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Abstract

In this thesis a novel approach to compute a 3D over-segmentation (supervoxels) for radiolog-
ical image data is presented. It allows to cope with the high levels of noise and low contrast
encountered in clinical data such as Computed Tomography (CT), Optical Coherence Tomogra-
phy (OCT) and Magnetic Resonance (MR) images.

The method, MonoSLIC, employs the transformation of the image content to its monogenic
signal as primal representation of the image. The phase of the monogenic signal is invariant to
contrast and brightness and by selecting a kernel size matched to the estimated average size of
the superpixels it highlights the locally most dominant image edge. Employing an agglomeration
step similar to the one used in SLIC-superpixels yields superpixels/-voxels with high fidelity to
local edge information while being of regular size and shape.

The proposed approach is compared to state of the art over-segmentation methods on the
real-world images of the 2D Berkley Segmentation Dataset (BSD) converted to gray-scale, as
well as on challenging 3D CT and MR volumes of the VISCERAL dataset. It yields a highly reg-
ular, robust, homogeneous and edge-preserving over-segmentation of the image/volume while
being the fastest approach. For 3D volumes the method is 3 times faster than the state of the
art. Due to its invariance to contrast and brightness it yields 11% higher recall rate when dealing
with MR and CT volumes. There is also no parameter that needs to be tuned, increasing the
usability of the method.
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Kurzfassung

Diese Arbeit präsentiert den neuartiger Ansatz MonoSLIC zur Übersegmentierung von radiolo-
gischen Bild- und Volumsdaten mit Fokus auf Geschwindigkeit, Robustheit und Benutzerfreund-
lichkeit. Das Ziel ist die einfache Anwendung auf Daten die von Computer Tomographien (CT),
Optischer Kohärenten Tomographien (OCT) sowie von Magnet Resonanz (MR) Tomographien
erzeugt werden.

Dazu werden die Daten als Monogenic-Signal in eine neue Repräsentationsebene trans-
formiert, welche aus den 3 unabhängigen Teilen Amplitude, Orientierung und Phase besteht.
Zur Berechnung der Übersegmentierung wird nur die Phase, welche Information über die loka-
len Strukturen erhält, verwendet. Diese wird so abgebildet, dass die lokal dominierende Kante
sichtbar ist. Das anschließende Segmentierungsverfahren ist ähnlich dem SLIC-Superpixels Al-
gorithmus. Mit speziell optimierter k-means Clusterbildung werden Superpixel/-voxel erstellt
die eine regelmäßige Größe und Form haben und die Objektkanten erkennt.

Zur Auswertung wird der Ansatz mit anderen Algorithmen die dem neuesten Stand der Tech-
nik entsprechen auf den Bildern des Berkley Segmentation Datensatzes (BSD) sowie den medi-
zinischen Bildern und Volumen des VISCERAL Datensatzes verglichen. Die Resultate zeigen,
dass der Ansatz eine regelmäßige und einheitliche Übersegmentierung erstellt, welche auf den
medizinischen Volumen um 11% genauer und 3 mal schneller als vergleichbare Methoden ist.
MonoSLIC benötigt außerdem keinen zusätzlichen Parameter zu der Anzahl der gewünschten
Segmente und ist unempfindlich zu Bildverschmutzungen durch Rauschen.
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CHAPTER 1
Introduction

This chapter starts by introducing the motivation of the thesis, beginning with the properties of
the human perceptual system, the difficulties of humans finding the correct segmentation of an
image and how image processing methods address these problems. In the next section the exact
problem of over-segmentation is defined, followed by the aim of the work and the methodical
approach. The chapter then concludes with the structure of the work.

1.1 Motivation

The human perceptual system is a complex and powerful tool resulting from evolution [22].
Together with the experience stored in the individual’s brain it allows to detect objects and
understand the scene viewed within fractions of a second. Wertheimer 1923 [51] tries to under-
stand and quantify the complex human perceptual system and states basic laws that he identifies
as significant. The first is the factor of proximity, saying that underlying parts are organized by
their proximity creating objects and groups. This is true not only for visual but also for auditory
organization (e.g. rhythms in music). The second is named factor of similarity, describing that
similar parts are organized together. In terms of auditory organization this is represented by the
grouping of soft and loud beats. The third law is called the factor of continuity, that lets the
human mind recognize objects (e.g. circle) even if they are partially occluded. Visual examples
of the three laws are shown in Figure 1.1. All these factors are combined to either strengthen or
weaken the grouping properties. Additional laws are stated by Wertheimer [51], which are out
of scope of this thesis.

In [3] it is shown that the performance of humans carrying out visual perceptual tasks can
be improved by training. This indicates that the visual system is based on every individual’s
experience. As a result of this, when presenting one image to different persons, giving them
the visual perceptual task to segment all the objects in the image, no segmentation will look the
same. This can be observed in Figure 1.2 where five people are given the task of annotating
all object boundaries in the image. The fact that there already is variation in human perception
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(a) (b) (c)

Figure 1.1: Examples for the basic laws of Wertheimer with (a) factor of proximity, (b) factor of
similarity and (c) factor of continuity.

Figure 1.2: Object annotations of an image included in the Berkley Segmentation Database [34]
from five different persons. In the image on the bottom right all segmentations are merged, each
segmentation is shown in its own color to display variability.

between every individual is a hint to the complexity of designing a computer that attempts to
do the same. The segmentations in Figure 1.2 are created as part of the Berkley Segmentation
Dataset (BSD) [34] which is designed to quantify the quality of such computational attempts,
namely automated segmentation methods.

The first design choice of such methods is for what domain the method should be used,
as the real world can be digitally represented in different ways. A photograph of real world
objects has different properties than medical images, originating from the technique used and
the properties of objects that are recorded. Photographs can have multiple color channels, while
medical recordings only record intensity values. In terms of objects the medical domain is
restricted to the human body while a photograph is not. Each recording represents the real
world in a mapping to pixel-wise intensity values, based on the resolution of the used technique.
In medical recording techniques like Magnetic Resonance (MR) imaging, Optical Coherence
Tomography (OCT) and Computed Tomography (CT) the resolution of the recordings increases
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(a) (b)

Figure 1.3: Comparison of the quality of medical image recordings, where (a) shows a Head MR
of a 1.5 Tesla machine (image taken from [52]) of 1997, (b) a Head MR of a 3 Tesla machine
from the VISCERAL [27] dataset taken in 2013.

(a) (b) (c)

Figure 1.4: Example images for 3D medical volumes, where (a) shows a Head MR, (b) an OCT
of the human eye and (c) an Abdomen CT from the VISCERAL dataset [27]

with the advances in technology [14]. This also increases the total number of pixels and voxels in
a recording as shown in Figure 1.3 for a head MR taken in 1997 compared to one taken in 2013,
where the latter is more detailed due to the higher resolution. In the following 3D recordings
will be addressed as volumes and each pixel in such a volume is called voxel.

Examples for the medical imaging volumes can be seen in Figure 1.4, where each recording
has its own properties. The MR (a) is used for visualizing different soft tissues, while the CT
(c) detects how much energy is absorbed by objects such as bones [38]. OCT [25] (b) is used
to examine the structure of an object with up to 3 mm depth creating a noisy representation
of 3D structures of anatomical regions such as the retina [8]. These volumes create additional
challenges when compared to images. Most obviously their size is larger by up to a factor of
1, 000, as for example the BSD images consist of 0.15 Mega Pixels (MP) while a full body
CT can have a size of about 250 MP. Also the third dimension makes viewing of the recording a
difficult task, as each layer blocks the sight on the subsequent one [13]. This property also causes
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problems when trying to annotate a volume, as volumes can either be viewed slice by slice or
in complex 3D visualizations. Therefore manual annotation of structures in these volumes is
more time intensive compared to images. For example, for a single volume with a size of
512 × 512 × 1000, 1000 2D annotations have to be made for the segmentation. In order to
create annotations for volumes more efficiently than doing it slice by slice, tools exist [26] that
transport information across slices.

In order to segment an image or volume, for each of the pixels or voxels a decision must be
made to which object it belongs. Making this decision for every single pixel is computationally
expensive and therefore methods exist that reduce the number of pixels and the number of deci-
sions necessary, by merging pixels into homogeneous groups of pixels while preserving object
boundaries. These methods are called over-segmentation methods and are the main topic of this
thesis.

The concept of over-segmentation reduces the number of pixels and enables the use of meth-
ods that would not be able to calculate in tractable time with current hardware. For example this
reduces the effort of fitting a model of complexity O(N8), to an image of 1, 000 combined
pixels instead of the original 500, 000 pixels [37]. Another usage is over-segmentation-based
interest points in combination with bags of visual words for either medical image retrieval [23]
or class-specified segmentation [30]. Over-segmentation is also used to combine the output of
several different over-segmentation algorithms and merge them into one final segmentation of
an image [29]. Additional approaches that use over-segmentation methods are [4] [21] [24].

1.2 Problem Statement

In order to detect objects in an image meta information or a priori learning is necessary. Al-
gorithms exist that can detect certain simple objects [50] (e.g. face detection), but these are
specifically trained and designed to the data. The problem addressed in this thesis is one step
before the final object detection or classification. An image is over-segmented into homoge-
neous groups of pixels while preserving object boundaries, allowing other methods to detect
any desired object in the image while only analyzing a fraction of the original number of pix-
els. Therefore it is important for the over-segmentation method to retain all object boundaries.
Otherwise the subsequent algorithms cannot correctly delineate the object in the later stages.

Current state of the art over-segmentation methods are designed for 2D real world images.
Only a few are used on medical images. The method of Andres 2008 [4] uses a modification of
one of the first over-segmentation approaches [35] on volumes in combination with an hierarchi-
cal classifier, but there are no numeric results on the performance of over-segmentation methods
on volumes. There are two reasons for this, (1) there is no over-segmentation code available for
volumes with the exception of the code of Achanta 2010 [1] that a new method can be compared
to and (2) until the starting of this thesis there is no public segmentation database available for
volumes that is comparable to the BSD.

Due to their application on real world images, their performance on images with low contrast
and brightness is not yet tested. These can occur in medical imaging data like the MR, which
is used to investigate tissue and organs of the human body. Its signal is based on the single
proton of the hydrogen nucleus [52]. The brightness and contrast of the recording depends on a
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combination of parameters (T1, T2, etc) used in order to distinguish specific soft tissues. If an
over-segmentation has a parameter that handles the relation of brightness and contrast, it would
have to be set specifically for each recording type. Creating a method that does not require a
parameter to be tuned towards contrast and brightness would therefore increase its usability for
medical imaging data.

The problems covered in this thesis can be summarized in the following points:

1. Over-segmentation methods are not yet compared on 2D medical images. Performance of
state of the art over-segmentation methods are compared using the real world images of
the BSD dataset. In this thesis 2D medical images and annotations are extracted from the
VISCERAL [27] dataset and used for evaluation.

2. Over-segmentation methods are not yet compared on 3D medical imaging data. This
thesis for the first time makes use of the 3D medical dataset named VISCERAL. This
dataset contains expert anatomical annotations for more than 20 anatomical structures on
28 CT and MR volumes that can be used for volume segmentation evaluation.

3. There is no over-segmentation method available that has all the following properties:

• Designed for low contrast/brightness medical imaging data like MR and CT.

• Does not need parameter tweaking.

• Over-segmentation of 3D medical imaging data within minutes.

1.3 Aim and Methodical Approach

The approach in this thesis is threefold. First state of the art methods for solving the over-
segmentation problem are examined. The chosen over-segmentation algorithms cover the di-
verse directions of current state of the art methods. The features used for segmentation vary
between gradient based, texture based or any combination of those features and the segmenta-
tion methods are based on graph partitioning or gradient ascent.

Secondly, after analyzing these methods a new method, MonoSLIC is developed and pre-
sented. It fills a gap that is discovered during the state of the art research by a new combination
of feature extraction and segmentation and aims at the over-segmentation of medical image and
volume recordings.

And thirdly, MonoSLIC and the state of the art methods examined [1] [15] [20] [37] [48]
are compared on the 2D BSD dataset and, for the first time, also compared on the 2D medical
images and 3D medical volumes of the VISCERAL [27] dataset.

1.4 Structure of Work

The structure of the remaining thesis is as follows. Chapter 2 presents a short history of over-
segmentation methods, analyses the state of the art methods and discusses them. In Chapter 3 the
new method MonoSLIC is presented, summarized and the relation to the state of the art methods
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is discussed All methods are then evaluated in Chapter 4 on image and volume segmentation
datasets. In Chapter 5 the results of the MonoSLIC algorithm are discussed and compared to the
other methods. Chapter 6 concludes the thesis with a brief summary and outlook on possible
improvements and future work.
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CHAPTER 2
State of the Art

In this chapter first an overview is given by discussing the properties of object boundaries in
images and the history of image processing attempts to detect them. Then the definitions used to
describe the state of the art methods are presented before analyzing them in detail. The chapter
concludes with a comparison and summary.

2.1 Overview

The basic idea of over-segmentation is to merge pixels into homogeneous groups, while preserv-
ing object boundaries. In order to make a decision where such an object boundary is, we first
look at how objects are defined in an image, and what properties define an object boundary.

Looking at the image in Figure 2.1 we follow the task of persons annotating the BSD dataset
[34] and immediately recognize objects in the image like a cannon, trees, a wall, the ground
and the sky. Analyzing the area where the sky and the wall meet we can observe a change in
pixel intensity from bright to dark. This change of brightness between pixels is called gradient
and is a first hint for an object boundary. Further investigating the cannon in more detail we
notice that it is made of different parts, the wheels, the wooden basis and the tubular cannon
body itself. Each of the parts is made of different material and based on their form and the
light condition each creates a different structure in the image. We again take a closer look, but
this time at the image boundary between the cannon and the wall. There is no obvious change
in brightness between the pixels of the objects. In fact both structures have similar intensities.
The only difference between them is how they are ordered, which as Wertheimer 1923 [51]
stated is intuitively captured by the human mind. Therefore we can conclude that a change of
structure is another hint for an object boundary, although it is more complex because more than
two neighboring pixels need to be analyzed, compared to a gradient.

In image processing, a significant local change or discontinuity in brightness over a few
pixels is called an edge. Although it is a simple way of defining an object boundary, the deci-
sion if the gradient is significant enough to be an edge is intensively studied in image process-
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Figure 2.1: Cannon example from the BSD [34] dataset with two interesting object boundaries.

ing with methods called edge-detectors. An overview on edge-detection techniques is given in
Ziou et al. 1998 [56] and explained in more detail in Section 2.4.

Taking into account texture information comes at a higher computational cost, because more
than the direct neighbors of each pixel need to be analyzed in order to decide to which struc-
ture it belongs. Texture can be analyzed by convolution of an image with a filter bank. This is
already a well-studied field and a comparative study on texture filtering can be found in Ran-
den et al. 1999 [41]. More information about filter banks can be found in Section 2.3.

Another way of detecting edges in an image is not to look at object boundaries, but to com-
bine pixels with the same properties. An early attempt to solve the problem of merging similar
pixels is the use of the watershed algorithm for contour detection by Beucher et.al. 1979 [7]. Up
to this time a traditional way of segmenting an image was to threshold the gradient of the im-
age, which results in either thin but not closed contours, or closed but too thick. The watershed
method provides closed contours for structures that differ by a high gradient using mathematical
morphology. This is achieved by using the brightness values of pixels as topographic surface
and starting to flood it from its minima. Whenever two minima meet, the merging of the waters
is denied by a dam. These dams are then the final over-segmentation of the image. The major
drawback of the watershed segmentation is severe over-segmentation, which is addressed by
Beucher 1991 [6] introducing the marker driven watershed. Instead of starting flooding at mini-
mas the flooding sources are defined by markers, restricting the number of sources and therefore
decreasing the over-segmentation. Another change to the watershed algorithm is introduced by
Meyer 1994 [35] using the geodesic distance function instead of the topographical to create a
voronoi diagram where shortest path algorithms can create an output that is similar to the wa-
tershed. This watershed approach is still used in state of the art algorithms, for example in the
method proposed by Engel et al. 2009 [15].

A synonym for over-segmentation is the term superpixel introduced by Malik et al. 2003 [42],
which describes the grouping of pixels into homogeneous regions. The motivation for grouping
pixels is that each pixel represents the real world in a discrete way, based on the resolution the
recording technique is capable of. One pixel has semantically no meaning, only the combina-

8



(a) (b) (c) (d)

Figure 2.2: Example images used throughout this thesis. Cannon (a) and Ox (b) are taken from
the BSD [34] dataset. The Abdomen CT (c) and the Head MR are taken from the VISCERAL
dataset [27].

tion of pixels is the source of information in terms of segmentation and scene understanding.
Although the output of previously mentioned edge-detection algorithms is closely related to the
one of superpixel algorithms, they differ by the lack of restriction to closed contours as super-
pixels are constrained. Also superpixels are designed to have maximal homogeneity within each
superpixel and maximum diversity between them.

The output of over-segmentation algorithms can be compared by the accuracy in terms of
segmentation and by the regularity of the output. The latter means that if the size of one super-
pixel is not constrained this can result in the extreme case of only one superpixel as segmentation
or on the contrary in as many superpixels as pixels. Also not restricting the shape of the superpix-
els could cause long and narrow superpixels or boundaries that are rough, which influences the
performance of methods that are based on the superpixel boundary [45] and also is an indicator
of over-fitting to the data (e.g. over-fitting to the noise in an OCT).

2.1.1 Definitions

In the remaining of this thesis the following definitions are used.

• For describing the upper bound of the complexity of algorithms the Big O Notation [12]
is used with the symbol O.

• A graph is defined as followed. An undirected, connected graph G = (V,E) is defined
with vertices V and edges E, where each vertex represents a pixel, and a weighted edge
ei,j = E(vi,vj) represents the connection between two corresponding pixels.

2.1.2 Images

The images shown in Figure 2.2 are taken from different sources and are used throughout this
thesis. In panel (a) and (b) the Cannon and Ox images are shown and taken from the BSD [34]
dataset. The abdomen CT (c) and the head MR (d) images are extracted from the VISCERAL
dataset [27].
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Algorithm Category Parameter Preprocessing Segmentation

State of the Art

Veksler 2010 

[48]
superpixel count -

-
significance 

value

Felzenswalb 

2004 [20]

graph 

partition

graph 

partition

Information Representation

Intensity

Intensity

Energy Minimization as Multi-

Way-Graph Cut optimized by      

α-Expansion

Disjoint-Set Forest optimized by 

Inverse Ackermann Function

Energy Function represented as 

extended Grid Graph

Grid Graph represented as 

Boundary Decision Rule

MonoSLIC 

2013
superpixel count

Achanta 

2010 [1]

optimized k-means

Local 

Monogenic 

Phase

-

Monogenic Signal

optimized k-means

Monogenic Phase combined with 

Spatial Information

gradient 

ascent

gradient 

ascent

superpixel count 

and regularity

Proposed Approach

Engel 2009 

[15]

seed points 

threshold

Mori 2005 

[37]
superpixel count

texture and 

contour feature 

extraction

edge detection
gradient 

ascent

graph 

partition

Energy minimization as solving a 

General Eigenvalue System

Watershed with Seedpoints and 

Height Map from Flux Flow Field

Color 

Information

CIELab Color Space combined 

with Spatial Information

Features

Edge 

Information

Energy Function represented as 

Full Graph

Gradient Vector Flow Field to 

compute a Flux Flow Image

Table 2.1: Overview of the methods discussed in this thesis.

2.2 Discussion

State of the art over-segmentation approaches are divided into different parts as shown in Fig-
ure 2.1. Achanta 2011 [2] proposed to categorize them into graph-partition-based and gradient-

ascent-based approaches. In the first category a graph is constructed where each node represents
a pixel and the edge weights are a similarity measure between two corresponding pixels. The
graph is then cut such that dissimilar pixels are separated. The optimal cut is created by min-
imizing an energy function and the result is a superpixel segmentation of similar pixels. The
methods of the second category create a rough initial segmentation of the image that is itera-
tively optimized resulting in a superpixel segmentation.

The work flow is similar for each over-segmentation approach. They first start off with the
original image, followed by optional preprocessing of the image where features are extracted
from the original image. The original image or the features or a combination of the two are
used as input for each method. The extracted information is represented in different ways,
either as a graph [48] [20] [37], as a higher dimensional features space [1] or as baseline to
extract additional information [15]. In the final step the information is used to create the over-
segmentation of the image by cutting the graph, clustering in the feature space or by using other
methods like the watershed [5].

Each approach is reviewed using the same structure, starting with the image and ending with
the final segmentation. First a short summary of the algorithm and methods it uses is presented
together with an overview flow chart. Next we follow the work flow of over-segmentation meth-
ods guided by two example images, by first explaining the detailed preprocessing, followed by
the information representation and segmentation. The last point details the properties of the
algorithm containing information on parameters and runtime.
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Figure 2.3: Overview of the Efficient Graph-Based Image Segmentation method of Felzenswalb.

(a) (b) (c)

Figure 2.4: Method overview for Felzenswalb on the Ox and Cannon images. (a) Original input
image, no features extracted. (b) Information representation illustration using the 8 connected
neighborhood edge weights on a factor 0.2 downscaled version of the original image. (c) Seg-
mentation on the example images.

2.3 Graph-Partition-Based Methods

The methods in this section use an information representation based on graphs.

2.3.1 Felzenswalb - Efficient Graph-Based Image Segmentation

The method of Felzenswalb 2004 [20] focuses on two important properties: (1) It captures per-
ceptually meaningful regions and (2) is highly efficient. As summarized in Figure 2.3 a previ-
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ously defined graph G is created and the edge weights are sorted in increasing order. Each pixel
is assigned its own component C and starting with the smallest edge weight connecting two com-
ponents Cn, Cm, the components are iteratively merged such that the internal weight Int(Cn)
and Int(Cm) is low and the weight difference between two different component Diff(Cn, Cm)
is high. The result is a superpixel segmentation of V into components C ⊂ V. Figure 2.4 is
used as guide following work flow of the method.

Preprocessing - Felzenswalb uses a Gaussian filter with σ = 0.8 for smoothing the original
image Figure 2.4 (a). This is the only information used by this approach as no other features are
extracted.

Information Representation - A grid graph G is created using a 8-connected neighbor-
hood. The edge weights eij contain the absolute intensity difference between the two pixels i
and j as shown in Figure 2.4 (b). In order to visualize the edge weights more clearly Figure 2.5
shows two different Gaussian distributions. Panel (a) shows the segmentation of two clearly
distinguishable normalized distributions (N (mean = 0, std = 1) and N (4, 1)), while in Panel
(b) the distributions N (0, 1) and N (1, 1) are not clearly separable. Each pixel is connected to
its neighbors according to the 8-connection criterion, where a low gradient is indicated in dark
blue getting brighter with higher gradients until reaching yellow. The weights are increasingly
ordered and to each pixel its own component C is assigned.

Segmentation - The segmentation process is started by taking the weight with the smallest
value and the two components Cn, Cm it is connected to. The decision if these components
should be merged is based on the relation of their internal weight to the weight between them.
The internal weight of one component is measured as the maximum of all the edge weights
within itself

Int(C) = max
(vi,vj)∈C

eij . (2.1)

For a component size of |C| = 1 the internal weight is defined as Int(C) = 0. A threshold
function τ(C) = k/ |C| based on the component size is introduced, so that the user has a
general influence on the merging decision with the parameter k. For two components Cn, Cm a
combined minima internal difference is defined as the minima of the internal weights added by
the threshold function:

MInt(Cn, Cm) = min (Int(Cn) + τ(Cn), Int(Cm) + τ(Cm)). (2.2)

In order to decide how different the two components Cn, Cm ⊆ V are, the difference is defined
as the minima edge weight between them

Diff(Cn, Cm) = min
vi∈Cn,vj∈Cm

eij . (2.3)

The final decision to create a boundary between the two components is based on whether the
difference between them is larger than the minima internal difference.

D(Cn, Cm) =

{

1 if Diff(Cn, Cm) > MInt(Cn, Cm),

0 otherwise.
(2.4)
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(a) N (0, 1) on the left and N (4, 1) on the
right.

(b) N (0, 1) on the left and N (1, 1) on the
right.

Figure 2.5: Segmentation of two Gaussian-smoothed normal distributions. Color of the edges in-
dicates the absolute intensity difference between corresponding pixels. Segmentation calculated
with (a) parameter k = 500 and (b) parameter k = 100.

The segmentations of the example images are shown in Figure 2.4 (c) in red, calculated on the
original size of the two images. To make the segmentation decision more we again look at the
two normalized distributions of Figure 2.5. Panel (a) shows the segmentation in red of two
clearly distinguishable normalized distributions using a parameter value of k = 500, while the
distributions in Panel (b) are segmented using k = 100. Note that for (b) a parameter value of
k = 500 would not create any segmentation, because of the insignificant edge weights compared
to (a).

Properties - The runtime parameter k of the threshold function is used to control component
size, where larger k corresponds to larger components, although smaller components will still
be created when there is significant difference between neighboring ones. The segmentation
output is irregular such that homogeneous regions like the sky and water have large superpixels
and varying regions like the trees are segmented by small superpixels. The time complexity of
the segmentation method is of O(n log n) [20]. Color images are treated as single monochrome
image for each RGB-Channel and the algorithm is run three times. The final segmentation is an
intersection of segmentations created for each color plane.

2.3.2 Mori - Normalized Cuts

The method of Mori 2005 [37], as summarized in Figure 2.6, first extracts a variety of perceptual
information from the image, which is then grouped into contour and texture features. From
these features an edge probability map is calculated, representing the probability for an object
boundary at every pixel. In the second step the extracted features as well as the probability
boundary map are used to calculate a texture and a contour weight matrix. These are combined
into a final weight matrix W that reflects the similarity between pixels. The idea of features
extracted and the design of the weight matrices is based on the paper of Malik 2001 [33].
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Figure 2.6: Overview of the Normalized Cuts over-segmentation method of Mori.

(a) (b) (c)

Figure 2.7: Method overview for Mori on the Ox and Cannon images. (a) Original input image
overlaid with the extracted edge and texture features. (b) Segmentation procedure including
nCut and subsequent k-means clustering. (c) Final Segmentation on the example images.

In a third an final step the weight matrix is segmented based on the nCut method proposed
by Shi and Malik 2000 [32]. The result is a coarse pre-segmentation of the image, which is
further subdivided using k-means clustering.

In the rest of this paragraph the single steps are explained in more detail, starting with the
preprocessing and the information representation, followed by the segmentation section con-
taining graph-cut and normalized-graph-cut methods. Each step is also visualized in Figure 2.7.

Preprocessing - Three color maps are created, one for each of the CIELab channels by
reducing the number of unique values to a total of 32 for each. The reason for choosing this
color-space is that for small color distances it is considered as perceptually uniform [1].

The texture map is calculated by filtering the image with a filter-bank consisting of 12x2
(the first column are 13x13 and the second 19x19) Gaussian filters creating 24 feature responses
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for each pixel. These responses are compared with 64 pre-computed texture channels (each also
consisting of 24 features) and the most similar one is assigned to each pixel creating a texture
map with 64 labels.

The calculation from map to gradient is the same for both texture and color, and is done
as follows. The texture map is used for texture gradient calculation while the color maps are
used for the color gradients. A gradient is calculated by comparing two (upper and lower) map
histograms for each pixel (orthogonal to the gradient orientation of the corresponding pixel)
using the chi-squared-distance. If the map on both sides of the pixel is similar, then the pixel is
within a texture or color and it’s response is small. If the map is different, then the distance is
high which this indicates a change in texture or a change in color.

The four (three color and one texture) gradients are then combined into an final edge prob-
ability map 2.7 (a) using the formula pbi = 1

1+exp−x×β where x = [l, a, b, t] represents the four
gradients and β weights each gradient with an empirical chosen value.

Information Representation - Intervening Contours [33] is used to construct a final weight
matrix. In this method the weight between two pixels pi and pj is defined as the maximum pbi
value on a direct line between them. Therefore a large weight in WIC indicates that there is a
boundary separating the two points. For segmentation WIC is transformed to W = exp−WIC

where the value in W represents the costs to separate the two pixels. The weight matrix W is
transformed to a previously defined graph G.

Segmentation - The goal is to create a segmentation of the image by partitioning G into
disjoint sets.

Graph Cut - In the examples of Figure 2.8 (b) two disjoint sets A and B (A ∪ B = V,
A ∩ B = ∅) are created by removing the edges connecting the two sets. This is called the cut

and its value is defined as the sum of the edge weights e ∈ E removed from the graph. The
definition of the graph-cut is visualized in Figure 2.8. Panel (a) shows the original graph, where
each black dot represents a Vertex/Pixel and is connected in a 4-neighborhood to neighboring
vertices’ with an edge represented by a blue line. In (b) each vertex is assigned to a label A or
B, creating two disjoint sets. The two sets are separated by removing the connecting edges as
shown in (c), where the cut value is the sum of the edges removed.

cut(A,B) =
∑

u∈A,v∈B

e(u, v), (2.5)

Normalized Graph Cut - The problem with the original graph cut is that the method favors
cutting away a small number of vertices’, because such a cut creates a small cut-value. Therefore
normalized graph cut is introduced and to illustrate this a new graph is visualized in Figure 2.9
(a) where the weights correspond to the thickness of the edges, defining an object consisting
of 8 vertices’ in the top left corner. In (b) a minimum cut is shown that does not result in a
desired segmentation result for the graph. To prevent removing small sets of points the cut value
is normalized by the sum of edge weights e connecting the associated segment to V [32].

assoc(A,V) =
∑

u∈A,t∈V

e(u, t) (2.6)
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(a) Original graph (b) Disjoint sets A and B (c) Calculation of the cut value

Figure 2.8: Illustration of the Graph Cut method.

(a) Original graph (b) Segmentation using cut (c) Segmentation using nCut

Figure 2.9: Difference of cut and nCut illustrated on an example graph.

With the final normalized graph cut definition

nCut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)
(2.7)

the minimum nCut of the example graph in Figure 2.9 (c) reveals the object with the optimal
segmentation.

Shi and Malik 2000 [32] also show that minimizing nCut(A,B) is equal to solving the
generalized eigenvalue system (D −W )v = λDv, where D is diagonal matrix with the sum of
rows of the weight matrix W . Two methods on how the eigenvectors can be used for segmen-
tation are described. (1) The first named recursive 2-way cut uses the eigenvector with the 2nd
smallest eigenvalue to bipartition the graph. The splitting point for the eigenvector is chosen
by calculating the minimum nCut value for l evenly spaced splitting points. The sub-partitions
are segmented recursively until the the nCut value exceeds a specified value. (2) The second,
simultaneous k-way cut, uses the eigenvectors with the n smallest eigenvalues as n dimensional
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(a) (b) (c)

Figure 2.10: Method overview for Veksler on the Ox and Cannon images. (a) Original input
image, no features extracted. (b) Sketching of the initial patch distribution on the left and Patches
after segmentation on the right. (c) Final Segmentation on the example image.

indicator vectors for each pixel. In this n dimensional space k-means is used to create an over
segmentation of the image. These are then merged using either greedy pruning or global recur-

sive cut to get the final segmentation.
Mori et al. 2005 [37] use an adapted version of the (2) simultaneous k-way cut. Its output

for the two example images is visualized in Figure 2.7 (b). First n eigenvectors with the largest
eigenvalues are used. The initial segmentation into n cluster is calculated by iteratively solving
X = V R, where R,RR′ = I is a rotation matrix and V the n dimensional indicator matrix [55]
and can be seen on the left. A second step uses k-means clustering on the nCut eigenvector
coordinates to further subdivide the primary segmentation to Sp superpixels as shown on the top
right. And in a third and final step k-means is used again for subdivision, although this time on
the (x, y) pixel coordinates, creating the final segmentation of Sp2 superpixels (bottom right).

Label Cleanup - A final post processing step is necessary after the k-means algorithm, where
disconnected clusters can be created. A new label is assigned to these disconnected regions. If
one cluster is smaller than a defined minimum cluster size, it is merged with one of its neighbors.

Properties - The reason for the concatenating subdivision in the adapted normalized graph

cut version of Mori is the high computational cost of nCut O(N
3

2 ) [28]. The default values
for the parameters are suggested as n = 40 for the number of eigenvectors, Sp = 100 and
Sp2 = 200 for the final segmentations. The results are regular superpixels in terms of shape and
size.

2.3.3 Veksler - Superpixels in an Energy Optimization Framework

In Veksler 2010 [48] the segmentation task is formulated as an energy-minimization problem
as summarized in Figure 2.11. The basic idea is that a number of overlapping patches L are
equally distributed across the image, where this regular distribution also ensures the superpixel
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Figure 2.11: Overview of the Superpixels in an Energy Optimization Framework method of
Veksler.

size. These patches are then stitched such that no overlapping patches remain and that the
boundary between them aligns with a local brightness gradient in the image.

Preprocessing - The original image is the only information used by this approach as no
other features are extracted.

Information Representation - From a programming point of view a graph G is constructed
where each pixel is connected to its 8 neighbors. We now extend the previous definition of
vertices V such that it also includes a terminal-nodes representing the overlaid patches. Each
pixel is also connected to the terminal-nodes of the patches that the pixel is covered with. The
edge weight eij between the pixels is influenced by the gradient and the spatial distance between
them.

Energy Function - The energy function mentioned before consists of a data and a smoothing
term

E(f) =
∑

p∈P

Di(fi)

︸ ︷︷ ︸

data term

+λ
∑

{p,q}∈N

eijVij(fi, fj)

︸ ︷︷ ︸

smoothing term

. (2.8)

Each pixel p ∈ P belongs to one or more corresponding patches l ∈ L. The assignment of
pixel pi to label l is denoted as l = fi. The goal of the segmentation procedure now is to
assign one pixel to only one label while so that the boundary between the patches creates a over-
segmentation that preserves the object boundaries. This is also visualized in Figure 2.10 (b)
where on the left the overlapping patches are regularly distributed over the image. On the right
the patches are stitched using the described technique.

Segmentation - Veksler presents two versions of the algorithm, the first called compact

superpixels is described in the next paragraph and the second, a modification of the first, named
constant intensity superpixels is explained thereafter.

Compact Superpixels - The data term for the first version Di(fi) is defined such that every
pixel not belonging to a corresponding patch is penalized by setting its data term value to infinity

Di(l) =

{

1 if p ∈ S(l),

∞ otherwise.
(2.9)
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The parameter λ is used to control the balance between data and smoothing term, but because
the data term can only be 1 for the desired pixels, lambda can be chosen as λ = 1 without any
effect on the optimization process [48]. The value of the smoothness term of two pixels i, j ∈ P
is nonzero only if the two pixels belong to different patches

Vij(fi, fj) = min(1, |fi − fj |
1). (2.10)

For those pixels of different patches an edge weight difference eij is calculated influenced by
the gradient I and the spatial distance dist

eij = exp

(

−
(Ii − Ij)

2

dist(i, j)2σ2

)

. (2.11)

This results in eij = 1 for pixels with the same intensity measure and 0 ≤ eij < 1 of dissimilar
intensity measures, encouraging the stitching on highest gradients of the image. The compact

superpixels boundaries adhere to high gradients, but there is no term in the energy function that
forces smoothness throughout one superpixel. This allows a high gradient to appear within one
superpixel, which is undesired in an over-segmentation approach. In order to improve this, the
constant intensity superpixels approach is presented.

Constant Intensity Superpixels - There is one adaption to the compact superpixels method
concerning the data term Di(l). Instead of assigning 1 to all pixels belonging to the patch S(l),
the data term value now depends on the gradient I between the pixel p and the patch center c,
forcing constant brightness values throughout each patch

Di(l) =

{

|Ii − Ic(l)| if p ∈ S(l),

∞ otherwise.
(2.12)

To ensure that label l of pixel p is the same as the cluster center c(l), another term Tnew(f) is
added to the energy function (2.8) penalizing different labels with ∞

Tnew(f) =
∑

p∈P

W (fi, fc(fi)) (2.13)

where

W (α, β) =

{

∞ if α 6= β,

0 otherwise.
(2.14)

with α, β ∈ L. The segmentations of the constant intensity superpixels are shown in Fig-
ure 2.10 (c) for the Cannon and Ox image of the BSD.

Properties - The benefit of the constant intensity superpixels is a more accurate segmen-
tation at the cost of superpixel regularity [48]. What is not mentioned in the paper is that the
change of the data term means that λ again has an influence on the smoothness of the superpix-
els, where larger λ creates smoother superpixels. The resulting superpixel are of regular shape
and size. The runtime is close to linear O(N) for a constant patch count, but is increasing with
the number of patches [9] and therefore with the number of desired superpixel.
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Figure 2.12: Overview of the Medial Features for Superpixel Segmentation approach of Engel.
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Figure 2.13: (a) Horizontal and (b) vertical masks used by Prewitt and Sobel edge detectors.
The masks used by Roberts (c), (d) and the mask for the Laplacian of Gaussians (e).

2.4 Gradient-Ascent-Based Methods

The methods in this section use gradient information based on the extracted features.

2.4.1 Engel - Medial Features for Superpixel Segmentation

The proposed method of Engel 2009 [15] makes use of two popular methods in image processing
as summarized in Figure 2.12. One is extracting edge-cues using an edge-detection algorithm
and the other is creating a segmentation using the watershed algorithm [35]. The heat-map and
seed-points needed for the watershed are calculated from the extracted edges. First a Gradient

Vector Flow (GVF) field based on the edge cues is calculated and in a subsequent second step a
flux flow field (F) is created from the GFV. F is used as the heat-map and it is also thresholded
in order to create seed-points, which both are the input for the watershed segmentation. Each
step is now explained in more detail with corresponding visualizations in Figure 2.15.

Preprocessing - Edge-detection methods can be grouped into first and second order deriva-
tive expressions [56]. First order derivative extract gradient information, while second order
derivative extract the rate of change of the gradient. The derivatives are approximated by using
masks that differ for each approach. The first order masks of Prewitt [40] and Sobel [31] are
shown in Figure 2.13 (a,b) where a = 1 for Prewitt and a = 2 for Sobel. Due to the similarity
of the masks also the segmentation output is similar as seen in Figure 2.14 (b) and (c). Another
first-order approach by Roberts uses the Robert’s cross Figure 2.13 (c,d), where the final gradi-
ent value for each pixel is the maximum of the two filter outputs [43]. The output is comparable
to the one of the previous two methods Figure 2.14 (f). A second-order method is the Lapla-
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(a) (b) (c)

(d) (e) (f)

Figure 2.14: Results of edge detection algorithms on the Abdomen CT slice (a), (b) Prewitt, (c)
Laplacian of Gaussian, (d) Canny, (e) Sobel and (f) Roberts.

cian, estimated by the mask shown in Figure 2.13 (e), resulting in an edge response as seen in
Figure 2.14 (c).

The method of Canny [10] can be split up into several steps, where the image is first con-
volved with a Gaussian filter to reduce noise. In the next step the intensity gradient is detected
using four filters (horizontal, vertical and two diagonal). The filter responses are non-maxi-
ma suppressed before tracing the edges through the image using thresholding (with hysteresis)
resulting in the detected edges of Figure 2.14(d).

Engel has chosen the Canny method for extracting the edge information as it performs best
in terms of over-segmentation [15] and its result is the edge-image f that is also visualized in
Figure 2.15 (a) for the two example images Ox and Cannon.

Information Representation - The edge cues extracted from the image are now further
processed to create a information representation that will later be used for segmentation.

Gradient Vector Flow - First a vector field V (p) = |u(p), v(p)|T , where p = (x, y) is a
pixel in the image, is defined. Each vector in V points to the direction of the largest brightness
change. The length of the vector represents the magnitude of change in brightness. This vector
field is used to minimize the adapted [53] energy function

E =

∫∫

|∇f |2|V −∇f |2
︸ ︷︷ ︸

data term

+0.12 ∇2V
︸ ︷︷ ︸

smoothing term

dxdy (2.15)

which results in the GVF as shown in Figure 2.15 (b) on the top left. Similar to Equation 2.8 the
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(a) (b) (c)

Figure 2.15: Method overview for Engel on the Ox and Cannon images. (a) Original input image
overlaid with the Sobel edge-detection result as features. (b) Visualization of the GVF on the top
left and the corresponding flux flow field below, The big image on the right is the visualization of
the final height map that is used for segmentation. (c) Final Segmentation on the example image
using the heat-map and the watershed segmentation.

energy function has a data and smoothing term, where the data term is influenced by the gradient
of the edge image f and its difference to the vector field V . The smoothness constraint is given
by the gradient of the vector field V and is weighted by a constant [53].

Flux Flow Field - The flux flow field F is calculated based on the L2 − norm normalized
vector field VN (p) = V (p)/||V (p)||2 following the suggestions of [39].

F(VN (p)) =

∮
〈VN ,N〉ds

Area
(2.16)

where N are the normals of a 7-pixel-ring used in the ring integral and is shown in Fig-
ure 2.15 (b) on the bottom left. The final segmentation is done using the watershed trans-
form [35] with F as a heat map (Figure 2.15 (b) on the right) and a thresholded version of
F as seed points.

Segmentation - The watershed algorithm is first described by Beucher 1979 et al. [7]. First
the gradient of an image is calculated, which is then treated as a relief, where the height of
the relief is equal to the value of the gradient. The relief is then flooded, starting from local
minima. Whenever two different minima would merge, a dam is created. This results in a severe
over segmentation of the image. Meyer 1994 et al. [35] adapted the first version, such that the
flooding starts not at local minima, but at chosen marker positions. The final segmentations for
the two test images are shown in Figure 2.15 (c).

Properties - The threshold for the seed points has to be chosen manually and is the only
parameter for this method, therefore the number of superpixel cannot be chosen directly. The
segmentation output is very irregular as seen in Figure 2.15 (c) where homogeneous regions
like the sky and the water create large and varying regions, and the trees or the ox have small
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Figure 2.16: Overview of the SLIC Superpixels approach of Achanta.

(a) (b) (c)

Figure 2.17: Method overview for Achanta on the Ox and Cannon images. (a) Original input
image, no features extracted. (b) Sketching of the initial cluster distribution on the left and
visualization of the k-means iterations on the right (c) Final segmentation on the example image.

and irregular superpixel. As each step of the computation consisting of edge-detection, gradient
vector field, flux flow field and watershed takes O(N ) [16], the combined complexity of the
method is also O(N ).

2.4.2 Achanta - Simple Linear Iterative Clustering

The Simple Linear Iterative Clustering (SLIC) approach of Achanta 2010 [2] uses local pixel
information represented in the CIELab color space in combination with the euclidean distance
between pixels as shown in Figure 2.16. Similar to [20] a 5D-space is defined, but this time us-
ing the L,a,b values of the CIELab color space together with the x,y pixel coordinates. k-means
clustering is performed in the 5D-space, initialized by a spatial (x,y) grid and the corresponding
cluster (L,a,b) values. Clustering is performed using a specified non-euclidean distance mea-

23



sure Ds, because compared to the spatial distance, the distance in the CIELab color space is
limited [1]. Each cluster represents one superpixel and with a final post processing step, where
disconnected or small cluster centers are merged, the finale over segmentation is created.

Preprocessing - The image is converted to the CIELab color space which limits the distance
of two pixels when compared to the euclidean space. Other than that this is the only information
used by this approach as no other features are extracted.

Information Representation - For 2D the information is represented in a 5D feature space
spanned by the spatial coordinates (x,y) and the color space variables (L,a,b). The distance
measure in this 5D space is divided into two parts. The color distance is represented as

dlab =

√

(lk − li)
2 + (ak − ai)

2 (bk − bi)
2 (2.17)

and the spatial euclidean distance as

dxy =

√

(xk − xi)
2 + (yk − yi)

2 . (2.18)

Before the distances are added, the spatial distance dxy is normalized by the value dcc that is
based on the total number of superpixels desired by the user.

Ds = dlab +
m

dcc
dxy (2.19)

With the parameter m the user can balance between color similarity and spatial proximity. The
suggested default value for m = 10. The parameter used for the calculations used in this thesis
is discussed in Section 4.3.

Segmentation As the segmentation method k-means is used for cluster analysis. Initially
k cluster centers are placed in a regular spaced grid in the (x,y) plane, where k matches the
desired number of superpixels as shown on the left in Figure 2.17 (b). The distance between the

cluster centers is defined as dcc =
√

N
K where N is the number of pixels and K the number of

desired superpixels. Before starting with the k-means algorithm each cluster center is first moved
towards the lowest gradient in a 3 × 3 neighborhood. As part of the initialization process the
(L,a,b) values of the cluster centers are set to the average of the (L,a,b) values of the pixels that
are closest to the specific center. After that, repeatedly for each cluster center the best matching
pixels from a 2S × 2S square neighborhood around the center are calculated using the distance
measure Ds. The cluster centers are being updated, until 10 iterations are reached as indicated
in Figure 2.17 (b) on the right. As a final step label cleanup similar to the one explained in the
method of [37] is performed. The final segmentation for the example images is visualized in
Figure 2.17 (c).

Properties - The restriction of the k-means search space to a 2dcc × 2dcc neighborhood
instead of to the whole image and the maximum iterations to 10, reduces the original k-mean
complexity from O(NKI) to O(N) where N is the number of pixel, K the number of cluster
and I the number of iterations [2]. When the segmentation is done, cluster connectivity is
enforced in a final step, taking only a fraction of the k-means runtime [1]. The superpixel
size and regularity are based on the chosen parameter m, but due to the k-means search space
restriction as well as the post processing, have a limited maximum and minimum size.
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2.5 Other Superpixel Algorithms

The discussed algorithms are examples that illustrate different lines of solving the over-segmen-
tation problem. However this selection is not complete. Additional approaches are proposed.
They range from gradient-ascent based approaches of Vincent 1991 [49], Levenshtein 2009 [28]
and the graph-partition-based approach of Moore et al. 2008 [36]. A comparison of those can be
found in [2].

2.6 Comparison of the State of the Art Approaches

The algorithms are compared in terms of parameter, superpixel regularity and computational
cost.

Parameters - In terms of parameters the methods are split into two groups, the first allows
the user to directly choose the superpixel count for the segmentation, while the second is based
on parameters that are method specific and cannot directly specify the number of superpixels.

Veksler and Achanta allow to directly set the number of initial centers for the consequent cal-
culations. A post-processing step ensures that no superpixel smaller than a chosen size remain.
These can occur as remnants of the iteration process [1]. In Achanta another parameter needs
to be set which defines the regularity of the superpixel. Mori also chooses the number of super-
pixels directly, but compared to the previous methods achieves this by iteratively sub-partition
large superpixel until the desired number of superpixels is reached.

Engel and Felzenswalb belong to the second parameter group. The parameter in Engel is a
threshold that decides on the seed points for the watershed algorithm, while in Felzenswalb the
user can set the significance necessary to divide a component into two.

Features - The information used for segmentation varies for each approach and is shown in
Figure 2.18. Veksler and Felzenswalb use the unchanged intensity values of the image ((a) top).
Achanta is based on the CIELab color information, but with gray-scale images this reverts to also
using intensity values. The other algorithms use some sort of preprocessing before calculating
the superpixel segmentation. Engel first extracts edge cues based on the Canny Edge detector
((a) bottom) and most complex information is extracted by Mori (b), where texture cues shown
on the top and contour cues on the bottom are used.

Superpixel Regularity - With not being able to set the number of superpixels, and there-
fore the size of them, Engel and Felzenswalb produce irregular superpixel sizes and shapes
Figure 2.19 (a) and (b). The additional parameter in Achanta decides to either capture more
low gradient boundaries at the cost of irregularity, or capture less boundaries but having higher
superpixel regularity (c). Veksler (d) and Mori (e) create very regular superpixel, with the latter
having smoother boundaries.

Computational Cost - With a complexity of O(N3/2) Mori has the highest computational
cost. Additionally it needs to store a matrix of size N2, which is not feasible for large images,
yet volumes. Felzenswalb has a complexity of O(N× logN ) elsewhere the methods of Achanta,
Engel and Veksler have O(N ). The complexity is also visualized in Figure 2.20 for increasing
N .
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(a) (b)

Figure 2.18: Comparison of the extracted features of the algorithms on the Cannon image. (a)
Original Cannon image on top. Canny edge features on the bottom. (b) Gradient (bottom) and
texture (top) features extracted by Mori.

(a) (b) (c) (d) (e)

Figure 2.19: Comparison of the superpixel regularity and smoothness on a zoomed in version of
the Ox image, where (a) Engel, (b) Felzenswalb, (c) Achanta, (d) Veksler and (e) Mori.

2.7 Summary

The method proposed by Felzenswalb [20] uses the original gray values of an image and creates
superpixels by merging two components (e.g. pixels) if their difference is not significant enough
to be an object boundary. There is a parameter that allows control over the significance needed,
but it is not possible to create an over-segmentation with an exact number of superpixel. It
therefore creates large superpixel at the homogeneous areas and small ones at heterogeneous.
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Figure 2.20: Visualization of the complexity.

Mori [37] extracts gradient and texture cues from the image and creates a large similarity
matrix W of size O(N2), which is then divided into superpixels by using the described graph-cut
method of complexity O(N2/3). This is done until the desired number of superpixel is reached.
It creates regular superpixels that highlight the dominant local texture and gradient difference.

The approach of Veksler [48] uses the gradient information of the original image for seg-
mentation. Overlaying patches are distributed across the image and are then stitched so that
they align with the local dominant gradient. The number of patches matches the desired number
of superpixels. In the used constant intensity approach has a parameter to tweak the desired
smoothness of the superpixels. The superpixel are less regular than the one from Mori and
highlight the local gradient difference.

The gradient of the original image detected by the Canny edge detector is the source infor-
mation used by the approach of Engel [15]. It is used to generate a heat map and seed points
for a subsequent watershed segmentation. The threshold for the seed-points is the only param-
eter for the method and therefore the exact number of superpixel cannot be chosen. Similar
to the method of Felzenswalb it creates large superpixel at homogeneous areas and smaller at
heterogeneous ones.

Achanta [1] converts the original image to the CIElab color space. Together with the spatial
coordinates a higher dimensional feature space is created. A rectangular grid, where the number
of rectangles matches the desired number of superpixels, is used as initialization for a k-means
clustering algorithm using the previously described distance function. The relation between gra-
dient and spatial information can be adapted using a parameter value. The resulting superpixels
are similar to the one from Veksler and highlight the local dominant edge based on the parameter
chosen.

2.8 Limitations of State of the Art

The limitations of the state of the art methods are explained with Table 2.2, where desired prop-
erties are marked in dark green and undesired ones in red. With the methods of Engel and
Felzenswalb it is not possible to directly define the number of superpixels desired, as indicated
in the first column. This number depends on brightness, contrast and homogeneity of the image
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choose number
of superpixels

needs
parameter
tweaking

contrast/brightne
ss invariant

features complexity available for 3D

Veksler 1 0.5 0 O(N) 0

Felzenswalb 0 1 0 O(N+log(N)) 0

Mori 1 0 1 O(N^(2/3)) 0

Engel 0 1 0 O(N) 0

Achanta 1 1 0 O(N) 1

Table 2.2: Overview of the limitations of the state of the art over-segmentation methods.

and the parameter value chosen. In extreme cases this can create segmentation with only one
superpixel, or segmentation with as many superpixels as pixels which would nullify the benefits
of over-segmentation. This can be observed in Figure 2.4 (c) and Figure 2.15 (c) on the Cannon
images, where the sky contains large superpixels or at the trees where very small superpixels are
created. This makes it also difficult to compare the performance, which is based on comparing
the over-segmentations at a certain number of superpixels.

Achanta and the constant intensity approach of Veksler create an over-segmentation with a
defined number of superpixels, but similar to Felzenswalb and Engel they also have a parameter

that needs to be tuned for the specific properties of an image (column two). Images that due to
their homogeneity properties require a different parameter at different areas in the image cannot
be properly over-segmented.

The method of Mori does allow choosing the number of superpixels and has no image spe-
cific parameter that needs tuning. It is also the only method that uses features that are contrast

and brightness invariant (column three), but it uses the most complex segmentation approach
(column four). This results in slow segmentation times, where an image of the BSD with 0.15
MegaPixels takes more than a minute to compute as shown in Section 4.6.

The method of Achanta is the only one where the available implementation supports to
compute 3D volumes, as indicated in the last column.

The overview in Figure 2.2 shows that each algorithm has limitations. The method presented
in the next Chapter is designed to overcome these specific limitations of the state of the art in
one single approach.
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CHAPTER 3
Monogenic SLIC

As analyzed in Chapter 2 only one (Mori Section 2.3.2) of the chosen methods incorporate
texture information as a segmentation cue and does not need an additional parameter to be tuned.
The other methods solely make use of the brightness/gradient information and have a parameter
that can be adapted to the contrast of the image.

The idea of the approach presented in this section originates from the method of Achanta [1]
which, as described in Section 2.4.2, uses the color values of an image as features and combined
with k-means clustering creates an over-segmentation of the image. The proposed method differs
in preprocessing and the features used, which enables a contrast and brightness invariant method
that also does not need an additional parameter and allows a more efficient k-means calculation.

The information used as feature is based on texture by using the phase of the monogenic sig-
nal [19]. This way structures are detected even though they only have a small gradient compared
to their surroundings. From the use of the monogenic signal combined with the Simple Linear
Iterative Clustering the abbreviation MonoSLIC is used as a name of the presented method.

The new method is presented similar to the state of the art structure. First the preprocessing

contains detailed information about the monogenic signal. This is followed by the main contri-
butions of this thesis. First how it can be used as information representation for the purpose
of image segmentation and second the segmentation describes how the clustering method k-
means is adapted for creating the over-segmentation. Thereafter the properties of the method
are explained. The chapter concludes with the comparison of the method to the state of the art
and a summary.

In the following x is used as representation of a signal in the spatial domain and u as
representation in the frequency domain. A bold variable indicates an n-dimensional signal
x = (x1, x2, ...xn)

⊺.

3.1 Preprocessing

In this section the preprocessing of the image is explained. The image is transformed from
the original intensity based to an amplitude, phase and orientation based representation called
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monogenic signal.

Monogenic Signal - The monogenic signal proposed by Felsberg [19] originates from the 1D
analytic signal [11], which extracts the local phase and local amplitude of a signal. The phase
represents the local structure in the signal and the amplitude its magnitude. This set of features
is independent to each other, meaning that a change in one does not affect the other and vice
versa. This is called the invariance-equivariance property. Another property is that any signal
can be uniquely represented by those two features. Having a set of features with both properties
is also called split of identity. A popular example for this feature is the phase and amplitude
of the Fourier Transformation and the analytic signal also full-fills this property. It is based on
the Hilbert transform which, when applied to cos(.) results in a sin(.). The Hilbert transform
can be understood as a phase shifter, shifting every sinusoidal function by −90 degrees. In
the frequency domain, with the Fourier transformed signal u, the transfer function of the Hilbert
transform can be defined as H(u) = −iu

|u| = −i sgn(u), where sgn() is the signum function [19].
The kernel can be written as the inverse Fourier transform of the transfer function [54]

fH(x) =
1

2π

∫ ∞

−∞
H(u)eiuxdu (3.1)

and its combination with the original signal f(x) is called the analytic signal

fA(x) = f(x)− ifH(x), (3.2)

Both the Fourier and the Hilbert transform make use of complex numbers as the mathematical
representation. The complex numbers are two dimensional, so the local amplitude and the local
phase can be represented for a 1D signal analytic signal. When moving to a 2D signal (e.g. an
image) then another feature is necessary that describes the local orientation of the structure in the
2D plane. One could calculate the Hilbert transform for a number of orientation and approximate
the exact result, but this has shown to be inaccurate as well as time consuming [17].

Therefore Felsberg generalizes the Hilbert transform using the Riesz transform for n dimen-
sional signals with the defined transfer function in the frequency domain as H2(u) =

u
|u|I

−1
2 and

the resulting transformed signal FR(u) = iu
|u|F (u) = H2(u)F (u). In the spatial domain this

is written as the convolution fR(x) = − x
2π|x|3

∗ f(x) = h2(x) ∗ f(x). Similar to the analytic

signal the monogenic signal is also a combination of the original signal and, this time, its Riesz
transformation

fM (x) = f(x)− (i, j)fR(x). (3.3)

Felsberg shows that the monogenic signal is isotropic and also performs a split of identity [19].
The orthogonal set of features the signal is decomposed into are the local amplitude Af , the
local phase ϕ and the local orientation θ.

The energetic information, based on brightness/contrast, is included by the local amplitude

and is the norm of the monogenic signal.

Af (x) = |fM (x)| =
√

f2(x) + |fR(x)|2 (3.4)
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2

2

Figure 3.1: The sketched structure yielding a specific value of ϕ with a phase wrap from π to
−π. Redrawn from [19].

The amplitude represents the local energy and is invariant to the local phase ϕ and local orien-
tation θ.

The local phase represents the change of local structural information varying from −π to π.
The corresponding structure for a certain ϕ value is shown in Figure 3.1 for the 1D case. With
the sketched structure one can see that the phase values of |π2 | contains edge-like information.

The phase ϕ is defined as

ϕ (x) = atan3(fM (x)) = arg(f ′
M (x))ϕ ∈ [−π, π) , (3.5)

where fM is the vector field such that f ′
M = (i, j, 1)fM .

For completion the geometric information is represented by the orientation in the range of
0 to π

θ (x) = arccos (f(x))/Af (x)) θ ∈ [0, π) (3.6)

The Matlab code used for calculating the Monogenic signal in this thesis is the implementa-
tion of Felsberg’s monogenic filters [18], which is available at the official Matlab File Exchange
Repository1 at the submission of Manohar2. The implementation uses a combination of con-
volutions with complexity O(N ). It is adapted such that unnecessary calculations are omitted
(only calculating the monogenic phase) and to work in 3D. Additional improvements in terms
of memory usage are applied. Only one filter at one scale is calculated and therefore the only
parameter used is the wavelength of the filter. The parameter ratio of the standard deviation is
fixed at the, by Manohars suggested, default value of 0.65. An example for the monogenic phase
on a 2D medical image (Figure 3.2 (a)) can be seen in Figure 3.2 (b). How the phase can be used
for the over-segmentation of an image is described in the next section.

1http://www.mathworks.com/matlabcentral/fileexchange/
238844-gabor-image-features/content/Gabor_Image_Features/monofilt.m
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(a) (b) (c)

Figure 3.2: The monogenic phase calculated on the 512× 624 Abdomen CT image with a filter
wavelength of 18.3 (zoomed in view). (a) is the original image, (b) the local phase ϕ of the
image and (c) the transformed signal Λ as used by our approach.

3.2 Information Representation

In the previous section we indicated that the phase contains edge-like information. We now
propose how that information can be transformed and used for image segmentation.

Edge-cues from Monogenic Phase The idea behind how the monogenic phase information
can be represented for segmentation is explained in Figure 3.3. In the first row two example 1D
signals are shown, a simple sinusoid on the left(a) and one with different structure on the right
(b). In the second row the corresponding phase ϕ is shown for both signals in (c) and (d). It can
be observed that at a value of |π2 | the phase correlates with the change in structure. Due to the
non-symmetric rectangular part of the structured signal (b) the phase is forced to jump from π

2
to −π

2 as observed in (d,f). Taking the absolute value of ϕ removes the problems caused by the
wrapping of the phase. We now create a horizontal line every time the phase intersects a value
of ±−π

2 (e,f). Using these lines as segmentations the original signals are now segmented into
three structural parts (g,h).

The monogenic phase ϕ(x) picks up the locally dominant structure in a n dimensional signal.
Its values are between −π, π and a value of ±π

2 correlates with a strong edge, as previously
illustrated in Figure 3.1 and Figure 3.3 and for a 2D image in Figure 3.2. We now want to
map this information such that there is a high gradient when the phase has a value of ±π

2 . In
other words, we want to get a representation with similar feature values within superpixels and
value changes at their boundaries. This is done by first mapping the monogenic phase ϕ to
ϕnew = |ϕ| − pi

2 before calculating the final monogenic phase cue with

Λ (x) =
sgn (ϕnew) exp

(−|ϕnew|)

2
,Λ ∈ [−0.5, 0.5] . (3.7)

We divide by 2 to bring the range of the phase Λ to 1. This is done because it will be rescaled
in the next stage. The result of the mapping can be seen in Figure 3.2 (c) where the cue now has
a high contrast (brightness change from 0.5 to −0.5) at the change of structure of the original
image. This is the only information about the image employed for segmentation.
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It also has to be decided what filter wavelength λ, governing the scale of the monogenic
signal should be used. We propose to link λ with the number of superpixels, as this influences
the size of the smallest structure that can be detected in the image, when all superpixels have
roughly the same size. The idea behind this is that a lower number of superpixels can only
detect large structures and to capture larger structures the wavelength has to be increased. The
wavelength therefore correlates to the average size of a superpixel denoted as dcc. Figure 3.4
shows an experiment with the variation of the wavelength by a scaling factor s on the BSD
dataset, where λ = s ∗ dcc. The results show that using a wavelength equal to dcc has the best
results in terms of recall.

3.3 Segmentation

We now use the transformed phase Λ as basis for image segmentation as shown in Figure 3.5 (a)
on the right. Similar to Achanta 2010 [2], we perform k-means clustering on the image data
to obtain the superpixels. In contrast the cluster centers are initialized spatially according to a

hexagonal grid with cluster center distance dcc =
√

N
K as shown in Figure 3.5 (a) on the left, to

avoid imposing too much of a directional preference compared to the rectangular grid.
Each pixel is represented in an nD + 1 space, with the first n dimensions being the original

pixel or voxel coordinates and the additional dimension being the transformed monogenic phase
information Λ′(x) = wdccΛ(x), with w specifying the value of how much the monogenic signal
is weighted. The brightness and contrast invariant boundary representation based on the mono-
genic phase makes the regularization parameter of Achanta obsolete. The relation of monogenic
phase cue to the spatial distance can be set at a fixed optimal value w. The optimal value was
calculated by using variations of w from 1 to 3 on the BSD dataset, which is visualized in Fig-
ure 3.6. The recall rate does not change with w > 2, therefore the final choice is w = 2 which
is used for all calculations presented in this thesis.

The final distance used for k-means in 2D is

Dm =
√

(xi − xc)2 + (yi − yc)2 + (Λ′
i − Λ′

c)
2. (3.8)

The resulting segmentation after 10 iterations overlaid with the monogenic phase cue can be
seen in Figure 3.5 (b). The final segmentation overlaid in the image is shown in Figure 3.5 (c)
where we can see that the local dominant structure is segmented by the presented method.

The homogeneity of the phase allows for another change to the k-means computation that
decreases the computation time and is discussed in the following paragraph.

Adapting k-means - In this paragraph the k-means algorithm is adapted from the original one.
Table 3.1 gives an overview on the number of calculations for three k-means versions, where
the first is the original one, the second the adapted version of [2] and the third the one proposed
for this thesis. For the rest of this paragraph I is the number of iterations, S the number of seed-
points, P the number of pixels and D represents the dimensionality of the data. The variable
M describes the maximum size of the region R ⊂ P , e.g. the maximum superpixel size. The
adaption to k-means introduced by [1] reduces the number of calculations from ISP to ISR.
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original Achanta proposed adaption

ISP ISR (I − 1)SN + SR P > R > N

Table 3.1: Number of calculation steps needed for each of the k-means algorithms.

In the original version the distances between all seed-points S and pixels P are calculated. The
adapted version restricts the distance calculation to a region R around S, more exactly R =
MDP/S for a maximum superpixel size of M2 = 2 times the average region size. Using the
transformed monogenic phase response as k-means input makes it possible to further decrease
the number of calculations necessary, because the information is represented in a smooth and
noise-free way. Therefore instead of R samples only a reduced number of random samples
N ⊂ R is taken, although this time from M1 = 3 times the average region size. Because this
sub-sampling does not calculate the labels for all pixels, a final iteration taking SR calculations
is added. The total number of calculations is ISN + SR with the amount of random samples
N = nR (default value for n = 0.1).

Putting the number of calculations of MonoSLIC and Achanta into relation, setting I =

10, substituting R and using M1 for MonoSLIC and M2 for Achanta gives the factor
1.9MD

1

10MD
2

.

Using the predefined values for M results in a speed-up of factor 2.3 for 2D and 1.56 for 3D
for MonoSLIC compared to Achanta. Due to the larger M of MonoSLIC the speed-up factor
decreases with increasing dimensionality and the method would eventually (D > 5) need more
calculations than Achanta. Setting M = 2 also for the MonoSLIC approach would result in a
speedup of 5.2 independent of the dimension D.

For the first iteration of the clustering, the initial values for the nD + 1’st coordinate of the
cluster center have to be estimated. These are set to the average of Λnew(x) of all pixels closest
to that cluster center.

Label Cleanup - After the k-means algorithm a label cleanup is performed similar to Achanta
and Mori [37]. This ensures that there are no disconnected clusters and the size of every cluster is
larger than a defined minimal value that is based on the image size and the number of superpixels.

3.4 Properties

As both, the calculation of the monogenic signal and k-means clustering are generalized for any
dimension, the method can also be used to segment 3D volumes. The user can chose the desired
number of superpixels and there is no need to tune an additional parameter. Using the monogenic
phase as feature makes the method invariant to contrast and brightness. The restriction of the
k-means search space and the random sampling makes the k-means clustering at least 1.6 times
faster than the version used by Achanta [1]. As all the parts of the presented method are of the
same complexity, also the total complexity of monoSLIC is O(N ).
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choose number
of superpixels

needs
parameter
tweaking

contrast/brightne
ss invariant

features complexity available for 3D

MonoSLIC 1 0 1 O(N) 1

Veksler 1 0.5 0 O(N) 0

Felzenswalb 0 1 0 O(N+log(N)) 0

Mori 1 0 1 O(N^(2/3)) 0

Engel 0 1 0 O(N) 0

Achanta 1 1 0 O(N) 1

Table 3.2: Overview of the limitations of the state of the art over-segmentation methods com-
pared with the presented method MonoSLIC.

3.5 Comparison

Compared to the state of the art methods, in terms of feature extraction monoSLIC is similar
to the method of Mori [37], but using only texture information in form of the phase of the
monogenic signal and no gradient information. The creation of the segmentation is similar to
Achanta [1], but instead of the rectangular grid k-means is this time initialized using a hexag-
onal grid. The distance function used by k-means is based on the spatial information and the
transformed phase of the monogenic signal. Because the phase is independent of contrast and
brightness and always has a value between 0 and π there is no need of an additional parameter
as opposed to Achanta. The number of superpixels is based on the number of hexagons and can
be therefore set directly. The result is a regular over-segmentation where the edges align with
local dominant change in structure. The over-segmentation of the two example images Ox and
Cannon from the BSD dataset are shown in Figure 3.7. Each image is divided into three parts
where each part has a different number (from 750 to 150) of pixels per superpixels.

3.6 Summary

The method monoSLIC is summarized in Figure 3.8. It overcomes the limitations of the state
of the art approaches as shown in Table 3.2 and is based on the representation of an image
or volume using the monogenic signal. It decomposes the image into three orthogonal features
called amplitude, orientation and phase. MonoSLIC uses the contrast and brightness invariant

phase which indicates the locally most dominant structure as the only feature for segmentation.
Before the segmentation procedure the phase is transformed to lie within the values of −0.5
and 0.5. A change from 0.5 to −0.5 indicates that at this location is an edge in the image. For
segmentation, similar to Achanta [1], k-means clustering is used where the number of clusters
corresponds to the number of superpixels. Because the value of an edge is always the same in
the phase representation there is no parameter tweaking needed to balance the ratio between
spatial and phase information. By using sub-sampling the computation time of k-means can be
sped up by 2.3 for 2D and 1.5 for 3D. Finally label cleanup is performed similar to Achanta and
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Mori [37], in order to ensure no disconnected clusters. The complexity of the presented method
is similar to Achanta with O(N ) and the implementation also supports 3D volumes.
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(a) (b)

(c) (d)

(e) (f)

(g)
b

(h)

Figure 3.3: Visualization of the segmentation-idea based on the monogenic phase. The first row
shows two example signals in blue with a sinusoid signal (a) and a more structured signal (b).
In the second row (c,d) the phase of the transformed signal is shown in red with values between
−π and π. The points where the phase passes the value of |π2 | (when no phase-wrap occurs) are
marked with a black circle. The segmentation of the signal at these defined points is indicated
by the gray lines in the third row (e,f) and the final division of the signal into its structural parts
is shown in the last row (g,h).
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Figure 3.4: Recall for a variation of the scale parameter s on the BSD dataset (higher is better).

(a) (b) (c)

Figure 3.5: The k-means steps visualized on the zoomed in version Abdomen CT image. In
(a) the transformed phase Λ is shown on the right side and the spatial hexagonal cluster center
initialization is overlaid on the left. Panel (b) shows the final segmentation of the phase Λ and
in (c) the segmentation is overlaid on the original image.

100200300400500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pixels per superpixel

re
ca

ll

 

 

w = 1.0
w = 1.5
w = 2.0
w = 2.5
w = 3.0

Figure 3.6: Recall for a variation of the weight parameter w on the BSD dataset (higher is better).

38



(a) (b)

Figure 3.7: Over-segmentation generated by MonoSLIC of the example images Ox (a) and
Cannon (b), for 750, 300 and 150 pixels per superpixel.
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Figure 3.8: Overview of the MonoSLIC method.
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CHAPTER 4
Results

The compared state of the art algorithms and the presented method MonoSLIC are compared
using two 2D (BSD and medical images) and MonoSLIC and Achanta are also compared on
three 3D (Aorta, Fetal and VISCERAL) datasets. They are evaluated in terms of recall and
precision, in percentage as well as the absolute boundary pixel error. Additionally regularity
properties like variation in area and similarity to circle are compared. For reference purpose a
rectangular and a hexagonal grid are added as baseline, to show how a simple over-segmentation
would perform. In the figures of this thesis Grid stands for the rectangular grid, while Hexagon is
the hexagonal grid. The algorithms are also compared in terms of Gaussian noise and MonoSLIC

is explicitly compared to the Achanta method for a variation of Gaussian noise in the discussion.
Finally also the runtime performance of the available implementation is also compared for 2D
images and 3D volumes.

4.1 Evaluation Measures

This section describes the evaluation measures used for comparison. It contains accuracy rating
in terms of recall and precision, robustness and regularity of the over-segmentation output.

Boundary Pixel Recall Error The boundary error measurement describes the accuracy of an
algorithm. It is the average euclidean distance of the annotation of an image to the segmentation
of the algorithm and is measured in pixels. The lower the boundary recall error the better the
segmentation.

Boundary Pixel Precision Error The boundary precision measurement describes the effi-
ciency of an algorithm. It is the average euclidean distance of the segmentation of the algorithm
to the nearest annotation of the image and is measured in pixels. A higher boundary precision
error indicates more unnecessary over-segmentation.

41



(a) Ox image (b) Cannon image

Figure 4.1: Two example images Ox and Cannon pollutated with Gaussian Noise with mean =
0 and std = 0.22.

Recall Rate The recall rate describes the percentage of how many of the annotated pixels were
detected by the algorithms segmentation. A higher recall value indicates a better detection of
the annotated boundaries. It is the most relevant measurement of over-segmentation algorithms,
because every object boundary not detected is a loss of information. Before calculating the
recall (or precision) the pixel wise annotation is symmetrically extended by 1 pixel. This is done
because the real boundary cannot be exactly verified due to either aliasing effects or blurred
object boundaries.

Precision Rate The precision rate describes the percentage of how many pixels in the al-
gorithm’s segmentation match the annotation of the image. A higher precision indicates less
unnecessary over-segmentation of the algorithm, in other words how much noise in the segmen-
tation output of the algorithm is. As the nature of discussed methods is over-segmentation they
naturally generate more boundaries than object boundaries in the image and have a precision
rate that is lower than methods that only segment the objects.

Precision-Recall Curve The precision-recall curve combines the two properties in one plot.
It visualizes the correlation between precision and recall. Curves that are closer to the top right
indicate a better precision-recall result.

Influence of Noise In order to measure the robustness against the influence of noise the images
are disturbed with a Gaussian noise before segmented by the algorithms. The noise is added with
a mean of 0 and increasing standard deviation from 0.032 to 0.32 as shown in the two example
images in Figure 4.1. The values were chosen so that the result is similar to the noise in an
OCT 1.4 (b). This test evaluates the robustness of the algorithms to noise, as it can occur in
medical images and images under low light conditions.
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Figure 4.2: Perimeter over area for a rectangle and circle with decreasing size in pixels.

Regularity of Superpixel The regularity of superpixels can be described by the perimeter
and area as description features. The perimeter describes the length of the boundary describ-
ing the superpixel, while the area represents the pixels filled by the boundary. The first idea
was to take their direct relationship calculated by dividing the perimeter by the area. This is
illustrated in Figure 4.2 for two shapes, a circle and an rectangle. The drawback of this is the
dependency of the direct relationship on the size of each form, therefore a value suggested by
Schick et al. 2012 [45] is used for comparison. The proposed value represents the similarity of
the superpixel shape compared to a circle using Equation 4.1.

4π
area

perimeter2
(4.1)

4.2 Datasets

The two 2D and three 3D datasets used for evaluation of the over-segmentation methods are
explained in this section.

2D - Berkley Segmentation Dataset - BSD The BSD [34] consists of a set of 500 natural
color images with a resolution of 0.15 MP. The images were annotated by 30 different subjects
such that each image has at least 5 annotations. Since the focus of this work is on medical
images where no color exists, the color images are converted and used as gray-scale images.
Two examples images, the Ox and the Cannon, and two of their corresponding annotations are
shown in Figure 4.3 and Figure 4.4

2D - Annotated Medical Images - 2D VISCERAL The medical image dataset is extracted
from the VISCERAL [27] dataset, which is described in more detail in the next paragraph. It
consists of 28 extracted 2D coronal center slices with their corresponding annotation with an
average size of 0.18 MP and will be called 2D VISCERAL in the remainder of this thesis.
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Figure 4.3: Original Ox image and two example annotations taken from BSD [34] overlayed in
red.

Figure 4.4: Original Cannon image and two example annotations overlayed in red from the
BSD [34].

3D - Annotated Medical Volumes - Fetal The Fetal dataset was generated from Baby Brain
Toolkit [44]. It consists of 33 isotropic Fetal MRI volumes with 1 mm voxel spacing and a
resolution of 22.18 MP, where medical experts annotated the left and right eye, as well as the
ventricles. The size of annotations is small when compared to the image size and resolution as
the examples slices show in Figure 4.5.

3D - Annotated Medical Volumes - Aorta The Aorta dataset was created for a study per-
formed by Schwartz et al [46]. The dataset consists of 9 thorax CT volumes with a slice reso-
lution of 512 × 512 and pixel spacing of 0.27 mm to 0.39 mm. The number of slices varies,
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(a) (b) (c)

Figure 4.5: Three center slices of each axis for the Fetal MR [44] dataset with overlayed seg-
mentation in red.

(a)

(b)

(c)

Figure 4.6: Three center slices of each axis for the Aorta CT [46] dataset with overlayed seg-
mentation in red.

resulting in volume sizes from 189.27 to 252.45 MP with a slice spacing of 0.67 mm. In these
volumes the thoracic aorta was annotated by medical experts, with center slice examples shown
in Figure 4.6.
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(a)

(b)
(c)

Figure 4.7: Three center slices of each axis for the VISCERAL MR dataset [27] with overlaid
segmentation in red.

3D - Annotated Medical Volumes - 3D VISCERAL The 3D VISCERAL dataset is named
after the Visual Concept Extraction Challenge in Radiology Project1 that provides an evaluation
framework for big data [27]. It consists of 14 CT and 14 MR mixed thorax/abdomen and full-
body volumes. The CT volumes have an average size of 167.27 MP with a slice spacing of 1.5
mm, while the MR volumes have an average of 14.02 MP with 4.75 mm slice spacing. Results
are presented for CT, MR and a combination of both. It is the most diverse 3D dataset in terms
of modality and annotation, as medical experts annotated 20 different anatomical regions in the
Thorax and Abdomen area. Examples for the medical volumes and their annotations are shown
for the CT in Figure 4.7 and for MR in Figure 4.7 volumes.

4.3 Parameter Choice

For the algorithm of Achanta an additional parameter p to the number of superpixel has to be
set. As described in Section 2.4 it regulates the superpixel regularity at the cost of accuracy.
In order to chose a good trade off between those properties, the algorithm is compared to the
MonoSLIC method in terms of recall, perimeter over area mean and standard deviation. The
values are calculated for the BSD dataset and for 100 pixels per superpixel. For each properties
the parameter of Achanta for the corresponding MonoSLIC value is taken and the average of the
resulting three parameters is the final parameter for evaluation. This is visualized in Figure 4.9,
where panel (a) shows the perimeter over area mean with p = 10, panel (b) the corresponding
standard deviation with p = 22 and in panel (c) the recall is shown with p = 14. The resulting
final value for the parameter is p = 15, which is used throughout this thesis.

The parameters of Felzenswalb and Engel are varied in order to create segmentations that
consist of 100 up to 500 pixels per superpixel.

1http://www.visceral.eu
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(a)

(b)

(c)

Figure 4.8: Three center slices of each axis for the VISCERAL CT dataset [27]with overlaid
segmentation in red.

4.4 Results on 2D Images

In this section the performance results for the BSD and Medical Images dataset are presented for
algorithms of MonoSLIC, Achanta [1], Veksler [48], Mori [37], Engel [15] and Felzenswalb [20].
Additionally the Hexagon and rectangular Grid are used as baseline. The results are calculated
from 500 pixels per superpixel up to 90 pixels per superpixels. The results are compared at a
value where the reference Hexagon reaches a recall rate of 0.5. This would be similar to make
the decision if there is a boundary or not by flipping a coin at each pixel.

4.4.1 Berkley Image Segmentation Database - BSD

On the BSD the algorithm performance in terms of recall, precision, influence of noise and
regularity is compared. The section concludes with a summary of the results.

Recall - In Figure 4.10 the results for recall (a) and the boundary pixel recall error (b) on
the BSD [34] images are presented. The references of using a rectangular and hexagon grid
show how a blind over-segmentation would perform. The slightly better results of 0.54 for the
hexagon of are due to the naturally more meaningful shape compared to a rectangle 0.50 for 100
pixels per superpixel. The approaches of Mori 0.84 and Felzenswalb 0.77 have the highest recall
accuracy followed by Achanta 0.73, Engel 0.72 and Veksler 0.71 for 100 pixels per superpixel
(where the Hexagon has a recall rate of about 0.5. The MonoSLIC approach 0.74 has similar
results to the latter ones when using a higher number of superpixels, put performs worse when

47



(a) (b)

(c)

Figure 4.9: Decision on the choice of the regularity parameter for the Achanta algorithm used in
the evaluation process based on the properties perimeter over area mean (a) and std (b), as well
as recall (c) for 100 pixels per superpixel on the BSD dataset.

reducing the superpixel count. The ranking of the boundary pixel recall error is similar to the
recall. It is lowest for Mori followed by Felzenswalb, Achanta and Veksler while Engel has the
highest error. MonoSLIC behaves similar to the recall results.

Precision - In Figure 4.11 the precision rate (a) and the precision over recall curve (b) are
shown. Felzenswalb and Veksler have the highest precision performance, followed by Engel,
Achanta, MonoSLIC and Mori. Due to the unconstrained area approach Felzenswalb outper-
forms the other approaches in terms of precision over recall (b). The precision generally de-
creases with increasing recall rates. The low precision rates of all algorithms are due to the
design of over-segmentation methods.

Influence of Noise - In order to test the algorithms for their stability to Gaussian noise the
BSD images were polluted with Gaussian noise with mean 0 and variance 0.05. The results
in Figure 4.12 (a) show that Mori performs best for the noise polluted images with a recall
of 0.74 for 150 pixels per superpixel. Felzenswalb 0.71 has similar performance when the
number of pixels per superpixel is low, but performs poorly when the superpixels are larger.
Engel has an average performance with a recall rate of 0.67 followed by MonoSLIC with 0.65.
Veksler performs better when the superpixels are large, but has the worst results for smaller
superpixels with 0.60. Achanta has a similar recall rate with 0.61, but it was not able to generate
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Figure 4.10: Recall (a) and boundary pixel recall error (b) for the BSD image segmentation
dataset.
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Figure 4.11: Precision and precision over recall curve for the BSD image segmentation dataset.

a segmentation for less than 150 pixels per superpixel. Due to the Gaussian noise, even setting
the number of superpixels to 100 pixels per superpixel returned a segmentation with 150 pixels
per superpixel.

In Figure 4.12 (b) the results of the noise polluted images are compared to the original ones.
The figure shows the decrease in % between the original and the noisy images. MonoSLIC is
least affected by the added noise with a almost no recall rate decrease. The recall rate of Mori,
Veksler and Achanta is at by about 80% for large to 90% for small superpixels. Felzenswalb
is most affected, having only 60% for large superpixels. It is interesting to observe that for
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Figure 4.12: The recall rate with the applied Gaussian noise is shown in (a). In (b) the difference
of the recall on the original and noisy images is visualized.

small superpixels the recall performance of Felzenswalb and Engel is actually higher than on
the original images.

Regularity - The first feature for the regularity comparison is a value that describes how sim-
ilar the average shape of a superpixel is to a circle. The mean regularity is calculated over all
BSD images and represents the average regularity of the algorithm output. The corresponding
standard deviation shows the variety of smoothness of the segmentation output for each algo-
rithm. The results are shown in Figure 4.13, where both grids have the smoothest boundaries
(a) and the smallest variation (b). Achanta, MonoSLIC, Mori and Veksler have the a similar
average regularity, but MonoSLIC is the most and Veksler the least regular one in terms of vari-
ation. Engel and Felzenswalb have a higher irregularity due to their missing constraints on the
superpixel size, with Engel having the highest variation. The results area also visualized using
the Cannon example image from the BSD in Figure 4.14, where each superpixel is labeled with
its corresponding similarity to the circle value. If the shape is similar to a circle it is marked as
blue and red if its very irregular. The images reflect the previous numbers, with the reference
Grids have the most similarity to a circle with no variation and Felzenswalb having the highest
irregularities.

As second regularity feature the variance in area of the superpixels is analyzed. The results in
Figure 4.15 (a) show the actual average pixels per superpixel for each algorithm. In the ideal case
all the values would be on one line. The variance in (b) on the other hand represents the variation
in superpixel size for each algorithm. As expected due to the missing constraints Felzenswalb
shows the highest variation in area, followed by Engel. From the algorithms with regularity
constraints Veksler performs worst. But they also presented a method with more regular super-
pixels as mentioned in Section 2.3.3. The other algorithms, as well as the Grid references, have
a similar low variation in area. The results for the area are visualized with the Cannon image
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Figure 4.13: Mean (a) (higher is better) and standard deviation (b) (lower variation is better) the
superpixel similarity compared to a circle on the BSD dataset.

(a) Felzenswalb (b) Engel (c) Achanta (d) Grid

(e)
(f) Veksler (g) Mori (h) MonoSLIC (i) Hexagon

Figure 4.14: Segmentation for the Cannon image with about 200 pixels per superpixel, where
each superpixel is labeled with its corresponding similarity to circle.

of the BSD in Figure 4.16, where each superpixel is labeled with its corresponding area value.
The maximum area labeled are 400 pixels per superpixel, as a result all superpixels larger than
the maximum value have the same color (red). Achanta, Mori and MonoSLIC have similar low
variation in superpixel size. Veksler shows increased variation and the unconstrained methods
of Felzenswalb and Engel in terms of superpixel size have wide variety of superpixel sizes, from
very large (blue) to very small (red).
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Figure 4.15: Mean (a) and standard deviation (b) of the superpixel area on the BSD dataset.

(a) Felzenswalb (b) Engel (c) Achanta (d) Grid

(e)
(f) Veksler (g) Mori (h) MonoSLIC (i) Hexagon

Figure 4.16: Segmentation for the Cannon image with about 200 pixels per superpixel, where
each superpixel is labeled with its corresponding area value.

Summary - To get a good overview of all the results for the BSD dataset they are summarized
in Table 4.1, where green indicates good performance and desired parameters and red otherwise.
The segmentation performance of a rectangular Grid and a hexagonal Grid are also added for
reference. The columns presented are recall, standard deviation of the superpixel area, mean and
standard deviation for similarity to a circle, the runtime in seconds per MP, if there is a parameter
P to set (0 equals no parameter) and if the number of superpixels SP can directly be specified.
The values are compared for a number of 100 pixels per superpixel. We can see that Achanta [1]
lacks in terms of robustness to noise and also has a parameter that needs to be set. Veksler [48]
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P/SP area (pixel) runtime

100 normal std mean std s/MP P SP 3D

MonoSLIC 0.72 29 5.54 1.83 1.6 0 1 1

Achanta 0.73 26 5.88 1.96 1.6 1 1 1

Veksler 0.71 85 6.77 5.56 38.0 0 1 0

Mori 0.84 25 6.15 2.49 455.4 0 1 0

Engel 0.71 266 5.53 6.97 4.8 1 0 0

Felzenswalb 0.77 234 3.19 3.74 0.9 1 0 0

Hexagon 0.54 8 8.05 0.90 - - - -

Grid 0.50 2 6.31 0.12 - - - -

recall similarity to circle

Table 4.1: Summary of the results on the BSD images for an over-segmentation into 100 pixels
per superpixel (the reference Grid having a recall rate of 0.5), where green indicates desired
results.

also is influenced by noise and creates superpixel that vary in size and regularity. The runtime
discussed in Section 4.6 shows a performance of only 38s/MP . The method of Mori [37] only
lacks in terms of runtime, taking about 455s/MP . Due to its memory use it only works on
images with less than 0.2MP and does not work for volumes. The two in terms of number
of number of superpixels unconstrained approaches of Engel [15] and Felzenswalb [20] create
a segmentation with a high variety in superpixel size. The superpixels are also of irregular
shape and a parameter needs to be set. MonoSLIC does not lack performance in any of the
summarized results, although dropping in recall performance when increasing the number of
pixels per superpixel (e.g. creating larger superpixels).

4.4.2 Annotated Medical Images - 2D VISCERAL

For the medical images, only the recall is presented in more detail. The results in terms of
variation in superpixel size and regularity are presented in the summary.

Recall - The recall result for the 2D VISCERAL dataset in Figure 4.17 shows that Engel and
Mori have the best performance of the methods tested followed by Felzenswalb. MonoSLIC has
similar results as Felzenswalb for a low number of pixels per superpixel while its performance
for a higher number is similar to Achanta and Veksler. In numbers for 120 pixels per superpixel
(where the Hexagon has a recall of about 0.5) Mori achieves a recall rate of 0.84, followed
by Felzenswalb 0.76 and MonoSLIC 0.73. Veksler has a recall rate of 0.67 and Achanta 0.66.
Important to note is that for the method of Engel no calculations could be generated where there
are less than 100 pixels per superpixel, therefore the value was interpolated to a recall of 0.82.
For Mori the calculation of more than 500 pixels per superpixels was skipped due to the high
runtime of the method.

Summary - The values measured are again compared in a summary similar to the BSD bench-
mark and shown in Table 4.2. The largest differences compared to the BSD benchmark are for
the method of Achanta and Engel. While Engel has a very good recall performance 0.82 on the
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Figure 4.17: Recall for the 2D VISCERAL image dataset.

P/SP area (pixel) runtime

120 normal std mean std s/MP P SP 3D

MonoSLIC 0.73 38 4.99 2.34 1.6 0 1 1

Achanta 0.66 19 6.23 2.85 1.6 1 1 1

Veksler 0.67 87 6.19 5.75 38 0 1 0

Mori 0.84 20 4.90 4.15 455.4 0 1 0

Engel* 0.82 470 1.52 5.00 4.8 1 0 0

Felzenswalb 0.76 350 2.96 3.27 0.9 1 0 0

Hexagon 0.51 9 8.51 1.79 - - - -

Grid 0.48 5 6.33 0.23 - - - -

recall similarity to circle

Table 4.2: Summary of the 2D VISCERAL results for an over-segmentation of 120 pixels per
superpixel, where green indicates desired results. For Engel* the values at 120 pixels per super-
pixel were interpolated.

medical images the performance of Achanta drops to 0.66. The regularity in terms of similarity
to circle is biased by the black background caused by air in the medical images, where Achanta
for example has very regular and smooth superpixels when compared to the BSD dataset.
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Figure 4.18: Recall for the 3D Fetal dataset.

4.5 Results on 3D Volumes

In this section the performance results for the 3D annotated medical volumes are presented. The
volumes represent real world recordings and the size of one pixel is known and given in mm3.
As the recordings within each dataset can differ in size the over-segmentations are calculated
based on the size of the supervoxel instead of the supervoxel count. Therefore the results are
presented for volume size and resolution independent supervoxel sizes of 3 × 105mm3 to 7 ×
102mm3. Results are shown for the methods of Achanta [1] and MonoSLIC, as these are the
only ones able to process 3D data. For reference the performance of the hexagonal grid is also
calculated.

4.5.1 3D Fetal

In this section the recall and precision performance of Achanta and MonoSLIC are compared on
the 3D Fetal dataset.

Recall - The results for the specific annotated structures of the 3D Fetal dataset are shown
in Figure 4.18. Comparing the two algorithms in terms of recall, their results correlate similar
to the 2D results presented in Section 4.4, where Achanta performs better when using larger
supervoxels (low number of supervoxels) and MonoSLIC otherwise. For the reference point,
where the Hexagon reaches a recall of 0.5, Achanta reaches a value of 0.79 and MonoSLIC 0.74
(supervoxel size of 4×103mm3. For this dataset the point where MonoSLIC performs better than
the approach of Achanta is shifted to the far right at 2× 103mm3. Due to the volume properties
of relative small image information and annotations compared to the volume size, the recall rate
for MonoSLIC is similar to the Hexagon recall for supervoxels larger than 7× 105mm3. That is
because the monogenic response is dominated by the significant black texture caused by the air
in the volumes.
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Figure 4.19: Recall (a) and recall boundary pixel pixel error (b) for the 3D Aorta dataset.

Precision - The precision rate is in the range of 0.001 − 0.01 which is even lower as for the
2D examples, as the relation of annotated pixels to total number of pixels further decreases.
This also makes the precision over recall curve obsolete and therefore the results containing the
precision rate are omitted for the 3D datasets, as they contain no relevant information.

4.5.2 3D Aorta

In this section the recall rate of Achanta and MonoSLIC are compared on the 3D Aorta dataset.
The precision results are omitted as they contain no meaningfulness information.

Recall - The high resolution volumes of the Aorta dataset allow finer annotation, therefore the
recall rates in Figure 4.19 (a) for this dataset and the chosen supervoxel sizes, are lower when
compared to the other 3D dataset. In numbers for this dataset the recall for 103mm3 supervoxels
is 0.72 for MonoSLIC, while it is close to 1 for the Fetal and 3D VISCERAL datasets. For the
reference recall rate of the Hexagon of 0.5 the method of Achanta has a lower recall rate of 0.68
compared to 0.72 for MonoSLIC. The recall rate for MonoSLIC increases faster than the one
from Achanta and surpasses it at 2 ∗ 103mm3 and a recall rate of about 0.63, showing again the
same properties observed in the previous results. This is also reflected in the the boundary pixel
recall error Figure 4.19 (b).

4.5.3 3D VISCERAL

The last dataset of this thesis is divided into MR and CT and the combination of both. The recall
and the regularity results are presented with a summary concluding this section.

Recall - For the recall the MR results are presented in Figure 4.20 and the CT results in Fig-
ure 4.21. The two show similar recall (a) characteristics, which are also observed in the pre-
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Figure 4.20: Recall (a) and boundary pixel pixel error (b) for the 3D VISCERAL MR dataset.
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Figure 4.21: Recall (a) and boundary pixel pixel error (b) for the 3D VISCERAL CT dataset.

vious results. For MR the recall rate at the reference Hexagon value of 0.5 (supervoxel size
of 2 × 104mm3) is 0.68 for MonoSLIC and 0.62 for Achanta. For CT it is at 3 × 104mm3

supervoxel size with 0.79 for MonoSLIC and 0.72 for Achanta. Due to the wider variety of
annotated structures the point where MonoSLIC outperforms Achanta is now reached earlier, at
a supervoxel size of 105mm3 and a recall rate of 0.55 for the MR and 0.65 for the CT dataset.
The pixel recall error (b) decreases from an average of 3 pixels to less 0.2 pixels and for both
datasets MonoSLIC has a lower error than Achanta.

The MR and CT recall curves are now combined in Figure 4.22. For the reference recall
(a) value of 0.5 for the Hexagon (104mm3 supervoxel size), MonoSLIC has a recall of 0.82 and
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Figure 4.22: Recall rate for the combined CT and MR 3D VISCERAL dataset.

Achanta 0.71. In terms of boundary recall error (b) MonoSLIC performs better than Achanta.

Regularity - For the 3D VISCERAL CT dataset also the average and variation of the super-
voxel area are presented in Figure 4.23. In (a) Achanta has a slightly higher average supervoxel
area for lower number of supervoxels than the Hexagon and MonoSLIC. This is an indicator
that the implementation of Achanta creates slightly less supervoxels than the set parameter. The
standard variation of the area (b) is slightly lower for Achanta than for MonoSLIC, which is the
result of MonoSLIC allowing larger supervoxels and therefore higher variation than Achanta 3.3.

Due to the bias of the black background, causing a regular segmentation of Achanta, which
was shown in Section 4.4, the similarity to a sphere value is omitted.

Summary - The performance of the algorithms is summarized in Table 4.3 similar to the
summary in Section 4.4.1, where again green indicates good performance and desired parameters
and red otherwise. MonoSLIC has a higher recall rate, a lower runtime and does not need
parameter tuning compared than Achanta [1]. Because MonoSLIC allows larger supervoxels the
variation in area is slightly lower for Achanta.
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Figure 4.23: Mean (a) and standard deviation (b) of the size of the superpixel on the 3D VIS-
CERAL CT dataset.

mm³ recall area (pixel) runtime

4*10^3 std s/MP P SP

MonoSLIC 0.82 994.31 0.7 0 1

Achanta 0.71 843.59 2.1 1 1

Hexagon 0.50 442.15 - - -

Table 4.3: Summary of the results for an over-segmentation into 4 ccm sized superpixels, where
green indicates desired results.

4.6 Runtimes

Before comparing the run-times we have to first think of what exactly is compared. The methods
are not implemented in the same programming language and by different people. The method of
Veksler for example is only implemented to show the proof of the method and could benefit from
a more efficient implementation. Therefore the run-times do not directly relate to the complexity
presented in Section 2.6 of each method, but for practical purpose the exact algorithms run-
times of how they can currently be used is important. The results calculated on 12 Core Xeon
with 74 GB RAM. All algorithms are implemented as single core except for parts of the Mori
implementation and the calculation of the Monogenic Signal before clustering on single core
again.

The absolute run-times are shown in Figure 4.24 on logarithmic time scale. They are calcu-
lated for two different image and volume sizes and the volume run-times are only calculated for
algorithms that can process 3D data. The superpixel count for the images was set to 800, for the
small and big volumes 7, 500 and 60, 000 respectively. Felzenswalb has the lowest runtime of
all algorithms for small images, while Mori is the slowest on all images. With the MonoSLIC
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Figure 4.24: Run-times in seconds (logarithmic scale) for all algorithms on 2D images and 3D
volumes.

algorithm it is possible to over-segment a volume of size 5123 in 90 seconds, where Achanta
takes 281 seconds.

Another representation of the same data can be viewed in Figure 4.25 where the normalized
runtime per MP is shown again on logarithmic time scale. For medium sized images and any
volumes MonoSLIC is the fastest algorithm with a calculation time of 0.7s/MP .

4.7 Summary

The methods were compared in terms of recall, precision, influence of noise, regularity and
runtime.

Recall - In Table 4.4 all the recall rate values from the 2D and 3D datasets are combined.
The average overall recall represents the quality of object boundary detection by the algorithms.
With a recall value of 0.83 Mori has the highest recall rate followed by the in terms of superpixel
size unconstrained approaches of Felzenswalb 0.78 and Engel 0.76. The two algorithms that are
available for 3D have an average recall of 0.74 for MonoSLIC and 0.70 for Achanta. With 0.67
Veksler has the lowest recall.

Precision - Due to the design of over-segmentation methods the precision is low when com-
pared to the achieved recall rates. For the examined superpixel sizes of 500 to 100 pixels per
superpixel all methods have a precision value of < 0.18. in terms of precision over recall the un-
constrained approach of Felzenswalb shows the best performance, achieving (precision,recall)
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Figure 4.25: Run-times in seconds (logarithmic scale) normalized by Mega Pixel for all algo-
rithms for 2D images and 3D volumes.

Hexagon recall overall

~0.5 BSD BSD Noise VISCERAL Fetal Aorta  VISCERAL average

MonoSLIC 0.72 0.72 0.73 0.74 0.72 0.82 0.74

Achanta 0.73 0.64 0.66 0.79 0.68 0.71 0.70

Veksler 0.71 0.63 0.67 - - - 0.67

Mori 0.84 0.79 0.84 - - - 0.83

Engel 0.71 0.75 0.82 - - - 0.76

Felzenswalb 0.77 0.80 0.76 - - - 0.78

Hexagon 0.54 0.54 0.51 0.50 0.50 0.50 0.51

Grid 0.50 0.50 0.48 - - - 0.50

recall

2D 3D

Table 4.4: Collection of the recall values from each dataset and the average recall.

pairs from (0.4, 0, 45) to (0.1, 0.77), followed by Veksler, Engel, Achanta, Mori and MonoSLIC.

Influence of Noise - In terms of influence by noise Figure 4.12 (b) shows that the method
of MonoSLIC is least affected by noise, with almost the exact same performance 98% as on
image without added noise. The other methods only perform at about 80− 90% of their original
performance. Felzenswalb drops to 60% for large superpixels but also, together with Engel, has
a recall increase for 100 pixels per superpixel with 105%.

Regularity - The variation in area of the superpixel size indicates how regular the size of
superpixels is for the over-segmentation and is summarized in Table 4.5. The approaches of
Felzenswalb and Engel do not restrict the size of one superpixel, which is also reflected in the
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Hexagon recall 3D

~0.5  BSD VISCERAL VISCERAL

MonoSLIC 29.10 37.91 994.31

Achanta 25.69 19.26 843.59

Veksler 85.38 86.67 -

Mori 25.29 20.37 -

Engel 266.11 469.95 -

Felzenswalb 234.42 350.00 -

Hexagon 7.77 9.34 442.15

Grid 2.26 4.81 -

Regularity - area std

2D

Table 4.5: Variation in area measured by the standard deviation for the BSD and the VISCERAL
datasets.

Hexagon recall

~0.5 2D BSD 2D VISCERAL average 2D BSD 2D VISCERAL average

MonoSLIC 5.54 4.99 5.26 1.83 2.34 2.08

Achanta 5.88 6.23 6.06 1.96 2.85 2.40

Veksler 6.77 6.19 6.48 5.56 5.75 5.66

Mori 6.15 4.90 5.53 2.49 4.15 3.32

Engel 5.53 1.52 3.52 6.97 5.00 5.98

Felzenswalb 3.19 2.96 3.07 3.74 3.27 3.50

Hexagon 8.05 8.51 8 0.90 1.79 1.34

Grid 6.31 6.33 6 0.12 0.23 0.17

mean std

similarity to circle

Regularity

Table 4.6: Collection of the recall values from each dataset and the total average recall.

high variation of area, followed by Veksler. The methods of MonoSLIC, Mori and Achanta have
similar low variation in superpixel area.

Another measurement for regularity is the similarity of the superpixel shape to a circle. This
was measured for the 2D datasets and the results are summarized in Table 4.6. The highest
average similarity to a circle is achieved by Veksler 6.48 closely followed by Achanta, Mori
and MonoSLIC. Again Engel 3.52 and Felzenswalb 3.07 have a lower regularity value. The
standard deviation indicates how diverse the shape of the superpixels are. This time MonoSLIC

has the lowest variation with a standard deviation of 2.08 closely followed by Achanta. Mori
and Felzenswalb have a variation of about 3.40 and Veksler and Engel have the highest with
about 5.8.

Runtimes - For images/volumes with size of at least 0.48MP MonoSLIC has the fastest
runtime as shown in Table 4.4 with 0.7s/MP . For smaller volumes Felzenswalb is fastest
with 0.9s/MP . Achanta is the third fastest method with about 1.7s/MP followed by Engel
5.0s/MP , Veksler 42.0s/MP and Mori 510.1s/MP
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CHAPTER 5
Discussion

In this chapter the results of algorithm performance on the datasets are discussed, as well as the
special properties and limitations of the MonoSLIC approach. The chapter concludes with sug-
gestions for future work including improvements for the MonoSLIC algorithm and the evaluation
measurements.

5.1 Monogenic SLIC Properties

In order to create a method where no parameter tuning is necessary the two parameters of the
monogenic signal have to be fixed. Parameter σ regulates the ratio of the standard deviation of
the Gaussian describing the log Gabor filters transfer function in the frequency domain. The
value is set to the default value of σ = 0.65 suggested by Manohar1 in the Matlab File Ex-
change2. The second, wavelength, defines the scale of the filter. This is linked to the number of
superpixel set by the user. A larger number of superpixel causes a smaller wavelength and there-
fore smaller texture differences are detected. On the other hand a smaller number of superpixel
has an increased filter wavelength of the monogenic signal. An important property of using only
the phase angle is that it detects changes in texture. If a structure is smaller than the wavelength
of the filter, it will be dominated by other structures and will not be detected. A structure itself
will be reflected in the monogenic phase response, but the type of the response depends on the
used filter wavelength. This is simulated by creating random values in the range of 0 − 1 and a
horizontal line with value 1 as shown in Figure 5.1. In the upper row the thickness of the line
increases, from smaller than the wavelength of the filter in (a), to approximately the same size as
the filter in (b), and finally in (c) a line that is thicker than the filter wavelength. The lower row
visualizes the corresponding modified monogenic phase response. In Panel (a) the line is not
directly recognized by the filter. It still is the dominating local structure and is roughly captured

138844-gabor-image-features/content/Gabor_Image_Features/monofilt.m
2http://www.mathworks.com/matlabcentral/fileexchange/
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(a) (b) (c)

Figure 5.1: Original image in the upper row and corresponding monogenic phase response in
the lower row for increasing edge thickness, where (a) edge smaller, (b) edge about equal and
(c) edge thicker than the filter wavelength.

by the larger filter which creates an enveloping boundary that, because it is too large, cannot ad-
here to the edge boundary. In (b) and (c) the filter is able to directly detect the structure and the
segmentation matches the boundaries of the edge. The problem of the wavelength being larger
than the object or structure that should be detected is the cause for the bad boundary recall results
occurring with low number of superpixels as seen in the results. An example for this is shown
on the Cannon image of the BSD dataset in Figure 5.2 for a variation of number of superpixels.
With increasing number of superpixels the filter wavelength decreases and therefore also the size
of detectable objects. Assuming that the structure that should be detected can be captured by at
least one superpixel ensures that the wavelength is small enough and the problem described does
not occur. In Figure 5.2 (a) the general structure of trees, sky, wall and the ground are already
roughly captured, while the Cannon and its wheels are started being segmented in (b). In (c) the
finest structures like the wheels and the rest of the Cannon are detected.

5.2 Monogenic SLIC Performance Scaling

The most time consuming parts of the MonoSLIC algorithm are the calculation of the monogenic
signal, the k-means clustering and the label cleanup post processing. The analysis is split into
2D (0.26 pixels) and 3D (16.78 MP) and for each the runtime values are calculated for 10, 000 to
10 pixels per superpixel. The tests are run on a 4-core Intel Xeon i5 with 8GB of RAM. Because
the monogenic signal calculation is partially multi-threaded its single core time is approximated
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(a) (b) (c)

Figure 5.2: Cannon image and overlaid segmentation of the MonoSLIC algorithm for an average
of (a) 1000, (b) 400 and (c) 175 pixels per superpixels.

sr = 1000 k-means monogenic label cleanup other
2D 24% 59% 3% 14%
3D 43% 43% 5% 9%

Table 5.1: Number of calculation steps needed for each of the k-means algorithms.

by dividing the original monogenic runtime with factor 3, or in other words we assume a speedup
of 0.75× Core.

The monogenic signal performance is similar for 2D and 3D resulting in a combined av-
erage single core runtime of 0.51 s/MP with a standard deviation of 0.03 s/MP. The runtime
per MegaPixel is independent of the size of the image or the wavelength parameter (number of
superpixels).

Performance of the k-means algorithm cannot be similarly generalized. When the number
of superpixels SP is larger than a fraction sr (size reduction) of the number of pixels P

SP >
P

sr
(5.1)

its runtime passes the runtime of the monogenic and the experiments showed this at a value of
sr ≈ 100. In Figure 5.3 (a) for the 2D case in numbers this would be at a value of 0.26×106

100 = 260
pixels per superpixel. More exactly the min-max runtime is 0.10 − 9.54 s/MP for 2D and
0.28− 15.78 s/MP for 3D.

Cleaning up the labels created by the k-means algorithm is the final process in MonoSLIC

algorithm. Its runtime, similar to the monogenic signal, is constant in terms of number of su-
perpixels. The average and standard deviation (std) of the increased runtime from 2D with
0.03+−0.006 s/MP to 0.07+−0.004 s/MP in 3D. Compared to the other parts this still only is
a fraction of the total runtime. In numbers for a dimensional reduction of 1, 000 in 2D it is 3%
and for 3D 5%.

Because the k-means part is the only inconsistent part in terms of scaling it causes a runtime
percentage variation. For an value of sr = 1000 the runtimes are summarized in % in the
Table 5.1
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Figure 5.3: Single core runtime in seconds per MP in logarithmic scale relative to the number of
pixels per superpixel (increasing number of superpixel) for the three most time consuming parts
of the MonoSLIC algorithm. Panel (a) shows the values for a 0.26 MP 2D image and (b) for a
16.78 MP 3D volume.

The performance can be summarized in Figure 5.3 where the single core run-times for each
part are visualized in logarithmic scale in relation to the dimensional reduction applied. Panel
(a) shows the results for the 2D case while (b) for 3D. The increase of the k-means runtime is
unexpected, as its complexity is of O(N) as shown in Section 3.4 would mean that it is constant
in terms of number of pixels and number of cluster centers (equal to number of superpixels. This
is a hint to a bug in the k-means implementation which we could not yet find. For the practical
use this is not a problem because if sr < 100 the recall rate does not change significantly for any
of the datasets presented in this thesis and one could use a regular grid for approximation. When
looking at the highest count of superpixels used, the BSD dataset with an image size of 0.15 MP
and a maximum over-segmentation into 1, 500 SP the corresponding value of sr = 100. For the
3D VISCERALCT dataset a segmentation into 1cm3 is equal to reducing a 43 MP volume to
450, 000 SP, again resulting in about sr = 100. Therefore the expected worst case single core
runtime in 2D is 2.1 s/MP and for 3D 3.5 s/MP.

Using a multi core machine lowers the computation time for the monogenic signal by 75%
per core. The approximated results are shown in Figure 5.4 where the runtime is calculated for
a 12 core machine calculating superpixels on 3D volumes. The total runtime is decreased and
the computation time of the monogenic is similar to the label clean-up method.

5.3 Recall, Noise and Regularity

The performance of MonoSLIC in terms of recall, robustness to noise and the regularity are
discussed in this section.
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Figure 5.4: Multi core runtime in seconds per Mega Pixel in logarithmic scale relative to the
number pixels per superpixel (increasing number of superpixel) for the three most time consum-
ing parts of the monoSLIC algorithm on a volume with 16.78 MP.

Recall An important value for over-segmentation algorithms is the recall performance, be-
cause if a boundary is not captured by the algorithm this information is lost for all following
programs that solely use the superpixel segmentation as input. As discussed in Section 5.1 at
higher wavelengths (larger superpixels) the monogenic phase is not able to capture the local
structures defining objects much smaller than the wavelength. This is the reason for the bad per-
formance for example in Figure 4.10 (a) when the number of superpixels is lower than 150 pixels
per superpixel. But as soon as the wavelength is smaller than the objects that should be detected
the performance is equal or better than the state of the art methods. Because the wavelength
corresponds to the average superpixel size, one can also say that the average superpixel size has
to be smaller than the smallest object that should be detected. Another medical image example
is shown in Figure 5.5, where the forearm is scanned using a high resolution peripheral quanti-
tative computed tomography (HR-pQCT) acquired in [47]. In Panel (a) the general structure of
the bone and forearm is detected, although the segmentation is not precisely at the correspond-
ing boundary. With decreasing wavelength (b) more detail is captured and the small circular
structure in the bottom right is segmented. The precision of the boundary further increases with
smaller superpixel sizes can be seen in Figure 5.5(c).

A visual comparison in terms of recall rate is presented for the CT and MR VISCERAL
dataset in Figures 5.6 and 5.7. The segmentation of the algorithm is shown in red, the annotated
ground truth in green and blue corresponds to a matching segmentation of the algorithm to the
ground truth. Each figure is divided by a white line, where the top shows the results of Achanta
and the bottom of MonoSLIC. In Figure 5.6 the VISCERAL CT example is presented. If the
object boundary is clearly visible (high contrast) it is segmented by Achanta as seen at for the
lung and the silhouette of the body, while the opposite is true in the abdomen region where
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(a) (b) (c)

Figure 5.5: Forearm HR-pQCT (source [47]) example with overlaid segmentation of the
MonoSLIC algorithm for (a) 1850, (b) 700 and (c) 300 pixels per superpixel.

Figure 5.6: Comparison of the Achanta and MonoSLIC over-segmentation on an VISCERAL
CT [27] example with a supervoxel size of 7ccm.

Achanta is not able to capture the structure. MonoSLIC on the other hand reacts to all the
structures, which is the reason for the better recall performance. Looking at the VISCERAL
MR dataset one can see the same effect as shown in Figure 5.7. This is again the reason for the
better recall rate of the MonoSLIC approach, although due to the bad resolution and the resulting
thick annotations the recall rate difference is not as big as the visual difference.

Noise Another important aspect of the monogenic phase is the stability to noise, as shown in
Figure 4.12. The methods of Achanta and MonoSLIC are now compared using different noise
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Figure 5.7: Comparison of the Achanta and MonoSLIC over-segmentation on an VISCERAL
MR [27] example with a supervoxel size of 7ccm.
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Figure 5.8: Recall curve (a) for Achanta and MonoSLIC on the original and noisy BSD images.
In (b) the standard deviation of area is shown for the same image set.

variations (0.01, 0.05 and 0.1) on the images. In Figure 5.8 (a) it can be observed that the red
curves of the monogenic only change when noise is introduced for the first time with a variation
of 0.01, but barely changes for higher variations of 0.05 and 0.1. The recall of Achanta on
the other hand gradually decreases with higher noise, even causing problems to the final post-
processing step resulting in a limited number of superpixels. This is the reason why there is no
data to plot for 100 pixels per superpixel and noise variation of 0.05 and 0.1 for Achanta. The
high recall rate for a variation of 0.1 at 140 pixels per superpixel is an outlier. Only a few images
were segmented with small superpixels and those seem to have a very high recall rate. In (b) the
standard deviation of the superpixel area is shown, signalizing that for Achanta the variation in
superpixel size is also increases with the added noise, while there is no change for MonoSLIC.
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(a) (b)

Figure 5.9: The Cannon image with Gaussian noise variation of 0.1 segmented into about 400
pixels per superpixels using (a) Achanta and (b) MonoSLIC.

Regularity This can also be observed in the Cannon example segmentations for both algo-
rithms in Figure 5.9 on the extreme case of noise variation 0.1 where the segmentation is widened
by 1 pixel for increased visibility. In the center and the bottom left of Achanta (a) large super-
pixel can be observed. Using only pixel wise information it is difficult to segment either trees
or the wheels of the cannon. Furthermore the over-fitting causes less regular superpixels where
the boundaries become rougher and visually less pleasing by breaking the law of continuity
and smoothness mentioned in Section 2.1. Changing the parameter of Achanta would create
smoother boundaries at the cost of segmentation performance. The monogenic on the other
hand, does not require any parameter to be set. It analyses the local neighborhood of the pixel
and therefore is less influenced by noise. The trees, wheels and shadows are again segmented
similar to the results of absent noise.

5.4 Future Work

Future work can include improving the k-means implementation, using a different segmentation
technique or features. There are also other evaluation measurements that can be used.

Improving k-means Addressing the poor scaling of the k-means performance the algorithm
and implementation could be improved, as theoretically the runtime should be independent of
the number of cluster center used. It is also implemented as single core and could be sped up by
redesigning it for using multiple cores.

Different Segmentation Method Investigating the potential of the monogenic phase in terms
of recall a different but simpler segmentation method is used that does not create superpixels
as defined in Section 2.2, but just an edge-detection like segmentation. It creates a boundary
when there is a change of local phase from −0.5 to 0.5. The results on the BSD dataset are
shown in Figure 5.10 where the MonogenicRaw information is added as red dots. This shows
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Figure 5.10: Recall rates on the BSD dataset including the MonogenicRaw information.

the potential of using a different method than k-means for creating the superpixel segmentation.
An idea would be to find the minimum of the sign of the monogenic phase and move regularly
placed seed-points to their location. In a final iteration each pixel is assigned to the nearest seed
point with the same monogenic sign value.

Additional Features The recall rate could also be improved with minimal additional compu-
tational effort using a combination of features of the monogenic phase, the monogenic amplitude
and the original gray-values. One could either change the current k-means input based on any
combination of those features or add them as another dimension to the clustering space. But one
has to keep in mind that adding features that are not brightness/contrast invariant would cause
the loss of an important property of the presented method.

Another option would be to calculate the monogenic for different scales and combine the re-
sults to one final, precise feature. Especially for low number of superpixels (when the superpixel
area starts matching the area of the object or structure) the recall performance has improvement
potential. The downside would be the increased runtime due to calculation of the monogenic
response for multiple scales.

Evaluation Measurement In terms of evaluation Schick et al. 2012 [45] suggest to use a mea-
surement named under-segmentation error which was first presented by Levinshtein et al 2009 [28].
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It describes how much superpixels within a segmented structure violate the annotation boundary,
where less violation (called bleeding out) means more precise segmentation.

5.5 Summary

In this section the properties of the MonoSLIC method was discussed. It detects structures and
edges that have a size that is at least as large as the wavelength of the filter, but performance drops
when it gets smaller than the filter wavelength. This is reflected in the recall rates measured in
the 2D and 3D datasets.

The feature extraction (monogenic), segmentation (k-means) and labeling cleanup imple-
mentations were examined in terms of runtime, showing that for 2D images the feature calcula-
tion takes 59% of the total runtime while taking 43% in 3D. It was also shown that the runtime
of k-means increases when the superpixel size gets smaller, expecting worse case runtimes of
2.1s/MP for 2D and 3.5s/MP for 3D instead of the optimal 0.7s/MP , which might be caused
by a bug in the implementation.

The evaluation measures discussed include recall, noise and regularity. The recall rate is at
least equal to state of the art methods when the average size of a superpixel is at least the size
of the smallest structure that has to be detected. The visual examples for MR and CT volumes
show how well MonoSLIC performs visually when there is low brightness and contrast. The ro-
bustness to noise is also shown, as the recall rate is less affected than any state of the art methods
with reaching 98% of the original performance, independent of the pixels per superpixel. Also
the regularity of MonoSLIC is not affected by the Gaussian noise, keeping a consistent (in terms
of average superpixel size) and regular over-segmentation.

Future work can include the improvement of the k-means algorithm to remove the increase
in runtime at smaller superpixel sizes. Also replacing the k-means segmentation method can
improve the recall performance of the algorithm, as the edge information detected by the mono-
genic phase is not completely captured by it. Another way of improving the segmentation per-
formance could be by using additional features that are extracted by the monogenic signal.

Finally another evaluation measurement is suggested that measures the under-segmentation
error.
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CHAPTER 6
Conclusion

The aim of this thesis is to analyze state of the art over-segmentation methods and create an
efficient, fast and robust method that matches the analyzed methods in terms of performance
and can be used for large 3D medical volumes.

The result from the analysis on the BSD dataset is that the algorithm of Mori extracts the
most information of the image, including texture and gray-values, before running a costly seg-
mentation method. It has the best recall performance with 84% for 100 pixels per superpixels,
but the computation time of 564.8s/MP and the memory cost O(N2) is the highest of the
compared methods. As a result larger images or even volumes would not compute. The fastest
performing method Felzenswalb, with 0.8 s/MP gives no control over the number of desired
superpixels and therefore also has no superpixel size or regularity constraints. It also has a pa-
rameter that needs to be tuned depending on the image type. The approach of Engel has the same
properties as the former, but in the current implementation has a slower runtime of 5.1s/MP .
From Veksler the proposed Constant Intensity version was analyzed. It allows the choice of
number of superpixels and has a mediate recall performance of 71% with a compared high run-
time of 45.4s/MP for the tested implementation. The final tested method of Achanta has the
third best recall rate after Mori and Felzenswalb with 73%. While it is faster than Mori with
the second fastest runtime of 1.6 s/MP when compared to Felzenswalb it also allows control
over the number of superpixels, although still a parameter for superpixel regularity has to be
chosen before segmentation. From the analyzed methods only for Achanta code was available
that could be compiled to perform 3D over-segmentation. The goal now was to create a method
that is at least as fast and accurate as the approach of Achanta, without the necessity of an extra
parameter to be set. In contrast to the pixel intensity based approach of Achanta the new method
should also be resilient to noise as it could occur on OCT recordings and should work for either
MR or CT recordings, meaning contrast and brightness independent.

The presented method MonoSLIC full-fills the previous demands by combining the contrast-
brightness invariant and noise robust monogenic phase with the fast k-means clustering method
for segmentation. The wavelength of the texture based monogenic method is directly linked
to the number of superpixels, with the idea in mind that the smallest texture the algorithm can
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detect should match the average size of the superpixels. Therefore no extra parameter apart of the
number of superpixels has to be set. The result is a fast 0.7s/MP and exact, over-segmentation
method. Its memory consumption is limited to 6 times the number of voxels by the monogenic
phase calculation, which means that a volume of size 260MP would need 12.6GB of RAM to
compute. The current k-means implementation performs best when the number of superpixels
S is less than 1% of the number of pixels P of the volume, otherwise the runtime increases to up
to 12s/MP for S = 10%∗P . Important to note is that if the structure that should be detected is
larger than the wavelength, the algorithm will not detect it. In numbers for the BSD dataset the
segmentation performance drops to 43% for 500 pixels per superpixel compared to an average
of 60% for the other algorithms. Beside these constraints the algorithm is able to over-segment a
260 MP volume into 60, 000 supervoxels within 180 seconds on 12 Core Xeon CPU. The recall
rate for VISCERAL, the largest 3D annotation dataset available, is 82% for supervoxel of size
4cm3 compared to 71% for Achanta and 50% for a reference hexagon grid, with a speed of 0.7
s/MP compared to 2.1 s/MP of Achanta.

Future research can include a review on the monogenic phase as only input for the k-means
algorithm, because combining it with additional information like monogenic amplitude or the
original intensity values could improve the overall recall performance of the algorithm. Another
point for improvement is the increased k-means runtime for a higher number of superpixels.
As the monogenic phase already contains compact information for segmentation a different,
faster method could be used to create the final segmentation and capture the full potential of the
monogenic phase. An interesting evaluation value could be added to the existing ones, called
under-segmentation error that reflects how much superpixel area of superpixels representing an
annotated structure, is outside of the annotated structure, relative to the area of the annotation.
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