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Abstract

Non-cooperative game theory deals with games with complete rules.

Most solution concepts in non-cooperative game theory are defined on the

normal form. It is ex ante not clear whether a strategic situation is non-

cooperative and thus can be analyzed as a normal form game. The means to

verify the completeness of the rules is to write the game in extensive form.

However, many extensive form games have the same semi-reduced normal

form. This paper characterizes the class of finite extensive form games

with perfect recall and the same semi-reduced normal form by replicating

the work of Elmes and Reny (1994) in a theoretical framework developed

by Alós-Ferrer and Ritzberger. The necessary and sufficient conditions are

three transformations of the extensive form. These are embedded in the

space of extensive form games and an order relation is established.
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1 Introduction

Imagine a situation in which there are two cars on a winding road, going in

opposing directions and the drivers are unable to communicate with each other

and want to avoid a crash. At some point in time, the cars meet and crash if

one car is on the right side and the other car is on the left side of the road. How

should one model this situation? One way is to write down precisely when a

player has to decide between which alternatives and what he knows at this point

in time. For example, one could say that Player A starts first, but Player B does

not learn A’s choice. Or, Player B could start first. We can also imagine a more

elaborate description of the situation. Let Player A start first, and let Player B

not learn A’s choice. After choosing the lane, Player B has the choice to turn

on the radio. Of course, Player B is allowed to remember his first choice. Since

the crash happens if and only if both drive on the same lane, both players are

indifferent between Player B listening to the radio and Player B not listening to

the radio. The specific situation analyzed can become quite complicated. But

basically, each driver has to decide between the left and the right lane.

Situations like this can be well analyzed with non-cooperative game theory.

Non-cooperative game theory is game theory with complete rules. The rules

of a game are given in the extensive form. This corresponds to writing down

when a player has to decide between which alternatives and what he knows when

the decision is made. Together with a payoff function, an extensive form is an

extensive form game. Given the rules of a game, players can derive strategies from

it. A game in normal form are strategies and a payoff function. In our example,

in the first two cases, players A and B have the strategies of ‘going right’ and

‘going left’ available. If Player B has the option of turing on the radio, he can go

‘left with radio’, ‘left without radio’, ‘right with radio’ and ‘right without radio’.

It can be the case, that some strategy combinations of a player are equivalent in

the sense that they yield, whatever the other players do, the same payoff for all

players. For example, it doesn’t matter whether Player B turns on the radio or

not. Eliminating all redundant strategies gives rise to the semi-reduced (or pure-

strategy-reduced) normal form. One can argue that for rational players, it does

only matter which payoff they get in the end. The specific strategy combination

does not matter since the preferences over outcomes are represented by the payoff

function. Kohlberg and Mertens (1986) go further and argue that the (mixed-

strategy) reduced normal form is the correct object for solution theory. Most

equilibrium concepts in non-cooperative game theory are defined on the normal

form. One example is the Nash equilibrium and refinements of it (e.g. Myerson’s
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(1978) proper equilibrium). Two related questions are immediate. First, given a

strategic situation, how can one verify that the rules are complete and thus that

the situation can be analyzed with the tools of non-cooperative game theory?

Second, how can one modify the rules of an extensive form game without changing

the strategies essentially available to the players?

One can find answers to these questions in the early days of game theory

(Krentel, McKinsey, and Quine, 1951; Thompson, 1952; Dalkey, 1953). Back

then, the task was mainly to simplify a normal form game derived from an exten-

sive form game. Thompson (1952) proposed four transformations that leave the

strategic features of a game unchanged. However, two of his transformations take

a game with perfect recall and produce a game without perfect recall. A game

has perfect recall if the rules of the game do not force players to forget things they

knew or did. Elmes and Reny (1994) take the remaining two transformations and

modify Thompson’s ‘Addition’. Furthermore, they show that two finite extensive

form games are strategically equivalent if and only if they differ only by the three

transformations. In this paper we replicate their work in a theoretical framework

developed by Alós-Ferrer and Ritzberger.

Von Neumann and Morgenstern (1944, Chapter 2) develop a set theoretic rep-

resentation of extensive form games. However, since Kuhn (1950) extensive forms

have usually been formalized as a directed graph with certain desired features.

Alós-Ferrer and Ritzberger (2005; 2008; 2011; 2013) develop a framework that

formalizes the game in set theoretic terms. Outcomes are seen as the primitive of

the game. An outcome, or a play, represents an entire and thus unique history of

action in the course of the game. Furthermore, outcomes are the domain of the

decision makers’s preferences.

The next section collects necessary definitions. Furthermore, the space of

extensive form games is introduced and two binary relations are defined on it.

The first one is a partial order, the second is an equivalence relation. Section 3

reformulates and generalizes the three transformations of Elmes and Reny (1994).

Section 4 provides the main theorem, the last section concludes.

2 Preliminaries

The basic ingredient of an extensive form is a tree. We will work with Definition

3.1 in Ritzberger (2002).

Definition 1. A (game) tree T is a pair T = (W,N), where W is a set of

outcomes or plays and N is a collection of nonempty subsets of W , called nodes,

such that {w} ∈ N for all w ∈ W ,
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(i.) the collection M ⊆ N is a chain if and only if there is w ∈ W such that

w ∈ x for all x ∈ M , and

(ii.) every chain in X = N \ {{w}}w∈W has a maximum and either also a mini-

mum or an infimum in E = {{w}}w∈W .

A tree (W,N) is rooted if W ∈ N . The set W ∈ N is then called the root. Nodes

in E = {{w}}w∈W are called terminal and nodes in X = N \E are called moves.

In the terminology of Alós-Ferrer and Ritzberger (2005), this tree is complete

since it contains all singletons of outcomes as nodes, i.e. {w} ∈ N for all w ∈ W .

In Proposition 10, Alós-Ferrer and Ritzberger (2005) show that one can remove

all infinite terminal nodes without changing the structure of the tree. However,

one can also add all infinite terminal nodes. In order to simplify notation, we

choose to do that and therefore we consider complete and rooted trees only. Fur-

thermore, the definition of the game tree incorporates discreteness. Discreteness

consists of two parts. First, up-discreteness is the existence of a maximum in ev-

ery chain (Alós-Ferrer and Ritzberger, 2008, p. 235). Second, down-discreteness

is that every chain has a minimum or an infimum in the set of terminal nodes

(Alós-Ferrer and Ritzberger, 2013, p. 84).

Proposition 3.1(b) in Ritzberger (2002) states that for every rooted tree T ,

there exists an immediate predecessor function p : F (N) → X which is sur-

jective, satisfies p(W ) = W , x ⊂ p(x) and if x ⊂ y ∈ N then p(x) ⊆ y ⊆

∪∞
t=1p

t(x) for all x ∈ F (N) \ {W}, where F (N) = {x ∈ N |x ⊂ ∩x⊂y∈Ny} denotes

the set of finite elements.1 Alós-Ferrer and Ritzberger (2013) define the slice

Yt = {x ∈ N |pt−1(x) ⊂ pt(x) = W} for all t = 1, 2, . . . and show that nodes in a

slice Yt are pairwise disjoint.

Ritzberger (2002) introduces the function W−1 : P(W ) → P(N),

W−1(a) = {x ∈ N | x ⊆ a, and there is no y ∈ N : x ⊂ y ⊆ a} (1)

for all sets of plays a ⊆ W for a given tree T = (W,N). The function gives

the coarsest partition of a set of outcomes a in nodes in N . The function W :

P(N) → P(W ) maps a collection of nodes into the set of outcomes contained in

it, i.e. W (m) = {w ∈ W |∃x ∈ m : w ∈ x}. Ritzberger (2002) shows that W−1 is

the inverse of W under a suitable restriction of the domain.

Alós-Ferrer and Ritzberger (2013, p. 82) define the function

P (a) = {x ∈ N | ∃y ∈↓ a :↑ x = (↑ y) \ (↓ a)} , (2)

1Throughout the paper I use the convention x ⊆ y to denote a subset that could be proper
and x ⊂ y to denote a subset that is proper.
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where ↑ x = {y ∈ N |x ⊆ y} , x ∈ N is the up-set and ↓ x = {y ∈ N |y ⊆ x} , x ∈

N is the down-set. The maximal chain ↑ {w} , w ∈ W is denoted by ↑ w and

called play. Note that there is a bijection between the set of outcomes and

the set of plays. In the sequel we will use ‘play’ and ‘outcome’ interchange-

ably. The set P (a) are the immediate predecessors of a ∈ P(W ). Further-

more, Alós-Ferrer and Ritzberger (2013, p. 84) introduce the function p−1(y) =

{x ∈ F (N)|p(x) = y} that gives the set of immediate successors of a move.

Alós-Ferrer and Ritzberger (2013, Definition 6) define an extensive form on a

game tree. One should note that their definition is more general than the one

given here, since they allow that at least one player has choices available at a

given move. However, in this paper it is required that exactly one player has

choices available at a given move.

Definition 2. A (discrete) extensive form with player set I = {1, . . . , n} is a

pair (T, C), where T = (W,N) is a game tree with the set of outcomes W and

C = (Ci)i∈I is a system of collections Ci (the sets of players’ choices) of nonempty

unions of nodes (hence, sets of outcomes) for all i ∈ I, such that

(i.) if P (c) ∩ P (c′) *= ∅ and c *= c′, then P (c) = P (c′) and c ∩ c′ = ∅, for all

c, c′ ∈ Ci for all i ∈ I;

(ii.) p−1(x) = {x ∩ c|c ∈ Ai(x)} for all x ∈ Xi and i ∈ I,

where for all i ∈ I, the set Ai(x) = {c ∈ Ci|x ∈ P (c)} collects the choices available

to i at x and Xi = {x ∈ X|Ai(x) *= ∅} denotes the set of moves at which player

i has choices available. Moreover, {(Xi)i∈I} forms a partition of X.

The first item says that if one player has two distinct choices jointly avail-

able at some moves, then these choices are jointly available at the same moves.

Therefore, no player can infer any information from the choices available to him.

The choices jointly available are disjoint. The second property formulates that

for each move, the set of immediate successors are the nodes induced by choices

available to the player at this move. The set Hi = {P (c)}c∈Ci
is a partition of

Xi. An element h ∈ Hi is an information set for player i. Given a move x ∈ Xi,

let h(x) ∈ Hi denote the information set h ∈ Hi such that x ∈ h. The function

W−1|Ci
maps a choice into the set of nodes that can be reached with this choice.

Set inclusion defines when a node comes before another. Ritzberger (2002,

p. 121) defines the following relation in order to relate choices (and information

sets) to each other.

Definition 3. Let c, c′ ∈ Ci. We say that the choice c comes before c′,

c <i c
′, if there are x ∈ W−1(c) and x′ ∈ W−1(c′) such that x′ ⊂ x.
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Let h, h′ ∈ Hi. The information set h comes before h′,

h <i h
′, if there are x ∈ h′ and x′ ∈ h′ such that x′ ⊂ x.

With the definition of “comes before” at hand, Ritzberger (2002, Definition

3.12) defines perfect recall. A game satisfies perfect recall if the rules of the game

do not force players to forget what they have previously known and previously

done. Previously refers to a play in which a player decides twice. If a player

has to choose twice in the course of a play, then it must be the case that all

outcomes he can choose at the later stage must have been available to him at the

earlier stage. If this was not the case, then there is an outcome the player deems

impossible at the earlier information set, but possible at the later stage.

Definition 4. The extensive form (T, C) satisfies perfect recall if for all i ∈ I

and all c, c′ ∈ Ci,

c <i c
′ implies c′ ⊆ c.

Proposition 1. If an extensive form (T, C) has perfect recall, then for all players

i ∈ I and all choices c, c′ ∈ Ci, if c <i c′, then c′ ⊂ c and for all x′ ∈ W−1(c′)

there is x ∈ W−1(c) such that x′ ⊂ x.

Proof. Let (T, C) be an extensive form with perfect recall and let i ∈ I, c, c′ ∈ Ci

with c <i c′, i.e. there are x ∈ W−1(c), x′ ∈ W−1(c′) such that x′ ⊂ x. Since

(x \ x′) *= ∅, it follows that c′ ⊂ c. Furthermore, let x′ ∈ W−1(c′) and w ∈ x′.

Since c′ ⊆ c, there is x ∈ W−1(c) with w ∈ x. Hence, x∩x′ *= ∅ and by Definition

1, x′ ⊆ x or x ⊂ x′. If x ⊂ x′, then c′ <i c and by perfect recall c ⊂ c′, a

contradiction. If x = x′, then P (c) ∩ P (c′) *= ∅ and by Definition 2, c ∩ c′ = ∅, a

contradiction. Hence, x′ ⊂ x must be true.

Given an extensive form (T, C), a (pure) strategy is a function si : Xi → Ci

such that

s−1
i (c) = P (c) for all c ∈ si(Xi).

A strategy assigns the same choice to each decision point in an information set.

Strategies of player i are collected in the set Si, the set of strategy combinations

is denoted by S = ×i∈ISi. A pure strategy combination s is an element of this

set, i.e. s ∈ S. Alós-Ferrer and Ritzberger (2008) define the correspondence Rs :

W → W for a given s ∈ S as

Rs(w) =
⋂

{si(x)|w ∈ x ∈ Xi, i ∈ I} .
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Alós-Ferrer and Ritzberger (2013, Theorem 3) show that in an (discrete) exten-

sive form the following two properties are satisfied:

(A1) For every s ∈ S there is some w ∈ W such that w ∈ Rs(w).

(A2) If for s ∈ S there is w ∈ W such that w ∈ Rs(w), then Rs has no other

fixed point and Rs(w) = {w} .

The interpretation is that every pure strategy combination induces a unique out-

come, hence there is a function ψ : S → W with ψ(s) ∈ Rs(w). With the

definition of an extensive form at hand, one can define an extensive form game.

Definition 5. An extensive form game is a triple G = (T, C, π), where (T, C)

is an extensive form with player set I and π : W → Rn is the payoff function

mapping each outcome into a payoff vector.

The following definition is at the heart of this paper. It defines the notion of

strategic equivalence. Recall that every strategy combination induces a unique

outcome and that the payoff function assigns a payoff vector to it. For player i,

two strategies are said to be strategically equivalent if every strategy combination

with these two strategies induce the same payoff vector. Thus, all players are

indifferent between the two strategies.

Definition 6. Two strategies si, s′i ∈ Si of player i are strategically equivalent if

π(si, s−i) = π(s′i, s−i) for all s−i ∈ S−i.

Let S∗
i denote the set of equivalence classes of player i′ pure strategies. Let

S∗ =
∏

i S
∗
i . We extend the function π on S∗, so that π(s∗) = π(s), s ∈ s∗ ∈ S∗.

One can define the space of extensive forms games on a set of possible out-

comes W̄ and a set of players I.

Definition 7. Let W̄ *= ∅ be a nonempty set and I = {1, . . . , n}, n a positive

integer. The space of extensive form games ΓW̄ on (the set of outcomes) W̄ with

player set I is the set of all extensive form games such that G ∈ ΓW̄ if W ⊆ W̄ ,

G an extensive form game and Ci *= ∅ for all i ∈ I.

Every game G ∈ ΓW̄ is based on a set of plays W ⊆ W̄ . Note that there can

be many distinct games in ΓW̄ with root W ⊆ W̄ . Given a game G ∈ ΓW̄ and

a node x ∈ N, Gx ∈ ΓW̄ denotes the game derived from G and x with root x,

Nx = {y ∈ N |y ⊆ x}, Cxi
= {c ∩ x, c ∈ Ci} for all i ∈ I and πx = π|x. For the

rest of the paper, we fix a set of universal plays W̄ *= ∅ and a set of players I

with |I| ≥ 2. We define a binary relation on the set of extensive form games.
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Definition 8. For G, Ĝ ∈ ΓW̄ , G ≤ Ĝ if

(i.) for all t ∈ N, x ∈ Yt implies there is a x̂ ∈ Ŷt such that x ⊆ x̂,

(ii.) for all i ∈ I, all c, c′ ∈ Ci with c *= c′, P (c) = P (c′), there exist choices

ĉ, ĉ′ ∈ Ĉi, ĉ *= ĉ′, P̂ (ĉ) = P̂ (ĉ′) such that c ⊆ ĉ, c′ ⊆ ĉ′, and

(iii.) for all w ∈ W, π(w) = π̂(w).

The first item defines a rough notion of subtree. Since Y0 = {W} , plays in

the ‘smaller’ game are possible in the larger game. The second item says that

if a player has to decide between two alternatives at an information set in the

smaller game, then the same player has to decide between the two alternatives

at one information set in the larger game. The last item says that in the larger

tree the preferences of the players in the smaller tree are respected.

Proposition 2. The relation ≤ on ΓW̄ is a partial order.

Proof. The relation is clearly reflexive. In order to establish transitivity, let

G ≤ Ĝ and Ĝ ≤ G̃. Let t ∈ N and x ∈ Yt. There is x̂ ∈ Ŷt and x̃ ∈ Ỹt with

x ⊆ x̂ ⊆ x̃.

Let i ∈ I and let c, c′ ∈ Ci with c *= c′, P (c) = P (c′). There are choices

ĉ, ĉ′ ∈ Ĉi, ĉ *= ĉ′, P̂ (ĉ) = P̂ (ĉ′) such that c ⊆ ĉ, c′ ⊆ ĉ′. Furthermore, there are

choices c̃, c̃′ ∈ C̃i, c̃ *= c̃′, P̃ (c̃) = P̃ (c̃′) with ĉ ⊆ c̃, ĉ′ ⊆ c̃′. Thus c ⊆ c̃, c′ ⊆ c̃′ holds.

For antisymmetry, let G ≤ Ĝ and Ĝ ≤ G. Let t ∈ N and x ∈ Yt. There is

x̂ ∈ Ŷt such that x ⊆ x̂ and there is x′ ∈ Yt with x̂ ⊆ x′. Since nodes in a slice

are pairwise disjoint, x = x̂ = x′ follows.

Let i ∈ I and let c, c′ ∈ Ci and ĉ, ĉ′ ∈ Ĉi be such that they satisfy the relevant

properties. There are c̃, c̃′ ∈ Ci, c̃ *= c̃′, P (c̃) = P (c̃′), c ⊆ ĉ ⊆ c̃ and c′ ⊆ ĉ′ ⊆ c̃′.

Suppose c ⊂ c̃. Let w ∈ c, x ∈ P (c) with w ∈ x. Then there is x̃ ∈ P (c̃) with

w ∈ x̃, thus x∩ x̃ *= ∅. Then x̃ must be a strict predecessor of x. If player i selects

choice c̃ at x̃, c, c′ cannot be jointly available at x, a contradiction. Hence, c = c̃

and c′ = c̃′ and furthermore that G = Ĝ.

The next definition defines an equivalence relation on the space of extensive

form games.

Definition 9. Two extensive form games G, Ĝ are isomorphic, G ∼= Ĝ, if

(i.) there is a bijection b : I → Î,

(ii.) there is a bijection ω : W → Ŵ ,
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(iii.) there is a bijection ν : N → N̂ with the properties

(a) x ⊂ y iff ν(x) ⊂ ν(y) for all x, y ∈ N,

(b) for all i ∈ I there is a bijection χi : Ci → Ĉb(i),χi(c) =
⋃

w∈c ν({w}),

(c) for all w ∈ W, π(w) = π̂(ŵ), where {ŵ} = ν({w}).

3 The Transformations

Thompson (1952) suggests four transformations that leave the semi-reduced nor-

mal form unchanged. However, two of them are able to destroy perfect recall.

The two innocuous transformations are “Interchange of moves” and “Coalescing

of moves”. The remaining two are called “Inflation-deflation” and “Addition of

superfluous moves”. Elmes and Reny (1994) take the two innocuous transforma-

tions (INT and COA) and create a new transformation (ADD) by modifying “Ad-

dition”. Ritzberger (2002) translates the INT and the COA transformation into

the set theoretic framework. Whatsoever, he uses a different notion for choices.

In his book, choices are collections of nodes, while in the current framework they

are unions of these nodes. Therefore, I adjust his INT and COA transforma-

tion. However, he does not define the ADD transformation like Elmes and Reny,

but gives the inverse of the ADD transformation on the class of extensive form

games with perfect recall. Since we do not want to restrict ourselves a priori on

games with perfect recall, we translate the ADD transformation in the current

framework. But first, we will begin with the INT transformation.

Definition 10 (Interchange). G
INT
−−→ Ĝ if there is a player i ∈ I and a player

j ∈ I \ {i} , player i has an information set h such that for h′ ⊆ h, for all

x̄ ∈ h′, p−1(x̄) ⊆ X, p−1(x̄) ∩ P (c) *= ∅ ⇒ p−1(x̄) ⊆ P (c), |p−1(x̄)| = |A|, where

A = {c ∈ Cj|p−1(x̄) ⊆ P (c)} and Ĝ satisfies

(i.) Ŵ = W ,

(ii.) N̂ = N \ (
⋃

x̄∈h′ p−1(x̄)) ∪ (
⋃

x̄∈h′

⋃

c∈A {c ∩ x̄}),

(iii.) Ĉk = Ck for all k ∈ I, and

(iv.) π̂(w) = π(w) for all w ∈ W .

The interchange transformation states conditions for interchanging the order

of decision nodes of two players. First, player i has an information set such that

for a subset of this information set the set of immediate successors are moves.

Second, the set of immediate successors is a subset of an information set of player

8



j. Third, the number of immediate successors at player i′s information set is equal

to the number of choices available at an immediate successor. The trees have the

same structure and differ only at the immediate successors of the information set

h′. In the new game, player j chooses before player i at some nodes, thus the

outcomes that are possible at i′s choice are different than when i chooses first.

But since player i chooses immediately afterwards, only immediate successors of

h′ are changed. The choices and preferences of all players remain unchanged.

In the four player game depicted in Figure 1a, one can see that the choice

of the information set h′ is often arbitrary. One has three different possibilities

for h′. First, one can take the whole information set of Player 1. This results in

Figure 1c. On the other hand, one can take either of the two nodes in Player

1’s information set. Taking the node on the right as h′, translates the game into

the game depicted in Figure 1b. Starting in Figure 1b, we can apply the INT

transformation for Player 1 and end up in Figure 1c. One can go back to the

original game by flipping the roles of Player 1 and 2 while leaving h′ unchanged.

One can interpret the INT transformation as an assignment in the space of

extensive form games. If W ⊆ W̄ , then G ∈ ΓW̄ and Ĝ ∈ ΓW̄ , thus ΓW̄ is closed

under INT. If two games differ by INT, then they do only differ at immediate

successors of the sub-information set h′. If one defines a binary relation such that

two games are related if they differ by INT, then this relation is reflexive (since

one can take h′ = ∅) and symmetric. However, Figure 2 shows an example where

transitivity fails to hold under the current definition. The games on the left and

in the middle differ by INT and the games in the middle and on the right differ

by INT. However, the games on the left and on the right do not differ by INT,

since a single application of INT on one game does not generate the other game.

Definition 11 (Coalescing). G
COA
−−−→ Ĝ if for some player i ∈ I there are two

choices c, c′ ∈ Ci with W−1(c) = P (c′), i is the only player who has choices

available at (any move in) h′ = P (c′), and Ĝ satisfies T̂ = (W,N \ W−1(c)),

Ĉi = Ci \ {c} , Ĉj = Cj for j ∈ I \ {i} and π̂(w) = π(w) for all w ∈ W.

If a player has two consecutive choices c, c′ and the set of nodes that can

be reached with the first choice is equal to the information set at which the

second choice is available, one can delete the first choice. Of course, the COA

transformation destroys subgames.

Figure 3a shows an extensive form game in which one can apply the Coalescing

transformation twice. Player 1 has two consecutive information sets twice. Figure

3a differs from Figure 3b by COA and Figure 3b differs from Figure 3c by COA.
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(c) The game after another application of the INT transformation

Figure 1: Interchanging Moves

1

ba dc fe hg

2

3

2

ba fe dc hg
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ea fb gc hd

3

1

Figure 2: Failure of the Transitivity of the INT Transformation
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(a) The initial game in extensive form
0

ed kj qp wvf l r x
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1

(b) The game after the COA transformation
0

eb kh qn wtdc ji po vufa lg rm xs

1

(c) The game after another COA transformation

Figure 3: Coalescing Information Sets

After the transformations, Player 1 has only one information set and two choices

less.

Definition 12 (Addition). Ĝ
ADD
−−−→ G, if there are sets X̂ ⊆ N̂, ĥ ∈ Ĥi, Â =

{

c ∈ Ĉi | P (c) = ĥ
}

, and X ⊆ P(W̄ ), such that for all x ∈ ĥ, y ∈ X̂ , x ∩ y = ∅,

the elements of X̂ (respectively X ) are pairwise disjoint and there is a bijection

ψ : X̂ → X such that for all x̂ ∈ X̂ ,

(a) x̂ ⊂ ψ(x̂),

(b) (ψ(x̂) \ x̂) ∩ Ŵ = ∅, and

(c) p−1(ψ(x̂)) is well defined and p−1(ψ(x̂)) = {xĉ}ĉ∈Â , x̂ = xĉ∗ ,

and for all ĉ ∈ Â \ {ĉ∗} , there is a bijection ωxĉ
: x̂ → xĉ with π(ωxĉ

(w)) = π̂(w)

for all w ∈ x̂. Furthermore, the following properties hold:

(i.) for all ĉ ∈ Ĉi, if Ŵ−1(ĉ) ∩Nc∗ *= ∅, then Ŵ−1(ĉ) ⊆ Nc∗ ,

11



(ii.) for all c ∈ Ci, c′ ∈ A, if c <i c′, then c′ ⊆ c,

(iii.) W = Ŵ ∪
⋃

x∈X x,

(iv.) N = N̂ \
{

p̂t(x̂) | x̂ ∈ X̂ , t ∈ N

}

∪ X ∪
⋃

c∈ANc ∪

∪
⋃

x̂∈X̂

⋃

t∈N

{

p̂t(x̂) ∪
⋃

p̂t(x̂)⊃x̂′∈X̂ ψ(x̂
′)
}

,

(v.) Cj =
⋃

ĉ∈Ĉj

{

ĉ ∪
⋃

ŷ∈Ŵ−1(ĉ)

⋃

ŷ⊇x̂∈X̂ ψ(x̂) ∪
⋃

ẑ∈Ŵ−1(ĉ)∩Nc∗

⋃

c∈A\c∗ φc∗c(ẑ)
}

(vi.) Ci = A ∪
⋃

ĉ∈Ĉi\Â

{

ĉ ∪
⋃

ŷ∈Ŵ−1(ĉ)

⋃

ŷ⊇x̂∈X̂ ψ(x̂)
}

∪

∪
⋃

c∈A\{c∗}

{

⋃

ẑ∈Ŵ−1(ĉ)∩Nc∗
φc∗c(ẑ)

}

,

(vii.) π(w) = π̂(w) for all w ∈ Ŵ ,

(viii.) A = {c∗} ∪
⋃

ĉ∈Â\{ĉ∗} ĉ ∪
⋃

x̂∈X̂

⋃

w∈x̂ {ωĉ(w)} ,

where c∗ = ĉ∗ ∪
⋃

x̂∈X̂ x̂, ĉ∗ ∈ Â, for all c ∈ A, Nc =
{

x ∈ N |x ⊆ c ∩
⋃

x∈X x
}

,

there is a bijection φc∗c : Nc∗ → Nc with y ⊂ x iff φc∗c(y) ⊂ φc∗c(x) for all x, y ∈

Nc∗ and π̂(w) = π(φc∗c(w)), where {φc∗c(w)} = φc∗c({w}) for all w ∈
⋃

x̂∈X̂ x̂.

The elements in X are superfluous moves added to the information set ĥ,

while the elements in X̂ are the maximal nodes being copied. Note that Nc∗ =
{

ŷ ∈ N̂ |ŷ ⊆ x̂ ∈ X̂
}

and that there is an information set h = ĥ ∪ X in the new

game. In the sequel, we consider φc∗c∗ as the identity.

Figure 4a shows a game in which one can employ the ADD transformation.

Moves are added to the information set ĥ = {{a, b, c}} . The added moves are

superfluous in the sense that however Player 1 decides, the payoff materialized

depends entirely on other choices. The other information set of Player 1 gets

copied. It appears three times in the new game, each copy refers to a choice

available at ĥ. The information set gets copied such that perfect recall is preserved.

The other player’s choices and information remain essentially the same. Player 2

does not get to know at which copy he can choose.

The INT and COA transformations are local transformations in the sense

that they leave the set of outcomes unchanged. The ADD transformation on the

other hand increases the set of outcomes. If W̄ is sufficiently large, ΓW̄ is closed

under ADD. One can take W̄ = N in the case of countable games and W̄ = R

for uncountable games.

Proposition 3. If Ĝ
ADD
−−−→ G, then Ĝ ≤ G.

Proof. Let t ∈ N and x̂ ∈ Ŷt. There are four exhaustive cases how x ∈ Yt, x̂ ⊆ x

can look like. First, if x̂ ∩ x̄ = ∅, x̄ ∈ X̂ , then x = x̂. Second, if x̂ ∈ X̂ , then

12
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(a) The initial game in extensive form
0

ca b

1

1 1 1
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2

(b) The game after the ADD transformation

Figure 4: Addition of Superfluous Moves

x = ψ(x̂). Third, if x̂ ⊂ x̄, x̄ ∈ X̂ , then x = p̂(x̂). Finally, if x̄ ⊂ x̂, x̄ ∈ X̂ , then

x = x̂ ∪
⋃

x̂⊃x̄′ ψ(x̄′).

If two choices are jointly available for a player in Ĝ, then there are larger

corresponding choices jointly available in G. Moreover, π̂(w) = π(w) for all w ∈

Ŵ .

Ritzberger (2002) defines the inverse of the ADD-Transformation on the class

of extensive form games with perfect recall. The following two definitions trans-

late his definition into the current setup.

Definition 13 (Irrelevant Choices). Let G be an extensive form game with per-

fect recall and suppose that, for some player i ∈ I the subset A ⊆ Ci of choices

satisfies P (c) = P (c′) = h for all c, c′ ∈ A and |A| ≥ 2. Let h′ ⊆ h be a subset of

h ∈ Hi and define

Nc = {x ∈ N |x ⊆ c ∩W (h′)}

as the nodes met after c along plays passing through h′ for all c ∈ A. The choices

in A are called irrelevant at (any move in) h′ if i is the only player who has choices

available at (any move in) h′, W−1(c) ∩ Na *= ∅ ⇒ c ⊆ a for all c ∈ Ci and all

a ∈ A and for all c, c′ ∈ A the function ψcc′ : Nc → Nc′ which satisfies

(i.) y ⊂ x if and only if ψcc′(y) ⊂ ψcc′(x) for all x, y ∈ Nc,

(ii.) x ⊆ c̃ if and only if ψcc′(x) ⊆ c̃ for all c̃ ∈ Cj, all x ∈ Nc, and all j *= i,

(iii.) W−1(c̃) ⊆ Nc if and only if ψcc′(W−1(c̃)) ⊆ Nc′ for all c̃ ∈ Ci, and

13



(iv.) π(w) = π(ψcc′(w)) where ψcc′(w) ∈ c∩W (h′) denotes the outcome that ends

at the image of the terminal node {w} ∈ Nc under ψcc′, for all {w} ∈ Nc,

is a bijection.

Definition 14 (Deletion of irrelevant choices). G
DEL
−−−→ Ĝ if for some player i ∈ I

there is a set of choices A ⊆ Ci, |A| ≥ 2 such that

(i.) at any move in h = P (c) = P (c′) for all c, c′ ∈ A player i is the only player

who has nontrivial choices available and the choices in A are the only choices

available to i at h,

(ii.) the choices in A are irrelevant at the proper subset h′ of h and

(iii.) Ĝ satisfies

Ŵ = W \ (∪a∈A\{c∗}a ∩W (h′)),

N̂ =
{

x ∩ Ŵ | x ∈ N \ (∪a∈A\{c∗}Na ∪ h′)
}

,

Ĉj =
{

c ∩ Ŵ | c ∈ Cj

}

, for all j *= i,

Ĉi =
{

c ∩ Ŵ | c ∈ Ci \ {c
∗}
}

∪ {c∗ \W (h′)} ,

and π̂(w) = π(w) for all w ∈ Ŵ .

Proposition 4. If G, Ĝ differ by one of the three transformations INT, COA or

ADD, then G has perfect recall if and only if Ĝ has perfect recall.

Proof. Let G
INT
−−→ Ĝ, k ∈ I, c, c′ ∈ Ck = Ĉk, with Ŵ−1(c) = W−1(c), Ŵ−1(c′) =

W−1(c′) and x′ ⊂ x. This holds true for all choices of all players in I \ {i, j} and

for some choice combinations of players i and j eventually. Then c <k c′ if and

only if c <̂k c′. Therefore, one game has perfect recall if and only if the other

game has perfect recall.

Let Ĝ have perfect recall and consider player i. Let c, c′ ∈ Ci and c <i c′,

i.e. there is x ∈ W−1(c) and x′ ∈ W−1(c′) with x′ ⊂ x. Either Ŵ−1(c) *⊆ N̂, or

Ŵ−1(c′) *⊆ N̂ , or Ŵ−1(c) ∪W−1(c′) ⊆ N̂. Note that the last case was discussed

above. Suppose P (c) = h and x ∈ N̂. Then c <̂i c′. Suppose P (c) = h and

x /∈ N̂ . Then there is x̂ ∈ Ŵ−1(c), with x′ ⊂ x̂ ⊂ x and thus c <̂i c′. Now suppose

P (c′) = h and x′ ∈ N̂. It is again obvious that c <̂i c′. If P (c′) = h and x′ /∈ N̂ ,

then there is x̂′ ∈ Ŵ−1(c′) with x̂′ ⊂ x′ ⊂ x, hence c <̂i c′. In each case, we obtain

c <̂i c′ and perfect recall in Ĝ implies c′ ⊆ c.

Now consider player j. Let c, c′ ∈ Cj and let c <j c′, i.e. there is x ∈ W−1(c)

and x′ ∈ W−1(c′) such that x′ ⊂ x. At most one of the choices can be in the set

14



A. Let c ∈ A. If x ∈ Ŵ−1(c), then c <̂j c′. On the other hand, if x /∈ Ŵ−1(c), then

there is x̂ ∈ Ŵ−1(c) with x′ ⊂ x ⊆ x̂, consequently c <̂j c′. Now let c′ ∈ A and

suppose x′ ∈ Ŵ−1(c′). Then we have c <̂j c′. If x′ /∈ Ŵ−1(c′), then there is x̄ ∈ h′

with x′ ⊂ x̄ ⊂ x. There exists x̂′ ∈ Ŵ−1(c′) with x′ ⊂ x̂′ = x̄ ∩ c′ ⊂ x̄ ⊂ x, thus

c <̂j c′. In each case, c <j c′ implies c <̂j c′ and perfect recall in Ĝ guarantees

c′ ⊆ c.

The same arguments hold if G satisfies perfect recall. Note that one can apply

INT on Ĝ with the same h′, but flipping the roles of i and j.

Let G
COA
−−−→ Ĝ and let G have perfect recall. Let k ∈ I and ĉ, ĉ′ ∈ Ĉk with

ĉ <̂k ĉ′. Then it follows that ĉ, ĉ′ ∈ Ck and thus ĉ <k ĉ′. Perfect recall implies

ĉ′ ⊆ ĉ.

Suppose that Ĝ has perfect recall. Let k ∈ I and c, c′ ∈ Ck with c <k c′ and

c, c′ ∈ Ĉk. The last requirement holds true for all choices of player k *= i and

eventually for some of player i’s choices. Since c, c′ ∈ Ĉk, we have c <̂k c′. Perfect

recall in Ĝ gives c′ ⊆ c.

Now, consider player i. Let c, c′ ∈ Ci and c <i c′. Suppose c /∈ Ĉi and

W−1(c) = P (c′). This equality holds only if c′ ⊆ c. Now let c /∈ Ĉi and let

W−1(c) *= P (c′). Then there is a choice c̄ ∈ Ci with W−1(c) = P (c̄) and c̄ <i c′.

From the case above, we know that c̄ ⊆ c. Furthermore, c̄, c′ ∈ Ĉi and c̄ <̂i c′.

Perfect recall in Ĝ implies c′ ⊆ c̄ ⊆ c.

Suppose c′ /∈ Ĉi. Consider the set X = {c̄ ∈ Ci|W−1(c′) = P (c̄)} . Recall there

are x ∈ W−1(c), x′ ∈ W−1(c′) such that x′ ⊂ x. Since W−1(c′) = P (c̄), there is a

x̄ ∈ W−1(c̄) with x̄ ⊂ x′ ⊂ x. Thus we have that c <i c̄, and c, c̄ ∈ Ĉi, thus c̄ ⊆ c.

Since c̄ ⊆ c for all c̄ ∈ X and c′ = ∪c̄∈X c̄, it follows that c′ ⊆ c.

Let Ĝ
ADD
−−−→ G. Suppose G has perfect recall. Consider player j ∈ I \ {i} and

ĉ, ĉ′ ∈ Ĉj , ĉ <̂j ĉ′, i.e. there is x̂ ∈ Ŵ−1(ĉ), x̂′ ∈ Ŵ−1(ĉ′) with x̂′ ⊂ x̂. There are

choices c, c′ ∈ Cj in the larger game G such that

c = ĉ ∪
⋃

ẑ∈Ŵ−1(ĉ)∩Nc∗

⋃

c∈A\c∗

φc∗c(ẑ) ∪
⋃

ŷ∈Ŵ−1(ĉ)

⋃

ŷ⊇x̂∈X̂

ψ(x̂)

and

c′ = ĉ′ ∪
⋃

ẑ∈Ŵ−1(ĉ′)∩Nc∗

⋃

c∈A\c∗

φc∗c(ẑ) ∪
⋃

ŷ∈Ŵ−1(ĉ)′

⋃

ŷ⊇x̂∈X̂

ψ(x̂).

For x̂ ∈ Ŵ−1(ĉ), either x̂ ∈ W−1(c) or x̂ /∈ W−1(c). In the first case, it must

be that x̂′ ∈ W−1(c′) and therefore c <i c′. Perfect recall implies c′ ⊆ c and thus

ĉ′ = c′ ∩ Ŵ ⊆ c ∩ Ŵ = ĉ.

Let x̂ /∈ W−1(c), i.e. there is x̄ ∈ X̂ with x̂ ⊇ x̄. Then there is x ∈ W−1(c)

such that x = x̂ ∪
⋃

x̂⊇x̄′∈X̂ ψ(x̄
′). If x̂′ ∈ Ŵ−1(c′), then x̂′ ⊂ x and thus c <j c′.
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If x̂′ /∈ Ŵ−1(c′), then x̂′ ⊇ x̄′ ∈ X̂ , x′ = x̂′ ∪
⋃

x̂′⊇x̄′′∈X̂ ψ(x̄
′′), x′ ⊂ x and therefore

c <j c′.

Now consider player i. Let ĉ, ĉ′ ∈ Ĉi, ĉ <̂i ĉ′, i.e. there are x̂ ∈ Ŵ−1(ĉ), x̂′ ∈

Ŵ−1(ĉ′) with x̂′ ⊂ x̂. Again, there are corresponding choices in the larger game

denoted by c, c′. If x̂ ∈ W−1(c), then also x̂′ ∈ W−1(c′) and hence c <i c′ and

perfect recall implies c′ ⊆ c. If none of the choices is in A, then ĉ′ = c′ ∩ Ŵ ⊆

c ∩ Ŵ = c. If c′ ∈ A, then ĉ′ ⊆ c′ ∩ Ŵ ⊆ c ∩ Ŵ = ĉ. If c ∈ A, then ĉ ∈ Â and

ĉ′ = c′. If follows that ĉ′ = c′∩Ŵ \W (X̂ ) ⊆ c∩Ŵ \W (X̂ ) = ĉ. The first equality

comes from the fact that Ŵ−1(ĉ′) ∩Nc∗ = ∅.

Let there be x̄ ∈ X̂ with x̄ ⊆ x̂ ∈ Ŵ−1(ĉ). Then there is x ∈ W−1(c), x =

x̂ ∪
⋃

x̂⊇x̄′∈X̂ ψ(x̄
′). If x̂′ is not a predecessor of X̂ , then x̂′ ∈ W−1(c′) and thus

c <i c′. If c′ ∈ A, then ĉ′ = c′ ∩ Ŵ \ W (X̂ ) ⊆ c ∩ Ŵ = ĉ. If c′ /∈ A, then

ĉ′ = c′ ∩ Ŵ ⊆ c ∩ Ŵ = ĉ.

If x̂′ is a predecessor of X̂ , then we do the same as for player j. Therefore, we

have shown that for all k ∈ I and all choices ĉ, ĉ′ ∈ Ĉk, ĉ <̂k ĉ′ implies ĉ′ ⊆ ĉ,

thus Ĝ satisfies perfect recall.

Now let Ĝ have perfect recall and consider player j *= i first. Let c, c′ ∈ Cj

such that c <j c′, i.e. there are x ∈ W−1(c), x′ ∈ W−1(c′) with x′ ⊂ x. There are

corresponding choices ĉ, ĉ′ ∈ Ĉj such that

c = ĉ ∪
⋃

ẑ∈Ŵ−1(ĉ)∩Nc∗

⋃

c∈A\c∗

φc∗c(ẑ) ∪
⋃

ŷ∈Ŵ−1(ĉ)

⋃

ŷ⊇x̂∈X̂

ψ(x̂).

First, we show ĉ <̂j ĉ′ and second that c′ ⊆ c.

Let x ∈ W−1(c) ∩ Nc̃, c̃ ∈ A. Note that φ−1
c∗c̃(x) ∈ Nc∗ ,φ

−1
c∗c̃(x) ∈ W−1(c)

and φ−1
c∗c̃(x) ∈ Ŵ−1(ĉ). Since x′ ⊂ x, φ−1

c∗c̃(x
′) ⊂ φ−1

c∗c̃(x) and therefore φ−1
c∗c̃(x

′) ∈

Ŵ−1(ĉ′), thus ĉ <̂j ĉ′.

Let x ⊇ x̃ ∈ X . By construction of x, for all x̄ ∈ X̂ , x̄ ⊆ x, it is true that

ψ(x̄) ⊆ x. Thus there is x̂ ∈ Ŵ−1(ĉ) with x̄ ⊆ x̂ if and only if x̄ ⊆ x, x̄ ∈ X̂ . If

x′ ∈ Nc̃, c̃ ∈ A, then there is x̃ ∈ X with x′ ⊂ x̃ ⊆ x and x̂′ ∈ Ŵ−1(ĉ′) such that

x̂′ = φ−1
c∗c̃(x

′) ⊂ x̂. If x′ ⊇ x̃ ∈ X , then for all x̄ ∈ X̂ with x̄ ⊆ x′, it holds that

x̄ ⊆ x. Thus x̂′ ⊂ x̂. If for all x̃ ∈ X we have x′ ∩ x̃ = ∅, then x′ = x̂′ ∈ Ŵ−1(ĉ′)

and thus x̂′ ⊂ x̂.

If x ∈ W−1(c) is such that for all x̃ ∈ X , x ∩ x̃ = ∅, then x ∈ Ŵ−1(ĉ) and

since x′ ⊂ x, it follows that x′ ∈ Ŵ−1(ĉ′). In every case we get that ĉ <̂j ĉ′ and

perfect recall in Ĝ implies ĉ′ ⊆ ĉ.

Now we show c′ ⊆ c. First, note that ĉ ⊆ c and ĉ′ ⊆ c′. Let w ∈ c′. If

w ∈ ĉ′, then w ∈ ĉ ⊆ c. Let w ∈ c′ \ ĉ′. Clearly, there is y′ ∈ W−1(c′) such that

w ∈ y′. If y′ ∈ Nc̃, c̃ ∈ A, then φ−1
c∗c̃(y

′) ∈ W−1(c′) ∩ Nc∗. Denote ŷ′ = φ−1
c∗c̃(y

′)
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and observe ŷ′ ∈ Ŵ−1(ĉ′). Since ĉ′ ⊆ ĉ, by Proposition 1 there is ŷ ∈ Ŵ−1(ĉ)

with ŷ′ ⊂ ŷ. If ŷ ∈ Nc∗ , then φc∗c̃(ŷ) ∈ W−1(c),φc∗c̃(ŷ′) ⊂ φc∗c̃(ȳ) and w ∈ c. If

ŷ ⊃ ȳ ⊃ ŷ′, ȳ ∈ X̂ , then φc∗c̃(ŷ) ⊂ y and thus w ∈ c.

If y′ ⊇ ȳ ∈ X̂ , then there is c̃ ∈ A such that w ∈ φc∗c̃(ȳ) ⊂ y′. Hence, there

is ŷ′ ∈ Ŵ−1(ĉ′) with ȳ ⊆ ŷ′ ⊂ y′. Furthermore, there is ŷ ∈ Ŵ−1(ĉ) such that

ŷ′ ⊂ ŷ and w ∈ ŷ ∪ φc∗c̃(ȳ) ⊆ y, thus w ∈ c.

Now, consider player i. Let c, c′ ∈ Ci \ A and let c <i c′, i.e. there are

x ∈ W−1(c), x′ ∈ W−1(c′) with x′ ⊂ x. First, we deal with the case x ∈ W−1(c)∩

Nc̃, c̃ ∈ A. From Definition 12 we know that W−1(c) ⊆ Nc̃ and since x′ ⊂ x, also

W−1(c′) ⊆ Nc̃. Therefore, there are choices ĉ, ĉ′ ∈ Ĉi such that x̂ = φ−1
c∗c̃(x) ∈

Ŵ−1(ĉ), x̂′ = φ−1
c∗c̃(x

′) ∈ Ŵ−1(ĉ′). By the properties of φc∗c̃, x̂′ ⊂ x̂, thus ĉ <̂i ĉ′

and by perfect recall in Ĝ, ĉ′ ⊆ ĉ. Before we show c′ ⊆ c, we consider a second

case.

Second, let there be x̃ ∈ X and c̃ ∈ A with x′ ⊂ x̃ ⊆ x, i.e. x′ ∈ Nc̃∩W−1(c′).

By construction of c, c′ ∈ Ci, there are corresponding choices ĉ, ĉ′ ∈ Ĉi such that

c = ĉ ∪
⋃

ŷ∈Ŵ−1(ĉ)

⋃

ŷ⊇x̂∈X̂

ψ(x̂)

and

c′ =
⋃

ẑ∈Ŵ−1(ĉ′)∩Nc∗

φc∗c̃(ẑ).

There are x̂ ∈ Ŵ−1(ĉ), x̂′ ∈ Ŵ−1(ĉ′) with x = x̂∪
⋃

x̂⊃x̄′∈X̂ ψ(x̄
′) and x̂′ = φ−1

c∗c̃(x
′).

Since x̂′ ⊂ x̃, there is x̄ ∈ X̂ , x̂′ ⊂ x̄ ⊆ x̂, thus x̂′ ⊂ x.Consequently, ĉ <̂i ĉ′ and

by perfect recall ĉ′ ⊆ ĉ. Let w ∈ c′. There is y′ ∈ W−1(c′) with w ∈ y′.

For both cases, c′ is constructed such that there is ŷ′ = φ−1
c∗c̃(y

′) ∈ Ŵ−1(ĉ′).

By Proposition 1 there is ŷ ∈ Ŵ−1(ĉ) with ŷ′ ⊂ ŷ. Furthermore, there is ȳ ∈ X̂

with ŷ′ ⊂ ȳ. If ŷ ⊂ ȳ, then w ∈ φc∗c̃(ŷ) ⊆ c. If ȳ ⊆ ŷ, then w ∈ φc∗c̃(ȳ) ⊆ c

Now, we consider cases in whichW−1(c′)∩Nc̃ = ∅ for all c̃ ∈ A. There are again

corresponding choices ĉ, ĉ′ and x̂ ∈ Ŵ−1(ĉ), x̂′ ∈ Ŵ−1(ĉ′) nodes corresponding to

x, x′. We consider three different cases and for each of the cases we show c <i c′

implies ĉ <̂i ĉ′. Then we show that this implies c′ ⊆ c.

Let there be x̃ ∈ X with x̃ ⊆ x′ ⊂ x. There is x̄ ∈ X̂ such that x̄ ⊆ x̃, thus

x̄ ⊆ x̂′ ⊂ x̂ holds. If x̃ ⊆ x, but x̃′ ∩ x′ = ∅ for all x̃′ ∈ X , then x′ ∈ Ŵ−1(ĉ′) and

x̂ = x∩Ŵ ⊃ x′∩Ŵ = x′. If x∩x̃ = ∅ for all x̃ ∈ X , then x ∈ Ŵ−1(ĉ), x′ ∈ Ŵ−1(ĉ′)

and thus ĉ <̂i ĉ′ and ĉ′ ⊆ ĉ.

Let w ∈ c′. If w ∈ ĉ′, then w ∈ c. If w /∈ ĉ′, then there is y′ ∈ W−1(c′) with

w ∈ y′ and ȳ ∈ X̂ , ȳ ⊂ y′, c̃ ∈ A such that w ∈ φc∗c̃(ȳ). There is ŷ′ ∈ Ŵ−1(ĉ′) with
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ȳ ⊆ ŷ′ ⊆ y′, by Proposition 1 there is ŷ ∈ Ŵ−1(ĉ) with ŷ′ ⊂ ŷ and y ∈ W−1(c)

with ŷ ⊆ y. Thus w ∈ φc∗c̃ ⊆ c.

Now, let c′ ∈ A, c ∈ Ci, c <i c′. By Definition 12 we know that c′ ⊆ c. Let

c ∈ A, c′ ∈ Ci, c <i c′. If W−1(c′)∩Nc *= ∅, then W−1(c′) ⊆ Nc and thus c′ ⊆ c. If

W−1(c′)∩Nc = ∅, then x′ ∈ Ŵ−1(c′), c′ ∈ Ĉi and there is ĉ ∈ Â, ĉ ⊆ c, x ∈ Ŵ−1(ĉ).

Thus ĉ <̂i c′, by perfect recall c′ ⊆ ĉ ⊆ c.

4 The Theorem

Definition 15. Two extensive form games G, Ĝ are said to have the same semi-

reduced normal form if there is

(i.) a bijection b : I → Î ,

(ii.) for each i ∈ I, a bijection bi : S∗
i → Ŝ∗

b(i),

(iii.) for all s∗ ∈ S∗, π(s∗) = π̂(ŝ∗), where ŝ∗b(i) = bi(s∗i ) for all i ∈ I.

Definition 16. An extensive form game G is in reduced form if

(i.) for all i ∈ I, we have Hi = {Xi} ,

(ii.) for all w ∈ W, i ∈ I, ↑ w ∩Xi *= ∅,

(iii.) for all i, j ∈ I, i *= j, either for all x ∈ Xi there is y ∈ Xj with x ⊂ y or for

all y ∈ Xj there is x ∈ Xi with y ⊂ x,

(iv.) for all i ∈ I, x ∈ Xi, y, z ∈ p−1(x), there exist x′ ∈ Xi, y′, z′ ∈ p−1(x′) such

that there are choices c, c′ ∈ Ci with y, y′ ∈ W−1(c), z, z′ ∈ W−1(c′), and

Gy′ is not isomorphic to Gz′ .

Thompson (1952) proves the following result, but we will provide a new proof.

Lemma 1. If G and Ĝ are in reduced form, then they have the same semi-reduced

normal form if and only if they are isomorphic.

Before we proof the lemma, we proof a related lemma.

Lemma 2. If G is an extensive form game in reduced form, then no player has

strategically equivalent strategies.
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Proof. Since every player has only one information set, every strategy corresponds

to one choice. Since for all players each play intersects nontrivially with the infor-

mation set, there is a choice that selects the play. Let i ∈ I. We show that player i

has no strategically equivalent strategies. We apply the INT transformation such

that player i is the last to choose. Let x ∈ Xi and y, z ∈ p−1(x). There are nodes

x′ ∈ Xi, y′, z′ ∈ p−1(x′) and choices c, c′ ∈ Ci with y, y′ ∈ W−1(c), z, z′ ∈ W−1(c′).

Furthermore, Gy′ is not isomorphic to Gz′. Player i is the last to choose, y′, z′ ∈ E,

thus the only way the subgames cannot be isomorphic is through a violation to the

preference requirement. We slightly abuse notation and say that πi(y′) *= πi(z′).

Let si(x) = c, s′i(x
′) = c′. Let the other players play a strategy combinations s−i

such that (si, s−i) induces y′ and (s′i, s−i) induces z′. Thus there is a strategy

profile s−i with π(si, s−i) *= π(s′i, s−i), therefore si, s′i are not strategically equiva-

lent. Since we can choose c, c′ arbitrarily, no strategies of player i are strategically

equivalent.

Now we prove Lemma 1.

Proof of Lemma 1. Let G, Ĝ be in reduced form. Let G ∼= Ĝ. Since no player has

strategically equivalent strategies, there are bijections for each player βi : Ci → S∗
i

and β̂i : Ĉi → Ŝ∗
i such that c = si(x) ∈ βi(c) and ĉ = ŝi(x) ∈ β̂i(ĉ). Since G and

Ĝ are isomorphic, there is a bijection b : I → Î and a bijection for every player

i ∈ I that preserves the preferences bi : S∗
i → Ŝ∗

i , bi = β̂b(i) ◦ χi ◦ β
−1
i . Hence, the

games have the same semi-reduced normal form.

Let G, Ĝ have the same semi-reduced normal form. From the definition we

get the bijection b : I → Î . Since the games are in reduced form, each equivalence

class contains exactly one strategy and this strategy corresponds to one choice.

Each strategy profile induces a unique outcome, thus there is a bijection ω :

W → Ŵ and π(w) = π̂(ω(w)). Furthermore, we define ν({w}) = {ω(w)} and for

y ∈ N, ν(y) =
⋃

w′∈W {ω(w′)} . This construction yields a bijection. The bijection

for the choices is χi = β̂−1
b(i) ◦ bi ◦ βi.

Lemma 3. If G and Ĝ differ by one of INT, COA or ADD, then G and Ĝ have

the same semi-reduced normal form.

Proof. See Thompson (1952) and Elmes and Reny (1994).

For a given outcome w ∈ W , we can enumerate the up-set, that is the play

↑ w = {y0, y1, y2, . . . , yN} , where W = y0 ⊃ y1 ⊃ · · · ⊇ yM = {w} . Since the

game is finite, M ∈ N.
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Definition 17. An information set h ∈ Hi is maximal if it satisfies the following

condition for all w ∈ W : If ↑ w ∩ h = ∅, then there is yt ∈ Xi∩ ↑ w and x ∈

h such that yt ⊃ x, but yt+1 *⊇ x, for all x ∈ h.

We call ↑ w a path and if h is not maximal. A path that violates the required

condition is a test path.

Lemma 4. Let G be a game with perfect recall, h ∈ Hi player i’s first non-

maximal information set (i.e. ∀h′ ∈ Hi, if h′ <i h, then h′ maximal) and for

all x ∈ Xi, |p−1(x)| = 2. Then there is a sequence of games with perfect recall

G1, G2, . . . , GL such that G1 = G; consecutive games in the sequence differ by

ADD; and the image of h in GL is maximal.

Proof. Since h ∈ Hi not maximal, there is a test path P =↑ w = {y0, y1, . . . , yM} ,

M ∈ N, with y0 = W, yM = {w} . Thus, P ∩h = ∅ and for all t ∈ {0, . . . ,M − 1}

Xi 6 yt ⊃ x, x ∈ h implies yt+1 ⊇ x. Let P(h) denote the set of test paths for

information set h in G.

Define J so that there is x ∈ h with yJ ⊃ x and yJ+1 *⊃ x′, for all x′ ∈ h.

Furthermore, define the two sets:

A = {t|yt ∈ Xi, t > J}

and

B = {t ∈ A|∃y ∈ h(yt)∃x ∈ h : x ⊂ y} .

We consider all possible cases.

1. Let A = ∅. The game G1 is constructed by G
ADD
−−−→ G1 with ĥ = h, X̂ =

{yJ+1} ,X = {x1} . This construction is compatible with perfect recall. To see

this, let c1, c′1 ∈ C1i , c
′
1 <1i c1, P1(c1) = h1 = h ∪ X , P1(c′1) = h′. There are

corresponding choices c, c′ ∈ Ci, P (c) = h, P (c′) = h′ ∈ Hi, h′ <i h and thus

h′ maximal. Recall there is x ∈ h, x ⊂ yJ . Let x̄ ∈ W−1(c), x̄ ⊂ x. Then

x̄ ⊂ yJ ⊆ yN+1 ⊆ yN ∈ h′∩ ↑ w. The intersection is nonempty since h′ maximal.

Furthermore, yK ⊆ yN+1, thus h and yK follow from the same choice c′. Perfect

recall in G implies c ⊆ c′ and hence c1 ⊆ c′1.

2. Let A *= ∅, B = ∅. Let K = minA and m = |h(yK)|. Then G1 can be

constructed so that G
ADD
−−−→ G1, with ĥ = h, X̂ = h(yk),X = {x1, . . . , xm} . In

order that G1 satisfies perfect recall, we must show that h′ <i h(yK) if and only

if h′ <i h and that there is a choice c′ ∈ Ci with P (c′) = h′ that selects h(yK)

and h. Let h′ <i h. We know h′ is maximal, thus P ∩ h′ = {yN} , yK ⊂ yN and

hence h′ <i h(yK). Let h′ <i h(yK), i.e. there is x′ ∈ h′, x̃ ∈ h(yK), x̃ ⊂ x′. By the

definition of K and B = ∅ there is yN ∈ h′, yK ⊂ yN . Since x ⊂ yJ ⊂ yN , h′ <i h.
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Let h′ <i h and h′ <i h(yK). There is a choice c′ ∈ Ci, P (c′) = h′, yN+1 ∈ W−1(c′).

For all choices c ∈ Ci, P (c) = h, we have c′ <i c and for all c̃ ∈ Ci, P (c̃) = h(yK)

we have c′ <i c̃. Perfect recall implies c ∪ c̃ ⊆ c′.

3. Let B *= ∅. Let K = maxB, h∗ = {x′ ∈ h(yK) | ∃x ∈ h : x ⊂ x′} and

m = |h(yK) \ h∗|. Then there is a choice c′ ∈ Ci, P (c′) = h(yK) and W (h) ⊆ c′.

The game G1 can be constructed so that G
ADD
−−−→ G1 with ĥ = h, X̂ = W−1(c′) ∩

⋃

x′∈h(yK)\h∗ p−1(x′),X = {x1, . . . , xm} . That this construction is feasible follows

the same kind of reasoning as in the other two cases.

Note that in every case P ∩ (h∪X ) *= ∅, thus the path corresponding to P in

G1 is not a test path for h1 = h ∪ X , the information set corresponding to h in

G1.

If h1 is maximal, the sequence of games is complete. Suppose h1 is not

maximal. Then there is a mapping µ that maps test paths for the informa-

tion set h1 in G1 to the set of test paths for the information set h in G, i.e.

µ : P1(h1) → P(h). By construction of G1, P1 ∈ P1(h1) implies P1 ∈ P(h),

but P /∈ µ(P1(h1)), hence µ is not surjective and thus |P1(h1)| ≤ |P(h)| − 1.

Since the game G is finite, also the set |P(h)| is finite. Thus we can construct

a sequence of games G1
ADD
−−−→ G2

ADD
−−−→ · · ·

ADD
−−−→ GL, such that hk ⊆ hk+1 and

|Pk+1(hk+1)| ≤ |Pk(hk)| − 1, k = 1, . . . , L − 1. For hL, the image of h in GL, it

holds that |PL(hL)| ≤ |P(h)|−L = 0, thus hL is maximal in GL. By Proposition

4 we know that all games have perfect recall, thus we have found the desired

sequence of games.

Lemma 5. If G is a game with perfect recall, then there exists a sequence of

games with perfect recall G1, . . . , GL, such that G1 = G; consecutive games in the

sequences differ by one of INT, COA, or ADD; and GL is in reduced form.

Proof. We state the algorithm of Elmes and Reny (1994) for constructing the

relevant sequence of games.

Step 1. As in Thompson (1952) use COA and/or ADD (finitely often) to

reduce or increase the number of immediate successors of each move to two.

Step 2. Use ADD (finitely often) to render each information set maximal as

outlined in Steps 2.0, 2.1,... below.

Step 2.0. Let i ∈ I. Let λ : Hi → {1, 2, . . . , K} , K ∈ N,λ bijective and h <i h′

implies λ(h) < λ(h′).

Step 2.1. Find the unique non-maximal information set h with the lowest

label. Use the construction in the proof of Lemma 4 to render h maximal. This

requires finitely many applications of ADD. Note that under ‘Addition’, an infor-

mation set in the original game becomes either cloned, added to, left unchanged,
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or made larger in the sense that predecessors of the copied nodes are enlarged by

the added nodes. We refer to the last two cases as “left unchanged.” Maximal

information sets in the original game that are unchanged or added to are maxi-

mal in the new game. Assign after every application of ADD the previous label

to these information sets. Furthermore, copies of maximal information sets are

maximal. Assign to each copied information set and each copy thereof the same

label. Hence, the maximum label remains K.

Step 2.k. (k ≥ 2). Render every h ∈ Hi with λ(h) = k maximal. After

every application of ADD, label i’s information sets according to the procedure

outlined in Step 2.1. If one can render each h ∈ Hi,λ(h) = k maximal with

finitely many applications of ADD, then there are only non-maximal information

sets with labels in {k + 1, . . . , K} left. Therefore, the Steps 2.1-2.k are sufficient

to make all information sets of player i maximal. It remains to show that Step

2.k. can be done in finitely many steps.

If λ(h) = k and h is rendered maximal, then after relabeling, the number

of information sets with label k is left unchanged. This means that the number

of non-maximal information sets with k is strictly lower. To see this, note that

two information sets with the same label must come from different choices at a

maximal information set. Hence, no test path intersects the clone of a cloned

information set. The construction in Lemma 5 shows that the only information

sets that get cloned are the ones that intersect with the test path.

Maximal information sets of the other players remain maximal throughout

the procedure, thus it suffices to look at one player at the time.

Step 3. Use COA and/or INT to produce a game in which every player has

a single information set which intersects every play and in which each pair of

information sets is ordered. This can be done in finitely many steps since all

information sets are maximal and COA and INT preserve maximality.

Step 4. If the game is not in reduced form, then (iv) in Definition 16 must

be violated. Use ADD and/or COA to remove y′ (or z′). Finitely many such

applications will yield a game in reduced form.

Theorem 1. If G and Ĝ are games with perfect recall and have the same semi-

reduced normal form, then there exists a finite sequence of games with perfect

recall G1, . . . , GL such that G1 = G,GL = Ĝ, and consecutive games in the

sequence differ by one of the transformations INT, COA, or ADD.

Proof. The theorem follows from Lemmata 1,3, and 5.

If two finite extensive form games differ by one of the Thompson transforma-

tions, then they have the same semi-reduced normal form. On the other hand,
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2

(a) The original game

1
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dc

2

d’c’

2

2

(b) After rendering {{a, b}} maximal
through ADD

1

b

a’a dc d’c’

2

2

2

(c) After rendering {{c, d}} maximal
through ADD

1

a’a dc b’b d’c’

2

2 2

(d) After rendering {{c′, d′}} maximal
though ADD

1

b’a ba’ d’c c’d

2

(e) Game in reduced form after apply-
ing COA twice

Figure 5: Example for the Algorithm

if two games have the same semi-reduced normal form, then they differ by the

Thompson transformations.

Figure 5 provides a simple example for the algorithm. In Figure 5a, Player 1

has one information set that is maximal. Player 2 has two unordered information

sets. The only way to order these two unordered information sets by using the

ADD transformation. Let λ({{a, b}}) = 1,λ({{c, d}}) = 2. The information set

{{a, b}} is non-maximal and has the lowest label. A test path is ↑ c. Figure

5b shows the game after the application of ADD, rendering {{a, b}} maximal,

while using test path ↑ c. Note that the information set {{c, d}} gets cloned. The

information set and its copy get the same label assigned. A test path for {{c, d}}

is ↑ a. Figure 5c shows the game after rendering {{c, d}} maximal, using test path

↑ a. After another application of ADD, all information sets are maximal (Figure

5d). Now we coalesce the information sets of player 2 to a single information set.

The game in Figure 5e is in reduced form.
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5 Conclusion

Non-cooperative game theory is game theory with complete rules. The rules are

complete if the game can be written as extensive form game. In game theory,

most solution concepts and most prominently the Nash equilibrium, are defined

on the normal form. Kohlberg and Mertens (1986) argue that for rational players,

the normal form is the correct object for strategic analysis. The normal form is

derived from an extensive form and the semi-reduced normal form is the partition

induced by the binary relation “strategic equivalence.” Elmes and Reny (1994)

state necessary and sufficient conditions for two extensive form games having the

same semi-reduced normal form. The work of Elmes and Reny (1994) goes back

to the early days of game theory. It turns out that two extensive forms games have

the same semi-reduced normal form if and only if they differ by the Thompson

transformations. These transformations allow under certain conditions the inter-

changing of moves, coalescing of information sets and the addition of superfluous

decision nodes. This is done by preserving perfect recall.

The idea of the proof of the theorem is an algorithm constructed by Elmes and

Reny (1994). This algorithm uses the Thompson transformations in order to bring

any finite extensive form game into reduced form. Note that no transformation

changes the the semi-reduced normal form game derived from the extensive form.

Since one can do that with any finite extensive form and since two games in

reduced form are isomorphic if and only if they have the same semi-reduced

form, the theorem follows.

However, one might ask whether this theorem holds for large extensive form

games with perfect recall. Finiteness is important in the construction of the

algorithm. A label is assigned to every information set. The finiteness is used for

the convergence of the algorithm. Wether and how the theorem holds for large

games is open for research.
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