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Quantitatively accurate tight-binding parameters can be created from DFT band
structures using Maximally Localized Wannier Functions, faster and for more complex
materials than with fitting procedures. We propose a tight-binding parameter building
block system for graphene that encapsulates defects like edges and missing atoms for re-
use in bigger structures. We illustrate the concept for graphene nanoribbons. Towards
a tight-binding description of the graphene-Ni interface, we show that Wannier orbitals
can accurately reproduce the complicated band structure of a graphene-Ni slab.

Additionally, we explore methods to extract tight-binding parameters from high-level
quantum chemistry calculations and calculate Hartree-Fock expectation values of natural
orbitals of acenes.





Contents

1. Introduction 7

2. Fundamentals 9
2.1. Ab-initio methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Density functional theory . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2. Quantum chemistry methods . . . . . . . . . . . . . . . . . . . . . 9

2.2. Tight-binding formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Nearest-neighbor approximation . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1. Slater-Koster parameterization . . . . . . . . . . . . . . . . . . . . 14
2.4. Constructing a tight-binding Hamiltonian for a band structure . . . . . . 14
2.5. Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1. Band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2. Graphene nanoribbons . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6. Wannier orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.1. Maximally Localized Wannier Functions (MLWF) . . . . . . . . . 22
2.6.2. Tight-binding fit vs. Wannier orbitals . . . . . . . . . . . . . . . . 24
2.6.3. Choice of energy, k-points and guess orbitals . . . . . . . . . . . . 24
2.6.4. Tight-binding parameters . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.5. Real-space representation . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.6. Accuracy of band selection and band reproduction . . . . . . . . . 26

2.7. Building block system for tight-binding parameters . . . . . . . . . . . . . 26

3. Infinite graphene sheets 28
3.1. Nearest-neighbor parameterization . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1. Fitting procedure to DFT band structures . . . . . . . . . . . . . . 28
3.1.2. 1st-nearest-neighbor parameterization . . . . . . . . . . . . . . . . 29
3.1.3. 3rd-nearest-neighbor parameterization and higher . . . . . . . . . . 30
3.1.4. Computational effort . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2. Parameterization using MLWFs . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. Defect structures 38
4.1. Zigzag graphene nanoribbons . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1. DFT calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2. Wannier orbitals for a nanoribbon . . . . . . . . . . . . . . . . . . 41
4.1.3. Band structure from graphene Wannier parameters . . . . . . . . . 45
4.1.4. Application of building blocks . . . . . . . . . . . . . . . . . . . . . 47

5



4.2. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5. Graphene on Ni(111) 51
5.1. Model system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2. Face-centered cubic (fcc) crystal lattice . . . . . . . . . . . . . . . . . . . . 51
5.3. Wannier orbitals of face-centered cubic Nickel . . . . . . . . . . . . . . . . 52
5.4. Wannier orbitals of graphene on Ni(111) . . . . . . . . . . . . . . . . . . . 54
5.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6. Polycyclic aromatic hydrocarbons 59
6.1. Comparison of quantum chemistry methods and tight-binding . . . . . . . 60
6.2. Disentangling fractionally occupied natural orbitals . . . . . . . . . . . . . 65
6.3. Hartree-Fock expectation values . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A. Appendix 68
A.1. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6



1. Introduction

Graphene, a carbon-based, two-dimensional solid [25, 24, 26], features unique electrical
and mechanical properties, mainly due to its peculiar linear band structure at energies
near the Fermi level [32, 23]. The material gives rise to many new and intriguing appli-
cations including high-precision mechanical or chemical sensors, ultrafast single-electron
transistors [37] or spintronic devices.

The electronic properties of infinite graphene are theoretically well understood. How-
ever, the description of dots, ribbons and finite-sized structures in general, as well as
realistic materials which are subject to impurities, is still a challenging task in theoretical
physics.

Finite-sized structures play an especially important role. Due to the gapless band
structure of graphene, confinement using electrostatic potentials is not possible. Devices
are manufactured by cutting or etching, resulting in rough edges that influence transport
properties.

Graphene quantum dots [22, 7, 38, 16, 8, 15] experience Coulomb blockade and quan-
tum confinement effects; graphene nanoribbons [31, 14] are also of increasing interest due
to their promise of a band gap [35], overcoming the gapless band structure of truly two-
dimensional graphene. In particular, their overall semiconducting behavior allows the
fabrication of graphene field-effect transistors, tunnelling barriers and quantum devices.

The quantum mechanical description of dots, ribbons and other devices with edges and
impurities requires a method that can handle up to millons of atoms, but still describes
the physics introduced by defects.

Of all quantum mechanial descriptions of the electronic properties of crystals, tight-
binding is one of the simplest and crudest, but also one of the fastest – and the current
method of choice for systems with millions of atoms. However, tight-binding needs input
from other electronic structure calculations. There are several ways how to generate this
input and translate it to tight-binding parameters. We investigate the application of
Maximally Localized Wannier Functions (MLWFs) replacing the commonly used band
structure fitting procedure. The MLWF procedure is a promising candidate to improve
accuracy and versatility of tight-binding. In conjunction with density-functional the-
ory (DFT) software, we use it to streamline the workflow for creating tight-binding
parameters from DFT input. Real-space orbital representations of the basis orbitals
are available, and much bigger unit cells can be handled than with the usual fitting
procedure. It is possible to process DFT calculations of whole nanoribbons, defective
supercells or surfaces.

The logical next step after the creation of tight-binding parameters for supercells is
a building block system: We derive parameters from a bulk crystal calculation and
join them with parameters that we derive from a defective supercell calculation. This
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improves the accuracy for various systems with arbitrary size using a finite set of building
blocks that describe the indiviual defects that occur in the system.

The description of defective systems with millions of atoms is of high relevance in ex-
perimental physics. First nearest neighbor tight-binding is still very popular in the field
because of its simplicity. With a simple workflow of standard DFT and MLWF software,
we aim to bring high-precision tight-binding to the experimental physics community.
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2. Fundamentals

2.1. Ab-initio methods

2.1.1. Density functional theory

Density functional theory [27] is a method to calculate the energy of the electronic ground
state of a system. The energy is expressed as a functional of the electronic density.
This reduces the dimensionality of the problem from 3N (N is the number of electrons)
to 3, making the description of many-electron systems possible. The commonly used
local density approximation (LDA) refers to the approximation method for the exchange
and correlation energy which is, in case of the LDA, approximated with the exchange-
correlation energy of a free electron gas.

DFT can be used to calculate

� the total energy: by finding atomic positions that minimize the total electronic
energy, material structures can be predicted.

� the band structure: many DFT codes use a plane wave basis set, which makes it
easy to impose Bloch boundary conditions and calculate the energies of an electron
with a certain Bloch wave vector k. Since DFT is, in principle, a method that
calculates the ground state energy of a system, the energies of a single electron
(called Kohn-Sham energies – as depicted in the band structure) are not physically
meaningful, but are still used as an approximation for the single-particle energies.

2.1.2. Quantum chemistry methods

Quantum chemistry methods are electronic structure algorithms that are based on the
Hartree-Fock method and describe the many-particle wave function as a single Slater
determinant (Hartree-Fock) or a linear combination of those (post Hartree-Fock) [9]. The
computational cost depends on the method, but is high in all cases (compared to other
methods). Quantum chemistry methods are used to calculate the electronic structure of
molecules. Usually, a localized basis is used, so that the calculation of band structures
is not possible because the Bloch boundary conditions cannot be fulfilled.

Like in DFT, single-electron energies may be assigned to electronic orbitals, but are
not always meaningful (the total energy is the important value). In Hartree-Fock, they
can be interpreted as the ionization energies (see [9], p. 64). In other quantum chemistry
methods, the single-particle energies have no obvious analogon.
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2.2. Tight-binding formalism

Tight-binding is a simple approach for electronic structure calculations, but also the
method of choice for large systems. In chemistry, the approach is called linear combi-
nation of atomic orbitals (LCAO). The idea is the following: Since we are interested
in chemical or transport properties, we assume that only the valence electrons of the
single atoms (the electrons of the outer shell) play a role because the other electrons
remain localized at the core. We further assume that the wavefunction of a molecule
or a bulk material can be described by adding up the atomic wavefunctions (which are
well-localized around each atom) plus a small correction. In mathematical terms, this
is a linear combination of the occupied atomic orbitals plus some unoccupied atomic
orbitals for correction:

|ψ〉 =
∑
n

an |φn〉 , (2.1)

where |ψ〉 is a molecular single-electron wavefunction, n runs over all basis orbitals on
all sites (meaning atoms), an are the coefficients and |φn〉 are the basis orbitals. The
coefficients an can be understood as expansion coefficients in terms of the basis orbitals.
In a particular state, some an may be much larger than others and therefore dominate
the characteristics of the eigenstate.

Usually, the basis consists of the valence states that are occupied in the free atom; e.g.
in carbon, the valence electrons are two electrons in 2s and four electrons in 2px, 2py
and 2pz. Of course, even in the free atom case, the many-body electronic wavefunction
does not exactly consist of those orbitals (because of the electron-electron interaction).
They are only valid for the hydrogen problem. Still, it is a good basis to start out with.

The demands on the tight-binding calculation influences the choice of orbitals. For
example, if one is only interested in low-energy transportation properties of graphene,
one can use only the pz orbitals, which reduces the calculation effort significantly.

The single-electron Schrödinger equation can be solved in terms of a linear algebra
problem by inserting Eq. (2.1) into the Schrödinger equation H |ψ〉 = E |ψ〉 and applying
〈φm| from the left: ∑

n

〈φm|H |φn〉 an = E
∑
n

〈φm|φn〉an

Since Hmn = 〈φm|H |φn〉 and Smn = 〈φm|φn〉 are m× n matrices and an is a vector,
this is a generalized eigenvalue problem of the form Ha = E Sa. If the orbitals are
orthogonal to each other and S is therefore diagonal (Smn = δmn), it reduces to an
ordinary eigenvalue problem. ∑

n

Hmnan = E am (2.2)

After solving for E and an, we can insert the an into Eq. (2.1) to retrieve the wave
function in real space. The size of the Hamiltonian is determined by the number of
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orbitals. For natom atoms and norb orbitals per atom, there are natomnorb orbitals in
total.

Since the basis is not complete (we select the basis functions |φn〉 by an educated
guess), we cannot describe every |ψ〉with our restricted basis and equation (2.1) is only
approximately valid.

The crucial element is, of course, the matrix Hmn and its entries 〈φm|H |φn〉. The
many-particle electronic Hamiltonian in Born-Oppenheimer approximation (meaning
that the ions have a large mass compared to the electrons, and their movement can
be decoupled) is

H =
∑
n

p2
n

2me
+

1

4πε0

1

2

∑
n,n′

e2

|rn − r′n′ |
+
∑
n,m

Ne

|rn −Rm|

 (2.3)

This is a many-particle Hamiltonian, while tight-binding is a one-electron approxi-
mation. Thus, tight-binding takes a similar approach as density functional theory [27]
and Hartree-Fock theory [9] and assumes that the electron-electron interaction can be
described by considering non-interacting (meaning: not with other electrons) particles
in a potential that contains the influence of all other electrons. In contrast to the other
methods, this effective potential Veff is assumed to be independent of the solution, and
therefore no self-consistency is imposed. For additional informations on this approxima-
tion, see [13, pp. 5-8].

The tight-binding Hamiltonian and its matrix elements are given by

HTB =
∑
n

p2
n

2me
+ Veff HTB

mn = 〈ϕm|
∑
n

p2
n

2me
+ Veff |ϕn〉

At this point, the expression for Veff is not known, and the matrix elements can
not be evaluated. This is why tight-binding is not an ab-initio method: the matrix
elements Hmn are determined by comparing the results of the tight-binding calculation
(eigenvalues, eigenvectors and other properties calculated from them) to other methods
like DFT and Hartree-Fock. The matrix elements are fit to reproduce existing data. The
assumption is that those matrix elements can later be used for (slightly) different or
bigger systems. The most common approach is to use matrix elements obtained from a
fit to a DFT band structure (which describes the bulk properties of an extended material)
for a finite-sized system (ribbon, large molecule etc.).

In the following, we distinguish between the diagonal (called on-site parameters/elements,
denoted by ε) and the off-diagonal (called hopping parameters/elements, denoted by t
or γ) matrix elements Hmn, for example:

εi = Hii = 〈ϕi|HTB |ϕi〉
γij = Hij = 〈ϕi|HTB |ϕj〉

The nomenclature comes from the time evolution: if we assume that the electron is
in a state |ϕi〉, the on-site and hopping matrix entries determine the probability that
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the electron will stay in |ϕi〉 or “hop” into an other orbital |ϕi〉, respectively, in a time
evolution exp(−iHt) |ϕi〉.

The number of parameters that can/have to be adjusted to match data from other
sources is smaller than the number of matrix elements (natomnorb)

2 = n2
total because of

the Hermiticity of the matrix. If all basis orbitals are real, the matrix is symmetric, and
the number of parameters is 1

2ntotal(ntotal + 1). This number can be reduced further:

� The on-site parameters of spherical-harmonic orbitals of equal type (s,p,d,...) on
the same atom have equal on-site parameters (εs, εp etc.) because of translational
symmetry.

� On-site as well as hopping parameters are equal if atoms (or pairs of atoms) are
equal due to the symmetry of the system.

� The hopping parameters γij between spherical-harmonic orbitals on the same atom
are zero, as in the free-atom case.

� The matrix elements Hmn between orbitals are becoming smaller with growing
distance. If the distance exceeds a certain radius, the hopping elements are set to
0. Usually, the hopping elements between an atom and its first n neighbours are
taken into account (see section 2.3).

� Using the Slater-Koster (SK) parameterization, the matrix elements can be pa-
rameterized using symmetry so that the hopping matrix elements between a pair
of atoms can be described by a smaller number of parameters. For example,
the 16 hopping matrix elements (counting the matrix elements of all orbitals of
one atom with all orbitals of the other atom, because on-site parameters are not
affected by the SK-parameterization and intraatomic hopping is set to 0; addition-
ally, Hij = Hji, so finally number of atom pairs × number of orbitals per atom2)
between two atoms that both have 1 s-type and 3 p-type orbitals (16 nonzero
hopping elements) can be reduced to 4 parameters (see section 2.3.1).

It is important to realize that, due to the fitting process used to obtain the tight-binding
Hamiltonian HTB, we don’t actually need to know what the basis orbitals look like in
real space. If we use Slater-Koster parameterization, we implicitly use orbitals that have
the same spherical symmetric properties as the spherical harmonics. Since they were
situated around the nucleus in the free-atom case, it is probable that they still do so.

2.3. Nearest-neighbor approximation

The nearest neighbour approximation makes use of the fact that the Hamiltonian matrix
elements Hmn between basis orbitals 〈φm| and 〈φm| become smaller as their distance
increases. Hopping matrix elements between orbitals whose distance is greater than
a certain threshold are set to zero. In a bulk material, there are always groups of
atoms which have the same distance to a given atom (due to the symmetries of the
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material). After numbering those groups according to the distance, we can introduce
nearest-neighbour, second-nearest-neighbour approximations etc.

For a given carbon atom in graphene, all atoms that have the same distance to the
first atom also have the same matrix element Hmn. They belong to the same nearest-
neighbor group (same color in Fig. 2.1). Using one s-type and three p-type orbitals,
there are 4 Slater-Koster parameters per pair of atoms. Because of the symmetry, the
same 4 parameters can be used for the Hamiltonian matrix elements between any atom
and its neighbor with the same distance. This means that the number of parameters for
bulk graphene is 4N + 2, where N is the number of considered nearest-neighbor groups.

1st

2nd

3rd

4th

5th

6th 7th

8th

9th
10th

Figure 2.1.: Neighbor classification in graphene. The unit cell marked by the black
rhombus is the main cell; the grey dotted rhombuses mark the neighbor
cells. Each solid circle classifies the nth nearest neighbor group of the upper
(black) carbon atom of the main cell. The dotted circles do the same for the
lower atom of the main cell. Up to the 10th nearest neighbors (outermost
ring), the atoms are contained within 34 basis cells around the main cell (64
atoms).
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〈s|H |s〉 = Vssσ

〈s|H |px/y/z〉 = l Vspσ

〈px|H |px〉 = l2Vppσ + (1− l2)Vppπ

〈px|H |py〉 = lm(Vppσ − Vppπ)

〈px|H |pz〉 = ln(Vppσ − Vppπ)

Table 2.1.: Part of the Slater and Koster table [34] of interatomic matrix elements for
s-type and p-type orbitals. The bra and ket orbitals are located on different
atoms. l, m and n are the x, y and z components of the unit vector pointing
from the bra to the ket orbital. More parameterizations exist for d-, f- and
g-orbitals.

2.3.1. Slater-Koster parameterization

Slater and Koster showed that the hopping matrix elements between basis orbitals with
spherical harmonics characteristics can be greatly simplified (see [34], [6, pp. 194-197] and
[39, pp. 120-124]). For a given pair of atoms, the hopping matrix elements between two
p-type orbitals depends on two parameters, regardless of their orientation; the matrix
elements between an s-type and a p-type orbital depend on one parameter etc. For an
orbital basis with s-type and p-type orbitals, there are four parameters: Vssσ, Vspσ, Vppσ
and Vppπ. The actual matrix elements are derived from those parameters according to
table 2.1.

The parameters l, m and n (see Table 2.1) are the x, y and z component of the unit
vector that points from atom i (corresponding to the bra orbital of the Hamiltonian
matrix element) to atom j (corresponding to the ket orbital of the Hamiltonian matrix
element):  l

m
n

 =
~rij
|~rij |

We vary the Slater-Koster parameters so that the results of the tight-binding calcula-
tion fit ab-initio data.

In the case of 1 s-type and 3 p-type orbitals, the Slater-Koster parameterization re-
duces the number of necessary parameters from 7 to 4.

2.4. Constructing a tight-binding Hamiltonian for a band
structure

The band structure of a material is a way to describe the electronic properties of a crystal
that consists of an infinite number of copies of a unit cell which are arranged in a lattice
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[11]. At each lattice point ~Rlmn = l ~a1 +m~a2 + n~a3 (l, m, n are integers, and ~ai are the
lattice basis vectors – all ~Rlmn are called lattice vectors), there is a copy of the unit cell.
This means that the crystal has a discrete translational symmetry. The Hamiltonian of
the Schrödinger equation has the same symmetries, and according to the Bloch theorem
[2], every eigenstate fulfills the requirement

ψ~k(~r + ~R) = ei
~k ~Rψ~k(~r) (2.4)

~R is any lattice vector, and ~k is a reciprocal lattice vector within the first Brillouin
zone and, at the same time, a quantum number for the eigenstate.

The band structure is a plot of the eigenvalues of the Schrödinger equation as a
function of the Bloch wave number ~k. This means that we need a way to calculate all
solutions for a given ~k.

For the calculation, only the solutions in one unit cell are necessary because the
solution anywhere else can be calculated from the first cell using Eq. 2.4.

If we want to solve the Schrödinger equation as a partial differential equation (without
an orbital basis, e.g. with a discretization scheme), boundary conditions have to be
supplied, and this is where the Bloch theorem enters. Because of Eq. 2.4, the wave
function ψ(~r) at a point ~r at the unit cell boundary has to be equal to the wave function

ψ(~r − ~R) at the boundary point ~r − ~R multiplied with a phase factor ei
~k ~R. The same

holds for the derivative at the boundary, and thus, all necessary boundary conditions
are supplied.

If an orbital basis is used to solve the equation, the implementation of the Bloch
theorem is quite different. As an example, we will look at a unit cell in a one-dimensional
system with one atom and two orbitals on it (Fig. 2.2).

1p

1s

2p

2s

3p

3s

Δx

Figure 2.2.: Example unit cell with one atom and two orbitals (s-type and pz-type).

The Schrödinger equation “in this part” of the (infinite) system with nearest-neighbour
approximation looks like this:
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· · · · · · · · · · · · · · · · · · · · · · · ·
· · · εs 0 Vssσ Vspσ 0 0 · · ·
· · · 0 εp Vspσ Vppπ 0 0 · · ·
· · · Vssσ Vspσ εs 0 Vssσ Vspσ · · ·
· · · Vspσ Vppπ 0 εp Vspσ Vppπ · · ·
· · · 0 0 Vssσ Vspσ εs 0 · · ·
· · · 0 0 Vspσ Vppπ 0 εp · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·





· · ·
a1s

a1p

a2s

a2p

a3s

a3p

· · ·


= E



· · ·
a1s

a1p

a2s

a2p

a3s

a3p

· · ·


(2.5)

According to the Bloch theorem (Eq. 2.4) the solutions in the unit cells have to be
related by a phase factor, and therefore, also the coefficients have to be, according to
their positions:

a1s = e−ik∆xa2s

a3s = eik∆xa2s

The same identities are valid for the p-type orbitals, and for any orbital in the infinite
crystal – with the according phase factor. They can be inserted into the vectors of the
Schrödinger equation (Eq. 2.5):

· · ·
a1s

a1p

a2s

a2p

a3s

a3p

· · ·


=



· · ·
e−ik∆xa2s

e−ik∆xa2p

a2s

a2p

eik∆xa2s

eik∆xa2p

· · ·


The former six coefficients were reduced to two: a2s and a2p. Any other coefficient in

the crystal can also be replaced by ei
~k ~R with the corresponding lattice vector ~R. This

can be used to simplify the matrix equation. To illustrate this, let’s look at the a2s

equation (third line, excluding the “dot” line) of the above eigenvalue problem:

...+ Vssσa1s + Vspσa1p + εsa2s + 0 a2p + Vssσa3s + Vspσa3p + ... = E a2s

After inserting the identities and reordering, the equation reads:

...+ Vssσe
−ik∆xa2s + Vspσe

−ik∆xa2p + εsa2s + 0 a2p + Vssσe
ik∆xa2s + Vspσe

ik∆xa2p + ... = E a2s

(...+ Vssσe
−ik∆x + εs + Vssσe

ik∆x + ...)a2s + (...+ Vspσe
−ik∆x + Vspσe

ik∆x + ...)a2p = E a2s

This can again be written as a matrix, but the dimension was reduced from ∞ to 2,
and the matrix elements were truncated as described by the equations above. If the same
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algorithm is applied to all equations of the eigenvalue problem, every second equation
becomes identical, so that all equations but two can be dropped:

(
...+ Vssσe

−ik∆x + εs + Vssσe
ik∆x + ... ...+ Vspσe

−ik∆x + Vspσe
ik∆x + ...

...+ Vspσe
−ik∆x + Vspσe

ik∆x + ... ...+ Vppπe
−ik∆x + εp + Vppπe

ik∆x + ...

)(
a2s

a2p

)
= E

(
a2s

a2p

)
If a nearest-neighbour approximation is used, the hopping parameters between remote

unit cells are set to zero. In this example, we use a nearest-neighbour approximation, so
all the “dot” parts are zero, and the equation reads:

(
Vssσe

−ik∆x + εs + Vssσe
ik∆x Vspσe

−ik∆x + Vspσe
ik∆x

Vspσe
−ik∆x + Vspσe

ik∆x Vppπe
−ik∆x + εp + Vppπe

ik∆x

)(
a2s

a2p

)
= E

(
a2s

a2p

)
From this example, we can deduct an “effective” algorithm:

� Set up the Hamiltonian for a system consisting of a “central” unit cell and all other
unit cells you want to include for an n-th-nearest neighbour-approximation (e.g. 8
adjacent unit cells for a 3rd-NN-approximation in graphene – see section 2.3)

� Take the rows corresponding to the orbitals in the central unit cell. Multiply each
column n with the Bloch phase factor (it depends on ~k!) that corresponds to the
position of the orbital ϕn. The central unit cell can have the Bloch phase factor 1
(that would be the obvious way to do it), but this is not necessary.

� Add up the columns that correspond to the same orbital in different unit cells.
The resulting square matrix is your band structure Hamiltonian H(~k).

The dimension of the eigenvalue problem is given by the number of orbitals in a unit
cell; in the case of graphene (2 atoms per unit cell) and s, px, py and pz as basis orbitals,
there are 8 orbitals.

2.5. Graphene

Graphene is a (theoretically) infinitely large, two-dimensional crystal. We will derive
the lattice vectors and atom positions, starting with the the lattice constant a = 2.461 Å
from [29]) using figure 2.3.

Graphene consists of a hexagon lattice of carbon atoms. The lattice vectors are of
equal length and form an angle of 60 degrees (or 120 degrees). The carbon atoms are
situated on the hexagon corners. The lattice vectors a1 and a2 connect the centers of
the hexagons. They also form a unit cell (dashed lines and thick line) containing two
carbon atoms, labeled atom A and atom B (they form two trigonal sublattices labeled
A and B).

The lattice constant a is the distance between two atoms in adjacent unit cells which
both belong to the same sublattice (A or B). The distance c between two adjacent carbon
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Figure 2.3.: Schematic illustration of the graphene geometry. The black rhombus is the
reference cell, the dashed lines mark neighboring cells. a1 and a2 are the
lattice vectors. The blue hexagon and the similar black hexagons show an
other possible grid of unit cells (the Wigner-Seitz unit cell – in contrast to
the dashed rhombuses). A and B label the sublattices.

atoms (e.g. LM) can be calculated using the triangle KLM . Because a hexagon consists
of six equilateral triangles which have 60 degree angles, the angle 6 LMK is 120 degrees

and LM =
KL
2

sin 60°

= a
2 sin 60°

= a√
3

= c.

The lattice vectors a1 and a2 are calculated using the triangle DEF . Because the
angle 6 DFE is 120 degrees (see above), the other angles of this triangle are 30°, and
therefore the angle between a horizontal line and the vector DE is 60 degrees. The
distance |DE| is a, and so the vector DE, which is equivalent to a1, can be found by
rotating a horizontal vector with the length a by 60 degrees:

a1 = DE =

(
cos 60° − sin 60°
sin 60° cos 60°

)(
a
0

)
=
a

2

(
1√
3

)
.

a2 is the mirror image of a1 with respect to the vertical axis, so we just have to flip
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the sign of the x-component:

a2 =
a

2

(−1√
3

)
.

Because a hexagon consists of six equilateral triangles, the distance between the center
and a corner (e.g. GH) is also c = a√

3
. Thus, GH, HI and IJ are all of equal length,

and the positions of the carbon atoms (within a unit cell) are

b1 = GH =
1

3
GJ =

1

3
(a1 + a2) =

(
0
c

)
=

1√
3

(
0
a

)
b2 = GI =

2

3
GJ =

2

3
(a1 + a2) =

(
0
2c

)
=

2√
3

(
0
a

)
The hexagonal lattice is named after the symmetric unit cell (light blue line) which

is the Wigner-Seitz cell and an equal alternative (with the same lattice vectors) to
the rhombic unit cell (thick black line). Additionally, each sublattice (A or B) form a
hexagon-like structure (pink lines) which has an additional atom in the center of the
hexagon.

The reciprocal unit cell (see Fig. 2.4) is also hexagonal, but rotated by 90° with
respect to the unit cell in real space. Because of symmetry, 1/12 of the reciprocal unit
cell already contains the entire band structure. Since the plot E(kx, ky) is very hard to
represent in 2D (because there are several values of E for each k point), one plots the
values of E along the path encircling the relevant 1/12 of the band structure.

The reciprocal lattice vectors are usually found using the cross product, so that ai ·cj =
2πnδij is fulfilled. In two dimensions, this can be accomplished by rotating the lattice
vectors by 90 degrees clockwise:

c1 =
2π

det(a1a2)

(
0 1
−1 0

)
a2 =

2π
1
2

√
3a2

a

2

(√
3

1

)
=

2π

a

(
1
1√
3

)

c2 =
2π

det(a1a2)

(
0 1
−1 0

)
a1 =

2π

a

(
−1

1√
3

)
.

det(a1a2) is the determinant of the matrix consisting of a1 and a2 and ensures that
aici = 2πn (easily proven by inserting the vector components).

The reciprocal vectors can be generated equivalently using a unit vector in z direction
as a third lattice vector.

The special points in k-space in terms of the reciprocal lattice vectors are: Γ = (0, 0),
K = 1

3(c1 − c2) and M = 1
2 c1. Because of the periodicity of the band structure, some

corners of the unit cell are equivalent, e.g. K is also the lower left corner of the hexagon.
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Figure 2.4.: Reciprocal lattice of graphene (given by the reciprocal lattice vectors c1

and c2, blue), unit cell (dashed grey) and the usual band structure plot
path ΓKMΓ. a1 and a2 are the lattice vectors. The black hexagon is the
Wigner-Seitz cell.

2.5.1. Band structure

The graphene band structure consists of three main parts:

� The σ system: lower three bands. They can be described by sp2-like hybrid orbitals
which are responsible for the chemical bonding of the carbon atoms and have
most electron density on the connections between the carbon atoms. They are
energetically well below EF and do not participate in electron conductance; for
the same reason, the chemical bonding is strong. They are completely occupied.

� The π system: fourth and fifth band. They can be described by pz-like states.
The lower band (called π band) is occupied, the upper band (π∗ band) is not.
Conductance happens when electrons are excited from the π to the π∗ band.

� Bands far above EF , mainly bands with no atomic orbital characteristics.

The phrasing ”can be described by” refers to the fact that the Bloch states in those
bands exclusively consist of the mentioned basis set. ”like” means that those basis
orbitals look very much, but not exactly like the spherical harmonics which give them
their name.

The graphene band structure E(kx, ky) is usually plotted along a path in the reciprocal
space, namely the triangle made up of the points Γ, K and M (see Fig. 2.4).

It’s interesting to compare the graphene band structure to the dispersion relation
of a free electron (pure Laplace equation) with zone folding (Fig. 2.5). Although the
electrons are massively influenced by the atomic cores, they still look very much like the
free electron bands (which explains the success of the Sommerfeld theory).
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Figure 2.5.: Graphene DFT band structure (black) and the dispersion relations of two
free electrons (blue), one with positive, one with negative mass (scaled to
resemble the other bands in magnitude). The qualitative shape of the latter
and the graphene π system is similar.

2.5.2. Graphene nanoribbons

A graphene nanoribbon can be described by ”cutting out” a stripe from an infinite
graphene sheet. There are two different ways to do that, which differ in the edge config-
uration: zigzag (zzGNR) and armchair (aGNR – see Fig. 2.7). Fig. 2.6 shows the band
structures.

Zigzag ribbons show an interesting property, the so-called edge states. The states in
the flat bands around EF (which constribute to conductance) are exclusively located
at the edges. This property easily becomes distorted as soon as the zigzag edge has a
defect.

2.6. Wannier orbitals

Wannier orbitals wnR(r) [5, 12, 33, 36, 20, 19] are localized orbitals which are obtained
from Bloch states using a unitary transformation. Usually, those Bloch states are the
Kohn-Sham orbitals ψmk(r) from a DFT calculation. Wannier orbitals are defined as

wnR(r) =
V

(2π)3

∫
BZ

[∑
m

U (k)
mnψmk(r)

]
e−ik·Rdk

The resulting orbital wnR(r) is localized centered on the lattice site R. It is trivially
orthogonal because they result from a unitary transformation of the Bloch states, which
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Figure 2.6.: Left: band structure of the π system of a 5-zzGNR, right: band structure
of the π system of a 5-aGNR. The zzGNR features flat bands at EF , which
are located at the edges of the ribbon.

are also orthogonal. The process is similar to creating an electromagnetic wave packet
by summing over plane waves. U is a unitary matrix which we are free to choose.

2.6.1. Maximally Localized Wannier Functions (MLWF)

Maximally Localized Wannier Functions (MLWFs) describe one way to choose the matrix
U . In tight-binding, we want localized basis orbitals in order to associate an electron
with a specific atom and to be able to build up system geometries. If the orbital is
maximally localized, the number of non-negligible matrix elements to adjacent orbitals
will probably also be small. Such a localized orbital is also a ”bridge” to atomic orbitals
and helps us understand the character of chemical bonding.

The localization of an orbital is measured using the spread Ω, the sum of the orbital
variances:

Ω =
∑
n

[
〈wn0(r)| r2 |wn0(r)〉 − |〈wn0(r)| r |wn0(r)〉|2

]
(2.6)

This can be split up into a term Ω̃ = ΩD + ΩOD (diagonal and off-diagonal in the WF
basis) which depends on U and one that does not, ΩI :

Ω = Ω̃ + ΩI
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Figure 2.7.: Part of a zigzag graphene nanoribbon (left) and its unit cell (red); part of
an armchair graphene nanoribbon (right).

ΩI =
∑
n

[
〈wn0(r)| r2 |wn0(r)〉 −

∑
Rm

|〈wmR(r)| r |wnR(r)〉|2
]

ΩD =
∑
n

∑
R6=0

|〈wnR(r)| r |wnR(r)〉|2

ΩOD =
∑
m 6=n

∑
R

|〈wmR(r)| r |wnR(r)〉|2

For a given set of Bloch states, the MLWF procedure minimizes the sum of the orbitals
variances Ω w.r.t. U . The minimization consists of two sequential parts: disentanglement
and Wannierization.

The disentanglement procedure decides if a Bloch state will be used in the unitary
transformation from Bloch states to Wannier orbitals or not. Because of the unitarity,
only as many states per k-point can will be used as there are resulting Wannier orbitals.

If the calculation shall result in N Wannier orbitals, the disentanglement procedure
finds a N×K linear transformation for every k-point that transforms the K Bloch states
of that k-point into N Bloch states, so that the part of the spread which does not depend
on U , ΩI , is minimal. If there are N bands within the outer energy window, all bands
are used, and the disentanglement procedure is not necessary.

The crucial feature of the disentanglement procedure is that it finds those parts of the
band structure which can be combined linearly to a set of orbitals (with a given orbital
number N) which minimize Ω. Consider graphene, whose band structure consists of
three major parts (see Fig. 2.8): a) the σ system (bottom three bands) b) the π system
(bands 4-5) and c) bands well above EF which are not relevant for conductance (grey in
Fig. 2.8). By defining the energy window of eligible states and the number of Wannier
orbitals (two), the disentanglement procedure automatically picks the π and the π∗ band.
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After the disentanglement procedure, there are N Bloch states per k-point (=N bands)
left. The wannierization procedure finds U to minimize the total spread Ω (specifically,
the part Ω̃ that depends on U). The result will be the matrix U , which can be used
to calculate the Hamiltonian matrix in the localized basis as well as the real-space
representation (if the real-space representation of the Bloch orbitals is known).

Graphene has the nice feature that only two orbitals are necessary to describe (most
of) the π system. This is because the Hamiltonian matrix elements between the σ and π
system are all zero, thus, three orbitals describe the σ bands, and two orbitals describe
the π bands. This is not generally the case: If there are more bands within the outer
energy window than result orbitals, some bands will be described well, others will not,
even with a fully converged calculation.

2.6.2. Tight-binding fit vs. Wannier orbitals

Wannier orbitals differ from the ”traditional” tight-binding fitting routine as follows:

� Wannier orbitals contain the exact same information as the Bloch states. Fit
tight-binding (normally) only contains part of the information. It follows that
Wannier orbitals are as good as the tight-binding approximation can ever get, but
the parameter set is much bigger. The amount of memory and processor resources
can be reduced by creating a model based on fewer fit parameters which reproduces
a selected set of properties of the original Bloch states (e.g. behavior around EF ).

� Wannier orbitals have a real-space representation. Tight-binding parameters usu-
ally only reproduce the band structure, and their basis orbitals don’t have a real-
space representation. Even their center is unknown.

� Fitting tight-binding orbitals implicitly assume the symmetry of atomic orbitals.
Wannier orbitals can have their center between atoms.

� For a fitting procedure, one needs a metric to measure the distance between band
structures. For systems with many bands, its minimization can range between
messy and impossible. This problem is completely avoided using Wannier orbitals.

2.6.3. Choice of energy, k-points and guess orbitals

The Wannierization procedure has several parameters which influence the convergence
speed as well as the results.

There are two energy windows needed as input for an MLWF calculation, illustrated
in Fig. 2.8.

� The outer energy window defines the energy range in which Kohn-Sham orbitals
are considered to be used in the transformation. All states which lie outside this
window are completely disregarded. A state within the window will be used if it
leads to a minimization of the spread Ω. All relevant bands must be within this
window. More bands than resulting orbitals may exist there. With a well-chosen
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Figure 2.8.: Outer (blue) and inner (red, ”frozen”) energy windows for the π bands of
graphene. In this case, the frozen energy window encapsulates the energy
range which is exclusively occupied by the π bands. The outer energy win-
dow encapsulates the energy range which is non-exclusively occupied by the
π bands.

set of initial guess orbitals, the MLWF procedure will automatically select the
relevant bands.

� The inner/frozen energy window defines the energy range in which all Kohn-Sham
orbitals must be used. Mandatory bands which are to be kept are within this
window. Bands which are to be disregarded must not be there. The frozen energy
window must lie within the outer energy window.

If a band that is to be reproduced by Wannier orbitals is not completely within the
outer energy window, the disentanglement procedure does not converge.

The extent of the outer and frozen energy window greatly influences the resulting
Wannier orbitals.

A set of guess orbitals which resembles the expected results significantly increases the
convergence speed (although it does not influence the result). The valence orbitals of
the atom type are (obviously) a good start. Additionally, there will be electron density
at the bonding lines.

2.6.4. Tight-binding parameters

The MLWF procedure gives the unitary transformation matrix U as a result. It describes
the transformation from KS Bloch states to localized orbitals. Since each KS state has an
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energy, the Hamiltonian matrix in the KS basis E is diagonal and has the KS energies
as diagonal entries. The Hamiltonian in the Wannier orbital basis can be calculated
by applying the transformation U on the diagonal Kohn-Sham Hamiltonian HKS. The
entries of the resulting matrix HTB are on-site and hopping matrix elements between
the Wannier orbitals and can be used for tight-binding.

Because of the lattice symmetry, it is sufficient to specify the hopping matrix elements
from the atoms within one cell (”main cell”) to all other cells in the vicinity.

2.6.5. Real-space representation

Using the transformation matrix U , the real-space representation of a Wannier orbital
can be obtained from the real-space representation of the Kohn-Sham orbitals.

Tight-binding does not require orbitals to be necessarily localized at an atom. It can
be practical to use orbitals which are delocalized around tens or hundreds of atoms.

2.6.6. Accuracy of band selection and band reproduction

We can give a few hints when one can expect good reproduction of the desired bands
and when one cannot:

� The complete band must be within the outer energy window, otherwise the calcu-
lation will not converge.

� If there are fewer destination orbitals than bands in the outer energy window, the
disentanglement procedure will select the bands. This will work perfectly if the
states in the bands you want to extract do not interact (i.e. the Hamilton matrix
elements are zero) with the other bands (like the graphene σ and π system, which
are decoupled by symmetry). In general, they do interact, and the description will
result in bands which are not completely accurate.

� The MLWF procedure yields poor results if there are bands with the same orbital
character in the outer energy window as the bands one wants to describe. They
are not automatically disregarded because they actually contribute to the mini-
mization. E.g., the π system of a graphene ribbon with 10 atoms per unit cell
has 10 bands. It can be described using 10 pz-like Wannier orbitals. If the outer
energy window contains no other bands which have pz characteristics, this works
perfectly. However, if the size of the outer energy window is increased, there may
be other bands with pz characteristics, which contribute to the minimization and
thus distort the description of the π system. To conclude, the outer energy window
should be chosen as small as possible.

2.7. Building block system for tight-binding parameters

Tight-binding is based on the assumption that parameters, derived from one specific
system configuration (e.g. infinite crystal), also work for other, similar systems. In
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the context of the nearest-neighbor approximation, this makes sense: it’s unlikely that
orbitals which are localized on distant atoms interact, thus, the hopping parameters for
a silicon atom which lies in the middle of a grain of sand will be the same as for a
silicon atom within an infinite crystal. However, this assumption is invalid if the local
chemical environment of an atom is different from the initial system, e.g. a missing
atom, a substitution atom or an adsorbed atom or an edge. Using the tight-binding
parameters of an infinite crystal for those systems (which is the usual approach) leads
to quantitatively wrong results. We propose that parameters for different regions in the
tight-binding geometry come from different ab-initio calculations. E.g., for a graphene
nanoflake, most of the atoms are ”bulk” atoms, whose parameters will come from an
infinite crystal calculations, but at the edges, parameters from an ab-initio calculation
which included edges will be used (e.g. a nanoribbon).

After creating a set of building blocks which describe different defects, larger systems
which feature all of those defects can be calculated with the same computational efforts,
but at much higher accuracy.

bulk

H Hcorner
H2 defect

zigzag

vacancy

ar
m

ch
ai

r

Figure 2.9.: Schematics of building blocks, illustrated for graphene. Every block en-
capsulates a common defect an can be re-used in combination with bulk
tight-binding parameters.
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3. Infinite graphene sheets

The case of the infinite graphene crystal is the easiest one to calculate; we will evaluate
the performance of the MLWF procedure, compare it to the traditional fitting tight-
binding scheme and then work our way towards more complicated structures.
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Figure 3.1.: DFT band structure of the graphene π-system (a) along ΓKMΓ (b) enlarged
view around the K point showing the linear behavior.

3.1. Nearest-neighbor parameterization

3.1.1. Fitting procedure to DFT band structures

For determining tight-binding parameters, we consider the band structure of the system.
We reproduce the DFT-LDA band structure using a tight-binding calculation with fit
parameters. The assumption here is that the tight-binding Hamiltonian, which belongs
to a single-particle Schrödinger equation, can reproduce the single-electron energies of
a many-electron calculation. The tight-binding Hamiltonian uses an implicit mean-field
description to account for the effect of the other electrons. This follows the strategy
behind the Kohn-Sham ansatz of DFT which assumes that the interacting system can
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be described by a noninteracting system (which is a single-particle problem) with an
effective potential.

The algorithm is as follows:

� Choose a set of tight-binding parameters

� Construct the tight-binding Hamiltonian as a function of the wave vector ~k

� Solve the eigenvalue problem for every ~k along a certain path in the Brillouin zone

� Compare this tight-binding band structure with the DFT results using a distance
function/norm.

� Repeat until the norm reaches a minimum.

We used the Levenberg-Marquardt algorithm [18] for the minimum search.
Because the basis set used in tight-binding is not complete, it is obvious that not the

entire band structure can be reproduced. The energies that correspond to wave functions
which cannot be described by the restricted basis set will show large discrepancies. The
bands that cannot be described by any choice of tight-binding parameters are disregarded
in the minimum search.

The error can be weighed according to relevance. A possible choice for a band structure
fitting distance is the 1-norm, which takes the form of

w =
1

N

∑
n,m

gmn|amn − bmn|. (3.1)

n is the band index, m is the point index on the chosen path through the Brillouin
zone, gmn is a positive weighing factor (if all data points are equally important, gmn ≡ 1),
amn and bmn are the DFT and tight-binding band structure data points, respectively. N
is the number of sample points along the path to make the error of a certain resolution
comparable to an other resolution (other value of N).

3.1.2. 1st-nearest-neighbor parameterization

The 1st-nearest-neighbor parameterization has only two parameters: ε and t. ε causes a
spectral shift which shifts the whole band structure up and down, whereas t is the only
parameter defining the shape. It can be directly related to the slope of the Dirac cone

at the K point, and through vg = 1
h̄
dE
dk =

√
3

2h̄ ta, to the Fermi velocity.
This parameterization only incorporates the symmetry properties of the system and

the Fermi velocity. The determination of the parameters is trivial: ε = EF , and t can be
related to vF which is measured or calculated. The values used in Fig. 3.2 are ε = 0 eV
and t = −2.7 eV.
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Figure 3.2.: 1st-nearest-neighbor tight-binding (blue) and DFT band structure of
graphene (black) (a) along ΓKMΓ (b) enlarged view around K.

3.1.3. 3rd-nearest-neighbor parameterization and higher

The 3rd-nearest-neighbor parameterization correctly describes a ”trigonal warping” effect
of the Dirac cone at K towards higher energies. Also, the overall agreement with the
DFT band structure is better. The Slater-Koster hopping parameters don’t have an
obvious physical interpretation as in the 1st-nearest-neighbor case.

The arbitrary choice of the minimization norm plays a significant role: it’s not possible
to reproduce the complete π and π∗ band using 3rd-nearest-neighbor parameterization,
but we can choose which part to describe better by using the appropriate norm. Set
1 (see Fig. 3.3 and Fig. 3.4) describes the π band correctly, whereas set 2 produces a
symmetric band structure. For quantum conductance calculations, the relevant range is
described equally well.

Note that, although the parameters depend on the norm, the best fit for a given norm
is unique and always converges to the same parameters for different starting guesses.

# Set 1 [30] Set 2 [13]

ε 1.0797 -0.126
1 -3.4727 -3.145
2 0.3616 -0.042
3 -0.2376 -0.35

Figure 3.3.: Comparison of two different sets of 3rd-nearest-neighbor parameters (see Fig.
3.4). Units in eV. The index denotes the nearest neighbor group.
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Figure 3.4.: Comparison of four different parameterisations of the graphene π system:
3rd-nearest-neighbor set 1 (black), 3rd-nearest-neighbor set 2 (blue), 5th-
nearest-neighbor [30] (red) and DFT (green) (a) along ΓKMΓ (b) enlarged
view around K.

3.1.4. Computational effort

Due to symmetry, the number of parameters for a nth-nearest-neighbor parameterization
is n+ 1. The computational effort, though, grows with a higher power of n because the
number of matrix elements between the reference cell and its neighbor cells grows with n2

(because of the area covered). Each hopping matrix element (i.e. all connections between
the atoms in the reference cell and the other cells as depicted in Fig. 2.1) corresponds
to one entry per row in the Hamiltonian matrix; e.g. a matrix derived from the 1st-
nearest-neighbor parameterization has 4 nonzero entries per row. The performance of
the algorithm used for inversion or diagonalization of the Hamiltonian matrix usually
depends on the number of nonzero entries per row.

3.2. Parameterization using MLWFs

The MLWF procedure does not depend on the choice of a norm between the approxi-
mated and the DFT band structure. However, we can choose the number of resulting
Wannier orbitals and an energy window where the participating Bloch states will be
chosen from. Depending on how the bands in the energy window ”mix” with the bands
outside or reaching into the window, the desired bands will be reproduced perfectly or
not.
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For graphene, there are two different scenarios:

� Parametrize the π and the σ system with five Wannier orbitals. The result will be
two pz-like orbitals for the π system and three sp2 hybrids for the σ system. The
disentanglement procedure will automatically choose the five relevant bands from
the energy window which must be large enough to contain all of them.

� Parametrize the π system with two Wannier orbitals, resulting in the same two
pz-like orbitals as the previous scenario. The disentanglement procedure will also
choose the relevant bands (π, π∗) from a window that contains both of them and
will disregard the others, including the σ bands.
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Figure 3.5.: Graphene DFT band structure (black) and derived Wannier orbital band
structure (blue) for the σ and π system.

There is an important difference between the MLWFs and tight-binding orbitals for
the σ system. Using a Slater-Koster parameterization, there are four orbitals per atom,
which leads to four occupied and four virtual bands. The first virtual band is the π∗ band,
but the other three virtual bands don’t describe any of the other DFT virtual orbitals
because the latter ones are not localized. Thus, Slater-Koster tight-binding needs eight
orbitals to describe five bands. The Wannier orbital parameterization, on the other
hand, uses only three sp2-like orbitals (specifically, the positive linear combinations of
the atomic sp2-orbitals) for the σ system – there are no virtual partners for those bands.

In addition to standard tight-binding, the MLWF procedure results in a real-space
representation of the basis orbitals as well as hopping matrix elements (see Fig. 3.10)
which can be used for tight-binding.
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The initial guesses (Fig. 3.6) for the pz-like orbitals are, unsurprisingly, two pz-orbitals,
sitting on the carbon atoms. For the σ system, two possible choices lead to equally good
convergence: a) sp2 hybrid orbitals on every other carbon atom or b) one s-orbital at
every half distance point between two neighboring carbon atoms (see Fig. 3.6). Both
variants a) and b) feature three orbitals. The outer and frozen energy windows (see Fig.
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Figure 3.6.: Centers of gravity of the initial guess orbitals for one unit cell of graphene
(black dots: pz-orbitals, green dots: s-orbitals – see Table 3.9 for the orbital
types and positions)

2.8 for graphene) should be chosen so that they closely encapsulate the desired bands to
maximize the convergence speed. The convergence itself depends on the right choice of
the upper window border, because there may be bands which have pz symmetry. Most
of the bands, though, are free particle-like and don’t contribute to localized orbitals.

The MLWF procedure does not allow to set the number of hopping neighbors. It just
minimizes the spread, and the resulting hopping matrix elements are a result of this
optimization process. As shown in Fig. 3.7 and Fig. 3.8, the matrix elements above
the 10th nearest neighbor group can be safely set to zero without changing the band
structure. Neglecting hopping elements between closer atoms change the band structure
visibly (see Fig. 3.8).

The real-space representation of the basis set (Figs. 3.11, 3.12, 3.9) enables us to see
where the conduction actually takes place (namely, in the π system). The sp2-orbitals
(a positive linear combination of the atomic sp2-orbitals, to be precise) illustrate the
chemical bonding of graphene.
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Figure 3.7.: Absolute value of the hopping matrix elements depending on the distance
between the orbitals (a) π orbitals (b) σ orbitals). The blue and the red
curve are polynomials of degree -4 and -5.

3.3. Conclusions

We have shown that the π and σ systems of graphene can be described accurately using
MLWFs in their full energy range with five orbitals (Fig. 3.5). This is in contrast to
nearest-neighbor tight-binding parameterisations obtained from fit procedures, which
need eight orbitals and fail to describe the full π system (Fig. 3.4). However, a large
parameter set (more than 10 neighbor groups, see Table 3.10) needs to be used for
transport calculations to describe the electronic structure at the Fermi energy.

The MLWFs have a real-space representation that describes the orbitals of the π
system as pz-like orbitals (Fig. 3.11) and the orbitals of the σ system (Fig. 3.12) as
positive linear combinations of atomic sp2 hybrids. The correct choice of the outer and
frozen energy window (Fig. 2.8) is crucial for the convergence of the MLWF procedure.
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# type x y z spread

1 pz 0 1.42085 0 0.895
2 pz 0 2.84171 0 0.895
3 sp2 0.61525 1.06564 0 0.603
4 sp2 0 2.13128 0 0.603
5 sp2 -0.61525 1.06564 0 0.603

Figure 3.9.: Centers of gravity and spreads (see Eq. 2.6) of the Wannier orbitals in
real-space representation. The numbers refer to the positions in Fig. 3.6.

# #

ε 3.282830e-01 6 -1.938300e-02
1 -2.918915e+00 7 -1.232300e-02
2 2.247330e-01 8 -2.015500e-02
3 -2.728070e-01 9 6.161000e-03
4 2.019100e-02 10 3.925000e-03
5 5.142900e-02

Figure 3.10.: First ten hopping parameters for the graphene π system, generated by the
MLWF procedure (units in eV). The number refers to the neighbor group.
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Figure 3.11.: Plots of the pz-like orbital (Nr. 1 and 2 in Fig. 3.6): (a) wave function
along the z-axis (b) on the x-z plane (c) surface plot.
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Figure 3.12.: σ-system: (a)-(f) sp2 orbital (Nr. 4 in Fig. 3.6; Nr. 3 and 5 are copies
rotated by 60° in the x-y plane).
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4. Defect structures

One of the goals of using Wannier orbitals to create tight-binding parameters is to
enhance quality of the description of defects. The proposed procedure goes as follows:

� Do a DFT calculation of the ideal system/bulk material (e.g. infinite graphene
crystal). Create the bulk Wannier orbitals.

� Do a DFT calculation of a defect structure within a supercell (e.g. 4 by 4 nm
graphene cell with a vacancy). Create defect Wannier orbitals.

� Build up the system geometry by ”cutting” a given shape out of the bulk material
and use the bulk Wannier parameters.

� Substitute the regions where the defect occurs with the defect Wannier parameters.
We call this ”parameter mix-in”.

There are two assumptions behind this strategy:

� The influence of the defect is local. In tight-binding, this is the case if the non-
zero hopping matrix elements are within a certain radius of the orbital. This
is in the spirit of the nearest-neighbor approximation and is most likely a good
approximation for our purposes.

� The mix-in parameters should connect to the rest of the system in a smooth fashion.
While the parameters at the defect are different by construction, the parameters
at the border of the substituted area should match the the bulk parameters.

This matching property is very important. It is not a property of the standard MLWF
procedure that the boundary (which is physically bulk-like) of a (periodic) supercell has
the same Wannier orbitals and parameters as an actual bulk calculation. The minimiza-
tion of the orbital spread Ω does not guarantee a similarity of orbitals between calcu-
lations because the defect may change the situation in an uncontrolled manner. The
physics of the bulk-like boundary is, of course, the same as in the bulk, but the Wannier
orbital description might still differ. Matching of mix-in cell border parameters with
bulk parameters could be enforced by imposing a boundary condition on the MLWF
procedure so that the outer border of the supercell has fixed Wannier orbitals which
participate in the calculation, but are not varied during the minimization procedure.

In the following, the MLWF procedure for the supercells will be done without any
modifications to the MLWF algorithm.
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4.1. Zigzag graphene nanoribbons

A graphene nanoribbon has a very strong defect: the ribbon edge. The usual tight-
binding parameterization for a ribbon is done by cutting out a ribbon out of an infinite
graphene sheet, i.e. using only the bulk parameters and pretending that the cut-off
carbon atom next to the outermost edge atom is missing. This results into a surpris-
ingly good description of a real graphene nanoribbon whose edges are passivated with
hydrogen.

In the following, we show a procedure how to increase the accuracy of the band
structure description by doing a parameter mix-in of the ribbon edges, including the
possibility of edge relaxation, which will especially improve the description of states
around EF .

4.1.1. DFT calculation
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Figure 4.1.: DFT band structure of a relaxed 15-zzGNR (a) along ΓX (b) enlarged view
with a rescaled energy axis.

A realistic chemical structure features hydrogen atoms passivating the dangling bond
of the outermost carbon atoms (one per edge per unit cell).

In a plane wave DFT calculation with a periodic unit cell, there is not only a periodicity
in the ribbon direction (usually x), but also in the other two directions. To eliminate
the unphysical interaction between copies of the stripe, there has to be enough distance
(vacuum) in y (in-plane perpendicular to ribbon) and z direction (out-of-plane).

In the space between the stripes, there is a number of virtual electronic states with an
energy greater than EF . With increasing cell size, their energy approaches EF (see Fig.
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4.2). For the creation of tight-binding parameters, we need the complete antibonding
bands which lie in a range where the aforementioned electron bands accumulate. Thus,
the number of bands that need to be included in the DFT calculation grows with in-
creasing box size. On the other hand, as mentioned, the box size in y and z direction
needs to be large to avoid interaction; thus, we use a compromise box size of z=5Å.
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Figure 4.2.: DFT band structure comparison of a 1-zzGNR, running in x-direction, for
different box sizes. The red line marks EF .
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4.1.2. Wannier orbitals for a nanoribbon

We use the MLWF procedure to create Wannier orbitals and parameters for a graphene
zigzag nanoribbon and analyze the dependence of the parameters on the position within
the nanoribbon.
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Figure 4.3.: (a) DFT band structure (black) of a 15-zzGNR and the derived Wannier
orbital band structure (blue) (b) pz orbital projection amplitudes of the
bands (black: small amplitudes, red: large amplitudes).

Fig. 4.3 shows the DFT band structure of a 15-zzGNR and the derived Wannier orbital
band structure. The Wannier band structure reproduces the σ and the π system and
ignores the additional bands above EF . The figure also shows the projection amplitudes
of the Kohn-Sham orbitals on the pz orbitals and illustrates that the MLWF method
indeed picks out the bands with pz characteristics.

The upper boundary of the outer energy window has to be chosen carefully because the
DFT calculation shows states which have pz components in the region above the π∗ band.
They most probably occur due to poorly converged bands (in the DFT calculation) in
the region far above EF . They must be outside the outer energy window because they
would contribute to the minimization of the π system and thus distort those bands.

The upper boundary of the frozen window lies just beneath the energy where the
non-pz bands intersecting with the π∗-system.
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Figure 4.4.: The MLWF Wannier orbitals of a 1-zzGNR; in accordance with Fig. 4.5,
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Figure 4.5.: (a) centers of the Wannier orbitals (the index refers to Fig. 4.4) (b) band
structure (DFT: black, Wannier orbitals: blue) of a 1-zzGNR. The red line
marks EF .

The real-space representations for the Wannier orbitals in a nanoribbon have the same
characteristics as the ones in infinite graphene. The additional hydrogen atoms at the
edges result in a py-like orbital. Fig. 4.4 shows all orbitals, Fig. 4.5 the center positions.

� The region described by the building block must not be influenced by the width
of the nanoribbon, i.e. the edge matrix elements coming from a ribbon calculation
must be independent from this width.

� The ”bulk” region within the nanoribbon needs to have approximate translational
symmetry, and the matrix elements should be identical to the bulk matrix elements.

Fig. 4.6 and 4.7 show the on-site energies of the pz-like orbitals, dependent on the
position, for different nanoribbon sizes. Two qualitatively different patterns emerge
(compare e.g. Fig. 4.6, second row vs. fourth row). This is not understood, but we
believe that the strongly changing pattern stems from a convergence issue.

The other pattern (from 14 to 30 rings, see especially Fig. 4.7) shows a behaviour
which is very suitable for a building block system. The on-site energy in the ”bulk”
region is uniform. The the on-site energies at the edge vary, but in a very similar way
if compared between different nanoribbons. Fig. 4.7 shows an enlarged version of the
on-site energies of a 20-zzGNR and 15-zzGNR and suggests that the best size for an
edge building block includes the outermost 10 atoms.

Unfortunately, the ”bulk” on-site energies do not have the same value as the real bulk
on-site energy (red line). This is also not understood.
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hanced view of Fig. 4.6). The red line marks the Wannier bulk on-site
energy. The unit is eV.

4.1.3. Band structure from graphene Wannier parameters

In Fig. 4.8 various nearest-neighbor approximations to the band structure, the original
DFT and the Wannier band structure are compared. Note that the Wannier orbital
parameters originate from the bulk calculation.

The comparison shows that the DFT band structure is qualitatively well described by
all parameterizations, but not quantitatively; in particular:

� The 1st-nearest-neighbor parametrization is inaccurate in every energy regime and
lacks a bending of the edge state bands near EF .

� The 3rd-nearest-neighbor set 2 parameterization is inaccurate in the regime away
from EF and more accurate near EF . Note that all edge states are below EF (and
thus, filled), which is in contrast to the DFT band structure where only half of the
edge states are filled. The set 1 parameterization is completely off.

� The Wannier bulk parameterization is accurate in the regime away from EF and
moderately accurate at EF , most importantly, the bending of the edge band is
much too strong.
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Figure 4.8.: Band structure of a 15-zzGNR. The plots (a)-(c) show different parts of
the band structure with different parameterisations in each plot (”Wan-
nier” refers to a Wannier parameterization of the full nanoribbon). (b)
shows an enlarged region of (a), while (c) shows the same region, but other
parameterizations.
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4.1.4. Application of building blocks

We apply the building block principle to a graphene nanoribbon to improve the quan-
titative description of the band structure. Because the edges are considered as defects,
the main error of the tight-binding band structure is expected near the bands around
EF (edge states). As an illustrating example, we will look at a 15-zzGNR.

The following steps are taken:

� DFT calculation of infinite graphene (hexagonal unit cells, 2 atoms) and creation
of Wannier orbitals (2 orbitals) for the π system.

� DFT calculation of a zigzag nanoribbon with 15 rings (rectangular unit cell, 32
atoms) in width and creation of Wannier orbitals (32 orbitals) for the π system.

� Setup of a tight-binding Hamiltonian for a zigzag ribbon geometry of width n using
the infinite graphene Wannier parameters.

� Substitution of particular on-site and hopping matrix elements (”mix-in”) for or-
bitals close to the ribbon edge (see Fig. 4.9).

The goal is a set of mix-in parameters for the zigzag ribbon edge which generate
accurate bands for any ribbon width.

Figure 4.9.: Two different strategies for an edge building block. Left: The building block
consists of the two outermost on-site matrix elements (red dots), the 1st-
nearest-neighbor hopping matrix element between those two and all hopping
matrix elements between those atoms to the adjacent unit cells (red lines).
Right: The building block consists of the outermost on-site matrix element
and all hopping matrix elements to this atom in the other unit cells.
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First, the performance of the mix-in parameters is evaluated for the same ribbon width
(15 rings) they were generated with (as a consistency check). The Hamiltonian matrix
for this zzGNR-15 is set up, as mentioned, using the Wannier parameters from the
bulk graphene calculation, and selected matrix elements are substituted with Wannier
parameters from the zzGNR-15 calculation (see Fig. 4.9 for examples).

Fig. 4.10 shows the performance of various selections. A building block, only con-
sisting of the outermost on-site element and the hopping matrix elements between the
outermost atoms, already shows a remarkable improvement in comparison to all previous
parametrizations. Adding more hopping matrix elements (see figure caption) leads to
an better description, but not continuously (e.g. the building block including 4 atoms is
better than the building block including 5 atoms).

To demonstrate the application of the building block system, the mix-in parameter
set, generated using the zzGNR-15 DFT calculation, is used for a zigzag ribbon with
a width of 30 rings. Again, the Hamiltonian matrix is set up using the Wannier bulk
parameters, and selected edge parameters are substituted with the mix-in parameters.
We use the 1-atom building building block because, though it is less accurate than e.g.
the 3-atom building block (see 4.10), it gives a feasible description with a small set of
parameters (see Fig. 4.11). The mix-in band does not fit the DFT band as accurately
as for the 15-zzGNR. Nevertheless, it is much better than all other parameterizations
mentioned in this work.

Most importantly, the edge states (flat part of the π system) are approximately half-
occupied (in contrast to the full occupation of the 3rd-nearest-neighbor parameterisation
shown in Fig. 4.10). The Fermi energy EF is at 0 eV – all states below the k axis are
occupied, all states above are unoccupied (at T = 0).

4.2. Conclusions

Not only can the MLWF procedure create suitable parameters for graphene, but also for
much more complicated unit cells containing tens of atoms (Fig. 4.3), which would be
impossible using a fitting procedure. The real-space representation of a minimal basis
set of a 1-zzGNR can be easily calculated (Fig. 4.4), which show the chemical bonding
characteristics of the passivating hydrogen atoms. Using data from nanoribbons up to
30 rings in width, a common behavior of the on-site energies at the edges can be isolated
(Figs. 4.6 and 4.7). A combination of MLWF parameters derived from bulk graphene
and the edges 15-zzGNR is then used to reproduce the band structure of a 15-zzGNR
(Fig. 4.8) and a 30-zzGNR (Fig. 4.11) with much higher accuracy than 3rd-nearest-
neighbor tight-binding.

The building block strategy applied here to increase the description quality of the
nanoribbon edge can be used to describe adsorbed atoms, missing atoms, Stone-Wales
defects etc.
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5. Graphene on Ni(111)

The graphene-Nickel interface has interesting spin filtering properties with long coher-
ence times [3, 4, 10, 17, 21]. We want to incorporate those properties into a tight-binding
model, including spin, in order to describe realistic interface geometries. In the follow-
ing, we will show how to create tight-binding parameters for a graphene-Ni(111) slab
using the MLWF procedure.

5.1. Model system

The model system consists of six layers of Ni(111) with one layer of graphene on each side.
Due to the periodicity of the DFT unit cell in all directions, there is also a z-periodicity
so that a layer of vacuum separates an infinite number of ”sandwich” structures. This
structure was chosen to simulate the behavior of a surface. There is a graphene layer on
both sides of the Nickel slab.

Since Nickel is ferromagnetic, one has to consider a spin-dependent band structure.
This results in two independent band structures, which are both filled up to a common
EF , leading to a different density of states for each spin. The band structures can each be
described by a set of tight-binding parameters, which makes it possible for tight-binding
to describe the system including spin.

In the following, spin is not considered, which is the equivalent to looking at one of
the two spin channels.

Figure 5.1.: Schematic diagram of the model system.

5.2. Face-centered cubic (fcc) crystal lattice

Bulk Nickel is a face-centered cubic crystal structure with one atom per unit cell.
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The basis vectors are:

a1 =
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 , a2 =
a
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 , a3 =
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0
1

 (5.1)

The band structure E(kx, ky, kz) is usually plotted along the path connecting the points
ΓXWLΓK (see Fig. 5.2).

The name ”face centered cubic” comes from a possible reducible unit cell (see Fig.
5.2) which has Nickel atoms at the eight cube vertices as well as the cube face centers.

The term Ni(111) describes the orientation of the material surface with respect to
the crystal structure. The plane which is parallel to the surface has the normal vector
(1, 1, 1), written in the basis of the lattice vectors (see above). This is called the Miller
index.
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Figure 5.2.: Left: reducible face-centered cubic unit cell [41]. Right: First Brillouin zone
of Nickel and symmetry points [42].

5.3. Wannier orbitals of face-centered cubic Nickel

Nickel has 10 valence electrons. As mentioned, a spin-dependent DFT calculation will
result in two band structures, one for each spin. The MLWF procedure has to be applied
independently to both band structures, identically to a spin-free calculation – but twice.
The following procedure is based on a spin-free DFT calculation and is identical to the
calculation for one of the spin channels of a spin-dependent calculation.

Fig. 5.7 shows the band structure of a spin-free Nickel fcc calculation. There are hints
that d-orbitals will play an important role: First, the majority of the bands are quite
flat, which is a property of small, localized orbitals; d-orbitals are more localized than s
and p. Secondly, five of the orbitals form groups of three and two degenerate states at
the Γ point, which correspond to the eg-t2g-splitting of d-orbitals.

Additionally, the DFT software may provide projections coefficients of the Bloch states
on atomic orbitals as an output, which would also indicate the orbital character.
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The d-orbitals are centered on the Nickel atoms. Additional orbitals which describe the
chemical bonding and have electron density somewhere between the atoms are necessary.
The following guess orbital set is used:

� five d-like orbitals, centered on the Nickel atom

� two s-like orbitals, centered at 1
4(1, 1, 1) and 3

4(1, 1, 1) (in lattice coordinates)

Those are initial guess orbitals: e.g. the converged versions of the initially guessed
s-orbitals may not be spherically symmetric. Most of the electron density, though, is
already in the right place. The upper boundaries of the outer and frozen energy window
are 40 and 14 eV.

Fig. 5.5 shows the result of this calculation. The bands below and around EF are
described perfectly; in the region up to 10 eV above EF discrepancies occur. More
orbitals would be needed in order do describe this region and the higher bands. To
explore the behavior for a varying number of Wannier orbitals, a version with five orbitals
(only the d-orbitals as a starting guess) was calculated (Fig. 5.5). Parts of the flat bands
around EF are described well; the bands going down and up and the Γ point are not
described at all. Most importantly, some bands near EF are described very badly, what
makes this parameterization unsuitable for conductance calculations.

Γ K M Γ
k-point path

3.0

3.5

4.0

4.5

5.0

5.5

6.0

E
n

er
gy

[e
V

]

(a)

Γ K M Γ
k-point path

3.0

3.5

4.0

4.5

5.0

5.5

6.0
(b)

Γ K M Γ
k-point path

3.0

3.5

4.0

4.5

5.0

5.5

6.0
(c)

Figure 5.3.: DFT (black) and Wannier (blue) band structure of the graphene on a
Ni(111) slab with different upper boundaries of the frozen energy window
(a) 5 eV (b) 6 eV (c) 7 eV. The dashed rectangles mark regions of the band
structure with strongly change with the chosen upper boundary.
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5.4. Wannier orbitals of graphene on Ni(111)

Putting together the information gained from the analysis of bulk fcc Nickel and graphene,
the initial guess orbitals for the combined slab were chosen the same as for the separate
materials. As depicted in Fig. 5.5, some features from fcc-Nickel and graphene are still
visible: the flat d-bands of Ni around EF as well as the σ system of graphene. The
graphene Dirac cone, however, is not visible any more due to coupling of the pz orbitals
to the Nickel slab.

The accuracy of the bands below EF is high, while the reproduction of the higher
bands is delicate. Their quality strongly depends on the upper border of the outer
energy window, especially the bands between 5 and 8 eV. The upper boundary of the
outer window is 25 eV to include the complete set of bands that occur in the Fermi
energy region. The upper boundary of the frozen window was varied between 5 and 7
eV (see Fig. 5.3), and 6 eV was finally chosen as the best value.

In this parameterization, the Wannier orbitals describe the system well up to approx.
5.5 eV (2 eV above EF ). Fig. 5.8 shows the real-space representation of the resulting
basis orbitals. In Fig. 5.6, the Wannier band structure is depicted for various cutoff
configurations. The quality of the description increases with the number of included
hopping parameters.

# type x y z spread

1-3 eg 0 0 0 0.4069
4-5 t2g 0 0 0 0.4518
6 s 0.855 0.855 0.855 1.604
7 s 2.565 0.565 0.565 1.604

Figure 5.4.: Centers and spreads of the Wannier orbitals in real-space representation.

5.5. Conclusions

Fcc-Nickel can be described using 7 MLWFs accurately up to about 10 eV above the
Fermi level (Fig. 5.7). These orbitals can be used as a starting guess for a Graphene-Ni-
interface. The resulting MLWF band structure (Fig. 5.5) reproduces the complex DFT
band structure very well below and around the Fermi energy. The quality of the bands
above the Fermi energy strongly depends on the choice of the upper border of the frozen
energy window (Fig 5.3). The qualitatively accurate parameterization of the material
interface provides a tool to perform tight-binding transport calculations without further
approximations. A additional increase of the thickness of the Ni part could make a
separation of the Ni bulk and graphene-Ni-surface conductance behavior possible.
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Figure 5.5.: Band structure of the graphene on a Ni(111) slab: DFT (black) and MLWF
(blue). (b) shows an enlargement of (a) near EF (red line).
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Figure 5.6.: Band structure of the graphene on Ni(111) slab: DFT (black) and Wannier
(blue). The number of used hopping parameters is varied. The row number
refers to the number of neighbor cell rows that surround the main cell.
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Figure 5.7.: Band structure of Nickel fcc. (a) DFT (black) and MLWF with 7 orbitals
(blue) (b) DFT (black) and MLWF with 5 orbitals (blue). The red line
marks EF .
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Figure 5.8.: Plots of the MLWFs for Ni-fcc. (a)-(e) the five d-like orbitals, centered
on the Nickel atom (f) the s-like orbital (g) a cut through the donut-like
d-orbital (h) a cut through the s-like orbital.
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6. Polycyclic aromatic hydrocarbons

PAHs are the ”microscopic” counterpart of graphene in chemistry. While high-level
quantum chemistry is not yet able to calculate structures of the size of graphene flakes,
we try to see trends in the results for small molecules with a size of less than 20 rings
that we can transfer to bigger systems. One of those trends is the chemical radicality.
In terms of a single Slater determinant, a singly occupied molecular orbital leads to
a higher reactivity of the molecule. For high-level quantum chemistry calculations, a
similar tool is the natural orbital occupation. If there are natural orbitals with an
occupation significantly different from 2 or 0, the system tends to be radical, and it is
also a sign for strong correlation effects.

Natural orbitals are one way to go from the results of high-level quantum chemistry
calculations to a set of single-particle orbitals with occupation numbers. This should
provide a bridge to tight-binding where single-particle orbitals are an absolute necessity.
Since single-particle energies are also required for constructing a tight-binding Hamil-
tonian, we investigate the Hartree-Fock energies of the natural orbitals, including a
disentanglement procedure to avoid fractional occupations.

Instead of working towards an accurate value of total energy, we look into the descrip-
tion of the valence system, where correlation has its biggest influence, and try to capture
those effects by applying a Hartree-Fock operator on the natural orbitals.

In the following, the procedure will be illustrated for naphthalene using previously
calculated natural orbitals [28].
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6.1. Comparison of quantum chemistry methods and
tight-binding

Tight-binding uses results from other approximation methods, specifically single-particle
wave functions and energies. Both density-functional theory and the Hartree-Fock
method produce them. There are other methods based on Hartree-Fock (most of them
called Post-Hartree-Fock methods) which are more accurate but do not supply informa-
tion about single-particle states.

Tight-binding parameters can be created from a set of single-particle wave functions
(i.e. molecular orbitals) |ϕi〉 and their single-particle energies εi. The single-particle
Hamiltonian HSP in the basis |ϕi〉 is

Hij = 〈ϕi|HSP|ϕj〉 =


ε1

ε2

ε3

ε4

. . .

 = δijεi (6.1)

A tight-binding Hamiltonian can be found by a transformation to a localized basis set
|φi〉:

H̃ij = 〈φi|HSP|φj〉 =
∑
k,l

〈φi|ϕk〉〈ϕk|HSP|ϕl〉〈ϕl|φj〉 = UHU−1 (6.2)

The matrix elements in H̃ij are tight-binding parameters. This is essentially the same
transformation as in the MLWF procedure; Wannier functions are one possible choice
of localized basis functions |φi〉. The basis set does not have to be complete, but should
describe the molecular orbitals |ϕi〉 as well as possible.

This shows that a set of molecular orbitals (|ϕi〉, εi) is the basic ingredient of a tight-
binding description.

Hartree-Fock solves the Schrödinger equation using a single Slater determinant, built
from molecular orbitals, as an ansatz [9, p. 87]:

Ψ(r1, r2, . . . , rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ2(r1) · · · ϕN (r1)
ϕ1(r2) ϕ2(r2) · · · ϕN (r2)

...
...

. . .
...

ϕ1(rN ) ϕ2(rN ) · · · ϕN (rN )

∣∣∣∣∣∣∣∣∣ , (6.3)

where N is the number of electrons and |ϕi〉 are molecular orbitals. The ground state
of the system is the wave function |Ψ〉 that minimizes the energy functional

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 , (6.4)

leading to a system of coupled eigenvalue problems [9, pp. 86-92]

F |ϕi〉 = εi|ϕi〉, (6.5)

60



0 20 40 60 80 100 120 140
Orbital number

0.0

0.5

1.0

1.5

2.0

O
cc

u
p

at
io

n

2-acene

3-acene

4-acene

5-acene

6-acene

7-acene

8-acene

Figure 6.1.: Natural orbital occupations for n-acenes for n = 2− 8 [28]. With increasing
molecule size, the number of occupied electronic orbitals grows. For each
molecule, the orbitals are sorted by occupation number. All orbitals with a
fractional occupation belong to the π or π∗ system. The highest orbital with
an occupation number greater than 1 (marked by dashed lines) corresponds
to the Fermi level of a single-particle theory.

where F is the Fock operator, an effective one-electron energy operator. It assigns an
energy to each molecular orbital |ϕi〉. The resulting molecular orbitals |ϕi〉 with energies
εi describe molecular wave functions of single electrons and fulfill all requirements for
a transformation to tight-binding parameters. The number of orbitals might be greater
than the number of electrons, depending on the size of the basis set used in the Hartree-
Fock calculation. In that case, a subset of the orbitals is selected in order to minimize
the total energy; they are sorted by their energy εi, and the first N orbitals are occupied
with one electron each (their occupation number ηi is one), and all other orbitals with
higher energies, the virtual orbitals, are occupied with zero electrons each (ηi is zero).
The density is thus

%(r) =
∑
i

ηiϕ
∗
i (r)ϕi(r). (6.6)

Regarding the allowed occupation numbers, there are two methods: restricted Hartree-
Fock (RHF) and unrestricted Hartree-Fock (UHF, [9, pp. 120-121] and [40, pp. 206ff.]).
RHF only allows occupation numbers of 2 (spin degeneracy) and 0, whereas UHF also
allows occupation 1, and α and β spin electrons do not necessarily have the same real-
space molecular wave functions ϕi(r).
Post-Hartree-Fock and related methods do not result in single-particle energies. Instead
of a single Slater determinant, the ansatz is a linear combination of Slater determinants
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|Φi〉 [9, pp. 154ff.]:

|Ψ〉 =
∑
i

Ai|Φi〉. (6.7)

Each |Φi〉 is a determinant analogous to |Ψ〉 in Eq. 6.3, but with a unique set of orbitals
|ϕi〉. One of the possible methods in Post-Hartree-Fock calculations is to perform a
Hartree-Fock calculation of a molecule and build the determinants |Φi〉 from different
subsets of the Hartree-Fock molecular orbitals (occupied and virtual) with a subsequent
variation of the coefficients Ai to find the ground state wave function |Ψ〉.
|Ψ〉 is called a correlated wave function. Electrons no longer occupy a fixed molecular

orbital with a fixed energy. The probability to find the system in the state |Φi〉 is
|〈Φi|Ψ〉|2 = A2

i . In every determinant of the expansion (Eq. 6.7), the electrons may
occupy different molecular orbitals.

There are several methods [9] which mainly differ in the combination of molecular
orbitals that in each determinant and which orbitals are varied in the minimization of
the energy functional. In any case, there is no direct way to assign molecular orbitals and
energies to the electrons. In the following, we are looking for an approximate solution
to this problem.

Quantum chemistry and tight-binding have at least one link: the ground state with its
density %(r) and energy E. We try to extract information from %(r) that we can use to
create tight-binding parameters; specifically, with the help of so-called natural orbitals.

Natural orbitals ϕi are the orbitals that diagonalize the one-particle density matrix.
The transformation to the real-space one-particle density matrix %(r, r′) is

%(r, r′) =
∑
i

ηiϕ
∗
i (r)ϕi(r

′), (6.8)

where ηi is the eigenvalue corresponding to the eigenstate ϕi. Fig. 6.1 shows natural
orbital occupations for n-acenes.

Natural orbitals are an orthogonal basis that can reproduce the ground state density.
Due to the similarity of Eq. 6.8 to Eq. 6.6 they can be interpreted as molecular orbitals
of a single-particle calculation, but with possibly non-integer occupation numbers ηi. If
there was a way to assign energies εi, we could create a tight-binding parameterization
with a ground state that is identical to the one of the quantum chemistry calculation.

We will calculate such energies εi using the single-particle Hamiltonian (HSP in Eq.
6.1) of the Hartree-Fock approximation: the Fock operator F (Eq. 6.5), describing the
kinetic energy of an electron and the attraction to all the nuclei, as well as the repulsion
to all the other electrons ([9, p. 91] and [40, pp. 114ff.]). F contains all molecular
orbitals of the determinant ϕi as well as the occupation numbers ηi, which is the reason
why the Hartree-Fock method is also called Self-Consistent Field method.
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Figure 6.2.: Natural orbitals of the π system of naphthalene (2-acene) with fractional
occupation (left columns – compare to the curve in Fig. 6.1), and the
occupied disentangled orbitals (η = 1). The radii are proportional to the
orbital amplitudes. Note the symmetry relation between the original orbitals
(left) and the slightly less symmetric disentangled orbitals (right).
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Figure 6.3.: Natural orbitals of the π system of naphthalene with fractional occupation
(left columns), and the virtual disentangled orbitals (η = 0).
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6.2. Disentangling fractionally occupied natural orbitals

As an intermediate step, the natural orbitals have to be modified to accomodate the in-
ability of the Fock operator to handle occupation numbers ηi other than 0 and 2 (RHF)
or 0, 1 and 2 (UHF). All natural orbitals with a fractional occupation are transformed
using a so-called disentanglement transformation [1] (note that the term ”disentangle-
ment” is used in a different context than in the other chapters of this work). After
this unitary transformation to spin orbitals (UHF), all previously fractionally occupied
orbitals have occupation 1 or 0, while the total electron density is conserved.

Note that the doubly occupied natural orbitals do not contain useful information about
single electron states because they span a degenerate eigenspace of the density matrix
and are therefore not unique. The same statement is valid for the unoccupied orbitals.

The electron density for a set of natural orbitals ϕi with occupation numbers ηi is

%(r) =
∑
i

ηiϕ
∗
i (r)ϕi(r) (6.9)

Let the range of the orbitals participating in the transformation (the fractionally occu-
pied ones, that is) be given by nmin and nmax. Then, for a pair of orbitals ϕa and ϕb
from this range, the transformation is


ϕ̃a,α(r)
ϕ̃a,β(r)
ϕ̃b,α(r)
ϕ̃b,β(r)

 =



√
ηa
2 0

√
ηb
2 0

0 −
√

ηa
2 0

√
ηb
2√

ηb
2 0 −

√
ηa
2 0

0
√

ηb
2 0

√
ηa
2



ϕa(r)
ϕa(r)
ϕb(r)
ϕb(r)

 (6.10)

with occupations ηa,α = ηa,β = 1 and ηb,α = ηb,β = 0. The transformed orbitals with
integer occupations create the same electron density as the original with their fractional
occupations ηa and ηb. They are assigned different spin, α and β, respectively, which
preserves their orthogonality. In the above notation, the original natural orbitals are
also interpreted as carriers of two electrons of opposite spin, leading to four instead of
two original orbitals.

The transformation in Eq. 6.10 is unitary if ηa + ηb = 2 (proof e.g. by calculating the
eigenvalues of the two 2× 2 subblocks). This is (approximately) the case if a and b are
symmetric w.r.t. the orbital window (see Fig. 6.1 – also Fig. 6.2 for symmetry relations);
expressed mathematically, this is b = nmax − (a− nmin). Since the aforementioned sum
is not exactly 2, the unitarity is slightly breached.

The density %a,b associated with ϕa and ϕb can be written in terms of the new, disen-
tangled orbitals:

ϕa(r) =

√
1

2ηa
ϕ̃a,α(r)−

√
1

2ηa
ϕ̃a,β(r) (6.11)

ϕb(r) =

√
1

2ηb
ϕ̃a,α(r) +

√
1

2ηb
ϕ̃a,β(r) (6.12)
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By expressing the total density contribution %a,b from the orbitals ϕa(r) and ϕb(r), we
can show that the density is preserved, but with integer occupations:

%a,b = ηaϕ
2
a + ηbϕ

2
b (6.13)

= ηa

(√
1

2ηa
ϕ̃a,α −

√
1

2ηa
ϕ̃a,β

)2

+ ηb

(√
1

2ηb
ϕ̃a,α +

√
1

2ηb
ϕ̃a,β

)2

(6.14)

= ηa
1

2ηa
(ϕ̃a,α − ϕ̃a,β)2 + ηb

1

2ηb
(ϕ̃a,α + ϕ̃a,β)2 = (6.15)

=
1

2

[
(ϕ̃a,α − ϕ̃a,β)2 + (ϕ̃a,α + ϕ̃a,β)2

]
(6.16)

= 1 ϕ̃2
a,α + 1 ϕ̃2

a,β = ηa,αϕ̃
2
a,α + ηa,βϕ̃

2
a,β (6.17)

6.3. Hartree-Fock expectation values

Having arrived at singly occupied (instead of fractionally) and unoccupied natural or-
bitals (right two columns of Figs. 6.2 and 6.3), we calculate their expectation value of
the unrestricted Hartree-Fock operator εi = 〈ϕ̃i,α|F |ϕ̃i,α〉 = 〈ϕ̃i,β|F |ϕ̃i,β〉.
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Figure 6.4.: (a) π orbital occupations of naphthalene before and after the disentangle-
ment procedure (b) π orbital energies of naphthalene: standard Hartree-Fock
calculation (black), Hartree-Fock expectation values of the disentangled NOs
(ordered by orbital number n, see Figs. 6.2 and 6.3). The dashed gray line
marks the last fully occupied orbital (according to the NO occupations).
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The result is shown in Fig. 6.4, together with the orbital energies of a standard UHF
calculation for comparison.

The expectation values are identical for α and β spin because |ϕ̃i,α〉 = −S0|ϕ̃i,β〉,
where S0 is the reflection across the x axis, and the Fock operator is invariant under this
transformation (F = S0FS

T
0 ).

Nearly all NO energy expectation values are slightly greater than their HF pendants.
First, the total energy of a determinant built from NOs is higher than the total energy

of the result of a HF calculation, simply because the latter is the result of a minimization
of the total energy of a single determinant. Since the relative deviation of the NOs from
the HF molecular orbitals is small, it is plausible that the expectation values will slightly
differ from the orbital energies and will have a tendency to be greater.

Second, the disentangled NOs are less symmetric than the original NOs and the
Hartree-Fock orbitals and have higher density variations, which leads to a greater ki-
netic energy contribution to the energy expectation value. The potential energy and
the exchange energy change in a less obvious manner because all NOs contribute to the
respective terms in the Fock operator.

The disentangled orbitals and the Hartree-Fock expectation values together form the
set of single-particle orbitals and energies that can be transformed to tight-binding ma-
trix elements.

6.4. Conclusions

We transformed (Eq. 6.10) natural orbitals describing naphthalene from a quantum
chemistry calculation to orbitals with integer occupation that create the same electron
density. We assigned them energies using an unrestricted Hartree-Fock operator (Fig.
6.2), with the intention of using the orbitals and energies for tight-binding calculations,
analogous to DFT Kohn-Sham orbitals and their energies.

To create useful building blocks, as described in the previous chapters, more PAHs
of varying sizes need to be analysed, with the goal of finding reusable patterns in the
on-site energies and hopping parameters.
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A. Appendix

A.1. Software

The calculations were done on workstations and on the Vienna Scientific Cluster (VSC-
2).

Third-party physics software

� DFT calculations: VASP 5.2.12

� MLWF procedure: wannier90 1.2

� Hartree-Fock calculations: MOLCAS 7.6

Third-party general software and modules

� Development environment: Ubuntu, Mathematica, IPython, Python

� Parallelization: Open MPI

� Visualization: Matplotlib, Mayavi2, Inkscape

� Numerical libraries: Numpy, Scipy, Intel MKL

68



VASP

Wannier90

EnvTB

Fermi energy

KS energies

Projection coeff. of KS 
orbitals on PW basis

Wannier guess orbitals

Frozen Window
Outer Window

Hopping matrix elements

Real space representations

Spreads and centers

Supercell creation

Finite geometry creation

TB bandstructure

TB eigenproblems

Building block creation

Visualization and plots

Projection coeff. of KS 
orbitals on Guess orbitals

Geometry # Bands

Wannier90 API

Initial Input

VASP output

Wannier90 output

EnvTB output

numpy
scipy
matplotlib

sympy
mayavi2
Open MPI

PetSc
SlepSc

Figure A.1.: Software flowchart

69



Bibliography

[1] F. Aquilante. Ridding of factorial scaling in quantum chemistry: the road not
taken. Electronic Structure Theory for Strongly Correlated Systems (Conference),
Palermo, Italy, 2012.

[2] N.W. Ashcroft and D.N. Mermin. Festkörperphysik. Oldenbourg, 2007.

[3] Salvador Barraza-Lopez, Markus Kindermann, and M. Y. Chou. Charge transport
through graphene junctions with wetting metal leads. Nano Lett., 12(7):3424–3430,
June 2012.

[4] Bruno Dlubak, Marie-Blandine Martin, Robert S. Weatherup, Heejun Yang, Cyrile
Deranlot, Raoul Blume, Robert Schloegl, Albert Fert, Abdelmadjid Anane, Stephan
Hofmann, Pierre Seneor, and John Robertson. Graphene-Passivated nickel as
an Oxidation-Resistant electrode for spintronics. ACS Nano, 6(12):10930–10934,
November 2012.

[5] Tian Fang, Aniruddha Konar, Huili Xing, and Debdeep Jena. Carrier statistics
and quantum capacitance of graphene sheets and ribbons. Applied Physics Letters,
91(9):092109+, 2007.

[6] M. Finnis. Interatomic Forces in Condensed Matter. Oxford Series on Materials
Modelling. Oxford University Press, Incorporated, 2010.

[7] J. Güttinger, F. Molitor, C. Stampfer, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn,
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