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Abstract

Stochastic sampling is an indispensable tool in computer graphics which allows approximating
complex functions and integrals in finite time. Applications which rely on stochastic sampling
include ray tracing, remeshing, stippling and texture synthesis. In order to cover the sample
domain evenly and without regular patterns, the sample distribution has to guarantee spatial uni-
formity without regularity and is said to have blue-noise properties. Additionally, the samples
need to be distributed according to an importance function such that the sample distribution sat-
isfies a given sampling probability density function globally while being well distributed locally.
The generation of optimal blue-noise sample distributions is expensive, which is why a lot of ef-
fort has been devoted to finding fast approximate blue-noise sampling algorithms. Most of these
algorithms, however, are either not applicable in real time or have weak blue-noise properties.

Forced Random Sampling is a novel algorithm for real-time importance sampling. Samples
are generated by thresholding a precomputed dither matrix with the importance function. By
the design of the matrix, the sample points show desirable local distribution properties and are
adapted to the given importance. In this thesis, an efficient and parallelizable implementation
of this algorithm is proposed and analyzed regarding its sample distribution quality and runtime
performance. The results are compared to both the qualitative optimum of blue-noise sampling
and the state of the art of real-time importance sampling, which is Hierarchical Sample Warping.
With this comparison, it is investigated whether Forced Random Sampling is competitive with
current sampling algorithms.

The analysis of sample distributions includes several discrepancy measures and the sample
density to evaluate their spatial properties as well as Fourier and differential domain analyses
to evaluate their spectral properties. With these established methods, it is shown that Forced
Random Sampling generates samples with approximate blue-noise properties in real time. Com-
pared to the state of the art, the proposed algorithm is able to generate samples of higher quality
with less computational effort and is therefore a valid alternative to current importance sampling
algorithms.
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Kurzfassung

Stochastisches Sampling ist ein für die Computergrafik unerlässliches Hilfsmittel, das die An-
näherung komplexer Funktionen und Integrale in endlicher Zeit ermöglicht. Anwendungen, die
auf stochastisches Sampling zurückgreifen, sind unter anderem Ray Tracing, Remeshing, Stipp-
ling und die Textursynthese. Um den abzutastenden Bereich gleichmäßig und ohne regelmäßige
Muster abzudecken, muss die Verteilung räumliche Gleichmäßigkeit ohne Regelmäßigkeit ga-
rantieren, was als Blue-Noise-Charakteristik bezeichnet wird. Zusätzlich sollen Samples auch
entsprechend einer Gewichtsfunktion verteilt werden (Importance Sampling), sodass die Vertei-
lung der Samples global einer gegebenen Dichtefunktion genügt und lokal noch immer gleich-
mäßig und irregulär ist. Die Erzeugung optimaler Blue-Noise-Verteilungen ist aufwändig, wes-
halb in der Vergangenheit vor allem an schnelleren Verfahren mit ähnlich guter Qualität gearbei-
tet wurde. Die meisten dieser Algorithmen sind jedoch entweder nicht für Echtzeitanwendungen
geeignet oder haben deutlich schlechtere Verteilungseigenschaften.

Forced Random Sampling ist ein neuartiger Algorithmus für Importance Sampling in Echt-
zeit. Samples werden erzeugt, indem eine vorberechnete Dithermatrix mit einer auf der Ge-
wichtsfunktion basierenden Schwellwertfunktion verglichen wird. Aufgrund der Konstruktion
der Matrix weisen die resultierenden Samples lokal wünschenswerte Verteilungseigenschaften
auf und sind zudem global an die gegebene Gewichtsfunktion angepasst. In dieser Arbeit wird
eine effiziente und parallelisierbare Implementierung dieses Algorithmus vorgestellt und hin-
sichtlich der Verteilungsqualität und Laufzeit analysiert. Die Ergebnisse werden sowohl mit dem
qualitativen Optimum für Blue Noise Sampling als auch mit dem aktuellen Stand der Technik
auf dem Gebiet des Importance Sampling in Echtzeit – dem Hierarchical Sample Warping –
verglichen. Mithilfe dieses Vergleichs soll untersucht werden, ob Forced Random Sampling mit
gängigen Sampling-Algorithmen konkurrieren kann.

Die Analyse von Sampleverteilungen umfasst einerseits mehrere Diskrepanzmaße sowie
die Dichte zur Beurteilung der räumlichen Verteilungseigenschaften und andererseits Fourier-
und Differentialbereichanalysen zur Beurteilung der spektralen Verteilungseigenschaften. Mit
diesen bewährten Methoden wird gezeigt, dass Forced Random Sampling zur Erzeugung von
Samples mit annähernder Blue-Noise-Charakteristik in Echtzeit verwendet werden kann. Vergli-
chen mit dem derzeitigen Stand der Technik liefert das vorgestellte Verfahren Samples höherer
Qualität mit weniger Berechnungsaufwand und ist deshalb eine echte Alternative zu gängigen
Importance-Sampling-Algorithmen.
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CHAPTER 1
Introduction

1.1 Motivation

Sampling is a ubiquitous task in computer graphics, whose goal is to discretize continuous func-
tions. The most common application might be the output of continuous content on an ordinary
display. As the display’s pixels are discrete, the content has to be sampled regularly at discrete
positions. In general, the sampling theorem states that after sampling, a signal can only be re-
constructed correctly if the original signal is bandlimited, meaning that its highest frequency is
bounded, and has no frequencies above half the sampling frequency. In the case of a display,
the sampling frequency and therefore the maximum frequency that can be displayed are fixed
and determined by the pixels’ size. Higher frequencies cannot be displayed correctly and in-
stead alias as lower frequencies. Since discontinuities in a signal have an unbounded frequency,
aliasing is very common in computer graphics and its visually apparent artifacts such as Moiré
patterns and jaggies are well known. If the content exhibits discontinuities, these artifacts can
only be reduced, e.g., by supersampling, but they cannot be completely removed with regular
sampling. Instead, stochastic sampling can be applied, which replaces the artifacts of aliasing
with noise which is much less distracting to the human eye.

Stochastic sampling has become an indispensable tool in computer graphics, not only for
anti-aliasing. The numerical evaluation of complex integrals such as the rendering equation with
Monte Carlo integration lays the foundation for realistic lighting algorithms. Many artifacts
caused by regular sampling can be avoided by sampling a function at random locations, but
completely random sampling does not guarantee the function to be sampled spatially uniformly.
This means that the random samples do not cover the sample domain evenly, but tend to cluster
and form holes randomly. In order to properly approximate the sample domain – in the following
denoted with Ω – with a finite number of samples, spatial uniformity is an important property
of a sample distribution. An ideal sample distribution would have a high spatial uniformity
and a low regularity. One distribution to meet these conditions is the Poisson disk distribution.
An exemplary sample set is depicted in Figure 1.1 in between regular and uniform random
sample sets. Unlike regular samples, Poisson disk samples do not exhibit any regularity, but still
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(a) Regular (b) Poisson disk (c) Uniform random

Figure 1.1: Different sample distributions

have a much higher spatial uniformity than uniform random samples. The generation of such
a distribution is discussed in detail in this thesis. Its power spectrum – a representation of the
energy of a signal as a function of frequency, in this context estimated from individual sample
sets – is very distinctive and is said to have blue-noise properties. This means that it is isotropic,
has no concentrated spikes and almost no low-frequency energy. For higher frequencies, the
energy concentrates in periodic annuli and finally transitions into noise. Sampling with such a
distribution is called blue-noise sampling. Because of the good results achievable with blue-
noise sampling, the quality of a sample distribution is usually given by the correspondence of its
power spectrum to the blue-noise power spectrum.

Although blue-noise sampling as such works well, it does not include any knowledge of
Ω. Often, an importance function is given or can be estimated, e.g., from the light contribution
of an environment map to the scene or reflection properties of a material. This importance
function can be used to distribute samples such that regions of high importance are more likely
to be sampled. As the number of samples is finite, sampling in general introduces an inevitable
error. However, it can be reduced by sampling from the regions which contribute most to the
result. This makes importance sampling a powerful extension to ordinary stochastic sampling,
especially in real-time applications. In a broader sense, the term sampling is also used to describe
the placement of points in a k-dimensional domain following a specific distribution, even if the
points are not used to actually sample a signal. Applications very similar to blue-noise sampling
are halftoning and stippling, which approximate an input image by a set of points for either a
reduction of color depth or artistic, non-photorealistic rendering. Other applications include the
placement of objects in the domain, e.g., for vegetation and natural phenomena, the placement
of patterns in textures for texture synthesis, and the remeshing of geometry. In these cases, often
the terms sample density or point density are used for the function that controls the distribution of
samples instead of importance, because the latter has its roots in statistics and corresponds to an
actual probability. This is why throughout this thesis, the more general term adaptive sampling
instead of importance sampling is used when referring to sampling according to a non-uniform
density or importance function. In contrast, sampling based on a constant function is referred to
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as uniform sampling.
Forced Random Sampling (FRS) is a previously unpublished real-time algorithm for adap-

tive sampling developed by Robert Tobler for the photon tracer used in fast lightmap computa-
tion [LTH+13]. The basic algorithm is conceptually very simple and inherently parallelizable,
which makes it suitable for real-time applications. The main idea behind FRS is to threshold
a large precomputed dither matrix with an importance function. Although the algorithm works
with any threshold matrix, a Forced Random Dithering [PTG94] matrix is used for its unique
properties that allow progressive sampling. The matrix is created by randomly adding points
into a repulsive force field near the location of lowest energy, which results in a spatially very
uniform, but irregular placement. Thus, thresholding it with a constant c will leave the first c
points, which are well distributed and can be used for sampling. Similar to dithering, using a
function rather than a constant value for thresholding allows the generation of samples with a
local density matching the given importance. A threshold matrix of size 64× 64 is illustrated in
Figure 1.2 together with results of uniform and adaptive sampling.

(a) Threshold matrix (b) Uniform sampling (c) Adaptive sampling

Figure 1.2: An exemplary Forced Random Dithering matrix (a) and results of Forced Random
Sampling with a uniform (b) and linear (c) importance function

Relying on a precomputed matrix allows the expensive computation for the sample distri-
bution to be done offline, while only the lightweight thresholding for sample selection needs
to be performed online. However, this also means that sampling is completely dependent on
the precomputed matrix. The number of unique samples that can be drawn from this matrix is
finite and their locations are discrete. A sample set drawn from such a matrix is likely to exhibit
repetitive and regular patterns. The more samples are drawn, the more sampling degenerates to
regular sampling. Therefore, a compromise has to be made between the maximum number of
samples drawn from a matrix and the distribution quality.

1.2 Problem Statement

Ever since Yellott [Yel83] showed that the distribution of photoreceptors in the eyes of primates
roughly follows a Poisson disk distribution, it is assumed to be the ideal distribution for sampling
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without aliasing and apparent artifacts. The generation of Poisson disk samples is conceptually
simple, but computationally expensive. The naive algorithm proposed by Cook [Coo86] works
by creating uniform random samples sequentially and discarding them if they are closer than a
predefined minimum distance to an already existing sample. This can be sped up by spatially
guided or tile-based algorithms, but most of them either reduce the distribution quality of the
samples or restrict sampling to few dimensions or to uniform importance functions. Adaptive
sampling in real time is possible, but requires even more serious tradeoffs between quality and
performance.

The problem is that there is currently no real-time sampling algorithm that combines quality,
performance and usability in a satisfying way. Fast real-time adaptive sampling algorithms are
not suitable for blue-noise sampling, while algorithms that produce optimal sample distributions
are not feasible in real time. Existing accelerations in between are still too slow to be competitive
with fast sampling algorithms and are often difficult to implement. As the focus in real-time
application is high performance, a novel adaptive sampling algorithm should be as fast and
simple as current algorithms, but achieve a higher sample quality.

Forced Random Sampling, a new algorithm for adaptive sampling in real time, could be such
an algorithm. As only basic calculations are needed at runtime, it is very fast. The quality of the
sample distribution is assumed to be high, based on the visual similarity to Poisson disk samples,
but is strongly dependent on the threshold matrix and other parameters. Until now, however, the
quality and performance of FRS have not been quantified and compared to current algorithms.
Moreover, it has not been investigated how to implement the basic concept of FRS efficiently.

1.3 Research Question

The main question addressed in this thesis is whether Forced Random Sampling is competitive
to existing sampling algorithms in terms of quality and runtime performance. A fair comparison
between FRS and existing sampling algorithms is only possible if both properties are quantified,
which has not been done for FRS yet. The quality of FRS is influenced by matrix generation,
thresholding and sample placement, which is why it is necessary to find the ideal parameters for
artifact-free sampling first. Likewise, it has to be determined how the concept of FRS can be
implemented most efficiently for CPU and GPU to minimize the runtime.

1.4 Methodology

To answer the research questions, the state-of-the-art algorithm for fast adaptive sampling and
the unmodified Poisson disk sampling algorithm are implemented and analyzed in the same test
environment as FRS. The results of this analysis are supposed to allow an objective comparison
and classification of the algorithms based on established measures.

When considering the quality of a sample distribution, this quality first of all needs to be
quantified in a meaningful way. For the evaluation of a sample distribution’s quality, several es-
tablished methods exist, which can be divided into spatial and spectral methods. While spatial
analysis is concerned with an estimation of the distribution’s spatial uniformity, spectral anal-
ysis is used to evaluate the distribution’s blue-noise properties and to reveal hidden structures,
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patterns and flaws. With these methods, the quality of a sample distribution can be expressed in
a comparable way. Therefore, the quality and the benefit of FRS can be assessed in comparison
to existing algorithms for blue-noise and adaptive sampling.

The creation of the threshold matrix used for FRS itself as well as the thresholding process
involve several parameters which are likely to affect the sampling quality. In order to find the
right parameters to maximize the quality of FRS, qualitative analyses are performed for various
parameter choices. This aims at improving the spectral properties of the sample distributions
while also reducing the expected regularity artifacts stemming from the thresholding process. A
promising and inexpensive approach to eliminate the regularity artifacts is by jittering samples
after thresholding, which is why an additional jittered FRS algorithm is discussed in this thesis.

Similarly, in order to optimize the runtime performance of FRS, several different implemen-
tation concepts for FRS that emerged before and during the course of this thesis are analyzed
regarding their computational effort. Although CPU implementations are provided and bench-
marked, too, the GPU implementations are strongly emphasized because of their relevance for
real-time sampling. The different FRS implementations are likewise compared to the state-of-
the-art real-time sampling algorithm, which is Hierarchical Sample Warping (HSW) [CJAMJ05].

The analyses of performance and quality of the relevant algorithms include both uniform and
adaptive sampling, where adaptive sampling is performed for different well-known importance
functions. First, this aims to investigate whether FRS is a versatile sampling algorithm, and
second, it is supposed to allow a general, conclusive statement about all tested algorithms.

1.5 Contributions

1. A formal description of Forced Random Sampling, an algorithm for adaptive sampling
with results exhibiting approximate blue-noise properties based on thresholding a pre-
computed dither matrix.

2. Fast, parallelizable CPU and GPU implementations of Forced Random Sampling for real-
time application.

3. A tool for the evaluation of the spatial uniformity of point sets using five different discrep-
ancy measures.

4. A comparison of the proposed FRS implementations to implementations of state-of-the-art
algorithms in order to evaluate their overall performance. References for quality are dart
throwing for uniform and relaxation dart throwing for adaptive sampling. The reference
for speed is the Hierarchical Sample Warping algorithm with Halton samples.

1.6 Outline

In the first part of Chapter 2, a more detailed introduction to sampling is given with a discussion
of related work, focusing on the combination of blue-noise sampling and adaptive sampling in
real time. In the second part, different methods for the analysis of sample distributions used in
this thesis are reviewed. A recapitulation of Forced Random Dithering and especially the matrix
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creation is given in Chapter 3, followed by a general and formal description of FRS in Chapter 4.
Different implementations of FRS are presented and discussed in Chapter 5. For the scope of
this thesis, only implementations for sampling in two dimensions are considered. Chapter 6 en-
capsulates the results of several analyses regarding the suitability of FRS for real-time blue-noise
sampling. The results of quality and performance analyses of different FRS implementations and
other relevant sampling algorithms are compared and discussed. A detailed description of every
analysis and test case is provided as well. The thesis closes with a conclusion and a summary of
open problems in Chapter 7.
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CHAPTER 2
Related Work

2.1 Stochastic Sampling

The human eye has only a finite number of photoreceptors and therefore also has a Nyquist
limit. Yet, humans usually do not experience aliasing artifacts. Yellott [Yel83] studied the eyes
of rhesus monkeys and observed that the photoreceptors in the primates’ retinas are distributed
irregularly with a minimum distance between each other. Such a distribution – a Poisson dis-
tribution with a minimum distance constraint between samples – is called a Poisson disk distri-
bution with radius r. Its power spectrum is characterized by a lack of concentrated spikes and
a lack of low-frequency energy – the blue-noise properties. Yellott concluded that because of
the special distribution of receptors in the eye, low-frequency aliasing is replaced by much less
conspicuous broadband noise, and proposed its use for artificial imaging.

Cook [Coo86] investigated the use of stochastic sampling for ray tracing in order to render
complex phenomena such as motion blur, depth of field, soft shadows and glossy objects. He
seized Yellott’s idea and sketched a simple algorithm to generate Poisson disk sample sets:
Pseudo-random samples are generated and inserted into a list. For each new sample, the distance
to every sample already inserted is calculated and compared to the minimum distance. If the new
sample is too close to an inserted sample, it is rejected, otherwise it is inserted. This is repeated
until no more samples can be added. Cook understood that the algorithm, called dart throwing,
is very expensive and thus recommended the jittering of a regular grid as discussed by Dippé
and Wold [DW85] for distributed ray tracing, despite inferior spectral properties.

Since then, blue-noise sampling has been an active field of research with a strong focus
on performance. While dart throwing produces unbiased Poisson disk samples, it is infeasible
for more than a few thousand samples even in offline application. For real-time application,
compromises have to be made between the runtime and the distribution’s blue-noise properties.
It is also crucial for a wide range of applications to adaptively distribute samples according to a
given non-uniform importance function, which strict dart throwing is not capable of. In stippling
and halftoning, for example, points need to be denser in dark regions of a given image than in
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bright ones, and samples for environment map sampling should be placed in the regions of the
highest light contribution to the scene. Still, all samples should be well distributed locally.

Quasi-Random Sampling

Because of its simplicity, quasi-random sampling is used frequently as an inexpensive alternative
to Poisson disk sampling. Quasi-random sampling, as opposed to (pseudo-)random sampling, is
not concerned with creating samples of uniform probability, but of uniform spatial distribution.
This is based on the discrepancy theory outlined below and aims at minimizing the error made
by approximating an arbitrary space by a finite number of points in a deterministic manner. The
most famous low-discrepancy sequence is the Halton sequence S [HS64], which generalizes the
van der Corput sequence to k dimensions. Let b1, ..., bk ≥ 2 be prime numbers and

i =
m∑

j=0

aj(i)b
j , (2.1)

the b-ary representation of integer i. From this, the radical inverse function in base b is given as

φb(i) =

m∑

j=0

aj(i)b
−j−1. (2.2)

Figuratively speaking, the expansion of i in base b is mirrored by the decimal point. Although
the calculation is completely deterministic, the resulting radical inverse appears to be random in
(0, 1)k. Besides this direct calculation, an incremental calculation of φb(i) based on φb(i−1) has
been proposed by Keller [Kel97]. The first n elements of the Halton sequence are then defined
as

S = x1, ..., xn, xi = (φb1(i), ..., φbk(i)) ∈ [0, 1]k, i ∈ N. (2.3)

The closely related Hammersley set for n elements is defined as

S = x1, ...xn, xi =

(
i

n
, φb1(i), ..., φbk−1

(i)

)
∈ [0, 1]k, i ∈ N, (2.4)

which has a lower quasi-Monte Carlo error bound than the first n elements of the Halton se-
quence, but requires n to be know beforehand and does not allow progressive sampling. A third
choice for quasi-random sampling is the conceptually very different Sobol sequence [BF88]. It
has been investigated along with Halton points by Secord et al. [SHS02] for use in their stippling
algorithm, but has been dismissed for its tendency to form undesirable patterns, which is why an
insight in its construction is omitted here. For more information on low-discrepancy sampling,
the reader is referred to Niederreiter [Nie92].

Blue-Noise Sampling

An approximate Poisson disk algorithm called point diffusion has been proposed by Mitchell
[Mit87]. Mitchell recognized the strong relationship between sampling and halftoning and de-
duced a sampling algorithm from the Floyd-Steinberg error diffusion algorithm. The algorithm
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processes a grid in a scan-line order and maintains a diffusion value for each position. The
decision whether to create a sample at a location is the comparison of a constant value to the
weighted sum of the previous diffusion values and a random number used to control the density
of the samples. Finally, uniform jitter is added to the samples to reduce the regularity introduced
by the grid. Contrary to Mitchell’s own analysis, Klassen [Kla00] was not able to reproduce
Mitchell’s results and detect distinct blue-noise properties in the algorithm’s results.

To tackle the vague termination criterion of strict dart throwing, Mitchell [Mit91] also pro-
posed the best candidate dart-throwing algorithm. Multiple potential random samples are cre-
ated per iteration and their distance to the closest inserted sample is calculated. The best candi-
date is the one farthest away from all inserted samples while still fulfilling the minimum distance
constraint. The algorithm terminates if no such candidate could be found.

As the validation of the minimum distance constraint of potential samples is the main effort
of dart throwing, several spatially guided algorithms have been proposed to limit sampling or
validation to a subdomain of the sample domain. Dunbar and Humphreys [DH06] proposed
the scalloped regions to express the overlapping of the samples’ disks and to sample from the
free neighborhood around them. Bridson [Bri07] proposed to place samples in the spherical
annulus around each sample and keep track of free space in a grid. Jones [Jon06] proposed to
maintain the free space of the sample domain in a weighted tree corresponding to the Delaunay
triangulation of the inserted sample points. Sampling is then done by randomly traversing the
tree. White et al. [WCE07] and Gamito and Maddock [GM09] proposed a quadtree for the
maintenance of the free space, Ebeida et al. [EMP+12] used a flat quadtree.

Relaxation dart throwing proposed by McCool and Fiume [MF92] performs usual dart
throwing with a large r until no more samples can be inserted, i.e., a finite number of sam-
ples has been discarded. r is then decreased by a small fraction and dart throwing continues.
New samples are added progressively until the desired number of samples has been generated.
By allowing varying radii over the sampling domain, relaxation dart throwing can also be used
for adaptive sampling: In regions of higher importance, the minimum distance between samples
can be reduced such that samples are denser in important regions of the domain. A further con-
tribution of McCool and Fiume was the application of Lloyd’s relaxation algorithm [Llo82] to
sample sets in order to optimize their distribution properties. In each iteration, a Voronoi tessella-
tion of the sample set is generated and each sample is moved to the centroid of its corresponding
Voronoi region. After several iterations, this converges to a centroidal Voronoi tessellation with
a minimum-energy configuration of the sample points. By regarding a non-uniform importance
function for the calculation of the centroids as done by Secord [Sec02], the algorithm also allows
adaptive sampling.

Although Lloyd’s relaxation converges faster if the initial sample set already has approxi-
mate blue-noise properties, every other distribution can be used as well. For the task of image
stippling closely related to sampling, Deussen et al. [DHvOS00] generated an initial point set by
pulse-density modulation halftoning of the grayscale image to be stippled. Secord [Sec02] used
rejection sampling for a similar task. Since the relaxation converges to a hexagonal lattice, it has
to be terminated before the regularity of the sample set becomes too high. Balzer et al. [BSD09]
therefore extended Lloyd’s method by a capacity constraint. The capacity-constrained Voronoi
tessellation (CCVT) ensures that all samples have the same capacity, which is computed as the
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area of a sample’s corresponding Voronoi cell weighted by the underlying importance function.
This effectively prevents the convergence to a regular structure, but leads to more computa-
tional effort. Even with accelerated implementations proposed by Li et al. [LNW+10], Xu et
al. [XLGG11], Chen et al. [CYC+12] and de Goes et al. [dGBOD12], CCVT takes seconds up
to minutes to generate a few thousand samples.

A conceptually different and parallelizable optimization algorithm based on the physical
principles of electrostatics has been proposed by Schmaltz et al. [SGBW10]. In each iteration,
the movement of charged particles considering mutual repulsion among samples and attraction
based on an importance function is simulated. A very simple optimization algorithm trying to
maximize the mutual distances of the samples that converges very fast has been proposed by
Schlömer et al. [SHD11].

In order to separate sample generation and sampling, Hiller et al. [HDK01] proposed a sam-
ple generation algorithm based on Wang tiles. Wang tiles are quadratic tiles with colors assigned
to the four edges. A plane can be tiled by connecting the tiles such that the shared edges between
all neighboring tiles have the same color. Depending on the set of Wang tiles and their selection,
the tiling can be completely aperiodic or at least without obvious repetitions over an arbitrarily
large plane. By filling the tiles with Poisson disk samples, a larger set of samples can be ob-
tained with little computation. The eight sample tiles used by Hiller et al. are created offline
with a modified version of Lloyd’s relaxation such that the samples of all tiles fit together at the
tile borders. The online effort for sampling is then limited to the selection of the right sample
sets for aperiodic tiling. Shade et al. [SCM02] proposed a very similar tiling with eight sample
tiles created by a modified dart-throwing algorithm. To make the tiled sample set seamless, the
minimum distance constraint of samples is also evaluated in neighboring tiles. They pointed out,
however, that this modification leads to repetitive artifacts because significantly less samples are
placed in the corners of the tiles. Cohen et al. [CSHD03] observed the same artifacts and sug-
gested Lloyd’s relaxation as described by Hiller et al. [HDK01] for tile generation. They also
proposed a stochastic tile selection algorithm to ensure non-periodic tiling. Each tile is chosen
randomly out of all fitting ones, but requires all previous tiles to be chosen already. The stochas-
tic tiling by Lagae and Dutré [LD05] avoids this constraint, allowing a local tile selection. Lagae
and Dutré [LD06] also proposed a sample tile generation that subdivides the tile in edge, corner
and interior regions. Special edge and corner tiles for each color combination are created and are
then used to constrain the dart throwing in the interior regions of the tiles. This way, repetitive
artifacts in edge and corner regions of the tiled sample set can be avoided.

A comprehensive survey on methods for the generation of Poisson disk distributions has
been published by Lagae and Dutré [LD08] in 2008, which includes every notable algorithm up
to that time. They concluded that algorithms based on tiling are the only option for real-time
blue-noise sampling, although their resulting sample sets’ spectral properties are suboptimal.

The first algorithm to offer real-time applicability and sample distribution of high quality
has been proposed by Wei [Wei08]. First, the k-dimensional sample domain is subdivided into
grid cells with a size bound by r/

√
k such that every cell can contain at most one sample.

As samples in cells farther away from each other than r do not interact with each other, dart
throwing can be performed simultaneously in these cells. This is why multiple independent
cells can be grouped together in phase groups and are processed in parallel, only the different
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phase groups are processed sequentially. To avoid artifacts from uniformly sampling in a regular
grid, Wei also proposed a multi-resolution approach that allows the first dart-throwing samples
to be drawn from the whole sample domain and then subdivides the sample domain into several
subdomain cells based on the current level. The resulting algorithm is capable of uniform and
adaptive sampling on the GPU at a rate of several million samples per second. However, Gamito
and Maddock [GM09] and Xiang et al. [XXSH11] argued that the predetermined processing
order of the phase groups is a violation of the uniform sampling condition of strict dart throwing,
which also leads to artifacts. Xiang et al. proposed an unbiased but slower parallel dart-throwing
algorithm for uniform sampling: First, a dense set of potential sample points is generated. In
parallel, each thread then randomly picks one potential sample and assigns a unique random
priority to it. If a potential sample is closer than r to an accepted sample, it is rejected. If it is
closer than r to another potential sample, the one with the lower priority is rejected. Otherwise
it is accepted. The algorithm terminates if all samples of the initial set are either accepted or
rejected.

Adaptive Sampling

Adaptive sampling can be done by either distributing new samples adaptively based on an impor-
tance function or transforming existing samples to match the given sample density. Analogous
to dart throwing in the uniform case, relaxation dart throwing as proposed by McCool and Fi-
ume [MF92] serves as unbiased ground truth for adaptive sampling. The global optimization
algorithms based on Lloyd’s relaxation or electrostatic halftoning allow adaptive sampling by
weighting the centroid calculation resp. the attraction of particles with the importance function.
For real-time sampling, Wei’s [Wei08] parallel implementation can be used with a subdivision
tree for the cells rather than a regular grid. Most other variants of dart throwing, especially the
spatially guided ones, cannot be easily extended to adaptive sampling because they rely on a
constant r. This is also true for the aforementioned tile-based approaches with few exceptions.

Kopf et al. [KCODL06] proposed the use of recursive Wang tiles with toroidal, self-similar,
progressive sample sets. The self-similarity allows tiles to be subdivided locally to increase
the sample density based on precomputed subdivision rules. Their progressive generation with
relaxation dart throwing allows the sample density to be adjusted accurately to the given impor-
tance function. A completely different tiling approach proposed by Ostromoukhov et al. [ODJ04]
uses a modified Penrose tiling to tile the sample domain aperiodically. Instead of precomputing
a sample set per tile, special pentagonal tiles themselves correspond to the location of a sample.
As the tiling is aperiodic, so is the placement of these pentagonal tiles and thus of the resulting
samples. To adapt the tiling to an importance function, predefined subdivision rules are used
to replace the different tiles by one or more smaller ones. An algorithm proposed by Ostro-
moukhov [Ost07] uses polyominoes instead of Penrose tiles. Again, the sample domain is tiled
aperiodically and tiles are subdivided recursively to match an underlying importance function.
Each polyomino corresponds to one sample of which location is predetermined by the poly-
omino’s type. All three adaptive tiling algorithms are able to generate more than one million
samples per second.

Secord et al. [SHS02] proposed a stippling algorithm which allows the redistribution of
existing sample points in real time, based on the inversion method [Nie92] known from statistics.
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In the one-dimensional case, a probability density function p(x) is either given or estimated. The
cumulative density function of p(x),

P (x) =

x∫

0

p(t)dt, (2.5)

is then inverted and each input sample xi is transformed to x′i = P−1(xi). In two dimensions,
the transformation in one dimension can be obtained by reducing the second one to a function
of average values using the marginal density function of p(x, y),

m(y) =

1∫

0

p(x, y)dx. (2.6)

With the cumulative density function of m(y),

M(y) =

y∫

0

m(t)dt, (2.7)

the first one-dimensional transformation of each input sample (xi, yi) is y′i = M−1(yi). The
second dimension’s cumulative density function is conditional,

P (x|y′i) =

x∫

0

p(t, y′i)
m(y′i)

dt, (2.8)

the transformation is given by x′i = P−1(xi|y′i). Although the two-dimensional inversion
method is fast, the decoupling of dimensions does not preserve the distribution properties of
input samples. The results are therefore inferior to those of algorithms which directly distribute
samples according to a given importance function instead of transforming them afterwards, as
shown by Ostromoukhov et al. [ODJ04] and Kopf et al. [KCODL06]. In contrast to tile-based
approaches, however, it is easily possible to use any sample set as input, including uniform ran-
dom, Poisson disk and low-discrepancy samples. Secord et al. pointed out that for the task of
non-photorealistic stippling, Halton samples are an equivalent alternative to Poisson disk sam-
ples.

Another transformation method and the current state of the art in real-time adaptive sampling
has been proposed by Clarberg et al. [CJAMJ05]. The wavelet importance sampling algorithm
combines adaptive sampling from a BRDF and an environment map by sparsely evaluating their
product represented in the Haar wavelet basis. Following their notation, the Haar basis expansion
of a one-dimensional image H of size 2l is defined as

H(x) =
∑

t

H0
l,tφ

l
t(x) = H0

0,0φ
0
0(x) +

∑

l

∑

t

H1
t,lψ

l
t(x), (2.9)
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φlt(x) := 2l/2φ(2lx− t), φ(x) :=

{
1, 0 ≤ x < 1

0 otherwise
, (2.10)

ψlt(x) := 2l/2ψ(2lx− t), ψ(x) :=





1, 0 ≤ x < 1
2

−1, 1
2 ≤ x < 1

0 otherwise

, (2.11)

where φlt(x) are the normalized scaling functions and ψlt(x) the orthogonal wavelet basis func-
tions. l is the level and t = 0, ..., 2l − 1 the translation of the functions. H0

0,0 is the first scaling
coefficient,H1

t,l are the detail coefficients. Simply put, the normalized Haar wavelet basis allows
the hierarchical representation of an image as the sum of details at different frequencies. As ex-
plained by Clarberg et al., this representation can be used to evaluate the product of two wavelets
sparsely. For more information, the reader is referred to Clarberg et al. [CJAMJ05] and Clar-
berg [Cla12]. The result – also in the Haar wavelet basis – is then used to transform an existing
set of samples hierarchically. When reconstructing the product, the scaling coefficients H0

l,t cor-
responding to the image’s local averages are calculated where needed. The probability P (x ∈ s)
of a sample being placed in a region s = (l, t) of the product is then

P (x ∈ s) = 2−2l
H0
l,t

H0
0,0

. (2.12)

The initial sample set is now warped recursively according to these probabilities for each region s
in order to adapt the density of the samples to the local conditional probabilities, which the au-
thors call Hierarchical Sample Warping (HSW). As with the inversion method, all k dimensions
are treated independently for warping. One warping step in two dimensions is illustrated in Fig-
ure 2.1. The subset of the sample set corresponding to s is first partitioned along one dimension
such that the volume of the two partitions corresponds to the absolute probabilities of each half
of the first dimension. The samples of both subsets are then linearly scaled such that the parti-
tion lies in the center of s. Each subset is then split and warped analogously along the second
dimension. The expected number of samples in the resulting subsets is now proportional to the
probabilities of the four quadrants of s. The algorithm then recurses for each of the quadrants.
The local density of the final sample set satisfies the given importance function, which in the case
of wavelet importance sampling is the product of a BRDF and an environment map. However,
Wei and Wang [WW11] pointed out that HSW is not able to preserve the blue-noise properties
of the initial sample set, which leads to apparent artifacts when adapting samples to a discon-
tinuous importance function. Clarberg et al. [CJAMJ05] used a Hammersley point set as input
for HSW, but again, any sample distribution is possible. In an improved version of wavelet im-
portance sampling which needs lesser precalculations, Clarberg and Akenine-Möller [CAM08]
used Poisson disk samples, but did not propose substantial changes to the warping step of the
algorithm. An extension to incremental wavelet importance sampling has been proposed by
Huang et al. [HCTW07], in which the number of samples varies based on a variance estimation.
For the progressive sampling, samples from the Halton sequence are used. Cline et al. [CETC06]
proposed an algorithm using HSW with a summed-area table rather than wavelets.
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Figure 2.1: Hierarchical Sample Warping. The initial sample set is partitioned and warped once
in the first and twice in the second dimension to match the probabilities given by the wavelet
tree. The algorithm then recurses for each quadrant, using the warped result as input sample set.
Image retrieved from [Cla12].

2.2 Sample Distribution Analysis

In order to evaluate the quality of sample sets and hence the distribution algorithm they originate
from, an objective criterion for quality has to be found. Some applications of sampling such
as ray tracing allow the comparison of results to a ground truth and a judgment based on the
variance or the mean squared error. To assess the quality of a sample set directly and in a general
manner, several methods for spatial and spectral analysis of the distributions have been proposed.
Their least common denominator is the assumption that spatial uniformity is a desirable property
of a sample distribution, while regularity is not, which coincides with the blue-noise properties.

Spatial Analysis

Discrepancy

The most popular measurement of spatial uniformity is the discrepancy from statistics, which has
been proposed for the use in computer graphics by Shirley [Shi91]. In general, the discrepancy
of a point set X of size n expresses how good an arbitrary space is approximated by this point
set. Let A be an arbitrary subdomain of the sample domain Ω = [0, 1)k and let ‖X ∩A‖ be the
number of samples in A. Then, the local discrepancy at point (x, y) is

dX(x, y) =

∣∣∣∣
‖X ∩A‖

n
− λk(A)

∣∣∣∣ , (2.13)

where λk(A) is the Lebesgue measure or k-dimensional volume of A. In the following, only
the case of k = 2 will be considered. Simply put, the local discrepancy measures the absolute
difference between the actual number of samples in A and the expected number of samples
that should fall into A, assuming an equiprobable distribution, which in the unit square then
equals the area of A. For the calculation of what is known as discrepancy, different norms can
be used, of which the most important ones are L2 (average discrepancy) and L∞ (worst-case
discrepancy):

D2(X) =




1∫

0

1∫

0

dX(x, y)2dxdy




1
2

, D∞(X) = sup
(x,y)∈Ω

dX(x, y). (2.14)
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Dobkin et al. [DEM96] pointed out the strong relation of the worst-case discrepancy to the
integration error for a function f(x) by Koksma’s theorem,

∣∣∣∣∣

∫ 1

0
f(x)dx− 1

n

n∑

i=1

f(xi)

∣∣∣∣∣ ≤
1

n
V (f)D∞(X), (2.15)

where V (f) is the bounded variation of f and independent from X . The inequality shows that
the integration error of the Monte Carlo method is bounded by the worst-case discrepancy of
the sample set. The low-discrepancy sequences discussed above are therefore constructed to
minimize D∞(X) and thus the integration error. However, as can be seen in Equation 2.13, the
local discrepancy is dependent on the subdomain A.

For low-discrepancy sequences, only a subset A of possible subdomains of Ω is considered,
namely rectangles A(x, y) ∈ A with one corner in the origin and the opposite corner in (x, y).
In this case, the discrepancy is more specifically called star discrepancy. Although the star
discrepancy is the best-known discrepancy, Matoušek [Mat10] argued that it does not capture
the properties of a uniform distribution too well. For the average star discrepancy, the weight of
points is non-uniform, because points close to the origin contribute more to the discrepancy than
points farther away. Also, A is not rotationally invariant.

For a more general discrepancy measurement, the class of geometric shapes A has to be
re-generalized. Shirley [Shi91] proposed to use axis-parallel boxes A(u, v, x, y) with the two
opposite corners (u, v) and (x, y). The class of axis-parallel boxes is invariant to right angle
rotations and eliminates the non-uniform weighting of points for the average discrepancy. Fol-
lowing the notation of Dobkin and Gunopulos [DG94], this will be referred to as rectangle
discrepancy. Still, A is limited to axis-parallel shapes, which in sampling usually only appear
in artificial cases. A general statement of a point set’s quality and its distribution function can
hardly be made.

To evaluate the approximation of arbitrary geometric shapes by a point set, A has to be
rotationally invariant and more general. Shirley [Shi91] mentioned the possible benefit of cir-
cles instead of rectangles. Matoušek [Mat10] listed several possible classes, including arbitrary
triangles, arbitrary quadrilaterals and arbitrary ellipsoids. In the following, the quadrilateral
discrepancy and the circle discrepancy will be considered. Dobkin et al. [DEM96] proposed the
halfspace discrepancy, which is calculated by dividing Ω with an arbitrary edge.

Density

Lagae and Dutré [LD08] proposed a spatial measure corresponding to the density of points.
Given an arbitrary sample set X of size n, the minimum distance between any two samples is

dX = min
xi,xj∈X,i 6=j

d(xi, xj), (2.16)

where d(.) denotes the Euclidean distance between two samples. If X is a Poisson disk sample
set, then dX ≈ r. The largest minimum distance of a sample set of size n is reached in a
hexagonal lattice and is given as

dmax =

√
2√
3n
. (2.17)
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The density ρ of X is then defined as

ρX :=
dX
dmax

. (2.18)

Schlömer et al. [SHD11] also proposed an average density ρ̄X using the average minimum dis-
tance of the sample set. According to Lagae and Dutré, ρX ∈ [0.65, 0.85] is a good density,
based on observations from Poisson disk sample sets. A lower density indicates a lack of spa-
tial uniformity, a higher density indicates regularity. However, this definition is a bit vague.
Schlömer et al. argued that point sets optimized with their proposed farthest-point optimization
have excellent blue-noise properties with ρX ≈ 0.930. Interestingly, this is very close to the
density of a regular grid, ρX = (

√
3/2)1/2 ≈ 0.9306. This suggests that the density ρX might

be an adequate measure for the spatial uniformity of a point set, but not for its regularity. In
contrast to discrepancy, however, ρX can also be used for non-uniform point sets, as proposed
by Wei and Wang [WW11].

Spectral Analysis

Spectral analysis is the oldest method for analyzing sample distributions. While Yellott [Yel83]
still used an optical transform to characterize the blue-noise properties, others [Coo86, Mit87,
MF92] used the Fourier transform F . For each sample set X resp. its frequency vector f , a
periodogram

PX(f) = |F(f)|2 =

∣∣∣∣∣
n−1∑

m=0

e−2πi(f ·xm)

∣∣∣∣∣

2

(2.19)

can be computed. When averaging several periodograms, the distribution’s power spectrum P̂ (f)
can be estimated, as proposed by Ulichney [Uli87] for the study of dither patterns. The estimated
power spectra of distributions (see Figure 2.2b for an example) allow a very fast visual compar-
ison and have since been used in almost every publication on blue-noise sampling. Ulichney
also proposed the calculation of two radially averaged statistics from P̂ (f), namely the radi-
ally averaged power spectrum or radial mean and the anisotropy. He also pointed out that the
anisotropy – the estimation of the power spectrum’s radial symmetry – is related to the number
of periodograms used to estimate P̂ (f). In the following, every power spectrum is estimated by
ten periodograms. Thus, an anisotropy of −10 dB should be considered background noise and
is – for the scope of this thesis – the reference value for low anisotropy. The radial mean gives
the best indication of blue-noise properties and has been studied comprehensively by Lagae and
Dutré [LD08] and Heck et al. [HSD13]. The reference radial mean for blue-noise sampling is
computed from samples created by dart throwing (see Figure 2.2c). The peak of the DC com-
ponent is followed by a low-energy annulus and a sharp transition corresponding to the inverse
of the minimum radius r. Periodic annuli of higher, but decreasing energy corresponding to
multiples of this frequency follow, until transitioning into noise.

However, the usual Fourier analysis does not provide useful results for non-uniform sam-
ple distributions, as seen in Figure 2.2f. Although the samples are well distributed locally, the
power spectrum has little resemblance to the blue-noise spectrum. To overcome this, Wei and
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Figure 2.2: Poisson disk distribution (1024 samples). Fourier power spectrum estimated with 10
sample sets. Top row: Uniform sampling with dart throwing. Bottom row: Adaptive sampling
with relaxation dart throwing using the Gaussian blob importance function.

Wang [WW11] proposed the differential domain analysis (DDA) derived from the Fourier anal-
ysis. The DDA is based on the observation that Equation 2.19 can be reformulated to

PX(f) =
1

n

n−1∑

l,m=0

cos (2π(f · dl,m)), (2.20)

where dl,m = xl − xm is the pairwise sample location differential. Thus, the transformation
only depends on the distribution of differentials rather than the sample locations itself. For the
complete derivation, further generalizations and extensions carried out by Wei and Wang, the
reader is referred to the paper [WW11]. Analogous to the power spectrum, the two radially av-
eraged measures radial mean and anisotropy can be calculated, although both statistics depend
on the absolute differential, |dl,m|, rather than the frequency. The DDA results are very similar
to those of traditional Fourier analysis, as can be seen when comparing Figures 2.2 and 2.3. The
blue-noise DDA power spectrum has a strong resemblance to a full solar eclipse with a disk of
low energy surrounded by an annulus of high energy, corresponding to the minimum distance
r, which transitions into noise. The radial mean shows the same peaks as in the Fourier power
spectrum, the anisotropy also shows the same behavior. Following Wei and Wang, the anisotropy
in the range smaller than r is ignored, as no samples fall into this region. It can be seen in Fig-
ure 2.3 that apart from the different minimum radii for uniform and adaptive sampling, the DDA
power spectrum for both sample distributions is the same. Thus, DDA is a powerful tool for the
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Figure 2.3: Poisson disk distribution (1024 samples). DDA power spectrum estimated with 10
sample sets. Top row: Uniform sampling with dart throwing. Bottom row: Adaptive sampling
with relaxation dart throwing using the Gaussian blob importance function.

analysis of sample distributions independent from their sample domain or importance function.
As already mentioned above, Wei and Wang also proposed an extension of the spatial density ρX
to non-uniform sampling by choosing dX out of the transformed differentials dl,m. An extensive
set of tools for the analysis of sample distributions, including Fourier and differential domain
analysis, has been made available online by Wei [Wei11].
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CHAPTER 3
Forced Random Dithering

3.1 Construction

Dithering is a color-reduction technique that is used to display or print an image with arbitrarily
many different colors on a device with a limited color palette. The most prominent application
for dithering is the conversion of grayscale images to binary images for early monochrome
computer monitors and printers. Instead of simply thresholding the intensity with a fixed value,
in which case all halftone information is lost, the aim is to preserve this information in the
density of fixed-sized black dots or pixels. Furthermore, their arrangement should be random in
order to hide the inherent quantization error of the color reduction in noise. There exists a wide
range of dithering algorithms, of which ordered dithering [Bay73] is particularly interesting.
The decision whether to draw a dot or not is independent from all other dots, which is why
ordered dithering can be parallelized very easily. To threshold each pixel with another value,
a threshold matrix is created beforehand. As a result, the amount of regularity or randomness
of the dot placement is only controlled by the threshold matrix. Besides completely random or
regular matrices, matrices can for example be constructed to minimize the quantization error or
to reduce repetitive patterns in the dithered result.

Forced Random Dithering proposed by Purgathofer et al. [PTG94] is a variant of ordered
dithering that aims at a spatially uniform placement of dots without regularity artifacts. The
creation of the threshold matrix M uses the principle of repulsion to control the placement
of threshold values. To create a k-dimensional matrix of size SM × · · · × SM , the values
0, . . . , SkM − 1 are inserted one by one into a discrete, k-dimensional force field. In this force
field, all values that have already been inserted repulse new values according to a force-field
function f . For the most even distribution of values inM, the location at which the next value
should be inserted is the global minimum of the force field. However, this deterministic choice
could possibly lead to regular patterns, which is why a local minimum is chosen randomly in-
stead of the global minimum. In the proposed algorithm, this is done by randomly selecting half
of all free locations of the force field and choosing the location with the minimal accumulated
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repulsion out of these. If more or less than half of the locations are considered, the spectral
properties of the resulting matrices slightly differ, which is discussed in Section 3.2.

The design of the force-field function f follows from the requirements formulated by Pur-
gathofer et al. For isotropic images, f should be radially symmetric, and to avoid clumping of
values, f should penalize closeness. Thus, as a function of the distance

r =
√

(x1,d1 − x2,d1)2 + · · ·+ (x1,dk − x2,dk)2 (3.1)

of any location x1 to an already set location x2 in the force field, the repulsion is expressed as

f(r) = exp
(
−
(r
s

)p)
. (3.2)

p and s are parameters to control the steepness and deviation of f . For both values, Purgathofer
et al. suggest to use 1/2, which leads to the force-field function

f(r) = exp
(
−
√

2r
)
, (3.3)

which is used for all dither matrices throughout this thesis.
Pseudo-code for the generation of a Forced Random Dithering matrix is provided in List-

ing 3.1. The random selection of half of the free locations inM in Lines 6 and 7, the search for
the location with the minimum force-field value in this subset in Lines 10 to 12 as well as the
update of the force field in Lines 14 to 17 can be parallelized.

1 freeLocations = {x|x ∈ [0, SM − 1]k};
2 forceField = new Tensor(SM × · · · × SM);
3 M = new Tensor(SM × · · · × SM);
4
5 for (ditherValue = 0; ditherValue < Sk

M; ditherValue++) {
6 P = randomPermutation(freeLocations);
7 halfP = takeFirstHalfSubset(P);
8 minimum = ∞; minimumLocation;
9

10 foreach (location in halfP)
11 if (forceField[location] < minimum)
12 minimumLocation = location;
13
14 foreach (cell in forceField) {
15 r = toroidalMinimumDistance(cell.location, minimumLocation);
16 forceField[cell.location] += f(r);
17 }
18
19 freeLocations.remove(minimumLocation);
20 M[minimumLocation] = ditherValue;
21 }

Listing 3.1: Generation of Forced Random Dithering matrix
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36 160 58 181 84 175 46 215 144 198 8 138 238 91 114 227

228 98 189 221 18 156 111 194 60 32 126 80 27 193 133 247

140 112 44 119 163 105 3 244 180 42 155 212 101 218 67 0

94 31 174 201 25 72 224 75 141 235 170 54 16 231 48 236

143 251 63 137 90 254 50 135 200 29 113 74 162 150 78 178

168 9 106 151 15 208 95 7 187 103 134 253 190 117 24 86

223 56 211 184 226 166 197 87 59 241 13 202 83 5 249 216

65 127 30 132 109 52 179 123 159 34 182 69 165 145 45 120

173 148 76 239 35 100 252 21 203 43 214 125 53 157 206 28

255 12 186 229 158 1 217 85 96 169 61 2 191 88 219 71

154 97 124 49 68 220 115 246 147 177 130 240 136 38 234 116

33 176 23 192 139 39 171 55 92 110 19 199 99 195 17 107

47 232 81 243 204 102 26 233 10 209 82 51 222 77 161 245

131 164 6 129 73 210 79 128 167 248 142 188 149 4 57 207

89 152 121 196 146 14 237 205 37 153 66 40 122 242 104 183

70 11 250 41 225 64 118 93 22 213 185 108 172 62 20 230

Table 3.1: A 16 × 16 Forced Random Dithering matrix. The first elements are highlighted to
visualize their even distribution within the matrix.

An exemplary Forced Random Dithering matrix of size 16 × 16 is shown in Table 3.1.
The first ten values that have been inserted into the matrix have been highlighted in yellow
to emphasize their even distribution. The next ten values have been highlighted in orange to
emphasize that additional values are added in the gaps between the yellow values. As a result,
both the first ten and the first twenty values are distributed evenly withinM. This is an important
observation that allows the matrix to be used for approximate blue-noise dithering, because
independent from the intensity levels of an image, the pixels of the dithered result are distributed
spatially uniformly. From the highlighted values it can also be seen thatM is toroidal, meaning
that it can be repeated seamlessly, which reduces the regular artifacts observable with other
threshold matrices. The toroidal topology ofM is achieved by simply joining the left and right
as well as the top and bottom edges of the force field.

It is obvious that the quality of the distribution of dither values in M increases with the
matrix size SM , as the discrete location of each local minimum in the force field can be deter-
mined more precisely. In practice, the dither matrix has to be much larger than 16 × 16 pixels.
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A qualitative comparison of different dither matrix sizes is given in Section 4.7. At the time,
Purgathofer et al. suggested a size of 300× 300 pixels as a compromise between image quality
and the computation time for the matrix. As the influence of all inserted values on every empty
matrix location has to be evaluated for every new value to be inserted, the creation of the matrix
has a runtime complexity of O(S2k

M ). The calculation can be optimized by storing the influence
of all inserted values, because it will not change after insertion. Further, in an isotropic domain,
the force function can be precomputed for each location, such that the values only have to be
added to the stored sum. Still, the generation of larger matrices remains expensive and is not
feasible on the CPU. Even with all parallelizable operations done on the GPU, the matrix gen-
eration is far too expensive for online generation. On a test system using an NVIDIA GeForce
GTX 680 video card, the generation of the 2048×2048 dither matrix used throughout this thesis
took over four hours.

3.2 Randomized Minimum Selection

Purgathofer et al. [PTG94] proposed to insert each dither value at a local rather than the global
minimum of the force field to avoid deterministic behavior. This is why in Listing 3.1, the min-
imum accumulated force is searched in only half of all free matrix locations. The selection of
which locations are compared for the minimum force-field value is randomized. While this algo-
rithm already produces the desired Forced Random Dithering matrices, it is interesting to know
how changing this selection of locations influences the matrix and its spectral properties. For
both dithering and sampling, the power spectrum of locations of matrix elements that remain af-
ter a constant threshold comparison should have approximate blue-noise properties. This means
that the locations of the values in the matrix should neither be too random nor too regular. It can
be assumed that the placement of values inM becomes more regular if more than half of all free
locations are compared. It will be fully deterministic if all locations are considered. Likewise,
the placement becomes more random if less than half of all locations are compared. If only one
location is chosen randomly in each iteration,M will be a completely random threshold matrix.

A parameter p ∈ (0, 1] is introduced to control the percentage of free locations that are
considered for the calculation of a force-field minimum. For each location in M, a uniform
random number r ∈ [0, 1) can be generated and compared to p. The selection of a candidate for
the placement of the next dither value is then determined by whether r < p. If, for example,
p = 0.5, on average half of all free locations inM are randomly selected, which corresponds to
the selection proposed by Purgathofer et al.

In Figure 3.1, the power spectra of results of Forced Random Dithering are presented for
matrices generated with different values of p. Each power spectrum has been estimated by 10
matrices of size 512× 512. The input image has a size of 512× 512, such that the dither matrix
covers it completely, and a constant intensity of 97.5 %. As shown already by Purgathofer et
al. for p = 0.5, the power spectra of the results show very distinct blue-noise properties. As
expected, the placement of values inM becomes more random as p decreases. For p ≤ 0.05,
the outer annulus of high energy is almost completely lost in uncorrelated noise. More surprising
are the blue-noise properties of matrices for p > 0.5. Even if all locations are considered for the
determination of the minimum, i.e., if each dither value is placed at the location of the global
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minimum of the force field, there are no noticeable regular patterns or other anisotropic artifacts.
This suggests that the random selection of only a subset of all locations is not necessary and can
be omitted in an implementation. However, all instead of only half of all free locations have to
be compared then, which can be more or less expensive than the random selection, depending on
the cost of the random number generation. If a very simple pseudo-random number generator
such as the LCG variant proposed by Park and Miller [PM88] is used, the random selection
is considerably faster. In a test implementation of Forced Random Dithering, the parallelized
random selection was about 20 % faster than comparing all free locations.

p = 0.01 p = 0.05 p = 0.1 p = 0.2

p = 0.3 p = 0.4 p = 0.5 p = 0.6

p = 0.7 p = 0.8 p = 0.9 p = 1.0

Figure 3.1: Estimated power spectra of Forced Random Dithering results with matrices gener-
ated with different values of p
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CHAPTER 4
Forced Random Sampling

4.1 Overview

Forced Random Sampling is the application of Forced Random Dithering for k-dimensional
adaptive sampling. Instead of halftoning an image, an importance function I defined in the
sample domain Ω ⊆ [0, 1)k is considered. Using halftoning methods for sampling has already
been proposed by Mitchell [Mit87]. However, Mitchell’s point diffusion algorithm, which is
based on error diffusion, cannot be parallelized reasonably. Methods based on ordered dithering
such as Forced Random Dithering, in contrast, can be parallelized very well, because threshold-
ing of each element is independent from all others. Additionally, distribution properties such
as randomness can be included in the dither matrix itself and do not need to be computed at
runtime. Forced Random Dithering even includes spatial uniformity of elements with similar
values. Therefore, sampling based on ordered dithering is very similar to tile-based Poisson disk
sampling reviewed in Chapter 2. The main advantage of these methods is the separation of sam-
ple generation and sampling into an expensive offline and an inexpensive online computation
step. Although very fast, using tiles with precomputed Poisson disk samples is not very flexible
and difficult to use for adaptive sampling. When using a dither matrix instead of actual samples
for tiling, the sample tiles are basically created at runtime by thresholding. The dither matrix
M can be seen as a large set of possible sample distributions, including adaptive ones. One
set of samples X is drawn fromM by thresholding, where the importance function I controls
the density of samples. The entire sampling algorithm is explained in the following sections in
detail, actual implementations of FRS are provided in the next chapter.

4.2 Uniform Sampling

To introduce the idea of FRS, only the special case of uniform sampling is considered, mean-
ing that I = 1 over the entire sample domain. Let M be of size SM × · · · × SM and let
pM ∈ [0, SM − 1]k be the index of an arbitrary matrix element with the precomputed dither
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valueM(pM). The dither values stem from the order of insertion at matrix creation and range
from 0 to SkM − 1. This means that comparingM to a constant threshold function

T = n, n ∈ N, (4.1)

will leave the first n elements that have been inserted. The index pM of each of these elements
corresponds to a point pI = pM/SM in the sample domain Ω, which can be used for sampling.
By the design of the matrix, these points are distributed spatially uniformly within Ω.

Figure 4.1: Dither matrix window. The dither matrix is repeated to tile an infinite plane. A
window is cut out at a random offset.

From the dither matrixM, a maximum of SkM samples can be generated with the described
thresholding, which is one for every element of the matrix. To generate more than SkM samples
without using a larger matrix, a tiling ofM can be used. SinceM is toroidal, it can be repeated
seamlessly. From the theoretically infinite tiling ofM, a finite section is used for thresholding.
This section, in the following called a window of M, has to be large enough to provide the
desired number of samples, but should be as small as possible to minimize the computational
effort of thresholding. Figure 4.1 illustrates such a window. Here, a 2 × 2 tiling of M of
size 64 × 64 is shown. The values of the matrix are actually in the range [0, 642 − 1] and have
been scaled to [0, 255] for display. The red circle marks the origin of the window, which has been
offset relative to the origin ofM. This offset ∆W can be used to vary the sample distribution
for the same I andM over several sampling runs. It does not influence thresholding itself, as it
is only used to select a different portion ofM. Its value can therefore be arbitrary and is chosen
randomly from [0, SM − 1]k.

The size SW of the window depends on multiple parameters and determines the quality
and performance of sampling. The smallest possible size is SW = k

√
n× · · · × k

√
n. In this

case, every element of the window would have to pass thresholding, which would result in a
completely regular sample placement. This degeneration to regular sampling has to be prevented
by enforcing an average distance between samples, which is achieved with the sparsity σ. It
introduces a constraint that on average, only one out of σk window elements passes thresholding.
The choice of σ influences the quality of the resulting samples. If it is too low, the samples
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exhibit strong regularity artifacts. If it is too high, the window becomes large and too many
elements are compared for thresholding, which reduces the runtime performance. σ should
therefore be as small as possible, but as large as necessary to avoid artifacts. To find the ideal
value, a spectral analysis of samples for several values of σ is given in Section 4.7. With σ, the
optimal size SW of the window can be calculated, which is explained in detail in Section 4.4.

Having a window larger than the dither matrix itself slightly changes thresholding because
the same dither values occur multiple times in the window. Considering only the case of a two-
dimensional importance, σ = 1 and a window of size SW = SW,1×SW,2 = SM ×SM , then the
first n elements of the dither matrix would pass thresholding. If, however, SW,1 = SW,2 = 2SM ,
each value ∈ [0, S2

M − 1] of the dither matrix would appear four times in the window. Thus, the
threshold needs to be scaled to a quarter of its original value to account for that or 4n samples
would be created. Similarly, if SW,1 = SW,2 = SM/2, the window would contain only a quarter
of all possible dither values, which is why the threshold would have to be multiplied by four. If
the size of the window does not match the size ofM, the threshold function T of Equation 4.1
therefore has to be extended to

T = n · SkM∏k
i=1 SW,i

. (4.2)

4.3 Adaptive Sampling

Until now, only uniform sampling has been discussed. In this case it suffices to threshold the
window with T as shown in Equation 4.2 to get n samples. But if I is a non-uniform function,
more elements of the window should remain in regions of higher importance than in regions
of low importance such that the density of the resulting samples approximates I. Thus, in the
general case, the threshold of each window element pW depends on the importance I(pI) at the
corresponding point pI = pW /SW in the sample domain, i.e.,

T(pI) = I(pI) · τ, (4.3)

where τ is a global, constant scaling factor. If τ = n·SkM/
∏k
i=1 SW,i as in the uniform case, less

than n samples would be created if I(pI) < 1 for any pI . To create approximately n samples,
τ needs to account for the average importance

µI =

∫

Ω
I(ω1, . . . , ωk)dω1 . . . dωk, (4.4)

leading to a scaling factor

τI =
n

µI
· SkM∏k

i=1 SW,i
. (4.5)

The complete threshold inequation of FRS,M(pM) < I(pI)·τI , is illustrated for k = 2 and
n = 32 in Figure 4.2 with a Gaussian blob importance function. The dither value of each element
pW of the window (orange) is compared to the product of the corresponding importance I at
point pI (green) and the scaling factor τI . Approximately n elements pass this comparison, and
their locations (blue) are used for sampling. The resulting samples are adapted to the importance
function while still being well distributed locally.
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t = (xt, yt) = (((∆w + isn) mod SM ) + s) mod SM (1.10)

δ(i, s) = DM(t) (1.11)

a sample xn = (x, y) of i is created if δ(i, s) < τ ′(i). As the sample domain has been
defined as Ω = [0, 1)2 for the scope of this thesis, the location of the sample is normalized to

xn =
i

SIM
+

s+∆s

SW
, (1.12)

where ∆s ∈ [0, 1)2 is an offset inside the subpixel s. In the following, ∆s = (0.5, 0.5) – the
center of s – is used for usual FRS, while a random offset is used for jittered FRS.

< τ ′() ⇒ (1.13)

(
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
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
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1.4 Parameter Choices

Matrix Size

Sparsity of Samples
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CHAPTER 4
Forced Random Sampling

4.1 Overview

Threshold Scaling factor τ
Forced Random Sampling is the application of Forced Random Dithering for k-dimensional

adaptive sampling. Instead of halftoning an image, a general importance function I defined in
the sample domain Ω ⊆ [0, 1)k is considered. It is used to threshold a precomputed dither matrix
M to obtain a set of points X that approximate I. Let M be of size SM ×· · ·×SM . The values
in M correspond to the order of insertion at matrix creation and range from 0 to Sk

M − 1. Thus,
thresholding the matrix with a constant function I(i) = c, i ∈ Ω, would leave the first c elements
that have been inserted. If I(i) is a non-uniform function, more elements of M would remain
in regions of higher importance than in regions of low importance. To make thresholding more
flexible, the dither values of the matrix are not thresholded with the importance function itself,
but a threshold function τ ′(i) = τ · I(i), where τ is a constant scaling factor explained below.
Figure 4.1 illustrates the algorithm for k = 2. Actual implementations of FRS are provided in
the next chapter.

Using halftoning methods for sampling has already been proposed by Mitchell [Mit87].
However, Mitchell’s point diffusion algorithm, which is based on error diffusion, cannot be
parallelized reasonably. Methods based on ordered dithering such as Forced Random Dithering,
in contrast, can be parallelized very well, because thresholding of each element is independent
from all others. Additionally, distribution properties such as randomness can be included in
the dither matrix itself and do not need to be computed at runtime. Forced Random Dithering
even includes spatial uniformity of elements with similar values. Therefore, sampling based
on ordered dithering is very similar to tile-based Poisson disk sampling reviewed in Chapter 2.
The main advantage of these methods is the separation of sample generation and sampling into
an expensive off-line and an inexpensive on-line computation step. Although very fast, using
tiles with precomputed Poisson disk samples is not very flexible and difficult to use for adaptive
sampling. When using a dither matrix instead of actual samples for tiling, the sample tiles are
basically created at runtime by thresholding.
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Figure 4.2: Illustration of the thresholding inequation of Forced Random Sampling

4.4 Window Calculation

The left side of the equation depicted in Figure 4.2 is the window itself. The window is the
section of an infinite tiling ofM that is large enough to provide the desired number of samples n
through thresholding. Its size SW = SW,1 × · · · × SW,k is a result of the sparsity constraint
introduced in Section 4.2, which ensures that on average, only one out of σk window elements
passes thresholding, and thus prevents the sample placement from being too regular. For a
uniform importance I = 1, the sparsity constraint can be expressed as

nσk =

k∏

i=1

SW,i. (4.6)

This means that a dither matrix window has to have a size of at least SW,1 × · · · × SW,k to
provide n samples for a given σ. For non-uniform I, the sample density should vary according
to the local importance I(pI). If I(pI) < 1, less dither values than one out of σk should
pass thresholding in these regions. Instead of having a probability of 1/σk to pass thresholding
like in the uniform case, the probability that window element pW passes thresholding should be
I(pI)/σk. From this follows that with the

∏k
i=1 SW,i window elements for the entire sample

domain, only approximately

∏k
i=1 SW,i
σk

∫

Ω
I(ω1, . . . , ωk)dω1 . . . dωk = nµI (4.7)

samples could be created, which is less than desired. To still provide n samples in total, more
samples would need to be placed in the more important regions, which would violate the sparsity
constraint. Thus, the minimum window size that follows from Equation 4.6 is not sufficient in
this case. Instead, the window size has to be scaled by 1/µI beforehand to compensate for the
low importance in some regions of I.

This problem is illustrated in Figure 4.3a for one dimension. Here, I (green) is an impor-
tance function with half the values close to 1 and the other half of the values close to 0, such
that the average importance µI = 0.5. Let n = 4 and σ = 4, then the window size according to
Equation 4.6 should be SW,1 = 16. Due to the high importance of the lower values of I, all four
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importance, even if it is smaller than 1. This is achieved by scaling the average importance
by 1/mI , which can be seen as a transformation [0,mI ] �→ [0, 1] of importance values, such
that the transformed I ′ has a maximum m′

I = 1 (green). It then becomes apparent that it
is sufficient to threshold only 16 dither values (green samples). Including both average and
maximum importance into Equation 4.1, the sparsity constraint for sampling with a non-uniform
importance function can be expressed as

nσk · mI

µI
=

k∏

i=1

wdi . (4.4)

Importance
Ω
0.0
0.5
1.0
I
mI

µI

As the window is thresholded with the importance function, their aspect ratios should match.
In the following, the extents of I are denoted with SI,di for i = 1, . . . , k, which are the extents
of the domain of definition Ω in the continuous case and the pixel size of the importance map in
the discrete case. In both cases, the aspect ratios are the same. Without loss of generality it is
assumed that SI,d1 is the smallest extent of the importance function. Then wd1 should be also
the smallest extent of the window. With the aspect ratios

ai,1 = SI,di/SI,d1 = wdi/wd1 ≥ 1, (4.5)

all k extents of the window can be expressed as a function of wd1 . With these, Equation 4.4 can
be rewritten to

nσk · mI

µI
= wk

d1

k∏

i=1

ai,1, (4.6)

from which follows

wd1,min
= k

√
nmI

µI
∏k

i=1 ai,1
σ, wdi,min

= ai,1wd1,min
. (4.7)

This means that the window has to have a size of at least wd1,min
× · · · × wdk,min

to provide
enough dither matrix elements for thresholding I with sparsity σ.

4.3 Thresholding

Once the size of the window has been determined, the dither values covered by the window can
be thresholded. Adaptive sampling is achieved by thresholding the dither matrix window with a
threshold function

τ ′(i) = τ · I(i), (4.8)
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importance, even if it is smaller than 1. This is achieved by scaling the average importance
by 1/mI , which can be seen as a transformation [0,mI ] �→ [0, 1] of importance values, such
that the transformed I ′ has a maximum m′

I = 1 (green). It then becomes apparent that it
is sufficient to threshold only 16 dither values (green samples). Including both average and
maximum importance into Equation 4.1, the sparsity constraint for sampling with a non-uniform
importance function can be expressed as

nσk · mI

µI
=

k∏

i=1

wdi . (4.4)

Importance
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0.0
0.5
1.0
I
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As the window is thresholded with the importance function, their aspect ratios should match.
In the following, the extents of I are denoted with SI,di for i = 1, . . . , k, which are the extents
of the domain of definition Ω in the continuous case and the pixel size of the importance map in
the discrete case. In both cases, the aspect ratios are the same. Without loss of generality it is
assumed that SI,d1 is the smallest extent of the importance function. Then wd1 should be also
the smallest extent of the window. With the aspect ratios

ai,1 = SI,di/SI,d1 = wdi/wd1 ≥ 1, (4.5)

all k extents of the window can be expressed as a function of wd1 . With these, Equation 4.4 can
be rewritten to

nσk · mI

µI
= wk

d1

k∏

i=1

ai,1, (4.6)

from which follows

wd1,min
= k

√
nmI

µI
∏k

i=1 ai,1
σ, wdi,min

= ai,1wd1,min
. (4.7)

This means that the window has to have a size of at least wd1,min
× · · · × wdk,min

to provide
enough dither matrix elements for thresholding I with sparsity σ.

4.3 Thresholding

Once the size of the window has been determined, the dither values covered by the window can
be thresholded. Adaptive sampling is achieved by thresholding the dither matrix window with a
threshold function

τ ′(i) = τ · I(i), (4.8)
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(a) Violation of the sparsity constraint (red samples) in
regions of high importance can be avoided by scaling
the window size by 1/µI (green samples)
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importance, even if it is smaller than 1. This is achieved by scaling the average importance
by 1/mI , which can be seen as a transformation [0,mI ] �→ [0, 1] of importance values, such
that the transformed I ′ has a maximum m′

I = 1 (green). It then becomes apparent that it
is sufficient to threshold only 16 dither values (green samples). Including both average and
maximum importance into Equation 4.1, the sparsity constraint for sampling with a non-uniform
importance function can be expressed as

nσk · mI

µI
=

k∏

i=1

wdi . (4.4)

Importance
Ω
0.0
0.5
1.0
I
mI

µI

As the window is thresholded with the importance function, their aspect ratios should match.
In the following, the extents of I are denoted with SI,di for i = 1, . . . , k, which are the extents
of the domain of definition Ω in the continuous case and the pixel size of the importance map in
the discrete case. In both cases, the aspect ratios are the same. Without loss of generality it is
assumed that SI,d1 is the smallest extent of the importance function. Then wd1 should be also
the smallest extent of the window. With the aspect ratios

ai,1 = SI,di/SI,d1 = wdi/wd1 ≥ 1, (4.5)

all k extents of the window can be expressed as a function of wd1 . With these, Equation 4.4 can
be rewritten to

nσk · mI

µI
= wk

d1

k∏

i=1

ai,1, (4.6)

from which follows

wd1,min
= k

√
nmI

µI
∏k

i=1 ai,1
σ, wdi,min

= ai,1wd1,min
. (4.7)

This means that the window has to have a size of at least wd1,min
× · · · × wdk,min

to provide
enough dither matrix elements for thresholding I with sparsity σ.

4.3 Thresholding

Once the size of the window has been determined, the dither values covered by the window can
be thresholded. Adaptive sampling is achieved by thresholding the dither matrix window with a
threshold function

τ ′(i) = τ · I(i), (4.8)
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(b) A too large window size (red samples) can be
avoided by scaling the original importance function
(red) by 1/mI (green samples)

Figure 4.3: Influence of average and maximum importance on the window size

samples should be placed there. If all four samples are obtained from the first eight dither values
(red samples), the sparsity constraint is violated and the samples will exhibit regularity artifacts.
If the window size is scaled to 16/µI = 32, there are 16 dither values for the lower values of I,
which can be thresholded to obtain the four samples (green samples), which satisfies the sparsity
constraint.

However, this assumes that the supremum of I,

mI = sup
(ω1,...,ωk)∈Ω

I(ω1, . . . , ωk), (4.8)

is 1, which is not necessarily true. An exemplary importance function for the one-dimensional
case is illustrated in Figure 4.3b (red) with a maximum importance of 0.5. Because of the low
average value, the window size would be scaled up to 32 or even 64. This is to ensure that
in regions of I(pI) = 1, only one out of 4 dither values passes thresholding, although there
are no such regions in I. Thresholding would thus compare too many dither values for the
specified constraints (red samples). It suffices to ensure the sparsity constraint for the maximum
importance, even if it is smaller than 1. This is achieved by scaling the average importance
by 1/mI , which can be seen as a transformation [0,mI ] 7→ [0, 1] of importance values, such
that the transformed I ′ has a maximum m′I = 1 (green). It then becomes apparent that it
is sufficient to threshold only 16 dither values (green samples). Including both average and
maximum importance into Equation 4.6, the sparsity constraint for sampling with a non-uniform
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importance function can be expressed as

nσk · mI
µI

=
k∏

i=1

SW,i. (4.9)

As the window is thresholded with the importance function, their aspect ratios should match.
In the following, the extents of I are denoted with SI,i for i = 1, . . . , k, which are the extents
of the domain of definition Ω in the continuous case and the pixel size of the importance map in
the discrete case. In both cases, the aspect ratios are the same. Without loss of generality, it is
assumed that SI,1 is the smallest extent of the importance function. Then SW,1 should be also
the smallest extent of the window. With the aspect ratios

ai = SI,i/SI,1 = SW,i/SW,1 ≥ 1, (4.10)

all k extents of the window can be expressed as a function of SW,1. With these, Equation 4.9 can
be rewritten as

nσk · mI
µI

= SkW,1

k∏

i=1

ai, (4.11)

from which follows

SW,1 = k

√
nmI

µI
∏k
i=1 ai

σ, SW,i = aiSW,1. (4.12)

This means that the window has to have a size of at least SW,1 × · · · × SW,k to provide enough
dither matrix elements for thresholding I with sparsity σ.

4.5 Sample Placement

Once the size of the window has been determined, every element pW of the window can be
thresholded with T(pI). First, its coordinates relative to the origin of the dither matrix,

pM = (∆W + pW ) mod SM , (4.13)

are calculated, which are used to retrieve the dither valueM(pM) at that point. The dither value
is compared to the threshold function and a sample x ∈ Ω is created if

M(pM) < T(pI). (4.14)

The location of the sample is

x = pISI +
∆p

SW
, (4.15)

where ∆p ∈ [0, 1)k is an offset inside the window element. In the following, ∆p = (0.5, . . . , 0.5),
the center of pW , is used for FRS, while a random offset is used for jittered FRS.

Since the dither matrix is repeated in the case of any SW,i > SM , repetitions in the ar-
rangement of the samples can occur, depending on I. In the case of uniform I, this is certain.
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Repetitions cannot be avoided completely in general, but they can be reduced by either applying
random jittering to the samples or increasing the size of the dither matrix. In the following, all
qualitative tests will be performed on both jittered and unjittered samples. Also, if not denoted
otherwise, a dither matrix of size SM = 2048 is used. This size is a fair compromise between
the expensive matrix creation and the number of unique samples that can be created. An analysis
of the sample quality depending on the dither matrix size is given in Section 4.7.

For an actual implementation of FRS, thresholding can be parallelized because Equation 4.14
does not depend on any intermediate results other than the scaling factor τI and the window size.
Similar to other sampling techniques, it is not guaranteed that exactly n samples are retrieved,
but the deviation is very small.

4.6 Progressive Sampling

Forced Random Sampling can be extended to progressive sampling, meaning that new samples
can be created and added to an existing sample set such that the distribution properties of the
sample set are not impaired. This is possible due to the uniform distribution of similar dither
values within the dither matrix, as illustrated in Table 3.1 in Chapter 3. Both the first n and the
first n+1 dither values are distributed uniformly inM and thus in the window, such that adding
an additional sample to a sample set of size n leads to the same well-distributed sample set as
would creating n + 1 samples at once. It has to be ensured that the window is large enough to
provide n + 1 samples without violating the sparsity constraint. This is why the window size
(Equation 4.12) has to be calculated with respect to the maximum number of samples that might
be required at some point. By adjusting n in Equation 4.5 to calculate τI , the actual number of
samples to pass thresholding can be controlled.

However, the new sample cannot be created directly without thresholding the entire window
again. Thresholding with the modified scaling factor creates the entire sample set of size n+ 1.
Rather than using a single τI for thresholding, a range [τI,old, τI,new) has to be used, where
τI,old is the scaling factor used to create the first n samples and τI,new the adjusted one. Then,
the threshold comparison in Equation 4.14 can be extended to

τI,old · I(pI) ≤M(pM) < τI,new · I(pI), (4.16)

such that only new samples pass.

4.7 Parameter Choices

Dither Matrix Size SM
The size SM of the dither matrix does not influence the runtime complexity of FRS, but the
quality of the samples. As the dither matrix is a regular grid, samples obtained from it always
exhibit regularity to some extent because of their discrete element positions. Furthermore, only
a finite number of unique samples can be obtained from one dither matrix. Using Equation 4.6
for k = 2, this number is

nmax =
S2
M

σ2
. (4.17)
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For the parameters used in this thesis (SM = 2048, σ = 8), nmax = 65536. Further results are
given in Table 4.1. If the desired number of samples exceeds nmax, the dither matrix is repeated
inside the window, which leads to repetitions in the sample set. Thus, increasing the matrix size
reduces the amount of repetitive patterns. However, the dither matrix has to be stored in the
memory for thresholding, which at least for GPU implementations is a valid argument for using
a matrix of smaller size. Also, the matrix creation is very expensive and seems not feasible for
SM > 4096 on current hardware.

128 256 512 1024 2048 4096 8192
4 1024 4096 16384 65536 262144 1048576 4194304
8 256 1024 4096 16384 65536 262144 1048576
16 64 256 1024 4096 16384 65536 262144

Table 4.1: Number of unique samples that can be obtained from one dither matrix depending on
the matrix size (columns) and the sparsity (rows)

It is important to use a matrix that leads to samples without obvious artifacts or patterns, but
it has to be computable with reasonable effort. The former has been evaluated with a differential
domain analysis (DDA) [WW11] of sample sets for several sizes SM . The results are shown
in Figure 4.4. Each power spectrum has been estimated by 10 sets of 1024 samples. In the
first row, the power spectrum of dart throwing is given as a reference. For small matrix sizes,
the power spectra of FRS exhibit strong regularities, which is caused by the finite number of
possible distances between any two elements of the dither matrix. Since the DDA only depends
on the distribution of the differentials instead of the sample locations, this shortcoming of FRS
is very apparent in the power spectra. It can be avoided by using a random sample offset ∆p

in Equation 4.15 for jittering. Jittering adds variation to the differentials and leads to a more
random distribution. Still, the results of SM ≤ 256 strongly deviate from the reference and
seem too random. From a matrix size of 512 on, the results of FRS closely match those of
jittered FRS and are also close to the reference. Therefore, the matrix size should be chosen
such that the desired number of samples can be created with it according to Table 4.1, but with
a minimum of SM = 512.
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Reference

128× 128

256× 256

512× 512

1024× 1024

2048× 2048

FRS Jittered FRS

Figure 4.4: Estimated DDA power spectra of FRS and jittered FRS for different dither matrix
sizes
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Sparsity σ

The sparsity σ has been introduced to avoid that the window elements which pass thresholding
are too close to each other. In the worst case, every element could have a value smaller than
the threshold, in which case FRS would degenerate to regular sampling, which equals σ =
1. σ scales the threshold such that on average, only one out of σk window elements passes
thresholding. Instead of using the whole range [0, SkM − 1] of dither values for thresholding,
only the range [0, SkM/σ

k − 1] is used, which is the same as thresholding a sparse dither matrix
with only the first SkM/σ

k − 1 elements set. In Table 4.1, the maximum number of samples
obtainable from a dither matrix has been given dependent on SM and σ. Assuming a fixed SM ,
increasing σ decreases this number, which means that the window has to increase, too, to obtain
the desired number of samples. So, on the one hand, σ preserves the even distribution of samples,
but on the other hand, it increases the window size, which can lead to obvious repetitive patterns
in the sample set for too small SM as well as increase the computational effort of thresholding.
This is why σ should just be large enough to remove obvious regular sample arrangements.

As these regular arrangements lead to a finite number of possible distances between any
two samples, again the DDA is well suited to visualize them. In Figure 4.5, the power spectra
of two-dimensional FRS, each estimated by 10 sets of 1024 uniform samples, are shown for
different values of σ and SM = 512. Figure 4.6 shows the corresponding results of jittered
FRS. Unsurprisingly, the power spectra for σ = 1 equal those of regular sampling resp. jittered
grid sampling. Especially in the case of unjittered FRS, it can be seen how the regularity of the
samples decreases as σ increases. However, it has to be noted that even in the case of σ = 16 or a
larger value, the sample positions are always discrete and therefore exhibit regularities. They are
just lost in the finite resolution of the plot of the power spectrum. Therefore, an ideal σ cannot be
found for FRS. Jittering, in contrast, adds randomness to the sample positions and thus variation
to the differential distribution, which is why the power spectrum of jittered FRS looks acceptable
for smaller σ as compared to FRS. Although the high-energy annulus in the power spectrum is
a bit frayed, σ = 8 seems like a fair compromise between quality and computational effort and
is used for the results throughout this thesis.
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σ = 1 σ = 2 σ = 3 σ = 4

σ = 5 σ = 6 σ = 7 σ = 8

σ = 9 σ = 10 σ = 11 σ = 12

σ = 13 σ = 14 σ = 15 σ = 16

Figure 4.5: Estimated DDA power spectra of FRS for different values of σ
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σ = 1 σ = 2 σ = 3 σ = 4

σ = 5 σ = 6 σ = 7 σ = 8

σ = 9 σ = 10 σ = 11 σ = 12

σ = 13 σ = 14 σ = 15 σ = 16

Figure 4.6: Estimated DDA power spectra of jittered FRS for different values of σ
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CHAPTER 5
Implementation

5.1 Overview

In this chapter, an implementation of FRS is presented for both CPU and GPU application.
As shown in the previous chapter, thresholding of the window can be parallelized, because the
calculations are independent from each other. The window size SW and the scaling factor τ can
be calculated in a preceding setup step, which is explained shortly in the next section.

Although sampling in higher dimensions is possible, only the two-dimensional case is im-
plemented for the sake of simplicity. Furthermore, the importance function I is assumed to be
a discrete importance map, which allows a more efficient implementation of the thresholding
step. In Figure 5.1, a Gaussian blob importance map of size SI = 8 × 8 is used to illustrate
this. The relation of the window size SW to SI is emphasized by overlaying the window with
the pixel grid of I. Each pixel pI = (pI,x, pI,y) ∈ [0, SI,x − 1] × [0, SI,y − 1] of I (green)
corresponds to 8 × 8 elements – subpixels – of the window (orange). Each subpixel inside the
orange selection is compared to the product of the importance I(pI) and the scaling factor.

If nearest-neighbor interpolation is used to look up I(pI), the importance is the same for
each subpixel of pI , which is why the work can be partitioned into chunks for each pI . On the
CPU, this leads to an outer loop for each pI and an inner loop for thresholding each subpixel.
On the GPU, one OpenCL thread is created for each pI , thresholding is done in a kernel. In both
cases, only a few subpixels (blue) pass thresholding and are then used to generate samples.

If linear interpolation is used instead, there are still known upper and lower bounds for the
importance inside pI which can be used to accelerate thresholding of the corresponding block of
window elements. Unless n � SI,x · SI,y, however, there is no significant difference between
nearest-neighbor and linear interpolation of I in terms of sample distribution quality. Thus,
nearest-neighbor interpolation is preferred due to its lower computational effort.

Additional to the naive implementation which performs thresholding for each subpixel, four
optimizations are presented which try to reduce the number of threshold comparisons with dif-
ferent representations of the dither matrixM. The implementations Stack, Level N and Flat N
are based on a minimum map of M, the Sorted implementation relies on a list of block-wise
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t = (xt, yt) = (((∆w + isn) mod SM ) + s) mod SM (1.10)

δ(i, s) = DM(t) (1.11)

a sample xn = (x, y) of i is created if δ(i, s) < τ ′(i). As the sample domain has been
defined as Ω = [0, 1)2 for the scope of this thesis, the location of the sample is normalized to

xn =
i

SIM
+

s+∆s

SW
, (1.12)

where ∆s ∈ [0, 1)2 is an offset inside the subpixel s. In the following, ∆s = (0.5, 0.5) – the
center of s – is used for usual FRS, while a random offset is used for jittered FRS.
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CHAPTER 4
Forced Random Sampling

4.1 Overview

Threshold Scaling factor τ
Forced Random Sampling is the application of Forced Random Dithering for k-dimensional

adaptive sampling. Instead of halftoning an image, a general importance function I defined in
the sample domain Ω ⊆ [0, 1)k is considered. It is used to threshold a precomputed dither matrix
M to obtain a set of points X that approximate I. Let M be of size SM ×· · ·×SM . The values
in M correspond to the order of insertion at matrix creation and range from 0 to Sk

M − 1. Thus,
thresholding the matrix with a constant function I(i) = c, i ∈ Ω, would leave the first c elements
that have been inserted. If I(i) is a non-uniform function, more elements of M would remain
in regions of higher importance than in regions of low importance. To make thresholding more
flexible, the dither values of the matrix are not thresholded with the importance function itself,
but a threshold function τ ′(i) = τ · I(i), where τ is a constant scaling factor explained below.
Figure 4.1 illustrates the algorithm for k = 2. Actual implementations of FRS are provided in
the next chapter.

Using halftoning methods for sampling has already been proposed by Mitchell [Mit87].
However, Mitchell’s point diffusion algorithm, which is based on error diffusion, cannot be
parallelized reasonably. Methods based on ordered dithering such as Forced Random Dithering,
in contrast, can be parallelized very well, because thresholding of each element is independent
from all others. Additionally, distribution properties such as randomness can be included in
the dither matrix itself and do not need to be computed at runtime. Forced Random Dithering
even includes spatial uniformity of elements with similar values. Therefore, sampling based
on ordered dithering is very similar to tile-based Poisson disk sampling reviewed in Chapter 2.
The main advantage of these methods is the separation of sample generation and sampling into
an expensive off-line and an inexpensive on-line computation step. Although very fast, using
tiles with precomputed Poisson disk samples is not very flexible and difficult to use for adaptive
sampling. When using a dither matrix instead of actual samples for tiling, the sample tiles are
basically created at runtime by thresholding.

25

Figure 5.1: Forced Random Sampling for a discrete importance function

sorted dither values. All implementations produce the same result, but differ strongly in terms
of runtime, which is analyzed in Chapter 6. It is briefly anticipated here that the Sorted imple-
mentation is by far the most efficient FRS implementation for both CPU and GPU.

When referring to one of the implementations in the following, a monospace font is used for
clarity, i.e., Naive, Stack, Level N, Flat N and Sorted.

5.2 Setup

The minimum window size SW = SW,1 × · · · × SW,k can be calculated with Equation 4.12. In
general, this is not an integer size, which makes an implementation cumbersome and prone to
numerical errors. To avoid rounding errors and unnecessarily expensive calculations, a devia-
tion from the formal explanation of FRS in the previous chapter is made. The window size is
restricted to be an integer multiple of SI . Thus, the actual window size is typically larger than
necessary. For the calculation of the final window size,

S′W,1 = SI,1φ
(
SW,1
SI,1

)
, SW,i =

⌈
ai,1S

′
W,1

⌉
, (5.1)

there are two options, depending on the function φ(x). If the ceiling function

φ(x) := min(z ∈ Z|z ≥ x) (5.2)
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is applied, the window size will be the next integer multiple of the importance map size. If,
instead, φ(x) is chosen to return the next power-of-2 number ≥ x,

φ(x) := 2max(0,dlog2 xe), x > 0, (5.3)

the window size will be a power-of-2 multiple of the importance map size. This also means that
the number of subpixels per pixel of I,

ns =
SW,1
SI,1

, (5.4)

is a power of 2. On the one hand, this leads to computational overhead because the window will
typically be larger, but on the other hand, it allows a more efficient implementation of certain
calculations with bit-wise operations. Additionally, most of the implementations discussed in
this chapter rely on the number of subpixels to be a power of 2. For the scope of this thesis, all
calculations have only been performed with the power-of-2 function.

Pseudo-code of the simple setup of FRS for k = 2 is provided in Listing 5.1. The distinction
between small and large is made because the window size depends on the smaller of the two
extents of the importance map.

1 µI = mean(I);
2 mI = max(I);
3
4 small = min(SI,x, SI,y);
5 large = max(SI,x, SI,y);
6 a = large / small;
7
8 wmin = ceil(σ ∗ sqrt(n ∗ mI / (µI ∗ a)));
9 wsmall = small ∗ pow(2, max(0, ceil(log2(wmin / small))));

10 wlarge = ceil(wsmall ∗ a);
11 SW = (SI,x > SI,y) ? (wlarge, wsmall) : (wsmall, wlarge);
12
13 ns = SW,x / SI,x;
14
15 ∆W = floor(rand() ∗ SM / ns) ∗ ns;
16
17 τ = n ∗ SM ∗ SM / (SW,x ∗ SW,y ∗ µI);

Listing 5.1: Setup of FRS

Since FRS does not always generate exactly n samples, a data structure slightly larger than
n should be used to store the samples. For a CPU implementation, a linked list is used for
this task. On the GPU, however, a usual buffer has to be used, as anything else would greatly
influence the runtime performance. The buffer is global, thus access of the concurrent threads to
it has to be regulated. One possible solution is to assign a fixed range of buffer indices to each
thread, such that each thread only accesses its own part of the buffer. Then the question arises
how large this range should be. It follows from Equation 4.6 that the average number of samples
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obtained from one block of ns × ns subpixels is n2
s/σ

2. As the dither matrix is random, the
actual number of samples slightly varies and can also be larger than this. To prevent samples
from being discarded, the maximum number of samples allowed per thread is twice this size,

nt =
2n2

s

σ2
. (5.5)

This means that the buffer on the GPU has to have the size nt · t, where

t = SI,x · SI,y (5.6)

is the number of threads, which is much larger than actually needed for the computation of n sam-
ples. It also means that the buffer is only filled sparsely with the resulting samples. If the samples
are not to be used in the thresholding kernel itself, they should be passed on in a compact form.
Benchmarks of a compaction step with parallel prefix sum [HSO07] showed that for large n,
compacting the samples is just as expensive as thresholding itself.

A better solution for the storage of samples in the video memory is to allow all threads syn-
chronized access to any part of the global buffer. OpenCL 1.1 provides the atomic_inc function,
which can be used to increment a global index of the next free spot in the buffer. Although
synchronization itself is more costly than if each thread was writing to its own partition of the
buffer, compacting is no longer required. This is why in total, using synchronized access is
faster. In conclusion, the setup of a GPU implementation of FRS additionally requires a buffer
of size n or slightly larger – to account for the randomness – and a global index variable for
synchronization.

5.3 Naive

The straightforward implementation of Forced Random Sampling compares every dither value
of the window with the threshold function (Equation 4.3). On the CPU, this is done by simply
iterating over each pixel of the importance map in an outer loop and over each subpixel of the
corresponding block of subpixels in the window in an inner loop. A sample is created at the
position of the subpixel if its dither value is smaller than the threshold function. If the sample
is to be jittered, a random subpixel offset is generated, else the sample is moved to the center of
the subpixel and output. In all implementations, the random offsets are two-dimensional Halton
points, which are very inexpensive in their generation and suffice for the application of jittering.

Pseudo-code for the Naive CPU implementation of FRS is shown in Listing 5.2. M and
I are assumed to be given as matrices or textures that can be accessed with two-dimensional
element coordinates. It can be seen that apart from rand() for the Halton or uniform random
numbers, only very basic calculations are needed for thresholding at runtime. The floating point
divisions in Lines 5 and 17 can be replaced by a multiplication with the precomputed constant
fractions. The integer modulo operation in Line 12 can be replaced by a faster bit-wise AND,
because

a mod b = a & (b− 1), (5.7)
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1 samples = new List(n ∗ 1.1);
2
3 for (y = 0; y < SI,y; y++) {
4 for (x = 0; x < SI,x; x++) {
5 relativeCoord = (x, y) / SI;
6 windowCoord = ∆W + (x, y) ∗ ns;
7
8 weightedThreshold = τ ∗ I(x, y);
9

10 for (pW,y = 0; pW,y < ns; pW,y++) {
11 for (pW,x = 0; pW,x < ns; pW,x++) {
12 ditherCoord = (windowCoord + (pW,x, pW,y)) mod SM;
13
14 if (M(ditherCoord) < weightedThreshold) {
15 ∆p = (jitter) ? (rand(), rand()) : (0.5, 0.5);
16
17 samples.add(relativeCoord + ((pW,x, pW,y) + ∆p) / SW);
18 }
19 }
20 }
21 }
22 }

Listing 5.2: Naive CPU implementation

if b is a power of 2, which is true for SM . For better readability, however, such optimizations
are omitted in the listing. samples, the data structure in which the samples are stored, can be
initialized with a capacity slightly larger than n in order to avoid dynamic resizing.

The GPU implementation shown in Listing 5.3 looks very similar. The main difference is
that the outer loops over all t pixels of the importance map have been replaced by a single call
that enqueues t threads on the GPU with the thresholding kernel. Inside the kernel, the im-
portance map coordinates are determined with the help of the individual threadID. The second
difference to the CPU implementation is thatM and I are now assumed to be one-dimensional
buffers, which is why access has to be done with an index rather than with coordinates. After
thresholding, the samples are written to a global buffer of fixed size, where the already men-
tioned atomic_inc function is used for synchronization. It reads the current value – here the next
available index in the buffer – from index, increments it by one and then returns the previous
value. After all threads have finished work, the value of index is the number of samples in the
buffer, so a sub-buffer of samples of the range 0 to index−1 can be passed to the actual sampling
application.

The Naive implementation of FRS is very simple and can easily be extended to higher
dimensions by including an additional outer and inner loop for each dimension. However, it
performs a threshold comparison for each subpixel of the window regardless of prior knowledge
ofM and the maximum allowed number of samples per subpixel block, nt. If it is known that
on average only one out of σ2 subpixels passes thresholding, there is no need to perform all
comparisons, but Naive does not allow the thread to terminate early.
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1 samples = new GPU_Buffer(n ∗ 1.1);
2 index = new GPU_Integer(0);
3
4 kernel = {
5 y = threadID / SI,x; // integer truncation intended
6 x = threadID - y ∗ SI,x;
7 relativeCoord = (x, y) / SI;
8 windowCoord = ∆W + (x, y) ∗ ns;
9

10 weightedThreshold = τ ∗ I[x + SI,x ∗ y];
11
12 for (pW,y = 0; pW,y < ns; pW,y++) {
13 for (pW,x = 0; pW,x < ns; pW,x++) {
14 ditherCoord = (windowCoord + (pW,x, pW,y)) mod SM;
15
16 if (M[ditherCoord.x + SM ∗ ditherCoord.y] < weightedThreshold) {
17 ∆p = (jitter) ? (rand(), rand()) : (0.5, 0.5);
18
19 samples[atomic_inc(index)] = relativeCoord + ((pW,x, pW,y) + ∆p) / SW;
20 }
21 }
22 }
23 };
24
25 kernel.Call(t);

Listing 5.3: Naive GPU implementation

5.4 Stack

The early termination of unpromising decision branches is crucial for the performance of FRS.
As the dither matrix is known beforehand, it can be preprocessed in order to restructure the con-
tained information. The representation ofM by a minimum map, or minmap, has the advantage
of being hierarchical. If level 0 is the original dither matrix, then the size of level 1 is only
SM/2× SM/2 and every element in level 1 has the minimum value of the corresponding 2× 2
block of values of level 0. If four elements ofM are to be thresholded with T(pI) and the level 1
value of these four elements is already greater than T(pI), then no other comparison has to be
performed. None of the remaining three values can be smaller than T(pI). This becomes even
more beneficial when looking at level 2 of the minmap, because 4× 4 elements can potentially
be discarded at once. If the level 2 minimum is smaller than T(pI), the level 1 tests for the four
2 × 2 blocks are performed. At least one block will lead to a sample, but the other three might
still be discarded based on their level 1 values, meaning that only three instead of 12 buffer reads
and comparisons would be necessary for them.

With an increasing level, the size of the block that can potentially be discarded grows. How-
ever, it becomes also more likely that a value lower than T(pI) is in a larger block of pixels, as
the values are distributed very evenly in the dither matrix. As on average, one out of σ2 pixels
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should pass thresholding, the highest useful minmap level is log2 σ. This is illustrated in Fig-
ure 5.2, where lookups into the minmap for 1024 samples are visualized by orange squares for
σ = 8. For better visualization, all minmap levels have been scaled to the same size, such that
the size of each square corresponds to the block of dither values it covers. It can be seen that
almost every threshold of minmap level 4 succeeds, meaning that the retrieved value is< T(pI),
in which case the block cannot be discarded. Thus, the additional level 4 lookup actually leads
to a performance loss instead of gain. Even the lookup at level 3 succeeds in most of the cases,
such that only less than half of the blocks can be discarded. At level 2 and 1, most of the blocks
can be discarded, but the total number of comparisons is four times as high as in the previous
level.

(a) Level 4 (b) Level 3

(c) Level 2 (d) Level 1

(e) Level 0

Figure 5.2: Hierarchical lookups into the minmap of the dither matrix

A second restriction on the maximum level is given by the number of subpixels ns. Each
pixel pI of the importance map corresponds to ns×ns subpixels of the window, so T(pI) is the
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same for every subpixel of this block. Larger blocks of subpixels could not be discarded with a
single comparison of the minimum value because the importance needed for the threshold would
not be constant. This also explains why in Chapter 4, ns has been restricted to a power of 2 for all
implementations but Naive. It ensures that the window of the minmap at level log2 ns coincides
with the importance map, such that each value of this minmap level is the minimum value of all
subpixels that can be thresholded with the same importance I(pI).

For an actual implementation of FRS using a minmap, a stack-based implementation is a
very obvious choice. For each pixel pI of the importance map, a stack is initialized with the
corresponding minimum valuem of minmap level log2 min(ns, σ). It is thresholded with T(pI)
and if m ≥ T(pI), no further comparisons have to be performed for this pI . If m < τ(pI), the
minimum values of the four quadrants of minmap level log2 min(ns, σ) − 1 are pushed to the
stack. If level 0 is reached, a sample is created. Once the stack is empty, thresholding terminates.
Pseudo-code for the CPU implementation Stack is provided in Listing 5.4. Here, the minmap
is assumed to be stored in a data structure such that each level M′ is an individual matrix of
size SM ′ . As the minmap only depends on the dither matrix, it can either be created along with
the dither matrix itself and stored in a file or it can be calculated when loading the dither matrix,
which only takes a split second.

The stack is initialized with an upper bound of the number of elements that can be pushed
to it. Each element has three integer components, which are the two-dimensional offset of the
quadrant inside the ns × ns block and the number of subpixels inside this quadrant. To account
for the different sizes of the minmap levels, the calculation of the coordinates for dithering in
Equation 4.13 is extended as shown in Line 19. Again, this implementation can be optimized by
replacing the divisions and modulo operations by bit-wise shifts and ANDs. The log2 operation
in Line 18 can be implemented with a lookup table, as only power of 2 values ≤ ns need to be
considered.

The GPU implementation is essentially the same as the CPU implementation, which is why
its code is omitted here. The only notable difference is that all levels of the dither minmap
are assumed to be stored in the same buffer such that the origin of the individual levels can
be calculated from SM and the desired lookup level. This offset simply has to be added to
ditherCoord in Line 19.

Comparing Stack to Naive, it is obvious that less dither matrix accesses and less threshold
comparisons are necessary. However, an additional read access to the stack buffer is required in
each iteration. Even worse, cheap read accesses are traded for expensive write accesses when
pushing elements onto the stack, which is disadvantageous especially on the GPU.

44



1 samples = new List(n ∗ 1.1);
2 stack = new Stack(ns ∗ 4 + 1);
3
4 for (y = 0; y < SI,y; y++) {
5 for (x = 0; x < SI,x; x++) {
6 relativeCoord = (x, y) / SI;
7 windowCoord = ∆W + (x, y) ∗ ns;
8
9 weightedThreshold = τ ∗ I(x, y);

10
11 stack.push((0, 0, ns));
12
13 while (!stack.empty) {
14 block = stack.pop();
15 blockCoord = (block.x, block.y);
16 n′s = block.z;
17
18 M′ = minmap[log2(n′s)];
19 ditherCoord = ((windowCoord mod SM) / n′s + blockCoord) mod SM′;
20
21 if (M′(ditherCoord) < weightedThreshold) {
22 if (blockSubpixels == 1) {
23 ∆p = (jitter) ? (rand(), rand()) : (0.5, 0.5);
24
25 samples.add(relativeCoord + (blockCoord + ∆p) / SW);
26 }
27 else {
28 stack.push((2 ∗ blockCoord, n′s / 2));
29 stack.push((2 ∗ blockCoord + (1, 0), n′s / 2));
30 stack.push((2 ∗ blockCoord + (0, 1), n′s / 2));
31 stack.push((2 ∗ blockCoord + (1, 1), n′s / 2));
32 }
33 }
34 }
35 }
36 }

Listing 5.4: Stack CPU implementation
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5.5 Level N

The idea of the Level N implementations is to implement hierarchical thresholding for FRS
in a stack-free way to avoid write accesses to a buffer. For this, the Naive implementation is
extended by additional inner loops for each minmap level > 0. As the thresholding code differs
depending on the highest minmap level N , it is generated automatically according to a tem-
plate. In the following, only the simplest variant, Level 1, will be discussed, as it sufficiently
illustrates the idea of this implementation. Theoretically, the highest useful minmap level is
N = log2 ns, but in practice, only Level 1 and Level 2 are feasible implementations. The
GPU implementations of higher levels cannot be compiled due to the large number of nested
loops. Level 3 and higher levels run generally slower on the CPU than the first two levels. On
the GPU, the runtime of Level 1 and Level 2 is very similar, which is why Level 1 is also
the only Level N variant considered for the performance analysis in Chapter 6.

Pseudo-code of the CPU implementation of Level 1 is provided in Listing 5.5. If thresh-
olding should start from N = 2, ns would have to be divided by 4 instead of 2 in Line 10.
Lines 14 to 21 would have to be repeated with the necessary subscript modifications in order
to threshold the level 2 dither value first. It is obvious that the implementation becomes more
confusing with every additional level. Still, the aim of implementing hierarchical thresholding
without a stack has been achieved, which makes this implementation much more suitable for a
GPU.

It is possible to further optimize this code, which has been omitted in Listing 5.5 for better
readability. Each dither value of the minmap level 1 is the minimum of four corresponding
dither values of level 0. These values can be sorted offline, e.g., at minmap creation, and their
order can be stored in another matrix. There are 24 possible orders of the four values, which
can be encoded in one byte, for example. If the minmap lookup at Line 17 additionally to the
dither value returns the order of the four quadrants of the next minmap level, it can be used to
early terminate the loops in Lines 18 and 19. As soon as the dither value of one of the four
quadrants is greater than the threshold, none of the remaining quadrants has to be considered.
When analyzing the performance of all FRS implementations, it became clear, however, that
this modification does not actually pay off for Level 1 because of the additional lookup for the
order. Level 2 slightly benefits from it regarding runtime, but the readability of the generated
code deteriorates drastically.
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1 samples = new List(n ∗ 1.1);
2
3 for (y = 0; y < SI,y; y++) {
4 for (x = 0; x < SI,x; x++) {
5 relativeCoord = (x, y) / SI;
6 windowCoord = ∆W + (x, y) ∗ ns;
7
8 weightedThreshold = τ ∗ I(x, y);
9

10 n′s = ns / 2;
11
12 for (y1 = 0; y1 < n′s; y1++) {
13 for (x1 = 0; x1 < n′s; x1++) {
14 M′ = minmap[1];
15 level1Coord = ((windowCoord mod SM) / n′s + (x1, y1)) mod SM′;
16
17 if (M′(level1Coord) < weightedThreshold) {
18 for (y0 = 0; y0 <= 1; y0++) {
19 for (x0 = 0; x0 <= 1; x0++) {
20 q0Offset = 2 ∗ (x1, y1) + (x0, y0);
21 level0Coord = (windowCoord + q0Offset) mod SM;
22
23 if (M(level0Coord) < weightedThreshold) {
24 ∆p = (jitter) ? (rand(), rand()) : (0.5, 0.5);
25
26 samples.add(relativeCoord + (q0Offset + ∆p) / SW);
27 }
28 }
29 }
30 }
31 }
32 }
33 }
34 }

Listing 5.5: Level 1 CPU implementation
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5.6 Flat N

The Level N implementations can be rewritten to iterate over all minmap levels in an outer
loop and then perform thresholding for each level individually. The aim is to have simpler
thresholding steps without loops that are easy to implement and to maintain. Also, only one
minmap level is accessed at the time, which might allow a better use of the caches than the
erratic minmap accesses of Stack and Level N. In a first step, thresholding is performed for
minmap level N . Instead of writing samples, however, only an encoded index of each pixel that
passed thresholding is stored. For the sake of simplicity, here the index is assumed to be a four-
component vector which holds the coordinates (x, y) of pI as well as the subpixel coordinates
(pW,x, pW,y) relative to pI . These indices are then used in separate thresholding steps for the next
lower level. At each level, the indices of the previous level correspond to 2× 2 blocks of pixels
in the current level. At least one of these pixels passed thresholding at the previous level, so all
of them are thresholded again. The refined indices of the pixels that passed thresholding are then
stored again for the next level until level 0. Finally, the indices are translated to actual sample
coordinates and stored. Since the overall number of operations increases, but their complexity
decreases, it is assumed to be well suited for GPU implementations. This is why in the following,
only the GPU implementation will be considered.

Starting thresholding at level N , each pixel pI of the importance map corresponds to
n2
s/2

2N = n′2s elements of the minmap at level N . The result buffer must be large enough
to store t = SI,xSI,y/n′2s indices. In the next step, four quadrants for each of these indices
have to be thresholded, which in the worst case all need to be stored as well. This leads to a
total of SI,xSI,y/n2

s indices that need to be stored at level 0 in the worst case. In Listing 5.6,
pseudo-code for the first kernel is provided. One thread is created for each of the t necessary
thresholds, the assignment of each thread to a subpixel is again done with the unique threadID.

After the first thresholding step, n′ ≤ t subpixel indices are stored in the indices buffer,
where n′ is the current value of the synchronization variable index. Since all four quadrants of
every index need to be thresholded in the next step, t′ = 4n′ new threads have to be started. This
is repeated until the level 0 thresholding is finished. Pseudo-code for the level N − 1 kernel is
provided in Listing 5.7.

Once thresholding of minmap level 0 is completed, the remaining n′ indices are translated
to sample locations and optional jittering is added, as shown in Listing 5.8.

Putting it all together, the Flat N implementation of FRS as shown in Listing 5.9 requires
N + 1 separate OpenCL kernel calls. N kernels require synchronized access to the global
memory and at least two separate buffers for input and output of the indices are needed. The
complexity reduction inside a kernel as compared to Level N is traded for a larger OpenCL
overhead as well as more memory consumption. Although each individual kernel is easy to
understand and to implement, three individual kernels have to be maintained. Anticipating the
results of the performance analysis in Chapter 6, this implementation performs poorly due to the
multiple kernel calls, which makes it generally unfavorable.
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1 indices = new GPU_Buffer(t);
2 index = new GPU_Integer(0);
3
4 startKernel = {
5 n′s = ns / 2N;
6 blockID = threadID / n′2s ; // integer truncation intended
7 subID = threadID - blockID ∗ n′2s ;
8
9 y = blockID / SI,x; // integer truncation intended

10 x = blockID - y ∗ SI,x;
11 pW,y = subID / n′s; // integer truncation intended
12 pW,x = subID - pW,y ∗ n′s;
13
14 windowCoord = ∆W + (x, y) ∗ ns;
15 M′ = minmap[N];
16 levelNCoord = ((windowCoord mod SM) / n′s + (pW,x, pW,y)) mod SM′;
17
18 weightedThreshold = τ ∗ I[x + SI,x ∗ y];
19
20 if (M′[levelNCoord.x + SM′ ∗ levelNCoord.y] < weightedThreshold) {
21 indices[atomic_inc(index)] = (x, y, pW,x, pW,y);
22 }
23 }

Listing 5.6: Flat N start kernel

1 indices = new GPU_Buffer(t′);
2 index = new GPU_Integer(0);
3
4 levelNM1Kernel = {
5 indexID = previousIndices[threadID / 4]; // integer truncation intended
6 quadrantID = threadID mod 4;
7 (x, y) = (indexID.x, indexID.y);
8 (pW,x, pW,y) = (indexID.z, indexID.w) ∗ 2;
9 pW,x += (quadrantID ∈ {1, 3}) ? 1 : 0; // 0 1

10 pW,y += (quadrantID ∈ {2, 3}) ? 1 : 0; // 2 3
11
12 windowCoord = ∆W + (x, y) ∗ ns;
13 M′ = minmap[N - 1];
14 levelNM1Coord = ((windowCoord mod SM) / n′s + (pW,x, pW,y)) mod SM′;
15
16 weightedThreshold = τ ∗ I[x + SI,x ∗ y];
17
18 if (M′[levelNM1Coord.x + SM′ ∗ levelNM1Coord.y] < weightedThreshold) {
19 indices[atomic_inc(index)] = (x, y, pW,x, pW,y);
20 }
21 }

Listing 5.7: Flat N level N − 1 kernel
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1 samples = new GPU_Buffer(n′);
2
3 sampleGenerationKernel = {
4 indexID = previousIndices[threadID];
5 (x, y) = (indexID.x, indexID.y);
6 (pW,x, pW,y) = (indexID.z, indexID.w);
7
8 relativeCoord = (x, y) / SI;
9 ∆p = (jitter) ? (rand(), rand()) : (0.5, 0.5);

10
11 samples[threadID] = relativeCoord + ((pW,x, pW,y) + ∆p) / SW;
12 }

Listing 5.8: Flat N sample generation kernel

1 index = new GPU_Integer(0);
2 level = N;
3 t = SI,x ∗ SI,y / (n2

s / 22N);
4 indices = startKernel.Call(t);
5
6 for (level = N - 1; level >= 0; level--) {
7 t′ = index ∗ 4;
8 index = 0;
9 previousIndices = indices;

10
11 indices = levelNM1Kernel.Call(t′);
12 }
13
14 samples = sampleGenerationKernel.Call(index);

Listing 5.9: Flat N GPU implementation
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5.7 Sorted

Up to this point, Level N is the best implementation on the GPU, which is hard to implement in
a tidy way. It can be observed that the hierarchical processing is the main cause for its disadvan-
tages, which is why the Sorted implementation uses another dither matrix representation. As
mentioned above, the maximum number of samples that can be obtained from the ns×ns dither
matrix elements corresponding to the importance map pixel pI can be estimated as nt = 2n2

s/σ
2

(Equation 5.5). This value has not been taken into account in any of the previous implementa-
tions because the dither values in the window and thus the minmap have no order. If, however,
the dither values of a whole ns×ns block were sorted, thresholding could stop after nt compar-
isons. Even further, an early termination after the first element greater than the threshold would
be possible.

To achieve this, the dither matrix has to be sorted block-wise, where each block has the
size ns × ns. For each block, a list of n2

s dither values in ascending order can be obtained.
Additionally, an element index ∈ [0, n2

s − 1] corresponding to the former position of the pixel in
the block is kept for each value. All of these block-wise sorted lists can be stored in one buffer,
in the following denoted by L, of length S2

M , which is the size of the original dither matrix. Now
that the dither values are sorted and only a maximum of nt values per block will be used, only the
first nt elements of each block need to be stored, adding up to ntSI,xSI,y elements for the whole
dither matrix. This is especially useful for the GPU implementation, as only a small portion of
the dither matrix needs to be uploaded to and stored in the video memory. Pseudo-code for the
generation of L is provided in Listing 5.10.

1 nt = 2 ∗ n2
s / σ2;

2 numBlocksPerDim = SM / ns;
3 numBlocks = numBlocksPerDim ∗ numBlocksPerDim;
4 L = new List();
5
6 for (block = 0; block < numBlocks; block++) {
7 blockCoord = (block mod numBlocksPerDim, block / numBlocksPerDim);
8 subMatrix = M(blockCoord ∗ ns, ns × ns);
9

10 list = new List();
11
12 for (index = 0; index < n2

s; index++) {
13 list.add((subMatrix[index], index));
14 }
15
16 list.sortAscendingByXComponent();
17
18 L.addRange(list);
19 }

Listing 5.10: Block-wise sorted list generation

Thresholding L is much easier than thresholding the minmap, because the values in L are

51



already sorted. The first task in the thresholding step is to select the right nt elements of L for
the current pixel pI of the importance map. In the setup (see Listing 5.1), the window offset ∆W

has been chosen such that it is a multiple of ns, which is required in this case. The start index of
the sought elements in L for pI can then be calculated easily. Once the start index is found, the
next nt elements are compared to the threshold. For each element which passes thresholding,
a sample is created. As soon as the dither value of one element is greater than the threshold,
thresholding can terminate, as the elements are sorted by their dither values and none of the
remaining elements can have a smaller value. Pseudo-code of the Sorted FRS implementation
for CPU and GPU is provided in Listings 5.11 and 5.12. Once again, all divisions and modulo
operations inside the kernel can be avoided by either precomputing the fraction or by replacing
them with bit-wise operations.
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1 samples = new List(n ∗ 1.1);
2
3 for (y = 0; y < SI,y; y++) {
4 for (x = 0; x < SI,x; x++) {
5 relativeCoord = (x, y) / SI;
6 windowCoord = ∆W + (x, y) ∗ ns;
7
8 weightedThreshold = τ ∗ I(x, y);
9

10 blockWindowSize = SW / ns;
11 blockMatrixSize = SM / ns;
12 blockOffset = ∆W / ns;
13
14 // block location inside the dither matrix
15 blockCoord = ((x, y) + blockOffset) mod blockMatrixSize;
16
17 // block location in the flattened list L
18 blockStartIndex = (blockCoord.y * blockMatrixSize + blockCoord.x) ∗ nt;
19
20 for (j = 0; j < nt; j++) {
21 blockElement = L[blockStartIndex + j]; // (ditherValue, subpixelIndex)
22
23 if (blockElement.x < weightedThreshold) {
24 pW,y = blockElement.y / ns; // integer truncation intended
25 pW,x = blockElement.y - pW,y ∗ ns;
26 ∆p = (jitter) ? (rand(), rand()) : (0.5, 0.5);
27
28 samples.add(relativeCoord + ((pW,x, pW,y) + ∆p) / SW);
29 }
30 else {
31 break;
32 }
33 }
34 }
35 }

Listing 5.11: Sorted CPU implementation
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1 samples = new GPU_Buffer(n ∗ 1.1);
2 index = new GPU_Integer(0);
3
4 kernel = {
5 y = threadID / SI,x; // integer truncation intended
6 x = threadID - y ∗ SI,x;
7 relativeCoord = (x, y) / SI;
8 windowCoord = ∆W + (x, y) ∗ ns;
9

10 weightedThreshold = τ ∗ I[x + SI,x ∗ y];
11
12 blockWindowSize = SW / ns;
13 blockMatrixSize = SM / ns;
14 blockOffset = ∆W / ns;
15
16 // block location inside the dither matrix
17 blockCoord = ((x, y) + blockOffset) mod blockMatrixSize;
18
19 // block location in the flattened list L
20 blockStartIndex = (blockCoord.y * blockMatrixSize + blockCoord.x) ∗ nt;
21
22 for (j = 0; j < nt; j++) {
23 blockElement = L[blockStartIndex + j]; // (ditherValue, subpixelIndex)
24
25 if (blockElement.x < weightedThreshold) {
26 pW,y = blockElement.y / ns; // integer truncation intended
27 pW,x = blockElement.y - pW,y ∗ ns;
28 ∆p = (jitter) ? (rand(), rand()) : (0.5, 0.5);
29
30 samples[atomic_inc(index)] = relativeCoord + ((pW,x, pW,y) + ∆p) / SW;
31 }
32 else {
33 return;
34 }
35 }
36 }
37
38 kernel.Call(SI,x ∗ SI,y);

Listing 5.12: Sorted GPU implementation
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CHAPTER 6
Analysis

6.1 Overview

In this chapter, different tests for the evaluation of quality and performance of sample distribu-
tions are presented together with comparisons and discussions of the results. The quality of FRS,
jittered FRS, regular, uniform random, Poisson disk and Halton sampling is assessed by the use
of the spatial measures discrepancy and density. This is complemented by a Fourier analysis
in the uniform and a differential domain analysis in the adaptive case, which helps to identify
harmful patterns that did not come out in the spatial analysis. The performance of the different
FRS implementations is measured for adaptive sampling and compared to the performance of
HSW for several importance maps depicted in Figure 6.1.

(a) Constant (b) Gaussian Blob (c) Linear Gradient (d) Environment

Figure 6.1: Importance maps used for adaptive sampling. (d) is based on the Grace Cathedral
light probe retrieved from [Deb98].
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6.2 Spatial Analysis of Sample Distributions

Discrepancy

For the spatial analysis of sample distributions in two dimensions, a tool has been developed to
calculate the average discrepancy D2(X) and worst-case discrepancy D∞(X) of sample sets,
which both depend on the local discrepancy dX . The local discrepancy itself depends on a
geometric shape A ∈ A, where A is a class of geometric shapes such as rectangles or circles. It
is defined for every point in the sample domain Ω = [0, 1)2, which makes an analytic solution
very difficult. Instead, Ω is discretized into a regular grid Ω̂ ⊂ Ω of size s × s, for which the
discrepancies can be calculated easily in finite time. Likewise, a finite subset A of geometric
shapes in Ω is used. Equations 2.14 can then be reformulated to

D2(X) =

√
1

s2

∑

A∈A
dX(A)2 and D∞(X) = max

A∈A
dX(A), (6.1)

where dX(A) =

∣∣∣∣
‖X ∩A‖

n
− λ2(A)

∣∣∣∣ . (6.2)

(a) Star (b) Rectangle (c) Quadrilateral

(d) Half-space (e) Circle

Figure 6.2: Different geometric shapes used for the geometry tests

The grid size s has been chosen very conservatively for each A such that no significant
changes in the resulting discrepancy could be observed and that the GPU resources are used
to capacity. For a finite number of shapes A ∈ A, dX(A) is calculated. In the following, the
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calculation of dX(A) for a single set of samples X and shape A is called a geometry test. As the
geometry tests vary for different classes of shapes A (see Figure 6.2), the implementations are
explained separately below. The local discrepancy of the grid points leads to the calculation of
one sample set’s D2(X) and D∞(X). To estimate D2 and D∞ of the sample distribution itself,
the results of m sample sets or runs are used:

D2 =
1

m

m−1∑

i=0

D2(Xi), D∞ = max
i=0...m−1

D∞(Xi). (6.3)

The resulting average and worst-case discrepancies of a sample distribution are now only de-
pendent on the number of samples n instead of a concrete set of samples. In the following, D2

and D∞ calculated from m = 1000 runs are plotted for different values of n from 22 to 213 to
visualize the discrepancies’ asymptotic behavior. Although a single value of D∞ has no mean-
ing for itself, the slope of D∞ gives an indication of how fast the integration error of the Monte
Carlo method diminishes with an increasing number of samples.

Star Discrepancy

The simplest and most important class of geometric shapes for the calculation of discrepancy is
the class AStar of rectangles with one corner in the origin (0, 0) and the opposite corner in the
point (x, y). For higher dimensions, an infinite number of boxes of varying size concentrates
at the origin, which is why the resulting discrepancy is often referred to as star discrepancy.
The individual rectangle A(x, y) ∈ AStar only depends on the coordinates of the corner far-
thest away from the origin, which is why the discrepancy calculation is trivial. For each grid
point (x, y) ∈ Ω̂, the area of A(x, y) is

λ2(A(x, y)) = xy (6.4)

and the number of samples in A is

‖X ∩A‖ =

n−1∑

i=0

n(i), n(i) =

{
1, xi,x < x, xi,y < y,

0 otherwise.
(6.5)

Since the locations of the samples are constant for all A(x, y), Equation 6.5 can be implemented
efficiently by using a summed-area table SATX of size s × s to store the discretized sample
locations. The local discrepancy then simplifies to

dX(A(x, y)) =

∣∣∣∣
SATX(x, y)

n
− xy

∣∣∣∣ . (6.6)

The results of the star discrepancy test are shown in Figure 6.3 in logarithmic scale. The grid
size was chosen as s = 3000, hence 30002 different geometry tests have been performed for
each n, sample distribution and sample set. Unsurprisingly, the samples drawn from the Halton
sequence have a very low star discrepancy, because this is what low-discrepancy sequences are
designed for. The generally high discrepancy of the uniform random distribution was likewise
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expected, because the samples tend to form clusters and holes randomly. More surprising is
the rather poor performance of the the Poisson disk distribution, considering it is the assumed
optimal distribution for sampling. Both FRS and the slightly better jittered FRS range well
between Poisson disk and Halton sampling.
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(b) Worst-case star discrepancy

Figure 6.3: Results of the star discrepancy tests

Rectangle Discrepancy

The star discrepancy can be generalized by testing all axis-aligned rectangles in Ω̂ instead
of only the ones with one corner in the origin. In contrast to AStar, the class of all axis-
aligned rectangles ARectangle is invariant to right angle rotations and does not overempha-
size sample points close to the origin. One rectangle A(E,F ) depends on the coordinates
of the corner E = (Ex, Ey) and its opposite corner F = (Fx, Fy). For each pair of grid
points (E,F ) ∈ Ω̂, its area is

λ2(A(E,F )) = (Fx − Ex)(Fy − Ey) (6.7)

and the number of samples in A is

‖X ∩A‖ =
n−1∑

i=0

n(i), n(i) =

{
1, Ex ≤ xi,x < Fx, Ey ≤ xi,y < Fy,

0 otherwise.
(6.8)

Similar to the star discrepancy test, the rectangle discrepancy test can be implemented efficiently
by using a summed-area table to store the sample locations:

‖X ∩A‖ = SATX(Fx, Fy)− SATX(Ex, Fy)− SATX(Fx, Ey) + SATX(Ex, Ey). (6.9)

From this follows the local discrepancy

dX(A(E,F )) =

∣∣∣∣
SATX(E,F )

n
− (Fx − Ex)(Fy − Ey)

∣∣∣∣ . (6.10)
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If grid point E defines the first corner of the rectangle, then every grid point F , Fx ≥ Ex,
Fy ≥ Ey, is a valid opposite corner, thus a geometry test is performed. This is implemented
by starting s2 concurrent threads corresponding to the grid points E and calculating the local
discrepancy for each valid F per thread, which leads to a total of (s− 1)2s2/4 geometry tests.

The results of the rectangle discrepancy tests for s = 500 are shown in Figure 6.4 in logarith-
mic scale. The asymptotic behavior of the rectangle discrepancies for an increasing n is similar
to the behavior of the star discrepancies, but the slope of the Halton samples’ discrepancy is less
steep. Still, Halton samples can be considered the best choice for approximating axis-aligned
structures by a finite number of samples.
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Figure 6.4: Results of the rectangle discrepancy tests

Quadrilateral Discrepancy

An even more general class of geometric shapes is the class AQuadrilateral of all convex quadri-
laterals. AQuadrilateral is a rotationally invariant superset of ARectangle in Ω that additionally
includes all non-rectangular convex quadrilaterals. Its discrepancy test gives a good indication
of how good arbitrarily shaped and oriented objects can be approximated by a given point set
and is a more realistic estimate for the quality of samples used for rendering, for example. Each
quadrilateral A(E,F,G,H) is determined by the coordinates of its four corners E = (Ex, Ey),
F = (Fx, Fy), G = (Gx, Gy) and H = (Hx, Hy). Its area can be calculated easily as the sum
of two triangles spanned by the corners,

A4EFG =
1

2
|(Fx − Ex)(Gy − Ey)− (Gx − Ex)(Fy − Ey)|, (6.11)

A4EGH =
1

2
|(Gx − Ex)(Hy − Ey)− (Hx − Ex)(Gy − Ey)|, (6.12)

λ2(A(E,F,G,H)) = A4EFG +A4EGH . (6.13)
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Likewise, the decision if a sample xi is inside of A(E,F,G,H) can be made by calculating the
areas of four triangles sharing xi as a common point and comparing their sum to the area of the
quadrilateral:

n(i) =

{
1, A4EFxi +A4FGxi +A4GHxi +A4HExi = A4EFG +A4EGH ,

0 otherwise,
(6.14)

‖X ∩A‖ =

n−1∑

i=0

n(i). (6.15)

To perform the quadrilateral discrepancy test in feasible time, only a random subset of quadri-
laterals is tested. However, during each of the m different test runs, the same subset is used for
all different sample distributions to ensure equal test conditions. First, the four corner coordi-
nates of a quadrilateral are placed randomly in Ω and a counterclockwise order E,F,G,H is
assumed. The diagonals EG and FH are then intersected to check if the quadrilateral is con-
cave, in which case it is discarded and the next set of random coordinates is tested. Otherwise,
the point-in-quadrilateral test according to Equation 6.14 is performed.

The results of the quadrilateral discrepancy test for s = 30002 quadrilaterals per run are
shown in Figure 6.5 in logarithmic scale. Again, the average discrepancies of FRS and jittered
FRS are much closer to the results of Halton sampling than of Poisson disk sampling. For the
class AQuadrilateral, FRS and jittered FRS have even lower average and worst-case discrepan-
cies than Halton sampling, indicating a high suitability for spatially uniform sampling in general.
However, it is apparent that the discrepancy does not account for the regularity of a sample distri-
bution and the possibly resulting artifacts. This is why the suitability of any of the distributions
for blue-noise sampling in particular cannot be inferred from these results alone.
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Figure 6.5: Results of the quadrilateral discrepancy tests
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Halfspace Discrepancy

The most general rotationally invariant class of geometric shapes used for the discrepancy is the
class of halfspaces AHalfspace of Ω partitioned by an arbitrary edge EF , where E = (Ex, Ey)
and F = (Fx, Fy) denote two points on the edge. There are six cases of partitions by edges that
need to be considered in an implementation, as illustrated in Figure 6.6.

(a) (b) (c)

(d) (e) (f)

Figure 6.6: Space partitions by edges that need to be distinguished. Edges intersecting (a) the
top and left border of Ω̂, (b) the top and bottom border, (c) the top and right border, (d) the left
and bottom border, (e) the left and right border and (f) the bottom and right border.

The local discrepancy of a halfspace only depends on the edge, so discretizing the borders
of Ω̂ and testing each possible connection of border points according to the six cases is sufficient.
The shape of the halfspace is the union of a triangle and a rectangle, its area A(E,F ) depends
on the type of partition and can be calculated by either the sum of the individual areas or by its
complement’s area:

λ2(A(E,F )) =





A4, case (a), (d) or (f),
min(Ex, Fx) +A4, case (b),
1−A4, case (c),
min(Ey, Fy) +A4, case (e),

A4 =
1

2
|(Fx−Ex)(Fy −Ey)|.

(6.16)
The number of samples inA is determined by the position of each sample xi relative to the edge,
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‖X ∩A‖ =

n−1∑

i=0

n(i), n(i) =

{
1, (Ex − Fx)(xi,y − Fy)− (Ey − Fy)(xi,x − Fx) > 0,

0 otherwise.
(6.17)

As every unique pair of border points is considered for a space partition, a total of 6s2

different geometry tests have to be performed. The results of the halfspace discrepancy tests for
s = 3000 per run are shown in Figure 6.7 in logarithmic scale. They match the results of Dobkin
et al. [DEM96] to the effect that regular sampling has a significantly lower average halfspace
discrepancy than random, Poisson disk or low-discrepancy sample distributions. Again, the
average discrepancies of FRS and jittered FRS closely match the results of Halton sampling.
Their worst-case discrepancies are even lower than the one of Halton sampling. In contrast to
the previous results, jittered FRS has a slightly higher worst-case discrepancy than FRS.
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Figure 6.7: Results of the halfspace discrepancy tests

Circle Discrepancy

So far, only polygonal shapes have been considered for the discrepancy tests. Therefore, an
obvious choice for anotherA is a class of shapes without straight line segments. When proposing
the star discrepancy as a quality measure for sample sets, Shirley [Shi91] already considered that
the class of circles in Ω, ACircle, could be an equivalent or even better measure. Its calculation
is very easy and is – in contrast to the star and rectangle discrepancies – not prone to regular
structures in the sample sets. Similar to the quadrilateral discrepancy, only a random subset of all
circles in Ω is considered in the implementation. For each geometry test, three random numbers
r1, r2, r3 ∈ [0, 1) are generated, of which two are used to define the random center E = (r1, r2)
of the circle A(E, rc). As the circle has to fit in Ω, its largest possible radius is calculated from
the minimum distance of the center to the borders of Ω,

rmax = min(r1, 1.0− r1, r2, 1.0− r2). (6.18)
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The actual radius of the circle is a random part of this distance, rc = r3rmax. The computations
of the area and the number of samples in A(E, rc) are trivial:

λ2(A(E, rc)) = πr2
c , (6.19)

‖X ∩A‖ =
n−1∑

i=0

n(i), n(i) =

{
1, ‖xi − E‖ < rc,

0 otherwise.
(6.20)

The results of the circle discrepancy tests for s = 30002 circles per run are shown in Fig-
ure 6.8 in logarithmic scale. As with the other generalized discrepancies, the regular sample
distribution has a remarkably low average and worst-case discrepancy. It is followed by FRS
and jittered FRS, which both have discrepancies slightly lower than Halton sampling and signif-
icantly lower than Poisson disk sampling.
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Figure 6.8: Results of the circle discrepancy tests

Summary

Discrepancy is an important measure for the quality of sample sets because it is directly linked to
the sampling error. The more evenly spread the samples are in the sample domain, the better can
an arbitrary integral be approximated by them. It is therefore generally desirable to minimize the
discrepancy of a sample distribution to minimize the sampling error. However, the results above
show that the discrepancy as a measure for spatial uniformity favors regular configurations,
which cover Ω very evenly by design. This can be seen best for ACircle. The geometric classes
AStar and ARectangle do not show this behavior, which can be explained by the common axis-
parallel alignment of the regular grid used as input. As the tested shapes are also axis-parallel,
a slight change of the rectangle’s area can have a large effect on the number of samples inside
the rectangle. If an arbitrarily rotated regular grid or lattice had been used instead, the samples
would have very low star and rectangle discrepancies, as shown by Matoušek [Mat10].
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The problem with regular sampling is that it produces obvious artifacts, as opposed to
stochastic sampling, which transforms the sampling error into uncorrelated noise. Although
regular sampling leads to a low sampling error, the type of the error is more important than its
magnitude. The best sample distribution is therefore not the one with the lowest discrepancy, but
the one with the lowest discrepancy that does not lead to visible sampling artifacts. The latter is
usually evaluated by a spectral analysis of the sample distribution, as done in Section 6.3. Thus,
a conclusive statement regarding the sample distributions’ quality cannot be made at this point.
However, some general remarks can be made.

First of all, Halton sampling representing the low-discrepancy sequences has a low discrep-
ancy, but only excels in the cases of AStar and ARectangle, for which it has been designed.
If more general shapes are approximated, FRS and regular sampling are valid alternatives. It
generally seems that the higher generalizations of geometric shapes, namely AQuadrilateral,
AHalfspace and ACircle, allow a more realistic estimation of a sample distribution’s spatial uni-
formity, since the axis-parallel shapes can interfere with regular structures in the sample set.

Shirley [Shi91] already pointed out the surprisingly high star and rectangle discrepancy of
Poisson disk sampling, which could be reproduced for more general cases as well. Although it
has a high spatial uniformity, the asymptotic behavior of its discrepancy is very similar to the one
of uniform random sampling. The samples have been created by dart throwing, so the sample
sets are not necessarily maximal Poisson disk sets, which would mean that no further points can
be added. This might lead to a higher discrepancy. Generally, it can be observed that sample
distributions with a random component always have a higher discrepancy than deterministic
ones.

The results of the FRS variants are much closer to the results of Halton sampling than of
Poisson disk sampling. This is surprising because the visual and spectral (see Section 6.3) sim-
ilarity of FRS to Poisson disk sample sets is much higher than to Halton sample sets. It can be
assumed that this is due to the higher regularity of FRS samples originating in the matrix thresh-
olding and the overall deterministic generation. When not using axis-parallel shapes, adding a
random component to the samples by jittering seems to impair the discrepancy. For the more
general shapes, the worst-case discrepancies of FRS and jittered FRS are even lower than the
discrepancy of Halton sampling, indicating a high suitability for spatially uniform sampling.

Density

Because of its simplicity, the density ρX of sample set X is an increasingly popular measure
for the quality of a sample distribution. Lagae and Dutré [LD08] proposed the calculation of
the density based on the minimum Euclidean distance between any two samples in X , which
only returns meaningful results if X is distributed according to a uniform importance function.
By using the minimum transformed differential dmin after the differential domain transform as
proposed by Wei and Wang [WW11], the density can also be calculated for non-uniform sample
distributions:

ρX :=
dmin
dmax

, dmax =

√
2√
3n
. (6.21)
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As already explained in Section 2.2, one problem with ρX is the interpretation of values regard-
ing blue-noise sampling. It is favorable to have a sample distribution with samples far away
from each other to cover the sample domain with as few samples as possible, but without ex-
hibiting any regularity. A density ρX ∈ [0.65, 0.85] is generally considered a good density for
blue-noise sampling, where a lower value indicates randomness and a higher value indicates
regularity. However, there exist algorithms [SHD11] to generate blue-noise sample sets with
ρX ≈ 0.93, which is very close to the density of a regular grid. At least for high values, the den-
sity seems to be ambiguous. This is why a meaningful conclusion regarding the different point
sets’ quality based on the density alone cannot be made. Still, the behavior of the density over
a set of different importance functions can be used to investigate the constancy of a distribution
algorithm.

The density values for the different sample distributions in Table 6.1 have been calculated
using Equation 6.21 and averaged over 10 different sample sets, n ≈ 1024, per distribution and
importance map. By averaging over m sample sets, the average density

ρ :=
1

m

m−1∑

i=0

ρXi . (6.22)

of a sample distribution can be approximated. The reference sample distribution with a target
density ρ = 0.7 is dart throwing in the uniform case and relaxation dart throwing in the non-
uniform case. For the non-uniform case, the uniform random, regular, Halton and Poisson disk
sample sets have been warped using HSW. It can be seen that independent from the input dis-
tribution, HSW is not able to preserve the density of the samples when warping non-uniformly.
The density of FRS is very similar for all importance maps and ranges in the lower end of the
interval suggested by Lagae and Dutré. The density of jittered FRS tends to be slightly lower
than the density of FRS, which can be explained by the small amount of randomness added by
jittering.

Uniform Constant Gaussian Blob Linear Gradient Environment
Reference 0.700 0.700 0.700 0.700 0.700
FRS 0.650 0.681 0.643 0.662 0.644
Jittered FRS 0.621 0.668 0.634 0.617 0.661
Poisson Disk 0.700 0.700 0.261 0.370 0.142
Random 0.014 0.003 0.004 0.001 0.008
Regular 0.930 0.930 0.318 0.439 0.357
Halton 0.170 0.066 0.149 0.138 0.041

Table 6.1: Sample distribution densities ρ for different importance maps, averaged over 10 sam-
ple sets each
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6.3 Spectral Analysis of Sample Distributions

Fourier Analysis

For uniform sampling, the Fourier analysis is the most important tool for the evaluation of a
sample distribution’s quality. Regularities and hidden structures are apparent in the power spec-
trum of a sample distribution. The ideal power spectrum for alias-free sampling is assumed to be
the blue-noise spectrum as introduced in Section 2.2. As the dart-throwing sample distribution
has such a spectrum, it is used as a reference for the quality of uniform sample sets. Thus, by
comparing the estimated power spectrum of any sample distribution to the power spectrum of
dart throwing, a statement about its blue-noise properties can be made. Additionally, the radial
mean and anisotropy of the spectra are compared. As all power spectra in this thesis have been
estimated with 10 different sample sets, the anisotropy of an artifact-free sample distribution
should be −10 dB. The results of uniform random and regular sampling give an impression of
how randomness and regularity manifest in the power spectrum of a sample distribution. Halton
sampling is included as a representative of sampling with low-discrepancy sequences, which is
also used as input for HSW. It is obvious that the distribution quality of a warped sample set
largely depends on the quality of the input sample set. Therefore, the sampling method cannot
perform better in the adaptive than in the uniform case.

The estimated power spectra of FRS and jittered FRS (σ = 8) are shown in Figure 6.9
together with the results of the other sample distributions for n = 1024. It is apparent that the
power spectra of both FRS variants have distinct blue-noise characteristics, which indicates a
high suitability for alias-free sampling. The spectra show the typical annuli of low and high
energy and are very similar to the reference. The transition between the low-energy annulus
around the center to the first high-energy annulus is slightly sharper in the case of FRS and
jittered FRS, the anisotropy is lower. The most interesting observation is that both variants
show a higher randomness than dart throwing, despite the inherent regularity of the thresholding
process. This can be seen best when comparing the radial means of FRS and dart throwing.
While the first peak is almost identical in both plots, the second and third peak corresponding
to the second and third high-energy annuli of the power spectra are significantly weaker in the
case of FRS. In its power spectrum, the third annulus is barely distinguishable from uncorrelated
noise. This observation coincides with the density ρ of FRS (see Table 6.1), which is slightly
lower than the density of dart throwing and also indicates a slightly more random distribution.

A second observation made in the spatial analysis is the similar behavior of the discrepancy
of FRS and Halton sampling. This is surprising, as the associated power spectra have no simi-
larity at all. Halton sampling is highly anisotropic and exhibits regular patterns which are very
clearly visible in both the power spectrum and the sample set itself. However, it has to be noted
that Halton sampling is not intended for blue-noise sampling in the first place. Therefore, the
qualitative comparison of dart-throwing and Halton samples as possible input samples to HSW
is only made to emphasize this fact. Regular and uniform random sampling, two further choices
for fast sampling, are only included for completeness’ sake, as they are well known to be poor
choices for blue-noise sampling.

A last important observation is that there is no significant difference between the results of
FRS and jittered FRS. For each of the 10 sample sets, the same random window offsets have been
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Figure 6.9: Estimated power spectra with radial mean (red) and anisotropy (blue) of different
sample distributions for uniform sampling
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used for both variants to account for the subpixel jittering only, which is why their exemplary
sample sets look almost the same. The Fourier analysis suggests that both algorithms produce
samples of high quality and are equally well suited for blue-noise sampling.

Differential Domain Analysis

In order to evaluate the quality of a sample distribution for adaptive sampling, a differential
domain analysis is performed. As with the Fourier analysis, the results of this method can be
shown in a spectral plot. Although the measured magnitude is not necessarily power, the term
power spectrum is used for the spectral plot in analogy to the Fourier analysis. The quality
of a sample distribution is assessed by comparing its power spectrum to the power spectrum
of relaxation dart throwing. Distinctive patterns are identified and interpreted according to the
reference spectra given by Wei and Wang [WW11]. The optimal spectrum is isotropic, has a
low-energy annulus around the center followed by a narrow high-energy annulus corresponding
to the minimum differential of any two samples and then transitions into noise. As the distance
varies according to the importance map and is the lowest at the most important region, the radii
of the annuli also vary between different importance maps. Their behavior, however, should be
the same.

The estimated power spectra of FRS and jittered FRS for different importance maps are
shown in Figure 6.10 together with the results of HSW with different input sample distribu-
tions. Since uniform sampling is just a special case of adaptive sampling, the results of uniform
sampling are identical to those of adaptive sampling with a constant importance map and are
omitted here. All power spectra have been estimated with 10 different sets of 1024 samples
each. For FRS and jittered FRS, the sparsity σ = 8 has been chosen. The DDA has been per-
formed with the tool provided by Wei [Wei11], using the parameters used in the paper by Wei
and Wang [WW11] for an easy comparison. Specifically, the computation kernel κ is a Gaussian
kernel, the neighborhood size for the range selection is ε = 12.

The DDA results extend the results of the Fourier analysis to the general case of adaptive
sampling. The power spectra of relaxation dart throwing and FRS are very similar for all im-
portance maps. This again suggests the use of FRS for blue-noise sampling as a fast alternative
to relaxation dart throwing. Also, it shows that FRS is suited very well for adaptive sampling,
as its good spectral properties are preserved locally when adapting to a non-uniform importance
function. The power spectrum of FRS also clearly shows the low-energy annulus around the
center followed by a high-energy annulus, which is slightly fringed outwardly as compared to
the sharp transition in the reference spectrum. This can best be seen when comparing its radial
mean for uniform sampling with the reference, as shown in Figure 6.11. Once again, this in-
dicates a higher variation of the differentials and thus more randomness of FRS as compared
to Poisson disk sampling. A second difference to the reference spectrum is the clearly visible
second peak in the radial mean corresponding to the double of the minimum differential. In the
power spectrum, this shows as a second annulus of high energy around the first one.

While FRS seems to be generally well suited for uniform and adaptive sampling, HSW
struggles to preserve the quality of an input sample distribution when warping. It is obvious
that uniform random and regular sampling are not useful for blue-noise sampling. The interest-
ing observation is that the power spectra look different for each importance map, although the
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Figure 6.10: Estimated DDA power spectra of different sample distributions for adaptive sam-
pling. The reference sample distribution is relaxation dart throwing. Random, regular, Halton
and Poisson disk indicate the distribution of input samples for HSW.
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Figure 6.11: Radial means of relaxation dart throwing (blue) and FRS (red)

differential domain analysis compensates for the importance map itself. Thus, the differences
in the power spectra stem from the sample warping itself, as already indicated by the varying
densities in Section 6.2. When looking at the results of HSW with Halton samples, the inability
to preserve the distribution properties may seem even desirable. At least the power spectra for
the Gaussian blob and the environment importance maps are much closer to the reference than
in the uniform case, although regular structures are clearly visible. With the results of Poisson
disk input samples, however, it becomes obvious that this is a major shortcoming of HSW. Even
with blue-noise input samples, adaptive blue-noise sampling with HSW is impossible. The rea-
son for this is that warping only works well when the importance map is isotropic. Otherwise,
the isotropic sample set is distorted anisotropically. In Figure 6.12, this is emphasized with an
artificial, highly anisotropic importance function. Although the input sample distribution has
optimal blue-noise properties, the sample distribution after warping is highly anisotropic. FRS,
in contrast, is able to achieve a result close to the reference.

Summary

The spectral analysis has revealed that FRS sample distributions have blue-noise properties and
are well suited for alias-free sampling, confirming the results of the spatial analysis. Their power
spectra indicate a slightly higher noise than in Poisson disk distributions, but no isolated peaks
of high energy or any other anisotropic artifacts could be observed. Although all samples are
obtained from a matrix and thus have discrete positions, this does not impair the distribution
quality as long as the sparsity is set to a sufficiently large value, i.e., σ ≥ 8. In this case, it is also
unnecessary to jitter the obtained samples. FRS is able to preserve the distribution quality even
in adaptive distributions, which makes it very suitable for sampling with arbitrary importance
functions. With HSW, in contrast, the quality of the warped sample distributions is impaired by
anisotropic distortions even if HSW is used with Poisson disk samples as input.
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Figure 6.12: Adaptive sampling with a highly anisotropic importance map
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6.4 Performance Analysis

All used sampling algorithms have been implemented in the same application written for the
.NET Framework 4.0, using OpenCL 1.2 for the GPU implementations. The benchmarks pre-
sented in this section have been obtained by counting the CPU ticks between the start and the
end of a sampling task and dividing them by the CPU frequency. For the GPU implementations,
the elapsed CPU ticks from the enqueuing of the kernel (clEnqueueNDRangeKernel) to the ar-
rival of the finish event (clWaitForEvents) have been counted. The benchmarks should not be
considered accurate measurements of time spans, but numeric values related to time spans that
are only meaningful when compared to each other. The tests have been performed in a 64-bit
environment on a system with an Intel Q6600 2.4 GHz quad-core processor and an NVIDIA
GeForce GTX 680 video card. The CPU sampling implementations work with double precision,
the GPU implementations with single precision.

In the following, the benchmarks of all FRS implementations are compared to HSW with
Halton points, the state of the art of adaptive sampling in real time, for the four different impor-
tance maps depicted in Figure 6.1.

Single-Threaded CPU Implementations

Samples Naive Level 1 Stack Sorted HSW
25 0.062 0.016 0.008 0.003 0.000
26 0.060 0.016 0.008 0.003 0.000
27 0.059 0.016 0.008 0.003 0.000
28 0.060 0.016 0.008 0.003 0.001
29 0.060 0.017 0.009 0.003 0.003
210 0.060 0.017 0.011 0.003 0.006
211 0.060 0.018 0.014 0.003 0.012
212 0.061 0.020 0.021 0.003 0.025
213 0.061 0.025 0.033 0.004 0.050
214 0.062 0.032 0.053 0.005 0.100
215 0.238 0.093 0.132 0.006 0.201
216 0.243 0.123 0.213 0.008 0.393
217 0.946 0.365 0.530 0.011 0.793
218 0.966 0.491 0.862 0.018 1.589
219 3.772 1.449 2.119 0.033 3.149
220 3.850 1.920 3.440 0.062 6.304
221 15.078 5.694 8.417 0.119 12.555
222 15.317 7.657 13.820 0.231 25.044
223 60.148 22.944 33.950 0.452 50.233
224 61.674 30.965 55.637 0.883 100.434

Table 6.2: Average time consumption of the CPU implementations in seconds
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Figure 6.13: Time consumption of the FRS CPU implementations Naive, Sorted, Level 1 and
Stack compared to HSW for different importance maps
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The benchmarks of the CPU implementations on the test system have been obtained by
averaging the elapsed CPU cycles of 100 runs and are shown in Figure 6.13 in logarithmic scale.
The plots (e) and (f) have been created by averaging the results of the four importance maps. The
average values are also presented in Table 6.2. An important observation is that the results for
all four importance maps are almost identical, meaning that the performance of both HSW and
FRS is independent from the underlying importance function. Up until n = 29 samples, HSW
is the best among the tested algorithms. Its behavior is very predictable, as its computational
effort grows linearly with the number of samples. The FRS implementations, in contrast, show a
transition from constant to linear growth and – excluding Sorted – also a distinctive oscillating
behavior.

The runtime of FRS mainly depends on the number of subpixels rather than the number of
samples itself, which in turn is directly related to the window size SW and to the sparsity σ.
In order to prevent sampling from being too regular, σ has been set to the realistic value of 8
for the performance tests. For the importance maps of size SI = 128 × 128, this results in a
minimum window size SW = 1024. Following Equation 4.6, a maximum of n = 214 samples
can be generated for this window size. This is why the computational effort of the FRS imple-
mentations is almost constant up to this number of samples. For higher n, a larger window has
to be used, which explains the stair-stepping in the results of the Naive, Level 1 and Stack

implementations.
The Level 1 and Stack implementations perform slightly better than Naive because they

rely on the minmap. Its hierarchical evaluation slightly reduces the number of necessary compar-
isons for thresholding. However, the use of a stack prevents an efficient use of caches and trades
the relatively cheap thresholding operations for more expensive write accesses to the memory,
which is why the overall performance of Stack is worse than the one of Level 1. The most ef-
ficient FRS implementation on the CPU is Sorted, which is also significantly faster than HSW
for n > 29. As can be seen in Table 6.2, Sorted FRS was able to create over 16 million samples
on the CPU in less than one percent of the time it took HSW.

GPU Implementations

The benchmarks of the GPU implementations on the test system have been obtained by aver-
aging the elapsed CPU cycles of 1000 runs and are shown in Figure 6.14 in logarithmic scale.
Again, an average runtime is provided, the numeric values are shown in Table 6.3. Additionally
to the FRS implementations tested in the CPU case, the Flat 1 implementation has been tested
on the GPU. However, the results show a rather poor performance of this implementation. Due
to the large number of threads created per iteration, sampling was limited to n ≤ 222 on the test
system. Also, it has a large overhead due to the many OpenCL kernel calls. To a moderate extent,
the overhead of kernel calls also influences the other implementations, which is much larger than
the actual computation time for smaller n. However, as every implementation except Flat 1

calls two kernels – sampling and jittering for FRS, Halton sample generation and warping for
HSW –, this overhead is assumed to be approximately the same for the implementations.

In contrast to the CPU implementation, the computational effort of HSW now also seems to
be constant for smaller values of n and then slowly transitions to the linear growth as observed
above. A possible explanation for this is the low number of threads created in the case of small n.
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Figure 6.14: Time consumption of the FRS GPU implementations Naive, Sorted, Level 1,
Stack and Flat 1 compared to HSW for different importance maps

75



Samples Naive Level 1 Flat 1 Stack Sorted HSW
25 0.62 0.61 1.79 0.71 0.09 0.18
26 0.62 0.61 1.82 0.72 0.09 0.19
27 0.63 0.61 1.82 0.72 0.09 0.19
28 0.63 0.62 1.81 0.74 0.09 0.19
29 0.63 0.62 1.84 0.75 0.09 0.19
210 0.63 0.62 1.99 0.76 0.09 0.19
211 0.63 0.62 1.99 0.80 0.09 0.20
212 0.64 0.63 2.00 0.83 0.10 0.21
213 0.64 0.64 1.96 0.89 0.10 0.24
214 0.66 0.69 1.78 1.00 0.13 0.31
215 0.87 0.93 1.89 1.31 0.15 0.47
216 0.95 0.99 2.01 1.63 0.20 0.78
217 2.26 2.08 3.39 3.57 0.28 1.64
218 2.31 2.61 3.59 5.12 0.43 2.92
219 10.15 7.12 9.10 14.27 0.88 5.11
220 10.64 9.45 11.34 22.01 1.61 9.72
221 21.58 20.57 24.97 56.84 3.06 18.83
222 27.78 26.98 32.59 89.56 5.85 37.14
223 63.34 71.62 206.06 11.27 73.49
224 78.88 88.31 319.48 21.31 145.53

Table 6.3: Average time consumption of the GPU implementations in milliseconds

For each sample to be warped, an own thread is created and enqueued. If there are less threads
than the GPU can execute concurrently, warping takes just as long as the slowest individual
thread. Once the number of samples exceeds this limit, threads have to wait for execution and
the overall execution time of warping increases with n.

Although this behavior also occurs in the case of the FRS implementations, it is not clearly
visible because the sparsity σ = 8 leads to a constant number of subpixels for small n anyways.
This is why the results of the FRS implementations for both CPU and GPU look very similar.
The major difference between them is that neither Stack nor Level 1 are significantly faster
than the Naive implementation on the GPU. The reason for this is the erratic read access to
the global memory for hierarchical thresholding, which inhibits efficient caching. The Stack

implementation additionally performs a lot of expensive write accesses, which is why it is even
slower than the Naive implementation. The fastest among all tested implementations is Sorted,
which is also significantly faster than HSW for all tested n. It is also the GPU implementation of
FRS that needs the least memory, as only a small portion of the dither matrix is needed instead
of the whole matrix for Naive or even the minmap hierarchy for Level 1, Flat 1 and Stack.

Figure 6.15 illustrates the proportional time consumption of the different tasks of Sorted
with σ = 4 and HSW with Halton points. The calculations of the Haar wavelet basis (HSW)
and the mean and maximum value (FRS) of the importance map are included as well, although
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Figure 6.15: Proportional time consumption of the different tasks for adaptively sampling the
Gaussian blob importance map
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they have to be performed only once if the importance map changes. The results show that for
small n, these calculations are the most expensive tasks of sampling with both methods, although
done on the GPU. It can also be seen that subpixel jittering for FRS takes more than a third of
the overall computation time. For an improvement of the sampling quality it is therefore faster
to threshold with a higher sparsity (σ ≥ 8) than to apply subpixel jittering.

Summary

The results show that the best way to implement FRS for both CPU and GPU is with the Sorted
approach. It is significantly faster than the other implementations and requires the least memory.
Due to the ordered threshold values and the possible early exit from a thread, its runtime is more
dependent on the actual number of samples rather than the number of subpixels. Therefore,
its performance is stable even if the window size has to be increased and does not exhibit the
stair-stepping behavior of the Naive implementation.

On the CPU, all FRS implementations are outperformed by HSW for small sample sets in
terms of runtime, but are competitive for larger values of n. On the GPU, in contrast, Sorted
performs significantly better than HSW for every n and is applicable in real time. However,
only Halton samples have been considered as input to HSW in the performance tests, which
do not allow blue-noise sampling at all. Using Poisson disk samples as input as done for the
spectral analysis is not feasible in real time. Although generally slower than Sorted, the Naive
implementation of FRS is also suitable for adaptive sampling in real time and comparable to
HSW for larger sample sets in terms of runtime. It is very easy to implement and also the
implementation that can most easily be extended to higher dimensions. Level 1, Flat 1 and
Stack, however, are inferior to Sorted in all aspects, at least in the two-dimensional case.
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CHAPTER 7
Conclusion

Forced Random Sampling is a versatile algorithm for fast k-dimensional adaptive progressive
sampling by thresholding a precomputed dither matrix. Sample distributions obtained from
it have been shown to have spectral properties close to the optimal blue-noise spectrum of dart
throwing and relaxation dart throwing, independent from the underlying importance function. In
contrast to the state-of-the-art algorithm for real-time adaptive sampling, Hierarchical Sample
Warping, FRS is also suited for anisotropic importance functions. The spatial analysis of FRS
further revealed that its discrepancy is similar to the discrepancy of the Halton low-discrepancy
sequence, which means that FRS is well suited for general sampling applications and not limited
to blue-noise sampling.

The implementation of FRS is very simple and does not require any complex calculations
at runtime. The one-time generation of the Forced Random Dithering matrix is computationally
expensive, but conceptually very simple as well. With little effort, the matrix can be restruc-
tured to sort the matrix elements block-wise, in which case the Sorted implementation can
be used. This implementation has been shown to be the fastest implementation of FRS in the
two-dimensional case. On the CPU, FRS scales much better than HSW and is therefore a valid
alternative for generating a larger number of samples. As it is highly parallelizable, it is ide-
ally suited for sampling on the GPU, in which case it outperforms HSW and makes real-time
blue-noise sampling possible. For the few comprehensible parameters needed for the imple-
mentation, realistic values have been proposed in order to maximize the sampling performance
without impairing the sample distribution quality. It has further been shown that jittering the
obtained samples does not significantly influence the quality.

In summary, this answers the research question whether Forced Random Sampling is com-
petitive to the state-of-the-art adaptive sampling algorithm in terms of quality and runtime per-
formance. Not only is FRS capable of adaptive blue-noise sampling at a very high quality, which
is not possible with Hierarchical Sample Warping, but it does so at an overall better performance.
For real-time sampling, FRS is a serious alternative to existing algorithms. For offline sampling,
FRS is a reasonable choice as long as runtime performance matters, but it cannot compete with
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the distribution quality of unbiased relaxation dart throwing and other Poisson disk implemen-
tations.

The analysis of sample distribution quality indicates that FRS differs from the assumed
optimum of blue-noise sampling in being too random. A question that remains is whether this
randomness can be reduced with a modified threshold matrix creation. Apart from trivial choices
such as a completely random or regular dither matrix, it has not been investigated how changes
to the force-field function influence the distribution properties of the obtained samples. Matrices
with properties similar to those of Forced Random Dithering might be producible with related
halftoning techniques such as electrostatic halftoning [SGBW10] in the discrete case.

A second problem that has not been addressed in this thesis is sampling with FRS from
an arbitrary surface. Like other real-time sampling algorithms, FRS with the current threshold
matrix creation only allows sample distributions on a plane without distortions. A generalization
to distribute samples correctly on arbitrary manifold surfaces such as spheres or triangle meshes
would be possible, but would require the force-field function to account for the geodesic distance
between inserted dither values.

Finally, it has not been investigated how FRS performs in higher dimensions. While it can
be assumed that the quality of sample distributions will be the same as in the two-dimensional
case, no definite statement can be made on how the different possible implementations perform
in terms of runtime. The Naive implementation can be extended to higher dimensions very
easily, but the runtime complexity grows exponentially with the dimension. An extension of
Stack, Level N and Flat N to higher dimensions appears to be unfeasible because of the
code complexity. It can be assumed that Sorted scales rather well with higher dimensions, as
thresholding itself is independent from the number of dimensions due to the reduction of the
sorted values to a one-dimensional list. A more substantial challenge than the modification of
the sampling step is the generation of the a higher-dimensional dither matrix itself. While the
algorithm explained in Chapter 3 can generate two-dimensional matrices of practical size in a
few hours, three-dimensional matrices would likely take days or weeks to generate.
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