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Deutsche Kurzfassung der
Dissertation

Das Hauptaugenmerk dieser Arbeit liegt auf der Analyse der spontanen Brechung
der chiralen Symmetrie der starkenWechselwirkungen unter dem Einfluss eines Mag-
netfeldes. Nach einem kurzen historischen Abriss, welcher der Einführung der Iso-
spin- und axialen Symmetrie in den starken Wechselwirkungen dient, wird die spon-
tane Symmetriebrechung am Beispiel des Nambu--Jona-Lasino (NJL) Modells im De-
tail dargestellt. Nach einem weiteren historischen Überblick der Ereignisse die zur
Formulierung der Quanten Chromodynamik führten, wird der Einfluss von Temper-
atur und chemischen Potential auf die spontane Brechnung der chiralen Symme-
trie anhand des NJL Modells besprochen. Eine weitere Methode, die sich für die
Untersuchung der chiralen Symmetrie anbietet, bedient sich des sogenannten holo-
graphischen Prinzips. Hierbei bildetman eine stark wechselwirkendeQuantenfeldthe-
orie auf eine supersymmetrische Gravitationstheorie ab. In dieser Arbeit wird das
Sakai--SugimotoModell zumZwecke einer holographischenAnalyse der zuvor genan-
nten Mechanismen herangezogen.

Der Hauptteil dieser Dissertationwidmet sich der Untersuchung der chiralen Sym-
metriebrechnung in starkenMagnetfeldern anhand des NJL Modells sowie des Sakai-
-Sugimoto Modells und basiert auf den Veröffentlichungen [145, 146, 147]. Ent-
gegen der Erwartung, dass ein Magnetfeld die Brechung der chiralen Symmetrie
verstärkt -- dieser Effekt wird magnetische Katalyse genannt, zeigt sich, dass bei
endlichem chemischen Potential ein umgekehrter Effekt -- hier als inverse magnetis-
che Katalyse bezeichnet -- auftritt. Beide Modelle zeigen beeindruckende qualitative
Übereinstimmung. Da das Sakai--Sugimoto Modell die Einführung von Baryonen er-
laubt, wird der Einfluss jener auf die inverse magnetische Katalyse ebenfalls studiert.
Es zeigt sich, dass Baryonen inversemagnetische Katalyse verstärken. Um auch diese
Ergebnisse einem Vergleich mit einem feldtheoretischen Zugang zu unterziehen
wird abschließend im Walecka Modell der Phasenübergang zu dichter Kernmaterie
unter dem Einfluss eines Magnetfeldes untersucht. Die fehlende Übereinstimmung
in diesem Fall wird einerseits der fehlenden Einbeziehung der chiralen Symmetrie im
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Walecka Modell und andererseits dem großen Rang der Farb-Symmetriegruppe im
Sakai--Sugimoto Modell zugeschrieben.



Abstract

This thesis aims at discussing the spontaneous breaking of a chiral symmetry of
strong interactions in a background magnetic field. After brief historical introduc-
tion to isospin and axial symmetry we turn to a more detailed analysis of the sponta-
neous breaking of chiral symmetry utilizing the Nambu--Jona-Lasino (NJL) model. In
another historical outline the events that led to the formulation of quantum chromo
dynamics are presented, followed by studying the influence of finite temperature
and chemical potential on chiral symmetry breaking in the NJL model. Another ap-
proach to the analysis of chiral symmetry breaking utilizes the so-called holographic
principle, which allows for encoding a quantum field theory in a higher dimensional
gravitational theory. Here we will employ the Sakai--Sugimoto model.

The discussion of chiral symmetry breaking in a strongmagnetic field and compar-
ing the results obtained in the NJL model and the Sakai-Sugimoto model comprises
the main part of this thesis and is based on the publications [145, 146, 147]. In con-
trast to the expectation that a magnetic field enhances chiral symmetry breaking,
which is known as magnetic catalysis, we will observe the opposite effect at finite
chemical potential, which we will call inverse magnetic catalysis. Since the Sakai--
Sugimoto model allows for incorporating baryons, we will also study their influence
on the phase diagram for chiral symmetry breaking. It turns out that with baryons
inverse magnetic catalysis is even more pronounced. In order to compare these re-
sults also with a field theoretical approach, we discuss the influence of a magnetic
field on the transition to nuclear matter in the Walecka model. The disagreement
between the results in this case is attributed on the one hand to the insufficient in-
corporation of chiral symmetry breaking in theWalecka model and on the other hand
to the necessarily large number of colors in the Sakai--Sugimoto model.
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CHAPTER ..0
Overview

Considering only quarks with masses small compared to the characteristic scale of
Quantum Chromodynamics (QCD), ΛQCD ≈ 200 MeV, the QCD Lagrangian exhibits
an approximate chiral symmetry. Exploiting the mechanism of spontaneous symme-
try breaking has led to important progress in understanding QCD, in particular in
the low energy regime. For instance, the pions can be identified with the (pseudo-)
Goldstone bosons of QCD with two flavors - one for each broken generator of the
axial transformations. This thesis will focus on the spontaneous breaking of chiral
symmetry under the influence of strong magnetic fields.

Strong magnetic fields relevant for QCD are realized in two important instances:
non-central relativistic heavy ion collisions performed at the Relativistic Heavy Ion
Colloider (RHIC) in Brookhaven as well as at the Large Hardron Collider (LHC) near
Geneva, and magnetars, a special type of compact astrophysical objects. In the for-
mer the magnetic field in the interaction region produced by the two colliding nuclei
reaches up to 1018 G [164]. In the reaction region the temperature is expected to be
above the deconfinement temperature while the chemical potential is small, hence a
so-called quark gluon plasma (QGP) is formed. Compact stars probe another region
of the QCD phase diagram in the in the plane of chemical potential and tempera-
ture, namely that of small temperatures and (quark) chemical potentials of the order
of the QCD scale. From observations of gamma ray bursts coming from magnetars
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2 Chapter 0 --- Overview

combined with the measured spin down of magnetars the value of the magnetic
field on the surface of the star is estimated to be about 1015 G [57]. Using the virial
theorem one can infer that the field in the core may reach up to 1018 −1019 G [118].

After converting Gaußian units to natural Heaviside--Lorentz units one finds that
1018 G ∼ (140 MeV)2, i.e. the strength of the afore mentioned magnetic fields is
comparable to the QCD scale and might therefore have observable consequences
in the physics of the experiments at heavy ion colliders and on the observations of
magnetars. For example an observed charge separation in the quark gluon plasma
formed in non-central relativistic heavy ion collisions might be due to the so-called
chiral magnetic effect [112, 73, 113]. In the case of compact stars the internal struc-
ture is under much debate in particular the question whether quark matter is present
in the core of these stars or entire quark stars might exist. Furthermore we ask if that
matter is chirally symmetric or possibly in a superfluid state.

From a theoretical perspective a description of both of these QCD "laboratories"
is very challenging. Since QCD is an asymptotically free theory, the coupling only be-
comes small at asymptotically high temperature or chemical potential, hence the ap-
plication of perturbativemethods for the description of heavy ion collisions andmag-
netars is rather limited. However perturbative methods serve as starting points for
extrapolations to the relevant intermediate energy regimes. For example, at asymp-
totically high temperatures it is well known that QCD is in the quark gluon plasma
phase. The quark gluon plasma produced in heavy ion collider experiments turned
out to be rather strongly coupled (sQGP) and may be described by hydrodynamics.
The ratio of viscosity over entropy density extracted from the measurements of the
elliptical flow in peripheral collisions is lower than that of any other known substance.
So far only the application of holographic methods succeeded in predicting such a
small value [143]. Note that theN = 4 super Yang--Mills theory translated via the so-
called AdS/CFT correspondence to a super gravity theory is even infinitely strongly
coupled [123]. The only first principle calculations available at the moment are of-
fered by lattice QCD. However, calculating transport properties is extremely difficult
in lattice QCD. Furthermore the applicability of lattice QCD (lQCD) is limited to the
region µ/T ≪ 1 in the QCD phase diagram due to the so-called sign problem.

At asymptotically large chemical potentials and small temperatures, where pertur-
bative QCD (pQCD) is applicable, 3-flavor QCD matter is in the so-called color-flavor-
locked (CFL) phase [5, 6]. A diquark condensate breaks the local color symmetry
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as well as the global chiral symmetry down to the diagonal subgroup SU(3)c+L+R.
Also the transition temperature to quark matter (QM) at asymptotic chemical poten-
tial can be computed from first principles [38, 39, 160] and turns out to be second
order. Taking corrections due to gluons at finite but still very large chemical potential
into account the transition becomes first order [83, 124].

If upon increasing the chemical potential the hadronic phase is superseded by
normal quark matter, by CFL or some other color superconducting phase is a matter
of debate. For the time being the description of this part of the QCD phase diagram
where all compact stars reside has to rely on model calculations.

At low energies an effective theory called chiral perturbation (χPT) theory is avail-
able [176]. It is found by formulating the most general Lagrangian that shares the
same symmetries with QCD and obeys other quantum field theory principles such
as unitarity. Its fundamental excitations describe the Nambu--Goldstone bosons of
chiral symmetry.

The various energy regimes discussed above and the tools that are used to de-
scribe the physics there are summarized in the QCD phase diagram in the T−µ-plane
Fig. 0.1.

The study of the spontaneous breaking of chiral symmetry in the parameter space
of temperature, chemical potential and magnetic field in two very prominent mod-
els will constitute the core of this thesis. The first - somehow more conservative ap-
proach - will utilize the Nambu--Jona-Lasino (NJL) model [131, 132, 174, 102], which
is a field theoretical model sharing the same symmetries with QCD. However, since
the interaction of quarks via gluon exchange is replaced by a four fermion interac-
tion, the model can only be expected to share qualitative features with QCD. Most
notably, the quarks are not confined. Moreover, the model is nonrenormalizable.
Therefore quantitative results will depend on the regularization scheme and the
value of the cutoff parameter. The second is the Sakai--Sugimoto model [156, 157],
which employs a non-supersymmetric, non-conformal version of the gauge--gravity
duality, which exhibits a confinement deconfinement transition. In a certain limit
of the model parameters the Sakai--Sugimoto model is conjectured to be dual to a
nonlocal NJL model [11]. This thesis aims at calculating the critical surface for chiral
symmetry breaking in the parameter space of temperature, chemical potential and
magnetic field in both models and compare the respective phase diagrams. The
main idea is to gain insight and reliability by extracting common properties and dif-
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Figure 0.1: The QCD phase diagram. The solid line starting at T = 0, µq = 307.6 MeV
shows the well-studied first order liquid-gas transition to nuclear matter. The short solid line
in the lower right corner denotes the first order transition temperature to the QM phase.
The question mark subsumes all the open issues regarding the QCD phase diagram. Some
of these are given in the following list: Is the deconfinement crossover known from lQCD
and denoted by the dashed line turning into a first order transition at finite µ? Does chiral
symmetry restore for some µ at T = 0? What is a compact star made of/which phases are
found between the well-known CFL phase and the nuclear matter phase?

ferences of the results of both approaches.

Chapter 1 serves as an historical introduction to chiral symmetry in the pre-QCD
era. We will proceed with discussing the spontaneous breaking of chiral symmetry in
chapter 2 utilizing the NJL model of nucleons as an example. We will basically follow
the original work by Nambu and Jona-Lasino but utilizing the 1PI effective action.
This has the advantage that on the one hand everything is derived from one single
generating functional and on the other hand renders the transition to finite temper-
ature and density, which will be needed later on, smooth. After a brief overview
over the developments of the 60's and 70's of the last century that led to the for-
mulation QCD we analyse the thermodynamics of the NJL model, which we then
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reinterpret as a model of quarks in chapter 3. In chapter 4 we introduce a geomet-
ric, i.e. holographic realization of chiral symmetry breaking -- the Sakai--Sugimoto
model. Chapters 5 and 6 constitute the core of this thesis and are based on the pub-
lications [145, 146, 147] by the author together with his supervisors Anton Rebhan
and Andreas Schmitt. By solving the Dirac equation in a background magnetic field
the Landau level quantization is demonstrated and immediate consequences of it are
discussed. First wewill analyse the phase diagram for chiral symmetry breaking in the
NJL model and then compare this to the corresponding one in the Sakai--Sugimoto
model. Wewill show that bothmodels exhibit the so-calledmagnetic catalysis at van-
ishing chemical potential and finite temperature: the magnetic field enhances chiral
symmetry breaking. Surprisingly at finite chemical potential and relatively small tem-
peratures an external magnetic field has exactly the opposite effect: It can restore
chiral symmetry in the system. In [145] this behavior was termed inverse magnetic
catalysis. We will thoroughly discuss the physics behind inverse magnetic catalysis.
Furthermore, since the Sakai--Sugimoto model allows for incorporating baryons, we
will investigate how baryons affect the chiral phase transition at finite magnetic field
and chemical potential but zero temperature. In order to compare our results with
a field theoretical model describing baryons we will employ the Walecka model at
finite magnetic field, see chapter 7, before we close with a concluding discussion
and final remarks in chapter 8.





CHAPTER ..1
A hidden symmetry

Symmetry has been one of the most important guiding principles for studying el-
ementary particle physics. In particular the development of the theory of strong
interaction called Quantum Chromodynamics (QCD), which together with the theory
of electro-weak interactions constitutes the standard model of elementary particle
physics, benefited tremendously from exploiting global as well as local (gauge) sym-
metries.

Shortly after the discovery of the neutronWerner Heisenberg introduced the con-
cept of isospin1 in 1932 [103]. The neutron and proton are nearly degenerate with
respect to their masses

mN ≈ 939 MeV/c2 , mP ≈ 938 MeV/c2 . (1.1)

Neglecting electromagnetic andweak interactions one could regard proton and neu-
tron as states of a single entity -- the nucleon (a two component wavefunction). The
simplest and nontrivial guess suggests that the nucleon is a doublet in the funda-

1The term isospin was coined by Eugene Wigner in his 1937 paper [178].

7



8 Chapter 1 --- A hidden symmetry

mental representation of SU(2):

ψN =

(

ψp

ψn

)

, ψN =

(

−ψn

ψp

)

, (1.2)

I =
1
2
, Ii =

1
2
σi , (1.3)

Q = I3 +
1
2

B , (1.4)

where the wave function of the nucleon ψN is written as doublet in isospin space, the
wave functions of the proton ψp and of the neutron ψn are Dirac spinors, and a bar
denotes the respective anti-particle. I denotes the total isospin and Ii the generators
of SU(2) represented by the Pauli matrices σi with i = 1,2,3. In the last line we relate
the charge with the third component of the isospin and baryon number B, which is
a conserved quantity. Note that the factor 1/2 is needed in order to yield the center
of charge of the nucleon doublet.

In Heisenberg's treatment of the nuclear interactions the isospin formulation has
merely the purpose of bringing formulae into concise form. No physical implica-
tions were drawn from it, in particular the interactions are not isospin symmetric.
However, Heisenberg was thinking of a spinless electron obeying Bose statistics that
exchanges charge between the proton and the neutron. After Fermi explained β-
decay by emission of an electron and an anti-neutrino from the neutron [64], Tamm
and Iwanenko independently explained the interactions of neutrons and protons via
simultaneous emission and absorption of an electron and an anti-neutrino in 1934
[169, 107]. These pictures did not succeed in explaining experimental data, in partic-
ular the range and magnitude of the interaction. In the same year Yukawa remedied
these deficiencies by introducing massive charged field quanta that are exchanged
between proton and neutron[187] - meson exchange theory was born. Yukawa pre-
dicted the existence of a particle with one unit of elementary charge and a mass 200
times that of an electron and its anti-particle, which were later called the charged
pions π±. Originally the pion was thought of as the scalar potential component of a
four vector potential in analogy with electrodynamics. However, after their discovery
experiments revealed the pseudoscalar nature of the pions. In isospin formulation,
which Yukawa also adopted, the pions act as ladder operators on the nucleon wave
function increasing or decreasing the third component of isospin by one unit and
thereby increasing or decreasing the charge.
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In the following year proton--proton scattering experiments [172] and their analy-
sis [35] revealed that nucleon--nucleon interactions are charge independent. In [35]
it was shown that after correcting the data of [172] on proton--proton scattering for
Coulomb repulsion, the parameters were the same as for the comparable proton--
neutron scattering in the 1S channel. Assuming that the same is true for neutron--
neutron scattering one concludes that the theory describing the interaction of these
particles must be symmetric under the action of SU(2) that continuously turns pro-
tons into neutrons and vice versa. A first attempt towards such a theory of nuclear
structure was published in the same volume of Physical Review [46].

The discovery of the muon [133] with a mass 207 times that of the electron in
1937 immediately drew attention to Yukawa's meson exchange theory. However, it
turned out that the muon does not interact strongly with the nucleons -- the charged
pions were discovered several years later in 1947 [137, 119]. Nevertheless, the mis-
interpretation of the muon's nature gave an important impetus to the theoretical
development of the theory of strong interactions. Kemmer combined the meson ex-
change theory with isospin symmetry [111] -- at that time known as charge indepen-
dence hypothesis -- and showed that in order to satisfy isospin symmetry a neutral
meson -- the neutral pion π0 -- has to exist. The neutral pion predicted by Kemmer
was after the proton the second particle to be decisively discovered in an accelera-
tor experiment in 1949 [30] (only preliminary evidence for its existence was found in
cosmic ray observations). Note, that the masses of the pions are mπ± ≈ 140 MeV/c2

and mπ0 ≈ 135 MeV/c2, hence they are light compared to the masses of the nu-
cleon states. This is the first historical instance that proved the predictive power of
the concept of isospin symmetry.

In 1954 by Chinowsky and Steinberger [49] demonstrated that pions are pseu-
doscalar particles. Therefore, the Lagrangian describing the interaction of nucleons
with pions can be written as as

Lint = igπNNπiψNγ5σ
iψN , (1.5)

π± =
1√
2

(

π1 ∓ iπ2
)

, π0 = π3 , (1.6)

with g2
πNN/4π = 15 as a commonly accepted value [155].

In the same year as the charged pions also other particles, later called kaons and
hyperons, were discovered, which behaved somewhat strangely [153]: they were
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frequently produced nucleon scattering events but had a rather long life time. In [75]
Gell-Mann and independently Nishijima in [128] explained this behavior. One of the
most important corner stones of his work was to retain isospin conservation in strong
interactions. Gell-Mann supposed that the strange fermions have integral isospin,
while strange bosons have half-integral isospin. This concept is called "displaced
isospin multiplets". For example the K+ and the K0 constitute a isospin doublet.
In order to complete the picture Gell-Mann postulated the existence of K− and K0
2. The Λ0 is an isospin singlet, while the two hyperons Σ+ and Σ− are part of an
isospin triplet, hence Gell-Mann and Pais postulated a Σ0 particle [82]. Furthermore
Ξ− should be part of a isospin doublet, hence a Ξ0 should exist. All these particles
were indeed found later on, proving again the power of isospin symmetry.

A further important hypothesis is "associated production", i.e. the strange parti-
cles are always produced in even numbers if the primary particles are non-strange.
After the collision the strange particles are moving away from each other, rendering
the inverse reaction impossible. Provided that the coupling is minimal, electromag-
netism cannot change isospin. The last resort for the decay of strange particles are
thus some hypothetical weak interactions ("possibly similar in nature to beta-decay"),
explaining the long lifetime of strange particles. Furthermore, Gell-Mann postulated
that |ΔI3| = 1/2 in weak decays in order to explain certain decay processes. Each
particle is labeled by three quantum numbers, each of which is conserved in strong
interactions, I, I3 and Q, in contrast to the previous picture of charge independence,
where Q and I3 were not independent, see equation (1.4). In [76] this is summarized
in a new formula for the charge of hadrons

Q = I3 +
1
2
(B + S) , (1.7)

called Gell-Mann--Nishijima formula3 where 1/2(B + S) now accounts for the center
of charge of the displaced isospin multiplets and S quantifies the displacement of
the multiplets. Consequently strangeness S must necessarily be conserved in strong

2In the original papers there are two groups of four strangemesons degenerate inmass but distinct
in parity, which accounts for the experimental fact that the K+ decays into three as well as two pions.
This is due to the by then unresolved θ-τ puzzle.

3Actually [135] is the reference where formula (1.7) was published first. Strangeness is called V-
charge there, since strange particles were usually called V-particles at that time. Nishijima's findings
were very nicely summarized in [136].
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interactions and the |ΔI3| = 1/2 rule in weak decay translates to |ΔS| = 1. The sum
B + S is called hypercharge Y.

After the conjecture by Lee and Yang [120] that parity might be violated in weak
interactions, had been confirmed by the experiments performed by Wu [186], the-
orists were prompted to assume that anti-neutrinos participating in nuclear β decay
are right handed only. Starting with an current--current interaction describing the
beta decay of the neutron, one is led to the consequence that the emitted electrons
are left handed and that they are fully left polarized as their velocity approaches the
speed of light in full accordance with Wu's experiments. Equivalently one might re-
place the electron ψe in the interaction Lagrangian by PLψe, where PL/R denotes the
projection operator to left- and right-handed particles respectively

PL/R =
1
2
(1∓ γ5) . (1.8)

Feynman andGell-Mann [66] went further by proposing that all fermions appearing in
the interaction Lagrangian are restricted by PL. Hence, β-decay would be described
by

∑

i

Ci
(
PLψnOiPLψp

) (
PLψνOiPLψe

)
, (1.9)

where Ci are coupling constants and Oi denote all possible elements of the Dirac
algebra. However, as a direct consequence of this assumption only vector and axial-
vector couplings remain after applying Dirac algebra rules, leading to a single cou-
pling constant G

1√
2

G
(
ψnγ

ρPLψp
) (
ψνγρPLψe

)
. (1.10)

Furthermore a universal coupling for all weak interactions was proposed, for example
also the interaction Lagrangian for muon decay reads

1√
2

G
(
ψµγ

ρPLψν′
) (
ψνγρPLψe

)
. (1.11)

Of course the effective coupling constants measured in experiments might differ
due to renormalization effects, for example due to the strong interactions involved.
One can fix G by requiring that it equals the measured coupling constant of the vec-
tor part of nuclear β-decay, the Fermi coupling constant GF, which can be obtained
from 14O decay. From the lifetime of the muon one can also extract the effective
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coupling Gµ and it turns out that its value is remarkably close to the value of GF.
In pure leptonic decays there are no large terms known that are capable of renor-
malizing the coupling. However, in the case where nucleons are involved one ex-
pects renormalization due to virtual pions that nucleons can emit but obviously this
is not the case. There exists an analogous situation in electromagnetic interaction
of protons: the cloud of virtual pions does not disturb the coupling e of photons
to protons. Of course the charge distribution measured by electron scattering is
changed as the electron's energy increases but the total charge measured at low
energies is not. More precisely, the Ward--Takahashi identity guarantees that the
field strength renormalization and the vertex renormalization cancel and hence the
electromagnetic form factor is not renormalized. This is related to gauge invariance
which guarantees the conservation of the electric current to which all charged parti-

cles contribute. More formally, while the second term and thus the whole expression
of

Jelµ = ψNγµ

(
1
2
+ I3

)

ψN (1.12)

is not conserved, the expression

Jelµ = ψNγµ
1
2
ψN + ψNγµI3ψN + i

[

π†I(adj)3 ∇µπ − (∇µπ)
† I(adj)3 π

]

(1.13)

is. Likewise, in order to explain the agreement ofGF andGµ, Feynman and Gell-Mann
proposed that the nuclear part of the isospin changing vector current, assumes the
form

JV,±µ = ψNγµI±ψN + i
[

π†I(adj)± ∇µπ − (∇µπ)
† I(adj)± π

]

, (1.14)

is conserved and replaces the corresponding term in (1.10). In absence of electro-
magnetic interactions this simply reflects the invariance under global U(1) × SU(2)
transformation of strong interactions, i.e. baryon number conservation and isospin
symmetry. The conserved currents corresponding to these symmetries are on the
one hand the isospin singlet term in (1.13) and on the other hand the isotriplet
formed by the second and third term in (1.13) together with (1.14). The addition
of the pion terms immediatley yields further possible reactions, e.g. the pion β-
decay π± → π0 + e± + νe with a predicted branching ratio of about 10−8, which
was observed 1962 at CERN [54]. Note, this again was a consequence of imposing
isospin symmetry.
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One now might wonder whether the vector current conservation hypothesis can
also be extended to the axial current. Experiments indicated a ratio of the Fermi
and the Gamow-Teller constant squared of about 1.3. However, due to experimen-
tal uncertainties G2

F/G
2
A = 1 was not excluded, in which case also the axial current

would be conserved by the same arguments as before. If this turns out not to be the
case, the deviation from unity is probably due to renormalization effects, neverthe-
less the smallness of these effects calls for an explanation. Feynman and Gell-Mann
suggested to investigate the possibility of a conserved axial current and the involved
symmetry groups further.

The possibility of a divergenceless axial current was immediately ruled out in
[170, 84]: The V − A theory also predicts the pure leptonic decay π± → µ± + νµ as
well as π± → e±+νe with a branching ratio 1.233×10−4, which can be understood as
resulting from the virtual process in which the pion dissociates into a nucleon loop,
which then decays into muon and anti-neutrino. In [170] Taylor demonstrated, that
neither process can take place in case of ∂µJ

µ
A = 0. Since the pions form an iso-

triplett pseudoscalar, they can be created by an axial isospin current. This matrix
element can be parametrized by

⟨0|JA,iµ (x)|πj(p)⟩ = −ipµfπ(p2)δije−ip·x , (1.15)

where fπ(p2 ≡ m2
π) = 93 MeV denotes the pion decay constant. Taylor argued that

in the current--current interaction describing leptonic decay the term in Eq. (1.15)
is contracted with the lepton current, thus only the component parallel to pµ can
contribute. But because of ∂ · JA,i = 0 this amplitude must vanish. Put in simpler
terms, taking the divergence on both sides of (1.15), we observe that the ∂ · JA,i can
only vanish in the limit of massless pions.

The absence of an electronic decay mode was regarded as a feature of the con-
served axial vector proposal, since at that time it appeared to be ruled out experi-
mentally, however the absence of the most probable decay mode into muons would
be disastrous for theV−A theory. The conserved vector current hypothesis responsi-
ble for explaining both decay modes would have to be dropped after all, leaving the
equality of Gµ and GF as an unresolved mystery. Fortunately experiments performed
at CERN in the end of the same year in which Feynman's and Gell-Mann's paper was
published showed a clear signal of the electronic decay events with a branching ratio
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close to the theoretical value. This first stringent test of the V − A theory marks also
the first major physical discovery at CERN [63].

Goldberger and Treiman in [84] also objected to the conserved axial current hy-
pothesis. The matrix element for the axial part of nuclear beta decay reads

MA = ψeγ
µPLψν ⟨N|JA,+µ |N⟩ . (1.16)

The nucleon part demanding Lorentz invariance can be parametrized in terms of
form factors by

⟨N|JA,+µ (q)|N⟩ = ψp(p)
[

γµγ
5F51(q

2) +
iσµνqν

2mN
γ5F52(q

2) + qµγ5F53(q
2)

]

ψn(n) , (1.17)

where q = p−n is the momentum transfer and GA = F51(q
2 = 0) is the Gamov--Teller

coupling constant. The induced tensor term is irrelevant for the following discussion
and is excluded experimentally. Imposing the conservation hypothesis and using the
Dirac equation γ · kNψN = mNψN we find

0 = ψp(p)
[

2mNF51(q
2) + q2F53(q

2)
]

γ5ψn(n) ⇒ F53(q
2) = −2mNF51(q

2)

q2 (1.18)

The computation of the matrix element for the discussed process yields a ratio of
the induced pseudoscalar coupling and the effective axial vector coupling, which is
excluded experimentally and would be far too large in particular at very small mo-
mentum transfer.

Nevertheless, one can draw valuable conclusions from this calculation. Let us
rewrite the axial vector current inserting the result (1.18)

⟨N|JA,+µ (q)|N⟩ = ψp(p)
[

γµγ
5F51(q

2)− 2mNqµ
q2 γ5F51(q

2)

]

ψn(n) . (1.19)

The last term in brackets attracted Yoichiro Nambu's curiosity [129], because if it
existed, it would indicate an intermediate massless charged pseudoscalar particle.
No such particle had been found, but there exists the relatively light pion, which
possesses exactly these quantum numbers. If we, despite of Taylor's arguments,
equate this term with a process that describes the coupling of pions to nucleons as
in (1.5) and the subsequent decay described by (1.15) we find

−ψp(p)
2mNqµ

q2 γ5F51(q
2)ψn(n) =

√
2gπNNψp(p)γ5ψn(n)

i
q2 i

√
2qµfπ

⇒ mNGA = gπNNfπ , (1.20)

gπNNfπ = 1276.83 .
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The identity (1.20) is the Goldberger--Treiman relation, which was obtained in [85,
86] using a completely different method, namely dispersion relations, in order to
compute the pion decay. The Goldberger--Treiman relation is in rather good agree-
ment with experiment. Using the currently accepted value GA = 1.27 and an aver-
aged nucleon mass mN = 938.92 [24], the left hand side yields mNGA = 1192.42.
The original approach as well as the calculation presented here rest on very crude
and partially contradicting assumptions. For example, for an exactly conserved ax-
ial current GA = 1 and the agreement with experiment would get worse. Nambu
proposed instead of using the exactly conserved axial current a partially conserved
axial current in order to accommodate his derivation of the Goldberger--Treiman rela-
tion and the objections of Taylor, Goldberger and Treiman against a conserved axial
current. Instead of (1.19) the form

⟨N|JA,+µ (q)|N⟩ = ψp(p)
[

γµγ
5F51(q

2) +
2mNqµ
q2 − m2

π
γ5F̃53(q

2)

]

ψn(n) , (1.21)

for the axial current together with the conditions

F51(0) = GA ≈ F̃53(0) , (1.22)

F51(q
2) ∼ F̃53(q

2) for q2 ≪ m2
π , (1.23)

should be used.
Gell-Mann and coworkers [80, 26, 25] arrived at similar conclusions fromanalysing

the so-called σ-model. However, Nambu's conclusions drawn from these observa-
tion were more far reaching. The most important insight was uncovering the role
the pions played in the partially conserved axial current (PCAC) hypothesis, which
was mainly guided by the experience gained while working in the field of supercon-
ductivity and BCS--Bogoliubov theory. We will follow Nambu's reasoning in the next
chapter.





CHAPTER ..2
Chiral symmetry breaking

Let us first discuss the heuristic picture of superconductivity or superfluidity. Given
the thermodynamic potential of a fermionic many body system at T = 0

Ω = E − µN ,

one observes that there exists an instability of the Fermi surface. Assuming for the
moment that the particles are free, one can place two fermions above the Fermi
surface without any energy penalty: while E is raised by 2µ, the second term com-
pensates this increase because N → N + 2. Provided that there exists a net attrac-
tive interaction between the fermions, one could lower Ω via the binding energy
of these so-called Cooper pairs [52]. The Cooper pairs, having bosonic quantum
numbers, can form a Bose-Einstein condensate and are responsible for the emer-
gence of an energy gap of the quasi-particles (the "dressed" fermions) [16], see also
Eqs. (2.1) -- (2.3). These quasi-particles are a coherent mixture of particles and holes
described by a so-called Bogoliubov transformation, which was introduced in [31]
in order to diagonalize the Hamiltonian of the problem. Here lies the crux of the
BCS--Bogoliubov theory: The quasiparticles are not eigenstates of charge in case
of a superconductor or fermion number in the case of a superfluid, although one
started from a symmetric Hamiltonian. For example, upon accelerating a quasipar-
ticle it becomes increasingly electron like. It can deposit or pick up charge in the

17
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particle bath constituted by the Cooper pairs, which are themselves charged under
the respective local or global symmetry group. In consequence the expression of
the energy gap is gauge dependent and so is the derivation of the Meissner effect,
which in turn is often viewed as defining a superconductor as a perfect diamagnet.
This led several theorists to doubt the correctness of the BCS--Bogoliubov theory.
In the early attempts to circumvent this obstacle, e.g. [9, 8], it was soon realized
that when treating the Meissner effect in a gauge invariant fashion one encoun-
ters collective excitations of bound quasi-particle pairs that behave phonon like, i.e.
gapless bosonic modes. However, in the case of a superconductor, after taking the
Coulomb interaction of electrons into account, these gapless modes are absorbed
in the usual plasma mode1. In a superfluid with no long range forces this does not
happen. Nambu refined the gauge invariant discussion of the Meissner effect [130]
by introducing techniques from elementary particle physics, i.e. a Dyson--Schwinger
formulation of the problem and discussing Ward--Takahashi identities. The follow-
ing conclusions are of relevance for our discussion here: due to the condensation
of Cooper pairs, regarding the states of the system the symmetry of the underlying
theory is spontaneously broken. Also there is no manifestly conserved charge. This
can be seen from the equations of motion of the quasi-particles

EΨ = ϵpσ
3Ψ+ ϕσ1Ψ , (2.1)

Ψ =

(

ψp,↑

ψ∗
−p,↓

)

, (2.2)

⇒ Ep = ±
√

ϵ2p + ϕ2 (2.3)

where ϵp is the kinetic energy measured from the Fermi surface and ϕ is the energy
gap. The first component ψp,↑ of the spinor Ψ correspond to a quasi-electron with
momentum p and spin up while ψ∗

−p,↓ corresponds to a quasi-electron hole with mo-
mentum p and spin up. The two component spinor Ψ is an element of the so-called
Nambu--Gorkov space, a notation which is particularly convenient when treating su-

1This ensures that the full particle spectrum in a superconductor is indeed gapped. Note that this
is also the first historical instance where the Anderson--Kibble--Higgs mechanism was described. The
plasma frequency can be read as a photon mass. Furthermore, there are also static screening masses.
The longitudinally polarized photons aquire the so-called Debye mass. The Meissner effect can also
be understood by giving the photon an effective (Meissner) mass. In a pioneering work by Anderson
[10] these ideas where transferred to elementary particle physics in order to reconcile gauge symmetry
with a massive Yang--Mills field.
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perconductivity in a gauge invariant manner. Observe that the off-diagonal energy
gap term couples quasi-particle with quasi--particle holes. Moreover, it takes an en-
ergy E ≥ 2ϕ to excite a quasi-particle leaving a quasi--particle hole with opposite
momentum charge and spin.

The gapless modes mentioned above necessarily emerge, in order to restore
the symmetry in the sense that they ensure the conservation of the Noether current
corresponding to the symmetry of the Lagrangian. ''In general, they are excited
when a quasi-particle is accelerated in the medium, and play the role of a back-
flow around the particle, compensating the change of charge localized on the quasi-
particle wave packet" [131].

Let us now make a connection to the case discussed at the end of the preceding
section. The conservation of an axial current triplet should be related to a symmetry
of a fundamental strong interaction Lagrangian, i.e. invariance with respect to axial
transformations given by

ψN → exp(iαiIiγ5)ψN .

Together with the well known isospin symmetry SU(2)V, this is equivalent to saying
that left- and right-handed components of the nucleon transform independently un-
der SU(2). Therefore it is called the chiral symmetry group SU(2)L×SU(2)R. However,
even in a free theory describing nucleons such a hypothetical symmetry is explicitly
broken by a finite nucleon mass, simply because it couples left- and right-handed
components, which can be seen from the equations of motion for free fermions

Eψ(M) = αi1
i
∇iψ(M) + γ0Mψ(M) ,

in a chiral representation of the Dirac matrices

γ0 =

(

0 1
1 0

)

, αi = γ0γ i =

(

−σi 0
0 σi

)

, γ5 =

(

−1 0
0 1

)

.

Wewill nowdiscuss the relation ofmassiveDirac spinorsψ(M) tomassless fermions
ψ(0). Using translational invariance in x and anticipating the positive and negative
frequency solutions we start with an ansatz

us
(M)(⃗k)e

−ikx , vs
(M)(⃗k)e

ikx , k0 > 0

where us
(M)(⃗k) and vs

(M)(⃗k) only depend on the 3-momentum k⃗ and contain two com-
ponent spinors ξs labeled by s = ± and obeying ξs,†ξs′ = δs,s′ . With the ansatz above
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the Dirac equation becomes

(/k − M)u = 0 , −(/k + M)v = 0 .

Hence a complete set of normalized solutions is given by2

us
(M)(⃗k) =

1
4V
√

k0(k0 + M)

(
/k + M

)
ϕs ,

vs
(M)(⃗k) =

1
4V
√

k0(k0 + M)

(
/k − m

)
ηs ,

⇒ k0 =
√

k2 + M2 ,

ϕs =

(

ξs

ξs

)

, ηs = φsγ
5ϕ−s,

with φs a phase factor not be specified for now. These states are orthogonal in the
sense

∫

d3xus†
(M)(⃗k)u

s′
(M)(⃗k

′)e−i(k′−k)x = δs,s′ δ⃗k,⃗k′ ,
∫

d3xvs†
(M)(⃗k)v

s′
(M)(⃗k

′)ei(k
′−k)x = δs,s′ δ⃗k,⃗k′ ,

∫

d3xvs†
(M)(⃗k)u

s′
(M)(⃗k

′)e−i(k′+k)x = 0 ,

The relative sign of left- and right-handed components in the spinor ηs is chosen
in order to yield a well defined limit k⃗ → 0. The reason for inverting the two com-
ponent spinor index is chosen in hindsight on the quantization of the Dirac field,
which amounts to expanding the spinor fields with respect to these eigenspinors
augmented with annihilation (a,b) and creation operators (a†,b†) as follows

ψ(M)(x) =
∑

k⃗,s

(

us
(M)(⃗k)a(M)(⃗k, s) + vs

(M)(⃗k)b
†
(M)(⃗k, s)

)

.

Both, a†(M)(⃗k, s) and b†
(M)(⃗k, s) create particles with energy k0 ≥ 0, momentum k⃗ con-

taining two component spinors ξs, i.e. b†
(M)(⃗k, s) creates particles with the opposite

properties of the accompanying spinor vs
(M)(⃗k)exp(ikx). Restricting the choice of the

spinors ξs further by demanding

k̂σ⃗ξs = sξs ,

2We use the abbreviations k :=
√

k⃗2 and k̂ := k⃗/k.
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both, a†(M)(⃗k, s) and b†
(M)(⃗k, s) create particles with helicity s. The quantization condi-

tion for fermions then leads to the only non-trivial anticommutation relations for the
creation and annihilation operators

{a(M)(⃗k, s), a
†
(M)(k⃗

′, s′)} = δk,k′δs,s′ , {b(M)(⃗k, s),b
†
(M)(k⃗

′, s′)} = δk,k′δs,s′ ,

where the label s denotes helicity. In the massless case, one can easily show that
the helicity eigenstates also become eigenstates of γ5 with chirality χ = s.

Let us assume that at time t = 0 we prepare the spinors such that ψ(M) = ψ(0).
Thus there exists a canonical transformation that relates the creation and annihilation
operators for the massless andmassive sectors which can be found by projecting the
mode expansion of ψ(0) onto

∫
d3xus†

(M)(⃗k)e
ikx and ψ†

(0) onto
∫
d3xvs

(M)(⃗k)e
ikx

a(M)(⃗k, s) = f(k)a(0)(⃗k, s) + sφ−sg(k)b
†
(0)(−k⃗, s) ,

b(M)(⃗k, s) = f(k)b(0)(⃗k, s)− sφsg(k)a
†
(0)(−k⃗, s) ,

f(k) =

√

k0 + k
2k0

, g(k) =

√

k0 − k
2k0

.

By choosing φs = φ−s and since f2 + g2 = 1 the transformation is a Boguliobov
transformation from the massless creation and annihilation operators to those that
diagonalize the Hamiltonian with a mass-gap. In the following we set φs ≡ 1.

The vacuum |0⟩(M) which is annihilated by a(M)(⃗k, s) and b(M)(⃗k, s) can be written
in terms of a(0)(⃗k, s) and b(0)(⃗k, s) as

|0⟩(M) =
∏

k⃗,s





√

k0 + M
2k0

− s

√

k0 − M
2k0

a†(0)(⃗k, s)b
†
(0)(−k⃗, s)



 |0⟩(0) ,

thus it might be viewed as being composed of fermion--anti-fermion pairs with zero
total momentum and spin but chirality ±2. These pairs should be thought of as
the analogue of Cooper pairs with chirality playing the role of charge. Note that in
the same way as the charge quasi-electron in a superconductor approaches −e with
increasing momentum, i.e. it becomes more electron like, and thereby exchanging
charge with the particle bath provided by the Cooper pairs, the massive fermion
with positive helicity becomes "increasingly right handed" since u → 1 and v → 0 as
k ≫ M.
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Also, a glance at equations (2.1)-- (2.3) suggests that the mass term, which is
off-diagonal, corresponds to the energy gap. As is well known, it takes E ≥ 2M to
produce a fermion anti-fermion pair. The Weyl representation of the Dirac spinor is
like the Nambu--Gorkov space representation. Now in order to reconcile the breaking
of chiral symmetry due to M with the Noether theorem, i.e. with the conservation
of the axial current we were led to an expression for the axial current like (1.19)
and observe that the second term can be interpreted as a massless particle. We
have related this mode to the pions, which are the lightest particles relevant for the
strong interactions and may conclude that they correspond to the gapless mode in
a BCS-superfluid. Nambu suggested that due to a finite but small bare mass of the
nucleons the axial symmetry is explicitly broken and therefore pions receive a finite
mass.

Although this picture is very intriguing we are still lacking of a dynamical mecha-
nism that explains such spontaneous creation of mass for nucleons. In 1961 Nambu
together with Giovanni Jona-Lasinio proposed a model that made this correspon-
dence with BCS--Bogoliubov theory precise.

2.1 The NJL model

After Nambu and Jona--Lasinio discussed the general scheme of spontaneous chiral
symmetry breaking U(1)V ×U(1)A → U(1) in the chiral limit in their first paper [131],
they included isospin in [132]. They used the model Lagrangian

L = ψ (iγµ∂µ − m)ψ + G
[
(
ψψ
)2

+
(

ψiγ52⃗Iψ
)2
]

, (2.4)

with an isospin doublet spinor ψ with bare mass m. Since the mass dimension of
[ψ] = 3/2 and consequently the coupling constant has mass dimension [G] = −2 the
model is non-renormalizable. Therefore we will have to specify an ultraviolet cut-off
Λ in UV-divergent integrals. The four fermion interaction is chosen in order to study
the general features of spontaneous chiral symmetry breaking, i.e. we are agnostic
about what the fundamental interaction of the fermions really is but we cannot trust
quantitative predictions. Nevertheless, it turned out that also the quantitative results
describe the masses of pions, the pion nucleon coupling and the ratio of Fermi-
to Gamow--Teller coupling quite accurately. An analogous four fermion interaction
term is also obtained in BCS theory in the limit of a large phonon mass.
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The Lagrangian (2.4) in the chiral limit m → 0 is invariant under the global sym-
metry group SU(2)L × SU(2)R × U(1)V (the explicit proof can be found in appendix
A.1)

ψ → e−iαψ ,

ψ → e−iαjIjψ ,

ψ → e−iγ5αjIjψ .

A possible U(1)A is excluded because no iso- and pseudoscalar meson with a rela-
tively small mass is known. We will revisit the axial U(1) problem in the next chapter.
The conserved Noether currents are found via a total variation of the action as dis-
cussed in appendix A.2. For the infinitesimal transformations we have

δ0,Vψ = −αiψ ,
δj,Vψ = −αjiIjψ ,

δj,Aψ = −αjiγ5Ijψ .

which yields the conserved currents and the associated charges

J0,Vµ = ψγµψ → Q =

∫

Σ
d3xψ†ψ ,

Ji,V
µ = ψγµiiψ → Qi =

∫

Σ
d3xψ†Iiψ ,

Ji,A
µ = ψγµγ

5Iiψ → Qi
5 =

∫

Σ
d3xψ†γ5Iiψ ,

where Σ denotes a spatial hypersurface. Employing the quantization condition for
fermions {ψ(x), ψ†(y)} = δ(x − y) we find the following current algebra

[

Qi,Qj
]

= iεijkQk ,
[

Qi,Qj
5

]

= iεijkQk
5 ,

[

Qi
5,Q

j
5

]

= iεijkQk , (2.5)

where the εijk are the structure constants of SU(2). The first line shows that the
vector isospin charges form a subalgebra, while the second line shows that the axial
charges transform in the adjoint representation of SU(2)V. The last line will be of
importance later on.
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Figure 2.1: The Feynman diagrams of the bosonized NJL model.

Before wemove on to discuss spontaneous symmetry breaking wemake an inter-
mediate step and bosonize the Lagrangian 2.4 using a so-called Hubbard--Stratono-
vich transformation [166, 105]. The new Lagrangian, which reads

L = ψ (iγµ∂µ − m)ψ + σψψ + πiψiγ52Iiψ − 1
4G

(

σ2 + π2
)

, (2.6)

is equivalent to the original upon using the equations of motion for σ and πi

σ = 2Gψψ ,

πi = 2Gψiγ52Iiψ . (2.7)

As a further step we introduce an artificial degree of freedom of the fermions: let us
assume, that the fermions are in the fundamental representation of some additional
global symmetry group SU(Nc), with Nc - the rank - being large, Nc ≫ 1. Accordingly,
we replace the coupling G by λ2 = 2GNc referred to as the 't Hooft coupling, with λ
held fixed as Nc → ∞. This has the effect of keeping the norm of the color singlet
Dirac bilinears σ and πi fixed. Furthermore, we introduce the vector ϕa = (σ,πi) with
a ∈ [0, . . . ,3], as well as the matrices Γa = (1, iγ52Ii). Hence the Lagrangian assumes
the compact form

L = ψ (iγµ∂µ − m + ϕaΓa)ψ − Nc

2λ2
ϕ2 . (2.8)

The Feynman graphs corresponding to this Lagrangian are depicted in figure 2.1.
Let us now explore the spontaneous breaking of chiral symmetry in more detail.

In addition we will introduce a thermal field theory approach for later convenience.
Details are discussed in appendix A.3. In the following τ = it denotes Euclidean
time. Following the steps developed in [108] we arrive at the 1PI effective action
in imaginary time formalism, which is a functional of the vacuum expectation (VEV)
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Figure 2.2: The lowest loop order
correction to the 1PI effective action.

values ϕa
c(x), ψc(x) and ψc(x)

Γ[ϕc, ψc, ψc] =

∫

dτd3x ψc

(

iγµ∂x
µ − m + ϕa

c(x)Γ
a + µγ0

)

ψc

− Nc

2λ2
ϕ2c + Nc Tr ln S−1 + Vn≥2 loop

1PI + const . (2.9)

The tree level action in (2.9) is of order Nc explicitly in the second term and implicitly
in the fermionic part wherewe sumover the (suppressed) color index of the fermions.
Since the tree level inverse propagator is a unit matrix in color space

1Nc×NcS
−1 = 1Nc×Nc(iγ

µ∂µ − m + ϕa
cΓ

a + µγ0) , (2.10)

we also find a factor Nc in front of the trace log term. The lowest order contribution
to Vn≥2 loop

1PI is depicted in figure 2.2 and is of order N0
c , since for the fermion loop

we get a factor of Nc which cancels against the factor Nc coming from the bosonic
tree level propagator. The reader can easily convince herself that any higher order
1PI loop diagram is of order N0

c or smaller. For each new boson line the order in Nc is
diminished and each new fermion loop comes automatically with a new boson line.
Thus in the large Nc limit the 1 loop approximation (also referred to as Hartree- or
mean field approximation) of the 1PI action becomes exact.

The gap equation, determining the vacuum expectation values of the fields is

δΓ

δηA
c
= 0 ,

where ηA
c represents any of the fields appearing in the action. We will assume in

the following that only the bosons have a non-vanishing VEV; in particular for the
bosons we assume ϕa

c = (Σ,0) = const. Note that in the inverse fermion propagator



26 Chapter 2 --- Chiral symmetry breaking

Σ represents a mass term, hence we denote by

M = m − Σ

the dressed fermion mass.
In this case the only nontrivial gapequation reads

−Nc

λ2
ϕa(x) + Nc tr (S(x, x)Γa) = (2.11)

−Nc

λ2
Σ+ Nc tr (S(x, x)) = 0 , (2.12)

where the trace sums over Dirac and isospin space only. As usual S(y, x) denotes the
propagator, which is inverse to the operator S−1

x in the sense that

S−1S(y, x) = δ(x − y) .

Upon using the momentum space representation of the fermion propagator the gap
equation becomes

Nc

λ2
M − m

M
= 4NINc

∑

n

∫

d3k
T

(ωn + iµ)2 + ε2
k⃗

, (2.13)

where NI = 2 is the rank of the isospin group, and the sum is over the index n which
labels the Fermionic Matsubara frequencies ωn = (2n + 1)πT.

Note that the effective action is invariant under chiral transformations in the chiral
limit m → 0, thus

δαΓ =

∫

d4x
δΓ

δηA
c (x)

δαη
A
c (x) = 0 , (2.14)

The equation above is a Ward--Takahashi identity for one point functions. Further-
more, from (2.14) we can derive a chain of Ward--Takahashi identities for higher n-
point functions by successive functional differentiation, e.g.

∫

d4x
δ2Γ

δηB
c δη

A
c (x)

δαη
A
c (x) +

δΓ

δηA
c (x)

δ δαη
A
c (x)

δηB
c

= 0 . (2.15)

The second factor vanishes on the solutions of the gap equation for variations of
the fields ηc that are linear in the fields. We conclude that a non-vanishing δαηA

c (x) is
an eigenvector of the inverse propagator

D−1
AB (y, x) =

δ2Γ

δηB
c (y) δηA

c (x)
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with vanishing eigenvalue.
In our case the only non-vanishing contribution is δαηA

c = δαπi
c = αiΣ = const.

then equation (2.15) reads

Σ

∫

d4x
δ2Γ

δπi
c(0) δπ

j
c(x)

= lim
p→0

Σ

∫

d4xeipx δ2Γ

δπi
c(0) δπ

j
c(x)

(2.16)

= ΣD−1
ij (p2 = 0) = 0 . (2.17)

Since the solution for p2 to the pole condition

D−1(p2) = 0 (2.18)

gives the mass of the particle, we conclude from (2.17) that the pions are massless if
Σ ̸= 0, in accordance with Nambu's expectations from BCS theory. Here we proved
this more generally via the Ward--Takahashi identity of the 1PI effective action. The
general statement, that if a (global) symmetry is spontaneously broken, there must
exist massless modes is called the Goldstone theorem [87, 88]. Accordingly, the
gapless modes are called Nambu--Goldstone bosons. Typical examples of these can
be found in condensed matter systems:

• phonons in a lattice of ions due to broken translation and rotation invariance

• magnons in a ferromagnet due to broken rotation invariance

• phonons in Helium-4 due to broken particle number conservation

We will show explicitly that the pions are massless in the mean field approxima-
tion employed here: The inverse propagator for the bosons is

δ2Γ

δϕb
c (y) δϕa

c(x)
= −Nc

λ2
δabδ(x, y)− Nc tr

(

S(x, y)ΓbS(y, x)Γa
)

,

⇒ D−1
ab (p2) = −Nc

λ2
δab + NcT

∑

n

∫

d3k tr
(

1
/k − M

Γa 1
/k + /p − M

Γb
)

.

In the limit of vanishing momentum for the pions this becomes

D−1
ij (p2 = 0) = −Nc

λ2
δij + 4δijNINc

∑

n

∫

d3k
T

(ωn + iµ)2 + ε2
k⃗

,

which vanishes by virtue of the gap equation (2.13), provided that m → 0. In a
similar calculation for the σ boson propagator we set p⃗ = 0 and observe that for
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p0 = 2M the momentum integral becomes the same as in the gap equation and
cancels the first term provided we take the chiral limit. In summary we found three
massless pions and one scalar meson with mσ = 2M. Since both are constituted by
two fermions with mass M we conclude that the pions have binding energy 2M while
the sigma meson is marginally bound.

With respect to the discussion at the end of the previous section we might be
interested in showing explicitly in the NJL model that the axial current is conserved
in the chiral limit in spite of the finite dressed fermion mass M. In order to do that
we couple an external axial vector field Ai

µ to the axial current by adding

ψ/AiIiγ5ψ

to the Lagrangian. The global axial symmetry can now be promoted to a local
symmetry with the infinitesimal transformation parameter α(x) provided that Ai

µ →
Ai
µ − ∂µα

i(x). The Ward--Takahashi identity for 3-point functions is
∫

d4x
δ3Γ

δηC
c δη

B
c δη

A
c (x)

δαη
A
c (x) +

δ2Γ

δηB
c δη

A
c (x)

δ δαη
A
c (x)

δηC
c

+
δ2Γ

δηC
c δη

A
c (x)

δ δαη
A
c (x)

δηB
c

= 0 . (2.19)

Now only δαAi
µ = −∂µαi(x) and δαπi

c = αiΣ are non-vanishing and we choose ηB
c =

ψc as well as ηC
c = ψc, which yields

∫

d4x∂x
µ

δ3Γ

δψc(z) δψc(y) δAi
µ(x)

αi(x) +
δ3Γ

δψc(z) δψc(y) δπi
c(x)

αi(x)Σ

− δ2Γ

δψc(x) δψc(y)
iα⃗⃗Iγ5δ(x, z)− iδ(x, y)α⃗⃗Iγ5

δ2Γ

δψc(z) δψc(x)
= 0 , (2.20)

where the first term has been integrated by parts and the surface integral has been
omitted and due care has to be taken with the order of the fermionic derivatives.
In accordance with our previous observation, in case the chiral symmetry is sponta-
neously broken the vertex of the fermions with an external axial current has to be
accompanied by an emission of a pion, which then decays -- the second term in
(2.20). Since we absorbed the fermion-pion coupling constant into the definition of
the pion fields we can read off −Σ/gπψψ = M/gπψψ = fπ, which is the Goldberger-
-Treiman relation, which in this context measures the strength of the spontaneous
symmetry breaking -- the condensate Σ.
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To make the picture complete we rederive the pion decay constant from the cou-
pling to the external axial current

δ2Γ

δπj
c(y) δAi

µ(x)
= −Nctr

(

S(x, y)iγ5
Ij

2
S(y, x)γµγ5Ii

)

⇒ −2iNINcMδijpµ
∑

n

∫

d3k
T

[

(ωn + iµ)2 + ε2
k⃗

] [

(ωn + p0 + iµ)2 + ε2
k⃗+p⃗

]

= −ipµδij fπ
gπψψ

. (2.21)

In all the involved integrals the sumover the fermionic Matsubara frequencies can
be performed, but the 3-momentum integral is UV divergent. Since the NJL model is
non-renormalizable, all results, e.g., themagnitude of the gap and the order of phase
transitions, will depend on the regulator as well as on the regularization scheme. We
use the proper time regularization scheme [162]. In this procedure, the integrand of
divergent expressions is recast into so-called proper time integrals,

(

k2 + b2
)−a

=
1

Γ(a)

∫ ∞

0
dτ τa−1e−τ(k

2+b2) , (2.22)

and one then performs the momentum integral before the proper time integral. The
UVdivergence of themomentum integral reappears at the lower bound of the proper
time integral, which therefore has to be regularized. We set the lower bound to 1/Λ2.
In the chiral limit we have to fit the two parameters of the model - the coupling
constant and the cut-off - to two out of the three related quantities fπ, gπψψ and M.





CHAPTER ..3
Thermodynamics of chiral

symmetry breaking

3.1 Towards quarks and gluons

In the 1960's chiral symmetry was one of the major inputs for finding the fundamen-
tal theory governing the strong interactions. In [77, 78, 134] Gell-Mann and Yuval
Ne'eman independently developed a scheme, known as the "eightfold way" that
embedded the isospin multiplets of hadrons displaced by strangeness into repre-
sentations of the larger symmetry group SU(3)V.

In [79] Gell-Mann proposed the existence of so-called quarks (at that time merely
a mathematical concept) that constitute hadrons. These fermions - in the following
denoted by ψ - live in the fundamental representation of SU(3)V and are called up u,
down d and strange s with charge 2/3, −1/3 and −1/3 respectively. Each species
is carrying baryon number 1/3. Mesons are made of ψψ, while baryons are made
of ψψψ. The lowest meson configurations are then in the singlet and adjoint repre-
sentations of SU(3)V while the lowest lying baryon configurations are in the singlet,
adjoint and decuplet representation. Of course it is natural to imagine that there are
now also accompanying axial transformations, i.e. whatever the fundamental theory

31
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might be, the SU(3) analogue of the current algebra in Eq. (2.5) should hold. This
idea was developed further by Gell-Mann in Ref. [81].

The current algebra approach soon proved successful when so-called sum rules
(integral relations for physical observables) were obtained that were in principle testable
by experiment. Most notably the Adler-Weissberger sum rule [177, 1, 2] allowed for
calculating the axial vector coupling constant from the neutrino reaction cross sec-
tion. In its original formulation it used the PCAC assumption in the sense that the
divergence of the axial current is proportional to the pion field, first stated in [80] to
relate the renormalization of the axial vector coupling constant to the total proton--
pion cross section.

Despite the intense search for fractionally charged particles none could be found
in collider experiments as well as in cosmic radiation. However, high energy proton-
-proton collisions at a center of mass energy above 10 GeV revealed that hadrons
might indeed have an internal structure [142]. It seemed that hadrons are made
of a cloud of loosely bound objects since a lot of hadrons are produced in such
a scattering but only a tiny fraction has significant transversal momentum. In the
late 1960's this picture was tested by the SLAC-MIT deep inelastic scattering exper-
iments. 20 GeV electrons were scattered from a fixed hydrogen target. While the
momentum distribution of the scattered electrons was in accordance with a target
of charged point particles, hardly ever a scattered proton was detected. What was
seen was a large number of hadrons. The picture one had in mind is a proton shat-
tered by the high energy electron and thereby absorbing kinetic energy, which in
turn is released by hadron jets, hence the term deep inelastic scattering. Inspired
by ideas of Feynman, Bjorken [29] developed a parton model that predicted scaling,
i.e. the inelastic electron--proton cross section depends only on the ratio

x :=
−q2

2Mν
,

where q measures the momentum exchange, M is the nucleon mass and ν = E −
E′ is the energy transfer in the nucleon rest frame [92]. Essentially Bjorken scaling
means that the structure of a proton "looks the same for an electromagnetic probe
no matter how hard the proton is struck" [142]. The x can be identified with the
fraction of the longitudinal momentum of the proton the struck parton is carrying,
and by assumption one neglects interactions with other partons. For some so far not
explained reason the parton itself is not observed but a jet of hadrons is released.
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It seems that at these high energies the partons are governed by a free quantum
field theory, but at the same time they are strongly bound into hadrons. There were
two other outstanding problems at that time. The first, already observed in 1964,
is that for example one of the states in the SU(3)V decuplet is Δ++ with charge
+2, spin 3/2 and which is an uuu state. If quarks are fermions with spin 1/2 this
means that Δ++ is totally symmetric in spin and flavor, in conflict with the spin-statics
theorem. In [99] Han and Nambu resolved the issue by the ad hoc assumption of an
additional quantum number that triples each quark flavor. This quantum number was
later called color. By assumption physical low energy states have to be a color singlet,
this property was later called color confinement. Let us again assume that quarks lie
in the fundamental representation of a (for now global) special unitary group - the
simplest guess is SU(3)c. The tensor representations of SU(Nc) always provide one
with two invariant objects: one is δi

j, which amounts to contraction of an object in
the fundamental representation of SU(Nc) and one in the dual representation. The
second is the totally antisymmetric εi1···iNc

, which allows to form a singlet made of Nc

objects in the fundamental representation. Thus singlets of SU(3)c are

ψaψ
a , εabcψ

aψbψc , εabcψaψbψc ,

representingmesons and (anti-) baryons. Such a tripling of quarks would also resolve
another problem found a few years later in which chiral symmetry again played an
important role: the (QED) axial anomaly [3, 20] (for an introduction to anomalies
in quantum field theory see [27]), which explains the decay π0 → 2γ, from first
principles, in particular the electromagnetic coupling is minimal. Before, this decay
mode could only be accounted for with a phenomenological term, see eg. [76].
In the context of a quark model where quarks carry fractional charges the decay
amplitude is wrong by a factor of 1/3 compared to experiment -- also here three
additional color degrees of freedom would account for the missing factor, as was
shown in 1972 by Bardeen, Fritzsch and Gell-Mann [18]1. In the same year, Fritzsch
and Gell-Mann in essence already formulated a Lagrangian containing an SU(3)c
gauge field called gluon and a minimally coupled 3-flavor quark term [70].

In 1973David Gross together with FrankWilczek andDavid Politzer independently
showed that non-abelian gauge theories exhibit asymptotic freedom [93, 144], i.e.

1This seems also to be the reference in which the term color was coined.
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at large momentum (relevant for deep inelastic scattering) the running coupling con-
stant becomes small. The running of the coupling constant at one-loop order for an
SU(3)c gauge theory coupled to Nf light quarks may be written as [142]

αs(Q) =
2π

(
11− 2

3Nf
)
ln
(

Q
ΛQCD

) ,

where ΛQCD is a mass scale defined such that at Q2 ≈ Λ2
QCD the coupling becomes

strong as Q2 is decreased. Experimental measurements show that ΛQCD ≈ 200MeV.
This behavior of the coupling explains the hadron jets in deep inelastic scattering ex-
periments: instead of a free parton we observe the hadrons produced by Schwinger
particle creation. Furthermore, soon the corrections to Bjorken scaling due to the
running coupling were verified experimentally. The second ingredient that forbids
detecting isolated colored objects - confinement - was shown for discretized Eu-
clidean (pure glue) QCD at strong coupling by Kenneth Wilson in [179]. An analytic
proof that full QCD is confining is still missing. However lattice QCD shows over-
whelming evidence that this is indeed the case, see eg. [13, 12] for results with
physical quark masses.

We summarize these developments in the QCD Lagrangian

L = −1
4
tr Fµν,aFa

µν +

Nf∑

i=1

ψ
i (

i /D − mi
)
ψi ,

where Dµ = ∂µ − igAa
µt

a, is the covariant derivative with respect to the color gauge
group, and the ta denote the eight generators of SU(3)c in the fundamental repre-
sentation normalized by

trtatb =
1
2
δab ,

and g denotes the coupling2.
Note that the masses of the nowadays six known quark flavors are widely spread

over many orders of magnitude. For instance the masses of the three lightest flavors
2The relation to αs(Q) given above is such that for some arbitrary renormalization point Q = M,

αs(M) = g2/4π. In turn one usually removes the dependence on the arbitrary point by trading it for
the mass scale ΛQCD defined by the equation (at one-loop order)

1 =
g2

8π2

(

11−

2
3

Nf

)

ln
(

M
ΛQCD

)

(3.1)
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are given by mu = 2.3+0.7
−0.5 MeV, md = 4.8+0.5

−0.3 MeV, and ms = 95±5 MeV [24]. Even
in case of Nf = 2 QCD the fundamental Lagrangian is not isospin/flavor symmetric.
The crucial point is that QCD comes with an inherent mass scale3 ΛQCD as mentioned
above. With respect to this scale the masses of up and down quarks (and to some
extend that of the strange quark) might be viewed as a small perturbation and thus
chiral symmetry is approximately intact.

Now the crucial question arises, why is then U(1)A not spontaneously broken,
or put differently, where is the Nambu--Goldstone mode associated with U(1)A? It
turned out that there exists a pseudo-scalar particle denoted by η′ that is a flavor sin-
glet, however it is very massive - mη′ = 957.78±0.06 MeV - and is actually the heavi-
estmeson in theU(3)V pseudoscalarmeson nonet. The non-abelian analogue of the
chiral anomaly responsible for the neutral pion decaying into two photons comes to
the rescue. If fermions couple to gauge fields, the chiral symmetry is explicitly broken
by radiative corrections even in the chiral limit. This is called an anomaly, because a
classical symmetry is broken on the quantum level. While the QED anomaly affecting
the third isospin component of the axial vector current, which annihilates a π0, can
be viewed as a small perturbation leaving the chiral symmetry intact, this is no longer
true for the non-abelian analogue, which affects precisely the isospin singlet axial
current

∂µJ0,A = − g2Nf

32π2 ε
µνρτFa

µνF
a
ρτ . (3.2)

There exist semi-classical solutions to the equations of motion of Euclidean Yang--
Mills theory with finite energy interpreted as pseudo particles called instantons [168].
They have finite width in Euclidean time and space and correspond to a tunneling
process between different vacua. Furthermore the gauge field configuration is such
that (3.2) is non-vanishing. The integral over

− g2

32π2 ε
µνρτFa

µνF
a
ρτ

gives an integer number called the winding or instanton number distinguishing the
different vacua of the Yang--Mills theory.

In full QCD it is difficult to calculate the magnitude of the consequences of the
anomalous violation of chiral symmetry, however in the limit of a large number of

3Note that the classical theory is conformally invariant. In the quantum theory this symmetry is
broken by the conformal anomaly at one-loop level.
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colors [167], which we already encountered in chapter 2, this was done by Witten
and Veneziano in Refs. [181, 173]. We replace g by λ/

√
Nc, where again λ denotes

the 't Hooft coupling, which is kept fixed in the limit Nc → ∞. Then the anomaly
becomes

− λ2

32π2Nc
εµνρτFa

µνF
a
ρτ ,

and thus is suppressed for Nc → ∞ and therefore η′ becomes a Nambu--Goldstone
boson in large Nc QCD with mη′ ∼ 1/

√
Nc. This is an important result in the con-

text of this thesis, since when calculating the chiral phase transition surface in the
Sakai--Sugimoto model which claims to be a holographic dual of large Nc QCD we
will restrict ourselves to Nf = 1 for simplicity, therefore the chiral symmetry group is
U(1)V×U(1)A. TheWitten--Veneziano result allows us to study spontaneous breaking
of chiral symmetry using that restriction. Sakai and Sugimoto in [156] showed explic-
itly that the Veneziano--Witten mass formula for the η′ is satisfied in their model.

In the next section we will reinterpret the NJL model introduced before accord-
ingly as a model in which chiral symmetry is broken spontaneously by the conden-
sation of quark--anti-quark pairs [174, 102, 114]. For a modern introduction to the
quark NJL model see [40]. Of course the interaction via gluons is replaced with
the four point fermion interaction and therefore the NJL model lacks the two most
important ingredients of QCD: asymptotic freedom and confinement. We will never-
theless press on and discuss now chiral symmetry breaking in the NJL model at finite
temperature and chemical potential.

3.2 The thermodynamics of the NJL model

We can compute the thermodynamic potential and the gap equation, by inserting
momentum representation of S−1 into Eq. (2.9) and performing the thermodynamic
limit

Ω =
Nc(M − m)2

2λ2
− 2NfNc

∑

e=±

∫
d3k
(2π)3

[ϵk
2

+ T ln
(

1+ e−
ϵk−eµ

T

)]

, (3.3)

M − m
2λ2NfM

=

∫
d3k
(2π)3

1
ϵk

[1− f(ϵk − µ)− f(ϵk + µ)] , (3.4)
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where f(x) ≡ 1/(ex/T + 1) is the Fermi-Dirac distribution function. As mentioned
before, the (vacuum parts of the) momentum integrals are UV divergent and have to
be regularized. Furthermore it is convenient to redefine the coupling again for the
numerical analysis by

g :=
λ2NfΛ

2

4π2 ,

which is dimensionless and where Λ denotes the cut-off in the proper-time regular-
ization scheme.

This yields the thermodynamic potential at zero temperature

16π2

NfNc
ΩT=0 =

2Λ2(M − m)2

g
+ Λ2

(

Λ2 − M2
)

e−M2/Λ2
+ M4Γ

(

0,
M2

Λ2

)

−2θ(µ− M)

[
µkF

3
(2µ2 − 5M2) + M4 ln

µ+ kF

M

]

, (3.5)

where Γ(a, x) is the incomplete gamma function, and the gap equation

M − m
Mg

=

[

e−M2/Λ2 − M2

Λ2 Γ

(

0,
M2

Λ2

)]

−2θ(µ− M)

(
µkF

Λ2 − M2

Λ2 ln
µ+ kF

M

)

, (3.6)

where we have defined the the Fermi momentum kF =
√

µ2 − M2.
For simplicity we shall discuss the chiral limit m = 0 in the rest of this discussion.

In this case, M = 0 is always a solution to the gap equation. Otherwise the solution
to the gap equation is always non-trivial. As a consequence each second order phase
transition discussed below would become a crossover and of course the numerical
value where a first order transition occurs would be shifted.

For µ = 0, the gap equation further simplifies since the term∝ θ(µ−M) does not
contribute. The right-hand side of equation (3.6) is always smaller than 1. Therefore,
a nontrivial solution for M only exists if the dimensionless coupling constant g is
larger than 1. When it exists, this solution is preferred over the trivial solution, as
one can verify with the help of the thermodynamic potential (3.5).

In Fig. 3.1 we show the numerical solution for the gap equation as a function of
µ for three different coupling constants larger than 1 (i.e., they all admit a nontrivial
solution for µ = 0). For all couplings g > 1, there is a certain critical µ where M goes
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Figure 3.1: The zero-temperature solution to the gap equation for three different values of
the coupling g. The thin dotted line is the line µ = M. The solution becomes multi-valued
in the region µ > M for all couplings larger than g0 with g0 given in Eq. (3.8).

to zero. By setting m = 0 and then performing the limit M → 0, (3.6) becomes an
equation for µ. It is easy to show that this critical µ is given by

µ0(g)
Λ

=
1√
2

√

1− 1
g
. (3.7)

If and only if the solution is single-valued, this is the critical µ at which the (then
second-order) phase transition to the chirally restored phase occurs.

Above a certain coupling, the solution becomes multi-valued, see for instance
the line with g = 1.69 in figure 3.1. The coupling where this qualitative change
occurs can be computed as follows. By differentiating the gap equation with respect
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to µ we find
∂M
∂µ

= − 2kF

M
[

Γ
(

0, M2

Λ2

)

− 2 ln µ+kF
M

] .

In accordance with the numerical plot, this derivative is infinite for M = 0. For all
couplings for which the solution is multi-valued, there is another point where the
derivative is infinite, which is given by the second pole of the denominator,

µ = M cosh
Γ(0,M2/Λ2)

2
.

We can now ask for the value of g at which this point coincides with µ0(g) for M → 0.
The resulting equation then yields the coupling where the multi-valuedness sets in.
We find

g0 =
1

1− e−γE
2

≃ 1.390 , (3.8)

where γE is the Euler-Mascheroni constant. In the regime 1 < g < g0 the chiral phase
transition is second order and takes place at µ0(g).

For couplings larger than g0 the transition is first order and has to be determined
numerically. It turns out that the branch with a positive slope is always energetically
disfavored. Therefore, in terms of Fig. 3.1, the preferred solution follows the horizon-
tal line M(µ = 0) and, for all multi-valued cases, jumps to zero at a certain chemical
potential. Whether (and how far) the preferred solution follows the curve into the re-
gion µ > M depends on the coupling. We find numerically that for couplings below
(above) g ≃ 2.106 it does (doesn't). This is a first example of the nontrivial effect
of µ on the preferred phase: it is not always the phase with the largest dynamical
mass that is favored. In more physical terms, for couplings above g ≃ 2.106 the chi-
rally broken phase with vanishing quark density is directly superseded by the quark
matter phase, while for smaller couplings there is a region of finite density between
these two phases. Since for g > 2.106 there are no complicated effects of the quark
density, we can write down a very simple expression for the free energy difference
between the broken phase and the restored phase, evaluated at the solution of the
gap equation (and using M ≪ Λ),

ΔΩ = −M2
0Λ

2

16π2

(

1− 1
g

)

+
µ4

12π2 , (3.9)

with M0 being the (non-analytical) solution to the gap equation for µ = 0. This result
is very intuitive: the first, negative, term is the condensation energy, i.e., the energy
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gain from the chiral condensate, while the second, positive, term corresponds to the
energy costs for pairingwhichmust be paid because the chemical potential has sepa-
rated fermions from anti--fermions. When the costs exceed the gain, chiral symmetry
is restored. This determines the phase transition line. We summarize our discussion
of the chiral phase transition at B = T = 0 in Fig. 3.2.

T=0

a

b

c
ΧSb, nq=0

ΧS, nq¹0

ΧSb, nq¹0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1.0
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2.0

2.5

Μ�L

g

Figure 3.2: The phase diagram at T = 0 in the µ-g-plane. Dashed lines indicate second-order,
solid lines first-order phase transitions. In the shaded region chiral symmetry is restored (χS).
The points a, b and c correspond to (µ/Λ,g) = (0,1), (e−γE/2/2,g0), and (0.542,2.106),
respectively, with g0 given in Eq. (3.8). Between points a and b the transition line is given by
µ0(g) from Eq. (3.7). The dashed line between a and c indicates the onset of a finite quark
number density nq within the chirally broken phase (χSb).

For nonzero temperatures, we need to solve the gap equation (3.4) [with the
regularization of the vacuum part shown in Eq. (3.6)] numerically. The result for
various temperatures and a large coupling (larger than that of point c in Fig. 3.2) is
shown in the upper panel of Fig. 3.3. In general, the temperature decreases the gap.
Moreover, the temperature can also change the order of the chiral phase transition
by removing the multi-valuedness of the solution to the gap equation. The critical
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temperature of the chiral phase transition in the T-µ phase diagram is shown in the
lower panel of Fig. 3.3. The critical point moves towards higher temperatures with
increasing coupling. If the phase transition is second order, it is possible to find a
closed form for the critical temperature. To this end, one takes Eq. (3.4) (with m = 0)
and sets M = 0 on the right hand side of the equation. Then, solving for T yields the
critical temperature

Tc(µ)

Λ
=

√

3
2π2

√

1− 1
g
− 2

µ2

Λ2 . (3.10)
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Figure 3.3: Finite-temperature effects on the chiral phase transition in the NJL model. Upper
panel: the gap as a function of the chemical potential for a given coupling strength and
different values of temperature. Lower panel: the phase diagram in the µ-T-plane for the
same coupling. The (dashed) second-order phase transition line is given by the analytic
expression (3.10).
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A geometric picture of chiral

symmetry breaking

4.1 The gauge--gravity duality

The model discussed in this section is based on the conjecture that certain strongly
coupled quantum gauge theories are equivalent to certain classical gravitational the-
ories in higher dimensions. In the context of string theory, the first realization of
this holographic principle known as AdS/CFT correspondence was proposed by Mal-
dacena [123]. In a nutshell, it utilizes two different limits of describing so-called
D-branes, which are dynamical objects in string theory that impose Dirichlet bound-
ary conditions on the endpoints of open strings. On the one hand, a stack of Nc

D-branes hosts a maximally supersymmetric U(Nc) gauge theory coming from the
massless excitations of open superstrings; on the other hand, the stack of D-branes
is a massive object that curves space-time by coupling to gravitons -- coming from
the closed strings -- with the strength λ ∝ gsNc, where gs denotes the string cou-
pling. Now, let Nc → ∞ and keep λ fixed. In the limit λ ≪ 1, gravity decouples
from the open strings, whose low-energy effective theory is given by the mentioned
U(Nc) super Yang--Mills (SYM) theory. In the case of D3-branes, this gauge theory
is four-dimensional. In the opposite limit, λ ≫ 1, the stack of D-branes back-reacts
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strongly on the background. The metric field that is a solution to the supergravity
equations is a so-called black brane solution, which is just a generalization of a black
hole to higher dimensions. Gravity far in the asymptotic region also decouples from
the system due to the gravitational red shift. Therefore, one can zoom in to the
near-horizon region of the space-time, which in the case of D3-branes is given by
AdS5 × S5. The idea behind the AdS/CFT duality is that the classical (super-) gravi-
tational description is fully equivalent to the quantum theory of the large-Nc, large
λ limit of the super-Yang-Mills theory. This particular gauge/gravity duality, which
has passed many nontrivial tests, has since been greatly generalized and also been
used in the form of phenomenological (bottom-up) models.

4.2 The Witten model

The Sakai-Sugimoto model [156, 157] is a string-theoretical top-down approach to
large-Nc QCD. It is based on a proposal for a holographic dual of a non-supersym-
metric large-Nc Yang-Mills theory in four effective dimensions by Witten [184]. In
contrast to the original AdS/CFT correspondence, the background is provided by
the gravitational field of a stack of D4-branes. The dual field theory now is 4 + 1-
dimensional since this is the dimension of the world volume of the D4-branes. The
extra dimension is compactified on an S1 and is used to break supersymmetry on
the field theory side: by imposing anti-periodic boundary conditions on the adjoint
fermions, they obtain a mass of the order of the inverse radius of the S1, called
Kaluza--Klein mass MKK. At one loop level, also the adjoint scalars become massive.
Hence, by choosing the radius of the extra dimension small enough and by restrict-
ing to low energies, one effectively breaks supersymmetry and effectively reduces
the number of dimensions to 3 + 1. However, there is a price to pay for introduc-
ing the extra dimension: in order to justify the supergravity approximation for the
D4-brane background, the five-dimensional (dimensionful) 't Hooft coupling λ5 has
to be large compared to M−1

KK . This corresponds to a large four-dimensional (dimen-
sionless) 't Hooft coupling λ = λ5/(2πM−1

KK ). In this case, however, the mass gap
of the field theory is of the same order as MKK and thus the Kaluza-Klein modes do
not decouple. Only in the opposite limit λ ≪ 1, where string corrections are im-
portant and which thus is inaccessible, the Kaluza-Klein modes do decouple and the
theory becomes dual to large-Nc QCD in 3+1 dimensions (at small energies below
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the Kaluza-Klein scale). It has nevertheless turned out that the classical gravity limit
of the D4-brane background is a remarkably useful tool for understanding certain
nonperturbative properties of (large-Nc) QCD.

An important property of the Witten model is the existence of a Hawking--Page
transition between a soft-wall and a black hole background, which encodes a confine-
ment--deconfinement transition. This feature can be understood either from power
counting in Nc of the corresponding thermodynamic potentials of the gravity back-
grounds or by studying the dual to theWilson line. Confined and deconfined phases
correspond to two different geometric backgrounds which are, in coordinates made
dimensionless by dividing by the curvature radius R, given by

ds2

R2 = u3/2
[

−hd(u)dt2 + δijdxidxj + hc(u)dx24
]

+
du2

f(u)u3/2 + u1/2dΩ2
4 , (4.1)

where

f(u) =







1− u3
KK

u3

1− u3
T

u3

, hd(u) =







1

1− u3
T

u3

, hc(u) =







1− u3
KK

u3 conf.

1 deconf.

(4.2)

and

uKK =

(
4π
3

)2 R2

β2
x4

=
4
9

R2M2
KK , uT =

(
4π
3

)2 R2

β2
τ

. (4.3)

Here, βx4 is the period of x4 -- the coordinate of the additional S1 -- necessary to
prevent a conical singularity at u = uKK in the confined phase. The curvature radius
is related to the Yang--Mills coupling gYM by

R3 = πgsNcℓ
3
s =

g2
YMNcα

′

2MKK
, (4.4)

where ℓs =
√
α′ is the string length. In the analytic continuation to Euclidean signa-

ture, time is also compactified to a circle with circumference βτ = T−1, analogously
to finite temperature field theory. Increasing the temperature shrinks the Euclidean
time circle. At the point where the circumference of the time circle and the extra
dimensional circle match, the Hawking--Page transition takes place. Apart from the
metric field theWittenmodel also contains a nontrivial dilaton and Ramond--Ramond
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(RR) flux background given by

eΦ = u3/4gs , F4 =
(2π)3ℓ3s Nc

Ω4
dΩ4 , (4.5)

where Ω4 is the volume of the 4-sphere.

4.3 The Sakai--Sugimoto model

Sakai and Sugimoto introduced fundamental quarks by placing two stacks of Nf D8-
branes with opposite orientation into the Witten model in the so-called probe limit
Nf ≪ Nc, i.e., back-reactions on the geometry are neglected. In the asymptotic re-
gion u → ∞ the two stacks of D-branes are separated on the Kaluza--Klein circle.
In the original model they reside at antipodal points. In the bulk, the D-branes are
space filling in the field theory directions, xµ, as well as in the S4, and are specified by
an embedding function in the u-x4 subspace. Before going to the gravity description
of the D4-branes one can interpret the underlying string picture as follows: strings
connecting the D4 with the D8-branes carry one flavor and one color index, hence
representing (massless) quarks in the fundamental representation, whereas strings
stretching between D8-branes, i.e. the gauge fields living on the D8-branes repre-
sent mesons. The local symmetry of the U(Nf) × U(Nf) gauge theory supported on
the world volume of the stacks of D8-branes translates into a global symmetry via
the holographic dictionary, which is interpreted as the chiral symmetry of the field
theory. In the confined background, the two stacks of D8-branes are forced to join
at uKK where the additional S1 degenerates and therefore form a single stack with
gauge symmetry U(Nf), see Fig. 4.1. On the field theory side, this reflects the chiral
symmetry breaking mechanism. One can use a diagonal subgroup of the full sym-
metry group to introduce chemical potentials and electromagnetic quantities such
as an external, non-dynamical magnetic field. Usually the gauge is chosen such that
for example the asymptotic value of the zeroth component of the Abelian gauge
field is identified with the quark chemical potential. Due to the probe limit, the de-
confinement transition is not affected by a finite chemical potential, trivially leading
to a phase diagram in the plane T-µ similar to the one discussed for large-Nc QCD in
[125]. While loop diagrams with gluons scale as N2

c at leading order, loop diagrams
with fermions scale with Nc at leading order. Therefore the fermions cannot affect
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Figure 4.1: The chirally broken (left) and chirally restored phase (right). The blue cylinder
and cigar depict the subspace parametrized by u and x4 of the gravity background. The tip
of the cigar is the location where x4 degenerates, i.e. u = uKK, whereas the bottom of the
cylinder represents the black hole horizon of the deconfined background geometry u = uT.

the phase diagram as long as µ ∼ N1
c . Assuming that large Nc QCD confines the µ−T

phase diagram looks like the one in Fig. 4.2.

The low-energy effective theory describing the open string fluctuations is a non-
-abelian Dirac--Born--Infeld (DBI) theory on the probe branes; calculating the fluctu-
ations of the gauge field and the embedding function x4(u) corresponds to calcu-
lating the meson spectrum. In the so-called Az = 0 gauge the Aµ accounts for the
massive vector mesons as well as for the massless pions. From the fluctuations of
the embedding functions one obtains the massive scalar mesons. The parity of the
mesons is determined by the behavior of the fluctuations when switching from the
left-handed brane to the right-handed one. The behavior under charge conjugation
is found by taking the transpose of the gauge fields, since this amounts to flipping
orientation of the strings. Indeed, after fitting the value of the 't Hooft coupling λ
and MKK to the rho meson mass and the pion decay constant, the ratios of the mass
spectra roughly match experimental data. The mode expansion used in the calcu-
lation of the meson spectrum can also be used to derive an effective action for the
mesons which is precisely that of the Skyrme model [165].
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Figure 4.2: The phase diagram for deconfinement in large Nc QCD. The red cigars and cylin-
ders denote the subspace parametrized by u and τ .

4.4 Large Nc baryons

Apart from the DBI action, the dynamics of D8-branes in a background with nontrivial
RR-flux is governed by a Chern--Simons (CS) action, since the D8-brane is magneti-
cally charged under that flux. This contribution allows for introducing baryons in the
model. The full action reads

S = SDBI + SCS

= T8

∫

D8
dτd8x e−ΦTr

√

|det(gmn + 2πα′Fmn)|

+
T8

6

∫

D8
C3Tr(2πα′F)3 , (4.6)

where T8 is the D8-brane tension, and dC3 = F4. The last term in (4.6) is describ-
ing the coupling of the RR-potential C3 to the invariant polynomial TrF3, where the
product of the field strength is understood as a wedge product of the Lie algebra
valued 2-forms F . This invariant polynomial is a total derivative of the so-called
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Chern--Simons 5-form, i.e TrF3 = dTrF3
5 , hence up to boundary terms

(2πα′)3T8

6

∫

D8
C3dQ5 =

(2πα′)3T8

6

∫

D8
F4Q5 =

=
Nc

6(2π)2

∫

M4×R

Q5,

where we used T8 = (2π)−8(α′)−9/2 and the integral over F4 defined in (4.5). Since
U(Nf) ≃ SU(Nf) × U(1) we may split the gauge field into non-abelian and abelian
partA = A+1Â and find up to surface terms for the integral over the Chern--Simons
5-form, see Sec. A.4,

(2πα′)3T8

6

∫

D8
C3TrF3 =

Nc

6(2π)2

∫

M4×R

[

Q5(A, F) + 3ÂTrF2 + NfÂF̂2
]

. (4.7)

The second term in the integrand couples the U(1) gauge field to the Pontryagin
density, which when integrated over together with the prefactor 1/8π2 yields (mi-
nus) the winding number N4 (aka. Pontryagin index, aka. instanton number) of the
principal SU(Nf)- bundle. To be more specific, restricting oneself to Nf = 2, to the
the Yang--Mills approximation of the DBI-action as well as to the vicinity of uKK one
finds that the BPST instanton is a solution to the equations of motion [101]. This
pseudoparticle has width of order λ−1/2. If we choose the legs of the 4-form F2

in the directions of u and x1, x2 and x3, the instanton density couples to the U(1)
gauge field component Â0, i.e. it acts as a localized source with charge N4Nc for the
bulk electric field associated with Â0. As we will see later on, this in turn is related
to the quark number density, also given by N4Nc. At the same time the CS action
may be regarded as describing the effect of lower dimensional D-branes dissolved
in the D8-brane [56], this feature is usually referred to as "branes within branes". In
the case at hand the term TrF2 corresponds to a D4-brane.

We will now focus on this perspective on the CS-action: It was shown by Witten
in Ref. [185] that the baryon-vertex in N = 4 SU(Nc)-SYM theory in 4 dimensions
is encoded by a D5-brane wrapped on the S5 in the dual SUGRA description. Sakai
and Sugimoto argued in Ref. [156] that in the case of the D4/D8 brane system the
baryon vertex corresponds to a D4 brane wrapped on the S4. Let us recapitulate the
important points in the discussion in Ref. [185]: There the baryon is first constructed
as a vertex connecting Nc external quarks represented as endpoints of fundamental
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superstrings at the holographic boundary of spacetime, all oriented in the same di-
rection. The other endpoints of the strings have to end on a D-brane in the bulk --
for example a D5-brane wrapped on the internal S5 from the perspective of the AdS5

space time would describe such a vertex. Now a D5-brane wrapped on S5 carries
a charge of Nc due to the CS-coupling. One of the relevant terms of the D5-brane
action reads

1
2π

∫

R×S5
V ∧ F5, (4.8)

where V denotes the U(1)-part of the gauge field living on the world volume of the
D5 brane and

1
2π

∫

S5
F5 = Nc. (4.9)

Since a gauge field on a compact manifold cannot be charged, Witten concludes that
the total charge must vanish and the charge-contribution of −Nc is exactly provided
by the endpoints of Nc elementary superstrings ending on the wrapped D5 brane. In
the case of the Sakai--Sugimoto model we will therefore add to the D8-brane action
a source term provided by the DBI action describing a D4-brane wrapped on the S4.
Since we assume that the gauge fields should have no legs in the S4 directions the
source action should be a suitable distribution of

SD4 = T4

∫

dΩ4dτ e−Φ
√

detg. (4.10)

Since D4-branes are massive, precisely accounted for by the D4-brane action, they
feel the gravitational pull of the background space-time [44]. On the other hand the
D8-branes in which the D4-branes are dissolved prevent them from falling, hence
when calculating the embedding of the D8-branes in the background, one has to
take this force balancing into account.

Furthermore, using again the mode expansion of the gauge fields, the CS part
of the D8-brane action yields precisely the Wess-Zumino-Witten term of the Skyrme
model. Therefore, the large Nc baryons discussed above correspond to the chiral
solitons of the Skyrme model, which describe baryons there. The idea of these soli-
tonic baryons in the Skyrme model originally came from the discussion of baryons
in large Nc QCD in the late 70's and early 80's [180, 183, 182]. Using Nc counting
rules the main conclusions of [180] were that mesons are interacting weakly among
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each other ∼ N0
c , but strongly with baryons ∼ Nc. Furthermore the mass of the

baryons is ∼ Nc, i.e. diverging relative to the meson mass N0
c . Moreover the size

and shape of baryons in the Hartree-Fock approximation is independent of Nc. The
Polyakov--'t Hooft monopoles have similar behavior where now the weak coupling
constant is a valid expansion parameter, as is 1/Nc in large Nc QCD. The monopole
mass scales with the inverse of the coupling constant, the equations of motion are
independent of the coupling constant, and the electrons scatter non-trivially of the
monopoles in the weak coupling limit. In Refs. [183, 182] this analogy was made
precise in the context of the Skyrme model. Therefore, one might think of baryons
in the Sakai--Sugimoto model bridging the gap between the Skyrme model and the
ideas obtained in large Nc QCD. Further studies concerning baryons and their spec-
trum in the Sakai--Sugimoto model can be found in [101, 163]. The approximation
of point like D4-branes which is utilized in the Nf = 1 case was discussed in [154].

4.5 NJL limit

The Sakai--Sugimoto model may also be connected to the NJL model. In the "de-
compactified" limit where the asymptotic coordinate distance between the D8- and
anti-D8-branes is much smaller than the radius of the compactified extra dimension,
L ≪ M−1

KK , the Sakai--Sugimoto model is dual to a non-local NJL model [11]. As a
consequence, in the scenario with broken chiral symmetry, the D8-branes now in
general join at u0 > uKK. The difference u0 − uKK is commonly interpreted as the
constituent quark mass within a meson, which is realized as a string with both end
points attached to the tip of the joined D8-branes hanging down to the bottom of
the geometry. With a sufficiently small asymptotic separation of the flavor branes, it
is also possible to find an energetically preferred phase with broken chiral symmetry
in the deconfined background [4], see Fig. 4.3. The resulting phase diagram at finite
chemical potential was first discussed in [104]. By reducing L compared to M−1

KK , the
temperature range where the system is confined becomes small compared to the
temperature range governed by the deconfined and chirally broken phase. Eventu-
ally, the resulting phase diagram resembles the NJL result (where no confined phase
is present) shown in the right panel of Fig. 3.3. Consequently, the Sakai--Sugimoto
model allows for interpolating between a non-local NJLmodel (L ≪ M−1

KK ) and -- mod-
ulo the caveats mentioned in section 4.2 -- large-Nc QCD (L = πM−1

KK ). In the former
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Figure 4.3: The phase diagram for deconfinement and chiral symmetry breaking with small
asymptotic D8-brane separation.

limit, the flavor D8-branes do not probe deeply the background geometry produced
by the color D4-branes (which corresponds to neglecting gluon dynamics), while in
the latter the gluons dominate. In [21] point like D4-branes as baryon sources were
introduced in the non-antipodal D8-brane configuration.
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Chiral symmetry breaking in a

magnetic field in the NJL model

We will now focus on the effect of a background magnetic field on the chiral phase
transition of QCD, or to be more precise in the NJL and the Sakai--Sugimoto model.
In order to understand what effects a magnetic field might have on the formation of
the chiral condensate, let us recapitulate the general discussion given in [96]. As can
be seen from Eq. (2.12), calculating the chiral condensate in field theory amounts
to calculating a fermion loop. Let the bare fermion mass be finite for the moment in
order to regulate possible IR divergences and regularize the UV divergence via a cut-
off in some suitable scheme, e.g., Schwinger's proper time method. In the following
section we will show that in the presence of a magnetic field one has to take Landau
quantization of the transverse momentum of the charged fermions into account. It
turns out that if one performs the chiral limit in the calculation of the fermion loop,
an IR singularity appears, which can be shown to originate from the lowest Landau
level. As a consequence, a mass gap is dynamically generated in order to avoid
this IR singularity for any non-vanishing value of the dimensionless coupling con-
stant g in contrast to the previous results without magnetic field, where g > 1 was
a necessary condition for chiral symmetry breaking. The precise form of the gap is
of course dictated by the form of the interactions in the model under consideration.
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This effect -- termed magnetic catalysis -- was first found in the Gross-Neveu model
[116, 115] and later on in several NJL model calculations [96, 95, 98, 74] and in QED
[97] as well as in holographic approaches [67, 60, 68, 69, 45, 32, 59]. It also plays
an important role in the context of graphene [94, 89]. For QCD, it was found in a
lattice calculation (however, with unphysical quark masses) that the critical temper-
ature increases with the magnetic field [53], in accordance with magnetic catalysis.
However, recently the Budapest-Wuppertal collaboration found (with physical quark
masses) that the maximum of the quark susceptibility drops significantly at temper-
atures about 140 MeV under the influence of a magnetic field [15], i.e., the oppo-
site effect was observed. It remains an open and interesting question what prevents
magnetic catalysis to persist for larger temperatures in QCD. For simplicity we restrict
the chiral symmetry group to U(1)V ×U(1)A, i.e. Nf = 1 in the following discussions.

5.1 Fermions in a magnetic field

Let us consider a homogeneous backgroundmagnetic field B⃗ = (0,0,B) by choosing
the Landau gauge fixing condition with A⃗ = (−yB,0,0). Within this ansatz, the
eigenfunctions of the Hamiltonian are proportional to exp[i(ωnτ + kxx+ kzz)]. Using
this, we split the Dirac Hamiltonian in a longitudinal and a transverse part with respect
to the direction of the magnetic field, HD = HL + HT, where

HL = γ0γ3kz + γ0M ,

HT = sgn(q)
√

2 |q|B
(

−1 0
0 1

)

⊗
(

0 a†

a 0

)

, (5.1)

with

a ≡
√

|q|B
2

ξ + sgn(q)i
1

√

2 |q|B
(−i∂ξ) , ξ ≡ y +

kx

qB
. (5.2)

We see that a is the annihilation (creation for q < 0) operator of the quantum me-
chanical oscillator, which gives rise to the Landau quantization of the energy spec-
trum of a charged fermion moving in a background magnetic field. For q > 0, the



5.1. Fermions in a magnetic field 55

orthogonalized eigenfunctions of the Hamiltonian are given by

ψe,s
kx,kz,ℓ

(⃗x) =

=
ei(kzz+kxx)
√

LxLz

1
2√κkz,ℓϵkz,ℓ













s
√

κkz,ℓ + skz
√
ϵkz,ℓ − sκkz,ℓ ⟨ξ|ℓ⟩

√

κkz,ℓ − skz
√
ϵkz,ℓ − sκkz,ℓ ⟨ξ|ℓ− 1⟩

es
√

κkz,ℓ + skz
√
ϵkz,ℓ + sκkz,ℓ ⟨ξ|ℓ⟩

e
√

κkz,ℓ − skz
√
ϵkz,ℓ + sκkz,ℓ ⟨ξ|ℓ− 1⟩













(5.3)

where ℓ = 0,1,2,3, . . . denotes the Landau level, where

⟨ξ|ℓ⟩ =
1√
2ℓℓ!

( |q|B
π

)1/4

e−|q|Bξ2/2Hℓ
(√

|q|Bξ
)

, (5.4)

⟨ξ| − 1⟩ ≡ 0, and

ϵkz,ℓ =

√

k2z + M2 + 2 |q|Bℓ , κkz,ℓ =

√

k2z + 2|q|Bℓ . (5.5)

Here, Hℓ is the ℓth Hermite polynomial and Li is the length of a box with volume V

in the ith direction. In order to obtain the eigenfunctions for the case q < 0, one
simply replaces ⟨ξ|ℓ⟩ with ⟨ξ|ℓ− 1⟩ and vice versa.

FromEq. (5.3) we see that in the lowest Landau level (LLL) ℓ = 0 only the sgn(q) s =

1-states survive, which are also eigenstates of the helicity operator Σ3 = γ0γ3γ5 as
well as zero-eigenmodes of HT. Therefore, the dynamics of the LLL becomes effec-
tively 1 + 1-dimensional and the fermions are fully polarized. Moreover, in the limit
M → 0 for sgn(q)e kz > 0 (< 0) these states are right- (left-) handed only. This is
an indication that the magnetic field induces an axial current [127]. Its expectation
value is given by

⟨jµ5⟩ = −T
V
Tr

γ0γµγ5
iωn + µ− ϵ

. (5.6)

For the diagonal matrix elements of γ0γ3γ5 with respect to the eigenspinors above
we find

(γ0γ3γ5)e,s,kz,ℓ = sgn(q)
skz

κkz,ℓ
. (5.7)

Due to the sum over s in the axial current (5.6), the relation (5.7) shows that only the
LLL level contributes. Due to the sum over e there can only be a finite contribution if
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µ ̸= 0. Since we have put the fermions into a box with volume V = LxLyLz, the range
of y is restricted to [−Ly/2, Ly/2] and therefore kx,max − kx,min = Ly |q|B, because we
have absorbed kx into the new coordinate ξ. Hence, because of Δkx = 2π/Lx, each
energy level for given e, kz, s and ℓ has a degeneracy of LxLy |q|B/(2π). In two cases
the result for the axial current along the magnetic field can be given in closed form,

M = 0, ∀ T : ⟨j35⟩ =
qBµ
2π2 , (5.8)

T = 0, ∀ M < µ : ⟨j35⟩ =
qB
√

µ2 − M2

2π2 . (5.9)

The prefactor |q|B/(2π) found by phase space considerations has a very special role
here. It is the difference of the number of zero-eigenmodes of HT with s = 1 and
s = −1 respectively. This is a topological result since it is given by the index of
each 2× 2 block of HT, which in turn is linked to the Euclidean chiral anomaly in two
dimensions via the index theorem. Furthermore, the first result is independent of T

which is a special feature of massless 1 + 1 dimensional fermions and hence again
reflects the effective dimensional reduction.

5.2 NJL model in an external magnetic field

Let us return to chiral symmetry breaking, now in the presence of a magnetic field.
The thermodynamic potential and the gap equation read

Ω =
NcM2

2λ2
+

−Nc |q|B
2π

∑

e=±

∞∑

ℓ=0

αℓ

∫ ∞

−∞

dkz

2π

[
ϵkz,ℓ

2
+ T ln

(

1+ e−
ϵkz,ℓ−eµ

T

)]

, (5.10)

1
λ2

=
|q|B
2π

∞∑

ℓ=0

αℓ

∫ ∞

−∞

dkz

2π
1
ϵkz,ℓ

[
1− f(ϵkz,ℓ − µ)− f(ϵkz,ℓ + µ)

]
, (5.11)

where αℓ ≡ 2 − δ0ℓ. Comparing with the corresponding B = 0 expressions in Eqs.
(3.3) and (3.4), we see that the effect of the magnetic field is to replace ϵk → ϵkz,ℓ

and

2
∫

d3k
(2π)3

→ |q|B
2π

∞∑

ℓ=0

αℓ

∫ ∞

−∞

dkz

2π
. (5.12)
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Using again proper time regularization, the thermodynamic potential at vanishing
temperature becomes

1
Nc

ΩT=0 =
1
Nc

Ωµ=T=B=0

−(qB)2

2π2

[
x2

4
(3− 2 ln x) +

x
2

(

ln
x
2π

− 1
)

+ ψ(−2)(x)
]

−|q|B
4π2 θ(µ− M)

ℓmax∑

ℓ=0

αℓ

(

µkF,ℓ − M2
ℓ ln

µ+ kF,ℓ

Mℓ

)

. (5.13)

Here, Ωµ=T=B=0 is the vacuum part from Eq. (3.5), ψ(n) the n-th polygamma function
(analytically continued to negative values of n), we have abbreviated x ≡ M2/(2|q|B),
and

Mℓ ≡
√

M2 + 2|q|Bℓ , kF,ℓ ≡
√

µ2 − M2
ℓ , ℓmax ≡

⌊
µ2 − M2

2|q|B

⌋

. (5.14)

Different regularization schemes -- compare for instance with [126], where dimen-
sional regularization is used -- only differ in the B = 0 result and in (divergent) terms
that depend on B but are constant in M, which are omitted. The latter can be viewed
as renormalizing the energy content coming solely from the magnetic field.

The corresponding gap equation is

1
g

=

[

e−M2/Λ2 − M2

Λ2 Γ

(

0,
M2

Λ2

)]

+2
|q|B
Λ2

[(
1
2
− x
)

ln x + x + lnΓ(x)− 1
2
ln 2π

]

−2
|q|B
Λ2

ℓmax∑

ℓ=0

αℓ ln
µ+ kF,ℓ

Mℓ
θ(µ− M) . (5.15)

5.3 Magnetic catalysis

Let us first consider the case µ = 0, i.e., we can ignore the terms ∝ θ(µ − M) in
Eqs. (5.13) and (5.15). For small coupling g ≪ 1, the dynamical mass squared will
be much smaller than the magnetic field, M2 ≪ |q|B. Then, with M ≪ Λ, the gap
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equation becomes
1
g
≃ 2|q|B

Λ2 ln

√

|q|B
πM2 . (5.16)

Now, there is a nontrivial solution for arbitrarily small g. This is in contrast to the case
B = 0 where chiral symmetry can be broken only for g > 1. The solution is obviously

M ≃
√

|q|B
π

e−
π2

|q|BG . (5.17)

This qualitative effect of the magnetic field on chiral symmetry breaking was termed
"magnetic catalysis" in [95] and was since observed in numerous different models.
Interestingly, as already mentioned in the introduction, this effect stems mainly from
the physics in the LLL. In order to show that, one omits all contributions from ℓ > 0
in (5.11) and cuts off the momentum integral at

√

|q|B/4π, since below that cut-off
the LLL dominates. Then, one obtains exactly the result (5.17). Furthermore, the
logarithmic IR singularity in (5.16) regulated by the dynamically generated mass is
precisely due to the LLL contribution and its 1+ 1 dimensional nature. The form of
the gap in the weak coupling limit is reminiscent of the BCS gap in a superconductor
[17]. In both expressions for the respective gap the relevant density of states appears
in the denominator of the exponent. Here it is the density of states of the massless
fermions at ϵkz,ℓ=0 = 0, whereas in the BCS gap it is the density of states at the Fermi
surface. In both cases the dynamics is essentially 1 + 1-dimensional. While in BCS
theory this effective dimensional reduction is a consequence of the Fermi surface,
here it is provided by the magnetic field. Note that the dimensional reduction is not
in conflict with the Mermin--Wagner--Coleman theorem that states that no sponta-
neous symmetry breaking can occur in 1 + 1 dimensions. The reason is that the
Nambu--Goldstone modes are neutral, and hence their motion is not restricted by
the magnetic field. At extremely large magnetic fields the internal structure of these
modes can be resolved which might invalidate this argument [72].

Let us try to understand this effect also less formally using the analogy with BCS
super conductivity. As we have discussed briefly in chapter 2, Cooper pairing takes
place in a small vicinity of the Fermi surface. An arbitrarily small attractive interac-
tion suffices to induce an instability of the Fermi surface which leads to pairing and
the formation of an energy gap. In chiral symmetry breaking at µ = 0, the pairing
takes place between fermions and anti-fermions at the energy level ε = 0. However,
without a magnetic field, there are actually no constituents available for pairing in
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Figure 5.1: Effects of magnetic catalysis on the dynamical mass M and the critical temper-
ature. Left: the gap at T = µ = 0 for different couplings. The lowest coupling shown
corresponds to a subcritical coupling at B = 0, i.e., its nonzero value is solely induced by B.
Its behavior at small B is given by the exponential in Eq. (5.17). Right: the critical temperature
for chiral symmetry restoration as a function of B.

the vicinity of ε = 0, since the density of states vanishes there. This is in contrast
to the BCS superconductor, where at the Fermi surface plenty of states are available
∼ µ2. This we might interpret as the reason for the condition g > 1 for pairing in the
NJL model. In terms of the Dirac sea picture we need strong interactions in order
to "dig deeper" into the Dirac sea and pair particles with ε ̸= 0. This is different in
a background magnetic field: The density of states at ε = 0 is ∼ B as explained in
the introduction of this chapter, hence even in an infinitesimal vicinity of this "Dirac
surface" there are states available for pairing. Given the similarity of the NJL model
and a relativistic BCS model where the phonon mediated interaction has been ap-
proximated by a point like interaction, it is quite natural that the gaps of both models
turn out to share common features.

We show the numerical solution of the gap equation for various values of the
coupling for T = µ = 0 in the left panel of Fig. 5.1. Magnetic catalysis also manifests
itself in the critical temperature for chiral symmetry restoration, which, at µ = 0,
monotonically increases with increasing magnetic field, see right panel of Fig. 5.1.

5.4 Inverse magnetic catalysis

We now include the contributions from a non-vanishing chemical potential µ. First
we discuss the case of weak coupling which corresponds to M2 ≪ |q|B. Since the
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chiral phase transition can be expected to occur at chemical potentials of the order
of the mass gap, we may thus also assume µ2 ≪ |q|B (we are not interested in the
physics far beyond the phase transition). As a consequence, we can employ the
lowest Landau level approximation, i.e., drop the contribution of all higher Landau
levels. Then, from Eq. (5.13) we conclude that the difference of the thermodynamical
potentials of the chirally broken phase and the quark matter phase is

ΔΩ ≃ |q|B
4π2

(

µ2 − M2

2

)

− |q|B
4π2 µkF,0θ(µ− M)

+
Λ2M2

8π2

(

1
g
− 2|q|B

Λ2 ln

√

|q|B
πM2 +

2|q|B
Λ2 θ(µ− M) ln

µ+ kF,0

M

)

︸ ︷︷ ︸

=0 via gap equation

. (5.18)

Again, we find a very interesting analogy to superconductivity: the resulting expres-
sion is exactly the same as for a BCS superconductor with mismatched Fermi mo-
menta -- first discussed by Clogston [51] and Chandrasekhar [47] -- after M is replaced
by the superconducting gap Δ, |q|B -- the density of states at ε = 0 -- by the average
Fermi momentum (squared) of the constituents of a Cooper pair, and µ by (half) the
difference of the respective Fermi momenta1.

To discuss the meaning of ΔΩ for the chiral phase transition, let us first consider
the case of a fixed magnetic field B and start from µ = 0, i.e., in the chirally broken
phase. Upon increasing µ, we will reach the point µ = M/

√
2 where ΔΩ changes

its sign and thus the phase transition to the chirally restored phase occurs. This
point is, in the context of superconductivity, called the Clogston limit. It occurs
before the second term has a chance to contribute since still µ < M. Now, more
importantly for our purpose, let us again start in the chirally broken phase, i.e., from
ΔΩ < 0, but now we increase the magnetic field at fixed µ (as we have just seen,
for the discussion of the phase transition we may assume µ < M and thus ignore
the term ∝ θ(µ− M)). Since we have started from a negative µ2 − M2/2, increasing
the magnetic field can only make ΔΩ more negative because the dynamical mass

1Interestingly, compared to the original work [51, 47] the roles of magnetic field and chemical
potential are exaclty reversed. There, the splitting of the Fermi surface of the two fermion species (spin
up and spin down) was induced by the magnetic field due to Zeemann splitting, while the chemical
potential entered via the density of states at the Fermi surface ∼ k2F .
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increases with B. Consequently, the magnetic field only brings us "deeper" into the
chirally broken phase. This is what we have expected from magnetic catalysis.

However, as we will now explain, for g > 1 and finite chemical potential this ex-
pectation is incorrect. We shall rather find that, for intermediate values of the mag-
netic field, an increasing magnetic field does restore chiral symmetry. Let us, to this
end, first discuss the numerical solution of the gap equation, see Fig. 5.2. Due to the
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Figure 5.2: The zero-temperature dynamical mass as a function of the chemical potential
for different values of the magnetic field. For the lowest nonzero value of |q|B shown (solid
line), Landau level oscillations can be seen. The magnetic field for the two other curves
(dashed and dashed-dotted lines) is sufficiently large to suppress all Landau levels except
for the lowest.

sum over the Landau levels, the gap exhibits the well-known de Haas--van Alphen
oscillations. Similar to the behavior found for B = 0, only the branches with a nega-
tive slope of M(µ) can be energetically preferred. Depending on the specific value
of g there might be several phase transitions within the gapped phase into regions
with µ > M, i.e., with a finite quark number density, before entering the restored
phase M = 0. In general it is also possible that the order of the phase transition into
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the restored phase oscillates between first and second order upon varying B: in the
example shown in the plot, at vanishing magnetic field the phase transition is first
order, while at |q|B/Λ2 = 0.13 it is second order and at |q|B/Λ2 = 0.19 again first
order. We also see that the dashed (blue) curve for the lower magnetic field reaches
farther in the µ direction than the dashed-dotted (black) curve for the larger magnetic
field. This is a surprise from the point of view of magnetic catalysis: it seems to in-
dicate that the critical chemical potential for chiral symmetry breaking can decrease
with increasing magnetic field. We discuss this "inverse magnetic catalysis" in more
detail now.

T=0, g=4.1061

ΧSb
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LLL

higher LL
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Figure 5.3: Zero-temperature chiral phase transition in the plane of magnetic field and quark
chemical potential at a rather large value of the coupling constant such that the phase tran-
sition is first order for all magnetic fields. (For smaller values the shape of the transition line
is similar, but the order can vary between first and second.) Apart from oscillations at small
B due to higher Landau levels in the chirally restored phase, the critical chemical potential
decreases up to qB/Λ2 ≃ 0.5, see explanation in the text. The dashed-dotted line is the
approximation to the phase transition line from Eq. (5.20).

To this end, let us consider the "cleaner" case of sufficiently large couplings
where symmetry restoration happens in the region µ < M for all magnetic fields.
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In this case, oscillations of the critical line in the phase diagram originate solely from
the restored phase (not from the solution of the gap equation), and the phase tran-
sition is always first order. The numerically obtained phase diagram for such a case
is shown in Fig. 5.3. From the arguments in the previous section, one might have
expected that magnetic catalysis leads to a monotonically increasing critical chem-
ical potential as a function of B (just like the critical temperature in the right panel
of Fig. 5.1). However, this is not the case: there is a region in the phase diagram
where, upon increasing B at fixed µ, chiral symmetry is restored, in contrast to the
weak-coupling case discussed below Eq. (5.18).

In order to understand this phenomenon, let us derive an analytic expression
for ΔΩ, analogous to the weak-coupling case. As discussed, for the given large
coupling, the solution to the gap equation is simply given by the µ = 0 solution. For
small magnetic fields, |q|B ≪ M2, we can expand the solution up to second order in
the magnetic field,

M ≃ M0

[

1+
(qB)2

6M4
0Γ(0,M

2
0/Λ

2)

]

, (5.19)

where M0 is the solution for µ = B = 0. Inserting this solution into Eq. (5.13), we
obtain the free energy for the chirally broken phase up to second order in B. The free
energy for the chirally restored phase is, althoughwe can setM = 0, complicated due
to the sum over Landau levels. Let us therefore ignore the higher Landau levels. This
seems to contradict our assumption of a small magnetic field which we have made
for the chirally broken phase. Nevertheless, we shall see that the phase transition
line obtained from this approximation reproduces the full numerical line in a region
of intermediate magnetic fields. Since this is exactly the region where the "back
bending" of the phase transition line is most pronounced, this serves our purpose
to capture the main physics of the inverse magnetic catalysis. With M0 ≪ Λ, the
resulting free energy difference is

ΔΩ ≃ −M2
0Λ

2

16π2

(

1− 1
g

)

+
|q|B
4π2 µ

2 − (qB)2

24π2

[

1− 12ζ ′(−1) + ln
M2

0
2|q|B

]

.(5.20)

(This is the generalization of Eq. (3.9) to nonzero (but small) magnetic fields.) This
expression allows for a qualitatively different phase transition line compared to the
weak-coupling limit (5.18) for the following reason. The term linear in B corresponds
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to the cost in free energy to form a fermion--anti-fermion condensate at finite µ. Im-
portantly, this cost depends not only on µ, but also on the magnetic field. This is
also true at weak coupling. However, in that case, the gain from the condensation
energy was also linear in B. This is different here: now, if we start from the chirally
broken phase, i.e., from ΔΩ < 0, increasing the magnetic field can lead to a change
of sign for ΔΩ and thus restore chiral symmetry. This is what we have termed inverse
magnetic catalysis in [145]. In this reference, we have also explained that the physi-
cal picture can be understood once again in analogy to superconductivity, where, in
the presence of a mismatch in Fermi momenta, it is useful to think of a fictitious state
where both fermion species are filled up to a common Fermi momentum. Creating
such a state costs free energy which may or may not be compensated by conden-
sation. The point of inverse magnetic catalysis is that creating such a fictitious state
(where fermions and anti-fermions are not separated by µ) becomesmore costly with
increasing B, while B still enhances the dynamical gap due tomagnetic catalysis. The
magnetic field thus plays an ambivalent role by counteracting its own catalyzing ef-
fect.

This effect was first observed in the NJL model in [58] at T = 0 and in [106] for
the full three dimensional T-µ-B parameter space, and has been confirmed in various
other calculations [62, 34, 48, 14, 7, 61, 65]. Only for sufficiently strong magnetic
fields the system enters the regime where magnetic catalysis is dominant. Typical
fits of the model-parameters yield a cut-off of the order of a few hundred MeV [40].
Translating this into a scale for the magnetic field shows that the regime of magnetic
catalysis is beyond themagnetic field strength expected in compact stars, and thus, if
there is any observable effect of the magnetic field for the phase transition between
hadronic and quark matter, it is inverse magnetic catalysis.



CHAPTER ..6
Chiral symmetry breaking in a
magnetic field in holography

The effect of a homogeneous background magnetic field in the Sakai--Sugimoto
model has first been considered in [22]. Shortly thereafter, the effect on the criti-
cal temperature for chiral symmetry restoration at vanishing chemical potential has
been analyzed with non-antipodal brane separation [110]. Like in the NJL model
shown in Fig. 5.1, the critical temperature increases with the magnetic field, which
shows that the Sakai-Sugimoto model exhibits magnetic catalysis. Finite chemical
potentials have been introduced together with a magnetic field in [171] in the origi-
nal Sakai--Sugimoto model. The deconfined, chirally symmetric phase was discussed
in [121], where a magnetic phase transition within the symmetric phase was found
that is reminiscent of a transition to the lowest Landau level. The full phase diagram
in the parameter space T-µ-B in the deconfined phase was presented in [145]. In
particular, the effect of inverse magnetic catalysis effect was found and discussed in
this reference.

The Sakai-Sugimoto model can be developed further to include homogeneous
baryonic matter, made from point-like approximations to the solitonic baryons men-
tioned above [21]. Applications in the context of a background magnetic field have
been studied in the confined [23] and deconfined [146] backgrounds, the latter study

65
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investigates the effect of baryonic matter on inverse magnetic catalysis and will be
presented below.

6.1 Set up

For the (dimensionless) U(1) gauge field we choose the ansatz

a =
2πα′

R
Aµdxµ = a0(u)dt + bx1dx2 + a3(u)dx3, (6.1)

whereb = 2πα′Bdenotes themagnitude of the dimensionlessmagnetic field strength.
Note that the necessity of introducing the third component of the gauge field, which
is P-odd, is due to the coupling to a0 and b via the (P-odd) CS-action. We denote the
asymptotic values of the gauge field and the embedding function x4(u) by

a0(∞) = µ ≡ µq
2πα′

R
, a3(∞) = j , x4(∞) =

ℓ

2
, (6.2)

where µq is the dimensionful quark chemical potential1, and ℓ ≡ L/R is the dimen-
sionless asymptotic separation of the flavor branes. The boundary value of a3 can
be shown to correspond to a finite expectation value for the pion gradient in the
direction of the magnetic field, hence it will only be non vanishing when chiral sym-
metry is broken. In that case, one has to extremize the on-shell action with respect
to j [171, 23, 151]. From the field theory perspective this means that, if j ̸= 0, the
chiral condensate is rotating between a scalar and a pseudoscalar condensate when
moving along the z-direction, i.e., it forms a so-called chiral spiral [161]. Each full
turn of the spiral raises the baryon number by one. Therefore, since j measures the
rate of turns per unit length, it is related to the baryon density. Equivalently, one
can regard j as a supercurrent, in analogy to superfluidity, where the phase of the
condensate gives the superfluid velocity.

Within our ansatz, the action for each D8-brane describing left- and right-handed
fermions respectively becomes

S′ =
NV
2T

∫ ∞

ui

du

[
√

u5 + b2u2

√

u3fx′24 +
hd

f
− a′20 + a′23 hd+

±3b
2
(a3a′0 − a0a′3)

]

, (6.3)

1Here we keep the notation of Refs. [145, 146]. Note that in the NJL section µ is the dimensionful
quark chemical potential.
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Figure 6.1: The three possible D8-brane configurations in the black hole background geom-
etry from the left to the right: chirally broken without baryons, chirally broken with baryons
and chirally restored. The first two configurations also exist in the confined background, i.e.
the cylinder is replaced by the cigar.

where the lower bound of the integration has to be chosen according to the phase
under consideration:

• ui = u0 in the phase with broken chiral symmetry without baryons; u0 is the
junction point of the two D8-branes and we assume that a0(u) and a3(u) are
continuous at u0

• ui = uc in the phase with broken chiral symmetry with baryons; uc is the junc-
tion point of the two D8-branes as well as the location of the baryons and we
assume that a0(u) and a3(u) are continuous at uc

• ui = uT in the phase with restored chiral symmetry; uT denotes the location of
the black hole horizon; we will see that x4(u) ≡ 0 is a solution to the equa-
tions of motion; due to regularity conditions a0(uT) = 0 [104]; no restrictions
imposed on a3(u)

These three configurations are summarized in Fig. 6.1. The constant N is defined
by the equation

N ≡ 2
T8R5Ω4

gs
=

NcR2

6π2(2πα′)3
. (6.4)

The sign in front of the CS term accounts for its P-odd behavior, D8- and anti-D8-
branes are oppositely charged with respect to the RR-flux. In (6.3) we have followed
[23] and modified the original action S and denoted the new action by S′. The
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reason is that proceeding with S results in an inconsistency: the conserved currents
sourced by the boundary values of the gauge field turn out to be different from
those currents calculated using the thermodynamic relations. In [23] this issue was
related to the gauge variance of the CS action. The solution to this problem is to
supplement the CS action with boundary terms residing at the holographic as well
as at the spatial boundaries. After integration by parts this modification amounts to
simply multiplying the CS contribution with a factor 3/2. This procedure restores the
thermodynamical consistency albeit at the cost of a correct implementation of the
axial anomaly [152].

Note that since we identify the dimensionless baryon chemical potential with the
asymptotic value of the zeroth component of the gauge field on both the D8-brane
and the anti-D8-brane, a0(u) must be P-even.

Since for Nf = 1 there exist no non-singular solutions for the instanton, we ap-
proximate the instanton of typical size λ−1/2 by a point like configuration residing
at the junction point of the D8-branes denoted by uc in a phase with broken chiral
symmetry and baryons and assume a homogeneous distribution of these point like
baryons

1
8π2TrF

2 = ∓N4

V
δ(u − uc)dud3x . (6.5)

Similar to the rescaling of the gauge fields above we introduce the quantity

n4 =
N4Nc

V
R

N2πα′
. (6.6)

which we call dimensionless baryon density becauseN scales with Nc. Plugging this
into Eq. (4.7) yields

Sbaryon
CS = −NV

2T
n4a0(uc) , (6.7)

where we have set ∫ ∞

uc

δ(u − uc)du =
1
2
.

As mentioned in chapter 4 we also have to take into account the energy density
of |N4| many D4-branes. According to the picture developed there, one of the D8-
branes, i.e. one half of the full D8-brane configuration, has to counteract half of the
gravitational pull affecting the D4-brane, therefore we compute

|N4|
2

SD4 =
V
2T

|N4|Nc

V
Mq =

NV
2T

|n4|
uc

3

√

hd(uc) . (6.8)
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Here we introduced the constituent quark mass in a baryon

Mq =
R

2πα′

uc

3

√

hd(uc) , (6.9)

hence the baryon mass is given by mB = NcMq.

6.2 Equations of motion, conserved currents and force
balancing

In order to find the equations of motion for a0, a3 and x4 we vary the action with
respect to these fields. The respective variations of the DBI action read

−NV
2T





∫ ∞

ui

du
∂

∂u



−
√

u5 + b2u2a′0
√

u3(x′4)
2f + hd

f − (a′0)
2 + (a′3)

2hd



 δa0

+

√
u5 + b2u2a′0

√

u3(x′4)
2f + hd

f − (a′0)
2 + (a′3)

2hd

δa0|∞ui



 , (6.10)

NV
2T





∫ ∞

ui

du
∂

∂u



−
√

u5 + b2u2a′3hd
√

u3(x′4)
2f + hd

f − (a′0)
2 + (a′3)

2hd



 δa3

+

√
u5 + b2u2a′3hd

√

u3(x′4)
2f + hd

f − (a′0)
2 + (a′3)

2hd

δa3|∞ui



 , (6.11)

NV
2T





∫ ∞

ui

du
∂

∂u



−
√

u5 + b2u2u3x′4f
√

u3(x′4)
2f + hd

f − (a′0)
2 + (a′3)

2hd



 δa3

+

√
u5 + b2u2u3x′4f

√

u3(x′4)
2f + hd

f − (a′0)
2 + (a′3)

2hd

δx4|∞ui



 . (6.12)

The term in parenthesis of the first line is also called electric displacement field E(u)
in analogy to electrodynamics. If there were no source terms coming from the CS
terms which wewill derive below, the equation of motion for a0 would tell us that the
divergence of E(u) vanishes. For the variation of the abelian CS action with respect
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to a0 and a3 we find

±NV
2T

3b
2

[∫ ∞

ui

du − 2a′3δa0 + a3δa0|∞ui

]

, (6.13)

±NV
2T

3b
2

[∫ ∞

ui

du 2a′0δa3 − a0δa3|∞ui

]

. (6.14)

Finally, for the variation of the non-abelian CS action only the one with respect to
a0 contributes

NV
2T

n4δa0|uc . (6.15)

From theDBI action and the abelian CS actionwe obtain the integrated equations
of motion valid in the region (ui,∞)

√
u5 + b2u2a′0

√

u3fx′24 + hd
f − a′20 + a′23 hd

= ±3ba3 + c± , (6.16)

√
u5 + b2u2hda′3

√

u3fx′24 + hd
f − a′20 + a′23 hd

= ±3ba0 + d± , (6.17)

√
u5 + b2u2fu3x′4

√

u3fx′24 + hd
f − a′20 + a′23 hd

= k± , (6.18)

where c±, d± and k± denote integration constants. Since a0 is P-even we can im-
mediatly conclude from the first equation that c+ = c− ≡ c and a3 must be P-odd.
Furthermore,

• If the D8-branes join, we also have a3(ui) = 0 by the continuity assumption.
Likewise we infer from the second equation d+ = −d− ≡ d and from the third
k+ = −k− ≡ k.

• In the case where the D8-branes reach the horizon with x′4(uT) < ∞, we con-
clude that k = 0 because f(uT) = 0, hence x′4(u) ≡ 0, i.e. the branes do not
curve. Furthermore, due to the regularity constraint a0(uT) = 0 and due to
hd(uT) = f(uT) = 0 we infer from the second equation for regular a′3(uT) that
d = 0 in the restored phase.

Let us next focus on the boundary terms of the variations. If the D8-branes join,
they yield further junction conditions, since we might think of the joined brane con-
figuration as one single D8-brane, hence the sum of the terms at the lower boundary
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ui must vanish, e.g.

−2E(uc) + 2n4 = −2c + 2n4 = 0 .

Therefore, if baryons are present, we can identify c with n4, while without baryons
we find c = 0.

The electric displacement field E is the component of a vector field pointing
towards larger values of u on both D8-branes. When we move past the point ui in
the joined D-brane configuration, the direction of the electric field is flipped, since
we assume that a0 is P-even. Therefore, since a3(u0) = 0, the integration constant c

corresponds to a point-like charge at u0. In the restored phase, on the other hand,
in general c ̸= 0, hence the horizon provides a charge that will be translated into the
quark density at the boundary.

In addition to these point-like charges, if the magnetic field is nonzero, there
is a contribution to the quark density from the gradient of a3, which in general is
distributed over the whole D8-brane world volume.

From the boundary terms evaluated at u → ∞ we find the conserved currents of
the global symmetry of the dual field theory. According to the holographic dictionary
they represent the response sourced by the fluctuations of the bulk gauge fields at
the boundary. The non vanishing components of the current densities are given by

J 0
V = J 0

R + J 0
L =

2πα′N
R

(
3b
2

j + c
)

, (6.19)

J 3
A = J 3

R − J 3
L =

2πα′N
R

(
3b
2
µ+ d

)

, (6.20)

wherewe have used the equations ofmotion. The first line relates the baryon density
with the magnetic chiral spiral and the point-like charges in the bulk. The second line
is the axial current which we have already encountered in section 5.3.

The only parameters we are free to control are T, µ and ℓ. So in the broken phase
we still have to determine j, d, ui and k as well as n4 if baryons are involved. We have
to find their values that minimize the free energy, i.e. the on-shell action. Because
we have to extremize the thermodynamic potential with respect to j, i.e., with respect
to a3(∞), we can immediately conclude that in the broken phase the axial current
has to vanish, hence d = −3/2 bµ. By using partial integration and the equations of
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motion, the extremization with respect to n4 is

0 =
∂Son−shell

∂n4
=




∑

i=0,3

∂L0

∂a′i

∂ai

∂n4
+
∂L0

∂x′4

∂x4
∂n4





u=∞

u=uc

±uc

3

√

hd(uc)− a0(uc)− n4
∂a0(uc)

∂n4
, (6.21)

where the upper (lower) sign holds for n4 > 0 (n4 < 0). The only non-vanishing
contribution from the term in parenthesis -- coming from the derivative of a0(uc)

with respect to n4 -- cancels the last term, since all other values of the fields at the
boundary are fixed. This determines the value of a0 at the source location

a0(uc) = ±1
3

uc
√

hd(uc) . (6.22)

Therefore the baryon contributions from the CS-D8-brane action and from the D4-
brane action cancel on shell.

Before proceeding with seeking the minimum of the free energy with respect to
the junction point ui, we algebraically rearrange equations (6.16)--(6.18)

a′0 =

√

hdu3/2(3ba3 + c)
g(u)

, (6.23)

a′3 =
u3/2(3ba0 + d)
√

hdg(u)
, (6.24)

x′4 =

√

hdk
fu3/2g(u)

, (6.25)

g(u) :=
(

f(u8 + b2u5)− k2 + fu3(3ba3 + c)2+

− f
hd

u3(3ba0 + d)2
)1/2

. (6.26)

For the minimization with respect to ui we find

0 =
∂Son−shell

∂uc
=




∑

i=0,3

∂L0

∂a′i

∂ai

∂uc
+
∂L0

∂x′4

∂x4
∂uc





u=∞

u=uc

− L0(u = uc) . (6.27)
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After some algebraic rearrangement and using the equations of motion this yields
an equation for k

g(u)|ui =
√

f(ui)(u8
i + b2u5

i )− k2 + f(ui)u3
i c2 − f(ui)

hd(ui)
u3

i (3ba0(ui)− 3/2 bµ)2

=
n4

3
u3/2

c
f(uc)[3− hd(uc)]

2hd(uc)
, (6.28)

⇒ k2 = f(ui)(u8
i + b2u5

i ) + f(ui)u3
i c2 − f(ui)

hd(ui)
u3

i (3ba0(ui)− 3/2 bµ)2 .

−
(

n4

3
u3/2

c
f(uc)[3− hd(uc)]

2hd(uc)

)2

.

This together with Eq. (6.25) shows that in the case without baryons the D8-branes
join smoothly, i.e. x′4(u0) = ∞, as might have been expected because g(u0) = 0.
On the other hand, in the baryonic phase the D8-branes are connected with a cusp
at uc. Eq. 6.28 is also referred to as force balance equation and can alternatively be
derived from equating the gravitational force acting on the D4-brane mass and the
proper tensions of the D8- and anti-D8-branes at uc. The remaining parameters n4,
uc and j are then found by solving the boundary value problem.

In the chirally symmetric phase we have to set d = 0 from the start, so the mini-
mization with respect to j cannot be satisfied, hence we also set j = 0 in the restored
phase. This makes perfectly sense, since we interpret j as the phase of the chiral con-
densate. The axial current at any temperature -- reinstating dimensionful quantities
-- reads

J 3
A =

Nc

4π2Bµq . (6.29)

This result differs from the corresponding expression (5.8) obtained in the NJL model
by a factor 2, which is related to the modification of the CS term in the action in order
to obtain a consistent thermodynamic description of the currents. For a thorough
discussion of the effect of this modification on the chiral anomaly see Ref. [152].
The only parameters that are so far not determined in the restored phase are thus c

and a3(uT). The two equations of motion for a0 and a3 together with the boundary
conditions a0(∞) = µ, a0(0) = 0 and a3(∞) = 0 suffice to do so.
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The differential equations (6.23)--(6.25) have to be solved numerically. However,
as we will discuss now, there exist specific cases that reduce the necessary numerical
effort tremendously.

6.3 Semianalytic solution to the equations of motion

Let us define the function y(u) by the differential equation

y′ =
3bu3/2
√

g(u)
. (6.30)

for which we have the freedom to choose y(ui) = 0. Its value at the holographic
boundary will be denoted by y∞ in the following. Furthermore y′(u) is positive,
hence we may regard y as a new coordinate, replacing u. Then the equations of
motion (6.23)--(6.25) become

∂ya0 =
√

hd

(

a3 +
c
3b

)

, (6.31)

∂ya3 =
1
√

hd

(

a0 +
d
3b

)

, (6.32)

x′4 =
hd

f
k

3bu3 y′(u) . (6.33)

Note that the metric factor
√

hd prevents us from solving the equations of motion for
the gauge fields analytically in terms of the coordinate y. But there exist situations
in which hd ≡ 1 is the case or we might approximate hd ≃ 1:

• In the confined background hd is simply equal to 1.

• In the deconfined background at T = 0 wemay set hd(uT = 0) = 0 and hd(u) =

1 for u > 0; this particular choice guarantees that one also finds the condition
d ≡ 0 in the chirally restored phase.

• As will be justified a posteriori, in the chirally broken phase for L ≪ M−1
KK we

have ui ≫ uT in the deconfined background as well as ui ≫ uKK. Hence, as
long as we are only interested in the physics of the broken phase, we might set
uKK = 0 as well as uT = 0, which amounts to solving equivalent equations, and
no distinction between deconfined and confined background can be made re-
garding the chiral dynamics of themodel. Henceforth we shall therefore simply



6.3. Semianalytic solution to the equations of motion 75

refer to this description of the chirally broken phase as zero temperature limit.
We will utilize this approximation below. Of course, in case of the restored
phase no such approximation is allowed, since the D8-branes probe the IR re-
gion of the gravitational background. This is of course not negligible and will
be the only source for the nontrivial temperature dependence of the chiral
phase transition presented here.

• In the special cases µ = 0 and/or b = 0 at least one of the gauge fields is trivial
and hd can be absorbed in the definition of y′(u).

In the zero temperature limit the equations of motion for a0 and a3 simplify con-
siderably:

∂ya0 = a3 +
c
3b

, ∂ya3 = a0 +
d
3b

, (6.34)

for which we can easily find the solutions

a0 = c1 cosh y + c2 sinh y − d
3b

,

a3 = c1 sinh y + c2 cosh y − c
3b

. (6.35)

Therefore, the expression for y′ simplifies to

y′ =
3bu3/2

√

u8 + u5b2 − k2 + (3b)2u3(c22 − c21)
, (6.36)

with

k2 = u8
i + b2u5

i + u3
i

(
8n2

4
9

− 9b2c21

)

(6.37)

if the symmetry is broken and k = 0 otherwise. This allows us to write the grand
canonical potential, i.e., the on-shell action, as

Ω = N
[∫ ∞

ui

3b
y′

du +
kℓ
2

− 3b
2

y∞
(

c22 − c21
)

− c
2
(µ− c1) +

d
2
(j − c2)

]

. (6.38)

This expression is divergent. In order to obtain finite expressions we renormalize the
grand canonical potential by the chirally symmetric vacuum contribution

Ω(µ = T = 0) = N
∫ Λ

0
du
√

u5 + b2u2 . (6.39)
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χSb baryonic χSb restored

d −3b
2
µ −3b

2
µ 0

c1
µ

sinh y∞
−µ
2
± uc

3
0

c2 0
c
3b

µ

sinh y∞

c 0
3b
2
µ
cosh y∞ + 1

sinh y∞
∓ buc coth y∞ 3bµ coth y∞

j
µ

2
tanh y∞ ±uc

3
cosh y∞ − 1

sinh y∞
0

Table 6.1: The integration constants d, c1, c2, c and the supercurrent j for the chirally broken
phases with and without baryons and the restored phase.

Now we may calculate the remaining so far unspecified parameters by imposing the
boundary conditions discussed below Eq. (6.1). The results are summarized in table
6.1.

We proceed with considering the three phases separately in the zero temperature
limit.

6.4 Broken chiral symmetry without baryons

Inserting the supercurrent j and the constant c from table 6.1 into Eq. (6.19) yields
the quark number density

nq ≡ J 0
V =

Nc

8π2Bµq tanh y∞ . (6.40)
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The only equations that remain and in general have to be solved numerically for the
variables u0 and y∞ are

ℓ

2
=

√

u8
0 + b2u5

0 −
(

3bµ
2 cosh y∞

)2 ∫ ∞

u0

du
u3/2g(u)

, (6.41)

y∞ = 3b
∫ ∞

u0

u3/2du
g(u)

, (6.42)

where we have abbreviated

g(u) =

√

u8 + b2u5 −
(

3bµ
2 cosh y∞

)2

u3 − u8
0 − b2u5

0 −
(

3bµ
2 cosh y∞

)2

u3
0 .

Note that the explicit dependence on the asymptotic separation ℓ can be eliminated
by the rescaling u → ℓ2u, µ → ℓ2µ, b → ℓ3b and Ω → ℓ7Ω. Therefore, in all plots
shownbelow, the axes aremeasured in appropriate units of theD8-brane separation.

Let us first discuss the two limits of small and large magnetic fields b. For small
magnetic fields2, y∞ and thus the supercurrent j rise linearly with b, and therefore
the lowest order contribution to the quark number density induced by the chiral
spiral is quadratic in b. The location of the tip of the connected flavor branes is u0 =

u(0)
0 +η1(µ)b2+O(b3) with the value of u0 at b = 0 and y∞ = 3y(0)∞ b+O(b3). These

ansätze3 are plugged into Eqs. (6.41) and (6.42), which can be solved algebraically
and yield the solutions

u(0)
0 =

[

4
√

πΓ
( 9
16

)

ℓΓ
( 1
16

)

]2

≃ 0.5249 ℓ−2 , (6.43)

y(0)∞ =
1

(u(0)
0 )3/2

√
πΓ
( 3
16

)

8Γ
(11
16

) , (6.44)

η1(µ) =

cot π
16 − 1−

(

3µ
2u(0)

0

)2 [

1− 3Γ( 1
16)Γ(

3
16)

16Γ( 9
16)Γ(

11
16)

]

8(u(0)
0 )2

. (6.45)

2As explained in [145], there exists a second solution in the region of small b, where u0 is small
and y∞ is large, which is separated from the solution discussed here by a first order phase transition.
However, this first-order phase transition occurs in a region of large µ where the chirally restored phase
is preferred. Therefore we will not discuss this second solution here.

3It can easily be shown that possible terms linear in b in the power expansion of u0 as well as terms
quadratic in b in the power expansion of y∞ have to vanish.
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Interestingly, the µ-dependent coefficient η1 possesses a zero at µ ≃ 0.2905/ℓ2,
above which it becomes negative. This shows that the constituent quark mass (which
is given by u0) can decrease with the magnetic field for sufficiently large chemical
potentials. This behavior can be traced back to the incorporation of the chiral spiral.

The grand canonical potential (renormalized by the vacuum contribution (6.39))
is approximated for small b by

Ωren ≃ −N
[

2
7
(u(0)

0 )7/2
√

πΓ
( 9
16

)

Γ
( 1
16

) + η2(µ)b2

]

, (6.46)

where

η2(µ) ≡
√

πΓ
( 9
16

)

Γ
( 1
16

)

√

u(0)
0



cot
π
16

+

(

3µ

2u(0)
0

)2
Γ
( 3
16

)
Γ
(17
16

)

Γ
( 9
16

)
Γ
(11
16

)



 . (6.47)

At asymptotically large magnetic field, y∞ diverges faster than linearly, thus j ≃
µ/2, while u0 saturates at the value

u(∞)
0 =

[

4
√

πΓ
(3
5

)

ℓΓ
( 1
10

)

]2

≃ 1.2317 ℓ−2 . (6.48)

We see that u(∞)
0 > u(0)

0 , i.e., for any µ the constituent quark mass at asymptotically
large b is larger than that at b = 0. This can be interpreted as magnetic catalysis and
is similar to the NJL model. However, as we have shown in the left panel of Fig. 5.1,
in the NJL model the constituent quark mass does not saturate for asymptotically
large magnetic fields.

Plugging these results into Ω and nq yields

Ωren ≃ −Nb

[√
πΓ
(3
5

)

2Γ
( 1
10

) (u(∞)
0 )2 +

3µ2

8

]

, nq ≃ Nc

8π2Bµq. (6.49)

Remarkably, all model parameters have dropped out of the quark number density,
which thus is solely expressed in terms of the dimensionful quantities B and µq.
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6.5 Broken chiral symmetry with baryons

The only equations that remain and in general have to be solved numerically for the
variables uc and y∞ are

ℓ

2
= k

∫ ∞

uc

du
u3/2g(u)

, (6.50)

y∞ = 3b
∫ ∞

uc

u3/2du
g(u)

, (6.51)

k2 = u8
c + b2u5

c + (3b)2u3
c (c

2
1 − c22) + b2u3

cc2 , (6.52)

andwewant to compare the (unrenormalized) thermodynamic potential with baryons
given by

Ω =
NV
T

∫ ∞

uc

3b
∂uy

du + k
ℓ

2
+

3b
2

[

µ
(

−µ
2
+

uc

3

) 1+ cosh y∞
sinh2 y∞

(y∞ + sinh y∞)

−
(uc

3

)2 1

sinh2 y∞
(y∞ + sinh y∞ cosh y∞)

]

(6.53)

with the one from the other phases. Note that although each of the thermodynami-
cal potentials is divergent the difference is always finite, no matter which phases are
compared.

Inserting the values for the integration constants in table 6.1 gives us the total
quark number density constituted by both the magnetic chiral spiral and the homo-
geneous distribution of the point like baryons4

j =
uc

3
cosh y∞ − 1

sinh y∞
, (6.54)

n4 = c =
3b
2
µ
cosh y∞ + 1

sinh y∞
− buc coth y∞ , (6.55)

which yields

nq ≡ J 0
V =

Nc

4π2B (µq − Mq)
cosh y∞ + 1

sinh y∞
. (6.56)

4We will restrict ourselves to positive n4 without loss of generality. Note, that for the lower sign
in the constants found in table 6.1 n4 = c < 0, which can only be satisfied if µ < 0. Our restriction
means we restrict ourselves to positive chemical potential and only populate the system with baryons
rather than anti-baryons.
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The critical chemical potential at which the system can be populated with baryons is
found from setting n4 = 0

µq,onset = Mq
2 cosh y∞

cosh y∞ + 1
, (6.57)

and thus Mq(B) < µq,onset < 2Mq(B). The numerical comparison of the chirally bro-
ken phases shows that starting from this point towards larger chemical potentials the
phase with baryons is always the preferred one. Since at n4 = 0 the two thermody-
namic potentials are equal, it is a second order phase transition -- with some abuse
of terminology since no symmetry is broken (but in accordance with the classifica-
tion by Ehrenfest). Henceforth we will refer to that transition as baryon onset. Before
discussing the numerical solution further, let us again analyse the onset in the two
limits b → 0 and b → ∞.

At small b the explicit linear dependence of y∞ coming from the numerator of
y′(u) dominates. For the onset chemical potential we immediately find from (6.57)

µ
(0)
q,onset = M(0)

q . (6.58)

At the onset n4 = 0 the solutions of the broken phase without baryons Eqs. (6.43)
and (6.44) may be taken over to the case at hand; thus in terms of dimensionless
quantities

µ
(0)
onset = m(0)

q :=
u(0)

c

3
≃ 0.175

ℓ2
. (6.59)

This result is in agreement with ref. [21], see for instance fig. 10 in this reference.
In the vicinity of the onset we may compute the density analytically. We start

with the case b = 0. For chemical potentials larger than but close to µ0onset, the
dimensionless density behaves as (see appendix A.5 for the derivation)

n4(b = 0) =
2ℓ(m(0)

q )2

ξ
(µ− m(0)

q ) +O[(µ− m(0)
q )2] , (6.60)

where

ξ ≡ 1
9

[

π
Γ
( 1
16

)
Γ
( 3
16

)

Γ
( 9
16

)
Γ
(11
16

) − 2
9

]

≃ 0.11 . (6.61)

We plot the linear approximation (6.60) in comparison to the full result in the left
panel of fig. 6.2.
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Figure 6.2: Solid lines: baryon density n4 (left) and location of the tip of the connected
flavor branes uc (right) at vanishing magnetic field. The baryonic phase becomes favored for
µ > uc/3, indicated by the dotted line in the right panel. For chemical potentials smaller
than that value, the mesonic phase is the ground state, in which -- at vanishing magnetic
field -- the baryon density vanishes and uc is constant. The dotted line in the left panel is
the linear approximation (6.60). Here and in all other plots we have set ℓ = 1 for notational
convenience. The dependence on ℓ is always simple and corresponds to a rescaling of the
axes, in this plot µ→ ℓ2µ, uc → ℓ2uc, n4 → ℓ5n4.

This linear behavior might seem unexpected, because for fermions in 3+1 di-
mensions, at least in the non-interacting case, one would have n4 ∼ (µ − m)3/2

just above the onset. It is therefore interesting to compare n4 from eq. (6.60) with
the density of a Bose condensate instead. To this end, consider a ϕ4 model with
chemical potential at zero temperature, Ω = m2−µ2

2 ϕ2 + λ
4ϕ

4. Minimizing Ω with re-
spect to the condensate ϕ and inserting the result into the density n = −∂Ω

∂µ yields

n = µµ
2−m2

λ = 2m2

λ (µ− m) +O[(µ− m)2]. The linear term looks exactly like the one
in eq. (6.60) (in the ϕ4 model, the quadratic term is positive; this is in contrast to our
holographic result, as fig. 6.2 shows). The similarity of the baryon density with the
density of a Bose condensate is not too surprising, because we work in the large-Nc

limit. In this limit, changing the number of constituent quarks from even to odd, i.e.,
from Nc to Nc + 1 does not make a difference. Therefore, in our context one may
very well talk about a condensate of baryons. This terminology is for instance used
in ref. [154]. It is instructive to express eq. (6.60) in terms of dimensionful quanti-
ties, see first row of table 6.2, where we show the dimensionful quark density J 0.
In the case B = 0 this density only receives a contribution from "normal" baryons,
J 0(B = 0) = NcN4/V. Comparing this expression with the ϕ4 model, we may iden-
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quark density NcN4/V

B = 0 Nc
2(M0

q)
2

3ξ
2 λ

π/MKK
L

(µq − M0
q)

B → ∞ Nc
B

2π2ξ̃

(
µq − 2M∞

q
)

Table 6.2: Quark density NcN4/V induced by wrapped D4-branes close to the baryon onset
at vanishing and at asymptotically large magnetic field B. Both expressions depend linearly
on the difference between the quark chemical potential and the (effective) constituent quark
mass, indicating a bosonic nature of the holographic large-Nc baryons discussed here. Since,
at nonzero magnetic field, the effective constituent quark mass in a baryon is modified by
the meson supercurrent, the baryon onset for B → ∞ is at 2M∞

q , not at M∞

q . For the values
of the numerical constants ξ, ξ̃ see eqs. (6.61) and (6.65).

tify 3ξ
2 λ

π/MKK
L with a coupling constant for an effective repulsive interaction between

the baryons near the onset. We see that this coupling is proportional to the 't Hooft
coupling λ. Interestingly, it gets strong for small asymptotic separations L of the
flavor branes, measured relative to the maximal separation π/MKK.

Let us now consider the opposite limit b → ∞. As before in the case without
baryons, in this limit y∞ diverges faster than linearly and we might replace y(∞)

∞ :=

3by∞ and set y(∞)
∞ → ∞ in all equations. The onset is then given by

µ
(∞)
q,onset = 2M(∞)

q . (6.62)

At the onset, again the solution for u(∞)
0 = u(∞)

c from (6.48) holds. Hence in terms
of dimensionless quantities

µ
(∞)
onset = 2m(∞)

q :=
2u(∞)

c

3
≃ 0.8211

ℓ2
. (6.63)

Closely above that value the behavior of the asymptotic density of "normal"
baryons n4 is given by (again for a derivation see appendix A.5)

n4(b = ∞) =
3b
2
µ− 2m∞

q

ξ̃
+O[(µ− 2m∞

q )2] , (6.64)

with

ξ̃ ≡ 1− 2
15

√
π
Γ
( 1
10

)

Γ
(3
5

) ≃ 0.5194 . (6.65)



6.5. Broken chiral symmetry with baryons 83

The corresponding dimensionful quark density is shown in the second row of ta-
ble 6.2. (Remember that the total baryon density n also receives a contribution from
the supercurrent, n = 3

2bj + n4 with j(b = ∞)baryon ≡ uc/3.) Interestingly, at asymp-
totically large magnetic fields the explicit dependence on the model specific con-
stants L, λ and MKK drops out. This kind of "universality" has already been observed
in the phases without baryons.

One might have thought that the baryon onset always happens at µ = uc
3 since

Nc
uc
3 is the baryon mass given by the action of the D4-branes. To understand why

the result deviates from this expectation, it is instructive to consider the (unphysical)
case of an isotropic meson condensate where the meson supercurrent vanishes,
j = 0. In this "cleaner" case, the true vacuum with zero pressure P = 0 and zero
baryon density n = 0 is the ground state below the baryon onset. Now, nq = 0
determines the onset which indeed occurs at µq,onset = Mq(B) for arbitrary values of
the magnetic field. As a consequence, the chemical potential equals the energy per
baryon ϵ/n at the onset (this follows from the thermodynamic relation P = −ϵ + µn

and P = 0 at the onset). The situation with a nonzero supercurrent j is different. Here
the pressure and the baryon density become nonzero as soon as we switch on µ, and
µ is always larger than ϵ/n. Then, at some point, µ is large enough to support the
baryon number induced by j and by "normal" baryons. This costs more energy than
having only "normal" baryons and thus the onset happens later than for j = 0. We
compare both onset lines, the unphysical one from j = 0 (dashed) and the physical
one with j ̸= 0 minimizing the free energy (solid), in fig. 6.3.

The difference between the two lines can also be thought of as follows. Between
the dashed and solid lines the system might "think about" adding baryons because
there is enough energy available from the chemical potential. If the system decided
to do so, it would at the same time have to decrease the supercurrent discontin-
uously to have enough energy available for the baryons. (The dashed line is the
extreme case where it would have to force the supercurrent to zero.) This, however,
would lead to a decrease in the total baryon density upon increasing the chemical
potential, which is a thermodynamically unstable situation. (At the dashed line, the
baryon density would jump to zero because the energy is just enough to start adding
baryons5.) For any given b the solid line marks the "earliest" possible point where

5 This unphysical onset is considered in ref. [43]: the T = 0 onset in fig. 9 of this reference cor-
responds to the dashed line in our fig. 6.3. It seems that this discrepancy originates from incorrectly
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Figure 6.3: Onset of baryonic matter (solid line) in the plane of quark chemical potential µ
and magnetic field b. For comparison, the dashed line indicates the baryon onset in the
unphysical case of a vanishing meson supercurrent. In this case, the onset occurs at uc

3 for
all b. Due to the meson supercurrent, the effective baryon mass is more complicated and the
onset is somewhere between uc

3 (b = 0) and 2uc
3 (b = ∞). The arrow indicates the asymptotic

value of the onset line given in eq. (6.63). In the present model, the baryon onset is always a
second-order phase transition, in contrast to real nuclear matter. For now, we have ignored
the chirally restored phase. We shall see in sec. 6.8 that for sufficiently large magnetic field,
b & 0.25, the transition to baryonic matter is replaced by a transition to chirally symmetric
quark matter.

baryons can be put into the system without such a thermodynamic instability.

What can we learn about real-world baryonic matter from these results? We al-
ready know that the nature of the onset is different due to the lack of binding en-
ergy. But why do our holographic baryons effectively become heavier in a magnetic
field? Can we draw any conclusions from this observation? Within our model, the
increasing critical chemical potential has two reasons. First, as just discussed, it is

scaling SD4 with the total density n, not n4, see eq. (2.4) in ref. [42] which apparently is used in ref. [43]
(and in [41]). This difference is very important for the topology of the resulting phase diagram: as we
shall see in sec. 6.8, the physical onset line intersects the chiral phase transition line, see fig. 6.9; this
is not the case for the dashed line.
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the meson gradient which is responsible for increasing the baryon onset from uc
3 to

2uc
3 . Second, uc itself increases with the magnetic field. In the mesonic phase uc can
be interpreted as a constituent quark mass [4, 110]. In the chiral limit of vanishing
bare quark masses, it is the chiral condensate which induces such a mass. Therefore,
the increase of uc in a magnetic field suggests an increase of the chiral condensate
and thus is a manifestation of magnetic catalysis (MC). The constituent quark mass
in a baryon is different from the constituent mass in the mesonic phase, uc

3 vs. uc,
but both are proportional to uc. Consequently, MC seems to be responsible for the
heaviness of magnetized baryons.

6.6 Symmetric phase

The following analytical expressions are all valid in the zero-temperature limit. Only
in the plots at the end of this section we include numerical finite-temperature results.
Now only one equation remains to be solved numerically for y∞,

y∞ =

∫ ∞

0

3bu3/2
√

u8 + b2u5 +
(

3bµ
sinh y∞

)2
u3

du . (6.66)

For b > 0, this equation has in general three solutions: y∞ = ∞, which is always a
solution, and two finite solutions, the larger of which turns out to be unstable. At
sufficiently large values of b for a given µ only the divergent solution survives.

For the quark density we find

nq =
Nc

2π2Bµq coth y∞ . (6.67)

Let us first take the limit where b is small. In this case, y∞ is linear in b, and we obtain
for the (dimensionful) quark number density

nq =

√
NcMKK

3gYMπ3/2µ
5/2
q

[ √
π

Γ
( 3
10

)
Γ
(6
5

)

]5/2

+O(B2) . (6.68)

The unusual exponent 5/2 of µq can only occur due to the presence of the dimen-
sionful model parameter MKK (due to the extra dimension in the model), which pro-
vides the missing mass dimensions.
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The grand canonical potential becomes for small b

Ωren ≃ −N







2
7
µ7/2

[ √
π

Γ
( 3
10

)
Γ
(6
5

)

]5/2

+ η3b2√µ






, (6.69)

with

η3 ≡ 3
2

[

Γ
( 3
10

)
Γ
(6
5

)

√
π

]5/2

+
Γ
( 9
10

)
Γ
(3
5

)

π1/4
√

Γ
( 3
10

)
Γ
(6
5

)
. (6.70)

Taking the limit b → ∞ allows only the solution y∞ = ∞, as mentioned before.
However, note that this is also a valid solution at finite b, hence the following results
carry over to any value of b as long as this particular phase is considered. Interest-
ingly, the density in this case is

nq =
Nc

2π2Bµq, (6.71)

which takes precisely the form of the density of gapless free fermions in the lowest
Landau level. Therefore, we may speak of an LLL-like phase in the Sakai-Sugimoto
model, although there are, because of the strong-coupling nature, no quasiparticles
and thus no Landau levels in the actual sense. The grand canonical potential is

Ωren = −N 3bµ2

2
. (6.72)

Using (6.69) together with (6.72) we can derive the critical magnetic field of the first-
order transition within the chirally restored phase to the LLL--like phase as a function
of the chemical potential,

bc ≃ 0.095µ3/2. (6.73)

In the left panel of Fig. 6.4 we plot the quark number density for different temper-
atures. As a comparison, we also plot the corresponding density for (massless) free
fermions in a magnetic field, obtained by taking the derivative with respect to the
chemical potential of the thermodynamic potential (5.10).

In the case of free fermions, the higher Landau levels cause oscillations in the
density at small magnetic field. These oscillations are absent in the "higher Landau
level phase" in the Sakai-Sugimoto model, given by the solution y∞ <∞. This might
be a consequence of the strong coupling, in which case we do not expect a sharp
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Figure 6.4: Quark number density as a function of the background magnetic field for a given
chemical potential at various (dimensionless) temperatures t ≡ TR in the Sakai-Sugimoto
model (left) and the NJL model (right).

Fermi surface, even at T = 0. Furthermore, in the NJLmodel, the transitions between
the phases with differently filled Landau levels, in particular also the transition to the
LLL phase, is second order, while in the Sakai--Sugimoto model it is first order. At
finite temperature, the transitions become immediately smooth in the NJL model,
while for given µ it remains first order in the Sakai--Sugimoto model until a critical
temperature is reached, which increases with increasing µ. Above this temperature
only one minimizing solution for y∞ exists for all b and given µ. As a result, the tran-
sition line in the b-µ plane has a critical endpoint for a given temperature, resulting
in a critical line in the three-dimensional phase diagram, see Fig. 6.5. Another im-
portant difference is the location of the LLL-transition in the µ-b diagram: the critical
magnetic field at zero temperature is proportional to µ3/2, compared to µ2/2 for free
fermions. Again this is due to the occurrence of

√
MKK.

6.7 Chiral phase transition without baryons

First we discuss the critical temperature for chiral symmetry restoration at vanish-
ing chemical potential. In this case, in the restored phase the only temperature
dependence enters via the lower bound of the integrals over the holographic co-
ordinate, uT = (4πt/3)2, with t = RT. Therefore, one easily determines the renor-
malized grand canonical potential of the restored phase for the cases b = 0, Ωren =

−2/7Nu7/2
T , and b → ∞, Ωren = −Nbu2

T/2. Then, together with the corresponding
expressions for the broken phase from Eqs. (6.46) and (6.49) we compute the critical
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temperatures

tc(µ = b = 0) = 0.1355/ℓ , (6.74)

tc(µ = 0,b → ∞) = 0.1923/ℓ . (6.75)

(Remember that we have used the f(u) ≃ 1 approximation for the broken phase
which, strictly speaking, is only valid for very small temperatures.) We see that the
Sakai--Sugimoto model reproduces the usual magnetic catalysis effect at zero chem-
ical potential because the critical temperature at asymptotically large b is larger than
that at vanishing b. This is supported by the numerical solution which shows that
the critical temperature increases monotonically with the magnetic field. In contrast
to the NJL model, the critical temperature saturates at the value given in equation
(6.75), because the value for u0, i.e., the holographic constituent quark mass, satu-
rates.

At zero temperature, we use Eqs. (6.46) and (6.49) for the broken phase and Eqs.
(6.69) and (6.72) for the restored phase to compute the critical chemical potentials

µc(t = b = 0) = 0.4405/ℓ2 , (6.76)

µc(t = 0,b → ∞) = 0.4325/ℓ2 . (6.77)

This result already shows that inverse magnetic catalysis in the sense explained in
Sec. 5.4 must be present in the Sakai--Sugimoto model. The full numerical solution
of the surface of the chiral phase transition in the three dimensional T-µ-B space
is shown in Fig. 6.5; cuts through the surface at fixed t, µ, and b, are shown in
Fig. 6.6. In order to discuss the inverse magnetic catalysis, we have plotted the
zero-temperature phase diagram separately in Fig. 6.7. This phase diagram shows
intriguing similarities with the corresponding NJL phase diagram in Fig. 5.3: inverse
magnetic catalysis is present at small magnetic fields and is most pronounced when
the restored phase has a LLL--like behavior. Even the manifestation of inverse mag-
netic catalysis in the analytical approximations is qualitatively the same as in the
field-theoretical model as we now show. For large magnetic fields, Eqs. (6.49) and
(6.69) can be used to write the free energy difference between restored and broken
phases as

ΔΩ =
NcB
4π2

[

µ2q − M2
√

πΓ
(3
5

)

3Γ
( 1
10

)

]

− NcB
16π2µ

2
q , (6.78)
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Figure 6.5: The surface of the chiral phase transition (blue) in the deconfined phase of the
Sakai--Sugimoto model in the T-µ-B space. The small (green) surface shows the transition
from the "higher LL" phase to the "LLL" phase, explained in Sec. 6.6.

where we have identified Ru0/(2πα′) with the constituent quark mass M [4, 110].
This large-B expression for ΔΩ is remarkably similar to the weak-coupling expression
(5.18) in the NJL model. We can thus conclude, for the reasons explained below Eq.
(5.18), that in the large-B regime the critical chemical potential must increase with B.
This is confirmed by the chiral phase transition line of Fig. 6.7. Note the difference
between the terms ∝ θ(µ− M) in the NJL expression and the last term in Eq. (6.78).
Both terms come from a nonzero quark density, which in our NJL calculation is only
present if µ > M, while in our Sakai-Sugimoto calculation there is a topological quark
density at nonzero B for all µ due to the chiral spiral.

For small magnetic fields we may apply an approximation in the spirit of Eq.
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Figure 6.6: Two-dimensional cuts at various fixed temperatures, chemical potentials and
magnetic fields, respectively, through the three-dimensional phase diagram. In the first plot,
for instance, we see that the monotonically increasing critical temperature at µ = 0 becomes
a non-monotonic curve at finite µ and may even turn into two disconnected pieces, separat-
ing two chirally broken phases at small and large magnetic fields. The line b = 0 in the lower
right panel recovers the result in Ref. [104] and resembles the µ − T phase diagram shown
in Fig. 3.3 found in the NJL model.

(5.20). We compare the free energy of the broken phase for small magnetic fields
(6.46) with the free energy of the LLL phase (6.72). The result can be written as

ΔΩ ≃ − 2N1/2
c Γ

( 9
16

)

21πgYMΓ
( 1
16

) M1/2
KK M7/2

0 +
Nc

4π2Bµ2q − N2
cg2

YMη2(µ)

24π3MKKR
B2 , (6.79)
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Figure 6.7: The chiral phase transition at zero temperature from the Sakai-Sugimoto model
(ignoring baryonic matter). The chirally broken phase (white) is separated by a first-order
phase transition (solid line) from the chirally restored phase (gray). The dashed-dotted line
is the approximation from Eq. (6.79). Translating the dimensionless quantities b and µ into
physical units [145], one concludes that the magnetic field decreases the critical chemical
potential from µq ≃ 400MeV at |qB| = 0 down to µq ≃ 230MeV at |qB| ≃ 1.0 × 1019 G
where the critical line turns around and the critical chemical potential starts to increase with
|qB|.

whereM0 ∝ u(0)
0 is the constituent quark mass at B = 0. Again we recover the form of

the NJL result (5.20). The main conclusion is that the energy cost for condensation is
linear in B, whereas the energy gain from condensation, i.e., the magnetic catalysis
is only quadratic in B for small B. This allows for inverse magnetic catalysis. The
dashed-dotted line in Fig. 6.7 is the approximate phase transition from Eq. (6.79).
Comparison with the full numerical result shows that the approximation captures the
physics of inverse magnetic catalysis where it is most pronounced and that the "hLL"
phase counteracts inverse magnetic catalysis.

Finally let us try to make a prediction for the quantitative behavior of the chiral
phase transition in a background magnetic field. To this end we fit the parameters
of the holographic model with the help of the critical temperature at µ = B = 0
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Figure 6.8: Left panel: location of the tip of the connected branes uc (denoted u0 in the
mesonic phase) as a function of µ for three values of the magnetic field, i.e., along three
horizontal cuts through the phase diagram in the right panel of fig. 6.9. One representative
for each of the three qualitatively different cases is shown: baryon onset (small magnetic
fields); baryon onset followed by chiral phase transition (intermediate magnetic fields); chiral
phase transition (large magnetic fields). As fig. 6.9 shows, for chemical potentials beyond
the scale of the plot the system reenters the chirally broken phase, resulting in an additional
first-order phase transition in all three cases. Right panel: baryon number density n along the
same cuts through the phase diagram. Through the axial anomaly the meson supercurrent
produces a nonzero n also in the mesonic phase for b, µ > 0.

from QCD lattice calculations [13, 12] and the (not very well known) critical chemical
potential at T = B = 0 from model calculations [150, 117]. We find that inverse
magnetic catalysis persists up to B ≃ 1.0 × 1019 G, where the critical chemical po-
tential has decreased from 400 MeV to about 230 MeV. It is not clear whether the
magnetic field inside compact stars is large enough to have any effect on the chiral
phase transition. Our results indicate, however, that if it is large enough then only
inverse magnetic catalysis will play a role, i.e., the transition from hadronic to quark
matter occurs at smaller densities than naively expected from the B = 0 case.

6.8 Chiral symmetry breaking with baryons

In fig. 6.8 we present the location uc of the tip of the connected branes and the
baryon density along lines of constant magnetic field. The interpretation of the
former deserves a comment. In the mesonic phase, uc is usually identified with the
constituent quark mass since it is the distance between the color and flavor branes.
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This is still true in the baryonic phase, but there it has a second meaning because
Ncuc
3 is the baryon mass. (Note that the factor 1

3 originates from the geometry of the
model and has nothing to do with the number of colors.)
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Figure 6.9: As Fig. 6.7, but including baryonic matter (from Ref. [146]). The dashed line is
the (second-order) onset of baryonic matter. The transition within the chirally restored phase
between the "LLL" and "hLL" phases has disappeared because baryonic matter is preferred
in this region of the phase diagram.

The full phase diagram is shown in Fig. 6.9. The main observations can be sum-
marized as follows.

• The effect of baryonic matter at small magnetic fields is dramatic: it prevents
the system from restoring chiral symmetry for any chemical potential. In doing
so, it completely expels the "hLL" phase from the phase diagram, such that the
only surviving chirally restored phase is the "LLL" phase.

• From the phase diagram without baryons and the line describing the onset of
baryons depicted in Fig. 6.3 one can already see that the onset line crosses the
chiral phase transition line, therefore we conclude that for larger values of the
magnetic field the chirally broken phase without baryons is directly superseded
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by the restored phase. More precisely the baryon onset line terminates at a
critical endpoint (µ,b) ≃ (0.26,0.25).

• In the presence of baryonic matter, IMC plays an even more prominent role
in the phase diagram: at any given chemical potential µ & 0.26 a sufficiently
large magnetic field induces chiral symmetry restoration.

Let us briefly comment on the first of these observations whose b = 0 version
was already made in ref. [21]. The fact that chiral symmetry remains broken along
the entire µ axis is an apparently puzzling result: in view of the similarity of the
present non-antipodal version of the Sakai-Sugimoto model and the NJL model, one
might have expected chiral symmetry to be intact for sufficiently large chemical po-
tentials. This was true before including baryonic matter, in which case the entire
phase structure with magnetic field was in amazing agreement with NJL calculations
[145]. However, in the presence of baryonic matter it is questionable to expect this
agreement to persist for the following reason. In related NJL studies [71, 106, 58, 34]
baryon number is a rather simple concept: the only degrees of freedom are quarks
whose masses acquire a contribution from the chiral condensate. When the chem-
ical potential is larger than this constituent quark mass, a nonzero quark number is
generated. Then, baryon number is simply this quark number divided by Nc. This
is not true in our present approach. Holographic baryons are different from a mere
collection of Nc quarks. This is clear from their construction and can easily be seen
from the difference between the constituent quark mass in the mesonic phase uc

and the baryon mass Ncuc
3 . Whether we should therefore call our quarks confined is

debatable, but it is certainly a qualitative difference to the NJL model.
To interpret the lack of chiral symmetry restoration, the following intriguing prop-

erty of our baryonic matter at asymptotically large chemical potentials may be help-
ful. For simplicity, let us restrict ourselves to b = 0. In this case the free energy of
the baryonic phase approaches the one of the chirally restored phase,

Ωbar.(b = 0)
N = −2

7
µ7/2

p5/2 +O(µ5/2) ,
Ωsym.(b = 0)

N = −2
7
µ7/2

p5/2 , (6.80)

where p = Γ
( 3
10

)
Γ
(6
5

)
/
√

π. Therefore, at asymptotically large µ, baryonic matter
and quark matter become thermodynamically indistinguishable. One may speculate
that this is a consequence of the point like nature of our baryons: due to this prop-
erty, our baryons can only overlap at infinite density. This suggests that the expected
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transition to quark matter at finite µ is shifted to µ = ∞ (which, curiously, is undone
by a sufficiently large magnetic field). It would be interesting to see whether this is
different for Nf > 1, where baryons can be described by non-singular instantons.





CHAPTER ..7
Walecka model with magnetic

field

In this section we employ the Walecka model [175] at zero temperature in a back-
ground magnetic field. The Walecka model is a relativistic model for dense nu-
clear matter, where nucleons (or, in extensions of the model, hyperons) interact
via Yukawa exchange of mesons. In the simplest, isospin-symmetric, version consid-
ered here, nucleons interact through the scalar sigma meson and the vector omega
meson. This is sufficient to model the realistic nucleon-nucleon interaction which is
known to have a repulsive short-range (omega) and an attractive intermediate and
long-range (sigma) part. Nuclear matter being stable at zero pressure, having a finite
binding energy E0 ≃ −16.3MeV, a saturation density n0 ≃ 0.153 fm−3, and show-
ing a first-order liquid-gas phase transition are all manifestations of this simple but
crucial property of the interaction. Beyond the saturation density, the properties of
nuclear matter are poorly known, and the Walecka model is only one of many com-
peting models. However, for our comparison to holographic baryonic matter, we
are primarily interested in the baryon onset, and we know that for this purpose -- at
least for vanishing magnetic field -- the Walecka model describes, by construction,
real-world nuclear matter.

97
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7.1 Lagrangian

The following setup is essentially taken from works where dense nuclear matter in a
magnetic field has been considered in the astrophysical context, see refs. [36, 37,
148] and references therein. In neutron stars, the simplest version of baryonic matter
consists of neutrons, protons, and electrons. Their various chemical potentials are
related through the conditions of beta equilibrium and (global) electric charge neu-
trality. For our purpose, these complications are irrelevant since for a comparison to
our holographic results we are interested in the behavior of a single baryon species
with a given electric charge and a single baryon chemical potential in a background
magnetic field. Therefore, our results will be simpler and more transparent, albeit
less realistic, compared to the results for astrophysical nuclear matter.

We start from the Lagrangian

L = LB + LI + LM , (7.1)

containing a baryonic part LB, an interaction part LI, and a mesonic part LM. The
baryonic part is

LB = ψ̄

(

iγµDµ − mB + µBγ
0 − 1

2
κσµνFµν

)

ψ , (7.2)

with the baryon mass mB and the baryon chemical potential µB. The baryons feel the
magnetic field through the covariant derivative Dµ = ∂µ+ iqAµ with the baryon elec-
tric charge q and the electromagnetic gauge field Aµ, which encodes the background
magnetic field in the x3-direction, Aµ = (0, x2B,0,0). In addition, baryons have an
anomalous magnetic moment κ whose effect is included by a magnetic dipole term
with σµν = i

2 [γµ, γν ] and the field strength tensor Fµν = ∂µAν − ∂νAµ. It is important
to keep in mind that this term is obviously an effective, not a fundamental, way to
take into account the anomalous magnetic moment. In particular, the present ap-
proach can not be trusted for arbitrarily large magnetic fields, as we shall see more
explicitly below.

The interaction term consists of two Yukawa contributions for the σ and the ω,

LI = gσψ̄σψ − gωψ̄γµωµψ , (7.3)
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with coupling constants gσ,gω > 0. The mesonic part includes cubic and quartic
scalar self-interactions,

LM =
1
2
(∂µσ∂

µσ −m2
σσ

2)− 1
4
ΩµνΩµν +

1
2

m2
ωω

µωµ −
b
3

mB(gσσ)3 −
c
4
(gσσ)4 , (7.4)

with Ωµν = ∂µων − ∂νωµ and the sigma and omega masses mσ and mω. With the
given valuesmB = 939MeV,mω = 783MeV,mσ ∼ 550MeV, themodel has four free
parameters which are fitted to reproduce the saturation density, the binding energy,
the compressibility, and the Landau mass at saturation (all for B = 0), which gives
g2
σ

4π = 6.003, g2
ω

4π = 5.948, b = 7.950× 10−3, and c = 6.952× 10−4. We shall employ
the mean-field approximation where the meson fluctuations are neglected, and the
meson condensates σ̄ and ω̄0 have to be determined from minimization of the free
energy. The basic equations of the model in this approximation are as follows (see
for instance ref. [158] for a pedagogical derivation). The pressure is

P = −1
2

m2
σσ̄

2 − b
3

mB(gσσ̄)3 −
c
4
(gσσ̄)4 +

1
2

m2
ωω̄

2
0 + PB , (7.5)

where, at zero magnetic field, the renormalized baryonic pressure is given by

PB = 2T
∫

d3k⃗
(2π)3

ln
[

1+ e−(ϵk−µ∗)/T
]

. (7.6)

Here, µ∗ ≡ µB − gωω̄0 plays the role of the Fermi energy at zero temperature (the
chemical potential in the thermodynamic sense it still µB, not µ∗). The baryon disper-
sion is ϵk =

√

k2 + m2
∗ with an effective baryon mass m∗ ≡ mB−gσσ̄. The stationarity

equations for the meson condensates are

m∗ = mB −
g2
σ

m2
σ

ns +
g2
σ

m2
σ

[

bmB(mB − m∗)
2 + c(mB − m∗)

3
]

, (7.7a)

ω̄0 =
gω
m2
ω

nB , (7.7b)

where nB = ∂PB
∂µB

and ns = − ∂PB
∂mB

are the baryon and scalar densities, respectively.

Next we include the magnetic field, wherefore we need to distinguish between
charged and neutral baryons. For our purpose the only relevant effect of the mag-
netic field concerns the single-baryon dispersion relations, which can be found in
ref. [148].
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7.2 Charged baryons

Our reference example of charged baryonic matter is pure proton matter with charge
q = +e and an anomalous magnetic moment κ = 1.79µN where µN = e

2mp
≃ 3.15×

10−18MeVG−1 is the nuclear magneton. We shall, however, vary the anomalous
magnetic moment below to study its effect on the baryon onset. Remember that
we ignore any neutrality constraint and Coulomb effects. For charged baryons the
dispersion ϵk has to be replaced by

ϵk∥,ℓ,s =
√

k2∥ + M2
ℓ,s , Mℓ,s ≡

√

m2
∗ + 2ℓ|q|B − sκB , (7.8)

with k∥ being the momentum in the direction of the magnetic field, s = ±1, and
ℓ = n + (1 − s sgnq)/2 with n = 0,1,2, . . ., such that for positive charge we have
ℓ = 0,1,2, . . . for s = +1 and ℓ = 1,2,3, . . . for s = −1, and vice versa for negative
charge. This means that the lowest Landau level (LLL) ℓ = 0 is only populated by
s = +1 fermions for q > 0 and s = −1 fermions for q < 0, while both s = +1 and
s = −1 contribute to all higher Landau levels. The three-dimensional momentum
integral has to be replaced by a one-dimensional integral over k∥ and a sum over
Landau levels and spin degrees of freedom,

2
∫

d3k⃗
(2π)3

→ |q|B
2π2

∑

s=±

∑

ℓ

∫ ∞

0
dk∥ . (7.9)

With these replacements in the baryonic pressure (7.6) we obtain at zero temperature

PB =
|q|B
4π2

∑

s=±

ℓmax∑

ℓ

(

µ∗kF,ℓ,s − M2
ℓ,s ln

kF,ℓ,s + µ∗
Mℓ,s

)

, (7.10)

and

nB =
|q|B
2π2

∑

s=±

ℓmax∑

ℓ

kF,ℓ,s , (7.11a)

ns =
|q|Bm∗

2π2

∑

s=±

ℓmax∑

ℓ

Mℓ,s
√

m2
∗ + 2ℓ|q|B

ln
kF,ℓ,s + µ∗

Mℓ,s
, (7.11b)

where kF,ℓ,s =
√

µ2∗ − M2
ℓ,s is the longitudinal Fermi momentum, and where the Lan-

dau levels are occupied up to ℓmax =
⌊
(µ∗+sκB)2−m2

∗
2|q|B

⌋

. By inserting eqs. (7.11) into
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eqs. (7.7) and solving the resulting equations for m∗, ω̄0, one can compute the ther-
modynamic properties for arbitrary µB and B. Since we are only interested in the
baryon onset, we have the additional condition P = 0, where P is obtained by in-
serting eq. (7.10) into eq. (7.5). Hence, we have a system of three equations to be
solved for m∗, ω̄0, and µB at any given B.

The result for pure proton matter and three more (unphysical) types of charged
baryonic matter with q = +e, distinguished by different values for κ, is shown in fig.
7.1 where we plot the onset lines and, for proton matter, the baryon density along
the onset. (In order to reproduce the nuclear ground state density n0 at B = 0 we
havemultiplied the pressure by a factor of 2. In other words, we have started from the
isospin-symmetric, B = 0 Walecka model for protons and neutrons and have added
the effect of the magnetic field as if both nuclear species had the same charge and
anomalous magnetic moment.)

The B = 0 onset occurs at µB = mB + E0 ≃ 922.7MeV where E0 ≃ −16.3MeV
is the nuclear binding energy. Magnetic fields of the order of 1018 G and larger
change this significantly, in accordance with the simple estimate in chapter 0. We
observe oscillations due to the Landau level structure in the onset line as well as in
the onset density. At sufficiently large magnetic fields only the LLL is occupied. (If
there was no binding energy, the density at the onset would be infinitesimally small,
and all along the onset line the LLL would be the only relevant state. In other words,
only due to the presence of a finite binding energy the onset line shows a behavior
reminiscent of de Haas-van Alphen oscillations at small magnetic fields.1) Since we
have, without loss of generality, fixed the electric charge to be positive, the LLL is
occupied by s = +1 baryons in all four cases considered here. Note that in one of
the four cases shown in the figure, the anomalous magnetic moment κ is negative.
Since κ < 0 favors s = −1 baryons, it can in principle be less costly to put baryons
in the ℓ = 1, s = −1 state than in the ℓ = 0, s = +1 state such that for sufficiently
large magnetic fields all baryons sit in the first, not in the lowest, Landau level. This

1The higher Landau levels in fact induce cusps in some of the onset lines, see for instance the
case κ = 0 where µcusp

B ≃ 920MeV. In a small vicinity around this cusp there are, for a given B, two
solutions for the onset: one where only the LLL becomes occupied, and one where the lowest and the
first Landau level become occupied simultaneously. The resulting two onset lines intersect, and for
any given B the line where the onset occurs at a lower µB is the physical one. The reason is that the
"later" onset would keep the system in the vacuum state P = 0, in a region where the "earlier" onset
already leads to P > 0. (For µB < µcusp

B , the LLL onset is "earlier", for µB > µcusp
B it is "later", hence the

cusp.)
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does not occur for the cases shown here, but a simple estimate shows that it occurs
if the anomalous moment and the charge have opposite sign and |κ| becomes of
the order of or larger than the modulus of the normal magnetic moment |q|

2mB
.

One can check that for largemagnetic fields the onset lines arewell approximated
by the curves µ∗ = m∗ − κB, which turn out to become straight lines for large B.
However, we need to remember that we have used an effective approach for the
anomalous magnetic moment. As a consequence, we should not trust our results
for κB becoming of the order of or larger thanm∗. In that case, as we see for instance
from eq. (7.8), Mℓ=0,s=+1 would become negative (for κ > 0). In the case of proton
matter we find κB ≃ 0.4m∗ at B = 5 × 1019G, which suggests that our approach is
still reliable in the plotted range. We expect that in a full treatment the onset lines
saturate for asymptotic values of B. This is the case for κ = 0, where our approach
can be used for arbitrarily large B.
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Figure 7.1: Upper panel: zero-temperature transition in the plane of baryon chemical poten-
tial µB and magnetic field B from the vacuum (to the left of each line) to baryonic matter (to
the right of each line) for charged baryons with q = +e and various values of the anomalous
magnetic moment κ (in units of the nuclear magneton µN). Each line represents a first-order
phase transition since the baryon density jumps from zero to a finite value n0. Lower panel:
corresponding baryon density n0 along the onset line on a doubly logarithmic plot for the
case of pure proton matter, κ = +1.79 (the other three cases from the left plot would lead
to similar curves). The oscillations are due to successive occupation of Landau levels. For
B & 0.5× 1019 G only the LLL is occupied.
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Figure 7.2: Same as fig. 7.1, but for neutral baryons, q = 0. Due to the symmetry under
κ → −κ, we can restrict ourselves to negative κ. The density along the onset in the right
panel is shown for pure neutron matter. We have plotted the total baryon density (solid) and
the contributions from the s = +1 and s = −1 states (dashed). We see that at B & 0.4×1019 G
the system is fully polarized in the s = −1 state.

7.3 Neutral baryons

For the case of neutral baryons we may think of pure neutron matter with q = 0 and
κ = −1.91µN. In this case there is no Landau quantization and the single-baryon
excitations become

ϵ⃗k,s =

√

k2∥ +
[√

m2
∗ + k2⊥ − sκB

]2

, (7.12)

where k⃗⊥ is the momentum perpendicular to the magnetic field. Replacing the mo-
mentum integral in the nucleonic pressure (7.6),

2
∫

d3k⃗
(2π)3

→ 1
2π2

∑

s=±

∫ ∞

0
dk⊥k⊥

∫ ∞

0
dk∥ , (7.13)

and performing the integrals at zero temperature yields

PB =
∑

s=±

Θ(µ∗ + sκB − m∗)

2π2

[

µ∗kF,s

(

k2F,s
12

− M2
s

8
− sκBMs

3

)

+
sκBµ3∗

6
arccos

Ms

µ∗
+ M3

s

(
Ms

8
+

sκB
6

)

ln
µ∗ + kF,s

Ms

]

, (7.14)
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with Ms ≡ m∗ − sκB and the longitudinal Fermi momentum kF,s =
√

µ2∗ − M2
s . The

baryon and scalar densities become

nB =
∑

s=±

Θ(µ∗ + sκB − m∗)

2π2 ×

×
[

k3F,s
3

+
sκB
2

(

µ2∗ arccos
Ms

µ∗
− kF,sMs

)]

, (7.15a)

ns = m∗

∑

s=±

Θ(µ∗ + sκB − m∗)

4π2

(

µ∗kF,s − M2
s ln

µ∗ + kF,s

Ms

)

. (7.15b)

We observe that the system is symmetric under κ→ −κ because after a sign change
of κ the contributions from s = +1 and s = −1 have simply exchanged their roles.
Analogously to the charged case we can now compute the baryon onset. The results
are shown in fig. 7.2. For large magnetic fields, the onset curves can be approxi-
mated by the simple straight lines µB = mB − |κ|B. In this regime the system is fully
polarized, i.e., the baryons are all in the s = −1 (s = +1) state if κ < 0 (κ > 0),
as can be seen in the right panel of the figure. Having in mind the symmetry under
κ → −κ it is instructive to go back to the results for charged baryons. In the upper
panel of fig. 7.1, the onset lines for κ = +µN and κ = −µN are obviously far from
identical. This is a LLL effect: in the LLL the baryons with q > 0 become heavier for
κ < 0 and lighter for κ > 0. If we let q → 0 the higher Landau levels become more
and more important, and the two curves indeed approach each other and become
identical for q = 0, see onset line for κ = −µN in fig. 7.2. Now the baryons in the
lowest energy state become lighter for either sign of κ.

7.4 Binding energy

Let us now compare the baryon onset in the holographic model, fig. 6.3, with the
ones in the Walecka model for charged and neutral baryons, figs. 7.1 and 7.2. The
first simple observation is that in the holographic case the larger the magnetic field,
the larger the energy needed to create baryons. This seems to be in contrast to the
results from the previous two sections which suggest that a magnetic field tends to
make nuclear matter energetically less costly. In order to compare the holographic
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Figure 7.3: Solid lines: binding energy E0 along the baryon onset for charged baryons with
charge q = +e and various anomalous magnetic moments κ, corresponding to the four
cases shown in fig. 7.1. Dashed lines: binding energies for baryons with the same values for
κ, but q = 0. They approximate the curves for the charged baryons at small B where many
Landau levels are occupied. The arrow at E0 = −56.3MeV indicates the asymptotic value
of the binding energy for κ = 0, see Eq. (7.17) (for κ ̸= 0 our approach does not allow for
arbitrarily large magnetic fields).

with theWalecka result in a sensible way, we need to isolate the effect of the binding
energy E0.

In the absence of a magnetic field the binding energy is given by E0 = E
A − mB,

i.e., by the energy per baryon E
A = ϵ

nB
relative to its mass mB. To be precise, by

mass we mean the energy that is needed to put a single, non-interacting baryon
into the lowest single-particle state of the system. To generalize this concept to
finite magnetic fields, let us first consider charged baryons. In this case, the single-
particle ground state energy without nucleon-nucleon interaction is mB − κB sgnq

according to eq. (7.8). Thus we define

E0 =
ϵ

nB
− (mB − κB sgnq) , (7.16)
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where, at the onset, ϵ
nB

= µB. We plot E0 as a function of the magnetic field in fig.
7.3. The plot shows that in the regime where higher Landau levels are occupied,
the binding energy depends strongly on the anomalous magnetic moment, while
it varies very little with κ in the LLL regime. For κ = 0 we can take the limit of
asymptotically large magnetic fields and find that the onset approaches the line µ∗ =
m∗, hence with the definitions of µ∗ and m∗ below eq. (7.6) we have

E0(κ = 0,B → ∞) = gωω̄0 − gσσ̄ ≃ −56.3MeV . (7.17)

Here, ω̄0 and σ̄ are complicated functions of the parameters of the model. Neverthe-
less, this expression is very instructive since it shows the effect of themeson conden-
sates in a very transparent way: E0 is negative because the scalar meson condensate,
responsible for the attractive interaction, becomes sufficiently large compared to the
vector meson condensate, which is responsible for the repulsive interaction. There
is no such simple expression for B = 0. Interestingly, E0(B → ∞) is non-vanishing
only in the presence of scalar self-interactions. For asymptotically large B, one can
show analytically that after setting b = c = 0 in eq. (7.5) and (7.7a) we would obtain
µB = mB and thus E0 = 0.

As a result of this discussion we conclude that the magnetic field has two ef-
fects: it changes the mass and the binding energy. For charged baryons whose
charge and anomalous magnetic moment have the same sign, both effects work in
favor of creating baryonic matter, at least for sufficiently large magnetic fields: first,
they decrease the mass mB − κB sgnq, and second, they lead to a larger binding
energy |E0|. At smaller magnetic field and/or different signs of q and κ, things are
more complicated and can be read off from figs. 7.1 and 7.3. For neutral baryons, a
magnetic field always decreases the mass, mB − |κ|B, and baryonic matter is always
favored by a nonzero magnetic field. If we compare charged with neutral baryons at
the same anomalous magnetic moment, for instance the curves for κ = +µN in figs.
7.1 and 7.2, we see that neutral baryonic matter is favored a bit less than charged
one. The reason is that for neutral baryons |E0| becomes smaller for large magnetic
fields, as fig. 7.3 demonstrates.
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7.5 Large Nc

How does this picture change when we go to the large-Nc limit? One way to answer
this question is to simply rescale the parameters of the model with the appropri-
ate powers of Nc, as suggested from large-Nc arguments [180, 125]. This has been
done without magnetic field in Ref. [33]. While the rescaling of most parameters
is unambiguous, one has to make a decision about the generalization of the scalar
meson to large values of Nc. In the traditional quark-anti-quark picture, its mass
would scale like N0

c . However, we may take the heaviness of the lightest scalar me-
son in the Sakai-Sugimoto model as a hint that this picture is incorrect, see also refs.
[141, 140, 139]. The alternative that we shall consider here is that the lightest scalar
meson is a tetraquark state [109]. Let us denote the generalization to arbitrary val-
ues of Nc of this tetraquark state by χ. This state is composed of Nc − 1 quarks and
Nc−1 anti-quarks such that its mass scales like mχ ∼ 2(Nc−1) ∼ Nc [122]. There are
other possibilities for the nature of the scalar meson which we do not consider here.
The results of ref. [33], however, suggest that the main conclusions of our following
discussion do not depend on the detailed nature of this controversial meson state.
Consequently, we rescale [33, 180, 125]

mB,mχ, κ,q ∼ Nc , mω,gχ ∼ N0
c , gω ∼ N1/2

c . (7.18)

(The Nc-dependence of κ has been computed in ref. [100]; note that we also assume
the charge q to scale with Nc). The Nc-dependence of the self-interactions of χ is
given by b ∼ e−Nc , c ∼ Nc; this is suggested by the arguments explained in ref. [33].

Let us first briefly discuss the scenario without magnetic field. In this case the
stationarity equations of the Walecka model (7.7) imply that the Fermi momentum
kF =

√

µ2∗ − m2
∗ scales like N0

c , although both µ∗ and m∗ are proportional to Nc.
Therefore, in the large-Nc limit, one can expand the pressure for small kF ≪ m∗, µ∗

(which, as an aside, yields P ∼ Nc). The resulting equation P = 0 for the baryon
onset then becomes very simple and yields, together with the stationarity equations
the trivial solution m∗ = mB, µ∗ = µB and E0 = 0, i.e., the baryon onset becomes a
second-order transition. This result is in fact obtained for all Nc ≥ 4 [33].

Now we switch on the magnetic field. Our numerical results show that, not sur-
prisingly, the binding energy remains zero, and as a consequence the baryon onset
curves are simply straight lines in the B-µB plane for all Nc ≥ 4: for charged baryons



7.5. Large Nc 109

they are given by B = mB−µB
κ , while for neutral baryons B = mB−µB

|κ| . Note the slight
subtlety related to the order of limits q → 0 and Nc → ∞: consider the onset lines
of charged baryons at Nc = 3 for κ = ±µN, see fig. 7.1. These are two very different
lines. As discussed above, these lines merge for q → 0. They remain on top of each
other if now we let Nc → ∞. On the other hand, if we first take the limit Nc → ∞
they remain separated and become linear with opposite slopes. Now letting q → 0
does not change the result. Hence the symmetry of the onset magnetic field under
κ → −κ, if we take the large-Nc limit of our neutral baryons and the anti-symmetry
for the charged baryons.

With these preparations, what can we learn from our holographic result? We
know that there is no binding energy in this case, and the onset line simply indicates
the B-dependent baryon mass (at least without meson supercurrent, otherwise the
situation is more complicated, as discussed in sec. 6.5). This mass gets larger with in-
creasing magnetic field. In the Walecka model, the only case with increasing mass is
the case of charged baryons with q and κ having opposite sign. Since in the present
context a nonzero electric charge is equivalent to the existence of Landau levels, it
is interesting to ask whether there is any Landau level structure for our holographic
baryons. We know that in the chirally restored phase of the Sakai-Sugimoto model
there is indeed a phase transition which has similar properties as a transition into the
LLL [145, 121]. In terms of the solution to the equations of motion, the "LLL" phase
corresponds to a trivial solution, y∞ = ∞. This solution always exists, but in some
regions of the parameter space is disfavored compared to a nontrivial solution, in-
terpreted as a phase of higher Landau levels. In the baryonic phase, there is also a
trivial solution, namely y∞ = 0, see Eqs. (6.50) and (6.51). However, this solution
is unphysical because it leads to an infinite baryon density and thus infinite free en-
ergy. Although we find several nontrivial solutions in certain parameter regions, the
solution which is continuously connected to the solution at the onset is always the
energetically preferred one. Hence there is no phase transition within the baryonic
phase. This is consistent with the apparent bosonic nature of the holographic large-
Nc baryons (see sec. 6.5) because for a Bose condensate at zero temperature we do
not expect de Haas-van Alphen oscillations.

Besides the overall tendency of the B-dependent mass, how about its linear be-
havior seen in the large-Nc limit of theWalecka model? The holographic results show
an approximately linear behavior only for intermediate magnetic fields. For large
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fields, a comparison to the Walecka results would only be sensible if the latter in-
cluded a more elaborate treatment of the anomalous magnetic moment. But also
at small magnetic fields our holographic onset line differs from the linear behavior,
in fact we find µonset = m0

q + const × b2 + . . .. It would be interesting to compute
the onset in other field-theoretical approaches. After all, the Walecka model does
not know about dynamical chiral symmetry breaking and thus cannot be expected
to show effects from MC and the meson supercurrent, which, as mentioned above,
seem to be the driving forces for the B-dependence of our effective holographic
baryon mass. On the other hand, also our holographic approach should be refined
for a more meaningful comparison. In particular, a generalization to two flavors is
necessary to describe realistic nuclear matter.



CHAPTER ..8
Conclusion

In the main part of this thesis we have investigated equilibrium phases at finite
temperature, chemical potential, and magnetic field for one massless flavor in the
Nambu--Jona-Lasinio model and the Sakai--Sugimoto model. For small flavor brane
separations, the Sakai--Sugimoto model is conjectured to be dual to a (non-local)
NJL model. Indeed, we have found intriguing qualitative similarities between both
models.

There is an exact equality of the number density at zero temperature of the low-
est Landau level in the restored phase of the NJL model and the large magnetic field
phase with restored chiral symmetry in the Sakai--Sugimoto model. The higher Lan-
dau level phase in the NJL model, however, differs from the small magnetic field
phase with restored chiral symmetry in the Sakai--Sugimoto model. For example,
there occur no de Haas--van Alphen oscillations in the holographic model. One pos-
sible interpretation is that in the holographic model -- dual to a strongly coupled
gauge theory -- there are no quasiparticles and no sharp Fermi surface. Furthermore,
the axial current found on the field theory side is also reproduced in the holographic
model. In the version of the model discussed here [23], the holographic current re-
produces the field-theoretical current only up to a factor of 2. This discrepancy can
be resolved by properly implementing the axial anomaly [152], however at the price
of losing a consistent thermodynamic description.

111
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Also the phase diagrams in both models share the same qualitative features. The
main differences are the order of the phase transitions (first and second order in NJL
vs. first order in Sakai-Sugimoto), the saturation of the critical temperature as well
as the critical chemical potential at asymptotically large magnetic fields (which only
occurs in Sakai-Sugimoto), and the absence of de Haas--van Alphen oscillations of
the phase transition line in the Sakai--Sugimoto model.

Themain physical effect, first discussed in detail in the holographic context [145],
is the nontrivial behavior of the chiral phase transition in a magnetic field at finite
quark chemical potential. Somewhat unexpectedly, at sufficiently large chemical
potentials and small temperatures and not too large magnetic fields, the effect of
inverse magnetic catalysis dominates. We have explained inverse magnetic catalysis
in both models by a free energy argument. This argument shows that, even when
the magnetic field increases the constituent quark mass (due to the usual magnetic
catalysis) and thus increases the condensation energy, it also increases the energy
cost for forming a chiral condensate. In particular, in the LLL, where the effect is most
pronounced, the cost for overcoming the separation of fermions and anti-fermions
due to the chemical potential increases linearly in B, while the constituent quark
mass rises quadratically at small magnetic fields (and g > 1 in the NJL model). It
is interesting that at asymptotically large magnetic fields the free energy difference
in the Sakai-Sugimoto model resembles the corresponding expression in the weak-
coupling limit of the NJLmodel. In this regimemagnetic catalysis is dominant in both
models, and the situation is analogous to weak-coupling superconductivity with mis-
matched Fermi surfaces [51].

This correspondence allowed us to analyze the termdescribing the costs for form-
ing quark--anti-quark pairs further. Instead of having two fermion species with differ-
ent Fermi surfaces, say at µ1 and µ2, the chemical potential itself separates fermions
from anti-fermions, making pairing more costly. The picture that one has in mind is
that in order to form the pairs one first has to reshuffle the fermions in the Fermi-seas
of both particle species in such a way that both Fermi surfaces agree on a fictitious
common energy level. In the case at hand this is the vacuum. For simplicity we re-
strict to the LLL again. In our case this reshuffling amounts to removing all fermions
with ε ∈ (0, µ) -- for each particle we need the energy amount µ/2 (on average µ
cost due the chemical potential and µ/2 gain from the kinetic energy). The density
of states is given by the the degeneracy factor per energy level, i.e. for fermions in



113

a box of volume V we have to reshuffle

V
B

2π2µ (8.1)

many times in total, which multiplied by the cost µ/2 yields exactly the free energy
cost for the LLL found in the NJL model as well as in the Sakai--Sugimoto model.

Note, that the degeneracy of states in the LLL can be related to the Euclidean
anomaly in two dimensions, which is a topological, and therefore robust result. The
magnetic field entering in the LLL only via this degeneracy is the agent for both the
catalysis of chiral symmetry breaking as well as the inverse catalysis. On the one
hand it increases the number of available partners for particle--anti-particle pairing
at the fictitious common energy surface ε = 0, on the other hand it increases the
separation of particles from anti-particles at finite chemical potential. How strong the
magnetic field catalyses chiral symmetry breaking of course depends on the choice
of the model and the choice of a specific set of model parameters, e.g. the coupling.

We have included an anisotropic chiral condensate in the Sakai--Sugimotomodel,
but not in the NJL model. For comparison, it is easy to show that in the holographic
calculation the assumption of an isotropic chiral condensate does not change the
qualitative features of the phase diagram. One finds that the effects of inverse mag-
netic catalysis are rather enhanced. On the other hand, including an anisotropic chi-
ral condensate in the NJL model changes the phase diagram drastically [71]. Most
notably, there exists a phase with anisotropic chiral condensate even at B = 0; in the
Sakai--Sugimoto model, B ̸= 0 is necessary for having such a phase. Moreover, this
phase inevitably has a finite quark density. In order to realize this in the holographic
model at B = 0 one needs solitonic baryon sources which are related to Skyrmions
and thus rather different from "baryons" in the NJL model which consist of dislocated
quarks.

We have discussed baryonic matter in a magnetic field, using the deconfined
geometry of the Sakai-Sugimoto model where baryons are introduced by D4-branes
wrapped on the internal S4. Our main focus has been the onset of baryonic matter
and its effect on the chiral phase transition at zero temperature and finite chemical
potential.

The critical chemical potential for the onset of holographic baryonic matter in-
creases monotonically with the magnetic field, saturating at a finite value for asymp-
totically large magnetic fields. For subcritical chemical potentials the system is in
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the mesonic phase with a meson supercurrent in the direction of the magnetic field.
Because of the axial anomaly, the system has non-vanishing baryon number for all
nonzero magnetic fields and chemical potentials. Due to the presence of the su-
percurrent the baryon onset is significantly "delayed" to larger chemical potentials.
In contrast to real-world baryonic matter, the onset is a second-order phase transi-
tion, because of the absence of binding energy. Besides the holographic study, we
have computed the onset also in the Walecka model, a field-theoretical model for
dense nuclear matter where the onset is a first-order transition. Within this model,
we have demonstrated that the onset depends strongly on the electric charge and
the anomalous magnetic moment of the baryons. In most cases, however, the mag-
netic field favors baryonic matter because it decreases the baryon mass, although
for neutral baryons it also decreases the (modulus of the) binding energy. In the
holographic calculation there is no binding energy and the baryon mass is increased
by the magnetic field. Our results indicate that this increase is closely related to the
effect of magnetic catalysis.

With baryonic matter, chiral symmetry is only restored for sufficiently large mag-
netic fields, where we have found that baryons play no role. For small magnetic fields
there is a transition from mesonic to baryonic matter but no subsequent transition
to quark matter. This enforces the unusual effect of inverse magnetic catalysis: the
magnetic field now restores chiral symmetry for any given chemical potential larger
than, roughly speaking, the one where the baryon onset line and the chiral phase
transition line meet in a critical endpoint, see fig. 6.9.

As our comparison with the Walecka model has shown, one has to be very careful
with drawing conclusions from the holographic results for the QCD phase structure
and the interior of neutron stars, where the extreme conditions studied here might
be realized. Most importantly, our holographic calculation has been restricted to the
Nc → ∞ limit, and there are indications that large-Nc nuclear matter is very different
from real nuclear matter. Therefore, generalizations to finite Nc would be very inter-
esting, as it has been done for instance in related D3/D7 models [28]. On the other
hand, in certain aspects our approach seems to be more realistic than widely used
models of dense matter. This is understandable since in the NJL model there are
no baryons; baryon number is only generated by deconfined quarks. In the Sakai-
Sugimoto model, however, baryons are clearly distinct from a set of Nc deconfined
quarks. Furthermore, the Walecka does not incorporate chiral symmetry breaking
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dynamically and therefore exhibits no magnetic catalysis.
It would be interesting to extend our study to more than one flavor in order to

describe more realistic baryonic matter. Moreover, one might include superfluidity
of nuclear matter, as suggested for the present model in ref. [149]. In the Sakai-
Sugimoto model as well as in bottom-up AdS/QCD approaches, it has also been sug-
gested that -- even for vanishing magnetic field -- the ground state breaks rotational
and/or translational invariance at sufficiently large baryon densities [55, 50, 138, 19].
It would be interesting to study the effect of such phases on our phase diagram. We
should also keep in mind that the quark matter phase considered here is not in a
state expected from QCD -- cold and sufficiently dense quark matter is a color super-
conductor in the CFL phase. This phase also breaks chiral symmetry at asymptotically
large µ, like our holographic baryons, but the mechanism is very different and heavily
relies on the fact that Nc = 3.

Another phenomenon that was not included in our discussion is the so-called
chiral shift [90, 91], a chiral asymmetry in the Fermi surfaces of right- and left-handed
charged fermions induced by a magnetic field. It would be interesting to discuss its
effect on the chiral phase transition and thus on inversemagnetic catalysis. However,
the chiral shift is related to the Fock exchange terms, which are suppressed at large
Nc. Therefore, this effect is difficult to study in a holographic model where Nc → ∞
is necessary for the validity of the supergravity approximation.





APPENDIX ..A

A.1 Chiral Symmetry of the NJL Lagrangian

From the transformation properties of the fermions

ψ → eiαψ, (A.1)

ψ → e−iαjIjψ, (A.2)

ψ → e−iγ5αjIjψ, (A.3)

one first concludes

ψ → ψe−iαψ, (A.4)

ψ → ψeiα
jIjψ, (A.5)

ψ → ψe−iγ5αjIjψ, (A.6)

where we used ψ = ψ†γ0 and {γµ, γ5} = 0. The symmetry of the Lagrangian with
respect to U(1)V is trivial.

In case of SU(2)V it is also obvious for all the isoscalar spinor-bilinears. For isovec-
tor bilinear terms we have for any g ∈ SU(2)V and any element Γ of the Dirac algebra

ψΓg−1σigψ = ψΓRi
j(g

−1)σjψ, (A.7)
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where the matrix R(g) belongs to the adjoint representation of SU(2), hence R is an
SO(3)-matrix. Since the isovector terms only appear in interior products, which are
invariant under SO(3) the assertion is proven.

The case of the axial transformations is more difficult to show. For isoscalar vec-
tor as well as pseudo-vector bilinears invariance is obvious, since there is, apart from
the γ0 in ψ, a further factor proportional to γµ, which flips the overall sign in the ex-
ponent in equation (A.6). By a similar argument scalar, pseudo-scalar, as well as ten-
sor bilinears are not invariant under axial transformations irrespective of the isospin
representation. That is precisely the reason why chiral symmetry forbids fermion
mass terms. However, in the interaction Lagrangian we find scalar and pseudo-scalar
terms squared. We use the abbreviations σ := ψψ and πi = ψiγ5σiψ as in the main
text, which transform as

σ → σ cosα − α̂ · π sinα , (A.8)

πi → πi − α̂iα̂ · π + α̂i(α̂ · π) cosα + α̂iσ sinα , (A.9)

whereα =
√
αiαi and α̂i = αi/α denotes a unit vector. Therefore, the interaction

terms transform as

σ2 → σ2 cosα + (α̂ · π)2 sin2 α − σα̂ · π sin 2α , (A.10)

π2 → π2 + σ2 sin2 α − (α̂ · π)2 sin2 α + σα̂ · π sin 2α , (A.11)

and in the sum all unwanted terms cancel. As a general rule, in order to ensure chiral
invariance, for each isoscalar Dirac-bilinear squared there has to be a squared isovec-
tor term which has the dual Dirac algebra structure. Likewise, in order to additionally
make the theory invariant with respect to U(1)A, for each Dirac-bilinear squared one
would need a dual Dirac-bilinear squared in the same isospin representation.

A.2 Noether's theorem

We ask the question, how the action varies with respect to (infinitesimal) transforma-
tions of the field content together with rigid coordinate transformations. In terms
of fibre bundle theory, the total variation of the field can be split into an internal
transformation, i.e. a change within the fibre over some point, and a change of this
point in the base manifold: δϕ = αΔϕ + δx

δϕ = Δϕ+ δxµ∂µϕ. (A.12)
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For the total variation of the action we find

δI =
∫
d4x

(
∂L
∂ϕ − ∂µ

∂L
∂∂µϕ

)

Δϕ+ ∂µ

(
∂L
∂∂µϕ

Δϕ
)

+ ∂µLδxµ = (A.13)

=
∫
d4x ∂µ

(
∂L
∂∂µϕ

δϕ
)

− ∂µ

[(
∂L
∂∂µϕ

∂νϕ− δµνL
)

δxν
]

, (A.14)

where we used the Euler--Lagrange equation to get from the first to the second line.
The term inside the parenthesis is called the canonical stress-energy tensor Θµ

ν .
The full expression has vanishing divergence and constitutes a conserved current.
In physics applications one usually splits off the infinitesimal constant parametrizing
the transformation appearing in δϕ and δx, e.g. the parameter α in the preceding
section. Due to the continuity equation ∂µJµ = ∂tJ0 + ∇ · J = 0 we can conclude
that there exists a charge, which is constant in time

Q :=

∫

Σ
d3x J0, (A.15)

d
dt

Q =

∫

Σ
d3x ∂tJ0 = −

∫

Σ
d3x ∇ · J = −

∫

∂Σ
daA ∇ · Ja = 0, (A.16)

provided suitable fall-off conditions for Ja. The spatial integral is over the constant
time hypersurface Σ and the surface integral over its boundary denoted by ∂Σ. In
general this criterion is not satisfied and the charge is ill-defined. However, the com-
mutator of charges, i.e. the so-called current algebra is well defined.

A.3 Imaginary time formalism and thermal field theory

We follow the introduction to thermal field theory given in [159]. In the course of
setting up the partition function for fermions one first concludes that the trace over
some operator A in a system with one state that is either occupied |1⟩ or empty |0⟩
can be expressed using Berezin's integration theory of Grassmann variables (here
denoted by η) by

trA =

∫

dη∗dηe−η
∗η⟨−η|A|η⟩. (A.17)

Using fermionic ladder operators {a, a†} = 1 a general fermionic state in the Hilbert
space is described by

|η⟩ = e−ηa
† |0⟩ = |0⟩ − η|1⟩ (A.18)

⇒ ⟨η| = ⟨0| − η∗⟨1| = ⟨0|e−aη∗ . (A.19)
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For the norm of the general state we find

⟨η|η⟩ = 1+ η∗η = eη
∗η, (A.20)

where we used

ηη∗ = −η∗η, ⇒ f(η, η∗) = α+ βη + γη∗. (A.21)

Hence unity should be given by
∫

dη∗dηe−η
∗η|η⟩⟨η|, (A.22)

which can be checked explicitly by using the rules of integration of Grassmann vari-
ables. For these we demand that linearity and translational invariance, then we de-
duce

∫

dηf(η + ζ) =

∫

dηf(η) (A.23)
∫

dηAf(η) + Bg(η) =

∫

dηAf(η) +
∫

dηBg(η) (A.24)

⇒
∫

dηf(η + ζ) ≡
∫

dη [α+ β(η + ζ)] (A.25)

= (α+ βζ)

∫

dη + β

∫

dηη = (A.26)

!
=

∫

dηf(η) = α

∫

dη + β

∫

dηη (A.27)

⇒
∫

dη = 0, (A.28)

and we normalize ∫

dηη = 1, (A.29)

hence this so called Berezin integration looks like differentiation. Finally we find
equation (A.17) by inserting the Berezin representation of unity in TrA = ⟨0|A|0⟩ +
⟨1|A|1⟩

TrA = ⟨0|A|0⟩+ ⟨1|A|1⟩ =
∫

dη∗dηe−η
∗η(⟨η|A|0⟩ − η⟨η|A|1⟩), (A.30)

from which equation (A.17) follows using η⟨η| = ⟨−η|η and switching integration
variables η → −η, η∗ → −η∗ for the first term in parenthesis.
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We are ultimately interested in Z = Tr exp(−βH). So we use A = exp(−βH) and
compute the transition function ⟨−η|exp(−iΔtH)|η⟩, i.e. we identify inverse temper-
ature temperature β = 1/T with the imaginary time interval Δτ = iΔt. Since we are
interested in the transition from a state into its negative we can realize this situation
by compactifying the imaginary time interval to an S1 with circumference 1/T and
imposing antiperiodic boundary conditions on the fermions. We start from

tre−βH =

∫

dη∗dηe−η
∗η⟨−η|e−ΔτH|η⟩, (A.31)

and first do some relabeling

tre−βH =

∫

dη∗Ndη0e
−η∗NηN⟨ηN|e−ΔτH|η0⟩

∣
∣
∣
ηN=−η0

. (A.32)

This we do because we will now split the Euclidean time interval into N pieces Δτi =
Δτ/N

tre−βH =

∫

dη∗Ndη0e
−η∗NηN⟨ηN|e−ΔτNH . . . e−Δτ1H|η0⟩

∣
∣
∣
ηN=−η0

, (A.33)

and insert unity from equation (A.22) N−1 times in between the exponential factors
which yields

tre−βH =

∫

dη∗Ndη0e
−η∗NηN

N−1∏

i=1

dη∗i dηie−ΔτiH(η∗i ,ηi−1)−η
∗
i (ηi−ηi−1)

∣
∣
∣
ηN=−η0

. (A.34)

Next we again relabel a bit: ηi → ηi+1

tre−βH =

∫ N∏

i=1

dη∗i dηie−ΔτiH(η∗i ,ηi)−η
∗
i (ηi+1−ηi)

∣
∣
∣
ηN+1=−η1

(A.35)

After performing the limit N → ∞ and using

Dη∗Dη := lim
N→∞

N∏

i=1

dη∗i dηi, (A.36)

lim
N→∞

η∗i
ηi+1 − ηi

Δτ
Δτi = η∗

∂

∂τ
ηdτ, (A.37)

lim
N→∞

N∑

i=1

fiΔτi =
∫

dτ f(τ), (A.38)
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we find for the partition function

Z =

∫

η(β)=−η(0)
Dη∗Dηe

−
β∫

0
dτ(η∗ ∂

∂τ
η+H(η∗,η))

. (A.39)

This can be easily promoted to a field theory of fermions

Z =

∫

ψ(β)=−ψ(0)
Dψ†Dψe

−
β∫

0
dτ

∫
d3x(ψ† ∂

∂τ
ψ+H(ψ†,ψ))

. (A.40)

Assuming that the only time derivatives acting on the fermions appear in the kine-
matic part of the Lagrangian

L = ψiγ0∂0ψ + . . . → LE = −ψ†∂τψ + . . . (A.41)

the Euclidean momentum conjugate to ψ is given by

ΠE
ψ =

∂LE

∂∂τψ
= −ψ†. (A.42)

Since the Lagrangian can be written as

LE = ΠE
ψ∂τψ −H(ΠE

ψ, ψ)
∣
∣
∣
ΠE
ψ
=−ψ†

, (A.43)

the partition function for fermions reads

Z(β) =
∫

ψ(β)=−ψ(0)
Dψ†Dψe

β∫

0
dτ

∫
d3xLE

, (A.44)

which is the Euclidean path integral with anti-periodic boundary conditions. The Eu-
clidean Lagrangian is defined by LE := L(t → −iτ). We might think of L as the nega-
tive of the sum of kinetic and potential energy−T−V. Whereas in the vacuum theory
the path integral becomes increasingly oscillatory away from the classical path, the
Euclidean path integral is damped for larger energy, as is the Boltzmann (weighting)
factor exp(−βE).

Note that using the pairs of variables (ψ†, ψ) and (ψ, ψ) is unitarily equivalent and
we will deliberately switch between both cases.
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1PI effective action

In analogy with zero temperature quantum field theory we define the functional

WE[J] = lnZ[β, J], (A.45)

Z[β, J] =
∫

ψ(β)=−ψ(0)
Dψ†Dψe

β∫

0
dτ

∫
d3x(LE+ψ

†J+J†ψ)
, (A.46)

where we introduced Schwinger sources J for the fermions. WE[J] is the generating
functional for connected n-point correlation functions

⟨ψ1 · · ·ψ†
n⟩connected n-point =

δ

δJ†1
· · · −δ

δJn
W[J]

∣
∣
∣
J=0=J†

. (A.47)

From that one obtains the generating functional for one-particle irreducible (1PI) n-
point functions a.k.a. the effective action by a Legendre transform

ΓE[ψ
†
c , ψc] = WE[J]−

∫

dτ
∫

d3xψ†
cJ + J†ψc, (A.48)

with ψ†
c = −δWE[J]

δJ
, ψc =

δWE[J]
δJ†

, (A.49)

that is a functional of ψ†
c and ψc, which are the vacuum expectation values of the

fields ψ† and ψ respectively in the presence of external Grassmann sources. Con-
versely, in the absence of external sources

δΓE

δψc
= 0 =

δΓE

δψ†
c
, (A.50)

which are the field equation, determining the values of ψc and ψ
†
c. The formulae de-

veloped so far allow us to take over the zero temperature results for the 1PI effective
action obtained in [108] and promote it to the finite temperature case by using the
following substitutions

τ = it, (A.51)

ΓE[ψ
†
c , ψc] = iΓ[ψc, ψc]. (A.52)

Furthermore in front of any term involving the logarithm of the functional determi-
nant of the boson propagator in Eq. (2.14) of Ref. [108] replace the factor 1/2 by
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−1 and finally replace iD−1 by the operator S−1 := ∂τ + hD, where hD denotes the
single particle Hamilton--Dirac operator for free fermions

hD = αi1
i
∇i + γ0M, (A.53)

with αi = γ0γ i and where M is some mass operator1.
Since thermodynamics is dealing with stationary situations, we can immediatly

expand the fermion wavefunctions ψ into eigenfunctions of ∂τ

ψ(τ, x) =
∞∑

n=−∞

eiωnτψn(x), ωn = (2n + 1)πT, (A.54)

where the discreteness and the form of the so called fermionic Matsubara frequen-
cies ωn stems from the anti periodic boundary conditions on the finite imaginary
time interval 1/T. Assume, that we found a basis ψn,{m} that also diagonalizes the
single particle Hamilton--Dirac operator with eigenvalues ε{m}, then we can write the
operator S−1 in this spectral decomposition as

S−1 =
iωn + ε{m}

T
, (A.55)

where we used
β∫

0

dτeiωnτ =
1
T
δn,0. (A.56)

Chemical potential

Provided our theory has conserved charges, e.g. particle number
∫
d3xψ†ψ, we may

introduce the conjugate chemical potential µ by the substitution H → H − µN ,
whereN denotes the charge density, e.g. ψ†ψ. In our spectral decomposition above
this amounts to the substitution ε{m} → ε{m} − µ

Matsubara sum

In our calculations we have to deal with the sum over the Matsubara frequencies at
several places in the main text. Most notably for the effective potential (which we

1Here we might think of some vacuum expectation value of bosons coupled via Yukawa coupling
or external gauge fields appart from the bare fermion mass term.



A.3. Imaginary time formalism and thermal field theory 125

will also call grand canonical potential or thermodynamic potential) given by

Ω = −T
V
ΓE (A.57)

we need to evaluate the so called "trace-log" term

Trln
iωn + ε{m} − µ

T
. (A.58)

First we rewrite the logarithm using an integral representation

ln
iωn + ε{m}

T
=

(ε{m}−µ)/T∫

0

dx
1

iωn
T + x

+ const. (A.59)

The constant terms are irrelevant for the system's dynamics and so will be omitted
in the following. Now we deal with the Matsubara sum. First we simply state that it
is the sum over the residue of some complex function f(z) and use Cauchy's integral
formula

∑

n

1
iωn
T + x

=
∑

n

Res(f, z =
iωn

T
) =

1
2πi

∑

n

∮

Cn

f(z), (A.60)

where the Cn denote curves enclosing the points z = zn := i(2n+1)π. Suppose that
f has simple poles at zn and that f can be written as f(z) = ϕ(z)/ρ(z) with ρ(zn) = 0
and ρ′(zn) ̸= 0 then the residue is given by Res(f, zn) = ϕ(zn)/ρ

′(zn). The simplest
function available with zeros at zn is ρ(z) = 2cosh(z/2), hence ρ′(z) = sinh(z/2).
Since f(z) = 1/(z + x) = ϕ(z)/sinh(z/2), ϕ(z) = sinh(z/2)/(z + x). Hence,

∑

n

1
iωn
T + x

=
1
2πi

∑

n

∮

Cn

f(z) = (A.61)

= − 1
2πi

∑

n

∮

C−x

tanh(z/2)
2(z + x)

=
1
2
tanh(x/2). (A.62)

Plugging this back into the integral formula for the logarithm yields
∑

n

ln
iωn + ε{m} − µ

T
= ln cosh

ε{m} − µ

2T
. (A.63)

In all situations relevant for this work we will deal with a spectrum of eigenvalues
that is Z2-symmetric, i.e. ε{m} = eε{m̃} with ε{m̃} ≥ 0 and e = ±1. One usually refers
to the wavefunctions with e = 1 or e = −1 as fermions or anti fermions respectively.
We use that to rewrite the Matsubara sum as

∑

n

ln
iωn + ε{m} − µ

T
=
ε{m̃} − eµ

2T
+ ln

(

1+ e−
ε{m̃}−eµ

T

)

(A.64)
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A.4 Chern--Simons 5-form

The U(Nf) Chern--Simons 5-form is decomposed with respect to the factorization of
the gauge group U(Nf) ≃ SU(Nf)× U(1) as

A = A + 1Â,

Q5(A,F) = Tr
(

AF − 1
2
A3F +

1
10

A5
)

=

= Q5(A, F) + ÂTrF2 + NfÂF̂2 + 2F̂TrAF − 1
2

ÂTrA2F, (A.65)

where we used

trA2n = 0, n ∈ N,

trF = 0 = trA,

Â2 = 0.

Using F = dA + A2 we find

Q5(A,F) = Q5(A, F) + 3ÂTrF2 + NfÂF̂2 + d
[

Â
(

2AF − 1
2

A3
)]

. (A.66)

In the case of two flavors one can easily show that Q5(A, F) = 0 using Tr(IiIjIk) =

i/4εijk, Tr(IiIjIkIl) = 1/8(δijδkl − δikδjl + δjkδil) and Tr(IiIjIkIlIm) ∝ εijkδlm ± perm..

A.5 Approximations close to the baryon onset

Vanishing B

In this appendix we derive eq. (6.60), i.e., the behavior of the baryon density n4

close to the onset at vanishing magnetic field. For b = 0 and with y∞ = 3by(0)∞ , eqs.
(6.50) and (6.51) can be written as

(u(0)
c )3/2y(0)∞ =

∫ ∞

1

u3/2du
√

u8 − 1+
n2
4

(u(0)
c )5

(
u3 − 8

9

)
, (A.67)

(u(0)
c )1/2ℓ

2
=

√

1+
8
9

n2
4

(u(0)
c )5

∫ ∞

1

du

u3/2

√

u8 − 1+
n2
4

(u(0)
c )5

(
u3 − 8

9

)
. (A.68)
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Furthermore, from (6.55) we find

n4(b = 0) =
µ− m(0)

q

y(0)∞

. (A.69)

For chemical potentials close to, but above, the onset chemical potential µ(0)onset =

m(0)
q , the numerical results suggest the ansatz

u(0)
c ≃ u(0)

c,onset + αϵ , y(0)∞ ≃ y(0)∞,onset + βϵ , (A.70)

with α, β to be determined, and

ϵ ≡ µ− µ
(0)
onset . (A.71)

Inserting this ansatz into eq. (A.69) yields

n4 ≃ 3+ α

3y(0)∞,onset

ϵ . (A.72)

To compute α it is sufficient to consider eq. (A.68), where β does not appear. We
are interested in the terms linear in ϵ. The linear term on the left-hand side is easily
obtained. On the right-hand side, we subtract the constant term and neglect the
quadratic term in the square root in front of the integral. If our ansatz is correct, the
integral thenmust yield a linear term but, as written, also yields terms of higher order
in ϵ,

− αℓ

4(u(0)
c,onset)

1/2
ϵ ≃

∫ ∞

1
du
[ 1

u3/2
√

u8 − 1+ v2ϵ2
(
u3 − 8

9

)
− 1

u3/2
√

u8 − 1

]

. (A.73)

Here we have abbreviated

v ≡ 3+ α

3y(0)∞,onset(u
(0)
c,onset)

5/2
. (A.74)

Let us for the following arguments denote the integral in eq. (A.73) by I. One can
check numerically that I is indeed linear in ϵ for small ϵ. Obviously, we cannot pro-
ceed by naively expanding the integrand in ϵ since this procedure would miss the
linear term. Instead, we employ the following trick. Neglecting higher order terms,
I divided by ϵ should not depend on ϵ anymore, i.e., ∂

∂ϵ
I
ϵ ≃ 0. We evaluate this
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equation by first rewriting the derivative with respect to ϵ as a derivative with respect
to u,

∂

∂ϵ

1
√

u8 − 1+ v2ϵ2
(
u3 − 8

9

)
=

2ϵv2
(
u3 − 8

9

)

u2(8u5 + 3v2ϵ2)
∂

∂u
1

√

u8 − 1+ v2ϵ2
(
u3 − 8

9

)
.

(A.75)
Then, with partial integration we obtain

I
ϵ
≃ − v

12
− 2ϵv2

∫ ∞

1
du

1
√

u8 − 1+ v2ϵ2
(
u3 − 8

9

)

∂

∂u
u3 − 8

9

u7/2(8u5 + 3v2ϵ2)
, (A.76)

where the first term on the right-hand side is the boundary term. Now the left-hand
side and the boundary term are constant in ϵ while the second term on the right-
hand side is linear in ϵ and can thus be dropped (the integral is finite and yields
a term constant in ϵ, but no ϵ−1 term). Consequently, we have arrived at the very
simple result I = − v

12ϵwhich can be confirmed numerically and which we insert into
eq. (A.73). The result is

α =
3

9y(0)∞,onset(u
(0)
c,onset)

2ℓ− 1
. (A.77)

With the same trick eq. (A.67) can be evaluated to obtain β. Here we are only in-
terested in the baryon density for which we insert eq. (A.77) into eq. (A.72). With
u(0)

c,onset and y(0)∞,onset from Eqs. (6.43) and (6.44) we obtain the final result given in eq.
(6.60) in the main text.

Asymptotically large B

Here we derive eq. (6.64), i.e. the behavior of the usual baryon density n4 close to
the onset at asymptotically large magnetic fields. In this case, due to the supercur-
rent, the onset does not occur at the baryon mass but at twice the baryon mass,
µ
(∞)
onset = 2m(∞)

q , where m(∞)
q = u(∞)

c,onset/3 denotes the (dimensionless) constituent
quark mass in a baryon at b → ∞. As in the previous subsection, we first need to
compute y∞ and uc. With y∞ → ∞ for b → ∞ we conclude from eq. (6.55) that

n(∞)
4 =

3b
2

(

µ− 2u(∞)
c

3

)

, (A.78)
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and thus we can write Eq. (6.50) as

ℓ(u(∞)
c )1/2

2
=

√
√
√
√1−

(

n(∞)
4

3bu(∞)
c

)2 ∫ ∞

1

du

u3/2

√

u5 − 1+

(

n(∞)
4

3bu(∞)
c

)2
. (A.79)

This single equation can now be used to determine the behavior of u∞
c at the onset.

Again, as for b = 0, the numerical result suggests the ansatz

u(∞)
c ≃ u∞

c,onset + α̃ϵ̃ , ϵ̃ ≡ µ− µ
(∞)
onset (A.80)

with α̃ to be determined. Inserting eq. (A.80) into eq. (A.78) yields

n(∞)
4 ≃ 3b

2
ṽϵ̃ , ṽ ≡ 1− 2α̃

3
. (A.81)

It is obvious that the left-hand side of eq. (A.79) has a linear term in ϵ̃. For the right-
hand side, however, we need to apply a similar trick as in the previous appendix to
extract the linear term. We write the linear terms of eq. (A.79) as

ℓα̃ϵ̃

4(u(∞)
c,onset)

2
=







∂

∂ϵ̃

∫ ∞

1

du
√

u5 − 1+ ṽ2ϵ̃2

4(u(∞)
c,onset)

2







ϵ̃=0

ϵ̃ . (A.82)

Now, analogously to eq. (A.75) we rewrite the differentiation with respect to ϵ̃ by
a differentiation with respect to u and compute the integral via partial integration.
Then, for ϵ̃ = 0 only the boundary term survives, and we can easily compute the
result for α̃,

α̃ =
12

8− 15(u(∞)
c,onset)

1/2ℓ
(A.83)

Inserting this into eq. (A.80) and the result into eq. (A.78) yields n∞
4 as given in eq.

(6.64) in the main text.
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