
Multi-Model Dashboard
Making Interdisciplinary Dependencies Explicit in

Complex Systems Engineering Environments

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Lukas Stampf
Matrikelnummer 0725140

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Mag.rer.soc.oec Dipl.-Ing. Dr.techn. Stefan Biffl
Mitwirkung: Dipl.-Ing. Dietmar Winkler

Wien, 26.08.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Multi-Model Dashboard
Making Interdisciplinary Dependencies Explicit in

Complex Systems Engineering Environments

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Lukas Stampf
Registration Number 0725140

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Mag.rer.soc.oec Dipl.-Ing. Dr.techn. Stefan Biffl
Assistance: Dipl.-Ing. Dietmar Winkler

Vienna, 26.08.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Lukas Stampf
Strindberggasse 1/26/15, 1110 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

Nowadays, systems engineering is an important discipline to manage the complexity of multi-
disciplinary engineering projects. A typical example of such a project is the development of
industrial production plants, such as power plants or steelworks. Engineers from different disci-
plines, e.g. mechanical engineering, electrical engineering, building engineering, and software
engineering, have to collaborate to succeed in their creation. But, when engineers from different
fields work together, one can often observe the lack of a holistic view on the system. One rea-
son for this is that engineers from one domain have none or only limited understanding of the
models stemming from other domains. The engineers tend to develop domain-specific models
in isolation, unaware of the dependencies to other domain’s models.

However, for the success of the overall project, it is necessary to define design constraints
based on important parameters stemming from the models of several disciplines. If important
design parameters change in a way that conflicts design constraints, mutually agreed upon with
engineers of a partner discipline, then the timely notification of the partners is essential to mit-
igate the risk of costly design rework later in the project. Currently, a common approach is to
manually check the design constraints either during a few predefined milestones, which often in-
cludes a delay before problems are discovered, or, which is even worse, at times when incidents
already happened.

In this thesis ways are explored to improve upon this situation. The key points are a theo-
retical concept, called the Multi-Model Dashboard (MMD) approach, and a research prototype
implementation of the tool support for this approach.

The goal of the MMD approach is to define a methodology on how to identify, specify,
design and monitor multi-model parameters and design constraints. The approach is designed as
a process model according to the requirements gathered from industry partners and the results
of a systematic literature survey. It provides a framework and guidelines for engineers that seek
a structured way to deal with interdisciplinary parameters and design constraints.

The second core contribution of this thesis, is a research prototype that is designed com-
plementary to the theoretical MMD approach. By iterative prototyping, the tool support was
implemented as a proof-of-concept for the approach and as a reference implementation for in-
terested parties. The thesis contains an in depth description of how the prototype’s components
are implemented and how interaction between them is realized.

The MMD components are then evaluated by means of real-life use cases based in the sys-
tems engineering domain. Key points of the evaluation are a feasibility study and a cost-benefit
assessment. The thesis is concluded by a discussion of the results, which identifies strengths and
limitations of the MMD.

iii

Kurzfassung

Systems Engineering ist heutzutage eine wichtige Disziplin zur Beherrschung der Komplexität
von multidisziplinären Entwicklungsprojekten. Ein Beispiel für solch ein Projekt ist die Ent-
wicklung von industriellen Produktionsstätten wie Kraft- oder Stahlwerken. Entwickler ver-
schiedenster Bereiche, wie zum Beispiel Maschinenbauer, Elektrotechniker, Bautechniker und
Softwareentwickler müssen zur erfolgreichen Entwicklung dieser Systeme zusammenarbeiten.
Aber immer dann, wenn Techniker aus verschiedenen Wissensgebieten zusammenarbeiten, ver-
misst man häufig eine ganzheitliche Sicht über das zu entwickelnde System. Ein Grund dafür ist,
dass Techniker einer Disziplin nur über wenig oder gar kein Wissen über die Modelle anderer
Disziplinen verfügen. Darum tendieren Techniker dazu domänenspezifische Modelle in Isolation
und ohne Beachtung der Abhängigkeiten zu Modellen anderer Disziplinen zu entwickeln.

Jedoch ist es für den Erfolg des Projektes unerlässlich, Rahmenbedingungen auf interdiszi-
plinären Parametern, welche aus den Modellen verschiedener Disziplinen stammen, zu definie-
ren. Wenn sich Designparameter in einer Weise ändern, welche den wechselseitig verhandelten
Rahmenbedingungen widersprechen, dann ist die zeitnahe Benachrichtigung der Parteien essen-
tiell um negative Folgen, wie z.B. zusätzliche Kosten, für das Projekt zu vermeiden. In der Praxis
wird die Überprüfung der Bedingungen derzeit manuell vollzogen. Dies geschieht entweder zu
vordefinierten Meilensteinen im Projekt, was immer eine gewisse Verzögerung beinhaltet, oder
anlassbezogen, wenn bereits Probleme wegen nicht eingehaltener Bedingungen aufgetreten sind.

In dieser Arbeit werden Wege erkundet um diese Situation zu verbessern. Die Kernpunkte
sind ein theoretisches Konzept, genannt der Multi-Model Dashboard (MMD) Ansatz, und ein
Prototyp der dazugehörenden Werkzeuge.

Das Ziel des MMD Ansatzes ist es eine Methodik zu definieren wie man interdisziplinäre
Parameter und Bedingungen identifizieren, spezifizieren und beobachten kann. Der Ansatz wur-
de nach den Ergebnissen einer Literaturstudie und den Anforderungen von Industriepartnern als
Vorgehensmodell entworfen. Es bietet jenen Ingenieuren, die mit interdisziplinären Parametern
arbeiten, Richtlinie and Anleitung.

Der Forschungsprotoyp wurde komplementär zum MMD Ansatz durch iteratives Prototy-
ping entwickelt. Der Sinn des Prototypen ist es eine Referenzimplementierung für die Werkzeug-
unterstützung anzubieten. Die Beschreibung des Prototypen in dieser Arbeit enthält detaillierte
Informationen über die umgesetzten Komponenten und deren Interaktion.

Die MMD Komponenten werden dann mittels realer Anwendungsfälle im Systems Engi-
neering Bereich evaluiert. Die Kernpunkte der Evaluierung sind eine Machbarkeitsstudie und
eine Kosten-Nutzen Abschätzung. Abgeschlossen wird diese These mit einer Diskussion der
Ergebnisse, welche Stärken und Schwächen des MMD aufzeigt.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Motivating Scenario . 3
1.3 Problem Statement . 5
1.4 Aim of the work . 8
1.5 Thesis Structure . 8

2 Methodology 11

3 Related Work 15
3.1 Decision Dashboards in Multi Product Lines 15
3.2 Relationship between Software and Systems Engineering 17
3.3 Systems Engineering Process Models . 19

3.3.1 Systems Engineering Life Cycle . 19
3.3.2 Waterfall Model . 23
3.3.3 V-Model XT . 23
3.3.4 Agile Development . 26

4 Research Questions 31
4.1 Design of the MMD Process Approach . 33
4.2 Tool Support Implementation . 34
4.3 Feasibility Study . 35

5 Use Case & Requirements 37
5.1 Use Case: Project Portfolio Management . 37

5.1.1 Stakeholder . 37
5.1.2 Artifacts . 38
5.1.3 Scenarios . 39

5.2 Stakeholder Requirements . 40
5.2.1 Identified Artifacts . 41
5.2.2 Required Features . 42

6 Multi-Model Dashboard Process 43
6.1 Scope . 43

vii

6.2 Definitions . 44
6.3 MMD Process Description . 45

6.3.1 Identification of Parameters . 47
6.3.2 Definition of Data Sensors . 50
6.3.3 Model Collection within Common Repository 58
6.3.4 Variable Evaluation . 60
6.3.5 Constraint Evaluation . 64
6.3.6 Presentation / Notification . 68

7 Prototype Implementation 71
7.1 Architectural Overview . 71
7.2 Mapping to MMD process . 73
7.3 Use Case View . 75

7.3.1 Actor Description . 75
7.3.2 Use Case Descriptions . 76

7.4 Logical View . 77
7.4.1 Domain Model . 77
7.4.2 Data Repositories . 79
7.4.3 Data Sensors . 80
7.4.4 Services . 84
7.4.5 GitServlet . 86
7.4.6 Web Interface . 87

7.5 Process View . 89
7.5.1 Variable Definition Process . 89
7.5.2 Change Detection Process . 90
7.5.3 Change Propagation Process . 92

7.6 Development View . 94
7.7 Physical View . 95

8 Evaluation & Results 97
8.1 Feasibility Study . 97

8.1.1 Data Description . 98
8.1.2 Process Execution . 99

8.2 Use Case Results: Building Information Management 107
8.2.1 Parameters & Constraints . 107
8.2.2 Data Sensor Implementation . 108
8.2.3 Variable Definition . 111
8.2.4 Constraint Definition & Evaluation Results 114

8.3 Cost-Benefit Assessment . 115

9 Discussion & Limitations 117
9.1 Design of the MMD Process Approach . 117
9.2 Tool Support Implementation . 119
9.3 Feasibility Study . 121

viii

9.4 Limitations . 122

10 Summary and Future Work 125
10.1 Summary . 125
10.2 Future Work . 126

A Used Technologies 129

B Prototype Use Cases 131

Bibliography 139

List of Figures 145

List of Tables 147

List of Acronyms 149

ix

CHAPTER 1
Introduction

This chapter provides an introduction to the topic of this thesis. It explains the basic motivation,
a motivating scenario, expected problems, planned goals, and the structure of the remaining
chapters. At first, the context of multi-disciplinary systems engineering and its importance for
collaborating engineers of different domains is described to explain the basic motivation behind
this thesis. To further reinforce the motivation, a real-life scenario is described. Second, the
introduction explains some typical problems in the systems engineering domain that this thesis
tries to address. Third, the goals of this thesis are shortly summarized. At last, this chapter
contains an overview of the remainder of this work, providing a short outlook on the following
chapters.

1.1 Motivation

The International Council on Systems Engineering (INCOSE) defines Systems Engineering as
follows:

“Systems Engineering is an interdisciplinary approach and means to enable the
realization of successful systems.” [1, p. 2.1]

“Systems engineering is a multi-disciplinary effort that involves both the technical
effort and technical project management aspects of a project.” [1, p. 2.8]

These quotes highlight one of the most important aspects of systems engineering: interdisci-
plinarity.

Over the years systems engineering established itself as an important field to manage the
inherent complexity of multidisciplinary engineering projects [2]. These projects may involve
hundreds of different disciplines working together and in parallel to conquer the challenges of
large complex systems. Typical examples of multi-disciplinary engineering projects are the de-
velopment of industrial production plants, such as power plants or steelworks. The combined

1

effort of multiple various disciplines, e.g. mechanical engineering, electrical engineering, build-
ing engineering, and software engineering, is necessary to succeed in their creation.

But, whenever engineers from different engineering fields work together, one can often ob-
serve the lack of a holistic view on the whole system. One particular reason for this is that
engineers, coming from one domain, have none or only limited understanding of the models
stemming from other domains. Domain experts develop comprehensive models in tools and
data formats that are understandable only to experts in their own profession. They design data
models within their work space and need to understand the dependencies and interfaces to data
models of other domain experts. But, in general, these dependencies are not explicitly defined.

However, for the success of the overall systems engineering project, it is necessary to define
design constraints based on important parameters stemming from the models of several disci-
plines. Traceable design constraint definition is a difficult task because of the heterogeneous
data models used by the involved domain experts. Even if there would be a common data model
to define the interdisciplinary parameters and design constraints, the efficient monitoring of the
parameter values in the various source data formats and ever-changing engineering models is
challenging.

Inconsistencies between data models can not be avoided and are acceptable in some project
phases, but they cause defects and risks in others. If important design parameters change in a
way that conflicts design constraints, mutually agreed upon between the domain experts of the
various disciplines, then the timely notification of the involved parties is essential to mitigate the
risk of costly design rework later in the project.

An example for this would be the collaboration of a mechanical engineer and a building
engineer on the construction of a power plant. The mechanical engineer designs the power
generator using his domain-specific tool suite, meanwhile the building engineer will design the
building itself using tools typical for his discipline. During the development process a change
in requirements, like the need for a more powerful generator, arises. In response the mechanical
engineer adapts his blueprints, which results in a generator with much more weight. The build-
ing engineer is interested in this change because his construction blueprints might no longer
accommodate for the new weight parameters. Failure to communicate this change can have dire
consequences on the continued progress of the shared project. Because the building engineer
has no access to the generator blueprints, but even if he does, he probably would not be able to
read them, the mechanical engineer has to do the notification manually. Manual notification is
error-prone and may lead to a delay in the propagation of the change, which in turn may lead to
further problems, such as costly redesign, later on.

For these reasons project participants want to negotiate and efficiently monitor design con-
straints across several engineering models. However, the heterogeneous data models and chang-
ing nature of these engineering models make it difficult to automate the monitoring of design
constraints.

To support the timely awareness of engineering project stakeholders there is a need for a
new approach. This approach should support in a systems engineering context both loose cou-
pling and sufficient awareness based on explicit dependencies between multi-model design con-
straints. Such an approach is necessary to improve upon the lack of traceability common in
systems engineering projects and to provide important stakeholders of these projects with new

2

tools for decision support. The Multi-Model Dashboard (MMD) approach is designed to be that
approach. It provides a framework which guides participants of systems engineering projects
from the identification of important interdisciplinary parameters and design constraints, over the
parameter and constraint definition, to the discovery of violations, and the following monitoring
and reporting.

1.2 Motivating Scenario

As already mentioned previously in the motivation section, systems engineering manifests in
many different forms and dimensions. The previously described scenario between a building
engineer and a mechanical engineer is only one of countless possible interdisciplinary collab-
oration scenarios. One can easily find further examples of design constraints with building
engineering involved e.g.:

• Maximum cable length when in collaboration with electrical engineers.

• Positioning of load-bearing walls when working with structural engineers.

• Placement of emergency exists in collaboration with safety engineers.

A typical building engineering project includes interaction between experts of many different
domains. Because this discipline shares interfaces with many other engineering disciplines,
the initial scenario that motivated this thesis was based in the building engineering domain. The
original intent was to have the blueprints for a small building, presented in various models typical
for Building Information Modeling (BIM), such as Computer Aided Design (CAD) plans, and
put them in relation with budget spreadsheets, electrical plans, etc. Based on these models,
design constraints similar to the examples mentioned above have been defined and ways were
explored on how to automatically monitor them.

Figure 1.1 displays the general needs of this particular scenario. As an example, it shows
three typical project participants of a BIM project namely the architect, electrical engineer and
project manager. The three of them work in their individual private workspaces on their domain-
specific data models. In order to enable efficient monitoring their mutual multi-disciplinary
dependencies, answers to the three questions illustrated are needed. These or similar challenges
have been observed across a large amount of industry partner’s scenarios. These challenges get
generalized into five problems which are discussed in more detail within the problem statement
(see section 1.3).

Unfortunately an use case in the building engineering domain turned out to be too ambitious
as a first application area for the novel approach proposed in this thesis. The BIM use case
proved as a valuable source of requirements (see section 5.2) for the MMD approach (see chap-
ter 6) and the implemented software prototype (see chapter 7). Problems appeared during the
specialization of the research prototype to the building engineering domain. The BIM landscape
is filled with inaccessible closed-source data models and proprietary tools. This complicates the
definition of data sensors for the models and makes the effective usage of the MMD approach
difficult. Because this thesis is intended as a first proof-of-concept and foundation for future

3

Figure 1.1: The needs in the BIM scenario; Visualization adapted from [3]

work in that area, an implementation within the building engineering domain is out of scope. It
is still feasible to adapt the MMD to this complex domain, but additional research work has to
be done to make it work. The results from the experiments in the BIM domain are shown later
in this thesis (see section 8.2).

To find a balance between authenticity of the use case and the effort of the author in the
context of this thesis, a different scenario is chosen. The scenario stems from the work of the
Christian Doppler Laboratory for Software Engineering Integration for Flexible Automation
Systems (CDL-Flex)1 and their research partners, e.g. Andritz Hydro2. The CDL-Flex and
their partners participate in various systems engineering projects together. An important part
of their work is the management of their project portfolio. The scenario focuses mostly on the
CDL-Flex side of the collaboration, where resources have to be planned and distributed across
the various research projects. In that regard the scenario is a typical example of project portfolio
management on a small scale. Typical constraints in such a scenario would be the matching of
planned versus actual man hours, budget constraints, etc. The concrete use case with involved
stakeholders, used artifacts and concrete design constraints is described further down this thesis
in chapter 5.

The downside of this particular scenario is that the involved disciplines are not as diverse as
they would be in large-scale systems engineering projects like the construction of heavy machin-

1CDL-Flex: http://cdl.ifs.tuwien.ac.at/
2Andritz Hydro: http://www.andritz.com/hydro.htm

4

http://cdl.ifs.tuwien.ac.at/
http://www.andritz.com/hydro.htm

X₁=5

Y=17

Y?

!

X₁ Y

X₁ + X₂ < Y

X₁ + X₂ < Y

Systems Engineering Project

Domain B

❶

❷

❸

❸

❹

Domain A MMD-Context

X₂=9

X₂

❸

❺

Figure 1.2: Challenges Overview for the MMD approach

ery. While the typical systems engineering project usually involves a large amount of different
disciplines, the scenario used here only includes two domains: the project management and the
software engineering domain. This seems too little, considering what the MMD aims to achieve.
But, the MMD is a new approach and as such, a first proof-of-concept on a smaller use case is
reasonable. There are still enough different models and data sources involved to show the key
points of this thesis.

1.3 Problem Statement

As already described in the motivation, the target audience of this thesis are domain experts who
design models within their work space and need to understand the interfaces and dependencies
to models of other stakeholders. On the way to an approach for supporting collaboration of the
stakeholders in a multi-disciplinary systems engineering context, multiple challenges have been

5

identified. Figure 1.2 illustrates the MMD context and shows the potential challenges within
each step. The following challenges follow the numbering shown in the figure.

1) Unknown Parameters This problem arises from stakeholder’s lack of understanding of
other stakeholder’s domains. With each domain expert working solely on their part of the sys-
tem, solely within their own discipline, there can be mutual dependencies between them, which
they might not recognize immediately. Returning to our previously defined example with the
building engineer and the mechanical engineer: The building engineer might know he needs
the dimensions and the weight of the machinery, but he might forget on important parameters
like necessary additional space for airflow. Matters are further complicated by the fact that even
when all parameters are known, the location of the parameter values within the data models is
still unknown. Domain knowledge is needed to actually locate the current values for each pa-
rameter. For example, the building engineer might have access to the mechanical blueprints, but
he probably lacks the domain knowledge to actually locate the weight parameter within the me-
chanical design documents. A strong collaboration process between the stakeholders is needed
to fully gather and document these dependencies across the involved domains.

2) Tracking Parameters Once the domain experts agree on a set of shared parameters and
design constraints, there has to be a way to make them traceable and public to other project
members. Interested project members need the possibility to track parameters & design con-
straints that are important to them and get notified should one of them change. Currently, a
common approach to this is the manual tracking of the parameters upon request. Domain ex-
perts ask the responsible project members of other domains directly about the current state of
certain parameters and conditions. Alternatively, the stakeholders notify other stakeholders pro
actively about a change they are going to make.

Both ways depend largely on stakeholders knowing which part of their work is important
to other project members. This puts a big responsibility on the individual domain experts and
creates additional workload as the manual notification of many stakeholders is cumbersome.
Updates can get lost in the communication process or the notification of dependent stakeholders
is just plainly forgotten. New domain experts joining the project add an exponentially growing
number of new interfaces between the project members. Therefore, the manual approach is slow,
repetitive, prone to human errors, and, with growing project size, potentially unfeasible.

3) Linking parameters with local models Currently, important interdisciplinary parameters
are either managed by a manual approach as mentioned above, or there is a collaboration tool
in place, in which all the important parameters are listed. This slightly improves the purely
manual approach, because the parameters are gathered at one central place. But, the entries still
have to be updated manually by the domain experts, which still represents an overhead and is
error-prone.

Automatic extraction of the values would be preferable but has its own problems. The differ-
ent models involved in the project consist mostly of data files residing within the workspaces of
their specific users. To automatically evaluate interdisciplinary parameters & design constraints,

6

the values for the parameters have to be extracted from these data files. Extracting the values
and monitoring for value changes can be challenging for the following reasons:

• Distribution of model files: Since the stakeholders may be separated geographically, the
models on with which they work on may be as well. To build an holistic aggregated view
on the variables, a mechanism for gathering distributed values has to be discovered.

• Large amount of different file formats: The amount of file formats in a typical systems
engineering project can be quite large. Extracting values from many different formats
requires a huge effort, because routines have to be developed for each single format. These
routines are in general not reusable or transferable to other formats.

• Unstructured file formats: Not all file formats have change resilient structures, for ex-
ample a simple TXT file. Extracting values from unstructured data is always a challenge,
monitoring for changes even more so. To monitor changes to specific values, it is nec-
essary to rediscover the value’s initial location after a change. But with unstructured file
formats, there is no guarantee that the new value ends up in the same spot as the old value
was.

• Closed file formats: Proprietary file formats have no publicly available structure and can
therefore not be read freely, which makes them unsuitable for efficient data extraction.

4) Constraint Evaluation Similar to the parameter monitoring, the validation of design con-
straints among stakeholders is usually a manual task. Because these manual tasks are often
time-consuming, stakeholders want to formulate automatable design constraints on parameters.
Constraints should put parameters in relation to evaluate a truth value representing the validity
of the constraint. Updates to parameters should trigger an automatic reevaluation of the corre-
sponding constraints. If a constraint becomes invalid because model updates change parameters
in a way that conflicts the constraint, affected stakeholders should be notified immediately.

The automated monitoring is difficult because constraints can appear in many different
styles. Depending on the context, constraints can differ between a simple mathematical equation
up to a complex algorithm. The evaluation is further complicated by the different value types of
the constrained parameters, e.g. text, fixed point numbers, matrices and so on.

5) Presentation The aggregated values for parameters & design constraints have to be pre-
sented in a compact and accessible way. Even if the variables and design constraints can be
automatically monitored, nothing is gained if the resulting information is not easily accessible.
A central place to get the current state of the overall project has to be created, to serve as an
interface to the stakeholders. Stakeholders need to be able to see at a glance all parameters &
design constraints with their up-to-date values. Additionally, the informal change notification
process present in current projects needs to be improved and automated.

7

1.4 Aim of the work

The goal of this thesis is to define a methodology on how to identify, specify, design and monitor
multi-model parameters and design constraints. To achieve this, a theoretical concept is devel-
oped, named the MMD approach. The design is based upon the results of a literature survey
and the gathered requirements from industry partners. On the practical side, a prototype imple-
mentation of the tool support and the necessary data sensors is created. An evaluation against
practical use cases and a discussion of strengths and limitations is also included. The major
results of this research work are:

• A process description of the proposed MMD approach.

• A prototype implementation of the software tool support for the MMD.

• The collection of explicit dependencies from industry partners in a specific use case.

• The definition of data sensors necessary for the use case.

• A discussion of strengths and limitations.

1.5 Thesis Structure

The remainder of this thesis is structured as follows:

• Chapter 2 describes the systematic approach behind this research work. It explains the
methods and tools used and the steps taken which got used during the creation of this
thesis.

• Chapter 3 describes related work which has influenced this thesis. For each topic, it shows
the contribution to this work or the shortcomings this thesis tries to address.

• Chapter 4 defines the research questions, which represent the main questionnaire behind
this thesis. The formulated research questions provide clear targets for this research work.

• Chapter 5 describes the project management use case, which is used to evaluate the feasi-
bility of the MMD in later chapters. Additionally, it lists the requirements for the MMD
approach gathered from industry partners.

• Chapter 6 introduces the proposed MMD process model, designed to deal with the man-
agement of interdisciplinary parameters and design constraints. It contains a detailed
description of the overall process and the individual process steps of which it consists of.
For each process step it provides implementation suggestions for interested parties.

• Chapter 7 describes the implemented research prototype for MMD tool support. The
description follows the well-known 4+ 1 view model defined by Kruchten to describe the
prototype from different angles and in sufficient detail.

8

• Chapter 8 describes the evaluation of the proposed MMD solution. The results from im-
plementing a project management and a BIM use case are described, as well as a cost-
benefit assessment.

• Chapter 9 discusses the results of this thesis, starting from the questionnaire provided
by the research questions. The discussion shows achievements and limitations of the
proposed solution.

• Chapter 10 concludes the thesis, summarizes the results and provides suggestions for fu-
ture work.

• Appendix A provides a detailed list of the technologies used within the research prototype.

• Appendix B provides a detailed listing of the prototype’s use cases following the RESCUE
template.

9

CHAPTER 2
Methodology

This chapter details the research methodology applied to create this thesis. It provides insight
into the systematic approach leading from the description of the problem area to the designed
solution. It is written to show the reader how the results of this thesis were achieved and as
an example methodology for similar research topics. The guidelines for empirical research in
software engineering defined by Kitchenham et al. [4] are followed as much as possible. The
used research methodology is based upon the Constructive Research [5] methodology, which
suggests the following approach:

1. Find a research topic, which also has practical relevance.

2. Obtain general and comprehensive understanding of the topic and topic domain.

3. Construct a solution concept.

4. Show that the solution works.

5. Discuss research contribution and applicability of the solution.

The slightly altered methodology used in this thesis contains the following steps:

1) Define Research Questions A research topic with practical relevance is identified by com-
municating with researchers and industry partners of the CDL-Flex. Together, research issues
(see chapter 4) as proposed in The Craft of Research [6] are formulated. These research issues
are the foundation of the further research work, as they define the scope of the problem area and
sum up the main goals this thesis works towards to.

2) Define Requirements and Use Cases The researchers at the CDL-Flex also already had a
coarse idea of the needed capabilities of the MMD approach. Employing various requirements
engineering [7] techniques like interviews and use case definition, this idea is refined and a set
of requirements (see chapter 5) is established.

11

Figure 2.1: The maturity levels of research prototypes according to Winkler et al. [10]

3) Literature Study To gain understanding of the topic domain a literature study is conducted
in the knowledge areas: systems engineering, systems engineering process models and com-
parable approaches such as the Decision Board approach. To support the literature study the
research tool Mendeley 1 as well as literature databases such as IEEE Xplore2 are used.

4) Design of the MMD Process A process model is constructed based on the results of the
literature study and the defined requirements. This model incorporates the acquired knowledge
from previous phases to form a process description for the MMD approach. ICAM DEFinition
for Function Modeling (IDEF0) [8] is used as modeling approach to create the process model.
The proposed solution process is described in chapter 6.

5) Development of a Software Prototype Based on the developed concept, a prototype im-
plementation (see chapter 7) of the tool support for the MMD approach is created. This imple-
mentation is done for three reasons. The first and foremost reason is as a first way to evaluate the
feasibility of the proposed solution. It is checked if a functional MMD tool can be programmed
following the proposed solution concept. Second, as an example for interested parties seeking
guidance on how a potential MMD tool can look like. The third reason is of smaller relevance
to this thesis: as a solid base for further development at the CDL-Flex and its industry partners.

Therefore, the prototype is implemented in the form of an evolutionary software prototype
[9] fit for further industrial development. The implemented prototype will be at maturity level
3 according to “Research Prototypes versus Products” [10] (see Figure 2.1). This grades it as
a “functional prototype to show concept feasibility” with “all basic functionality implemented”
and the “ability for basic functional evaluations”.

1Mendeley: http://www.mendeley.com/
2IEEE Xplore: http://ieeexplore.ieee.org

12

http://www.mendeley.com/
http://ieeexplore.ieee.org

6) Evaluation of the Solution Concept The developed prototype will then be used on an use
case (see chapter 5) in the project portfolio management domain to verify the feasibility of the
MMD approach. Afterwards, the results from experiments with the previously mentioned BIM
use case are listed. To gain further feedback, the expert knowledge of industry partners gained
from workshops is leveraged to conduct a cost-benefit assessment.

7) Discussion of the Results The final part of this thesis is the discussion (see chapter 9) of
the proposed solution based on the evaluation results. The key parts of this thesis are discussed
in the context of the research issues to show strengths and weaknesses of the proposed solution
and to identify future research areas.

13

CHAPTER 3
Related Work

This chapter discusses relevant related work in the MMD context. For each topic necessary
background information is provided and the influence on this thesis is explained. The structure
of this chapter is as follows:

• Section 3.1 describes a similar approach to the MMD where dashboards are used to raise
awareness in multi-product-line engineering. It explains where the idea for this thesis
came from.

• Section 3.2 provides a short introduction into the relationship between software and sys-
tems engineering.

• Section 3.3 describes common process models used in systems and software engineering
projects.

3.1 Decision Dashboards in Multi Product Lines

The idea for the MMD approach was motivated by the Decision Board approach proposed by
Gerald Holl et al. [11] [12]. He concludes that in a world where systems-of-systems architectures
[13] consisting of heterogeneous components get significantly more large and complex, multi
product line engineering could be the answer to manage the inherent complexity by focusing on
the commonly shared concepts.

Multi product lines have been established as means to ease development through systematic
reuse of the shared aspects of related product types. Holl places his research in the system-of-
systems domain, an area tightly related to the research area of this thesis. For the most part
the referred systems represent configurable units which need to be adapted to the individual
stakeholder requirements. This configuration process, also know as product derivation, is often
done by engineers from different fields in a distributed and shared manner. An example of
possible configurations for a small mill is provided in figure 3.1. The figure shows the different
configurations possible and additionally depicts the dependencies between certain attributes.

15

Figure 3.1: Sample configuration: Mini mill with dependencies [11]

Holl argues that in such a setting it is difficult to keep all involved parties aware of the
configuration choices done by other users of related product lines. Awareness is defined as “an
understanding of the activities of others, which provides a context for your own activity” [14]
and is one of the most desirable goals in multi product line engineering. In order to increase
awareness he proposes the use of a tool-supported approach that helps to discover dependencies
and tracks configuration information during the collaborative product derivation.

For the tool support, Holl proposes the usage of an bulletin board mechanism for sharing
configurations and a request/public/subscribe mechanism for discovering dependencies and pre-
senting the information to the relevant stakeholders. A prototype was implemented on the basis
of the configuration tool DOPLER. The details of the prototype implementation are published
in [15] and [16].

For this thesis, the Decision Board approach acts as inspiration and foundation. Although
this thesis is not about multi product line engineering, the challenges and problems mentioned
mirror the ones described in our problem statement. The analyzed problems are closely related,
the difference being that Holl et al. focused on the creation of multiple products with shared
aspects that need to be configured in collaboration, while this thesis focuses on the creation of
one specific system by engineers of different knowledge domains. But, the key elements are

16

quite similar. Both contain people of different knowledge domains that need to be collaborating
and contribute work which can have dependencies on another person’s work.

But, there are also some parts that do not match. Because the “Decision Board” approach
deals mainly with configurations which is the same meta object for each stakeholder, there is no
need for the integration of heterogeneous data sources. Additionally, most constraints are simple
dependency checks without any actual computations so there is no need for a complex design
constraint mechanism. Both things are essential to the MMD approach.

In this thesis, the general design of the Decision Dashboard approach is enriched with nec-
essary features to enable stakeholders to efficiently monitor interdisciplinary parameters. This
includes a concept for complex design constraints and data extraction. The prototype will orien-
tate itself on the ideas of the Decision Dashboard and provide an bulletin-board like application
that allows stakeholders in a request/publish/subscribe style manner to track interdisciplinary
parameters.

3.2 Relationship between Software and Systems Engineering

Although this thesis is mainly focused on systems engineering projects, it uses many concepts
borrowed from the software engineering domain. While this may seem odd at first, software
engineering and systems engineering are inseparable intertwined and have mutually influenced
each other [17]. This short section describes the relationship between software engineering and
systems engineering to clear up any confusion their mixed use may cause.

In the academic society it is still debatable where to draw the line between systems engineer-
ing and other engineering disciplines. One often mentioned distinction is provided by Boehm
and Jain [18] in which they argue that most engineering disciplines are component-oriented and
value-neutral in their intellectual content, as opposed to systems engineering with its holistic
and stakeholder-oriented view. While this argument may still be true for certain engineering
fields, todays software engineering is not among them. Boehm shows in his summary on the
history of software engineering [19] how the discipline evolved by adapting methodologies of
which some are typical for systems engineering, e.g. stakeholder analysis or requirements engi-
neering. This adaption took place because software is in itself a complex system. According to
Brooks’s famous book The mythical man-month, software is “far more complex for it’s size than
any other human construct” [20, p. 182] and its construction is a system effort - an exercise in
complex interrelationships. Since back then software grew even more complex and the systems
view got even more important. By learning from systems engineering the discipline of software
engineering has learned to cope with rapidly changing technology capabilities, infrastructure
and stakeholder expectations.

On the other side the Systems Engineering Body of Knowledge (SEBoK) [21] states that vir-
tually every interesting system today contains software. Software is referred to as the “glue” that
holds a system together because the interfaces among components, as well as the interfaces to
the environment and other systems, are often provided by software. So it is imperative that sys-
tems engineers understand the processes, procedures, parameters, and constraints under which
software engineers design and build software [22]. Under this conditions it is only natural that
software engineering influenced systems engineering.

17

Systems Engineering Methods Software Engineering Methods
Adapted to Software Engineering Adapted to Systems Engineering

Stakeholder Analysis Model-Driven Development
Requirements Engineering UML-SysML
Functional Decomposition Use Cases
Design Constraints Object-Oriented Design
Architectural Design Iterative Development
Design Criteria Agile Methods
Design Tradeoffs Continuous Integration
Interface Specification Process Modeling
Traceability Process Improvement
Configuration Management Incremental V&V
Systematic Verification And Validation

Table 3.1: The adaptation of methods according to Fairley and Willshire [27].

As Turner et al. [23] state, the history has changed how we define a “system”. In the past, sys-
tems engineering dealt mainly with classical systems, which were composed purely of hardware.
On the other hand, software engineering was developed to deal with the design of information
systems, where software was the principal source of functionality. Turner argues that systems
have evolved into systems which are neither primarily hardware or software focused, but rather
a combination of both. For these systems neither software nor systems engineering techniques
are sufficient by themselves and they have to be designed in an integrated fashion [24]. Promi-
nent attempts to integrate software and systems engineering to deal with current systems are
the ISO/IEC 12207 [25] and the ISO/IEC 15288 [26] standards. Both standards aim to harmo-
nize software and systems engineering processes and models to deal with arbitrary man-made
systems.

To sum up briefly: Both disciplines, systems engineering and software engineering, have
their own history. As software developed historically to complex systems and classical hardware-
based systems began to integrate software, both disciplines adapted methods from the other to
cope with their changing environments. Nowadays, they share a great amount of processes and
methods. An overview of the adapted processes and methods can be found in table 3.1. One can
safely assume, that in each systems engineering project of adequate size software engineering
will play an important role and vice versa.

For this thesis, the relation between the two disciplines is important in order to understand
the MMD context. The MMD is a general process that aims to support systems engineering
projects, but is designed with software implementation in mind. Therefore, both disciplines play
an equally important role in it.

18

3.3 Systems Engineering Process Models

The MMD is designed to support the members of systems engineering projects. Therefore it
is imperative to know under which rules and structures typical systems engineering projects
operate. By exploring the systems engineering life cycle and typical implementations in the
form of concrete process models, we want to identify fitting integration points for the MMD
approach. Integration points are phases in the project process, where the MMD process should
be employed to gain a benefit.

3.3.1 Systems Engineering Life Cycle

Every man-made system has a life cycle. Foundation for many life cycle models in systems
engineering is the ISO/IEC 15288 standard [26]. According to ISO/IEC 15288 the life cycle
model is the “abstract functional model that represents the conceptualization of a need for
the system, its realization, utilization, evolution and disposal”. The life cycle model identifies
the major stages that the system goes through, from its inception to its retirement. The stages
represent the major life cycle periods associated with a system. Depending on the circumstances
organizations employ the stages differently. The ISO/IEC 15288 provides a set of processes that
may be performed during the life cycle stages of a system. Figure 3.2 provides an overview over
the defined processes. The processes are organized in four groups:

Agreement Processes These processes define the activities to establish an agreement between
two organizations over the delivery of a product or service from supplier to acquirer. An or-
ganization can act as the supplier of a product / service by invoking its supply process. On the
other hand an organization can do business with the supplier by invoking the acquisition process.
Products or services to trade are operational systems, services in support of operational activities
or elements of a system in development.

Organizational Project-Enabling Processes These processes are concerned with ensuring
that the requirements to enable the project are met. They establish the environment in which
projects are executed. Within the project-enabling processes the life cycle of the project is
defined, the resources are planned in relation to other projects, human and financial capital is
provided and the quality measures for the deliverables are established.

Project Processes The project processes deal with the actual project management including:
planning of cost, timescales and achievements, risk management, configuration management,
etc. The project processes manage the assets provided by the organizational project-enabling
processes to fulfill the agreements negotiated by the agreement processes.

Technical Processes The technical processes handle the technical actions throughout the project
life cycle. Their main objective is the transformation of stakeholder needs into a product / ser-
vice within the borders of a project.

19

System Life Cycle Processes

Agreement
Processes

Project Processes Technical
Processes

Organizational
Project-Enabling

Processes

Acquisition

Supply

Project Planning

Project Assessment
and Control

Decision
Management

Risk Management

Configuration
Management

Information
Management

Measurement

Requirements
Definition

Requirements
Analysis

Architectural Design

Implementation

Integration

Verification

Transition

Validation

Operation

Maintenance

Disposal

Life Cycle Model
Management

Infrastructure
Management

Project Portfolio
Management

Human Resource
Management

Quality Management

Figure 3.2: The ISO/IEC 15288 [26] life cycle processes

The ISO/IEC 15288 further introduces the concept of decision gates. Decision gates terminate
the current stage and allow the key stakeholders to decide whether to proceed into the next stage
or to remain in the current stage. Each life cycle model contains at least two decision gates: the
one preceding the first and the one following the last stage. The project team needs to decide
which life cycle stages are appropriate for their project and which decision gates beyond the
basic two are needed. Figure 3.3 shows a life cycle model in software engineering with decision
gates added.

As with most big standards the ISO/IEC 15288 has limitations in its practical use. These
standards are designed to be as flexible as possible to fit the largest potential audience. They
are often described from an abstract point of view, without going into details or making specific
suggestions. They describe an ideal goal without giving much advice on how to reach it. The
ISO/IEC 15288 specifically describes only the concepts of life cycle stages and system life cycle

20

processes. It gives no advice on which stages your life cycle should contain or how to map the
life cycle processes to stages. It defines no specific order on the processes. Concurrent or
additional processes are only mentioned briefly. This makes the standard more like a checklist
on what to consider when designing a life cycle model.

For these reasons most life cycle models in practical use are tailored to their specific purpose
and domain. They are often less detailed and fine-grained than ISO/IEC 15288, focus more on
the technical processes and unite related life cycle processes to phases. Blanchard and Fabrycky
[28] list the following phases for a systems engineering life cycle:

Conceptual design The conceptual design stage starts with the identification of a need for a
new system. That need is examined and requirements for potential solutions are gathered from
stakeholders. Based on the requirements a system specification is developed and a feasibility
study is conducted. Because the system specification is so important for the subsequent phases,
a review is advised to ensure that all important requirements are covered.

Preliminary system design Based on the system specification the subsystems which perform
the desired system functions are designed. The interfaces are defined, as well as test and eval-
uation requirements. The result of this stage is a development specification for which another
review is advised before continuing to the next phase.

Detail design and development This phase is the last of the planning phases and aims to
bring the initial design work into a coherent set of product, process and material specifications.
Many different methods are used (e.g. the development of prototype models) to synthesize the
development specification into a detailed design. This includes the interfaces to the intended
surroundings of the system, maintenance and support requirements, etc. This is usually the
phase to reconsider decisions done in the development specification. This phase ends with a
mandatory critical review.

Production and construction During this phase the product gets built according to the spec-
ifications and deployed to the target environment. To ensure customer satisfaction and correct
operation acceptance testing, operational testing and system assessment methods are used.

Utilization and support This phase starts once the system is fully deployed and fulfills its
intended purpose within its operational environment. The main focus of this phase is to keep the
system operational and relevant. Therefore maintenance, user support, change management and
system modifications are the key steps in this phase.

Phase-out and disposal The final life cycle phase of a system deals with its shutdown and
disposal. The reasons for this are multiple: more effective new technologies, non-repairable
damage, changed requirements, etc. Depending on the kind of system, the removal strategies
vary greatly. The phase-out phase is often the kickoff for a new systems engineering project,
because a new system may have to take over the work of the phased-out one.

21

D D D D D

Figure 3.3: The software system life cycle process according to Sommerville [29]; Visualization
according to Schatten et al. [30]; Decision gates marked

Life cycles vary according to the nature, purpose, use and prevailing circumstances of the sys-
tem. But, similar phases can be found in every life cycle model. An example of a software
systems life cycle can be found in figure 3.3. Although the phases are named differently, it is
easy to see the close relation to the phases described by Blanchard and Fabrycky [28].

The concrete characteristics of a life cycle model are implemented in process models. The
life cycle defines the framework for the definition of a process model. The process model is a
concrete strategy for the execution of a concrete project. Nowadays, there are many different
process models in use. According to the SEBoK Guide [21] there exist three groups of process
models:

• primarily pre-specified and sequential processes, e.g. waterfall model

• primarily evolutionary and concurrent processes, e.g. lean development, rational unified
process, different forms of V models and spiral models

• primarily interpersonal and emergent processes e.g. agile development, scrum, eXtreme
Programming (XP), the dynamic system development method and innovation-based pro-
cesses

For this thesis the important parts are the concepts of life cycle models especially the con-
cept of decision gates. The decision gates are where stakeholders synchronize their work and
decide about the future of the project. This makes decision gates a good integration point for
the MMD approach. Different process models handle decision gates differently. To provide an
overview the following sections will describe one typical process model per group mentioned

22

above. Particular attention is paid to the implementation of decision gates within the process
models.

3.3.2 Waterfall Model

The waterfall model is a sequential process model in which the phases follow a strict linear
order. It is often visualized as a flow of phases going steadily downwards, hence its name. The
waterfall model is one of the older process models. It was first described in 1970 by Winston
W. Royce [31], although Royce did not name it “waterfall”. The general idea behind the pure
waterfall model is that all steps are performed sequentially. The next phase can only be started
if the previous phase is fully completed and approved. But it is debatable if such a static process
ever existed in a non-trivial project worth of using process models. The pure waterfall model
was used by Royce himself as an example of a flawed process that does not work, because
requirements can never be frozen completely. Critics like David L. Parnas [32] argue e.g:

“Many of the details only become known to us as we progress in the implementation.
Some of the things that we learn invalidate our design and we must backtrack.”

For this reason different modified waterfall models got created to include backtracking to pre-
vious stages, validation and verification, etc. An example for a waterfall model can be seen in
figure 3.4.

The waterfall model is typically used for projects with stable and well detailed requirements
and procedures. Because of its low flexibility, the waterfall model can hardly react to changes in
later project stages. The same is true for errors in earlier stages, which can have huge negative
impact on follow up stages. Another disadvantage is that usable results are available very late in
the process. This often leads to change requests by the customer at the end of the process, which
the waterfall model can barely handle.

The verify step at the end of each phase fits the definition of the decision gate. Within this
step it gets decided if the project is ready to continue to the next phase, remain in the current
or backtrack to the previous one. Therefore it gives a good integration point for the MMD
approach.

3.3.3 V-Model XT

The V-Model XT [33] [34] is the successor to the V-Model 97 [35] [36]. Its main objectives are
the minimization of project risks, improvement and guarantee of quality, cost reduction over the
entire system life cycle and improvement of communication between the stakeholders. The V-
Model XT is a flexible, modular and product-centric process model which allows for adaptation
to specific projects through the use of tailoring.

The V-Model XT can be applied to a great variety of projects, however not all projects get
the same treatment. Depending on the process role which the project assumes with respect to
other stakeholders, projects can be divided into four project type categories:

1) Systems Development Project of an Acquirer This project type handles projects which
acquire systems from a supplier. The focus lies on the early and late phases of the V-Model XT.

23

Figure 3.4: The waterfall model according to Sommerville [29]; Visualization according to
Schatten et al. [30]

The early phases include e.g. requirements specification and supplier selection, while the later
phases contain deployment and acceptance testing. The technical system development is done
by the supplier.

2) Systems Development Project of an Supplier This type represents the counterpart to the
type above. Projects of this type focus mainly on the technical phases of the process model.

3) Systems Development Project Both previous project types assume that acquirer and sup-
plier reside in different organizations. This project type includes both roles within one organi-
zation and provides a common view on the project. Typical example for this type are in-house
development projects within large companies.

24

Figure 3.5: The classification of projects into project types [33]

Figure 3.6: The connection between project types and project variants [33]

4) Introduction and Maintenance of an Organization-Specific Process Model This type is
used for projects that aim to introduce, improve or maintain a process model within an orga-
nization. For this purpose any existing process model should be analyzed, and improvement
possibilities should be developed and executed.

The V-Model XT supports the development of hardware, software, embedded systems and the
system integration. Based on the subject of the project, project characteristics are defined which
are used later in the tailoring process. Figure 3.5 provides an overview of the relationship be-
tween project role, project type and the subject of the project.

For each project type the V-Model XT defines additional project variants. Project variants are
further specializations of the project type when combined with additional project characteristics.
The different project variants are listed in figure 3.6. The project variant determines the project
execution strategy.

Central element of the V-Model XT are the process modules. Process modules are flexible,
self-contained units which can be changed and extended individually. A process model covers
all the significant parts concerning a particular task that occurs during the project. As shown
in figure 3.7 the project module encapsulates products, activities and roles. In general one role

25

Figure 3.7: The structure of a process module [33]

is responsible for one product. Products are created by exactly one activity executed by the
responsible role. Products may depend on other products just as activities may depend on other
activities. Thus, process modules define “what” (product) and “how” (activity) will be developed
by “whom” (role).

The V-Model XT provides predefined process modules, which are divided into mandatory
and optional modules. The mandatory process modules, e.g. project management, are supposed
to be tailored into every project to ensure a minimum level of project execution quality. The
optional modules are specific to the defined project type and project variant, e.g. the “System
Development” process module is not necessary in a pure acquisition project. The selection and
adaptation of the process modules is a core step within the tailoring process.

The “when” is specified in the project execution strategy. The product execution strategy
is the result of lining up process modules and their corresponding milestones. It defines the
framework for the systematic execution of the project. Depending on project type, project variant
and further project characteristics there exist different project execution strategies in the V-Model
XT. The V-Model XT integrates different execution styles, e.g. agile systems development,
incremental systems development or component based systems development.

The V-Model XT follows the concept of decision gates described in IEEE 15288. Phases in
the project execution strategy have to end in a mandatory decision gate. At each decision gate
a defined number of products has to be finished, before carrying on with the next phase. Figure
3.8 provides an overview over the decision gates defined in the V-Model XT.

The modular, flexible and well specified structure of the V-Model XT make the integration
of the MMD easy. The definition of the variables and constraints fits into the “specification of
requirements” process module. Because the V-Model XT considers decision gates like IEEE
15288, there is a clear integration point for the monitoring part. The MMD can be used to
support decision making in this crucial parts of the project.

3.3.4 Agile Development

Agile development models were introduced to overcome the shortcomings of the traditional
systematic models, e.g. heavy reliance on documentation, strict sequential processes, lacking
stakeholder involvement, etc. They are based on the Agile Manifesto [37], which was written by

26

Figure 3.8: The decision gates of a project execution strategy [33]

seventeen software engineers in 2001. Many of the models that carry the tag “agile” today are
older than the agile manifesto, e.g. XP from 1996. The popularity of the agile movement simply
united them under one banner. The key statement of the manifesto reads as follows:

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

In order to help achieving this, the manifesto defines twelve key principles. There are many
agile development methods. Prominent examples are Scrum1 and XP2. Scrum is described as
representation for an agile development method. The scrum process is pictured in figure 3.9.

The term scrum refers to the manner of restarting the game after a minor infraction when
playing rugby. It was first used for this agile approach by J. Sutherland [39]. Scrum is an
iterative and incremental process which defines procedures, roles and methods that fit the agile
principles. The scrum guide [40] defines three roles for a scrum project:

1Scrum: http://www.scrum.org/
2XP: http://www.extremeprogramming.org/

27

http://www.scrum.org/
http://www.extremeprogramming.org/

Figure 3.9: The scrum process according to Schwaber [38]; Visualization according to Schatten
et al. [30]

Scrum Master The scrum master is responsible for ensuring Scrum is understood and enacted.
He ensures the team adheres to scrum theory, practices and rules. His objective is that the scrum
team can work without influence from outside the team.

Development Team The development team works on the tasks in the sprint backlog. Their
aim is to deliver a potentially releasable increment of a product at the end of each sprint. The
scrum guide advices groups of 3 - 9 developers organized as self-organizing teams.

Product Owner The product owner represents the stakeholders of the project. He is respon-
sible that the product in development has the most value possible for the customer. The product
owner is the sole person responsible for the product backlog. It is his responsibility to formulate
stakeholder requests in user stories, rank them by priority and add them to the product backlog.

Typical artifacts in a scrum project are:

Product Backlog The product backlog is a prioritized list of requirements for a specific prod-
uct and the single source of requirements for any changes to be made to the product. The product
backlog is never finished. It changes as the development progresses and the stakeholders require-
ments get more detailed.

28

Sprint Backlog The sprint backlog contains the tasks the development team must address in
the current sprint. Under ideal conditions the team itself chooses the tasks from the product
backlog to fill the sprint backlog.

Increment The increment is the sum of all changes implemented within a sprint and all previ-
ous sprints. The increment should always be in an usable condition at the end of a sprint.

As shown in figure 3.9 the process is divided into three major phases:

Pre-Game The pre-game phase contains the planning of the project and the product. First, all
requirements, attributes, tasks and wanted features are gathered from stakeholders. Afterwards
they get prioritized and put into the product backlog. Changes during the project will also be
added to the backlog.

Sprint The actual development work will be done in sprints. At the start of a new sprint a
sprint planning meeting will be held. At this meeting the development team and the product
owner decide which items from the product backlog will be put into the sprint backlog. The
effort necessary to finish all tasks in the sprint backlog must not be greater than what the team
can handle in one sprint. A sprint consists of 4 major phases that are cyclically carried out:

• Develop & Test: The creation and testing of new components.

• Wrap: The integration of the new components to a new increment.

• Review: The review of the current increment.

• Adjust: Adjustments based on the review.

A sprint usually lasts for a fixed predefined duration, typically 2 - 4 weeks. During the sprint the
team holds a daily meeting to discuss progress, problems, etc. The benefit of daily scrum meet-
ings is that every project member has an idea of the current state of the project and problems can
be identified and reacted on right away. Within the duration of the sprint the team should be able
to work undisturbed and without interference from outside the team. Changes in requirements
go strictly to the product backlog and never to the sprint backlog. On the rare occasion that the
changes are critical and can not be postponed, the current sprint can be aborted and a new one
has to be started from scratch.

Post-Game The final phase includes the provision and delivery of new functionality in the
form of new releases. When the product is deemed ready for a general release, e.g. a certain
amount of items from the backlog has been covered, the new functionality has to be provided to
the stakeholders.

Scrum and most of the other agile methods do not explicitly specify their decision gates. The ag-
ile methods are designed to deal with changing requirements, so their decision making processes

29

are distributed over the whole system. Therefore the MMD approach fits best as a supporting
process parallel to the whole agile process model.

For scrum specifically the decision gate description fits to the daily scrum meeting. The
MMD can be used as monitoring tool in daily scrum meetings to get a quick glimpse of the
overall state of the sprint. This would support the development team in recognizing problems
early and does not prolong the daily scrum meeting over the recommended 15 minutes. The
variable and constraint definition phases of the MMD approach can be integrated into the sprint
planning meeting.

30

CHAPTER 4
Research Questions

This chapter details the research questions which represent the main questionnaire for this thesis.
The questions are specified according to the the research methodology proposed in chapter 2.
For each research question the underlying motivation is described in order to explain why this
particular issue is of importance. Additionally, challenges to overcome get listed, as well as the
benefits that a good answer to the question would yield.

As proposed by “The Craft Of Research” [6], this chapter is structured as follows. First,
a general research question is defined which summarizes the main objective of this entire the-
sis. The short description attached to this main research question contains many references to
previous chapters and can be seen as a short summary of what this thesis aims to achieve. In
order to find an answer to the main question, the question is split up into three research issues of
more manageable size. The split is done according to the suggestions provided in the research
methodology.

The research question of this thesis reads as follows:

RQ: How can the project members of systems engineering projects effectively manage their in-
terdisciplinary parameters and ensure that certain design restrictions on these parameters
are always complied with?

As already described in the introduction chapter (see chapter 1), systems engineering has become
an important discipline to manage the complexity of multidisciplinary engineering projects. But
with multiple disciplines involved, there are new problems and challenges that make collabo-
ration between the project members of different knowledge domains difficult. These obstacles
have many different reasons, e.g. heterogeneous data models, different vocabulary between
stakeholders, geographical disparity, cultural problems, etc. Supporting collaboration in a sys-
tems engineering context is an ambitious task, one that has to be approached from many different
angles.

Unfortunately, it won’t be possible to tackle every angle and solve every problem within this
thesis. As such, the following solution angle is put into the focus. A typical systems engineering

31

project involves engineers from many different disciplines, e.g. software engineering, electrical
engineering, mechanical engineering, building engineering etc. Depending on their individual
home domain, the participating engineers work on different parts of the overarching systems
engineering project. To do this, they use domain-specific tools and data models. To understand
and operate these domain-specific tools and models, expert knowledge within the usage domain
is needed. In this landscape of heterogeneous software tools, engineers are often found to work
independently and isolated from the engineers of the other involved disciplines.

But, for the success of the overall systems engineering project, it is necessary that the in-
volved project members collaborate and synchronize certain aspects of their work. Regardless
of whether they are aware of it, the engineers of one knowledge domain share common concepts
with the other domain’s engineers. These concepts are used within the data models of two or
more domains and can take on many forms, such as: voltage values, coordinates, weight pa-
rameters, etc. Which concepts are important and shared between the domains depends entirely
on the target product of the overall systems engineering project. The concept’s values usually
reside within the data models used in the various domain-specific tool sets.

To avoid inconsistencies between common concepts and resulting additional problems, the
engineers, who are designing the models, need to understand their dependencies to the data
models used in different domains, but those are in general not explicitly defined. Even if these
dependencies are specified, communicating the model updates to the responsible project mem-
bers and checking the new values of the common concepts for consistency is an error-prone and
time-consuming task.

The dependencies between the different models can often be expressed as design constraints
defined on the common concepts. A design constraint limits the design space of the engineers by
defining boundaries on the interdisciplinary parameters. If important design parameters change
in a way that conflicts design constraints, mutually agreed upon with engineers of a partner
discipline, then the timely notification of the partners is essential to mitigate the risk of costly
design rework later in the project.

Currently, communication of interdisciplinary parameters and validity checks of design con-
straints are mostly the subject of manual work. Whenever important parameters which are shared
with a partner discipline change, the responsible engineer has to manually notify those engineers
who are affected by the change. Together, they have to gather and validate all of the design con-
straints affected by the changed parameters by hand. This manual approach has a multitude of
downsides.

First, it is a very time-consuming approach. The manual tasks necessary, such as: notifi-
cation of affected engineers, gathering of the parameter data, evaluation of design constraints,
etc. occupy work time from all the affected project members. This time investment can be quite
significant depending on the amount of affected stakeholders. In a typical large-scale systems
engineering project the number of affected project members can be quite high which results in
significant time investments.

Second, the manual approach is prone to errors. The manual process puts much personal
responsibility on the individual project members. The engineer doing the parameter change has
to monitor the whole notification process and is responsible that all affected engineers of partner
disciplines are informed about the consequences of the change. This is a very challenging task,

32

as the room for error is quite massive. For example:

• Important stakeholders are forgotten and do not receive a notification.

• The change is wrongly deemed as being non important and a notification is omitted.

• Calculation errors are done during the manual evaluation of design constraints.

The errors are mostly due to the fact that typically the change propagation processes are neither
planned nor documented. There is just no standard procedure. Mostly, there exist only informal
processes, whose concrete execution depends solely on the executing engineer. Failure to prop-
agate the changes can have dire consequences on the outcome of project milestones, or even the
project as a whole. Errors often lead to a delay within the project and costly redesign work later
on.

Third, the manual approach is repetitive. Every time an interdisciplinary parameter changes,
the whole manual procedure has to be executed again. As this can occur quite often, it is neces-
sary that the individual cycles are as short and efficient as possible.

For this reasons, there is a great need to improve upon this manual process. A structured
and efficient process with associated software tooling can ease the burden put upon the project
members, limit the room for human errors and reduce the time invested into the management of
interdisciplinary parameters and design constraints.

Therefore, as an improvement to this situation, the MMD approach is proposed. The MMD
approach is a process framework on how to introduce a formal process with supporting tool sup-
port that supports the management of interdisciplinary parameters and design constraints.

In accordance to the chosen research methodology (see chapter 2), the main question of this
thesis is now split up into three smaller research issues.

4.1 Design of the MMD Process Approach

The first issue deals with the design of the MMD process and reads as follows:

RI1: How does a structured and efficient process to handle interdisciplinary parameters and
design constraints in a systems engineering context look like?

The source of many problems with the current approaches to manage interdisciplinary param-
eters is the lack of organization and structure in the used informal processes. Often times, the
processes used to propagate changes on common concepts, are not even recognized as such. It
is simply expected that the engineers, who do the changes which are of interest to engineers of
other disciplines, will somehow report the changes to the affected engineers in an appropriate
manner. An expectation that is often unfulfilled and leads to a delayed or missing notification of
important project stakeholders.

With the introduction of a systematic approach to handle interdisciplinary dependencies, the
awareness for this dependencies can be improved. The approach needs to encompass the whole
management process of interdisciplinary parameters. The process needs to support stakeholders

33

in effectively and efficiently defining, extracting, accumulating, and observing critical project
and process parameters in heterogeneous engineering environments. Expected benefits of an
systematic approach are:

• Improved awareness due to the explicit definition of interdisciplinary parameters and de-
sign constraints.

• Reduced work load on the engineers and less human errors, due to tool-supported automa-
tion of certain tasks.

• Faster change propagation and less delay until all important stakeholders are notified.

To work on this research question, process modeling based on the IDEF0 framework is
used. Important core steps of the proposed MMD approach are identified and their inputs and
outputs are described. The relationships between these steps are then modeled. The design of the
MMD approach has to take all the requirements gathered from members of systems engineering
projects (see chapter 5) into account. For the design of the individual steps, fitting mechanisms
and state-of-the-art technologies are adapted, which are discovered by a systematic literature
study. The resulting MMD process description is shown in chapter 6.

4.2 Tool Support Implementation

The core of the second question is the implementation of a software prototype that fits the pro-
posed process.

RI2: How can the tool support for the proposed MMD process be implemented?

Once a management process for interdisciplinary parameters is established, proper software
tools are needed to leverage the benefits of the new approach. While the defined MMD process
generally could still be executed manually, software support allows to really reduce the workload
on the individual engineers by automating repetitive or tedious tasks. The manual execution of
the MMD process might still have some edges over the traditional unstructured approach, but its
strengths are best utilized when supported by appropriate software tool sets.

The main point of this research question is the identification and/or implementation of fit-
ting software tools for each individual MMD process step. The software tools should support
the engineers in the definition and monitoring of the interdisciplinary parameter and design con-
straints. The tools should automate the process steps as much as possible. There are many tasks
that can be automated such as: notification of stakeholders, data extraction from model files,
validity checks for constraints, etc.

Expected benefits of a solution to this question are:

• First proof of concept for the MMD process.

• A solid implementation basis for future industrial development.

34

• Efficient execution of the MMD with reduced effort for stakeholders and less errors.

To answer this research question, a research prototype is implemented. As general approach
to create this prototype, rapid prototyping is chosen. Through multiple iterations of alternating
programming and feedback phases, a sample MMD application was created. The creation of
the prototype made use of many state-of-the-art software engineering techniques, such as the
Unified Modeling Language (UML), domain driven design, enterprise design patterns, etc. A
description of the software prototype based on the 4+ 1 view model is shown in chapter 7.

4.3 Feasibility Study

Following the research methodology, the last issue deals with the question how to show that the
proposed solution works.

RI3: Is the proposed MMD approach feasible and what improvements does it yield over the
traditional manual approach?

With process description and tool support in place, the last thing to do is to check the feasibility
of the proposed MMD approach. It has to be evaluated if the new approach is feasible and
an actual improvement over the current manual approaches, when used in conjunction with
a proper software tool set. The evaluation should display the drawbacks and benefits of the
MMD approach when deployed in an authentic use case scenario. The evaluation should also
provide compelling arguments on when it makes sense to utilize the MMD considering factors
like project size, implementation cost, number of interdisciplinary parameters, etc.
Expected benefits of a proper answer to this question are:

• Proof of the MMD feasibility in real use cases.

• Assessment of when the usage of the MMD is beneficial.

The following steps are taken to work on this research issue. The MMD process and pro-
totype are used to implement a simple scenario provided by industry partners from the systems
engineering domain (see chapter 5). This scenario acts as a showcase for the general feasibility
of the proposed concepts. Afterwards, to provide further arguments for the MMD’s feasibility,
the results from experiments in the building engineering domain are listed. At last, a cost-benefit
assessment is conducted that utilizes the expert knowledge of industry partners to gain informa-
tion on under what conditions the MMD should be deployed to achieve positive results. The
results of the evaluation are shown in chapter 8.

35

CHAPTER 5
Use Case & Requirements

This chapter describes the main use case and the requirements for the MMD approach. The idea
behind this chapter is to describe the starting point of the process design work. Every part of
this thesis was designed with a particular use case and industry partner’s requirements in mind.
This chapter starts with the definition of the real world use case. This use case acts as a source
of requirements and provides the evaluation scenario for the feasibility evaluation presented in
chapter 8. Second, a short summary of the requirements gathered from the CDL-Flex’s industry
partners is provided.

5.1 Use Case: Project Portfolio Management

As previously described in the introduction section of this thesis (see section 1.2), the use case
scenario chosen for this thesis is a case of project portfolio management. The CDL-Flex par-
ticipates in various research projects with its industry partners from the systems engineering
domain. All these projects get managed using a project portfolio. The people at the CDL-Flex
mostly take over the software engineering domain in these projects. Therefore, the use case
description provided here might as well fit any other software engineering projects that are man-
aged within a project portfolio. To ensure the authenticity of the use case, the description mirrors
the organization at the CDL-Flex. Model files for the evaluation are provided by the CDL-Flex
as well, although for data protection reasons the data is made anonymous.

5.1.1 Stakeholder

The stakeholders in this scenario are mirroring the project members of the CDL-Flex. They
fulfill roles which are typical for project portfolio management in the software engineering do-
main. The different roles with their individual intentions and interests are listed below, focusing
on those interests which are the most important to this thesis. These are mostly those interests
that can be translated into multi-disciplinary parameters or design constraints.

37

Project Portfolio Manager The project portfolio manager wants to keep track of the projects
within the project portfolio. The main goal of this role is to ensure that the resource planning
still matches the current state of the various managed projects. Therefore, some examples of
constraints that might be interesting for this role are: consistency between the portfolio’s and
project managers budget plans, time constraints, planning of man hours, etc.

Project Manager The project manager wants to monitor the current state of his own individual
project. He is responsible for the members and the success of the individual project. Resources
to spend are provided by the project portfolio manager’s planning. Therefore, members of this
role are interested in the same constraints as the portfolio managers but since they are on the
receiving end, they represent the other side of these constraints. Further, they are interested in
constraints regarding the project’s current status such as: Are milestones completed in time? Are
the project members spending too much or too little time on certain tasks?

Software Developer Members of this role develop the software prototypes and products ac-
cording to gathered stakeholder requirements. All of the development work happens within the
organizational borders set by the project manager. There are interfaces to many different stake-
holders besides the project manager such as: customers, software testers, release manager, etc.
Because of these interfaces, there is a great deal of shared parameters and constraints like: work
time reporting, work ticket status, milestone status and so on.

Software Tester The software tester as the name already tells checks the various software
artifacts for proper functionality and requirements fulfillment. The results of this work are gath-
ered in test reports which are then shared with other project members. Similar to the software
developer role, members of the tester role interact with many different stakeholders such as:
requirements owners, software developers, project and release managers, etc. Therefore, poten-
tial constraints are similar to those the software developer is interested in. Examples for more
role-specific constraints are: match between required and achieved test coverage or measures of
requirements fulfillment.

Release Manager The release manager’s main responsibility is to make sure that the release
plan is adhered to. Members of this role manage the software release process in compliance
with the progress reported by software developers and testers and the scheduling provided by
the project manager. Typical parameters and constraints interesting for this role include but are
not limited to: status of milestone critical tasks, number of features finished for a milestone,
amount of critical bugs, etc.

5.1.2 Artifacts

The project members use a wide selection of tools and data models to work on their individual
parts of the project. Following a selection of models which are relevant for this thesis are listed.

38

Time Sheets Time tracking is an important aspect of every engineering project. In this use
case, every project member keeps his own time sheet up to date to keep track of the work hours
spent on the various tasks. As typical for most engineering project, these time sheets exist in the
form of digital spreadsheets managed by common tools such as LibreOffice.

Work Tickets A common artifact in Scrum managed projects is the work ticket. The work
tickets contain what has to be done, by whom, and in what time frame. The development team
organizes itself with such work tickets and manages them with the help of an issue tracker.

Test Reports The test reports contain metrics and results about past test runs. They are an
important feedback mechanism to the development team and the project managers. Depending
on the to-be-tested module and the method of testing, the test report might be written manually
or generated by automated test suites.

Budget Plans The various budget plans contain the resource planning of the portfolio or the
individual projects. They are handled mostly by the project and portfolio managers. They exist
in various different formats with spreadsheets and text-based models being the most common
ones.

Milestone Plans The milestone plans contain the planning for the important project mile-
stones. They define what has to be finished until a predefined milestone deadline. They are
managed within the issue tracker where they are linked to the appropriate work tickets.

Requirement Descriptions The requirements descriptions are the results of requirements en-
gineering methods executed with all involved stakeholders. The requirements are described in
the form of use cases, user stories, prototype descriptions or feature lists. These artifacts are
gathered within a collaboration platform where they are available to all project members.

5.1.3 Scenarios

Within this use case there are multiple options of potential design constraints to choose from.
Following, three examples are listed which will be used in chapter 8.1 for feasibility evaluation.

Monitoring of budget constraints The project portfolio manager calculates limitations on the
budgets of the project managers using his spreadsheets. Based on their given budget, the project
managers allocate resources to the various parts of their managed project. One important factor
of the planning process is the estimation of man hours for the tasks at hand. It is necessary for the
project manager to know if his calculations still match the actually invested time. So it has to be
checked if the work hours of software developers and testers do not exceed the planned values.
If the values are off and adjustments have to be done, it has to be ensured that the planned budget
of the project manager does not exceed the threshold given by the project portfolio manager.

39

Figure 5.1: Sketch of the intended MMD functionality as envisioned by industry partners.

Monitoring of milestone releases The milestones and their related tickets are planned within
the issue tracker. It is imperative that all core features are finished before the milestone deadline
to avoid negative impacts on the project. The release manager wants to put monitoring points on
the project member’s time sheets to get earlier notifications of potential problems, e.g. used time
for certain task exceeding threshold. Failure to detect problems in the execution of milestone-
critical tasks may lead to missed deadlines and further problems.

Monitoring of test coverage A common metric in software product development is test cover-
age. It represents how much of the code base is covered by repeatable tests. Often, stakeholders
demand a certain amount of test coverage before a software module is considered as working.
The demanded coverage is often gathered during the requirements engineering phases and vali-
dated by software testers. A possible design constraint could monitor the design documents for
the target coverage and the test reports for the actual coverage and check if the actual coverage
still lies above the wanted threshold.

5.2 Stakeholder Requirements

This section briefly summarizes the requirements gathered for the MMD approach. Figure 5.1
shows the desired use case execution as it is envisioned by the CDL-Flex and its industry part-
ners. The figure describes how potential stakeholders of the MMD approach expect a finished

40

instance of the MMD to operate. Therefore, it provides an idea what general steps will have to
be included in the design of the process.

The following requirements are the result of an incremental requirements engineering pro-
cess executed in collaboration with the researchers of the CDL-Flex and its industry partners.
The requirements are abstracted from domain-specific descriptions to provide the most gener-
alized view possible on the MMD. This is done in order to create requirements which fit the
widest possible range of potential systems engineering projects.

The requirements description will focus mostly on the functional aspects that need to be
incorporated into the MMD approach. The limitation is done because the MMD approach is
just a process description; an abstract concept. It makes no sense to define non-functional re-
quirements on a non-executable process. The MMD concept is designed to be implemented and
supported with software. While this would justify describing non-functional requirements the
defined maturity level of the prototype speaks against it. A research prototype according to Win-
kler et al. [10] is a feasibility check for the functionality, but leaves non functional requirements
for further industrial development (see figure 2.1).

5.2.1 Identified Artifacts

The industry partners were asked how they expect the MMD to operate and where they would
use it. Although often named differently by the interviewed parties, there were a couple of
artifacts that were shared across most of the mentioned scenarios. The following ones were
identified to be important for the MMD approach:

Data Model A formal abstraction of concrete data, which is often persisted in files or databases.
The data model is owned by one or a few model owners. Building blueprints would be a typical
example for a data model being distributed over various CAD related files.

Model Parameter Model parameters are concepts common to several domains in the project
context. These concepts are often shared by two or more project stakeholders and the data on
this concepts is often exchanged within the team. Model parameters values need to be extracted
out of the data model. Their values can take form in different types, such as: numbers, text,
coordinates, etc.

Design Constraint Constraints limit the possible values for model parameters. A constraint
associates model parameters to evaluate a truth value. A design constraint is not limited to
a single model parameter, but can contain an arbitrary number. The most common case for
a constraint are simple mathematical equations. But, the need for more complex algorithms
containing loops and conditional statements is also noted.

Subscription An expression of the interest a stakeholder holds for a parameter or constraint.

Notification Notifications are messages that notify subscribers about changes on subscribed
parameters or design constraints.

41

Dashboard The dashboard is a tool that provides information about the current state of model
parameters and design constraints.

5.2.2 Required Features

Figure 5.1 already shows what industry partners think how a finished MMD implementation
should operate. After filtering the important parts from the gathered input, the following func-
tional requirements are identified for the MMD approach. These features heavily influenced the
design of the tool support as can be seen by the use case definitions in appendix B.

• Project members want to request model parameters.

• Model owners want to answer requests by offering model parameters based on their local
models.

• Requesters want to accept offerings and be subscribed to the offered parameters.

• Requesters want to decline an offer.

• Model owners want to publish their data models(either self-initiative or in response to
request).

• Project members want to define parameters on published data models.

• Project members want to subscribe existing model parameters.

• Model owners want to publish updates to their models.

• Subscribers want to be notified on parameter changes happening on data model update.

• Project members want to define constraints on defined parameters.

• Project members want to subscribe existing design constraints.

• Parameter updates should trigger the revalidation of involved constraints.

• Subscribers want to be notified when constraint are no longer satisfied after model updates.

• Project members want to look at the dashboard to get a condensed view over all parameters
and constraints.

42

CHAPTER 6
Multi-Model Dashboard Process

This chapter describes the proposed MMD approach. This approach is designed on the foun-
dation of gathered stakeholder requirements (see chapter 5). First, the scope of the approach
is defined to provide a clear statement of what the MMD represents and where it is applicable.
After the scope has been established, the most important artifacts of the MMD approach get
summarized as a short glossary for the subsequent process description. Afterwards, the pro-
cess itself is described, starting with a short overview over the whole process, followed by the
descriptions of the individual process steps.

6.1 Scope

The MMD establishes a process framework to support the collaboration of stakeholders from
different knowledge domains within a systems engineering project. It aims to provide a method-
ology that guides these stakeholders in the definition and monitoring of interdisciplinary pa-
rameters and design constraints. The MMD intends to support any stakeholder of a systems
engineering project; without any exception. While the focus of the approach lies on the decision
makers within a project, design constraints are important for each project member and at each
project stage.

The MMD defines a process model with defined inputs and outputs for each process step.
The individual process steps are displayed in figure 6.1. The MMD process is designed with
software implementation and tool support in mind. The MMD is not an immutable process de-
scription. The process steps or methods advised are to be understand as a process framework
guiding the adaptation and implementation of individual multi-model dashboards. These dash-
boards should be created according to the provided guidelines to be suitable for the targeted
systems engineering context. Everyone who seeks to introduce the MMD approach is required
to come up with its own implementation by adapting the guidelines provided in this chapter.

The MMD approach needs to be woven into the project life cycle in order to be effective.
Typical systems engineering process models and potential integration points for the MMD are

43

1. Identification of
Parameters

2. Definition of Data Sensors

3. Model Collection within
Common Repository

4. Variable Evaluation

5. Constraint Evaluation

6. Presentation / Notification

Configuration
Monitoring

Figure 6.1: The MMD process steps

described in section 3.3. In general there are two phases that have to be included in the project
life cycle.

First, there is the configuration part which contains the phases where the data sensors, vari-
ables and design constraints are identified. These parts fit into the planning and design phases
of the overall project life cycle. Every project process model contains some sort of planning or
design phase. For example, in a project organized with the Scrum methodology, a good time to
define variables and constraints is during the pre-game phase.

Second, there is the monitoring phase. The monitoring should be employed throughout the
whole project lifetime in order to minimize delays in parameter change propagation to important
stakeholders. Stakeholders should be able to get the current status of the project’s parameters
and design constraints, regardless of the phase the project is currently in. The ideal integration
points for the monitoring are the decision gates of the systems life cycle (see section 3.3). Usage
at the decision gates is not strictly mandatory, but it ensures compatibility between the MMD
and the chosen life cycle model.

6.2 Definitions

Parameter An interdisciplinary fact important to stakeholders from two or more domains, e.g.
the “weight” parameter being important to building and mechanical engineers.

44

Data Model Formal abstraction of concrete data, typically stored in files or databases, e.g. the
statics plan of a building stored in various CAD files.

Data Sensor Automatable tool to monitor parameter values within data models.

Variable Evaluable interdisciplinary parameter with attached data sensor.

Constraint Design constraint limiting the possible value range of the variables.

Subscription Means for the stakeholder to express interest in variable and constraint changes.

Publication Request Request from one stakeholder to another about the publication of new
data models.

Publication Commitment The promise one stakeholder gives another that he will publish a
specific data model.

6.3 MMD Process Description

The MMD approach is divided into six mandatory process steps (see figure 6.1):

1. Identification of Parameters

2. Definition of Data Sensors

3. Model Collection within Common Repository

4. Variable Evaluation

5. Constraint Evaluation

6. Visualization & Notification

Each of these steps has to be implemented in a way fit for the systems engineering project at
hand. The steps represent the core challenges during the implementation process. For each
step the inputs and outputs are defined which represent the interfaces to the other process steps
and to the surrounding project environment. The relationships between each step and the envi-
ronment are displayed in figure 6.3 using IDEF0 notation [8]. The focus of the figure lies on
the interactions between the steps. Its main purpose is to display the general data flow of the
approach. Some relationships have been merged or omitted to make the visualization easier to
understand. The missing details are provided in the textual descriptions of the individual process
steps following this overview section.

It has to be noted that the MMD process steps do not need to be executed in a strict sequen-
tial order. There is also no limitation on the number of concurrent instances for each process
step or the MMD process as a whole. It is possible to have groups of project members working

45

Figure 6.2: IDEF0 overview of the MMD approach

46

concurrently on different process instances or even on different instances of a single process step
within the same process instance, e.g. groups of stakeholders negotiating important parameters
in parallel who later synchronize their work for follow up phases of the process. To accommo-
date for this the individual process steps accept results from previous or concurrent processes as
optional input from the environment.

6.3.1 Identification of Parameters

Goal

The goal is to identify and document project-critical interdisciplinary parameters and design
constraints through structured communication between success-critical stakeholders. Further,
the mapping between stakeholders and the parameters, in which they are interested in, is speci-
fied.

Inputs

• Parameters which were identified in a previous execution.

• Constraints which were identified in a previous execution.

• Current subscriptions, publication requests and publication commitments.

• Documentary about past executions.

Outputs

• Cumulative list of parameters.

• Cumulative list of design constraints defined on the parameters.

• Subscriptions.

• Publication Requests.

• Publication Commitments.

• Documentation for future executions.

Description

Inspired by the EasyWinWin approach [41] [42] [43] [44], the following steps are proposed:

47

1) Stakeholder Selection The identification process starts with the identification of success-
critical stakeholders. As selection criteria we define the CRACK criteria [45]. CRACK is short
for: collaborative, representative, authorized, committed, and knowledgeable. It defines the core
traits which to look out for during stakeholder selection. Domain experts are picked from each
involved domain of the systems engineering project according to CRACK. Those experts partic-
ipate in the further parameter identification process.

After the stakeholder selection, the following phases are to be executed in a personal meeting
between the chosen stakeholders.

2) Outline the domains Once the important stakeholders have been chosen in the previous
step, in this step necessary domain knowledge is shared. The domain experts explain their
parts of the engineering project from the viewpoint of their domain. They provide insight into
their home domain and explain where they see the interfaces to other disciplines. Further, the
domain experts explain the data models they will use. The intention of this step is to establish
a minimum of understanding between the stakeholders regarding all involved domains . The
domain outlines should be documented for future executions. Likewise, the documentation of
past executions should be taken into consideration for the current one to save time.

3) Review current parameter state Analyzing the current state yields important input for
further parameter definition. Requirement changes may have made certain parameters obsolete,
while other parameters may require an update. For example, previously defined weight parame-
ter got distributed over two different blueprints. In this case, updates to the weight parameter and
the affected design constraints are needed. Furthermore, the analysis of unanswered publication
requests and unfulfilled publication commitments may indicate problems in the collaboration.
The information gained provides valuable input for the following steps.

4) Brainstorm parameters & design constraints The stakeholders now brainstorm inter-
disciplinary parameters and design constraints. Every stakeholder thinks about where he sees
dependencies to other disciplines. General questions to identify parameters and constraints are:

• In which part of the project am I dependent on input from other project members?

• Which values are planned outside of my scope but are important to me?

• What input do I need from other engineers to do my work?

• Is my work limiting the design scope of somebody else?

• Are there engineers that design something I will use in my part of the project?

• Does the work of other engineers restrict my design options?

The results are noted down for each individual stakeholder.

48

5) Summarize parameters & design constraints The individual brainstorming results are
then summarized in one coherent document. This step should be done in collaboration between
all involved stakeholders to discuss uncertain parameters, solve problems and find the model
owners. During the collection process a clean up should be done to remove double entries, add
missing information, etc. At the end of the gathering process the document should contain all
interdisciplinary parameters with the following information:

• Identifying name.

• Précis of the parameter.

• Type of the parameter, e.g. number, text, boolean value, etc.

• Data Model that contains the parameter.

• Model owner of the containing model.

• Location within the data model.

For the design constraints the following attributes should be gathered:

• Identifying name.

• Informal description of how the constraint is calculated.

• List of parameters needed to evaluate the constraint.

• Algorithm to calculate the validity.

6) Subscriptions With all parameters and constraints defined in one place, the stakeholders
now indicate their interest in certain parameters and constraints. This leads to subscriptions.
A subscription is the formal documentation of a dependency a stakeholder has to a parameter
or constraint. The subscribed entities represent those interdisciplinary objects necessary for
a stakeholder to do his work. The subscriptions provide the base for any further notification
processes later in the project. They should be documented and made available to all stakeholders,
to have a public list of all stakeholder’s dependencies.

7) Follow-up The previous steps of the identification subprocess are intended to be executed
at a single meeting with all the required stakeholders present. This meeting is supposed to be
held during the planning phases of the systems engineering project. During this meeting the
bulk of the identification work should be finished. This means that all required parameters and
design constraints should be defined in the course of it. But in practice, this is quite unrealistic.

The requirements for the systems engineering project are never static, therefore, the data
models will constantly evolve. This creates the need to update the defined structures during
project runtime. Because, certain parameters will appear after the process has started. New
models are continuously introduced during the project. Stakeholders will want to define new

49

design constraints on these new parameters. These are just a few reasons on why a mechanism
for further parameter definitions and updates after the initial meeting is a must.

Because the MMD process has to be accompanied by appropriate MMD software to yield
benefit, it is proposed that the designated software tools handle the follow-up phases. This makes
sense, because in the middle of the process the software will already be in use and be the central
element of the MMD approach. The implementation of the follow up is suggested below.

Implementation Suggestions

For the initial identification sub-steps (1-6) described, groupware tools such as the EasyWinWin
tool suite [43], can be used. But after this initial setup, an MMD dashboard should provide the
possibility to negotiate models without personal interaction.

For the follow-up phases, it is suggested to implement a simple request-response negotiation
pattern between the stakeholders. The concrete implementation should provide stakeholders the
possibility to ask for additional models, which were missed in the kickoff meeting. Furthermore,
the stakeholders should be able to offer their own models in response to a request, which in turn
can either be declined or accepted. When a model offer is accepted, the offerer is asked to
publish the offered models.

For the subscription part, a publish-subscribe system [46] is suggested. The topics in this
publish-subscribe communication are the variables and design constraints. As typical, stake-
holders subscribe to the topics and whenever an update to those is published, notifications are
sent to the subscribers.

6.3.2 Definition of Data Sensors

Goal

The goal is the definition and implementation of data sensors for all identified interdisciplinary
parameters, which are able to extract the current values of these parameters from domain-specific
data models.

Inputs

• List of parameters.

• Model file information.

• Existing data sensors.

Outputs

• Openness analysis results.

• List of parameters that have to be managed manually.

• Data sensor implementations.

50

Figure 6.3: The data sensor concept in IDEF0 notation

Description

The main task of a data sensor is to locate the current value of an interdisciplinary parameter
within a domain-specific data model. This means that given the description of a certain parame-
ter location, a data sensor should not only be able to extract the contents of the model files, but
also to locate the desired value within these contents. This is not an easy task because of the
heterogeneous data sources involved. Every file format has unique properties, allowing and/or
prohibiting various ways to access the data stored within. The concept of a data sensor is visu-
alized using IDEF0 notation in figure 6.3. It shows how a data sensor is supposed to operate.
Given model files and a location description expressed in a predefined dialect, the data sensor
extracts the parameter values from the model files by utilizing a file parser, while dealing with
file type specific rules.

In general, organizations do not only work on a single systems engineering project. During
the organization’s lifetime, they work on various projects and although the used tooling and data
models are ever changing, there will always be a state-of-the-art tool set in each discipline for
a significant time window. It is these models, where it is the most beneficial to have data sen-
sors for. Of course, the necessity for the development of further data sensors never ceases to
exist completely, because there will always be new versions or replacements for each tool being
released. But, thanks to the slow adaption rate of new software in big industries, backwards
compatibility is, at least to some extent, often provided. The concept of data sensors benefits
greatly from this. Often times, it makes the implementation of new data sensors for new ver-
sions of already implemented file formats easier. Many times, the existing data sensors can be
updated to fit new tool versions instead of being rewritten from scratch. Therefore, regardless of
the size of the overarching systems engineering projects, only a handful of different data sensor
implementations is needed per project. Many of these data sensors may already be existing from
previous projects or can be implemented on the basis of existing data sensors.

51

The following steps are proposed to define data sensors for a specific systems engineering
project.

1) Check existing data sensors An important aspect of the data sensors is their reusability.
If the parameters, contained in the list of interesting parameters taken from the identification
phase reside in data models where data sensors have already been implemented in the past, like
for example in a previous project, then those data sensor implementations should be reused to
extract the parameter values in the current project. Although, it has to be checked, if the file
formats of the data models in the current project are of the same version as they were in the
previous projects. If there are differences, it has to be ensured that the existing data sensor
is compatible with the current model version. If they are incompatible, it has to be analyzed
whether compatibility can be achieved through slight updates or if a completely new data sensor
implementation is necessary.

2) Analyzing the tool sets for openness If no fitting data sensor is available for a certain
tool, a new data sensor has to be implemented. Before the data sensors get implemented, a
good starting point is to analyze the tool sets used withing the project for their openness. As
methodology to judge the openness of the engineering tools, the evaluation method provided
by Barth et al. [47] [48] is proposed. In this evaluation method, tools are graded by fulfillment
of certain criteria in the categories: import, export, completeness and documentation. For a
complete description of the evaluation method, please check the work of Barth and Drath in the
bibliography.

Following this tool evaluation methodology, all tools used within the systems engineering
project should be analyzed for their openness. Obviously, the criteria category export is the most
essential one for the MMD approach. Within this category, the ability of engineering tools to
provide access to the data managed within the tools is rated. One specific criteria deserves a
special mention in the MMD context. The export criteria called “export format”. Three types of
export formats are distinguished:

1. File based by means of open and standardized file formats.

2. File based by means of accessible but proprietary file formats.

3. Software based by means of a dedicated Application Programming Interface (API).

A high rating in this criteria is necessary to effectively utilize the MMD approach. Failing this
criteria means that there is no way to access the data managed by the tested engineering tool.
Therefore, this tool is unable to take part in an automated extraction process which means no
data sensor can be written for it. The management of the interdisciplinary parameters relying on
tools that fail this criteria, still has to be done manually.

The other criteria categories are useful to the MMD approach as well but not to the same
extent as the export criteria. The import category contains criteria similar to the export category,
but grading the ability to import data, rather than export. While not directly of use to the MMD
approach, a high openness value in the import category allows for more flexibility in export

52

format selection. This is because, tools which can import a large amount of different formats
have a higher probability to share a data format with another tool.

The completeness category provides criteria that grades to which extend the data from the
tools can be accessed. Tools that export only part of the model data have a lower ranking in this
category than those providing full unrestricted access to the complete data. For the MMD, it is
an interesting measure, because it indicates which data is contained in an export. Therefore, it is
a measure of which parameter values can be extracted and which can not.

The documentary category grades the documentation of the tool’s capabilities defined in
the former categories. A high rating indicates proper documentation of the tool’s interfaces
and formats, which provides a valuable source of background information usable during the
implementation of the data sensors.

The openness analysis should be conducted for every engineering tool used within the sys-
tems engineering project. For each discipline, the important tool sets have to be identified and
analyzed. The results provide the base for the further steps.

3) Selection of the export formats Based on the results of the openness analysis, the export
formats to focus on need to be chosen. For each engineering tool used in the systems engineering
project, an export format has to be selected, which is then used to export and exchange data
throughout the project. A data sensor will then be implemented for each of this formats.

In theory, the format category enumeration provided in the previous step at the openness dis-
cussion already shows a ranking which kind of export format is to prefer. Open and standardized
file formats are the best choice, because they can be read without any compromise. Their open
nature typically ensures that there are free file parsers available, which can be used to implement
the data sensor. And if no parsers are available, as a last resort, the standards behind the format
can be used to write a custom parser from scratch.

Accessible but proprietary file formats are also feasible, but may imply some problems,
e.g. parts of the format could be locked, missing format documentation, documentation is often
behind the implementation, etc. Data sensors on proprietary file formats need to be updated
more often than those building on standardized formats.

The API access is the least preferable choice used only when the data cannot be exported
to any readable file format and has to be manipulated within the tool itself. A data sensor can
be written for this kind of tools, but should be avoided because of the need for a tool-specific
data sensor implementation instead of a format-specific one. Updates to the tool will always
imply having to update the data sensor, making the maintenance of data sensors for these kind
of tools the most costly. For the remainder of this chapter only the file-based approaches are
being explored.

Additional arguments to consider during the selection process:

• The trade-off between the amount of different formats and the implementation effort of
the necessary data sensors.

• The utilization of data formats which are shared between multiple tools, in order to reduce
the amount of different formats to write data sensors for.

53

• The completeness of the export format such that all fields targeted by interdisciplinary
parameters are covered.

• The existence of a structured query languages or other ways of fine-grained access to the
export’s contents.

• The acceptance and distribution of certain formats within the organizations.

4) Transform closed file types For those tools that fail the openness check and do not of-
fer accessible export formats, transformations have to be discovered. These transformations
should transform the closed, inaccessible exports to open and standardized formats. If such a
transformation is discovered, the transformation should be integrated into the data sensor im-
plementation. By doing this, the stakeholders do not need to transform the models by hand and
additional workload is avoided. If such an integration is not feasible, for example like when
the transformation solution is another closed tool set, the transformation steps should be docu-
mented in the project documentation. The documentation should contain any steps necessary to
create an open version of the data export. The data sensor is then programmed to work with the
transformed format of the export.

If such a transformation solution cannot be found, the monitoring of the non-open tool ex-
ports cannot be automated. Instead the interdisciplinary parameters defined on those models still
have to be monitored manually. These parameters should still be integrated into the automatic
constraint evaluation done later in the process, although the value extraction has to be done by
hand.

5) Implement data sensors For each defined export format, a data sensor to extract arbitrary
interdisciplinary parameter data has to be implemented. It is advised that each data sensor
implementation covers the extraction of one specific export format or a family of similar export
formats. The data sensor has to deal with all the format’s specifics to extract the parameter values
from the contents.

An important aspect of a data sensor is its reusability. The reusability should be ensured by
two ways. First, the data sensor implementation has to be able to handle all files of a specific
export format. It should not be tailored to a specific instance of a format, but rather encapsulate
all logic to access arbitrary data within all files of this format. Second, the data sensor should
be configurable by the stakeholders. It should not be implemented to extract a fixed set of fields
from the model files, but should rather take input from the engineers on which data fields to
extract. The possibilities for the stakeholders to define which data to extract vary greatly with
the export format the data sensor is implementing. Some common file formats and the different
variants for fitting ways of user input are described in the implementation suggestions below.

Implementation Suggestions

In order to implement a data sensor for a specific file format, two things are needed:

1. A way for the engineers to define the parameter value’s location within the file’s contents.

54

Figure 6.4: Concept of a data sensor for XLSX files in IDEF0 notation

2. A reader implementation that can parse that specific file format.

Obviously, a complete list of all possible file formats in existence, which could potentially
act as the source of interdisciplinary parameters, is not feasible in the scope of this thesis. To
provide representative examples, some common formats for systems engineering projects are
listed with suggestions on how to implement the required data sensors.

Spreadsheets Spreadsheet file types are used with tools such as: Microsoft Excel1, Apache
OpenOffice2 or LibreOffice3. These tools are common in most engineering projects and are used
for many different use cases. These use cases reach from the simple management of engineer’s
time sheets up to complex budget calculations.

Due to their widespread usage, these tools support a wide array of different file export for-
mats. Another advantage gained through their wide distribution is that there was a great interest
in the past to make the various used formats compatible with different tools. This lead to the
fact, that nowadays all the big spreadsheet-based tools use an open and standardized file format
as their main export format. Excel’s XLSX format is based on the ISO/IEC 29500 [49], while
most of the other tools build on the ISO/IEC 26300 [50]. The openness of this formats made the
implementation of various parsers possible, that can be used to implement the data sensors.

To make the data sensors for this formats reusable, a way for the engineers to define the
parameter location is needed. It is suggested that the engineers get the possibility to define
either:

1Office:http://office.microsoft.com/
2OpenOffice:http://www.openoffice.org
3LibreOffice:http://www.libreoffice.org/

55

http://office.microsoft.com/
http://www.openoffice.org
http://www.libreoffice.org/

Figure 6.5: Concept of a data sensor for XML files in IDEF0 notation

• The cell of the target value.

• The name of a named cell.

• The name of a named formula which is evaluated to the target value.

All three of this access methods are largely supported by open source parsers available for the
open file formats. As an example, the concept of a data sensor for the XLSX format using the
IDEF0 notation is shown in figure 6.4.

XML-based formats Today, many file formats are based on the Extensible Markup Language
(XML). XML 1.0 [51] is one of the most well known, most adapted, most used, open standards
in existence. Many tools support XML exports, because of the compatibility with other tools.
XML exports are a common way of transferring data from one tool to another. Because of its
wide distribution, there is lots of tooling available to work on XML files.

Therefore, implementing a data sensor for XML based files is pretty straight forward. A
multitude of free parsers is available to access the data contained in XML files, for example the
Document Object Model (DOM) or the Simple API for XML (SAX).

To enable a project member to specify the location of a parameter within a XML file, the
XML Path Language (XPath) [52] is proposed. It is a structured query language which allows to
extract single nodes from XML files or to evaluate queries on them. An example for a potential
XML data sensor is shown in figure 6.5. To help stakeholders in the definition of XPath expres-
sions which specify the location of an interdisciplinary parameter, XPath editors are available
and their usage is advised.

56

Figure 6.6: Concept of a data sensor for PDF files in IDEF0 notation

Text Exports Today, many file formats are open and text-based, such as simple TXT files.
But, even more rich and complex file formats such as the Portable Document Format (PDF) are
often open for text extraction processes. For most prominent file formats, there are parsers that
can extract the textual contents of these formats.

In general, the extracted textual content is not structured. There exists no standard query
language to locate values within pure text. Locating values in an arbitrary text in a way that they
can still be found again after the file has changed is challenging. The reasons for this lie in the
way how these text extracts are created. Many text extractors go over the binary contents of a
file and simply gather all the text they can find. They do not collect the data in a structured form,
such as key-value pairs, but rather output a single unstructured text dump. This way, the contents
often contain false-positives, such as data-blocks which were mistakenly considered text. Also
the text often gets collected in the order it is stored within the file and not how it is perceived by
the engineer using the tool. For this reasons, even slight changes to a model file can lead to huge
changes to the correlating text export.

Therefore, it is important to choose a text extractor implementation that is consistent in its
extracting processes. That way, at least it can be assured that the text export will always be
generated in a similar fashion. That small amount of consistency is necessary to predict how
parameters will move on model changes.

To allow the engineer to define the location of a value within an text-based export format,
the following possibilities to tag positions in text are suggested:

• Wildcards.

• Regular expressions.

• Start- and end-tags.

The general concept is again shown as IDEF0 in figure 6.6.

57

6.3.3 Model Collection within Common Repository

Goal

The goal of this step is to define a central repository, where model files can be uploaded to make
them available to all involved stakeholders. Further, the repository provides versioning, enabling
stakeholders to track the values of interdisciplinary parameters over time and to revert invalid
parameters to a previous version.

Inputs

• Model files.

• Model updates.

Outputs

• Repository status.

• Updated models.

• Versioning history.

Description

During the course of a systems engineering project, the individual models grow independently
within their origin domains. But quite often the situation arises, where stakeholders want to
access the models of different domains. Although it can not be ensured that they will actually
understand other discipline’s models, providing access to all models in the overarching project
helps in those cases where they do. In the remaining cases, having a central repository is also
helpful because it makes collaborations over spatial distances easier.

Therefore, the MMD proposes that a central storage for all models across all disciplines is
created. This central repository should be available to all success-critical stakeholders in the
project. Whenever, an engineer deems his progress worthy to be propagated to other engineers,
he uploads his updated model files to this central repository. From there, other interested users
can access the models and include them in their further work process. The central repository
represents the current state of all the data models circulating in the systems engineering project.

An important aspect of the repository implementation should be the versioning aspect. The
repository should keep track of all the model’s history and should grant access to past revisions.
Accessing past model versions is important, because in case of a design error, one can reiterate
the past changes and, if necessary, return to a previous version of the model files. If certain
design constraints are broken without any chance of recovery, sometimes a setback to a previous
revision is the only way.

For the MMD, versioning is particularly important because history data is necessary to track
the development of interdisciplinary parameters and design constraints. Based on the version-
ing data, an implementation of the MMD approach should be able to display how parameters

58

changed over time with model changes. Additionally, it enables the possibility to formulate
design constraints over multiple iterations of a parameter. An example for such an constraint
would be that a certain value must never be outside a certain percent range of its initial value, or
that the difference between two model versions never exceeds a certain threshold.

Implementation suggestions

The implementation of the common repository depends strongly on the amount and the file types
of the model files. There are many options how to implement a common repository such as a
custom implementation, file servers with versioning file systems, file hosting services, version
control systems, etc. All these different implementations have their individual pros and contras.
An analysis of the potential data models and an estimation of the approximate data volume
should be conducted to make a proper decision on which route to go.

As a general suggestion for the average systems engineering project on how to implement
the MMD repository, the usage of a version control system is advised. Nowadays, some typically
used version control systems are: Git4, Subversion (SVN) 5 and Mercurial6. The usage of one
standard version control system is advised because they are already widely used in many current
engineering projects. Typically, engineers are familiar with these tools. Choosing a version
control system for the MMD implementation, within a project where one is already present,
yields a couple of additional benefits:

• Minimal effort for the project members to learn new tools.

• Minimal change to the existing work processes.

• Easier adaption of the MMD due to already existing infrastructure.

An important aspect of most state-of-the-art version control systems is their customizability.
Most version control systems provide some mechanism to customize their standard workflow.
A common approach is that they provide hooks which can be used to execute custom scripts
whenever certain important actions occur. As discussed in the next step, these hooks can be
used to tailor the data sensors into the workflow. In that case, data sensors could then be exe-
cuted whenever important updates are pushed to the public version control system. If there is
no version control system currently used within the project, the choice for one should take its
capabilities to easily integrate the data sensors into account.

The version control system should be configured for all stakeholders in the systems engineer-
ing project. It should be placed in a server environment accessible by all participating engineers.
The concrete setup steps for a version control infrastructure are out of the scope of this thesis.
Version control systems are some of the most explored software tools, so proper documentation
is publicly available.

4Git:http://git-scm.com/
5SVN:http://subversion.apache.org/
6Mercurial:http://mercurial.selenic.com/

59

http://git-scm.com/
http://subversion.apache.org/
http://mercurial.selenic.com/

6.3.4 Variable Evaluation

Goal

The goal of this step is to define an evaluation strategy on how to create evaluable variables from
defined parameters by using the previously implemented data sensors to extract data from the
versioned model files.

Inputs

• List of parameters.

• Data sensor implementations.

• Updated models.

• Versioning history.

Outputs

• Evaluable variables

Description

The main task of this step is the definition of variables. A variable in the MMD context repre-
sents an automated version of an interdisciplinary parameter with its current value in the systems
engineering project assigned. The variable is created by configuring a data sensor implemen-
tation (from step 2) with the definition of an interdisciplinary parameter (from step 1) and
executing it on the appropriate model files from the common repository (from step 3). An
variable evaluation strategy has to put these three things into correlation in a structured way that
satisfies the requirements of the overall project. By decoupling the variables from the model files
through the data sensor layer, the variables are open to automatic reevaluation on model changes
and can be used in automated design constraints without hard coding the specific parameter
values.
The implementation of the variable evaluation strategy can vary in three major points.

1. When and how are variable update processes triggered?

2. Where are the data sensors placed?

3. Should the values for the variables be cached?

The alternatives are briefly discussed below. In general, these are not exclusive choices. In
special cases, depending on the project and the involved models, it might make sense to mix
some of these approaches. Although, this should rather be the exception from the rule. Im-
plementing multiple variable strategies simultaneously makes the implementation of the MMD
more complicated and it also makes the MMD as a whole harder to use and to understand for
the stakeholders, therefore, counteracting the original intent of the MMD.

60

Push vs Poll Over time, model files will get updated, which means, variables will need to
be reevaluated to reflect these changes. In general, there are two ways how variable update
processes can be triggered.

First, the process can be triggered by a push. A push is an explicit manual action from
a project stakeholder. This action can be invoked either directly or indirectly. For the direct
invocation, the user calls the data sensor directly to update variables. For the indirect approach,
the execution of the data sensors is tied to another one of the engineer’s tools. For example,
the data sensors could be wired into the version control cycle and extract the values every time
an engineer makes updates publicly available. The engineer would then use his version control
tools as usual with no change to his work pattern and no additional workload is created for him.

Second, the variable updates can be done periodically. In regular time frames, the data
sensors are polled for updates. This approach can be desirable in certain rare scenarios like
when the model data is provided by a machine which is not operated by a human who could
send the push. But, there are some points to consider during the implementation of a polling
mechanism.

1. How long does the time between the update intervals need to be? Too long intervals might
lead to delays in update discovery, while too short ones might cause too much workload
on the data sensors.

2. A mechanism for the engineer to mark changes as ready for parsing, so no uncommitted
data is polled.

In general, if applicable, the push variant is the alternative to prefer because it is less error-prone
and simpler to implement than polling.

Centralized vs Decentralized The second major decision in creating a variable evaluation
strategy is the placement of the data sensors. The sensors can either be placed at a central
place, where they have access to all the data models, or distributed over the workstations of the
engineers, close to where the changes to the data models are done.

In general, the centralized approach is the better alternative to implement. With all the
data sensors collected at one place, there is only a single source of potential errors. It also
keeps the stakeholder’s workstation clean and eliminates the possibility for an user error. It’s
also much easier to implement. A good location for the data sensors is within the same server
infrastructure environment which the common repository of the previous step uses. By placing
the data sensors there, they have access to all the models which are intentionally shared by all
the involved engineers.

On the other hand, the decentralized approach should only be used if there is no choice to
employ the centralized approach for certain models. A typical example where decentralized
evaluation is necessary is with the usage of tools that are only open to software API access (see
section 6.3.2). Because these tools offer their data only through the running application’s API,
the data sensors have to be placed close to the engineering tool, typically on the workstation the
tool runs on.

61

Caching vs Live Data The whole purpose of the MMD is to provide an overview of the current
state of interdisciplinary parameters to the stakeholders. Therefore, stakeholders will request the
values of certain variables multiple times during the project. This means that for the variable
evaluation strategy, another decision has to be made on how variable requests and queries shall
be handled. In general, there exist two different possibilities: on-the-fly evaluation or caching.

The variables will be reevaluated from time to time when data models get updated. In some
project phases, such as the early design phases, models will be changed frequently. Depending
on the amount of data models and the file types of these, the reevaluation of certain variables can
be a resource and time consuming task. This situation is made worse if the MMD has to handle
a large number of concurrent requests.

If the MMD solution should scale to accommodate for a large user base, a caching solution
is needed. While accessing and parsing the data models on each request might be suitable on
a small project scale, the systems performance will steadily degrade with a growing amount of
users and data models. Often times, interdisciplinary parameters are of interest to more than one
engineer. There is a large optimization potential, if the variables are only updated when models
change and requests only return the cached value from the last evaluation.

Although these approaches can be combined arbitrarily, the following two combinations pro-
vide the best matches:

1. push - centralized - caching

2. poll - decentralized- live data

push - centralized - caching The first possibility is the one that is advised for most systems
engineering projects. As already mentioned, most systems engineering projects will already
have a central repository on which they store the various data model files. Often, they are
managed with version control systems. Therefore, there is already a centralized place where
the data models are stored and which provides the possibility to integrate additional logic with
hooks in the version control system. So going for a centralized variable evaluation strategy
seems natural.

A push-based approach fits this centralized approach, because the act of moving new models
or model updates to the centralized place fulfills the definition of a push. By committing new
data to the centralized storage, the engineer explicitly states that his data is ready for others to
see. Therefore, it is also ready to be parsed and analyzed from data sensors for interdisciplinary
parameters.

Because changes are only done to the common state between all stakeholders in the form of
explicit pushes to the centralized repository, there is no need to trigger the data sensors outside
of a push. Therefore, caching the extracted data is a perfect fit for this combination.

poll - decentralized- live data The second combination is harder to implement, because prob-
lems, typical for distributed computing, arise. It should primarily be used if the data models to
observe have to stay on the engineers machine for arbitrary reasons, such as tools only accessible
through their software API.

62

Figure 6.7: The proposed variable evaluation strategy

In these scenarios, the data sensors have to be placed in decentralized locations, often on
the engineer’s workstations. With the data sensor’s being placed closed to the data models out
of necessity, polling is a good fit to the decentralized approach. Without polling the user would
have to use a separate mechanism to commit his local data to the data sensor. This alters the
engineer’s workflow and opens room for user errors. With the data sensors being distributed and
polling used on the data models, the usage of live data is a given.

Implementation Suggestions

For the average systems engineering project, a push-oriented, centralized architecture with pa-
rameter value caching is suggested. Under the condition that a version control system is used
for the common repository, the following variable evaluation strategy is proposed. The proposed
strategy is visualized in figure 6.7.

The change detection should be implemented using the capabilities of the individual version
control system. The hook mechanic of these systems can be used to weave the data sensors into
the version control work flow.

A good integration point for the data sensors are updates to the repository’s main branch.
Branches are a common concept among version control systems and one of them is usually the
official core branch, which is shared among all participating engineers. An example for such
a branch is the “master” used with the widely used git version control system. This branch

63

is usually rigorously administered and contains only data deemed appropriate for sharing with
other engineers. Therefore, this branch is the ideal integration point for the data sensors.

A custom hook should be implemented that, whenever an update is done to the main branch,
pushes the changes to the data sensors. That way, the data sensors are only called when changes
to the shared state of the project are done. Additionally, a filtering on what data sensors have to
be called can be done within the hook, based on the changes discovered by the version control
system.

With the current state of the project gathered within a single repository, it makes sense to
also put the data sensors in a centralized location. If possible, the data sensors should sit within
the same server environment as the common repository to further ease the access to the model
files. Close proximity with the common repository allows the data sensors to access the contents
of the repository directly, keeping the implementation simple.

To increase the scalability of the solution caching of the extracted values within a database is
suggested. The push-based approach allows to identify those times where variables are updated.
Between these times, the value of an variable remains constant within the shared state. Caching
these values within a database rather than extracting them on-the-fly on a per-request basis can
therefore be effectively used to reduce the amount of unnecessary model parsing and the average
processing time per request.

6.3.5 Constraint Evaluation

Goal

The goal of this step is to define a mechanism to automate the evaluation of design constraints
using the current values of interdisciplinary parameters gained through variable evaluation.

Inputs

• Constraint definitions.

• Variables.

Outputs

• Evaluated Constraints.

Description

With interdisciplinary parameters changing constantly, mutually agreed upon design constraints
need to be reevaluated on a regular basis. The design constraints represent boundaries on in-
dividual parameters or restrictions on the relationships between certain parameters. A broken
design constraint should be reported in a timely manner to all the engineers it concerns, so that
these engineers can take countermeasures as early as possible.

Therefore, an automation of the design constraint evaluation is desirable to reduce the delay
between breaking a constraint and discovering the problem. The automation also reduces the

64

workload on the individual engineers by releasing them from the burden of having to check the
design constraints manually. In order to be automated, design constraints can be expressed in
various different ways, like for example:

• Mathematical equations using the relational operators.

• Expressions in propositional logic.

• Formulas in first-order logic.

• An algorithm description calculating a boolean value.

This list provides only a short example of different possibilities how to express design constraints
on variable values. The selection of a fitting way to let engineers express design constraints is
very important. Important decision criteria during the selection process are the expression power
of the chosen style and the capabilities of the stakeholders to define constraints in the chosen
style.

For example, most stakeholders will be familiar with equations using the relational operators.
But, a simple equation is limited in its expression power as opposed to an algorithm that can
handle much more sophisticated constraint calculations. On the other hand, providing an formal
description of an algorithm or even a program implementing the algorithm might be impossible
for engineers of certain disciplines.

The trade-off between the complexity of the used dialect for the stakeholders and the expres-
siveness of the dialect to cover a large array of different constraints has to be considered. An
analysis of the expression power for the various approaches is out of scope for this thesis.

After choosing a style in which the design constraints should be defined, a component has
to be implemented that calculates the current state of the design constraint based on the current
variable values. For each style there exist various different libraries and tools to evaluate ex-
pressions such as: script engines, SAT-Solvers, etc. By using these expression-specific tools, a
component that evaluates user-defined design constraints can be implemented. The concept of
the constraint evaluator is shown in figure 6.8.

Implementation Suggestions

In the typical systems engineering project most constraints will probably consist of mathemat-
ical equations putting boundaries on a single variable or ensuring that a relation between two
variables is always valid. In fewer cases, stakeholder will need to execute complex calculations
to ensure that the current state of the project is still valid.

To accommodate for both variants, the usage of a dynamic programming language as con-
straint expression language is proposed. These programming languages are often referred to as
scripting languages, because they are mostly used to write scripts, which are programs that are
tailored to a specific runtime environment in which they are used to automate tasks normally ex-
ecuted by humans. This definition fits our intent with the constraint expression language pretty
well.

In general, dynamic programming languages are defined as such, that programs written in
them can be executed without a separate compilation step. Most dynamic languages also make

65

Figure 6.8: The concept of an constraint evaluation component in IDEF0 notation

use of dynamic-type-checking. This is beneficial to an MMD implementation, because it al-
lows for easy integration of the variables whose data types are unknown during the constraint
component’s implementation.

JavaScript, which is an implementation of the ECMA-262 standard [53], or a similar dy-
namic language is suggested as programming language to define the constraints in. By using
JavaScript, both expression styles mentioned above can be covered. Mathematical equations,
such as x < y, are valid JavaScript expressions. This has the benefit that even users, who are
not familiar with JavaScript itself, can design simple design constraints without recognizing they
are actually using the scripting language. For algorithms, JavaScript is turing-complete and as
such can implement any algorithm. Therefore, it makes sense to define and store the constraints
as JavaScript code.

JavaScript is a widely accepted programming language and as such multiple tools which
support development exist. Depending on stakeholder’s experience, it is advised to integrate
either a full-fletched JavaScript editor or a expression builder tool into the MMD to support the
stakeholders during the design of their constraints. Regardless which tools are used to design
the constraints, the results should always be transformed to plain JavaScript in the backend. This
allows for more flexibility when designing the frontends used by the stakeholders. The following
editing options should be considered:

• A mathematical formula editor to cover most use cases and help stakeholders without
JavaScript knowledge.

• A full-fletched JavaScript editor for skilled stakeholders to help them implement complex
evaluation scenarios.

66

Figure 6.9: Description of constraint evaluation behavior in IDEF0 notation

The implementation of the evaluation component which calculates the validity of a constraint
itself is then straight forward. The main part of the evaluator is an engine that can run the
constraint scripts. It should be embedded into the component and is responsible for the actual
evaluation work.

The wrapping component does the parsing, resolving of related parameters, population with
variable values and forwarding those values to the script engine. The intended behavior of the
component based on a JavaScript implementation is shown in figure 6.9. The component should
implement the following steps:

1. Parse the design constraint for valid JavaScript.

2. Gather the variables referenced in the script.

3. Put variables into the JavaScript engine.

4. Evaluate constraint script.

5. Retrieve result from engine.

Depending on the approach taken at the variable evaluation, the constraint values should be
handled in a similar fashion.

67

6.3.6 Presentation / Notification

Goal

The goal of this final step is the implementation of a graphical representation of variables and
design constraints and the implementation of a notification mechanism for subscribers triggered
on variable or constraint change.

Inputs

• Variables.

• Constraints.

• Subscriptions

Outputs

• Dashboard information.

• Notifications.

Description

With all the pieces put together in the previous steps, the final step deals with the implementa-
tion of the eponymous “dashboard”. The dashboard is the general reporting tool for the MMD
approach. It is an application that is available to all stakeholders and that provides at a glance
the current values of interdisciplinary variables and design constraints. A quick and easy to use
implementation is an important factor to use the MMD approach to a positive effect. All the
improvements done in the previous steps do very little if the results are not properly presented.

If there has not been defined a fitting front end within the previous steps, the plain reporting
dashboard can be enhanced with support for the following configuration tasks:

• Subscribing and unsubscribing variables and design constraints (as defined in step 1).

• Uploading new models to the repository and watching the repository’s status (as defined
in step3).

• Definition of new variables (from step 4).

• Definition of new constraints (from step 5).

To further increase the awareness for interdisciplinary parameters and to reduce the delay
until important parameter changes reach the responsible stakeholders, a notification mechanism
is needed. Whenever variables and constraints change, messages have to be sent out informing
subscribers about the changes.

68

Implementation suggestions

This suggestion part is the most open in the whole MMD process. With so much depending on
the results of the previous steps, it is hard to give suggestions on how the presentation should be
done.

As a general recommendation, the implementation in the form of an web application is ad-
vised. This makes sense as the dashboard needs to be available to all project participants which
can be geographically separated. Additionally, web applications are a widely accepted style to
implement tools because of their compatibility and their large development community. New
web technologies are constantly emerging and best practices are constantly shifting. Unfortu-
nately, this leads to the fact that the possibilities how to implement a web application are count-
less. As such, it is by far out of scope for this thesis to provide a guide on how to implement a
web application. Chapter 7 provides an example of how such a dashboard application can look
like.

The notification part should be handled in two ways. First, by creating a page in the dash-
board web application to read messages sent by the system. Second, by implementing an external
notification system, like sending an email. With a combination of both, an adequate notification
system can be created that is easy to implement and manages to notify stakeholders reliably.

69

CHAPTER 7
Prototype Implementation

This chapter describes the software prototype for the MMD tool support. The design incorpo-
rates the requirements of industry partners (see chapter 5) and the general MMD procedure (see
chapter 6). The aim is to provide an example of how tool support for the MMD process could
be implemented. Of course, this is not the only possible way to implement the individual com-
ponents. There is a wide range of possibilities and design choices, how the process steps, as
described in the previous chapter, could be supported with software. The described prototype is
intended as a proof-of-concept research prototype according to Winkler et al. [10]. It provides
the base functionality for feasibility evaluation, but is not yet at a development stage where it
should be deployed to end users. However, it is a good foundation for further industrial product
development.

7.1 Architectural Overview

The architecture description makes heavy use of the UML 2 [54] [55] [56]. It has to be noted
that UML is a very large modeling standard, which might be too verbose for certain tasks. It is
not the intention of this section to provide a fully UML compliant description of the architecture.
Details are omitted whenever it gains an increase in readability and makes the description easier
to understand.

The structure of this description is based upon the 4+ 1 view model of architecture by
Kruchten [57]. Kruchten defines five views which describe a software architecture from dif-
ferent viewpoints. The views and their relationships are displayed in figure 7.1. The 4+ 1 view
model only specifies the contents of each view and not how they are modeled. To find fitting
UML diagrams for each view, the guidelines provided by Applying 4+1 View Architecture with
UML 2 [58] are followed.

Since Kruchten envisioned his model to be used for large distributed software systems of an
industrial scale, some slight adaptations are made to make the scope of the view model better fit
the scope of this thesis. The main ideas by Kruchten are still followed, but with less focus on

71

Figure 7.1: The 4+ 1 view model [57]

different stakeholders. There is only one stakeholder for this chapter: software engineers who
seek to implement the MMD. Therefore, the structure of the following sections focuses more on
the technical aspects and adapts the 4+ 1 views as follows:

1. Use Case View: The Scenario or Use Case View(see section 7.3) is defined by Kruchten
as set of important scenarios, which show that the elements of the other four views work
seamlessly together. The use cases describe the behavior of the system as it is seen by its
stakeholders. Usually, this view is the last one described, because it shows how all the
other views tie together. It takes the first spot within this thesis to show what functionality
the prototype is capable of, before diving into the architecture. The view description
contains the implemented use cases pictured as an UML use case diagram.

2. Logical View: The Logical View (see section 7.3) is also called the object-oriented de-
composition. It focuses on realizing an application’s functionality in terms of structural
elements, key abstractions and mechanisms, separation of concerns and distribution of
responsibilities. This decomposition also serves to identify common mechanisms and de-
sign elements across the various parts of the system. For this thesis we describe the key
elements of the prototype with the help of UML class diagrams.

3. Process View: The Process View (see section 7.5) deals with the dynamic aspects of a sys-
tem. This view considers non-functional requirements such as availability, performance,
scalability, etc. It addresses the issues of concurrency, distribution and fault-tolerance.
The most important part of it is that it shows how the elements from the Logical View

72

interact and communicate during the runtime of the system. Since non-functional require-
ments are not a big concern for a research prototype, we focus on the interaction of the
elements during the most important processes. The graphical representation consists of
UML sequence diagrams.

4. Development View: The Development View (see section 7.6) deals with software module
organization. The software is described on the abstraction level of components used to as-
semble and release a physical system. An important part plays the definition of interfaces
between the components. The description of the relationships between the components
uses the UML component diagram notation.

5. Physical View: The Physical View (see section 7.7) is often called the software-hardware
mapping. It shows how the software components from the Development View get dis-
tributed on hardware to form the runnable system. Because this is only about executing a
research prototype and no large-scale application, there is not much emphasis on this view.
Only a short description of the prototype deployment environment is provided, using an
UML deployment diagram.

For those not satisfied with the level of detail provided in this chapter, the source code is available
at Bitbucket1. It is advisable to read the source code alongside this chapter.

7.2 Mapping to MMD process

This section briefly summarizes how the steps of the MMD process from chapter 6 are mapped
to prototype components. It describes which component does which task provided in chapter 6.

Identification of Parameters A simple publish/subscribe system is implemented, as sug-
gested in the process description. Variables and constraints are the topics which users can sub-
scribe. If the values change, the subscribed users receive notifications. The subscription mech-
anisms for variables and constraints are implemented in their respective service components,
VariableService and ConstraintService (see section 7.4.4). The subscriptions can
be manipulated through the web interface (see section 7.4.6).

Definition of Data Sensors The data sensor concept is implemented in the SourceReader
class hierarchy. The various SourceReader implementations encapsulate the logic to extract
specific values from different file formats. For each file format a special way of accessing the
data is used, such as XPath for XML files, PDFBox for PDF files, etc. The whole implementation
of the data extraction is shown in section 7.4.3.

Common Repository The common repository step is implemented using the git Source Code
Management (SCM) system. A server-side git repository is used to host the model files and
provide versioning for them. The git-repository also provides the prototype with the necessary

1available at:https://bitbucket.org/lstampf/mmd; last accessed: 15-January-2014

73

https://bitbucket.org/lstampf/mmd

files for data extraction. Users can clone the repository to get their own copy of the workspace
to work with. Updates are sent through the standard git client. The implementation is described
in section 7.4.5.

Variable Evaluation This prototype implements a centralized variable evaluation mechanism.
The data sensors sit right on top of the common repository and extract the data on model file
updates. The change detection is done by intercepting a git push to the git repository. The
changed data is then forwarded to the DataSensorService (see section 7.4.4) to extract
variable values. The whole process of variable updates is shown in the process view (see section
7.5).

Constraint Evaluation The constraint evaluation is implemented using a JavaScript engine.
This engine is embedded into the ConstraintService component. The constraints are
defined as JavaScript expressions that the ConstraintService can evaluate to a boolean
value. Defined variables can be used within the JavaScript code as if they would be defined
in the script itself. The concrete implementation is shown in section 7.4.4. The process of
update propagation to constraints whenever variables change is described in the process view
(see section 7.5).

Presentation / Notification There are two front ends for the user to use. The first is the normal
git client used to upload the model files. The remaining functions are accessible through a web
interface. Within the web interface a user can negotiate parameters, manage his subscriptions,
define new variables and constraints and read his notifications. Examples of the web interface
are shown in section 7.4.6.

74

Figure 7.2: The use cases implemented within the prototype

7.3 Use Case View

Within this section the use cases that a user can perform with the prototype are shortly summa-
rized. Figure 7.2 provides an overview of the implemented use cases in the form of an UML use
case diagram. For each use case a brief description is provided. Interested readers can find an
in-depth description based on the RESCUE template in appendix B.

7.3.1 Actor Description

An industrial implementation of the MMD will contain a multitude of different user roles, e.g.
administrators, read-only subscribers, publishers, etc. Each role would have certain permissions
to access the various functions in the system. But, permission management is not the focus of
this research prototype. Therefore, a general user role is defined, who has the permissions to
access all functionality of the prototype. The individual users of this role are still distinguished
in order to show the interaction of various users within the system.

75

7.3.2 Use Case Descriptions

1) Request Model Using the prototype, the user is able to request new models from other
users, if some are missing that are necessary to evaluate critical parameters. The user has to
enter a description of the model he requests, so that other users understand what he asks for. The
model requests are then displayed to other users.

2) Offer Model If a user owns models that are requested by other users, the model owner
can create a model offering in the system. The user has to enter a description for the offering,
allowing the requester to make an elaborate decision. A notification is then sent to the requester
to notify him about the offering.

3) Accept Model The user is able to accept or decline models that are offered to him. Accept-
ing an offer will close the correlating model request. A notification is then sent to the offerer to
notify him if the requester accepted his offer or not. The offerer is expected to act accordingly
and publish the necessary models in case of an accept.

4) Publish Model In response to an accepted offer or proactively, users can publish models.
The published model files are submitted to the system by adding them to the git workspace.
Then use case 5 is executed.

5) Update Model The user updates his models in his own git workspace. Once the changes
are ready to be propagated to other users, he submits them to the system by using git push on the
master branch. If there are variables defined on the models, the changes are extracted and the
variables updated. If these variables are used within constraints, a reevaluation of all affected
constraints is triggered. Notifications are sent to subscribers when variables or constraints get
updated. The results are shown in the web interface.

6) Define Variables The user is able to define new variables based on already present or
promised models. Th user enters all the important information, such as: referenced model file,
data sensor to use, type of the value and location of the value. If the necessary models are al-
ready uploaded to the system, the necessary data is extracted and the variable is set. Otherwise
the variable is marked as uninitialized.

7) Define Constraints The user can define constraints on variables. The constraints can be
mathematical equations or arbitrary JavaScript algorithms. The user is presented an editor that
supports him writing the constraint. The constraint is immediately evaluated and the result is
presented to the user.

8) Subscribe Variable The user is able to subscribe variables of other users, which allows him
to track changes to the variable. Any change to a subscribed variable will result in a notification
sent to the subscriber.

76

9) Subscribe Constraint The user is able to subscribe constraints, in order to get notified
if an design constraint goes invalid. Out of necessity, subscribing a constraint automatically
subscribes all variables used within the constraint.

7.4 Logical View

In this view, the prototype implementation is decomposed into software modules, of which the
most important ones are described in detail. The description focuses on the core functionality,
especially on the technically more challenging parts. Helper classes, utility classes, boilerplate
code, etc. are kept out to avoid bloating of this section. Interested readers are again encouraged
to download the source code to get all the details. The following key parts are shown:

• Subsection 7.4.1 defines the domain model classes.

• Subsection 7.4.2 shows the data persistence implementation.

• Subsection 7.4.3 describes how the MMD data sensor concept is implemented.

• Subsection 7.4.4 describes the business logic services acting within the system.

• Subsection 7.4.5 explains the GitServlet implementation.

• Subsection 7.4.6 shows the created web interface.

7.4.1 Domain Model

According to M. Fowler the domain model is “an object model of the domain that incorporates
both behavior and data” [59, p. 116]. Figure 7.3 displays a segment of the actual domain model.

Figure 7.3: The core domain classes

77

The figure focuses on those domain objects that are used throughout the most of this chapter.
They are the subject of most of the functionality and have persistent character, therefore match-
ing Fowler’s definition. ModelRequest, ModelOffering and other minor domain objects
are omitted because they are only used in the technically easier parts of the prototype.

The domain models are briefly described:

User The User class encapsulates all user related data. In this prototype, a very simple im-
plementation is used because user management is not a concern. Thus, only a few fields are
necessary to simulate different logins. The self-explanatory properties defined are: userName,
password, firstName and lastName.

Notification The Notification class encapsulates a message that is sent from the system
to one concrete user. The only notification channel implemented is through the web interface.
That means, the notifications are always residing within the system. Therefore, we need only a
minimal set of properties: receiving user, subject of the notification, the actual message
and a read flag isRead.

Variable The Variable class is, next to the Constraint class, the most important do-
main model class. Each object of the Variable class represents one defined interdisciplinary
parameter in the MMD context. As such, there are the following references and attributes:

• name: The name of the interdisciplinary parameter.

• value: The current value cached and stored for the parameter.

• type: The type of the parameter. In praxis, there is a vast number of potential types, e.g.
numbers, text, matrices, cartesian coordinates, etc. Because most types can be reduced to
numeric or textual types, we limit this prototype to these two. The potential enum values
for this field are “TEXT”, which is mapped to java.lang.String, or “NUMBER”,
which is mapped to java.lang.Double.

• location: A reference to the Location object that defines where the values for this
parameter come from.

• creator: The User that created this variable.

• subscribers: A Set of User objects, representing the subscribers of the parameter.

• constraints: A collection of Constraints in which this parameter is used.

Location The Location class encapsulates all information to locate the value for a variable
within the data model files. Each variable has exactly one location. The Location objects are
the main input for the data sensors. Different file models imply different variants of data sensors
and location definitions. The details, about the usage of the Location objects and the data
extraction, are shown alongside the data sensors in subsection 7.4.3.

78

Constraint The Constraint class represents a design constraint in the MMD context. The
Constraint class encapsulates all information necessary to evaluate a constraint expression
to either true or false. It contains the following attributes:

• label: The label of the design constraint.

• valid: The boolean value indicating which truth value this constraint is currently evalu-
ating to.

• constraintDefinition: The JavaScript expression that is evaluated to create the
truth value. The expression can include variables, defined in the MMD, as if they were
defined in the JavaScript code itself. The result is cached in the valid field.

• constrainedVariables: The Set of Variables that are used in this constraint.

• creator: The User that created this constraint.

• subscribers: A Set of User objects, representing the subscribers of the constraint.

7.4.2 Data Repositories

The domain objects handle data, which has to be stored permanently. Examples include, but
are not limited to: variable definitions, constraint definitions or user details. For performance
reasons, the current values for variables and constraints are also cached. Although this intro-
duces synchronization problems during update processes, the caching of those values cannot be
avoided. The computing effort for the data extraction of certain model files is just too high to be
executed on a per-request basis.

A common pattern that goes well with Fowler’s domain model pattern is the Repository
pattern [60] by Evans. Evans says that “a Repository represents all objects of a certain type
as a conceptual set. It acts like a collection, except with more elaborate querying capability.”
In theory, Evans’ definition is not aimed to be a persistence pattern. It only defines a unified
way of accessing domain models. Although in practice, it is mostly used in conjunction with
persistent storage, e.g. relational databases, cloud storage, document storage, etc. Fowler takes
Evans’ idea a step further by specifically including persistence in the form of data mappers.
He defines the repository as mediator “between the domain and data mapping layers using a
collection-like interface for accessing domain objects” [59, p. 322]. Following these patterns,
the implementation of data repositories in the prototype contains the following parts:

• Repository interfaces to define collection-like access methods.

• Specification [60] [61] classes to formulate queries.

• An Object-Relational-Mapping (ORM) layer.

• A database as persistent storage.

79

For each domain object defined in subsection 7.4.1, a repository is implemented. To help with
the creation of the repositories, Spring Data [62] is used. Spring Data reduces the boilerplate
code and provides generic default implementations for collection-like interfaces. Listing 7.1
shows an example for a repository implementation, the VariableRepository.

@Repository
public interface VariableRepository
extends PagingAndSortingRepository<Variable, Long>,

JpaSpecificationExecutor<Variable> {

List<Variable> findByLocationPath(String path);
List<Variable> findByNameIn(Collection<String> names);

}

Listing 7.1: The VariableRepository

PagingAndSortingRepository and JpaSpecificationExecutor are interfaces
from Spring Data that define certain aspects. PagingAndSortingRepository defines
that, additionally to basic collection methods like add and remove, also sorting and paging
methods are generated. These are mostly used by the presentation layer. The interfaces do not
have to be implemented, objects implementing those interfaces are dynamically generated and
injected during runtime from the Spring container. The custom methods defined within the inter-
face, such as findByLocationPath, are generated as well, as long as the method signature
describes the intended behavior of the query. The JpaSpecificationExecutor enables
the repository to execute Specification queries.

The data mapping layer is implemented using the Java Persistence API (JPA). JPA is a
specification which provides interfaces, that allow persistence code to be written independently
from specific databases or ORM implementations. In this prototype, Hibernate [63] is used as
the ORM provider behind JPA. An H2 file-based SQL database is setup as persistent storage.
Hibernate is configured to create a relational database schema on the H2 database, based on the
JPA meta data set for the domain models. To keep the data consistent, especially the cached
values, the Java Transaction API (JTA) is used. The JTA transaction manager is provided and
configured by Spring.

With all those components in place the Repository pattern is successfully implemented. The
domain models can be stored and loaded to the database as if they would be put into a simple
collection. The whole implementation is independent from specific vendors or storage imple-
mentations. Changes to different types of storage, such as NoSQL databases or cloud services,
or different database vendors are just a matter of configuration. This is important for the further
industrial development of the prototype.

7.4.3 Data Sensors

The data sensors are implemented after the data sensor concept of the MMD approach (see
section 6.3.2). The aim of the data sensors is to extract the values from model files given to
the prototype. This prototype contains centralized data sensors that have access to a server-side
git repository. The data sensors don’t periodically poll the data files for changes, instead they
get notifications from the GitServlet. The triggering will be explained further down in this

80

chapter in the process view (see section 7.5), as this part focuses on the data extraction from the
model files.
public interface SourceReader<T> {

public abstract T read() throws SourceException;
}

Listing 7.2: The SourceReader Interface

The data sensor implementations within the prototype are called SourceReaders. Listing 7.2
shows the interface definition. The generic type parameter T stands for the type of the return
value, which is extracted by the SourceReader. For example, T could be String if the
SourceReader should extract text from a file. Each object of the SourceReader interface
can extract data of the type T from exactly one specific Location.

As already stated at the domain model, a Location contains all the necessary information
to identify a unique value within a specific model file. But, different model files have different
data formats, that determine the possible ways in which values can be extracted. For example,
XLS is a proprietary closed-source data format and has to be parsed in a different way than a
simple TXT files. Additionally, XLS also offers richer possibilities to extract data, such as ad-
dressing specific cells, named formulas, etc. This provides a much more fine-grained definition
of the value location than the methods available to TXT files, such as text search.

The different data formats are encapsulated in the FileType class. Each Location ob-
ject references the FileType of the concrete file it is pointing to. On the other hand, each
SourceReader is implemented to read one or multiple similar FileTypes. This relation-
ship is depicted in figure 7.4.

Figure 7.4: The FileType relationship

There exists a hierarchy of Location classes in order to accommodate for the different file
types involved. The various Location classes are shown in figure 7.5. The different classes
of the hierarchy are hereby shortly described:

Location The Location class is the abstract base class for the location hierarchy. It de-
scribes the attributes necessary to identify the correct source file. The properties necessary to

81

Figure 7.5: The Location hierarchy

locate the value within that file is the job of the various subclasses. It defines the following
attributes:

• path: The path of the source file.

• fileType: The FileType of the source file.

TextLocation The TextLocation is used for those file formats that can only be read by the
extraction of the entire textual content. After extraction, this content is often just unstructured
text, so the simple approach to define startTag and endTag is taken to mark parameter lo-
cations. SourceReader implementations that use these objects must return the value between
these tags.

XMLLocation The XMLLocation is used for XML-based file formats. It uses XPath ex-
pressions to locate the parameter values within the files.

ExcelLocation The ExcelLocation is the abstract base class for all Excel related lo-
cations. Currently, there are two concrete implementations to define the location within an
Excel file. First, the ExcelCellLocation defines the actual cell to read. Second, the
ExcelAreaLocation allows to define a named formula or an area of fields.

The different SourceReader implementations are pictured in figure 7.6. Each implementa-
tion deals with the specifics of one specific or a few similar file formats. A detailed description
for each individual SourceReader implementation is out of scope. The source code and the

82

Figure 7.6: The SourceReader hierarchy

FileType Location SourceReader Access mechanism

XLS ExcelLocation ExcelReader Apache POI
XLSX ExcelLocation ExcelReader Apache POI
XML XMLLocation XMLReader XPath
IFCXML XMLLocation XMLReader XPath
SVG XMLLocation XMLReader XPath
VDX XMLLocation XMLReader Apache POI
VSD TextLocation VSDReader Apache POI
DOC TextLocation WordReader Apache POI
DOCX TextLocation WordReader Apache POI
TXT TextLocation TXTReader Apache Commons
PDF TextLocation PDFReader Apache PDFBox

Table 7.1: The FileType mapping

information provided in appendix A should be enough for interested parties to understand the
individual implementations.

Which SourceReader is used, or which Location is supported depends solely on the
FileType. Table 7.1 shows the relationships implemented in the prototype.

public interface SourceReaderFactory {
public <T> SourceReader<T> createSourceReader(Location location,

Class<? extends T> returnType) throws SourceException;
}

Listing 7.3: The SourceReaderFactory Interface

The SourceReader objects are created by the SourceReaderFactory. Listing 7.3 shows
the interface of the SourceReaderFactory. The factory is implemented following the
Simple Factory idiom [64]. Based on the FileType, defined within the Location pa-
rameter provided, the SourceReaderFactory chooses the right implementation for the
SourceReader and returns an initialized instance, ready to extract a certain value.

83

7.4.4 Services

The business logic of the prototype is structured in service classes. The core services are shortly
summarized in this section. As is usual, the design of the individual services resembles the
defined use cases. For each service the interface is presented to describe the functionality cap-
tured. In most cases the method signature should be sufficient to understand what the individual
methods do. On the technically more demanding ones, a short description is provided.

VariableService

public interface VariableService {
void addVariable(Variable variable, User user) throws VariableException;
void deleteVariable(Variable variable) throws VariableException;
void unsubscribeUserFromVariable(Variable variable, User user);
void subscribeUserToVariable(Variable variable, User user);
boolean isUnsubscribePossible(Variable variable, User user);

}

Listing 7.4: The VariableService Interface

The VariableService deals with the management of the Variable objects. The main
job is to handle the subscription, creation and deletion of variables. The subscription tasks
are quite simple and can mostly just be forwarded to the repositories in order to be persisted.
Adding and deleting of variables makes use of the ConstraintService to reevaluate con-
straints touched by the change. Additionally, the addVariable method makes use of the
DataSensorService to read the value from data files for the new variable. Results of the
various operations go through the NotificationService to reach the user.

DataSensorService

public interface DataSensorService {
void parseSourceChanges(Collection<SourceChange> changes);
void updateVariable(Variable variable) throws DataSensorException;

}

Listing 7.5: The DataSensorService Interface

The DataSensorService provides access to the data sensor logic defined in 7.4.3. The
service handles all the tasks necessary to populate variables with values. There are two ways the
service is used:

• parseSourceChanges: This method is used by the GitServlet to notify the ser-
vice that model files have changed. The differences between new and old versions of the
files are given to the method as parameter.

• updateVariable: This method is used to trigger an extraction for one specific vari-
able. It is mainly used by the VariableService to populate newly defined variables.

In both cases the DataSensorService uses the SourceReaderFactory to create the
necessary SourceReader objects. Using these objects, it extracts the values and forwards

84

them to the repositories to update the variables. It then forwards the updated variables to the
ConstraintService to reevaluate the affected constraints. All changes done are forwarded
to the NotificationService to give message to the user.

NotificationService

public interface NotificationService {
void notifyVariableChange(Collection<Variable> changedVariables);
void notifyConstraintChange(Constraint constraint);
void notifyConstraintDelete(Constraint constraint);

/* similar additional methods */
}

Listing 7.6: The NotificationService Interface

The NotificationService offers methods for all the cases where the user must be notified.
The other services call this one to send messages to the user. In the prototype, the notifications
are only stored within the database and presented through the web interface. But, the architec-
ture is open and extensible making it easy to provide further implementations to the interface,
for example E-Mail notifications.

ConstraintService

public interface ConstraintService {
void validateOnVariableChange(Collection<Variable> variables);
Constraint addNewConstraint(Constraint constraint, User user);
Constraint validateConstraint(Constraint constraint);
void subscribeUserToConstraint(Constraint constraint, User user);
void unsubscribeUserFromConstraint(Constraint constraint, User user);
void deleteConstraint(Constraint constraint);
void linkVariableToConstraints(Variable variable);

}

Listing 7.7: The ConstraintService Interface

The ConstraintService handles all Constraint related logic. The heart of the service
is an embedded JavaScript engine, which is based on Mozilla Rhino. The JavaScript engine
is used to evaluate the constraint expressions. JavaScript was chosen because of the following
reasons:

• The current Java JDK offers a few integration points for JavaScript engines.

• The dynamic typing of JavaScript allows for easier integration of the Variable objects.

• JavaScript can be used to evaluate numeric expressions without any overhead. There are
no mandatory syntactical constructs that have to be defined around them.

• JavaScript is a Turing-complete language. Therefore, it can be used to compute all kinds
of constraints, no matter how complex they are.

85

In order for the JavaScript engine to evaluate a constraint, the engine needs to be linked with
the Variable values. Due to the dynamic typing of JavaScript the effort to actually wire the
values into the engine is minimal. But, which variables have to be wired for a specific constraint
is not that trivial.

The Rhino parser is used to convert the JavaScript expression into an abstract syntax tree.
The leaf nodes of this tree represent constants, variable names and function names. From these
leafs, the names are filtered out. These names get matched with Variable names and the
values of matching Variables are put into the engine during constraint computation. After
the constraint has been computed, the result is gathered from the engine. If the result is the
boolean value true, it is returned. Otherwise, all other values lead to the return value being
false.

7.4.5 GitServlet

The GitServlet implements the concept of the common repository step of the MMD ap-
proach(see section 6.3.3). For the implementation the git SCM system is used. The main inten-
tion of the GitServlet is to provide versioning and change detection to the prototype. The
implementation consists of two major parts:

• A server-side git repository for file storage and versioning.

• The actual GitServlet providing the change detection.

The necessary insight into the git SCM system was provided by Pro git [65]. This section
requires basic knowledge of the git SCM system to understand. Readers without any prior
experience may want to learn the basics first as a complete description of git is out of scope for
this prototype description. The most important things are explained briefly, but in general it is
expected that the reader has already used git.

In theory, it is the nature of git that all repositories involved in a project, are independent
and equal in rights. There is no such thing as a server repository. But in practice, one repository
is often setup as main repository for all users. Users still use their own repositories locally,
but synchronize their work through this main repository. This has some advantages, such as:
easier backup strategy, centralized update propagation, etc. For the same reasons, we use a
git repository on the server side as storage for the model files. It also has the advantage that
collaborating engineers can get the current or a previous state of the project from the server.

The git repository residing on the server side of the prototype is configured as is usual for
server side repositories. Table 7.2 shows the mandatory configuration for the git repository.
To make a git repository remotely available to other users, additional software is needed. For
this reason, git is distributed with the git-daemon that allows repositories to be exported over
different protocols. In this prototype, the git-daemon is not used.

Instead, a custom Java Servlet, the GitServlet was implemented, that supports the same
functions as the git-daemon over the HTTP protocol. The advantage of having a custom servlet
for this is, that content pushes can now be handled with Java code. This provides a much more
fine-grained way to access the contents of the update. It also opens the possibility to implement

86

Property Value

receive.denyNonFastForwards true
http.receivepack true
core.sharedRepository 1

Table 7.2: The git repository config

hooks into the server implementation, to customize the push process. While the traditional git-
daemon can only use hooks in the form of runnable scripts, the GitServlet provides the
possibility for Java hooks.

Such a hook, called ReceiveHook, was implemented to parse the contents of an incoming
update. The hook listens only to the master branch, all other branches can be changed freely.
The ReceiveHook implements two methods:

• onPreReceive: The onPreReceive method is executed before the master reference
on the repository is updated. The hook decompresses the pushed packages and gath-
ers a change log. Each change gets encapsulated in a SourceChange object, repre-
senting if a file got either added, deleted or modified by the push. A collection of the
SourceChange objects is then forwarded to the DataSensorService.

• onPostReceive: The onPostReceive is executed after the master reference is up-
dated. This method is mainly used for cleanup tasks.

7.4.6 Web Interface

The implemented web interface provides the user with access to most of the prototype’s func-
tions. Figure 7.7 and figure 7.8 provide examples of the prototype’s web interface. All use cases,
with the exception of publishing and updating model files, are accessible through the web inter-
face. The web interface uses the different Repository implementations to retrieve the data to
display. Actions taken in the web interface are routed through the services.

The web interface is implemented in the Apache Wicket component framework. To improve
the visual appearance, Bootstrap, JQuery and other typical style sheets and libraries are used.
The whole web interface was coded using the guidelines of the Apache Wicket Cookbook [66],
written by one of the framework’s main authors.

A complete description of the web interface is beyond the scope of this thesis. The code
base of an Apache Wicket project is usually quite large, especially when custom components are
written from scratch. For the understanding of this prototype, it is only important to know that
the web interface gets its data through the repositories and interacts with the system through the
services. The web interface is decoupled from the remaining code and could easily be exchanged
with any other web front end.

87

Figure 7.7: The variables view

Figure 7.8: The evaluation view

88

7.5 Process View

In this section, the processes between the structures shown in the previous section are described.
Within the running prototype, there are many processes acting concurrently or sequentially to
enable the prototype’s functionality. Each use case shown in the use case view defines a different
set of actions, that the prototype has to perform in a specific order. Additionally, there are even
more processes not directly related with a single use case, such as supporting background pro-
cesses. Each process makes use of different structures and performs actions on them differently.
A detailed analysis of every possible control flow within the prototype would by far exceed the
scope of this chapter.

Therefore, two of the main use cases (see section 7.3) are picked up to demonstrate the in-
teraction between the individual parts of the prototype. The use cases “Define Variable” and
“Update Models” are chosen to showcase the different processes. The choice fell on this par-
ticular use cases because they are the most representative for the prototype. Defining variables,
updating models and propagating model changes to variables and constraints are the key points
behind the whole prototype. Additionally, these two use cases are also the technically most in-
teresting ones. Most of the components described within the logical view are touched during
these processes.

To enhance readability, the description of the processes is split up into three subprocesses:

• Variable definition process.

• Change detection process.

• Change propagation process.

7.5.1 Variable Definition Process

This process describes the first half of the “Define Variable” use case. It focuses on the in-
teraction between user and prototype through the web interface. The description ends at the
DataSensorService where the change propagation process takes over. Figure 7.9 pictures
the variable definition process as UML sequence diagram.

The process starts with the user opening the input form to create new variables. After fill-
ing in the necessary information, the form is submitted and the VariableService takes
over. The VariableService enriches the data and builds a Variable object, which is
send to the repositories for persistence. The new variable then has to be linked with the fitting
constraints. This is done by filtering the ConstraintRepository for all constraints, that
use variables which have the same name as the name of the new Variable. The matches
are stored for further computations. Now that the new variable is defined and the necessary
constraints are linked, they have to be populated with the appropriate values from the mod-
els. The VariableService delegates this task to the DataSensorService by calling
the updateVariable method. This method updates one specific variable and all related con-
straints. After the data extraction the results are handed back to the web interface, which displays
an appropriate message.

89

Figure 7.9: The variable definition process

7.5.2 Change Detection Process

This process describes the first half of the “Update Models” use case. It defines the interaction
between user and the git-related structures, which leads to the propagation of model changes
to the DataSensorService. As with the variable definition process, the actual data extrac-
tion is left out and shown in the change propagation process. Figure 7.10 pictures the change
detection process as UML sequence diagram.

The user modifies model files in his local git repository. Once he thinks the changes are
ready to be seen by others, a new commit on the master branch is created. The commit is
then moved to the GitServlet over a plain and simple git push to the GitServlet’s URL
using the HTTP transfer protocol. The push contents are heavily compressed in packs during
the transfer and cannot be easily parsed at this stage. Therefore, the packs are cached in the

90

Figure 7.10: The change detection process
91

main repository, where they can be decompressed by git itself. Afterwards, the GitServlet
calls the ReceiveHook to handle the push contents. First, the ReceiveHook calls the git
repository in order to get the decompressed files contained within the push. Second, git’s own
change detection logic is used to build a change log between the current version and the pushed
version for all changed model files. The change log contains for each file whether it is added,
renamed, modified or deleted. This change log is then forwarded to the DataSensorService
via the parseSourceChanges method. The actions during this methods can be seen in the
change propagation process.

The results go back in the call stack to the GitServlet. If everything went well and no
exceptions were thrown, the GitServlet updates the server repositories master reference to
the newest commit within the push. The changes done by the user are now permanent and can
be downloaded by all the other users. The GitServlet now executes the onPostReceive
method on the ReceiveHook. The post processing hook cleans the server-side repository to
avoid complications with future pushes. It uses the git reset function to reset the repository to
the clean state of the current master branch. It also gets rid of any remaining fragments within
the repository, such as temporary files or remaining packs. A message regarding the outcome of
the push is then send back to the user through the git client.

7.5.3 Change Propagation Process

The change propagation process describes the second half for both of the previous processes,
dealing with the update of the variables and constraints. It starts where the other two processes
ended, although different methods are called on the DataSensorService. The definition
process calls updateVariable, while the detection process calls parseSourceChanges.
Figure 7.11 displays the control flow behind the parseSourceChanges method. The dif-
ference between the two methods is minimal, consequently only one is pictured. The main
difference is the loop fragment, as updateVariable is only called with one variable. The
remaining process is equal between both methods.

The DataSensorService gets the model changes as parameter from the GitServlet.
First, all variables with a Location object pointing to a changed model file are gathered from
the VariableRepository. Afterwards, for each variable, a reevaluation is triggered. From
here on, both variants of this process are equal.

If the model file behind a variable got removed by the change, the value of the variable is
deleted and the variable is set to uninitialized. If the change is either an added or an modi-
fied model file, the data sensor mechanism is used to gather the updated values from it. The
SourceReaderFactory is called to create an appropriate SourceReader for the indi-
vidual variable. The SourceReader is then executed on the model files contained in the
server-side git repository to extract the variable’s value. If the value extracted does not equal
the one cached from the last computation, the variable is set to the new value and is persisted to
the VariableRepository. Additionally, a notification message is sent to all the variable’s
subscribers through the NotificationService.

The updated variables are then forwarded to the ConstraintService. The service first
queries all constraints that contain the updated variables from the ConstraintRepository.
The constraints are then computed with the updated variables within the JavaScript engine. The

92

Figure 7.11: The change propagation service

93

Figure 7.12: The prototype architecture

Constraint objects are then populated with the engine’s return values. For each constraint
whose value has changed, the updated constraint is sent to the repositories for persistence and a
notification about the update is sent to the subscribers.

7.6 Development View

This section shows the organization of the individual software modules to form an architecture.
The components are arranged as a layered architecture for a distributed client-server system [59].
Figure 7.12 displays the implemented architecture. The functionality of the components and the
interfaces between them are already described in the logical and process view sections of this

94

chapter. They won’t be repeated here, instead the layering will be shortly summarized.

View Layer The view layer consists of the client side tools to interact with the system. Two
tools are needed to use the prototype: a web browser and a git client. The web browser is needed
to operate the web application. Any web browser supporting HTML 4 or newer and EcmaScript
5.1 should be sufficient. The git client is needed to interact with the GitServlet. The git client
can be any git tool, from the standard plain command line to visually richer tools, as long as the
HTTP transfer protocol is supported.

Process Layer The process layer contains the controller logic. It maps user input to the
right functionality. It contains two components, fitting to the two ways the user can inter-
act with the system. The GitServlet, as already described, uses the data forwarded by the git
client to call the DataSensorService of the dashboard component. It also operates the
server-side git repository. The web application component contains the already described web-
interface, configuration files, etc. The component forwards user input to the Constraint-
and VariableService offered by the dashboard component. The data to display is requested
from the repositories.

Application Layer The application layer contains the business logic of the prototype. The
single component in this layer is the dashboard component. It contains the services logic, data
sensors and everything else related to the core MMD logic. The dashboard component provides
its functionality through the service interfaces, as described in the logical view. The data needed
to perform its calculations is requested from the git repository and the data repositories.

Data Layer The data layer contains the components which store and provide the persistent
data. The server-side git repository handles the persistence and versioning of the model files,
while the database is the general data store for the prototype. The repositories offer the interface
to the database.

7.7 Physical View

This section briefly sums up the prototype deployment. For the concrete deployment details,
please check the maven build file within the source code. Figure 7.13 shows the UML deploy-
ment diagram for the prototype. As already described, the prototype is intended as a proof-of-
concept implementation. Therefore, to keep the setup simple, all components run on a single
workstation. On this workstation, a git client and a web browser are installed. A git repository is
also setup accordingly to the description in section 7.4.5. This repository acts as the server-side
repository.

Two different execution environments are necessary to deploy the prototype. First, a Java
Platform Enterprise Edition (J2EE) application server is needed, to run the web application,
GitServlet, dashboard logic and repository components. The prototype is configured on the
lightweight Jetty server, using some additions to enable the necessary J2EE functions. Second,

95

Figure 7.13: The protoype deployment

a database server is needed that hosts the database. For this setup the server provided together
with the H2 database is used.

96

CHAPTER 8
Evaluation & Results

Within this chapter the usefulness and feasibility of the MMD approach is evaluated in the con-
text of real-life use cases and actual stakeholders. First, the MMD approach and the research
prototype are used to implement the use case described in chapter 5. This is done to verify the
general feasibility of the MMD and to provide an example of a successful deployment. Second,
the results from the experiments in the BIM domain previously mentioned in the introduction
chapter are presented. Last, arguments regarding cost and benefit of an MMD implementa-
tion are assessed to evaluate under which conditions it can be beneficial to deploy the MMD
approach.

8.1 Feasibility Study

To show the feasibility of the MMD approach, the key artifacts, process and prototype, are
used to implement some scenarios from the simple use case described in chapter 5. As already
described previously, the scenario is focused solely on the software engineering domain. In
general, this may pose a threat to validity. But, the main goal of this section is to verify if the
MMD is feasible at all. As such, a simple use case that shows the capabilities of the approach
without going into too much detail is reasonable. This of course does not resolve the future need
for a large-scale evaluation in a real systems engineering project.

The following steps were executed to provide proof for the feasibility of the MMD approach.
First, anonymized data provided by the CDL-Flex is described to provide an overview of the
data basis used in this section. Afterwards, the results from the execution of the proposed MMD
process on the implemented prototype are documented. The description is structured according
to the six steps of the MMD process. The interactions taken with the prototype and the results are
described for each individual step. Sample screenshots are included to make the whole process
easier to understand.

97

8.1.1 Data Description

Two different kinds of data are needed to provide a fitting starting point for the study:

• Test user accounts have to be generated to simulate the different stakeholders.

• Authentic model data files are needed to provide the actual data for the parameters.

Test user accounts are created for the different project roles defined in the use case description.
The individual test users are named after the corresponding project roles and should represent
a typical project member of that role. The name of the role is divided into two parts which are
then set as first and last name of the corresponding test user accounts. The following accounts
are created:

Project Role Username First Name Last Name

Project Portfolio Manager portfolioManager Portfolio Manager
Project Manager projectManager Project Manager
Software Developer softwareDeveloper Software Developer
Software Tester softwareTester Software Tester
Release Manager releaseManager Release Manager

Table 8.1: The defined test users

The following test data was gathered from the members of the CDL-Flex in an anonymized
form:

Data Source Tools File Formats

Timesheets Excel1, GoogleDoc2 XLS, XML
Milestone Planning Excel, JIRA3 XLS, XML
Budget Planning Excel, Word XLS, DOC, PDF
Test Reports Jenkins4 , Excel XLS, XML
Requirements Description Confluence5 TXT, DOC, XML

Table 8.2: The gathered test data

The data represents arbitrary data models used within the CDL-Flex. It was created with the
tools typically used in their ongoing engineering projects.

1Excel: http://office.microsoft.com
2GoogleDoc: http://docs.google.com
3JIRA: https://www.atlassian.com/software/jira
4Jenkins: http://jenkins-ci.org/
5Confluence: https://www.atlassian.com/software/confluence

98

http://office.microsoft.com
http://docs.google.com
https://www.atlassian.com/software/jira
http://jenkins-ci.org/
https://www.atlassian.com/software/confluence

8.1.2 Process Execution

The MMD process is then executed with the help of the implemented prototype. The initial steps
needed to setup the prototype for this feasibility evaluation will be skipped. It is assumed that
the prototype is up and running, the required configurations are done and the respective test user
accounts are created.

1) Identification of Parameters

In this step, parameters and design constraints should be identified according to the methodol-
ogy provided in section 6.3.1. Unfortunately, the parameter identification step is the one step
that could not be evaluated in full scale. The MMD proposes a negotiation methodology that is
targeted at bigger systems engineering projects with multiple stakeholders from different disci-
plines. For the scenario at hand, a complete negotiation following the proposed protocol would
be far too much effort for too little benefit. The use case does not fit the proposed methodology
because most stakeholders are from the same domain. As such, the complete execution of the
negotiation would be pointless. A complete evaluation of the negotiation steps has to be moved
to the near future when the MMD gets introduced into actual projects at the industry partners.

Instead of the complete identification process, a reduced method was performed in collabo-
ration with the researchers at the CDL-Flex. Together, the following variables have been defined
for testing purposes:

Parameter Model Owner Subscribers

budgetPlanned Budget Plans Portfolio Manager Project Manager
budgetUsed Budget Plans Project Manager
budgetReserved Budget Plans Project Manager
neededTestCoverage Requirements Project Manager Software Tester
testCoverage Test Reports Software Tester
milestoneStatus Milestone Plans Release Manager Software Developer
manHoursPlanned Milestone Plans Project Manager Software Developer
manHoursSpent Timesheets Software Developer Project Manager

Table 8.3: The parameters used in the feasibility evaluation

Based on the negotiated parameters, the following constraints have been defined:

Name Definition

budgetOverrun budgetPlanned >= (budgetUsed + budgetReserved)
testCoverageOK testCoverage >= neededTestCoverage
milestoneWarning Script checking milestone date and status.
manHoursOverrun manHoursSpent <= 0.8 * manHoursPlanned

Table 8.4: The constraints used in the feasibility evaluation

99

2) Definition of Data Sensors

As described in section 6.3.2, the second step deals with the definition of the data sensors or their
implementation if fitting sensors are not available. Because the used research prototype was im-
plemented with this specific use case in mind, the needed data sensors are already implemented.
As such, no additional data sensors have to be developed and there is no need for an openness
analysis and further related steps. Of course, these steps were executed during the design of the
research prototype itself. Therefore, the prototype itself can be seen as a proof of feasibility for
this step.

The parameters defined in the previous step have to be mapped to fitting data sensors. The
following table describes the established mapping between the parameters and the data sensors
defined in section 7.4.3.

Parameter Data Sensor

budgetPlanned WordReader
budgetUsed ExcelReader
budgetReserved ExcelReader
neededTestCoverage PDFReader
testCoverage XMLReader
milestoneStatus XMLReader
manHoursPlanned XMLReader
manHoursSpent XMLReader

Table 8.5: The mapping between parameters and data sensors.

3) Model Collection within Common Repository

In the third step, the workspaces for the individual test accounts have to be created. The
workspaces are used to submit and update the previously described data models. To simulate
collaboration between different stakeholders residing in different locations, each test account
gets his own workspace. The different workspaces are distributed over a couple of Virtual Ma-
chines (VMs) which are in turn distributed over two workstations.

For our test scenario the prototype is configured to host a git repository which is named
dashboard-workspace. The various client repositories are created by issuing a plain git
clone command to the GitServlet. To send the commands and later interact with the
various workspaces the following well-known git tools are used:

• Plain git6 for the command line.

• TortoiseGit.7

• QGit.8

6Git: http://git-scm.com/
7TortoiseGit: https://code.google.com/p/tortoisegit/
8QGit: http://sourceforge.net/projects/qgit/

100

http://git-scm.com/
https://code.google.com/p/tortoisegit/
http://sourceforge.net/projects/qgit/

After the client workspaces are created the matching test data is added to them. The men-
tioned tools are used to create commits in the git tree and push the changes to the GitServlet
for further parsing. Figure 8.1 shows how the test data is submitted using TortoiseGit. It displays
how the MMD approach seamlessly blends into a normal project work flow. Standard tooling
can be used as if the MMD would not be present at all. There is no additional work created for
the users nor do they need to care the MMD is there. Project members can collaborate as if they
would use a plain git repository.

Figure 8.1: Commiting the initial test data to the GitServlet using TortoiseGit

101

4) Variable Evaluation

In step 4, the identified parameters have to be setup for continuous monitoring. To do this, a
variable for each parameter is created within the research prototype. An example of a variable
creation form can be seen in figure 8.2.

Figure 8.2: The creation of the manHoursSpent variable

As can be seen in the figure, the prototype allows to define all the important fields needed to
trace a value within the model files. These fields consist of variable name and type, which data
sensor to use and a varying number of additional fields depending on the chosen data sensor.

Whenever a new variable definition is submitted to the prototype, the prototype immediately
triggers the chosen data sensor for an initial extraction run. If the appropriate model files for a
variable are already present within the server-side git repository, the data sensor will extract the
value and cache it for later retrieval. The values are then accessible through the different web
pages of the application.

An example for such an evaluated variable is provided in figure 8.3. It shows that the data
sensor extracted the value “200” from the location specified by the XPath expression within the
given time sheet file.

After the variables have been specified, the test accounts were subscribed to the appropriate
variables according to the definitions from step one. Figure 8.4 shows the specified variables
from the viewpoint of the project manager’s account. The eye-icon indicates that the account is
subscribed to this particular variable.

102

Figure 8.3: The evaluated manHoursSpent variable

Figure 8.4: The defined variables from the project manager’s perspective

103

5) Constraint Evaluation

In step 5. the prototype is used to implement the previously identified design constraints. The
design constraints are entered into the integrated JavaScript editor and get immediately evaluated
using the current values of the variables. An example for the definition of a constraint is shown
in figure 8.5.

Figure 8.5: Definition of the manHoursOverrun constraint

Just like with the variables, the constraints can be subscribed in a similar manner. A small
difference is that subscribing a constraint makes it necessary to subscribe all variables used in the
constraint. This makes sense because if there is an interest in a constraint naturally there is also
an interest into the constrained variables. The prototype automatically subscribes the account to
the relevant variables if a constraint is subscribed. Figure 8.6 shows the list of defined constraints
from the project manager’s perspective.

Figure 8.6: The defined constraints from the project manager’s perspective

104

6) Presentation / Notification

At the final part of the feasibility study, it has to be checked if the MMD can provide an consistent
view on the subscribed variables and constraints. If changes in the underlying data models
are committed, the MMD should update the values accordingly and inform the user about the
changes that happened.

After setting up the monitoring in the previous steps of this study, the prototype now provides
an on-demand overview of all subscribed parameters and constraints. Right after login in into
the web application, the users are redirected to the “Evaluation View” which provides at a glance
the overall state of the project’s parameters.

Figure 8.7 shows the overview of all subscribed values in the chosen use case from the
project manager’s view. It is shown, that all the subscribed constraints are listed with their re-
spective coloring showing if they are currently fulfilled or violated. Additionally, all subscribed
variables with their current values are shown on the right side. If the project member wishes
to gain further information on why a constraint (in our case “milestoneWarning”) is broken, the
selection of the constraint automatically shows all used variables with their current values and
the statement which was evaluated to calculate the result.

Figure 8.7: The evaluation overview from the project manager’s perspective

Now the only thing left is to show that the MMD can do continuous monitoring of these
multi-disciplinary design constraints and parameters. To do this, updates to the data models
were done in the individual workspaces. These changes were then committed to the server
repository which triggered the reevaluation.

Figure 8.8 shows the state after these updates were done. As can be seen, the values of
the variables “budgetUsed” and “milestoneStatus” changed leading to changes to the constraints
“milestoneWarning” and “budgetOverrun”. On the top, the number of unread notifications is
also increased. For each change a notification was sent, which sums up what happened to each
parameter. Figure 8.9 shows the new notifications sent to the project manager account.

105

Figure 8.8: The evaluation overview after an update to the underlying data models

Figure 8.9: The change notifications sent to the project manager

106

Figure 8.10: Visualization of the BIM use case’s data model produced in Tekla BIMsight.

8.2 Use Case Results: Building Information Management

In this section the results from the attempts to deploy the implemented MMD prototype (see
chapter 7) in a BIM use case are summarized. As already stated in the introduction chapter
of this thesis (see section 1.2), the original use case which motivated the MMD approach was
based in the building engineering domain. In collaboration with researchers from the Institute
of Interdisciplinary Construction Process Management9 at the Vienna University of Technology,
not only the requirements (see section 5.2) for the MMD were gathered, but also a simple use
case for feasibility evaluation was designed.

At the core of this use case stands the design of a simple building. The building is visualized
in figure 8.10. As can be seen, the model is quite simple for a building engineering project. It is
a small building on a single floor with one entrance door, a couple of windows and three rooms.
The rooms are separated with walls, which are marked in the model as load-bearing.

In this showcase scenario, a couple of different stakeholders from different domains need
to collaborate on the further development of the building. In a general BIM project the amount
of different disciplines and project roles would obviously be much bigger but to keep the sce-
nario manageable, it was reduced to the following roles: structural engineer, electrical engineer,
construction physicist, architect and building owner.

8.2.1 Parameters & Constraints

A couple of different example constraints have been identified with the help of the research
partner:

9IBPM: http://ibpm.tuwien.ac.at/

107

http://ibpm.tuwien.ac.at/

• Changes on load-bearing parts bigger than a certain threshold have to be reported to the
structural engineer.

• Room usage changes have to be reported to the construction physicist.

• Room size changes need to be reported to the building owner.

• Wall type changes need to be reported to the construction physicist.

• Changes that extend electric mains over a certain threshold need to be notified to the
electrical engineer.

Based on this constraints, important parameters can easily be identified. For example, potential
variables are:

• Location of a load-bearing wall.

• Type of a load-bearing wall.

• Room size.

• Size of the living area.

• Cable length.

All of these variables are shared between multiple stakeholders which can be from different engi-
neering fields. The parameters which got focused during the evaluation were the location and the
type of a specific load-bearing wall. These parameters are foremost interesting to construction
physicists, architects and structural engineers.

8.2.2 Data Sensor Implementation

In a typical BIM project a lot of different tools are used. For this use case it was decided to focus
on three commonly used ones in the BIM domain:

1. Tekla BIMsight10.

2. Graphisoft ArchiCAD11.

3. Autodesk Revit12.

Following the MMD process on implementing data sensors, the tools are rated for their
openness, especially in the export category. Therefore, the different export formats for the three
tools were analyzed using the following criteria:

10Tekla BIMsight:http://www.teklabimsight.com/
11Graphisoft ArchiCAD:http://www.graphisoft.com/archicad/
12Autodesk Revit:http://www.autodesk.com/products/autodesk-revit-family

108

http://www.teklabimsight.com/
http://www.graphisoft.com/archicad/
http://www.autodesk.com/products/autodesk-revit-family

• For all three tools and their supported formats the versions current in November 2013
were analyzed. Older versions were ignored.

• Formats which are explicitly tool-specific were filtered out. These formats are almost all
binary and closed-source and cannot be read by external tools without going through a
multitude of problems.

• Export formats that exist solely to provide backwards compatibility are also filtered out.

• Export formats that are tailored to provide interoperability with a specific third-party part-
ner are also left out.

• Image export formats such as JPEG are ignored because all the necessary BIM information
like wall placement is lost during the conversion to an image.

• Focus lies on BIM and CAD specific formats.

• Transformation solutions are only considered if they are provided officially by the organi-
zations behind the three analyzed tools.

By applying this filtering criteria, a small list of data formats, for which data sensors could
potentially be implemented, was gathered. The different formats and the tools that support them
can be found in table 8.6. The data for this table was gathered from the documentations available
at the web presence of the respective tools. The identified formats are further categorized in table
8.7 depending on the availability of an open standard.

BIMsight ArchiCAD Revit

IFC X X X
IFC XML X X X
IFC ZIP X X X
DWG X X X
DXF X X
DGN X X
STEP X
IGES X

Table 8.6: Supported export formats of chosen BIM tools

STEP and IGES are based on open standards but they are not focused on the building en-
gineering domain. STEP is an abstract format where the main focus lies on general product
data exchange. Some of STEP’s concepts have directly influenced the creation of the Industry
Foundation Classes (IFC) standard. IGES on the other hand is used primarily for exchanging
mechanical engineering models.

DWG and DGN are proprietary competing data formats, which can be seen as closed source.
Due to their widespread usage, non-native support for these formats has been implemented for
various tools but full compatibility was never achieved. The organizations behind these two

109

Open Standard Proprietary, but Available Closed Source

IFC X
IFC XML X
IFC ZIP X
DWG (X)
DXF X
DGN (X)
STEP X
IGES X

Table 8.7: Availability of open standards for the chosen export formats

formats opened some parts of the specifications in order to increase interoperability and market
share. There have also been a fair amount of legal issues concerning the openness of these
formats, with some of them still unsettled.

The DXF format is published by Autodesk, the company behind the DWG format. DXF
has long been the industry standard for exchanging CAD data. A series of problems such as
the competition with the in-house DWG format, undocumented parts of the format, missing
specifications, etc. let the DXF format lose much of its importance. For the same reasons it is
also not desirable to implement a data sensor for it. Additionally, it is not supported by BIMsight.

Today, the landscape of BIM tools is full of proprietary tool suits with little to no standardiza-
tion and interoperability between these tools. Only in recent years, a movement to standardized
file formats like IFC is noticeable. Therefore, IFC is not yet where it wants to be. Given its
ambitious task to be the one comprehensive standard for all interoperability related tasks in the
BIM domain, it is only natural that this status can not be reached in just a few years. Problems
often criticized are: performance problems, not implemented features, inconsistency, etc. Some
good arguments regarding the current problems of IFC can be found in [67] and [68].

Based on the gathered data, it was decided to implement the data sensors for the IFC types.
This decision was made for the following reasons:

1. As shown in table 8.6, the IFC formats are supported by all three chosen tools. This
eliminates the need to create multiple data sensors to extract data from all three tools.

2. As shown in table 8.7, IFC is based upon an open and available standard.

3. Currently, IFC is the only format focused on the building engineering domain that has an
open and available standard behind it.

The other three categories of the openness analysis were only explored very briefly. The import
category is not very important for this use case, because the chosen tools can import the same
formats as they can export. The completeness category is of bigger importance. As already
stated IFC is still young and has various shortcomings. There are features in various BIM tools
that are still not supported by the format and that get lost during IFC conversion. Fortunately,

110

this did not happen during the evaluation process because the analyzed model of a simple build-
ing contained none of the unsupported features. The completeness category is therefore satisfied
for this specific model. Last, the documentation category is also of importance. The foundations
of the IFC standard can be found in the ISO 16739 [69]. There are also standards and documen-
tation available for the various subformats. IFC defines an entity-relationship model expressed
in the EXPRESS [70] modeling language.

There exist three different file formats for IFC, encoding the same data in different ways:

• IFC: The IFC or IFC-SPF format is the most commonly used of the three formats. It is
text based and follows the encoding described in ISO 10303-21 [71].

• IFC-XML: The IFC-XML is an XML-based format. It follows the rules to encode EX-
PRESS in XML defined in ISO 10303-28 [72]. Because structures in XML are much
larger than those written in EXPRESS, this format is not used as often.

• IFC-ZIP: The IFC-ZIP format is a compressed version of the text-based IFC format.

Because all three formats encapsulate the same data, the format could be freely chosen. It was
decided to go with the IFC-XML format because there was already a data sensor implemented
for XML data in the research prototype. As definition language to define parameter locations
XPath was used.

8.2.3 Variable Definition

The prototype is then used to define variables and constraints on the BIM model exported
in the IFC-XML format. The variables of choice are called “materialThickness” and
“materialType”. They represent the type and the thickness of the material of which the
load-bearing walls are made off.

One concept common to most BIM and CAD related models is the existence of an Glob-
ally Unique Identifier (GUID) for the individual parts in the model. The wall which should be
monitored in this use case has the GUID 06CpBEmFn37wPiVS9M33oC. In order to define
the variables for this wall, XPath expressions need to be designed that point to the specific val-
ues. For example, the thickness of the material for the specified wall can be located using the
following XPath expression:

//IfcMaterialLayer[@id=
//IfcMaterialLayerSet[@id=

//IfcMaterialLayerSetUsage[@id=
//IfcRelAssociatesMaterial[

RelatedObjects/IfcWallStandardCase/@ref=
//GlobalId[text()=’06CpBEmFn37wPiVS9M33oC’]/../@id]

/RelatingMaterial/IfcMaterialLayerSetUsage/@id]
/ForLayerSet/IfcMaterialLayerSet/@ref]

/MaterialLayers/IfcMaterialLayer[@pos=0]/@ref]
/LayerThickness/@value

111

During the definition of the variables and the subsequent value extraction a couple of problems
were identified:

Difficult to Design Variables

The intention of the research prototype was to support as many potential knowledge domains as
possible. Therefore, there are hardly any building engineering specific modules in the prototype.
This comes with the drawback, that there are no front ends or any user support specific to BIM
models. This makes the design of the variables difficult. Users have to come up with complex
XPath queries to enable the value monitoring. A quick look at the previous XPath expression
already shows how the variable design would be impossible for certain stakeholders without
either deep knowledge of the IFC standard and XPath. This shows the necessity to implement
domain-specific frontends when deploying the MMD into new domains. With a BIM-focused
tool that allows the user to specify the variable target location and generate an XPath expression
for it, the usability could be vastly improved.

Need for Aggregation and Transformation

The current implementation of the prototype defines that one user-defined variable has exactly
one data source. Each variable monitors exactly one location in the data models. But there
are data formats that don’t store data in the way the user perceives as belonging together. For
example, for the use case the (x,y,z) location of the wall was needed. The IFC format does not
store this data at the same location and it does not store it in the needed (x,y,z) format. With the
current prototype implementation the definition of three variables for each part of the coordinate
would have been necessary. Because the three variables could be joined within the constraints,
it is no counterargument for the validity of the approach. But, this makes it clear that there is a
need to define variables with multiple data locations. The values from this points then have to
be transformed and aggregated to form the variable value.

Runtime Performance of the Extraction

The performance of the data extraction in the research prototype was unexpectedly poor. At first,
the research prototype could not handle the value extraction at all because the default configured
Java Virtual Machine (JVM) ran out of memory. After increasing the amount of available space,
the extraction processes still took up to 30 minutes.

The reasons for these huge performance leaks lie in the structure of the IFC format and the
resulting incompatibility of IFC to be queried by XPath. There are two main problems with the
IFC format in conjunction with the MMD prototype: size of the IFC file and the structure of the
format.

112

Listing 8.1 shows a short excerpt from the IFC model to better explain the problems.

1 < !−− The top−e l e m e n t f o r t h e chosen w a l l −−>
2 < I f c W a l l S t a n d a r d C a s e i d =" i3045 ">
3 < G l o b a l I d >06CpBEmFn37wPiVS9M33oC< / G l o b a l I d >
4 <Name>120 WT 006< / Name>
5 < O b j e c t P l a c e m e n t >
6 < I f c L o c a l P l a c e m e n t x s i : n i l =" t r u e " r e f =" i3002 " / >
7 < / O b j e c t P l a c e m e n t >
8 < R e p r e s e n t a t i o n >
9 < I f c P r o d u c t D e f i n i t i o n S h a p e x s i : n i l =" t r u e " r e f =" i3041 " / >

10 < / R e p r e s e n t a t i o n >
11 < / I f c W a l l S t a n d a r d C a s e >
12

13 < !−− The mapping between w a l l and m a t e r i a l −−>
14 < I f c R e l A s s o c i a t e s M a t e r i a l i d =" i3063 ">
15 < G l o b a l I d >1JQJtnrLDgV4plDuQRkBv< / G l o b a l I d >
16 < R e l a t e d O b j e c t s ex :cType =" s e t ">
17 < I f c W a l l S t a n d a r d C a s e e x : p o s =" 0 " x s i : n i l =" t r u e " r e f =" i3045 " / >
18 < / R e l a t e d O b j e c t s >
19 < R e l a t i n g M a t e r i a l >
20 < I f c M a t e r i a l L a y e r S e t U s a g e x s i : n i l =" t r u e " r e f =" i3062 " / >
21 < / R e l a t i n g M a t e r i a l >
22 < / I f c R e l A s s o c i a t e s M a t e r i a l >
23

24 < !−− The top−e l e m e n t f o r an m a t e r i a l s e t −−>
25 < I f c M a t e r i a l L a y e r S e t U s a g e i d =" i3062 ">
26 < F o r L a y e r S e t >
27 < I f c M a t e r i a l L a y e r S e t x s i : n i l =" t r u e " r e f =" i3056 " / >
28 < / F o r L a y e r S e t >
29 < L a y e r S e t D i r e c t i o n > a x i s 2 < / L a y e r S e t D i r e c t i o n >
30 < D i r e c t i o n S e n s e > p o s i t i v e < / D i r e c t i o n S e n s e >
31 < O f f s e t F r o m R e f e r e n c e L i n e > 0 . < / O f f s e t F r o m R e f e r e n c e L i n e >
32 < / I f c M a t e r i a l L a y e r S e t U s a g e >

Listing 8.1: Excerpt of the IFC model

Format Size The first reason for the performance leaks is that the IFC XML files are very
large. The relatively simple model used in this use case exports to an XML file of about 10
Megabyte (MB) with about 30.000 nodes on the top-level. Considering the simplicity of the
model, this is an extraordinary amount of data. Because XPath operates on DOM trees, this
leads to a significant parsing effort to create the tree. For queries, the resulting tree has to be
held in memory which results in a big memory footprint. Furthermore, the size of the IFC format
also negatively influences the following structural problem, making their impact even worse.

Format Structure The second reason, the structure of the format, has an even greater impact
on performance than the first. The IFC format implements an entity-relationship model instead
of an tree-like hierarchy, which would be more typical for XML. The about 30.000 elements
are all located within the same depth-level of the XML file. They represent the various entities
of the data model, such as walls, materials or dimensions, or the relationships between these

113

entities. To link related elements in the XML together, custom IDs are introduced. These IDs
are comparable to foreign keys used in the context of relational databases. In listing 8.1 the 1:n
relationship between a wall and a material set is provided. The distribution of the entities is as
follows:

• Row 2 ff. show the top-level element of the wall with the GUID specified beforehand.

• Row 14 ff. show the relationship element that links a wall to its material set.

• Row 25 ff. show the material set referenced by the relationship.

The problem with this structure, when queried by XPath, lies in the way XPath engines execute.
XPath is a query language that interprets XML data as a tree data structure, where certain paths
from the root node are explored. As such, most XPath engines are optimized for hierarchical
tree-like XML data, which is the most common case in practice. But, IFC is an exception to this.

With all the elements being located at one depth level and being joined together via custom
IDs, the DOM tree behind the IFC model degrades to a mere list. This has dire consequences
on runtime performance, because engines are not optimized to handle this specific case. A large
amount of nodes on an equal depth level is the worst-case for XPath execution. Because once
the engine explores that level, it has to look at all nodes on the current level. Typically there are
optimizations in place like removing branches from memory when they are no longer reachable
in the further query execution. With the DOM tree almost being a list, these optimizations do
not work anymore. Therefore, when a query is executed, it is always forced to look at every
single element in the DOM tree.

The matter gets even worse, when taking the custom IDs used to implement the foreign keys
into account. As shown in the XPath query earlier in this chapter, it is necessary for queries
to go over a multitude of id/ref pairs to get to the actual data of certain entities. In the
context of relational databases, this would be achieved via joins or subqueries. But, unlike
Structured Query Language (SQL), XPath does not perform well on subqueries. The reason
is again that XPath is path-based rather than tupel-based. Every subquery has to start from the
root. Therefore, the whole XML document has to be parsed twice for each id/ref pair. And as
shown previously, a typical query in the MMD context would contain a fair amount of id/ref
pairs. Given how demanding a single query already is on the engine because of the list-like
structure, this makes the execution of proper XPath queries as needed by the MMD prototype
impossible without further development work.

8.2.4 Constraint Definition & Evaluation Results

After the variable definition, the following constraint was defined in the prototype:

materialThickness >= ’0.2’ && materialType == ’Stahlbeton’

The constraint monitoring worked as expected. Changing the load-bearing walls in the
blueprints to a different material or reducing the thickness below the threshold of 0.2 meters
triggered reports to all predefined test users. Therefore, despite the various problems, the MMD
process was successfully deployed in the building engineering domain. It shows that the MMD

114

approach fits into projects involving complex knowledge domains and can fulfill its intended
purpose. The results from this use case provide a strong argument for the general feasibility of
the approach.

But at the same time, it shows that the MMD approach, although viable in theory, still needs
major work to be effectively usable in practice. The MMD approach was designed as a concept
compatible with arbitrary systems engineering projects. As such, also the implemented proto-
type is not tailored to specific knowledge domains. The problems discovered during the variable
definition show that, although this abstract approach works in general, domain-specific problems
might prohibit an effective utilization of the approach. The need for tailoring of the process and
extensive performance testing when deploying the MMD approach into new knowledge domains
became evident.

At this point, it was decided to switch to the easier use case described in 5 which got show-
cased previously in this chapter at section 8.1. The goal of this use case evaluation was to show
that the MMD approach works in a domain typical for systems engineering. This goal was
achieved and also some limitations got identified that should be considered in further iterations
of the approach. The performance problems made further experiments in this domain too time-
consuming to continue. And a complete tailoring and fixing of the MMD to the BIM domain
would have taken to much effort to pursuit further.

8.3 Cost-Benefit Assessment

To evaluate costs and benefits, domain experts at the various industry partners of the CDL-Flex
have been interviewed. Because of time constraints and the availability of the industry partners,
this evaluation was mainly performed by the researchers of the CDL-Flex. The evaluation results
are provided in [3] and [73]. The evaluation was executed in parallel to the writing of this thesis.
This was possible because of the iterative approach taken to create the research prototype and this
thesis. Unfortunately, the referenced material uses a different iteration of the MMD approach
than is provided here. But, the differences are minor and mainly in the naming scheme. The
connections should be easy to figure out.

Table 8.8 sums up the results of an evaluation in the project management domain. The
industry partners were asked to grade the perceived effectiveness and the necessary effort the
MMD would introduce into their use cases. As grading mechanism a Likert-Scale [74] with 5
choices (++, +, o, -, --) was used. Given that the MMD is still in early stages, a general measure
of the domain expert’s opinions on a Likert scale made more sense than providing numerical
measures, which would vary greatly between the rapid iterations.

The consensus between the interviewed stakeholders was that the MMD is an effective mon-
itoring tool once the initial effort is overcome. In general, the stakeholders saw potential in the
approach, because they were able to trace their important project parameters in a structured and
reliable manner.

But, the stakeholders also voiced concerns about the implementation effort especially in the
early stages of the proposed MMD process. While the idea of a structured parameter definition
process, as provided in step “Identification of Parameters”, appealed to the partners, the overhead
provided with such a strict process was questioned.

115

Process Step Effectiveness Effort

Manual MMD Manual MMD

Parameter definition o ++ + -
Constraint definition o ++ + -
Linking parameters to
local representations

- + – -

Change monitoring
in local models

- + – ++

Parameter evaluation o ++ o ++
Constraint evaluation o ++ + ++
Publication of
parameters/constraints

o ++ - +

Overall o ++ o +

Table 8.8: Results of the cost-benefit comparison between manual and MMD approach [3]

Also, the way new variables and constraints are created was deemed hard to use for the
average user, because typically people do not open their models in domain-independent tools
such as text or XML editors to locate their variables. Of course, the reasons for this problem
lie in the fact that the prototype is an ongoing piece of work. The current prototype demands
from its users that they know the internal structure of the file types used to persist the models.
Just as the previous two chapters did, this again shows the necessity for domain-specific variable
definition tools and constraint editors which abstract the implementation details from its users.

The interviewed experts also noted that the initial effort to implement and introduce a MMD
tool into a project only makes sense once a certain size of the target project is reached. The
cost/benefit ratio favors the MMD only once parameters and constraints get too hard to track
manually. Where the exact break-even point lies is still unclear and should be evaluated in
future works.

116

CHAPTER 9
Discussion & Limitations

This chapter critically reflects upon the key parts of this thesis to identify achievements and
limitations of the proposed solution. The core aspects are discussed to check if the MMD is a
feasible and efficient solution to the defined problem.

The structure of this chapter follows the structure of the research questions in chapter 4. This
makes sense because in chapter 4 all the requirements, problems, issues, etc. were condensed
into a small set of research issues. The one overarching question was split up into three manage-
able research issues that each got worked on separately. The results of this work have then been
presented in the chapters 6, 7 and 8 with each individual chapter targeting exactly one specific
research question. Afterwards, core limitations of this research are summarized to highlight the
current shortcomings of this research work.

For each research issue the background is shortly revised to quickly summarize its initial
motivation. Then the results of the correlating chapter are reflected to evaluate how well the
MMD addresses the issue.

9.1 Design of the MMD Process Approach

The first research question was motivated by the initial problem description. It deals with the
design of a structured process that improves upon the current status quo regarding the handling
of interdisciplinary parameters in todays systems engineering projects.

In these projects engineers from various disciplines and knowledge areas come together to
create vast complex systems, such as production or power plants. But the collaboration between
these engineers is often difficult and ineffective. One reason for this lies in the currently used
ineffective methods aimed to handle shared interdisciplinary parameters. These parameters are
important to engineers from all kinds of domains, but quite often there is no formal way specified
on how changes to these parameters should be propagated to important stakeholders. Often there
are also undocumented boundaries on or interactions between these parameters which forces the
involved engineers to regularly check them for consistency. The engineers also have to notify
the engineers of other domains if some important parameters change.

117

To improve on this common situation in systems engineering, a new approach was needed
that supports both loose coupling and sufficient awareness based on explicit dependencies be-
tween multi-model design constraints for traceability and decision support for change impact.

RI1: How does a structured and efficient process to handle interdisciplinary parameters and
design constraints in a systems engineering context look like?

In this thesis, the MMD approach is proposed to fill the void in the current systems engi-
neering landscape and provide an structured, organized and efficient process on how to handle
interdisciplinary parameters. As related approaches like the “Decision Board” approach have
shown a bulletin board like approach with request/publish/subscribe mechanics can help collab-
orating stakeholders to synchronize their work on shared components of a project. While the
“Decision Board” approach proved effective in a multi-product-line environment, the systems
engineering context of this thesis provided some extra challenges that made further research
necessary. Examples for the shortcomings of the “Decision Board” approach in a systems en-
gineering environment are the need for advanced design constraints and the lack of an elaborate
parameter discussion methodology and missing data extraction concept for heterogeneous data
models.

The expert knowledge of industry partners was utilized to gather the requirements needed
to cover these extra challenges. Based on the requirements, the scope of the proposed MMD
process was defined. One very important requirement was that the MMD should seamlessly
integrate into existing systems engineering project models. Through a literature study in the area
of typical systems engineering process models fitting integration points into project workflows
were identified.

Using established process modeling techniques like IDEF0 the MMD was designed as a six
step process model.

1. Identification of Parameters

2. Definition of Data Sensors

3. Model Collection within Common Repository

4. Variable Evaluation

5. Constraint Evaluation

6. Visualization & Notification

Each step deals with one specific part of the overall problem. Step 1 discusses a methodology
that allows stakeholders to discover the interdisciplinary parameters and constraints within their
projects. Step 2 provides a concept for data extraction from heterogeneous data models. Step 3
bridges different gaps between the project members by making the necessary data models avail-
able among them. Step 4 describes a mechanism to use the previously defined data extraction for
continuous monitoring of interdisciplinary parameters. In Step 5 the variables monitoring gets

118

enriched by constraint monitoring, allowing stakeholders to define restrictions on the variables.
The final step 6 deals with how the collected data is presented to the individual project members.

For each step a concept is provided along with advice how the individual steps could be
implemented. The steps build heavily upon state-of-the-art methods such as the EasyWinWin
approach and suggest that that these methods are used to implement the individual steps. But
the steps merely suggest an implementation, the MMD leaves the implementor the freedom to
decide how he wants to implement the individual steps. This is possible because of the strict
separation of concept and implementation suggestions.

When discussing the MMD with industry partners, the process was found effective in cre-
ating complex webs of dependencies across multiple engineering models. They could see the
MMD process be effective in the areas of risk management in heterogeneous engineering envi-
ronments where consistent monitoring and early notification are essential. Deployments in such
areas are already in progress at the CDL-Flex [3].

But, the industry partners also voiced concerns about the granularity and maturity of the
process. Most of the criticism can be explained with that the MMD is still new and every
industry partner puts emphasis on a different part of the proposed process. But, as is the nature
with all new ambitious things in science, the MMD is currently mostly a theoretical concept.
Although some iterations have been performed on the project it can only be considered finished
once it has been deployed in some real large-scale systems engineering projects. This would
yield more practically relevant feedback and help the mature in further iterations.

As a final remark regarding the asked research question one can say that the MMD process
proposed in this thesis is a suitable way to handle interdisciplinary parameters and design con-
straints. The general feasibility and effectiveness was positively evaluated and acknowledged
by industry partners, but still has some limitations which will have to be addressed to make the
MMD relevant in the industry in the future.

9.2 Tool Support Implementation

The second research issue deals with the creation of a tool chain to support the previously defined
MMD process. The focus of this issue is how to implement the individual parts of the MMD
following the guidelines provided by the MMD process description. A proper solution to this
question can also be seen as a first evaluation of the proposed approach.

The main motivator for this issue was the following. While RI1 dealt with the fact that
there is no structural and formal process to manage interdisciplinary parameters and constraints,
RI2 now deals with the possibilities to support and automate the execution of such processes.
Whether the engineers are dealing with their parameters in an explicit way or using informal
processes, the act of executing the necessary steps is still a matter of mostly manual labor. The
engineers have to track their parameters and constraints by hand by constantly reevaluating the
current status of the project and do manual notifications whenever inconsistencies appear. Given
the nature of humans, this is an error-prone and time-consuming endeavor. Therefore, research
was conducted on how these tasks can be automated, reducing workload from the engineers and
space for potential errors.

119

RI2: How can the tool support for the proposed MMD process be implemented?

To answer this specific question, a software prototype was created based on the implemen-
tation suggestions provided in the MMD process. The prototype was designed to act as a first
proof-of-concept for the proposed approach, as means to support the evaluation process in col-
laboration with industry partners and as a foundation for further industrial development at the
CDL-Flex. To achieve this goals, fitting components have been chosen or implemented for each
MMD step.

For step 1, a request/publish/subscribe pattern was implemented to allow the users to re-
quest, post and track the parameters and constraints of their choice. For step 2, a centralized
data extraction strategy based on git hooks has been implemented in the form of a Java servlet
component. To enable the data extraction, the git version system was used to implement the
shared repository required in step 3. The steps 4 and 5, have been implemented as Java com-
ponents utilizing various effective processing tools such as the Rhino engine. To visualize the
interdisciplinary parameters and constraints a web application has been implemented for step
6. All of this put together has led to an application where the user can define and monitor pa-
rameters and constraints via the web application and update the parameters using a common git
tool.

The evaluation of the prototype showed that it covered all the requirements defined in the
beginning of this thesis. It was used to setup efficient parameter and constraint monitoring in
two evaluation use cases and provided timely change notifications and sufficient awareness. In
both use cases, a predefined set of parameters and constraints was setup within the prototype for
monitoring. Anonymized data models from industry partner’s projects were used to populate the
prototype system with data.

During the experiments with the use cases and the evaluation sessions with industry partners,
it was assessed that the MMD prototype is in general an effective tool for tracking interdisci-
plinary parameters and constraints. It reduces the work load on the engineers by freeing them
from having to track the variables and constraints by hand. The quick notifications where found
useful in enabling engineers to react on irregular changes immediately. The prototype’s capabil-
ities to analyze violated constraints to their roots was found an effective way to track individual
problems to their sources. The prototype was found easy to use, because only minimal changes
to the current work flows were necessary once the initial setup was overcome.

But, some downsides have also been identified. The BIM use case has shown that in order to
effectively deploy an MMD implementation, the data model formats have to be sufficiently open
to data extraction. A prerequisite that is not guaranteed to be fulfilled for all models commonly
used across the different engineering fields and therefore a major limitation to the MMD ap-
proach. Although there is a trend for more open formats in various engineering disciplines, the
data formats that came out of it are often young and still leave much to be desired. As we could
see in the BIM use case, there is a free and open data model in building engineering namely
IFC. But, although the format is developed further constantly, there are still problems present
that prohibit effective data extraction.

Another crucial drawback is the effort necessary to implement a MMD tool chain. Although
the MMD was found very effective once the initial implementation effort is overcome, it implies

120

that the project has to be of a certain size for the effort to pay off. The break even point is not
yet known and should be evaluated in future projects.

9.3 Feasibility Study

The motivation behind this research question was to check if the proposed approach and proto-
type are feasible and what improvement do they bring over traditional manual approaches. As
with all new approaches it had to be shown that the MMD is actually working and worth to
be used in complex systems engineering environments. Because some of the evaluation results
have already been covered in the discussion of the previous two questions, the already already
discussed parts are left out.

RI3: Is the proposed MMD approach feasible and what improvements does it yield over the
traditional manual approach?

In order to evaluate the feasibility of the MMD approach,the MMD process and prototype were
utilized to implement two predefined use cases that were motivated by real life requirements.
One of the use cases was based in the software engineering area while the second one focused
on building engineering. The necessary input and data was provided by the CDL-Flex and its
industry partners.

The project portfolio management use case has shown the general feasibility of the approach.
Following the process and with support from the tool sets, it was possible to setup efficient
monitoring on interdisciplinary dependencies. It was shown that the MMD complied with the
defined requirements and allowed for a monitoring procedure that is not intrusive to the normal
work flow, but integrates smoothly by integrating into existing structures.

The building information management use case was a more specialized evaluation scenario,
because of the widespread usage of proprietary tools and data models. Even so, the MMD again
proofed feasible and effective, although performance issues in the proprietary tool sets especially
in the IFC data model highlighted some limitations of the approach. These and other limitations
are described further down this chapter.

The last part of the evaluation was the assessment of costs and benefits by utilizing the ex-
pert knowledge of the CDL-Flexs industry partners. As can be seen in the table 8.8 the industry
partners rated the MMD as being more effective than traditional approaches when dealing with
multidisciplinary parameters, once a certain size of the project is reached and the initial imple-
mentation effort is overcome. Concrete data on how large the projects have to be for the MMD
to prove economic has to be gathered in the future, but the current results suggest that it won’t
have to be exceptionally large.

A last argument for that the MMD is a feasible and effective way to handle interdisciplinary
parameters is that the contributions done in this thesis have already been evaluated in further
research projects. The MMD was successfully deployed by Biffl et al. once in the context of
automation systems [3] and once in the area of mechatronic design processes [73]. Figure 9.1
shows the scenario in the automation systems domain.

121

Figure 9.1: MMD Scenario in Automation Systems Context [3]

9.4 Limitations

During this research lots of effort was put into finding a solution that is feasible, efficient, easy to
use and complete. However because of the overwhelming size of the problem area, the current
research still has some deficits and limitations that will need further investigation in the future.
The biggest ones are summarized within this section.

Limited Scope of the Evaluation The MMD approach was designed and evaluated with a
set pair of use cases in mind. Even though this use cases where designed in collaboration with
industry partners and are therefore representative for the systems engineering domain, there is
still the fact that all the evaluation results are based upon the limited observations of two small
scale use cases. The area of systems engineering is huge and the two use cases only cover a
small subset of potentially involved disciplines, stakeholders, tools, parameters, constraints and
data models.

No Hard Facts in Cost/Benefit Assessment Another part where the limits of the evaluation
show lies the assessment of the costs and benefits. The MMD was not yet introduced into real
large-scale projects and therefore there is no actual data that measures the MMD’s influence on
project performance. To get a coarse idea how the MMD might perform, we had to resort to
asking industry experts about their opinions and estimates. While still a good indicator because
of the industry partner’s expertise in the systems engineering domain, it is still not that kind of
data that can proof exactly how effective the MMD is.

122

Frequent Parameter and Constraint Changes The whole design and evaluation process of
this thesis was aimed at a set amount of use cases, requirements and scenarios. For each use
case, a set of parameters and constraints was predefined and used throughout the thesis. In
practice, requirements do not remain static but are in constant need for adaption. There was no
evaluation done on how efficient the MMD would perform in areas where parameters and con-
straints change rapidly. The capabilities of MMD process and tool support to react to changing
interdisciplinary parameters need to be investigated.

Missing Aggregation and Transformation During this research, the need for an integrated
aggregation and transformation mechanic during data extraction came up. Currently, the concept
is only shortly touched during the process description and completely missing from the prototype
implementation. But as the evaluation has shown, the current data sensor concept of having one
parameter backed up by exactly one field in a data model is too simplistic. To enable efficient
and user-friendly tracking of parameters in model files, it is necessary to allow transformations
and aggregations. With these mechanics, it would be possible to define more complex variables,
which are backed up by multiple values in the data models.

Risk of Lacking User Acceptance As with every user-focused approach, there is always the
risk that users will refuse the service even if it is effective and beneficial. This can happen for a
lot of reasons like laziness to learn new tools, bad user interface design, etc. For example, if the
MMD would report many false-positives because the data sensors are badly configured then it
would damage the trust of the users into the system.

Inaccessible Model Formats As evaluation especially in the BIM use case has shown the
MMD relies heavily on having properly defined model formats which have good enough open-
ness values such that data extraction is easily possible. The data formats should ideally be
open-source and follow open standards, but proprietary file formats are fine as well as long as
an export or transformation to an open format is possible. Unfortunately it can never be guar-
anteed that such a format is available. This is a common problem in heterogeneous engineering
environments and it also plagues the MMD process.

123

CHAPTER 10
Summary and Future Work

This chapter concludes this thesis. In section 10.1 a short summary of the key points of this
thesis with all its findings and results is provided. Section 10.2 provides suggestions for future
work on how the basic research started with this thesis could be continued.

10.1 Summary

In systems engineering projects, engineers from various disciplines collaborate to create com-
plex systems such as industrial production plants. When looking at these projects in detail, one
can often observe deficits in the collaboration of these engineers. While this can have many
different reasons, this thesis focused on a specific one. Whether they are aware of it or not, the
engineers of different knowledge domains share common concepts among each other. These
concepts represent the interfaces between the engineer’s domains and are important for the suc-
cess of the overall project.

Although these concepts appear in multiple disciplines, the engineers have different views
upon them. They work on them with domain-specific tool sets and data models. Because en-
gineers of one domain are typically unaware of the models used in other domains, changes to
shared parameters are often not properly propagated to dependent parties. This happens because
these dependencies are often not explicitly defined. The focus of this thesis lied on creating a
process that supports stakeholders of systems engineering projects to make these dependencies
explicit to all involved parties and provide the necessary tool support to optimize the proposed
process.

In this thesis we introduced the MMD approach, a novel approach to conquer the inherent
complexity of interdisciplinary parameters in complex systems engineering environments. The
two major contributions of this thesis are the MMD process and a prototype implementation of
the tool support. Both, were defined on the foundation of requirements provided by industry
partners and the results of an elaborate literature study.

The MMD process provides participants of systems engineering projects with a systematic
six-step approach to define and effectively track multidisciplinary parameters and design con-

125

straints across different engineering fields. It supports both loose coupling and sufficient aware-
ness based on explicit dependencies between multi-model design constraints for traceability and
decision support for change impact.

The prototype provides a first proof-of-concept how a concrete implementation of the tool
support for the MMD could be created. It was found as a significant improvement over purely
manual traditional approaches because it frees up engineers from having to perform the repetitive
tasks needed to handle multidisciplinary parameters.

Both contributions have been evaluated on a set of predefined use cases. In collaboration
with the CDL-Flex and its industry partners the MMD’s cost/benefit ratio was also assessed.
The evaluations showed that the MMD is indeed a suitable, effective and desirable solution to
the given problem. But, the evaluation also unveiled some limitations of the approach in its
current state. These limitations should be subject to research in the future.

To close the circle, we revise the main research question of this thesis:

RQ: How can the project members of systems engineering projects effectively manage their in-
terdisciplinary parameters and ensure that certain design restrictions on these parameters
are always complied with?

The final conclusion of this thesis is that the MMD is a feasible, effective and structured way
to handle multidisciplinary parameters and design constraints in complex systems engineering
environments. It still has some limitations and flaws, but the current process is already able to
improve upon the current status quo. The results of this thesis proof that it is advisable and worth
it, to further iterate upon the process in the future.

10.2 Future Work

The main goal of this thesis, namely to support stakeholders of systems engineering projects by
making interdisciplinary parameters explicit and traceable, is a very ambitious one. Given the
diversity and size of the target area systems engineering, it is obvious that the whole problem
could not be solved with a single thesis. There is still much work to be done in order to further
develop the MMD, conquer its current shortcomings and tie up some loose ends which are still
existing after this thesis. Following, the most promising research topics derived from this thesis
are listed. Most of these topics have been defined in direct response to the limitations identified
in section 9.4.

Complete the Adaption to the BIM domain

A promising future research topic is the further adaption of the MMD to the BIM domain. As
shown in the evaluation (see section 8.2), the deployment of the MMD to this particular domain
is desirable, but challenging. On the foundation this thesis provides, further research in the BIM
domain should be conducted. A successful implementation would not only provide an invaluable
argument for the feasibility of the approach, but also act as a showcase for implementations in
other disciplines.

126

Evaluation in large-scale systems engineering projects

During the creation of this thesis, a lot of work was put into the evaluation of the approach in
the BIM domain. When the task got too big for a single person, a switch to a different use case
of a much smaller scale was necessary. Given the ambitions goals for the MMD approach, an
evaluation in such a small scale is probably not sufficient. Even the planned first scenario might
be too simple to really tell if the MMD approach really brings benefits worth the investment in
large systems engineering projects. Future research should therefore focus on proving feasibility
and measuring success in large-scale systems engineering projects.

Further Iterations on the MMD Process

The approach presented in this thesis is a first draft to conquer a very complex problem in sys-
tems engineering. As is shown in this thesis, the approach can already be implemented and
provide benefits in small scale use cases, but there is still much to be desired to provide an stan-
dardized approach that is relevant in large scale systems engineering projects. In the spirit of
iterative development, there should be further iterations on the design of the MMD process.

Points that should be handled during this iterations:

Separation into Management-Process and Development-Process The current design of the
MMD process contains tasks that are typically carried out by different kinds of stakeholders
within a project. Some process steps of the MMD focus on management and configuration
like discovering the potential interdisciplinary parameters, while others such as the implemen-
tation of the data sensors or the actual monitoring dashboard are clearly more on the technical
side. To allow for easier implementation of the MMD in real systems engineering projects, a
further revision of the MMD should explore the possibility to split the current process into a
management-focused and a development-focused subprocess.

Design of domain-specific Tailoring Processes The adaption of the MMD to the building en-
gineering domain has shown that, although the current domain-independent implementation of
the MMD works in general, domain-specific challenges and problems may arise. These might
imply the introduction of domain-specific routines, processes or tools. Each discipline is differ-
ent and as such has unique properties that need to be reflected in the MMD implementation for
the overarching systems engineering project. The problem is that every organization that starts
an MMD projects has to discover this specifics themselves. Therefore, an interesting research
topic for the future could be the introduction of supporting tailoring processes. The goal of
these processes would be to support stakeholders during the deployment of the MMD in new
knowledge domains.

Transformations and Aggregations The approach presented in this thesis follows the rule
that each interdisciplinary parameter is represented by exactly one value in the target data model.
While this in general allows for arbitrary parameters to be tracked, it has some negative conse-
quences like more complex constraints. Examples for this have already been pointed out during

127

the evaluation. Therefore, there is a need to explore the possibilities to integrate transformations
and aggregations into the MMD, with the goal to allow stakeholders the definition of richer
variables and constraints.

128

APPENDIX A
Used Technologies

This section briefly lists the different technologies used to create the research prototype. Its
main intention is to provide a quick reference on where to get additional information on the
technologies. The technologies with their respective versions and Uniform Resource Locators
(URLs)1 are listed in table A.1.

Only top-level dependencies are included within this list, transitive dependencies are ex-
cluded, e.g. the list contains the Spring framework, but does not mention all the submodules
used. The same goes for technologies that have become an integral part of other technologies,
e.g. JPA or JAXB being integrated into the Java JDK. Detailed information on submodules can
usually be found under the URL of the corresponding main framework.

1URLs last accessed 15-January-2014

129

Technology Version URL

Java 1.7.0 http://www.java.com
JavaScript 5.1 http://www.ecma-international.org/
Maven 3.1.1 http://maven.apache.org/
Jetty 9.0.6 http://www.eclipse.org/jetty/
Rhino 1.7R4 http://www.mozilla.org/rhino/
JGit 3.0.0 http://eclipse.org/jgit/
Git 1.8.3 http://git-scm.com/
Guava 15.0 http://code.google.com/p/guava-libraries/
Javassist 3.18.0 http://www.javassist.org/
Wicket 6.9.0 http://wicket.apache.org/
Bootstrap 2.3.2 http://getbootstrap.com/
Wicket-Bootstrap 0.8.4 http://wb.agilecoders.de
Ace Editor http://ace.c9.io/
Hibernate 4.2.4 http://hibernate.org/
Spring 3.2.4 http://spring.io/
Spring Data 1.3.4 http://projects.spring.io/spring-data/
Junit 4.11 http://junit.org/
Mockito 1.9.5 http://code.google.com/p/mockito/
POI 3.9 http://poi.apache.org/
PDFBox 1.8.2 http://pdfbox.apache.org/
H2 1.3.173 http://www.h2database.com
SLF4J 1.7.5 http://www.slf4j.org/
Log4J 1.2.17 http://logging.apache.org/log4j
Commons-Codec 1.8 http://commons.apache.org/codec
Commons-IO 2.4 http://commons.apache.org/io
Commons-Lang3 3.1 http://commons.apache.org/lang

Table A.1: The technologies used within the research prototype

130

http://www.java.com
http://www.ecma-international.org/
http://maven.apache.org/
http://www.eclipse.org/jetty/
http://www.mozilla.org/rhino/
http://eclipse.org/jgit/
http://git-scm.com/
http://code.google.com/p/guava-libraries/
http://www.javassist.org/
http://wicket.apache.org/
http://getbootstrap.com/
http://wb.agilecoders.de
http://ace.c9.io/
http://hibernate.org/
http://spring.io/
http://projects.spring.io/spring-data/
http://junit.org/
http://code.google.com/p/mockito/
http://poi.apache.org/
http://pdfbox.apache.org/
http://www.h2database.com
http://www.slf4j.org/
http://logging.apache.org/log4j
http://commons.apache.org/codec
http://commons.apache.org/io
http://commons.apache.org/lang

APPENDIX B
Prototype Use Cases

This chapter provides more detailed information about the prototype use cases than the use case
view in section 7.3. Here, it is shown in detail which steps a user has to perform in order to
execute the use cases with the prototype. The description of the individual cases follows the
RESCUE use case template [75]. The RESCUE template is very detailed and usually used in
the planning phases of not yet implemented software products. Design phases profit from a
high level of detail and unambiguity of the requirements. But here, it is used to describe the
functionality of an existing prototype. Therefore, the template gets applied in a modified form,
focusing on the fields that make the most sense for this context. The following simplifications
are made:

• Reduction of the template to the core fields.

• Omitting technically trivial use cases that just remove some configuration, e.g. “Deletion
of Variables”, “Unsubscribing”, etc.

• Omitting obvious pre- & postconditions like: “The system must be up and running”, “The
user opened the system in his browser”, etc. The starting point for each use case is a
running and configured system with the user looking at the start screen.

• Omitting alternatives that are based on invalid user input. These cases always end in an
error message to the user and a revision of the input.

131

Use Case 1 Request Models

Precis: the user is able to request new models from other users, when some
are missing that are necessary to evaluate critical parameters. The user
has to enter a description of the model he requests, so that other users
understand what he asks for. The model requests are then displayed to
other users.

Preconditions: -

Postconditions: The request is setup for other users to see.

Main Success Scenario:

1. The user opens the Marketplace view.

2. The user presses the “New Request” button.

3. The system displays an input form.

4. The user enters name and description of the wanted parameters.

5. The user submits the form.

6. The system displays the request at the Marketplace overview for all users.

Use Case 2 Offer Models

Precis: If a user owns models that are requested by other users, the model owner
can create a model offering in the system. A notification is then sent to
the requester to notify him about the offering.

Preconditions: Open model request present.

Postconditions: The requester is notified about the new offering.

Main Success Scenario:

132

1. The user opens the Marketplace view.

2. The user selects the open model request.

3. The system displays the details of the request.

4. The user enters parameters from his models.

5. The user presses “Make Offering”.

6. The system displays the offering in the requester’s Marketplace view.

7. The system sends a notification to the requester about the new offering.

Use Case 3 Accept Models

Precis: The user is able to accept models offered to him. Accepting an offer
will close the correlating model request. A notification is then sent to
the offerer to notify him if the requester accepted his offer or not.

Preconditions: Unanswered offerings are present.

Postconditions: The offerer is notified about the outcome of his offer.

Main Success Scenario:

1. The user opens the Marketplace view.

2. The user selects the offering.

3. The system displays the details of the offer.

4. The user presses “accept”.

5. The system closes the request.

6. The system sends a notification to the offerer.

Variant:
4.a If user does not want to accept:

4. The user presses “decline”

5. The system sends a notification to the offerer about the rejection.

133

Use Case 4 Publish Models

Precis: In response to an accepted offer or proactively, users can publish mod-
els. The published models are submitted to the system. If there are
variable definitions present regarding the published models, the data
is extracted and the variables are updated. If these variables are used
within constraints, a reevaluation of all involved constraints is triggered.
Notifications are sent to subscribers on variable or constraint update.

Preconditions: Accepted offering (optional)

Postconditions: • New models persisted to system.

• Variables defined on the new models updated.

• Variable change notifications sent to subscribers.

• Constraints that contain changed variables updated.

• Constraint change notifications sent to subscribers.

Main Success Scenario:

1. The user copies the new models into his local repository of the project
workspace.

2. The user adds the files to version control using git add.

3. Use case 5 “Update Models” is invoked.

134

Use Case 5 Update Models

Precis: The user updates his models in his own workspace. Once the changes
are ready to be propagated to other users, he submits them to the system.
If there are variables defined on the models, the changes are extracted
and the variables updated. If these variables are used within constraints,
a reevaluation of all affected constraints is triggered. Notifications are
sent to subscribers when variables or constraints get updated.

Preconditions: Local Models are changed.

Postconditions: • Models updated in system.

• Variables based on the changed models updated.

• Variable change notifications sent to subscribers.

• Constraints that contain changed variables updated.

• Constraint change notifications sent to subscribers.

Main Success Scenario:

1. The user creates a new commit containing the changes on the master branch
using git commit.

2. The user pushes the updates to the system using git push.

3. The system extracts new variable values from the push.

4. The system sends notifications to the variable subscribers about the update.

5. The system updates those constraints which use the updated variables.

6. The system sends notifications to the constraint subscribers about the update.

Alternatives:
3.a If the system can not parse the push or the push to master can not be applied

(e.g. non-fastforward push):

3. The system rejects the commit.

4. The system sends an error message through the git client.

5. The user reverts his local commit using git revert.

135

Use Case 6 Define Variables

Precis: The user is able to define new variables based on already present or
promised models. If the necessary models are already uploaded to the
system, the necessary data is extracted and the variable is set. Otherwise
the variable is marked as uninitialized.

Preconditions: Model in workspace (optional)

Postconditions: • The variable is defined and visible in the system.

• The variable is populated with data.

Main Success Scenario:

1. The user opens the Variables view.

2. The user presses the “New Variable” button.

3. The system displays an input form.

4. The user enters name, type, parameter location and data sensor configuration.

5. The user submits the form.

6. The system extracts the variable data from its models.

7. The system displays the new variable with its value at the Variables view.

Alternatives:
6.a If the system has no data models for the new variable:

6. The system displays the new variable as uninitialized.

136

Use Case 7 Define Constraints

Precis: The user can define constraints on variables. The constraints can be
mathematical equations or arbitrary JavaScript algorithms. The con-
straint is immediately evaluated and the result is presented to the user.

Preconditions: Variables to constrain are present.

Postconditions: • The constraint is defined and visible in the system.

• The constraint evaluated to a truth value.

Main Success Scenario:

1. The user opens the Constraints view.

2. The user presses the “New Constraint” button.

3. The system displays an JavaScript Editor and all usable variables.

4. The user builds the constraint.

5. The user submits the form.

6. The system evaluates the constraint.

7. The system displays the constraint at the Constraint overview with the evaluation
result.

Variants:
6.a If the system can not parse the constraint:

6. The system displays an error message.

137

Use Case 8 Subscribe Variables

Precis: The user is able to subscribe variables of other users, which allows him
to track changes to the variable.

Preconditions: Variable is defined.

Postconditions: User is subscribed to the variable.

Main Success Scenario:

1. The user opens the Variables view.

2. The user selects the wanted variable.

3. The user presses “Subscribe”

4. The system subscribes the user to the variable.

5. The system displays the subscribed variable in the users favorites.

Use Case 9 Subscribe Constraints

Precis: The user is able to subscribe constraints, in order to get notified if an
design constraint goes invalid.

Preconditions: Constraint is defined.

Postconditions: User is subscribed to the constraint and all the variables on which the
constraint depends on.

Main Success Scenario:

1. The user opens the Constraint view.

2. The user selects the constraint.

3. The user presses “Subscribe”

4. The system subscribes the user to the constraint.

5. The system subscribes the user to all variables the constraint depends on.

6. The system displays the subscribed constraint in the users favorites.

138

Bibliography

[1] C. Haskins et al., Systems engineering handbook. INCOSE, 2006.

[2] E. C. Honour, “Understanding the Value of Systems Engineering,” in Proceedings of the
INCOSE International Symposium, pp. 1–16, 2004.

[3] S. Biffl, D. Winkler, R. Mordinyi, S. Scheiber, and G. Holl, “Efficient Monitoring of Con-
straints in a Multi-Disciplinary Engineering Project with Semantic Data Integration in the
Multi-Model Dashboard Process,” in Proceedings of the 19th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA), (Barcelona, Spain),
p. 10, IEEE, September 16-19 2014. accepted for publication.

[4] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El Emam, and J. Rosen-
berg, “Preliminary guidelines for empirical research in software engineering,” Software
Engineering, IEEE Transactions on, vol. 28, no. 8, pp. 721–734, 2002.

[5] E. Kasanen, K. Lukka, and A. Siitonen, “The Constructive Approach in Management Ac-
counting Research,” Journal of Management Accounting Research, vol. 5, pp. 241–264,
1993.

[6] W. C. Booth, G. G. Colomb, and J. M. Williams, The Craft of Research. University of
Chicago Press, 3 ed., 2009.

[7] A. Van Lamsweerde, Requirements Engineering. John Wiley & Sons, 2007.

[8] F. NIST, “Publication 183: Integration Definition of Function Modeling (IDEF0),” Na-
tional Institute of Standards and Technology, vol. 128, 1993.

[9] C. Floyd, “A Systematic Look at Prototyping,” in Approaches to Prototyping (R. Budde,
K. Kuhlenkamp, L. Mathiassen, and H. Züllighoven, eds.), pp. 1–18, Springer Berlin Hei-
delberg, 1984.

[10] D. Winkler, R. Mordinyi, and S. Biffl, “Research Prototypes versus Products: Lessons
Learned from Software Development Processes in Research Projects,” in Systems, Software
and Services Process Improvement (F. McCaffery, R. O’Connor, and R. Messnarz, eds.),
vol. 364 of Communications in Computer and Information Science, pp. 48–59, Springer
Berlin Heidelberg, 2013.

139

[11] G. Holl, P. Grünbacher, C. Elsner, and T. Klambauer, “Supporting awareness during col-
laborative and distributed configuration of multi product lines,” in Software Engineering
Conference (APSEC), 2012 19th Asia-Pacific, vol. 1, pp. 137–147, 2012.

[12] G. Holl, D. Thaller, P. Grünbacher, and C. Elsner, “Managing emerging configuration de-
pendencies in multi product lines,” in Proceedings of the Sixth International Workshop on
Variability Modeling of Software-Intensive Systems, VaMoS ’12, (New York, NY, USA),
pp. 3–10, ACM, 2012.

[13] M. Jamshidi, Systems of Systems Engineering: Principles and Applications. Taylor &
Francis, 2010.

[14] P. Dourish and V. Bellotti, “Awareness and coordination in shared workspaces,” in Pro-
ceedings of the 1992 ACM conference on Computer-supported cooperative work, CSCW
’92, (New York, NY, USA), pp. 107–114, ACM, 1992.

[15] G. Rabiser, Holl, “Improving awareness during product derivation in multi-user multi prod-
uct line environments,” in ACoTA 2010, pp. 1–5, CEUR-WS, 12 2010.

[16] R. Rabiser, P. Grunbacher, and D. Dhungana, “Supporting product derivation by adapting
and augmenting variability models,” in Software Product Line Conference, 2007. SPLC
2007. 11th International, pp. 141–150, IEEE, 2007.

[17] B. W. Boehm, “Integrating Software Engineering and Systems Engineering,” The Journal
of NCOSE, vol. 1, pp. 147–151, 1994.

[18] B. W. Boehm and A. Jain, “A value-based theory of systems engineering,” in Proceedings,
INCOSE, 2006.

[19] B. W. Boehm, “A view of 20th and 21st century software engineering,” in Proceedings of
the 28th international conference on Software engineering, pp. 12–29, ACM, 2006.

[20] F. P. Brooks, The mythical man-month, vol. 1995. Addison-Wesley Reading, 1975.

[21] A. Pyster and D. Olwell, “Guide to the Systems Engineering Body of Knowledge (SEBoK),
version 1.2.” http://www.sebokwiki.org/, 2013. [online; accessed 15-December-
2013].

[22] R. Fairley and M. J. Willshire, “Teaching Software Engineering Concepts to Systems En-
gineering Students,” in American Society for Engineering Education, American Society
for Engineering Education, 2011.

[23] R. Turner, A. Pyster, and M. Pennotti, “Developing and validating a framework for inte-
grating systems and software engineering,” in Systems Conference, 2009 3rd Annual IEEE,
pp. 407–412, IEEE, 2009.

[24] L. Doyle and M. Pennotti, “Impact of Embedded Software Technology on Systems Engi-
neering,” in 16th Annual International Symposium, INCOSE, 2006.

140

http://www.sebokwiki.org/

[25] “ISO/IEC/IEEE Standard for Systems and Software Engineering - Software Life Cycle
Processes,” IEEE STD 12207-2008, pp. c1–138, 2008.

[26] “ISO/IEC/IEEE Standard for Systems and Software Engineering - System Life Cycle Pro-
cesses,” IEEE STD 15288-2008, pp. c1–84, 2008.

[27] R. Fairley and M. Willshire, “Teaching Systems Engineering to Software Engineering Stu-
dents,” in Software Engineering Education and Training (CSEE T), 2011 24th IEEE-CS
Conference on, pp. 219–226, 2011.

[28] B. S. Blanchard and W. J. Fabrycky, Systems Engineering and Analysis. Prentice Hall,
4 ed., 2006.

[29] I. Sommerville, Software Engineering. Addison Wesley Longman Publishing Co., Inc.,
8. ed., 2007.

[30] A. Schatten, S. Biffl, M. Demolsky, E. Gostischa-Franta, T. Östreicher, and D. Winkler,
Best Practice Software-Engineering: Eine praxiserprobte Zusammenstellung von kompo-
nentenorientierten Konzepten, Methoden und Werkzeugen. Spektrum Akademischer Verlag
Heidelberg 2010, 1. ed., 2010.

[31] W. W. Royce, “Managing the development of large software systems,” in Proceedings of
IEEE WESCON, vol. 26, Los Angeles, 1970.

[32] D. L. Parnas and P. C. Clements, “A rational design process: How and why to fake it,”
Software Engineering, IEEE Transactions on, no. 2, pp. 251–257, 1986.

[33] Federal Republic of Germany, “V-Model XT, 1.4 edition.” http://www.
v-modell-xt.de/, 2013. [online; accessed 15-December-2013].

[34] R. Höhn and S. Höppner, Das V-Modell XT. eXamen Press, Springer, 2008.

[35] IABG, “Das V-Model.” http://www.v-modell.iabg.de/. [online; accessed 15-
December-2013].

[36] A.-P. Bröhl and W. Dröschel, Das V-Modell: Der Standard für die Softwareentwicklung
mit Praxisleitfaden, vol. 2. Oldenbourg, 1993.

[37] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Gren-
ning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mel-
lor, K. Schwaber, J. Sutherland, and D. Thomas, “Manifesto for Agile Software De-
velopment.” http://www.agilemanifesto.org/, 2001. [online; accessed 15-
December-2013].

[38] K. Schwaber, Agile project management with Scrum. O’Reilly Media, Inc., 2004.

[39] J. Sutherland, “Agile development: Lessons learned from the first scrum,” Cutter Agile
Project Management Advisory Service: Executive Update, vol. 5, no. 20, pp. 1–4, 2004.

141

http://www.v-modell-xt.de/
http://www.v-modell-xt.de/
http://www.v-modell.iabg.de/
http://www.agilemanifesto.org/

[40] K. Schwaber and J. Sutherland, “The Scrum Guide–The Definitive Guide to Scrum: The
Rules of the Game,” Scrum.org, 2013.

[41] R. O. Briggs and P. Grünbacher, “EasyWinWin: Managing complexity in requirements
negotiation with GSS,” in System Sciences, 2002. HICSS. Proceedings of the 35th Annual
Hawaii International Conference on, pp. 10–pp, IEEE, 2002.

[42] P. Grünbacher, “Collaborative Requirements Negotiation with EasyWinWin,” 2012 23rd
International Workshop on Database and Expert Systems Applications, p. 954, 2000.

[43] P. Grünbacher, “EasyWinWin Online: Moderator’s guidebook, a methodology for negoti-
ating software requirements,” GroupSystems. com and USC-CSE, 2000.

[44] P. Grünbacher and B. Böhm, “EasyWinWin: a groupware-supported methodology for re-
quirements negotiation,” in Proceedings of the 8th European software engineering con-
ference held jointly with 9th ACM SIGSOFT international symposium on Foundations of
software engineering, ESEC/FSE-9, (New York, NY, USA), pp. 320–321, ACM, 2001.

[45] B. W. Boehm and R. Turner, Balancing agility and discipline: A guide for the perplexed.
Addison-Wesley Professional, 2003.

[46] G. Hohpe and B. Woolf, Enterprise integration patterns: Designing, building, and deploy-
ing messaging solutions. Addison-Wesley Professional, 2004.

[47] M. Barth, R. Drath, A. Fay, F. Zimmer, and K. Eckert, “Evaluation of the openness of
automation tools for interoperability in engineering tool chains,” in Emerging Technologies
Factory Automation (ETFA), 2012 IEEE 17th Conference on, pp. 1–8, Sept 2012.

[48] A. Fay, S. Biffl, D. Winkler, R. Drath, and M. Barth, “A method to evaluate the openness of
automation tools for increased interoperability,” in Industrial Electronics Society, IECON
2013 - 39th Annual Conference of the IEEE, pp. 6844–6849, Nov 2013.

[49] ISO, “ISO/IEC 29500 Information technology - Office Open XML formats,” 2008.

[50] ISO, “Information technology - Open Document Format for Office Applications,” 2006.

[51] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible Markup
Language (XML) 1.0 (Fifth Edition).” World Wide Web Consortium, Recommenda-
tion REC-xml-20081126 http://www.w3.org/TR/2008/REC-xml-20081126,
November 2008. [online; accessed 11-January-2014].

[52] J. Clark and S. DeRose, “XML Path Language (XPath) 1.0.” World Wide Web Con-
sortium, Recommendation REC-xpath-19991116 http://www.w3.org/TR/1999/
REC-xpath-19991116, November 1999. [online; accessed 11-January-2014].

[53] ISO, “ISO/IEC 16262 Programming languages, their environments and system software
interfaces - ECMAScript language specification,” 2011.

142

http://www.w3.org/TR/2008/REC-xml-20081126
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

[54] Object Management Group, “UML specification.” http://www.omg.org/spec/
UML/. [online; accessed 22-December-2013].

[55] D. Pilone and N. Pitman, UML 2.0 in a Nutshell. O’Reilly Media, Inc., 2009.

[56] M. Hitz, G. Kappel, E. Kapsammer, and W. Retschitzegger, UML@ work. dpunkt. Verlag,
2005.

[57] P. B. Kruchten, “The 4+ 1 view model of architecture,” Software, IEEE, vol. 12, no. 6,
pp. 42–50, 1995.

[58] Veer Muchandi, “Applying 4+1 View Architecture with UML 2 .” http:
//www.sparxsystems.com/downloads/whitepapers/FCGSS_US_WP_
Applying_4+1_w_UML2.pdf. [online; accessed 15-December-2013].

[59] M. Fowler, Patterns of Enterprise Application Architecture. Addison-Wesley Longman
Publishing Co., Inc., 2002.

[60] E. Evans, Domain-driven design: tackling complexity in the heart of software. Addison-
Wesley Professional, 2004.

[61] E. Evans and M. Fowler, “Specifications.” http://martinfowler.com/apsupp/
spec.pdf. [online; accessed 15-February-2014].

[62] M. Pollack, O. Gierke, T. Risberg, J. Brisbin, and M. Hunger, Spring Data: Modern Data
Access for Enterprise Java. O’Reilly, 2013.

[63] J. Elliott, T. M. O’Brien, and R. Fowler, Harnessing Hibernate. O’Reilly, 2008.

[64] E. Freeman, E. Freeman, B. Bates, and K. Sierra, Head First Design Patterns. O’ Reilly &
Associates, Inc., 2004.

[65] S. Chacon and J. C. Hamano, Pro git, vol. 288. Springer, 2009.

[66] I. Vaynberg, Apache Wicket Cookbook. Packt Publishing Ltd, 2011.

[67] A. Kiviniemi, “Ten years of IFC-development–Why are we not yet there,” in Keynote lec-
ture at the 2006 Joint International Conference on Computing and Decision Making in
Civil and Building Engineering, Montreal, Canada, 2006.

[68] R. Howard and B.-C. Björk, “Building information modelling – Experts’ views on stan-
dardisation and industry deployment,” Advanced Engineering Informatics, vol. 22, no. 2,
pp. 271–280, 2008.

[69] ISO, “ISO 16739 - Industry Foundation Classes (IFC) for data sharing in the construction
and facility management industries,” 2013.

[70] ISO, “ISO 10303-11 - Industrial automation systems and integration - Product data repre-
sentation and exchange - Part 11: Description methods: The EXPRESS language reference
manual,” 2004.

143

http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://www.sparxsystems.com/downloads/whitepapers/FCGSS_US_WP_Applying_4+1_w_UML2.pdf
http://www.sparxsystems.com/downloads/whitepapers/FCGSS_US_WP_Applying_4+1_w_UML2.pdf
http://www.sparxsystems.com/downloads/whitepapers/FCGSS_US_WP_Applying_4+1_w_UML2.pdf
http://martinfowler.com/apsupp/spec.pdf
http://martinfowler.com/apsupp/spec.pdf

[71] ISO, “ISO 10303-21 - Industrial automation systems and integration - Product data rep-
resentation and exchange - Part 21: Implementation methods: Clear text encoding of the
exchange structure,” 2002.

[72] ISO, “ISO 10303-28 - Industrial automation systems and integration - Product data rep-
resentation and exchange - Part 28: Implementation methods: XML representations of
EXPRESS schemas and data, using XML schemas,” 2007.

[73] S. Biffl, A. Lüder, N. Schmidt, and D. Winkler, “Early and Efficient Quality Assurance of
Risky Technical Parameters in a Mechatronic Design Process,” in Proceedings of the 40th
Annual Conference of the IEEE Industrial Electronics Society (IECON), (Dallas, Texas,
USA), p. 7, IEEE, October 28 - November 1 2014. accepted for publication.

[74] R. Likert, “A technique for the measurement of attitudes.,” Archives of psychology, 1932.

[75] S. Jones and N. A. Maiden, “RESCUE: An integrated method for specifying requirements
for complex socio-technical systems,” Requirements Engineering for Socio-Technical Sys-
tems, pp. 245–265, 2005.

144

List of Figures

1.1 The needs in the BIM scenario . 4
1.2 Challenges Overview for the MMD approach . 5

2.1 The maturity levels of research prototypes . 12

3.1 Sample configuration: Mini mill with dependencies 16
3.2 The ISO/IEC 15288 life cycle processes . 20
3.3 The software system life cycle process . 22
3.4 The waterfall model . 24
3.5 V-Model XT: The classification of projects into project types 25
3.6 V-Model XT: The connection between project types and project variants 25
3.7 V-Model XT: The structure of a process module 26
3.8 V-Model XT: The decision gates of a project execution strategy 27
3.9 The scrum process . 28

5.1 Sketch of the intended MMD functionality as envisioned by industry partners. . . . 40

6.1 The MMD process steps . 44
6.2 IDEF0 overview of the MMD approach . 46
6.3 The data sensor concept in IDEF0 notation . 51
6.4 Concept of a data sensor for XLSX files in IDEF0 notation 55
6.5 Concept of a data sensor for XML files in IDEF0 notation 56
6.6 Concept of a data sensor for PDF files in IDEF0 notation 57
6.7 The proposed variable evaluation strategy . 63
6.8 The concept of an constraint evaluation component in IDEF0 notation 66
6.9 Description of constraint evaluation behavior in IDEF0 notation 67

7.1 The 4+ 1 view model . 72
7.2 The use cases implemented within the prototype 75
7.3 The core domain classes . 77
7.4 The FileType relationship . 81
7.5 The Location hierarchy . 82
7.6 The SourceReader hierarchy . 83
7.7 The variables view . 88

145

7.8 The evaluation view . 88
7.9 The variable definition process . 90
7.10 The change detection process . 91
7.11 The change propagation service . 93
7.12 The prototype architecture . 94
7.13 The protoype deployment . 96

8.1 Commiting the initial test data to the GitServlet using TortoiseGit 101
8.2 The creation of the manHoursSpent variable . 102
8.3 The evaluated manHoursSpent variable . 103
8.4 The defined variables from the project manager’s perspective 103
8.5 Definition of the manHoursOverrun constraint . 104
8.6 The defined constraints from the project manager’s perspective 104
8.7 The evaluation overview from the project manager’s perspective 105
8.8 The evaluation overview after an update to the underlying data models 106
8.9 The change notifications sent to the project manager 106
8.10 Visualization of the BIM use case’s data model produced in Tekla BIMsight. 107

9.1 MMD Scenario in Automation Systems Context 122

146

List of Tables

3.1 The adaptation of software/systems engineering methods 18

7.1 The FileType mapping . 83
7.2 The git repository config . 87

8.1 The defined test users . 98
8.2 The gathered test data . 98
8.3 The parameters used in the feasibility evaluation 99
8.4 The constraints used in the feasibility evaluation 99
8.5 The mapping between parameters and data sensors. 100
8.6 Supported export formats of chosen BIM tools . 109
8.7 Availability of open standards for the chosen export formats 110
8.8 Results of the cost-benefit comparison between manual and MMD approach [3] . . 116

A.1 The technologies used within the research prototype 130

147

List of Acronyms

API Application Programming Interface

BIM Building Information Modeling

CAD Computer Aided Design

CDL-Flex Christian Doppler Laboratory for Software Engineering Integration for Flexible
Automation Systems

DOM Document Object Model

GUID Globally Unique Identifier

GUI Graphical User Interface

IDEF0 ICAM DEFinition for Function Modeling

IEEE Institute of Electrical and Electronics Engineers

IFC Industry Foundation Classes

INCOSE International Council on Systems Engineering

ISO International Organization for Standardization

JPA Java Persistence API

JTA Java Transaction API

JVM Java Virtual Machine

J2EE Java Platform Enterprise Edition

MB Megabyte

MMD Multi-Model Dashboard

ORM Object-Relational-Mapping

PDF Portable Document Format

149

SAX Simple API for XML

SCM Source Code Management

SEBoK Systems Engineering Body of Knowledge

SVN Subversion

SQL Structured Query Language

UML Unified Modeling Language

URL Uniform Resource Locator

VM Virtual Machine

XML Extensible Markup Language

XP eXtreme Programming

XPath XML Path Language

150

	Introduction
	Motivation
	Motivating Scenario
	Problem Statement
	Aim of the work
	Thesis Structure

	Methodology
	Related Work
	Decision Dashboards in Multi Product Lines
	Relationship between Software and Systems Engineering
	Systems Engineering Process Models
	Systems Engineering Life Cycle
	Waterfall Model
	V-Model XT
	Agile Development

	Research Questions
	Design of the MMD Process Approach
	Tool Support Implementation
	Feasibility Study

	Use Case & Requirements
	Use Case: Project Portfolio Management
	Stakeholder
	Artifacts
	Scenarios

	Stakeholder Requirements
	Identified Artifacts
	Required Features

	Multi-Model Dashboard Process
	Scope
	Definitions
	MMD Process Description
	Identification of Parameters
	Definition of Data Sensors
	Model Collection within Common Repository
	Variable Evaluation
	Constraint Evaluation
	Presentation / Notification

	Prototype Implementation
	Architectural Overview
	Mapping to MMD process
	Use Case View
	Actor Description
	Use Case Descriptions

	Logical View
	Domain Model
	Data Repositories
	Data Sensors
	Services
	GitServlet
	Web Interface

	Process View
	Variable Definition Process
	Change Detection Process
	Change Propagation Process

	Development View
	Physical View

	Evaluation & Results
	Feasibility Study
	Data Description
	Process Execution

	Use Case Results: Building Information Management
	Parameters & Constraints
	Data Sensor Implementation
	Variable Definition
	Constraint Definition & Evaluation Results

	Cost-Benefit Assessment

	Discussion & Limitations
	Design of the MMD Process Approach
	Tool Support Implementation
	Feasibility Study
	Limitations

	Summary and Future Work
	Summary
	Future Work

	Used Technologies
	Prototype Use Cases
	Bibliography
	List of Figures
	List of Tables
	List of Acronyms

