly larger
than ker L. In his proof of hypoellipticity, Hormander [42] uses iterated commu-
tators Fy := [A, B|, F5 :=[[A, B], B], ..., where B = —B* is the antisymmetric
part of L. Associate with A, F}; the vector fields a(z), f;(z) of their coefficients
(i.e, replacing 9; with the unit vectors e;). The hypoellipticity then follows if
a(x), fi(z), fo(x), ... span the whole of R? for all # € R?. The idea is now
to consider the operators A*A, Fy'Fy, FyFy, ..., all of which are coercive only
on “too small” a subset of H = {f € L2|V(f%o) € (L2(R%, f..))%}. However, if
their sum is coercive on ker L', they can then be used to construct a Lyapunov
functional that yields decay in a H!'-norm. As it turns out, this is the case
exactly iff condition (A) is fulfilled.

We recall that, under condition (A), L decomposes on the weighted space L? as
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LS + L(l57

Lyf = div(DV(+5) f0),
Lof =TTV f =: Bf,

where
T:=i(CT - K'CK) e R (1.66)

with Tr(T') = 0 (see Theorem 1.16).

We work in the weighted H'-space H = {f € Lz\V(f%) € (L3R4, f0))?},

1£13, = [1f1?fe! de+ [ |Vf%c|2foo dz from Lemma 1.33. Let A: H C L? —
R R

1
(L3, f = D2V(4)fo. Then we get for g € (H'(RY, f1))%:

Af.g) = [ DAV fegt! do

Rd

= —/div(D%g)ff;o1 dz.
R4

1
Hence, A*g = —div(D2g) and L = —A*A + B, with the Operator B := 27TV
as introduced in (1.17). Note that ||Af|| < &1 f|lx-

Now, we can state the main result of this section: The operator L is hypocoer-

cive in the sense of [67] (see also Definition 0.1).

Theorem 1.37. Let condition (A) hold. Then there exist A > 0 and C' > 1
such that all solutions of (2) with fo € H satisfy

VE=0:[[f(t) = foolln < Cexp(=At)| fo — ol

Before we begin the proof of Theorem 1.37, we repeat the notations for com-
mutators used in [67]. In this paper, the domain of all operators contains C§°,
and thus the commutators can always be defined on C§° and then be closed.
For a proof of the density of C§° in L?, see [50], Theorem 8.1.26.

For two operators X : D(X) C L?* — L? Y : D(Y) C L* — L2, the
commutator [X,Y] is defined as the closure of
Ce CcL? — LA

fs XYf-YXT.
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d
If X D(X) C (LQ)d — L2, g = (gj)lgjgd — Z ngj and Y : D(Y) cL?—
j=1
L?, we define [X,Y] as the closure of
(€5 € (L) — L2,

d

9=(9)1<j<a> Y _[X;,Y]g; € L*.
j=1

Similarly, if X : D(X) cL?— (LQ)d7 g — (ng)lgjgd and Y : D(Y) cL?—
L?, we define [X,Y] as the closure of

Ce° C L? — (L)Y,
9+ ([Xj,Y]gh<jca € (L)
Finally, if X : D(X) C L? — (L*)%, g — (X;9)1<j<a and either Y : D(Y)) C
L? = (L2)%, g = (Yighcjca or Y : DY) C (L2)? = L2, g = (g;)1<j<a
d
> Y,g;, we define [X,Y] as the closure of

j=1

Cg° C L? — (L)
9= ([X5,Y3]9)1<jh<a € (L7)P*%

In the next lemma, we compute the iterated commutators for the Lyapunov

functional.

Lemma 1.38. Let Fy := A, and for j € Ny let Fj1q := [F}, B]. Then

Fj:H CL?— (L*Y, (1.67)
£ DITIV(() e

Proof: We proceed by indulction. For j = 0, Fy = A has the postulated
form. So let j >0, and M := D2T7. Then

d
Fif = MV(#£) foo = (Z My (fp+ <K1x>pf>) :
p=1 I=1,....d

d
Bf = l‘TTVf - Z errsf,s~

r,s=1
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This implies

d
Z errlep(f,P + (K_lx)Pf)aS
r,s,p=1
d
= Z errlep(f,pS + K;:slf + (K_lx);nf,s)7

r,s,p=1

B(Fj)f

d
(FuBf = Y MpTre ((wrf.s) p+ (K 2)pz,f o)

r,s,p=1

d
= Z MlpTrs (&“pf,s + xrf,sp + (Kﬁlx)pxrf,s) y

r,s,p=1

and thus

d
[(Fj)lvB]f = Z MipT s (5Tpf7s - ‘r"'Kp_slf) s

r,s,p=1
Fiif =MTVf—- MK 'TT2of = M(TVf - K 'TTK(K '2)f)
= MT(Vf+Kaf) = MTV(£L) foo,

where we have used the form of 7" from Theorem 1.16. O

Corollary 1.39. For j € Ny it holds:

o1
Ff=—div((T") D2>), (1.68)
Fjfe =0, (1.69)
Ve H | EfII® < ¢l fII3, with ;= ||DI[|T]* > o. (1.70)

Proof: Using (1.67), an integration by parts immediately yields (1.68).
(1.69) follows from Af. = Bfsx =0, and (1.70) from Lemma 1.38. O

As mentioned, the proof of Theorem 1.37 relies on analysing a Lyapunov
functional that incorporates the iterated commutators F;. The idea is to “com-
plete” the degenerate diffusion term A*A in L by adding more diffusion oper-
ators of the form F}Fj;. The next lemma establishes that a finite sum of these

operators will always be sufficient for the diffusion to act on the whole of R%:
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Lemma 1.40. Let T be defined as above. Let condition (A) be fulfilled. Then
there exists kK > 0 such that

d—k
> (T"Y DTV > k1d,

=0

where k = rank D.

Proof: This is a direct consequence of Lemma 1.3, replacing CT by T =
1(CT — K7'CK) = CT — K7D and noting that Tv = CTv for v € ker D. O

d—k
Corollary 1.41. It holds that > ||F; f||*> > Y| f — feoll?; for some v > 0.
j=0

Proof: Lemma 1.40 gives

d—k
ZHF fIP =Y (f, F;F;f)
=0
~ d—k f
—(f,div(>_(T") DTV (-~ 7))
=0
f ’ d—k 4 f
= <V<T>fm,Z<TT)JDTJ (7))
o0 jZO o0
> / \v—| Fo da
> “1 /|v—| foo da (1 — fooll? |
where we used Lemma 1.20. O

Finally, we need an estimate on two more commutators that will appear in
our Lyapunov functional:
Lemma 1.42. The operators F; defined in (1.67) satisfy

[F;, A] =0, (1.71)
I[FS, AN < a5l (1.72)

for some a;; > 0.
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Proof: Remember our notational convention: [Fj, A] is the closure of an
operator from C§° to (L?)%*4, as is [F};, A*].
Now let j € Ny be fixed. Since F}f = MV(%)JCOO for some matrix M, we get

1
for the components of our operators, using D2 = D,
d
(Fj)f = Z Miyfp+ (MK )y f,
p=1

d
Arf = Z Drsf,s + (DK_I)Tsxsfv

s=1

d
A:f = - ZDrsf,s~
s=1

Denote by m; the [-th row of M, by d, the r-th row of D. Then we have for
fe g
f

EA, = my- V(2 d, - VL) oo = (m) 125 L

[ sz}drfoo

Since the matrix 3‘9—;% is symmetric, it follows that [(F});, Ar] = 0. Similarly,

we have
(Fp)o Arlf = —mu - V(drj;:fmo +dp - V(my - V(f%)foo
:—Tr(drT®ml-V®(%f)foo+Tr(mlT®dr.V®(v(f%) )
:—Tr(df@gml.v@%)f

which proves the inequality

[y, A*1f || < (M, K, D)|f].

With these results, we can prove convergence to equilibrium under condition

(A):
Proof: (of Theorem 1.37)

We reiterate the proof of Theorems 18 and 24 in [67] tailored to (2). Re-
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member that ||-|| and (-, -) refer to the norm and scalar product on the weighted
L2-space. Let N :=d — k. For a solution f to (2) let

N N—-1
L(f) =l f = fool® + D aIF 17 =2 D by (Fif, Fjaaf),
j=0 7=0

where the positive constants a;, b;, ¢ are yet to be determined. We will show

that £ is a Lyapunov functional. First, we shall need

L(f) = &llf — fold, (1.73)
L(f) < &llf — folli (1.74)

with some ¢, ¢ > 0 still to be chosen. For (1.73), we can choose

Qa1 > 4b3 (175)
and obtain:
N N-1
D alFfIP =2 b (Ff Fyaf)
§=0 §=0

N—-1
ao an a; Gjt1
= §|\Fof||2 + 7||FNfH2 +> §J||ijH2 = 20;(Fyf, Fi1 f) + ]2 I FjafIIP
=0

d—k
>y |IFfIP > éallf = fooll3s
j=0

where we have used Corollary 1.41 for the last inequality.

With (1.69) we get

N N—-1
LF) =cllf = fool> + D ai | Fj(f = fo)I? =2 D bl Fi(f = foo)s Fyja(f = foo)
j=0 j=0

N
<Scellf = fuol?+ & D _IF(f = foo)lI” < Esllf = foollZes

=0

where we have used (1.70) for the last inequality.

N
Our aim is now to prove that &L£(f) < — 3 ~;||F; f||? for some v; > 0.
§=0

This will give the desired result with Corollary 1.41, since £ is equivalent to
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|13, So compute, using [ f; dz =0 and (1.71):
B

SIF = Fooll® = 2(f, fo) = —2|| AfI1%,

SIEFI? = 2(F f, Fifo) = —2(F; f, F; A Af) + 2(F; f, F; Bf)
= —2(F; f, [F}, A"|Af) — 2(AF; f, F;Af) + 2(F; f, [F;, Bl f) + 2(F; f, BF; f)
= —2(F; [, [Fj, A"JAf) = 2| AF; f1I* + 2(F} f, Fj1 ),

S L Fyaf)
= (Fjfe, Fjpr f) + (Fif, Fia fe)

—(FA"Af, Fji f) + (FyBf, Fin f) — (Fj f, Fy1 AAf) + (Fj f, FiaBf)
= —([Fy, A"JAf, Fja f) = (FjAf, AFjn f) + (B Bf, Fya f) — (Fj f, [Fj1, ATJAS)

—(AF; f, Fja Af) + (Fj f, [Fj41, Bf) + (Fj f, BFjia f)

—([F, A"JAS, Fja ) — 2(AF; f, AFj 1 f) — (F5 f, [Fj1, ATJAS)

1 Fea fI? + (Ei fy Fyyaf).

Using this we get

L)

N[

N
= —c|AfIP =D a; (IAF 1 = (Fyf, Fjn f) = (F3f, [Fy, ATJAS)) - (1.76)

=0
N-1
+ 3 b5 (B ATVAL Fyasf) + 2(AF f, Ay f) + (F3 £, [y, A'JAS))
j=0
v
= Y b (IE fI2 = (Ff, Fysa)- (1.77)
j=0
Note that
N-1
0> — ZGJIIAFfIIQJrZ?b (AF;f, AF; 1 f)
j=0 3=0

due to (1.75). We further estimate, using (1.72),

(3 fs Fyn ) < SN + 5 1Ey £
(5 £, [Fy, AMVAS)] < S5 AFI? + 2= 1 F5 £,
([, ATVAS, Fya )] < 92| AFIP + s Fia 11,
(5 £, [Fyn, ATJAS)| < SEEAS| + 51 £,

(i, Fypaf)l < SIFFIP + g | Fya f2.
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Inserting these estimates into (1.76) yields

N
LL(f) < 2| AP+ (@GNEFIP + [ Fjsa fI? + asad | AFIIP + | F5 £117)

=0

i

+ 37 (BIASIE + 1 Fa fI2 + a2 AFIP + 1 F 2)

il
|
Lo

(B2IE 12 + 1512 f12)

2b;1 |1 F5 1. (1.78)

(=10

1

<.
Il

Note that there are two terms containing ||Fn41]. With Fxi1feo = 0, (1.70),
and Corollary 1.41 we get

N
IFns1 f1? < eneallf = fooll3 < B IIE; £11?
j=0

with some 3 > 0. Now we analyse the coefficients of | F}; f]|?, 0 < j < N (recall
Fy = A): on the right hand side of (1.78):

N N-1
IAFI? . —2c+ad+> aja?+ Y (a2 + aj1b?) + 03 + 2+ 28,

3=0 3=0
(1.79)
IFLfI?: —2bo +af + b3 +4+25, (1.80)
IFfIIP,2<j<N: —2bj_1+a;+b}+5+28, (1.81)
IENfI?: —2by_1 +a% +4+28. (1.82)
We can choose any := 1,by_1 = 6+26, so the term (1.82) is —1. Then, we

2 2 2 2

successively set a; := 45;111 to fulfil (1.75) and b;_; := 76+2ﬁ—;aj+b", by =

%, so the terms in (1.81), (1.80) are —1. Finally, we can choose ¢ > 0

such that the term (1.79) is also —1 and obtain
N
L) < =D IESIP
j=0

Using (1.41) and (1.74), this directly yields

FLU) < =klf = foollf < =& L)
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Using Gronwall’s inequality we obtain the exponential decay of £L(f), and thus
with (1.73), (1.74),

1£(8) = fucl3 < 5 £UF(1) < L fo) exp(=£t) < Elfo — focl3 exp(=£1)

for all t > 0. O

Remark: We did not keep track of the decay rate in this theorem - it is
far from optimal, as it is also in the general theorem given in [67]. In his book,
Villani remarks that in some cases, it is possible to get a better rate (that is
only “wrong” by one order of magnitude) by tailoring more specifically to the
particular form of the operators A, B. In this thesis, we get a sharp rate from
the modified entropy method (§1.3).

1.7 Extension to Nonlinear Drift terms

In this section, we investigate how the results of §1.1-§1.3 extend to nonlinear
drift coefficients F'. We do not reproduce the results of the previous sections;
instead, the aim is to show some of the difficulties that arise and present an
idea for a relatively strict, but simple extension of condition (A) (see Definition

1.1). We consider the equation

fi=Lf:=div(DVf+ Ff), (1.83)
f(t=0)= fo.

We assume [ fo dz =1 and analyse solutions in L} (RY). We still assume
Rd

D = diag(1,...,1,0,...,0),
——

but we no longer assume that F' is linear in the space variable z.

1.7.1 Existence of solutions and stationary states

To guarantee existence of stationary state and a contraction semigroup e‘”, we

make some assumptions on F. They take the following form:
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Definition 1.43. The operator L from (1.83) fulfils condition (B) iff F is

smooth and

(1) %—5 is uniformly positively stable, i.e. there is a g > 0 such that for all

x € R%, the spectrum o (%—I;(x)) is contained in [, 00) x iR.

(i) There exists a matrix R = —RT € R?*4 constant in = such that D + R is

invertible and

(D+R)‘1%1; (1.84)

is symmetric for all 2 € R%.

These conditions are inspired by (1.1): We still want a confinement potential
(i), and (ii) ensures that there is an easily computable stationary state for 1.83.
In contrast to condition (A), condition (B) is not equivalent to existence of
stationary states and exponential decay for e*’. In particular, the assumption
that the matrix R in (1.84) should be constant is very strict. In §1.7.3, we

compute two examples for coefficients F' that fulfil condition (B).
Proposition 1.44. Let L fulfil condition (B). Then the following holds:

(i) There is a smooth solution V' to
(D+ R)VV =F, (1.85)
which is unique up to a constant. Further,
foo i=cye Ve L}‘_(Rd) N L*(RY),

where ¢y > 0 is such that [ fo dz = 1.
Rd

(i) On the Hilbert space

H:={f¢ L2(Rd,f0;1)|vfi e L*(RY, f.o)},

the kernel of L is spanned by fo.-
(iii) Lf = div(foo[D + RIV ).
Proof:

(i) From (B.ii), it follows that

(D+R)'F



1.7. EXTENSION TO NONLINEAR DRIFT TERMS 83

is a gradient field. Differentiating (1.85) yields

9*V LOF  9FT _
Vs =(D+R)! yo el o (D—-R)~. (1.86)

This implies that 2 2 is regular and smooth, since both %—5 and D + R are.

9%V -

Furthermore, rrea is a (pointwise) solution to the continuous Lyapunov equation

2V 92V oF oFT
(D+R)82+82(D+R) %qt%.

Since D + R is regular and v7'(D + R)v = v"Dv > 0 for all v € R, D+ R

is positively stable. Since 8—F is positively stable for any x € R? the right

hand side is positive semideﬁmte7 this means that %w‘g is positive semidefinite,

too. With the regularity of V, it follows that 31‘2/ is positive definite for any
x € R? (see [44] Theorem 2.2.3, [61] Theorem 2.2). In fact, since ‘gF is uniformly
positively stable, %27‘2/ is uniformly positive definite. It then follows that V' grows
at least quadratically for |z| — co and thus exp(—V) € L1 (RY) N L*(R?).

(ii) Inserting foo into L yields

div(foo(—=DVV + F)) = f [(VV) - (DVV — F) — div(DVV — F)].
Applying (1.85), we obtain
Lfsc = = [ [(VV) - (RVV) — div(RVV)] =

So fso is in the kernel of L. Compute

div (foo(D + R)vfi

oo

) =div((D+R)Vf+(D+ R)VVf) =div(DVf + Ff).
Thus we can write

Lf = div (foo(D+R) ff >

This proves (iii). Now assume Lf = 0. It follows that for all g € H,

f

v

0=(Lf.g) = /[(D LRV 995 de.

R4

foo

Since D + R is regular, this implies Vf% =0 and thus f = af. 1
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Remark: The matrix R from condition (B) is unique and can be computed
explicitly: Multiplying (1.86) by D + R from left and D — R from right yields

OF OF oFT oFT
wl R Pae i

which can be rearranged into the continuous Lyapunov equation

OF OF" oF oF”

—R+R— =—D—-D— 1.87

ox + ox Ox ox (1.87)
for the unknown matrix R. Point (ii) of condition (B) implies that (1.87) has a
unique solution, since g—i is positively stable for any 2 € R?. This solution can

be written as

yi OF  OF oFT oFT
R = /exp(—q-%)(%D—Da—x )exp(—T% ) dr,
7=0

which immediately confirms that R will be skew-symmetric. The restriction of
condition (B) is that R should be independent of z; examples are given at the
end of this section.

We also remark that a split such as in Proposition 1.44.(iii) is to be expected

for (1.83) if there is a unique normalised stationary state:

Lemma 1.45. Let fo, be the unique normalised steady state of L from (1.83),
with

Vz e RY: foo(z) > 0.

Then there exists R = R(x) € R such that R(z) = —R(z)T and

f

Lf = divlfoc[D + R(2)]V

] (1.88)
in L2(RY, f21).

Proof: Since fo is strictly positive, we write foo(z) = exp(—A(z)). We
compute, writing R(z) := foo R(x),

div]fa[D + R(x)]vfi] — AV[D(V] + FVA)] + div[R(2) VL]
— div[D(Vf + fVA)] + (div R(z)) - vfi], (1.89)

where we have used Tr(R(x)aa,—;f%) = 0 due to the antisymmetry of R. We
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know that
Lfs = div[(F — DVA)fs] = 0. (1.90)

This implies

f f

Aiv{(F —~ DVA)f] = div[(F ~ DVA) faoi) = (V) - (F = DVA) .
(1.91)
Writing
Lf = div[D(Vf + fVA) + (F — DVA)f] = div[foovaioo] +div[(F — DV A)S),
we conclude that (1.88) holds if
div[(F — DVA)f] = div[fooRVf%o].
With (1.89), (1.91), this can be written as
(Vf%) (F = DVA) fa = (div R(x)) - vf%,

which is equivalent to

div(R(z)) = (F — DV A) fo.

This can always be solved: The right-hand side has divergence 0 due to (1.90),
and for the left-hand side we obtain

d
div(div(R(z))) = Z 0;057; =0
ij=1

due to the antisymmetry of R. O

Proposition 1.46. Assume condition (B). Then L generates a contraction

semigroup on L2.

Proof: We compute

(wf.5) = [ aiv (foow i R)VJZ;) fé do=— | (Vf%)Tva% o dz<o.

Rd R4

Thus, L is a dissipative operator on L2. The adjoint L* of L is easily computed
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as

L*f:div(foo(D R)V ff)

It then follows that L* is dissipative, as well, and thus L generates a contraction

semigroup (see e.g. Corollary 3.17 in §IT of [32]). O
Corollary 1.47. Let 0 < fy € L?, [ follLrray = 1. Then the solution f of
(1.83) is in L' and fulfils

VE20: ()20, [FOllen =1

Proof: f(t) > 0 holds due to the weak maximum principle for degenerate
parabolic equations.

We compute

1 ()]s gy = /f M—/fﬁmkdx

=

/\f )P fot dx /foo dz | = |f®) L.

This shows L? < L', so f(t) € L' for all ¢ > 0. The norm preservation then

follows from the divergence form of L. O

1.7.2 Entropy method

In the case of a linear drift coefficient F', we considered the modified entropy

functional

f) Z/W(fi)uTPufoo da (1.92)
Rd

where 0 < P € R? is carefully chosen such that inequality (1.25) holds:

QP + PQ" > uP.

There, @ is computed from the stationary state as Q := (D — R) %1‘2/. In the
case of non-linear drift, the computations leading to Proposition 1.25 can all be
repeated (under regularity assumptions on the solution). However, the potential

V' will not be quadratic, and thus @ is no longer a constant matrix. The linear
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method can still be used for a perturbation result:

Proposition 1.48. Let f be a solution to (1.83) under condition (B). Let

OF
% - CYO + C’r(x)a (193>

where Cy € RY is positively stable with p := min{R\;|\; € o(Cp)} > 0. Further,
assume that for the matrix P from Lemma 1.19 corresponding to Cy, it holds
that

Ve € RY: Q. (2)P + PQ,(z)T > —vP (1.94)

for some v € [0,). Then the modified entropy production corresponding to P
(see (1.24)) fulfils

Ve>0: S(t) < S(0)exp((v— u)t).

Proof: From (1.93), (1.86) we obtain

2 T
Q=R =M (DR
=(D—-R)Cyo(D— R +(D—R)C,(x)(D—R)".
=:Qo =Qr(x)

Hence, @ is similar to Cy and therefore also positively stable. We can apply

Lemma 1.19 and obtain a symmetric P > 0 such that
QoP + PQY > pP.
Since we assumed
Qr(2)P + PQy(x)" > —vP,
it follows that
QP+ PQ" > (- v)P,

and decay of S with rate yu — v follows as in Proposition 1.25. O

The rate obtained by the perturbation result is not going to be sharp. Also, it
only covers cases where the growth of %—i —and thus of V' —is at most quadratic.
As we will see in the examples of the next subsection, for faster-growing poten-

tials it is in general impossible to obtain inequalities using a constant matrix
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P. The next logical step would be to use a non-constant matrix P in S. In
the following Proposition, we compute the time-derivative of the resulting mod-
ified entropy dissipation. While this result leads to a decay estimate in the form
A(P) > pP, it is only of theoretical value without an example that this estimate

can actually work.

Proposition 1.49. Let condition (B) hold. Let f be a solution to (1.83) such
that f(t) > 0 for allt >0, and let

PR — R

be a smooth function such that P(-) > pold uniformly. Then the modified

entropy dissipation

S(t) := /w”(fi)uTPufoo dz
Rd

fulfils
48UV 2 [ WL AP uf da,
Rd
where
A(P) = (D~ R)%P + P%(D +R) — [VV(D - R)V]P + V(D — R)V]P.

Proof: Define u := Vfi, then we have

Lf =div(D + R)ufe) = [(Dix + Rik)uk fool i
= Dipur,foo — (Dir + Rig)ur Vi foo,

and thus, using uy 1;; = uj 1,

Jey o (LS
7o =
= [Dikur,s — (Die + Rue)ur Vo]

= Dipujik — (D + Rig)uw,; Vi — (D + Rig)uiVyj.

uje = (

We compute
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—2/w” Y(u) T Pufoe dx—l—/w”’ yul Puf, da,

=:(1) =:(11)

where we have used the symmetry of P. We have
= Q/w” ) Pufs, da
= 2/¢” ) Dkt 11 Pjrttr foo 33—2/1#” 7 “—)(Dik + Rik)uk,;ViPjruy foo da

- 2/¢//(T)(Dzk + Rip)ur Vi Pjruy foo d.

For the first term, compute

/T/J” fL Dy i Pjrter foo da
= _Q/leujk ) Pjrur foo) da
= —2/1//” ) D g Py foo da — 2/¢//(f%)leuj,kpjrur,lfoo da

+2/¢” fi D 1 Vi Pjruy foo do — 2 /W' i )Ditj i Pjr ity foo d.

This implies, again using u; r = ug,;

= *2/1//” fi Dy g Pyt foo dz — 2/1/)” VD i Pjrtiy foo da
+2/1/1” VD 1 Vi Pjrty foo da — /%/f" foo)Dsz kPjr ity foo da
- 2/10" )(Du + R )uk,;ViPjrur foo dz
- 2/¢"(f;)(Dm + Ry )ur Vi Pirty foo da

= —2/1//” fi Dy pu Pjrtsy foo do — Z/w”(f%)leuj,kPjrur,lfoo dz
Rd
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—2/1/1” foo VD Pty foo dv — /1/// VRikug jViPjrur foo do
- 2/1/1” V(D + R )ur Vi Pjruy foo da.
Next, we investigate the term
/1/1” fi ViRuwj kPjry foo do
- / s (Ruc Py Vst foct" (7)) .
Rd
/W' i i Pjr i Vit foo dfv-i-/w” VRt Viku; Pjruy foo da
/1/1" fL ViRytr i Piruj foo dz — /%/f" fi ViRV s Pjruy foo dae
/1/)”/ YWiRiugw; Pjruy foo da
= /1/// fTo)Uijr,leleurfoo dx"_/w//(f%)v,lleur,kPjrujfoo dw

Rd

/’(/Jm fi Vlleukuijrurfoo dx.

Here we have used the skew-symmetry of R to conclude RV, = VRV = 0.
We obtain

- 2/¢" fL ViRikuj i Pjruy foo da

/W" VWViRpugw; Py foo d$+/¢" 7 ——)uj Pjr k Rit Vyur foo d.

So we arrive at

= —2/1?”/ )Dikuj g Pjrty foo d — 2/1/)” ) Dkt Pirtir 1 foo d
—Q/W/ VDt 1 Pjr ity foo da

- 2/1#"(7)(1311@ + Rig)ur Vi Piruy foo da
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/1//” fi ViRiugu; Pirur foo dx—l—/@/}" <) Pjr i RigViur foo di.
(1.95)

Next, we compute
0 [ s
/W” 7 ur Prju (Do + Rig)ug foo d

/q)[/”fiurprjuj‘/,l(le+le)ukfoo dz.

Take a closer look at

/w”’ fi Prjui(Di 4+ Rig)ug, foo do

/77/1/" fL Uy Prjuj Digug,1 foo d

_/ulek(Prjurujfoowlﬁ(f%)),l dz
/W" fi g Digir Prjuj foo dv — /W" Yur Dy i Prjuy foo da

- /1/le(f%)ulekuluTPrjujfoo dx + /¢/”(f%)ulekV,lurPrjujfoo dx
R

_/¢///(f%)ulekPrj,lurujfoo dx,

and it follows that

/'@[J”/ uk‘leu’l”lP’l‘]uijO dx — /W” )uleku] lPrgquoo dx
/WW Jur Dygugr Prjug foo dﬂ?-f—/lbm Jur Dy Vg Prjug foo da
/w/// ulek:PT] luru]foo dz

/1/}/// fiurPTjUle(leJrle)ukfoo dx
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= —Z/w”’ Jug Digtiy  Prjuj foo dz — /wlv(f%)ulekulurPrjujfoo dx
Rd

/w”/ fi Pju; ViRjuy foo do — /1/)/// )ulekPr],lurujfoo dz.
(1.96)

Combining (1.95) and (1.96), we obtain
= —2/1#”/ fL Dy pu Piruy foo do
— 2/?#" fL Diguj i Pjrty ) foo da — 2/¢” ) Dt 1 Pjr ity foo da
— 2/¢" fi (Diks + Rig)ur Vi Pjruy foo da
/1//” fi ViRiunuj Pirtir foo d$+/1/// ——)uj Pjr x Ri. Vyu, foo da
—Q/WN fi up Dty Prjuj foo do — /wlv(f%)ulekulurPrjujfoo dz
Rd
(L Ny P mi _—
¢ Ts u'rPr]u]V,lleukfoo dz — ¢ (f )ulekPrj,lurujfoo dz
= _4/w”/(f%)ulleuj,kPjrurfoo dz — 2/w//(f%)leuj,kPjrur,lfoo dz
d
2 / w"<%>D1kuj,kPjr,lurfoo dz 2 / w"(fixDZk + RiucVi; Py foo da
/1//' f uj jrleleurfoo dx*\/wlv( )ulekulUrPrjujfoo dx

Rd

/1//" ulekPr] lurujfoo dz.

We compute

/¢//(fi)leuj»kPjT,lurfm da
Rd

= —/ (T/)”(ff ) ]Tlurfoo> Dypu; dz
o0 Kk

Rd

= _/wm(fi)Pjr,lulekurujfoo dz — /L/)”(fi)Pjr,lkurleujfoo da
R4 R4
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/w// f j’l‘lu’l“ lekujfoo dﬂH‘/ﬁ’” ]rlurkaoole:uj dax.
o0
Since P = PT, this implies
—2/1#” ) Dty g Pjr ity foo dz
/W’ i Yy Dyt Pjr ik foo dl‘+/¢m 7 ——)Pjr up Diguru foo dx
- /wll(T)Pjr,lurkalekuj dz,

and thus

Zy(f(t) = —4/11/” (#5)w Diu; Py foo da

- 2/¢” leu] k rur,lfoo dx

f
foo

) jr, lulek:urujfoo dx

/1/// fi)uT’lePj’l’ lkujfoo d$+/¢1”(
Rd
- /W/(*)Pjr,lurv,kfool)lwg‘ dx
Joo
- 2/1/1”(i)(le + R )ur Vi Pjrty foo da
foo
/1/// f Ui Pjr i Rii Vit foo dx—/ﬂjlv Jur Digwyur Prjuj foo do
o0
/W” ulekPTj lurujfoo dx
= —4/1//” Y Dy g Pjrty foo d — 2/1#" ) Dkt g Pirtir 1 foo d
+/w//(T)UTlePjr,lkujfw dz

- /w//(f%)Pjr,kur‘/,lfoo(le — Ryp)uj do

- 2/1#"(%0)(&1@ + Ry )ui Vi Pjruy foo da

93
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/ MV (o yur Dy Prju foo da
— 9 / Te(XY) foo da — / w"(fiw)Pjnkurw Foo(Due = Rup)uy da
g
+/T/// f% Ur Dig Pjraittj foo do

- Q/WI le + le)ukvlj ]rurfoo dx.

Here, the matrices X, Y are given as (cf. Lemma 2.13 in [6])

N (w ) w<;>> YZ(M@:PQ;) W D2 Py )
) )

I
(£ svTV(E u'D% Py (uT Pu)(u? Du)
Due to the assumptions on ¢ (cf. Definition 1.17), X > 0. Tosee Y > 0, we use

the Cauchy-Schwarz inequality for the Hilbert-Schmidt norm and the symmetry
of D, P to obtain

WD puy? — T (@UUT@. \/EZ;‘\/TD)Q

ox
< T (VPuu"VDVDuu VP) To (@21; ﬁ?ﬁ??i@)

Ou _Ou
_ T T
= [u" Du|[u" Pu|Tr (D 3xP8x>

This implies Tr(XY") > 0, and thus
2u(00) < [ "Ly Duy i o o
- /1/// fé)Pjr kU V1 foo (D — Rig)uj dz
- 2/1/1” )(Dik + R )ur Vi Pjruy foo d
- / V(D - @2  Pufe da
/ P (= (D + R)ufs da

/¢” f T([VV(D — R)V]P)ufs da (1.97)
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//iuT T _ U T
+R[w (o (V7 (D = RV |P)uf da.

1.7.3 Examples

As a last part of this subsection, we give two simple prototype examples that
fulfil condition (B).

Definition 1.50. Let
v,w,a,b e C®(R).

We define the drift coefficients

!/ !/
Fia)= (" (1) fw (22) ) (1.98)
—v' (1)
! b/
Fola) = ﬁla (Br1 + x2) + /(CC1 + Bx) . (1.99)
a (B + x2) + B (21 + Br2)
Further, let
1 0
D = .
Then we define the two Fokker-Planck type operators
L; :=div(DVf+F;f), j=1,2. (1.100)

First, we investigate condition (B) for both cases:
Lemma 1.51. Condition (B) holds for Ly, Lo iff a,b,v,w are strictly convez.
Proof: We compute, leaving out the arguments for sake of readability

OF, B " w"
or - 0 )

% - BQCLII + b// ,B(CL” + b”)
or 5(a// + b//) a’ + 621)// .
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It follows that, at any given = € R?, the eigenvalues of % are

1
)\171/2 = 5 (’UN + ’UH(’UN — 4’(1}//)) .

For positive stability, it is thus necessary that v” > 0 and w” > 0 for all z,
which means that v, w are convex. Since % is symmetric, positive stability
simply means that the matrix is positive definite. That requires by the principal

minor criterion
0 < /BQa// +b”, O < (1 _/82)2a//b//.

Again we conclude a”,b” > 0, as well as 3% # 1. If these conditions are fulfilled,
it follows immediately that both matrices don’t leave the subspace {0} x R
invariant.

It remains to find the skew-symmetric, constant matrix R that fulfils (1.84).

The subspace of skew-symmetric matrices in R?*? is one-dimensional, and thus

-1
R=« 0
1 0

for some a € R. It follows that D + R is invertible iff o £ 0, and

71_L 0 «
pemi= (2 0),

Using this, we compute

oF, 1 —av” 0
D+ R == —
( + ) or |a|2 ( —av” — v —aw" ’
(D+ R)_1% _ i aﬁ(a” —I—b”) a(a// +ﬁ2b”) .
ox |a|2 ﬂ(a” + b//) _ 05(526// 4 b//) a’ + sz// _ Oéﬂ(a” + b//)
So (D + R)*l% is symmetric iff @« = a7 := —1. In the second case, we get the
condition

a(a// + /8217”) — ﬁ(a” + b//) _ O[(BQG/N + b”),
which is equivalent to

(=B +apH " +b")=0.
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We thus need

a=—B_
1+ 5%

since a”; " > 0. This excludes 8 = 0 (else @« = 0 and D+ R is not invertible). O

We can now compute the kernel of Ly, Lo as in Proposition 1.44.

Lemma 1.52. Let

a+ B2%b
1+ p2

v(xy) +w(x)

F), fale) = expl(-

fi(x) = exp(— ). (1.101)

Then f1 spans the kernel of L1, and fy the kernel of L.

Proof: In the proof of Lemma 1.51, we have already computed the skew-

1
R1<0 )a
-1 0
I5; 0 -1
R:
2 1+52<1 0 )
—10F;

for which (D + R;)™' 5.2 is symmetric. From there, one obtains the equations

symmetric matrices

w'(22)

vm=w+mﬂﬂz<ﬂm)>

VVo=(D+ Ry) ' Fy =

1 Ba (Bx1 + x2) + B2V (z1 + Bxa)
L+ 52\ a/(Bay + xo) + B3V (1 + Baa) )

This implies

Vi =v(x1) + w(ze) + ¢,

a(Bz1 + x2) + B2b(z1 + Br2)
1+ 52

Vo = +c2

with constants c1, ca determined by the normalisation. O

A straight-forward computation now yields the matrices

or; T
Qj = (D~ Rj)aixj (D—R;)™!

that appear in §1.3.1, (1.25).
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Lemma 1.53. It is

I ——
Q1= ( - ) (1.102)

B /82(0// _|_ 2b//) _|_ 2(1// _|_ b// %[2546// _"_ /82((1,” + b//) + 20//} 1 103
Q2 - _ﬁ(all +b//) _a// _ B2b// N ( : )

As a last result, we show that a constant matrix P for the modified entropy

dissipation will in general not suffice:

Corollary 1.54. Let v, w grow faster than quadratic as |x| — oo. Then for
any positive definite, symmetric P € R?*2, there is xp € R? such that

Q1(zp)P + PQT (zp)

1s indefinite.

Proof: We set

pP.— P1 Pn E(CdXd
Pn P2

constant, where py,ps > 0, p2 < pipe. This yields

2 7 ) N ! . "

0P+ PQT — p1v (mi,) Pnw (é/v/z) (P1 +pn)v (x,l,) paw’(z2) |
(p1+ pn v (21) — pow” (22) 2pn” (21)

For this matrix to be positive definite, we need 2p,v”(x1) > 0 and thus p,, > 0.

But then it follows that, since v”(x1) and w”(x3) are not bounded, the first

entry will not have a sign independent of z. U

1.8 Conclusion, open questions

For linear Fokker-Planck type equations (2),
Of = Lf =div(DVf + Czf),

we established a characterisation of the hypoellipticity and hypocoercivity of L
in terms of C' and D (see condition (A), Definition 1.1). Condition (A) also

turned out to be equivalent to L possessing a unique normalised ground state

2TK 1z

foo = excexp(— ),



1.8. CONCLUSION, OPEN QUESTIONS 99
where the covariance matrix K is computed from
2D =CK + KCT.

We have extended the entropy method to deal with a singular D. As seen
in Theorem 1.27, one can still obtain sharp decay rates in general admissible

entropies, at the price of a constant ¢ > 1 on the right hand side of the estimate

ey (f ()| foo) < cey(folfoo) exp(—2pt).

Our method does not guarantee that c is optimal. In fact, it is almost certainly
not (the optimal ¢ in §1.5, Example 3 is only valid for 1-compatible initial data).
So there is space for improvement with the constant ¢ in Theorem 1.27.

The Bakry-Emery-analogon for the degenerate parabolic case turned out to be

the matrix inequality (1.25):
QP + PQT > 2uP,

where Q = KCT K~ is computed from the stationary state and the drift coef-
ficient C'.
As seen in §1.7, this structure does not easily translate to the case where the
drift coefficients are not linear, and further research in this direction is required
to extend it. A first step would be to consider the commonly found kinetic case
R? =R x RE, d € 2N, and

[vf?

fool(®,v) = o eXp(_T V(z)),

where V is not quadratic in x and fulfils the condition

o2V

— | <
15551 < e+ 19V)

for some ¢ > 0 (see [10], [67]). Here, as seen in Corollary 1.54, one cannot use a

constant matrix P for the modified entropy dissipation S ((1.24), Lemma 1.19).

We remark that it is entirely possible to apply these results to the case k = d.
In this case, there is already an established decay rate from the entropy method
for symmetric operators (see e.g. §2.4 of [6]; [3]). As it turns out, the rate
computed in this thesis is different and in general better. In fact, the two rates
describe different phenomena: The rate A; from the symmetric method gives a

“local” decay rate, applicable at any point ¢ and with the estimate

e(t) < e(0) exp(—2A1t).
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In contrast, the rate u established in this chapter is a “global” rate, best un-
derstood as the average rate of decay around which the actual rate oscillates.

It holds true for estimates
e(t) < cexp(—2put),

where ¢ > e(0). Both rates help characterise the behaviour of solutions. In the
case k < d, the “local” rate A\; is zero and thus not generally considered (of
course this in itself is an interesting behaviour, see also Corollary 1.31). This
difference between “local” and “global” rate is discussed in more depth in the

paper version [33].



Chapter 2

Discrete open quantum

systems

2.1 Outline

This chapter presents some work of the author on an entropy method for finite
dimensional open quantum systems in Lindblad form. The equations are given

as
pr=Dp:=i[H,p|+ > [Lep, L] + [Li, pL]], (2.1)
k
p(t =0) = py € C¥1.
Here [, ] denotes the commutator of two matrices. The term

> [Lip, L) + [Li, pL]]
k

is called the Lindblad part of D. We look for solutions in the space of density
matrices, which in finite dimension are matrices p € C?*¢ which are hermitian,
positive semidefinite and have trace 1. The operator D from (2.1) generates a
semigroup of completely positive, trace-preserving maps called a quantum dy-
namical semigroup. In fact, it is the general form for a generator of quantum
dynamical semigroups, as has been established in [49] (for bounded genera-

tors), [35] (for finite dimensional systems).

The aim of the presented research was to establish a-priori estimates on the
rate of convergence to the equilibrium via study of the relative entropy. As

a first step, we show that equation (2.1) can be rewritten to closely resemble

101
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the Fokker—Planck equation from Chapter 1, both for k¥ = d and k£ < d. How-
ever, while this approach looks quite promising, it fails at two major obstacles:
First, the non-commutativity of the underlying space C**¢, and second, the fact
that D has no simple decomposition such as L in §1.2.2. As such, this chap-
ter gives an overview of the idea and a collection of some results, as well as a

discussion of the problems facing an entropy method for open quantum systems.

A recent review on the origins and motivation of (2.1) can be found in [1],
while [58] provides a good compact introduction. For a more in-depth discussion
of open quantum systems, we refer to the books by Breuer and Petruccione [18§]
as well as Attal, Joye and Pillet [7]- [9]. A general discussion of quantum dy-

namical semigroups can be found in the book by Alicki and Lendi [2].

General interest in systems of the form (2.1) has resurged with the emergence
of quantum engineering; one of the main problems with this idea is decoherence -
that is, a move to a diagonal density matrix due to observation of the system by
its environment. This phenomenon is unique to open systems. Mathematically,
it is due to the influence of the Lindblad term in (2.1). For a good overview,
we refer to [69]. Decoherence need not, however, be detrimental in nature - see
e.g. [66], where it is shown that such behaviour can also drive the system in a

desired direction.

A comprehensive study regarding stationary states and long term behaviour
of (2.1) has been given in [11], [12]. The relative entropy of open quantum
systems has been studied since their emergence, notably in [48], [47], [63] and
[64]. Back then, the entropy method did not exist, and the results focus on the
convexity of the entropy, not on Gronwall inequalities between first and second
time derivative of the relative entropy of solutions with respect to the stationary
state. In the classic case, there is a well-understood connection between convex
Sobolev inequalities, hypercontractivity and the decay of relative entropies (see
the Introduction). In the non-commutative case, hypercontractivity and convex
Sobolev inequalities have been studied before (see for example [54]). However,
there has only very recently been progress towards a connection of logarithmic

Sobolev inequalities and decay of relative entropies, see [22] and [19].

2.2 Existence of solutions and stationary states

In this section, we discuss the existence of solutions and stationary states. Since
the operator D generates a quantum dynamical semigroup, we always have a

smooth solution which has some fundamental properties:
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Lemma 2.1. Let 0 < pg € C*? be hermitian with Tr(pg) = 1. Then there
exists a unique solution p € C(]0,00),C*%) N C>®((0,00), C¥*9) to (2.1) with

the properties
(i) p(t) > 0 is hermitian.
(ii) Tr(p(t)) =1,t > 0.

Proof: This is a consequence of the fact that the operator D from (2.1)
generates a quantum dynamical semigroup, that is a semigroup which is com-
pletely positive - implying (i) - and trace preserving (ii). We remark that for our
problem, requiring positivity instead of complete positivity would be sufficient.
For details we refer to [35], [49]. O

With the existence of solutions established, we turn towards the question of

stationary states:
Lemma 2.2. The kernel of the operator D from (2.1) has at least dimension 1.

Proof: See proposition 5 of [12]. O

Lemma 2.2 implies that the discussion of stationary states need only focus
on uniqueness, not on existence of stationary states. In general, the kernel of
D can be quite large. It also turns out that the stationary state p.. is not

necessarily invertible; as a simple example consider the case d =2, H =0,

0 1
L= .
0 0
Then the unique normalised stationary state is p,, = diag(1,0). We give a

result on convergence to non-invertible stationary states:

Proposition 2.3. Let D from (2.1) be given as
1 i t
Dp = 5([Lp, L'] + [L, pL]),

where L € C*? s such that
(1) LL'L = oL for some 0 < a € R,
(2) Lk =0, L*=Y £ 0 for some k > 1.
Then it holds that

(i) The kernel of D is spanned by the density matrices n with Ly = 0. If k = d,
then there is a unique normalised stationary state ps, = (Id —cL'L) with
¢ € R such that Tr(pso) = 1.
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(ii) For any hermitian 0 < py € C%¥*? et p be the solution to p = Dp,
p(t = 0) = po. Then the projection of p onto the orthogonal complement
of the kernel of D (in the standard Hilbert-Schmidt space C**?) decays to

0 exponentially with rate at least « — € for any € € (0, ).

Proof: (i): This is a reformulation of a result from [11]. Let n be a density
matrix such that Dn = 0. It follows that

1
0= LF1Dp(LH*! = LAY IyLt - 5(LTLn +nLTL)(LT)*1
1
= [L*n(Lh)* - §(L’“’1LTL17(L*)’H + LI LTL(LT)R )
= —aLFIp(Lh*1L. (2.2)

Thus, LF~1n(LT)*~1 = 0, and from (2) we have LI~ # 0. We can now compute
L7 Dyl iteratively for j = k—2,k—3,...,1 and obtain, as in (2.2), L'n(LT)! =0

for j > 1. 1 has a hermitian square root 0 < v € C%*¢, 5 = vTv. Then we have
Ljn(LT)j - [Lij][Lj,/T}T =0,

which implies L7v" = 0 and thus L7y = 0 for all j > 1, which proves the first
part of (i). If k = d, (2) implies that there is v € R? such that the v; := Liv
are linearly independent - or, in other words, the kernel of L is one dimensional.
But then Ln = 0 implies that the image of 1 is in the kernel of L, and trace

normalisation yields that 7 is the projector onto the kernel of L:

Id-1riL

— Per = -
N

(ii): Let p be a density matrix. From (i), we know that LT LpLL is the projec-
tion of p onto the orthogonal complement of the kernel of D. We consider the
Hilbert-Schmidt norm of this projection, which with (1) is

E(p) := Tr(LpLLpL").
We compute.
0 < Tr([cA — éB]T[EA _ éB]) — 2Tr(ATA) — Te(ATB + BT A) + giQTqBTB),
which implies the inequality

Tr(ATB + ABY) < ®Tr(ATA) + E%Tr(BTB). (2.3)
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Using (2.3) and (1), we obtain

4 FB(p) = 2Tx(LDpLLpL")
= 2Tr(L2p(LN?LpL") — 2Te(LTLLT Lo L' Lp)
= 2Tr(L2p(LT)?LpL") — 20E(p)

< ~2(a— &)B(p) + S TH(I?p(L1L7p(L1)?)

If k=2, L? = 0 and we are done. If k > 2, let
Fj(p) := (L' p(LT)/ L7 p(LT)?) > 0.
We compute
LR = 2T (L7 p(LTY T LI p(LT)) — 2aF,
< —2(a - g)Fj +2Fjp

From (2), we have F; =0 for j > k. Now let
k—1
F(p) := E(p) + Y _ C;F; > E(p)

Jj=2

with some constants C; > 0 to be specified. Then
G € 4C
j—1
45 () < -2a- B + 3 [ |-2050a - 5+ 292 ).
=2

where C := 1. Now we iteratively choose C; := ;%Cj,l such that

e 40j_1

—2C;(a — 5)—1— = —-2C;(a —e).

€
Then

4 F(p) < —2(a = £)F(p)
which implies with Gronwall’s Lemma:

E(p) < F(p) < F(po)e ="

and thus gives decay of F with rate 2(1 — ¢). O
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2.3 Transformation

In this section, we show how the equation (2.1) can be rewritten in a form
that closely resembles the Fokker-Planck equations discussed in the previous
two chapters. The underlying idea is to define discrete derivatives using com-
mutators (see [53], in particular chapter 2, for more on this concept). We then
introduce a special basis of C%*? inspired by the Pauli matrices. This basis
allows the transformation of the operator while identifying some fundamental

properties of the Lindblad part.

2.3.1 Setting, preliminary results

As setting for the transformation, we use the Hilbert space C%*? equipped with
the Hilbert-Schmidt norm. We denote by At the hermitian adjoint of A € C4*4,

Lemma 2.4. Let H := C¥™?, and define

VA,BEH: (A B)g:=Tr(AB")
d2
VA = (A)icr,aes B = (Bier,..ae € HY 1 (A, B)ge = Y Te(AB)).
k=1

Let {E;|j =1,...,d*} CH be given as
E;j = (61j0k )16y J=1,...,d;
Ej :%(&Ué‘ksy’ +6k7"j6lsj)l,k7 ]:d+ 1,...,#;
- . . 2
E; = %(—Z(Slrjéksj + Zékrjélsj)l,k j= % +1,...,d%,

where r; Tuns from 2 to d with increasing j, and for fized r;, s; runs from 1 to
r; — 1. Then the following holds:

(i) (H,(-,)q) and (HE,(-,-)a2) are Hilbert spaces.

(ii) {E;|7 = 1,...,d*} is an orthonormal basis of H. In addition, it is an

R-basis of all hermitian d x d-matrices.

Proof:

(i) is a well-known result, the details of which can be found in many books

on matrix algebra. We refer to the classic book by Horn, Johnson [43].

(ii) Since one easily checks that E; is hermitian for 1 < j < d?, all we need
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to show is

Tr(E;Ey) = 06, 1< 4,k <d>

We compute the case j, k > d? +d
2
Te(E;Ey) = 3Tr [ Y [(=iGme, 01, + i01r, s, ) (=001, Oy + 10, 01s,)]
} I=1
=1 Z (=0mr, 015, 01r Omsy, + Otz Oms,; Otry, Omsy. )
I,m=1

+ 2 E rfLTJ(SléJ m7k5lsk 5l'rj 5m5j 5’m7'k 6lsk)

l,m=1

_5T’jsk5$j7"k + 57'ka 5sjsk .

Since r; = s implies s; < r; = s, < 1, the first term is always zero. The
second term is nonzero iff r; = 7, and s; = s, which implies j = k. The
computation for the other cases is completely analogous, and thus the proof is

complete. |

Example: In 3d, the basis is formed by the following matrices:

100 0 0 0 00 0

Ey=10 0 0 [, Ey:=101 0 [, Es=|0 0 0 [,
00 0 00 0 001

01 0 00 1 00 0
Bys=1 100, B=30000] E:=g|001]
00 0 1 00 01 0

0 —i 0 00 —i 00 0
E7::%E i 0 o,ES;:% 00 0 ,EQ::% 00 —i
0 0 0 i 0 0 0 i 0

Next, we define discrete versions of differential operators on H.

Definition 2.5. The discrete divergence div, discrete gradient V4 and discrete

Laplacian A, are defined as

divy : HT o H
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Va:H—HE
K — (i[K, Ej])j=1,....a2
Ad H—>H
d2
K+ diva(VaK) = Y [E;, [K, Ej).
j=1

Some fundamental properties of these operators are easily obtained:
Proposition 2.6. The following holds:

(i) For any hermitian matriz n € H, the components of Van € HE are
hermitian. For any matrizc K = (K;); € HE with hermitian components

K;, divg K is hermitian.
(ii) divy is the adjoint to —V 4 and vice versa.

(iii) A set of eigenvectors (with corresponding eigenvalues) of Ay is the follow-

mg:

d
ZEk =Idg (A=0),
k=1

Ep(k>d) (A=—2d),
E —Eq(l=1,...,d—1) (A=-2d).

These form a basis of H.

(iv) There is a discrete Poincaré equality arising from the spectral gap in Ag:

Vo € 11 [Vapl,e + 2/Tr(p)* = 2d]pll3, (2.4)

Proof:
(i): We compute for hermitian A, B:

(i[A, B))T = —i(AB — BA)" = —i(BA — AB) = i[A, B].

(ii): Let A € H, B € H%. Then

d? d?
(VaA,B)ye = > iTr([A, Ex]By) = Y —iTr(A[By, Ex))
k=1 k=1

2

d
Z 7<A, din B>7.L.
=1

k
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(iii): Id is an eigenvector of Ay to the eigenvalue 0, since [Idg4, Ex] = 0 for
1 < k < d?. On the other hand, since the Ej, form a basis of H, it follows that
[A,E] =0 for 1 < k < d? implies [4,B] = 0 for all B € H, and thus 4 is a
multiple of Idg. This shows that Id; spans the kernel of Ag.

To compute the other eigenvectors, we expand AyzA as

d? d?
AgA = [E;,[AEj]l =) (2E,AE; — (E}A+ AE}))
j_d2 ;2_ a2
=23 BAR; - (Y B2A+ ALY ). (2.5)

First, we look at the term
d2
2
> B
j=1

d
Since B? = Ej, 1 < j <d, itis . E? = 1dy. For Bj, 4% > j > d, we obtain

j=1
d
(EDie =Y (E)ial(Ej)ak
a=1
d
- % Z 6lr5()/s* + 5l€ ar)((;on“(sks + 6(y€5kr)
a=1
d d
= % Z 6[7‘60186047‘5k8 + 6l56ar6a56kr Z(alréas(sasakr + 5156ar6ar6ks))
a=1 a=1
=0, r#s
= %(5”'6167' + 5136ks)
Thus

1
2 _
B} = (B, + E.),

where d > r > s > 1 from the definition of £;. We conclude that

d%+d
2+ d r—1

Z E? = ZZ% E, +ES)=%1dd.

j=d+1 r=2s=1
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The computations for Fj, @ < j < d? are analogous, and we obtain

d2
> B =dlda.
j=1

Inserting this into (2.5) yields
d2
AgA =2 (E,AE;) — 2dA. (2.6)

k=1

d2
Now consider the term 2 )" (EyAEy). We first assume A = E; for some j €
k=1

{1,...,d*} and make a distinction by case.
a)If A=FE;, j <d, we compute for m < d
jsJ

EmE;Ey, = 6;mE;.

2 .
For % > m > d, we obtain

M=

(BjEm)ik = ) (Ej)a(Em)ak
a=1
d
= % Z 5lj6aj (5a7"6k:s + 61{:7'60(3)
a=1
0, JF#ETS
= %(&jéjréks + 6lj6k'r6js> = % (Slréksa j=r (27)
§l55kr» J =S
and thus
d
(EmE]Em)l,k: = Z(Em)l,a(EjEm)a,k
a=1
d
Z (5lr6as + 5&7’6[5)6(17"6165 = 6k86l87 .7 =T
_ 1 a=1
= 2 d )
Z (5lr6as + 5ar6ls)6as(5kr = 6’(7’)"611"7 j =S

Q
Il
—

which means

0, Jj#ms
EnEjEn =4 3B, j=r

1 -

§E’r‘a J=Ss
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This implies

d2+d
2
ZEmEjE Z E+Z E_ Idd E;),
m=d+1 r= j+1
j—1
where the term %Es represents all the contributions for j = r, and the term
s=1

> %ET all those for j = s. The computations for m > @ are once again

r=j+1
analogous, and we obtain

d2
> EyE;Ey = E; +1d—E; =1d.
k=1
Thus (2.6) yields
AyB; =1dg —2dE;, (j <d). (2.8)

From (2.8), we see that for 1 <] <k <ditis

Ag(E; — Ey,) = —2d(E, — Ey),
so E; — Ej is an eigenvector of Ay to the eigenvalue —2d for any | # k €
{1,...,d}.

(b) Now, consider the case A = Ej, @ > j > d. We have for 1 < m < d,
using (2.7)

d
(EmEjEm)l,k = Z(EmEj)l(x (Em)ak

M=

5[7" 5(13 57no¢ 6mk7 m=r

I~
&
-

N

5ls($ar5mo¢§mk7 m=s
a=1

I
)
~—~
o
Nej
=

2 .
Ford<m < %, we obtain

d
§ m loz a,k

d
= =3 (61ras + 01s0ar) Gaudky + bavdru);  u>v,7>s€{1,...,d}

a=

l\.’)\»—l
—
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(6lr6as5au6k1; + 5lr5a35a115ku + 6ls§o¢r6au5kv + 5l55ar6a1)6ku)

Il
DN | =
(]~

Q
Il
-

<5l7‘55u6kv + 6lr65v6k:u + 6lsaru5kv + 6ls(srv6ku>

Il
DN | =
[~

Q
Il
—

and thus

n

(EmEjEm)l,k = Z(EmEj)l,a(Em)a,k

a=1

6 r(seu(gom +4 r(ssv(sau +4 95Tu§av +9 sérvéau 5(17’5 s+ 5(196 r
2\[ Z 1 l l l )( k k )

2\/» Z 5lrésu6av6aréks + 5lr65v6au6ar6ks + 6[56ru6av6ar(5ks + 6ls(srv6au6ar6ks

+ 617'6su5av5a85k7' + 5[7'6sv5au5a35k7' + 61857'u5av5a85k7' + 5l557'v5au5a55k7')

0, r(ssu(svr(s s +6 résv(sur(s s+ 0, séru(svré s T 0, s(srv(suré s
2\[ Z 1 k l k l k l k
=0,u>v&s<r =0,u>v =0,u>v
+ 5[7’ 5su§vsékr + 6lr55v5u55kr +5l55ru§vsékr + 5[55rv6u56kr)
—_—— —/—/— —_——

=0,u>v =0,u>v =0,r>s&u>v

1
= Tﬂéur(svs(Ej)[7k. (210)
Finally, for d®> > m > # we compute

n

TYL Ot

a:l

(—z’élréas + iélséar)(éwékv + 5m,6ku); u>v,r>sec {1, .. ,d}

I
[N
[]=

Q
Il
-

(_iélraas(sauékv - Z'6l7"5(:%55(:»4115ku + Z.(Slséocr(sauékv + Z'((51350:7"6041)5k’u)

Il
M| —
[]=

Q
Il
-

(_ialr(ssu(skv - ialrésvfsku + Z6[567’115}’9'0 + iélsérvaku)-

Il
N[ =
[]=

Q
Il
-

Using this, we obtain

n

(EmEjEm)l,k - Z(EmEj)l,a(Em)a,k

a=1

d
1
= Tﬂ ;(_idlrésufsow - Z.(Slr(ssv(sau + i(slséru(sow + ifsls(srvaa’u)(_i(sar(sks + i(sasdkr)
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d

1

= = *5 r53u5a1)5a7"5 s T 6 r(ssvaauéar(s s + 5 sgru(sav(;ar(s cS + 6 557’v§()¢u6ar6 oS
2\/5 ;( l k l k l k l k

+ 5lr55u5av50455kr + 5lr6sv5au5a55kr - 5l55ru5av5a55kr - 5ls§rv6au5as(5kr)

d
1
= = - 6 T(Ssu(svr(S s _5 r(ssv(suré s + 6 86TU6UT6 s + 6 sérvdur(s s
2\/5 z_:l( l k l k l k l k
= =0, u>v&s<r =0,u>v =0,u>v
+ 617’ 5su§v55kr + 6lr68v6u56kr _6136ru§v55k7‘ - 6136rv6u55k7‘)
—_———— —/ —_——

=0,u>v =0,u>v =0,r>s&u>v

1
= — 6ur51)s L, . 2.11
2\/5 ( ])Lk ( )

Adding together (2.9), (2.10) and (2.11) yields

d2
> EpnE;En =0.
m=1
. . . . d2 d
This implies for d < j < ¢4
AdEj = —QdEj, j>d, (212)

and thus F; is an eigenvector to the eigenvalue —2d. The computations for

2 .
% < j < d? are analogous.

The eigenvectors Idg and E; — Ej, 1 < j,k < d span the same space as
{E;]1 < j < d}. This means we have a basis of eigenvectors, which completes
the proof of (iii). Note that in the case d > 2, the eigenfunctions we have chosen

are not orthogonal.

(iv): First, assume Tr(p) = 0. If we develop p along the eigenfunctions of
Ay, the part along the identity vanishes (since all other eigenfunctions have
trace 0). So p is in the eigenspace of A, to the eigenvalue —2d, and it follows
that

IVapll3a2 = (Vap; Vap)yae = —(ps Dap)n
= 2d(p, p)n = 2d|pl%,.

Now, if Tr(p) # 0, we can write p = o Id +pp, with Tr(pg) =0, a = Tr{gp). Since
ValId = 0 we obtain

IVapl5e = I Vapoll3,ee = 2dllpol3;.
=2d{p — ald,p — ald)y
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= 2d(|lpl3 ~ o {p.1d) ~a (14, p) +|af*(1d, 1a) )
S—— N d
=Te(pt)  =Tr(p)

— 24 (||pl3, — 3 Tx(p))

— 2d|p|[3, — 2/Tx(p) .

O

Remarks: 1. There is a reason why this spectral gap gets larger with in-
creasing dimension: While Vg p = 0 is equivalent to p = cId, the same holds
if one replaces Vyp with the discrete derivatives (i[p, Ey)])i=1,... 1n.. along a
carefully chosen subset of {E;|j = 1,...,d?}, where lyax ~ d. If we were to
define the operators Vg, divg as the commutators with only such a subset of
{Ej|j = 1,...,d?} that contains d elements, the factor d vanishes. However,
there is then no natural way to proceed in Theorem 2.9, as such a subset would
not be a basis of H.

2. For d = 2 the eigenfunctions of A, are Id and the Pauli matrices
o1 = E\ — By, 09 =\/2FE5, 03 = \V2E,, (2.13)
which fulfill
[0, 01] = cior, (2.14)
l#r#j,with ¢;; € {—1,1} for j # l and ¢j; = 0. This raises the valid question
why we do not use these matrices as the basis for H.

The answer is that they do not extend as nicely into d > 2. For d = 3 one gets

the following 3 matrices as extensions for oy:

0 0 0 0 0 -1 0 0
-1 0 |, 01 0 , 0 0 0
0 0 0 -1 0 01

As can be easily seen from the fact that their sum is 0, they span a subspace
of dimension 2. Thus, for a basis, one would have to choose 2 matrices from
that subspace. There is, however, no natural way to decide which matrices to
choose. In fact, for d = 3, whatever subset one chooses for the basis, there
is no “simple” relation to EJ2 and [Ej, Ex], 3 < j,k < 9. With the basis we
chose, the commutators between off-diagonal basis matrices, and the squares
of off-diagonal matrices, can always be written as a sum of two diagonal basis

matrices — a very homogeneous result, which we exploited in the computation
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of the eigenvectors to the Laplacian in Proposition 2.6.

Not all properties of continuous derivatives are shared by the discrete ver-
sions we introduced. In particular, the next lemma establishes that discrete

partial derivatives do not commute:
Lemma 2.7. Let
0 p = ililp, Bs), 1] = [Ev, o, By]

for 1 < 4,1 < d? be the second partial discrete derivative of p with respect to j
and 1. Then for any 1,5 € {1,...,d*}, there exist r > 1, 1 < ky,... k. < d?
and $1,...,8. € R such that

Dp—=07p="> smdymp:="Y smilp, Ex,].
m=1 m=1

That s, the commutator between two second partial derivatives is given by a
linear combination of first order partial derivatives.

Proof: Compute

Z[Z[p7 Ej]7 El] - Z[Z[p, El}? EJ]

= —pEjEl + ElEjp — ElpEj — EjpEl — pElEj — EjElp + EjpEl + ElpEj

—([Ei, Ejlp + plEj, E1]) = i[p, i[Ey, Ej]].

Since i[E}, E;] is hermitian, its coefficients along the basis {Ejy} are real. This

completes our proof. O

A direct consequence of Lemma 2.7 is that, unlike in the continuous case, in
general it holds that divy(RVgp) # 0 for skew-symmetric matrices R € Cd*xd*,

Corollary 2.8. Let R = (), € RE*¥ R=—RT R := R®ld; € RY >
Then there exists ¢ € RY such that forC:=c®Idy € RE*d it holds that

din (Rvdp) = din (Cp) .

Proof: We compute

a2
din(Rvdp) = din(Z Tjk’i[p, Ek])j:l,...,dZ
k=1
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d? dz  d?
= Z rjkz[ Lp, Ek Z Z Tjk P» Ek“ - [Ekv [pv EJ]]) :
J k=1 j=1k=j+1

Now we can use Lemma 2.7 and obtain

a2 2 r(j,k)
divg(RVgp) = Z Z Tjk Z sm (3, k)ilp, By, (k)]
j=1k=j+1 m=1

> da* r(5.k)
= Z Z Z r]ks’m ]7 p7 El (7, k)]

Jj=1k=j+1 m=1

This can be rewritten as

d2
Z ilerp, B

T=1

by adding together all the coefficients rjism (j, k) for every 7 = 1,,(j, k), 7 €
{1,...,d*}. O

2.3.2 Transformation of the equation

With the Hilbert space H and discrete derivatives established, we can now state

our main result.

Theorem 2.9. (2.1) can be written as
p= ﬁp = din(Dvdp + {}—, p}d) (215)

Here F = F(Ly, H) has hermitian components, D = D(Ly,) is real and positive

semidefinite and

2
{F,pYa=({Fj,p})j=1,..az = (Fjp+ pFj)j1,. a2 € H*
18 the component-wise anticommutator.

Proof: The proof is structured into three parts. First, we discuss the
transformation of a single Lindblad term, than of the Hamiltonian. Finally, we
use the linearity of the equation to derive the general case from the first two.
(a) We start with a single Lindblad term

Dpr(p) == [Lp, LT] + [vaLT}
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d2
Writing L = Y [;E;, I; € C, we compute
j=1

L, pLT] Zz Ej,pL' = Y Llk[E;, pBy),
j,k—l

[Lp, L] = Zl [Lp, E Z Lik|E;, Erp).

7,k=1

Let le =:dji + ifjk, then it follows that

Do) = (1L pL'] + [Lp. L)

d2
Z (;[ ik +ifik][Ej, pEy] — ;[ jk_ifjk][Ej7EkP])
7,k=1
Gy 1
> <2djk[Ejv o, Exl] + 5ifixlEj. {p, Ek}])
G k=1
d? d:
= diva(Y i85 o, B - L5 By

k=1

Define the diffusion matrix D(L) = (%%), .,  p@ldg € CT % c L(HT HT),

ie. for A= (Aj)j=1,. a2 € HE it is

d2
d; 2
D(L)A := (Z %Ak)jzl,...,d2 e’
k=1
Then we get
d2
Dr(p) = diva(Y _idjilp, Bx] — fir{p. Ex})jr.....a2
k=1
= divg ( L)Vap — Z{m kaEk}) -
= diva (D(L)Vap + {F(L), p})
3 d? .
with the drift term F(L) := (F});=1,..,4> € HE Fj=— 3 f]TkEk
k=1

d2
(b) Now we consider the hamiltionian part i[H,p]. Writing H = Y hiE},
k=1
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a € R, we compute

d? d?
i[H, pl = hyi[Ey, p] = =Y _ i[hwp, Ex]
k=1 k=1

= din(—hkP)kzl a2 = din{f(H)7P}

.....

where F(H) = (—"2—’“ Id)=1,.. 4 is an additional drift term.

(c) For a general operator consisting of an Hamiltonian and m Lindblad opera-

tors, D = 4[H, p] + Z Dy, we obtain from (a), (b)
j=1

D(p) = —diva(D(Vap) +{F, p})

where

DS D)., F=Y F(Ly)+ F(H)

Jj=1 Jj=1

D is positive semidefinite: Recall that D = (djx)jr ® Idg, so D is positive

semidefinite iff (d;i);, is. However,

where [ = (l;); is the vector formed by the ;. We then get for any u € ce,

with uf =@’

u'Du = %(uT(l @ Du~+u' (1))
U ull3 + (117 u]3) > 0.

This implies that D is positive semidefinite. Finally, the components of F are

hermitian since all hy, fji are real. ]

2.3.3 An example

In this section, we study a two-dimensional example for the transformation in
Theorem 2.9. This example already highlights some of the differences to the
continuous case. It also serves as a reference for the discussion of £ on weighted

spaces in Section 2.4.
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Proposition 2.10. Let H =0, L1 =iFE; + %Eg, and

1

2[lq7pl{]-%[L1p7L§l

D =i[H, p] +

Then for the transformed operator from Theorem 2.9, we have that

(i)
: 1 1 8x8
D:dlag(570,§,0)®1d2€R y
—iEs
0
F=1 € C¥*?
ik
0
(i)
1 1 24/2i
P e (216)
10 \ —2v/2i 9

spans the kernel of L.
Proof: (i): From the proof of Theorem 2.9, we obtain with I; = i, l3 =

1
8’

1.1 1
dz1, f13 = 5%{25} =1 —f31.

1, 1 1,11
di = 5%{“} =3 dsz = 5%{55 =
1,1
d13 = 5%{15} =0=

4
(ii): For a stationary state, we make the ansatz poo = > o;Ej, oj € C. We
j=1
expect to find that o; € R holds, since a stationary state should be a density

matrix and thus hermitian.

Compute

’L%[,D, El]
0
%[pa E3]
0

DVap =

a3E4 — 044E3
0
Q2oL Ey + S (B — E»)
0

(2.17)

Do =



120 CHAPTER 2. DISCRETE OPEN QUANTUM SYSTEMS

and

7%{/)3 E3}

0
{fv P}d =
i{p7 El}
0

_aitwp  a(p | R
2
P . (2.18)
arEy + S B3+ S Ey
0

From (2.17), (2.18) we obtain

—BE -2 2_%24-2&41934_@31;4

1 0
DVap+{F.p}a=
a0+ {Fapha =3 lotou g — Up, + QR + asatlap,
0

If DVap + {F,p}a = 0, it follows from the linear independence of the E; that
p = 0. So the stationary state does not fulfil DV jpo + {F, poo } = 0. Compute

divg(DVap +{F, p}ta)
) 1 + +2
_ 3[043(E4 (B - By)) — A1 T Qg T L

Es, FE
5 5 9 3, 1]
1 4doq + gy oy a3 g — a1 + 20y
—|———F, — —F —F - [, E-
2[ 1 1 1 2+ 5 3+ 1 4, I3
a3 a1 + g + 204
——F;——————F
2 4 4
4 — 2
a1+044E4_%E4+042 Qg + a4(E1—E2)
8 8 8
— 2 3 3
_ a1+§2+ a4(E1—E2)—%E3— a1+0f+ a4E4_

With the restraint a; + g = 1 from trace normalisation, this has the unique
solution

So

Poo = 01 E + 0oFoy + o By,

which completes the proof.
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This shows two important properties of L: First, we can in general not expect
that DV gpeo + {F, Poo ta = 0, and second, there may be a unique normalised
stationary state even if D does not have full rank. Neither should be surprising,
as it is the same for the classic equation, at least in the hypocoercive case
discussed in §1. As we will see in the next sections, the first property appears
fundamental to our approach; see Conjecture 2.14. The fact that D need not
have full rank for uniqueness of a stationary state should also be expected from

the first remark following Theorem 2.6.

2.4 Symmetry, weighted Hilbert space

In this section, we investigate some properties of the transformed equation (2.15)
on the Hilbert space H. In the classic case, the natural space to investigate the
Fokker-Planck operator is the weighted Hilbert space L?(R?, f.!) (see §1). We
discuss the problems that arise in transferring this idea to the operator £, and

conditions on F and D compared to the symmetric classic operator.

In particular, we provide some results indicating that the only case where £
is symmetric on a weighted Hilbert space is the case po, = éId — but then the
weight p2.! has no effect. This indicates that in the quantum mechanical case,

4

the operator L is essentially non-symmetric in the “interesting” case where its
kernel is not spanned by Id. This can be compared to the hypocoercive case
in §1, where the non-symmetry of the operator on the weighted space was also

essential.
Our first result is for the case div F = 0, which arises for example when all
the Lindblad operators are either hermitian or skew-hermitian.
Proposition 2.11. Consider the operator L from (2.15) with divF = 0. Then
(1) L is symmetric on H and {p,L(p))n < 0.
(#) 1dg is in the kernel of L.

(iii) If D > A1dgs, then the kernel of L is spanned by 1d4. Furthermore, the
solution p(t) to (2.15) with hermitian initial condition 0 < p € CI¥*9,
Tr(po) = 1, converges to pso = éId exponentially with rate at least 2d\.
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Proof: (i): We compute, using V4(p?) = {p, Vap}d,

(P, L(p))u = (p,diva(DVap + {F, p}a))u
= —(Vap, DVap) ;a2 + (p,diva{F, p}a)n
(p, diva{F, p})n = Tr(pdiva{F, p}a) = 2Tr(p? diva F) + Te(F{p, Vap}a)
= 2Tr(p* divy F) + Tr(FVap?)
= Tr(p? divy F) = 0.

This implies

(P, L(p))2 = —(Vap, DV ap)yaz < 0,
since D > 0. Since D = DT ¢ Rd3Xd3, L is self-adjoint.
(ii): Compute

ﬂ(ldd) = divy (Dvd(Idd> + {]:, Idd}d) = 2divg F = 0.

(iii): We know that the solution fulfils p(t) > 0, is hermitian and has Tr(p(t)) =
Tr(po) = 1. We compute

lp(t) — 3 TdIf3, = Te((p(t) -
= llp®)I3 -

Ul Q-
—
o,
S~—"

S
N~—
|
-
—
=
—
~
~—"
o
|
SN
b
—~
-
S~—"
Jr
-
—
(=¥
=

With the discrete Poincaré inequality (2.4), this implies

Gllo() = G1d[3, = 2(p(t), D(p(t))n
= —2(Vap(t), DV ap(t)) gz < =2X|Vap(t)|3,42
= —4d)||p(t) |13, + 4A\Te(p()) > = —4dA[|p(1)[|3, + 4X
= —4dX([[p(t) — 5 1d|[3,)-

Applying Gronwall’s Lemma yields
Ip(t) = 3 1d]ls < [lpo — 4 1d | exp(~2dX¢).

In particular, this implies that the kernel of £ is spanned by Id. Thus the proof

is complete. 1
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Remark: As mentioned before, the condition D > AIdgs is stricter than

necessary.

Next, we consider the case where there is a unique, positive definite nor-
malised steady state ps, # Id. Since ps, > 0, there exists a positive definite
and symmetric square root péo of poo. From Proposition 2.11, it follows that
div F # 0. We aim to compute the adjoint of £ on the weighted space H(p!).
However, since the elements of H are non-commutative, it is not obvious how

to insert the weight into the scalar product:

Lemma 2.12. Let poo > 0 be hermitian. Define the scalar products

(p.n)1 = Tr(ppsin'),
(p.m)2 = Tr(pn'pzl),

Z1, 1
(p,0) =1 = Tr(ppos®n'poc ).
Then the following holds:

(i) There exist hermitian matrices p, 1 such that

(o1 €R, (p,m)2 &R, (2.19)

(i) For all hermitian matrices p, n: (p,n) -1 € R.

—1
poo

Proof: (i): We only need to find one example. So take the stationary state

from Proposition 2.10. Then

9 1 2

-1

=100(—FE1 + — Es + - Ey).
Poo = 100(35 1 + {52 + S E4)
Now let p := %Idg +FEs, n:= FE,;. Then

{p,m)1 = Tr(pl Ey) + Tr(EsE3pl) = —10 + 204,
(p,n)o = Tr(Eypl) + Tr(EsEypl) = —10 — 20i.

(ii): Let p, n be hermitian. Then
_1 T _1 _1 _1 _1
(P.m) pr = Tr(ppoc’n' poc® ) = Tr(poc’ ppoc’ Npoc’)-

Since Tr(AT) = Tr(A) and Tr(AB) = Tr(BA), it follows that

Te (ot oot = e (osdmp? oot ) = T ([0t ot posi]
Poo” PPoc” NPoo | = Poo” TPoc™ PPoo | = Poo” PPoc” 1Poo
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=Tr (p;az PP np&?)
Here, At denotes the hermitian adjoint of A. This implies

(psm),zr €R.

O

The scalar products (-, )1, (-, )2 are unsuited to our agenda, since there is

no guarantee that

<pa £1P>1 eR

for some operator £q such that L£p is hermitian. But this is exactly what we
would expect for the self-adjoint part of £ on (H,(:,-)1). So we choose the
weighted Hilbert space H(p}) := (H, (-, ) ,=1)- This space is also used for non-

commutative logarithmic Sobolev inequalities, see for example [60], [54].

We obtain the following result for £ on H(p5}):

Proposition 2.13. Assume that the kernel of the operator L from (2.15) is
spanned by pso. Let

Nl

1 _ 1 1
K:=F =DV, V:=(pdilpx’,E;])j=1,. .02 = (p3(Vapec)j)j=1,...d2-
Then

(i)

) 1 1 1 1 N

Lp = divg (péo [Dvd(p«f ppec’ )} pso +Kp+ pK ) :
(ii) On H(pzl), the adjoint of L is given by
Lrp = divg (pgo [Dvd(l);of pp&?)} pgo)
1 T _1 _1 1 1 _1 _1 1
- [péoiC Va(p® ppc® )P + p3oVa(poc” ppoc’ )’Cpéo} -

Proof:
(i): We compute

1 _1 N S
divg(DVap + Fp + pF) = diva(Dpdepoc” (Vap)pec® p3e + Fp + pF)

= divy (pgo [Dvd(p;? pp;?)] p3o + [F = Dp3e(Vaps)lp + plF — (DVdpcff)pgo])
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. 1 1 1 1 +
= divg (péo [Dvd(poo2 PP’ )} P+ Kp+ pK ) .

(i) We split the computation of the adjoint of £ on H(p!) into two parts.
First,

(diva (P& [DValpt o] o3 ) )
=Tr (divd (péo [’Dvd(p;ﬁ% pp?o%)} pi) pacin p;ﬁ)
= _Tv ((,Déo [Dvd(p;%pp;%)} péo) ' vd(p;ﬁnfp;ﬁ))
(

= T (Va(p= po?) - (o [PV

Further,

(diva(Kp+ pKT),m)

=Tr (divd(ICp + pICT)p;o% nTp;o%>

_1 _1
= ~Tr ([Kp + oK' Valpst )

_1 _1 _1 _1
= (P {’CTVd(po& n'ps?) + Valpesn' poc? )’CD
= —Tr (pc?? ppoc’ [pEOIC*Vd(pgoén*pgf)pgo + pZValp? n*pciof)/CpgoD
1 T _1 _1 1 1 _1 _1 1

= —{p, XK'V i(poc> Npec ) pdo + PV a(poc Npoc )Kpgo>p;ol~

We obtain

1 1171
L*p =divq (péo [Dvd(p«? ppoc’ )} péo)
1o ETE T 1 T T
- [péolC Va(pos® ppec’ ) P& + P& Va(pos® ppoc” )Kpo | -
U
Proposition 2.13 implies that £ is self-adjoint on H(pZ!) if K = 0. But we
have

Proposition 2.14. Let L be given as in Proposition (2.13). Assume D = Idgs.
Then K =0 iff F =0 and ps = cld for some ¢ € R.

Proof: If K =0, then it follows that

0=K-K=F-v-F+V'.
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This implies 0 =V — V1, so
0=ip3lpsc’, Ej] —i[pos”, Ejlpc = i[[p

for j =1,...,d>. It follows that

_1 1 _1 _1 _1 _1 _1
0 = —iTr(i[[p”, B, po]poc” Ejpoc’) = Tr([poc® s Ej(Ejpos® — poc® Ej))

1

_ _1 o1 1 _1
= Tr([p=s”, Bj][Ej, poc]) = Te((ilpes”, Bi))(ilpc , E5N)T) = IV apoc® 5,42 -
it 1
This implies Vgp® = 0, 50 poo® = cld. O

It follows that the situation of the example from Proposition 2.10, where the
stationary state did not fulfil DV poc + Fpoo + pooF = 0, is the general case

for non-constant stationary states:

Corollary 2.15. Let po be invertible with V  poo + Fpoo + pooF = 0. Then
Poo = 1dg, F =0.

Proof: Compute

1 1 1 1
Vapoo + Fpoo + pocF = pVaipde + pocF + (Vapd)pdo + Fpoo
_1 1 1 _1
1 1 1 1
= poolCJr + Kpoo-

Since pa is invertible and positive definite, we conclude that poo T + Kpso = 0
iff £ = 0. Applying Proposition 2.14 completes our proof. 0

So the only case where £ is symmetric on H(pz!) is the case po, = cId, which
defeats the purpose of considering H(p3!) instead of H. This means that, if
we can transfer the entropy method, we have to do it for the more complicated

non-symmetric case.

2.5 The case d =2

In this section, we consider the lowest-dimensional case, d = 2. Some properties
of L can already be seen on this level, and the results give some indication what
to expect for higher dimensions. This case has, of course, been studied before
for (2.1). See for example [20], [21], which discuss the case d = 2 from the

standpoint of (2.1), with a focus on decoherence.
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For d = 2, our basis is

E1_<10>,E2_< 0)’
0 0 1

1 {01 1[0 i
E3:\/§<1 o)’ E4:\/§<—i 0)'

We are interested in investigating long-term behaviour of solutions and existence

of stationary states for (2.15):
pr = diva(DVap + {F, p}).

For ease of computation, and since we are mostly interested in the role of F, we
assume D = diag(di1, dag, dss, dss) ® Ida. We also assume H = 0, which means
that F will have no coefficients along Ids in any component (see the proof of
Theorem 2.9). In light of Proposition 2.6, we develop a density matrix p with
Tr(p) = 1 along the eigenfunctions of Ay, which are Id and the Pauli matrices
(2.13). The condition Tr(p) = 1 implies p(t) = 5Id+po(t), since the Pauli
matrices have trace 0. We obtain:

Proposition 2.16. A density matriz
1
p(t) = 5 Ids +a (t)or + as(t)oe + as(t)os

is a solution to (2.15) iff

aq aq
% a | =(M+R)| az | +5,
s ag

where 3 = 2divy(F) € R, M = M(D) is a negative semidefinite diagonal

matriz and R = R(F) is antisymmetric.

Proof: We compute

Vaip =

Q203 — (U302
—Qp03 + (302
\@04301 - ﬁa103
V20901 + V20109
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This implies

divg(DVap) = di1[E1, [p, E1]] + doz[Eo, [p, Es)] + ds3[Es, [p, E3]] + daa[Ey, [p, E4]]
= —2(ds3 + dya)aro1 — (d11 + dag + 2dag) ey — (d11 + doo + 2d33) 303

Introducing the notation dy := 2(ds3 + daa), da := d11 + da2 + 2d44 and
dz := d11 + doo + 2d33, this simplifies to

dlvd(DVdp) = —lellJl - d2a202 - d30l30'3. (220)
This exemplifies the remark below Proposition 2.6: The operator is fully dissi-

pative even if D is not regular and F = 0, since A, contains more terms than

“necessary”.

We now compute divy({F, p}q). In general,

R f12E2 + fi3E3 + fiaky
F_ Fy | | —feBi+ fasBs + fauEy
F3 —f13E1 — fazEa + f31Fy
Fy —f14E1 — faa B — f34FE3

fir € R. It follows that

{]:7 p}d

{F1, p}
{Fz, p}
{F3,p}
{F4, p}

(V2(aafiz + asfia) + (5 — a1) fiz] Ida +(a1 — 3) fi201
(V2(2fos + agfaa) = (5 4+ 1) f12] Id2 — (3 + 1) f1201
[\/5043f34 - (% +a1) fi3 + (1 — %)fz?} Id, +[% —a1(fi3 + f23)]o1
— [ + 1) fra + V2as fza + (3 — a1) foa] Tdo —[L95 825 4 (f14 + fos)an]oy
(% + g fi2)oa + (% + az fi2)os
(% — g fia)oa + (% —azfiz)os
—aa(f13 + faz)o2 + % —as(fiz + f23)03
—[(f1a + faa)az + %]02 — (f1a + faa)azos

Since Vgp has coefficient 0 along Ids in all components, for DV p+{F, p}qa =0
to hold, we would need the coefficients of Idy to vanish in all components of

{F,p}a. But since D is diagonal, and all components of V4p lack o; for one
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J € {1,2,3}, we would also need those coefficients to vanish, i.e.

fi2 =0, fiz3 =—fo3, fia = —fous.

129

Numerically solving the remaining equations then leads to F = 0, p = 11d,

which is exactly what is claimed in Conjecture 2.18.

We further compute

divg({F, p}a) = [2f34 —V2a3(f13 + fo3) + V202 (fia + f24)} o1

+ [2‘/:24\/;14 — \f20é1(f14 + faa) — 20‘3fl2} 02

+ [QfI?’_\/if% + V21 (fi3 + fo3) + 2042f12} o3.

Introducing the notations

T =

—V2(f13 + fa3), T2 = V2(fia + foa), 13 1= —2f12,

By = 2fan, B = 2f24 - 1114,53 — 2f13 — Jfas

V2 V2o

this simplifies to

divg({F, p}a) = (riag + roas + B1)o1 + (—reaq + rsas + f2)o2

+ (—ra1 — reag + B3)0s.
From comparing the coefficients in (2.20), (2.21) with those in
4p =0y + G0 + 303,
we obtain
a(t) = (M + R)a(t) + 5,

where

a (t) B1
at)=1 wt) |, B=]| b
as(t) B3
do 0 0 0 ro Tl
M = 0 do O , R= —ro 0 r3
0 0 ds -r1 —r3 0

2

(2.21)

It is 8 = 2divy4(F), as can be seen from (2.21) with o = 0. This completes the
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proof. ([

For sake of completeness, we remark that letting H # 0 only modifies the
matrix R from Proposition 2.16 (see also Corollary 2.8). From Proposition 2.16,

we can extract some properties of (2.15) for d = 2:

Corollary 2.17. Let p solve (2.15) with initial condition py (po a density ma-
triz). Let o, M, R and 8 be given as in Propostion 2.16. Then it holds that

(i) There is a unique normalised stationary state pos # cld iff div(F) # 0
and M + R is invertible.

(ii) All solutions converge to the set of invariant states with rate at least p,
where p? is the smallest eigenvalue of (M + R)T(M + R).

Proof: (i): From Proposition 2.16, we have that there is a unique normalised
stationary state iff M + R is invertible. If 8 # 0, this stationary state is not
cId. From Proposition 2.16, we have that 3 # 0 iff divy(F) # 0. Since d;; =0
implies fj = 0 for all k, any R that would lead to invertibility of M + R would
have to come from the Hamiltonian H.

(ii): Let v; := (M + R)™'8;. Then po = 2 Ida + 3" j = 1%v,0;, and due to the
orthogonality of Ids, o; (j = 1,2,3) in H we obtain that

3
lp = pocllfe =4 (a — ;)% = dla — 7P,
j=1

where we have used [|o;||3 =2, 1 < j < 3. We also get
%(a—’y) =a=M+Ra—-F=M+R)(a—").
So for the solution p, we have
(at) =) = MR (ag — ),
where o is the coefficient vector for the initial condition py. This implies
ja(t) = 7] = [N ag — )| < (|3 [ag — 4] < e |ag =]

M+R

Here, ||e( )||5 is the spectral norm of e+t and we have used ||e|| < ell4l

with

o= ||M+R||2 = \/X7
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where A > 0 is the smallest eigenvalue of (M + R)T(M + R). O

These results closely resemble the situation discussed in §1. If there is “full
dissipation” (D has full rank), then the antisymmetric part is not necessary
for existence of unique stationary states, though it can influence the stationary
state itself as well as the rate of decay. In the case where D does not have full
rank, the antisymmetric part of F has to be “compatible” for the equation to
still have existence of a unique stationary state. This compatibility takes the
form of condition (A) in §1, and of the condition “M + R invertible” for this

2-dimensional case.

2.6 Conclusion, open questions

With the results of Section 2.4, we can not expect to establish an entropy method
for symmetric operators £, a scenario that would correspond to the “canonic”
entropy method for symmetric Fokker-Planck equations. Since chapter 1 shows
that the entropy method can be transferred to non-symmetric equations, this is
not the end for a quantum entropy method; it merely implies that one would

have to take non-symmetric terms into account.

A problem in doing so is the result of Lemma (2.7): discrete partial deriva-
tives do not commute, at least not with the chosen definition. Even worse, we

have

Corollary 2.18. Let p € C4¥¢. Then all discrete partial derivatives
Opp = ilp, Ej]
commute iff p = cldy for some ¢ € C.

Proof: From Lemma (2.7), we have that

04(yp) — D4(0hp) ='ilp, > $mPk,].

m=1

T
From the computations in the proof of Proposition 2.16, we have that > s, E),,
m=1
spans at least E3, Fy4, and that a matrix that commutes with F3 and Ej is a
multiple of the identity. So the assumption follows for d = 2, and by extension

for d > 2. O

In the classical case, commutation of second partial derivatives is used for
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computing the Gronwall inequality between first and second time derivative of
the relative entropy. Since this does not hold in the quantum case, we can not
expect to be able to transfer this computation; this inequality would have to be

found another way.

This result and Corollary 2.8 indicate that the approach used in chapter
1 for the entropy method for non-symmetric Fokker Planck equations can not
easily be transferred: Neither is divg(RV4(p)) = 0 for R = —RT, nor can we

expect to obtain our stationary state from the equation
(D 4+ R)Vipoo + Fpoo + pocF = 0.

So one would have to find another approach to handle the non-symmetric terms

that appear in any operator £ with a kernel not spanned by Idg.

Another fundamental difference is apparent from Theorem 2.11 and Propo-
sition 2.16: The rate of convergence is mainly influenced by the diffusion matrix
D; the drift part of 2.15 seems to only contribute a rotation that mixes eigenval-
ues. In contrast, for the classical case discussed in chapter 1, the diffusion matrix
D merely influences the shape of the stationary state; the rate of convergence is
solely determined by the eigenvalues of the drift part. This, combined with the
fact that there can be constant non-trivial stationary states, indicates that the
finite dimensional problem might be more closely connected with Fokker-Planck

equations on bounded domains than those on the whole space.

In conclusion, the presented approach allows a discussion of (2.1) in terms
that more closely resemble the techniques used in partial differential equations
than the statistical approach generally used for (2.1). While ultimately un-
successful in its endeavour to establish an entropy method for open quantum
systems, we are hopeful that it can serve as a basis for future research and to

identify some of the similarities and differences between (2.1) and (1).
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