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Abstract

WIRELESS Sensor Networks (WSN) emerged within the wireless communica-

tion technology as a tool to extend our capability to explore, monitor and

control our physical surrounding. They are spatial distributed autonomous sensors

with a wireless communications link. These sensors are typically located in inhos-

pitable environments and left completely unattended, meaning that their lifetime

in terms of communication and computation resources is limited by the battery ca-

pacity. Furthermore, damaged sensors are often difficult to replace, which makes a

robust protocol desirable.

Motivated by these limitations, this thesis addresses the more specific topic of

decentralized algorithms (i.e. removing the need for a data fusion center) for WSNs

which aim to measure and classify a radio wave. The focus is to develop a distributed

estimation scheme that is energy efficient and concurrently dispenses high quality

data acquisition and estimation, even if only a small party of the WSN contributes.

To this end, two distributed subspace-based algorithms are devised, one sharing

the observation vector y and the other sharing the sample covariance matrix R̂yy

between the nodes. The Average Consensus (AC) protocol enforces that all sensors

within the network converge towards the mean of all observations.

The performance of the newly developed algorithms is evaluated in terms of their

tracking capabilities, the Root Mean Square Error (RMSE) and the Principal Angles

between the Subspaces (PABS) for several scenarios. The algorithm sharing the ob-

servation vector y outperforms the algorithm sharing the sample covariance matrix

R̂yy and demonstrates overall good tracking capabilities. Finally, a mathematical

proof of convergence analysis for the centralized PAST algorithm based on Singular

Value Decomposition (SVD) is presented.
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Zusammenfassung

DRAHTLOSE Sensornetzwerke (WSN) haben sich innerhalb der drahtlosen

Kommunikationstechnologie als Werkzeuge etabliert, um unsere Umgebung

besser erforschen, überwachen und kontrollieren zu können. WSN bestehen aus

vielen einzelnen räumlich verteilten autarken Sensoren die typischerweise in un-

wirtlichen Gebieten betrieben werden. Dies hat zur Folge, dass deren Kommunika-

tion und Rechenleistung durch den notwendigen Energieverbrauch, der normaler-

weise durch eine Batterie gedeckt werden muss, limitiert wird. Beschädigte Sensoren

sind oft schwierig auszutauschen, dies macht ein robustes Protokoll wünschenswert.

Diese Dissertation thematisiert die angeführten Limitationen für den speziellen

Fall von drahtlosen Sensornetzwerken, die Radiowellen vermessen. Durch die En-

twicklung von dezentralisierten Algorithmen wird Energie eingespart, und die Fehler-

anfälligkeit gesenkt. Der Fokus liegt darauf, die Signalschätzung auf alle Sensoren

im Netwerk energieeffizient und ohne Genauigkeitsverlust zu verteilen. Zu diesem

Zweck wurden zwei verteilte Unterraumschätzungsalgorithmen formuliert, die unter-

schiedlich Information zwischen den Sensoren austauschen: Der eine verteilt unter

den Sensoren den Observationsvektor y, der andere die Signal-Kovarianzmatrix R̂yy.

Das Average Consensus (AC) Protokoll garantiert, dass das gesamte Netzwerk gegen

den Mittelwert alle Observationen konvergiert.

Die Bewertung der neuen Algorithmen erfolgte durch Simulationen für ver-

schiedene Szenarien mittels der Signalverfolgungskapazität, der quadratischen Mit-

telwertsabweichung (RMSE) und der Differenz der Unterraumwinkeln (PABS).

Es hat sich gezeigt, dass es effizienter ist den Observationsvektor y zu teilen.

Dieser Algorithmus liefert gute Ergebnisse und übertrifft jenen mit verteilter Signal-

Kovarianzmatrix R̂yy in allen simulierten Szenarien.

Abschließend wird mittels einer Konvergenzanalyse basierend auf einer Sin-

gulärwertzerlegung die Stabilität des Algorithmus validiert.
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) have a multitude of application areas. They

can be deployed in remote and inhospitable locations, and serve as “eyes and ears”

for safety, research, industry and military concerns [1, 2]. By way of example,

avalanche or land slide early detection systems, biological research habitat monitor-

ing, the monitoring of production parameters, and even tracking of conditions inside

a nuclear reactor, have all been done with WSNs.

Special focus is given to increasing network robustness, battery operating time,

data analysis quality and speed, as well as network scalability. Some of these issues

can be improved on a software basis by optimizing the WSNs communication pro-

tocol. This thesis addresses the more specific topic of sensors which aim to measure

and classify a radio wave. Here, utilizing a distributed detection and estimation

approach increases energy efficiency, enhances scalability and provides high quality

data acquisition and estimation. In this context, this thesis develops two distributed

subspace-based algorithms designed to meet the ever-increasing needs for WSNs.

Subspace tracking methods can be classified according to the way their eigen-

structure is calculated: The first methods are known as Modified Eigen Problem

(MEP) and they are considered to be adaptive, as they actively calculate the update

a sample data matrix by means of Eigen Value Decomposition (EVD) or Singular

Value Decomposition (SVD) [3, 4, 5]. The second method is based on adaptive sub-

space estimation [6, 7, 8, 9], also know as non-MEP. Here, adaptive means that the

exact eigenstructure of the sample data block is not calculated every time an update

occurs, but rather, the algorithm moves towards that result provided by an EVD or

SVD diagonalization.

Out of the short list presented above, the Projection Approximation Subspace

Tracking Algorithm (PAST) [8] stands out for its low computational complexity

and good convergence properties. However, in its original form, it operates in a

1



CHAPTER 1. INTRODUCTION

Uniform Linear Array (ULA) where all nodes communicate with a centralized base

station that analyzes the signals from all nodes in the network. This setup has

three main drawbacks: First, the WSN is limited in size, since the nodes farthest

from the base station have high transmission costs if not some form of message

hopping can be implemented. Second, the base station is mission-critical for the

functioning of the system. Third, a centralized WSN performance speed decreases

with the size of the network. This can be a problem for safety-critical applica-

tions. This thesis explores two distributed versions of the PAST algorithm based on

Average Consensus (AC) [10], as an alternative to tackle this problems.

1.1 Contributions

The goal of this thesis is to obtain a distributed version of the PAST algorithm. This

allows decentralized WSNs with no base station, where a local network state estimate

is calculated in every node and then it is exchanged within its neighborhood such that

a global network agreement is reached. That is to say, the aggregate calculations

of all nodes converge, and individual outliers play a lesser role. This favors the

implementation of small transmission ranges, thus extending battery life, and allows

to quickly react to significant state changes. Therefore, a deeper understanding

about how the averaging process of local variables influences the time evolution of

the signal subspace is necessary. To this aim, we investigate the following points:

• Evaluate the tracking capabilities of the newly developed distributed algo-

rithms: We study how good the Direction Of Arrival (DOA) estimates are

when compared to the true values, and investigate the Root Mean Square Er-

ror (RMSE) related to these estimates, for several Signal to Noise Ratio (SNR)

values.

• Find the Principal Angles between the estimated and the true subspace, as a

tool to learn by how many degrees both subspaces are apart from each other.

• Learn how the different network sizes affect the algorithmic performance.

• Decrease transmission distance between neighboring nodes, and thus improve

the WSN life-span. We consider a jittered grid topology and explore different

types of network connectivity. The purpose is to find a network structure that

exchanges as less messages as possible, but still allows for accurate estimates.

• A mathematical proof that shows the convergence properties of our algorithmic

approaches.

The following articles have been published by the author of this thesis and are

the basis of the present work:

2
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C. Reyes, T. Hilaire, and C. F. Mecklenbräuker. Distributed projection ap-

proximation subspace tracking based on consensus propagation. In The 3rd

International Workshop on Computational Advances in Multi-Sensor Adaptive

Processing (CAMSAP), Aruba, December 2009.

C. Reyes, T. Hilaire, S. Paul, and C. F. Mecklenbräuker. Evaluation of the

root mean square error performance of the PAST-consensus algorithm. In Inter-

national ITG Workshop on Smart Antennas (WSA 2010), Germany, February 2010.

M. Rupp and C. Reyes. Robust versions of the PAST algorithm. Proc. of

EUSIPCO, Bucharest, Rumania. Sep. 2012.

C. Reyes, R. Dallinger, and M. Rupp. Convergence analysis of distributed PAST

based on consensus propagation. Signals, Systems and Computers (ASILOMAR),

pages 271-275, November 2012.

1.2 Outline

The current document is structured in the following way:

• Chapter 2 presents background information about WSNs, Graph theory, the

wave propagation model used in this work and provides a survey on subspace

estimation algorithms.

• Chapter 3 proposes two distributed versions of the PAST algorithm. In order

to achieve global estimates, certain data needs to be shared among the nodes.

Two different scenarios were tested: In the first approach, the signal vector

variable y is exchanged using the Average Consensus algorithm. In the second,

the sample covariance matrix R̂ is selected as the variable to be distributed.

• Chapter 4 presents and analyzes the results of the simulation experiments for

both algorithmic variants, and compares their performance with that from the

original PAST algorithm using identical simulation settings. Since PAST is

a recursive algorithm, the influence of the so-called forgetting factor on the

performance is analyzed. The Direction Of Arrival, Principal Angles Between

Subspaces and the Root Mean Square error are depicted using different topolo-

gies and different SNR values.

• Chapter 5 examines the convergence properties of the PAST algorithm.

• Chapter 6 summarizes the most important contributions of this work, provides

some final remarks and renders an insight regarding future research.

3



CHAPTER 1. INTRODUCTION

4



Chapter 2

Context and Foundations

THIS chapter is intended to offer basic knowledge that will allow a better under-

standing of this thesis from beginning to end. We start defining the concept

of a wireless sensor network and discuss some drawbacks and applications that mo-

tivate this work. Section 2.2 and Section 2.3 state the relationship between wireless

sensor networks and array processing as well as introduces the narrow band signal

model: we regard a wireless sensor network as a space evolving in time, aiming to

track only a small dimension of it. Finally, Section 2.4 provides details regarding

the Projection Approximation Subspace Tracking (PAST), which is one of the bases

of this work.

2.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) consists of a group of nodes which sense some

aspects of its environment. Each node has the ability to communicate these observa-

tions, traditionally to a centralized destination unit, which is in charge of collecting

and processing the data available in the network. A typical example of a WSN would

be a number of sensor nodes set up throughout a large facility in order to monitor

pollution levels [11].

Sensor nodes are suitable for deployment in harsh environments and over large

geographical areas. However, these advantages also impose some limitations [12, 13].

Since individual nodes are usually battery powered, the energy used for operating is

a severely limited resource. Furthermore, most of the state-of-the-art sensor network

architectures are centralized, where all nodes either report directly or through multi-

hops to a centralized computer. Wireless message transmission in a network is the

most power consuming process. Long-range communication with a fusion center

5
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is especially power intensive. In physics, it is well-known that the intensity 1 (p)

radiated from a source is proportional to the inverse square of the distance (d), i.e.,

p ∝ 1
d2

[14]. In this work, d is interpreted as the distance between the communicating

nodes. Therefore, it is of great interest to find alternative solutions to this problem.

A further matter to consider is, that in many applications, aggregate functions

of the sensor data are more important than individual node data. In other words,

when the wireless sensor network consists of a significant number of sensor nodes,

the average value collected by the whole network is more important than the value

collected by a single node, as stated in[15, 16]. For some data processing techniques,

such as signal compression, detection, classification and localization, the aggregate

statistics are even prerequisites.

In our efforts to address the issues above, we concentrate on developing a dis-

tributed version of the Projection Approximation Subspace Tracking (PAST) algo-

rithm [8] with a low amount of message passing among sensor nodes. This algorithm

offers robust and computationally efficient signal estimation, but is structured in a

centralized way. We aim to distribute it for sensor network applications, so that

each node can calculate aggregate values with the signals of all sensor nodes within

a small transmission range.

2.1.1 Applications

The first WSN was built in the beginning of the 1950s, with the creation of the Sound

Surveillance System (SOSUS) [17, 18], developed by the United States military in

order to detect and track Soviet submarines by means of hydrophone arrays. An-

other early application of these networks was environment monitoring in the heavy

industry, i.e., power distribution, waste-water treatment and factory automation.

In 1980, a Distributed Sensor Network (DSN) project was founded [18, 19] where

both academia and industry could participate and investigate the challenges and

applications of these networks. Nowadays, sensor networks have wide ranging uses,

and some of the most common applications are presented according to their area of

operation:

• Military: WSNs are quickly deployed in battle zones, and can, besides cre-

ating a communication network for deployed units [20], detect gunfire [21] or

chemical agents [22].

• Security and surveillance: the low cost of these networks make them a very

attractive alternative to traditionally wired networks, such as burglar alarm

systems. Home owners and Industry often prefer easy to install surveillance

systems with a sporadic battery change to wired systems with high installation

costs [23, 24].

1Power per unit area
(

W
m2

)
6



2.1. WIRELESS SENSOR NETWORKS

• Environmental monitoring: uses include pollution control [2, 11], natural dis-

aster monitoring such as avalanches and landslides [25, 26], the surveillance

of wildlife habitats or chemicals in hydrology, as well as the observation of

environmental parameters to help in agriculture [27].

• Health: already used for monitoring physiological parameters like SpO2
2,

Pulse and Skin Temperature. Some ECGs 3 are taken using WSNs, and

they are also used to give real-time information about diabetes and impending

asthma attacks [28, 29].

2.1.2 Hardware

A WSN consists of specialized transducers forming a communications infrastructure

intended to monitor and analyze conditions at locations where the installation of

power and data lines is impractical.

Each individual part making up the WSN is a detection station called a sensor

node. Sensor nodes are usually identical, low-cost, light-weight, battery powered

autonomous and portable. Due to the large variety of parameters being monitored,

sensors are classified into groups:

• Microelectromechanical system (MEMS) incorporate gyroscopes, accelerome-

ters, magnetometers, pressure and acoustic sensors.

• Complementary metal - oxide - semiconductor (CMOS) based sensors measure

temperature, humidity and chemical composition.

• Light-emitting diode (LED) sensors are used for ambient light sensing, prox-

imity sensing and to determine chemical composition.

Each sensor node has the capabilities to extract relevant data from its surround-

ings, process data, and communicate with its neighboring nodes. The basic sensor

node has at least four components (see Figure 2.1):

• Sensing Unit: the nodes primary function of gathering information about the

physical world is housed in the sensing unit. The sensor collects an analogue

signal, which is digitized and passed on to the processing unit.

• Processing Unit: basically a microcomputer, it consists of a microprocessor,

memory and I/O units. Its programming controls not only the behavior of the

sensor nodes different components, but also the WSN as a whole.

• Communication Unit: provides the wireless interface for the communication

between sensor nodes. The most common choice is Ultra Wide Band (UWB)

2Oxygen Saturation
3Electrocardiograms

7



CHAPTER 2. CONTEXT AND FOUNDATIONS

radio waves, although WSNs with other communication media, such as optical

communication (laser) or infrared exist.

• Power Unit: usually a high energy-density battery pack, it is the sole power

source of the sensor node. Since all activity ceases with its depletion, the

batteries need to be either changed or charged regularly. A power generator,

such as photovoltaic cells, can be used to extend the battery lifetime.

• Location System: some applications need to factor in the position of the indi-

vidual nodes, so a GPS or an equivalent device can be installed.

Sensor(s)

I/O µP

GPS

Memory

Power/Battery

Transceiver
Micro-Controller

Figure 2.1: Scheme depicting a sensor’s architecture.

2.2 Graph theory

The study of networks consisting of interconnections among objects in their most

basic form is known as graph theory. In the following section, some basic concepts

from the graph theory are introduced, as they will be recurrently used in this thesis.

2.2.1 Foundations

• Graph: let P be a finite set of N sensor elements indexed by i ∈ {1, 2, . . . , N},
where i is known as vertex. H = {P, E} is the sensor network’s graph, where

E is a set of elements (i, j), with i, j ∈ P. A major characteristic of undirected

graphs is the symmetry among its connections: An undirected graph exists

when (i, j) ∈ E ⇐⇒ (j, i) ∈ E , meaning that sensor i is connected to sensor j

and vice versa. This type of graph is addressed throughout this thesis.

8



2.2. GRAPH THEORY

• Neighborhood: since this concept is frequently used all over this text, a clear

definition is needed: The neighborhood Ni of any node i is the set of all

other nodes connected with i by its edges, i.e., for any node i ∈ P, there is

a set Ni , {j|(i, j) ∈ E} known as the neighborhood of i. We stress the fact

throughout this thesis, the node i considers itself as a neighbor. This means

that if Ni = 9, it means that sensor i has 8 neighboring nodes plus one, itself.

• Adjacency Matrix: also known as the connectivity matrix A ∈ RN×N . It is

symmetric only when the graph H is undirected. It is structured according to

which node in the graph H connects to which other node, namely

Ai,j =

1, iff (i, j) ∈ E

0, otherwise.
(2.1)

• Degree Matrix: is a diagonal matrix D ∈ RN×N , which provides information

about the number of edges related to each node i. That is to say

Di,j =


∑

k Ai,k, iff i = j

0, otherwise.
(2.2)

• Laplacian Matrix: it is defined by L , D − A. As the Laplacian merges

both, the information about the network connectivity from (2.1) and the exact

network node degree (2.2), it becomes evident that this matrix provides the

information necessary to represent the graph H. Let us clarify the meaning of

the Laplacian by calculating the following example: Consider an undirected

graph associated with a wireless sensor network with N = 4 elements and

i ∈ {1, . . . , N}. As depicted in Figure 2.2, the sensor i = 1 communicates with

its neighborhood N1 = {2, 4}. Those interconnected elements in the first row

of the adjacency matrix Ai,N are set to 1. The non-neighbors are set to 0. The

degree matrix in a wireless sensor network is seen as the diagonal matrix whose

Di,i contains the total number of connections related to sensor i. Following

the example and still considering i = 1 with its two connected neighbors, the

node degree D1,1 = 2.
2 −1 0 −1

−1 2 0 −1

0 0 1 −1

−1 −1 −1 3


︸ ︷︷ ︸

L

=


2 0 0 0

0 2 0 0

0 0 1 0

0 0 0 3


︸ ︷︷ ︸

D

−


0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0


︸ ︷︷ ︸

A
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1
2

3 4

Figure 2.2: Undirected graph with N = 4 sensor elements

As the adjacency matrix is symmetric and the degree of each node is placed as a

diagonal matrix, the Laplacian of an undirected graph is by construction always

symmetric.

2.2.2 Network Topology

The Figures 2.3 and 2.4 depict various graph topologies with N = 12 and N = 36

elements that work in a centralized way. At Figure a.) a fully connected network,

also known as full mesh topology, is presented. All elements of the network connect

directly with each other and with a central processing unit (marked in red). This

kind of topology is very expensive, since there are many redundant connections.

A beneficial side effect of the multiple message transmissions is a high degree of

reliability. Figures b.) and c.) correspond to a dense and a sparse representation of

a partial mesh topology. Here, the sensors in the system interact only with a few

other nodes. Figure d.) and e.) show networks where each node i has a regular

neighborhood size Ni = 5 or Ni = 9. Figure e.) is only used on the topology with

N = 36 elements.

Besides the energy efficiency issues, we are also interested in studying the im-

pact of the network topology on the data estimation performance. In addition, we

question how the topology impacts the tracking capabilities and the convergence

properties of the distributed algorithmic variants proposed in Chapter 3.

10



2.2. GRAPH THEORY

a.) b.)

c.) d.)

Figure 2.3: Undirected graphs with N = 12. The following cases are depicted: a.)
Fully connected scenario, b.) Dense connected, c.) Sparse connected and d.) regular
topology Ni = 5

11
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a.) b.)

c.) d.)

e.)

Figure 2.4: Undirected graphs with N = 36. The following cases are depicted: a.)
Fully connected scenario, b.) Dense connected, c.) Sparse connected, d.) regular
topology Ni = 5 and e.) regular topology Ni = 9.
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2.3. WAVE PROPAGATION

2.3 Wave propagation

A propagating field originated by a mechanical 4 or electromagnetic wave 5 is often

evaluated by means of a sensor array. These arrays consist of transducers (sensors)

deployed in a specific geometric configuration, capable of detecting and converting

the waves into an electric signal. Array signal processing applications encompass

radar, sonar, seismic event prediction and wireless communication systems [30].

Several methods developed for estimating the origin of a source are based on cal-

culating the signal’s direction of arrival (DOA). This concept is introduced in Sub-

section (2.3.1), where also the relationship among the antenna array elements used

to create a spatial representation of the signals impinging the sensors is regarded.

In addition to this, Subsection (2.3.2) introduces a model that approximates the

individual sensor response to an incoming wave.

2.3.1 Space-time representation

Propagating waves are a function of both space and time. In physics, they are

expressed as the solutions to the wave equation for the medium of interest [31, 32],

which derive from Maxwell’s equation.

∇2 ~E =
1

c2

∂2 ~E

∂t2
. (2.3)

Here, ~E can be an electric field in electromagnetics or acoustic pressure in acoustic

waves, c = 3 × 108 m/s is the propagation speed in the medium, and ∇2 is the

Laplacian operator

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.4)

Let us consider a general scalar field s(t, ~p) occurring at time t and position vector

~p = [x, y, z]T . Hence, the wave equation in (2.4) turns into

∂2s(t, ~p)

∂x2
+
∂2s(t, ~p)

∂y2
+
∂2s(t, ~p)

∂z2
=

1

c2

∂2s(t, ~p)

∂t2
. (2.5)

The solution for (2.5) is often represented in a complex exponential form, i.e.;

s(t, ~p) = s(t, x, y, z) = A exp{j(ωt− κxx− κyy − κzz)} (2.6)

= A exp{j(ωt− ~κT · ~p)}, (2.7)

where (2.7) is a vectorial and inner product representation. Here, the temporal fre-

4Seismic waves: tsunamis or earthquakes. Acoustic waves: vibrating strings of an instrument,
vibrating tines of a tuning fork, a microphone or a sonar array.

5Wireless communications.
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quency is given as ω = 2πf in units of radians per seconds and ~κ = [κx, κy, κz]
T

is the wave number vector in units of radians per meter, also known as the spatial

frequency of the mono-chromatic plane wave. A mono-chromatic wave has a single

frequency, constant amplitude and phase. Recall that the frequency content of a

signal is defined by its Fourier transform: if the amplitude or phase is time depen-

dent, the Fourier transform will be nonzero at several frequencies. Hence, the signal

is not monochromatic. The scalar field in (2.7) may be characterized in terms of

plane waves of different frequencies [32] as

s(t, ~p) =
1

2π

∫ ∞
−∞

S(ω) exp{j
(
ωt− ~κT · ~p

)
}dω, (2.8)

which is basically the space-time representation of the propagation waves, where

S(ω) is the Fourier transform of s(·). Substituting (2.6) into (2.5) yields

||~κ||2 = κ2
x + κ2

y + κ2
z =

ω2

c2
, (2.9)

an expression relating the temporal and the spatial frequency. If this holds true, the

exponential in (2.6) is a solution to the wave equation. By replacing c = λf in (2.9),

the magnitude of the wave number vector leads to |~κ| = 2π
λ . Here, λ represents

the wavelength defined as the distance propagated during one temporal period T .

Another space-time representation of the basic propagating wave in (2.7) has the

form

s(t− ~ξT · ~p) = A exp{jω(t− ~ξT · ~p)} =
1

2π

∫ ∞
−∞

S(ω) exp{jω(t− ~ξT · ~p)}dω, (2.10)

where the vector ~ξ = ~κ
ω , known in the literature as the slowness vector; points in the

same direction as ~κ and has magnitude |~ξ| = 1
c . Let the sensor array in Figure (2.5)

be placed close to the coordinate system, such that ~ξ is expressed in terms of its

spatial coordinates as

~ξ = −1

c

sinφ cos θ

sinφ sin θ

cosφ

 , (2.11)

where θ is the azimuth angle and φ stands for the angle of elevation [33]. These

angles are known as the Direction of Arrival (DOA) and represent the direction of

the propagating wave. In general, they are time dependent, but when the far-field

assumption is taken into account, the angles φ and θ are considered to vary so slowly,

that they become nearly constant.

Far-field assumption: For source signals whose propagation distance to a sensor

array is significantly larger than the aperture of the array itself, the DOA value at

14
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Plane wave

Figure 2.5: Plane wave impinging on a sensor array with N = 12 elements.

each sensor will be almost the same. According to (2.7), the wave front of constant

phase at time instant t is a plane perpendicular to the propagating direction given

by ~κ · ~p = constant. This is also known as plane wave.

2.3.2 System model

Let a planar array of sensors at the position ~pi for all i = 1, . . . , N observe some

signals originated by r sources. Allow the first sensor to be located at the origin

of the coordinate system and let sl(t), for all l = 1, . . . , r describe the signal wave

impinging on the first node. The observation at node i results from the sum of a

time delayed version of the original signals hidden in additive noise ni(t), which is

modeled as

xi(t) =

r∑
l=1

sl(t−∆i,l) + ni(t), (2.12)

where ∆i,l represents the time propagation delay from the signal source to the i

sensor position. The delay is defined by ∆i,l = ~ξl ·~pi and is associated with the DOA

through ~ξl = ~κl
ω , as shown in (2.11). Applying the Fourier transform to the total

data array output x(t) = [x1(t), . . . , xN (t)]T , the time delay commutes into phase

shift exp{−jω∆il} and the array output in the Fourier domain is denoted as

x(ω) =


x1(ω)

...

xN (ω)

 =
r∑
l=1

υ(φl, θl)sl(ω) + n(ω) = Υ(ω,φ, θ)s(ω) + n(ω), (2.13)

15
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where υ(φl, θl)) = [exp{−j~κl · ~p1}, . . . , exp{−j~κl · ~pN}]T is the array manifold (steer-

ing vector) depending on the lth incoming wave. The steering matrix is defined as

Υ(ω,φ, θ) = [υ(ω, φl, θl), . . . ,υ(ωφl, θl)]. The expression (2.13) is widely used when

considering broadband signals. In the following, the system model for narrow band

signals is derived.

2.3.2.1 Narrow band signals

In wireless communications, the source signals are modulated before being trans-

mitted by the carrier frequency ωc = 2πfc. At the receiver side, the signals are

demodulated such that they again become baseband. The narrow band assumption

exists if Bs∆T << 1. Namely, if the signal s(t) is band limited with bandwidth Bs

and the ∆T denotes the maximal travel time between two sensors of the array, the

complex demodulated signal wave is practically the same across the array elements.

Redefining (2.13) in terms of narrow band signals, the observed data vector yields

x(t) = Υ(φ, θ)s(t) + n(t). (2.14)

Here the signal mixing matrix Υ(φ, θ) ∈ CN×r is calculated at the carrier frequency

ωc. The incident signal vector s(t) and noise vector n(t) are assumed to be realiza-

tions of a white Gaussian 6 random process (zero-mean and variance σ2
N ), with zero

correlation between the different signals and between the noise and the signals. Since

the important information is centered at ωc, the frequency dependence in (2.13) is

neglected. Moreover, as the DOA estimation is generally based on samples of (2.14),

we allow the index k to denote the discrete samples of x(t). That is to say,

x(k) = Υ(φ, θ)s(k) + n(k). (2.15)

In this thesis, a two dimensional sensor array is considered, meaning that the eleva-

tion component φ in Figure 2.5 is neglected. As a result, (2.11) becomes

~ξ = −1

c

(
cosθ

sinθ

)
. (2.16)

6Noise is a very undesirable component in electric circuits, as it generally negatively impacts the
quality of any transmitted message. One type of noise that is inherent to all electronic devices is the
thermal noise, which refers to the random variations in current or voltage caused by the random
movement of electrons. The definition of white noise is regularly explained as a random signal
whose power spectral density is uniformly distributed in the entire frequency domain, meaning that
the power of the signal stays the same in the whole frequency domain with a regular bandwidth.
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Rewriting (2.15) only in terms of the angle θ in (2.16) yields
x1(k)

x2(k)
...

xN (k)

=


1 . . . 1

e−j
ωc
c

(x1 cos θ1+y1 sin θ1) . . . e−j
ωc
c

(x1 cos θr+y1 sin θr)

...
...

...

e−j
ωc
c

(xN cos θ1+yN sin θ1) . . . e−j
ωc
c

(xN cos θr+yN sin θr)



×


s1(k)

s2(k)
...

sr(k)

+


n1(k)

n2(k)
...

nN (k)

 . (2.17)

This is the same as
x1(k)

x2(k)
...

xN (k)

 =
(
υ(θ1), . . . ,υ(θr)

)

s1(k)

s2(k)
...

sr(k)



n1(k)

n2(k)
...

nN (k)

 , (2.18)

where each υ(θl) is the array steering vector corresponding to the direction of arrival

of the l th signal. Finally, the narrow band signal model to be used is given as

x(k) = Υ(θ)s(k) + n(k). (2.19)

In (2.19), the received vector x(k) and the steering vectors υ(θl) can be geomet-

rically visualized as vectors lying in the N dimensional space. It is evident that

the observation vector is a linear combination of the array steering matrix Υ(θ)

together with the signal vector s(k) acting as the coefficients of the combination.

Since the first sensor is located at the origin, (x1 = y1 = 0) the first row of the signal

mixing matrix Υ(θ) becomes one. One of the main goals throughout this thesis is

to track the time evolution of this array response matrix, as it is the signal subspace

containing the unknown spatial frequencies in terms of the DOA shown in (2.16).

2.4 Subspace methods

Subspace methods are highly useful in the realm of modern signal processing. Some

of its applications encompass blind communication channel identification [34], on-

line identification of network anomalies [35, 36], beamforming [37], denoising [38],

estimation of direction of arrivals and image compression [23], to mention some.

Many of the first techniques rely on subspace or eigen-based information found

by Eigenvalue Decomposition (EVD) of an estimated correlation matrix or Singular

Value Decomposition (SVD) of the corresponding data matrix. The main drawback

of these methods is that they are not computationally efficient to update when new
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data arrives, and therefore are process intensive. This limits their usefulness for

real-time and power constrained applications.

Several well-known algorithms have emerged to address the computational com-

plexity issue by various means [8, 37, 39, 7, 40, 9], and two of those are used in this

dissertation: The MUltiple SIgnal Classification (MUSIC) [40], and Yang’s Projec-

tion Approximation Subspace Tracking (PAST) algorithm [8].

The extraction of unknown sources from a set of given signals as in (2.19) is

relevant for several engineering applications. Usually, signals are estimated when an

incoming wave is detected by two or more array sensors. The higher the number of

sensors, the easier it is to estimate the signal. This scenario is known as an underde-

termined system constrained to r < N . Several methods also address the problem

of overdetermined systems, since r � N is a plausible scenario for engineering ap-

plications [41, 42]. Overall, this thesis studies underdetermined systems where the

number of sensors N is much larger than the number of source locations r.

2.4.1 True array covariance matrix

Subspace tracking relies on updating a low dimensional signal subspace instead of

the whole space spanned by the covariance matrix. The spatial covariance matrix

Rxx contains the noisy measurements {x(k), k = 1, . . . ,K} from (2.19) across the

sensor array, and it is defined as

Rxx = E{x(k)xH(k)} = ΥRssΥH + σ2I ∈ CN×N , (2.20)

where E{·} denotes the statistical expectation operator and the covariance ma-

trix of the signal sources s(k) is given by Rss = E{s(k)sH(k)} ∈ Cr×r. The eigen-

value decomposition of (2.20) yields

Rxx = UΛUH =
(
Ur Uo

)[(Λr 0

0 Λo

)
+ σ2

NIN

](
UH
r

UH
o

)
, (2.21)

where Λr = diag (λ1, . . . , λr) correspond to the first r dominant eigenvalues and

Λo = diag
(
λr+1, . . . , λN = σ2

)
to the noise eigenvalues. The column spans of the

signal eigenvectors, i.e. Ur = [u1, . . . ,ur] is interpreted as the signal subspace and

the noise eigenvectors spanning Uo =
[
ur+1, . . . ,uN

]
are characterized as the noise

subspace.

2.4.2 MUltiple SIgnal Classification (MUSIC)

The eigenvalues of Rxx given by {λ1, . . . , λN} are built in such way that the deter-

minant

|Rxx − λiI| = 0. (2.22)
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Substituting (2.20) in (2.22) leads to

|ΥRssΥH + σ2
NI− λiI| = |ΥRssΥH − (λi − σ2

N )I| = 0, (2.23)

where the eigenvalues ηi of the term ΥRssΥH are given by

ηi = λi − σ2
N . (2.24)

As Υ is composed of linearly independent vectors, it has full column rank. Moreover,

the signal covariance matrix Rss is non-singular as the impinging waves are assumed

to be low correlated. These two facts are important as they ensure that, when the

number of incident signals r is smaller than the size of the sensor array, the matrix

ΥRssΥH is positive semi definite with rank r. This suggests that there exist N − r
eigenvalues ηi of ΥRssΥH equal to zero. Going back to (2.24), it is observable that

N − r of the eigenvalues of Rxx are equal to the noise variance σ2
N . Hence, the

eigenvalues corresponding to Rxx may be sorted from the largest to the smallest,

as shown in (2.21). Now we search for the eigenvector ui corresponding to λi, such

that

(Rxx − λiI) ui = 0. (2.25)

Evaluating the eigenvectors associated to the less dominant eigenvalues yields

(Rxx − σ2
NI)ui = ΥRssΥHui + σ2

NIui − σ2
NIui = 0, (2.26)

and further simplification results in

ΥRssΥHui = 0. (2.27)

As Υ has full rank and Rss is non-singular, this implies that ΥHui = 0. Namely,
υ(θ1)ui

...

υ(θr)ui

 =


0
...

0

 . (2.28)

This suggests that the eigenvectors corresponding to the N − r smallest eigenvalues,

known as the noise eigenvectors Uo, are orthogonal to the r steering vectors that

span Υ. Thus, it becomes obvious that the eigenvectors associated to the r largest

eigenvalues, the signal eigenvectors Ur, span the same subspace as the steering

matrix Υ. This is to say, Span(Uo) ⊥ Span(Υ) and Span(Ur) = Span(Υ).

The MUSIC algorithm [40] takes the aforementioned ideas and states that the

steering vectors associated with the incident signals may be estimated by recogniz-

ing the steering vectors which are as orthogonal as possible to those eigenvectors
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associated with the eigenvalues from the sample covariance matrix Rxx.

Nevertheless, this algorithm does not directly provide the DOA of the incident

signals. In order to calculate them, it is necessary to calculate the MUSIC spatial

spectrum on the extent of the parameters space (all possible DOA), i.e.;

P =
υH(θ)υ(θ)

υH(θ)UoUH
o υ(θ)

. (2.29)

Where the DOA of the signals impinging on a node is estimated by locating the

peaks in the spectrum, as showh in Figure 2.6 Here, the largest peaks show that
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Figure 2.6: Scheme depicting a sensor’s architecture.

there are r = 3 signals of interest and the estimated DOA are given by the highest

points.

Some advantages and drawbacks of the MUSIC algorithm are:

• It works for several array shapes, but knowledge of the sensor positions is

needed [43].

• Very sensitive to sensor position, gain, and phase errors. Careful calibration

is necessary to make it work well.

• Searching through all θ may limit the performance in terms of speed and

computational resources.
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Several variants of MUSIC [44, 45] have been proposed to reduce complexity,

increase performance and resolution power. Nevertheless, we leave these issues out

of the scope of this thesis.

2.4.3 Estimation of the array covariance matrix

The algorithms based on subspace estimation follow the time evolution of the true

data covariance matrix Rxx. In order to calculate this matrix, we need to have

access to the whole random process x(k), which is impossible due to its infinite

length. Nevertheless, if we let the process to be ergodic7 the ensemble averaging

covariance matrix Rxx may be approximated by a time average R̃xx(K) over past

samples. Additionally, the ergodic process has to be stationary. By supposing x(k)

to vary slowly within the effective observation window length, we may assume it as

nearly stationary.

A well known-method for estimating the data correlation matrix is given by

Ŕxx(K) =
1

K

K∑
k=1

x(k)xH(k) =
1

K
XXH ≈ Rxx ∈ CN×N , (2.30)

where X denotes the noisy data matrix composed of K snapshots xk in the columns

and N sensor elements in the rows, i.e.,

X =
(
x(1) x(2) . . . x(K)

)
= Υ(θ)

(
s(1) s(2) . . . s(K)

)
+
(
v(1) v(2) . . . v(K)

)
= Υ(θ)S + V ∈ CN×K . (2.31)

The time averaged sample correlation matrix in (2.30) and (2.32) are an estimator

for the true covariance matrix in (2.20), and it converges with probability one to Rxx

as the sample size increases. In a practical scenario, the received signals at the sensor

array do change their statistical information over time. Hence, updating the estimate

of the covariance matrix periodically such that older samples are downdated, leads

to another way of calculating this matrix, namely

R̂xx(k) = βR̂xx(k − 1) + (1− β) x(k)xH(k) ≈ Rxx ∈ CN×N . (2.32)

This is known as the exponentially weighted covariance matrix, where β is the

forgetting factor with values 0 < β ≤ 1. The smaller the selected β value is, the

smaller the contribution of previous samples.

7Each realization eventually acquires the same statistical properties (mean and variance) while
they are sufficiently long in duration.
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2.4.4 Projection Approximation Subspace Tracking (PAST)

Among the usual approaches for adaptive subspace-based methods, we find the

PAST algorithm [8], which does not require a sample covariance estimate every

time a new data sample arrives. It estimates the signal subspace at time k recur-

sively, depending on the previous subspace estimate at time k − 1 and the new

observation x(k).

Let x be the observation vector of a random process with correlation matrix Rxx.

The respective eigenvalues and eigenvectors are given by (2.21), with UHU = I. In

[8, 46, 47, 48], Yang defines

S{b1, . . . , br} = {W ∈ RN×r| W =
[
ub1 , . . . ,ubr

]
Q, QHQ = I}, (2.33)

as a subset of the sample covariance space (1, . . . , N), where Q is a unitary matrix.

The expression (2.33) represents the set containing all possible combinations of the

N × r matrices, whose columns span an orthonormal basis of the subspace gener-

ated by the eigenvectors
[
ub1 , . . . ,ubr

]
. The true signal subspace is described by

S{1, . . . , r}, with eigenvectors [u1, . . . ,ur]. Now, the target is to find the subspace

W, subject to Span(W) ≈ Span(Ur). Consider the following cost function

J (W) = E{||x(k)−WWHx(k)||}2. (2.34)

When W ∈ RN×r has full rank r, with N > r, two theorems are derived [48]:

• Theorem 1: each stationary point of J(W) is characterized by

W ∈ S (b1, . . . , br). To be more specific, dJ (W)
dW = 0 implies WHW = I

and (I −WWH)RxxW = 0. The last equation is satisfied if and only if

W ∈ S{b1, . . . , br}, where {b1, . . . , br} is an arbitrary subset of {1, . . . , N}.

• Theorem 2: All stationary points not belonging to S(1, . . . , r) are saddle points.

If λ1 ≥ . . . ≥ λr > λr+1 ≥ . . . ≥ λN , J (W) > J (W∗) =
∑N

i=r+1 λi for

W /∈ S(1, . . . , r) are saddle points.

The later theorem proposes that when J (W) is minimized, it reaches the global

minimum when the columns of W are an orthonormal basis of the signal subspace.

Naturally, as in real life scenarios there are only x(k) samples available, Yang [8]

approximates the cost function to minimize

J (W(k)) =

k∑
l=1

βk−l
∥∥x(l)−W(k)WH(k)x(l)

∥∥2
(2.35)

by

J ′(W(k)) =

k∑
l=1

βk−l
∥∥x(l)−W(k)y(l)

∥∥2
, (2.36)
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with

y(l) = WH(l − 1)x(l) . (2.37)

where y(l) constitutes the approximation vector originated by projecting the vector

x(l) onto the column space of W(k) at each k instant. Consequently, all the sample

vectors accessible in the time interval 1 ≤ l ≤ k are entangled in estimating the

signal subspace at the current time k. The modified cost function from equation

(2.36) is minimized if

W(k) = R̂xy
k

(
R̂yy
k

)−1
, (2.38)

where

R̂xy
k =

k∑
l=1

βk−lx(l)yH(l) = βR̂xy
k−1 + x(k)yH(k) (2.39)

and

R̂yy
k =

k∑
l=1

βk−ly(l)yH(l) = βR̂yy
k−1 + y(k)yH(k). (2.40)

We use the Matrix Inversion Lemma to solve (2.38), and arrive at a Recursive

Least Square (RLS) algorithm-based solution [49]. The computational steps shown

in Algorithm 1 are derived for tracking the signal subspace matrix W(k).

Algorithm 1: PAST algorithm by Yang [8]

Input: β, R(0), W(0)
for k := 1, 2, ... do

Input: x(k)
y(k) = WH

k−1x(k)

h(k) = R̂yy
k−1y(k)

g(k) = h(k)/[β + yH(k)h(k)]

R̂yy(k) = 1
β [R̂yy

k−1 − g(k)hH(k)]
e(k) = x(k)−Wk−1y(k)

W(k) = Wk−1 + e(k)gH(k)
Output: W(k)

end for

In the first step, y(k) stores the modified data vector resulting from the multi-

plication between the old signal subspace WH(k− 1) and the new data vector x(k)

observed at the sensor array. Note that h(k) and the gain vector g(k) are interme-

diate steps of the algorithm while e(k) is the estimation error vector. A tracking

algorithm estimates the matrix W(k) as a function of the previously calculated

W(k − 1) and the new observation x(k) alone, as shown in the last step.
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Chapter 3

Distributed subspace tracking

IN this chapter we provide a short overview of the state-of-the-art subspace

tracking algorithms that work in a decentralized way. In addition to this, some

basics regarding the Average Consensus (AC) algorithm are provided, as well as

general information concerning the types of weights that may be used in wireless

sensor networks to guarantee a consensus. At last, we introduce two algorithmic

variants based on PAST, which are the scope of study of this thesis in the chapters

to come.

3.1 Background and state of the art

Subspace estimation, both in spatial and temporal spectral analysis, has been suc-

cessfully ported from a centralized to a distributed setting [50, 23, 51, 52]. Mea-

surement data from the individual sensor nodes are locally shared and combined to

aggregate values. Several widely used methods exist for in-network signal passing,

where each node broadcasts relevant information to its nearest neighbors. Some

advantages of distribution are high resilience to link and node failures and minimal,

if any, need of network topology knowledge.

Various prominent approaches exist for subspace estimation: A classic is the

Principal Component Analysis (PCA) used for top-k approximation of a high-

dimensional data set by way of computationally costly Singular Value Decompo-

sition (SVD). This approach has recently been improved by various authors such as

Candes et al. [53], Wright et al. [54] and Hage et al. [55]. The improved algorithms,

jointly called Robust PCA, are less valuable to outliers, and perform low-rank and

sparse decomposition instead of the more costly SVD.

An alternative method is a geometric approach, which estimates subspaces as

elements of the complex Grassmannian manifold [56]. To improve estimation results,
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researchers have applied a Bayesian method to define a posterior density function

on the complex Grassmannian manifold probabilities, and a Hilbert-Schmidt norm

to quantify estimation errors.

An application regarding distributed subspace tracking is distributed image pro-

cessing as shown by Song et al. [23]. The authors describe a decentralized camera

network for large area surveillance, where neighboring cameras with pan-tilt-zoom

capabilities share data during target tracking. Independent from each cameras own

estimation of the targets position, a network consensus using various cameras over-

lapping fields of view can be reached using the Kalman-consensus distributed track-

ing algorithm. The convergence results of the related distributed Kalman Filtering

algorithm have been analyzed by Soummya Kar et al. in [57], who have found that

a stable asymptotic estimation error can be reached at each sensor node, assuming

network connectivity and a centrally observable signal model.

3.2 Averaging algorithms

In recent work, distributed adaptive algorithms have been proposed to address the

issue of estimation over distributed networks. These new algorithms outperform

the classical centralized solution, but are based on specific network topologies which

lead to scalability constrains. For example, [58] considers the design of distributed

architectures based on randomized graph models.

Different strategies are used for distributed fusion and average of the informa-

tion. Some algorithms are based on interaction between a node and all its adjacent

nodes in the network, so as to reach a consensus, namely the Consensus algorithms,

introduced by Olfati-Saber and Murray in [10, 59].

Another strategy is based on pairwise communications: the gossip-based algo-

rithms such as the push-sum protocol introduced by Kempe in [15] are good alter-

natives when low communication overhead is desired.

Likewise, the consensus protocol is widely used for obtaining averages over a

network [60, 59, 10]. The work in [61, 62] has introduced a distributed algorithm

based on Consensus Propagation for frequency estimation over a wireless sensor

network.

Due to its simplicity and low computational complexity O(Nr), we believe that

PAST is a suitable algorithm to be investigated and hence being distributed for

wireless sensor networks applications. This Subsection presents our two algorithmic

approaches for distributing PAST based on the average consensus algorithm, a work

previously introduced in [61, 63].
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3.2.1 Average consensus propagation

Consensus algorithms are iterative protocols where self-governing nodes communi-

cate with other nodes to achieve an agreement about a specific parameter of interest,

without the need of a central unit to process this information. At each time iteration,

sensor i exchanges information with its neighborhood Ni, such that a common values

is asymptotically reached. In this thesis we adopt the Average Consensus (AC), a

version of consensus algorithms whose main task is to compute the average of a set

of measurements [64, 65]. AC is used as a tool to develop two distributed subspace

tracking algorithmic variants for wireless sensor network applications [61, 62]. In the

following, we provide a brief explanation about AC and state necessary conditions

to be satisfied in order to guarantee convergence to the average value in the network.

Let each node i from graph H have an associated scalar value (or vector) xi

defined as the state of node i. To initialize this state, the environmental data

monitored by node i is used. To update it, the state information xj from Ni is taken

into account. Reaching a consensus means that xi = xj . In this work, we restrict

to the synchronous case even though asynchronous average consensus (see e.g. [66]

and [67]) has been widely addressed in the context of WSN.

The time invariant model: each node i has an initial scalar value

xi(0) ∈ R, and the initial state vector containing each scalar is given by

x(0) = [x1(0), x2(0), . . . , xN (0)]T . The task of the algorithm is to compute the aver-

age 1
N

∑N
i=1 xi(0). The local state at each node i and time k is updated using a linear

combination of its previous value and the information received from its neighbors as

xi(k) = Giixi(k − 1) +
∑
j∈Ni

Gijxj(k − 1). (3.1)

Here Gii corresponds to the weight of i and Gij is the (ij)th entry of the weight

matrix associated to the edge {ij}, which is non-zero if and only if {i, j} ∈ E .

These time invariant weights are selected such that every xi(k) iteratively con-

verges to the average of their initial values xi(0). Let us introduce the state vector

x(k) = [x1(k), x2(k), . . . , xN (k)]T that contains all scalar observations in the net-

work. Then, (3.1) is rewritten as the weighted average of the neighbors’ data, i.e.,

x(k) = Gx(k − 1). (3.2)

An undirected graph H assumption indicates that Gij = Gji and that the sum

of all weights equals one. Therefore, the G matrix has the same sparsity as the

network graph and it is doubly stochastic, meaning that 1N×1 = [1, . . . , 1]T is a left

and right eigenvector of G. To achieve asymptotic average consensus, the matrix

G must satisfy limk→∞Gk = 1
N 11T = J, or similarly, the spectral radius satisfies
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ρ (G− J) < 1. As a result we obtain

x(k) = Gkx(0)
k →∞−−−−→ 1

N

N∑
i=1

xi(0) · 1N×1 (3.3)

All local states xi(k) approach the averaged value of x(0) as k increases.

3.2.2 Design of the weight matrix

A requirement to design a weight matrix is to have knowledge of the network

topology in addition to the information available at each node. Some weighting

models assume that the nodes have global information available. For instance, the

maximum degree weights demand information about the maximum node degree in

the whole network of a static topology [64]. This must be previously determined

and broadcast across the network before using any consensus algorithm. Similarly,

the pair-wise/geographic gossip introduced in [16] for a time varying topology needs

some information about the global network. Here, the algorithm selects randomly

(with probability 1
N ) a transmitting node i to establish a bidirectional communica-

tion with a randomly selected node j. While pair-wise gossip communicates only

with its neighboring Ni, the geographic gossiping may connect with any j ∈ P .

Other models are implemented using local information gathered directly by the

nodes or obtained through cooperation, i.e.: The local degree weights, where each

node must know the out-degrees of its neighborhood [64]. A well known method

for assigning weights in a time varying topology graph is the nearest neighbor rule

[68, 69]. Nevertheless, it does not preserve the average because 1TG(k) 6= 1T (1 is

not a left eigenvector of G(k)). This approach is therefore unsuitable for calculating

the average consensus.

Metropolis weights [70] are very simple to calculate, and they preserve the av-

erage and guarantee asymptotic convergence. Although these weights are time de-

pendent, a static network scenario (number of edges does not vary over time) is

addressed at the full length of this thesis. The Metropolis weights are given as

Gi,j ∈ RN×N =


1

(1+max{di,dj}) , {i, j} ∈ E

1−
∑

ν∈Ni
Giν , i = j

0, otherwise.

(3.4)

It is easy to observe that each node requires knowledge of the degree of each neigh-

boring node j ∈ Ni in order to calculate the weights. Since the edges are time

varying, transmitting this information together with the observation data (state of

node) at each iteration guarantees a real time update of the weight matrix. In (3.4)

the weight at each edge depends on the largest degree at its two incident nodes. The

self weight from node i is selected such that its total weight sum equals 1.
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3.3 Distributed algorithmic variants based on PAST

The main goal of this thesis is to develop and investigate two distributed algorithmic

approaches for signal subspace tracking applied in a wireless sensor network, without

the need for a fusion center. To this aim, we start from Projection Approximation

Subspace Tracking (PAST), which is a well-investigated algorithm suitable for im-

plementation in a centralized network. We arrive at a distributed approximation of

Algorithm 1 by letting each sensor i broadcast some local observation variables to

its neighborhood Ni. Vice versa, the received messages at the sensor nodes from

its neighborhood are fused by employing average consensus propagation. On next,

we provide a more detailed explanation regarding the variables exchanged in the

network, where the averaging process occurs and finally introduce the distributed

versions of Algorithm 1.

3.3.1 Distribution of the signal vector variable y

To decentralize the PAST algorithm, we regard the Algorithm 1 containing the pri-

mary set of equations locally running at each node i (in parallel). This generates the

local variables xi(k) ∈ C|Ni|×1,y
i
(k) ∈ Cr×1,hi(k) ∈ Cr×1,g

i
(k) ∈ Cr×1, R̂yy

i (k) ∈
Cr×r, ei(k) ∈ C|Ni|×1 and Wi(k) ∈ C|Ni|×r, where the variable Ni refers to the

neighborhood (node degree) of i from Section 2.2. In order to facilitate our later

calculations, we extend the definition of neighborhood to be composed of the j

neighboring nodes connected with i by its edges and also including itself as own

neighbor.

We consider that every node i broadcasts its own scalar environmental observa-

tion {xi(k)} and at the same time receives {xj(k)} j∈Ni,
j 6=i

from its j neighbors. With

this available information, every node i aggregates the local observation vector xi(k),

i.e.,

xi(k) = STi x(k), (3.5)

where xk is the data vector observed in the whole network. We introduce the

selection matrix Si ∈ RN×|Ni|, a truncated version of the adjacency matrix in (2.1),

that chooses Ni observations out of x(k) corresponding to node i. The selection

matrix is defined as

(Si)l,j =

1 if j = lth node ∈ Ni
0 otherwise.

(3.6)

Recall the average consensus algorithm [64, 65] and let us propose the following

distributed scheme: Node i sends {y
i
(k)} to the neighborhood Ni and receives
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{y
j
(k)} j∈Ni,

j 6=i
. Hence, the averaging process occurs when

y
i
(k, t) = Giiyi(k, t− 1) +

∑
j∈Ni,
j 6=i

Gijyj(k, t− 1). (3.7)

Here, Gii stands for the weight of node i and Gij is the weight associated to j from

Ni. The two time index represent that for each time k the algorithm is updated,

there are t consensus rounds taking place. This means that t = 1, . . . , tmax
1 is the

averaging time window used for each node in order to reach a global consensus, e.g.

ỹ
i
(k) = y

i
(k, tmax). (3.8)

This information exchange permits that all nodes involved in the communica-

tion process have knowledge of the neighboring observations. We propose to locally

average the vector y
i
(k) in node i by fusing information aggregated in its associated

neighborhood Ni. The local averaging is described in (3.7), where we calculate the

internal weighted y
i
(k) together with the weighted y

j
(k − 1). This is subsequently

iterated over several consensus run, which directly depend on the size of the sensor

network (the larger the network, the more consensus runs are needed such that i

achieves the average ỹ
i
(k) from the whole network). The reason why we decided

to distribute this particular variable is because according to (5.32), this vector con-

tains data from the previous updated signal subspace Wi(k − 1) as well as new

arriving observation data xi(k). As a result, every sensor in the system has indirect

knowledge of these parameters.

After defining in which part of the algorithm the distribution takes place, we

introduce Algorithm 2. The average consensus ỹ
i
(k) is estimated at every node of

the system and the following calculations comply with the original equations from

Algorithm 1.

At the end of step k − 1, every node i sends to its adjacent nodes Ni its own

estimation of y
i
(k − 1). Then, at the beginning of step k, every node i receives

{xj ,yj(k− 1), wi}j∈Ni from its neighbors and compute a new average, to be sent at

the end of step k.

3.3.2 Distribution of the correlation matrix R̂

In the second approach, node i sends the correlation matrix {R̂yy
i (k)} to Ni and

receives {R̂yy
j (k)} j∈Ni,

j 6=i
. The averaging occurs as long as

R̂yy
i (k, t) = giiR̂

yy
i (k, t− 1) +

∑
j∈Ni,
j 6=i

gijR̂
yy
j (k, t− 1), (3.9)

1tmax: time when the consensus is reached
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Algorithm 2: Local description of distributed PAST with y
i

averaging

Input: β, R̂yy
i (0), . . . , R̂yy

N (0),Wi(0), . . . ,WN (0)
for k := 1, 2, . . . do

for i := 1, 2, . . . , N do
Input: xi(k) scalar environmental observation
xi(k) = STi x(k)
y
i
(k) = WH

i (k − 1)xi(k)
Apply (3.7) and (3.8) to obtain the average consensus ỹ

i
(k)

hi(k) = R̂yy
i (k − 1)ỹ

i
(k)

g
i
(k) = hi(k)/[β + ỹ

i
(k)Hhi(k)]

R̂yy
i (k) = 1

β [R̂yy
i (k − 1)− g

i
(k)hHi (k)]

ei(k) = xi(k)−Wi(k − 1)ỹ
i
(k)

Wi(k) = Wi(k − 1) + ei(k)gH
i

(k)

end for

end for

and the global consensus is achieved when

R̃yy
i (k) = R̂yy

i (k, tmax). (3.10)

Algorithm 3: Local description of distributed PAST with R̂yy
i averaging

Input: β, R̂yy
i (0), . . . , R̂yy

N (0), R̃yy
i (0), . . . , R̃yy

N (0,Wi(0), . . . ,WN (0)
for k := 1, 2, . . . do

for i := 1, 2, . . . , N do
Input: xi(k) scalar environmental observation
xi(k) = STi x(k)
y
i
(k) = WH

i (k − 1)xi(k)

hi(k) = R̃yy
i (k − 1)y

i
(k)

g
i
(k) = hi(k)/[β + y

i
(k)Hhi(k)]

R̂yy
i (k) = 1

β [R̃yy
i (k − 1)− g

i
(k)hHi (k)]

Apply (3.9) and (3.10) to obtain the average consensus R̃yy
i (k)

ei(k) = xi(k)−Wi(k − 1)y
i
(k)

Wi(k) = Wi(k − 1) + ei(k)gH
i

(k)

end for

end for

3.4 Summary

This chapter presented two algorithmic variants based on PAST. In a first approach,

the Algorithm 2 is introduced. Here, every sensor i locally tracks the signal subspace

and its own internal state vector y
i
(k). Furthermore, a consensus of the local state
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and the state vectors from its neighborhood Ni is reached using Metropolis-weighted

y
j
(k). To this end, every sensor node i broadcasts its local scalar observation xi(k)

and its locally filtered r-dimensional vector y
i
(k) to its neighborhood Ni of sensor

nodes. Thus, every node broadcasts 2(r+ 1) + 1 real-valued variables per time step.

In a second approach, the correlation matrix R̂yy
i (k) is distributed among the nodes.

Due to the simplicity of these algorithms, we believe that a well performing

low-cost implementation of a distributed PAST algorithm with low communication

overhead is a feasible goal. In the next chapters, we show performance results of

both approaches, analyze their stability, and discuss their drawbacks.
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Chapter 4

Performance analysis of

algorithmic approaches

THE goal of this chapter is to evaluate the performance of both Algorithm 2 and

Algorithm 3. To this end, some simulation results, showing the tracking capa-

bilities of two signals, are introduced in Section 4.1. The angle difference between

the true Υ and the estimated W subspaces, as well as the root mean square error

for several signal to noise ratios are presented in Section 4.2 and Section 4.3, respec-

tively. These common benchmarks allow to investigate the algorithm’s behavior for

different network sizes and topologies. Last, a summary and some conclusions are

provided in Section 4.4.

4.1 Direction of Arrival estimation

As previously introduced in Chapter 2, the Direction-of-Arrival (DOA) is a func-

tion of smart antenna arrays, useful to define the direction from where a received

electromagnetic wave originated.

These antenna arrays allow to ameliorate the resolution 1 of DOA estimation,

when compared to a single antenna. An initial approach for direction finding was

based on the Fourier transform (Delay and Sum algorithm), which later came to

be known as the conventional beamforming. Nevertheless, their inability to resolve

for multiple signal components and accurately estimate their Direction-of-Arrival

gave rise to the so-called high resolution methods. There is a large number of

applications regarding direction finding. In mobile communications, it allows to

reduce the interference and improve the communication quality. It is used in radar,

radio, astronomy, sonar and navigation. In rescue, it is possible to identify the origin

1Ability to measure the angle of arrival of a radio signal
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of an emergency phone call, such that a rescue team is deployed towards the exact

location.

MUSIC [40] is a spectral estimation-based method, which task is to extract

the desired signal parameters out of the received data provided by a sensor array.

These parameters could be the number of one or multiple signal sources, the signal

frequencies or the Direction Of Arrival. In the experiments to follow, the MUSIC

algorithm introduced in Chapter 2, is used to find the DOA of r = 2 incoming

waves. As depicted in the signal flow chart in Figure 4.1, the MUSIC algorithm is

used every time the update of the W(k) signal subspace matrix takes place.

Figure 4.1: Flow chart representation of Algorithm 2. The Average Consensus ỹ(k)
is used to calculate the local errors and posteriorly update the W(k) signal subspace.
The later matrix is influenced from the previous averaging process and has indirect
knowledge of the global state in the network. In a last step, the MUSIC algorithm
is used for DOA finding.

Furthermore, this section examines both distributed Average-Consensus based

algorithms from Chapter 3. Although this thesis focuses on studying the subspace

W(k), analyzing the algorithmic behavior in the presence of several signals sources

is still a relevant tool, especially when these methods operate in practice.

4.1.1 Simulation experiments

To start, consider a wireless sensor network composed of N nodes placed in a 2-D

jittered cartesian grid. Namely, we evaluate those topologies from Figures 2.3 and

2.4. These sensors observe a total of K = 120 snapshots and track the Direction-of-

Arrival of r = 2 impinging waves. It is assumed that each sensor in the neighborhood

Ni correctly receives the broadcasted messages from node i, with probability 1.

Recall the signal model from Section 2.3.2, e.g.,

x(k) = Υ(θ(k))s(k) + n(k), (2.19)
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and allow θ(k) to be slowly time-varying, i.e. θ(k) ≈ θ. To display the DOA

estimation vs. time, the spectral MUSIC algorithm [40] is applied for extracting r

components out of the signal subspace matrix W(k). All simulation experiments are

carried out using 100 different noise realizations (Monte Carlo runs), and therefore

all results to be presented are first averaged over all MC runs and then over all N

sensor elements 2.

In a first experiment, the network size is set to N = 36. The tracking capabilities

of two signals r = 2 operating at the same frequency f = 2.4 GHz are analyzed.

Both signals have a constant azimuth at θ1 = [144◦] and θ2 = [90◦], represented by a

dashed line in red and blue, respectively. At iteration k = 60 they undergo a “step”

change and become constant again at θ1 = [−108◦] and θ2 = [−72◦].

Since PAST has its roots in the Recursive Least-Squares algorithm, it is also

governed by the so-called forgetting factor β. As a result, this parameter is inves-

tigated as it can be tuned to find a compromise between the tracking capabilities,

convergence rate and stability. Whereas the first two parameters are studied in

Chapter 5, this Subsection explores how the selection of β impacts the algorithm’s

performance. For the following simulations, the selected forgetting factors are:

• β = 0.9, represented by a solid line

• β = 0.8, represented by a dash-dot line

• β = 0.6, represented by a dotted line,

Figure 4.2 depicts the performance of the PAST algorithm proposed by Yang in

[8]. The estimated direction of arrivals θ̂1 and θ̂2 are described by the magenta and

green colors, respectively. In 1), the tracking accuracy of the algorithm is tested at

SNR= -5. Observe that the higher the β value, the more pronounced the lag in az-

imuth transition. This is due to the fact, that older samples are highly weighted and

the algorithm needs more time to integrate the new samples indicating the azimuth

change. A smaller forgetting factor adapts very fast to the step change. Neverthe-

less, it is also more sensitive to noise. Subfigure 2.) displays the performance for

the same β values, but now for SNR= 5. As expected, the higher signal to noise

ratio leads to a better performance and the behavior among the β’s is equivalent

to that observed in a.). These results describe the “centralized” solution where no

information exchange takes place, and are used as a reference to evaluate how good

the outcome of the distributed approaches are.

Let us study the behavior of the proposed Algorithm 2 from Chapter 3. The

Figure 4.3 shows the performance when y
i

is exchanged in the scenario f.) from

Figure 2.4. That is to say, the neighborhood size for each i is set to 1
4N , i.e.,

2Even though the performance from node to node varies due to their different neighborhood
size, we believe that in a scenario where so many parameters are studied, the study of the average
network behavior is the main approach.
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|Ni| = 9. Results in 1.) and 2.) display a satisfactory behavior for both SNR values.

This topology meets a fair compromise between tracking accuracy and the amount

of information exchanged inside the network.

In Figure 4.4 the results obtained from the evaluation of Algorithm 3 are rather

disappointing. The algorithm tracks θ1 correctly, but right after the step it keeps

locked at the same value, where a meaningless step change is observed at k = 60.

Even for higher SNR= 5 in 2.), there is no improvement. A worse situation is seen

in the tracking of θ2, where the estimates do not manage to track the signal at

all. This results actually show the worst possible scenario. In the appendix B it is

possible to observe that the algorithmic performance provides is good for fully and

dense connected networks.

After comparing both algorithmic versions, it becomes evident that Algorithm 2

provides the best possible tracking capabilities at the lowest message passing rate.

Recall that the message exchange is what consumes most of the power resources in

a sensor. Therefore, a weak connected network such as e) from Figure 2.4 seems a

good compromise between tracking accuracy and the use of the available resources,

especially when the performance is comparable to the centralized solution in Figure

4.2. The reader is referred to Appendix A, where the tracking capabilities for the

full, dense, sparse and regular neighborhood |Ni| = 5 topologies from Figure 2.4 are

presented.

36



4.1. DIRECTION OF ARRIVAL ESTIMATION

0 20 40 60 80 100 120
−180

−120

−60

0

60

120

180

D
ire

ct
io

n 
of

 A
rr

iv
al

 [d
eg

]

1.)

0 20 40 60 80 100 120
−180

−120

−60

0

60

120

180
2.)

0 20 40 60 80 100 120
0

60

120

180

Time [k]

D
ire

ct
io

n 
of

 A
rr

iv
al

 [d
eg

]

3.)

0 20 40 60 80 100 120
0

60

120

180

Time [k]

4.)

DoAθ
1

DoAθ
2

Trackθ
1

,

β= 0.9

Trackθ
2

,

β= 0.9

Trackθ
1

,

β= 0.8

Trackθ
2

,

β= 0.8

Trackθ
1

,

β= 0.6

Trackθ
2

,

 β= 0.6

Figure 4.2: Subfigure 1.) and 2.) display the tracking capabilities of the centralized
PAST algorithm for N = 36 sensor elements. Subfigures 3.) and 4.) present the
angle difference between the estimated subspace W and the true one provided by
the steering matrix Υ. The SNR= -5dB for those left side subfigures and SNR=
5dB for those at the right. The forgetting factor is set to β = 0.9, 0.8, 0.6.

37



CHAPTER 4. PERFORMANCE ANALYSIS OF ALGORITHMIC
APPROACHES

0 20 40 60 80 100 120
−180

−120

−60

0

60

120

180

D
ire

ct
io

n 
of

 A
rr

iv
al

 [d
eg

]

1.)

0 20 40 60 80 100 120
−180

−120

−60

0

60

120

180
2.)

 

0 20 40 60 80 100 120
0

60

120

180

Time [k]

P
rin

ci
pa

l a
ng

le
s 

[d
eg

]

3.)

0 20 40 60 80 100 120
0

60

120

180

Time [k]

4.)

DoA1 DoA2
Trackθ

1

,

β= 0.9

Trackθ
2

,

β= 0.9

Trackθ
1

,

β= 0.8

Trackθ
2

,

β= 0.8

Trackθ
1

,

β= 0.6

Trackθ
2

,

β= 0.6

240 240

Figure 4.3: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in a network with regular neighborhood size, i.e., |Ni| = 9.

This is the scenario e) from Figure 2.4 for N = 36 sensor elements. Subfigures 3.)
and 4.) present the angle difference between the estimated subspace W and the true
one provided by the steering matrix. The SNR= -5dB for those left side subfigures
and SNR= 5dB for those at the right. The forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure 4.4: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when Ri is distributed in a network with regular neighborhood size, i.e., Ni = 9.
This is the scenario e) from Figure 2.4 for N = 36 sensor elements. Subfigures 3.)
and 4.) present the angle difference between the estimated subspace W and the
true one provided by the steering matrix Υ. The SNR= -5dB for those left side
subfigures and SNR= 5dB for those at the right. The forgetting factor is set to
β = 0.9, 0.8, 0.6.
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4.2 Principal Angles Between Subspaces (PABS)

The interest regarding the PABS originated at Jordan [71] in 1875. In the last fifty

years, this research area has gained more popularity as it is used in statistics, data

mining [72], information retrieval [73] and even pattern recognition [74][75].

The most common approaches for comparing subspaces are based on the singular

value decomposition. Golub and Van Loan provide a survey on these methods in

[76]. On a first note, the orthogonal Procrustes problem solved by subspace rotations

[77] is addressed. This problem explores how likely it is to rotate Wk ∈ CN×r into

Υk ∈ CN×r by means of Qk ∈ Cr×r, such that the distance between both subspaces

is minimized, i.e.,

min ||Υ−W(k)Q(k)||F (4.1)

subject to QTQ = I. Another method, the one used in this thesis, refers to the

angle between subspaces [78], which is a generalization of the angles between two

vectors.

Let the estimated signal subspace matrix W(k) and the true subspace given by

the steering matrix Υ be subspaces in CN×r, both with the same dimension. The

first principal angle between these subspaces is defined as

α1 := min

{
arccos

(
〈u,v〉
||u||||v||

)
|u ∈W(k),v ∈ Υ

}
= ∠(u1,v1). (4.2)

In order to calculate the first (and smallest) principal angle α1, it is necessary to

choose two unit vectors u1 ∈W(k) and v1 ∈ Υ, such that the angle between them

is minimized. The vectors u1 and v1 are known as the first principal vectors. For

finding α2, select the unit vector u2 ∈ W(k) orthogonal to u1 and v2 ∈ Υ which

is orthogonal to u1. Again, the angle α2 is minimized. This searching procedure

occurs until each angle l = 1, . . . , r has been calculated.

αl := min

{
arccos

(
〈u,v〉
||u||||v||

)
|u ∈W(k),v ∈ Υ,u ⊥ um,v ⊥ vm,m = 1, 2, . . . , l − 1

}
.

(4.3)

The computation of the principal angles in these simulations use the function

subspacea.m created by Knyazev [79], which is more robust against round-off er-

rors.

The Figure 4.2 presents in 3.) and 4.) the principal angles between the subspace

spanned by the columns of the estimated signal subspace W(k) and the original

signal subspace spanned by the columns of the matrix Υ(θ).

From the theory introduced in Section 4.2, we know that the first principal angle

always equals zero if the subspaces are equal. In this case, the first principal angle
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is provided by θ2. This value is the closest to zero and does not improve much

for higher SNR values. Note that different β values have no impact on the angle

difference estimation. On the other hand, the second principal angle is provided by

θ1. In 3.) we observe that the impact of the step at k = 60 is more pronounced.

Likewise, the angle difference decreases for higher β values, and drops even further

for higher SNR values. Subfigure 4.) shows that for β = 90 both angles are almost

equal. An interesting behavior occurs when β = 0.8, as the angle becomes larger

after iteration k = 100. It is possible that for this particular value, the subspace

needs more time to stabilize.

In Figure 4.4, the first principal angle in 3.) and 4.) shows a similar performance

to that in Figure 4.2. Here, the second principal angle yields 180◦. This suggests that

the second principal vectors originating from this angle point to opposite directions.

Figure 4.4 introduces an interesting result: even though the DOA estimation is poor,

the first principal angle keeps rather low. Nevertheless, the second principal angle

rises over 200◦.

The Figure 4.5 introduces the angle difference between the subspaces for the

previous selected forgetting factors. These results are averaged over all MC runs

and over all time iterations. Observe that at each topology, the right hand side

figures related to the first principal angle display very similar results for all SNR

values. Nonetheless, those at the left side show a dramatic improvement when the

SNR increases. Also note, that the topology results at the right hand side are upside

down when compared to those at the left hand side. The orthogonality constraint

between the first and the second principal vectors probably originates this shift.

Algorithm 3 is evaluated in Figure 4.6. As expected, the principal angles behave

similar to those in Figure 4.5, but with a higher angle error.
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Figure 4.5: Evaluation of the subspace angle difference between the estimated sub-
space W and the true one provided by the steering matrix Υ for the step signals.
The Algorithm 2 is analyzed for the topologies proposed in Figure 2.4. The results
displayed at the right side correspond to the first principal angle, and those at the
left side, relate to the second principal angle. Again, the performance for several
forgetting factors are depicted: β = 0.9 in 1.) and 2.), β = 0.8 in 3.) and 4.). At
last, β = 0.6 is shown in 5.) and 6.).
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Figure 4.6: Evaluation of the subspace angle difference between the estimated sub-
space W and the true one provided by the steering matrix Υ for the step signals.
The Algorithm 3 is analyzed for the topologies proposed in Figure 2.4. The results
displayed at the right side correspond to the first principal angle, and those at the
left side, relate to the second principal angle. Again, the performance for several
forgetting factors are depicted: β = 0.9 in 1.) and 2.), β = 0.8 in 3.) and 4.). At
last, β = 0.6 is shown in 5.) and 6.).
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4.3 Root mean square error

There are a variety of those so-called ”measures of goodness of fit”. For instance,

the Root Mean Square Error is used to gauge the quality of a model using the

differences between the estimated and observed results. Smaller results mean a

better reproduction of the observable data by the underlying model. As the quality

of the model can be distorted by various factors, i.e. sample size, estimator accuracy,

this work considers the RMSE as a quality indicator tool.

The formula used to calculate the RMSE for the first signal is given as

RMSEθ1 =

√√√√ 1

K

1

N

1

MC

K∑
k=1

N∑
i=1

MC∑
mc=1

|θ1(k, i,mc)− θ̂1(k, i,mc)|2, (4.4)

and for the second

RMSEθ2 =

√√√√ 1

K

1

N

1

MC

K∑
k=1

N∑
i=1

MC∑
mc=1

|θ2(k, i,mc)− θ̂2(k, i,mc)|2. (4.5)

Recall the tracking in Figure 4.2 for the centralized PAST. When these results

are compared with Figure 4.3 for the Fix9 topology, it becomes evident that even

though the later is less densely connected, the tracking is still satisfactory. This

motivated to study the performance in terms of the RMSE for both incoming wave

signals by means of 4.4 and 4.5.

It is interesting to see in Figure 4.7, that θ̂1 goes below θ̂2 for the centralized

case. In the fix9 case, it works the other way around. This suggests, that the

algorithm used for extracting the frequencies out of the subspace (i.e. MUSIC) can

be optimized such that both signals are separated more accurately. Naturally, the

steepest slope corresponds to the centralized PAST, with θ̂1 presenting the lowest

errors, as the estimation capabilities are proportional to the amount of information

collected and shared. This is better observed in Figure 4.8, where the performance

is averaged over both signals as:

RMSEθr =
1

2
(RMSEθ1 + RMSEθ2). (4.6)

The behavior is the same: centralized PAST or fully connected are the best

achievable values. The worst results are given by those topologies with lower con-

nectivity. Observe that the selection of the forgetting factor does not dramatically

change the overall performance.

In effect, the high forgetting factors have better performance for slowly varying or

constant signals (as in Figure 4.3). Nevertheless, the local differences in performance

(namely how fast the algorithm adapts to the step) are negligible when the signals

are averaged over time as well. As a result, the forgetting factor β = 0.6 in c.)
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Figure 4.7: Evaluation of the Root Mean Square Error for the centralized PAST and
for Algorithm 2 using the scenario e.) introduced in Figure 2.4. This experiment
depicts the performance of both algorithms when the signals undergo a step change.
The forgetting factor is set to β = 0.9

shows a similar performance when contrasted to β = 0.9 in a.) and β = 0.8 in b.).

Comparing these results with those in Figure 4.9, where the Algorithm 3 suggests

again that this approach is more sensitive to the information exchange.

Let us repeat the above experiment, but considering slowly varying signals. That

is to say, the DOAs are constant at θ1 = [144◦] and θ1 = [−144◦], but after iteration

22 they start to approach each other, and become constant again at iteration 98. It

is evident, that the tracking capabilities start to decrease with increasing proximity

of the signals. This occurs because the search procedure of MUSIC is not able to

identify both signals. It searches for the r peaks in its pseudospectrum related to

the most dominant components (see Figure 2.6), but when the signals are so close to

each other, it is likely that the subspace is reducesd to only one dominant eigenvector
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with its corresponding eigenvalue. Closely spaced signals present a high correlation

between each other, and as they move closer together their corresponding eigenvec-

tors become more parallel. As a result, the subspace eventually looses a dimension

with only a single dominant eigenvalue that makes the correct identification of signal

and noise subspace difficult.

Again, the Algorithm 2 presents the best results when compared with the ap-

proach when R̂ is distributed. The angle difference between the subspaces in

Figure 4.13 presents the same behavior as for the step-change case. While the

first principal angle (at the right side) related to θ2 stays very close to zero for

all SNR values, the angle difference related to θ1 changes according to the Signal

to Noise Ratio. Figure 4.14 only confirms that averaging R̂ does not allow for any

improvement.

Figure 4.15 provides a good insight regarding the RMSE performance. Here,

we observe that the first signal is indeed calculated as the strongest one for both

centralized and the fix9 topology. The average RMSE from (4.6) is displayed for

Algorithm 2 in the Figure 4.16. The best performance shown in a.) with β = 0.9

corresponds to the dense connected network. For lower β = 0.8, 0.4, the performance

of PAST and fully connected gets worse. This means that for strongly connected

networks, a higher forgetting factor is more suitable. In contrast, for weak connected

networks a lower β value allows for a better performance.
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Figure 4.8: Evaluation of the Root Mean Square Error as in 4.6 when Algorithm
2 is evaluated for N=36 sensors and for all possible topologies from Figure 2.4.
Subfigures 1.) , 2.) and 3.) relate to β = 0.9, 0.8, 0.6, respectively.
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Figure 4.9: Evaluation of the Root Mean Square Error as in 4.6 when Algorithm
3 is evaluated for N=36 sensors and for all possible topologies from Figure 2.4.
Subfigures 1.) , 2.) and 3.) relate to β = 0.9, 0.8, 0.6, respectively.

48



4.3. ROOT MEAN SQUARE ERROR

0 20 40 60 80 100 120
−180

−120

−60

0

60

120

180

D
ire

ct
io

n 
of

 A
rr

iv
al

 [d
eg

]

1.)

0 20 40 60 80 100 120
−180

−120

−60

0

60

120

180
2.)

0 20 40 60 80 100 120
0

60

120

180

Time [k]

P
rin

ci
pa

l a
ng

le
s 

[d
eg

]

3.)

0 20 40 60 80 100 120
0

60

120

180

Time [k]

4.)

DoAθ
1

DoAθ
2

Trackθ
1

,

β= 0.9

Trackθ
2

,

β= 0.9

Trackθ
1

,

β= 0.8

Trackθ
2

,

β= 0.8

Trackθ
1

,

β= 0.6

Trackθ
2

,

 β= 0.6

Figure 4.10: Subfigure 1.) and 2.) display the tracking capabilities of PAST. Sub-
figures 3.) and 4.) present the angle difference between the estimated subspace W
and the true one provided by the steering matrix Υ. The SNR= -5dB for those left
side subfigures and SNR= 5dB for those at the right. The forgetting factor is set to
β = 0.9, 0.8, 0.6.
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Figure 4.11: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in a network with regular neighborhood size, i.e., Ni = 9.

This is the scenario e) from Figure 2.4 for N = 36 sensor elements. Subfigures 3.)
and 4.) present the angle difference between the estimated subspace W and the
true one provided by the steering matrix Υ. The SNR= -5dB for those left side
subfigures and SNR= 5dB for those at the right. The forgetting factor is set to
β = 0.9, 0.8, 0.6.

50



4.3. ROOT MEAN SQUARE ERROR

0 20 40 60 80 100 120

−180

−120

−60

0

60

120

180

240

D
ire

ct
io

n 
of

 A
rr

iv
al

 [d
eg

]

1.)

0 20 40 60 80 100 120

−180

−120

−60

0

60

120

180

240
2.)

0 20 40 60 80 100 120
0

60

120

180

240

Time [k]

P
rin

ci
pa

l a
ng

le
s 

[d
eg

]

3.)

0 20 40 60 80 100 120
0

60

120

180

240

Time [k]

4.)

DoAθ
1

DoAθ
2

Trackθ
1
,

β= 0.9

Trackθ
2
,

β= 0.9

Trackθ
1
,

β= 0.8

Trackθ
2
,

β= 0.8

Trackθ
1
,

β= 0.6

Trackθ
2
,

 β= 0.6

-240-240

Figure 4.12: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when Ri is distributed in a network with regular neighborhood size, i.e., Ni = 9.
This is the scenario e) from Figure 2.4 for N = 36 sensor elements. Subfigures 3.)
and 4.) present the angle difference between the estimated subspace W and the true
one provided by the steering matrix Υ. The SNR= -5dB for those left side subfigures
and SNR= 5dB for those at the right. The impact of the forgetting factor when
β = 0.9, 0.8, 0.6 is likewise showed.
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Figure 4.13: Evaluation of the subspace angle difference between the estimated
subspace W and the true one provided by the steering matrix Υ for the dynamic
signals. The Algorithm 2 is analyzed for the topologies proposed in Figure 2.4. The
results displayed at the right side correspond to the first principal angle, and those
at the left side, relate to the second principal angle. Again, the performance for
several forgetting factors are depicted: β = 0.9 in 1.) and 2.), β = 0.8 in 3.) and
4.). At last, β = 0.6 is shown in 5.) and 6.).
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Figure 4.14: Evaluation of the subspace angle difference between the estimated
subspace W and the true one provided by the steering matrix Υ for the dynamic
signals. The Algorithm 3 is analyzed for the topologies proposed in Figure 2.4. The
results displayed at the right side correspond to the first principal angle, and those
at the left side, relate to the second principal angle. Again, the performance for
several forgetting factors are depicted: β = 0.9 in 1.) and 2.), β = 0.8 in 3.) and
4.). At last, β = 0.6 is shown in 5.) and 6.).
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Figure 4.15: Evaluation of the Root Mean Square Error. The red lines correspond
to θ̂1 and the green ones relate to θ̂2 from the crossing signals case. A performance
comparison between PAST (depicted by the asterisks) and a scenario with constant
neighborhood |Ni| = 9 (triangles) using Algorithm 2 is presented.
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Figure 4.16: Evaluation of the Root Mean Square Error as in 4.6 when Algorithm 2 is
evaluated for N=36 sensors and for all possible topologies from Figure 2.4. Subfigures
1.) , 2.) and 3.) relate to β = 0.9, 0.8, 0.6, respectively.
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Figure 4.17: Evaluation of the Root Mean Square Error as in 4.6 when Algorithm 3 is
evaluated for N=36 sensors and for all possible topologies from Figure 2.4. Subfigures
1.) , 2.) and 3.) relate to β = 0.9, 0.8, 0.6, respectively.
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4.4 Remarks

This chapter evaluated the performance of both distributed Algorithm 2 and Al-

gorithm 3 in terms of their DOA tracking capabilities, Principal Angles Between

subspaces and Root Mean Square Error.

As expected, the network size and the connectivity influenced the algorithmic

performance in either of our proposed algorithms. In a strongly connected scenario,

the large amount of information exchanged allows to obtain very accurate estimates.

Simulations were first performed in a network of size N = 36. The best Direction Of

Arrival estimates given by a weak connected network were obtained with a regular

topology, i.e. Ni = 9, that employs the Algorithm 2, where the local signal update

vector y was averaged within the network. Algorithm 3 does not offer a good output

for weakly connected networks. Moreover, the experiment with smaller network

size N = 12 presents a slightly worse behavior. Throughout the experiments, we

observed that the tracking capabilities of Algorithm 2 are by far better than those

from Algorithm 3. A possible explanation is that the former approach employs

the Average Consensus at the very beginning of the calculations, where no extra

nuisance (i.e. thermal noise) is introduced.

MUSIC is a subspace-based DOA detection algorithm that exploits the orthog-

onality between the signal and noise subspaces in order to find specific parameters

of interest. However, one of its major defects lies in the fact that its performance

deteriorates when signals are too close to each other. Here, the forgetting factor

gains an important role. With large β values, previous estimates have more influ-

ence on future estimates (as expected in a recursive algorithm). Although low betas

”forget” faster, the noise and the averaging over all nodes affect the tracking perfor-

mance of the algorithm. A trade-off between adaptation time and accuracy must be

considered. For that reason, the correct selection of these forgetting factors are very

important in algorithms like PAST, since they work in a recursive subspace-based

fashion.

Another issue encountered for the correct RMSE analysis was that even though

MUSIC finds the correct direction of the signal sources, it is not capable of distin-

guishing between each of them. This is not an issue in the tracking, as the signals are

only “swapped”. However, this introduces a bias when the Root Mean Square Error

is calculated, since the the definition is given by the comparison of the “true” value

and its estimate, see (4.4). To tackle this problem, a signal identification algorithm

is needed in order to separate the signals in a correct way.
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Chapter 5

Convergence properties

Additionally, a mathematical convergence analysis of Algorithm 2 and Algorithm 3

is provided by means of Singular Value Decomposition methods. The convergence

properties in the mean and mean square sense, as well as step-size bounds guaran-

teeing the stability of the algorithms are presented in the last part of this chapter.

Finally, the convergence behavior of both algorithmic approaches is corroborated

through simulation experiments.

5.1 Convergence analysis

Since its introduction by Bin Yang in 1993, the Projection Approximation Subspace

Tracking (PAST) algorithm [8, 46] and its many derivatives have become quite

popular as relatively simple algorithms to detect subspaces, separate them and even

track them. The original analysis of the algorithm’s behavior [47, 48] was based

on an Ordinary Differential Equation (ODE) approach with all its advantagaes

and drawbacks. In the ODE framework iterative approaches are interpreted as

differential equations of continuous functions based on some Lyapunov arguments,

so it can be deduced whether step-sizes exist for which the algorithm converges.

With such an approach, a relatively large amount of assumptions have to be

made in order to make it work. This is one of its larger drawbacks as it often

remains unclear whether all such assumptions can be satisfied in practice. The

second drawback is that a practical (upper) bound on the step-size is hard to

deduce formally, leaving it to experiments to find out which step-sizes work, and

which do not. These issues motivated our work in [80], where a different analysis

approach of the PAST algorithm, based on Singular Value Decomposition (SVD),

is proposed. This method allows to remove most of the assumptions mentioned in
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[48] and to find practical step-size bounds for γ(k), which yield to a new insight

in the algorithmic behavior. In the following pages, we provide an overview of our

work introduced in [80].

The PAST algorithm minimizes the cost function in (5.32). Contained in

x ∈ CN×1 is the data observed at time k, and W ∈ CN×r is the signal sub-

space containing r narrow-band signal waves impinging an array of N number of

sensors, hidden among additive noise. Starting with initial values R̂yy
0 = I and

W0 ∈ CN×r = [Ir,0]T a recursive algorithm is applied on a sequence of vectors x(k)

in order to minimize the corresponding Least-Squares (LS) cost function of (2.36)

on continuously incoming observations x(k):

y(k) = WH(k − 1)x(k) (5.1)

e(k) = x(k)−W(k − 1)WH(k − 1)x(k) (5.2)

R̂yy(k) = R̂yy(k − 1) + β(k)
[
y(k)yH(k)− R̂yy(k − 1)

]
(5.3)

W(k) = W(k − 1) + γ(k)e(k)yH(k)
(
R̂yy(k)

)−1
. (5.4)

The so-called subspace update equation in (5.4) applies the inverse of the esti-

mated autocorrelation matrix R̂yy(k) = E
{
y(k)y(k)H

}
. This is typically achieved

by the matrix inversion lemma to reduce the computational complexity. Other fast

variants are possible to derive and have been proposed [81] but are not the scope of

this study. We restrict to a relatively general form of the algorithm with two free

parameters β(k) and γ(k). The primer is bounded by 0 < β(k) ≤ 1 and acts as

forgetting factor for the decaying memory estimation of the autocorrelation matrix

R̂yy(k). A value of β close to one gives more emphasis to the most recent rank-one

update y(k)y(k)H and leads to a faster decaying memory. A value close to zero,

in turn, results in only slight changes of R̂yy(k). While the optimal choice of β(k)

depends on the tracking problem, the choice of γ(k) directly affects the convergence

behavior of the algorithm which gives reason to consider it more thoroughly.

5.1.1 First order analysis of PAST

The main goal here is transform the signal subspace matrix W(k) into a unitary

matrix, so that limk→∞W(k)HW(k) = Ir. In a first order analysis, we study the

algorithmic behavior in the mean. We assume the sensor data x(k) to be of random

nature with an autocorrelation matrix R̂xx(k) = E
{
x(k)x(k)H

}
.

Assumptions: Let us examine the estimated autocorrelation matrix R̂yy(k).

Since this matrix is being averaged over time as shown in (5.3), it is assumed to

be ergodic. More specifically, the ensemble average Ryy(k) of the given process

is determined from a time average R̂yy(k) over past samples. As a consequence

of its eigendecomposition Ryy(k) = E
{

R̂yy(k)
}

= V1Λ
yy(k)VH

1 , where Λyy(k)
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contains the time-variant eigenvalues of Ryy(k). After some substitutions and al-

lowing W(k−1) and x(k) be statistically independent, it is possible to find that the

eigendecomposition of the time-averaged R̂yy(k) is

Ryy(k)=E
{

R̂yy(k)
}

=E
{
y(k)y(k)H

}
=E

{
W(k − 1)Hx(k)x(k)HW(k − 1)

}
(5.5)

=E
{
W(k − 1)HRxx(k)W(k − 1)

}
=
(
U1Σ̄(k − 1)VH

1

)H (
U1Λ

xx(k)UH
1

) (
U1Σ̄(k − 1)VH

1

)
=V1Σ̄(k)Λxx(k)Σ̄(k)VH

1 . (5.6)

Here we emphasize a subtle but very important difference: the autocorrelation

matrix R̂yy(k) in (5.3) is a time averaged matrix whose decomposition leads to

likewise temporally-averaged singular values Σ̄(k). These singular values should

not be confused with the instantaneous singular values Σ(k) originating from

decomposing E {W(k − 1)}. The mean of (5.4) is thus written as

E {W(k)} = E {W(k − 1)}

+ γ(k)E
{

(I−W(k − 1)W(k − 1)H)x(k)x(k)HW(k − 1)
}

×E
{(

R̂yy(k)
)−1

}
. (5.7)

Applying the expectation with respect to the random process x(k) leads to

E {W(k)} = E {W(k − 1)}+ γ(k)E
{
I−W(k − 1)W(k − 1)H

}
×Rxx(k)E {W(k − 1)}E

{(
R̂yy(k)

)−1
}
. (5.8)

Since the decomposition of the autocorrelation matrix Rxx(k) = QΛxx(k)QH ,

we recognize that a steady-state solution only exists if E {W(k)} =

[U1,U2] [Σ(k), O]T [V1V2]H with U1 = Q where we applied a SVD on W and

partitioned it into the significant part U1Σ(k)VH
1 and a zero block. With such find-

ings it is advantageous to rewrite (5.8) into its SVD components. Here it becomes

evident, that all terms are comprised of the same left matrix U1 and the right matrix

VH
1 . After some factorization, all terms in the center become diagonal.

U1Σ(k)VH
1 = U1Σ(k − 1)VH

1 + γ(k)
(
I−U1Σ(k − 1)VH

1 V1Σ(k − 1)UH
1

)
×U1Λ

xx(k)UH
1 U1Σ(k − 1)VH

1

[
V1

(
Σ̄(k − 1)Λxx(k)Σ̄(k − 1)

)−1
VH

1

]
= U1Σ(k − 1)VH

1 + γ(k)
(
U1 −U1Σ(k − 1)ΣH(k − 1)

)
×Λxx(k)Σ(k − 1)

(
Σ̄(k − 1)Λxx(k)Σ̄(k − 1)

)−1
VH

1 (5.9)

= U1[Σ(k − 1) + γ(k)
(
I−Σ(k − 1)ΣH(k − 1)

)
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×Λxx(k)Σ(k − 1)
(
Σ̄(k − 1)Λxx(k)Σ̄(k − 1)

)−1
]VH

1

Σ(k) = Σ(k − 1) + γ(k) (I−Σ(k − 1)Σ(k − 1))

×Λxx(k)Σ(k − 1)
(
Σ̄(k)Λxx(k)Σ̄(k)

)−1
. (5.10)

As a result, it becomes feasible to express (5.10) only by its diagonal terms as

σl(k) = σl(k − 1) + γ(k)

(
1−

(
σl(k − 1)

)2)
σl(k − 1)

(σ̄l(k))
2 . l = 1, . . . , r (5.11)

Although being a complicated term in σl(k−1), we recognize that the actual values

λxxi (k) in the autocorrelation matrix Λxx(k), namely the power contributions of the

observed sensor signals, are irrelevant to the algorithm. Knowing that the steady

state solution is given if all signals are perfectly decorrelated, that is when all singular

values are one, we aim to have σl(k − 1)→ 1. We can rewrite this for l = 1, 2, ..., r

as

1−σl(k)=(1−σl(k − 1))

[
1− γ(k)

(1 + σl(k − 1))σl(k − 1)

(σ̄l(k))
2

]
. l = 1, . . . , r

(5.12)

As all singular values are positive, we have thus proven the following theorem.

Theorem 1.1. The PAST algorithm converges in the mean for a sufficiently small

step-size γ(k) > 0, if (1+σl(k−1))σl(k−1)

(σ̄l(k))
2 is bounded.

As the right hand side term in (5.12) can take on arbitrary values in the range

[0,∞), it is difficult to bound the step-size at this point. We recognize, that in

particular small singular values are decisive. Note, that similar forms of (5.8) have

been analyzed in [82] in the context of blind source separation and [83] as a means

to compute robustly matrix inverses. Furthermore, in his article [8] Bin Yang also

proposed a simpler gradient term algorithm, that is simply omitting the matrix

inverse of R̂yy(k). The analysis method presented here can be applied to such an

algorithm, revealing now that the step-size γ(k) depends strongly on the eigenvalues

λxxi (k) of the observation process x(k).

5.1.2 Anaylsis of step-size bounds

Let us return to Equation (5.12). We learn here that

0 < γ(k) <
2
(
σ̄l(k)

)2
(1 + σl(k − 1))σl(k − 1)

; l = 1, ..., r, (5.13)
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and we assume that it has an upper bound

0 < γ(k) <
2σ̄2

min(k)

(1 + σmax(k − 1))σmax(k − 1)
. (5.14)

If we use the relation 0.25 + 2x2 ≥ x+ x2 for x ≥ 0 we obtain an even lower bound

0 < γ(k) <
2σ̄2

min(k)

0.25 + 2σ2
max(k − 1)

. (5.15)

The term σ2
max(k − 1) is related to W(k − 1)HW(k − 1). If λxx(k) and v(k) are an

eigenvalue and eigenvector pair of the matrix W(k)HW(k), the following condition

holds true:

|λxx(k)|m‖v(k)‖ = ‖(λxx)m(k)v(k)‖

= ‖(W(k)HW(k))mv(k)‖

≤ ‖(W(k)HW(k))m‖ · ‖v(k)‖

=⇒ |λxx(k)| ≤ ‖(W(k)HW(k))m‖
1
m . (5.16)

Thus, for m = 1 we obtain the simplified but practically feasible lower bound

0 < γ(k) <
2σ̄2

min(k)

0.25 + 2‖W(k − 1)HW(k − 1)‖
= γmax(k)σ̄2

min(k). (5.17)

The smallest singular value σ̄min(k) is thus decisive for convergence and a step-size

γ(k) needs to be selected based on its knowledge. In the classic PAST algorithm

such knowledge is not present and thus only very small step-sizes can be selected in

the hope to have sufficiently large values of σ̄min(k), which in turn results in slow

convergence and poor tracking.

As σ̄min(k) is typically not available, we may estimate it. Nowadays, low-

complexity methods are available to estimate the smallest singular value [84, 85].

Such estimation technique however, can easily lead to too small step-sizes, resulting

in a very slow convergence as well as poor tracking. It is thus of further interest to

modify the algorithm in such a way that the dependency on the smallest singular

value disappears. In order to prevent the undesired behavior of the classic PAST

algorithm of not offering a feasible step-size bound, we are proposing to alter the

update equation (5.4) into a generic update

W(k) = W(k − 1) + γ(k)e(k)y(k)HB, (5.18)

with the following options:

PAST-I: B =
(
R̂yy(k)

)−1
σ̄2

min(k) (5.19)
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PAST-II: B =
(
R̂yy(k)

)−1
RW(k) (5.20)

PAST-III: B = [R̂yy(k) + αIr]
−1 (5.21)

PAST-IV: B = I (5.22)

for some small but positive α > 0. Such regularization in PAST-III is not required

for computing the inverse of R̂yy(k), but prevents the smallest singular value to

have a decisive impact on the stability. PAST-IV is the gradient-type version

of the PAST algorithm [8]. In PAST-II an average of W(k − 1)HW(k − 1) is

computed by RW(k) = RW(k − 1) + β(k)
(
W(k − 1)HW(k − 1)−RW(k − 1)

)
and applied to compensate for the inverse singular values of R̂yy(k), as we would

find RW(k) = UΣ̄2(k)UH . A simpler version of this is PAST-I where we assume

knowledge of the smallest singular value only, for example by simple tracking

algorithms [85].

Applying the same analysis technique as before provides the next bounds

0 < γI(k) <γmax(k) ≤ min
l

2
(
σ̄l(k)

)2
(1 + σl(k − 1))σl(k − 1)σ̄2

min(k)
(5.23)

0 < γII(k) <γmax(k) ≤ min
l

2

(1 + σl(k − 1))σl(k − 1)
(5.24)

0 < γIII(k) <γmax(k)δmin ≤ min
l

2
((
σ̄l(k)

)2
+ δ
)

(1 + σl(k − 1))σl(k − 1)
(5.25)

0 < γIV(k) <
γmax(k)

tr[Rxx(k)]
≤ min

l

2

(1 + σl(k − 1))σl(k − 1)λl,xx(k)
(5.26)

with δ = α/λl,xx(k) and δmin = α/λxxmax(k). Thus, the knowledge of δmin is

sufficient to provide a conservative step-size bound. Indirectly, the choice of α now

also determines the convergence speed; larger values typically offering higher speed.

Bounds for (5.24) and (5.26) can also be derived, following the approach explained at

the beginning of this section. If in (5.26) λl,xx(k) is not known, it may be feasible to

replace it by tr(Rxx(k)). Now it only depends on the matrix norm to compute a safe

upper bound of γ(k) which is a feasible operation. In practice, it turns out that a

matrix one norm provides tight results. The upper bounds define some time-variant

maximal value γmax(k) and we select fractions βγmax(k), where β ∈ [0, 1]. Often the

PAST algorithm is being run with a step-size γ(k) = 1/k or γ(k) = 1/[k + 1]. In

these cases, after a few iterations, the step-size satisfies the stability condition and

the algorithm converges. However, the price for this convergence is a lack of tracking

capability as the step-size becomes so small that the algorithm cannot adjust to a

new situation anymore.
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5.1.3 Second order analysis of PAST

In particular for adaptive filters, we are also interested in analyzing the second order

moment describing the quantitative behavior of the algorithm. We have investigated

the evolution of terms of the form W(k)HW(k) from the update equation (5.4) and

found out, that the result is very similar to that in (5.12) for the first order moment.

The main difference relies on a term that appears equally for all diagonal entries but

does not influence the stability of the system. On the other hand, it does influence

the values for the step size γ(k).

E
{
WH(k)W(k)

}
= E

{
WH(k − 1)W(k − 1)

}
+ 2γ(k)

× E
{
WH(k − 1)

[
I−W(k − 1)WH(k − 1)

]
x(k)xH(k)

}
×E

{
W(k − 1)

[
WH(k − 1)x(k)xH(k)W(k − 1)

]−1
}

+γ2(k)

× E
{[

WH(k − 1)x(k)xH(k)W(k − 1)
]−1

WH(k − 1)
}

×E
{
x(k)xH(k)

[
I−W(k − 1)WH(k − 1)

]2
x(k)xH(k)

}
× E

{
W(k − 1)

[
WH(k − 1)x(k)xH(k)W(k − 1)

]−1
}
. (5.27)

Reformulating the update equation in such second order terms results in one partic-

ularly difficult term: E{x(k)x(k)H [I−W(k − 1)W(k − 1)H ]2x(k)x(k)H}. For this

term to compute we need to find fourth order moments of the vector process xi(k).

Note however that such fourth order moments only modify the terms in γ2
i (k), thus

replacing them by the square of second order moments is a good approximation. For

instance, assume xi(k) to be of complex Gaussian nature, the term can be given as

E{x(k)x(k)H [I−W(k − 1)W(k − 1)H ]2x(k)x(k)H} = Rxx(k)[I−W(k − 1)

×W(k − 1)H ]2Rxx(k) + Rxx(k)

× tr
{
Rxx(k)[I−W(k − 1)W(k − 1)H ]2

}
.

and therefore

WH(k)W(k)=WH(k − 1)W(k − 1)+2γ(k)WH(k − 1)
[
I−W(k − 1)WH(k − 1)

]
×Rxx(k)W(k − 1)

[
WH(k − 1)Rxx(k)W(k − 1)

]−1

+ γ2(k)
[
WH(k − 1)Rxx(k)W(k − 1)

]−1
WH(k − 1)Rxx(k)

×
[
I−W(k − 1)WH(k − 1)

]2
Rxx(k)

+ Rxx(k)tr
{

Rxx(k)
[
I−W(k − 1)WH(k − 1)

]2}
×W(k − 1)

[
WH(k − 1)Rxx(k)W(k − 1)

]−1
. (5.28)
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Diagonalizing the later equation yields

ΣT (k)Σ(k) = ΣT (k − 1)Σ(k − 1) + 2γ(k)ΣT (k − 1)
[
I−Σ(k − 1)ΣT (k − 1)

]
Λxx(k)

×Σ(k − 1)
[
ΣT (k − 1)Λxx(k)Σ(k − 1)

]−1

+γ2(k)
[
ΣT (k − 1)Λxx(k)Σ(k − 1)

]−1

×ΣT (k − 1)Λxx(k)
[
I−Σ(k − 1)ΣT (k − 1)

]2
×Λxx(k)Σ(k − 1)

[
Σ̄(k)Λxx(k)Σ̄(k)

]−1
. (5.29)

The second part will thus not disturb the diagonal nature of the analysis but change

the coefficient for γ2. Continuing with our Gaussian assumption for x(k) we obtain

a second order condition.

Theorem 1.2. Given a complex-valued Gaussian random process x(k), the PAST

algorithm converges in the mean-square sense as long as∣∣∣∣∣1− 2γ

(
σl(k − 1)

)
2

σ̄l(k)2
− γ2

(
σl(k − 1)

)
2

σ̄l(k)2
ρl

∣∣∣∣∣ < 1 (5.30)

ρl =
(1−

(
σl(k − 1)

)
2)2λl +

∑r
m=1 |1− (σm(k − 1)) 2|2λm

(1− (σl(k − 1))2σ̄l(k)) 2λl
. l = 1, ..., r

Consider the second term
∑r

m=1 |1 − (σm(k − 1)) 2|2λm in the numerator of ρl

above that applies equally to all term l = 1, ..., r. Leaving it out, we obtain the

same result as in the first order analysis. We thus have to ask what influence it may

have. As the term appear equally for all diagonal entries, it balances the terms a

bit, but it has no other influence on the stability then to limit the values of γ(k)

even further. As it appears only in γ(k)2 its influence only shows for larger values

of γ(k). For small values of γ(k) the smallest singular value σmin remains decisive

to find the stability bound on the step-size γ(k).

Throughout this work, we realized that this method can be further extended to

incorporate also distributed versions of PAST, that rely on one or more consensus

algorithms for data exchange in wireless sensor networks [61].

5.1.4 Mathematical derivation of two distributed PAST variants

To decentralize the PAST algorithm, it is necessary to regard (5.1)-(5.4) as the

primary set of equations locally running at the same time in each node i. This

requires to extend all these variables occurring simultaneously by the localization

index i, i.e., y
i
(k) ∈ Cr×1, R̂yy

i (k) ∈ Cr×r, ei(k) ∈ C|Ni|×1,xi(k) ∈ C|Ni|×1, Wi(k) ∈
C|Ni|×r as well as βi(k) and γi(k). Since the communication across the sensors is

done synchronously, each node i broadcasts its own observation {xi(k)} and receives
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{xj,k}∀j∈Ni
j 6=i

. With this available information, i aggregates a local observation vector

xi(k), which can be expressed in terms of the global observation vector x(k) and the

selection matrix Si ∈ N × |Ni| from (3.6) according to

xi(k) = STi x(k). (5.31)

From (5.1) it is straightforward to write

y
i
(k) = WH

i (k − 1)xi(k), (5.32)

and substituting (5.31) for xi(k) originates y
i
(k) = WH

i (k − 1)STi x(k). For later

calculations, it is advisable to introduce the matrix VH
i (k − 1) = WH

i (k − 1)STi
and let the original subspace spanned by the columns of Wi(k) be embedded in

Vi(k) ∈ CN×r. Under such considerations, (5.32) turns into

y
i
(k) = VH

i (k − 1)x(k). (5.33)

We remark the fact that the above equation designates the signal update vector

(first step) of both later introduced algorithmic variants. This new expression makes

possible to reformulate Algorithm 2 according to the structure in (5.1)-(5.4), yielding

y
i
(k, t) = giiyi(k, t− 1) +

∑
j∈Ni,
j 6=i

gijyj(k, t− 1) (3.7)

ỹ
i
(k) = y

i
(k, tmax) (3.8)

ei(k) = ST
(
x(k)−Vi(k − 1)ỹ

i
(k)
)

(5.34)

R̂yy
i (k) = R̂yy

i (k − 1) + βi(k)
[
ỹ
i
(k)ỹH

i
(k)− R̂yy

i (k − 1)
]

(5.35)

Vi(k) = Vi(k − 1) + γi(k)ei(k)ỹH
i

(k)
(
R̂yy
i (k)

)−1
. (5.36)

Similarly, the new local representation of Algorithm 3 results in

ei(k) = ST
(
x(k)−Vi(k − 1)VH(k − 1)x(k)

)
(5.37)

R̂yy
i (k) = R̂yy

i (k − 1) + βi(k)
[
y
i
(k)yH

i
(k)− R̂yy

i (k − 1)
]

(5.38)

R̂yy
i (k, t) = giiR̂

yy
i (k, t− 1) +

∑
j∈Ni,
j 6=i

gijR̂
yy
j (k, t− 1), (3.9)

R̃yy
i (k) = R̂yy

i (k, tmax) (3.10)

Vi(k) = Vi(k − 1) + γi(k)ei(k)yH
i

(k)
(
R̃yy
i (k)

)−1
. (5.39)

Notice that the main difference between both local representations (3.7)-(5.36)

and (5.37)-(5.39) is the update of R̂yy
i (k) and Vi(k), influenced by the average
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consensus process.

In the following, we examine the convergence properties of these algorithms

based on [80]. To start, it is required to find beforehand a global description for

such methods. A block diagonal structure is a suitable approach for representing

these global algorithms, since it permits to place each local variable of i in the

diagonal of a block matrix and allows for an easy manipulation through Kronecker

products.

Algorithm 4: Global description of distributed PAST with y
i
(k) averaging

Input: β(k), γ(k), R̂yy(0),V(0)
for k := 1, 2, ..., do

Y(k) = VH(k − 1) (IN ⊗ x(k))

Ỹ(k) =
(
Gtmax ⊗ Ir

)
VH(k − 1) (x(k)⊗ 1N ) (5.40)

E(k) = ST
[
(IN ⊗ x(k))−V(k − 1)

(
Gtmax ⊗ Ir

)
Y(k)

]
R̂yy(k) = R̂yy(k − 1) + β

(
Ỹ(k)ỸH(k)− R̂yy(k − 1)

)
(5.41)

V(k) = V(k − 1) + γ(k)SE(k) diag
(
ỸH(k)

)(
R̂yy(k)

)−1
(5.42)

end for

Algorithm 5: Global description of distributed PAST with Ri(k) averaging

Input: β(k), γ(k), R̂yy
0 ,V0

for k := 1, 2, ..., do

Y(k) = VH(k − 1) (IN ⊗ x(k))

E(k) = ST
(
IN2 −V(k − 1)VH(k − 1)

)
(IN ⊗ x(k))

R̂yy(k) = R̂yy(k − 1) + β
(
Y(k)YH(k)− R̂yy(k − 1)

)
(5.43)

R̃yy(k) =
(
Gtmax ⊗ Ir

)
R̂yy(k) (1N ⊗ Ir) (5.44)

V(k) = V(k − 1) + γ(k)SE(k)YH(k) diag
(
R̃yy(k)

)−1
(5.45)

end for

We acknowledge that in Algorithm 1, the update equation

Ỹ(k) =
[
y
i
(k), . . . ,y

N
(k)
]

is indeed containing the averaged signal values

from each node i. Note that for updating (5.42), we restructure Ỹ(k) in such a

way that it becomes a block diagonal structure. The same situation occurs in

Algorithm 2, whith R̃yy(k) =
[
R̃yy
i (k), . . . , R̃yy

N (k)
]T

. Here, an update of (5.45)

requires a reshaping of the global correlation matrix R̃yy(k). A more detailed

derivation of both algorithms is provided in the Appendix (C). Nevertheless, a

similarity between the structure of the update equation (5.42) and (5.45) with

(5.4) from the centralized solution in [80] is forthwith recognizable. As a result,
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it is straightforward to apply the guidelines from [80] to evaluate the convergence

properties of both distributed algorithms.

5.1.5 First order analysis of distributed PAST

This subsection studies the convergence properties of both global distributed sub-

space tracking variants, i.e., the Algorithm 4 and Algorithm 5. To this aim, we

stem on the lines presented for the centralized PAST (Subsection 5.1.1) and extend

them to provide an insight regarding convergence in the mean and mean square.

Furthermore, we seek for step-sizes that guarantee stability.

We provide a first order analysis for Algorithm 4 and Algorithm 5. As in the

previos section, the main goal is to obtain a unitary matrix for the Wi(k) embedded

in V(k), such that limk→∞Wi(k)HWi(k) = Ir. We assume that the data vector

x(k) containing all the observations in the network, is of random nature and has

an autocorrelation matrix Rxx(k) = E
{

(x(k)⊗ 1N ) (x(k)⊗ 1N )H
}

. We are inter-

ested in a first order analysis of the signal subspace update of both aforementioned

algorithms. Therefore, we evaluate the mean of (5.42) and rewrite it as

E {V(k)} = E {V(k − 1)}+ γ(k)E
{

(IN2 −V(k − 1)V(k − 1)H)x(k)x(k)HV(k − 1)
}

× E
{(

R̂yy(k)
)−1

}
. (5.46)

Similarly, (5.45) is expressed as

E {V(k)} = E {V(k − 1)}+ γ(k)E
{

(IN2 −V(k − 1)V(k − 1)H)x(k)x(k)HV(k − 1)
}

× E
{(

R̃yy(k)
)−1

}
. (5.47)

In order to solve the two above equations, it is very important to consider the

iterative approximations
(
R̃yy(k)

)−1
and

(
R̂yy(k)

)−1
to be independent of the

signal subspace matrix V(k). We model x(k) as a random, ergodic process and let

the calculation of the ensemble average Ryy(k) of the given process be determined

from its time average R̂yy(k) over past samples as

Ryy(k) = E
{

R̂yy(k)
}

= E
{
Y(k)Y(k)H

}
= VH(k − 1)Rxx(k)V(k − 1), (5.48)

and its matrix decomposition

Ryy(k) = P1Σ̄(k)Λxx(k)Σ̄(k)PH
1 . (5.49)

Due to this averaging process, it is likely to regard such average values as

independent of each other. That is to say, we allow them to be statisti-

cally independent [49], and let the decomposition of the autocorrelation matrix
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Rxx = QΛxxQH . Recall from [80], that a steady-state solution only exists if

E {V(k)} = [U1,U2][Σ(k),0]T [P1P2]H and U1 = Q. We applied an SVD to (5.46)

and (5.47) and partitioned it into the significant part U1Σ(k)PH
1 and a zero block.

While diagonalizing these equations, we observe that all block matrices encompass

the same left block matrix U and the right block matrix PH
1 . These matrices are

simplified such that the final solution accomodates only the center block matrix

Σ(k) comprising Σi(k) diagonal elements, i.e.,

Σ(k) = Σ(k − 1) + γ(k)(I−Σ(k − 1)Σ(k − 1))ΛxxΣ(k − 1)(Σ̄(k)ΛxxΣ̄(k))−1.

(5.50)

The above expression is obtained with (5.46). If (5.47) is used instead, an analogous

expression can be found. Furthermore, it is possible to revise (5.50) in terms of the

local singular values at each node i. That is to say

σli(k) = σli(k − 1) + γi(k)

(
1−

(
σli(k − 1)

)2)
σli(k − 1)(

σ̄li(k)
)2 . l = 1, . . . , r

Here, σ̄li(k − 1) are the singular values calculated by diagonalizing the time average(
R̂yy(k)

)−1
. They should not be confused with the instantaneous singular values

σli(k) derived from decomposing V(k). Under the assumption that all signals are

perfectly decorrelated, the steady state solution is achieved if, i.e., σli(k − 1) → 1.

Thus

1−σli(k)=(1−σli(k − 1))

[
1− γ(k)

(1 + σli(k − 1))σli(k − 1)(
σ̄li(k)

)2
]
. (5.51)

As all singular values are positive we can again see that the PAST algorithm

converges in the mean for a sufficiently small step-size γi(k) > 0 if
(1+σl

i(k−1))σl
i(k−1)

(σ̄l
i(k))

2

is bounded. However, since this term can take on arbitrary values in the range [0,∞],

it is difficult to bound the step-size at this point. We recognize that in particular

small singular values are decisive.

Note that similar forms of (5.46) and (5.47) have been analyzed in [82] in the

context of blind source separation and [83] as a means to compute robustly matrix

inverses.

5.1.6 Step - sizes

Let us return to Equation (5.51). We learn here that

0 < γ(k) <
2σ̄i(k)2

(1 + σi(k − 1))σi(k − 1)
; i = 1, ..., r, (5.52)
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and we assume that it has an upper bound

0 < γ(k) <
2σ̄2

min(k)

(1 + σmax(k − 1))σmax(k − 1)
. (5.53)

If we use the relation 0.25 + 2x2 ≥ x+ x2 for x ≥ 0 we obtain an even lower bound

0 < γ(k) <
2σ̄2

min(k)

0.25 + 2σ2
max(k − 1)

. (5.54)

The term σ2
max(k−1) is related to W(k−1)HW(k−1). If λxx(k) and v(k) are an

eigenvalue and eigenvector pair of the matrix W(k)HW(k), the following condition

holds true:

|λxx(k)|m‖v(k)‖ = ‖(λxx)m(k)v(k)‖ (5.55)

= ‖(W(k)HW(k))mv(k)‖

≤ ‖(W(k)HW(k))m‖ · ‖v(k)‖ (5.56)

=⇒ |λxx(k)| ≤ ‖(W(k)HW(k))m‖
1
m . (5.57)

In [80], the following more conservative upper bound for σli(k − 1) was found

0 <γi(k)<
2
(
σ̄li(k)

)2
0.25 + 2‖Wi(k − 1)HWi(k − 1)‖2

= γmaxi(k)

(
σ̄lmini(k)

)2
. (5.58)

The knowledge of the smallest singular value σ̄lmini(k) is decisive for convergence.

Nevertheless, calculating it or even finding an estimate for it would lead to a high

computational burden. Therefore, we follow the guidelines from [80] and alter the

V(k) update equation in Algorithm 2 and Algorithm 3 such that calculating the

smallest singular value becomes nonessential. Accordingly, (5.42) becomes

V(k) = V(k − 1) + γ(k)SE(k) diag
(
ỸH(k)

)
A, (5.59)

and (5.45) yields

V(k) = V(k − 1) + γ(k)SE(k)YH(k) B. (5.60)

Recall the different step-sizes originally introduced in [80], which guarantee feasible

step-sizes bounds and let them be addressed at each node i as

• PAST-I:

A = diag
(
ỸH(k)

)(
R̂yy(k)

)−1 (
σ̄lmini(k)

)2

B = YH(k)diag
(
R̃yy(k)

)−1 (
σ̄lmini(k)

)2
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• PAST-II:

A = diag
(
ỸH(k)

)(
R̂yy(k)

)−1
RVi(k)

B = YH(k)diag
(
R̃yy(k)

)−1
RVi(k)

0 < γIi(k) = γII
i(k)

< γmaxi(k) ≤ min
l

2(
1 + σli(k − 1)

)
σli(k − 1)

(5.61)

• PAST-III:

A = diag
(
ỸH(k)

) [
R̂yy(k) + αIr

]−1

B = YH(k)
[
diag

(
R̃yy(k)

)
+ αIr

]−1

0 < γIIIi(k) < γmaxi(k)δmini(k) ≤ min
l

2
((
σ̄li(k − 1)

)2
+ δ
)

(
1 + σli(k − 1)

)
σli(k − 1)

(5.62)

• PAST-IV:

A = diag
(
ỸH(k)

)
Ir,

B = YH(k)Ir

0 < γIVi(k) <
γmaxi(k)

tr (Rxx
i (k))

≤ min
l

2(
1 + σli(k − 1)

)
σli(k − 1)λl,xxi

. (5.63)

For the PAST-I version, we assume knowledge of the smallest singular value only.

This can be achieved by tailored tracking algorithms, e.g., [85]. The PAST-II variant

calculates an average RVi(k) for the matrix Vi(k − 1)HVi(k − 1), given by

RVi(k) = RVi(k − 1) + β(k)(Vi(k − 1)HVi(k − 1)−RVi(k − 1)), (5.64)

and is applied to compensate for the inverse singular values of R̂yy(k) or R̃yy(k).

The PAST-III scheme introduces a regularization for computing the inverse of this

matrix, which prevents numerical issues due to possible ill conditioned matrices.

Finally, the PAST-IV version can be considered as the gradient-type version of the

original PAST algorithm from [8]. In order to avoid the eigenvalue decomposition of

the local data correlation matrix Rxx
i (k) = E{xi(k)xi(k)} for finding λl,xxi in (5.63),

we consider only its trace. We also let 0 < α ≤ 1, δ = α/λl,xxi and δmin = α/λxxmaxi
.

Note that the choice of α also influences the convergence speed. The higher the
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selected value, the faster the achieved convergence. To summarize, by utilizing

the aforementioned step-sizes we evade calculating the singular values in R̂yy(k) or

R̃yy(k), as would be required in (5.58). Furthermore, the computation of a safe upper

bound of γi(k) relies only on the matrix norm, which is a computationally feasible

operation. As shown in [80], the induced matrix 2- norm provides tight results.

Finally, with these feasible step-sizes, an evaluation of the algorithmic behavior is

presented in the next section.

5.1.7 Simulation results - First order analysis

The following experiments apply both distributed PAST variants to a typical

beam steering scenario. Consider a wireless sensor network with N = 12 nodes,

where each sensor i observes the data xi(k) at each time k given by (??). We use

r = 3 different angles of arrivals set to θ = {0.01, 0.03, 0.2} radians. The bounds

(5.61)-(5.63) define a time-variant maximal value γmax
i (k) and we select fractions

βγmax
i (k), where β ∈ (0, 1]. We further set β(k) = β in (5.3) by which we reduce

one degree of freedom and let γ(k) = βγmax(k). We choose the maximum number

of consensus iterations to be tmax = 100 and we average over 100 Monte Carlo

(MC) runs. Note that for the centralized versions we expect the algorithms to work

for values β from zero to one.

We implement Algorithm 1 in a regular topology, which means that every node

i in the network has the same degree |Ni| = 4. Figure 1 depicts the distance

measure
∑r

l=1

(
1− σl(k)

)
being averaged over all nodes in the network. Here, the

original update equation from (12), known as Distributed PAST, shows the fastest

convergence followed by the PAST-I and PAST-II variants, which need smaller step-

sizes to achieve the same steady-state. The PAST-III and PAST-IV schemes perform

considerably slower and during the simulations for step-size values of β above 0.9,

they both show first signs of instability.

Figure 2 provides more results for the same simulation settings as those used for

Figure 1. However, for this experiment we implemented a network topology which

is random irregular. The former means that the Ni selected neighborhood is not

necessarily composed of the j sensors closest to i, they are actually selected in a

random fashion. By irregular we refer to different node degrees in the network, e.g.,

|Ni| = 3, 5, and 8. Note that for all MC runs we use the irregular topology that was

generated in the first simulation. We move on to Figure 2 and immediately recognize

that PAST-III shows a faster convergence, in contrast to all the other variants that

show practically the same performance.

Now we evaluate Algorithm 2 where the correlation matrix R̂yy
i (k) is exchanged

between the nodes. Here, PAST-III and PAST-IV lead to the fastest, practically

overlapping results for both regular (Figure 3) and irregular (Figure 4) algorithmic
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Figure 5.1: Averaged distance to identity for Algorithm 1
with a regular network topology.
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Distributed PAST, α = 0.01

Distributed PAST−I, α = 0.08

Distributed PAST−II, α = 0.008

Distributed PAST−III, α = 0.9

Distributed PAST−IV, α = 0.9

Figure 5.2: Averaged distance to identity for Algorithm 1
with a random irregular network topology.

topologies. Again, the stability limit is found near to step-size β = 0.9. We likewise

observe that for both topologies PAST-I converges very slowly and that stability

issues arise for step-sizes larger than 0.3. We do not present any plot for PAST-

II, since the simulation results did not lead to a steady-state. Finally, by several

experiments with both algorithms we realized how important it is to initialize the

local autocorrelation matrix R̂yy
i,0 and the local signal subspace Wi(k) by appropriate

values. For both, Algorithm 1 and Algorithm 2, the initial R̂yy
i (k) value was defined

as an identity matrix. The signal subspace Wi(k) in Algorithm 1 was characterized

as a truncated identity matrix of size |Ni| × r, for Algorithm 2 we defined it to be

all ones.
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Figure 5.3: Averaged distance to identity for Algorithm 2
with a regular network topology.
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Distributed PAST−IV, α = 0.9

Figure 5.4: Averaged distance to identity for Algorithm 2
with a random irregular network topology.

5.1.8 Second order analysis of distributed PAST

A first order analysis is often considered as leading to relatively weak statements. In

particular for adaptive filter algorithms it is known that such analysis describes only

the qualitative behavior of an algorithm but only the second order analysis helps

evaluating the quantitative behavior. To this end we also investigate the evolution

of terms of the form Wi(k)HWi(k) from the update equation (5.4).
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Chapter 6

Conclusions and final remarks

THE goal of this thesis was to solve one of the current major challenges in the

field of Wireless Sensor Networks, i.e., the ability to estimate radio waves in a

decentralized fashion. To this aim, we employed well established subspace tracking

methods [8, 40]. In particular, the roots of our work are based in the Projection

Approximation Subspace Tracking algorithm [8], which in its original form operates

as a centralized framework.

We proposed two distributed versions of PAST, i.e., Algorithm 2 and

Algorithm 3, which exchange the local signal update vector y
i

and the signal covari-

ance matrix R̂yy
i , respectively. To achieve a global state available at every sensor

within the network, the Average Consensus protocol was used.

A performance analysis of the newly developed algorithms was introduced in

terms of the DOA tracking capabilities. As expected, the results for strongly con-

nected networks were the best in both approaches. Nonetheless, the performance

of a network with thirty six sensor elements and regular neighborhood size (Ni)
when Algorithm 2 is employed, provides remarkably better results when contrasted

to Algorithm 3. A sensor network with a regular neighborhood of the order 1
4 of the

total network size shows a good compromise between the DOA estimation accuracy

and the amount of consumed resources is sought.

It has not yet become clear why the Algorithm 3 becomes rigid after initial

good tracking results. Compared to Algorithm 2, which exchanges a local signal

update vector y
i
, the more information intensive distribution of the data covariance

matrix R̂yy
i ∈ CN×r was expected to improve performance. Instead, Algorithm 2

consistently outperforms Algorithm 3.

In this work a convergence proof for the aforementioned algorithms was pre-

sented. In [80], we provided a convergence analysis of PAST, which was based on

Singular Value Decomposition. This proof is simpler than the original proof de-
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scribed in [48], and has the additional benefit of being extendable to the analysis of

our new algorithmic approaches.

During the course of these years, we developed an algorithm where the local signal

subspaces Wi were distributed. Our aim was to average those subspace intersections

in order to achieve a common global subspace. However, since the basis that spans

the local signal subspace Wi depends on the neighborhood size Ni, this approach

could not be realized while maintaining network flexibility.

To conclude, we have seen that the performance and the convergence analysis of

the Algorithm 2 yield satisfactory results without adding too much complexity.

Based on the proposed distributed algorithms that track the temporal evolution

of the signal subspace, another DOA algorithm can be used to further optimize the

DOA estimates. In addition to this, finding optimal strategies for the adequate

selection of the forgetting factors is a plausible approach.
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Appendix A

Simulation results when y is

distributed

Let us study the behavior of the Algorithm 2 proposed in Chapter 3 for the network

topologies, sensor position, network size and connectivity from Figure 2.4. Naturally,

since the main focus is to study the performance of the aforementioned distributed

approach, the central processing unit (represented by the red dot) becomes just

another node in the network.

The Direction-of-Arrival tracking capabilities of Algorithm 2 are investigated

for a fully connected network, i.e., the topology a) from Figure 2.4 for N = 36

sensor elements. This scenario can be interpreted as an equivalent of PAST, with

the difference that there is recurrent information exchange between all sensors. In

Figure A.9 we observe that the DOA estimation does not improve when compared

to those results from the centralized solution in 4.2. Meaning that incurring in any

sort of information exchange for this specific scenario is not advantageous at all. On

the other hand, if the performance is contrasted with all possible topologies (see

Figures A.10, A.11 and A.12), this case undoubtedly yields the best estimates, as

each node has access to all data available in the sensor network.

During the first 60 iterations, the first component θ1 in 1.) from Figure A.9 is

correctly calculated for all possible forgetting factors. After the step change occurs,

the impact of the β’s in the tracking capabilities becomes notable. For β = 0.6,

the algorithm stabilizes fast, but presents a noisier behavior and certain offset with

respect to the true DOA θ1 value. This issue is improved in 2.), where a higher

SNR=5 helps to reduce this gap. Juxtaposed to β = 0.6, β = 0.8 in 1.) shows the

second largest lag, followed by β = 0.9, where both converge to the same results after

a few iterations. Note that when the later values are evaluated in 2.), the outcome

turns out to be the same. Now, have a closer look at the second component θ2 in
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1.) and recall that its step change is shorter than that of θ1. A similar behavior for

the tracked DOA is observable: as the signal is constant in the first 60 iterations,

the estimates for all β’s are very good. When the step changes, β = 0.6 recovers

much faster. This suggests that for sudden changes in DOA (such as that in θ1), the

selection of a small β proves a benefit to the tracking capabilities of the algorithm.

At last, the estimated θ̂2 in 2.) with SNR=5 provides smoother results. In Figure

A.10, the dense topology b) from Figure 2.4 is studied. The initial mistracking of

θ1 in 1.) becomes more accentuated and the performance of Algorithm 2 is slightly

worse when compared to the fully connected scenario in Figure A.9. The higher

the network connectivity is, the more information is available at each node. As a

result, the data is better estimated. Now observe in Figure A.11 the behavior of

the first distributed variant for a sparsely connected network, i.e., c.) from Figure

2.4. Again, β = 0.8 in 1.) and 2.) adjust faster to the Direction-of-Arrival change.

Surprisingly, 1.) shows that the signal corresponding to θ2 is perfectly tracked in the

first 60 iterations, even at SNR=-5dB However, for θ1 MUSIC fails to estimate the

correct values, until after the step, when estimates seem approach the true DOA’s.

A similar scenario to the one described above is analyzed in Figure A.12: the

neighborhood size for each sensor i is set to be |Ni| = 5 elements (see d.) in Figure

2.4). This case displays a higher offset for both signals. The estimates θ̂1 are

particularly worse than θ̂2, but after the step change they get in track and are able

to identify the correct DOA’s.

One of the issues regarding the MUSIC algorithm is the need to consider a large

number of sensor elements to work at its best. Note that for N = 36, the outputs

are correlated to their respective scenarios. Nevertheless, in the sparse connected

case from Figure A.11, the lag between the estimated θ̂2 in 1.) and the θ̂2 in 2.)

increases for the three forgetting factors no matter if a higher SNR values is selected.

We presume that this is a consequence of the low network connectivity in this case.

In the following, we aim to corroborate these suspicions by studying a smaller

sensor network with N = 12 elements, as shown in Figure 2.3. The first experiment

is again for the fully connected scenario a) in Figure A.13. From the previous

experiments it is clear that this are the best achievable results. The same trend

among the β’s is observable in 1.). Nevertheless, when the Signal to Noise Ratio is

increased to 5dB, the lag from each forgetting factor rises unexpectedly. This trend

is also exhibited in the other scenarios from Figure A.14, A.15 and A.16.

Notwithstanding the unsatisfactory tracking results for N = 12, we proceed the

evaluate the angles error between the true signal subspace Υ(k) and the estimated

one W(k). Linebarger et all. shows in [86] that a good (or bad) MUSIC-based

tracking performance does not necessarily imply that the signal subspace estimate

is better or worse. There are several improved versions of the MUSIC algorithm for

Direction-Of-Arrival estimation, (Reference...)

The principal angle difference is evaluated for Algorithm 2. As expected, 3.) and
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4.) in Figure A.9 exhibit again a similar behavior to their analogous in Figure 4.2.

For 3.) and 4.) of the dense, sparse, regular Ni = 5 and regular Ni = 9 scenarios

corresponding to the Figures A.10, A.11, A.12 and 4.3, the algorithmic behavior is

governed by the network connectivity and the SNR. Nonetheless, this seems to be

the case only for the first principal component derived from θ1. The angle error

estimate for θ2 is not greatly altered for higher SNR. Recall the case when N = 12

as shown in Figure A.13. If 3.) and 4.) are compared with those results from Figure

A.9, it becomes evident that the angle error for the principal component associated

to θ1 are very similar between them. Besides this, the trend regarding the error floor

for the principal angle associated to θ2 stays valid.
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Figure A.1: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in the fully connected scenario a) from Figure 2.4 for N = 36

sensor elements. Subfigures 3.) and 4.) present the angle error between the es-
timated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure A.2: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in the dense connected scenario b) from Figure 2.4 for N = 36

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure A.3: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in the sparse connected scenario c) from Figure 2.4 for N = 36

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure A.4: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in a network with regular neighborhood size, i.e., Ni = 5.

This is the scenario d) from Figure 2.3 for N = 36 sensor elements. Subfigures 3.)
and 4.) present the angle error between the estimated subspace W and the true one
provided by the steering matrix Υ. The SNR=-5dB for those left side subfigures
and SNR=5dB for those at the right. The forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure A.5: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in the fully connected scenario a) from Figure 2.3 for N = 12

sensor elements. Subfigures 3.) and 4.) present the angle error between the es-
timated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
impact of the forgetting factor when β = 0.9, 0.8, 0.6 is likewise showed.
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Figure A.6: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in the dense connected scenario b) from Figure 2.3 for N = 12

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
impact of the forgetting factor when β = 0.9, 0.8, 0.6 is likewise showed.
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Figure A.7: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in the sparse connected scenario c) from Figure 2.3 for N = 12

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
impact of the forgetting factor when β = 0.9, 0.8, 0.6 is likewise showed.
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Figure A.8: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in a network with regular neighborhood size, i.e., Ni = 5.

This is the scenario d) from Figure 2.3 for N = 12 sensor elements. Subfigures 3.)
and 4.) present the angle error between the estimated subspace W and the true one
provided by the steering matrix Υ. The SNR=-5dB for those left side subfigures
and SNR=5dB for those at the right. The impact of the forgetting factor when
β = 0.9, 0.8, 0.6 is likewise showed.
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Figure A.9: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in the fully connected scenario a) from Figure 2.4 for N = 36

sensor elements. Subfigures 3.) and 4.) present the angle error between the es-
timated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure A.10: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in the dense connected scenario b) from Figure 2.4 for N = 36

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
forgetting factor is set to β = 0.9, 0.8, 0.6.

91



APPENDIX A. SIMULATION RESULTS WHEN Y IS DISTRIBUTED

0 20 40 60 80 100 120
−180

−120

−60

0

60

120

180

D
ire

ct
io

n 
of

 A
rr

iv
al

 [d
eg

]

1.)

0 20 40 60 80 100 120
−180

−120

−60

0

60

120

180
2.)

0 20 40 60 80 100 120
0

60

120

180

Time [k]

P
rin

ci
pa

l a
ng

le
s 

[d
eg

]

3.)

0 20 40 60 80 100 120
0

60

120

180

Time [k]

4.)
240 240

DoAθ
1

DoAθ
2

Trackθ
1

,

β= 0.9

Trackθ
2

,

β= 0.9

Trackθ
1

,

β= 0.8

Trackθ
2

,

β= 0.8

Trackθ
1

,

β= 0.6

Trackθ
2

,

 β= 0.6

Figure A.11: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in the sparse connected scenario c) from Figure 2.4 for N = 36

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure A.12: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in a network with regular neighborhood size, i.e., Ni = 5.

This is the scenario d) from Figure 2.3 for N = 36 sensor elements. Subfigures 3.)
and 4.) present the angle error between the estimated subspace W and the true one
provided by the steering matrix Υ. The SNR=-5dB for those left side subfigures
and SNR=5dB for those at the right. The forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure A.13: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in the fully connected scenario a) from Figure 2.3 for N = 12

sensor elements. Subfigures 3.) and 4.) present the angle error between the es-
timated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
impact of the forgetting factor when β = 0.9, 0.8, 0.6 is likewise showed.
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Figure A.14: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in the dense connected scenario b) from Figure 2.3 for N = 12

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
impact of the forgetting factor when β = 0.9, 0.8, 0.6 is likewise showed.
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Figure A.15: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in the sparse connected scenario c) from Figure 2.3 for N = 12

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
impact of the forgetting factor when β = 0.9, 0.8, 0.6 is likewise showed.
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Figure A.16: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 2
when y

i
is distributed in a network with regular neighborhood size, i.e., Ni = 5.

This is the scenario d) from Figure 2.3 for N = 12 sensor elements. Subfigures 3.)
and 4.) present the angle error between the estimated subspace W and the true one
provided by the steering matrix Υ. The SNR=-5dB for those left side subfigures
and SNR=5dB for those at the right. The impact of the forgetting factor when
β = 0.9, 0.8, 0.6 is likewise showed.
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Figure A.17: Evaluation of the Root Mean Square Error for the step signals as in
4.6. The Algorithm 2 is evaluated for N=12 sensors and for all possible topologies
from Figure 2.3. Subfigures 1.) , 2.) and 3.) relate to β = 0.9, 0.8, 0.6, respectively.
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Figure A.18: Evaluation of the subspace angle difference between the estimated sub-
space W and the true one provided by the steering matrix Υ for the step signals.
This cases regards the step signal case. The Algorithm 2 is analyzed for the topolo-
gies proposed in Figure 2.3. The results displayed at the right side correspond to
the first principal angle, and those at the left side, relate to the second principal
angle. Again, the performance for several forgetting factors are depicted: β = 0.9
in 1.) and 2.), β = 0.8 in 3.) and 4.). At last, β = 0.6 is shown in 5.) and 6.).
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100



Appendix B

Simulation results when R̂ is

distributed

In this section, further figures to study the previously addressed scenarios are dis-

played. No more details are provided, as they are included only for comparison pur-

poses. The reader is invited to have a deeper look into the behavior of Algorithm 3.
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Figure B.1: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in the fully connected scenario a) from Figure 2.4 for N = 36

sensor elements. Subfigures 3.) and 4.) present the angle error between the es-
timated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure B.2: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in the dense connected scenario b) from Figure 2.4 for N = 36

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure B.3: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in the sparse connected scenario c) from Figure 2.4 for N = 36

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure B.4: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in a network with regular neighborhood size, i.e., Ni = 5.

This is the scenario d) from Figure 2.4 for N = 36 sensor elements. Subfigures 3.)
and 4.) present the angle error between the estimated subspace W and the true one
provided by the steering matrix Υ. The SNR=-5dB for those left side subfigures
and SNR=5dB for those at the right. The forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure B.5: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in the fully connected scenario a) from Figure 2.3 for N = 12

sensor elements. Subfigures 3.) and 4.) present the angle error between the es-
timated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure B.6: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in the dense connected scenario b) from Figure 2.3 for N = 12

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure B.7: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in the sparse connected scenario c) from Figure 2.3 for N = 12

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure B.8: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in a network with regular neighborhood size, i.e., Ni = 5.

This is the scenario d) from Figure 2.3 for N = 12 sensor elements. Subfigures 3.)
and 4.) present the angle error between the estimated subspace W and the true one
provided by the steering matrix Υ. The SNR=-5dB for those left side subfigures
and SNR=5dB for those at the right. The forgetting factor is set to β = 0.9, 0.8, 0.6.
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Figure B.9: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in the fully connected scenario a) from Figure 2.4 for N = 36

sensor elements. Subfigures 3.) and 4.) present the angle error between the es-
timated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
impact of the forgetting factor when β = 0.9, 0.8, 0.6 is likewise showed.
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Figure B.10: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in the dense connected scenario b) from Figure 2.4 for N = 36

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
impact of the forgetting factor when β = 0.9, 0.8, 0.6 is likewise showed.
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Figure B.11: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in the sparse connected scenario c) from Figure 2.4 for N = 36

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
impact of the forgetting factor when β = 0.9, 0.8, 0.6 is likewise showed.
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Figure B.12: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in a network with regular neighborhood size, i.e., Ni = 5.

This is the scenario d) from Figure 2.4 for N = 36 sensor elements. Subfigures 3.)
and 4.) present the angle error between the estimated subspace W and the true one
provided by the steering matrix Υ. The SNR=-5dB for those left side subfigures
and SNR=5dB for those at the right. The impact of the forgetting factor when
β = 0.9, 0.8, 0.6 is likewise showed.
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Figure B.13: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in the fully connected scenario a) from Figure 2.3 for N = 12

sensor elements. Subfigures 3.) and 4.) present the angle error between the es-
timated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
impact of the forgetting factor when β = 0.9, 0.8, 0.6 is likewise showed.

114



0 20 40 60 80 100 120
−180

−120

−60

0

60

120

180

D
ire

ct
io

n 
of

 A
rr

iv
al

 [d
eg

]

1.)

0 20 40 60 80 100 120
−180

−120

−60

0

60

120

180
2.)

0 20 40 60 80 100 120
0

60

120

180

Time [k]

P
rin

ci
pa

l a
ng

le
s 

[d
eg

]

3.)

0 20 40 60 80 100 120
0

60

120

180

Time [k]

4.)

DoAθ
1

DoAθ
2

Trackθ
1
,

β= 0.9

Trackθ
2
,

β= 0.9

Trackθ
1
,

β= 0.8

Trackθ
2
,

β= 0.8

Trackθ
1
,

β= 0.6

Trackθ
2
,

 β= 0.6

Figure B.14: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in a dense connected scenario b) from Figure 2.3 for N = 12

sensor elements. Subfigures 3.) and 4.) present the angle error between the es-
timated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
impact of the forgetting factor when β = 0.9, 0.8, 0.6 is likewise showed.
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Figure B.15: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in the sparse connected scenario c) from Figure 2.3 for N = 12

sensor elements. Subfigures 3.) and 4.) present the angle error between the esti-
mated subspace W and the true one provided by the steering matrix Υ. The
SNR=-5dB for those left side subfigures and SNR=5dB for those at the right. The
impact of the forgetting factor when β = 0.9, 0.8, 0.6 is likewise showed.
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Figure B.16: Subfigure 1.) and 2.) display the tracking capabilities of Algorithm 3
when y

i
is distributed in a network with regular neighborhood size, i.e., Ni = 5.

This is the scenario d) from Figure 2.3 for N = 12 sensor elements. Subfigures 3.)
and 4.) present the angle error between the estimated subspace W and the true one
provided by the steering matrix Υ. The SNR=-5dB for those left side subfigures
and SNR=5dB for those at the right. The impact of the forgetting factor when
β = 0.9, 0.8, 0.6 is likewise showed.
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Figure B.17: Evaluation of the Root Mean Square Error for the step signals as in
4.6. The Algorithm 3 is evaluated for N=12 sensors and for all possible topologies
from Figure 2.3. Subfigures 1.) , 2.) and 3.) relate to β = 0.9, 0.8, 0.6, respectively.
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Figure B.18: Evaluation of the subspace angle difference between the estimated sub-
space W and the true one provided by the steering matrix Υ for the step signals.
This cases regards the step signal case. The Algorithm 3 is analyzed for the topolo-
gies proposed in Figure 2.3. The results displayed at the right side correspond to
the first principal angle, and those at the left side, relate to the second principal
angle. Again, the performance for several forgetting factors are depicted: β = 0.9
in 1.) and 2.), β = 0.8 in 3.) and 4.). At last, β = 0.6 is shown in 5.) and 6.).
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Appendix C

Definitions related to Chapter 5

Here we start with both local algorithmic descriptions and arrive at two different

global frameworks consisting of block diagonal matrices.

C.1 Calculation for the global description of

Algorithm 4.

The target here is to find a global description for the set of equations (5.33)-(5.36).

We start by defining the global expression for the local signal update y
i
(k) in (5.33)

as

Y(k) =


y
i
(k)

y
2,k

. . .

y
N

(k)

 =


VH

1,k−1x(k)

VH
2,k−1x(k)

. . .

VH
N,k−1x(k)

 .

By factorization, it is possible to separate the terms above and build the global

VH(k − 1) block diagonal matrix in terms of its local elements. Likewise, a vector

containing N times the incoming observation x(k) is provided through a Kronecker

product. That is to say,

Y(k) =


VH

1,k−1

VH
2,k−1

. . .

VH
N,k−1




x(k)

x(k)
. . .

x(k)

 (C.1)

= VH(k − 1)(IN ⊗ x(k)). (C.2)

121



APPENDIX C. DEFINITIONS RELATED TO CHAPTER 5

A single average consensus step of (3.7) is given by
g11V

H
1,k−1x(k) +

∑
j∈N1,
j 6=1

g1jV
H
j,k−1x(k)

. . .

gNNVH
N,k−1x(k) +

∑
j∈NN,
j 6=N

gNjV
H
j,k−1x(k)

 ,

which is factorable as

=


g11V

H
1,k−1 +

∑
j∈N1,
j 6=1

g1jV
H
j,k−1

. . .

gNNVH
N,k−1 +

∑
j∈NN,
j 6=N

gNjV
H
j,k−1



×


x(k)

x(k)
. . .

x(k)

 = (G⊗ Ir) VH(k − 1) (x(k)⊗ 1N ) = (G⊗ Ir) Y(k)1N .

Since a consensus in the network is guaranteed if and only if tmax →∞, the global

expression for the averaging step in (3.7) is defined as

Ỹ(k) =


y
i
(k)(tmax)

y
2,k

(tmax)
...

y
N

(k)(tmax)

 =
(
Gtmax ⊗ Ir

)
VH(k − 1) (x(k)⊗ 1N ) =

(
Gtmax ⊗ Ir

)
Y(k)1N .

The following step is to find a global description for the a posteriori error. Let’s

rewrite (5.34) in terms of the local signal subspace matrix Wi(k − 1) by recalling

V = SiWi(k − 1) and STi Si = INi . Namely,

ei(k) = STi
(
x(k)−Vi(k − 1)VH

i (k − 1)x(k)
)

= STi x(k)− STi SiWi(k − 1)WH
i (k − 1)STi x(k)

= STi x(k)−Wi(k − 1)WH
i (k − 1)STi x(k) = xi(k)−Wi(k − 1)WH

i (k − 1)xi(k)

= xi(k)−Wi(k − 1)y
i
(k).

However, as the error is actually influenced by the averaged value ỹi(k), it is impor-

tant to include (3.7) in the calculations. We therefore reformulate the above equation

as ei(k) = xi(k)−Wi(k − 1)ỹ
i
(k) and let the a posteriori error be determined as

ei(k) = xi(k)−Wi(k − 1)

giiWH
i (k − 1)xi(k) +

∑
j∈Ni,
j 6=i

gijW
H
j,k−1xj,k

 .
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Replacing xi(k) = STi x(k) and Wi(k − 1) = STi Vi(k − 1) in the previous equation

leads to

ei(k) = STi x(k)− STi Vi(k − 1)

giiVH
i (k − 1)SiS

T
i x(k) +

∑
j∈Ni,
j 6=i

gijV
H
j,k−1SjS

T
j x(k)

 ,

and the back substitution of VH(k− 1) = WH
i (k− 1)STi allows for further simplifi-

cation

ei(k) = STi x(k)− STi Vi(k − 1)

giiWH
i (k − 1)STi SiS

T
i x(k) +

∑
j∈Ni,
j 6=i

gijW
H
j,k−1S

T
j SjS

T
j x(k)

 ,

= STi

IN −Vi(k − 1)

giiVH
i (k − 1) +

∑
j∈Ni,
j 6=i

gijV
H
j,k−1


x(k).

A global selection matrix is likewise addressed in a block matrix fashion as

S ∈ {0, 1}N2×
∑N

i=1 |Ni|. Thus, the global error update equation is characterized by

Ẽ(k) =


ẽi(k)

ẽ2,k

. . .

ẽN (k)

 = ST
(
IN2 −V(k − 1)(G⊗ Ir)V

H(k − 1)
)

(IN ⊗ x(k)) .

The above structure is similarly obtained for (5.35) and (5.36) when R̂yy(k), Ỹ(k)

and E(k) are used. That is to say,

R̂yy(k) = R̂yy(k − 1) + γ(k)
(
Ỹ(k)ỸH(k)− R̂yy(k − 1)

)
.

V(k) = V(k − 1) + γ(k)E(k)diag
(
ỸH(k)

)(
R̂yy(k)

)−1
.

Here, we let E(k) = SẼ(k), γ(k) is a vector of size (N × 1) containing the local

γi(k) and allow the global ỸH(k) to become a block diagonal matrix (rN×N). The

reason for this factorization is to preserve the correct dimension of V(k). Finally,

we realize that our distributed signal subspace update equation (5.42) has the same

structure from the centralized solution (5.4). Therefore, it is straightforward to

use the guidelines introduced in [80] for analyzing the convergence properties of

Algorithm 4.
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C.2 Calculation for the global description of

Algorithm 5.

As mentioned in 5.1.4, the signal update vector given in (5.33) does not change for

the second algorithmic variant. Therefore, the global expression for Y(k) is exactly

the same as the one in (C.2). When factorizing (5.37), the data estimation error

ei(k) (independent of ỹ
i
(k)) is determined by

ei(k) = STi
(
x(k)−Vi(k − 1)VH

i (k − 1)x(k)
)
.

If each ei(k) is located at the diagonal of a block matrix E(k), its global description

yields:

E(k) =


ei(k)

e2,k

. . .

eN (k)

 = ST
(
IN2 −V(k − 1)VH(k − 1)

)
(IN ⊗ x(k)) .

Every node i locally updates the autocorrelation matrix using the equation

R̂yy
i (k) = R̂yy

i (k − 1) + γ(k)
[
y
i
(k)yH

i
(k)− R̂yy

i (k − 1)
]
,

and its block diagonal representation is given as

R̂yy(k) =


R̂yy
i (k)

R̂yy
2,k

. . .

R̂yy
i (k)

 = R̂yy(k − 1) + γ(k)
[
Y(k)YH(k)− R̂yy(k − 1)

]
.

The averaging steps occur immediately upon the variable Ri(k), where a general

expression for (3.10) is obtained through

R̃yy(k) =


R̃yy
i (k)

R̃yy
2,k
...

R̃yy
i (k)

 = (G⊗ Ir)


R̂yy
i (k)

R̂yy
2,k
...

R̂yy
i (k)

 = (G⊗ Ir) R̂yy(k)


Ir

Ir
...

Ir


=
(
Gtmax ⊗ Ir

)
R̂yy(k) (1N ⊗ Ir)

Notice that instead of a diagonal matrix representation, R̃yy(k) turns out to be a

vector whose elements are matrix blocks. This matrix has to be diagonalized in

the next step to preserve the structure of the general form of V(k). Again, letting
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E(k) = SE(k) yields,

V(k) = V(k − 1) + γ(k)E(k)YH(k)
(
diag R̃yy(k)

)−1
.

C.3 Variables dimensions

The matrix size from a local to a global representation is given as:

y
i
(k) ∈ Cr×1 −→Y(k) ∈ CrN×N ỹ

i
(k) ∈ Cr×1 −→ Ỹ(k) ∈ CrN×N

R̂yy
i (k) ∈ Cr×r −→ R̂yy(k) ∈ CrN×rN R̃yy

i (k) ∈ Cr×r −→ R̃yy(k) ∈ CrN×rN

ei(k) ∈ C|Ni|×1 −→ E(k) ∈ C
∑N

i=1 |Ni|×N Vi(k) ∈ CN×r −→V(k) ∈ CN2×rN

Si ∈ {0, 1}N×|Ni|−→ S ∈ {0, 1}N2×
∑N

i=1 |Ni|.
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mean square error performance of the PAST-consensus algorithm. In Inter-
national ITG Workshop on Smart Antennas (WSA 2010), Germany, February
2010.

[64] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. System
and control letters, 2004.

[65] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion
based on average consensus. Proc. 4th IPSN, pages 63–67, April 2005.

[66] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and distributed computation: nu-
merical methods. Prentice-Hall, 1989.

[67] M. Mehyar, D. Spanos, J. Pongsajapan, S.H. Low, and R.M. Murray. Asyn-
chronous distributed averaging on communication networks. IEEE Trans. on
Networking, 15(3):512–520, June 2007.

[68] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type
of phase transition in a system of self-driven particles. Phys. Rev. Letters,
75(6):1226–1229, 1995.

[69] A. Jadbabaie, J. Lie, and A.S. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Trans. Autom. Contr.,
48(6):988–1001, June 2003.

[70] L. Xiao, S. Boyd, and S. Lall. Distributed average consensus with time varying
metropolis weights. June 2006.
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