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Abstract

In this thesis we study the one-dimensional Heston stochastic volatility model and its multi-

variate extension, the so-called multidimensional Heston stochastic volatility model.

While the variance process equals the well-known Cox-Ingersoll-Ross process in the one-

dimensional setup, the covariance process of the multidimensional Heston stochastic volatility

model follows the Wishart process introduced by M.-F. Bru. Both stochastic volatility models

belong to the class of affine models whose characterizing property is the exponential affine form

of the conditional characteristic function.

A detailed study of the multidimensional Heston stochastic volatility model is given, and in-

teresting relations between the marginals of the multidimensional Heston stochastic volatility

model and the one-dimensional Heston stochastic volatility model are derived.

Moreover, small time asymptotics for the implied volatility of a call written on one asset in the

multidimensional Heston stochastic volatility model are considered. We show that an expansion

of the asymptotic implied volatility proved by M. Forde and A. Jacquier for the one-dimensional

Heston stochastic volatility model can be extended to the multidimensional one.

Keywords: Heston model, multidimensional affine model, Wishart process, stochastic volatility,

implied volatility



Kurzfassung

Diese Diplomarbeit behandelt das eindimensionale stochastische Volatilitätsmodell von Hes-

ton (
”
Heston Stochastic Volatility“ Modell genannt) und dessen multivariate Erweiterung, das

mehrdimensionale Heston Stochastic Volatility Modell.

Während im eindimensionalen Fall der Varianzprozess durch einen Cox-Ingersoll-Ross Prozess

gegeben ist, folgt im mehrdimensionalen Heston Stochastic Volatility Modell der Kovarianzprozess

einem Wishart Prozess, der erstmals von M.-F. Bru definiert wurde. Beide stochastischen

Volatilitätsmodelle gehören zur Klasse der affinen Modelle, die als charakterisierende Eigen-

schaft eine bedingte charakteristische Funktion von exponentiell affiner Form aufweisen.

Diese Arbeit umfasst eine detaillierte Analyse des mehrdimensionalen Heston Stochastic Volatil-

ity Modells, wobei unter anderem auch interessante Beziehungen zwischen den Marginalen

des mehrdimensionalen Heston Stochastic Volatility Modells und des eindimensionalen Hes-

ton Stochastic Volatility Modells hergeleitet werden.

Des Weiteren wird die Kurzzeitasymptotik der impliziten Volatilität einer Kaufoption auf ein

Asset im eindimensionalen Heston Stochastic Volatility Modell betrachtet. Dabei wird gezeigt,

dass die Darstellung der asymptotischen impliziten Volatilität, die von M. Forde und A. Jacquier

für das eindimensionale Heston Stochastic Volatility Modell gezeigt wurde, auch auf den mehrdi-

mensionalen Fall erweitert werden kann.

Schlagwörter: Heston Modell, mehrdimensionales affines Modell, Wishart Prozess, stochastische

Volatilität, implizite Volatilität
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Chapter 0

Introduction

The aim of my thesis is to introduce and study the concept of the multidimensional Hes-

ton stochastic volatility model. As the name already indicates, the multidimensional Heston

stochastic volatility model is a multivariate generalization of the well-known one-dimensional

Heston stochastic volatility model introduced by Steven L. Heston. In a one-dimensional Heston

stochastic volatility model only one asset can be considered, in a multidimensional framework

however, a vector of different assets and their correlations can be modeled and examined. While

the Cox-Ingersoll-Ross process is chosen as variance process in the one-dimensional Heston

stochastic volatility model, it is replaced by the so-called Wishart process in the multidimen-

sional Heston stochastic volatility model. The Wishart process can be interpreted as a matrix

extension of the CIR process.

In general, stochastic volatility models are used to model the volatility in such a way that it

follows or coincides with certain phenomenons in the market: While in the original famous

Black-Scholes model, it is assumed that the volatility is given as a constant, one sees, however,

that in reality the implied volatility of a derivative depends on its strike and maturity which

is presented by the so-called volatility surface: A possible effect is the volatility smile or skew.

That is the reason why local and stochastic volatility models were introduced and studied.

These models take account of the above mentioned effects.

An import property of the one-dimensional and the multidimensional Heston stochastic volatil-

ity model is that they both belong to the class of affine processes. Affine processes are character-

ized by their special form of their (conditional) characteristic function, namely the characteristic

function of an affine process is exponential affine in its initial state. One of the advantage of

affine models is that there exist semi-closed-form solutions for pricing of derivatives. Therefore

affine processes often appear in financial mathematics.
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The structure of my thesis is as follows:

Chapter 1: Affine Processes

At the beginning of this chapter, affine diffusion processes are introduced. As already men-

tioned, the characterizing property of affine processes is their exponential affine conditional

characteristic function. Moreover it is mentioned that the exponent of this characteristic func-

tion is determined by solutions of so-called Riccati equations. Then we state that if a stochastic

process is affine, its drift and diffusion matrix are also affine. Furthermore, affine processes on

the canonical state space Rm+ ×Rn are discussed. In the last section of this chapter, discounting

and pricing in affine models on the canonical state space are explained. The main result of this

section is a theorem about Fourier pricing in an affine model.

Chapter 2: One-Dimensional Heston Stochastic Volatility Model

The beginning of Chapter 2 deals with the definition and some properties of the one-dimensional

Heston stochastic volatility model. It is explained that the variance process in the one-dimensional

Heston stochastic volatility model follows a CIR process. Then it is also shown that there exists

a link between the CIR process and the Ornstein-Uhlenbeck process.

In the second part of Chapter 2, the Riccati equations for the one-dimensional Heston stochastic

volatility model are studied by applying results about Riccati equations of affine processes from

Chapter 1. In addition to that, explicit solutions of the Riccati equations are derived for this

one-dimensional model. As an application, the joint characteristic function of the asset price

and the variance process is given. At the end of this chapter, the pricing of a European call

option is explained by applying the theorem about Fourier pricing for affine processes stated in

Chapter 1.

Chapter 3: Wishart Processes

Chapter 3 of my thesis can be split into two parts: At first Wishart processes in the sense of

Marie-France Bru are introduced. This first part is mainly based on [3] and summarizes its

main steps. Then we introduce the kind of Wishart processes studied and examined in this

thesis. The Wishart process follows a so-called Wishart distribution which is motivated and

introduced in a separate subsection. As a next step the CIR-process as a special case of the

Wishart process is considered. Finally, the characteristic function of the Wishart process is

studied where its affine property is emphasized.

Chapter 4: Multivariate Heston Stochastic Volatility Model

The beginning of Chapter 4 covers multivariate affine stochastic volatility models and its condi-

tional characteristic function in general. Then the multidimensional Heston stochastic volatility

model is defined and its conditional characteristic function is given. Again the affine property

of the characteristic function is highlighted.
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Chapter 5: Relationships and Results concerning the Multidimensional Heston Stochastic Volatil-

ity Model

The main objective of this chapter is to investigate properties of the multidimensional Heston

stochastic volatility model. So at first the multidimensional Heston stochastic volatility model

is examined component-by-component. To be more precise, the k-th entry of the vector of

the log price process in combination with the (k, k)-th entry of the Wishart process represents

a “new” model which we call marginal of the multidimensional Heston stochastic volatility

model. The second section of this chapter covers the relation between these marginals of the

multidimensional Heston stochastic volatility model and the one-dimensional Heston stochastic

volatility model. The interesting result is that if we choose the deterministic matrix M to

be the null matrix or more generally of diagonal form, the dynamics of the marginals of the

multidimensional Heston stochastic volatility model simplify to the one-dimensional Heston

stochastic volatility model. Since it is a well-known fact that the drift of a stochastic process

can be changed by applying Girsanov’s theorem and hence changing the probability measure, we

also prove that possible way of obtaining a one-dimensional Heston stochastic volatility model.

Chapter 6: Small-Time Asymptotics for Implied Volatility

In this last chapter of my thesis, the small-time asymptotics for implied volatility are inves-

tigated. After repeating the concept of implied volatility in the first section of this chapter,

we summarize in the second chapter the results about the small-time asymptotics for implied

volatility for the one-dimensional Heston stochastic volatility model published by Martin Forde

and Antoine Jacquier in [8]. Finally, in the last section of this chapter we show that these re-

sults are also valid for a more general framework, namely the marginals of the multidimensional

Heston stochastic volatility model as defined in Chapter 5.
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Chapter 1

Affine Processes

The aim of this chapter is to give the reader a short overview of affine diffusion processes which

are of major importance in the subsequent chapters and sections. These main results on affine

diffusions are taken from “Chapter 10” of the book “Term-Structure Models” published by

Damir Filipović (see [5]).

Most of the theory of affine processes given in Chapter 10 of [5] can also be found in the paper

[6] written by Damir Filipović and Eberhard Mayerhofer.

1.1 Vector-Valued Affine Processes in General

For the definition of affine processes we follow [5, p.143]:

Denote by D ⊂ Rd a closed state space with non-empty interior, where d ≥ 1 is some fixed

dimension. Furthermore let b : D → Rd be a continuous function and let ρ : D → Rd×d be

a measurable function with a(x) = ρ(x)ρ(x)> being continuous in x ∈ D. Let (Ω,F , (Ft),P)

be a filtered probability space and Wt = (Wt,1, . . . ,Wt,d) be a d-dimensional Brownian motion

defined on that probability space. In this framework we assume that for every x ∈ D there

exists a unique solution X = X x with X0 = x of the stochastic differential equation

dXt = b(Xt)dt+ ρ(Xt)dWt. (1.1)

Remark 1.1.1. a(x) is called diffusion matrix, whereas b(x) is called drift of the stochastic

process.

Now we are ready to give a definition of vector-valued affine processes.

Definition 1.1.2. X is affine if the Ft-conditional characteristic function of XT is exponential

affine in Xt, for all t ≤ T . Mathematically this means that there exist C- and Cd- valued

4



functions φ(t, u) and ψ(t, u) with jointly continuous t-derivatives such that X = X x fulfills

E
[
eu
>XT

∣∣Ft] = eφ(T−t,u)+ψ(T−t,u)>Xt (1.2)

∀u ∈ iRd, t ≤ T and x ∈ D.

As mentioned already above, hereafter important theorems concerning affine processes are stated

without proof. Interested readers can find the corresponding proofs in “Chapter 10: Affine

Processes” of the book “Term-Structure Models” by Damir Filipović (see [5]).

Theorem 1.1.3. (see [5, Theorem 10.1]) Suppose X is affine. Then the diffusion matrix a(x)

and drift b(x) are affine in x. That is,

a(x) = a+

d∑
i=1

xiαi,

b(x) = b+
d∑
i=1

xiβi = b+ Bx

(1.3)

for some d× d-matrices a and αi and d-vectors b and βi, where we denote by B = (β1, . . . , βd)

the d×d-matrix with i-th column vector βi, 1 ≤ i ≤ d. Moreover, φ and ψ = (ψ1, . . . , ψd)
> solve

the system of Riccati equations

∂

∂t
φ(t, u) =

1

2
ψ(t, u)>aψ(t, u) + b>ψ(t, u),

φ(0, u) = 0,

∂

∂t
ψi(t, u) =

1

2
ψ(t, u)>αiψ(t, u) + β>i ψ(t, u), 1 ≤ i ≤ d,

ψ(0, u) = u.

(1.4)

In particular, φ is determined by ψ via simple integration:

φ(t, u) =

∫ t

0

(
1

2
ψ(s, u)>aψ(s, u) + b>ψ(s, u)

)
ds.

Conversely, suppose the diffusion matrix a(x) and drift b(x) are affine of the form (1.3) and

suppose there exists a solution (φ, ψ) of the Riccati equations (1.4) such that

φ(t, u) + ψ(t, u)>x has a nonpositive real part for all t ≥ 0, u ∈ iRd and x ∈ D. Then X is

affine with conditional characteristic function (1.2).

Moreover we state a lemma about the global existence and uniqueness of the system of Riccati

equations:

Before stating the lemma, let K be a placeholder for either R or C.

5



Lemma 1.1.4. (see [5, Lemma 10.1]) Consider the system of ordinary differential equations

∂

∂t
f(t, u) = R(f(t, u)),

f(0, u) = u,

(1.5)

where R : Kd → Kd is a locally Lipschitz continuous function. Then the following holds:

• For every u ∈ Kd, there exists a life time t+(u) ∈ (0,∞] such that there exists a unique

solution f(·, u) : [0, t+(u))→ K ×Kd of (1.5).

• The domain GK = {(t, u) ∈ R+ ×Kd|t < t+(u)} is open in R+ ×Kd and maximal in the

sense that either t+(u) =∞ or limt↗t+(u) ‖f(t, u)‖ =∞ respectively, for all u ∈ Kd.

• For every t ≥ 0, the t-section GK(t) = {u ∈ Kd|(t, u) ∈ GK} is open in Kd, and non-

expanding in t in the following sense: Kd = GK(0) ⊇ GK(t1) ⊇ GK(t2), 0 ≤ t1 ≤ t2. In

fact, we have f(s,GK(t2)) ⊆ GK(t1) for all s ≤ t2 − t1.

1.2 Vector-Valued Affine Processes on the Canonical State Space

The parameters a, αi, b, βi can be further specified according to the state space D:

• the parameters have to fulfill conditions that guarantee that the process X does not leave

the state space D

• the parameters a and αi determining the diffusion matrix must be defined in such a way

that a(x) = a +
∑d

i=1 xiαi ∈ S
+
d ,∀x ∈ D, where S+

d denotes the set of symmetric and

positive semidefinite matrices

We shall pay particular attention to the so-called canonical state space which is given by

D = Rm+ × Rn,

for some integers m,n ≥ 0 with m+ n = d.

Hereafter, for the canonical state space, two index sets are defined by I = {1, . . . ,m} and

J = {m+ 1, . . . ,m+ n}.
In addition to that, let µM = (µi)i∈M and νMN = (νij)i∈M,j∈N be the sub-vector and sub-matrix

of an arbitrary vector µ or an arbitrary matrix ν for any index sets M or N .

With this setup of the canonical state space Rm+ × Rn a complete characterization of the pa-

rameters of affine processes is possible, which is subject of the main results of the following

theorem:

Theorem 1.2.1. (see [5, Theorem 10.2]) A process of the form (1.1) on the canonical state

space Rm+ ×Rn is affine if and only if a(x) and b(x) are affine of the form (1.3) for parameters

6



a, αi, b, βi which are admissible in the following sense:

a, αi are symmetric positive semidefinite,

aII = 0 (and thus aIJ = a>JI = 0),

αj = 0 ∀j ∈ J,

αi,kl = αi,lk = 0 for k ∈ I\{i}, ∀1 ≤ i, l ≤ d,

b ∈ Rm+ × Rn,

BIJ = 0,

BII has nonnegative off-diagonal elements.

(1.6)

In this case, the corresponding system of Riccati equations (1.4) simplifies to

∂

∂t
φ(t, u) =

1

2
ψJ(t, u)>aJJψJ(t, u) + b>ψ(t, u),

φ(0, u) = 0,

∂

∂t
ψi(t, u) =

1

2
ψ(t, u)>αiψ(t, u) + β>i ψ(t, u), i ∈ I,

∂

∂t
ψJ(t, u) = B>JJψJ(t, u),

ψ(0, u) = u,

(1.7)

and there exists a unique global solution (φ(·, u), ψ(·, u)) : R+ → C− × Cm− × iRn for all initial

values u ∈ Cm− × iRn. In particular, the equation for ψJ forms an autonomous linear system

with unique global solution ψJ(t, u) = eB
>
JJ tuJ for all uJ ∈ Cn.

We now proceed by formulating an important theorem about the existence of affine processes:

Theorem 1.2.2. (see [5, Theorem 10.8]) Let a, αi, b, βi be admissible parameters. Then there

exists a measurable function ρ : Rm+ × Rn → Rd×d with ρ(x)ρ(x)> = a +
∑

i∈I xiαi and such

that, for any x ∈ Rm+ × Rn, there exists a unique Rm+ × Rn-valued solution X = X x of

dX = (b+ BX )dt+ ρ(X )dW,

X0 = x

and ρ(x)ρ(x)> = a +
∑

i∈I xiαi. Moreover, the law of X is uniquely determined by a, αi, b, βi,

and does not depend on the particular choice of ρ.

7



1.3 Discounting and Pricing in Affine Models on the Canonical

State Space

This section is mainly based on [5, p.151-155].

Throughout this section it is assumed that the interest rates are given as constants. (In subse-

quent chapters we set the interest rates to 0.)

With this assumption of deterministic interest rates, the framework is fixed as follows:

Let S be a n-dimensional price process which is a functional of some d-dimensional process X .

Hence there exists a function g : Rd → Rn+ such that g(Xt) = St. For example, if g(Xt) = eXt , Xt
can be interpreted as the log-price of a stock. Moreover, we consider a filtered probability space

(Ω,F , (Ft),Q), where Q denotes a risk-neutral probability measure under which the discounted

price process St is a (local) martingale with respect to Q.

Assume that the process X is affine on the canonical state space Rm+ × Rn introduced before

with admissible parameters a, αi, b, βi specified as in (1.6).

Hereafter, a time horizon T > 0 is fixed and a claim with maturity T (called T -claim) is

considered. Denote by f(XT ) the (arbitrary) payoff of the T -claim for a measurable function

f : Rd → R which has to fulfill the following integrability condition

EQ [|f(XT )|] <∞,

where the expectation is taken with respect to the risk-neutral probability measure Q.

Then by risk-neutral valuation, arbitrage-free prices at any time t ≤ T of T -claims with payoff

f(XT ) are obtained by

π(t) = EQ

[
e−r(T−t)f(XT )|Ft

]
= e−r(T−t)EQ [f(XT )|Ft] . (1.8)

The goal of the remaining section is now to find an analytical or numerical solvable expression

for the pricing formula (1.8).

Some important theorems concerning the pricing of affine processes can now be mentioned

(compare [5, p.152-155]):

Before stating the first theorem, some notation has to be introduced:

For any set U ⊂ Rk(k ∈ N), the strip S(U) is defined by

S(U) = {z ∈ Ck|Re(z) ∈ U}

in Ck, where Re(z) denotes the real part of z.

8



Theorem 1.3.1. (compare [5, Theorem 10.4]) Let GK (K = R or C) denote the maximal do-

main for the system of Riccati equations in (1.7). Then EQ

[
e−r(T−t)eu

TXT
∣∣Ft] can be expressed

as

EQ

[
e−r(T−t)eu

>XT
∣∣Ft] = eφ(T−t,u)−r(T−t)+ψ(T−t,u)>Xt , (1.9)

∀u ∈ S(GR(S)), t ≤ T ≤ t+ S and x ∈ Rm+ × Rn.

Finally, we state a theorem which makes it possible to price claims analytically, namely the

so-called Fourier pricing:

Theorem 1.3.2. (see [5, Theorem 10.5]) Let GR denote the maximal domain for the system of

Riccati equations (1.7). Assume that f : Rd → R satisfies

f(x) =

∫
Rq
e(v+iLλ)>xf̃(λ)dλ dx-a.s. (1.10)

for some v ∈ GR(T ) and d×q-matrix L, and some integrable function f̃ : Rq → C, for a positive

integer q ≤ d. Then the price (1.8) is well defined and given by the formula

π(t) =

∫
Rq
eφ(T−t,v+iLλ)−r(T−t)+ψ(T−t,v+iLλ)>Xt f̃(λ)dλ. (1.11)

Proof. The arbitrage-free price can be calculated by

π(t) = EQ

[
e−r(T−t)f(XT )|Ft

]
= EQ

[∫
Rq
e−r(T−t)e(v+iLλ)>XT f̃(λ)dλ|Ft

]
Fubini

=

∫
Rq

EQ

[
e−r(T−t)e(v+iLλ)>XT |Ft

]
f̃(λ)dλ

(1.9)
=

∫
Rq
eφ(T−t,v+iLλ)−r(T−t)+ψ(T−t,v+iLλ)>Xt f̃(λ)dλ.

Fubini can be applied in the third step in the calculations above because

EQ

[
|e−r(T−t)f(XT )|

∣∣Ft] = EQ

[
e−r(T−t)|f(XT )|

∣∣Ft]
= EQ

[
e−r(T−t)|

∫
Rq
ev
>XT e(iLλ)>XT f̃(λ)dλ|

∣∣Ft]
≤ EQ

[∫
Rq
e−r(T−t)ev

>XT |f̃(λ)|dλ
∣∣Ft] <∞

by assumption.
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Chapter 2

One-Dimensional Heston Stochastic

Volatility Model

2.1 Introduction of the One-Dimensional Heston Stochastic

Volatility Model

In this section the famous (one-dimensional) Heston stochastic volatility model by Steven L.

Heston is introduced (compare [12]). Briefly, the one-dimensional Heston stochastic volatility

model is a generalization of the well-known Black-Scholes model, where the volatility is assumed

to be stochastic. This section is mainly based on section “10.3.3 Heston Stochastic Volatility

Model” of the book “Term-Structure Models” written by Damir Filipović (see [5, p.166-168]).

The one-dimensional Heston stochastic volatility model belongs to the class of the so-called

affine models introduced in the precedent chapter.

Now we give a formal definition of the one-dimensional Heston stochastic volatility model:

Definition 2.1.1. Let X = (X,Y ) be an affine process with state space R+ × R given by the

risk-neutral dynamics

dXt = (k + κXt)dt+ σ
√

2XtdBt,

dYt = (r −Xt)dt+
√

2Xt

(
ρdBt +

√
1− ρ2dWt

) (2.1)

for some constant parameters k, σ ≥ 0, κ ∈ R, ρ ∈ [−1, 1] and two independent Brownian mo-

tions Bt and Wt. Then the model (X,Y ) determined by its characterizing parameters (k, κ, σ, ρ)

is called one-dimensional Heston stochastic volatility model.

In the framework of the one-dimensional Heston stochastic volatility model, it is assumed that

interest rates are non-negative constants (rt ≡ r ≥ 0) and there exists one risky asset St = eYt .

Very often this risky asset can be interpreted as a stock.
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Hence Yt in (2.1) describes the dynamics of the log returns Yt = lnSt of the risky asset St while

Xt in (2.1) represents the dynamics of the variance of this risky asset.

Remark 2.1.2. Note that if we define the Brownian motion Wt := ρBt +
√

1− ρ2Wt (see also

Remark 2.2.2), the quadratic covariation can be calculated by

〈dBt, dWt〉 = 〈dBt, ρdBt +
√

1− ρ2dWt〉

= ρ〈dBt, dBt〉+
√

1− ρ2 〈dBt, dWt〉︸ ︷︷ ︸
=0

= ρdt.

2.1.1 The CIR Process as the Variance Process in the One-Dimensional

Heston Stochastic Volatility Model

In literature, the variance process in the one-dimensional Heston stochastic volatility model

(which is given by the dynamics Xt) is often called CIR process (Cox-Ingersoll-Ross process)

after the mathematicians Cox, Ingersoll and Ross who have introduced this square-root process

in mathematical finance. Before William Feller has already studied such kind of diffusion

processes named Feller processes in genetics.

Often another parametrization for this CIR process is used in literature as for example in the

paper “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond

and Currency Options” written by Steven L. Heston (compare [12]) or in the paper “Continuous

Time Wishart Process for Stochastic Risk” published by Christian Gouriéroux (compare [9]):

The latter is used for the following considerations concerning the link between the CIR process

and the OU process (Ornstein-Uhlenbeck process) (see [9, p.178]):

The Cox-Ingersoll-Ross process satisfies the diffusion equation

dvt = κ̄(θ − vt)dt+ σ̄
√
vtdBt, (2.2)

where (Bt) denotes an univariate Brownian motion and the parameters satisfy the following

conditions: σ̄ > 0, κ̄θ ≥ 0 (the latter condition guarantees the positivity of the stochastic

process conditioned that the initial value v0 is also positive).

In this context the parameters of the CIR process can be interpreted as follows: κ̄ denotes the

mean reversion rate, θ denotes the long run variance and σ̄ denotes the volatility of the variance.

One can also mention that both the expectation and the variance of the CIR process are affine

functions of the current process value vt since

E[dvt] = κ̄(θ − vt)dt and V[dvt] = σ̄2vtdt.
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2.1.2 Link between the Ornstein-Uhlenbeck Process and the CIR Process

This subsection is again based on [9, p.183-184].

Assume that an Ornstein-Uhlenbeck process is given by its dynamics dxt = εxtdt+ηdBt, where

ε, η ∈ R.

By applying Ito’s formula, the square of this Ornstein-Uhlenbeck process can be obtained as

follows:

d(x2
t ) = 2xtdxt +

1

2
2〈dxt〉

= 2xt(εxtdt+ ηdBt) + 〈ηdBt〉

= 2xt(εxtdt+ ηdBt) + η2〈dBt〉

= 2εx2
tdt+ 2xtηdBt + η2dt

= (2εx2
t + η2)dt+ 2ηxtdBt.

(2.3)

If we now define yt = x2
t , then the dynamics in (2.3) can be rewritten as

dyt = (2εyt + η2)dt+ 2η
√
ytdBt.

As a next step we consider n independent Ornstein-Uhlenbeck processes with identical param-

eters

dxit = εxitdt+ ηdBi
t i = 1, . . . , n,

where the Brownian motions Bi
t, i = 1, . . . , n are independent.

Then we define by zt the sum of these independent squared Ornstein-Uhlenbeck processes, hence

zt =
∑n

i=1(xit)
2.

In addition to that, we define the process B̃t by dB̃t =
∑n
i=1 x

i
tdB

i
t√

zt
, which is a Brownian motion.

To verify that B̃t is a Brownian motion, we apply Levy’s characterization theorem. If we can

show that 〈dB̃t〉 = dt, it implies that B̃t is a Brownian motion:

〈dB̃t〉 =

〈∑n
i=1 x

i
tdB

i
t√

zt
,

∑n
j=1 x

j
tdB

j
t√

zt

〉

=

∑n
i=1

∑n
j=1 x

i
tx
j
t 〈dBi

t, dB
j
t 〉√

zt
√
zt

=

∑n
i=1

∑n
j=1 x

i
tx
j
t1(i=j)dt

zt

=

∑n
i=1(xit)

2

zt
dt =

zt
zt
dt = dt.

(2.4)
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Hence we have shown that B̃t is a one-dimensional Brownian motion.

By Ito’s formula it follows that

dzt = d(

n∑
i=1

(xit)
2) =

n∑
i=1

d((xit)
2)

=

n∑
i=1

(2ε(xit)
2 + η2)dt+

n∑
i=1

(2ηxitdB
i
t)

=

(
2ε

n∑
i=1

(xit)
2 +

n∑
i=1

η2

)
dt+ 2η

n∑
i=1

xitdB
i
t

= (2εzt + nη2)dt+ 2η
√
ztdB̃t,

because dB̃t =
∑n
i=1 x

i
tdB

i
t√

zt
⇔
∑n

i=1 x
i
tdB

i
t =
√
ztdB̃t (last step).

Considering these steps and calculations, we can state the following proposition about the link

between the CIR process (as defined in (2.2)) and the OU process:

Proposition 2.1.3. The sum of squares of n independent Ornstein-Uhlenbeck processes with

identical parameters ε and η is a Cox-Ingersoll-Ross process with parameters

κ̄ = −2ε, σ̄ = 2η, κ̄θ = nη2 ⇒ θ = −nη
2

2ε
.

2.2 Interesting Results of the One-Dimensional Heston

Stochastic Volatility Model

Proposition 2.2.1. In the one-dimensional Heston stochastic volatility model the risk-neutral

stock dynamics are given by

dSt = Strdt+ St
√

2XtdWt,

where Wt denotes a linear combination of the two Brownian motions Bt and Wt defined by

Wt = ρBt +
√

1− ρ2Wt.

Proof. By applying Ito’s formula, one can show that the risk-neutral stock dynamics are given

by
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dSt = d(eYt) = eYtdYt +
1

2
eYt d〈Yt, Yt〉︸ ︷︷ ︸

=d〈Yt〉

= eYt
(

(r −Xt)dt+
√

2Xt(ρdBt +
√

1− ρ2dWt)
)

+
1

2
eYt2Xt 〈ρdBt +

√
1− ρ2dWt〉︸ ︷︷ ︸

=ρ2〈dBt〉+(1−ρ2)〈dWt〉

= St

(
(r −Xt)dt+

√
2Xt(ρdBt +

√
1− ρ2dWt)

)
+ StXt(ρ

2dt+ (1− ρ2)dt)

= St(rdt−Xtdt+
√

2Xt(ρdBt +
√

1− ρ2dWt)) + StXtdt

= Strdt+ St
√

2Xt(ρdBt +
√

1− ρ2dWt︸ ︷︷ ︸
=dWt

)

= Strdt+ St
√

2XtdWt.

Remark 2.2.2. Clearly Wt is again a Brownian motion because

〈Wt〉 = 〈ρBt〉+ 〈
√

1− ρ2Wt〉 = ρ2〈Bt〉+ (1− ρ2)〈Wt〉 = ρ2t+ (1− ρ2)t = t,

and then by applying Levy’s characterization theorem the assertion follows.

Remark 2.2.3. Note that
√

2Xt denotes the stochastic volatility of the price process of the risky

asset.

Furthermore one can easily show that in the one-dimensional Heston stochastic volatility model

the covariation between the risky asset and the variance process can be expressed as follows:

Proposition 2.2.4. In the one-dimensional Heston stochastic volatility model, the covariation

between the risky asset St and the variance Xt is given by

d〈St, Xt〉 = 2σρStXtdt.

Proof. The quadratic covariation between St and Xt can be calculated as follows

d〈St, Xt〉 = St
√

2Xtσ
√

2Xtd〈Wt, Bt〉 = Stσ2Xt d〈ρBt +
√

1− ρ2Wt, Bt〉︸ ︷︷ ︸
Bt,Wtindep.

= ρdt

= 2σρStXtdt.

With the same argumentation as above the covariation between the log return and the variance

process is examined in the following proposition:
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Proposition 2.2.5. In the one-dimensional Heston stochastic volatility model, the covariation

between the log return Yt and the variance Xt does not depend on the log return Yt, it only

depends on the variance Xt. The correlation between these two random variables Xt and Yt is

given by

d〈Yt, Xt〉 = 2σρXtdt.

Proof. The quadratic covariation between Yt and Xt is obtained by

d〈Yt, Xt〉 =
√

2Xtσ
√

2Xt d〈ρBt +
√

1− ρ2Wt, Bt〉︸ ︷︷ ︸
Bt,Wtindep.

= ρdt

= 2σρXtdt.

2.3 Riccati Equations in the One-Dimensional Heston

Stochastic Volatility Model

2.3.1 Derivation of the Riccati Equations in the One-Dimensional Heston

Stochastic Volatility Model

Now the Riccati equations are derived for the special case of the one-dimensional Heston stochas-

tic volatility model.

Theorem 2.3.1. In the one-dimensional Heston stochastic volatility model, the Riccati equa-

tions can be written as

φ(t, u) = k

∫ t

0
ψ1(s, u)ds+ ru2t,

∂

∂t
ψ1(t, u) = σ2ψ2

1(t, u) + (2ρσu2 + κ)ψ1(t, u) + u2
2 − u2,

ψ1(0, u) = u1,

ψ2(t, u) = u2.

(2.5)

Proof. The Riccati equations for the one-dimensional Heston stochastic volatility model are

deduced from Theorem 1.2.1 with d = 2 and I = {1}, J = {2}.
In matrix notation (2.1) can be rewritten as

dXt =

(
dXt

dYt

)
=

(
k + κXt

r −Xt

)
︸ ︷︷ ︸

=b(Xt)

dt+

(
σ
√

2Xt 0

ρ
√

2Xt

√
1− ρ2

√
2Xt

)
︸ ︷︷ ︸

=ρ(Xt)

·

(
dBt

dWt

)
.
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Since a(Xt) = ρ(Xt)ρ(Xt)>, a(Xt) can be calculated by

a(Xt) =

(
σ
√

2Xt 0

ρ
√

2Xt

√
1− ρ2

√
2Xt

)
·

(
σ
√

2Xt ρ
√

2Xt

0
√

1− ρ2
√

2Xt

)

=

(
σ22Xt σρ2Xt

σρ2Xt ρ22Xt + (1− ρ2)2Xt

)
=

(
2σ2Xt 2σρXt

2σρXt 2Xt

)
.

(2.6)

From Theorem 1.1.3 we know that the diffusion matrix a(x) has also an affine representation

and hence comparing (2.6) with (1.3), one can easily see that

a =

(
0 0

0 0

)
, α1 =

(
2σ2 2σρ

2σρ 2

)
, α2 =

(
0 0

0 0

)
.

Since the drift is also affine, one gets

b =

(
k

r

)
, β1 =

(
κ

−1

)
, β2 =

(
0

0

)
, B =

(
κ 0

−1 0

)
.

Clearly, the second and the fifth equation of (1.7) remain also the same in the context of the

one-dimensional Heston stochastic volatility model.

Since B22 = 0, it follows that ∂
∂tψ2(t, u) = 0 and hence

ψ2(t, u) = const. = ψ2(0, u) = u2.

Plugging a22 = 0 and b> = (k, r) into the first equation of (1.7) leads to

∂

∂t
φ(t, u) =

(
k r

)( ψ1(t, u)

ψ2(t, u)

)
= kψ1(t, u) + r ψ2(t, u)︸ ︷︷ ︸

=u2

= kψ1(t, u) + ru2,

and by considering that φ(0, u) = 0, it follows that

φ(t, u) =

∫ t

0

∂

∂s
φ(s, u)ds =

∫ t

0
kψ1(s, u)ds+

∫ t

0
ru2ds = k

∫ t

0
ψ1(s, u)ds+ ru2t,

which verifies the first equation of (2.5).

Inserting α1 and β1 in the third equation of (1.7) and remembering that ψ2(t, u) = u2, we show

that ∂
∂tψ1(t, u) can be calculated from (1.7) as follows:
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∂

∂t
ψ1(t, u) =

1

2

(
ψ1(t, u) ψ2(t, u)

)( 2σ2 2σρ

2σρ 2

)
︸ ︷︷ ︸

=(2σ2ψ1(t,u)+2σρψ2(t,u) , 2σρψ1(t,u)+2ψ2(t,u))

(
ψ1(t, u)

ψ2(t, u)

)
+
(
κ −1

)( ψ1(t, u)

ψ2(t, u)

)

=
1

2

2σ2ψ2
1(t, u) + 2σρψ1(t, u)ψ2(t, u)︸ ︷︷ ︸

=u2

+2σρψ1(t, u)ψ2(t, u)︸ ︷︷ ︸
=u2

+2ψ2
2(t, u)︸ ︷︷ ︸
=u2

2


+ κψ1(t, u)− ψ2(t, u)︸ ︷︷ ︸

=u2

= σ2ψ2
1(t, u) + 2σρu2ψ1(t, u) + u2

2 + κψ1(t, u)− u2

= σ2ψ2
1(t, u) + (2σρu2 + κ)ψ1(t, u) + u2

2 − u2.

Hence we have also proved that the second equation of (2.5) is valid.

2.3.2 Explicit Solutions of the Riccati Equations

The idea of this approach is mainly based on [19].

The aim is to find explicit solutions for the Riccati equations in the one-dimensional Heston

stochastic volatility model:

Hence we consider the first two equations of (2.5)

φ(t, u) = k

∫ t

0
ψ1(s, u)ds+ ru2t,

∂

∂t
ψ1(t, u) = σ2ψ2

1(t, u) + (2ρσu2 + κ)ψ1(t, u) + u2
2 − u2.

(2.7)

Since ψ1(t, u) is independent of φ(t, u), we consider the second ordinary differential equation

(ODE) at first:

For notational simplicity, we define ψ1(t, u) =: ψ1(t) and ∂
∂tψ1(t, u) = ∂

∂tψ1(t) =: ψ̇1(t) and then

the second equation of (2.7) can be rewritten as

ψ̇1(t) =
∂

∂t
ψ1(t) = σ2ψ2

1(t) + vψ1(t) + w

with v = 2ρσu2 + κ and w = u2
2 − u2.

Firstly, we consider the special case where 0 = ψ̇1(0) = σ2ψ2
1(0) + vψ1(0) + w. In this case, we

clearly get ψ1(t) = ψ1(0) and therefore ψ1(t, u) = ψ1(0, u) = u1. Hence in this special case we

have φ(t, u) = ku1t+ ru2t.
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In general let ζ1 be a solution of the equation below:

σ2ζ2
1 + vζ1 + w = 0.

One can easily see that ζ1 must be of the following form

ζ±1 =
−v ±

√
v2 − 4σ2w

2σ2
=
−v ± z

2σ2
with z =

√
v2 − 4σ2w.

Without loss of generality, we set ζ1 = ζ+
1 . As a next step we consider the difference between

the stationary solution ζ1 and the “true” solution ψ1(t), namely ∆(t) = ψ1(t)− ζ1.

Since ∂
∂tζ1 = 0 (per definition of ζ1) and remembering that σ2ζ2

1 + vζ1 + w = 0 and

ζ1 = −v+z
2σ2 ⇔ z = 2σ2ζ1 + v, one gets

∂∆(t)

∂t
=
∂(ζ1 + ∆(t))

∂t

= σ2(ζ1 + ∆(t))2 + v(ζ1 + ∆(t)) + w

= σ2ζ2
1 + 2σ2ζ1∆(t) + σ2∆2(t) + vζ1 + v∆(t) + w

= σ2∆2(t) + (2σ2ζ1 + v)∆(t) = σ2∆2(t) + z∆(t)

(2.8)

with initial condition ∆(0) = ψ1(0)− ζ1.

Considering Equation (2.8), namely ∂∆(t)
∂t = ∆̇(t) = σ2∆2(t) + z∆(t), we recognize that this

differential equation has the form of a Bernoulli differential equation which can be explicitly

solved.

Substituting y(t) = ∆−1(t) leads the following equivalent linear differential equation,

ẏ(t) = −∆−2(t)∆̇(t) = −∆−2(t)(σ2∆2(t) + z∆(t)) = −σ2 − z∆−1(t) = −σ2 − zy(t),

whose solution can be represented as the sum of the homogeneous solution yh(t) and a particular

solution yp(t) .

To solve the ODE, the homogeneous equation is considered at first:

ẏ(t) = −zy(t) ⇔
∫
dy(t)

y(t)
=

∫
−zdt ⇔ ln |y(t)| = −zt+ c (c ∈ R).

Hence the homogeneous solution is given by yh(t) = ce−zt.

Applying variation of the constant leads to the particular solution yp(t) = c(t)e−zt:

By plugging the particular solution in the linear differential equation above, we get
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ċ(t)e−zt + c(t)e−zt(−z)︸ ︷︷ ︸
ẏp(t)

= −σ2 − zc(t)e−zt

⇔ ċ(t)e−zt = −σ2

⇔ ċ(t) = −eztσ2

⇒ c(t) = −σ
2

z
ezt.

Since only a particular solution is needed, the constant of integrations can be omitted. Hence

the particular solution is of the following form

yp(t) = c(t)e−zt = −σ
2

z
ezte−zt = −σ

2

z
.

All in all, we get

y(t) = yh(t) + yp(t) = ce−zt − σ2

z
.

Resubstituting gives us

∆(t) =
1

y(t)
=

1

ce−zt − σ2

z

. (2.9)

To determine the constant, we consider equation (2.9) for the initial value

∆(0) =
1

c− σ2

z

= ψ1(0)− ζ+
1 ⇒ c =

1

ψ1(0)− ζ+
1

+
σ2

z
.

For the next step some short auxiliary calculations are needed: Since ζ±1 is defined as ζ±1 = −v±z
2σ2 ,

it follows that ζ+
1 −ζ

−
1 = −v+z

2σ2 −−v−z2σ2 = z
σ2 and hence σ2

z = 1
ζ+
1 −ζ

−
1

or equivalent σ2

z (ζ+
1 −ζ

−
1 ) = 1.
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With these auxiliary calculations, ∆(t) in (2.9) becomes

∆(t) =
1(

1
ψ1(0)−ζ+

1

+ σ2

z

)
e−zt − σ2

z

=
1(

1
ψ1(0)−ζ+

1

+ 1
ζ+
1 −ζ

−
1

)
e−zt − σ2

z

=
ζ+

1 − ζ
−
1(

ζ+
1 −ζ

−
1

ψ1(0)−ζ+
1

+ 1
)
e−zt − σ2

z (ζ+
1 − ζ

−
1 )

=
ζ+

1 − ζ
−
1(

ζ+
1 −ζ

−
1 +ψ1(0)−ζ+

1

ψ1(0)−ζ+
1

)
e−zt − 1

=
ζ+

1 − ζ
−
1(

ψ1(0)−ζ−1
ψ1(0)−ζ+

1

)
e−zt − 1

= − ζ+
1 − ζ

−
1(

ζ−1 −ψ1(0)

ψ1(0)−ζ+
1

)
e−zt + 1

=
ζ−1 − ζ

+
1(

ζ−1 −ψ1(0)

ψ1(0)−ζ+
1

)
e−zt + 1

=
ζ−1 − ζ

+
1

1−
(
ζ−1 −ψ1(0)

ζ+
1 −ψ1(0)

)
e−zt

=
ζ−1 − ζ

+
1

1− ae−zt
,

with a =
ζ−1 −ψ1(0)

ζ+
1 −ψ1(0)

.

Hence, ψ1(t) can be rewritten as

ψ1(t) = ζ+
1 + ∆(t)

= ζ+
1 +

ζ−1 − ζ
+
1

1− ae−zt
+ ψ1(0)− ψ1(0)

= ψ1(0) +
ζ−1 − ζ

+
1 + (ζ+

1 − ψ1(0))(1− ae−zt)
1− ae−zt

= ψ1(0) +
ζ−1 − ζ

+
1 + ζ+

1 − ψ1(0)− ae−zt(ζ+
1 − ψ1(0))

1− ae−zt

= ψ1(0) +
ζ−1 − ψ1(0)− e−zt(ζ−1 − ψ1(0))

1− ae−zt

= ψ1(0) +
(ζ−1 − ψ1(0)(1− e−zt))

1− ae−zt
.
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Inserting ψ1(t) into φ1(t), ψ1(t) can be rewritten in explicit form as

φ(t) = k

∫ t

0
ψ1(s)ds+ ru2t

= k

∫ t

0

(
ψ1(0) +

(ζ−1 − ψ1(0))(1− e−zs)
1− ae−zs

)
ds+ ru2t

= kψ1(0)t+ k(ζ−1 − ψ1(0))

∫ t

0

1− e−zs

1− ae−zs
ds+ ru2t

= kψ1(0)t+ k(ζ−1 − ψ1(0))

∫ t

0

1− ae−zs + ae−zs − e−zs

1− ae−zs
ds+ ru2t

= kψ1(0)t+ k(ζ−1 − ψ1(0))

∫ t

0

(
1 +

(a− 1)e−zs

1− ae−zs

)
ds+ ru2t

= kψ1(0)t+ k(ζ−1 − ψ1(0))

(
t+

∫ t

0

(a− 1)e−zs

1− ae−zs
ds

)
+ ru2t

= kζ−1 t+ k(ζ−1 − ψ1(0))(a− 1)

∫ t

0

e−zs

1− ae−zs
ds+ ru2t

subs. p=e−zs
= kζ−1 t+ k(ζ−1 − ψ1(0))(a− 1)

∫ e−zt

1

p

1− ap

(
− 1

zp

)
dp+ ru2t

= kζ−1 t− k(ζ−1 − ψ1(0))
a− 1

z

∫ e−zt

1

1

1− ap
dp+ ru2t

= kζ−1 t− k(ζ−1 − ψ1(0))
a− 1

z

(
− ln(1− ap)1

a

) ∣∣∣∣e−zt
1

+ ru2t

= kζ−1 t+ k(ζ−1 − ψ1(0))
a− 1

az
ln

(
1− ae−zt

1− a

)
+ ru2t

= kζ−1 t−
k

σ2
ln

(
1− ae−zt

1− a

)
+ ru2t.

In the last step of the equation above, we have used that

(ζ−1 − ψ1(0))
a− 1

az
=
ζ+

1 − ψ1(0)

z

(
ζ−1 − ψ1(0)

ζ+
1 − ψ(0)

− 1

)
=
ζ−1 − ψ1(0)− ζ+

1 + ψ1(0)

z

= −ζ
+
1 − ζ

−
1

z

= − 1

σ2
.
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Resubstituting gives the following explicit solutions for φ(t, u) and ψ(t, u)

ψ1(t, u) = ψ1(0, u) +
(ζ−1 − ψ1(0, u))(1− e−(

√
v2−4σ2w)t)

1− ζ−1 −ψ1(0,u)

ζ+
1 −ψ1(0,u)

e−(
√
v2−4σ2w)t

= ψ1(0, u) +
(ζ−1 − ψ1(0, u))(1− e−(

√
(2ρσu2+κ)2−4σ2(u2

2−u2))t)

1− ζ−1 −ψ1(0,u)

ζ+
1 −ψ1(0,u)

e−(
√

(2ρσu2+κ)2−4σ2(u2
2−u2))t

φ(t, u) = kζ−1 t−
k

σ2
ln

1−
(
ζ−1 −ψ1(0,u)

ζ+
1 −ψ1(0,u)

)
e−(
√
v2−4σ2w)t

1−
(
ζ−1 −ψ1(0,u)

ζ+
1 −ψ1(0,u)

)
+ ru2t

= kζ−1 t−
k

σ2
ln

1−
(
ζ−1 −ψ1(0,u)

ζ+
1 −ψ1(0,u)

)
e−(
√

(2ρσu2+κ)2−4σ2(u2
2−u2))t

1−
(
ζ−1 −ψ1(0,u)

ζ+
1 −ψ1(0,u)

)
+ ru2t

with

ζ±1 =
−(2ρσu2 + κ)±

√
(2ρσu2 + κ)2 − 4σ2(u2

2 − u2)

2σ2
.

These explicit solutions gives rise to the following corollary concerning the Riccati equations in

the one-dimensional Heston stochastic volatility model:

Corollary 2.3.2. In the one-dimensional Heston stochastic volatility model, the Riccati equa-

tions in the form of explicit solutions can be written as

ψ1(t, u) = ψ1(0, u) +
(ζ−1 − ψ1(0, u))(1− e−(

√
(2ρσu2+κ)2−4σ2(u2

2−u2))t)

1− ζ−1 −ψ1(0,u)

ζ+
1 −ψ1(0,u)

e−(
√

(2ρσu2+κ)2−4σ2(u2
2−u2))t

,

φ(t, u) = kζ−1 t−
k

σ2
ln

1−
(
ζ−1 −ψ1(0,u)

ζ+
1 −ψ1(0,u)

)
e−(
√

(2ρσu2+κ)2−4σ2(u2
2−u2))t

1−
(
ζ−1 −ψ1(0,u)

ζ+
1 −ψ1(0,u)

)
+ ru2t,

ψ1(0, u) = u1,

ψ2(t, u) = u2.

with

ζ±1 =
−(2ρσu2 + κ)±

√
(2ρσu2 + κ)2 − 4σ2(u2

2 − u2)

2σ2
.

2.3.3 Joint Characteristic Function in the One-Dimensional Heston Stochas-

tic Volatility Model

Combining Theorem 1.3.1 and Corollary 2.3.2, we are now prepared to introduce the joint

conditional characteristic function of the log price and variance process in the one-dimensional
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Heston stochastic volatility model:

Theorem 2.3.3. In the one-dimensional Heston stochastic volatility model, for all u1, u2 ∈ iR,

the joint conditional characteristic function can be expressed as

E
[
eu1XT+u2YT

∣∣∣Ft] = eφ(T−t,u)+ψ1(T−t,u)Xt+u2Yt ,

where φ(T − t, u) and ψ1(T − t, u) are given as in the last Corollary 2.3.2.

Proof. The above theorem follows from equation (1.9) and Corollary 2.3.2 by noting that

ψ2(t, u) = u2.

2.4 Pricing in the One-Dimensional Heston Stochastic

Volatility Model

Now the goal is to show how the price of a European call option can be calculated in the one-

dimensional Heston stochastic volatility model (compare [5, p.158-168]).

The calculation is done by Fourier pricing which was introduced in the last chapter for affine

models in general.

The price of a European call option at an arbitrary time point t ≤ T with strike K and maturity

T is given by (risk-neutral valuation formula)

π(t) = e−r(T−t)EQ[(ST −K)+|Ft].

As a preliminary work, the following lemma is stated and a part of it is also proved.

Lemma 2.4.1. [5, Lemma 10.2] Let K > 0. For any y ∈ R the following identities hold:

1

2π

∫
R
e(w+iλ)y K−(w−1+iλ)

(w + iλ)(w − 1 + iλ)
dλ =


(K − ey)+ if w < 0,

(ey −K)+ − ey if 0 < w < 1,

(ey −K)+ if w > 1.

The middle case (0 < w < 1) obviously also equals (K − ey)+ −K.

Now, only one case of the above lemma is proved, namely the case where w > 1. This case will

be needed in the sequel to derive the price of a European call option in the one-dimensional

Heston stochastic volatility model.

Proof. For w > 1 we have to prove that

(ey −K)+ =
1

2π

∫
R
e(w+iλ)y K−(w−1+iλ)

(w + iλ)(w − 1 + iλ)
dλ.
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Define h(y) = e−wy(ey −K)+. Then its Fourier transform can be calculated as

ĥ(λ) =

∫
R
e−(w+iλ)y(ey −K)+dy

=

∫ ∞
lnK

e−(w+iλ)y(ey −K)dy

=

∫ ∞
lnK

e−(w−1+iλ)ydy −K
∫ ∞

lnK
e−(w+iλ)ydy

= −e
−(w−1+iλ)y

w − 1 + iλ

∣∣∣∣∣
∞

lnK

+K
e−(w+iλ)y

w + iλ

∣∣∣∣∣
∞

lnK

=
K−(w−1+iλ)

w − 1 + iλ
− K−(w−1+iλ)

w + iλ

=
K−(w−1+iλ)(w + iλ)−K−(w−1+iλ)(w − 1 + iλ)

(w − 1 + iλ)(w + iλ)

=
K−(w−1+iλ)

(w − 1 + iλ)(w + iλ)
.

Then the fundamental inversion formula from Fourier analysis is applied:

Let g : Rq → C be an integrable function with integrable Fourier transform

ĝ(λ) =

∫
Rq
e−iλ

>yg(y)dy.

Then the inversion formula

g(y) =
1

(2π)q

∫
Rq
eiλ
>y ĝ(λ)dλ

holds for dy-almost all y ∈ Rq.

In this context, we get

h(y) = e−wy(ey −K)+ =
1

2π

∫
R
eiλy

K−(w−1+iλ)

(w − 1 + iλ)(w + iλ)
dλ

⇔ (ey −K)+ =
1

2π

∫
R
e(w+iλ)y K−(w−1+iλ)

(w − 1 + iλ)(w + iλ)
dλ.

Applying Lemma 2.4.1 we are now prepared to state a theorem about the price of a European

call option in the one-dimensional Heston stochastic volatility model.

Theorem 2.4.2. In the one-dimensional Heston stochastic volatility model, the price of a Eu-

ropean call option is given in closed form by

π(t) = e−r(T−t)EQ[(ST −K)+|Ft]

= e−r(T−t)
∫
R
eφ(T−t,0,w+iλ)+ψ1(T−t,0,w+iλ)Xt+(w+iλ)Yt f̃(λ)dλ,
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where

f̃(λ) =
1

2π

K−(w−1+iλ)

(w + iλ)(w − 1 + iλ)

and φ and ψ are given as in (2.5).

Proof. Since the exponential function is a strictly monotonic continuous function on (−∞,∞)

with values in (0,∞), it holds that ∀ST > 0 ∃y ∈ R : ey = ST .

From Lemma 2.4.1 we know that the integrable function f̃(λ) = 1
2π

K−(w−1+iλ)

(w+iλ)(w−1+iλ) and

f(y) = (ey −K)+ satisfy condition (1.10) of Theorem 1.3.2.

One has also to note that ψ2(T − t, 0, w + iλ) = w + iλ.

Then by applying Theorem 1.3.2, we obtain

π(t) =

∫
R
eφ(T−t,0,w+iλ)−r(T−t)+ψ(T−t,0,w+iλ)>Xt f̃(λ)dλ

= e−r(T−t)
∫
R
eφ(T−t,0,w+iλ)+ψ1(T−t,0,w+iλ)Xt+ψ2(T−t,0,w+iλ)Yt f̃(λ)dλ

= e−r(T−t)
∫
R
eφ(T−t,0,w+iλ)+ψ1(T−t,0,w+iλ)Xt+(w+iλ)Yt f̃(λ)dλ.
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Chapter 3

Wishart Processes

The Wishart processes which belong to the class of affine diffusion processes on positive semidef-

inite matrices are introduced and studied in this chapter. As already discussed some chapters

before, the characterizing property of affine processes is that their (conditional) characteristic

function is exponential affine.

Henceforward, throughout the remaining chapters, the following notation is used: We denote

by S++
d the set of all symmetric positive definite d× d matrices, by S+

d the set of all symmetric

positive semidefinite matrices, by S−d the set of all symmetric negative semidefinite matrices, by

S−−d the set of all symmetric negative definite d×d matrices and by Sd the set of all symmetric

matrices with scalar product 〈x, y〉 = tr(xy). Note that the Euclidean scalarproduct of two

d× d matrices, for example u and Xt, equals the trace of their product, because

〈u,Xt〉 =
∑
i

∑
j

uij(Xt)ji =
∑
i

(uXt)ii = tr(uXt).

From now on
√
A denotes the unique symmetric positive semidefinite square root of a matrix

A.

The square root of a matrix A can be defined by applying the spectral theorem for symmetric

matrices: According to the spectral theorem there exists an orthogonal matrix Q (Q>Q =

QQ> = I, where I denotes the identity matrix) and a diagonal matrix D such that

Q>AQ = D

and by defining D
1
2 = diag(

√
d1, . . . ,

√
dn) one gets

A
1
2 = QD

1
2Q>.

In this chapter, we consider at first the Wishart processes in the form introduced by Marie-

France Bru in 1980. Later we study the kind of Wishart processes which is used in this thesis.
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3.1 Introduction of the Wishart Process in the sense of Bru

For historical reasons, we start by presenting the approach as given in [3].

3.1.1 Motivation: Wishart Processes as a Generalization of the Famous

Squared Bessel Processes

As a starting point we consider an Rn-Brownian motion Bt = (Bt,1, . . . , Bt,n), where Bt,i,

i = 1, . . . , n denote independent one-dimensional Brownian motions, hence the quadratic covari-

ation is given by 〈Bt,i, Bt,j〉 = 1(i=j)t. Then we define a process Xt by Xt = ‖Bt‖2 =
∑n

i=1B
2
t,i,

where ‖ · ‖ represents the Euclidean norm.

The stochastic differential equation of Xt can be calculated by applying Ito’s formula as follows:

dXt =
n∑
i=1

2Bt,idBt,i +
1

2

n∑
i,j=1

2d 〈Bt,i, Bt,j〉︸ ︷︷ ︸
=1(i=j)t

= 2
n∑
i=1

Bt,idBt,i +
n∑
i=1

1dt

= 2
n∑
i=1

Bt,idBt,i + ndt.

(3.1)

To further simplify the last equation, we define Wt :=
∑n

i=1

∫ t
0
Bs,i
‖Bt‖dBs,i.

The quadratic variation of Wt equals

〈W 〉t =

〈
n∑
i=1

∫ t

0

Bs,i
‖Bt‖

dBs,i

〉

=

∫ t

0

n∑
i=1

Bs,iBs,i
‖Bt‖2

d〈Bs,i〉

=

∫ t

0

=‖Bt‖2︷ ︸︸ ︷
n∑
i=1

Bs,iBs,i

‖Bt‖2
ds

=

∫ t

0
1ds = t

and by applying the well-known Levy’s characterization theorem, it follows that Wt is a Brow-

nian motion.
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Since Xt = ‖Bt‖2 and hence
√
Xt = ‖Bt‖, Wt can be rewritten as

Wt =
n∑
i=1

∫ t

0

Bs,i
‖Bt‖

dBs,i

=
n∑
i=1

∫ t

0

Bs,i√
Xt
dBs,i,

which can be in differential notation expressed as

dWt =

n∑
i=1

Bt,i√
Xt
dBt,i ⇔

√
XtdWt =

n∑
i=1

Bt,idBt,i. (3.2)

Hence (3.1) can be rewritten as

dXt = 2

n∑
i=1

Bt,idBt,i + ndt = 2
√
XtdWt + ndt. (3.3)

As mentioned in [3, p.725], the generator of this SDE dXt = 2
√
XtdWt+ndt equals 2xD2 +nD,

where D = d
dx .

If we now consider an arbitrary non negative real number δ ≥ 0, the process generated by

2xD2 + δD is called a squared Bessel process BESQ(δ).

In literature, for example in the book “Continuous Martingales and Brownian Motion” published

by Daniel Revuz and Marc Yor, one can find the following definition of squared Bessel processes

(see [16, p.409-410]):

Definition 3.1.1. Let B be a δ-dimensional Brownian motion and define ρ = ‖B‖2. For every

δ ∈ N and x ≥ 0, the unique strong solution of the equation

Zt = x+ 2

∫ t

0

√
Zsdβs + δt,

where

βt =
δ∑
i=1

∫ t

0

Bs,i
ρs

dBs,i

is called the square of δ-dimensional Bessel process started at x and is denoted by BESQ(δ).

According to [3, p.725], the density of a Bessel process BESQ(δ) with initial value X0 = x is

given by a Bessel function with Laplace transform

E
[
e−λXt |X0 = x

]
= (1 + 2λt)−

δ
2 e−

λx
1+2λt . The density of a Bessel process equals a non-central

χ2-distribution.

Instead of vectors, Marie-France Bru has considered matrices of independent Brownian motions.

To be more specific, we now take a look at a sample (B1, . . . , Bn) of Rd Gaussian vectors and
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denote byB a matrix of dimension n×d with the vectorBi in the i-th row. Then the matrixB>B

follows a so-called Wishart distribution1 which is a natural generalization of the well-known χ2

distribution. The density of the Wishart distribution equals a Bessel matrix function.

Remark 3.1.2. Note that in this setup, the input of generating a Wishart distribution are

Gaussian vectors. Later we will see that there exists also a more general possibility to generate

a Wishart process, namely by taking squares of Ornstein-Uhlenbeck processes. Clearly, these

Ornstein-Uhlenbeck processes are still kind of Gaussian but they include an additional drift.

That is the intuition why Marie-France Bru has started to examine extensions of squared Bessel

processes, to be more precise matrix versions of them.

In her paper she has defined Wishart processes step by step. At first she has considered simple

versions of them, and in each section she has generalized them (see [3]).

At the beginning she has defined Wishart processes as follows (see [3, p.726-727]):

A Brownian matrix is a process taking its values in the set of real-valued n× d matrices whose

components are independent Brownian motions.

Let n and d be two integers ≥ 1, and Nt be a n× d Brownian matrix with initial state N0 = C.

Definition 3.1.3. A Wishart process in the sense of Bru of dimension d, index n and initial

state x0 is a matrix process

Xt = N>t Nt with x0 = C>C. (3.4)

This Wishart process is denoted by WIS(n, d, x0).

Remark 3.1.4. If we set d = 1, we get the special case of a squared Bessel process WIS(n, 1, x0)

of index n and with starting value x0.

Since we have already motivated the topic of Wishart processes, we start by studying the most

general version of the Wishart process introduced in [3]. Later we will also examine less general

versions of Wishart processes by introducing them as special cases of the most general one.

3.1.2 The (most general) Wishart Process studied by Bru

In this subsection, a Wishart process determined by five parameters is studied. As already

mentioned, this Wishart process presents the most generalized version of the Wishart process,

which is examined in section “Five-Parameter Wishart Processes; Square Ornstein-Uhlenbeck

Processes - Matrix Case” in [3, p.745-749].

1The Wishart distribution was first mentioned and introduced by John Wishart in his paper “The generalised
product moment distribution in samples from a normal multivariate population” published in 1928 (compare
[18]).
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The setting of this Wishart process characterized by five parameters can be summarized as

follows:

Denote by Vt a n×d matrix of stochastic processes which is a solution of the following stochastic

differential equation

dVt = dNta+ Vtbdt, V0 = v0, (3.5)

where (Nt) is a n × d Brownian matrix (matrix of independent one-dimensional Brownian

motions) and a and b denote d× d matrices.

Then we define the matrix-valued process

Xt = V >t Vt (3.6)

with initial value x0 = v>0 v0.

The dynamics of Xt are examined in the following proposition:

Proposition 3.1.5. Let b ∈ S−d . The dynamics of the matrix process Xt are given by

dXt = a>dN>t Vt + V >t dNta+ (bXt +Xtb)dt+ na>adt. (3.7)

Proof. To verify (3.7), we examine the dynamics of Xt component-by-component at first: For

that we have to note that the (i, j)-th component ofXt is obtained by (Xt)ij =
∑n

k=1(V >t )ik(Vt)kj .

Then by applying integration by parts formula, the dynamics of the (i, j)-th component of the

matrix-valued process Xt are given by

d((Xt)ij) =d(
n∑
k=1

(V >t )ik(Vt)kj)

=
n∑
k=1

d((V >t )ik(Vt)kj)

=
n∑
k=1

(
d(V >t )ik(Vt)kj + (V >t )ikd(Vt)kj + d〈(V >t )ik, (Vt)kj〉

)
=

n∑
k=1

d(V >t )ik(Vt)kj +
n∑
k=1

(V >t )ikd(Vt)kj +
n∑
k=1

d〈(V >t )ik, (Vt)kj〉.

(3.8)

Now we do some auxiliary calculations:

Therefore one has to note that the (i, j)-th component of Vt can be written as

(dVt)ij = (dNta)ij + (Vtbdt)ij =

d∑
l=1

(dNt)ilalj +

d∑
l=1

(Vt)ilbljdt.
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Moreover, since V >t is determined by dV >t = a>dN>t + b>V >t dt, the (i, j)-th component of V >t

is given by (dV >t )ij = (a>dN>t )ij + (b>V >t )ijdt =
∑d

l=1(a>)il(dN
>
t )lj +

∑d
l=1(b>)il(V

>
t )ljdt.

The first term of the last row of (3.8) can further be calculated by

n∑
k=1

d(V >t )ik(Vt)kj =
n∑
k=1

(
d∑
l=1

(a>)il(dN
>
t )lk +

d∑
l=1

(b>)il(V
>
t )lkdt

)
(Vt)kj

=
n∑
k=1

d∑
l=1

(a>)il(dN
>
t )lk(Vt)kj +

n∑
k=1

d∑
l=1

(b>)il(V
>
t )lk(Vt)kjdt

= (a>dN>t Vt)ij + (b>V >t Vt)ijdt

= (a>dN>t Vt)ij + (b>Xt)ijdt

= (a>dN>t Vt)ij + (bXt)ijdt,

(3.9)

where the last step follows because b ∈ S−d .

It follows by the same step that for the second term of equation (3.8) we get

n∑
k=1

(V >t )ikd(Vt)kj =
n∑
k=1

(V >t )ik

(
d∑
l=1

(dNt)klalj +
d∑
l=1

(Vt)klbljdt

)

=
n∑
k=1

d∑
l=1

(V >t )ik(dNt)klalj +
n∑
k=1

d∑
l=1

(V >t )ik(Vt)klbljdt

= (V >t dNta)ij + (V >t Vtb)ijdt

= (V >t dNta)ij + (Xtb)ijdt.

(3.10)

Considering the last term of equation (3.8), namely the quadratic covariation, yields

n∑
k=1

d〈(V >t )ik, (Vt)kj〉 =

n∑
k=1

〈
d∑
l=1

(a>)il(dN
>
t )lk,

d∑
m=1

(dNt)kmamj

〉

=

n∑
k=1

d∑
l=1

d∑
m=1

(a>)ilamj〈(dN>t )lk︸ ︷︷ ︸
(dNt)kl

, (dNt)km〉

=

n∑
k=1

d∑
l=1

d∑
m=1

(a>)ilamj 〈(dNt)kl, (dNt)km〉︸ ︷︷ ︸
=1(l=m)dt

=

n∑
k=1

d∑
l=1

(a>)ilaljdt

=

n∑
k=1

(a>a)ijdt

= n(a>a)ijdt,

(3.11)

because the deterministic terms (dt-terms) vanish in the quadratic covariation.
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Plugging (3.9), (3.10) and (3.11) into (3.8), (3.8) can be rewritten as

d((Xt)ij) = (a>dN>t Vt)ij + (bXt)ijdt+ (V >t dNta)ij + (Xtb)ijdt+ n(a>a)ijdt

= (a>dN>t Vt)ij + (V >t dNta)ij + (bXt +Xtb)ijdt+ n(a>a)ijdt.

Hence for the d× d matrix-valued stochastic process Xt it holds that

dXt = a>dN>t Vt + V >t dNta+ (bXt +Xtb)dt+ na>adt.

As a next step we define a stochastic matrix by dBt =
√
X−1
t V >t dNta(

√
a>a)−1 with n ≥ d+ 1

and show that this stochastic matrix is a d× d Brownian matrix. In addition to that, also the

SDE fulfilled by the matrix process Xt is derived in the subsequent proposition:

Proposition 3.1.6. Let Xt be given by (3.6) with n ≥ d+ 1 and let b ∈ S−d .

The d× d matrix process given by

dBt =

√
X−1
t V >t dNta(

√
a>a)−1

is a d× d Brownian matrix. With this definition of the Brownian matrix Bt, the matrix process

Xt solves the stochastic differential equation

dXt =
√
XtdBt

√
a>a+

√
a>adB>t

√
Xt + (bXt +Xtb)dt+ na>adt, X0 = x0. (3.12)

Proof. By applying Levy’s characterization theorem we show at first that the d× d matrix Bt

equals a Brownian matrix.

By noting that the (i, j)-th entry of the matrix Bt is given by its dynamics

dBt,ij =

n∑
m=1

n∑
q=1

(

√
X−1
t V >t )im(dNt)mq(a(

√
a>a)−1)qj ,

we obtain for the quadratic covariation
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〈dBt,ij , dBt,kl〉 =
〈 n∑
m=1

n∑
q=1

(

√
X−1
t V >t )im(dNt)mq(a(

√
a>a)−1)qj ,

n∑
u=1

n∑
w=1

(

√
X−1
t V >t )ku(dNt)uw(a(

√
a>a)−1)wl

〉
=

n∑
m=1

n∑
q=1

n∑
u=1

n∑
w=1

(

√
X−1
t V >t )im(

√
X−1
t V >t )ku(a(

√
a>a)−1)qj(a(

√
a>a)−1)wl d〈(Nt)mq, (Nt)uw〉︸ ︷︷ ︸

=1(m,q)=(u,w)dt

=
n∑

m=1

n∑
q=1

(

√
X−1
t V >t )im(

√
X−1
t V >t )km(a(

√
a>a)−1)qj(a(

√
a>a)−1)qldt

=
n∑

m=1

(
(

√
X−1
t V >t )im(Vt

√
X−1
t )mk

) n∑
q=1

(
((
√
a>a)−1a>)jq(a(

√
a>a)−1)ql

)
dt

= (

√
X−1
t V >t Vt

√
X−1
t )ik((

√
a>a)−1a>a(

√
a>a)−1)jldt

= (X
1
2
t XtX

− 1
2

t )ik((a
>a)−

1
2 (a>a)(a>a)−

1
2 )jldt

= IikIjldt

= 1(i,j)=(k,l)dt.

To prove the second part of the above proposition, one has to note that B>t is governed by its

dynamics

dB>t = ((
√
a>a)−1)>a>dN>t (V >t )>(

√
X−1
t )>

= (
√
a>a)−1a>dN>t Vt

√
X−1
t .

Therefore one can verify that (3.12) is true by

dXt =
√
XtdBt

√
a>a+

√
a>adB>t

√
Xt + (bXt +Xtb)dt+ na>adt

=
√
Xt

√
X−1
t V >t dNta(

√
a>a)−1

√
a>a+

√
a>a(

√
a>a)−1a>dN>t Vt

√
X−1
t

√
Xt

+ (bXt +Xtb)dt+ na>adt

= V >t dNta+ a>dN>t Vt + (bXt +Xtb)dt+ na>adt,

which was proved in (3.7).

We can now state an important general existence theorem about the SDE (3.12):

Theorem 3.1.7. (see [3, Theorem 2′′]) If α ∈ ∆d = {1, . . . , d − 1} ∪ (d − 1,+∞), a is in the

group of invertible d× d matrices, b ∈ S−d , x0 is in S+
d and has all its eigenvalues distinct, and

(Bt) is a d × d Brownian matrix, then on [0, τ) (τ denotes the first eigenvalue collision time),
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the stochastic differential equation

dXt =
√
XtdBt

√
a>a+

√
a>adB>t

√
Xt + (bXt +Xtb)dt+ α

√
a>adt, X0 = x0 (3.13)

has a unique solution (in the sense of probability law) if b and
√
a>a commute.

After stating the last theorem, we can formally give a definition of this class of Wishart processes:

Definition 3.1.8. A matrix process on S+
d governed by the stochastic differential equation

given in (3.13) with initial value X0 = x0 is called Wishart process in the sense of Bru with

index α, dimension d, initial state x0, and matrix parameters b and a. According to [3], this

stochastic process is denoted by WIS(α, b, a, d, x0).

3.1.3 Characteristic Function of this most general Wishart Process

introduced by Bru

In this subsection, the distribution of Xt for fixed t is studied. Since it is a well-known fact

that the distribution of a random variable/process is uniquely determined by its characteristic

function, the characteristic function is now given in the following theorem:

Theorem 3.1.9. (see [3, p.749]) If (Xt) ∈WIS(α, b, a, d, x0), where α ∈ ∆d, a is in the group

of invertible d×d matrices, b ∈ S−−d commutes with
√
a>a, x0 ∈ S++

d , u ∈ iSd, the characteristic

function of the stochastic matrix-valued process Xt can be expressed as

E[e〈u,Xt〉|X0 = x0] = E[etr(uXt)|X0 = x0]

= (det b−1(b+ uaTa− uaTae2bt))−
α
2 etr(e

btx0ebtb(b+uaT a−uaT ae2bt)−1u).
(3.14)

Remark 3.1.10. Since (3.14) can be rewritten as

E[etr(uXt)|X0 = x0] = eln((det b−1(b+uaT a−uaT ae2bt))−
α
2 )+tr(ebtx0ebtb(b+aT a−uaT ae2bt)−1u),

one can easily see that the characteristic function is exponential affine in the initial state x0

and hence, by the definition of affine processes studied some chapters before, it follows that the

Wishart process WIS(α, b, a, d, x0) defined in Definition 3.1.8 is an affine process.

3.1.4 Literature Review of Wishart Processes introduced by Bru

As previously discussed, Marie-France Bru has introduced in her paper [3] Wishart processes

step by step, which means that by starting with simple versions, she has defined them more and

more generally. We will now give a short overview of the different forms of Wishart processes

she has studied but in this thesis we examine them from the opposite direction:
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While Marie-France Bru has used an inductive way to introduce Wishart processes, we will now

shortly study them from an deductive perspective. In other words, we will examine the less

general forms by regarding them as special cases of the most general one.

If we restrict the d×d matrices a and b to be only one-dimensional parameters γ and β, we are in

the case of section “Five Parameter Wishart Processes: Square Ornstein-Uhlenbeck Processes -

Real Case” of [3, p.743-745], where the following kind of Wishart processes WIS(α, β, γ, d, x0)

is studied.

Denote by Vt a n× d matrix process which fulfills the stochastic differential equation

dVt = γdNt + βVtdt, V0 = v0, (3.15)

where Nt is a n× d Brownian matrix, v0 is a n× d deterministic matrix, γ ∈ R, β ∈ R−. Then

we define the matrix-valued stochastic process Xt by Xt = V >t Vt with initial value x0 = v>0 v0.

Proposition 3.1.11. Let n ≥ d+ 1. The d× d matrix process Bt governed by

dBt =

√
X−1
t V >t dNt

is a d× d Brownian matrix.

With this definition of the Brownian matrix Bt, the matrix process Xt is a solution of the

following stochastic differential equation:

dXt = γ(
√
XtdBt + dB>t

√
Xt) + 2βXtdt+ nγ2Idt, X0 = x0. (3.16)

Proof. The proposition above follows by considering Proposition 3.1.6 for the special case where

the d× d matrices a and b are replaced by the real-valued parameters γ and β.

Similar as before, we obtain the following theorem:

Theorem 3.1.12. (see [3, Theorem 2′]) If (Bt)t≥0 is a d × d Brownian matrix, then for all

γ ∈ R, β ∈ R, and x0 ∈ S+
d with distinct eigenvalues labeled λ1(0) > . . . > λd(0) ≥ 0, the

stochastic differential equation

dXt = γ(
√
XtdBt + dB>t

√
Xt) + 2βXtdt+ αγ2Idt (3.17)

has

• a unique solution in Sd (in the sense of probability law) if α ∈ (d− 1, d+ 1) and

• a unique strong solution in S++
d if α ≥ d+ 1.

The eigenvalues of such a solution never collide: a.s. for all t > 0

λ1(t) > . . . > λd(t) ≥ 0, λd(t) > 0 if α ≥ d+ 1

35



and satisfy the stochastic differential system

dλi = 2
√
λidvi + αγ2dt+ 2βλidt+ γ2

∑
k 6=i

λi + λk
λi − λk

dt,

where v1(t), . . . , vd(t) are independent Brownian motions.

In such a way the Wishart process in the sense of Bru with index α, dimension d, initial state

x0, and real parameters β and γ, denoted by WIS(α, β, γ, d, x0), is defined.

As in the previous subsection, the distribution of Xt for fixed t can be determined by its

characteristic function as stated in the following corollary:

Corollary 3.1.13. (see [3, p.749]) If (Xt) ∈WIS(α, β, γ, d, x0) where α ∈ ∆d, β ∈ R−, γ ∈ R,

x0 ∈ S++
d , u ∈ iSd, the characteristic function of the stochastic matrix-valued process Xt is given

by

E[e〈u,Xt〉|X0 = x0] = E[etr(uXt)|X0 = x0]

=

(
det

(
βI + γ2u− e2βtγ2u

β

))−α
2

eβe
2βttr(x0(βI+γ2u−e2βtγ2u)−1u).

(3.18)

If we consider the special case where the drift of (3.5) vanishes and the volatility is assumed to

be the identity matrix, which means that we consider a purely Gaussian case, we are in section

“Generalization. The WIS(α, d, x0) Process” of [3].

Hence by choosing the d× d matrix a to be the identity matrix I and the d× d matrix b to be

the null matrix, (3.5) simplifies to

dVt = dNt, V0 = v0.

Therefore in this framework, Xt simplifies to Xt = N>t Nt, V0 = v0.

Remark 3.1.14. Clearly, setting γ = 1 and β = 0 in Proposition 3.1.11 and Theorem 3.1.12,

these statements are also valid for this setup.

Remark 3.1.15. As already mentioned before, Marie-France Bru has started by introducing the

Wishart process for integer-valued index n, later she has replaced the integer-valued index n by

a real-valued index α. If we set γ = 1 and β = 0 and assume that the index α is integer-valued

in (3.17), we are exactly in the case where the matrix-valued process Xt is of form (3.4).

There exists extensive literature on the subject of Wishart processes. Some authors have also

tried to introduce and examine Wishart processes from a point of view strongly related to affine

processes which has become more and more popular.

In the subsequent section we state the definition of the Wishart process which will be used

during this thesis.
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3.2 The kind of Wishart Processes studied and examined in this

thesis

According to Eberhard Mayerhofer for example (see [14, p.6]), the concept of Wishart processes

can be introduced and defined as follows:

Definition 3.2.1. Let
√
X denote the unique, positive semidefinite matrix square root on the

space of symmetric positive semidefinite d × d matrices S+
d . Let Σ,M be real valued d × d

matrices, δ ≥ d−1. As Wishart process we define the stochastic process given by the stochastic

differential equation

dXt =
√
XtdBtΣ + Σ>dB>t

√
Xt + (δΣ>Σ +MXt +XtM

>)dt, X0 = x ∈ S+
d , (3.19)

where B is a standard d× d Brownian motion matrix.

Hence a Wishart process is characterized by its parameters (δ,M,Σ).

Remark 3.2.2. Comparing (3.19) with (3.13), we see that these two definitions of Wishart

processes are quite similar. If we set Σ =
√
a>a and M = b in (3.19), only the constant part of

the drift differs in these two dynamics. But there is also a difference in the domain of definition

of the characterizing matrices. While Marie-France Bru has assumed that b ∈ S−d and b and√
a>a commute, we do not make such restrictions on the corresponding matrices M and Σ in

the Wishart process (3.19) used in this thesis.

Hence the Wishart process defined in (3.19) presents an even more general form than the

Wishart process in the sense of Bru studied in the last section.

As a next step we examine the uniqueness of the solution of the Wishart process given in (3.19)

(compare [14, p.15]): For that we suppose that X0 = x is positive definite in (3.19). Then,

according to [14], there exists a unique strong solution of the Wishart process as long as Xt

does not hit the boundary. This first hitting time of the boundary is defined by

Tx := inf{t > 0| det(X) = 0}.

If the boundary is never reached by the stochastic process, which means that Tx = ∞, unique

strong solutions of the Wishart process always exist.

There exists an important relation between the first hitting time and the dimension d and the

constant part of the drift δ, which is mentioned in the subsequent theorem:

Theorem 3.2.3. [14, Theorem 3.1.] Suppose δ ≥ d+ 1. Then Tx =∞ almost surely.

Summarizing all these facts leads to the following important corollary:

Corollary 3.2.4. If δ ≥ d+1, then there exists a unique strong solution of the Wishart process

as given in (3.19).

In the next proposition the distribution of the Wishart process in (3.19) is stated:

37



Proposition 3.2.5. The Wishart process as defined in (3.19) follows a non-central Wishart

distribution 2.

3.2.1 Motivation and Introduction of the Wishart Distribution

At first, a motivation of the Wishart distribution is given (compare: [14, p.2-3]):

Denote by ξ1, . . . , ξk a sequence of independent Rd-valued random variables which are normally

distributed with mean vector µi ∈ Rd and covariance matrix Σ.

Then the random variable defined by Ξ := ξ1ξ
>
1 + . . . + ξkξ

>
k follows a Wishart distribution,

i.e. Γ(p, w;σ), with scale parameter p := k
2 , shape parameter σ := 2Σ and parameter of non-

centrality w :=
∑k

i=1 µiµ
>
i .

Before a formal definition of the Wishart distribution is given, the Laplace transform is cal-

culated for a special case of the Wishart distribution, namely for the case of one-dimensional

random variables (d = 1).

In this case the Laplace transform can be easily calculated as follows:

E[e−uξ
2
j ] =

1√
2πΣ

∫
R
e−uη

2−
(η−µj)2

2Σ dη

=
1√
2πΣ

∫
R
e
−(1+2Σu)η2+2ηµj−µ

2
j

2Σ dη

=
1√
2πΣ

∫
R
e
−(1+2Σu)2η2+2(1+2Σu)ηµj−(1+2Σu)µ2

j
2Σ(1+2Σu) dη

=
1√
2πΣ

∫
R
e
−((1+2Σu)η−µj)2−2Σuµ2

j
2Σ(1+2Σu) dη

=
1√
2πΣ

∫
R
e
− 1+2Σu

2Σ

(
η(1+2Σu)−µj

1+2Σu

)2

−
uµ2
j

1+2Σu
dη

=
1√
2πΣ

∫
R
e
− 1+2Σu

2Σ

(
η−

µj
1+2Σu

)2

e−
uµ2
j

1+2Σudη

= e−
uµ2
j

1+2Σu
1√

1 + 2Σu

1√
2π Σ

1+2Σu

∫
R
e
− 1+2Σu

2Σ

(
η−

µj
1+2Σu

)2

dη

︸ ︷︷ ︸
(?)=1

=
e−(uµ2

j )(1+2Σu)−1

(1 + 2Σu)
1
2

, u ≥ 0.

(3.20)

(?) integral over the density of a standard normal distributed random variable N (
µj

1+2Σu ,
Σ

1+2Σu)

2This so-called non-central Wishart distribution is introduced and studied in the subsequent subsection
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Under the assumption that ξ1, . . . , ξk are independent, one gets

E[e−uΞ] = E[e−u
∑k
i=1 ξ

2
i ] =

k∏
i=1

E[e−uξ
2
i ]

=
k∏
i=1

e−(uµ2
i )(1+2Σu)−1

(1 + 2Σu)
1
2

=
e−u(1+2Σu)−1

∑k
i=1 µ

2
i

(1 + 2Σu)
1
2

=
e−u(1+σu)−1w

(1 + σu)
1
2

,

where we used that σ = 2Σ and w =
∑k

i=1 µiµ
>
i as defined before for the case where d = 1.

If we now assume that d > 1, the positive random variable Ξ becomes a positive semidefinite

symmetric d × d matrix. Then a possible formal definition of the Wishart distribution is the

following (see [13, p.1]):

Definition 3.2.6. The general non-central Wishart distribution Γ(p, w;σ) on the cone S+
d of

symmetric positive semidefinite d × d matrices is defined (whenever it exists) by its Laplace

transform

L(Γ(p, w;σ))(u) = (det(I + σu))−pe−tr(u(I+σu)−1w), u ∈ S+
d , (3.21)

where p ≥ 0 denotes its shape parameter, σ ∈ S+
d is the scale parameter and the parameter of

non-centrality equals w ∈ S+
d .

In the special case where w = 0, Γ(p;σ) := Γ(p, 0;σ) is called the central Wishart distribution.

Remark 3.2.7. For the setup of the Wishart process as defined in (3.19), we have to set p = δ
2 .

Remark 3.2.8. The central Wishart distribution was first mentioned in “The Generalised Prod-

uct Moment Distribution in Samples from a Normal Multivariate Population” (see [18]) written

by J. Wishart in 1928.

Remark 3.2.9. Comparing (3.20) with (3.21), one can again see that the first equation is a

special case of the second equation.

At the end of this subsection about the Wishart distribution, we take a brief look at the existency

of the Wishart distribution:

Proposition 3.2.10. [14, p.3-4] For invertible σ, the central Wishart distributions Γ(p;σ) :=

Γ(p, w = 0;σ) exist if and only if p belongs to the Gindikin ensemble, which equals the set

Λd :=

{
0,

1

2
, . . . ,

d− 1

2

}
∪
(
d− 1

2
,∞
)
.

Equivalently, the right hand side of (3.21) is the Laplace transform of a distribution on S+
d if

and only if p ∈ Λd.

The following properties concerning the non-central Wishart distribution are taken from [13,

p.3-4]:
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Before stating this proposition, some notation has to be introduced: We denote by ∂S+
d the

boundary S+
d \S

++
d . Then for k = 1, 2, . . . , d− 1, Dk ⊆ ∂S+

d describes the d×d matrices whose

rank is less or equal to k.

Proposition 3.2.11. [13, Lemma 2.2.] Let p ∈ Λd, σ ∈ S+
d and w ∈ S+

d . We have

• Suppose w = mm> for m ∈ Rd and set Σ := σ
2 . If Y ∼ N (m,Σ), then X := Y Y > ∼

Γ(1
2 , w;σ) is supported on D1.

• If p < d−1
2 and rank(w) ≤ 2p, then the right hand side (3.21) is the Laplace transform of

a probability measure supported on D2p.

• If p ≥ d−1
2 , then the right side of (3.21) is the Laplace transform of a probability measure

Γ(p, w;σ) on S+
d .

• In particular, if p > d−1
2 and if σ is invertible, then the density of Γ(p, w;σ) exists.

3.2.2 The CIR Process as a Special Case of the Wishart Process

This subsection deals with an interesting relationship between the Wishart process and the CIR

process. But before deducing this relation, the dynamic of the CIR process is given here once

more:

The Cox-Ingersoll-Ross process (CIR process) satisfies the diffusion equation

dvt = κ̄(θ − vt)dt+ σ̄
√
vtdBt,

where (Bt) denotes an univariate Brownian motion and the parameters satisfy the following

conditions: σ̄ > 0, κ̄θ ≥ 0.

We now consider a Wishart process with diagonal matrices M and Σ. The result will be that

this special case of a Wishart process can be seen as a multidimensional CIR process. The idea

of these considerations is mainly based on [2, p.6]:

If the matrices M and Σ in the Wishart dynamics (3.19) are restricted to be diagonal matrices

(hence M can be written as M = diag(M11, . . . ,Mdd) while Σ can be written as

Σ = diag(Σ11, . . . ,Σdd)), the dynamics of the diagonal elements given in (3.19) simplify to
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(dXt)ii = dXt,ii = (
√
XtdBt)iiΣii + (Σ>)ii(dB

>
t

√
Xt)ii

+
(
δ(Σ>Σ)ii +Mii(Xt)ii + (Xt)ii(M

>)ii

)
dt

= (
√
XtdBt)iiΣii + (Σ)ii(

√
Xt
>︸ ︷︷ ︸

=
√
Xt

dBt)ii +
(
δ(Σ2)ii +Mii(Xt)ii + (Xt)ii(M)ii

)
dt

= 2Σii(
√
XtdBt)ii + (δ(Σ2)ii + 2Mii(Xt)ii)dt

= 2Σii

 d∑
k=1

(
√
Xt)ik︸ ︷︷ ︸

=(
√
Xt)ki

(dBt)ki

+ (δ(Σ2)ii + 2Mii(Xt)ii)dt

= 2Σii

(
d∑

k=1

√
Xtki(dBt)ki

)
+ (δ(Σ2)ii + 2Mii(Xt)ii)dt.

(3.22)

Define a vector of d independent Brownian motions (Zt) = (Zt,1, Zt,2, . . . , Zt,d) by

(dZt)i = dZt,i =
√

(Xt)ii
−1

d∑
k=1

(
√
Xtki(dBt)ki).

To verify that (Zt) is a vector of d independent Brownian motions, we show by applying Levy’s

characterization theorem that its quadratic covariation 〈(dZt)i, (dZt)j〉 = 1(i=j)dt:

〈(dZt)i, (dZt)j〉 = 〈
√

(Xt)ii
−1

d∑
k=1

(
√
Xtki(dBt)ki),

√
(Xt)jj

−1 d∑
m=1

(
√
Xtmj(dBt)mj)〉

=
√

(Xt)ii
−1
√

(Xt)jj
−1 d∑

k=1

d∑
m=1

√
Xtki

√
Xtmj 〈(dBt)ki), (dBt)mj)︸ ︷︷ ︸

=1(k,i)=(m,j)dt

〉

=
√

(Xt)ii
−1√

(Xt)ii
−1

d∑
k=1

√
Xtki

√
Xtki1(i=j)dt

=
√

(Xt)ii
−2

d∑
k=1

√
Xtik

√
Xtkj1(i=j)dt

= ((Xt)ii)
−1(
√
Xt

√
Xt)ij1(i=j)dt

= ((Xt)ii)
−1(Xt)ij1(i=j)dt

= 1(i=j)dt.

Hence (Zt) denotes in fact a vector of independent Brownian motions.
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Then note that

(dZt)i =
√

(Xt)ii
−1

d∑
k=1

(
√
Xtki(dBt)ki)⇔

√
(Xt)ii(dZt)i =

d∑
k=1

(
√
Xtki(dBt)ki). (3.23)

With this definition of the Brownian motion vector (Zt) and (3.23), (3.22) can be rewritten as

(dXt)ii = 2Σii

(
d∑

k=1

√
Xtki(dBt)ki

)
+ (δ(Σ2)ii + 2Mii(Xt)ii)dt

= 2Σii

√
(Xt)ii(dZt)i + (δ(Σ2)ii + 2Mii(Xt)ii)dt.

(3.24)

So, considering the dynamics of the diagonal components of the Wishart process with diagonal

matrices M and Σ, we see that each of them can be interpreted as the dynamics of independent

Cox-Ingersoll-Ross processes with parameters σ̄ = 2Σii, κ̄ = −2Mii and θ = − δ(Σ2)ii
2Mii

.

Hence this important relation is summarized in the following proposition:

Proposition 3.2.12. In the simple case where the matrices M and Σ are restricted to diag-

onal matrices in the Wishart process, the diagonal components of the Wishart process become

independent Cox-Ingersoll-Ross processes characterized by the following parameters

σ̄ = 2Σii, κ̄ = −2Mii and θ = −δ(Σ
2)ii

2Mii
.

Hence the Wishart process is a direct multivariate extension of the well-known CIR process

which has been introduced for modeling the variance of the one-dimensional Heston stochastic

volatility model; with the concept and setup of a Wishart process it is possible to increase the

dimensionality of risk. In the subsequent sections and chapters, one of our aims is to replace

the one-dimensional volatility (for example in the one-dimensional Heston stochastic volatility

model) by a volatility-covolatility matrix. This step allows us to define so-called multivariate

affine stochastic volatility models, for example the multidimensional Heston stochastic volatility

model. One of the advantages of these models is that there still exist closed-form solutions.

But before doing so, we will state the characteristic function of the Wishart processes used in

this thesis:

3.2.3 The Characteristic Function of Wishart Processes

This section is mainly based on Section 2.2 of the paper “On the existence of non-central Wishart

distributions” written by Eberhard Mayerhofer (see [13, p.4-5]).

As already mentioned in Chapter 1 for the case of vector-valued stochastic processes, a process

is called affine, if its characteristic function is exponential affine in the state variable. Expressed
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more mathematically, one has the following definition of multidimensional affine stochastic

processes (which may be a repetition for most of the readers):

Definition 3.2.13. A stochastically continuous (Markov) process X on S+
d is called affine, if

its conditional characteristic function can be written as

E[e〈u,Xt〉|X0 = x] = eφ(t,u)+〈ψ(t,u),x〉 (3.25)

with t ∈ R+, x ∈ S+
d and u ∈ iSd.

From this definition we can draw the following conclusion:

Proposition 3.2.14. The so-called characteristic exponents φ and ψ in the above definition,

satisfy a system of generalized Riccati equations

φ̇(t, u) = F (ψ(t, u)), φ(0, u) = 0,

ψ̇(t, u) = R(ψ(t, u)), ψ(0, u) = u

with F,R being of a specific Lévy-Khintchine form.

Theorem 3.2.15. (see [13, Definition 2.3.]) An affine process X is a Wishart process on

S+
d characterized by its parameters (δ,Σ,M), if its characteristic exponents (φ, ψ) satisfy the

following Riccati equations

φ̇(t, u) = δ〈Σ>Σ, ψ(t, u)〉, φ(0, u) = 0,

ψ̇(t, u) = −2ψ(t, u)Σ>Σψ(t, u) + ψ(t, u)M +M>ψ(t, u), ψ(0, u) = u.

Before stating the theorem about the characteristic function of Wishart processes studied in my

thesis, according to [13, p.5], two functions have to be introduced:

• let wMt be the flow of the vector field Mx+ xM> defined by

wM : R× S+
d → S

+
d , wMt (x) := eMtxeM

>t

• the corresponding integral σMt : S+
d → S

+
d for t ≥ 0 is defined by

σM : R+ × S+
d → S

+
d , σMt (x) = 2

∫ t

0
wMs (x)ds.

We are now prepared to state the characteristic function of the Wishart process:

Theorem 3.2.16. (see [13, Proposition 2.5.]) Let X be a Wishart process. Then the charac-
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teristic exponents φ, ψ take the form

φ(t, u) =
δ

2
log det(I + uσMt (Σ>Σ)),

ψ(t, u) = eM
>t(u−1 + σMt (Σ>Σ))−1eMt.

Consequently, the characteristic function of X is given by

E[e〈u,Xt〉|X0 = x] =
(

det(I− σMt (Σ>Σ)u)
)− δ

2
etr(u(I−σMt (Σ>Σ)u)−1wMt (x)), ∀u ∈ iSd. (3.26)

44



Chapter 4

Multidimensional Heston Stochastic

Volatility Model

After introducing Wishart processes in the last chapter we are now prepared to introduce the

multidimensional Heston stochastic volatility model.

In the setup of a multidimensional Heston stochastic volatility model, the corresponding stochas-

tic covariance process follows a Wishart process. Hence, in other words, the CIR process as

variance process in the one-dimensional Heston stochastic volatility model is now replaced by

the Wishart process as covariance process in the multidimensional Heston stochastic volatility

model.

This stochastic covariance process as a process of S+
d should give the possibility to reflect the

stylized facts of financial data, like the volatility smile, in the model. In addition to that it

should also enable to capture the dependence structure of different assets.

Since the joint conditional characteristic function of the multidimensional Heston stochastic

volatility model is exponential affine, the multidimensional Heston stochastic volatility model

belongs to the class of affine processes.

But before studying the multidimensional Heston stochastic volatility model, multivariate affine

stochastic volatility models will be introduced and defined in general.

4.1 Introduction of Multivariate Affine Stochastic Volatility

Models

In this section matrix-valued affine processes on S+
d will be introduced and studied; to be more

concrete, so-called multivariate affine stochastic volatility models will be defined.

This section is mainly based on “Chapter 5: Multivariate Affine Stochastic Volatility Models”

in [4] written by Christa Cuchiero.
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Consider a model for a d-dimensional logarithmic price process whose risk-neutral dynamics are

given by

dYt =

(
rI− 1

2
diag(Xt)

)
dt+

√
XtdWt, Y0 = y,

where Wt denotes a standard d-dimensional Brownian motion, r the constant interest rate, I
the vector whose entries are all equal to one and diag(Xt) the vector containing the diagonal

entries of X.

Then we consider the i-th component of the logarithmic price process, denoted by Yt,i := (Yt)i

and which can be written as

dYt,i = (dYt)i =

(
(rI)i −

1

2
Xt,ii

)
dt+ (

√
XtdWt)i

= r − 1

2
Xt,iidt+

d∑
j=1

√
XtijdWt,j .

Then component-by-component, for all i, j ∈ {1, . . . , d}, the quadratic covariation of this process

can be calculated as

d〈Yt,i, Yt,j〉 = 〈
d∑

m=1

√
XtimdWt,m,

d∑
n=1

√
XtjndWt,n〉

=
d∑

m=1

d∑
n=1

√
Xtim

√
Xtjn 〈dWt,m, dWt,n〉︸ ︷︷ ︸

=1(m=n)dt

=
d∑
j=1

√
Xtim

√
Xtjm︸ ︷︷ ︸

=
√
Xtmj

dt

= (
√
Xt

√
Xt)ijdt

= Xt,ijdt.

So we have now shown that 〈Yt,i, Yt,j〉 = Xt,ij and therefore for the stochastic covariation process

it holds that

〈Y, Y 〉 = X.

In our framework a multivariate affine stochastic volatility model is defined and characterized

by its joint characteristic function of the logarithmic price process and its covariation process:

(compare [4, p.144-145]):
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It is assumed that the d-dimensional asset price process (St)t≥0 is given by

St = ertI+Yt , t ≥ 0,

where r denotes the constant nonnegative interest rate and (Yt)t≥0 denotes the d-dimensional

discounted logarithmic price process which starts at Y0 = y ∈ Rd a.s. Then, clearly the dis-

counted price process equals (eYt)t≥0. Henceforward, without loss of generality and for ease of

notation, we assume that the interest rates are 0. As already mentioned, we denote by (Xt)t≥0

the stochastic covariation process taking its values in S+
d and starting at X0 = x ∈ S+

d a.s. .

According to [4, p.145], in the context of a multivariate affine stochastic volatility model, the

joint process (Xt, Yt)t≥0 with state space D := S+
d ×R

d has to fulfill the following two important

assumptions:

• (Xt, Yt)t≥0 is a stochastically continuous time-homogeneous Markov process on D :=

S+
d × Rd

• The characteristic function of (Xt, Yt) has exponential affine dependence on the initial

states (x, y), that is, there exist functions (t, u, v) → Φ(t, u, v) and (t, u, v) → Ψ(t, u, v)

such that

E[etr(uXt)+v
>Yt |X0 = x, Y0 = y] = Φ(t, u, v)etr(Ψ(t,u,v)x)+v>y (4.1)

∀(x, y) ∈ D and ∀(u, v) ∈ iSd × iRd

Remark 4.1.1. Considering (4.1), we see that in the above definition we have Φ(t, u, v) instead

of eφ(t,u,v) as defined before. The reason for this is that it is still an open question if Φ(t, u, v)

may also take the value 0. Therefore in literature one can often also find this slightly “different

parametrization” of the characteristic function.

At the end of this section we state a theorem about important properties of multivariate affine

stochastic volatility models (see [4, p.146,Theorem 5.1.2.])

Theorem 4.1.2. Let (τ, u, v) ∈ R+ × iSd × iRd for some τ ≥ 0 and suppose that

E[etr(uXτ )+v>Yτ |X0 = 0, Y0 = 0] 6= 0.

Then, for t, s ≥ 0 such that t + s = τ , we have (τ, u, v) ∈ R+ × iSd × iRd, (s,Ψ(t, u, v), v) ∈
R+ × iSd × iRd and

E[etr(uXt)+v
>Yt |X0 = 0, Y0 = 0] 6= 0 and E[etr(Ψ(t,u,v)Xs)+v>Ys |X0 = 0, Y0 = 0] 6= 0.
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Moreover, the functions Φ and Ψ satisfy the semiflow equations, that is

Φ(t+ s, u, v) = Φ(t, u, v)Φ(s,Ψ(t, u, v), v),

Ψ(t+ s, u, v) = Ψ(s,Ψ(t, u, v), v),

and the derivatives

F (u, v) :=
∂Φ(t, u, v)

∂t

∣∣∣
t=0

and R(u, v) :=
∂Ψ(t, u, v)

∂t

∣∣∣
t=0

exist and are continuous in (u, v). Furthermore, for t ∈ [0, τ), Φ and Ψ satisfy the generalized

Riccati equations

∂

∂t
Φ(t, u, v) = Φ(t, u, v)F (Ψ(t, u, v), v), Φ(0, u, v) = 1,

∂

∂t
Ψ(t, u, v) = R(Ψ(t, u, v), v), Ψ(0, u, v) = u.

(4.2)

Remark 4.1.3. If we consider φ(t, u, v) = log Φ(t, u, v), the first generalized Riccati equation in

(4.2) turns into

∂

∂t
φ(t, u, v) =

∂

∂t
(log Φ(t, u, v)) =

1

Φ(t, u, v)

∂

∂t
Φ(t, u, v)

=
1

Φ(t, u, v)
Φ(t, u, v)F (Ψ(t, u, v), v) = F (Ψ(t, u, v), v)

(4.3)

with φ(0, u, v) = ln Φ(0, u, v)︸ ︷︷ ︸
=1

= 0.

4.2 Introduction of the Multidimensional Heston Stochastic

Volatility Model

In this section the multidimensional Heston stochastic volatility model used in this thesis is

introduced.

As the following definition shows, the multidimensional Heston stochastic volatility model is

characterized by the dynamics of a d-dimensional logarithmic price process and by the dynamics

of the covariance process which follows a Wishart process.

Definition 4.2.1. Let W denote a standard d-dimensional Brownian motion, denote by I a

vector, whose entries are all equal to 1, and by diag(X) a vector containing the diagonal entries

of X. In addition to that let B be a standard d × d Brownian matrix (a d × d- matrix which

contains independent one-dimensional Brownian motions as its entries), M a d× d matrix and

Σ an invertible d × d matrix and let δ ≥ d + 1. Then the dynamics in the multidimensional
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Heston stochastic volatility model are given by

dYt =

(
−1

2
diag(Xt)

)
dt+

√
XtdWt, Y0 = y,

dXt =
(
δΣ>Σ +MXt +XtM

>
)
dt+

√
XtdBtΣ + Σ>dB>t

√
Xt,

(4.4)

where

dWt = dBtρ+ dZt(1− ρ>ρ)

with Z being an Rd-valued Brownian motion, independent of B and ρ being an Rd-vector. In

addition to that we assume that without loss of generality for the deterministic matix Σ it holds

that Σ =
√

Σ>Σ which means that the matrix Σ is symmetric.

Remark 4.2.2. The multidimensional Heston stochastic volatility model defined above is ex-

actly the “Wishart Affine Stochastic Correlation Model” which has been introduced by José Da

Fonesca and Claudio Tebaldi in their paper [7] published in 2007 (see Appendix A).

Three years before, Christian Gouriéroux and Razvan Sufana were one of the first mathemati-

cians who have defined and investigated multidimensional stochastic volatility models (see also

Appendix A). The main difference between the multidimensional stochastic volatility model

introduced by Fonesca and Tebaldi and that introduced by Gouriéroux and Razvan is the corre-

lation between the Brownian motions: While Gouriéroux and Sufana assume that the Brownian

motion of the log return is independent of the Brownian motion of the covariance process, there

exists a correlation between those in the model studied by Da Fonesca and Tebaldi.

4.3 The Characteristic Function of the Multidimensional

Heston Stochastic Volatility Model

This section is based on [4, p.163-164].

In the multidimensional Heston stochastic volatility model the solutions of the Riccati equations

∂Φ(t, u, v)

∂t
= Φ(t, u, v)tr(δΣ>ΣΨ(t, u, v)),

∂Ψ(t, u, v)

∂t
= 2Ψ(t, u, v)Σ>ΣΨ(t, u, v) +

1

2
vv> + Ψ(t, u, v)(Σ>ρv> +M)

+ (vρ>Σ +M>)Ψ(t, u, v)− 1

2

d∑
i=1

vi(eie
>
i ),

(4.5)
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are given by

Ψ(t, u, v) = (uΨ12(t, v) + Ψ22(t, v))−1(uΨ11(t, v) + Ψ21(t, v)),

Φ(t, u, v) = exp

(∫ t

0
tr(δΣ>ΣΨ(s, u, v))ds

)
,

(4.6)

where(
Ψ11(t, v) Ψ12(t, v)

Ψ21(t, v) Ψ22(t, v)

)
= exp

(
t

(
Σ>ρv> +M −2Σ>Σ

1
2(vv> −

∑d
i=1 vi(eie

>
i )) −(vρ>Σ +M>)

))
.

After having stated the solutions of the Riccati equations in the multidimensional Heston

stochastic volatility model, we are now able to mention the theorem about the characteris-

tic function in this model:

Theorem 4.3.1. In the multidimensional Heston stochastic volatility model, the characteristic

function of (Xt, Yt) can be written as

E[e〈u,Xt〉+v
>Yt |X0 = x, Y0 = y] = E[etr(uXt)+v

>Yt |X0 = x, Y0 = y]

= Φ(t, u, v)etr(Ψ(t,u,v)x)+v>y,
(4.7)

∀(x, y) ∈ D and ∀(t, u, v) ∈ R+× iSd× iRd, where the explicit solutions of the Riccati equations

are given as in (4.6).

Remark 4.3.2. If we set

v =


0
...

0


in (4.7), we obtain the characteristic function of the Wishart process as stated in (3.26).

Remark 4.3.3. Comparing (4.2) with (4.5), it follows that in the multidimensional Heston

stochastic volatility model

R(u, v) := 2uΣ>Σu+
1

2
vv> + u(Σ>ρv> +M) + (vρ>Σ +M>)u− 1

2

d∑
i=1

vi(eie
>
i )

and

F (u, v) := tr(δΣ>Σu).

These two functions will play an important role in Chapter 6 of this thesis.
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Chapter 5

Relationships and Results

concerning the Multidimensional

Heston Stochastic Volatility Model

In this chapter we will focus on interesting properties of the multidimensional Heston stochastic

volatility model. A relation between the multidimensional Heston stochastic volatility model

and the one-dimensional Heston stochastic volatility model is also derived.

5.1 The Multidimensional Heston Stochastic Volatility Model

Considered Componentwise

Let us recall the notion of the multidimensional Heston stochastic volatility model introduced

in the last chapter:

In this chapter we assume again that the interest rate equals 0. Then the dynamics in the

multidimensional Heston stochastic volatility model are given by

dYt = −1

2
diag(Xt)dt+

√
XtdWt, Y0 = y,

dXt =
(
δΣ>Σ +MXt +XtM

>
)
dt+

√
XtdBtΣ + Σ>dB>t

√
Xt,

(5.1)

where

dWt = dBtρ+ dZt(1− ρ>ρ) (5.2)

with Z being an Rd-valued Brownian motion, independent of B, and ρ being an Rd-vector.

Without loss of generality we assume again that Σ =
√

Σ>Σ.
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Before stating the first proposition of this section, two random variables Bk
t , W k

t are defined in

the following way:

Let ek denote the k-th unit vector. In addition to that let δ ≥ d + 1 and Σ be invertible such

that Σ−1 and X−1 are well-defined.

Then define Bk
t by

Bk
t : =

∫ t

0

√
Xs,kk

−1
e>k
√
XsdBs

√
Σ>Σ ek

√
(Σ>Σ)kk

−1

=

∫ t

0

√
Xs,kk

−1
(
√
XsdBs

√
Σ>Σ)kk

√
(Σ>Σ)kk

−1

and W k
t by

W k
t : =

∫ t

0

√
e>kXsek

−1

e>k
√
XsdWs

=

∫ t

0

√
Xs,kk

−1
(
√
XsdWs)k.

Proposition 5.1.1. Let δ ≥ d+ 1 and Σ be an invertible matrix.

Then for all k, l ∈ {1, . . . , d} the quadratic covariation of Bk
t and Bl

t is given by

〈dBk
t , dB

l
t〉 =

√
Xt,kkXt,ll

−1√
(Σ2)kk(Σ2)ll

−1
Xt,kl(Σ

2)kldt. (5.3)

For the special case where Σ is assumed to be of diagonal form, Bk
t and Bl

t are uncorrelated.

Moreover, the quadratic covariation of W k
t and W l

t is obtained by

〈dW k
t , dW

l
t 〉 =

√
Xt,kkXt,ll

−1
Xt,kldt. (5.4)

Remark 5.1.2. We assume that δ ≥ d+ 1, because then a unique strong solution of the Wishart

process is guaranteed (see Corollary 3.2.4), which does not hit the boundary (see Theorem

3.2.3).

Proof. In differential notation, we have

dBk
t =

√
Xt,kk

−1
(
√
XtdBt

√
Σ>Σ)kk

√
(Σ>Σ)kk

−1

=
√
Xt,kk

−1

(
d∑
i=1

d∑
m=1

√
XtkidBt,im

√
Σ>Σmk

)√
(Σ>Σ)kk

−1

and

dW k
t =

√
Xt,kk

−1
(
√
XtdWt)k

=
√
Xt,kk

−1
d∑
i=1

√
XtkidWt,i.
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At first, the quadratic covariation of Bk
t and Bl

t is studied

〈dBk
t , dB

l
t〉 =

〈√
Xt,kk

−1

(
d∑
i=1

d∑
m=1

√
XtkidBt,im

√
Σ>Σmk

)√
(Σ>Σ)kk

−1

,

√
Xt,ll

−1

 d∑
j=1

d∑
q=1

√
XtljdBt,jq

√
Σ>Σql

√(Σ>Σ)ll
−1〉

=
√
Xt,kk

−1√
Xt,ll

−1
√

(Σ>Σ)kk
−1√

(Σ>Σ)ll
−1

d∑
i=1

d∑
m=1

d∑
j=1

d∑
q=1

√
Xtki

√
Xtlj

√
Σ>Σmk

√
Σ>Σql 〈dBt,im, dBt,jq〉︸ ︷︷ ︸

=1(i,m)=(j,q)dt

=
√
Xt,kkXt,ll

−1
√

(Σ>Σ)kk(Σ>Σ)ll
−1 d∑

i=1

d∑
m=1

√
Xtki

√
Xtli

√
Σ>Σmk

√
Σ>Σmldt

=
√
Xt,kkXt,ll

−1
√

(Σ>Σ)kk(Σ>Σ)ll
−1 d∑

i=1

√Xtki

√
Xtli︸ ︷︷ ︸

=
√
Xtil

 d∑
m=1

√Σ>Σmk︸ ︷︷ ︸
=
√

Σ>Σkm

√
Σ>Σml

 dt

=
√
Xt,kkXt,ll

−1
√

(Σ>Σ)kk(Σ>Σ)ll
−1

(
√
Xt

√
Xt)kl(

√
Σ>Σ

√
Σ>Σ)kldt

=
√
Xt,kkXt,ll

−1
√

(Σ>Σ)kk(Σ>Σ)ll
−1

(Xt)kl(Σ
>Σ)kldt

=
√
Xt,kkXt,ll

−1√
(Σ2)kk(Σ2)ll

−1
Xt,kl(Σ

2)kldt.

(5.5)

If Σ is restricted to be a diagonal matrix, (5.5) simplifies to

〈dBk
t , dB

l
t〉 =

√
Xt,kkXt,ll

−1√
(Σ2)kk(Σ2)ll

−1
Xt,kl (Σ

2)kl︸ ︷︷ ︸
=0

dt = 0 ∀k 6= l,

because Σ2 remains a diagonal matrix and therefore (Σ2)kl = 0.
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Then the quadratic covariation of W k
t and W l

t for all k, l ∈ {1, . . . , d} is examined

〈dW k
t , dW

l
t 〉 =

〈√
Xt,kk

−1
d∑
i=1

√
XtkidWt,i,

√
Xt,ll

−1
d∑
j=1

√
XtljdWt,j

〉

=
√
Xt,kk

−1√
Xt,ll

−1
d∑
i=1

d∑
j=1

√
Xtki

√
Xtlj 〈dWt,i, dWt,j〉︸ ︷︷ ︸

=1(i=j)dt

=
√
Xt,kkXt,ll

−1
d∑
i=1

√
Xtki

√
Xtli︸ ︷︷ ︸

=
√
Xtil

dt

=
√
Xt,kkXt,ll

−1
(
√
Xt

√
Xt)kldt

=
√
Xt,kkXt,ll

−1
Xt,kldt.

Corollary 5.1.3. The random variables Bk
t and W k

t are both one-dimensional Brownian mo-

tions if δ ≥ d+ 1 and Σ is invertible.

Proof. The property of the two random variables Bk
t and W k

t being both one-dimensional Brow-

nian motions can be concluded from equation (5.3) and (5.4):

If we can show that the quadratic variation 〈Bk
t 〉 = t, by Levy’s characterization theorem it

follows that Bk
t is a one-dimensional Brownian motion (the same holds for W k

t ).

Hence, to get the quadratic variation of Bk
t , we set k = l in (5.3):

〈dBk
t , dB

k
t 〉 = 〈dBk

t 〉 =
√
Xt,kkXt,kk

−1√
(Σ2)kk(Σ2)kk

−1
Xt,kk(Σ

2)kkdt

= (Xt,kk)
−1((Σ2)kk)

−1Xt,kk(Σ
2)kkdt

= dt.

Therefore we have now shown that Bk
t is a one-dimensional Brownian motion.

Then the quadratic covariation of W k
t is examined: Again setting k = l in (5.4) yields

〈dW k
t , dW

k
t 〉 = 〈dW k

t 〉 =
√
Xt,kkXt,kk

−1
Xt,kkdt

= (Xt,kk)
−1Xt,kkdt

= dt.

Since 〈W k
t 〉 = t, it follows by the same step that also W k

t is a one-dimensional Brownian

motion.

54



As a next step we are now prepared to consider the multidimensional Heston stochastic volatility

model component-wise:

Theorem 5.1.4. Let δ ≥ d+ 1 and Σ be invertible. Then componentwise, the dynamics in the

multidimensional Heston stochastic volatility model can be written as

dXt,kk := (dXt)kk =
(
δ(Σ>Σ)kk + (MXt)kk + (XtM

>)kk

)
dt

+
√
Xt,kkdB

k
t

√
(Σ>Σ)kk +

√
(Σ>Σ)kkdB

k
t

√
Xt,kk

=
(
δ(Σ>Σ)kk + (MXt)kk + (XtM

>)kk

)
dt+ 2

√
(Σ>Σ)kk

√
Xt,kkdB

k
t

(5.6)

and

dYt,k := (dYt)k = −1

2
Xt,kkdt+

√
Xt,kkdW

k
t (5.7)

with

Bk
t : =

∫ t

0

√
Xs,kk

−1
e>k
√
XsdBs

√
Σ>Σ ek

√
(Σ>Σ)kk

−1

=

∫ t

0

√
Xs,kk

−1
(√

XsdBs
√

Σ>Σ
)
kk

√
(Σ>Σ)kk

−1

and

W k
t :=

∫ t

0

√
e>kXsek

−1

e>k
√
XsdWs =

∫ t

0

√
Xs,kk

−1
(
√
XsdWs)k

being both one-dimensional Brownian motions.

Proof. Clearly, to get the (k, k)-th component of the Wishart matrix Xt, one has to multiply it

with two unit vectors, once from the left and once from the right:

(dXt)kk = e>k dXtek

= e>k

(
δΣ>Σ +MXt +XtM

>
)
ekdt+ e>k

√
XtdBtΣek + e>k Σ>dB>t

√
Xtek

= (δ(Σ>Σ)kk + (MXt)kk + (XtM
>)kk)dt+ (

√
XtdBtΣ)kk + (Σ>dB>t

√
Xt)kk

= (δ(Σ>Σ)kk + (MXt)kk + (XtM
>)kk)dt+ (

√
XtdBtΣ)kk + (

√
XtdBtΣ)kk

= (δ(Σ>Σ)kk + (MXt)kk + (XtM
>)kk)dt+ 2(

√
XtdBtΣ)kk

(5.8)

The penultimate step follows since

(Σ>dB>t
√
Xt)kk = (Σ>dB>t

√
Xt
>

)kk = ((
√
XtdBtΣ)>)kk = (

√
XtdBtΣ)kk.
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Plugging the Brownian motionBk
t (Bk

t is given by dBk
t =

√
Xt,kk

−1
(
√
XtdBt

√
Σ>Σ)kk

√
(Σ>Σ)kk

−1
)

into (5.6), one obtains

dXt,kk =
(
δ(Σ>Σ)kk + (MXt)kk + (XtM

>)kk

)
dt+

√
Xt,kkdB

k
t

√
(Σ>Σ)kk +

√
(Σ>Σ)kkdB

k
t

√
Xt,kk

=
(
δ(Σ>Σ)kk + (MXt)kk + (XtM

>)kk

)
dt

+
√
Xt,kk

√
Xt,kk

−1
(
√
XtdBt

√
Σ>Σ)kk

√
(Σ>Σ)kk

−1√
(Σ>Σ)kk

+
√

(Σ>Σ)kk

√
(Σ>Σ)kk

−1

(
√
XtdBt

√
Σ>Σ)kk

√
Xt,kk

−1√
Xkk

=
(
δ(Σ>Σ)kk + (MXt)kk + (XtM

>)kk

)
dt+ (

√
XtdBt

√
Σ>Σ︸ ︷︷ ︸
=Σ

)kk + (
√
XtdBt

√
Σ>Σ︸ ︷︷ ︸
=Σ

)kk

=
(
δ(Σ>Σ)kk + (MXt)kk + (XtM

>)kk

)
dt+ 2(

√
XtdBtΣ)kk.

(5.9)

The first equation (5.6) of the theorem is now verified since (5.8) and (5.9) are equivalent.

Similarly as before, to get the k-th component of Yt, one has to multiply it with the appropriate

unit vector

(dYt)k = e>k dYt = e>k (−1

2
diag(Xt)dt) + e>k (

√
XtdWt)

= −1

2
(diag(Xt))kdt+ (

√
XtdWt)k

= −1

2
Xt,kkdt+ (

√
XtdWt)k.

(5.10)

Plugging in the Brownian motion W k
t (dW k

t is given by dW k
t =

√
Xt,kk

−1
(
√
XtdWt)k) into

(5.7), one gets

dYt,k = −1

2
Xt,kkdt+

√
Xt,kkdW

k
t

= −1

2
Xt,kkdt+

√
Xt,kk

√
Xt,kk

−1
(
√
XtdWt)k

= −1

2
Xt,kkdt+ (

√
XtdWt)k.

(5.11)

Since (5.10) and (5.11) are equivalent, we have now also proved the second equation (5.7).

We can now proceed by stating the following definition:

Definition 5.1.5. We call the one-dimensional model determined by the dynamics in (5.6)

and (5.7) the k-th marginals of the multidimensional Heston stochastic volatility model. In

other words, each of the diagonal element of the Wishart process Xt,kk in combination with the

corresponding component of the logarithmic price process Yt,k represents the k-th marginals

(Xt,kk, Yt,k) of the multidimensional Heston stochastic volatility model.
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As a next step the correlation between Xt,kk and Yt,l is examined:

The result will be that the l-th component of the d-dimensional logarithmic price process and

the (k, k)-th diagonal element of the covariance process is independent of any component of the

logarithmic price process; it only depends on the stochastic covariance process which is in our

case given by the Wishart process.

At this point we should mention that this property is valid for affine models in general.

But before stating this important theorem, as an intermediate step the correlation between Bk
t

and W l
t is considered:

Proposition 5.1.6. The correlation between the Brownian motion Bk
t and the Brownian motion

W l
t is determined by

〈dBk
t , dW

l
t 〉 =

√
Xt,kkXt,ll

−1
√

(Σ>Σ)kk
−1

Xt,kl(Σρ)kdt. (5.12)

Especially, the correlation between the Brownian motion Bk
t and the Brownian motion W k

t does

not depend on Xt,kl and is given by

〈dBk
t , dW

k
t 〉 =

√
(Σ>Σ)kk

−1

(Σρ)kdt. (5.13)

Proof. The quadratic covariation between Bk
t and W l

t can be calculated as

〈dBk
t , dW

l
t 〉 =

〈√
Xt,kk

−1
(
√
XtdBt

√
Σ>Σ)kk

√
(Σ>Σ)kk

−1

,
√
Xt,ll

−1
(
√
XtdWt)l

〉
=

〈√
Xt,kk

−1
d∑
i=1

d∑
m=1

(
√
Xtki(dBt)im

√
Σ>Σmk)

√
(Σ>Σ)kk

−1

,
√
Xt,ll

−1
d∑
q=1

(
√
Xtlq(dWt)q)

〉

=
√
Xt,kk

−1√
Xt,ll

−1
√

(Σ>Σ)kk
−1 d∑

i=1

d∑
m=1

d∑
q=1

√
Xtki

√
Σ>Σmk

√
Xtlq〈(dBt)im, (dWt)q〉.

(5.14)

Now as an auxiliary calculation we focus on the last term of the above equation.

In the third step of the subsequent calculations one has to remember that, per definition, Zt is

independent of Bt:
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〈(dBt)im, (dWt)q〉 = 〈(dBt)im, (dBtρ)q + (dZt(1− ρ>ρ))q〉

= 〈(dBt)im, (dBtρ)q〉+ 〈(dBt)im, (dZt(1− ρ>ρ))q〉︸ ︷︷ ︸
=0

= 〈(dBt)im, (dBtρ)q〉

= 〈(dBt)im,
d∑
j=1

(dBt)qjρj〉

= ρj

d∑
j=1

〈(dBt)im, (dBt)qj︸ ︷︷ ︸
=1(i,m)=(q,j)dt

〉.

Therefore (5.14) can be simplified to

〈dBk
t , dW

l
t 〉 =

√
Xt,kk

−1√
Xt,ll

−1
√

(Σ>Σ)kk
−1

d∑
i=1

d∑
m=1

d∑
q=1

√
Xtki

√
Σ>Σmk

√
Xtlqρj

d∑
j=1

〈(dBt)im, (dBt)qj︸ ︷︷ ︸
=1(i,m)=(q,j)dt

〉

=
√
Xt,kkXt,ll

−1
√

(Σ>Σ)kk
−1 d∑

i=1

d∑
m=1

√
Xtki

√
Σ>Σmk

√
Xtliρmdt

=
√
Xt,kkXt,ll

−1
√

(Σ>Σ)kk
−1 d∑

i=1

(
√
Xtki

√
Xtli︸ ︷︷ ︸

=
√
Xtil

)

d∑
m=1

(
√

Σ>Σmk︸ ︷︷ ︸
=
√

Σ>Σkm

ρm)dt

=
√
Xt,kkXt,ll

−1
√

(Σ>Σ)kk
−1

(
√
Xt

√
Xt)kl(

√
Σ>Σρ)kdt

=
√
Xt,kkXt,ll

−1
√

(Σ>Σ)kk
−1

Xt,kl(Σρ)kdt.

For the special case where the quadratic covariation of Bk
t and W k

t is considered, we obtain by

setting k = l:

〈dBk
t , dW

k
t 〉 =

√
Xt,kkXt,kk

−1
√

(Σ>Σ)kk
−1

Xt,kk(Σρ)kdt

= (Xt,kk)
−1
√

(Σ>Σ)kk
−1

Xt,kk(Σρ)kdt

=
√

(Σ>Σ)kk
−1

(Σρ)kdt.

After formulating the last proposition we are now prepared to state the following important

theorem:
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Theorem 5.1.7. The quadratic covariation between Xt,kk and Yt,l is given by

〈dXt,kk, dYt,l〉 = 2Xt,kl(Σρ)kdt,

which means that it does not depend on the logarithmic price process Yt,l, it only depends on the

stochastic covariance process Xt,kk. In particular, for k = l:

〈dXt,kk, dYt,k〉 = 2Xt,kk(Σρ)kdt. (5.15)

Proof. Considering that the “dt-terms” (deterministic terms) vanish under the quadratic co-

variation, the correlation is given by

〈dXt,kk, dYt,l〉 =

〈
2
√
Xt,kk

√
(Σ>Σ)kkdB

k
t ,
√
Xt,lldW

l
t

〉
= 2
√
Xt,kk

√
Xt,ll

√
(Σ>Σ)kk〈dBk

t , dW
l
t 〉

(5.12)
= 2

√
Xt,kkXt,ll

√
(Σ>Σ)kk

√
Xt,kkXt,ll

−1
√

(Σ>Σ)kk
−1

Xt,kl(Σρ)kdt

= 2Xt,kl(Σρ)kdt.

(5.16)

Especially, setting k = l in (5.16), the quadratic covariation between Xt,kk and Yt,k can be

determined by

〈dXt,kk, dYt,k〉 = 2Xt,kk(Σρ)kdt.

5.2 The One-Dimensional Heston Stochastic Volatility Model

as the Marginals of the Multidimensional Heston Stochastic

Volatility Model

In this section we choose the matrix M appropriately in the dynamics of the marginals of the

multidimensional Heston stochastic volatility model given by (5.6) and (5.7) such that we get

the special case of a one-dimensional Heston stochastic volatility model.

But before doing so, we set the dimension d = 1 in (5.1). Then we obtain the one-dimensional

Heston stochastic volatility model with a slightly different parametrization as introduced some

chapters before: To be more precise, under the assumption that d = 1, the dynamics given in
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(5.1) simplify to

dYt = −1

2
Xtdt+

√
XtdWt,

dXt = (δΣ2 + 2MXt)dt+ 2Σ
√
XtdBt,

(5.17)

where dWt = ρdBt + (1− ρ2)dZt.

In addition to that, if d = 1, the quadratic covariation of Wt and Bt is determined by

dWtdBt = 〈dWt, dBt〉

= 〈ρdBt + (1− ρ2)dZt, dBt〉

= 〈ρdBt, dBt〉+ 〈(1− ρ2)dZt, dBt〉

= ρ〈dBt, dBt〉+ (1− ρ2) 〈dZt, dBt〉︸ ︷︷ ︸
=0

= ρdt.

(5.18)

For notational convenience we set σ = Σ, ρ̃ = ρ, k = δΣ2 and κ = 2M .

Then (5.17) and (5.18) can be rewritten as

dXt = (k + κXt)dt+ 2σ
√
XtdBt,

dYt = −1

2
Xtdt+

√
XtdWt,

dWtdBt = ρ̃dt

(5.19)

with k, σ ≥ 0, κ ∈ R.

The one-dimensional model (X,Y ) given by (5.19) and determined by its characterizing param-

eters (k, κ, σ, ρ̃) is called one-dimensional Heston stochastic volatility model.

Remark 5.2.1. This parametrization of a one-dimensional Heston stochastic volatility model as

given in (5.19) will be used in the remaining sections and chapters.

In the one-dimensional Heston stochastic volatility model determined by (5.19), the covariation

between the log return Yt and the variance Xt is given by

d〈Yt, Xt〉 = 2σ
√
Xt

√
Xt〈dBt, dWt〉 = 2σXtρ̃dt (5.20)

and does not depend on the log return Yt.

Now denote by O the zero matrix (matrix which contains 0 in each component). If in equation

(5.6) the deterministic matrix M is chosen to be the zero matrix (M = O), we are in the case

of the one-dimensional Heston stochastic volatility model, which is the idea of the following

theorem:
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Theorem 5.2.2. Let δ ≥ d+ 1 and Σ be invertible. Setting the deterministic matrix M = O in

(5.6), the marginals (Xii, Yi) of the multidimensional Heston stochastic volatility model simplify

to the well-known one-dimensional Heston stochastic volatility model. Hence each component

(in the diagonal) corresponds to a one-dimensional Heston stochastic volatility model with the

following characterizing parameters

ki = δ(Σ>Σ)ii, κi = 0, σi =
√

(Σ>Σ)ii and ρ̃i =
(Σρ)i√
(Σ>Σ)ii

.

Proof. If M equals the zero matrix, the dynamics of the (i, i)-th component of the multidimen-

sional Heston stochastic volatility model (5.6) can be simplified to

dXt,ii =
(
δ(Σ>Σ)ii + (OXt)ii + (XtO>)ii

)
dt+

√
Xt,iidB

i
t

√
(Σ>Σ)ii +

√
(Σ>Σ)iidB

i
t

√
Xt,ii

=
(
δ(Σ>Σ)ii

)
dt+ 2

√
(Σ>Σ)ii

√
Xt,iidB

i
t.

(5.21)

Comparing (5.19) with (5.21), the parameters of the one-dimensional Heston stochastic volatility

model can be determined as follows: ki = δ(Σ>Σ)ii, κi = 0 and 2σi = 2
√

(Σ>Σ)ii ⇒
σi =

√
(Σ>Σ)ii.

And finally, comparing (5.20) with (5.15), we see that

2Xt,ii(Σρ)idt = 2σiρ̃iXt,iidt ⇔ σiρ̃i = (Σρ)i,

and hence by noting that σi =
√

(Σ>Σ)ii, it follows that

ρ̃i =
(Σρ)i
σi

=
(Σρ)i√
(Σ>Σ)ii

.

The statement about the last theorem is still true if we consider the more general case where

the deterministic matrix M is assumed to be of diagonal form:

Theorem 5.2.3. Let δ ≥ d + 1 and Σ be invertible. If the matrix M is restricted to be a di-

agonal matrix (M = diag(M1,M2, . . . ,Md) = diag(M11,M22, . . . ,Mdd)), the multidimensional

Heston stochastic volatility model considered component-by-component still simplifies to the one-

dimensional Heston stochastic volatility model with the following characterizing parameters

ki = δ(Σ>Σ)ii and κi = 2Mii and σi =
√

(Σ>Σ)ii and ρ̃i =
(Σρ)i√
(Σ>Σ)ii

.
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Proof. Plugging M = diag(M11,M22, . . . ,Mdd) into the dynamics of the (i, i)-th component of

the multidimensional Heston stochastic volatility model (5.6), we get

dXt,ii =
(
δ(Σ>Σ)ii +MiiXt,ii +Xt,iiMii

)
dt+

√
Xt,iidB

i
t

√
(Σ>Σ)ii +

√
(Σ>Σ)iidB

i
t

√
Xt,ii

=
(
δ(Σ>Σ)ii + 2MiiXt,ii

)
dt+ 2

√
(Σ>Σ)ii

√
Xt,iidB

i
t.

As before, the parameters can be determined: ki = δ(Σ>Σ)ii, κi = 2Mii and σi and ρ̃i stay the

same as before, which means that σi =
√

(Σ>Σ)ii and ρ̃i = (Σρ)i√
(Σ>Σ)ii

.

Remark 5.2.4. This interesting relationship between the multidimensional Heston stochastic

volatility model and the one-dimensional Heston stochastic volatility model can also be derived

by considering their characteristic functions instead of the dynamics as we have done it before:

At first we choose u and v to be of the following form

u =

 O O O
O uii O
O O O

 and v =

 Ovi
O


(so u denotes the d × d matrix which has uii as its (i, i)-th entry and otherwise only 0; v

denotes a d-dimensional null vector with the exception that its i-th entry equals vi). As a

next step we plug them into the equation of the characteristic function of the multidimensional

Heston stochastic volatility model as defined in (4.7). In other words, we have to consider

E[euiiXt,ii+viYt,i |X0,ii = xii, Y0,i = yi]. In addition to that the deterministic matrix M has to be

chosen appropriately as before, which means that in the first case we set M = O and then in the

second less restricted case we set M = diag(M11,M22, . . . ,Mdd). If we then simplify the right

hand side of (4.7) and compare this term with the characteristic function of the one-dimensional

Heston stochastic volatility model, the parameters as specified in Theorem 5.2.2 or Theorem

5.2.3 could be determined as well.

So to summarize, there exist two different ways to derive the relationship between the marginals

of the multidimensional Heston stochastic volatility model and the one-dimensional Heston

stochastic volatility model, either by studying their dynamics or their characteristic functions.

As we have seen in the previous examinations, vanishing a linear drift (M = O) or choosing the

matrix M to be only of diagonal form is a possibility to get a one-dimensional Heston stochastic

volatility model out of the marginals of the multidimensional Heston stochastic volatility model.

It is a known fact that if one changes the probability measure under Girsanov’s theorem, the

drift of the stochastic process changes. Hence, by applying Girsanov’s theorem, we get the

desired drift:

This result is stated in the following theorem proved by Eberhard Mayerhofer in [14, p.17-18]:
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Theorem 5.2.5. (see [14, Theorem 4.1.]) Suppose Xt is a Wishart process with parameters

(δ,M,Σ), where Σ is invertible, and let X0 = x ∈ S+
d . For δQ̃ ∈ R and a d× d matrix M Q̃, we

set

γt :=
√
Xt(M

> − (M Q̃)>)Σ−1 +

(
δ

2
− δQ̃

2

)√
Xt
−1

Σ>

and

Zt := E
(
−
∫ t

0
tr(γsdBs)

)
,

If min( δ2 ,
δQ̃

2 ) ≥ d+1
2 , then Zt is a martingale on [0, T ], and BQ̃

t := γt + Bt is a Q̃-Brownian

motion on [0, T ]. Furthermore Xt is a Wishart process with parameters (δQ̃,M Q̃,Σ) under Q̃.

Remark 5.2.6. Clearly Q̃ is defined by dQ̃ = E
(
−
∫ T

0 tr(γsdBs)
)
dQ = ZTdQ.

Hence by applying Theorem 5.2.5, under the equivalent probability measure Q̃, the dynamics

of (3.19) can be written as

dXt =
√
XtdB

Q̃
t Σ + Σ>(dBQ̃)>t

√
Xt + (δQ̃Σ>Σ +M Q̃Xt +Xt(M

Q̃)>)dt. (5.22)

By noting that γ>t = (Σ−1)>(M−M Q̃)
√
Xt+Σ

√
Xt
−1

( δ2−
δQ̃

2 ), expression (5.22) can be verified

because

dXt =
√
XtdB

Q̃
t Σ + Σ>(dBQ̃)>t

√
Xt + (δQ̃Σ>Σ +M Q̃Xt +Xt(M

Q̃)>)dt

=
√
Xt(γtdt+ dBt)Σ + Σ>(γ>t dt+ dB>t )

√
Xt + (δQ̃Σ>Σ +M Q̃Xt +Xt(M

Q̃)>)dt

=
√
Xt

((√
Xt(M

> − (M Q̃)>)Σ−1 +

(
δ

2
− δQ̃

2

)√
Xt
−1

Σ>

)
dt+ dBt

)
Σ

+ Σ>

((
(Σ−1)>(M −M Q̃)

√
Xt + Σ

√
Xt
−1

(
δ

2
− δQ̃

2

))
dt+ dB>t

)√
Xt

+ (δQ̃Σ>Σ +M Q̃Xt +Xt(M
Q̃)>)dt

= Xt(M
> − (M Q̃)>)dt+

(
δ

2
− δQ̃

2

)
Σ>Σdt+

√
XtdBtΣ

+ (M −M Q̃)Xtdt+ Σ>Σ

(
δ

2
− δQ̃

2

)
dt+ ΣTdB>t

√
Xt + (δQ̃Σ>Σ +M Q̃Xt +Xt(M

Q̃)>)dt

=
√
XtdBtΣ + Σ>dB>t

√
Xt + (δΣ>Σ +MXt +XtM

>)dt,

which equals exactly the Wishart process given in (3.19).

Remark 5.2.7. Clearly, Theorem 5.2.5 is also valid if we restrict M Q̃ to be only of diagonal form

which we denote by M Q̃
diag.
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Hence by applying Theorem 5.2.5, we get the desired diagonal form of M Q̃ (denoted by M Q̃
diag),

which yields to a one-dimensional Heston stochastic volatility model.

This important result is stated in the following theorem:

Theorem 5.2.8. Define γt by

γt :=
√
Xt(M

> − (M Q̃
diag)

>)Σ−1 +

(
δ

2
− δQ̃

2

)√
Xt
−1

Σ>.

Considering the dynamics of (3.19) under the equivalent probability measure Q̃ given by

dQ̃ = E
(
−
∫ T

0
tr(γsdBs)

)
dQ,

the marginals (Xt,ii, Yt,i) of the corresponding multidimensional Heston stochastic volatility

model belong to a one-dimensional Heston stochastic volatility model with characterizing pa-

rameters

kQ̃i = δQ̃(Σ>Σ)ii, κQ̃i = 2M Q̃
diag,ii, σi =

√
(Σ>Σ)ii and ρ̃i =

(Σρ)i√
(Σ>Σ)ii

.

Remark 5.2.9. Clearly, the multidimensional Heston stochastic volatility model under the equiv-

alent probability measure Q̃ is given by

dYt =

(
−1

2
diag(Xt)

)
dt+

√
XtdW

Q̃
t , Y0 = y

dXt =
(
δQ̃Σ>Σ +M Q̃

diagXt +Xt(M
Q̃
diag)

>
)
dt+

√
XtdB

Q̃
t Σ + Σ>(dBQ̃)>t

√
Xt,

where

dW Q̃
t = dBQ̃

t ρ+ dZQ̃
t (1− ρ>ρ)

with ZQ̃ being an Rd-valued Q̃-Brownian motion, independent of BQ̃ and ρ being an Rd-vector.

Remark 5.2.10. If we start under the physical measure with a multidimensional Heston stochas-

tic volatility model, there always exists some equivalent measure change such that we end up in

the setting of Theorem 5.2.8 and have risk neutral one-dimensional Heston stochastic volatility

models for each marginal.
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Chapter 6

Small-Time Asymptotics for Implied

Volatility

In this chapter the small-time asymptotics for implied volatility in different stochastic volatility

models are studied. At first a one-dimensional Heston stochastic volatility model is considered

and then the marginals of the multidimensional Heston stochastic volatility model are regarded.

Martin Forde and Antoine Jacquier have examined the small-time asymptotics for implied

volatility under the one-dimensional Heston stochastic volatility model in their paper [8]. In

the second section of this chapter we summarize important results concerning this topic. And

finally, in the third section of this chapter, we show that these statements and theorems are

also valid in a more general framework, namely for the marginals of the multidimensional

Heston stochastic volatility model defined in (5.6) and (5.7). In other words, we assert that

the results proved in [8] by Martin Forde and Antoine Jacquier are independent of any choice

of the deterministic matrix M in the dynamics (5.6) of the multidimensional Heston stochastic

volatility model regarded component-wise.

Note that also Elisa Alòs has studied small-time asymptotics of option prices for the Heston

stochastic volatility model by using Malliavin calculus (see [1]).

Now in the first section of this chapter we define the implied volatility:

6.1 Short Introduction of the Implied Volatility

It is a well-known fact that a popular possibility to price a European call or put option is to

use the famous Black-Scholes formula. So if the Black-Scholes formula is applied for pricing

purposes, one has to plug in the interest rate, the strike, the current value of the underlying,

the maturity of the option and the volatility to get the price. The four former quantities can

be easily observed in the market.
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In reality, the price of a European call or put option is quoted in the market. It may now

arise the question which volatility has been used to get the quoted market price. This input is

called implied volatility. So in financial mathematics, “the implied volatility is the volatility of

the underlying which when substituted into the Black-Scholes formula gives a theoretical price

equal to the market price.” (see, [17, p.130])

More mathematically, the implied volatility can be defined as follows in the below-mentioned

framework (see [15, p.220]):

Let us consider a European call option with exercise price K, maturity T and time τ = T − t
to the maturity T . Assume that the current market price Cmt can be taken as an input due to

the fact that it can be observed in the market.

Definition 6.1.1. The implied volatility at any time point t ≤ T , denoted by σ̂t, is derived

from the non linear equation (the well-known Black-Scholes equation)

Cmt = StΦ(d1(St, τ, σ̂t,K, r))−Ke−rτΦ(d2(St, τ, σ̂t,K, r)),

with

d1(s, τ) =
ln( SK ) + (r + 1

2σ
2)τ

σ
√
τ

and

d2(s, τ) = d1(s, t)− σ
√
τ ,

where the only unknown quantity is σ̂t.

This means that the implied volatility σ̂t is the value that, when put in the Black-Scholes

formula, results in a model price equal to the current market price of a call option.

Remark 6.1.2. The implied volatility can equivalently be defined by the corresponding price

of a European put option. Due to the put-call parity relationship, the implied volatility of a

European call option coincides with that of a European put option. Very small differences may

be caused by the bid-ask spread.

6.2 Small-Time Asymptotics for Implied Volatility under the

One-Dimensional Heston Stochastic Volatility Model

This section which covers the small-time asymptotics for implied volatility under the one-

dimensional Heston stochastic volatility model is mainly based on the paper [8] published by

Martin Forde and Antoine Jacquier.

The most important results of their studies are summarized:
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Theorem 6.2.1. (see [8, Theorem 1.1]) Consider the one-dimensional Heston stochastic volatil-

ity model given by the following dynamics

dXt = (k + κXt)dt+ 2σ
√
XtdBt,

dYt = −1

2
Xtdt+

√
XtdWt,

dWtdBt = ρ̃dt,

with X0 = x, Y0 = y, κ < 0, k > 0, σ > 0, |ρ̃| < 1 and k > 2σ2, so that X = 0 is an unattainable

barrier, where Wt and Bt are two correlated Brownian motions. Then Yt − y satisfies a Large

deviation principle (LDP) as t → 0, with rate function Λ?(x) equal to the Legendre transform

of the continuous function Λ : R→ R+ ∪ {∞} given by

Λ(p) =
xp

2σ(
√

1− ρ̃2 cot(σp
√

1− ρ̃2)− ρ̃)
for p ∈ (p−, p+)

=∞ for p /∈ (p−, p+),

(6.1)

where the following table shows how to compute the values of p− and p+:

ρ̃ p− p+

< 0
arctan

(√
1−ρ̃2
ρ̃

)
σ
√

1−ρ̃2

π+arctan

(√
1−ρ̃2
ρ̃

)
σ
√

1−ρ̃2

= 0 − π
2σ

π
2σ

> 0
−π+arctan

(√
1−ρ̃2
ρ̃

)
σ
√

1−ρ̃2

arctan

(√
1−ρ̃2
ρ̃

)
σ
√

1−ρ̃2

Remark 6.2.2. The Fenchel-Legendre transform Λ? : R→ R of the function Λ is defined by

Λ?(x) := sup
p∈(p−,p+)

{px− Λ(p)}, ∀x ∈ R.

Martin Forde and Antoine Jacquier have proved the above theorem in their paper [8] by applying

Gärtner-Ellis Theorem. (An explanation of the Gärtner-Ellis Theorem and the corresponding

relevant definitions can be found for example in [8, Appendix A].)

The important issue is to show that

lim
t→0

t logE[e
p
t
(Yt−y)] = Λ(p), (6.2)

Remark 6.2.3. Note that (6.2) is equivalent to show that

lim
t→0

t logE[e
p
t
Yt ] = Λ(p) + py,
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because

Λ(p) = lim
t→0

t logE[e
p
t
(Yt−y)] = lim

t→0
t log

(
e−

p
t
yE[e

p
t
Yt ]
)

= lim
t→0

t
(

log(e−
p
t
y) + log(E[e

p
t
Yt ])
)

= lim
t→0

t
(
−p
t
y + logE[e

p
t
Yt ]
)

= −py + lim
t→0

t logE[e
p
t
Yt ].

Then one can show that Yt − y satisfies a Large deviation principle as t→ 0 with rate function

equal to the Legendre transform of the continuous function Λ. Equation (6.2) will play an

important role in the subsequent section.

As a next step we study an application of the last theorem, namely the pricing of out-of-the-

money call and put options of small maturity.

But before doing so, some terms used in the subsequent theorems and corollaries are repeated:

the moneyness and out-of-the-money/ in-the-money/ at-the-money call and put options

A call option is called out-of-the-money (in-the-money) if its strike price K is greater (smaller)

than the market price of the underlying asset; therefore for out-of-the-money call options we

get K ≥ St ⇒ K
St
≥ 1⇒ log(KSt ) ≥ 0.

Contrary, a put option is called out-of-the-money (in-the-money) if its strike price K is smaller

(greater) than the market price of the underlying asset; therefore for out-of-the-money put

options we have K ≤ St ⇒ K
St
≤ 1⇒ log(KSt ) ≤ 0.

Moreover, an option (put or call) is called at-the-money if the strike price equals the market

price of the underlying asset, hence K = St.

We are now prepared to state the following corollaries about the pricing of out-of-the-money

call and put options (compare [8, Corollary 2.1 & 2.2]):

Corollary 6.2.4. The small-time behaviour for out-of-the-money call options on St = eYt can

be written as

− lim
t→0

t logE[St −K]+ = Λ?(m),

where m = log(KS0
) ≥ 0 is the log-moneyness.

Corollary 6.2.5. The small-time behaviour for out-of-the-money put options on St = eYt can

be written as

− lim
t→0

t logE[K − St]+ = Λ?(m),

where m = log(KS0
) ≤ 0 is the log-moneyness.

Knowing the rate function Λ?(m), according to Martin Forde and Antoine Jacquier, one can

also determine the asymptotic implied volatility:
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First we state a theorem which covers the implied volatility of a European call option which

is not at-the-money (hence in-the-money or out-of-the money). Secondly, a theorem about the

small-time implied volatility of at-the-money options is mentioned.

Theorem 6.2.6. (see [8, Theorem 2.4]) Let m = log
(
K
S0

)
be the log-moneyness. We have the

following asymptotic behaviour for the implied volatility σt = σt(m) of a European call option

on St = eYt with strike K = S0e
m and m ∈ R,m 6= 0, as t→ 0

I(m) = lim
t→0

σt(m) =
m√

2Λ?(m)
. (6.3)

Theorem 6.2.7. (see [8, Theorem 2.5]) Let m = log
(
K
S0

)
be the log-moneyness. The asymp-

totic implied volatility I(m) has the following expansion around m = 0

I(m) =
√
x

(
1 +

1

4
ρ̃z +

(
1

24
− 5

48
ρ̃2

)
z2 +O(z3)

)
, (6.4)

where z = 2σm
x .

Remark 6.2.8. Considering expression (6.3) and (6.4), the interesting property is that in the

representation respectively expansion of the asymptotic implied volatility of the European op-

tions k and κ do not play a role. Hence these two expressions, namely (6.3) and (6.4), do not

depend on the drift of the considered model.

6.3 Small-Time Asymptotics for Implied Volatility under the

Marginals of the Multidimensional Heston Stochastic

Volatility Model

As previously discussed, the aim of this section is to prove that for the marginals of the multi-

dimensional Heston stochastic volatility model, as given in (5.7) and (5.6), it holds that

lim
ε→0

ε logE[eε
−1pYε,i ] = Λ(p) + pyi, (6.5)

with Λ(p) as defined in (6.1) and yi being the initial value of the i-th component of Yt, where

the parameters are matched as already shown in the last chapter.

Remark 6.3.1. To verify that (6.5) is valid, we will at first consider and examine the following

expression

lim
ε→0

ε logE[e〈ε
−1u,Xε〉+ε−1v>Yε ] (6.6)

in the setup of the multidimensional Heston stochastic volatility model.

By choosing u to be the d × d null matrix (u = O) and v to be a d-dimensional vector whose
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entries are all equal to 0 except for the i-th component which equals p, expression (6.6) simplifies

to the left hand side of (6.5).

If we can show that (6.5) is valid, the results proved by Martin Forde and Antoine Jacquier

which we have summarized in the last section are also applicable for the marginals of the

multidimensional Heston stochastic volatility model as defined in (5.6) and (5.7).

To show that (6.5) is true in this more general framework, we use some lemmas and statements,

Archil Gulisashvili and Josef Teichmann have studied in their paper [11] in Section 4 called

“Homogenization Procedure”. To be more precise, while they both have stated and proved the

following lemmas and statements for affine processes on the canonical state space Rm≥0×Rn, we

will consider an adapted version of these lemmas and statements, namely in a setup for (the

marginals of) the multidimensional Heston stochastic volatility models.

At first let us define the set Q and V by

Q =
{

(t, u, v) ∈ R+ × Sd + iSd × Cd
∣∣∣

E
[
|etr(uXt)+v>Yt |

∣∣X0 = x, Y0 = y
]

= E
[
etr(Re(u)Xt)+Re(v)>Yt

∣∣X0 = x, Y0 = y
]
<∞

}
and

V = {(u, v) ∈ Sd + iSd × Cd|∃t > 0 such that (t, u, v) ∈ Q}.

Then the following two lemmas are stated for the solutions of the generalized Riccati equations

of multivariate affine stochastic processes:

Lemma 6.3.2. Let Ψ be the unique solution of the generalized Riccati equation as given in the

second equation of (4.2), namely

∂

∂t
Ψ(t, u, v) = R(Ψ(t, u, v), v), Ψ(0, u, v) = u.

Then, for every ε > 0, the function

Ψε(t, u, v) := εΨ(εt, ε−1u, ε−1v)

solves the equation

∂

∂t
Ψε(t, u, v) = Rε(Ψε(t, u, v), v), Ψε(0, u, v) = u (6.7)

with Rε(u, v) := ε2R(ε−1u, ε−1v), ∀(u, v) ∈ V.

Similar, let φ := log Φ be the unique solution of the generalized Riccati equation as given in the
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equation (4.3), namely

∂

∂t
φ(t, u, v) = F (Ψ(t, u, v), v), φ(0, u, v) = 0.

Then, for every ε > 0, the function

φε(t, u, v) := εφ(εt, ε−1u, ε−1v)

solves the equation

∂

∂t
φε(t, u, v) = F ε(Ψε(t, u, v), v), φε(0, u, v) = 0 (6.8)

with F ε(u, v) = ε2F (ε−1u, ε−1v), ∀(u, v) ∈ V.

Proof. At first we show that (6.7) is true:

∂

∂t
Ψε(t, u, v) =

∂

∂t

(
εΨ
(
εt, ε−1u, ε−1v

))
= ε

∂

∂t
Ψ
(
εt, ε−1u, ε−1v

)
= εR

(
Ψ
(
εt, ε−1u, ε−1v

)
, ε−1v

)
ε

= ε2R
(
Ψ
(
εt, ε−1u, ε−1v

)
, ε−1v

)
= ε2R

(
ε−1εΨ

(
εt, ε−1u, ε−1v

)
, ε−1v

)
= ε2R(ε−1Ψε(t, u, v), ε−1v)

= Rε(Ψε(t, u, v), v).

With exactly the same steps (6.8) can be verified.

Lemma 6.3.3. Under the previous assumptions, the limit limε→0 Ψε = Ψ(0) exists uniformly

on compact sets in R+ × V. Furthermore

Ψε(t, u, v) = Ψ(0)(t, u, v) + εΨ(1)(t, u, v) +
∑
n≥2

εnΨ(n)(t, u, v) (6.9)

is a convergent power series expansion for small ε > 0. The coefficient functions in (6.9) satisfy

certain ordinary differential equations, i.e. in particular

∂

∂t
Ψ(0)(t, u, v) = R(0)(Ψ(0)(t, u, v), v), Ψ(0)(0, u, v) = u.
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and

∂

∂t
Ψ(1)(t, u, v) =

∂

∂ε

∣∣∣∣
ε=0

Rε(Ψ(0)(t, u, v), v)Ψ(1)(t, u, v) Ψ(1)(0, u, v) = 0.

For n ≥ 2, the equations for the coefficient functions involve higher order derivatives.

In complete analogy, the limit limε→0 φ
ε = φ(0) exists uniformly on compact sets in R+ × V.

Furthermore

φε(t, u, v) = φ(0)(t, u, v) + εφ(1)(t, u, v) +
∑
n≥2

εnφ(n)(t, u, v)

for small enough values of ε.

As a next step we define by Λ̂(i), i ≥ 0, the functions appearing in the following power series

expansion in ε (compare [11, p.15]):

Λ̂(0)(u, v) + εΛ̂(1)(u, v) + . . . := φε(1, u, v) + 〈x,Ψε(1, u, v)〉+ v>y,

where (x, y) denotes the initial value of (X,Y ).

By applying the homogenization procedure for continuous multivariate affine processes, we

obtain

E[e〈ε
−1u,Xε〉+ε−1vTYε ] = e

Λ̂(0)(u,v)
ε

+Λ̂(1)(u,v)+..., (6.10)

where (u, v) is such that the expressions on both sides of (6.10) are finite for small enough

values of ε (compare [11, Remark 4.4.]).

Considering the left hand side of (6.10), we see that we have obtained a similar expression as

(6.6). If we take the logarithm, multiply the equation with ε and take the limit, we obtain

exactly expression (6.6):

E[e〈ε
−1u,Xε〉+ε−1vTYε ] = e

Λ̂(0)(u,v)
ε

+Λ̂(1)(u,v)+...

⇔ logE[e〈ε
−1u,Xε〉+ε−1vTYε ] =

Λ̂(0)(u, v)

ε
+ Λ̂(1)(u, v) + . . .

⇔ ε logE[e〈ε
−1u,Xε〉+ε−1vTYε ] = Λ̂(0)(u, v) + εΛ̂(1)(u, v) + . . .
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The last expression can further be rewritten as

ε logE[e〈ε
−1u,Xε〉+ε−1v>Yε ] = Λ̂(0)(u, v) + εΛ̂(1)(u, v) + . . .

= φε(1, u, v) + 〈x,Ψε(1, u, v)〉+ v>y

= φ(0)(1, u, v) + εφ(1)(1, u, v) +
∑
n≥2

εnφ(n)(1, u, v)

+
〈
x,Ψ(0)(1, u, v) + εΨ(1)(1, u, v) +

∑
n≥2

εnΨ(n)(1, u, v)
〉

+ v>y.

(6.11)

If we take the limit on both sides of the last equation, (6.11) can be written as

lim
ε→0

ε logE[e〈ε
−1u,Xε〉+ε−1v>Yε ] = φ(0)(1, u, v) + 〈x,Ψ(0)(1, u, v)〉+ v>y, (6.12)

where from Lemma 6.3.3 we know that

Ψ(0)(t, u, v) is a solution of ∂
∂tΨ

(0)(t, u, v) = R(0)(Ψ(0)(t, u, v), v) and φ(0)(t, u, v) is a solution of
∂
∂tφ

(0)(t, u, v) = F (0)(Ψ(0)(t, u, v), v).

The results we have stated and proved so far are valid for affine processes in general.

We will now derive R(0) and F (0) for the multidimensional Heston stochastic volatility model:

Remark 6.3.4. As already stated in Remark 4.3.3 for the case of the multidimensional Heston

stochastic volatility model, R(u, v) is given by

R(u, v) = 2uΣ>Σu+
1

2
vv> + u(Σ>ρv> +M) + (vρ>Σ +M>)u− 1

2

d∑
i=1

vi(eie
>
i ).

Since Rε(u, v) := ε2R(ε−1u, ε−1v), it holds that

Rε(u, v) := ε2R(ε−1u, ε−1v)

= ε22ε−1uΣ>Σε−1u+ ε2
1

2
ε−1vε−1v> + ε2ε−1u(Σ>ρε−1v> +M)

+ ε2(ε−1vρ>Σ +M>)ε−1u− ε2 1

2

d∑
i=1

ε−1vi(eie
>
i )

= 2uΣ>Σu+
1

2
vv> + uΣ>ρv> + vρ>Σu+ εuM + εM>u− ε1

2

d∑
i=1

vi(eie
>
i )

=: R(0)(u, v) + εR(1)(u, v),

where

R(0)(u, v) := 2uΣ>Σu+
1

2
vv> + uΣ>ρv> + vρ>Σu
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and

R(1)(u, v) := uM +M>u− 1

2

d∑
i=1

vi(eie
>
i ).

Considering Remark 4.3.3, we see that F (u, v) can be written as

F (u, v) = tr(δΣ>Σu).

Therefore F ε(u, v) can be rewritten as

F ε(u, v) := ε2F (ε−1u, ε−1v)

= ε2tr(δΣ>Σε−1u)

= ε2ε−1tr(δΣ>Σu)

= εtr(δΣ>Σu)

=: F (0)(u, v) + εF (1)(u, v),

where

F (0)(u, v) := 0

and

F (1)(u, v) := tr(δΣ>Σu).

Using expression (6.12) and applying Remark 6.2.3 and Remark 6.3.4, we are prepared to state

the following proposition:

Proposition 6.3.5. For the marginals of the multidimensional Heston stochastic volatility

model as given in (5.6) and (5.7) it holds that

lim
ε→0

ε logE[eε
−1pYε,i ] = Λ(p) + pyi ⇔ lim

ε→0
ε logE[eε

−1p(Yε,i−yi)] = Λ(p), (6.13)

where Λ(p) is given in (6.1) with σi =
√

(Σ>Σ)ii and ρ̃i = (Σρ)i√
(Σ>Σ)ii

.

Proof. Let (X,Y ) be a multidimensional Heston stochastic volatility model and let (X̃, Ỹ )

denote a multidimensional Heston stochastic volatility model with the same parameters but

with M = O and the same starting values (x, y).

Then we know by equation (6.12) that

lim
ε→0

εE
[
e〈ε
−1u,X̃ε〉+ε−1v>Ỹε

]
= φ(0)(1, u, v) + 〈x,Ψ(0)(1, u, v)〉+ v>y = 〈x,Ψ(0)(1, u, v)〉+ v>y,

(6.14)
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where φ(0) = 0 and Ψ(0) are equal to the same expressions for (X,Y ). Since the marginal

distribution of Ỹε,i is the same as the one of the one-dimensional Heston stochastic volatility

Y hest
ε where the parameters are matched accordingly (see Theorem 5.2.2), we deduce

lim
ε→0

εE
[
eε
−1pỸε,i

]
= lim

ε→0
εE
[
eε
−1pY hestε

]
= Λ(p) + pyi.

Since by equation (6.14), we have

lim
ε→0

εE
[
eε
−1pỸε,i

]
= lim

ε→0
εE
[
eε
−1pYε,i

]
,

it follows that

lim
ε→0

εE
[
eε
−1pYε,i

]
= Λ(p) + pyi.

Remark 6.3.6. The intuition why (6.13) is valid is that the linear drift determined by the matrix

M does not appear in the above mentioned asymptotic.

That is the reason why the results and statements of Section 6.2 are also valid for the marginals

of the multidimensional Heston stochastic volatility model.

Therefore, at this point we can state the following two theorems similar as in the last section

(compare Theorem 6.2.6 and Theorem 6.2.7); the only difference is that we choose now the pa-

rameters appropriately for the setup of the marginals of the multidimensional Heston stochastic

volatility model.

So the first theorem covers the implied volatility of a European call option which is not at-the-

money in the setup of a multidimensional Heston stochastic volatility model:

Theorem 6.3.7. Define St = eYt,i with Yt,i being the i-th component of the log-price in the

multidimensional Heston stochastic volatility model and let m = log
(
K
S0

)
be the log-moneyness.

For the marginals of the multidimensional Heston stochastic volatility model we have the fol-

lowing asymptotic behaviour for the implied volatility σt = σt(m) of a European call option on

St = eYt,i with strike K = S0e
m and m ∈ R,m 6= 0, as t→ 0

I(m) = lim
t→0

σt(m) =
m√

2Λ?(m)

with σi =
√

(Σ>Σ)ii and ρ̃i = (Σρ)i√
(Σ>Σ)ii

.

In the second theorem we state an expansion for the asymptotic implied volatility of at-the-

money European call options in the setup of the multidimensional Heston stochastic volatility

model:
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Theorem 6.3.8. Define St = eYt,i with Yt,i being the i-th component of the log-price in the

multidimensional Heston stochastic volatility model and let m = log
(
K
S0

)
be the log-moneyness.

For the marginals of the multidimensional Heston stochastic volatility model (Xt,ii, Yt,i) the

asymptotic implied volatility I(m) has the following expansion around m = 0

I(m) =
√
xii

(
1 +

1

4
ρ̃izi +

(
1

24
− 5

48
ρ̃2
i

)
z2
i +O(z3

i )

)
,

where zi =
2
√

(Σ>Σ)iim
xii

with X0,ii = xii and ρ̃i = (Σρ)i√
(Σ>Σ)ii

.
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Chapter 7

Conclusion

In the present thesis a detailed study of the one-dimensional Heston stochastic volatility model

determined by the dynamics in (2.1) and its multivariate extension, the so-called multidimen-

sional Heston stochastic volatility model defined by the dynamics in (4.4) was given.

While the variance process equals the well-known Cox-Ingersoll-Ross process in the one-

dimensional setup, the covariance process of the multidimensional Heston stochastic volatility

model follows the so-called Wishart process introduced by Marie-France Bru (see [3]).

Since both stochastic volatility models belong to the class of affine models, we have shortly

introduced and studied the concept of affine processes in the beginning of this thesis. To

summarize, the characterizing property of affine processes is the exponential affine form of the

conditional characteristic function and the exponent of the conditional characteristic function

is determined by two solutions of so-called Riccati equations. Moreover, we have also shown

a possible way to derive explicit solutions of the above mentioned Riccati equations for the

one-dimensional Heston stochastic volatility model.

As we have already given a detailed overview of this thesis in the Introduction, we will only

summarize the most important results at this point:

In the first part of Chapter 5, we have derived the so-called k-th marginal of the multidi-

mensional Heston stochastic volatility model. The important result is that if we choose the

matrix determining the linear drift appropriately, the marginals of the multidimensional He-

ston stochastic volatility model simplify to the well-known one-dimensional Heston stochastic

volatility model. Appropriate forms of the above mentioned matrix are a null matrix or a di-

agonal matrix. Additionally, we have shown that by applying Girsanov’s theorem we also get a

one-dimensional Heston stochastic volatility model out of the marginals of the multidimensional

one.

Moreover, in Chapter 6 of this thesis, we have considered the small-time asymptotics for the

implied volatility for a European call option written on one asset in the multidimensional Heston

stochastic volatility model. Thereby, we have proved that an expansion of the asymptotic

77



implied volatility proved by Martin Forde and Antoine Jacquier in [8] for the one-dimensional

Heston stochastic volatility model can be extended to the multidimensional one.
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Appendix A

Multivariate Stochastic Volatility

Models in Literature

In this chapter of the Appendix two famous examples of multivariate stochastic volatility models,

where the variance follows a Wishart process are stated. In the definition of the models the

respective notation of the paper is used.

A.1 The Multidimensional Heston Stochastic Volatility Model

in the sense of Gouriéroux and Sufana

Christian Gouriéroux and Razvan Sufana have considered a market which consists of n risky

assets and one riskfree asset. Their model is determined by infinitesimal geometric returns of

these n risky assets which are presented in a n-dimensional vector (see [10]):

The joint dynamics of logSt and Σt are given by the stochastic differential system:

d logSt =

µ+


tr(D1Σt)

...

tr(DnΣt)


 dt+ Σ

1
2
t dW

S
t

dΣt = (ΩΩ> +MΣt + ΣtM
>)dt+ Σ

1
2
t dW

σ
t Q+Q>(dW σ

t )>Σ
1
2
t ,

where WS
t denotes a n-dimensional vector-valued Brownian motion and W σ

t denotes a d × d
matrix-valued Brownian motion; µ equals a deterministic n-dimensional vector and Di, i =

1, . . . , n,Ω,M,Q are n× n matrices with Ω assumed to be invertible.

The authors also point out in their paper that the joint process (logSt,Σt) is an affine process,

which means that the drift and volatility functions are affine functions of logSt and Σt (compare
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[10, p.5-10]).

A.2 The Multidimensional Heston Stochastic Volatility Model

in the sense of Fonesca, Grasselli and Tebaldi

José Da Fonesca, Martino Grasselli and Claudio Tebaldi have stated the following assumptions

concerning the Wishart Affine Stochastic Volatility Model in [7]:

Assumption 1: The continuous time diffusive Factor Model is considered to be Affine in the

terminology of Duffie and Kan (1996).

Assumption 2: The evolution of asset returns is conditionally Gaussian while the stochastic

covariance matrix follows a Wishart process.

The authors assume that the n-dimensional risky asset St is given by its risk-neutral dynamics

dSt = diag(St)(rIdt+
√

ΣtdZt)

where I = (1, . . . , 1)> and Zt ∈ Rn denotes an n-dimensional vector Brownian motion. In

addition to that they assume that the quadratic variation of the risky assets is given by a

matrix analogue of the square root-mean reverting process

dΣt = (ΩΩ> +MΣt + ΣtM
>)dt+

√
ΣdWtQ+Q>(dWt)

>
√

Σt (A.1)

with Ω,M,Q ∈Mn (Mn denotes the set of square matrices), Ω invertible and Wt ∈Mn denotes

a matrix Brownian motion.

Remark A.2.1. The dynamic given in (A.1) is exactly the variance process which Christian

Gouriéroux and Razvan Sufana have also used in their model - namely the Wishart process

which has been introduced by Marie-France Bru.

To guarantee the strict positivity and the mean-reverting behaviour of the volatility, it is as-

sumed that M is a negative semidefinite matrix and Ω fulfills

ΩΩ> = βQ>Q

with the real parameter β > n− 1.

The authors interpret the parameters as follows: the matrix-product ΩΩ> is related to the

expected long-term variance-covariance matrix Σ∞ through the solution to the following linear

equation:

−ΩΩ> = MΣ∞ + Σ∞M
>.

The volatility of volatility matrix Q accounts for the variance-covariance fluctuations.
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Assumption 3: The Brownian motions of the assets’ returns and those driving the covariance

matrix are linearly correlated.

A possible way to correlate these Brownian motions is to introduce n real matrices Rk ∈Mn, k =

1, . . . , n such that

dZkt =
√

1− tr(RkR>k )dBk
t + tr(RkdW

>
t ), k = 1, . . . , n,

where the (vector) Brownian motion B is independent of W .
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