
Self-Stabilizing Byzantine
Fault-Tolerant Clock Distribution

in Grids
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Martin Perner
Matrikelnummer 0725782

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.-Prof. Dr. Ulrich Schmid

Wien, 28.08.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Self-Stabilizing Byzantine
Fault-Tolerant Clock Distribution

in Grids
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

by

Martin Perner
Registration Number 0725782

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.-Prof. Dr. Ulrich Schmid

Vienna, 28.08.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Martin Perner
Oldtimerweg 1, 2353 Guntramsdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I would like to thank my family and friends for their support over the years that made the thesis
possible. Special thanks go to Christoph Lenzen for his guidance with the proofs. Finally, I would
like to thank my advisor for his feedback, suggestions and effort put into my thesis.

The work on this Master thesis was supported by the Austrian Science Foundation (FWF)
under the project FATAL (P21694).

iii

Abstract

This thesis presents design and analysis of a self-stabilizing Byzantine fault-tolerant clock
distribution scheme HEX, which allows to distribute a clock signal in a hexagonal grid topology.
Typical application domains are VLSI circuits, multi-core processors and other parallel/networked
system architectures that require accurately synchronized clocks at neighbor nodes, e.g., for
synchronous communication.

In sharp contrast to clock trees, which are commonly used for this purpose, HEX tolerates both
persistent and transient faults of intermediate nodes and wires and supports multiple synchronized
clock sources, as, e.g., used in the multi-synchronous GALS (globally asynchronous locally
synchronous) approach. To achieve this, every node in the HEX grid is running a very simple
distributed algorithm that forwards clock ticks and also provides the synchronized clock signal
locally.

A VHDL implementation of the entire HEX algorithm is presented, which also incorporates
a digitally controlled clock multiplier. By means of a comprehensive custom testbed, which also
includes fault injection, HEX grids of variable size and with different delay parameters could
be instantiated, simulated and post-processed. The entire design has been synthesized with the
UMC 90 nm ASIC standard cell library, thereby generating a model that could be simulated using
Mentor Graphics’® ModelSim.

Comprehensive experiments have been conducted to verify and complement the results of the
theoretical worst-case analysis of the achievable synchronization accuracy (clock skew) and the
stabilization time, which are also documented in this thesis. In particular, a suite of experiments
revealed that the quite exotic worst-case scenarios are extremely unlikely to occur in practice, such
that the typical average clock skew is much better than the worst-case. Experiments involving
faulty nodes allowed us to also shed light on the excellent properties of HEX in the presence of a
substantial number of failures, where analytic results are not available.

The results of this work, which has been supported by the Austrian Science Fund (FWF)
project FATAL (P21694), have also been published at the 6th International Conference on De-
pendability (DEPEND’13) and the 25th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA’13); a comprehensive journal version is currently under review.

v

Kurzfassung

Diese Diplomarbeit präsentiert Design und Analyse eines selbststabilisierenden, Byzantinisch
fehlertoleranten Verfahrens (HEX) zur Taktverteilung in einer hexagonalen Grid-Topologie.
Typische Anwendungsgebiete sind VLSI-Schaltungen, multi-core Prozessoren und andere paral-
lele/netzwerkgekoppelte Systemarchitekturen, die, z.B. zu Kommunikationszwecken, genau
synchronisierte Taktsignale in benachbarten Knoten benötigen.

Im Gegensatz zur Taktverteilung mittels einer Baumtopologie, die normalerweise hierfür
verwendet wird, toleriert HEX sowohl persistente als auch transiente Fehler von Zwischenknoten
und Verbindungsleitungen und unterstützt mehrfache synchronisierte Taktquellen, wie sie etwa in
multisynchronen GALS (global asynchronen lokal synchronen) Architekturen verwendet werden.
Um das zu bewerkstelligen, läuft auf jedem Knoten im HEX-Grid ein sehr einfacher verteilter
Algorithmus, der Takte weiterleitet und auch lokal zur Verfügung stellt.

Zentraler Gegenstand der Arbeit ist eine VHDL-Implementierung des HEX-Algorithmus, die
auch einen digital kontrollierten Taktmultiplizierer beinhaltet. Ein speziell entwickeltes Testbed,
das auch Mechanismen zur Fehlerinjektion bereitstellt, erlaubt die Instantiierung, Simulation
und das Post-Processing von HEX-Grids mit unterschiedlicher Größe und Zeitparametern. Das
gesamte Design wurde mittels der UMC 90 nm ASIC-Standardzellen-Bibliothek synthetisiert, um
ein für die Simulation mittels Mentor Graphics’s® ModelSim geeignetes Modell zu generieren.

Umfassende Experimente wurden durchgeführt, um die Resultate der ebenfalls in dieser Ar-
beit dokumentierten theoretischen Worst-Case-Analyse der Synchronisationsgenauigkeit (Skew)
und der Stabilisierungszeit zu verifizieren und, insbesondere, zu ergänzen. Diese bestätigten, dass
die ziemlich exotischen Worst-Case Szenarien in der Praxis extrem unwahrscheinlich sind, sodass
der typische mittlere Skew viel geringer als der Worst-Case ist. Experimente mit fehlerhaften
Knoten, wo analytische Resultate nicht verfügbar sind, zeigten, dass HEX auch mit einer großen
Anzahl fehlerhafter Knoten im Grid hervorragende Eigenschaften aufweist.

Die Resultate dieser Arbeit, die vom Österreichischen Fonds zur Förderung der wissenschaft-
lichen Forschung (FWF) im Rahmen des Projekts FATAL (P21694) unterstützt wurde, konnten
auch in den Proceedings der 6th International Conference on Dependability (DEPEND’13) und
des 25th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’13) publiziert
werden; eine umfassende Journal-Version ist mittlerweile in Begutachtung.

vii

Contents

1 Introduction1 Introduction 1
1.1 Computational Models in Distributed Computing1.1 Computational Models in Distributed Computing 3
1.2 Design Methodologies in VLSI1.2 Design Methodologies in VLSI . 7
1.3 The Clock Distribution Problem1.3 The Clock Distribution Problem . 12
1.4 Related Work1.4 Related Work . 14

2 HEX2 HEX 17
2.1 Topology2.1 Topology . 17
2.2 Algorithm2.2 Algorithm . 18
2.3 Skew Analysis2.3 Skew Analysis . 19
2.4 Fault Models2.4 Fault Models . 29
2.5 Pulse Separation2.5 Pulse Separation . 31

3 HEX – Implementation and Results3 HEX – Implementation and Results 35
3.1 VHDL Implementation3.1 VHDL Implementation . 35
3.2 Simulation Environments3.2 Simulation Environments . 41
3.3 Simulation Results3.3 Simulation Results . 46

4 High-Frequency Clock4 High-Frequency Clock 67
4.1 Design Challenges4.1 Design Challenges . 67
4.2 Design Requirements4.2 Design Requirements . 68
4.3 Design Selection4.3 Design Selection . 68
4.4 Implementation4.4 Implementation . 70
4.5 Analysis4.5 Analysis . 71

5 Conclusions and Future Work5 Conclusions and Future Work 77
5.1 Summary of Accomplishments5.1 Summary of Accomplishments . 77
5.2 Critical Reflection and Future Work5.2 Critical Reflection and Future Work . 78
5.3 Applications5.3 Applications . 80

BibliographyBibliography 81

ix

CHAPTER 1
Introduction

Every digital system, except purely asynchronous ones, needs a clock signal at some level to
operate correctly. In the extreme case of synchronous circuits, all components (flip-flops) in the
circuit are driven by the same perfectly synchronous clock signal. The globally asynchronous
locally synchronous (GALS) [99] approach opened the door to a new way of circuit design, which
allows a variety of different clock domains on the same chip. The clock sources of the clock
domains may be completely independent (standard GALS) or keep some synchrony relation with
each other (multi-synchronous or mesochronous GALS [4747, 6060, 7070]).

The GALS approach basically allows different parts of a chip to run independently of each
other. Since a complete independence is a rare scenario in real applications, however, some sort of
communication between these independent parts is needed. In a standard GALS system, this can
only be achieved by means of handshake-based approaches. Unfortunately, besides performance
issues and metastability concerns, such solutions easily suffer from deadlocks in the presence of
faults. To avoid this, some sort of synchronous communication must be resorted to. The effort to
accomplish this depend primarily on the properties of the sender and receiver clocks.

If, as in mesochronous clocking, in particular, those clocks are guaranteed to be at most a
bounded number of clock ticks apart, at any time, metastability-free high-speed communication
can be designed with little effort using FIFO buffers [5555]. Since the ability to communicate
correctly, and hence the proper operation of any higher-level application, depends crucially on
the bounded synchrony of the clocks, however, critical multi-synchronous GALS systems require
a highly fault-tolerant clocking system: Besides non-fault-tolerant distributed clock generation
approaches like [3232, 3636, 4242], there are also Byzantine fault-tolerant solutions like DARTS [2929]
that guarantee bounded synchronized clocks at all correct source nodes, despite of up to f source
nodes that can behave arbitrarily faulty. However, as an instance of Byzantine agreement [3838], it
requires a total number of source nodes n ≥ 3f + 1.

Since transient errors, e.g., due to ionizing particle hits, are the dominant cause of failures in
modern very-large-scale integration (VLSI) circuits, however, exceeding f ≤ n−1

3 faults is not
an unlikely event. Unfortunately, classic Byzantine fault-tolerant solutions like DARTS cannot be

1

guaranteed to resume correct operation after such an event, even when all nodes operate correctly
subsequently.

Self-stabilizing algorithms have been invented to cope with this problem [1313]: They guarantee
that the system will resume, within some finite stabilization time, correct operation even when
started from an arbitrarily erroneous initial state. Byzantine fault-tolerant self-stabilizing clock
generation methods like FATAL+ [1717, 1818] achieve this even in the presence of up to f ≤ n−1

3
permanent Byzantine faulty nodes. However, clock generation approaches like FATAL+ are
expensive in terms of required hardware and interconnections between the nodes, and hence do
not scale well with the number of clock sources.

A simple way to mitigate this problem is to use a clock generation approach like FATAL+

only to synchronize a small number of “primary” clock sources, and to distribute their clock
signals to the remaining “secondary” clock sources, by means of a suitable clock distribution
approach. Obviously, unlike ordinary clock-trees, the latter shall be Byzantine fault-tolerant and
also self-stabilizing, but still use a sparsely connected topology.

This thesis presents design and analysis of a self-stabilizing Byzantine fault-tolerant clock
distribution scheme HEX, which allows to distribute a clock signal in a hexagonal grid topology.
Typical application domains are VLSI circuits, multi-core processors and other parallel/networked
system architectures that require accurately synchronized clocks at neighbor nodes. In sharp
contrast to clock trees, HEX tolerates both persistent and transient faults of intermediate nodes
and wires and supports multiple synchronized clock sources, as, e.g., provided by primary nodes
executing the FATAL+ clock generation algorithm [1717].

To achieve this, every non-primary node in the HEX grid is running a very simple distributed
algorithm that forwards clock ticks and also provides the synchronized clock signal locally. A
VHDL implementation of the entire HEX algorithm will be presented, which also incorporates
a digitally controlled clock multiplier. By means of a comprehensive custom testbed, which
also includes fault injection, HEX grids of variable size and with different delay parameters will
be instantiated, simulated and post-processed. The entire design is synthesized with the UMC
90 nm ASIC standard cell library, thereby generating a model that can be simulated using Mentor
Graphics’® ModelSim.

Comprehensive experiments will be conducted to verify and complement the results of the
theoretical worst-case analysis of the achievable synchronization accuracy (clock skew) and the
stabilization time, which are also documented11 in this thesis. In particular, a suite of experiments
will reveal that the quite exotic worst-case scenarios are extremely unlikely to occur in practice,
such that the typical average clock skew is much better than the worst-case. Experiments involving
faulty nodes will also shed light on the excellent properties of HEX in the presence of a substantial
number of failures, where analytic results are not available.

The results of this work, which has been supported by the Austrian Science Fund (FWF)
project FATAL (P21694), have also been published at the 6th International Conference on De-
pendability (DEPEND’13) [5454] and the 25th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA’13) [1616]; a comprehensive journal version [1515] is currently under review.

1I acknowledge, though, that the core analytic results have primarily been obtained by my collaborators, in
particular, by Christoph Lenzen (MIT).

2

This thesis is structured into 5 chapters: (The remainder of) Chapter 1 provides a short
introduction to the basics of both fault-tolerant distributed computing and digital design. It also
contains the definitions of some key terms, and briefly summarizes the (very few) existing related
research. Chapter 2 is devoted to the theoretical analysis of HEX in the fault-free case taken
from [1616]. Chapter 3 describes the VHDL implementation of the HEX algorithm and the testbed
used for our simulation evaluation, the results of which are presented subsequently. Chapter 4 is
devoted to the design and analysis of the digitally controlled clock multiplier used to implement
the synchronized fast clocks. Some conclusions and directions of future work in Chapter 5
round-off the thesis.

1.1 Computational Models in Distributed Computing

In this section, we will provide a short introduction to distributed computing based on the terms
and notions used in [33].

Distributed computing is a field that focuses on the interaction between a set of independent
computing devices, called processes or nodes, which try to achieve a common goal. This definition
is widespread and covers many application domains, ranging from a VLSI chip to a cluster of
computers to the Internet. Due to the spatial distribution of such systems, the processes need to
communicate with each other, which is usually done via message-passing over dedicated links
(on which we will focus here) or via shared memory.

Every process experiences computation events and communication events, where each such
event is atomic and happens in zero time. A computation event causes the process to execute a
computing step, which changes the state of the process performing it, based on received messages
and the current internal state. Depending on the algorithm executed by the process, such a step can
also include the sending of (multiple) messages. A communication event causes the delivery of a
message, which was sent by another process, to the process performing the event. An adversary
selects which process performs an event and thus determines the execution performed by the
system. Usually, there are many possible executions that differ in the ordering of events, as the
only dependency between two applicable events is that a message cannot be received before it is
sent, i.e., the communication between two non-faulty processes is always causal.

Since no non-trivial distributed computing problem can be solved if the adversary never
performs events on some processes, it is necessary to restrict the power of the adversary by a
model of computation. These restrictions (called admissibility conditions) can include, e.g., the
type and number of faults in the system, the general properties of the communication between the
processes, or the maximal time between two events at the same process. There are many ways to
define different models, yet there are two “extreme” models, that delimit the possible spectrum.

1.1.1 Asynchronous Model

This is the weakest and most general model. There are neither constraints on the time between
two computation events at the same process nor on the time between the sending and receiving
of a message, except that they must be finite and ≥ 0. Note that there are also no constraints
on the time between two events on different processes. Since this puts almost no constraints

3

on the adversary (except that it must not starve a process forever and may not drop messages),
many problems cannot be solved within the asynchronous model. For example, since a slow
process cannot be distinguished from a crashed one, it is not possible to implement reliable failure
detection.

1.1.2 Lock-Step Synchronous Model

This is the simplest model to analyze, albeit it is only applicable if all processes are equipped with
synchronized clocks. The executions in this model are partitioned into a sequence of rounds. Every
round consists of the sending of messages, the reception of all sent messages, and a computation
event on every process. All processes execute their computation event simultaneously, in zero
time, and all messages are sent immediately after the respective computation event has been
executed. Hence, every round is perfectly aligned at all processes, which makes it easy to solve
distributed computing problems. In particular, since every process must participate in every round,
it is easy to reliably detect process crashes.

Assuming lock-step rounds is of course unrealistic in real systems, but models can be
constructed that allow to simulate lock-step rounds. For this to achieve, the communication
delays need to be bounded, the maximal time between consecutive computation event must be
known, and every process must have a clock with bounded drift. Then, synchronized local clocks
with some specific synchronization accuracy can be implemented, which in turn allow to build
rounds that are in lock-step w.r.t. clock time.

1.1.3 Fault Models

As mentioned above, computational models must also define the types and maximum number
of faults that can occur in the system. Doing this properly is not only of theoretical importance,
but is also very relevant in practice. E.g., modern VLSI circuits are vulnerable to manufacturing
defects and effects of radiation due to the miniaturization of the structures [55, 1010]. There are
certain applications, however, where a crash or a malfunction of the system is not tolerable, e.g.,
medical devices, power grids or aircraft. Properly designed fault-tolerant solutions, i.e., systems
that do not fail despite a certain number of faults, are mandatory here.

Up to now, we only talked about faults, but never how they affect a process or the system at a
conceptual level. Conceptually, there is a distinction between a fault, an error and a failure [44].
They interact in a chain, starting with the initial fault, as depicted in Figure 1.1Figure 1.1. The initial fault
can be an external fault, or an internal fault originating from a failure of a faulty process. A fault
activates an error, which may causes a failure when it propagates. A failure in turn can cause a
fault of another process.

Fault models only define the faults the system can experience, as the prevention of the
activation of an error is in the scope of the specific algorithm. Faults are classified according to
their temporal duration and their behavior toward the other processes of the system. First, we will
look at the possible temporal behaviors:

Permanent Faults: These types of faults render a process erroneous from the time on when the
fault occurs. This can be caused, e.g., by a non-recoverable corruption of the internal state

4

external
faultfa

ul
t error

failure

activation

pro

pag
at

io
ncausation

activation

Figure 1.1: This figure shows the relationship between fault, error and failure. An initial external fault
activates an error, which can propagates into a failure of a component, which in turn can cause
a fault in another component, which then can activate an error.

due to an external fault or a hardware defect. Note carefully, though, that the erroneous
state need not lead to a failure continuously.

Transient Faults: As the name suggests, these types of faults create erroneous states that last
only for a limited timespan. Typically, transient faults are introduced by external effects,
e.g., α-particles hitting a transistor or a power outage.

After the primary effect of the fault has ceased, the affected process works normally again,
although its state may be contaminated and needs to be recovered so that the process can
be considered non-faulty again (cf. Section 1.1.4Section 1.1.4). If the algorithm employed is not able to
reintegrate such a process in the system, a transient fault has the same effect as a permanent
fault.

With respect to the behavior of faulty processes towards other processes, we will briefly introduce
the two most commonly assumed types of faults:

Fail-Silent Faults: Often referred to as crash fault, this type of fault is the simplest possible: A
faulty process just stops sending messages. Difficulties may arise, though, when a process
crashes in the middle of a broadcast.

Byzantine Faults: This type of fault is the least restricted, as a process can perform arbitrary
actions. A Byzantine faulty process can behave differently to each of its neighbors, can
cause timing violations of its messages, and even send incorrect messages.

Fault-tolerant computing has developed solutions that transparently mask failures caused by
such faults. Conceptually, this is done by employing fault containment regions, which prohibit
the activation of an error or at least its propagation across their boundaries. Some types of
faults can be handled, to some degree, at the hardware level and are thus transparently masked
w.r.t. the algorithm. For example, a corrupted memory bit can be handled by the hardware
when the data is accessed by using an error-correcting code. This is an instance of information

5

redundancy (and also resource redundancy). A very popular form of fault masking by resource
redundancy is replication in conjunction with some form of voting, as, e.g., used in triple modular
redundancy (TMR). Replicated processes are the dominant approach in fault-tolerant distributed
computing and can even deal with Byzantine faults [3838]. Finally, time redundancy techniques,
i.e., repeating a computation that has failed, are often used as a less costly alternative in cases
where short response times are less important. For example, retransmitting a lost message is
heavily used in network protocols.

1.1.4 Self-Stabilization

As fault masking techniques completely hide faults from becoming visible, they provide the
best fault-tolerance one can hope for. Unfortunately, however, they can usually handle a limited
number of faults only. For example, Byzantine distributed agreement [3838] can be solved (in
synchronous systems) only if at most f out of n ≥ 3f + 1 processes can fail. If it ever happens
that more than f processes behave faulty, the state of correct processes may be contaminated
and hence erroneous. The system will not be able to recover from such a state, even when all
n processes would work correctly afterwards, as it is the case for transient faults. Thus, a transient
fault has the same effect on the system as a permanent fault, and a process struck by such a
fault has to be considered faulty from that time on. Due to the increasing miniaturization in
VLSI design, the rate of transient faults has increased [1010], which negatively affects the overall
fault-tolerance of such systems.

Another popular fault-tolerance technique is failure detection, isolation and recovery (FDIR),
which cannot transparently mask failures, but guarantees that correct operation will eventually
be resumed. The most powerful FDIR approach is a self-stabilizing algorithm. The term self-
stabilization was introduced in [1313] and specifies a system that, when started from any initial
state, will reach a valid state in finite time, provided there is no fault during this stabilization
time. The concept of self-stabilization has been extended later to also allow a limited number of
permanent (Byzantine) faults [1919]. To visualize the concept, consider the complete state space of
a system as shown in Figure 1.2Figure 1.2. Note that the states used here cover all processes in the system,
not just the states of a single process, i.e., a state in the state space is the union of all states of
the processes in the system here. This space can be subdivided into several state sets: Moving
from the innermost set outwards, we first have the set of legal states, i.e., states in which the
system operates correctly. This state set is enclosed by the set of safe states. These states have the
property that every transition originating in them leads directly into the set of legal states. The
last set is the set of pseudo-legal states, from which an execution exists that reaches a legal state.
All states not covered by these sets are the remaining (erroneous) arbitrary states.

If the system is in a legal state and a “massive” fault occurs, then the next state can be outside
of the legal state set. When the algorithm employed is self-stabilizing (and the allowed number of
permanent faults is no longer exceeded) then the system will eventually reach a legal state again.
This is called convergence and will happen within the stabilization time. When the system has
converged, it will stay within the set of legal states (until another “massive” fault occurs), which
is called closure.

As there are no restrictions on the states that can be reached due to a fault, this implies that
the system can be started in an arbitrary state and will eventually converge to a legal state.

6

Figure 1.2: This figure shows the complete state space, which is a superset of multiple partial sets. The
red nodes symbolize states which are arbitrary. The nodes in the orange area are pseudo-legal
states, the nodes in the yellow area are safe states and the green area is the set of legal states.

1.2 Design Methodologies in VLSI

The design of hardware is nowadays primarily done using very-large-scale integration (VLSI),
which is the integration of millions of transistors on a single die. In this section we will introduce
relevant basics of digital circuit design and the design process. Further details may be found
in [66, 6565, 7272], for example.

Digital circuits are designed at a reasonably high-level through hardware description lan-
guages (HDLs), where the two most common ones are Verilog and VHDL. They allow, at different
abstraction levels, to combine different types of boolean logic gates to create combinatorial logic.
This combinatorial logic is then processed by a design tool, where also a technology mapping for
the intended target device is done. The technology mapping converts generic constructs of the
design into specific elements available in the target device, which can be an FPGA or an ASIC.
After the technology mapping is finished, a netlist is produced, which describes the final layout
of the circuit on the target chip.

Yet, boolean logic gates can only implement stateless operations. As soon as some internal
state must be maintained as well, which inevitably involves feedback loops, methods must be
employed to ensure the correctness of the computational results. There are two fundamentally
different approaches to achieve this:

7

register
bank

register
bankcombinatorial

cloud

Clk

Figure 1.3: A section of a synchronous design. In the center there is the combinatorial cloud that consists
of purely combinatorial logic. At every cycle of the clock, the results of the computation of the
cloud is stored in the register bank on the right. The inputs for the computation stem from the
left register bank. A possible feedback to the register bank on the left is not shown.

1.2.1 Synchronous Model

In the synchronous model, the components of the design can be separated into two groups, namely,
(i) the register banks and (ii) the combinatorial clouds connected by parallel data paths, as shown
in Figure 1.3Figure 1.3. The combinatorial cloud is purely combinatorial logic, which is located between
two register banks. Each register bank consists of at least one register, which is typically made
up of flip flops. A register has a parallel data and a clock input, as well as a parallel data output.
Typically, on the rising edge of the clock signal, the register samples the data on the input and
forwards it to the data output, which is then held until the next clock cycle occurs. The required
time between two clock edges is defined by the time needed for a signal to propagate through the
critical path, i.e., the path through the combinatorial cloud with the longest signal delay between
any two registers on the chip. The critical path is also influenced by the operating temperature
and supply voltage of the chip, which affect the processing delays of the gates, and the delays of
the wires connecting the components.

1.2.2 Asynchronous Model

Compared to the synchronous model, the asynchronous model is free of clocked components,
i.e., registers. Results of the combinatorial cloud must hence be stored actively when they are
available. Some form of handshaking is usually used for this purpose, but due to possibly different
processing times of the different parallel paths, completion detection for a data path is a complex
task. Completion detection can be done in the value domain, e.g., with encoding techniques
like [1212, 2323, 4646]. With these techniques, the data is encoded in a specific way to detect the
completion of a computation via valid code words. Such techniques require 2 bits to encode
1 data bit, however, and thus suffer from increased hardware complexity.

Alternatively, completion detection can also be done in the time domain. Simple delayed
handshake solutions can be employed in this case, if timing information for the critical path is
available. Contrary to the synchronous model, in this scenario, one needs the individual critical
path delays (per combinatorial cloud) here, and not the worst-case for the whole circuit. A very
elegant approach introduced in [6868] utilizes Muller C-Gates (see below) to capture the results of
the computations. Nonetheless, delayed handshake solutions suffer from the same problems as

8

A B C

0 0 0
0 1 C−1
1 0 C−1
1 1 1

(a) Truth table of a Muller C-Gate. The inputs A and B
define the output C. C−1 denotes the previous value
of the output C.

A

B

C

(b) Timing diagram of a Muller C-Gate. As can be seen
in the truth table on the left, the transitions of the
output signal C are synchronized with the transitions
of both inputs A and B. The blue markings show the
dependence of the signal transitions on each other.

Figure 1.4: Truth table and timing diagram illustrating the behavior of a Muller C-Gate with the inputs A
and B, and the output C.

Figure 1.5: Basic principle of metastability. The ball can either go to the stable state on the left or right
side of the saddle. When this happens is unknown and cannot even be bounded.

synchronous ones, as the critical path delays also vary with the temperature and supply voltage.

1.2.3 Muller C-Gate

A Muller C-Gate is a basic gate introduced in [4949], which can be used for state-holding purposes
in asynchronous circuits, like in [6868]. In a nutshell, a Muller C-Gate can be seen as an AND-Gate
for signal transitions.

The gate has two input ports and one output port. If the state of the input ports match, then
their state is take as the new output state, cf. Figure 1.4aFigure 1.4a. I.e., a common state on the inputs is
forwarded and held at the output. Therefore, the transitions at the output port are synchronized
with the transitions at both input ports, as can be seen in Figure 1.4bFigure 1.4b.

1.2.4 What is Metastability?

Metastability [4444] describes an unstable state of a stateful discrete system, from which the system
will reach, in finite yet unknown time, a stable state.

This can be visualized with the simple physical model shown in Figure 1.5Figure 1.5. The ball on top
of the saddle will roll down on one of the sides, but to which side, and when this is going to
happen, is unknown. In digital logic, the problem is similar. The output voltage of a transistor is
an analog value, which is separated into three regions: Two regions describing the discrete values
’0’ and ’1’, and the forbidden region separating them. This forbidden region has to be crossed
while switching from one state to the other. Although this is a completely normal operation, it

9

A+ B+

A− B−

C+

C−

Figure 1.6: An example for a STG, which could be synthesized to a Muller C-Gate, with the inputs A and
B and the output C. The nodes with signal+ mark a rising transition of the signal, whereas
signal− marks a falling edge of the respective signal. This is a correct STG, but does not
describe the general behavior of a Muller C-Gate, as there are restrictions on the transitions of
the input signals as well.

can cause an error if the signal is sampled by a memory element like a flip-flop whilst being
in the forbidden region: The flip-flop can become metastable here and output an intermediate
voltage for some unknown time (which, in turn, can cause the next downstream memory element
to become metastable as well, i.e., metastability could spread in a system).

The same can happen within a flip-flop, due to the internal feedback loop, in case of a
setup-/hold-violation. Flip-Flops require their input signal to be stable for a defined time before
and after sampling, i.e., the clock transition, as the feedback loop needs some time to settle its
state. In the synchronous model, metastability should not happen, as the time accounted for
the critical path must incorporate these required time margins. However, input signals from
outside the chip, or from other clock domains, can change their value at any time and thus induce
metastability. Therefore, dedicated synchronizers, a couple of flip-flops connected in series, are
employed for reducing the probability of metastability spreading to the real input of the circuit.
Note that synchronizers increase the input signal propagation delay significantly (latency).

Metastability, in principle, can be avoided in asynchronous designs, as there are no clocked
elements that have to make a decision in bounded time. Still, problems with external inputs
remain, as they can behave arbitrarily anyway.

1.2.5 Signal Transition Graphs

A signal transition graph (STG) is basically a labeled Petri Net, which is often used for an
event-based description of an asynchronous circuit and its environment. More specifically,
STGs define the possible transitions of the signals and can be used to model a speed-independent
circuit [1111,4949,6161,6464]. A speed-independent circuits functionality is independent of the processing
delays of the gates used for implementing the circuit. Note that the wire delays are assumed to be
zero here, but as these delays can be abstracted into the processing delays of the gates, this is not
a problematic restriction.

A STG like the one shown in Figure 1.6Figure 1.6 is basically a Petri Net with implicit transitions, i.e.,
there are only places (nodes) and arcs (edges) but no transitions in a STG:

Nodes: The nodes represent a single transition of a specific signal, used as the label of the node,

10

which can be rising (+) or falling (−). Nodes with the same label and polarity in the STG
must have a node with the same label and alternative polarity between them.

Edges: The edges of a STG basically represent (some part of) the current state of the circuit.
Due to this, and the alternation in polarity of the nodes, it is possible to infer the state of
the system based on the currently active edges (see next item).

Token: A token marks a currently active edge in the graph. The tokens drawn in a STG define
the initial state of the circuit. Unlike Petri Nets, just having tokens on all the incoming
edges of a node alone, i.e., all incoming edges active, cannot trigger a transition: the signal
transition represented by the node itself is also needed. I.e., the incoming edges of a node
are pre-conditions for the execution for the respective transition. During the transition, the
tokens on the incoming edges are removed and all outgoing edges are provided with tokens,
i.e., the outgoing edges represent the post-condition of a transition.

The possibility to use a STG for the specification of an asynchronous system is convenient, as it
allows to (almost) automatically generate a design directly from the specification by means of
tools like Petrify [1111] and SIS [6161]. Yet there are limits: the functionality of the design has to
be cyclic, in the sense that all involved signals must make both rising and falling transitions in
a strictly alternating fashion. Therefore, there is no way to directly embed a reset signal into a
design specified by a STG, for example.

Moreover, tokens cannot appear or disappear on edges in the STG. This is the reason why
a STG does not only model a circuit but also its environment, i.e., its input signals. Take for
example the STG shown in Figure 1.6Figure 1.6. This STG could be synthesized to a single Muller C-Gate,
which would indeed implement the defined transition relation. However, the STG does not
describe a general Muller C-Gate, with arbitrary inputs, as the STG specifies that the inputs A
and B change their respective state exactly once after the output C changed its state.

1.2.6 Functional and Timing Verification

Verifying the correctness of a circuit design is a very important part in the design process for
VLSI chips, and usually requires high efforts and costs. By the rule of ten [7373], there is an
increase of one magnitude for the repair costs with each step in the manufacturing process, from
the chip level to the board level to the system level and finally to system operation.

Compared to a software product, repairing a defect is usually not possible at a physical chip.
Thus, also the verification process for a VLSI design is different from traditional software: As
the production times and costs for a chip are high, it is unreasonable to depend solely on testing.
The limited on-chip debugging possibilities also reduce the likelihood of reconstructing settings
that caused faulty behavior, and support only limited test coverage as well. Thus, verifying the
correctness of a circuit design relies heavily on simulation of the HDL code. These simulations are
orders of magnitude slower than the execution of the same behavior in a physical chip, depending
on the level of the simulation, but allow complete control over the unit under test (UUT). Note
that this also allows to simulate the effects of faults, e.g., a broken wire, which are hard or
impossible to analyze on a physical chip.

11

(1 + ρ)

(1 + ρ)−1

perfect clock

slow clock

fast clock

time of clock

tim
e

of
re

fe
re

nc
e

cl
oc

k

Figure 1.7: Visualization of the effect of the clock drift. The center line represents the perfect clock with
no drift, the two outer line represent the minimal resp. maximal drift boundaries. These drift
boundaries are reset after a resynchronization of the clock, as can be seen in the point of origin.
A typical clock will be inside the gray envelope spanned by the slow and the fast clock.

A simulation environment simulates not only the UUT, but also the testbench that envelops
the UUT. The testbench applies stimuli, corresponding to test cases, to the UUT and monitors
the responses. Based on these responses, the testbench decides whether the results, provided by
the design, are the correct results for the respective test cases. A testbench is called a testbed,
when the simulation environment does not run the entire testbench. This includes cases where the
testbench only provides the stimuli for the circuit and monitors the results, but applies these to a
physical circuit (hardware-in-the-loop).

The abstraction level of simulations can range from a high-level structural simulation, which
is rather fast, to the pre-layout simulation, where the design has already been mapped to specific
hardware components of the target technology, and finally to the post-layout simulation, which is
basically a simulation of the complete physical chip.

1.3 The Clock Distribution Problem

A clock is a device for measuring time and therefore produces ticks with a specific, fixed
periodicity, the so called granularity. Yet, no clock is perfect, which means that the time between
ticks may vary (although the granularity stays constant). These variations depend on many factors,
from technological limitations to environmental influences, and can change over time. To specify
a real clock, the derivation from an idealized, perfect, clock that displays real-time are used. We
will now define the properties of the clocks used in this thesis.

Drift: The drift rate ρi is a multiplicative factor, which defines the minimal respectively
maximal rate by which clock i (of process i) runs slower respectively faster than the perfect clock,
cf. Figure 1.7Figure 1.7. We denote with t(k)i the real-time when clock i generates its kth tick; note that
the perfect clock reads t(k)i at this time. The (short-term) drift rate is defined as the maximum

12

difference in time between two ticks of clock i measured with the perfect clock, divided by the
granule ni of the clock i.

ρi = sup
k≥1

∣∣∣∣∣ t(k+1)
i − t(k)i

ni
− 1

∣∣∣∣∣
Tick separation time: The tick separation time is the time between two ticks of a clock. Γmin

i

resp. Γmax
i define the minimal resp. maximal tick separation time of clock i:

Γmin
i = inf

k≥1

(
t
(k+1)
i − t(k)i

)
Γmax
i = sup

k≥1

(
t
(k+1)
i − t(k)i

)
.

Note that 1/Γmin
i resp. 1/Γmax

i gives the maximal resp. minimal instantaneous clock frequency
of clock i.

1.3.1 Synchronized Clocks

Due to the drift %i, clock i deviates from the perfect clock, or another clock j, after some time.
To keep clocks close to each other, it is necessary to resynchronize those. The largest possible
deviation between two clocks is called precision if measured in clock time, and skew if measured
according to the perfect clock.

Precision: The precision π is an upper bound on the difference in ticks between two correct
clocks read at the same time. Let bi(t) be defined as bi(t) = sup

{
k|t(k)i ≤ t

}
, then

∀t, icorrect, jcorrect : |bi(t)− bj(t)| ≤ π

Skew: The skew is the difference in time between the same tick of two different clocks, i.e.,∣∣∣t(k)i − t(k)j ∣∣∣. Therefore, like the precision, the skew gives a measure for the tightness of
the synchronization between different clocks. The skew manifests itself as a phase shift
between the generated clock ticks.

1.3.2 Clock Generation

Instead of resynchronizing free-running clocks, a set of processes may also generate clock ticks
in a synchronized fashion.

Definition 1.3.1 (Clock Generation): For a set of processes (called primary clock sources), a
correct clock generation algorithm ensures that all correct clock sources generate clocks with a
given maximal skew σ0 and given minimal and maximal tick separation time in [Γmin,Γmax].

There are several algorithmic solutions for both problems (synchronization and generation),
which differ in the assumptions made on the system and their fault-tolerance properties [22, 1717, 1818,
2020, 2424, 5959, 7676] (see Section 1.4Section 1.4). However, all solutions with reasonable fault-tolerance properties
require fully-connected communication topologies.

13

1.3.3 Clock Distribution

Clock distribution is a technique related to clock generation. As the name suggests, clock ticks,
which are generated by one or more synchronized clock sources, are being distributed through a
suitable distribution network. The clock source depends on the specific application domain but
can, e.g., be a crystal oscillator or a clock generation algorithm running on a set of processes. We
will refer to a clock tick as pulse, once it has entered the distribution network.

Definition 1.3.2 (Clock Distribution): Given a set of primary clock sources with skew σ0 and
pulse separation time in [Γmin,Γmax], a correct clock distribution algorithm for a set of nodes
ensures that all correct nodes eventually generate pulses with a given maximal skew σij between
all correct nodes i and j.

The distribution network can range from a single wire, which transports a signal wave
corresponding to the pulse, to highly complex distribution networks consisting of nodes which
forward trigger messages. Byzantine fault-tolerant clock distribution networks require the
reception of multiple trigger messages from different nodes before the local clock tick can be
triggered at a node. Thus, every node must be able to distinguish between trigger messages
corresponding to different pulses: If there would be no way of detecting the corresponding clock
tick of a trigger message, old trigger messages could circulate in the network and spuriously
trigger nodes and generate more such trigger messages.

Basically, there are two approaches for solving this problem: (i) using some kind of high-level
message to label the trigger messages in some way, or (ii) ensuring that the pulse separation time
is large enough so that it is not possible for two trigger messages, corresponding to different
pulses, to be mixed up. The first approach is used in theoretical and practical work [2727, 6666],
and is required if trigger messages can circulate in the network. The second approach is the
simplest approach possible, as it works with anonymous messages / clock signal transitions. It
may decrease the maximum clock frequency, however, as, due to multiple paths, trigger messages
can be in transit for a long time.

1.4 Related Work

We are not aware of any related work on Byzantine fault-tolerant clock distribution. We can
hence survey some less-related research only.

The capability to distributed a clock to a large number of nodes in a synchronized fashion
is essential in many areas, though without considerations for fault-tolerance. Examples are
VLSI circuits and other hardware devices, which are the primary focus of this thesis, or a set of
distributed nodes in a master-slave topology either on a wired [3333,4848] or wireless network [3030,6767].
In VLSI circuits, clock trees are used to provide a high-frequency clock to parts of a chip
with synchrony requirements in the range of a fraction of the cycle time [6969]. Especially in
synchronous designs, skew and power consumption are major problems nowadays due to the
rising clock frequencies, so much effort is put into the construction of networks which minimize
the skew [2525, 3939, 4040, 5656, 5757, 6262, 7777]. In the area of 3D clock distribution for chips fault-tolerance
has become an issue, but up to now only benign (fail-silent) faults have been considered [4141, 4343].

14

Distributed clock synchronization is an old, well-known problem. It was an active research
topic in the 1980s [3737, 6666, 7676], primarily as a real-world application of the consensus problem.
More recent research in this area focused primarily on wireless sensor networks [6767], self-
stabilization [2020] and VLSI implementations [2727, 2828]. The need for distributed clock generation
stems from the fact that traditional clock sources, e.g., quartz oscillators, are difficult to control
and also highly susceptible to faults. This susceptibility is also a problem for the existing
non-fault-tolerant approaches for distributed clock generation [2121, 2222, 3131, 3232, 3535, 3636, 4242, 4545, 5858],
which use distributed ring oscillators, phase locked loops (PLLs) or similar constructs. Besides
Byzantine fault-tolerant solutions like DARTS [2828,2929], there are also clock generation algorithms
like FATAL+ [1717, 1818], which are Byzantine fault-tolerant and self-stabilizing. Since they require
a fully-connected network, however, they do not scale to the large number of nodes targeted by
HEX.

For didactic reasons, related work on clock multiplication is presented in Section 4.3Section 4.3.

15

CHAPTER 2
HEX

“Kein Hirt und eine Herde! Jeder will das Gleiche, jeder
ist gleich: wer anders fühlt, geht freiwillig ins Irrenhaus.”

— Friedrich Nietzsche, Also sprach Zarathustra

This chapter presents HEX, which is an abbreviation for hexagonal grid. HEX comprises an
algorithm and a corresponding network structure, which together provide a fault-tolerant, self-
stabilizing clock distribution scheme. The name arises from the structure of the neighbors of a
node in a HEX grid, which resembles a hexagon, cf. Figure 2.1Figure 2.1. This specific network structure
was chosen as it is planar and regular. Furthermore, as the average node degree in a planar graph
must be < 6,11 the HEX grid has also the largest possible node degree for a planar graph while
still being regular.

This chapter will first provide HEX-related definitions and the analysis of the achievable
clock skew in the fault-free case. Subsequently it provides a discussion of possible fault models
and their consequences for the skew. Finally, the pulse separation time, which is crucial for the
self-stabilizing property, will be determined.

2.1 Topology

HEX is based on a cylindric, directed graph G = (V,E), which is parameterized by L ∈ N, the
layers of the grid, and W ∈ N, the columns of the grid. The node set V defines the vertices of the
grid and is the set of tuples (`, i) ∈ [L + 1]× [W]. The edge set E, for every node (`, i) ∈ V ,
consists of the following links, over which zero-length messages can be sent:22

• ((`, i), (`, i+ 1 mod W)) and vice versa to/from the right neighbor for ` 6= 0.
1This follows from Euler’s formula. With 3f ≤ 2e, which is a basic property of any graph, and

∑
v∈V (deg(v)) =

kv, with k being the average node degree, this can be shown easily.
2Note that, in an actual implementation, the timeouts calculated in Section 2.5Section 2.5 must be increased by the duration

needed to transmit a message.

17

column

layer

i− 1 i i+ 1

`− 1

`

`+ 1

Figure 2.1: The node (`, i) and its neighboring nodes. Column coordinates are modulo W , layer coordi-
nates are between 0 and L. The structure of the connected neighbors form the name-giving
hexagon.

• ((`, i), (`, i− 1 mod W)) and vice versa to/from the left neighbor for ` 6= 0.

• ((` − 1, i), (`, i)) from the lower-left neighbor iff ` ≥ 1, and ((`, i), (` + 1, i)) to the
upper-right neighbor iff ` ≤ L.

• ((` − 1, i + 1 mod W), (`, i)) from the lower-right neighbor iff ` ≥ 1, and ((`, i), (` +
1, i− 1 mod W)) to the upper-left neighbor iff ` ≤ L.

As it can be seen by the definition of the edges, HEX has the structure of a open cylinder. Thus
all calculations on the grids columns are modulo W , without being mentioned explicitly.

Assumption 2.1.1: Each edge has a delay associated with it, which can vary between [d−, d+] ⊂
(0,∞). We assume that

ε = d+ − d− ≤ d+

2
.

2.2 Algorithm

Algorithm 1: Pulse forwarding algorithm for nodes in layer ` > 0.

1 forever
2 on received trigger message from (left and lower-left neighbor) or

from (lower-left and lower-right neighbor) or
from (lower-right and right neighbor)
do

3 broadcast trigger message; // local clock pulse
4 sleep for some time within [T−, T+];
5 forget previously received trigger messages;

18

Every node in the HEX grid executes the algorithm shown in Algorithm 1Algorithm 1. The node is constantly
checking if a trigger condition becomes true, i.e., if the node received trigger messages from one
of the three defined node pairs. If the node has been triggered, it broadcasts a trigger message to its
outgoing neighbors and then goes to sleep. After the node wakes up, it deletes all trigger messages
which were received since the last clearance and repeats checking the trigger conditions.

2.3 Skew Analysis

Definition 2.3.1 (causal links, neighbors and paths): A link is a causal link for some node if
the trigger message received over this link contributed to its triggering, i.e., enabled the guard
in Line 2Line 2 of Algorithm 1Algorithm 1. Note that in Algorithm 1Algorithm 1 there are always (at least) two causal links.
Furthermore, we say that a node is left triggered if the link to the left neighbor is causal, right
triggered is defined analogously. If a nodes is neither left nor right triggered, it is called bottom
triggered.
A neighbor is a causal neighbor if the link from this neighbor is a causal link. According to
Assumption 2.1.1Assumption 2.1.1, if a causal neighbor (`′, i′) of a node (`, i) is triggered at time t`′,i′ , then the
node cannot be triggered before time t`′,i′ + d−, i.e., t`,i ≥ t`′,i′ + d−.
A causal path consists of causal links.

Note that in the theoretical analysis we assume that the processing time of a HEX node is zero,
i.e., a link delay must incorporate the edge delay and the processing delay of the node.

2.3.1 The Fault-Free Case

In the fault-free case, we can restrict our attention to the propagation of a single pulse through the
network, i.e., one tick of the underlying clock generation system.

Definition 2.3.2 (Left Zig-Zag Path): Informally, a left zig-zag path is a causal path consisting
only of links from left and lower-right neighbors.

Given ` ∈ [L + 1], ` > 0 and i, i′ ∈ [W], i < i′, the causal path pi
′→(`,i)

left is constructed
starting from node (`, i) as follows: Assume the current starting node of pi

′→(`,i)
left is (`′′, i′′). If

the left neighbor is causal, then its rightward link ((`′′, i′′ − 1), (`′′, i′′)) is prepended to pi
′→(`,i)

left
and thus (`′′, i′′ − 1) is the new starting node of the left zig-zag path. Otherwise, the lower-right
neighbor must be causal, so its upward-left link ((`′′−1, i′′+1), (`′′, i′′)) is prepended to pi

′→(`,i)
left .

If i′′ + 1 = i′ and pi
′→(`,i)

left contains more upward-left links than rightward links, the construction
is terminated. If `′′ − 1 = 0, with arbitrary i′′ + 1, the construction is also terminated.

Note that the left zig-zag path depends on the current execution of the grid, as the causal links are
determined by the link delays. Furthermore, pi

′→(`,i)
left does not necessarily start in column i′, i.e.,

when the construction has been terminated due to `′′ − 1 = 0, the column may not be i′.
Due to the fact that causal paths are acyclic, pi

′→(`,i)
left will descend to a lower layer after at

most |W | − 1 added rightward links. This also shows that causal paths are finite and thus their
construction terminates in finite time.

19

(0, i′)

(`, i′ − `) (`, i) (`, i′)r

Figure 2.2: Visualization of the “spanning” triangle containing all left zig-zag paths in the proof of
Lemma 2.3.5Lemma 2.3.5. The dashed lines are the diagonals.

Definition 2.3.3 (Relative Width of a Left Zig-Zag Path): The relative width r of a left zig-
zag path is the number of upward-left links in pi

′→(`,i)
left minus the number of rightward links.

Lemma 2.3.4 If a left zig-zag path pi
′→(`,i)

left has r > 0 and starts in (`′, i′) then the same holds
for every prefix.

PROOF Suppose that the prefix π violates this, then it must end with a node (`′′, i′′) with i′′ ≥ i′.
But then the suffix must have more up-left than rightward edges and thus must have crossed i′. As
a crossing of i′ terminates the construction of a left zig-zag path, such a left zig-zag path cannot
exist. 2

Lemma 2.3.5 Consider a prefix π of pi
′→(`′′,i′′)

left , starting at node (`′, i′) and ending at (`, i), for
which ` > 0 and r > 0 holds. Then, the triggering time of node (`, i′) satisfies

t`,i′ ≤ t`,i + rd− + (`− `′)ε.

PROOF W.l.o.g. we shift `′ to 0 and update ` accordingly to ` = `− `′.
Thus pi

′→(`,i)
left is limited by the triangle spanned by the nodes (0, i′), (`, i′ − `) and (`, i′),

cf. Figure 2.2Figure 2.2. Note that (`, i) is between (`, i′ − `) and (`, i′) as i′ − ` ≤ i < i′. Furthermore
note that pi

′→(`,i)
left will, as shown in Lemma 2.3.4Lemma 2.3.4, not cross column i′ and thus r > 0 also holds

for every prefix of π. Also note that in cases where ` > W the triangle would contain some nodes
more than once; nonetheless the left zig-zag paths in such cases are still bounded by this lemma,
only the timebound given is an overapproximation.

We define diagonal k as the set of nodes 0 ≤ k ≤ `, on the line between the nodes (k, i′) and
(`, i′ − `+ k).

20

To prove the lemma, we will first show that every node p on diagonal k, which is on or to the
right of π, will be triggered by time tp ≤ t`,i − (`− r)d− + kd+. Note that (`, i) resp. (`, i′) are
on diagonal `− r resp. `.

First we show that the statement holds for every node p on π. The predecessor q of p on π
was triggered at least d− before p, i.e., tq ≤ tp − d−, as π is a causal path. This argument can be
extended to every predecessor of p. So u, the hth predecessor of p, which is h hops away from p,
was triggered at least at tu ≤ tp−hd−. We now relate the diagonal to the hop count: The minimal
diagonal reachable is the number of rightward links minus the hop count: k ≥ (`− r)− h. Thus,
we can conclude that tu ≤ tp − hd− ≤ tp − (` − r)d− + kd− ≤ tp − (` − r)d− + kd+, and
have thereby shown that the statement holds for all nodes on π.

We will now prove by induction that our statement holds on every diagonal. Observe that
every node on diagonal 0 is either on π or left of π. Thus, the base case h = 0 case has already
been shown.

Assume now that statement holds for diagonal k and observe diagonal k+ 1. We only need to
consider nodes which are to the right of π. Observe that the left and lower-left neighbor of every
node on diagonal k + 1 are on diagonal k. So every node p on diagonal k + 1 will be triggered at
most d+ after its neighbors on diagonal k were triggered: tp ≤ t`,i − (`− r)d− + kd+ + d+ =
t`,i − (`− r)d− + (k + 1)d+, which proves our statement.

To prove our lemma, we just have to plug-in: Since (`, i′) is on diagonal `, which is actually
(` − `′) due to our initial shifting, we obtain t`,i′ ≤ t`,i − ((` − `′) − r)d− + (` − `′)d+ =
t`,i + rd− + (`− `′)ε as asserted. 2

Definition 2.3.6 (Distance and Skew Potential): For two nodes i, j ∈ [W], we define their
distance as |i − j|W = min(d,W − d), where d = i − j mod W . For ` ∈ [L + 1], the skew
potential on layer ` is ∆` = max

(
maxi,j∈[W](t`,i − t`,j − |i− j|W d−), 0

)
.

The skew potential is thus the difference between the trigger time of nodes i and j, at the same
layer compensated by the time a trigger message would need, in the best case, to propagate
between them.

The following Lemma 2.3.7Lemma 2.3.7 reveals an important property of HEX, namely, that the skew at
layer 0 does not affect the skew at layer W − 2 and above.

Lemma 2.3.7 For all ` ∈ {W − 2, . . . , L} we have that ∆` ≤ 2(W − 2)ε.

PROOF We will derive a bound on ∆` by subtraction the earliest from the latest triggering time
of any node on layer `.

W.l.o.g. we assume that ` = W − 2. Further, we pick two nodes i, i′ ∈ [W], i < i′, for which
i′ − i = |i − i′|W holds. Cases where the wrap-around distance is shorter can be handled by
swapping the nodes, which is symmetrical anyway. We distinguish two cases.

Case 1: pi
′→(`,i)

left starts at node (`′, i′) for some `′ ∈ {1, . . . , `− 1}. Then, by Lemma 2.3.5Lemma 2.3.5,

t`,i′ ≤ t`,i + (i′ − i)d− + (`− `′)ε ≤ t`,i + (i′ − i)d− + `ε ≤ t`,i + (i′ − i)d− + (W − 2)ε.

21

layer 0
(0, j) (0, j + 1)

Figure 2.3: Illustration of the induction proof Lemma 2.3.7Lemma 2.3.7 at time d+, considering all link delays are d+.
The solid lines mark the trigger messages which where received at d+, the wiggly black lines
symbolize the trigger messages which will be sent at d+. The dark gray wiggly lines are the
trigger messages which will be sent at 2d+, and the light gray are those sent at 3d+.

Case 2: p
i′→(`,i)
left starts at node (0, j), j ∈ [W]. The path from (0, j) to (`, i) contains

` upward-left links and at least (`− (i′ − i)) rightward links.
Denote by t0 the first time two adjacent nodes on layer 0 trigger. Then the earliest time

node (`, i) will be triggered is:

t`,i ≥ t0 + `d− + (`− (i′ − i))d− = t0 + (2(W − 2)− (i′ − i))d− (2.1)

We will now show that every node in layer ` = W − 2 will be triggered at latest by t0 +
2(W − 2)d+. Therefore, assume that (0, j) is the node such that max(t0,j , t0,j+1) = t0. We will
prove by induction on λ that, for every layer λ, the nodes (λ, j−λ), (λ, j−λ+1), . . . , (λ, j+1)
will be triggered no later than t0 + 2λd+. An illustration of the first few layers is shown in
Figure 2.3Figure 2.3.

For the base case λ = 0 consider layer 0: As the nodes (0, j) and (0, j + 1) were used to
define t0, the hypothesis holds.

Assume that the hypothesis held in layer λ, then the nodes (λ, j−λ), (λ, j−λ+1), . . . , (λ, j+
1) triggered at latest by t0 + 2λd+. The nodes (λ+ 1, j − λ), (λ, j − λ+ 1), . . . , (λ, j) all have
two neighbors in layer λ which triggered no later than t0 + 2λd+, thus those nodes will trigger
no later than t0 + (2λ + 1)d+. Hence, no later than t0 + (2λ + 2)d+ = t0 + 2(λ + 1)d+ the
nodes (λ+ 1, j − λ+ 1) and (λ+ 1, j + 1) will also trigger and thereby establish the hypothesis
for λ+ 1.

We can now use Equation (2.1)Equation (2.1) to calculate the worst-case skew between the nodes i and i′:

t`,i ≥ t0 + (2(W − 2)− (i′ − i))d−

t`,i′ ≤ t0 + 2(W − 2)d+

t`,i′ − t`,i ≤ t0 + 2(W − 2)d+ − t0 − (2(W − 2)− (i′ − i))d−

≤ 2(W − 2)ε+ (i′ − i)d−

As all cases of (i′− i) can be covered by symmetry, as stated in the beginning, we can replace
the term with the node distance, and conclude that

∆` = max
i,i′∈[W]

(t`,i′ − t`,i − |i′ − i|W d−) ≤ 2(W − 2)ε

22

layer λ0

(λ, i) (λ, i+ 1)

(`, i) (`, i+ 1)

≤ d+≥ d−

≥ d−

≤ d+

≤ d+

(a) Illustration of Case 1 of Lemma 2.3.8Lemma 2.3.8.

(`′, i+ 1)

(λ0, j0) (λ0, i+ 1)

(`, i)(`, i+ 1)

layer λ0

(b) Illustration of Case 3 of Lemma 2.3.8Lemma 2.3.8.

layer 0

layer λ0

(0, j0) (0, i) (0, i+ 1) (0, i+ λ0)

(`, i+ 1)(`, i)

≤ λ0d+

≤ (`− λ0)d+
≥ (2`+ r)d−

r

∆0 + (λ0 + r + 1)d−

(c) Illustration of Case 2 of Lemma 2.3.8Lemma 2.3.8.

Figure 2.4: Illustration of the three cases used to proof Lemma 2.3.8Lemma 2.3.8.

holds as claimed in both cases. 2

Lemma 2.3.8 For all layers `0 ∈ [L] and ` ∈ {`0 + 1, . . . , L}, it holds for each i ∈ [W] that

|t`,i − t`,i+1| ≤ d+ +

⌊
(`− `0)ε
d+

⌋
ε+ ∆`0 .

PROOF We define λ0 =
⌊
`d−

d+

⌋
, which marks the last layer where the longest possible pi

′→(`,i)
left ,

under Assumption 2.1.1Assumption 2.1.1 with delay d−, from a node (0, i) is slower than the direct path from

23

(0, i) to (λ0, i) with delay d+. Furthermore it holds that

`−
⌊
`d−

d+

⌋
=

⌈
`ε

d+

⌉
. (2.2)

Case 1: tλ,i+1 ≤ tλ,i + d+ for the smallest λ > λ0 such that for all λ′ ∈ {λ + 1, . . . , `} :
tλ′,i+1 > tλ′,i + d+ holds true, cf. Figure 2.4aFigure 2.4a. This implies that the nodes (λ′, i) cannot be
triggered by their right neighbor, and therefore the links from (λ′ − 1, i) must be causal. From
this it follows that tλ′−1,i + d− ≤ tλ′,i. As this property holds for all nodes, by induction, we get
t`,i ≥ tλ,i + (`− λ)d−.

By the required property on λ we can also be sure that the trigger message from (λ′, i) will
arrive at node (λ′, i+ 1) before tλ′,i+1. Hence, the node will trigger when the message from its
lower-left neighbor (λ′ − 1, i+ 1) arrives, if the node has not already done so. Consequently, d+

is the upper bound for the skew between two nodes in column i+ 1 starting from layer λ, and we
can, by induction, conclude that

t`,i+1 ≤ tλ,i+1 + (`− λ)d+. (2.3)

As we know, by our assumption, the difference between the two nodes (λ, i) and (λ, i+ 1), we
can extend the former inequality to t`,i+1 ≤ tλ,i + (`− λ)d+ + d+. The skew between the two
neighbors (`, i) and (`, i+ 1) on layer ` hence follows from

−t`,i ≤ −tλ,i − (`− λ)d−

t`,i+1 − t`,i ≤ tλ,i + (`− λ)d+ + d+ − tλ,i − (`− λ)d− = (`− λ)ε+ d+

tλ′,i+1 > tλ′,i + d+ ⇒ t`,i+1 − t`,i > 0

t`,i+1 − t`,i = |t`,i − t`,i+1| ≤ (`− λ)ε+ d+ (2.4)

Case 2: Case 1 does not apply and pi
′→(`,i)

left starts at some node (0, j0), for j0 6= i+ 1. We
can also conclude that r ≥ 0 (recall Definition 2.3.3Definition 2.3.3), as otherwise the end would be in node
(0, i + 1), which is excluded, or the left zig-zag path would have crossed column i + 1, in
which case r > 0 would have been true and thus the left zig-zag path would have terminated
there. Hence, pi

′→(`,i)
left has length 2`+ r and j0 = i− r mod W and thereby we can infer that

t`,i ≥ t0,j0 + (2`+ r)d−.
Observe that a d+ path from node (0, i+1) to (λ0, i+1) spans a triangle with node (0, i+λ0+

1) as the third corner, as can be seen in Figure 2.4cFigure 2.4c. For each j ∈ {i+ 1, i+ 2, . . . , i+ λ0 + 1}
it holds that |j − j0|W ≤ j − j0 = j − i + r. From that, and using the definition of the skew
potential, we obtain

t`,i ≥ t0,j0 + (2`+ r)d−

≥ t0,j − |j − j0|Wd− −∆0 + (2`+ r)d−

≥ t0,j − (j − i)d− −∆0 + 2`d−

≥ t0,j −∆0 + (2`− λ0 − 1)d−.

24

By induction, we can show that for each λ ∈ {0, . . . , λ0} every node (λ, i + 1), (λ, i +
2), . . . , (λ, i+ λ0 + 1− λ) will trigger no later than

max
j∈{i+1,...,i+λ0+1−λ}

(t0,j) + λd+ ≤ t`,i + ∆0 − (2`− λ0 − 1)d− + λd+.

By using the definition of λ0, as the maximal value for λ, we get

tλ0,i+1 ≤ t`,i + ∆0 − (2`− λ0 − 1)d− + λd+

≤ t`,i + ∆0 − (2`− λ0 − 1)d− +
`d−

d+
d+ = t`,i + ∆0 − (`− λ0 − 1)d−.

Case 1 does not apply, thus tλ,i+1 > tλ,i + d+ holds for all λ ≥ λ0, which allows us to use
similar arguments as we used to derive Equation (2.3)Equation (2.3): Every node (λ, i+ 1) is left triggered and
thus its triggering time can be obtained, by induction, starting from node (λ0, i+ 1), which leads
to

t`,i+1 ≤ tλ0,i+1 + (`− λ0)d+. (2.5)

Therefore, it follows that

t`,i+1 − (`− λ0)d+ ≤ tλ0,i+1 ≤ t`,i + ∆0 − (`− λ0 − 1)d−

t`,i+1 ≤ t`,i + ∆0 − (`− λ0 − 1)d− + (`− λ0)d+

= t`,i + ∆0 + (`− λ0)ε+ d− = t`,i + ∆0 +

(
`−

⌊
`d−

d+

⌋)
ε+ d−

= t`,i + ∆0 +

⌈
`ε

d+

⌉
ε+ d−,

from which we arrive at

t`,i+1 − t`,i = |t`,i − t`,i+1| ≤ ∆0 +

⌈
`ε

d+

⌉
ε+ d−.

Case 3: Neither Case 1 nor Case 2 apply. In this case, pi
′→(`,i)

left starts at some node (`′, i+ 1)

for some `′ < `, and tλ,i+1 > tλ,i + d+ holds for all λ ≥ λ0. Therefore, the first link of pi
′→(`,i)

left

is ((`′, i+ 1), (`′ + 1, i)), as shown in Figure 2.4bFigure 2.4b. As Case 1 does not apply, pi
′→(`,i)

left must start
on a layer `′ < λ0 − 1: Otherwise, e.g., for `′ = λ0 − 1, (λ0, i+ 1) would be triggered no later
than max(t`′,i+1 + d+, tλ0,i + d+). Hence tλ0,i+1 ≤ tλ0,i + d+ would hold, which contradicts
the assumption that Case 1 does not hold.

Let (λ0, j0) be the last node of pi
′→(`,i)

left on layer λ0. Observe that j0 = i+ 1− r holds and
thus Lemma 2.3.5Lemma 2.3.5 can be applied on a prefix π of pi

′→(`,i)
left ending at node (λ0, j0), thus yielding

tλ0,i+1 ≤ tλ0,j0 + rd− + (λ0 − `′)ε = tλ0,j0 + (i+ 1− j0)d− + (λ0 − `′)ε. As Case 1 does not
hold, we can use Equation (2.5)Equation (2.5) and obtain

t`,i+1 ≤ tλ0,j0 + (i+ 1− j0)d− + (λ0 − `′)ε+ (`− λ0)d+.

25

By construction, pi
′→(`,i)

left has length 2(`−`′)−1 and the prefix π has length 2(λ0−`′)−(i+1−j0),
thus the suffix starting at node (λ0, j0) has length 2(`− λ0) + (i− j0). As the suffix is also a
causal path, we can infer that

t`,i ≥ tλ0,j0 + (2(`− λ0) + (i− j0)) d−.

Thus, we arrive at

t`,i+1 − t`,i ≤ (1 + i− j0)d− + (λ0 − `′)ε+ (`− λ0)d+ − (2(`− λ0) + (i− j0)) d−

= d− + (λ0 − `′)ε+ (`− λ0)d+ − 2(`− λ0)d−

= d− + (`− `′)ε− (`− λ0)d− = (`− `′)ε− (`− λ0 − 1)d−

≤︸︷︷︸
`′=0

`ε−
(
`− `d−

d+
− 1

)
d− = `ε−

(
`ε

d+
− 1

)
d− = `ε− `εd−

d+
+ d−

≤
⌈
`ε

d+

⌉
ε+ d−.

Since these three cases where exhaustive and for each the claimed bound holds, this concludes
the proof. 2

Corollary 2.3.9 Set δ = d−/2− ε. For each layer ` ∈ {W, . . . , L} and i ∈ [W] it holds that

|t`,i − t`,i+1| ≤ max

{
d+ +

⌈
Wε

d+

⌉
ε, ∆`−W + d+ −Wδ

}
. (2.6)

PROOF The proof is, for great parts, analogous to Lemma 2.3.8Lemma 2.3.8 and thus will follow the same
patterns. W.l.o.g. we assume that `0 = `−W .

Case 1: tλ,i+1 ≤ tλ,i + d+ for the smallest λ > λ0 such that for all λ′ ∈ {λ + 1, . . . , `} :
tλ′,i+1 > tλ′,i + d+ holds true. As there are no assumptions on the layer in Lemma 2.3.8Lemma 2.3.8, we
can directly take Equation (2.4)Equation (2.4) from said lemma:

|t`,i − t`,i+1| ≤ (`− λ)ε+ d+ ≤
⌈

(`− `0)ε
d+

⌉
ε+ d+.

Due to the assumption about `0, the equation simplifies to

|t`,i − t`,i+1| ≤ d+ +

⌈
Wε

d+

⌉
ε,

which proves this case.

26

Case 2: Case 1 does not apply and pi
′→(`,i)

left starts at some node (0, j0), for j0 6= i+ 1. This
case needs some additional refinements to show the bound. The beginning is equal to Case 2 of
Lemma 2.3.8Lemma 2.3.8, but w.l.o.g. we now assume that ` = W .

For each j ∈ {i+ 1, i+ 2, . . . , i+ λ0 + 1} it holds that |j − j0|W ≤ j − j0 ≤W/2 = `/2,
which is different from what has been used in Lemma 2.3.8Lemma 2.3.8. From that, and using the definition
of the skew potential, we obtain

t`,i ≥ t0,j0 + (2`+ r)d−

≥ t0,j − |j − j0|Wd− −∆0 + (2`+ r︸︷︷︸
≥0

)d−

≥ t0,j −
`d−

2
−∆0 + 2`d− = t0,j −∆0 +

3`d−

2
.

The proof now proceeds as in Case 2 of Lemma 2.3.8Lemma 2.3.8. By induction, we can show that

tλ0,i+1 ≤ t`,i + ∆0 −
`d−

2
.

Plugging this into Equation (2.5)Equation (2.5) finally leads to

t`,i+1 ≤ t`,i + ∆0 −
`d−

2
+ (`− λ0)d+ = t`,i + ∆0 −

`d−

2
+

⌈
`ε

d+

⌉
d+

≤ t`,i + ∆0 −
`d−

2
+ `ε+ d+ = t`,i + ∆0 − `

(
d−

2
− ε
)

+ d+,

from which we can conclude that

|t`,i+1 − t`,i| ≤ ∆0 − `
(
d−

2
− ε
)

+ d+.

Using the assumption that ` = W , and generalizing for arbitrary `0, we arrive at

|t`,i+1 − t`,i| ≤ ∆`−W + d+ −Wδ.

Case 3: Neither Case 1 nor Case 2 apply. Similar to Case 1, we only have to consider the
changed bound for `′ = `−W

t`,i+1 − t`,i ≤ (`− `′)ε− (`− λ0 − 1)d−

≤︸︷︷︸
`′=`−W

Wε−
(
Wε

d+
− 1

)
d− =

Wε2

d+
+ d−

≤ d+ +

⌈
Wε

d+

⌉
ε.

As for all three cases the asserted bound holds, this concludes the proof. 2

27

Theorem 2.3.10 (Skew Bounds — Fault-Free Case) Suppose that ε ≤ d+/7. Then the follow-
ing upper bounds hold on the intra-layer skew σ` = maxi∈[W] {|t`,i − t`,i+1|} in layer `: If
∆0 = 0, then σ` is uniformly bounded by d+ + dWε/d+e ε for any ` ∈ [L+ 1]. In the general
case,

∀` ∈ {1, . . . , 2W − 3} : σ` ≤ d+ + 2Wε2/d+ + ∆0,

∀` ∈ {2W − 2, . . . , L} : σ` ≤ d+ + dWε/d+eε.

Moreover, regarding the inter-layer skew of layer ` ∈ [L] to its neighboring layer `+ 1, it holds
for all i ∈ [W] that

t`,i − σ` + d− ≤ t`+1,i ≤ t`,i + σ` + d+ and

t`,i+1 − σ` + d− ≤ t`+1,i ≤ t`,i+1 + σ` + d+.

PROOF For sake of the argument, assume a HEX grid with ∆0 = 0 and link delays, up to
layer W − 1, of d+, which results in ∆` = 0 for all ` ∈ {0, 1, . . . ,W − 1}.

By applying Lemma 2.3.7Lemma 2.3.7, we get that ∆` ≤ 2(W − 2)ε holds for all ` ∈ {W − 2, . . . , L}.
We now apply Corollary 2.3.9Corollary 2.3.9 to derive an intra-layer bound for the layers from W on. For
all layers, including 2W − 1, the second term of the max term in Equation (2.6)Equation (2.6) reduces to
d+ −W (d−/2 − ε), as ∆` = 0 up to layer W − 1. Thus, for those layers, the first term will
determine the maximum. For the layers from 2W − 1 onwards, we also consider the following
part of the second term in Equation (2.6)Equation (2.6):

∆`−W −Wδ ≤ 2(W − 2)ε−Wδ = W (2ε− δ)− 4ε = W (3ε− d−/2)− 4ε

≤W (3d+/7− d−/2︸ ︷︷ ︸
6
7
d+≤d−

)− 4ε

As we assumed that ε ≤ d+/7 holds, this term is also negative. Thus, for all layers greater than
W , the first term also dominates the max term.

Now consider a grid with ∆0 = 0 and L−W layers. This grid can be seen as the part of the
above grid from layer W onwards. Thus we can conclude that, for ∆0 = 0, the intra-layer skew
is bounded by d+ + dWε/d+e ε for any ` ∈ [L+ 1].

We will now consider skew bounds for arbitrary ∆0. For the layers up to 2W − 2, we can
directly apply Lemma 2.3.8Lemma 2.3.8, which leads to an upper bound of d+ +

⌊
Wε
d+

⌋
ε + ∆0. For the

remaining layers of the grid, we can use Corollary 2.3.9Corollary 2.3.9 in combination with Lemma 2.3.7Lemma 2.3.7. The
lemma provides us with a skew potential of ∆` ≤ 2(W − 2)ε for ` ∈ {W − 2, . . . , L} that, in
combination with the corollary, results in the same bound as established above for ∆0 = 0.

The inequalities regarding the inter-layer skew are proven by using the inter-layer skew bound
and the link delay bounds:

t`,i − σ` + d− ≤ min(t`,i, t`,i+1) + d− ≤ t`+1,i ≤ max(t`,i, t`,i+1) + d+ ≤ t`,i + σ` + d+.

The second inequality is proven analogously, which concludes the proof. 2

28

2.4 Fault Models

As usual network properties are not provided by HEX, like (almost) fully connectivity or bidi-
rectional communication, we cannot hope to match classic resilience results, like tolerance to
f Byzantine node failures provided n ≥ 3f + 1 [1414, 5252].

A promising alternative are f–local failure models [77, 3434, 5353], which assume that every node
has at most f faulty nodes among its n direct neighbors. It is particularly suitable for regular
topologies like HEX, and has the advantage that the network-wide number of faulty nodes scales
with the network size.

To define suitable failure semantics, we first have to consider the possible effect of faults on
the HEX grid. As elaborated in Section 1.1.3Section 1.1.3, we have two basic fault types:

Fail-Silent A fail-silent or crash faulty node can only stop sending trigger messages forever. It
thus can only slow-down the firing of a neighbor, if the link to that respective neighbor
would have been causal.

Byzantine As a Byzantine faulty node actually has no limitations on its behavior, the current
implementation, presented in Chapter 3Chapter 3, would have a problem: The receiver component
(cf. Section 3.1.1Section 3.1.1) is prone to metastability if the trigger message is too short. Thus, we
must restrict Byzantine faults from inducing metastability.

It follows that a Byzantine fault is limited to

• moderately speed-up its neighboring nodes, as two causal links are necessary for a
node to trigger.

• arbitrarily slow-down its neighboring nodes. However, compared to the fail-silent
fault, the trigger message could be arbitrarily delayed for pulse k, which may in turn
result in an arbitrary speed-up for pulse k + 1!

As Algorithm 1Algorithm 1 is designed to withstand one Byzantine faulty neighbor, this property can be used
as a first base of our fault model:

Assumption 2.4.1: Every node in the HEX grid has at most one faulty neighbor.

Under this restriction, a faulty nodes requires that the 18 nodes with a distance of ≤ 2 hops are
non-faulty, cf. Figure 2.5Figure 2.5. This number may be smaller for narrow grids or nodes near the top
or the bottom. Requiring such a large neighborhood of correct nodes is rather restrictive, as the
birthday paradox33 [11] causes the probability of a “correct” random placement of faulty nodes to
drop fast with the number of faulty nodes.

It is easy to obtain a lower bound for the probability that a correct placement can be achieved:
The following formula provides a lower bound for the probability of a correct placement of

3In [11] a solution is presented for the question who likely it is that f people have their birthdays at least k/2 days
apart. As these k/2 days span in both directions, they represent the size of the neighborhood of the fault in which no
other fault must be placed. Unfortunately, this 1D problem does not fully match the 2D situation in our grid: While
the mapping, by itself, from these k/2 day interval from the 1D timeline to the 2D grid would not produce problems,
the 1D solution allows no overlapping of the neighborhoods of two persons which is possible in our case.

29

column

layer

i− 2 i− 1 i i+ 1 i+ 2

`− 2

`− 1

`

`+ 1

`+ 2

Figure 2.5: When the node (`, i) is faulty, then if one of the white nodes would also be faulty, one node
would have two faulty nodes on incoming edges. If one of the gray nodes would be faulty, then
some nodes would have two faulty neighboring nodes.

● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ●

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of faults

P
ro

ba
bi

lit
y

of
 v

al
id

 p
la

ce
m

en
t

(a) 18 correct neighbors per fault required

● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ●

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of faults

P
ro

ba
bi

lit
y

of
 v

al
id

 p
la

ce
m

en
t

(b) 12 correct neighbors per fault required

Figure 2.6: Probability of correct placement of faults under the 1–local fault model according to
Equation (2.7)Equation (2.7). The functions were plotted with 2500 nodes and such that 12 resp. 18 di-
rect neighbors of a faulty node must be correct.

f faulty nodes, which require k surrounding neighboring nodes to be non-faulty, in a grid with
n nodes:

p(k, f, n) ≥ n× (n− (k + 1))× . . .× (n− (f − 1)(k + 1))

f !

(
n

f

)−1
(2.7)

≥
f−1∏
i=0

1− (k + 1)i

n
≥
(

1− (k + 1)f

n

)f
.

Equation (2.7)Equation (2.7) is similar to a (n, f)-combination, but instead of removing only one element per
selection from the set of possible elements, k + 1 elements, the entire neighborhood of the faulty
node and the faulty node itself, are removed. To get the probability, the term is divided by the(
n
k

)
possible combinations of placing f faulty nodes in n nodes.

30

Figure 2.6aFigure 2.6a shows a plot of EquationEquation (2.72.7)(2.72.7) with 2500 nodes, which is the grid size used in
our simulations in Chapter 3Chapter 3. The probability for a successful placement of 15 faults is at least
≈ 46%, which is pretty low given that only 0.6% of the nodes are faulty.

Fortunately, Assumption 2.4.1Assumption 2.4.1 can be weakened. As the HEX grid is directed, the fault model
only has to ensure that no node has two faulty nodes on its incoming links.

Definition 2.4.2 (1–local fault model): Every node in the HEX grid has at most one faulty
neighbor on its incoming links.

This weakened model reduces the size of the fault-free neighborhood to 12 nodes: Every
in-neighbor of the 4 nodes who have a faulty node as in-neighbor must be non-faulty. With this
model, the probability of a correct placement of 15 faults has increased to at least ≈ 60%, for
f = 20, this probability has increased from at least ≈ 24% to at least ≈ 39%.

Clustered Faults In general, a HEX node can only tolerate one faulty in-neighbor. Nonetheless,
HEX allows some cases where one node has multiple faulty neighbors, at the cost of an increase
of the skew. Consider the case where the two intra-layer neighbors of (`, i) are faulty. In this case,
node (`, i) would not be affected by the faults, due to the firing rules. Unfortunately, however, if
both faulty nodes are fail-silent, then the nodes (`+ 1, i− 1) and (`+ 1, i) could not fire, i.e.,
become mute.

A more extreme scenario would assume that the two adjacent in-neighbors of (`, i) in the
layer below, i.e., (` − 1, i) and (` − 1, i + 1), are faulty. In the case of Byzantine faults, they
could force (`, i) to produce spurious pulses, resulting in a spurious wave similar to the scenario
shown in Figure 2.3Figure 2.3. In the case of fail-silent nodes, the skew of (`, i− 1) and (`, i+ 1) would
possibly increase and (`, i) would become mute.

In the case of three neighboring fail-silent nodes, e.g. (`−1, i−1), (`−1, i) and (`−1, i+1),
the nodes (`, i− 1) and (`, i) would also become mute. Yet, due to the structure of the HEX grid,
this “muteness wave” will not expand, but rather vanish in the form of a triangle with increasing
layers. Note that this even generalizes to more than three fail-silent neighbors in the same layer.

If the fail-silent nodes would be in adjacent layers and in the same column, then there is no
way to cause other nodes to become mute. But a chain of fail-silent faults along a column would
slice part of the cylindrical HEX grid open, which would, again, have a bad effect on the skews.

2.5 Pulse Separation

Pulse separation is needed to restrain a node from firing pulse k (partially) based on stale trigger
messages for pulse k−1, which may have arrived late. There are generally two methods to prevent
such behavior, either (i) counting or labeling the messages carrying the pulses or (ii) temporal
separation of their occurrence such that it is not possible for the nodes to mix them up. HEX
uses the latter approach, which leads us to the question of how to determine the timeout interval
[T−, T+] (cf. Algorithm 1Algorithm 1), given some pulse separation time S such that S + t

(k)
+ ≤ t

(k+1)
− .

Herein t(k)− denotes the time when the first node in layer 0 generates pulse k, and t(k)+ gives
the time when the last node in layer 0 does so. The basic idea is to sleep so long that every

31

outstanding pulse k trigger message from the neighboring nodes has been received, but not so
long that a message corresponding to pulse k + 1 is missed.

First, consider the following general upper bound on the pulse separation time at layer `,
which must hold in any case to ensure this:

t
(k)
`,i + T+ < min

(
t
(k+1)
`,i−1 , t

(k+1)
`,i+1 , t

(k+1)
`−1,i , t

(k+1)
`−1,i+1

)
+ d−

Consider now the lower timeout interval bound T−. As established before, this value must be
large enough to prevent the node from firing due to old pulses arriving late.

Lemma 2.5.1 Suppose that the skew potential for any pulse k satisfies maxk∈N

(
∆

(k)
0

)
≤ ∆

and denote σ0 = ∆ + d−. Then, a feasible lower bound for the timeout interval, which ensures
that every node fires at most once per pulse k, is

T− > σ` + d+ + ε, (2.8)

for all ` ∈ [L+ 1], where σ` is the intra-layer skew as in Theorem 2.3.10Theorem 2.3.10 for ∆0 = ∆.

PROOF W.l.o.g. consider the node (`, i). T− must be chosen so that, after triggering pulse k, no
other triggering message from a correct node based on pulse k can trigger (`, i) again. We will
thus consider the three firing rules defined in Algorithm 1Algorithm 1.

Rule 1: first trigger by the lower neighbors. Assume that at time t0 the last pulse from the
lower neighbors of node (`, i) was sent. This pulse will be received by (`, i) not before t0 + d−,
i.e., by t0 + d− or later node (`, i) triggers for the first time.

At latest by t0 + d+ the left and right neighbor of (`, i) will also receive the pulse, and trigger
no later than t0 + d+ + σ`−1 due to the trigger message from their other lower neighbor. The
pulses from the left and right neighbor take at most d+ until they are received by (`, i). Since
(`, i) has triggered for the first time not before t0 + d−, it would be triggered for a second time
no later than d+ + σ`−1 + ε after the first triggering of node (`, i). As the proposed bound is
required to hold for all ` ∈ [L+ 1], the bound holds in this case.

Rule 2: first trigger by the left and lower-left neighbor. In this rule, we have to consider the
time required until rule 1 or rule 3 would trigger node (`, i) again. Rule 3 would require a pulse
from the right neighbor, which must occur not later than σ` after the firing of node (`, i) and will
thus, with the proposed bound, be ignored. Rule 1 would require an additional message from the
lower-left neighbor which could happen if this neighbor is Byzantine faulty, which is inside our
fault hypothesis. Nonetheless, no node can be triggered by one faulty neighbor alone so that an
additional triggering by rule 1 cannot happen in the fault-free case.

Rule 3: first trigger by the right and lower-right neighbor. This rule is analog to rule 2,
which concludes the proof. 2

32

Due to the nature of the timeout-interval, the upper bound T+ must just be larger than T−, or to
be more precise, larger than the actual timeout instant of the timer. As we will see, when T+ is
known, the pulse separation time can be calculated.

Lemma 2.5.2 Assume that the conditions of Lemma 2.5.1Lemma 2.5.1 hold and that the pulse separation
time satisfies

S > Lε+Wd+ + T+.

If the clock generation algorithm employed in layer 0 is self-stabilizing and no more faults are
present in the grid, then HEX will self-stabilize within L pulses after layer 0 stabilized. The
stabilization is meant in the sense that each node triggers exactly once per pulse and the skew
bounds from Theorem 2.3.10Theorem 2.3.10 hold.

PROOF Assume for simplicity that pulse 0 is the first stable pulse, after all faults disappeared
and a valid pulse separation time has passed, generated by the clock generation system at layer 0.
The proof is by induction, using the induction hypothesis that every layer ` fires correctly at
pulse k ≥ `. Thus by the above assumption the hypothesis holds for pulse 0 and layer 0. For
the induction step from ` to `+ 1 assume that layer ` has stabilized, i.e., pulse k = ` has fired.
The time in which the first and the last nodes in layer ` fired pulse k is bounded by the interval
[t
(k)
− + `d−, t

(k)
+ + `d+]. Hence, no node in layer `+ 1 can be triggered anew, for pulse k+ 1, by

its lower neighbors alone within [t
(k)
+ + (`+ 1)d+, t

(k+1)
− + (`+ 1)d−].

However, layer `+ 1 has not stabilized yet, so nodes in that layer may have missed trigger
messages for pulse k from their lower neighbors. In the worst-case, one node was trigger by its
lower neighbors, not later than t(k)+ + (`+ 1)d+, and the resulting trigger messages propagate
through the W columns of layer `+1 in a chain, taking at most Wd+ time. Therefore, no node in
layer `+1 will trigger anew within the interval [t

(k)
+ +(`+1)d++Wd+, t

(k+1)
− +(`+1)d−], and

hence no node in layer `+1 will be sleeping in [t
(k)
+ +(`+1)d++Wd++T+, t

(k+1)
− +(`+1)d−].

With L being the last layer which will be triggered, we can conclude that `+ 1 = L yields the
smallest interval and hence gives the pulse separation time as stated in our lemma. In combination
with Lemma 2.5.1Lemma 2.5.1, which guarantees that every node triggers at most once, this shows that each
node will trigger exactly once per pulse.

It remains to show that the stabilization time and the skew bounds hold as proposed. We will
use induction on the layers ` ∈ [L+ 1] to show that (i) for pulses k > `, the nodes in layers ` ≤ k
will not trigger due to spurious trigger messages and (ii) that for all nodes in layers ` ≤ k the
skew bounds from Theorem 2.3.10Theorem 2.3.10 apply. Note that (i), in combination with the fact that no node
is sleeping when pulse k arrives, as shown above, guarantees correct behavior of the nodes in
layers ` ≤ k for which Theorem 2.3.10Theorem 2.3.10 was shown; thus (ii) will hold.

The anchor of the induction is at ` = 0. As we require layer 0 to be stable to begin with, no
spurious pulses will occur, and as the intra-layer skew is σ0 ≤ ∆ + d− the skew bound obviously
holds.

For the induction step from ` to `+ 1, we use the fact that every node in layer ` will exactly
fire once. As shown above in the derivation of the pulse separation time, every node in layer `+ 1
will be awake to receive a trigger message. Furthermore, as shown in the proof of Lemma 2.5.1Lemma 2.5.1,
every node in layer `+1 will sleep long enough so that no trigger message from a correct neighbor

33

will be received after waking up. Hence every node in layer `+ 1 will fire exactly once. As state
above, (ii) directly follows from this fact, which concludes the proof. 2

34

CHAPTER 3
HEX – Implementation and Results

This chapter explores, complementary to the theoretical approach in the previous chapter, the
practical implementation of a HEX node and the results gained by simulating a grid of HEX
nodes in different scenarios.

The simulations were conducted to (i) complement the analytic worst-case skew and stabi-
lization results of Chapter 2Chapter 2, and to (ii) explore the behavior of HEX under conditions which
are beyond a reasonable analytical treatment. As for (i), although the worst-case skews for
HEX are rather large, the scenarios required for them to manifest themselves are quite rare. We
hence conjectured that the skew in typical “average” scenarios would be much better. Simulation
experiments are the method of choice for verifying this conjecture. With respect to (ii), an
analytic treatment even of the worst-case skew in the presence of just a single fault suffers from
combinatorial explosion [1515]. Again, simulation is a convenient way to study the behavior of
HEX even in the presence of multiple faults.

As the HEX algorithm is designed to be self-stabilizing, it is also of interest how long this
process takes under typical circumstances. As we will show, the effect of faults on the grid
is mostly local, so it is also of interest if and how well self-stabilization works in a grid with
permanent faulty nodes.

We will start with a description of the VHDL implementation of a HEX node and then
proceed with the MATLAB and ModelSim simulation environments.

3.1 VHDL Implementation

To be able to perform ModelSim simulations, and to provide a reference implementation, the
HEX algorithm was implemented in VHDL. This implementation is a composition of multiple
components, as shown in Figure 3.1Figure 3.1. The main component is the asynchronous state machine
(ASM), the primary input (trigger) of which is provided by a threshold gate. The threshold gate
takes the outputs of the receivers of the incoming links of a HEX node and checks whether one of
the firing conditions, defined by Algorithm 1Algorithm 1, is satisfied.

35

Receiver

Receiver

Receiver

Receiver

Threshold
Gate

Asynchronous
State Machine

Timer

trigger
HEX pulseincoming

links

Figure 3.1: Schematic overview of the implementation of a HEX node. On the left are the receivers. Those
are connected to the threshold gate, which provides the ASM with a trigger signal when one
of the firing condition is satisfied. The ASM performs the state transitions, interacts with the
timer, and outputs a HEX pulse when necessary. The reset signal is not drawn in this figure to
avoid clutter.

incoming link
reset to threshold

Figure 3.2: The receiver component of a HEX node. A simple memory flag, which stores, through a
loopback, any trigger message (= rising signal transition) received from a neighbor.

The implemented design was synthesized using the UMC 90 nm standard cell library [7171],
using Synopsis® Design Compiler version C-2009.06-SP4. Note that we used an augmented
version of the UMC 90 nm library, which includes a custom Muller C-Gate [6868] added in the
context of the DARTS project [2727, 2828]. To provide timing characteristics for this gate, the timing
information of the AND-Gate of said library was used; the resulting inaccuracy is negligible w.r.t.
our purposes.

3.1.1 Receiver

The receivers are implemented as simple memory flags. Their sole purpose is to store an
incoming trigger message, which is just a rising signal transition on the single wire of the link,
from a neighbor until it is reset. The implementation is shown in Figure 3.2Figure 3.2. In the current
implementation, the input of a link is just tied to the HEX pulse output of the sender node, i.e., a
trigger message is just the HEX pulse output of the ASM.

3.1.2 Asynchronous State Machine

The state machine has basically three states, and is similar to the quick cycle state machine of
FATAL+ [1717]. The states are the following:

wait The state machine waits for one of the firing conditions to become true.

36

fire

sleep

wait

timeoutPulse / clearHEXpulse timeoutSleep / clearFlags, resetTimer

trigger / startTimer, raiseHEXpulse

Figure 3.3: The state transition diagram of the ASM. Circular nodes represent states, edges represent the
transitions. The transition label includes the guarding signal of the transition separated by a
slash from the outputs which are enabled on taking the transition.

fire At least one of the firing conditions has become true and a HEX pulse is generated.

sleep The state machine sleeps for some time within the interval [T−, T+].

The transitions between those states are cyclic, i.e. wait to fire, fire to sleep and sleep to wait, as
shown in Figure 3.3Figure 3.3. As the quick cycle state machine in FATAL+ was implemented as a hybrid
state machine (HSM), the first implementation also used a HSM.

A HSM is a combination of an ASM with a synchronous transition state machine (TSM).
The asynchronous part decided which transition should be taken and starts a local oscillator. This
oscillator acts as the clock for the TSM, which then executes the actual state transition. This is
done to ensure that only one transition is done at a time, as the asynchronous part could enable
multiple transition at the same time. Although the HSM is a valid solution for this problem, it led
to a large delay between the acceptance of a firing condition and the output of a HEX pulse: In
the pre-layout simulation this delay was about 3 ns.11

Fortunately, since the state transition diagram in Figure 3.3Figure 3.3 is deterministic, i.e., the transition
to be taken is predefined in every state and not conditional on certain signals, a pure ASM turned
out to be sufficient. Compared to the HSM approach, an additional timeout, timeoutPulse, was
required to ensure the proper length of the HEX pulse, which was inherently guaranteed by the
transition sequence wait→ fire→ sleep of the TSM. The design of this ASM was done with
Petrify [1111].

As described in more detail in Section 1.2.5Section 1.2.5, Petrify allows the generation of speed-independent
asynchronous circuits. The relationship between the signal transitions were given to Petrify in
form of the signal transition graph (STG) of Figure 3.4Figure 3.4. From this input, Petrify generated a
net-list, on which a technology mapping to Verilog can be performed. This feature was used,
with a generic technology library augmented by Muller C-Gates, to generate a Verilog net-list,
which was then manually converted to VHDL. During the manual conversion, a reset signal was
incorporated into the design, which ensures the required initial states for the ASM. In Figure 3.5Figure 3.5,
the timing diagram of an execution of the ASM is shown, while Figure 3.6Figure 3.6 shows the circuit

1This value depends also on the frequency of the oscillator and thus should be taken with caution.

37

trigger+

resetTimer−

clearFlags−

trigger−

clearFlags+

startTimer−

timeoutSleep− timeoutOutput−

resetTimer+

HEX pulse+

startTimer+

timeoutOutput+

HEX pulse−

timeoutSleep+

Figure 3.4: The signal transition graph (STG) that describes the ASM implementing the HEX algorithm.
Nodes with red text, and filled gray represent events on input signals of the state machine,
whereas white nodes with blue text represent output signals. A signal+ as a node label
represents a rising transition of the signal, signal− a falling transition. More detail on the
interpretation of a STG can be found in Section 1.2.5Section 1.2.5.

accept

HEX pulse

startTimer

timeoutOutput

timeoutSleep

clearFlags

resetTimer

Figure 3.5: Timing diagram of a complete cycle of the ASM

38

C

reset

trigger
timeoutSleep

timeoutOutput

clearFlag

HEX pulse
startTimer

resetTimer

Figure 3.6: The logic elements building the ASM of a HEX node. Input signals are on the left, output
signals are on the right. The path from acceptance of a firing condition to generation of a HEX
pulse is marked red.

C

Clk

Pause

Figure 3.7: Start/stoppable ring oscillator used for generating the clock of the timer. The clock frequency
is determined by a series of buffer elements, which determine the delay of a feedback loop that
also incorporates a Muller C-Gate, i.e., allows to open/close the feedback loop and hence to
start/stop the generation of the clock signal.

diagram of the generated HDL code: The ASM has as its main input the trigger signal, which
comes directly from the threshold gate. This signal is responsible for triggering a HEX pulse,
represented by the signal HEX pulse, if the node is not sleeping. The timer is controlled with
startTimer and resetTimer, while the timeouts are introduced into the ASM with timeoutOutput,
which defines the length of the HEX pulse signal, and timeoutSleep, which wakes up the node
after sleeping for some time T ∈ [T−, T+]. Finally, the signal clearFlags is used to reset the
receivers’ memory flags.

Note that it is possible to find multiple correct STGs for the given ASM. They differ by the
detailed dependencies of the transitions, e.g., the clearFlags could be enabled after the timeout
signal was reset. The version given in Figure 3.4Figure 3.4 was chosen, as it does not contain any RS-latches
in the output generated by Petrify, which could introduce metastability into the system.

3.1.3 Timer and Ring Oscillator

As the ASM needs some kind of time reference, to guarantee the minimal/maximal duration
of the HEX pulse and the sleeping time, a timer is needed. The timer was implemented by a

39

Figure 3.8: A screenshot of a simulation of the ring oscillator. The oscillator has 19 buffer gates, which
form the delay chain. On the left, it is also visible how the active high pause signal controls
the generation of the clock signal.

synchronous counter driven by a start/stoppable ring oscillator, similar to the implementation in
FATAL+ [1717].

A single timer consists of a register, which stores a value that is incremented with every clock
cycle of the ring oscillator, until the oscillator is stopped. When a predefined value is reached,
the timer asserts an overflow signal, which represents the timeout. Our implementation of a
HEX node uses two timers, which share the same register. The first, lower-range timer is called
timeoutPulse and specifies the length of the HEX pulse that will be generated by the ASM. The
second, higher-range timer is called timeoutSleep: it enables the transition from sleep to wait in
the ASM, and stops the oscillator upon its timeout.

The ring oscillator is implemented by an inverter, a chain of buffer gates, which delays
the signal and thus determines the clock frequency, and a Muller C-Gate in a feedback loop,
cf. Figure 3.7Figure 3.7. The Muller C-Gate allows the generation of the clock signal to be paused. This is
necessary to avoid metastability in the timer: The signal, which starts the timer, could violate
the setup/hold-requirements of the timer register when the clock would always be running. An
exemplary execution of the ring oscillator is shown in Figure 3.8Figure 3.8. The oscillator has a chain of
19 buffer gates, the delays of which result in the generation of 17 clock cycles while the pause
signal is disabled.

3.1.4 Implementation Characteristics

In the pre-layout simulations, the response time of the HEX node circuit, from applying the
last signal of a firing condition at a receiver to the generation of the HEX pulse, was between
125 ps and 165 ps, depending on which firing condition enabled the triggering of the node. The
difference is caused by the difference in length of the signal paths through the threshold gate.

40

d−/d+ T−/T+

timeoutSleep
Timer

Ring
Oscillator

Area

Routing

Figure 3.9: Cyclic dependencies of the different factors that influence the required area of the timer and
the ring oscillator.

We can expect this response time to increase in the post-layout design, where the wire delays
are incorporated, although this should not have an effect on the magnitude of the difference
between the former HSM and the ASM implementation. Nonetheless, the post-layout response
time will most likely be affected by the actual end-to-end link delays d− and d+, which in turn
incorporate the response time: As the timeout interval [T−, T+] depends on those values, recall
Equation (2.8)Equation (2.8), this directly affects the area required for the timer and the ring oscillator, which in
turn can influence these response times, due to routing decisions. Due to this cyclic dependency, a
comprehensive verification of the timing parameters is imperative to ensure the correct operation
of a HEX grid. Cf. Figure 3.9Figure 3.9 for a graphical representation of the cyclic dependencies of the
parameters just discussed.

In terms of area, the current HEX node design has size of about 110 µm2, without the timer
and with the approximated area for the Muller C-Gate. The timer will, very likely, be the
dominant factor in terms of area requirements of the design. As the area of the timer depends on
the frequency of the ring oscillator and the bits required to represent the timer value, however, it is
not possible to give an exact value for the area of the timer. In the designs used for the simulations
later on, the area of the timer was 2 to 3 times larger than the area of the other components
of the HEX node together. With respect to the post-layout design, we note that the missing
routing delays will significantly increase the delay of the feedback loop of the ring oscillator,
which allows to reduce the number of buffer gates. Alternatively, the timeoutSleep timeout value
and thus possibly the number of bits required for the representation of the timer value could be
reduced. Both changes have a positive effect on the area required.

3.2 Simulation Environments

3.2.1 MATLAB

The first simulations where conducted with MATLAB, which offers a controllable environment
where implementation and other errors could be determined and eliminated easily. Also, the
strive for an interactive simulation environment was a primary driver for this approach.

The HEX grid was implemented directly, using a 2D array of nodes. Using object-oriented
programming, subclasses for different types of nodes where derived from a superclass and placed

41

in that array. The node types included layer 0 generators, different kind of faulty nodes, and the
regular HEX node.

Every node has a FIFO-queue for every incoming link, which also stores the time when a
messages was inserted to ensure correct handling of the link delays. A time instant was simulated
by iterating over every node of the grid and calling a process function, which executes the nodes’
actions for that instant.

As expected, the MATLAB simulations offered flexibility and a high level of control over
the simulations. It was possible to define the link delay for every link, and to configure the
behavior of every faulty node. Thus, this simulation environment has been used for confirming
the worst-case scenario, as well as for the analysis of the effects of faults on a HEX grid. The
results have already been published in [1616].

Nevertheless, it turned out that the MATLAB simulation environment caused long simulation
times, along with other limitations. E.g., the link delays can only be integer values, uniformly
distributed within a given range. Therefore, this environment has not been used for the simulation
of realistic scenarios.

3.2.2 ModelSim

ModelSim is a well-known environment for simulation and verification of hardware designs
developed by Mentor Graphics®.

Our simulation environment was build upon a testbed which was written in the Haskell
programming language.22 Its top-level features are to setup a testbench for a test configuration,
start ModelSim for performing the simulations, and process the results. Over the duration of this
thesis, the last part was separated into a standalone application, as ModelSim was later used to
also generate preprocessed data, which was then used for the statistical evaluation. Figure 3.10Figure 3.10
shows a overview of the major components used for the simulation of a specific scenario.

A scenario describes the parameters of the HEX grid that shall be simulated. As some
parameters are randomly distributed, e.g., the link wire delays or the placement of the faults,
multiple executions of the same scenario were used to acquire meaningful data. We call every
such execution a test set. For every test set, the process shown in Figure 3.10Figure 3.10 is executed, i.e., a
new testbench is generated and then simulated.

We also distinguish between two types of scenarios: Scenarios which observe only one pulse
in the HEX grid, and ones that observe multiple pulses. We denote with runs the number of
pulses simulated in a test set. For stabilization experiments, multiple runs are obviously required:
For the skew evaluation, a single run is sufficient.

Every scenario is generated from a configuration file provided by the user. From this
configuration file, the testbed generates files that build the testbench for a test set of that scenario.
The testbench is then used as an input by ModelSim for the simulation of the HEX grid.

We will now explain each component of Figure 3.10Figure 3.10 in more detail.

Configuration File: The configuration file describes a specific scenario by defining the HEX
grid, which includes the following properties:

2www.haskell.orgwww.haskell.org

42

www.haskell.org

configuration
file

Setup
testbench

testbench
files and
scripts

ModelSim

preprocessed
simulation

results

Post-processing
of results

statistical
results

scope of control
of testbed

scope of control of
statistical evaluation

Figure 3.10: This figure visualizes, from left to right, the process from a configuration file to statistical
data. Starting with the configuration file, the testbed generates testbench files, which are then
simulated with ModelSim. The (preprocessed) simulation results are then further evaluated
by a statistical evaluation software, which provides the final results.

• the size of the HEX grid.

• the interval in which the link wire delays shall be distributed.

• the number of test sets that shall be simulated.

• the number of runs per test set.

• the properties of the layer 0 clock source.

• whether the link wire delays shall change on a per-run basis.

• whether an arbitrary initial state of the HEX nodes shall be enforced before the first run.
This was used for the stabilization experiments.

• the number and types of the faults which should be placed in the HEX grid, without
violating the 1–local fault hypothesis. The types of faults include

– fail-silent faulty nodes.

– Byzantine faulty nodes, which behave, on a per-link basis, either fail-silent or send
constantly a (fast) trigger message.

– link-faulty nodes, i.e., correct nodes where a few outgoing links are faulty.

The behavior of the Byzantine and the link-faulty nodes are chosen randomly on a per-link
basis, in every test set.

• the initial seed for the random number generator used.

43

HEX HEX . . .

Grid

Delay Layer 0
Connection

Network

Monitor Generate

Testbench

Figure 3.11: Simplified overview of the testbench generated by the testbed. The Testbench monitors the
signals applied to and generated by the HEX nodes. It also acts as a clock source for the
layer 0 pulses and selects the delays applied to the links, if they should change with every run.
The Network generates the interconnect links between the nodes and thereby constructs the
HEX grid. These interconnection links are equipped with delay elements, which simulate the
link delays. The Grid instantiate the HEX nodes, or the selected faulty nodes, at the specified
places in the HEX grid.
To avoid clutter, this figure only shows two HEX nodes, with one connected link. Also only
two signals from one node are connected to the Monitor.

Testbench: As stated above, the testbed is provided with a configuration file for a specific test
configuration, from which multiple files are generated. These files are needed to build a complete
testbench and to setup ModelSim to simulate the specific test set of the given configuration, cf.
Figure 3.11Figure 3.11. The files are

• the Testbench. This design entity acts as a clock source for the layer 0 pulses, selects the
link wire delays, monitors the HEX grid and applies the reset signal to the other component
of the testbench on startup. The actual monitoring of the system is not done within the
testbench, but rather uses ModelSim facilities. Nonetheless, the signals are mapped to
allow later enhancements, e.g., controlling more intelligent faults.

• the Network configuration, which is responsible for connecting the HEX nodes, thereby
forming the HEX grid.

• the Grid, which is not generated by the testbed, but is rather a given entity that is instantiated
in the Network and configured to generate the HEX nodes needed. I.e., the Grid instantiates
all HEX nodes and faulty nodes and provides a signal mapping for them.

• an optional script, which is executed by ModelSim after the reset signal was applied to
force an arbitrary state of all HEX nodes. This is done by forcing certain signals in the

44

`

0

1

2

3

t
(k)
− t

(k+1)
−

Figure 3.12: Exemplary multi-pulse execution. The arrows mark the triggering of certain nodes, the `d−

lines are dotted and the dashed lines mark the respective mini∈[W]

(
t
(k)
`,i

)
+ d− line.

HEX nodes to a randomly selected value, wait for a certain time until the values have
propagated through the nodes, and then releasing the signals and let the nodes progress.

• a script, which tells ModelSim the signals that shall be monitored and later dumped as
preprocessed simulation results. This is done via the list feature of ModelSim, which
proved to be less data and time consuming, w.r.t. post-processing, than the processing of
waveform files.

ModelSim: ModelSim is an environment for simulation and verification of hardware designs
developed by Mentor Graphics®. ModelSim is frequently used in industrial practice and allows
simulations from structural to post-layout level. The software allows extensive control over the
signals in the design, monitoring of the same and, if applicable, timing checks on the components
of the design.

Statistical Evaluation: The preprocessed results, generated by ModelSim, are finally analyzed
by a statistical evaluation application also written in Haskell. The operations conducted on
the results are data intensive but, for most parts, trivial. One operation stands out as being
more complex, though: In the test sets with multiple runs, it must be determined whether some
generated HEX pulse corresponds to pulse k or k + 1. The trivial approach of counting from
the last pulse recorded backwards does not work in these experiments, as, due to faults and
stabilization, nodes can fire multiple times during the period of one pulse, which must be correctly
detected. In settings with sufficient pulse separation time, the simple approach of splitting the
timeline for node (`, i) into intervals of the form [t

(k)
− + `d−, t

(k+1)
− + `d−), with t(k)− being the

time when the first node in layer 0 triggers pulse k, is sufficient.
With decreasing pulse separation time, it is possible that t(k)`,i ≥ t

(k+1)
− + `d−, due to the

inevitable jitter `ε of the triggering times, i.e., there is no way to unambiguously assign a HEX
pulse to pulse k or pulse k + 1. To handle this case, a more involved approach is required.
Therefore, instead of the theoretical lower interval bound, the practical lower interval bound is

45

taken: A node in layer `+ 1 cannot trigger pulse k before the first node33 in layer ` has done so
plus the minimal link delay d−, i.e., mini∈[W]

(
t
(k)
`+1,i

)
≥ mini∈[W]

(
t
(k)
`,i

)
+d−. A visualization

of the difference between those two approaches is shown in Figure 3.12Figure 3.12.

3.3 Simulation Results

3.3.1 MATLAB Simulations

First, we take a closer look at the propagation of a single HEX pulse through the HEX grid
without detailed consideration of the skews. These simulations where conducted with MATLAB,
and the results are presented in wave propagation diagrams like Figure 3.13Figure 3.13. Those diagrams
show a three-dimensional representation of the propagation of a single pulse, where the xy-plane
spans the columns/layers of the grid, and the z-axis gives the triggering times t`,i of the respective
node (`, i). For readability, all nodes on the same layer are connected by a straight line, i.e., the
triggering times (`, i, t`,i) and (`, i+ 1, t`,i+1) for all ` ∈ [L+ 1] for L = 20 and i ∈ [W − 1]
for W = 10 are connected.

The results shown in this section are always a single test set with randomly chosen link delays,
except for the worst-case scenario shown in Figure 3.17Figure 3.17. The behavior of the Byzantine faulty
nodes is statically defined so that the nodes send their trigger messages too early (with a link
delay of 0 ns) to their right and up-right neighbor, while the link delay to the other two neighbors
is too slow (3d+).

Figure 3.13Figure 3.13 provides a wave propagation with uniform link delays in the interval [50, 55],44

with initial skew potential ∆0 = 0, recall Definition 2.3.6Definition 2.3.6. We see a very even propagation of the
pulse throughout the grid, as it was expected in this “perfect” scenario.

With this even progress in the fault-free case in mind, the effects of faults on this propagation,
especially the recovery of the grid from those faults, at higher layers, becomes interesting.
Figure 3.14Figure 3.14 shows a wave propagation under the same settings as in the fault-free case, but with
one Byzantine faulty node at (3, 8) displayed with a triggering time t3,8 = −1. Due to the above
defined behavior of the Byzantine faulty nodes, the up-left neighbor is left triggered, which
causes a slow-down effect which ripples through the grid along the diagonal until its recovery
after W layers; Subsequently, the pulse again propagates evenly. Compared to Figure 3.13Figure 3.13, this
causes a later absolute triggering time for some nodes in layers above the layer where the fault
occurred, however: The triggering times in the last layers of Figure 3.14Figure 3.14 occur about d+ later
than in Figure 3.13Figure 3.13.

The case of a single fail-silent node produces a similar result as the given Byzantine case,
as this type of fault can only slow-down other nodes. Thus, we will turn our attention to entire
“clusters” of fail-silent nodes, which violate the 1–local fault hypothesis of Definition 2.4.2Definition 2.4.2.
Figure 3.15Figure 3.15 shows a cluster of fail-silent nodes in the lower layers of the grid, namely (3, 7),
(3, 8), (4, 6), (4, 7), (4, 8), (5, 6), and (5, 7), also displayed with triggering time−1. As expected
from this kind of violation of the fault hypothesis, there is one node (6, 6), which is not faulty but
does not trigger. This is caused by the two faulty lower neighbors of this node. But again, it is

3In the fault-free case, the triggering of the second node would be sufficient.
4Recall that the MATLAB simulation use integer values for the link delays.

46

0
2

4
6

8 0
5

10
15

20
1

3

5

7

9

11

13

15

17

19

layer
column

tr
ig

g
e

r
ti
m

e
 [

d
+
]

Figure 3.13: Pulse wave propagation in a grid with 21 layers (L = 20), 10 columns, link delays uniformly
chosen in the interval [50, 55], and a layer 0 skew potential of ∆0 = 0.

0
2

4
6

8 0
5

10
15

20
1

3

5

7

9

11

13

15

17

19

21

layer
column

tr
ig

g
e

r
ti
m

e
 [

d
+
]

Figure 3.14: Pulse wave propagation with link delays uniformly chosen in the interval [50, 55], with
∆0 = 0 and a single Byzantine node at (3, 8). The faulty node is displayed with a triggering
time of −1.

47

0
2

4
6

8 0
5

10
15

20
1

3

5

7

9

11

13

15

17

19

21

23

layer
column

tr
ig

g
e

r
ti
m

e
 [

d
+
]

Figure 3.15: Pulse wave propagation with link delays uniformly chosen in the interval [50, 55], with
∆0 = 0 and a cluster of fail-silent nodes at (3, 7), (3, 8), (4, 6), (4, 7), (4, 8), (5, 6), and
(5, 7). The faulty nodes are displayed with a triggering time of −1. Observe that the cluster
“shadows” the node (6, 6), which is not faulty, but cannot be triggered and is thus displayed
with a triggering time of 0 in this plot.

apparent that this effect evens out after about W layers, after which the pulse propagates evenly
again. We also see an increase in the triggering time, as well as similar inter- and intra-layer
skews. The behavior of the wave propagation with this cluster is hence again similar to that of the
single Byzantine fault.

Figure 3.16Figure 3.16 shows a setting with multiple isolated and also clustered Byzantine faults, namely
(2, 6), (2, 7), (2, 8), (6, 8), and (13, 1). We observe again effects similar to those of Figure 3.15Figure 3.15.
Note that this wave propagation shows a rather benign behavior, however, caused by the “nice”
behavior of the Byzantine faulty nodes. Actually, the cluster of Byzantine faults in layer 2 alone
could also introduce spurious pulses into the grid, which would propagate through all layers.

Finally, Figure 3.17Figure 3.17 shows an execution leading to the worst-case skew predicted by TheoremTheorem
2.3.102.3.10. To accomplish this, the link delays have been chosen deterministically according to the
worst-case scenarios used in its proof: The basic idea is to have a fast triggering triangle from
column 8 at layer 0 to the left side, which leads to a pulse reaching the top layer very fast. In
the complementary slow triangle from (8, 1) towards column 9 the link delays are gradually
decreased on a per-layer basis. The lower layers have maximal link delays which are used to
build up skew potential. The link delays then gradually decrease, as can be seen in Figure 3.17Figure 3.17 by
the decreasing slope of the triggering times, so that the nodes in the triangle are all left triggered.
While the right side of the grid is generally set to maximal link delay, it is additionally stalled
by a large initial skew of the clock sources. The nodes in column 16, except the clock source in

48

0
2

4
6

8 0
5

10
15

20
1

3

5

7

9

11

13

15

17

19

21

23

layer
column

tr
ig

g
e

r
ti
m

e
 [

d
+
]

Figure 3.16: Pulse wave propagation with link delays uniformly chosen in the interval [50, 55], with
∆0 = 0 and multiple Byzantine faulty nodes at (2, 6), (2, 7), (2, 8), (6, 8), and (13, 1). The
faulty nodes are displayed with a triggering time of −1.

0 2 4 6 8 10 12 14 16
0

2
4

6
8

1

3

5

7

9

11

13

15

17

layer

column

tr
ig

g
e
r

ti
m

e
 [
d

+
]

Figure 3.17: A worst-case pulse propagation wave, with the maximal intra-layer skew in layer 8 between
the nodes in column 8 and 9. Note that the nodes in column 16, except the clock source in
layer 0, are deliberately fail-silent and hence displayed with a triggering time of −1.

49

layer 0, are artificially shown as fail-silent faulty nodes (triggering time 0) to keep the width of
the grid small and still separate the fast left side of the grid from the slow right side.

The fast pulse from the left side finally ripples through the top layer and meets the slow part
(without being able to accelerate the latter) of the grid, and thus generates a high intra-layer skew
between the nodes (8, 8) and (8, 9).

3.3.2 Skew Evaluations

In this section, we will focus on the detailed quantitative evaluation of the typical skew between
neighboring HEX nodes in the grid. We will observe the influence of the initial skew of the clock
source, the dependence on the layer, and the dependence of the skews on faults in the HEX grid.

In all our experiments, we will consider a HEX grid with 100 layers and 25 columns. The link
wire delays were chosen uniformly distributed in the interval of [7, 8] ns. Adding the processing
delays of the HEX node implementation, mentioned in Section 3.1.4Section 3.1.4, the end-to-end link delays
[d−, d+] are in the interval [7.125, 8.165] ns.

The key quantities observed in the simulations were:

• the (absolute) layer ` intra-layer neighbor skews |t`,i − t`,i−1| of every node (`, i) in
layer ` > 0. This skew is defined as an absolute value due to the symmetry in the topology
(and thus the skews) within a layer.

• the layer ` inter-layer neighbor skews t`,i − t`−1,i and t`,i − t`−1,i+1 of every node (`, i)
in layer ` > 0.

Let σop` = opi∈[W](|t`,i − t`,i+1|) with op ∈ {avg,max} denote the average and maximum
(absolute) layer ` intra-layer skew, respectively. Similarly, let σ̂op` = opi∈[W](t`,i − t`−1,i, t`,i −
t`−1,i+1), where op ∈ {min, avg,max}, be the (signed) inter-layer skew between layer ` and
` − 1. The global intra-layer resp. inter-layer skews in the entire system are defined as σop =
op`∈[L+1](σ

op
`) resp. σ̂op = op`∈[L+1]\{0}(σ̂

op
`). Note that the minimum of the global intra-layer

skew is not provided, as it is close or equal to 0. As we used single-run test sets to collect the skew
data σop, etc. they also define their respective per-test set result. To get a deeper understanding of
the distribution of the skews, we also determined qx, the xth quantile of the intra-layer skews of a
test set (over all layers). q̂x is the equivalent of qx for the inter-layer skew.

For the following simulation results, 300 test sets, with 1 run each, were simulated. In each
test case, the link delays were randomly chosen in the above mentioned interval. Furthermore, if
applicable, the layer 0 clock skews were also randomly chosen for every test set. The placement of
the faulty nodes, and their fault-type, was also randomly chosen for each test set. The Byzantine
faulty nodes behave, on a per-link basis, either fail-silent or continuously send a (fast) trigger
message.

3.3.2.1 Initial Skew-Dependence

For the evaluation of the influence of the initial skews of the clock sources on the HEX grid we
employed four different layer 0 clock sources. Those sources differ in their ∆0 skew potential

50

σop σ̂op

scenario init. layer 0 avg max min avg max
(i) 0 0.40 3.63 7.13 7.91 11.58
(ii) rand. [0,d−] 0.46 6.97 7.13 7.94 15.07
(iii) rand. [0,d+] 0.46 7.86 7.13 7.94 15.88
(iv) ramp d+ 1.41 8.16 0.96 8.36 16.28

Table 3.1: Intra- and inter-layer skew σop and σ̂op of all nodes in a 100× 25 grid for uniformly distributed
link delays in [7.125, 8.165] ns. The values are determined by applying the specified op over
the calculated results of 300 test sets with 1 run each.

which, as proven in Lemma 2.3.7Lemma 2.3.7, affects only the lower W − 3 layers of the grid. The scenarios
were chosen as follows:

(i) All layer 0 nodes fire at the same time. Thus σ0 = ∆0 = 0, which is the best-case.

(ii) The nodes in layer 0 fire randomly within t+ [0, d−], after a given starting time t, resulting
in σ0 ≈ d− and ∆0 = 0.

(iii) The nodes in layer 0 fire randomly within t+ [0, d+], after a given starting time t, resulting
in σ0 ≈ d+ and ∆0 ≈ ε.

(iv) Every node in layer 0 deterministically triggers at a time that results in a difference of d+

between two neighboring nodes in a ramping fashion, i.e.,

∀i ∈ {1, . . . ,W − 1} : t0,i =

{
t0,i−1 + d+ 0 < i < W/2

t0,i−1 − d+ otherwise

This results in σ0 = d+ and ∆0 = Wε/2 for even W (for odd W , those values are close
approximations).

Note that scenario (iii) corresponds to the average-case generated by a clock source with skew
bound d+, while scenario (iv) corresponds to the worst-case under the same conditions.

In Table 3.1Table 3.1 and Figures 3.18Figures 3.18 and 3.193.19, the effects of the different scenarios (i) – (iv) on the
skews are shown. While in Table 3.1Table 3.1 the statistical data provided is the specified operation on
the results over the entire test sets, e.g., max (σmax), the histograms are created over all skew
data of the individual executions. From Table 3.1Table 3.1, it is apparent that scenario (i) leads to a low
maximal intra-layer skew, as one would expect. Scenarios (ii) and (iii) have a higher maximal
intra-layer skew, but still in the range of d−; The increase of the maximal inter-layer skew can
be accounted to the ∆0 of layer 0. Scenario (iv) results, as expected, in excessive minimal and
maximal skews, although Figures 3.18dFigures 3.18d and 3.19d3.19d reveal that those values are rare compared to
the average. Note that the minimal inter-layer skew close to 0 even suggests the possibility of
negative inter-layer skews under extreme clock source skews. Yet the maximal inter-layer skew
is still below 2d+, which is below the worst-case skew of ≈ 27 ns predicted by Theorem 2.3.10Theorem 2.3.10.
Note that, for scenarios (i) – (iii), σ̂min ≈ d−, which reveals that without faults and excessive
skews the HEX nodes will always be triggered by their lower neighbors, resulting in average
skews close to the minimum.

51

skew

D
en

si
ty

0 5 10 15

0.
0

0.
4

0.
8

(a) scenario (i)
skew

D
en

si
ty

0 5 10 15

0.
0

0.
4

0.
8

(b) scenario (ii)

skew

D
en

si
ty

0 5 10 15

0.
0

0.
4

0.
8

(c) scenario (iii)
skew

D
en

si
ty

0 5 10 15

0.
0

0.
4

0.
8

(d) scenario (iv)

Figure 3.18: Cumulated histogram for the global inter-layer skew σ̂` for all ` ∈ [L+ 1] (in ns) from 300
test sets, of 1 run each. The used scenario is given in the sub-caption of the respective figure.
Note that skews < 7 ns occurred only in scenario (iv).

skew

D
en

si
ty

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

(a) scenario (i)
skew

D
en

si
ty

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

(b) scenario (ii)

skew

D
en

si
ty

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

(c) scenario (iii)
skew

D
en

si
ty

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

(d) scenario (iv)

Figure 3.19: Cumulated histogram for the global intra-layer skew σ` for all ` ∈ [L+ 1] (in ns) from 300
test sets, of 1 run each. The used scenario is given in the sub-caption of the respective figure.

52

● ●

0 5 10 15 20 25 30 35

2
4

6
8

10
12

14
16

layer

in
te

r−
la

ye
r

sk
ew

● ●

●

●

●
● ●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

● ●

(a) scenario (iii)

●

●

●

●
●

●
● ● ● ●

● ●

0 5 10 15 20 25 30 35

2
4

6
8

10
12

14
16

layer

in
te

r−
la

ye
r

sk
ew

●

●

●

●
●

●
● ● ● ●

● ●

●

●
●

●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ● ● ● ● ● ● ● ●

●

●
●

●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ● ● ● ● ● ● ● ●

●
● ●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●
●

●

●

●

●

●

●
●

●
●

●
●

(b) scenario (iv)

Figure 3.20: Visualization of the inter-layer skews in scenario (iii) and (iv) (Tables 3.2Tables 3.2 and 3.33.3). The
averages of the data series are plotted with their respective standard deviation on a per layer
basis. The top data series (red whiskers) is σ̂max, the middle (yellow) one is σ̂avg, and the
lower (green) series is σ̂min.

3.3.2.2 Layer Dependence

Knowing the influence of the layer 0 skew in general already, we now take a closer look at the
layer-dependence of this influence on the inter-layer skew. Table 3.2Table 3.2 and Figure 3.20aFigure 3.20a show the
per-layer skews for scenario (iii). The data provided is the average and the standard deviation of
the specified operation, e.g., avg (σmax)± stddev (σmax). This data shows a fast decline of the
maximal inter-layer skew, which is nearly constant from layer 12 onwards. The average skew
stabilizes fast, and an influence on the minimal inter-layer skew is almost not noticeable.

Table 3.3Table 3.3 and Figure 3.20bFigure 3.20b show the per-layer inter-layer skew for scenario (iv). As men-
tioned above, this scenario can be seen as a worst-case setting of a clock source with bounded
skew. Apparently, there are very large differences between the minimum and the maximum
in the lower layers, but, as proven in Lemma 2.3.7Lemma 2.3.7, from layer 22 on, which is W − 3 in our
experiments, the influence of ∆0 vanishes rapidly and the values reach similar ranges as for
scenario (iii) just after a few more layers.

3.3.2.3 Faults

To study the behavior of a HEX grid in the presence of faults, where analytical results are difficult
to obtain, we conducted a suite of dedicated simulation experiments. As faulty nodes have a

53

layer ` σ̂min
` σ̂avg` σ̂max

`

1 7.19± 0.04 9.01± 0.22 14.22± 0.78

2 7.20± 0.05 8.41± 0.15 12.88± 1.03

3 7.21± 0.05 8.18± 0.12 11.73± 1.20

4 7.21± 0.06 8.08± 0.10 10.97± 1.12

5 7.21± 0.06 8.02± 0.08 10.33± 0.97

6 7.21± 0.05 7.98± 0.07 9.93± 0.82

7 7.21± 0.05 7.96± 0.07 9.65± 0.74

8 7.22± 0.06 7.95± 0.07 9.45± 0.63

9 7.23± 0.07 7.94± 0.06 9.36± 0.52

10 7.22± 0.06 7.94± 0.06 9.29± 0.47

11 7.22± 0.06 7.92± 0.06 9.23± 0.45

12 7.22± 0.06 7.93± 0.06 9.17± 0.45

13 7.22± 0.06 7.93± 0.06 9.17± 0.44

14 7.22± 0.06 7.92± 0.06 9.12± 0.35

15 7.23± 0.07 7.92± 0.06 9.11± 0.35

16 7.22± 0.06 7.92± 0.06 9.08± 0.36

17 7.22± 0.06 7.92± 0.06 9.10± 0.36

18 7.22± 0.06 7.92± 0.05 9.11± 0.37

19 7.21± 0.06 7.92± 0.06 9.09± 0.36

20 7.23± 0.06 7.92± 0.06 9.11± 0.36

21 7.23± 0.07 7.92± 0.05 9.11± 0.40

22 7.22± 0.06 7.92± 0.06 9.12± 0.40

23 7.22± 0.06 7.92± 0.06 9.09± 0.41

24 7.23± 0.06 7.91± 0.06 9.06± 0.41

25 7.22± 0.06 7.92± 0.06 9.06± 0.38

26 7.23± 0.07 7.92± 0.06 9.12± 0.39

27 7.23± 0.06 7.91± 0.06 9.08± 0.40

28 7.23± 0.06 7.92± 0.06 9.09± 0.37

29 7.22± 0.06 7.91± 0.06 9.11± 0.40

30 7.23± 0.06 7.92± 0.06 9.13± 0.39

31 7.23± 0.06 7.91± 0.06 9.07± 0.37

32 7.23± 0.07 7.92± 0.06 9.09± 0.34

33 7.22± 0.06 7.92± 0.06 9.09± 0.34

34 7.23± 0.06 7.91± 0.06 9.05± 0.36

35 7.23± 0.06 7.92± 0.06 9.06± 0.35

Table 3.2: Average and standard deviation of σ̂min
` , σ̂avg

` , and σ̂max
` , taken over 300 test sets with 1 run

each, of scenario (iii).

54

layer ` σ̂min
` σ̂avg` σ̂max

`

1 2.90± 0.76 9.36± 0.37 15.49± 0.26

2 5.84± 0.69 10.74± 0.26 15.58± 0.21

3 6.29± 0.50 10.67± 0.18 15.52± 0.19

4 6.46± 0.47 10.74± 0.16 15.54± 0.21

5 6.57± 0.42 10.54± 0.14 15.51± 0.19

6 6.70± 0.35 10.57± 0.12 15.50± 0.18

7 6.77± 0.37 10.36± 0.11 15.50± 0.19

8 6.79± 0.30 10.35± 0.10 15.49± 0.19

9 6.85± 0.31 10.14± 0.10 15.48± 0.20

10 6.85± 0.32 10.13± 0.09 15.46± 0.19

11 6.94± 0.25 9.92± 0.08 15.46± 0.20

12 6.93± 0.26 9.90± 0.08 15.43± 0.21

13 6.97± 0.26 9.68± 0.09 15.41± 0.20

14 7.00± 0.23 9.67± 0.08 15.41± 0.20

15 7.00± 0.24 9.45± 0.08 15.40± 0.21

16 7.06± 0.19 9.44± 0.07 15.39± 0.22

17 7.09± 0.20 9.23± 0.07 15.38± 0.23

18 7.09± 0.20 9.20± 0.08 15.32± 0.24

19 7.11± 0.18 8.98± 0.08 15.29± 0.24

20 7.14± 0.14 8.95± 0.08 15.28± 0.26

21 7.14± 0.15 8.75± 0.08 15.23± 0.27

22 7.17± 0.12 8.72± 0.07 15.18± 0.28

23 7.18± 0.09 8.51± 0.07 15.09± 0.35

24 7.19± 0.09 8.47± 0.07 14.98± 0.43

25 7.20± 0.05 8.27± 0.07 14.55± 0.75

26 7.21± 0.05 8.23± 0.07 13.96± 1.10

27 7.22± 0.06 8.05± 0.07 10.78± 1.01

28 7.21± 0.06 8.02± 0.07 10.34± 0.83

29 7.22± 0.06 7.99± 0.06 10.03± 0.71

30 7.22± 0.06 7.98± 0.07 9.85± 0.66

31 7.22± 0.06 7.97± 0.06 9.71± 0.61

32 7.22± 0.06 7.96± 0.06 9.60± 0.54

33 7.21± 0.06 7.95± 0.06 9.49± 0.51

34 7.22± 0.06 7.95± 0.06 9.41± 0.47

35 7.21± 0.06 7.94± 0.06 9.34± 0.46

Table 3.3: Average and standard deviation of σ̂min
` , σ̂avg

` , and σ̂max
` , taken over 300 test sets with 1 run

each, of scenario (iv).

55

direct effect on their neighbors only, we introduced the variable h that represents the hop distance
to a faulty node. Using this variable, we could exclude every node which is reachable within at
most h hops from a faulty node, along directed links, from the skew calculations: As it is certain
that the skews near faulty nodes diverge more from the average, it is of interest how fast the
remaining grid recovers from these effects.

The data provided in the following tables are the averages and the standard deviations of the
stated operations. For the intra-layer skew, average and maximum are provided, for the inter-layer
skew, also the minimum. Due to the unknown distribution of the skews, the average with the
standard deviation would at most provide a feeling for the probability mass around the average.
To allow a better understanding of the distribution of the skews, we also provide the 5% and 95%
quantile of the skews. These two values give a perspective on the concentration of the respective
distribution, which is, as we will see, more interesting than the distribution itself.

Byzantine Faults In Tables 3.4Tables 3.4 and 3.53.5, the results for scenario (iii) resp. (iv) under isolated
Byzantine faults are presented. The average values of both intra- and inter-layer skew are rather
stable with respect to the increase of h, which is, considering the large number of 2500 nodes,
not surprising. A noticeable improvement is only visible for relatively large (f ≥ 10) numbers
of faulty nodes. For σ̂max, we see an immediate improvement from h = 0 to h = 1, which
was expected, as faulty neighbors can easily increase the skew. In scenario (iv), the behavior of
σ̂max is fairly constant with further increments of h, whereas scenario (iii) tends towards minor
improvements. For relatively small f (< 10), the behavior of σ̂min is reasonably independent
of the scenario, as we see generally a more stable behavior for small f . Nonetheless, under
scenario (iv), the skew improvement, with increasing h, is more prominent, which is not surprising
considering the large difference between q5 and q95 (see below).

These observations support the assumption that a faulty node strongly influences its direct
neighbors, only.

We now take a closer look at the quantiles, which are generally more stable. q̂5 is almost
independent of h, except in scenario (iv) with f ≥ 5 faults, where the values vary marginally and
suffer from an increasing standard deviation. As σ̂min also has a higher variation in these cases,
this is most likely caused by the clock source skews coupled with the power of the Byzantine
faults. Surprisingly, q̂95 shows a different behavior than q̂5: While the standard deviation is
higher for all settings, under scenario (iv), the values themselves only show marginal dependence
on f and h compared to those of scenario (iii). A possible explanation for the phenomenon
may be the fact that the large layer 0 skews in scenario (iv) are already sufficient to cause some
neighbors to exhibit the associated worst-case skews, whereas additional faulty nodes are required
in scenario (iii) to generate such large skews. The behavior of q5 and q95 are similar to those of
q̂5 and q̂95 and are thus not elaborated further.

Generally, the quantiles show a rather concentrated distribution of the skews around their
average, with high probability mass for higher skews. Under scenario (iv), this asymmetry is more
prominent, as q̂95 is closer to σ̂max than σ̂avg in most cases; the same holds for the intra-layer
skews.

56

f
h

q 5
σ
a
v
g

q 9
5

σ
m
a
x

σ̂
m
in

q̂ 5
σ̂
a
v
g

q̂ 9
5

σ̂
m
a
x

1
0

0
.0

3
±

0
.0

0
0.

54
±

0.
05

1
.4

7
±

0.
2
2

7.
7
8
±

0.
9
1

6
.9

5
±

0
.3

6
7.

3
2
±

0.
0
1

7
.9

8
±

0
.0

3
8.

8
1
±

0.
0
9

1
5.

5
8
±

1.
0
0

1
1

0
.0

3
±

0
.0

0
0.

54
±

0.
05

1
.4

6
±

0.
2
1

7.
3
6
±

0.
5
6

7
.1

2
±

0
.0

6
7.

3
2
±

0.
0
1

7
.9

8
±

0
.0

2
8.

8
0
±

0.
0
9

1
5.

1
5
±

0.
6
1

1
2

0
.0

3
±

0
.0

0
0.

53
±

0.
05

1
.4

5
±

0.
2
1

7.
2
2
±

0.
5
6

7
.1

3
±

0
.0

3
7.

3
2
±

0.
0
1

7
.9

7
±

0
.0

2
8.

8
0
±

0.
0
9

1
5.

0
0
±

0.
6
1

1
3

0
.0

3
±

0
.0

0
0.

53
±

0.
05

1
.4

4
±

0.
2
0

7.
1
1
±

0.
5
6

7
.1

3
±

0
.0

2
7.

3
2
±

0.
0
1

7
.9

7
±

0
.0

2
8.

8
0
±

0.
0
9

1
4.

9
0
±

0.
6
0

2
0

0
.0

3
±

0
.0

0
0.

60
±

0.
07

1
.7

4
±

0.
3
8

8.
1
5
±

0.
8
7

6
.7

5
±

0
.7

9
7.

3
1
±

0.
0
1

8
.0

0
±

0
.0

3
8.

9
0
±

0.
1
3

1
6.

0
9
±

1.
1
1

2
1

0
.0

3
±

0
.0

0
0.

59
±

0.
07

1
.7

1
±

0.
3
5

7.
5
6
±

0.
4
8

7
.1

2
±

0
.0

7
7.

3
2
±

0.
0
1

8
.0

0
±

0
.0

3
8.

8
9
±

0.
1
3

1
5.

3
9
±

0.
5
2

2
2

0
.0

3
±

0
.0

0
0.

58
±

0.
06

1
.6

9
±

0.
3
4

7.
3
6
±

0.
5
1

7
.1

2
±

0
.0

6
7.

3
2
±

0.
0
1

8
.0

0
±

0
.0

3
8.

8
9
±

0.
1
3

1
5.

1
7
±

0.
5
6

2
3

0
.0

3
±

0
.0

0
0.

57
±

0.
06

1
.6

6
±

0.
3
2

7.
2
3
±

0.
5
2

7
.1

3
±

0
.0

4
7.

3
2
±

0.
0
1

7
.9

9
±

0
.0

3
8.

8
8
±

0.
1
2

1
5.

0
1
±

0.
5
9

3
0

0
.0

3
±

0
.0

0
0.

65
±

0.
07

2
.0

8
±

0.
5
5

8.
4
8
±

0.
8
7

6
.3

3
±

1
.3

6
7.

3
1
±

0.
0
1

8
.0

3
±

0
.0

4
9.

0
0
±

0.
1
7

1
6.

4
7
±

1.
2
7

3
1

0
.0

3
±

0
.0

0
0.

64
±

0.
07

2
.0

2
±

0.
5
0

7.
7
3
±

0.
3
5

7
.1

0
±

0
.1

2
7.

3
1
±

0.
0
1

8
.0

3
±

0
.0

3
8.

9
9
±

0.
1
6

1
5.

5
6
±

0.
3
2

3
2

0
.0

3
±

0
.0

0
0.

63
±

0.
07

1
.9

5
±

0.
4
5

7.
5
3
±

0.
3
9

7
.1

2
±

0
.0

7
7.

3
1
±

0.
0
1

8
.0

2
±

0
.0

3
8.

9
8
±

0.
1
6

1
5.

3
5
±

0.
3
6

3
3

0
.0

3
±

0
.0

0
0.

62
±

0.
07

1
.9

1
±

0.
4
2

7.
3
8
±

0.
4
4

7
.1

2
±

0
.0

7
7.

3
1
±

0.
0
1

8
.0

2
±

0
.0

3
8.

9
6
±

0.
1
5

1
5.

2
1
±

0.
4
1

5
0

0
.0

4
±

0
.0

0
0.

76
±

0.
10

2
.9

9
±

0.
9
0

8.
9
1
±

1.
0
1

5
.5

4
±

1
.9

9
7.

3
1
±

0.
0
1

8
.0

9
±

0
.0

5
9.

2
5
±

0.
3
0

1
7.

1
3
±

1.
7
2

5
1

0
.0

4
±

0
.0

0
0.

74
±

0.
09

2
.8

0
±

0.
8
2

7.
8
6
±

0.
2
9

7
.0

5
±

0
.2

1
7.

3
1
±

0.
0
1

8
.0

8
±

0
.0

5
9.

2
1
±

0.
2
8

1
5.

7
0
±

0.
2
8

5
2

0
.0

4
±

0
.0

0
0.

72
±

0.
09

2
.6

4
±

0.
7
6

7.
7
0
±

0.
3
0

7
.1

0
±

0
.0

9
7.

3
1
±

0.
0
1

8
.0

7
±

0
.0

5
9.

1
8
±

0.
2
6

1
5.

5
3
±

0.
3
0

5
3

0
.0

4
±

0
.0

0
0.

70
±

0.
09

2
.5

1
±

0.
7
0

7.
5
9
±

0.
3
3

7
.1

1
±

0
.0

7
7.

3
1
±

0.
0
1

8
.0

6
±

0
.0

4
9.

1
5
±

0.
2
5

1
5.

4
0
±

0.
3
3

10
0

0
.0

4
±

0
.0

0
0.

95
±

0.
12

4
.7

3
±

0.
9
8

9.
5
5
±

1.
1
8

3
.6

2
±

2
.5

9
7.

3
0
±

0.
0
1

8
.1

8
±

0
.0

6
1
0.

0
2
±

0.
6
7

1
8.

8
5
±

2.
5
2

10
1

0
.0

4
±

0
.0

0
0.

91
±

0.
11

4
.3

6
±

0.
9
8

8.
0
1
±

0.
3
8

6
.8

9
±

0
.5

4
7.

3
0
±

0.
0
1

8
.1

6
±

0
.0

6
9.

8
7
±

0.
6
0

1
5.

8
4
±

0.
1
7

10
2

0
.0

4
±

0
.0

0
0.

87
±

0.
11

3
.9

9
±

0.
9
7

7.
8
4
±

0.
1
7

7
.0

5
±

0
.1

5
7.

3
1
±

0.
0
1

8
.1

4
±

0
.0

5
9.

7
3
±

0.
5
3

1
5.

6
3
±

0.
1
9

10
3

0
.0

4
±

0
.0

0
0.

84
±

0.
11

3
.6

8
±

0.
9
4

7.
7
5
±

0.
2
2

7
.0

7
±

0
.1

4
7.

3
1
±

0.
0
1

8
.1

3
±

0
.0

5
9.

6
3
±

0.
4
7

1
5.

5
3
±

0.
2
2

20
0

0
.0

4
±

0
.0

0
1.

27
±

0.
13

6
.5

7
±

0.
4
0

1
0.

6
1
±

1.
4
6

0
.6

5
±

2
.5

4
7.

2
9
±

0.
0
1

8
.3

4
±

0
.0

7
1
2.

3
7
±

0.
8
9

2
1.

2
9
±

2.
1
7

20
1

0
.0

4
±

0
.0

0
1.

18
±

0.
13

6
.1

7
±

0.
5
1

8.
4
5
±

1.
1
5

6
.2

0
±

1
.5

1
7.

3
0
±

0.
0
1

8
.3

1
±

0
.0

7
1
1.

8
4
±

0.
9
2

1
5.

9
2
±

0.
1
5

20
2

0
.0

4
±

0
.0

0
1.

11
±

0.
13

5
.7

6
±

0.
6
0

7.
9
6
±

0.
1
2

6
.9

6
±

0
.2

3
7.

3
0
±

0.
0
1

8
.2

8
±

0
.0

6
1
1.

3
2
±

0.
9
1

1
5.

7
5
±

0.
1
8

20
3

0
.0

4
±

0
.0

1
1.

05
±

0.
13

5
.3

5
±

0.
7
0

7.
8
8
±

0.
1
6

7
.0

1
±

0
.1

7
7.

3
0
±

0.
0
1

8
.2

5
±

0
.0

6
1
0.

9
0
±

0.
8
7

1
5.

6
4
±

0.
1
9

Ta
bl

e
3.

4:
A

ve
ra

ge
±

st
an

da
rd

de
vi

at
io

n
of
q 5

,σ
a
v
g
,q

9
5
,σ

m
a
x
,σ̂

m
in

,q̂
5
,σ̂

a
v
g
,q̂

9
5
,a

nd
σ̂
m
a
x
,e

xc
lu

di
ng

al
ln

od
es

w
ith

di
re

ct
ed

di
st

an
ce
≤
h

fr
om

f
ra

nd
om

ly
pl

ac
ed

is
ol

at
ed

B
yz

an
tin

e
fa

ul
ty

no
de

s,
ov

er
3
0
0

te
st

se
ts

w
ith

1
ru

n
ea

ch
,o

fs
ce

na
ri

o
(i

ii)
.

57

f
h

q 5
σ
a
v
g

q 9
5

σ
m
a
x

σ̂
m
in

q̂ 5
σ̂
a
v
g

q̂ 9
5

σ̂
m
a
x

1
0

0.
04
±

0.
01

1
.5

0
±

0
.2

4
7.

54
±

0.
0
7

8.
4
9
±

1
.3

9
2.

4
5
±

1.
7
4

7
.2

6
±

0.
0
5

8.
4
0
±

0.
1
0

1
4
.4

4
±

0
.1

0
1
6
.4

0
±

1.
5
9

1
1

0.
04
±

0.
01

1
.5

0
±

0
.2

4
7.

54
±

0.
0
7

8.
2
7
±

0
.8

8
2.

6
8
±

1.
0
5

7
.2

6
±

0.
0
5

8.
4
0
±

0.
1
0

1
4
.4

3
±

0
.1

1
1
5
.8

9
±

0.
1
3

1
2

0.
04
±

0.
01

1
.5

0
±

0
.2

4
7.

54
±

0.
0
7

8.
1
4
±

0
.1

0
2.

7
4
±

0.
9
7

7
.2

6
±

0.
0
5

8.
4
0
±

0.
1
0

1
4
.4

2
±

0
.1

1
1
5
.8

9
±

0.
1
3

1
3

0.
04
±

0.
01

1
.4

9
±

0
.2

4
7.

54
±

0.
0
7

8.
1
4
±

0
.0

2
2.

7
7
±

0.
9
5

7
.2

6
±

0.
0
5

8.
4
0
±

0.
1
0

1
4
.4

1
±

0
.1

1
1
5
.8

9
±

0.
1
3

2
0

0.
04
±

0.
02

1
.5

8
±

0
.3

1
7.

55
±

0.
0
8

9.
3
0
±

2
.7

8
1.

8
9
±

2.
6
4

7
.2

5
±

0.
0
5

8.
4
4
±

0.
1
4

1
4
.4

7
±

0
.1

2
1
7
.1

1
±

2.
2
8

2
1

0.
04
±

0.
02

1
.5

7
±

0
.3

1
7.

55
±

0.
0
8

8.
5
3
±

1
.6

1
2.

4
9
±

1.
3
3

7
.2

5
±

0.
0
5

8.
4
3
±

0.
1
4

1
4
.4

6
±

0
.1

2
1
5
.9

1
±

0.
1
2

2
2

0.
04
±

0.
02

1
.5

6
±

0
.3

1
7.

55
±

0.
0
8

8.
1
7
±

0
.3

4
2.

6
9
±

1.
0
8

7
.2

5
±

0.
0
5

8.
4
3
±

0.
1
4

1
4
.4

5
±

0
.1

2
1
5
.8

9
±

0.
1
2

2
3

0.
04
±

0.
02

1
.5

6
±

0
.3

1
7.

55
±

0.
0
8

8.
1
4
±

0
.0

4
2.

7
5
±

1.
0
2

7
.2

6
±

0.
0
5

8.
4
3
±

0.
1
4

1
4
.4

4
±

0
.1

4
1
5
.8

9
±

0.
1
2

3
0

0.
04
±

0.
01

1
.6

2
±

0
.2

8
7.

56
±

0.
0
7

1
0
.0

3
±

3
.5

2
1.

1
3
±

3.
3
2

7
.2

5
±

0.
0
6

8.
4
5
±

0.
1
3

1
4
.4

9
±

0
.1

1
1
7
.8

6
±

2.
7
4

3
1

0.
04
±

0.
01

1
.6

1
±

0
.2

8
7.

55
±

0.
0
7

8.
9
0
±

2
.1

9
2.

1
9
±

1.
5
0

7
.2

5
±

0.
0
6

8.
4
5
±

0.
1
2

1
4
.4

8
±

0
.1

1
1
5
.9

0
±

0.
1
3

3
2

0.
04
±

0.
01

1
.6

0
±

0
.2

8
7.

54
±

0.
0
7

8.
2
1
±

0
.4

0
2.

5
1
±

1.
1
5

7
.2

5
±

0.
0
7

8.
4
4
±

0.
1
2

1
4
.4

6
±

0
.1

2
1
5
.8

9
±

0.
1
3

3
3

0.
04
±

0.
01

1
.5

9
±

0
.2

8
7.

54
±

0.
0
7

8.
1
4
±

0
.0

5
2.

5
9
±

1.
0
9

7
.2

5
±

0.
0
7

8.
4
4
±

0.
1
3

1
4
.4

4
±

0
.1

5
1
5
.8

9
±

0.
1
3

5
0

0.
05
±

0.
06

1
.7

8
±

0
.5

2
7.

59
±

0.
1
0

1
0
.8

2
±

3
.9

2
0.

2
4
±

3.
7
5

7
.2

3
±

0.
1
5

8.
5
3
±

0.
2
2

1
4
.5

7
±

0
.1

6
1
8
.7

5
±

2.
9
3

5
1

0.
05
±

0.
06

1
.7

6
±

0
.5

2
7.

57
±

0.
1
0

9.
2
5
±

2
.6

3
1.

8
7
±

1.
7
2

7
.2

3
±

0.
1
5

8.
5
2
±

0.
2
2

1
4
.5

5
±

0
.1

6
1
5
.9

2
±

0.
1
3

5
2

0.
05
±

0.
07

1
.7

5
±

0
.5

3
7.

57
±

0.
1
1

8.
2
5
±

0
.5

4
2.

3
7
±

1.
2
4

7
.2

3
±

0.
1
5

8.
5
1
±

0.
2
2

1
4
.5

2
±

0
.1

7
1
5
.8

9
±

0.
1
2

5
3

0.
05
±

0.
07

1
.7

4
±

0
.5

4
7.

57
±

0.
1
1

8.
1
4
±

0
.0

3
2.

5
2
±

1.
1
8

7
.2

3
±

0.
1
4

8.
5
1
±

0.
2
3

1
4
.5

0
±

0
.1

9
1
5
.8

8
±

0.
1
2

10
0

0.
06
±

0.
04

2
.1

2
±

0
.7

2
7.

60
±

0.
5
8

1
2
.2

0
±

4
.6

8
−

1.
3
3
±

4.
2
1

7
.1

5
±

0.
3
7

8.
6
7
±

0.
2
9

1
4
.6

4
±

0
.6

4
2
1
.0

6
±

2.
6
5

10
1

0.
06
±

0.
04

2
.0

8
±

0
.7

2
7.

57
±

0.
5
9

1
0
.0

5
±

3
.3

2
1.

1
0
±

2.
1
2

7
.1

6
±

0.
3
2

8.
6
6
±

0.
2
9

1
4
.6

1
±

0
.6

4
1
5
.9

2
±

0.
2
3

10
2

0.
06
±

0.
04

2
.0

5
±

0
.7

4
7.

56
±

0.
6
0

8.
3
7
±

0
.9

4
1.

8
9
±

1.
5
6

7
.1

7
±

0.
2
8

8.
6
4
±

0.
3
0

1
4
.5

8
±

0
.6

5
1
5
.8

8
±

0.
2
6

10
3

0.
06
±

0.
04

2
.0

3
±

0
.7

7
7.

56
±

0.
6
1

8.
1
2
±

0
.3

2
2.

1
2
±

1.
5
3

7
.1

6
±

0.
2
8

8.
6
3
±

0.
3
1

1
4
.5

5
±

0
.6

5
1
5
.8

6
±

0.
3
0

20
0

0.
08
±

0.
14

2
.5

8
±

0
.9

9
7.

72
±

0.
2
0

1
6
.2

8
±

8
.5

4
−

4.
1
2
±

4.
4
1

7
.1

0
±

0.
3
3

8.
8
7
±

0.
4
1

1
4
.8

3
±

0
.4

7
2
2
.6

6
±

2.
4
0

20
1

0.
08
±

0.
15

2
.5

2
±

1
.0

1
7.

68
±

0.
2
4

1
2
.7

9
±

7
.7

7
−

0.
0
8
±

2.
3
2

7
.1

1
±

0.
3
1

8.
8
5
±

0.
4
2

1
4
.7

7
±

0
.5

0
1
6
.0

9
±

1.
4
3

20
2

0.
08
±

0.
16

2
.4

7
±

1
.0

4
7.

67
±

0.
2
8

9.
4
7
±

7
.2

1
1.

2
4
±

1.
7
1

7
.1

1
±

0.
3
3

8.
8
3
±

0.
4
4

1
4
.7

2
±

0
.5

2
1
5
.9

7
±

1.
3
3

20
3

0.
09
±

0.
18

2
.4

3
±

1
.0

7
7.

65
±

0.
3
9

8.
9
9
±

7
.1

7
1.

6
5
±

1.
7
4

7
.0

9
±

0.
4
8

8.
8
1
±

0.
4
6

1
4
.6

8
±

0
.5

5
1
5
.8

7
±

0.
4
3

Ta
bl

e
3.

5:
A

ve
ra

ge
±

st
an

da
rd

de
vi

at
io

n
of
q 5

,σ
a
v
g
,q

9
5
,σ

m
a
x
,σ̂

m
in

,q̂
5
,σ̂

a
v
g
,q̂

9
5
,a

nd
σ̂
m
a
x
,e

xc
lu

di
ng

al
ln

od
es

w
ith

di
re

ct
ed

di
st

an
ce
≤
h

fr
om

f
ra

nd
om

ly
pl

ac
ed

is
ol

at
ed

B
yz

an
tin

e
fa

ul
ty

no
de

s,
ov

er
3
0
0

te
st

se
ts

w
ith

1
ru

n
ea

ch
,o

fs
ce

na
ri

o
(iv

).

58

f
h

q 5
σ
a
v
g

q 9
5

σ
m
a
x

σ̂
m
in

q̂ 5
σ̂
a
v
g

q̂ 9
5

σ̂
m
a
x

1
0

0
.0

3
±

0
.0

0
0.

57
±

0.
04

1
.5

5
±

0.
1
8

7.
8
3
±

0.
2
6

7
.1

0
±

0
.1

1
7.

3
2
±

0.
0
1

7
.9

9
±

0
.0

2
8.

8
4
±

0.
0
8

1
5.

8
8
±

0.
5
8

1
1

0
.0

3
±

0
.0

0
0.

56
±

0.
04

1
.5

4
±

0.
1
8

7.
5
7
±

0.
3
1

7
.1

3
±

0
.0

4
7.

3
2
±

0.
0
1

7
.9

9
±

0
.0

2
8.

8
4
±

0.
0
8

1
5.

4
5
±

0.
3
1

1
2

0
.0

3
±

0
.0

0
0.

56
±

0.
04

1
.5

3
±

0.
1
7

7.
4
0
±

0.
3
8

7
.1

3
±

0
.0

3
7.

3
2
±

0.
0
1

7
.9

9
±

0
.0

2
8.

8
3
±

0.
0
8

1
5.

2
5
±

0.
3
7

1
3

0
.0

3
±

0
.0

0
0.

55
±

0.
04

1
.5

2
±

0.
1
7

7.
2
6
±

0.
4
4

7
.1

3
±

0
.0

2
7.

3
2
±

0.
0
1

7
.9

8
±

0
.0

2
8.

8
3
±

0.
0
8

1
5.

1
2
±

0.
4
2

2
0

0
.0

3
±

0
.0

0
0.

65
±

0.
06

2
.0

2
±

0.
4
0

7.
9
7
±

0.
1
5

7
.0

5
±

0
.1

6
7.

3
1
±

0.
0
1

8
.0

3
±

0
.0

3
9.

0
0
±

0.
1
4

1
6.

3
1
±

1.
0
2

2
1

0
.0

3
±

0
.0

0
0.

64
±

0.
06

1
.9

8
±

0.
3
9

7.
7
1
±

0.
2
2

7
.1

1
±

0
.0

9
7.

3
1
±

0.
0
1

8
.0

3
±

0
.0

3
8.

9
8
±

0.
1
4

1
5.

5
8
±

0.
2
2

2
2

0
.0

3
±

0
.0

0
0.

63
±

0.
06

1
.9

4
±

0.
3
7

7.
5
5
±

0.
3
0

7
.1

2
±

0
.0

6
7.

3
1
±

0.
0
1

8
.0

2
±

0
.0

3
8.

9
7
±

0.
1
4

1
5.

4
0
±

0.
2
6

2
3

0
.0

3
±

0
.0

0
0.

62
±

0.
05

1
.8

9
±

0.
3
6

7.
4
3
±

0.
3
6

7
.1

2
±

0
.0

6
7.

3
1
±

0.
0
1

8
.0

2
±

0
.0

3
8.

9
6
±

0.
1
3

1
5.

2
5
±

0.
3
3

3
0

0
.0

4
±

0
.0

0
0.

73
±

0.
07

2
.6

4
±

0.
6
2

8.
0
5
±

0.
2
1

6
.9

9
±

0
.2

2
7.

3
1
±

0.
0
1

8
.0

7
±

0
.0

3
9.

1
8
±

0.
2
1

1
6.

6
2
±

1.
2
5

3
1

0
.0

4
±

0
.0

0
0.

71
±

0.
07

2
.5

3
±

0.
5
8

7.
8
3
±

0.
1
7

7
.0

7
±

0
.1

4
7.

3
1
±

0.
0
1

8
.0

7
±

0
.0

3
9.

1
6
±

0.
2
0

1
5.

6
8
±

0.
1
9

3
2

0
.0

4
±

0
.0

0
0.

69
±

0.
06

2
.4

2
±

0.
5
4

7.
6
9
±

0.
2
3

7
.1

0
±

0
.1

1
7.

3
1
±

0.
0
1

8
.0

6
±

0
.0

3
9.

1
3
±

0.
2
0

1
5.

5
1
±

0.
2
3

3
3

0
.0

4
±

0
.0

0
0.

68
±

0.
06

2
.3

3
±

0.
5
1

7.
5
6
±

0.
3
0

7
.1

1
±

0
.0

8
7.

3
1
±

0.
0
1

8
.0

5
±

0
.0

3
9.

1
1
±

0.
1
9

1
5.

3
8
±

0.
2
8

5
0

0
.0

4
±

0
.0

0
0.

85
±

0.
09

3
.8

5
±

0.
8
4

8.
1
3
±

0.
4
3

6
.8

7
±

0
.4

6
7.

3
1
±

0.
0
1

8
.1

4
±

0
.0

4
9.

5
7
±

0.
3
8

1
7.

4
2
±

1.
9
5

5
1

0
.0

4
±

0
.0

0
0.

82
±

0.
09

3
.5

6
±

0.
8
2

7.
9
2
±

0.
1
4

7
.0

4
±

0
.1

5
7.

3
1
±

0.
0
1

8
.1

2
±

0
.0

4
9.

5
1
±

0.
3
5

1
5.

7
9
±

0.
1
9

5
2

0
.0

4
±

0
.0

0
0.

80
±

0.
09

3
.3

1
±

0.
8
0

7.
8
1
±

0.
1
9

7
.0

8
±

0
.1

3
7.

3
1
±

0.
0
1

8
.1

1
±

0
.0

4
9.

4
4
±

0.
3
3

1
5.

6
1
±

0.
2
1

5
3

0
.0

4
±

0
.0

0
0.

77
±

0.
08

3
.1

0
±

0.
7
7

7.
7
1
±

0.
2
4

7
.0

9
±

0
.1

2
7.

3
1
±

0.
0
1

8
.1

0
±

0
.0

4
9.

3
9
±

0.
3
1

1
5.

5
1
±

0.
2
3

10
0

0
.0

4
±

0
.0

0
1.

12
±

0.
12

5
.9

8
±

0.
5
4

9.
0
9
±

1.
9
6

5
.9

5
±

1
.8

6
7.

3
0
±

0.
0
1

8
.2

8
±

0
.0

6
1
1.

2
7
±

0.
8
6

1
9.

6
2
±

2.
4
4

10
1

0
.0

4
±

0
.0

0
1.

07
±

0.
12

5
.5

6
±

0.
6
5

8.
0
4
±

0.
3
0

6
.9

1
±

0
.3

3
7.

3
0
±

0.
0
1

8
.2

6
±

0
.0

6
1
0.

8
9
±

0.
8
2

1
5.

9
1
±

0.
1
6

10
2

0
.0

4
±

0
.0

0
1.

01
±

0.
11

5
.1

4
±

0.
7
4

7.
9
3
±

0.
1
3

6
.9

9
±

0
.1

7
7.

3
0
±

0.
0
1

8
.2

3
±

0
.0

6
1
0.

5
9
±

0.
7
6

1
5.

7
4
±

0.
1
7

10
3

0
.0

4
±

0
.0

1
0.

97
±

0.
11

4
.7

5
±

0.
8
2

7.
8
7
±

0.
1
6

7
.0

3
±

0
.1

6
7.

3
0
±

0.
0
1

8
.2

1
±

0
.0

6
1
0.

3
5
±

0.
7
0

1
5.

6
4
±

0.
2
0

20
0

0
.0

5
±

0
.0

1
1.

54
±

0.
14

7
.1

3
±

0.
1
4

1
1.

6
0
±

3.
5
0

3
.4

9
±

3
.4

3
7.

2
9
±

0.
0
1

8
.5

1
±

0
.0

7
1
3.

9
9
±

0.
3
8

2
2.

2
2
±

1.
3
8

20
1

0
.0

5
±

0
.0

1
1.

42
±

0.
14

6
.8

2
±

0.
2
4

8.
4
2
±

1.
1
1

6
.4

8
±

1
.0

7
7.

2
9
±

0.
0
1

8
.4

6
±

0
.0

7
1
3.

5
2
±

0.
5
1

1
5.

9
9
±

0.
1
2

20
2

0
.0

4
±

0
.0

1
1.

33
±

0.
14

6
.5

1
±

0.
3
3

8.
0
3
±

0.
1
0

6
.8

7
±

0
.2

1
7.

3
0
±

0.
0
1

8
.4

1
±

0
.0

7
1
2.

9
5
±

0.
6
8

1
5.

8
2
±

0.
1
5

20
3

0
.0

4
±

0
.0

1
1.

24
±

0.
14

6
.1

8
±

0.
4
5

7.
9
7
±

0.
1
2

6
.9

3
±

0
.2

0
7.

3
0
±

0.
0
1

8
.3

7
±

0
.0

7
1
2.

3
9
±

0.
8
1

1
5.

7
3
±

0.
1
5

Ta
bl

e
3.

6:
A

ve
ra

ge
±

st
an

da
rd

de
vi

at
io

n
of
q 5

,σ
a
v
g
,q

9
5
,σ

m
a
x
,σ̂

m
in

,q̂
5
,σ̂

a
v
g
,q̂

9
5
,a

nd
σ̂
m
a
x
,e

xc
lu

di
ng

al
ln

od
es

w
ith

di
re

ct
ed

di
st

an
ce
≤
h

fr
om

f
ra

nd
om

ly
pl

ac
ed

is
ol

at
ed

fa
il-

si
le

nt
no

de
s,

ov
er

3
0
0

te
st

se
ts

w
ith

1
ru

n
ea

ch
,o

fs
ce

na
ri

o
(i

ii)
.

59

f
h

q 5
σ
a
v
g

q 9
5

σ
m
a
x

σ̂
m
in

q̂ 5
σ̂
a
v
g

q̂ 9
5

σ̂
m
a
x

1
0

0.
04
±

0.
00

1
.5

1
±

0
.0

5
7.

54
±

0.
0
5

9.
5
1
±

4
.0

2
1.

9
5
±

2.
9
8

7
.2

6
±

0.
0
1

8.
4
1
±

0.
0
2

1
4
.4

4
±

0
.0

7
1
6
.7

0
±

1.
9
7

1
1

0.
04
±

0.
00

1
.5

0
±

0
.0

5
7.

54
±

0.
0
5

8.
7
1
±

1
.9

2
2.

6
3
±

1.
2
1

7
.2

6
±

0.
0
1

8.
4
0
±

0.
0
2

1
4
.4

3
±

0
.0

7
1
5
.9

0
±

0.
1
3

1
2

0.
04
±

0.
00

1
.4

9
±

0
.0

5
7.

54
±

0.
0
5

8.
1
7
±

0
.2

6
2.

8
9
±

0.
8
4

7
.2

6
±

0.
0
1

8.
4
0
±

0.
0
2

1
4
.4

2
±

0
.0

8
1
5
.8

9
±

0.
1
2

1
3

0.
04
±

0.
00

1
.4

9
±

0
.0

5
7.

53
±

0.
0
5

8.
1
4
±

0
.0

2
2.

8
9
±

0.
8
4

7
.2

6
±

0.
0
1

8.
4
0
±

0.
0
3

1
4
.4

1
±

0
.0

9
1
5
.8

9
±

0.
1
2

2
0

0.
04
±

0.
00

1
.5

8
±

0
.0

6
7.

55
±

0.
0
5

1
0
.6

1
±

5
.2

7
1.

2
2
±

3.
8
5

7
.2

6
±

0.
0
1

8.
4
4
±

0.
0
3

1
4
.4

9
±

0
.0

6
1
7
.6

5
±

2.
6
0

2
1

0.
04
±

0.
00

1
.5

7
±

0
.0

7
7.

55
±

0.
0
5

9.
2
0
±

2
.5

8
2.

3
6
±

1.
6
5

7
.2

6
±

0.
0
1

8.
4
4
±

0.
0
3

1
4
.4

8
±

0
.0

7
1
5
.9

2
±

0.
1
2

2
2

0.
04
±

0.
00

1
.5

6
±

0
.0

7
7.

54
±

0.
0
5

8.
2
6
±

0
.5

7
2.

9
0
±

0.
8
6

7
.2

6
±

0.
0
1

8.
4
3
±

0.
0
3

1
4
.4

6
±

0
.0

8
1
5
.9

1
±

0.
1
2

2
3

0.
04
±

0.
00

1
.5

5
±

0
.0

7
7.

54
±

0.
0
5

8.
1
4
±

0
.0

2
2.

9
0
±

0.
8
6

7
.2

6
±

0.
0
1

8.
4
3
±

0.
0
4

1
4
.4

4
±

0
.1

0
1
5
.9

0
±

0.
1
2

3
0

0.
04
±

0.
01

1
.6

5
±

0
.0

8
7.

56
±

0.
0
4

1
2
.7

3
±

6
.5

8
−

0.
2
9
±

4.
7
4

7
.2

6
±

0.
0
1

8.
4
8
±

0.
0
4

1
4
.5

3
±

0
.0

6
1
8
.6

7
±

2.
9
7

3
1

0.
04
±

0.
01

1
.6

3
±

0
.0

8
7.

55
±

0.
0
4

1
0
.1

3
±

3
.3

1
1.

8
6
±

1.
9
2

7
.2

6
±

0.
0
1

8.
4
7
±

0.
0
4

1
4
.5

1
±

0
.0

7
1
5
.9

2
±

0.
1
2

3
2

0.
04
±

0.
01

1
.6

2
±

0
.0

8
7.

54
±

0.
0
5

8.
3
5
±

0
.7

5
2.

8
2
±

0.
8
1

7
.2

6
±

0.
0
1

8.
4
6
±

0.
0
4

1
4
.4

8
±

0
.0

8
1
5
.9

0
±

0.
1
2

3
3

0.
04
±

0.
01

1
.6

0
±

0
.0

8
7.

54
±

0.
0
5

8.
1
4
±

0
.0

2
2.

8
5
±

0.
8
2

7
.2

6
±

0.
0
1

8.
4
6
±

0.
0
4

1
4
.4

6
±

0
.1

1
1
5
.8

9
±

0.
1
3

5
0

0.
04
±

0.
01

1
.7

7
±

0
.0

9
7.

58
±

0.
0
4

1
4
.4

6
±

6
.7

5
−

1.
2
5
±

5.
0
8

7
.2

5
±

0.
0
1

8.
5
4
±

0.
0
5

1
4
.6

0
±

0
.0

6
1
9
.9

8
±

2.
9
5

5
1

0.
04
±

0.
01

1
.7

4
±

0
.0

9
7.

56
±

0.
0
4

1
0
.7

4
±

3
.5

6
1.

6
6
±

2.
1
4

7
.2

6
±

0.
0
1

8.
5
3
±

0.
0
5

1
4
.5

7
±

0
.0

7
1
5
.9

4
±

0.
1
2

5
2

0.
04
±

0.
01

1
.7

1
±

0
.1

0
7.

55
±

0.
0
4

8.
4
2
±

0
.9

2
2.

8
8
±

0.
8
5

7
.2

6
±

0.
0
1

8.
5
1
±

0.
0
5

1
4
.5

3
±

0
.0

8
1
5
.9

0
±

0.
1
2

5
3

0.
04
±

0.
01

1
.6

9
±

0
.1

0
7.

55
±

0.
0
5

8.
1
4
±

0
.0

2
2.

9
2
±

0.
8
5

7
.2

6
±

0.
0
1

8.
5
0
±

0.
0
5

1
4
.5

0
±

0
.1

2
1
5
.8

9
±

0.
1
2

10
0

0.
05
±

0.
01

2
.0

2
±

0
.1

3
7.

62
±

0.
0
4

1
8
.3

8
±

6
.4

7
−

4.
0
3
±

5.
2
1

7
.2

5
±

0.
0
1

8.
6
7
±

0.
0
6

1
4
.7

3
±

0
.0

6
2
2
.0

4
±

2.
0
9

10
1

0.
05
±

0.
01

1
.9

6
±

0
.1

3
7.

59
±

0.
0
4

1
2
.6

8
±

3
.9

2
0.

5
9
±

2.
6
1

7
.2

5
±

0.
0
1

8.
6
4
±

0.
0
7

1
4
.6

8
±

0
.0

7
1
5
.9

7
±

0.
1
2

10
2

0.
05
±

0.
01

1
.9

1
±

0
.1

4
7.

57
±

0.
0
5

8.
7
4
±

1
.3

3
2.

9
2
±

1.
0
0

7
.2

5
±

0.
0
1

8.
6
2
±

0.
0
7

1
4
.6

2
±

0
.0

9
1
5
.9

1
±

0.
1
1

10
3

0.
05
±

0.
01

1
.8

7
±

0
.1

5
7.

57
±

0.
0
5

8.
1
5
±

0
.2

2
3.

0
3
±

0.
9
4

7
.2

5
±

0.
0
1

8.
6
0
±

0.
0
8

1
4
.5

8
±

0
.1

3
1
5
.8

9
±

0.
1
1

20
0

0.
05
±

0.
01

2
.4

0
±

0
.1

6
7.

71
±

0.
0
4

2
2
.5

8
±

4
.2

0
−

7.
3
9
±

3.
6
0

7
.2

4
±

0.
0
1

8.
8
7
±

0.
0
8

1
4
.9

1
±

0
.0

5
2
3
.1

9
±

1.
1
6

20
1

0.
05
±

0.
01

2
.2

9
±

0
.1

6
7.

64
±

0.
0
4

1
5
.2

6
±

3
.0

3
−

1.
0
8
±

2.
6
6

7
.2

4
±

0.
0
1

8.
8
3
±

0.
0
8

1
4
.8

3
±

0
.0

6
1
6
.0

3
±

0.
1
1

20
2

0.
05
±

0.
01

2
.2

0
±

0
.1

7
7.

61
±

0.
0
5

9.
4
9
±

1
.8

5
2.

8
1
±

0.
9
7

7
.2

5
±

0.
0
1

8.
7
8
±

0.
0
9

1
4
.7

5
±

0
.0

8
1
5
.9

2
±

0.
1
1

20
3

0.
05
±

0.
01

2
.1

2
±

0
.1

9
7.

61
±

0.
0
6

8.
1
5
±

0
.1

5
3.

1
1
±

0.
9
1

7
.2

5
±

0.
0
1

8.
7
4
±

0.
1
0

1
4
.6

9
±

0
.1

2
1
5
.8

9
±

0.
1
2

Ta
bl

e
3.

7:
A

ve
ra

ge
±

st
an

da
rd

de
vi

at
io

n
of
q 5

,σ
a
v
g
,q

9
5
,σ

m
a
x
,σ̂

m
in

,q̂
5
,σ̂

a
v
g
,q̂

9
5
,a

nd
σ̂
m
a
x
,e

xc
lu

di
ng

al
ln

od
es

w
ith

di
re

ct
ed

di
st

an
ce
≤
h

fr
om

f
ra

nd
om

ly
pl

ac
ed

is
ol

at
ed

fa
il-

si
le

nt
no

de
s,

ov
er

3
0
0

te
st

se
ts

w
ith

1
ru

n
ea

ch
,o

fs
ce

na
ri

o
(iv

).

60

Fail-Silent Faults In Tables 3.6Tables 3.6 and 3.73.7, the results for scenario (iii) resp. (iv) under isolated
fail-silent faults are presented. The behavior of the grid under fail-silent faults is similar to that
with Byzantine faults w.r.t. f and h, but there are differences in the value range.

Under scenario (iii), we can observe higher values for the intra-layer skews than in Table 3.4Table 3.4.
The inter-layer skews are similar for small f , but for larger f , the values are also higher than
with Byzantine faults. The major reason for this counter-intuitive discrepancy is the fact that our
Byzantine faulty nodes do not slow down pulse propagation as much as fail-silent nodes: As our
Byzantine nodes can send messages with d+ = 0 ns, they can cause speed-ups, which reduces the
chance of skews to accumulate (cf. Lemma 2.3.7Lemma 2.3.7), unlike in the case of fail-silent faults. Hence,
a neighbor of a fail-silent node could trigger later than a neighbor of a Byzantine node.

Under scenario (iv), the intra-layer skew shows a lower standard deviation, but with similar
average values. An exception to this is σmax, which has higher values and a larger standard
deviation. For the inter-layer skews, we see a lower standard deviation for the quantiles and
averages with similar values, and a σ̂max that is slightly higher but more stable than the results
with Byzantine faults. By contrast, σ̂min is smaller for fail-silent nodes, which is probably due to
the fact that large clock source skews in this scenario are not masked by speed-ups caused by the
Byzantine faults.

As fail-silent faults can only slow down the system, the difference to the Byzantine faults
observed were to be expected. Besides the above differences, we still see the same properties
as before: the effects of the faults are local and the skew distribution is concentrated around the
average, especially for small f .

3.3.3 Self-Stabilization Evaluations

In order to evaluate stabilization times, it is important to define when a system is stable. In
the case of the HEX grid, this is rather simple: Every non-faulty node fires exactly once per
pulse and the skews have to be within the proven bounds. The first property requires that the
1–local fault hypothesis is not violated. The second property is more problematic, since the
proven bounds hold only for the fault-free case. Thus, we cannot expect that a system with faulty
nodes will oblige to the bounds of Theorem 2.3.10Theorem 2.3.10, especially during stabilization. Consequently,
determining stabilization times was also done with several increased bounds, which are interesting
in settings with many faults (where the proven bound would erroneously result in no stabilization
or unsatisfactory stabilization times).

As for evaluating the skews, the HEX grid used for these simulations also consists of
100 layers and 25 columns. The link wire delays were chosen uniformly distributed in the
interval of [7, 8] ns. Adding the processing delays of the HEX node implementation, mentioned
in Section 3.1.4Section 3.1.4, the end-to-end link delays [d−, d+] are in the interval of [7.125, 8.165] ns. The
simulation results were acquired with 100 test sets consisting of 10 runs each. In each test case,
the link wire delays were randomly chosen in the above mentioned interval, and varied after every
run. The layer 0 clock skews were randomly chosen once for every test set. The placement of the
faulty nodes, and their fault-type, was also randomly chosen once for each test set. The Byzantine
faulty nodes behave, on a per-link basis, either fail-silent or continuously send a (fast) trigger
message.

61

Figure 3.21: A screenshot of the stabilization phase of a HEX grid with L = 100 and W = 25. On the
left, we see chaotic firing due to the induced random state in the HEX nodes. On the right
two valid pulses are already propagating through the network.
Note the minor difference in triggering time between node 1774 and 1775 (after stabilization):
This is due to the inter-layer skew between the layers in which these two nodes reside.

62

D
ef

au
lt

In
te

r-
L

ay
er

Sk
ew

B
ou

nd
d
+

In
te

r-
L

ay
er

Sk
ew

B
ou

nd
2
d
+

In
te

r-
L

ay
er

Sk
ew

B
ou

nd

f
h

S
a
v
g

S
m
a
x

Σ
(S

)
Γ
m
in

S
a
v
g

S
m
a
x

Σ
(S

)
S
a
v
g

S
m
a
x

Σ
(S

)

0
0

1
.8

1
±

0.
42

3
10

0
17

7
.4

0
1.

81
±

0.
42

3
10

0
1
.8

1
±

0
.4

2
3

10
0

1
0

1
.7

0
±

0.
47

2
27

18
2
.8

5
1.

77
±

0.
42

2
10

0
1
.7

7
±

0
.4

2
2

10
0

1
1

1
.7

8
±

0.
51

3
27

18
2
.8

5
1.

77
±

0.
42

2
10

0
1
.7

7
±

0
.4

2
2

10
0

1
2

2
.2

8
±

1.
83

10
29

18
2
.8

5
1.

77
±

0.
42

2
10

0
1
.7

7
±

0
.4

2
2

10
0

1
3

2
.8

0
±

2.
34

10
30

18
2
.8

5
1.

77
±

0.
42

2
10

0
1
.7

7
±

0
.4

2
2

10
0

5
0

2
.0

0
±

0.
00

2
1

21
3
.7

4
1.

83
±

0.
41

3
99

1
.8

3
±

0
.4

1
3

99
5

1
2
.0

0
±

0.
00

2
1

21
4
.4

1
1.

83
±

0.
40

3
10

0
1
.8

3
±

0
.4

0
3

10
0

5
2

2
.0

0
±

0.
00

2
1

21
4
.4

1
1.

83
±

0.
40

3
10

0
1
.8

3
±

0
.4

0
3

10
0

5
3

7
.0

0
±

0.
00

7
1

21
4
.4

1
1.

83
±

0.
40

3
10

0
1
.8

3
±

0
.4

0
3

10
0

10
0

0
.0

0
±

0.
00

×
0

17
5
.3

5
1.

93
±

0.
97

9
99

1
.9

3
±

0
.9

7
9

99
10

1
0
.0

0
±

0.
00

×
0

17
5
.3

5
1.

80
±

0.
40

2
10

0
1
.8

0
±

0
.4

0
2

10
0

10
2

0
.0

0
±

0.
00

×
0

17
5
.3

5
1.

80
±

0.
40

2
10

0
1
.8

0
±

0
.4

0
2

10
0

10
3

0
.0

0
±

0.
00

×
0

17
5
.3

5
1.

80
±

0.
40

2
10

0
1
.8

0
±

0
.4

0
2

10
0

20
0

0
.0

0
±

0.
00

×
0

20
0
.3

2
2.

24
±

1.
63

10
86

2
.2

4
±

1
.6

3
10

86
20

1
0
.0

0
±

0.
00

×
0

20
0
.3

2
1.

82
±

0.
41

3
10

0
1
.8

2
±

0
.4

1
3

10
0

20
2

0
.0

0
±

0.
00

×
0

20
0
.3

2
1.

82
±

0.
41

3
10

0
1
.8

2
±

0
.4

1
3

10
0

20
3

0
.0

0
±

0.
00

×
0

20
0
.3

2
1.

82
±

0.
41

3
10

0
1
.8

2
±

0
.4

1
3

10
0

Ta
bl

e
3.

8:
A

ve
ra

ge
an

d
st

an
da

rd
de

vi
at

io
n

of
th

e
st

ab
ili

za
tio

n
tim

e
S
a
v
g
,t

he
m

ax
im

al
st

ab
ili

za
tio

n
tim

e
S
m
a
x
,a

nd
th

e
m

in
im

al
pu

ls
e

se
pa

ra
tio

n
tim

e
Γ
m
in

.I
ft

he
sy

st
em

st
ab

ili
ze

d
un

de
rt

he
gi

ve
n

se
tti

ng
,t

he
nu

m
be

ro
fs

ta
bi

liz
ed

ru
ns

Σ
(S

)
is

al
so

gi
ve

n.
T

he
te

st
se

ts
us

ed
to

co
m

pi
le

th
is

lis
tw

he
re

m
ad

e
of

10
ru

ns
an

d
f

ra
nd

om
ly

pl
ac

ed
is

ol
at

ed
B

yz
an

tin
e

fa
ul

ts
;f

or
de

te
rm

in
in

g
th

e
st

ab
ili

za
tio

n
tim

e,
al

lH
EX

no
de

s
w

ith
in

a
di

re
ct

ed
di

st
an

ce
of
h

fr
om

ev
er

y
fa

ul
tw

er
e

ex
cl

ud
ed

an
d

th
e

in
te

r-
la

ye
rs

ke
w

bo
un

d
st

at
ed

in
th

e
he

ad
in

g
w

as
ap

pl
ie

d.
Fo

re
ve

ry
se

tti
ng

,
10

0
te

st
se

ts
un

de
rs

ce
na

ri
o

(i
ii)

w
er

e
co

nd
uc

te
d.

63

D
ef

au
lt

In
te

r-
L

ay
er

Sk
ew

B
ou

nd
d
+

In
te

r-
L

ay
er

Sk
ew

B
ou

nd
2
d
+

In
te

r-
L

ay
er

Sk
ew

B
ou

nd

f
h

S
a
v
g

S
m
a
x

Σ
(S

)
Γ
m
in

S
a
v
g

S
m
a
x

Σ
(S

)
S
a
v
g

S
m
a
x

Σ
(S

)

0
0

1
.8

1
±

0.
42

3
10

0
17

7.
40

1.
81
±

0.
42

3
10

0
1
.8

1
±

0
.4

2
3

1
0
0

1
0

2
.0

0
±

0.
00

2
1

18
2.

85
1.

77
±

0.
42

2
10

0
1
.7

7
±

0
.4

2
2

1
0
0

1
1

2
.0

0
±

0.
00

2
1

18
2.

85
1.

77
±

0.
42

2
10

0
1
.7

7
±

0
.4

2
2

1
0
0

1
2

2
.0

0
±

0.
00

2
3

18
2.

85
1.

77
±

0.
42

2
10

0
1
.7

7
±

0
.4

2
2

1
0
0

1
3

4
.0

0
±

4.
00

10
4

18
2.

85
1.

77
±

0.
42

2
10

0
1
.7

7
±

0
.4

2
2

1
0
0

5
0

0
.0

0
±

0.
00

×
0

15
8.

52
1.

81
±

0.
42

3
10

0
1
.8

1
±

0
.4

2
3

1
0
0

5
1

0
.0

0
±

0.
00

×
0

15
8.

52
1.

81
±

0.
42

3
10

0
1
.8

1
±

0
.4

2
3

1
0
0

5
2

0
.0

0
±

0.
00

×
0

15
8.

52
1.

81
±

0.
42

3
10

0
1
.8

1
±

0
.4

2
3

1
0
0

5
3

0
.0

0
±

0.
00

×
0

15
8.

52
1.

81
±

0.
42

3
10

0
1
.8

1
±

0
.4

2
3

1
0
0

10
0

0
.0

0
±

0.
00

×
0

18
1.

54
1.

83
±

0.
40

3
10

0
1
.8

3
±

0
.4

0
3

1
0
0

10
1

0
.0

0
±

0.
00

×
0

18
1.

54
1.

82
±

0.
41

3
10

0
1
.8

2
±

0
.4

1
3

1
0
0

10
2

0
.0

0
±

0.
00

×
0

18
1.

54
1.

82
±

0.
41

3
10

0
1
.8

2
±

0
.4

1
3

1
0
0

10
3

0
.0

0
±

0.
00

×
0

18
1.

54
1.

81
±

0.
42

3
10

0
1
.8

1
±

0
.4

2
3

1
0
0

20
0

0
.0

0
±

0.
00

×
0

18
5.

53
1.

88
±

0.
48

3
99

1
.8

8
±

0
.4

8
3

9
9

20
1

0
.0

0
±

0.
00

×
0

18
5.

53
1.

87
±

0.
49

3
10

0
1
.8

7
±

0
.4

9
3

1
0
0

20
2

0
.0

0
±

0.
00

×
0

18
5.

53
1.

85
±

0.
48

3
10

0
1
.8

5
±

0
.4

8
3

1
0
0

20
3

0
.0

0
±

0.
00

×
0

18
5.

53
1.

85
±

0.
48

3
10

0
1
.8

5
±

0
.4

8
3

1
0
0

Ta
bl

e
3.

9:
A

ve
ra

ge
an

d
st

an
da

rd
de

vi
at

io
n

of
th

e
st

ab
ili

za
tio

n
tim

e
S
a
v
g
,t

he
m

ax
im

al
st

ab
ili

za
tio

n
tim

e
S
m
a
x
,a

nd
th

e
m

in
im

al
pu

ls
e

se
pa

ra
tio

n
tim

e
Γ
m
in

.I
ft

he
sy

st
em

st
ab

ili
ze

d
un

de
rt

he
gi

ve
n

se
tti

ng
,t

he
nu

m
be

ro
fs

ta
bi

liz
ed

ru
ns

Σ
(S

)
is

al
so

gi
ve

n.
T

he
te

st
se

ts
us

ed
to

co
m

pi
le

th
is

lis
tw

he
re

m
ad

e
of

10
ru

ns
an

d
f

ra
nd

om
ly

pl
ac

ed
is

ol
at

ed
fa

il-
si

le
nt

fa
ul

ts
;f

or
de

te
rm

in
in

g
th

e
st

ab
ili

za
tio

n
tim

e,
al

lH
E

X
no

de
s

w
ith

in
a

di
re

ct
ed

di
st

an
ce

of
h

fr
om

ev
er

y
fa

ul
tw

er
e

ex
cl

ud
ed

an
d

th
e

in
te

r-
la

ye
rs

ke
w

bo
un

d
st

at
ed

in
th

e
he

ad
in

g
w

as
ap

pl
ie

d.
Fo

re
ve

ry
se

tti
ng

,
10

0
te

st
se

ts
un

de
rs

ce
na

ri
o

(i
ii)

w
er

e
co

nd
uc

te
d.

64

To provide a general idea of how the stabilization process looks like in a HEX grid, Figure 3.21Figure 3.21
provides a screenshot of a ModelSim simulation during the stabilization.

Tables 3.8Tables 3.8 and 3.93.9 show the results in a setting similar to the single pulse scenario (iii) used in
Section 3.3.2.3Section 3.3.2.3. The difference to the previous simulations is that, in each execution of a test set,
the nodes were put into a random initial state before the 10 pulses per test set were generated by
the clock sources. Again, the parameter h is used to exempt faults and their direct neighborhood,
in the analysis.

The tables provide the average, the standard deviation and the maximum of the stabilization
time S (including the first stable pulse), the number of runs Σ(S) that stabilized, and the minimal
gap Γmin between two consecutive pulses of any node after stabilization.

Note that Lemma 2.5.2Lemma 2.5.2 predicts a worst-case stabilization time of 100 pulses in our setting,
thus runs where we observed no stabilization would just need more simulated pulses,55 provided
that faults in the grid do not prohibit stabilization at all. One instance of this can be seen in the
case of f = 20 in Table 3.9Table 3.9, where all but one test set stabilized within 3 pulses. In the case of
Byzantine faults in Table 3.8Table 3.8, the longest stabilization time was 10, and 14 sets did not stabilize
within 10 pulses.

The first set of columns in the tables show the results obtained by using the proven skew
bounds from Theorem 2.3.10Theorem 2.3.10 for determining stabilization. Note that in this set the observed
maximal intra-layer skew, rather than the theoretical worst-case skew bound, has been used to
determine the inter-layer skew bound employed for checking stabilization. The middle set used
d+ as the inter-layer skew bound, which, combined with h > 0, results in always stabilizing runs
for every number of faults. Interestingly, a further increment of the skew bound to 2d+ (provided
in the right column) provides no further improvement in terms of stabilization time or stabilized
runs with h = 0. A possible explanation for this phenomenon may lie in the proven stabilization
time of L pulses (cf. Lemma 2.5.2Lemma 2.5.2): Due to the large number of 100 layers, there may still be
nodes in the upper layers that fire incorrectly due to faults after 10 pulses. This explanation is
supported by the fact that the stabilization results for a skew bound of 3d+, which is not provided
in the tables, are the same as those with a skew bound of 2d+.

It is interesting to note that in settings where every run of the system stabilized, the maximum
number of pulses until the system stabilized was only 3 pulses, with an average close to 2 pulses.

The above simulations were done with a layer 0 pulse separation time of 339 ns, which was
calculated based on Lemmas 2.5.1Lemmas 2.5.1 and 2.5.22.5.2. The Γmin given in the tables is the smallest time
between two pulses of any correct node, also including nodes which have not stabilized yet. Thus,
the minimal pulse separation time provides a guideline by how much the pulse separation time
actually could be decreased: In principle, Γmin could be as small as the maximum sleeping time
T+ plus a few d+ as a safety margin to account for faults and the fact that the data was acquired
by means of simulations. Since T+ ≈ 29 ns in our setting, it is apparent that scenarios that
require a large pulse separation time are actually rare.

The reason why non-stabilized nodes were included in the calculation of Γmin is a bit coun-
terintuitive: As non-stabilized nodes can have excessive skews, their minimal pulse separation
time can be smaller than the minimal pulse separation of correct nodes. Thus a reduction by Γmin

5Since multi-pulse simulations took considerable time, simulating more than 10 pulses per test set would have
caused excessive simulation times.

65

calculated only for correct and stabilized nodes could result in non-stabilized nodes being asleep
when the next pulse arrives. This can lead to an increase of the stabilization time and would also
have a bad effect on applications using the HEX pulse, e.g., the high-frequency clock described
in Chapter 4Chapter 4.

66

CHAPTER 4
High-Frequency Clock

HEX provides a well-synchronized clock pulse at every correct node in the grid, even in the
presence of Byzantine faulty nodes and when started from an arbitrary initial state. To guarantee
these fault-tolerance properties, and due to the grid structure in general, some minimal pulse
separation time is needed. In conjunction with the large jitter of the generated HEX pulses,
this considerably decreases the maximal possible frequency of the clock generation in layer 0.
This chapter elaborates on techniques to extend the HEX node with local high-frequency clocks,
dubbed fast clocks, which are synchronized to the HEX pulses.

4.1 Design Challenges

The “native” clock signal provided by the HEX nodes, through the HEX pulses, has a low
frequency and a large jitter. The low frequency is caused by the pulse separation time which is
required for the correct functionality and the self-stabilizing property of the HEX grid.

The large jitter stems from various sources, including the clock generation algorithm at
layer 0, link delays, and faults in the HEX grid. According to Lemma 2.5.2Lemma 2.5.2, the link delays alone
can produce a worst-case jitter as large as O(Lε), and the clock generation algorithm contributes
the skew potential ∆0. An important source of additional jitter are faults: Byzantine faults can
decrease the time until a node triggers, albeit this is bounded by the link delay of the second
trigger message. If a faulty nodes slows down or completely omits the sending of a trigger
message to one of its upper layer neighbors, then the affected node requires a trigger message
from its left or right neighbor. This however, involves an additional link and thereby may increase
the triggering time by as much as d+. Additionally, these effects accumulate, i.e., may increase
the potential jitter with every layer.

Hence, providing a stable high-frequency clock while being fault-tolerant are conflicting
targets in the current design of HEX. Increasing the node degree, such that every node has at
least three neighbors in the lower layer, as well as in the upper layer, e.g., would decrease the
capabilities of a fault and thus reduce the induced jitter. The price is increased complexity of both
the grid structure and the HEX nodes, which is not always acceptable.

67

Overall, the design challenge here is to provide a high-frequency clock with reasonable skew
at every node, without changing the underlying HEX grid. Our solution will employ a special
kind of frequency multiplication for this purpose.

4.2 Design Requirements

The goal is to design a frequency multiplier, as shown in Figure 4.1Figure 4.1, which takes the HEX
clock as its input and provides a high-frequency clock as its output. The HEX clock has a low
frequency, is well-synchronized to the neighboring nodes, and has a potentially large jitter. The
high-frequency clock shall, obviously, have a higher frequency than the HEX clock. Furthermore,
it shall also be synchronized to the neighbor nodes, in the sense that it has bounded precision π
(recall Section 1.3.1Section 1.3.1).

4.3 Design Selection

As the fast clock must be synchronized to the HEX clock, classic clock generation schemes, e.g.,
free-running quartz oscillators, are unsuitable due to the missing synchronization capabilities.
Thus, we have to resort to clock multiplication techniques like PLLs, which are typically used for
such problems.

PLL: A PLL is a circuit, which uses a loopback to determine the difference of the phase
between the generated output clock and the input clock. This difference is then used to adapt the
output frequency. When the difference is zero, the PLL has locked on the input clock. By using
clock dividers in the loopback and in the input signal path, different multiplication factors for the
output clock can be achieved.

Unfortunately, this method for generating a high-frequency clock does not fit the above
requirements for the fast clock. PLLs are sensitive to jitter on the input clock, as this causes
phase variations that could prohibit the PLL from locking on the HEX clock, thus prohibiting
the generation of a proper fast clock signal [6363, 7575]. Even if a specially designed PLL could
withstand the jitter, a complete removal of the resulting frequency variations, while providing
a stable frequency, seems unlikely. In fact, the challenge here is to maintain a strict relation
between the input pulses and the output pulses, which is inevitable for guaranteeing bounded
precision of the fast clocks: Typically, the continuous generation of a clock signal leads, over
time, to a violation of the bounded synchrony requirement between neighboring nodes.

All Digital PLL: An ADPLL is a completely digitized version of a PLL, i.e., no analog circuit
components are required. An ADPLL is typically less dependent on environmental factors,
including input jitter.

Approaches similar to [5050] promise a simple design with minimal area requirements, but they
seem prone to metastability issues, especially with an unstable input clock like the HEX clock.
Designs like [7474] do not have these metastability issues, but try to lock on the input signal like a
standard PLL, which may not succeed in the presence of large input jitter.

68

HEX
clock

multiplierHEX pulse fast clock

incoming links

outgoing links

Figure 4.1: The composition of HEX with a clock multiplier. The HEX pulse generated from the HEX
node is used by the clock to generate a fast clock.

HEX pulse

cycle counter

ring oscillator
pause

ru
nn

in
g

fast clock

Figure 4.2: The logic elements building the fast clock. The HEX pulse enables the oscillator, which in
turn drives the cycle counter. The cycle counter enables the output of the oscillator as the fast
clock, for a predefined amount of clock cycles, and stops the oscillator after the burst has been
completed.

Thus, like conventional PLLs, we do not consider ADPLLs suitable for building our fast
clocks.

Digitally Controlled Clock Multiplier: A digitally controlled clock multiplier, simply put,
generates a fixed amount of clock cycles on the output clock after every rising edge on the input
clock, using a local oscillator.

Given that using a free-running solution has the same problem as a PLL, namely, the possible
precision violation due to the continuous clock generation, a design like [5151], which stops the
clock generation after a fixed amount of cycles (a burst) is preferable.

In the following sections, we will show that this design fulfills all our design requirements for
the fast clock, provided the burst length and the fast clock frequency are suitable chosen.

69

HEX pulse

pause

clock

fast clock

cycle counter 0 1 200

Figure 4.3: Timing diagram of the fast clock generated by the clock multiplier. After the HEX pulse is
received, the pause signal is disabled and the ring oscillator starts generating a clock. This
clock starts the cycle counter, which then enables the fast clock output. This is done until
the predefined value of the cycle counter, in this case 200, is reached. Then, pause will be
reenabled and the generation of the fast clock stops.

Figure 4.4: A screenshot of a simulation of the clock multiplier circuit generating the fast clock. On top is
the HEX pulse signal, which disables the high-active pause signal of the ring oscillator. The
cycle counter, whose activity is represented by the running signal, starts counting as soon as a
clock by the oscillator is provided. The running signal holds the pause signal low and enables
the output of the fast clock. Note that the cycle counter is running with the inverted clock of
the oscillator, thus signal running goes high when oscClk is low. This is necessary to avoid
shortened fast clock cycles. Below the fast clock, the bits of the cycle counter are shown.

4.4 Implementation

Based on the reasoning above, a digitally controlled clock multiplier was chosen for our fast
clock. An overview of the interconnection between the HEX node and the clock multiplier is
shown in Figure 4.1Figure 4.1, a schematic of its implementation is shown in Figure 4.2Figure 4.2.

The clock multiplier consists of a start/stoppable ring oscillator, a cycle counter, and a few
logic gates. The output of the fast clock signal is enabled by the running signal, due to which
the cycle counter can control the burst length. The ring oscillator, which uses the same design as
described in Section 3.1.3Section 3.1.3, is started with the rising edge of a HEX pulse. It is stopped after the
completion of the last cycle of the burst, which is determined by the count of the cycle counter:
Starting from a counter value of 0, the running signal is enabled. When the predefined counter
value, i.e., the burst length, is reached, running is disabled. Then, the counter is reset to 0 again.

Note that the HEX pulse must be wide enough so that the running signal is able to keep the

70

oscillator running before the HEX pulse’s falling transition. See Figure 4.3Figure 4.3 for a timing diagram
of the clock multiplier, and Figure 4.4Figure 4.4 for the result of a timing simulation.

The clock frequency of the ring oscillator, and thus of the fast clock, must be chosen so that
the running signal of the cycle counter is stable after half the clock period. Otherwise, the first
or last clock cycle of the fast clock could suffer from an incorrect timing that, in the worst case,
could cause metastability or other faults in the circuit using the fast clock. Note that this is also
the reason why the cycle counter runs with the inverted oscillator clock: Otherwise, the output of
the cycle counter could enable the fast clock at some time in the high-phase of the clock cycle of
the oscillator.

4.5 Analysis

The first question of interest is the amount of time available for the generation of a burst of the fast
clock. This time is lower-bounded by the minimum time between two pulses of any non-faulty
node in the grid, called the minimal pulse separation time

Γmin = inf
`∈[L+1], i∈[W], k∈N

(`,i) correct

(
t
(k+1)
`,i − t(k)`,i

)
.

Assuming that the ring oscillators of all fast clocks run at least with a frequency of fmin, then the
number B of generated fast clock cycles per HEX pulse, the burst length, must satisfy

B ≤ fminΓmin.

To be precise, the frequency fmin must only be the minimal average frequency over Γmin. To
understand the performance implications resulting from the fact that the average pulse separation
time is typically higher than the minimal pulse separation time, we will set those into perspective.
Therefore, we assume B = fminΓmin and consider for simplicity B to be an integer. The
long-term average pulse separation time can be calculated as

Γavg = lim
k→∞

t
(k)
(0,0) − t

(0)
(0,0)

k
.

Note that the node (0, 0) was chosen arbitrarily as a reference; any other node could be used as
well: After all, the skew between (0, 0) and any other node (`, i) is bounded by a function of the
parameters f(W,L, ε, . . .) only, but is independent of the pulse number k. Since

lim
k→∞

f(W,L, ε, . . .)

k
= 0,

Γavg is the same for node (`, i).
With the definition of the average pulse separation time, the amortized frequency of a

node (`, i) can be calculated as

lim
k→∞

Bk

t
(k)
(`,i) − t

(0)
(`,i)

= B lim
k→∞

k

t
(k)
(`,i) − t

(0)
(`,i)

= fmin
Γmin

Γavg
.

71

With a perfect HEX clock, i.e., t(k+2)
(`,i) − t

(k+1)
(`,i) = t

(k+1)
(`,i) − t

(k)
(`,i) = Γmin for all i, k, and `,

this would result in the amortized frequency being equal to the minimal frequency. The loss of
amortized frequency in case of Γavg > Γmin is caused by three factors:

1. the frequency stability of the layer 0 clock generation.

2. the skew between the nodes on layer 0.

3. the variance of the pulse propagation speed, i.e., of the link delays.

While the first two are out-of-scope for this thesis, the latter is a property of the HEX grid. The
first factor is likely to dominate the loss of frequency, however, as it requires a reduction of the
minimal pulse separation time. The second and the third factor influence the skews in the system
only, and thus have a limited (in fact, negligible) effect, as already mentioned.

We will now analyze the synchronization precision of our fast clocks, which is the maximum
difference of the number of fast clock ticks generated by correct neighbors by time t. For
simplicity, we define L`,i(t) as a mapping from real-time to a real-valued logical clock time in
the range of [0, B). As the HEX pulses are anonymous, the clock runs modulo B, i.e., wraps
around from B − 1 to 0. The clock frequency of the logical clock is bounded within [fmin, fmax],
which is the range of the real fast clock frequencies and not the amortized frequencies as in the
analysis above. As the logical clock is real-valued, the actual (discrete) clock reading at time t is
bL`,i(t)c. With these definitions, the clock value for time t ∈

[
t
(k)
`,i , t

(k+1)
`,i

]
satisfies

min
(
fmin

(
t− t(k)`,i

)
, B
)
≤ L`,i(t) ≤ min

(
fmax

(
t− t(k)`,i

)
, B
)
,

since B ≡ 0 when the clock is halted.
The maximal difference between two intra-layer neighbor nodes occurs when (i) they expe-

rience the maximal intra-layer skew between their respective HEX triggering time, and (ii) the
HEX node which triggers first runs with fmax, the other with fmin, until they halt, cf. Figure 4.5Figure 4.5.
Thus, in the interval t ∈

[
t
(k)
`,i , t

(k+1)
`,i

]
∩
[
t
(k)
`,i+1, t

(k+1)
`,i+1

]
, the difference between the two logical

clocks is

|L`,i(t)− L`,i+1(t)| ≤ B − fmin

(
B

fmax
−
∣∣∣t(k)`,i − t(k)`,i+1

∣∣∣)
≤ B − fmin

B

fmax
+ fminσ`

≤ fmax − fmin

fmax
·B + fminσ` = %B + fminσ`, (4.1)

where % is the relative drift of the fast clock, and σ` is the maximal intra-layer skew of layer `.
Now consider the interval t ∈

[
t
(k)
`,i , t

(k+1)
`,i

]
∩
[
t
(k+1)
`,i+1 , t

(k+2)
`,i+1

]
, where node (`, i) has not

triggered pulse k + 1 yet. The worst-case is that the clock of node (`, i + 1) runs with fmax,
but as the clock is reset at t(k+1)

`,i+1 , the maximal difference can only occur before that time, and

72

0

B
L`,i(t)

0

B
L`,i+1(t)

0

B
L`+1,i(t)

t
(k)
`,i

t
(k)
`,i+1

t
(k)
`+1,i

t
(k+1)
`,i

t
(k+1)
`,i+1

≤ σ` ≥ Γmin

Figure 4.5: Exemplary logical clock function plots. The x-axis is the timeline, the y-axis is the real-valued
reading of the logical clock at the respective time. The node (`, i+ 1) fired first, and the fast
clock runs at a rate of fmax. While the node (`, i) fired later and run at a rate of fmin.

is hence subsumed in Equation (4.1)Equation (4.1), which also holds for t = t
(k+1)
`,i+1 , cf. Figure 4.5Figure 4.5. The case

for t ∈
[
t
(k+1)
`,i , t

(k+2)
`,i

]
∩
[
t
(k)
`,i+1, t

(k+1)
`,i+1

]
is symmetric. Thus, all cases have been covered and

Equation (4.1)Equation (4.1) gives the worst-case precision, if for σ` the worst-case bound σmax
` is used; if the

average intra-layer skew σavg` was used, we would get some bound for the average precision.
The derivation of the inter-layer bound could be done by replacing σ` with σ̂`, but as there is a

known bias in the inter-layer skew (cf. Figure 3.18Figure 3.18), the result would be overly conservative. For
the refined analysis of the average case, we employ the approximation σ̄` =

(
σ̂max
` + σ̂min

`

)
/ 2

of the bias, which allows us to shift the clock according to L′`,i(t) = (L`,i(t) + fminσ̄`) mod B.
As the inter-layer skew is not absolute, contrary to the intra-layer skew, the clock skew has to be
considered in both directions. Analogously to the derivation of Equation (4.1)Equation (4.1), we obtain

L`−1,i(t)− L′`,i(t) ≤ B − fmin

(
B

fmax
−
(
t
(k)
`−1,i − t

(k)
`,i

)
+ σ̄`

)
≤ fmax − fmin

fmax
·B + fmin(σ̂max

` − σ̄`)

≤ %B + fminτ`,

73

with τ` =
(
σ̂max
` − σ̂min

`

)
/2, and % as before. With the symmetric case

L′`,i(t)− L`−1,i(t) ≤ B − fmin

(
B

fmax
−
(
t
(k)
`,i − t

(k)
`−1,i

)
− σ̄`

)
≤ fmax − fmin

fmax
·B + fmin(−σ̂min

` + σ̄`)

≤ %B + fminτ`,

this leads to |L′`,i(t) − L`−1,i(t)| ≤ %B + fminτ`. Analogous derivations reveal that the same
bound holds for |L′`,i(t)− L`−1,i+1(t)| ≤ %B + fminτ`.

Obviously, shifting all clock values of two consecutive layers `, `− 1 by the same amount σ̄`
has no effect on the inter-layer skew σ̂`. Thus, inductively applying the σ̄` shift at all layers ` ≥ 1,
i.e.,

∑`
`′=1 σ̄`′ , does not change the inter-layer skew bound of any layer, i.e., the intra- resp.

inter-layer precision of the fast clock at layer ` are bounded by

%B + fminσ
max
` ≤ fmin

(
%Γmin + σmax

`

)
resp.

%B + fminτ` ≤ fmin

(
%Γmin + τ`

)
,

which are tight in case of B = fminΓmin. It is apparent that if the minimal pulse separation
time Γmin is large compared to σmax

` and τ`, a low drift % of the ring oscillator is needed so that
the precision is not dominated by the pulse separation time. We stress that fmin and fmax in
our bounds are—unless the clocks are extremely unstable—the amortized frequency upper and
lower bounds over B fast clock ticks; large skews require a consistent difference in frequency
for roughly B/fmin time. Moreover, % captures the relative drift of the clocks. Any frequency
change that applies to adjacent nodes in roughly the same way (i.e., a system-wide change in
temperature or supply voltage) will not have noticeable effects on the skews.

Determination of the minimal pulse separation time In the analysis above, the pulse separa-
tion time Γmin plays a critical role, so accurately knowing its value is instrumental. In a HEX grid
with large skews, and hence large jitter, Γmin < Γavg, hence using the allowed frequency fmin is
quite conservative. On the other hand, in “static” systems, i.e., constant link delays, Γmin = Γavg,
hence using fmin will be (close to) optimal.

There are basically three options for determining the minimal pulse separation time: We can
rely on experimental data, analytical bounds, or simulation results. All approaches have pros and
cons; for a final system, experimental data is the most valuable, but it is also the most difficult
and expensive to create, as one needs a chip and a suitable apparatus for measurements first.
Furthermore, it must be possible to induce realistic scenarios in the clock generation scheme
and the HEX grid, as data collected under conditions which do not cover the target environment
can lead to an underestimation of the minimal pulse separation time. From Section 2.3Section 2.3 and
with bounds for the layer 0 clock generation algorithm employed, analytical worst-case bounds
can be derived. The results from Section 3.3.2Section 3.3.2 provide insight into the skew distributions for
average-case settings under some fairly conservative assumptions on the parameters.

Note carefully that an underestimation of the minimal pulse separation can lead to an inter-
ruption of a fast clock burst by its successor, which causes a loss of clock cycles and hence a
transient fault of the fast clock.

74

After Γ̃min has been determined by some suitable estimation, B can be chosen according
to B ≤ fminΓ̃min. Note that a smaller value of B improves the skew of the fast clock to its
neighbors, at the price of a reduced frequency.

In all above considerations the handling of faulty nodes was left out. Moreover, due to the
self-stabilizing property of HEX, the correct operation of the fast clock during stabilization cannot
be guaranteed, as there is no lower bound on the time between two HEX pulses.

75

CHAPTER 5
Conclusions and Future Work

5.1 Summary of Accomplishments

In this thesis, a fault-tolerant, scalable and self-stabilizing clock distribution scheme named HEX,
for hexagonal grid topologies, was presented. A thorough theoretical analysis of the neighbor
skew in the fault-free case revealed large worst-case skews, albeit in quite exotic scenarios. HEX
could also be proved to be self-stabilizing and a suitable 1–local Byzantine fault model for the
HEX grid was developed as well.

To verify and enhance the knowledge gained by the theoretically analysis, thorough simulation
experiments were conducted. Two simulation environments were developed for this purpose: A
MATLAB based approach, and a more comprehensive ModelSim-based environment built around
a VHDL implementation of the HEX algorithm. The simulations were not only used to observe
the behavior of the average skews in the fault-free case, but also in settings with faults, where
no theoretical analysis is available. In the fault-free case, low average skews were observed,
which confirm the hypothesized rareness of the worst-case scenario. Furthermore, the behavior
under faults showed that fault-effects are typically visible only in the close neighborhood of
a faulty node. The self-stabilizing properties of the HEX grid were also tested by means of
multi-pulse simulations, which revealed a very fast stabilization in almost all cases. This allows
us to conclude that the fault-tolerance properties of HEX are, in the average-case, much better
than the analytically predicted worst-case bounds.

Finally, a clock multiplication scheme was introduced, which allows to increase the frequency
of the clock generated by a HEX node, while ensuring a bounded precision of that clock to the
neighboring nodes.

Thus HEX is usable as a clock distribution system which allows to provided a high-frequency
clock to a local node while maintaining bounded precision to the neighbor nodes.

77

column

layer

i− 1 i i+ 1

`− 1

`

`+ 1

Figure 5.1: Alternative topology for HEX, which should reduce the skews.

5.2 Critical Reflection and Future Work

In this section, we will briefly describe some shortcomings of the existing solution and possible
remedies, which have been developed recently [1616] or will be part of our future work.

5.2.1 Self-Stabilization

While we have shown that the HEX grid stabilizes within L pulses, we have not considered
stabilization in the presence of faults. While the simulations revealed good stabilization times even
in the presence of faults, there are settings where a Byzantine fault can inhibit the stabilization of
the original algorithm. To circumvent this problem, received trigger messages must be discarded
after some time, as presented in [1515].

5.2.2 Alternative Grid Topologies

The hexagonal network structure was chosen due to its regularity and planarity. While planarity
simplifies the routing of the links, it also limits the possible node degrees of the network. Still, a
larger node degree would reduce the power of faults, as a larger fraction of trigger messages from
correct neighbors can be relied on. This would have a positive effect on the skews, although yet
unknown side effects can of course not be ruled out.

In Figure 5.1Figure 5.1, an alternative topology is shown, which has an additional diagonal. This should
provide better skew results, as an additional trigger message is available, and thus the probability
of an intra-layer triggering is reduced.

In Figure 5.2Figure 5.2, a more drastic change in the topology is shown. It would allow to increase the
number of faulty nodes in the neighborhood to 2, if the modified algorithm requires 3 trigger
messages to trigger a node. Additionally, due to the increased connectivity, the triggering by
intra-layer neighbors would become even more rare then with the previously presented topology,
which should make large neighbor skews an exception.

Both alternative topologies presented so far have a common drawback: The length of the
links differ considerably, which will increase the interval [d−, d+]. This is also a problem when

78

column

layer

i− 2 i− 1 i i+ 1 i+ 2

`− 1

`

`+ 1

Figure 5.2: Alternative topology for HEX. This topology allows to tolerate 2 faulty neighbors and reduce
the skews.

layer 0

layer L

Figure 5.3: Alternative topology for embedded usage of HEX. White nodes are in doubling layers. Dou-
bling layers become less frequent with increasing distance from the center.

the HEX grid is embedded in a chip and the clock sources are located in the center. As suggested
in [1616], a solution for this problem are doubling layers, as shown in Figure 5.3Figure 5.3. In this topology,
the layers are arranged in a circular pattern. To avoid ever increasing link wire lengths between
the nodes in outer layers, “doubling layers” are inserted, which double the amount of HEX nodes
per layer. This topology has several advantages over the cylindric HEX grid: First, doubling
layers will help disperse skews and thus may improve the bounds due to the same arguments as
for the other topologies. Moreover, since the “initial” width W close to the clock sources is very
small and most doubling layers are close to the sources as well, any initial skew will be mitigated
very quickly.

5.2.3 Fault Analysis

While the cornerstones of the analysis of the skews with one Byzantine faulty node are outlined
in [1515], which reveals a increase of O(d+) in the skew, the case f > 1 results in a combinatorial
explosion. The handling of these cases manually seems to be out of reach, but there may be ways

79

to apply automatic verification to solve the problem.

5.2.4 Real Implementation

The implementation presented in this paper lacks realistic timing information, as no routing was
conducted. While we can expect that HEX will work properly on an ASIC, it would be interesting
to devise and build a custom transistor cell for a HEX node. This would reduce the processing
delay of the node, as well as the area requirements.

5.2.5 Metastability Filtering

The currently used receivers in the implementation can become metastable when the received
trigger message is too short. Using elastic pipelines [6868] as metastability filters [2626] could be used
to mitigate this problem. While this transformation alone does not change the implementation of
a HEX node, both d− and d+ are increased by the additional latency of the pipeline.

5.3 Applications

The HEX clock distribution system can be used to provided a synchronized clock signal in
GALS systems. Given the bounded precision of the fast clocks, it is tempting to utilizes this
property for implementing synchronous communication between neighbor nodes. In the fault-free
case, and without self-stabilization, the scheme presented in [5555] could be used to implement
metastability-free communication. But as HEX, and thus the fast clock, is self-stabilizing, this
scheme cannot be employed, without modifications.

As as a first step sketched in [5454], we developed a communication scheme that uses the prop-
erties of the fast clocks to provide a pseudo-stabilizing [88], metastability-aware communication
between neighboring nodes. Pseudo-stabilizing means that the system will stabilize after all
transient faults have ceased, but there is no time bound on when this is going to happen. Turning
it into a metastability-free self-stabilizing communication scheme is ongoing work.

80

Bibliography

[1] M. Abramson and W. O. J. Moser, “More Birthday Surprises,” The American
Mathematical Monthly, vol. 77, no. 8, pp. 856–858, Oct. 1970. [Online]. Available:
http://www.jstor.org/stable/2317022http://www.jstor.org/stable/2317022

[2] H. Attiya, A. Herzberg, and S. Rajsbaum, “Optimal Clock Synchronization under Different
Delay Assumptions,” in Proceedings of the 12th Annual ACM Symposium on Principles
of Distributed Computing. New York, NY, USA: ACM, 1993, pp. 109–120. [Online].
Available: http://doi.acm.org/10.1145/164051.164067http://doi.acm.org/10.1145/164051.164067

[3] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced
Topics (2nd edition). John Wiley Interscience, Mar. 2004.

[4] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Concepts and Taxonomy
of Dependable and Secure Computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, 2004.

[5] R. Baumann, “Radiation-Induced Soft Errors in Advanced Semiconductor Technologies,”
IEEE Transactions on Device and Materials Reliability, vol. 5, no. 3, pp. 305–316, 2005.

[6] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A Designer’s Guide to Asynchronous VLSI.
Cambridge University Press, 2010.

[7] V. Bhandari and N. H. Vaidya, “On Reliable Broadcast in a Radio Network,”
in Proceedings of the 24th annual ACM Symposium on Principles of Distributed
Computing. New York, NY, USA: ACM, 2005, pp. 138–147. [Online]. Available:
http://doi.acm.org/10.1145/1073814.1073841http://doi.acm.org/10.1145/1073814.1073841

[8] J. E. Burns, M. G. Gouda, and R. E. Miller, “Stabilization and Pseudo-Stabilization,”
Distributed Computing, vol. 7, no. 1, pp. 35–42, 1993.

[9] D. M. Chapiro, “Globally-Asynchronous Locally-Synchronous Systems,” Ph.D. dissertation,
Stanford University, Stanford, CA, USA, Oct. 1984.

[10] C. Constantinescu, “Trends and Challenges in VLSI Circuit Reliability,” IEEE Micro,
vol. 23, no. 4, pp. 14–19, 2003.

81

http://www.jstor.org/stable/2317022
http://doi.acm.org/10.1145/164051.164067
http://doi.acm.org/10.1145/1073814.1073841

[11] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, “Petrify: A Tool
for Manipulating Concurrent Specifications and Synthesis of Asynchronous Controllers,”
1996.

[12] M. E. Dean, T. E. Williams, and D. L. Dill, “Efficient Self-Timing with Level-Encoded
2-Phase Dual-Rail (LEDR),” in Proceedings of the 1991 University of California/Santa
Cruz conference on Advanced research in VLSI. Cambridge, MA, USA: MIT Press, 1991,
pp. 55–70. [Online]. Available: http://dl.acm.org/citation.cfm?id=112073.112078http://dl.acm.org/citation.cfm?id=112073.112078

[13] E. W. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed Control,” Communications
of the ACM, vol. 17, no. 11, pp. 643–644, 1974.

[14] D. Dolev, “The Byzantine Generals Strike Again,” Journal of Algorithms, vol. 3, no. 1, pp.
14–30, 1982.

[15] D. Dolev, M. Függer, C. Lenzen, M. Perner, and U. Schmid, “HEX: Scaling Honeycombs is
Easier than Scaling Clock Trees,” Journal version of [1616] (submitted).

[16] ——, “HEX: Scaling Honeycombs is Easier than Scaling Clock Trees,” in Proceedings of
the 25th ACM Symposium on Parallelism in Algorithms and Architectures, 2013.

[17] D. Dolev, M. Függer, C. Lenzen, M. Posch, U. Schmid, and A. Steininger, “FATAL+: A
Self-Stabilizing Byzantine Fault-Tolerant Clocking Scheme for SoCs,” Computing Research
Repository, Feb. 2012.

[18] D. Dolev, M. Függer, C. Lenzen, and U. Schmid, “Fault-Tolerant Algorithms for
Tick-Generation in Asynchronous Logic: Robust Pulse Generation,” in Proceedings of
the 13th International Conference on Stabilization, Safety, and Security of Distributed
Systems. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 163–177. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2050613.2050627http://dl.acm.org/citation.cfm?id=2050613.2050627

[19] S. Dolev, Self-Stabilization. MIT Press, Mar. 2000.

[20] S. Dolev and J. L. Welch, “Self-Stabilizing Clock Synchronization in the Presence of
Byzantine Faults,” Journal of the ACM, vol. 51, no. 5, pp. 780–799, Sep. 2004. [Online].
Available: http://doi.acm.org/10.1145/1017460.1017463http://doi.acm.org/10.1145/1017460.1017463

[21] S. Fairbanks, “Method and Apparatus for a Distributed Clock Generator,” US Patent
7,126,405, 2003.

[22] S. Fairbanks and S. Moore, “Self-Timed Circuitry for Global Clocking,” in Proceedings of
the 11th IEEE International Symposium on Asynchronous Circuits and Systems, 2005.

[23] K. M. Fant and S. A. Brandt, “NULL Convention Logic™ System,” US Patent 5,305,463,
Apr., 1994.

[24] M. Ferringer, G. Fuchs, A. Steininger, and G. Kempf, “VLSI Implementation of a Fault-
Tolerant Distributed Clock Generation,” IEEE International Symposium on Defect and
Fault-Tolerance in VLSI Systems, Oct. 2006.

82

http://dl.acm.org/citation.cfm?id=112073.112078
http://dl.acm.org/citation.cfm?id=2050613.2050627
http://doi.acm.org/10.1145/1017460.1017463

[25] E. G. Friedman, “Clock Distribution Networks in Synchronous Digital Integrated Circuits,”
Proceedings of the IEEE, vol. 89, no. 5, pp. 665–692, 2001.

[26] G. Fuchs, M. Függer, and A. Steininger, “On the Threat of Metastability in an Asynchronous
Fault-Tolerant Clock Generation Scheme,” in Proceedings of the 15th IEEE Symposium on
Asynchronous Circuits and Systems, May 2009, pp. 127–136.

[27] G. Fuchs and A. Steininger, “VLSI Implementation of a Distributed Algorithm for Fault-
Tolerant Clock Generation,” Journal of Electrical and Computer Engineering, vol. 2011, no.
936712, 2011.

[28] M. Függer and U. Schmid, “Reconciling Fault-Tolerant Distributed Computing and
Systems-on-Chip,” Distributed Computing, vol. 24, pp. 323–355, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s00446-011-0151-7http://dx.doi.org/10.1007/s00446-011-0151-7

[29] M. Függer, U. Schmid, G. Fuchs, and G. Kempf, “Fault-Tolerant Distributed Clock Genera-
tion in VLSI Systems-on-Chip,” 6th European Dependable Computing Conference, Oct.
2006.

[30] A. Giridhar and P. Kumar, “Distributed Clock Synchronization over Wireless Networks:
Algorithms and Analysis,” in Proceedings of the 45th IEEE Conference on Decision and
Control, Dec. 2006, pp. 4915–4920.

[31] V. Gutnik and A. Chandrakasan, “Active GHz Clock Network Using Distributed PLLs,”
IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1553–1560, 2000.

[32] J. Y. Halpern, N. Megiddo, and A. A. Munshi, “Optimal Precision in the Presence of
Uncertainty,” Journal of Complexity, vol. 1, no. 2, pp. 170–196, 1985. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0885064X8590010Xhttp://www.sciencedirect.com/science/article/pii/0885064X8590010X

[33] IEEE-SA Standards Board, “IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems,” IEEE Std 1588-2008 (Revision of IEEE
Std 1588-2002), 2008.

[34] C.-Y. Koo, “Broadcast in Radio Networks Tolerating Byzantine Adversarial Behavior,”
in Proceedings of the 23rd annual ACM Symposium on Principles of Distributed
Computing. New York, NY, USA: ACM, 2004, pp. 275–282. [Online]. Available:
http://doi.acm.org/10.1145/1011767.1011807http://doi.acm.org/10.1145/1011767.1011807

[35] A. Korniienko, E. Colinet, G. Scorletti, E. Blanco, D. Galayko, and J. Juillard, “A Clock Net-
work of Distributed ADPLLs Using an Asymmetric Comparison Strategy,” in Proceedings
of the 2010 Symposium on Circuits and Systems, 2010, pp. 3212–3215.

[36] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,”
Communications of the ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359545.359563http://doi.acm.org/10.1145/359545.359563

83

http://dx.doi.org/10.1007/s00446-011-0151-7
http://www.sciencedirect.com/science/article/pii/0885064X8590010X
http://doi.acm.org/10.1145/1011767.1011807
http://doi.acm.org/10.1145/359545.359563

[37] L. Lamport and P. M. Melliar-Smith, “Synchronizing Clocks in the Presence of
Faults,” Journal of the ACM, vol. 32, no. 1, pp. 52–78, Jan. 1985. [Online]. Available:
http://doi.acm.org/10.1145/2455.2457http://doi.acm.org/10.1145/2455.2457

[38] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM
Transactions on Programming Languages and Systems, vol. 4, no. 3, pp. 382–401, Jul.
1982. [Online]. Available: http://doi.acm.org/10.1145/357172.357176http://doi.acm.org/10.1145/357172.357176

[39] D.-J. Lee, M.-C. Kim, and I. Markov, “Low-Power Clock Trees for CPUs,” in Proceedings
of the 2010 Conference on Computer-Aided Design, 2010, pp. 444–451.

[40] D.-J. Lee and I. Markov, “Multilevel Tree Fusion for Robust Clock Networks,” in Proceed-
ings of the 2011 Conference on Computer-Aided Design, 2011, pp. 632–639.

[41] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A Low-Overhead Fault Tolerance
Scheme for TSV-based 3D Network on Chip Links,” in Proceedings of the 2008 Interna-
tional Conference on Computer-Aided Design. Piscataway, NJ, USA: IEEE Press, 2008,
pp. 598–602. [Online]. Available: http://dl.acm.org/citation.cfm?id=1509456.1509589http://dl.acm.org/citation.cfm?id=1509456.1509589

[42] J. Lundelius and N. A. Lynch, “An Upper and Lower Bound for Clock Synchronization,”
Information and Control, vol. 62, no. 2/3, pp. 190–204, 1984.

[43] C.-L. Lung, Y.-S. Su, S.-H. Huang, Y. Shi, and S.-C. Chang, “Fault-Tolerant
3D Clock Network,” in Proceedings of the 48th Design Automation Confer-
ence. New York, NY, USA: ACM, 2011, pp. 645–651. [Online]. Available:
http://doi.acm.org/10.1145/2024724.2024872http://doi.acm.org/10.1145/2024724.2024872

[44] L. R. Marino, “General Theory of Metastable Operation,” IEEE Transactions on Computers,
vol. 30, no. 2, pp. 107–115, Feb. 1981.

[45] M. S. Maza and M. L. Aranda, “Interconnected Rings and Oscillators as Gigahertz Clock
Distribution Nets,” in Proceedings of the 13th Great Lakes Symposium on VLSI, 2003, pp.
41–44.

[46] A. McAuley, “Four State Asynchronous Architectures,” IEEE Transactions on Computers,
vol. 41, no. 2, pp. 129–142, 1992.

[47] D. G. Messerschmitt, “Synchronization in Digital System Design,” IEEE Journal on Selected
Areas in Communications, vol. 8, no. 8, pp. 1404–1419, Oct. 1990.

[48] D. Mills, “Internet Time Synchronization: The Network Time Protocol,” IEEE Transactions
on Communications, vol. 39, no. 10, pp. 1482–1493, 1991.

[49] D. E. Muller and W. S. Bartky, “A Theory of Asynchronous Circuits,” in Proceedings of the
International Symposium on Theory of Switching. Harvard University Press, Cambridge,
Mass., 1959, pp. 204–243.

84

http://doi.acm.org/10.1145/2455.2457
http://doi.acm.org/10.1145/357172.357176
http://dl.acm.org/citation.cfm?id=1509456.1509589
http://doi.acm.org/10.1145/2024724.2024872

[50] T. Olsson and P. Nilsson, “Portable Digital Clock Generator for Digital Signal Processing
Applications,” Electronics Letters, vol. 39, no. 19, pp. 1372 – 1374, Sep. 2003.

[51] T. Olsson, P. Nilsson, T. Meincke, A. Hemam, and M. Torkelson, “A Digitally Controlled
Low-Power Clock Multiplier for Globally Asynchronous Locally Synchronous Designs,” in
Proceedings of the 2000 Symposium on Circuits and Systems, vol. 3, 2000, pp. 13–16.

[52] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the Presence of Faults,”
Journal of the ACM, vol. 27, no. 2, pp. 228–234, Apr. 1980. [Online]. Available:
http://doi.acm.org/10.1145/322186.322188http://doi.acm.org/10.1145/322186.322188

[53] A. Pelc and D. Peleg, “Broadcasting with Locally Bounded Byzantine Faults,” Information
Processing Letters, vol. 93, no. 3, pp. 109–115, Feb. 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.ipl.2004.10.007http://dx.doi.org/10.1016/j.ipl.2004.10.007

[54] M. Perner, M. Sigl, U. Schmid, and C. Lenzen, “Byzantine Self-Stabilizing Clock Distribu-
tion with HEX: Implementation, Simulation, Clock Multiplication,” in Proceedings of the
6th Conference on Dependability, 2013.

[55] T. Polzer, T. Handl, and A. Steininger, “A Metastability-Free Multi-synchronous
Communication Scheme for SoCs,” in Stabilization, Safety, and Security of Distributed
Systems, ser. Lecture Notes in Computer Science, R. Guerraoui and F. Petit, Eds.
Springer Berlin Heidelberg, 2009, vol. 5873, pp. 578–592. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-05118-0_40http://dx.doi.org/10.1007/978-3-642-05118-0_40

[56] G. A. Pratt and J. Nguyen, “Distributed Synchronous Clocking,” IEEE Transactions on
Parallel and Distributed Systems, vol. 6, no. 3, pp. 314–328, Mar. 1995.

[57] P. J. Restle, T. G. McNamara, D. A. Webber, P. J. Camporese, K. F. Eng, K. A. Jenkins,
D. H. Allen, M. J. Rohn, M. P. Quaranta, D. W. Boerstler, C. J. Alpert, C. A. Carter, R. N.
Bailey, J. G. Petrovick, B. L. Krauter, and B. D. McCredie, “A Clock Distribution Network
for Microprocessors,” IEEE Journal of Solid-State Circuits, vol. 36, no. 5, pp. 792–799,
2001.

[58] M. Saint-Laurent and M. Swaminathan, “A Multi-PLL Clock Distribution Architecture for
Gigascale Integration,” in Proceedings of the 2001 IEEE Computer Society Workshop on
VLSI, 2001, pp. 30–35.

[59] F. B. Schneider, “Understanding Protocols for Byzantine Clock Synchronization,” Ithaca,
NY, USA, Tech. Rep., Aug. 1987. [Online]. Available: http://hdl.handle.net/1813/6699http://hdl.handle.net/1813/6699

[60] Y. Semiat and R. Ginosar, “Timing Measurements of Synchronization Circuits,” in Proceed-
ings of the 9th International Symposium on Asynchronous Circuits and Systems, 2003, pp.
68–77.

[61] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,

85

http://doi.acm.org/10.1145/322186.322188
http://dx.doi.org/10.1016/j.ipl.2004.10.007
http://dx.doi.org/10.1007/978-3-642-05118-0_40
http://hdl.handle.net/1813/6699

“SIS: A System for Sequential Circuit Synthesis,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/ERL M92/41, 1992. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.htmlhttp://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html

[62] R. Shelar, “Routing with Constraints for Post-Grid Clock Distribution in Microprocessors,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29,
no. 2, pp. 245–249, 2010.

[63] X. Shi, K. Imfeld, S. Tanner, M. Ansorge, and P. A. Farine, “A Low-Jitter and Low-Power
CMOS PLL for Clock Multiplication,” in Proceedings of the 32nd European Solid-State
Circuits Conference, 2006, pp. 174–177.

[64] J. Sparsø, “Asynchronous Circuit Design - A Tutorial,” in Principles of Asynchronous Circuit
Design - A Systems Perspective. Boston / Dordrecht / London: Kluwer Academic Publishers,
Dec. 2001, pp. 1–152. [Online]. Available: http://www2.imm.dtu.dk/pubdb/p.php?855http://www2.imm.dtu.dk/pubdb/p.php?855

[65] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design: A Systems Perspective,
1st ed. Springer Publishing Company, Incorporated, 2010.

[66] T. K. Srikanth and S. Toueg, “Optimal Clock Synchronization,” in Proceedings of the 4th
annual ACM Symposium on Principles of Distributed Computing. New York, NY, USA:
ACM, 1985, pp. 71–86. [Online]. Available: http://doi.acm.org/10.1145/323596.323603http://doi.acm.org/10.1145/323596.323603

[67] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock Synchronization for Wireless
Sensor Networks: A Survey,” Ad Hoc Networks, vol. 3, no. 3, pp. 281 – 323, 2005. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1570870505000144http://www.sciencedirect.com/science/article/pii/S1570870505000144

[68] I. E. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32, pp. 720–738, Jun.
1989. [Online]. Available: http://doi.acm.org/10.1145/63526.63532http://doi.acm.org/10.1145/63526.63532

[69] S. Tam, J. Leung, and R. Limaye, “Clock Generation & Distribution for a 45nm, 8-Core
Xeon® Processor with 24MB Cache,” in Proceedings of the 2009 Symposium on VLSI
Circuits, 2009, pp. 154–155.

[70] P. Teehan, M. Greenstreet, and G. Lemieux, “A Survey and Taxonomy of GALS Design
Styles,” IEEE Design and Test of Computers, vol. 24, no. 5, pp. 418–428, 2007.

[71] UMC, “90 nm.” [Online]. Available: http://www.umc.com/English/process/g.asphttp://www.umc.com/English/process/g.asp

[72] M. Vai, VLSI Design, ser. VLSI circuits series. CRC Press, 2001.

[73] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for
Testability (Systems on Silicon). San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006.

[74] T. Watanabe and S. Yamauchi, “An All-Digital PLL for Frequency Multiplication by 4 to
1022 with Seven-Cycle Lock Time,” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, pp.
198–204, 2003.

86

http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html
http://www2.imm.dtu.dk/pubdb/p.php?855
http://doi.acm.org/10.1145/323596.323603
http://www.sciencedirect.com/science/article/pii/S1570870505000144
http://doi.acm.org/10.1145/63526.63532
http://www.umc.com/English/process/g.asp

[75] T. Weigandt, B. Kim, and P. Gray, “Analysis of Timing Jitter in CMOS Ring Oscillators,” in
Proceedings of the 1994 IEEE International Symposium on Circuits and Systems, vol. 4,
1994, pp. 27–30.

[76] J. L. Welch and N. Lynch, “A new Fault-Tolerant Algorithm for Clock Synchronization,” in
Information and Computation, 1988, pp. 75–88.

[77] C. Yeh, G. Wilke, H. Chen, S. Reddy, H. Nguyen, T. Miyoshi, W. Walker, and R. Mur-
gai, “Clock Distribution Architectures: A Comparative Study,” in Proceedings of the 7th
International Symposium on Quality Electronic Design, Mar. 2006, pp. 7–91.

87

Nomenclature

[X] Defines the set {0, . . . , X − 1}. Page 17Page 17

((`, i), (`′, i′)) Annotates the link from node (`, i) to node (`′, i′). Page 17Page 17

d+ Maximal link delay. Page 18Page 18

d− Minimal link delay. Page 18Page 18

ε Difference between d+ and d−. Page 18Page 18

p
i′→(`,i)
left The left zig-zag path to node (`, i). Page 19Page 19

r The relative width of a left zig-zag path. Page 19Page 19

t
(k)
`,i Defines the time when the node (`, i) executes its kth tick. When k is clear from

the context, it is omitted. Page 20Page 20

t
(k)
− Denotes the time when the first node in layer 0 fires pulse k. Page 31Page 31

t
(k)
+ Denotes the time when the last node in layer 0 fires pulse k. Page 31Page 31

∆` The skew potential of layer `. Page 21Page 21

σ` The intra-layer skew of layer `. Page 27Page 27

σ̂` The inter-layer skew of layer `. Page 50Page 50

σop` Defines the application of op on the intra-layer skew of layer `. Page 50Page 50

σ̂op` Defines the application of op on the inter-layer skew of layer `. Page 50Page 50

qx Defines the xth quantile of the global intra-layer skew. Page 50Page 50

q̂x Defines the xth quantile of the global inter-layer skew. Page 50Page 50

σop Defines the application of op on the global intra-layer skew. Page 50Page 50

σ̂op Defines the application of op on the global inter-layer skew. Page 50Page 50

89

h Defines the directed hop distance from a faulty node. Every node which is reach-
able from a faulty node via h hops is excluded from skew calculations. Page 53Page 53

S The stabilization time. Page 31Page 31

Σ(S) The number of runs which stabilized. Page 65Page 65

Γmin The minimal pulse separation time. Page 65Page 65

90

	Introduction
	Computational Models in Distributed Computing
	Design Methodologies in VLSI
	The Clock Distribution Problem
	Related Work

	HEX
	Topology
	Algorithm
	Skew Analysis
	Fault Models
	Pulse Separation

	HEX – Implementation and Results
	VHDL Implementation
	Simulation Environments
	Simulation Results

	High-Frequency Clock
	Design Challenges
	Design Requirements
	Design Selection
	Implementation
	Analysis

	Conclusions and Future Work
	Summary of Accomplishments
	Critical Reflection and Future Work
	Applications

	Bibliography

