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Abstract

Popular web search engines, such as Google, rely on traditional search result ranking meth-
ods such as the vector space model or probabilistic models in combination with the famous
PageRank algorithm. In the last couple of years personal document relevance got considered
when ranking search results, as it improves the result quality significantly.
This thesis extends related work in the area of result personalization, by providing the concept
and implementation of a keyword based personal search engine. Compared to other work, the
personal relevance is measured by the user’s activity with keywords of one document, such as
clicking or hovering. A ranking algorithm is introduced, which considers keyword and docu-
ment frequencies in the vector space model, combined with the interaction of those keywords to
compute the document score.
The concepts are implemented as an HTML5 browser extension for Google Chrome, which
actively measures the user’s interaction with the visited content, without interfering with the
normal surfing behavior. Querying for visited content retrieves stored documents and orders
them according to their personal relevance.
An evaluation is conducted to test whether the behavioral ranking factors are significant enough
for personal relevance. It is shown, that the interaction of the user with the document’s content
correlates with its relevance. Furthermore, a benchmark of WebSQL and IndexedDB as HTML5
data storage structures for insert, update and search operations reveals that the latter technology
outperforms the former in almost every configuration.
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Kurzfassung

Populäre Web Suchmaschinen, wie Google, basieren auf traditionelle Rankingmethoden der
Suchresultate, wie z.B. das Vektorraum Modell oder probabilistische Modelle in Kombinati-
on mit dem berühmten PageRank Algorithmus. In den letzten Jahren wurde die persönliche
Relevanz von einem Dokument auch für Rangbestimmung hinzugezogen, da dieser Faktor die
Qualität der Ergebnisse signifikant verbessert.
Diese Diplomarbeit baut auf den Konzepten, der im Zusammenhang mit Resultatpersonalisie-
rung stehender wissenschaftlicher Arbeiten auf und erweitert diese um das Design und Imple-
mentierung einer Keyword-basierenden persönlichen Suchmaschine. Im Vergleich zu anderen
Arbeiten wird die persönliche Relevanz durch die Interaktion des Benutzer mit den Keywords
eines Dokuments bestimmt, wie z.B. durch Klicken oder Bewegungen der Maus über das Key-
word. Ein Rankingalgorithmus wird vorgestellt, der neben den traditionellen Keyword- und Do-
kumenthäufigkeiten im Vektorraum Modell auch die Interaktionen mit Keywords berücksichtigt,
um die Dokumentwichtigkeit zu berechnen.
Diese Konzepte wurden als HTML5 Browsererweiterung für Google Chrome implementiert.
Diese Erweiterung zeichnet die Interaktionen des Benutzers mit dem sichtbaren Inhalt eines Do-
kuments auf, ohne dabei seinem normalen Surfverhalten in die Quere zu kommen. Das Abfragen
nach bereits gesehenem Inhalt liefert jene gespeicherten Dokumente in einer nach persönlicher
Relevanz geordneten Reihenfolge zurück.
Eine Evaluierung wurde durchgeführt, die Aussage über die Signifikanz der gemessenen Fak-
toren für die persönliche Relevanz treffen soll. Es wird gezeigt, dass die Interaktionen des Be-
nutzers in einem Dokument mit dessen Relevanz korreliert. Weiters wurde ein Performance-
Benchmark zwischen den HTML5 Speicherstrukturen WebSQL und IndexedDB für insert, up-
date und search Operationen durchgeführt. Im Test übertrifft IndexedDB seinen Kontrahenten
in fast allen Konfigurationen.
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CHAPTER 1
Introduction

We live in a time where we are intentionally and unintentionally surrounded by information.
Whether it is a billboard ad presented on a highway, the latest articles stuffed together on the
front page of a newspaper or content we daily consume when we surf the internet. According to
a study from the University of California, San Diego conducted in 2009 the average American
consumes up to 34GB worth of content every single day [5].

Figure 1.1: Relative information consumption in words [5]

This includes around 100.000 words of information. While the report states that not all of those
words are processed consciously it claim that this information crosses our eyes and ears via mul-
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tiple channels, as shown in Figure 1.1. Although TV still takes up the biggest piece of the pie,
computers also represent a notable quarter of the overall information sources. According to an
infographic crafted by Go-Gulf.com [24] the average US citizen spends 32 hours a month solely
surfing on the internet. Figure 1.2 summarizes how that time is spent online.

Figure 1.2: How people spend their time online. Cropped out of an infographic from [24].

They furthermore state that out of those 21% spent on online search only Google handles more
than 1 billion search queries a day. Out of which, according to [77], 40% of all queries are about
content the user has already seen in the past. Although the average internet user in the United
States consumes a tremendous amount of information on daily basis they still use a substantial
amount of time just to refind that content which has already been seen before.

While major web search engine vendors such as Google provide sophisticated algorithms to
improve the web search experience they still lack the possibility to narrow the result list down
to personal web history. Even if such a feature was implemented by Google or Yahoo!, they
still would not be able to find web sites which were not visited through their search engine. A
more promising approach is to search through the web history stored on each browser, but as
of September 2013, no major browser vendor stores more content than the web page’s title, its
URL and some access statistics. A content based history search is simply not possible using
conventional means.
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1.1 Motivation

The presented statistics above and the lack of solutions for this problem motivated the design
and implementation of a personal web search engine, which helps the user refinding already
seen content, while not interfering with her normal web surfing behavior. In more detail, when
searching for visited web pages, the results have to be ordered according to the user’s personal
relevance.

While many search engines query the web, for this solution it is indifferent whether the content
was perceived from a web site on a desktop computer or from a web browser on a smartphone
or from a GUI application like Adobe Reader [56].

The core concept of this search engine is to measure several factors, such as the duration one
paragraph or image was displayed on the screen or which part of the displayed content the
user clicks. Those metrics give insights about whether the user has actively perceived the cur-
rently displayed content on the her screen and therefore it has a higher personal relevance to her
(see [28]). When the user later on searches for content, those query-matching bits of information
are ranked higher in the result list which have a higher importance to the user. Content she has
actively interacted with gets a higher ranking rather than content she might have only seen for a
fraction of a second while scrolling through the document.

While some systems require some sort of structured data, modern search engines like Google’s
web search engine or Apple’s MacOS X Spotlight do not have that restriction. They merely take
the unstructured nature of documents and build an index around them, which allows to effi-
ciently add entries and query for information. Although natural written language always follow
a defined grammar, a developer does not have to predefine the structure of the document in order
to use its content. Other search engines exploit the fact that their content uses markup to distin-
guish between headings and paragraphs. A web searcher could query for content which has the
terms "Pulp Fiction" in its title and "tasty burger" in its body. While those queries could lead
to fine grained results, the majority of users prefer to use a search engine that does not take sep-
arate queries for each possible markup, and rather searches through the whole document instead.

1.2 Problem Statement

The goal mentioned above implies that the user has to be able to quickly refind the content she
is looking for. Therefore, an adequate ranking algorithm should order the search result list of
documents according to the user’s personal relevance for a specific query. This thesis proves the
hypothesis, that the degree of personal relevance correlates with the user’s interactivity with the
document’s content. More specifically, that relevance can be expressed by interactions like see-
ing, clicking or hovering over keywords of one document. E.g., when querying for "Big Kahuna
Burger", documents, in which those keywords have high interaction, signalize a high personal
relevance.
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To prove this hypothesis an empirical test is conducted, in which users are asked to visit dif-
ferent web sites related to one topic. Each web site has to be rated by the user, according to their
information content for that specific topic. While examining those sites, their interactions with
the page’s content is measured. The hypothesis is considered proven, if the web site rankings
obtained by the degree of measured interactions corresponds with the ranking created by the hu-
man judgments. Section 2.4 introduces a method to compare two different ranking orders, which
is used to determine the degree of similarity between human and measured rankings. Figure 6.1
depicts the design of the experiment, which helps to prove the hypothesis.

1.3 Contribution

Current state-of-the-art search engines still rely heavily on traditional keyword / documents dis-
tributions, such as Term Frequency Inverse Document Frequency in the vector space model or
probabilistic models to compute the rank of a document which matches a search query. Addi-
tionally, they utilize the the degree of incoming and outgoing links of one document to correct
its rank, such as the famous PageRank [7].

Research has shown, that including user’s personal relevance of one document individually,
improves the overall result quality significantly [29], [58], [1]. While current rank algorithms
of major search engine vendors are kept a secret, it is assumed that personal relevance is partly
already considered. This statement can easily be tested by entering the same query on Google
on two different computers, which are operated by two different users. The result ranking will
differ in many cases.

This thesis picks up the approach of Guo and Agichtein [29] of utilizing mouse interactions
on a web page as an indicator of personal relevance. While that method treats a document as the
smallest entity of relevance, this thesis extends their approach to a keyword based level, declar-
ing the keyword as the smallest entity. Documents are considered as relevant, if and only if the
keywords in that document are relevant to the user. Additionally, not only the interactions with
keywords is examined, but also their markups and how it contributes to the overall relevance.

As a side effect, with this method the most relevant keywords of one document can be extracted.
This approach paves the way for other research in automatic meta-data extraction, based on the
user’s relevance.

1.4 Thesis Organization

The remainder of this section gives an overview how this thesis is organized:

• Chapter 2 gives an introduction about how state-of-the-art information retrieval systems
work. In detail, it shows how documents can be stored so that a search by keywords can be
conducted efficiently. Is also demonstrates concepts to find similarities between a search
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query and documents in the corpus, which is used to rank those documents. Additionally
a method to compare ranking algorithms is presented.

• Chapter 3 shows related work presented by other research in the field of information re-
trieval, especially in search result personalization. The presented papers are compared
with methods and concepts of this thesis.

• In Chapter 4, the design of the document storage structure is discussed, and also what
factors are tracked while the user is consuming content. Based on those factors, a ranking
algorithm calculates a score for each query-matching document, which uses the traditional
vector space model [84], but also those tracked behavioral factors.

• Chapter 5 shows an implementation of the design concepts presented in Chapter 4. The
search engine is realized as a browser extension for Google Chrome written in Coffee-
Script, and utilizing IndexedDB as a HTML5 storage structure. Furthermore, this chapter
discusses the anatomy of the extension with respect to fast information retrieval.

• In Chapter 6, the results of an empirical tests are analyzed. The focus of this evaluation
is to find out how terms in a search query influence the relevance of documents contain-
ing those terms. Furthermore the goal is to extract a factor weight setting which ranks
documents according to their captured relevance.

• Chapter 7 concludes the work of this thesis and gives a future outlook how to improve the
relevance measurement.
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CHAPTER 2
State of the Art Review

2.1 Introduction to Information Retrieval

Manning et al. define Information Retrieval in [57] as follows:

Information retrieval (IR) is finding material (usually documents) of an unstructured
nature (usually text) that satisfies an information need from within large collections
(usually stored on computers).

The expression of a document as used in the definition above denotes an entity the user can
search for. In the case of a web search engine, a document typically is a web site, or a file
in the file search domain on the local desktop computer. Several documents form a collection,
which can range from a humanly assessable size until large distributed data centers managed by
dozens or hundreds of servers. One document consists of several words, which are also often
referred to as terms. A term is the smallest unit users can form their search queries of. Only
query matching documents should be retrieved by an IR system and ranked according to satisfy
the user’s information need.

Furthermore, Manning defines the goal of an IR system to "Retrieve documents with information
that is relevant to the user’s information need and helps the user complete a task" [15]. This def-
inition yields that the correctness of an IR system cannot be determined objectively and always
depends on the user’s opinion and conception. Figure 2.1 depicts the concept of a simplified
search engine helping to solve the user’s tasks, as based on [15].

To demonstrate the collaboration of each component of the IR system, the user task at 1 is
set to "Making a Quentin Tarantino movie night with his best movies". Solving this task does
not necessarily require the usage of a search engine, but let us consider the user does not know
already everything there is to know about the Tarantino universe. The information need 2 for
this task is to get information which movies of Tarantino are his best. This information need
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Figure 2.1: Simplified information retrieval system satisfying the information need to solve a
task.

is formulated in a query 3 , e.g. "Best Quentin Tarantino movies". The entered query gets
evaluated by the search engine 4 , by methods and concepts shown in Section 2.2 and 2.3. The
search engine takes all the documents relevant to the search query from the collection 5 and
returns them 6 . At this point, the user’s information need can be satisfied with the retrieved
documents, but in this example she is not and wants to refine the query 7 by "Best movies
directed by Quentin Tarantino.". The loop 3 - 4 - 6 - 7 continues until the user has found
the information needed to solve the task, or until she quits the process. Due to many reasons,
such as distraction or frustration about poor search results.

Manning also identifies a problem of misformulation between step 2 and 3 , where the user
knows exactly what she wants, but is unable to form a query which returns relevant results. An
extended goal many researchers try to achieve is to reduce the query refining loop by improving
components 3 , 4 , 5 and 6 . A more formal way of measuring the quality of search results
are the values precision and recall, rather than the amount of iterations needed to solve the user
task. According to [57], precision is the fraction of the returned results that are relevant to the
user’s information need, and recall is the fraction of relevant documents in the collection that are
retrieved.

As mentioned above, results can be more relevant to user A trying to solve a task than to user B
trying to solve the same task. Therefore, the values of precision and recall cannot be determined
objectively. While precision and recall were used since the very beginning of scientific informa-
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tion retrieval to measure the effectiveness of a search engine, they do not consider result ranking.
A more advanced approach is the usage of Discounted Cumulative Gain (DCG), as discussed in
Section 2.4.

Manning et al. define in [57] three scales of information retrieval systems: web search, performs
searches in a corpus of billions of documents, which are distributed over millions of computers;
personal information retrieval is focusing on a smaller collection of heterogenous documents,
suchs as web sites, e-mails, files etc.; and enterprise, institutional, and domain-specific search
which is in between the space of the former two. This thesis primarily focuses on the second
scale, where only already seen web sites have to be considered for search.

2.2 Indexing

When examining Figure 2.1, the process of indexing can be placed at step 5 . Indexing stores
the documents in one collection for the specific purpose of cheap and fast document retrieval by
terms. The remainder of this sub section introduces two different approaches to build informa-
tion retrieval indexes designed for different purposes.

Incidence Matrix

One way to store a collection of documents in an efficiently searchable index is to use an in-
cidence matrix. This structure is a binary matrix which uses terms as row and documents as
column labels. An 1 in the matrix at position (row, column) indicates that the term trow occurs
in document dcolumn. Table 2.1 depicts an example of such an incidence matrix. When issuing
a query like "Parks Tarantino", the user wants to find documents which contain both of those
terms. Therefore, we take the row vector of Parks and the row vector of Tarantino and apply the
binary AND operation: 1101 AND 0100 = 0100. Modern search engines use the OR opera-
tor to query for terms. Although documents which contain both terms rather than only one are
usually ranked higher. The result vector contains 1 in those documents where both Parks and
Tarantino occur.

The incidence matrix can be implemented as a dictionary, where the term t is used as key and the
row vector of document occurrences as value. To satisfy the query Parks Tarantino, each term
has to be looked up in the dictionary, which has a computational complexity ofO(1). Depending
on how the row vector is stored, the binary ADD operation can also be completed in O(n) with
respect to the size of the document collection.

While querying a term-document incidence matrix can be quite fast, this structure has sev-
eral notable disadvantages. Firstly, it consumes a lot of storage space. For every possible
(term, document) pair there has to be an entry in the matrix. This can result in a large sparse
matrix, as only a faction of all possible terms occur in one document. Secondly, the insertion
of new documents will result into appending additional values in the row vectors of each term.
Thirdly, sometimes it is not only important to know in which documents a term occurs in, but
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Django Unchained Inglourious Basterds Pulp Fiction Reservoir Dogs
Buscemi 0 0 1 1

Keitel 0 0 1 1
Madsen 0 0 0 1

Parks 1 0 0 0
Roth 0 0 1 1

Tarantino 1 0 1 1
Waltz 1 1 0 0

... ... ... ... ...

Table 2.1: A term-document incidence matrix. If element (t, d) is 1 the document d contains
the term t, 0 otherwise. Taken and adapted from [57].

also on which position in the document. The query "Parks Tarantino" yields Quentin Tarantino’s
movie script Django Unchained, which consists over 9000 lines [17]. An additional search has
to be conducted only to retrieve the locations of those terms in the document. The incidence
matrix performs well, when storing a small corpus of small documents, which barely changes
over time.

Inverted Index

One more advanced data structure to store an index of a document collection is the so-called
inverted index. Manning et al. describe the inverted index in [57] to be "the most efficient
structure for supporting ad hoc text search without rivals", where ad hoc information retrieval
is the standard retrieval task in which the user describes her information need in a query and
the information system returns results which satisfy the user’s query need, see [4]. The inverted
index, similarly to the incidence matrix, is realized as a dictionary, which has the term t as key
and an array of document IDs, in which the key occurs, as value. The value of the dictionary is
often called postings list, and all values grouped together are referred to as postings. Furthermore
an additional dictionary to lookup which document belongs to which document ID is needed.
Figure 2.2a and Figure 2.2b display a simple inverted index example from the Quentin Tarantino
movie script’s corpus. For example, Buscemi occurs in documents 3 and 4 which are labeled
"Pulp Fiction" and "Reservoir Dogs" respectively.

When querying for "Parks Tarantino" each term has be looked up separately, as it was done with
the incidence matrix. The intersection algorithm, see Algorithm 1, finds all document IDs which
contain Parks and Tarantino with computational complexity of O(Nt +Nd), where Nt denotes
the amount of query terms and Nd the size of the document collection. The algorithm assumes
that all postings lists are sorted by their document IDs in ascending order. [57] introduces an
improved intersection algorithm, which uses skip pointer to faster iterate through the postings
list. The algorithm terminates only in the worst case in O(Nt + Nd), and heavily depends on a
heuristic for a good skip pointer length.
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(a) Inverted index (b) Document mappings

Figure 2.2: Example of an inverted index in the Tarantino movie domain.

input : p1 and p2, pointers to postings lists of term 1 and 2.
output: intersection result R

1 R← [];
2 while p1 6= NULL ∧ p2 6= NULL do
3 if p1.docID = p2.docID then
4 append p1.docID to R;
5 p1 ← p1.next();
6 p2 ← p2.next();
7 else if p1.docID < p2.docID then
8 p1 ← p1.next();
9 else

10 p2 ← p2.next();
11 end
12 end
13 return R;

Algorithm 1: Finding the intersection of two arrays. Taken and adapted from [57].

To efficiently build the inverted index from scratch, the following steps have to be accomplished:

1. Collecting all documents in the corpus (crawling).

2. Splitting the text of each documents into tokens.
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3. Apply linguistic preprocessing of tokens (to retrieve terms).

4. Store the documents and terms in the index (indexing).

In the scope of creating a search engine for already seen content, as this thesis aims for, step 1
has to be reapplied every single time the user sees new content. Additionally, repeated visits of
the same content have to be considered, i.e. the website http://www.imdb.com changes
its front page on almost daily basis, so each version has to be treated as a new document.

For the sake of simplicity, all documents in the corpus are written in the English language, so
encoding issues or the handling of special characters, which are present in other languages, do
not have to be taken care of. Furthermore, it is assumed that the tokens created in step 2 consist
only of alphanumerical characters. Any other characters like white spaces, commas, dashes etc.
are considered as delimiters and therefore are stripped out. There are special cases where it is not
desirable to have that splitting effect, i.e. the expression "U.S.A." should not be split into "U",
"S" and "A". The algorithm should treat this as one token. Manning et al. discuss several simple
and complex methods for term preprocessing in [57]. The remainder of this section assumes the
documents are split into their corresponding preprocessed terms.

Algorithm 2 demonstrates how to build the inverted index I out of a set of documents D. Each
document d in D consists of plain text. Special formatting and markup tags have been removed.
This plain text gets split into an array of tokens W , which will be preprocessed. This process
returns the terms array T , which will be stored in the index. In line 11, the algorithm stores in
which document the term occurs. Furthermore, it saves also the location the occurrence of t in
d (line 13). In this simple version, only an array of locations in I[t][d] is stored, but any kind
of information which might be need later on for the ranking procedure can be stored here, as
described in Section 4.1. For example, the occurrences of the term Parks in a heading markup
or plain text could be encoded here. Additionally the amount of time the user has seen the
term on her screen could be captured, which can affect the ranking of documents tremendously
( [60], [29]).

In addition, some terms must be considered which are not meant to be stored in the index, as
they do not provide any additional value for the search result. For example, the terms "and",
"for", "an" occur in the majority of all documents in the corpus. According to Google Ngram
Viewer for Books [39], the term "and" occupies 2%− 3% of all terms used in the whole corpus
of books published from 1800 till 2000. On the other side of the spectrum, the term "house"
only occupies around 0.02%− 0.04%. Searching for those high frequent terms does not lead to
better results and, because of their ubiquity, they only consume up space in the index. Before
placing a term in the index, it has to be checked against a list of so called stop words, which
include all those terms with no or very little information value.

12
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input : Set of all documents D
output: Inverted index I

1 I ← {};
2 forall the d of D do
3 split d into tokens W ;
4 transform tokens W into terms T by preprocessing;
5 c← 0 ;
6 forall the t of T do
7 if t /∈ I then
8 I[t]← {};
9 end

10 if d /∈ I[t] then
11 I[t][d]← [];
12 end
13 append c to I[t][p];
14 c← c+ 1;
15 end
16 end

Algorithm 2: Creation of inverted index

2.3 Querying and Ranking

In this subsection, the inverted index consists of a big enough collection of documents and terms,
which contain information the user wants to retrieve to satisfy her information need. The user
formulates her information need in a query, and the search engine returns those results, which
are the most relevant ones.

A simple dictionary lookup in the inverted index can confirm whether it contains a query term
and in which documents it occurs. In case of a small document corpus, the result list is also
small, and the user can easily examine all entries to find the relevant ones. Nowadays, a web
search engine provider such as Google cannot expect its users to open every single result the
engine returns. Google’s index contains about 40 billion websites according to [18]. The key
concept here is proper ranking, so the relevant document is within the top results. The longer
the user scrolls down the result list, the more likely she will refine the search query to retrieve
the needed information. This was observed among others by Agichtein et al. in [1]. According
to their measurements the click-through rate of the second result drops to 50% compared to the
first position in the result list..

Consider a document corpus consisting of two documents d1: "Yeah, in a basement. You
know, fighting in a basement offers a lot of difficulties. Number one being, you’re fighting in
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a basement!"1 and d2: "Some men can live up to their loftiest ideals without ever going higher
than a basement."2. When querying for the term "basement" document d1 is intuitively more
important than d2, as the term occurs 3 times instead of only once. This ranking criteria is ap-
plied by the term frequency (tft,d), it counts the occurrences of term t in document d and ranks
documents accordingly to their term occurrences.

In this model, a document is represented by a vector of its term occurrences, e.g., the document
"Tarantino likes Tarantino movies" is encoded in alphabetical term order as [1, 1, 2] ("likes",
"movies" occur only once while "Tarantino" has 2 occurrences). Manning et al. refer to this
as the bag of words model ( [57]) as the semantical order of the terms is lost. For instance, the
documents "Rodriguez is better than Tarantino" and "Tarantino is better than Rodiguez" have
the same representation of [1, 1, 1, 1] but the position of the terms cannot be reconstructed and,
therefore, the semantical meaning is sacrificed.

According to the "term frequency only" ranking criteria, a document containing a query term
10 times more often than a document which contains it only once would be 10 times more rele-
vant. If another document contains the search term 1000 times, it means the other document is
100 times more important. The linearity of tf does not represent the relevance factor properly,
thus the term frequency needs to be dampened by the log operator. The base of the logarithm
does not matter. For demonstrational purposes the base of 10 is used in the examples.

In another use case the document could be extended by appending its content at the end, so
each term frequency is doubled. Long documents are generally better rated than short ones [85].
While the tf value increases, the information conveyed is not higher. Therefore, the tft,d value is
normalized, as shown in Equation 2.1.

#»

d denotes the vector which represents the bag of words
of the documents and Nt,d denotes the total amount of occurrences of term t in document d.

tft,d = log10
Nt,d

|| #»d ||
= log10

Nt,d√∑| #»d |
i=0

#»

d 2
i

(2.1)

The only drawback using only the term frequency as a ranking factor is that it treats every term
equally. For instance, the query for "Reservoir dogs" indicates the search intent for Tarantino’s
movie from 1992. The less often occurring term reservoir gives the query a different meaning
and points out that the searcher’s intent does not consider documents about animals. Therefore,
the measure of the inverse document frequency (idft = N

Nt
) is used to correct this deviation. N

denotes the amount of documents in the collection and Nt the amount of documents containing
the term t. Is does not matter how often the term occurs in a document, only its sole occurrence
matters.

The inverse document frequency gives insight about the information content of one term. For
instance the term the, which occurs often in English language, might occur in every single docu-

1Quote by Lt. Aldo Rain from the movie Inglorious Basterds (2009) by Quentin Tarantino
2Quote by Theodore Roosevelt
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ment and, thus, it has an idf value close to 1. According to Google books Ngram Viewer 4−6%
of all words published in books from 1800 till 2000 are the word the. Whereas the term reser-
voir occurs less often in the document corpus, giving it a higher idf value than 1. According to
Salton [68], the inverse document frequency is calculated as shown in Equation 2.2.

idft = log10
N

Nt
+ 1 (2.2)

The information content of one term is denoted by its tfidf (read term frequency - inverse
document frequency) and is defined as shown in Equation 2.3. Each element in the document
vector

#»

d stores the TF-IDF value of the respective term instead of the term’s occurrence in
the document. It considers the amount of occurrences of one term in a document, and also the
relative information content of that term.

tfidft,d = tft,d ∗ idft (2.3)

Another problem is ranking the search results according to the information need encoded by
the query. One very common solution is to calculate the cosine similarity in the vector space
model (VSM) between the query and the documents containing at least one of the terms in
the query [84]. Therefore, the query and each matching document will be encoded as K-
dimensional tfidf term vectors. K denotes the total amount of terms in the document collection.
The values in the document vectors are either 0, if the term ti (0 ≤ i < K) does not occur in
the document, or TF − IDFti,d if the term does occur in the document. The same procedure is
applied to the query vector. As one document contains only a small subset of the total terms in
the corpus and the query an even smaller subset, the resulting document and query vectors will
contain many 0 values.

As query and documents are represented as vectors, the goal is to compute the "similarity" be-
tween the query vector #»q and each of the document vectors

#»

d i. The most promising approach
is to compute the angle between those vectors [84]. The smaller the angle, the more similar the
vectors are. Figure 2.3 shows an example of a simple vector space. Consider the query "Quentin
Tarantino" being represented by #»q . Three documents in the corpus contain both query terms
but their tfidf values differ. In document

#»

d 1 the term Quentin occurs frequently but the term
Tarantino almost not at all. Document

#»

d 2 instead contains both terms equally often. In the
search result list those documents are ranked by the cosine similarity to #»q , which is defined as
shown in Equation 2.4. The theoretical value range is [−1, 1], but in this domain it will be [0, 1],
as there are no negative ifidf values in neither query nor document vectors.

cos( #»q ,
#»

d ) =
#»q • #»

d

| #»q | ∗ | #»d |
(2.4)
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Figure 2.3: The smaller the angle α, the higher the cosine similarity of q and di.

The cosine similarity has to be computed each time a search is conducted for each (query, doc-
ument) pair. Thus, to reduce computational overhead, it is beneficial if the vectors are in unit
length, so the score computation become easier: cos( #»q ,

#»

d ) = #»q • #»

d .

As mentioned above, the document and query vectors will be sparse in most of the cases. Yet
the computation and storage complexity are only O(k), where k denotes the count of terms in
the query. Due to the fact that the partial dot product of two vectors will be 0 at element i if
either i-th element is 0. Thus each term occurring in the query and in the document vector is
considered, and each term only occurring in the document, but not in the query, is discarded. Al-
gorithm 3 demonstrates how to compute the ranking score of a document d according to query
q in O(k). In this example, d and q are dictionaries mapping terms to their corresponding tfidf
value.

input : d, q
output: ranking score s

1 score← 0;
2 forall the term in q do
3 if d contains term then
4 score← score+ (term.tfidf ∗ d[term].tfidf);
5 end
6 end

Algorithm 3: Calculating the ranking score of a document d wrt. its query q

The tfidf values of the query terms are relative to the query. In this case, the query itself is
considered a document and the cosine similarity calculates the similarity between those two
documents.
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2.4 Comparing Ranking Algorithms

A brief look at the web search engine market reveals many big names like Google [36], Bing [14]
or Yahoo! [43], Duck Duck Go [20] or Mahalo [44] which focus on niche markets. Search
engines can differ in categories like proper ranking of document relevance, privacy, speed of
result retrieval, etc. This section discusses one of the state-of-the-art evaluation method in search
engine result rankings: (Normalized) Discounted Cumulative Gain.

Cumulative Gain of Documents

Järvelin and Kekäläinen introduced and refined a method in [46] to compare two different search
engine rankings by using the cumulative gain of each document in the result list. This method
requires the input of human relevance judgments for each ranked document in the results. Those
relevance judgments are either binary: document relevant vs. document is not relevant; or in-
clude a broader range of values. The authors used a range from 0 to 3 in their examples to
express partly fulfilled information satisfaction.

Järvelin and Kekäläinen stated the following two observations [46]:

1. highly relevant documents are more valuable than marginally relevant docu-
ments, and

2. the greater the ranked position of a relevant document (of any relevance level)
the less valuable it is for the user, because the less likely it is that the user will
examine the document.

The authors define a recursive equation to calculate the cumulative gain of a document at a
given rank i (Equation 2.5). G denotes an array of human relevance judgments, e.g., GrankA =
〈3, 2, 0, 2, 1, 1, 3〉 (for the latter examples in this section, this setting will be referred to as rankA).
With the equation the cumulative gain of a document at rank 7 can be calculated by CG[7] =
3 + 2 + 0 + 2 + 1 + 1 + 3 = 12.

CG[i] =

{
G[1], if i = 1

CG[i− 1] +G[i], otherwise
(2.5)

To fulfill point 2 of Järvelin’s and Kekäläinen’s observations, the Cumulative Gain equation is
not expressive enough, as a switch of the documents d1 and d3 still yields a CG of 12 (assuming
the result list contains only 7 documents). They refined their method and introduced the Dis-
counted Cumulative Gain (DCG), which also takes the rank of the currently evaluated document
into consideration (Equation 2.6).

DCG[i] =

{
G[1], if i = 1

DCG[i− 1] + G[i]
log2 i

, otherwise
(2.6)

DCG now penalizes highly relevant documents which are also highly ranked, e.g., the documents
DCG at rank 1024 is reduced by a factor of 10. Taking the same example from above into con-
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sideration, the discounted cumulative gain for document d7 isDCG[7] = 3+2+0+1+0.431+
0.387 + 1.069 = 7.887. If another ranking with different parameter configuration exchanges d1
with d3, the newDCG′ results inDCG′[7] = 0+2+1.893+1+0.431+0.387+1.069 = 6.78.
The prior ranking is clearly better, as DCG[7] > DCG′[7].

DCG is a simple but powerful way to compare two ranking parameter configurations, which
return the same amount of results for a given query. When comparing two different rankings
of different search engines, DCG comes with some limitations, assuming both search engines
return an unequal amount of results. An easy solution for this problem is to normalize the
DCG values. For the normalization procedure, the notion of Ideal Discounted Cumulative Gain
(IDCG) is needed, which simply computes DCG value of the human relevance judgements
of the G array sorted in monotonically decreasing order, e.g. GrankAi

= 〈3, 3, 2, 2, 1, 1, 0〉,
IDCG[7] = 3 + 3 + 1.262 + 1 + 0.431 + 0.387 + 0 = 9.08. The definition of the normalized
DCG (NDCG) is shown in Equation 2.7.

NDCG[i] =
DCG[i]

IDCG[i]
(2.7)

In the example, the first parameter setting results into an NDCG[7] of 7.887/9.08 = 0.869,
and the second parameter setting into an NDCG′[7] of 6.78/9.08 = 0.747, which again con-
firms the superiority of the first configuration. The advantage is that another ranking algorithm,
containing more results with different relevance judgments, can now be compared to both con-
figurations of rankA.

Another web search engine vendor returns for the same query as of rankA results, which have
the following human relevance judgements: GrankB = 〈4, 0, 2, 0, 3, 1, 2, 0〉, DCG[8] = 4+0+
1.262+0+1.292+0.387+0.356+0 = 7.297, IDCG[8] = 4+3+1.262+1+0.431+0+0+0 =
9.693, NDCG[8] = 7.297/9.693 = 0.753. Table 2.2 summarizes the results from rankA and
rankB, and shows that rankA with configuration c1 is the superior ranking algorithm.

Algorithm Configuration DCG[n] IDCG[n] NDCG[n]

rankA
c1 7.887 9.08 0.869
c2 6.78 9.08 0.747

rankB c1 7.297 9.693 0.753

Table 2.2: Comparison of different search engine rankings using NDCG.

The significant disadvantage when using the discounted cumulative gain as a search result rank-
ing evaluation method is that all documents need to be judged by a human. This process takes a
long time, and requires the user to scan through the entire document to determine its relevance.
Agichtein et al. propose [1] a novel way to use implicit feedback from the web searcher to obtain
a relevance value (see Section 3.3).
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2.5 Term Distance

The simple inverted index structure allows to apply trivial boolean queries like "Stuntman Mike’s
black car" to retrieve documents which contain all 4 terms. The order of the terms in the query
can differ from the term order in the document, for instance, the document "While Mike was
hitting the stuntman in the next scene, he was listening to the Black Eyed Peas." does contain all
terms from the query, but might not be relevant to the user’s information need.

A simple approach is to create a biword index which stores two consecutive terms as the key for
the inverted index, as proposed by Manning et al. [57]. The document is broken down into two-
word vocabulary terms, e.g. "While Mike", "Mike was", "was hitting", "hitting the", etc. Also
the query from above is split into "Stuntman Mike’s", "Mike’s black" and "black car". In the
query process all documents will be retrieved which contain all biwords. While this approach
returns better results than the one word inverted index, it is still possible to get false positives.
Needless to say the space consumption of the inverted index doubles, as the one-word and two-
word versions need to be saved.

A more advanced technique is the phrase index [57], which extends the postings lists of the
original inverted index by term locations, as shown in Algorithm 2. The structure of one in-
verted index entry is term : docID(location1, location2, ...locationn). Figure 2.4 shows an
excerpt of an example index. The term black occurs on position 5, 16, 64, etc., the term car
occurs only on position 65. All terms occur in document 42 though. Through their positions in
the same document, it can be determined whether the terms are adjacent or not. In this example,
the query "Stuntman Mike’s black car" finds a document in which the terms occur in the same
order as in its query, i.e. "Stuntman" at position 62; "Mike’s", "black" and "car" at positions 63,
64 and 65 respectively.

Figure 2.4: The inverted index with term locations in the postings lists.

To retrieve results from the phrase index, the intersection Algorithm 1 has to be modified in a
way that the query "term1 term2" checks whether term1 and term2 occur consecutively in
a document. When considering stop words, some term locations have to be skipped. For in-
stance, in case the word "black" is classified as stop word, it will not be stored in the inverted
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index. When querying "Stuntman Mike’s black car", the gap between the location of "Mike’s"
and "car" has to be considered.

Algorithm 4 shows how to retrieve results from a phrase index. The parameter k indicates
the size of a tolerable gap between two terms. After finding the common document of two
query terms, the algorithm iterates through all postings lists in line 7. Line 9 checks whether
the location gap between two terms is within k. The result of the algorithm is an array of
〈docID, locterm1 , locterm2〉 tuples, which contains the document ID in which term1 and term2

have a gap ≤ k.

The algorithm uses the fact that the document IDs and their term locations are in ascending
order and, therefore, terminates in O((n + m) ∗ l). The bigger the document collection, the
more time it takes to find positional intersections with respect to k. Additionally, more space
will be needed. Williams at el. [83] use an approach, which exploits the biword index for fre-
quently searched queries and the phrase index to handle queries which cannot be satisfied by
the biword index. Using this approach resulted into faster information retrieval and less space
consumption.
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input : p1: postings list pointer of term_1,
input : p2: postings list pointer of term_2,
input : k: tolerable gap between two terms
output: Array answer of tuples 〈docID, term1.pos, term2.pos〉

1 answer ← [];
2 while p1 6= NULL ∧ p2 6= NULL do
3 if p1.docID = p2.docID then
4 l← [];
5 pp1 ← p1.positions;
6 pp2 ← p2.positions;
7 while pp1 6= NULL do
8 while pp2 6= NULL do
9 if |pp1.value− pp2.value| ≤ k then

10 append pp2.value to l;
11 else if pp2.value > pp1.value then
12 break;
13 end
14 pp2 ← next(pp2);
15 end
16 while l 6= [] ∧ |l[0]− pp1.value| > k do
17 delete l[0];
18 end
19 forall the ps in l do
20 append 〈p1.docID, pp1.value, ps〉 to answer;
21 end
22 pp1 ← next(pp1);
23 end
24 p1 ← next(p1);
25 p2 ← next(p2);
26 else
27 if p1.docID < p2.docID then
28 p1 ← next(p1);
29 else
30 p2 ← next(p2);
31 end
32 end
33 end
34 return answer

Algorithm 4: Positional intersection algorithm, adapted from [57]
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CHAPTER 3
Related Work

This section outlines methods and approaches to improve web search result ranking by exploit-
ing user behavior and user profiles rather than only traditional methods (e.g., document-query
similarity). While many researchers use variations of probabilistic models to improve document
ranking ( [11], [72]), this section focuses on papers which exploit the variants of the vector space
model as proposed in [84].

3.1 Post-Click Behavior as Relevance Factor

Morita and Shinoda [60] conducted an experiment where participants were given news articles
to read and were asked about the interestingness of each article. The researchers focused on
the correlation between the personal interestingness value and the amount of time it took the
subjects to read through the articles. In their study, they have found out that the majority spends
more time on interesting articles than on uninteresting ones.

Kelly and Belkin [50] tried to reproduce the outcome of Morita and Shinoda in a more com-
plex environment, but could not find any correlation between the time spent on one document,
the so-called dwell time, and their personal relevance ratings for that document. In [51], the re-
searchers observed again no relationship between the display time and the users’ display rating,
longer, they noted that the dwell time varies for different users and for different tasks.

Taking the limitations of the dwell time as a relevance factor into account, Guo and Agichtein
proposed in [29] the metric of the post-click behavior (PCB) for better estimating a document’s
relevance. They define post-click behavior, such as cursor movement and scrolling, as measure-
ments of actions the user does after clicking on a result of a search engine result page (SERP).
Guo and Agichtein observed two patterns of visiting a web page: reading and scanning. More
specifically, for reading they detected a clustering of cursor positions over a horizontal line indi-
cating a read action from left to right. In the case of scanning, the cursor positions were aligned
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vertically, signalizing a scroll action.

During their experiments they observed the following common patterns across all examinations:

• Periods of horizontal reading indicate relevance: User were more likely to slow the mouse
movements down and move the cursor horizontally to read when the document is relevant.

• Focused attention indicates relevance: The cursor positions were clustered in a small area
of relevance, whereas on less interesting areas the positions were uniformly distributed.

• Left-prevalence: Searchers tended to keep the mouse cursor on the left half of the screen,
as most of the content of the Web is left aligned and to help reading or to prepare for a
click on a link.

• "Scanning"followed by "reading"indicates relevance: Scanning actions through scrolling
were interrupted by finding and reading an interesting area of the document.

• Quick scrolling ("Skipping") indicates non-relevance: The user might have become impa-
tient and accelerated "scanning"to an even faster pace.

Guo and Agichtein measured the following post-click behavior features to estimate the personal
relevance of a web site to the user: dwell time, result rank provided by a search engine, cursor
movements (such as speed and range), vertical scrolling or interactions in the Areas of Interest
(AOI). They defined the Area of Interest as the region in a document where the main content
lies. In particular they defined the AOI as the document’s region with X-coordinates from 100
to 400 pixels and Y-coordinates larger than 100 pixels.

For the experiment they assigned the participants a set of tasks, which were taken from [22].
Each task comprised of a question to solve by utlizing several search queries on major search
engines, e.g. Google, Yahoo!, Bing. The subject was asked to give a personal rating from 1 (did
not meet information need) to 5 (completely satisfied information need) for each visited web
page. During these visits Guo and Agichtein measured the PCB factors mentioned above. They
used the machine learning algorithms Ridge Regression (RR) and Bagging with Regression Trees
(BRT) [6] to estimate the importance of each PCB factor and combinations of those regressing
to the personal relevance.

The researchers have found out that these patterns of behavioral signals correlated with the par-
ticipant’s explicit judgment of document relevance. Especially they found out that the distance
and range of cursor travels, as well as movement speed across its vertically component, were
among the most predictive signals of document relevance.

This thesis uses a similar approach to measure the importance of the input factors, such as
cursor movement, henceforth, named ranking factors. The focus lies primarily on calculating
scores for each search term. Under consideration of other factors, which are explained in later
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chapters, the summed score of all search terms result in the documents ranking score. Addi-
tionally, this approach also exploits the documents markup structure and the count of each term.
Furthermore, neural networks are used to compute the weights for each ranking factor.

3.2 Personalizing Web Search

Matthijs and Radlinski argue in [58] that current information retrieval systems are not adaptive
enough to provide a proper user personalization. They mention the example of an user search for
"Ajax" and retrieving results from three different domains, such as a web development concept,
the football club Ajax Amsterdam and the Ajax cleaning products. Without further knowledge
about the user’s background, all results are treated equally, for instance, giving a web developer
results about the latest football scores.

Personalization of web search results has received a lot of attention. Sriram et al. [74] use a
short-term personalization based on the current user session. While this approach improves the
quality of the result ranking, the session data is often too sparse to personalize ideally, and also
does not personalize before the second query. Speretta and Gauch [73] and Qiu and Cho [65]
use the searcher’s click-through data collected over a long period of time. Teevan et al. [78]
use previously visited web pages, and other information such as documents on the user’s hard
drive or e-mails to build a search personalization profile. In [79] they discuss that profile based
personalization may lack effectiveness on unambiguous queries, such as "London weather fore-
cast", and therefore, no personalization should be applied in those cases.

The user profile mentioned before can be represented in numerous ways, such as by a vec-
tor of weighted terms (e.g. [16] and [78]), a set of concepts (e.g. [55]), predefined ontologies
(e.g. [23], [64], [71]) or hierarchies based on the Open Directory Project (ODP) [33] and cor-
responding keywords (e.g. [12], [54]). The remainder of this section describes the vector of
weighted terms approach used by Matthijs and Radlinski [58].

For their personalization strategy they are capturing the data via a Firefox extension called Al-
terEgo. During the test, participants are surfing the web and the addon sends the user ID, the
duration spend on one web page, its URL and the length of the content to a server. The server
then fetches the content by the transmitted URL. If the length of the retrieved content differs by
50 from the sent length, the web page is considered as being personalized for the user, e.g., by
being logged in, and is discarded.

From all fetched web sites, Matthijs and Radlinski extract six features to build the user pro-
file: full text unigrams (HTML stripped content), title unigrams (terms inside the <title> tag),
metadata description and metadata keywords unigrams, extracted terms and noun phrases. Al-
gorithm from [81] is used to extract relevant terms by a number of linguistic features. The re-
searchers were experimenting with the following three weighting schemes to find the best param-
eter optimization for the user profile: term-frequency (tf ) weighting, term-frequency inverse-
term-frequency (tfidf ) weighting and personalized BM25 weighting as proposed by Teevan et
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al. in [79].

Matthijs’ and Radlinski’s personalization is used to rerank search results, which are returned
by a search engine provider. In their experiments, they reranked the first 50 results provided
from Google. This has the advantage that the reranking is only applied to a small subset of
already generally interesting results. The researches assigned each search result different scores
by applying the Matching, Unique Matching, Language Model and PClick scoring methods.
Additionally, they gave already visited URLs additional weights.

The researchers applied two evaluation methods for personalized search strategies. First, they
started with the Relevance Judgments, proposed by Teevan et al. [78], where a small group col-
lectively judge the relevance of the top k documents for a set of queries. Given these judgments,
they calculated the (Normalized) Discounted Cumulative Gain [46] or (N)DCG which reflects
the quality of the applied ranking for that user. The advantage of Teevan’s approach is that once
judgments are made, they can be used to test many different parameter configuration without
the constant input from the user. The drawbacks are that those judgments take long time to be
completed and do not represent the user’s normal search behavior. Matthijs and Radlinski used
3 choices for the judgments: Not Relevant, Relevant and Very Relevant.

After finding the best parameter configuration Matthijs and Radlinski performed an Interleaved
Evaluation [47], [66] as an online evaluation with real users. This approach takes the first k re-
sults of a query from Google and one of the three personalization strategies, which was randomly
picked. The selected strategy applied the reranking of the Google results. The Team-Draft inter-
leaving algorithm [66] picked one result from the Google ranking (TeamA) and one result from
the reranked list (TeamB) alternatingly. The interleaved result list was injected by the Firefox
extension into the Google result page, making the reranking process invisible to the user. By
clicking on a search result, the user gives one vote to either TeamA or TeamB. At the end of the
evaluation period, the team with the most votes won, indicating the superior result ranking. The
researchers performed the evaluation over two months, for 41 users who installed the Firefox
extension. With their best personalization strategy, they could improve 23.9% search queries
while only 8.2% got worse, for the remaining 67.9%, no improvement was found.

After the experiments, all participants were shown their keyword based user profiles. The ma-
jority was stunned how well those keywords described their profiles, and that they would use the
same set of keywords to describe themselves.

Matthijs and Radlinski used term weighting to calculate a rerank of an already ranked result
set from a search engine provider. This thesis uses a similar keyword centered approach to build
a ranking of a set of documents, especially the markup vector and its term-frequency count (see
Section 4.1) reflects the same concept as Matthijs’ and Radlinski’s tf weighting.
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3.3 Learning from User Interactions

Matthijs and Radlinski [58] needed for their web search personalization strategy human rele-
vance judgments, which measure the quality of search results. Similarly, the Discounted Cumu-
lative Gain (DCG) equation introduced by Järvelin and Kekäläinen [46] requires human result
evaluations. Although this traditional technique is used throughout several information retrieval
research papers, human ratings are generally hard and expensive to obtain. Another disadvantage
is that users are forced to give a judgment about search results, which invites them to examine
each result carefully. This controlled laboratory environment can bias the user’s natural search
behavior and skews the measurement.

Morita and Shinoda [60], as well as Konstan et al. [52] have shown that the reading time of a
document as an implicit rating is a strong predictor of user interest. Oard and Kim took this step
further and examined [63] whether implicit feedback could replace explicit human judgments
in recommender systems. Goecks and Shavlik conjectured in [25] that there is a correlation
between a high degree of web site interactivity and user interest. Although their results were
promising, the sample size was too small and the results were not tested against explicit hu-
man judgments. Claypool et al. [13] instead found a correlation between dwell time on a page
combined with scroll actions and user interest, while individual scrolling with mouse-clicking
actions did not correlate.

Agichtein et al. [1] have introduced a novel approach to circumvent human relevance judg-
ments by exploiting the implicit feedback through the user’s interaction with the search results.
In this way they not only diffuse the problem of the controlled lab environment, but they can also
aggregate the behavior of large numbers of users. That aggregation helps them to filter out the
noise of so called irrationally or maliciously behaving users. Agichtein et al. present techniques
to automatically predict user preferences for search results [1].

They conducted a case study where they analyzed the click distribution of search results of
120.000 conducted searches collected over a three week period. They found that the user click
behavior is strongly biased towards the top result on the result list. The relative click count
drops under 60% for clicks on the second ranked result, as compared to the first. To visualize
this biased behavior, the researchers varied the position of the most relevant document within
the top 10 results. Figure 3.1 illustrates the relative click frequency on documents with a varying
position of top relevant document (PTR). For example, at result position 2, the most relevant
document was clicked most (second bar), although clicks on other results are still distinct.

The general idea behind [1] is to create a robust User Behavior Model, which consist for
Agichtein et al. of two components: a relevance component, denoting query specific behav-
ior influenced by the apparent result relevance, and a background component where users click
indiscriminately. They postulated that the observed value o of a feature f for a query q and a
result r can be expressed as the the sum of those two components, as shown in Equation 3.1. C
denotes the background component of feature f aggregated across all queries, and rel is the rel-
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Figure 3.1: Relative click frequency for queries with varying PTR (Position of Top Relevant
document). Taken from [1].

evance component influenced by the result r. A simple subtraction of the calculated background
noise from the observed value o yields the desired relevance of the result.

o(q, r, f) = C(f) + rel(q, r, f) (3.1)

Agichtein et al. defined a wide range of over 25 traceable features in [1] and grouped them in
the following three categories:

• Query text features: user decide the results to examine by looking at the result title, its
URL and summary. The features in this category describe the relation between the query
and the snippet text such as the fraction of words which query and result summary have
in common.

• Click-through features: contain features which describe clicks on search results such as
click frequency or a click on the result above or below the currently examined search
result.

• Browsing features: contain features which describe the general browsing behavior in rela-
tion to currently examined result such as page dwell time of dwell time on same domain.

The obtained relevance value for the set of tracked features is made more robust by averaging
the values from all search attempts. Furthermore, the relevance values are fed into the tailored
neural network implementation called RankNet [8], which is capable to learn how to rank a
given set of items.
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Agichtein et al.’s user behavior model is performing substantially more accurate in results pre-
cision than current state-of-the-art search result rankings which do not consider user behavior.
That experiment was conducted 2006 and the situation may have changed since. They claim
their approach is more generic, and that it can automatically adapt to new environments, such as
predicting user preferences in intranet searches rather than only in web searches.

This thesis also uses similar browsing features as proposed by Agichtein et al. to model the
user behavior in combination with a term related behavior focus, such as clicking or hovering
over terms. Terms with high user interaction particularly influence the result ranking of docu-
ments containing those terms. While the approach in this thesis heavily relies on human explicit
ratings, it is conceivable to apply implicit feedback to continuously improve the search result
ranking without interfering with the user’s normal browsing behavior.
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CHAPTER 4
Design

The previous chapter has introduced some basic concepts of information retrieval which will be
applied in this chapter. The inverted index structure introduced in Section 2.2 will be extended
iteratively throughout each section. This chapter is structured as follows: Section 4.1 explains
the measurement of structural and behavioral (SAB) ranking factors. Those are used to give the
search more personal relevance than plain tfidf does. Section 4.2 introduces the final ranking
algorithm which considers the term frequency, the structural markup and personal behavioral
factors as means of results ranking.

4.1 Measurement of Structural and Behavioral Ranking Factors

When building a search engine for already seen content, the way users perceive content has to
be dealt with. Section 2.3 discussed how to retrieve documents which matches the user’s search
query by using the cosine similarity of the query and document vectors. As the results of doc-
uments the user gets from one query can still be very large, a ranking system is needed, which
prioritizes those results with a higher personal relevance for the user. For instance, an ad which
pops up while surfing the web and which is immediately closed by the user, might be less rel-
evant than a Wikipedia page about World War II that she has been reading for several minutes.
When designing the concepts for this search engine, it has to be considered that content is not
equal content.

A simple way to prioritize content is to make use of its domain. Considering a web browser
which displays an HTML site, markup such as <h1> or <p> tags can be utilized to distinguish
between heading and paragraph. As shown in Figure 4.1 [61], is bolder and bigger than the rest
of the content. Due to bigger and bolder font, the heading is easier to spot and, therefore, gets a
higher rank than smaller sized paragraphs.
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Figure 4.1: Excerpt from an article of The Guardian demonstrating the visibility of marked up
text.

A more sophisticated variation of the inverted index constructed by Algorithm 2 can be achieved
by storing the term’s occurrences in headings, and its occurrences in the remainder text instead
of storing the plain location in the document. An instance of the new inverted index is shown in
Figure 4.2. The term Buscemi occurs in document 3 (1 times in a heading and 100 times in the
body) and document 4 (5 and 50 respectively). Hence a query for Buscemi would yield the doc-
uments "Pulp Fiction" and "Reservoir Dogs". In this simple use case, the ranking of documents
could be neglected, but it is indispensable when having thousands of search results.

Figure 4.2: Inverted index which stores, compared to Figure 2.2a the occurrences in the markup
(represented as the list in the square brackets).

Langville and Meyer [53] use the expression of a content score to denote a ranking mean for
results. They multiply the occurrences of a term in different semantic sections with a weight to
get a ranking score. Consider, for instance, the weights wheading = 20 and wparagraph = 1,
which results into a content score of 120 (1 ∗ wheading + 100 ∗ wparagraph) for document 3 and
150 (5 ∗wheading + 50 ∗wparagraph) for document 4. The results are ranked in descending order
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by their content score.

This simple use case shows how easily the entries of the inverted index can be extended to
consider ranking factors. In this section, the following structural and behavioral ranking factors,
about the way how the user perceives content, are introduced:

• markup structure (structural) - markup,

• content visibility (behavioral) - contentvisibility,

• content hovering (behavioral) - contenthovering,

• content clicking (behavioral) - contentclicking

Structural ranking factors cannot be influenced by the user and are part of the representation of
the content, e.g. markup. Behavioral ranking factors, on the other hand, take the user’s interac-
tions as input, such as clicking or hovering over content.

For the measurement of some of these factors it is assumed the user uses a mouse as input
device. Other input sources such as the touch screen from a smartphone or an ebook reader as
possible, although not all factors can be measured in this case, e.g., content hovering.

Markup Structure

Text can be encapsulated in markups, such as HTML tags. Markups are used when textual con-
tent needs to be annotated with additional meta information, for instance <h1> for a heading.
In the case of HTML, markups yield different formatting, so an <h1> tag displays its contents
bigger and bolder than just a normal paragraph tag <p>. Because of its shape and size, a heading
is also more likely to be seen and read by the user than any other regular text. Therefore, the
markup is a passive indicator of the importance of content.

As the inverted index stores its content based on the term, a markup containing document
needs to be split up into terms, which are encapsulated by markups. For instance this sim-
ple marked up document "[HEAD_START] Quentin Tarantino gets [BOLD_START]Pulp Fic-
tion[BOLD_END] car back - after 17 years. [HEAD_END]" needs to be split into terms with
a correspond markup label as displayed in Figure 4.3a.

This very simple example yields that markups can also be nested. Each term’s closest encapsu-
lation markup will be considered and assigned. To get an implicit importance value for marked
up sections, each markup tag gets the default value of 1. Special tags like headings or bold text
get a value larger than 1. The higher the value the more important the text. Therefore a tag-to-
point dictionary is be introduced, see Figure 4.3b. The values are selected arbitrarily for now. In
Section 6.1, several configurations are examined and evaluated.
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(a) Markups (b) Tag-to-points dictionary.

Figure 4.3: Sample term to markup assignment.

As mentioned above, only the closest encapsulating tag will be assigned to the correspond-
ing term. This is just a heuristic though and might lead to unwanted results in some cases. For
example the document "[HEAD_START] Quentin Tarantino gets [BOLD_START]Pulp Fic-
tion[BOLD_END] car back - after 17 years. [HEAD_END]" will assign a lower valuation to
the words Pulp and Fiction. Alternatively, the value of all encapsulating parents of one term
could be accumulated to calculate the term’s markup structure value.

After splitting the document into tokens, and after preparsing those, the terms are stored in the la-
bel vector

#          »

labels = (term1, term2, term3, ..., termn). The index of each term corresponds to
the word wise position in the document. Note that one instance of a term can occur several times
in the label vector, e.g., for the document "Well, well, well. What do we have here?" the term
well occurs at index 1, 2 and 3 of its label vector. The markup structure vector

#                »

markup ∈ Rn

contains of markup points for each term, as shown in Figure 4.3b. The term labeled with
#       »

labeli has the markup points of
#                »

markupi. Considering the example from Figure 4.3a those
vectors are

#       »

label = (17, after, back, car, fiction, gets, pulp, quentin, tarantino, years) and
#                »

markup = (5, 5, 5, 5, 3, 5, 3, 5, 5, 5). Each term instance occurring in the document has corre-
sponding markup points.

Content Visibility

When evaluating the markup structure
#                »

markupt, it is assumed that the whole content of one
document (and, therefore, every single term) is visible at once. This might the case be some-
times but in general, the user only sees a fraction of the whole document on screen. When the
user loads, for instance, a web site, she always gets the upper part of the page presented. After
processing all important content, the user scrolls down and new content appears. It is also possi-
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ble that the user does not even reach the end of the document, because she followed a link. Thus
it is incorrect to treat all parts of the document equally when storing its terms in the index. Only
those parts are going to be considered which were visible. Additionally, not all content sections
have been displayed equally long.

Figure 4.4: Different parts of the document are displayed when the user scrolls.

Figure 4.4 shows an example which sections of document d were visible at the time t1 and t2.
The document consists of the 4 different-sized and different-positioned rectangular sections A,
B, C and D. Those sections can be filled with any kind of information, e.g., text, images, ad
banners etc. As only textual content can be evaluated, all sections will contain text for demon-
stration purposes. At time t1 only B is fully visible, whereas the other sections are cropped.
At time t2, no section is completely visible, and section A is not visible at all. To measure the
content visibility, the visibility changes over time for each section have to be considered. For
instance, B was fully visible for 10 seconds, then the user scrolled down so B’s upper content is
cropped, and only 50% of its area is visible for another 5 seconds.

Another problem is how to measure the overall visibility of one particular content section in
the document. This solution groups the fraction of a section’s visible area in one vector #»v section

and their display duration in seconds in another vector #»
t section. B was entirely visible (1.0)

for 10 seconds and partly visible (approximately 0.5) for 5 seconds. #»v B =

(
1.0
0.5

)
denotes the

visibility values for B and #»
t B =

(
10
5

)
their display duration in seconds. Equation 4.1 shows

how the average content visibility of one section over time is defined.

V =
#»v T ∗ #»

t∑
i
~ti

(4.1)

In this example VB would have a value of 83.33%, which denotes the weighted visibility of
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B over the entire time the document was opened. One drawback using this method is when the
user scrolls down quickly through the content. This results in high-dimensional #»v and #»

t vectors
with very little display duration times. A simple solution for this caveat is to define a threshold
value for display durations. Only if that threshold value is surpassed the section’s values are
appended to the vectors.

As the inverted index only stores terms, the content sections mentioned above need to be broken
down into words. Although the visibility value V represents the visible fraction of one section,
it does not make any sense to say 30% of the text "What are we on a playground here? Am I
the only professional?"1 was visible to the user. It is then hard to tell which 30% she has seen,
whether it was the first or last four words of the documents. Maybe it refers to the cut off serifs
of the lower part of the sentences, which can be hard to read. This value is interpreted as a
likelihood whether the user could have read the text in the corresponding section or not. Alter-
natively, this section-wise grouping can be discarded and it can be directly applied to terms. The
visibility values in #»v are then either 0 or 1, depending on, whether the term was displayed on
the screen or not. The section-wise grouping was chosen due to the lack of API support from
the host environment. If the host environment provides a function like getVisibleText(), then the
more accurate term visibility should be chosen over section visibility.

Before showing how to translate from content section visibility to term visibility, the structure
of content sections has to be considered. The example in Figure 4.4 has shown a very simple
case of the logical structure of one document. Real life use cases can be more complex though,
as displayed in Figure 4.5a (Reformatted excerpt from [67]). This excerpt of a document is
taken from an HTML site. Its content section structure is displayed in Figure 4.5b. The section
names are colored in gray. Unlike the example from Figure 4.4, this example has nested content
sections.

For the sake of convenience, it is assumed that each document is structured as a tree, where con-
tent sections represent nodes and terms represent leaves (see Figure 4.6). For example, d is the
root node and has only A as its first level child. A contains the term "18.06.2013" and has B and
C as its direct children. Note that the term "Reservoir" occurs both in B and C. This indicates
that a term wise generalization for each document cannot be applied. Each instance of a term
has to be treated independently.

To get the visibility values over time, Equation 4.1 has to be applied on all content sections of
the document tree. Terms get the visibility value of their direct parent, e.g. "Reservoir", "Dogs",
"Movie" and "Quotes" get the value VB . It is assumed that a child content section consumes less
or equal space than its parent section. So a direct value assignment is more beneficial than both
visibility values VA and Vd for the terms in section B.

The outcome after applying the concepts of this section is the vector #              »
contentvisibility which

contains a visibility value for each term in the document. The values in the vector correspond to

1Quote by Mr. Pink from the movie Reservoir Dogs (1992) by Quentin Tarantino
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(a) A formatted document through HTML markups

(b) The content section structure

Figure 4.5: Example of an HTML document with content section structure.

the term names in
#          »

labels.

This approach assumes that content, once loaded, does not change while it is viewed. Many
modern HTML5 applications contain animations, which pop new text into the screen without
the user’s assistance. Those dynamic changes are not handled in this thesis.

Content Hovering

The previous sections introduced objective ways to determine which information the user could
possibly have consumed by looking at parts of the content. This section uses rather subjec-
tive means to find out which fraction of the content the user is actively perceiving. Guo et al.
demonstrate in [28] that there exists a correlation between the user’s mouse cursor and her gaze
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Figure 4.6: The true structure of the content sections of Figure 4.6

position. This approach takes Guo’s observation one step further, and assumes that the user’s
gaze position is close to her mouse cursor, so content which gets hovered by the mouse is more
likely to be read than other content. Therefore, hovered information is more relevant when
searching for it.

Nevertheless, the user can also scroll through content. The cursor hovers over a wide range
of different content sections, but it is highly unlikely the user has actively perceived information
while scrolling [29]. ∆t defines a time span in which the cursor should not move outside a con-
tent section in order to count its underlaying content as being perceived.

Algorithm 5 demonstrates how to weight different content sections based on their hovering in-
teractions. The core concept is that the mouse has to be actively moving. In case the mouse has
the same position for ∆t milliseconds, it does not count as content hovering, as the user might
be inactive and not in front of the screen. For each ∆t the cursor moves inside the same content
section, the hover counter for this content section is incremented. The higher a section’s hover
counter, the more relevant its content is to the user.

Once started, the algorithm runs in an infinite loop and constantly modifies the hover array
while the user is reading through a document. When the user closes the document, the values
from hover have to be stored in the inverted index structure. Similar to the previous section
each term inherits the hover counter value of its first level parent.
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1 hover ←getFlatContentSections();
2 oldPosition← cursor.getPosition();
3 oldSection← cursor.getSection(oldPosition);
4 while true do
5 newPosition← cursor.getPosition();
6 newSection← getSection(newPosition);
7 if oldSection = newSection then
8 if oldPosition = newPosition then
9 hover[newSection]← hover[newSection] + 1;

10 end
11 end
12 oldPosition← newPosition;
13 oldSection← newSection;
14 sleep(∆t);
15 end

Algorithm 5: Calculating content relevance by mouse hovering

For better comparison, each hover counter value of the hover array is divided by the total value
count. The outcome of this section is a vector #              »

contenthover, where the i-th element (∈ [0, 1])
represents the relative hovering relevance for term at

#       »

labeli.

Content Clicking

Another behavioral ranking factor is the amount of clicks the user has performed in one con-
tent section. Click interactions can cause a switch of documents, i.e., the click on a hyperlink.
Assuming the user is not randomly clicking her way through documents, this factor can be the
most significant indicator which content the user has read.

Similar to the previous sections, it is only evaluated whether the user clicks on a content section
and not the term itself. So the click values of each term have to be extracted from their first level
parent content sections. The vector #              »

contentclick represents the relative (element values ∈ [0, 1])
click counter. #              »

contentclicki represents for the click value of term
#       »

labeli.

4.2 Ranking Algorithm

The previous chapters and sections have introduced the basic structure needed to retrieve a
ranked list of documents based on the query term distribution and the behavioral profile of
the user’s documents in the document corpus. The ranking measurement factors

#                »

markup,
#              »
contentvisibility, #              »

contenthovering and #              »
contentclicking have been introduced in the previous sec-

tion. Each term of each visited document has its corresponding ranking measurement factors.
When querying for "Death Proof" each document which includes either Death or Proof (or both)
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has to be considered. For each document and each term in the query, a
#            »

factordoc,term vector is
created, as in Equation 4.2. The markup values have been extracted from

#                »

markup and grouped
together with the content factors. This allows simpler matrix multiplications, which is needed
for the computation of the ranking score.

#            »

factordoc,term =



markuphead
markupbold
markupother
contentvisibility
contenthovering
contentclicking

 (4.2)

The previous sections explained how to build the corresponding ranking measurement factor
vector #   »vec ∈ Rn, where n denotes the amount of terms in the visited document. #   »vec denotes a
generalized term for

#                »

markup, #              »
contentvisibility, #              »

contenthovering and #              »
contentclicking. To build

the vector
#            »

factor, each value across all ranking factor vectors for one (term, document) pair
needs to be collected.

Each term in the query has its own
#            »

factordoc,term vector for each document it occurs in. These
vectors are grouped by the document their term occurs in. This collection is the Fquery,doc ma-
trix, as shown in Equation 4.3, where k denotes the amount of query terms.

Fquery,doc =


factorTdoc,term1

factorTdoc,term2

...
factorTdoc,termk

 (4.3)

Each of the factors for each term has a corresponding weight which is grouped together in the
#               »

weights vector as shown in Equation 4.4.

#               »

weights =



wmarkuphead

wmarkupbold

wmarkupother

wcontentvisibility

wcontenthovering

wcontentclicking

 (4.4)

The final definition for computing a document’s ranking score with regards to the query is
shown in Equation 4.5. It contains of the cosine similarities of the tfidf values of the query
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and document vector, and the linear combination of the factors matrix Fquery,doc, as well as their
corresponding weights. The dimension of Fquery,doc is Rk×7, and the resulting vector by the
multiplication of Fquery,doc ∗

#               »

weights is in Rk×1. The variable p ∈ [0, 1] controls the amount of
influence of the ranking factors mentioned in this chapter over the traditional cosine similarity.
Chapter 6 demonstrates several p value configurations, and how they affect the overall ranking
of documents.

score #»
d , #»q = (1− p) ∗ cos( #»q ,

#»

d ) + p ∗
k∑

i=0

(Fquery,doc ∗ weights)i (4.5)
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CHAPTER 5
Implementation

5.1 Introduction

The previous chapters have introduced concepts and algorithms which utilize the frequency of
terms (tfidf ) and the user’s behavioral profile in order to re-retrieve content she has seen in
the past. This chapter outlines the implementation of such a information retrieval system as
a Google Chrome extension. This decision is justified by a worldwide usage of 42% [76] of
Google’s browser. Compared to other browsers such as Microsoft Internet Explorer, Mozilla
Firefox or Apple Safari, Google Chrome has an easy extension deployment process, an expres-
sive API documentation and a big community [37].

Chrome extensions are written in JavaScript, and can use a wide range of HTML5 APIs defined
by the W3C ( [82], [19]). The programming language used in this chapter is CoffeeScript [3],
which can be directly compiled into JavaScript before deploying the extension. CoffeeScript
was selected over JavaScript due to its high readability, and the interoperability with third party
JavaScript libraries, such as jQuery [49], require.js [2], Lo-Dash [48].

This chapter is structured as follows. Section 5.2 introduces the development and deployment
setup, and also the communication of processes in an Google Chrome extension environment.
Section 5.3 shows the data model and the necessary calls needed to the HTML5 IndexedDB. Sec-
tion 5.4, 5.5 and 5.6 outline how the storing, querying and ranking of content is implemented.

5.2 Environment

Structure of the Extension

The basic Chrome extension consists of a manifest.json configuration file and a back-
ground page, e.g., main.html. The configuration file defines the name and version of the

43



extension, its permissions, and the path to the background page, which is the entry point of code
execution. Listing 5.1 depicts an excerpt of the configuration file used for the search engine.

{
"name": "My Search Engine",
"version": "0.1.0",
"description": "Re-finding information you have already seen.",

[...]

"background": {
"page": "main.html"

},
"content_scripts": [{

"matches": ["*://*/*"],
"js": [

"lib/content_hander.js"
]

}],
"permissions": [

"tabs", "unlimitedStorage"
]

}

Listing 5.1: Excerpt of the manifest.json configuration file.

The listing above shows the base structure: its background page is located in the root directory
of the extension, it injects the content script lib/content_handler.js each time a new
document finished loading, it acquires permissions for the Tabs API [35], and unlimited storage
space to store the captured web pages.

The content script gets injected into the web site’s scope (also called content page) after the
DOM is fully loaded, and starts communicating with the background page. The latter is an
HTML page, which only defines JavaScript files to include and does not provide any content.
Google Chrome provides two ways for inner-extension communication: simple one-time re-
quests and long-lived connections [40]. Due to the high amount of different content pages,
long-lived connections allocate too much memory when establishing a connection with the back-
ground page. In this domain, only simple one-time requests are used.

Figure 5.1 shows the interaction between the content page and the extension. The code running
in content_handler.js cannot directly invoke functions provided from engine.js or
db.js, as they run in a different scope. For calling a function in the extension scope, the call
request is wrapped into a data transfer object and sent to main.js, as shown in Listing 5.2.

// content_handler.js from content site
var msg = {type: "query", q: "Quentin Tarantino"};
chrome.extension.sendMessage(msg, function(response) {
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Figure 5.1: Extension structure

console.log(response);
});

// main.js from background page
===============
chrome.extension.onMessage(function(msg, sender, respondFunc) {

engine.query(msg.q, function(results) {
respondFunc(results);

});
});

Listing 5.2: Communication between content and background page.

The third parameter of the onMessage handler defines a response function (respondFunc)
as callback, which gets invoked as soon the engine conducted the query and retrieved the results.
As insertion or retrieval tasks take time to process, this asynchronous callback model prevents
the user’s browser from freezing during the execution.

Development and Deployment

At the beginning of this chapter CoffeeScript was introduced as a preprocessor for JavaScript.
CoffeeScript was designed to improve the readability of the code by avoiding curly braces and
using a Python-like indentation scheme. It also provides a set of language quirks, which allows
to shorten frequently used constructs, e.g., using existence operator ? to check whether a func-
tion or variable is defined and not null.

Besides CoffeeScript, the Compass framework [21] is used to compile SASS [30] code into CSS
stylesheets. To reduce the compilation, copying and deploying tasks Grunt - The JavaScript
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Task Runner [26] is utilized.

Grunt can be configured by the file Gruntfile.js. It can load a large set of community de-
veloped plugins (1051 plugins as of July 2013) [27]. For the implementation of the information
retrieval system, the plugins clean, coffee, compass, copy and watch have been used.
Each plugin has its own configuration represented by a JavaScript object passed to the func-
tion grunt.initConfig. During the development of the extension, the most useful plugin
was watch, which monitored the local file system and triggered the coffee task whenever
a *.coffee file was saved. Through Grunt, it was possible to avoid the console most of the
times when developing and only switch from the IDE to the web browser. Only when an error
was detected, the console gave insight in which file to look at. A sample Gruntfile.js can
be found under http://gruntjs.com/sample-gruntfile.

5.3 Data storage

The previous chapters introduced the concept of documents and terms. One document d contains
of multiple terms t. In the web browser domain, one document represents the textual content of
a web site. Naturally, all HTML markups are considered for the ranking, but are stripped out in
the content, so the user can only search for text she actually saw on the web site. The extended
inverted index is stored and queried by using the HTML5 IndexedDB API. Figure 5.2 represents
the structure of the database. It contains of terms, documents and screenshots. The latter has not
been mentioned yet, and is used to show the user a miniature preview of the web site in the result
list, before actually clicking on it. One term can occur in multiple documents and one document
has many terms by nature. One document can be visited several times, therefore, its content can
differ from visit to visit, and so can its screenshot.

Figure 5.2: Simplified data model.
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The IndexedDB Structure

As mentioned in Chapter 4, the timestamp of a document is used as its identifier. Thus, a web
page visited at timestamps ts1 and ts2 is treated as two different documents. Listing 5.3 shows
the structure of the terms table in the IndexedDB. <xxx> denote placeholders for concrete val-
ues, <key>: <value> represent a key-to-value mapping and [v1, v2, ..., vn] is an
array of values.

...
<term_i>:

d:
...
<timestamp_j>:

l: [10, 20, 30, ...]
m: [1, 2, 3, 2, 20]
f: [0.3, 0.5, 0.5]

<timestamp_(j+1)>:
...

...

<term_(i+1)>:
d:

...
...

Listing 5.3: Structure of the terms table.

Each term in the terms table has a collection of timestamps (d). These timestamps refer to the
documents table, as shown in Listing 5.4. Each timestamp entry consists of the keys l, m, f and
d. l is an array of all occurrences of term_i in the corresponding document. m denotes in
which markup the term was wrapped (Table 5.1). In comparison to Section 4.1 the occurrences
of the terms in the URL and inside the <title> tag have been considered as well. f repre-
sents an array of the normalized behavioral ranking factors contentvisibility, contenthovering
and contentclicking for term term_i in document timestamp_j.

Index Term occurrences in:
m[0] URL
m[1] <title> tag
m[2] <h1>, <h2>, <h3>, <h4> tags
m[3] <b>, <strong> tags
m[4] other

Table 5.1: Term occurrences in the markup array.
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Listing 5.4 show the structure of the documents table in the IndexedDB. u denotes the URL
of the web site, d the duration in seconds spent there, c the HTML stripped out content of the
page and t its title. cd represent the color histogram of the web page’s screenshot. As the
screenshot is in full RGB range, and assigning a pixel count to over (256256)256 different colors
is infeasible, each pixel will be compared to all colors in Table 5.2. The color codes are taken
from Google’s Image Search color palate [38]. The counter for the color which has the highest
similarity to the currently processed pixel gets increased. To compute the similarity between
two color codes the CIEDE-2000 color difference algorithm [70] is used. Therefore, the colors
have to be translated from the RGB to the LAB color space [32]. The color distribution is used
in section 5.6 to sort the search results by color.

...
<timestamp_j>:

u: <http://www.example.com/>
d: 120
c: "Lorem ipsum dolor ..."
t: "Example page"
cd:

color_1: 0.3
color_2: 0.1
...
color_12: 0.02

<timestamp_(j+1)>:
...

...

Listing 5.4: Structure of the documents table.

Color RGB
color1 #C70000
color2 #FC7F00
color3 #FFFF07
color4 #1FC40D

Color RGB
color5 #19B5BA
color6 #0000FF
color7 #641C96
color8 #FC83B0

Color RGB
color9 #FFFFFF
color10 #878787
color11 #000000
color12 #784211

Table 5.2: Colors used to determine color histogram of web page screenshots.

The screenshots table contains of a simple <timestamp_j> : <base64 image> map-
ping, where the screenshot content is converted into a base64 ASCII string. To reduce storage
space, each screenshot is shrinked and cropped to 250x140 Pixel and saved as a JPEG im-
age. The average screenshot size per document is 30kB. The screenshot was separated from the
document object, because querying for content yields that all matching documents (and their
screenshots) will be loaded into memory. As the user will only see a fraction of all results, the
screenshots are stored in a separate table to improve the performance.
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Wrapping IndexedDB

The IndexedDB structure provides low level functions to insert, update, retrieve and delete key-
value pairs. Each action has to be wrapped in a transaction to avoid conflicts of concurrent
access. Subsequent actions on the same table are wrapped in the same transaction to increase
their performance. The file db.coffee is an IndexedDB wrapper, which abstracts the low
level API calls and uses simple caching to reduce latency. Listing 5.5 shows the abstraction on
how to retrieve an object from the IndexedDB.

class DB
...
get_object: (name, id, doneCallback, failCallback) =>

trans = @db_object.transaction [name], "readwrite"
table = trans.objectStore name
req = table.get id

req.onsuccess = -> doneCallback?(req.result)
req.onerror = failCallback

...

Listing 5.5: Retrieving one object from an arbitrary table in the IndexedDB.

The function get_object takes the table name, the id of the search object, a success and fail-
ure callback. @db_object denotes an opened IndexedDB connection. Calling the transaction
function of this object creates a new read/write transaction for all table names in the array.
table.get retrieves the object with id as identifier from table. This operation initiates
asynchronous handling and calls req.onsuccess or req.onerror in the success or error
case respectively. In case doneCallback is a function and defined, it gets called with the
result as argument.

Besides get_object, the DB class provides the function shown in Table 5.3. get_array,
get_all and insert_array use a single transaction to batch process a collection of re-
quests. For instance, the latter function is used to insert an array of terms in the database. As
IndexedDB does not overwrite or update an existing object with the same identifier, but throws
an exception, the function has to check before whether an id is present. To reduce the amount
of get requests, all identifiers of all objects stored in the database are kept in memory, in the
instance variable keys. keys is a JS object and the presence of a key can be checked in O(1).

Name Arguments
get_array name: String, ids: Array, doneCB: Func, failCB: Func
get_all name: String, limit: Int, doneCB: Func, failCB: Func
insert_object name: String, object: JS object, doneCB: Func, failCB: Func
insert_array name: String, objects: Array, doneCB: Func, failCB: Func

Table 5.3: Functions provided by db.coffee.
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5.4 Storing Content

This section describes how the content of one visited web site is preprocessed and stored in the
database. Every visit consists of the following basic steps:

1. The user opens a new web site by entering a new URL in the address bar or clicking a link
of an already opened page;

2. she interacts with the opened web site, i.e., scrolling, hovering and clicking content; and

3. finally closes the opened page.

New web Site visited

The content preprocessing procedure is triggered as soon as the user has actively spend more
than 3 seconds on a newly visited web site. In some cases, the browser window or tab can be
opened in the background, e.g., when CMD/CTRL-clicking a link, and it is hidden from the user’s
eyesight. From the moment the DOM tree of the page was fully loaded, it takes 3 seconds until
the content_handler triggers the chrome.tabs.captureVisibleTab(...) [35]
function to capture a screenshot of the web site. The Base64 encoded image string is sent to the
background page as shown in Listing 5.2.

Capturing User Interaction

Section 4.1 outlined how the ranking factors markup, contentvisibility, contenthovering and
contentclicking are measured and represented. This subsection gives a brief overview how these
values are captured using the jQuery library. jQuery provides functions to modify the DOM
structure, and events to get modified when the DOM get changed by user’s actions. As each of
the mentioned ranking factors are measured for each term, the DOM tree has to be traversed first
in order to identify all occurring term. The file content_handler.coffee contains the
function _init_nodes, which assigns an identifier to each text-wrapping HTML tag (Listing
5.6).

class ContentHandler
...
visibility_vector: {}
hover_vector: {}
click_vector: {}
...
_init_nodes: ->

counter = 1
_rec = (node) =>

return if @_is_dead_end(node)

# mark node, if it contains textual content
if node.textContent.trim().length > 0
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# assigning node a sequential identifier which is
# evaluated in latter code
$(node).data("mm-id", counter)

# initialize measurement factors vector
@visibility_vector[counter] = 0
@hover_vector[counter] = 0
@click_vector[counter] = 0

counter++

_rec(child) for child in node.childNodes

# start traversing at <body> tag
_rec document.body

...

Listing 5.6: Traversing and identifying all nodes in the DOM tree of the current document.

_init_nodes has identified all potentially interesting nodes by assigning them a sequential
identifier in the HTML attribute data-mm-id. The following DOM nodes are not considered
in the traversal as they do not wrap visible textual content: script, br, hr, noscript,
input, img and link. Every time the user interacts with one DOM element, by hovering
or clicking it, or even if the element is visible on the screen, the corresponding *_vector
JS objects are modified, as in Listing 5.7. If any DOM element (marked by *) is clicked, the
event handler gets called. In case the element is of interest (the data-mm-id is set), the
click_vector object is incremented at the respective identifier.

class ContentHandler
...
constructor: ->

...
$(document).on "click", "*", (ev) =>

id = $(ev.target).data("mm-id")
@click_vector[id]++ if id?

...

Listing 5.7: Capturing all clicks inside the current document.

Capturing hover events is done as in Algorithm 5. Measuring content visibility is done as de-
scribed in Section 4.1. Before the user closes the currently opened web site, by navigating to
new URL or closing the browser tab, the content handler sends the normalized vectors and the
corresponding terms to the background page.

Sending Content and Captured Factors to Background Page

After the user decides to leave the current web page by closing it, the content and captured fac-
tors are sent to the background page, where they are stored in the IndexedDB. The values in the
variables visibility_vector, hover_vector and click_vector are normalized by
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dividing each value by the sum of all values. Furthermore, each term’s occurrence in URL, web
site’s title, headings, bold markups and normal text is counted and stored as shown in Table 5.1.
Listing 5.8 shows how to build the data transfer object which gets stored in the database.

class ContentHandler
...
constructor: ->

...
$(window).on "unload", (ev) =>

dto =
d: @duration
type: "store"
url: document.location.href
title: document.title
terms: @summarize_terms()

# sending DTO to background page
chrome.extension.sendMessage dto

...

summarize_terms: =>
terms = {}

for id, value of @visibility_vector
factors =

v: value
c: @click_vector[id]
h: @hover_vector[id]

# getting node if corresponding ’mm-data-id’
node = @nodes_dict[id]
for child in node.childNodes

# discard non textual child nodes
continue if child.nodeName != "#text"

terms = @split_text_to_terms(child.wholeText.trim())
for term in terms

terms[term] ?=
f: factors
l: @term_location[term]
m: [0, 0, 0, 0, 0]

# counting occurrences in URL/title
terms[term].m[0] =

@count_in_string(document.location.href, term)
terms[term].m[1] = @count_in_string(document.title, term)

# counting occurrences other markups
if ["H1","H2","H3","H4"].indexOf(node.nodeName) >= 0
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terms[term].m[2]++
else if ["B", "STRONG"].indexOf(node.nodeName) >= 0

terms[term].m[3]++
else

terms[term].m[4]++

return terms

Listing 5.8: Building the DTO which gets sent to the background page for storing.

The variable nodes_dict is a dictionary, which maps mm-data-ids to DOM nodes. The
function split_text_to_terms() splits the textual content of one HTML tag into sev-
eral tokens. Each token is preprocessed by applying the Porter Stemmer algorithm ( [80],
[59]) to reduce them to their stem, after which they are referred to as terms. The dictionary
term_locationsmaps one term to an array of word wise integer locations in the document’s
content. count_in_ string() returns the amount of occurrences of the second argument
in the first argument.

On the side of the background page, the data transfer object is split and a new entry is cre-
ated in the documents table with the web page’s URL, its title and its plain HTML-stripped
content. For each term the terms table is either updated or a new entry is inserted. The storage
process runs asynchronously and does not interfere with the user’s surfing experience.

5.5 Querying

At this point, the user has already documents stored in the database to query for. The query
process consists of the following steps:

1. The user types a string in the query text field,

2. the query string is split into tokens, and each token is preprocessed into a term,

3. each document in which at one term occurs is added to the unranked result list.

This implementation only searches for terms independently, and does not offer a way to group
multiple terms together to a so called free text query, [57]. Listing 5.9 shows how to get an un-
ranked list of documents containing at least one search term. Additionally, for each document in
the list, the tfidf value is calculated, which will be evaluated for the document score in Section
5.6.

class Engine
...
query: (q) =>

@get_term_objects_from_query(q).then (term_objects) =>
documents = {}
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for term_object in term_objects
for doc_id, values of term_object.d

tf = Math.log(values.l.length) + 1
idf = Math.log(@DB.documents_count /

Object.keys(term_object.d).length) + 1

term_occurrence =
term: term_object.id
tfidf: tf * idf
values: values

documents[doc_id] ?= []
documents[doc_id].push(term_occurrence)

# compute document score
...

...

Listing 5.9: Retrieving all documents in which at least one query term occurs.

The function get_term_objects_from_query splits the query string into alphanumeri-
cal tokens. Each token is preprocessed by the Porter Stemmer algorithm, and the corresponding
term object from the terms table is returned. The term object contains of the dictionary d, which
maps document identifiers to their behavioral ranking factors. The tfidf value is calculated for
each (document, term) pair and added to the documents variable. In case one query term occurs
only in one document, its term frequency logarithm is 0. Therefore, the value is corrected by
adding 1.

5.6 Ranking

In this final step of, the documents which match the user’s query have to be ranked according
the their document score, as defined in Equation 4.5. The document score is evaluated by con-
sidering the cosine similarity of the query’s and document’s tfidf values and their weighted
behavioral ranking factors.

Computing the Cosine Similarity

The cosine similarity is calculated by the normalized query and document vector of tfidf val-
ues, as defined in Equation 2.4. The tfidf values for the query terms are calculated analogous
to those of the document, as shown in Listing 5.9, although the tf part only contains the term
frequencies of the query and not those of the document. Listing 5.10 shows how the cosine
similarity is calculated.

class Engine
...
cosine_similarity: (term_objects, document) =>

# calculates the Euclidean distance.
_get_length(objects) = ->
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sum = 0
for id, tfidf of objects

sum += Math.pow(tfidf, 2)
return Math.sqrt(sum)

len_q = _get_length(term_objects)
len_d = _get_length(document)

similarity = 0
for term, term_tfidf of term_objects

term = term_object.id
if document[term]?

similarity += term_tfidf * document[term]

# normalizing cosine similarity
return similarity / (len_q * len_d)

...

Listing 5.10: Computing the cosine similarity between a query and document.

Computing the Behavioral Factors Value

The second integral component of the document score is the evaluation of the behavioral factors.
Listing 5.11 shows how to obtain the final score under consideration of the influence parameter
p.

class Engine
...
query: (q) =>

...
# compute document score
for doc_id, terms of documents

cos_sim = @cosine_similarity(term_objects, terms)

sum_behavior = 0
for term_object in term_objects

v = term_object.d[doc_id]
if v?

sum_behavior +=
v.m[0] * @w.markup_url +
v.m[1] * @w.markup_title +
v.m[2] * @w.markup_head +
v.m[3] * @w.markup_bold +
v.m[4] * @w.markup_other +
v.f.v * @w.content_visibility +
v.f.c * @w.content_clicking +
v.f.h * @w.content_hovering

documents[doc_id].score = (1-@p) * cos_sim + @p * sum_behavior
...

Listing 5.11: Computing the final document score for the result ranking.
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The variable v contains the ranking factorsmarkup (m), contentvisibility (f.v), contentclicking
(f.c) and contenthovering (f.h). Each of those factors is multiplied by their correspond
weights, defined in w. The weights are set as shown in Table 5.4 as are chosen arbitrarily. For a
proper implementation those weights need to be adapted with machine learning techniques for
instance, which are not scope of the thesis and referred to as future work in Chapter 7. Also a
proper value for the influence coefficient p has to be determined similarly. In this implementa-
tion the value is set to 0.7.

Type Value
w.markup_url 0.2
w.markup_title 0.15
w.markup_head 0.15
w.markup_bold 0.05
w.markup_other 0.025
w.content_visibility 0.175
w.content_clicking 0.15
w.content_hovering 0.1

Table 5.4: Weight distribution of ranking factors.

Ranking the documents

In the next step, the documents have to be ordered by their score. This implementation ranks
documents, which contain all k terms of the query higher than documents which contain only
k − 1 terms, regardless their document score. Listing 5.12 shows how to consider this situation
and how to "subrank"documents of the same term occurrence.

class Engine
...
query: (q) =>

...
documentsArray.sort (docA, docB) ->

if docA.term_occurrences.length >
docB.term_occurrences.length

return -1
else if docA.term_occurrences.length <

docB.term_occurrences.length
return 1

else
return docA.score - docB.score

...

Listing 5.12: Ranking the documents by their term occurrence and document score.
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Before applying the JavaScript/CoffeeScript internal sort algorithm, the documents dictionary
has to be transformed into an array, called documentsArray. The ECMAScript standard does
not define which sort algorithm to use in the JavaScript implementation. Thus the algorithms
may differ from browser to browser [45].

Retrieving Inner-Document Matches

At this step, the information retrieval process returned a sorted set of documents, which are
ordered by the similarity of the query to each document and the measured behavioral factors. The
result list does not display yet where the query matches the content in the document. To solve this
problem, the positional intersection algorithm is used to compute the location in the document
where termi and termi+1 are less than k words apart. As termi and termi+1 can occur several
times in the document at different positions and with different gap lengths, the inner-document
matches are ranked by their gap size in ascending order. To illustrate this problem, the inner-
document ranking of content matches is shown in two examples on the document d: "Well, if you
like burgers give them a try sometime. Me, I can’t usually get them myself because my girlfriend
is a vegetarian which pretty much makes me a vegetarian. But I do love the taste of a good
burger. Mmm."1. For each example, the maximum gap size k is set to 10 and the size of the
neighborhood n is set to 5. n defines the amount of neighbor terms of termi to display as query
matching content. E.g. n = 3 displays termi−n ... termi ... termi+n.

• Example 1: Single term query q: "burger". burger occurs twice in the document, which
results into 2 query matching content excerpts: "if you like burgers give them a" and "of
a good burger. Mmm.". As only a single term occurs in the query, each match is equally
important. Thus, the gap is set to k, which does not affect the ranking in this case.

• Example 2: Two term query q: "girlfriend vegetarian". girlfriend occurs once in the
document and vegetarian twice. The matches are: "myself because my girfriend is a
vegetarian which pretty much" and "makes me a vegetarian. But I do". The gap of the
first match is 2 and in the second match it is set to k (as in example 1). The first match is
ranked before the second match.

The examples above demonstrate fairly simple scenarios to obtain the gap between two terms,
which can degenerate into many if-then-else cases when different documents and queries
are chosen. For example, matches of one document can overlap when using the query "pretty
girlfriend". This results into "myself because my girlfriend is a vegetarian" and "a vegetarian
which pretty much makes me". Both matches show partly overlapping content which should
be merged to a single match: "myself because my girlfriend is a vegetarian which pretty much
makes me".

Asynchronous Loading of Screenshots

The search results are transfered by simple one-time requests from the background page to the
content page, which displays the results. The latter is an HTML file in which the results get in-

1Quote by Jules Winfield from the movie Pulp Fiction (1994) by Quentin Tarantino
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jected into the <body> tag the farther the user scrolls down. While all results are transfered to
the content page in one chuck the documents’ screenshots are loaded asynchronously. Assuming
the query for "Kill Bill" returns 2.000 results, where each document has an average screenshot
size of 30kb, only the image material would be approximately 60MB large. Although all data
is transfered from one thread to another on one device, it is still noticeably slow and cause the
user’s screen to freeze until the process is finished. The reason for this is that each screenshot
has to be loaded from the database separately.

According to a study from Optify Inc. [42], which analyzes leaked search logs from AOL, the
click-through rate of search results decreases from 42.30% of page ranked first to 2.97% of page
ranked 10th and 0.30% of page ranked 20th. Instead of loading all screenshots at once, it is
more efficient to load them when the corresponding result is displayed in the result list. The
screenshots are loaded in chunks of 10. Loading a new chunk is triggered as soon the last result
of the current chunk becomes visible on the user’s screen. Listing 5.13 illustrates how to load
chunks of screenshots.

load_screenshots = (results, doneCallback, failCallback) ->
dfds = []

for result in results
do (result) ->

dfd = When.defer()
dfds.push dfd.promise

engine.get_screenshot(result.page_id).then (image) ->
result.screenshot = image
dfd.resolve()

, failCallback

When.all(dfds).then ->
doneCallback(results)

Listing 5.13: Loading chunks of screenshots using Promise/A+ objects.

The function load_screenshots is called inside the main.coffee file and utilizes the
when.js library [10] to get notified when all asynchronous tasks are finished. engine.get_
screenshot initiates an asynchronous process and calls the callback defined in the then
function. When.all(dfds) calls its callback as soon all screenshots are obtained for each
entry in results.

Filtering Results by Colors

The purpose of storing screenshots and the color distribution of the screenshots is, primarily, so
that users do not have to click on a result link in order to view the page, and, secondly, to sort the
results by the distribution of one color in the screenshot. The user is given a set of 12 colors from
which she can re-rank the results, as in Table 5.2. Each document has a certain color distribution
stored in the cd field of one entry in the documents table (Listing 5.4). The color distribution is
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calculated as described in Section 5.3. The results only need to be sorted in descending order by
the distribution of the color which the user has selected. Figure 5.3 shows the results of the query
"reservoir dogs" considering the document score, and Figure 5.4 displays the results sorted by
the distribution of the color red.

Figure 5.3: Result list for query Reservoir Dogs.
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Figure 5.4: Result list for query Reservoir Dogs, ordered by red color distribution.
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CHAPTER 6
Evaluation

6.1 Evaluation of Different Parameter Configurations

An experiment has been conducted to measure the structural and behavioral ranking factors pre-
sented in Section 4.1 on a real life use case, with the focus of extracting information about the
significance of each factor result ranking. The participants had to install a browser extension,
which tracked those factors mentioned before while surfing the internet. The browser extension
was provided for Google Chrome (until version 29.0.1547.76) and Mozilla Firefox (until version
23.0.1). Each candidate had to answer ten questions, labeled as tasks, with the help of Google.
The candidates were asked to rate each web page they have visited on a scale from 1 to 5, de-
pending on how much it had helped to answer the current question.

The questions were taken and adapted from an experiment conducted at the University of Mas-
sachusetts [22]. Those questions were carefully selected to be not easily answerable by an
obvious query on a web search engine. Additionally, the researches wanted to raise the user’s
frustration while using a web search engine to answer the questions. The intention of this exper-
iment was not to frustrate the participants, but rather to force them examining a higher amount of
web sites before find the correct answer. The following questions were used for the experiments:

1. What is the average temperature in Vienna / Madrid / Frankfurt / Rome for summer /
winter?

2. Name three bridges that collapsed in Germany / the US since 2001 / 2007.

3. In what year did Austria / Germany experience its worst drought? What was the average
precipitation in the country that year?

4. How many pixels must be dead on a MacBook before Apple will replace the laptop? As-
sume the laptop is still under warranty.
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5. Is the band Snow Patrol / Green Day / Goo Goo Dolls coming to Austria / Germany within
the next year? If not, when and where will they be playing closest?

6. What as the best selling TV (brand model) of 2012?

7. Find the opening hours of MediaMarkt / Saturn nearest to Mannheim, Germany / Graz,
Austria.

8. How much did the ATX / DAX increase / decrease at the end of its last trading day?

9. Find three coffee shops with WI-FI in Vienna 1st district, Austria / Mannheim, Germany.

10. Name four places to get a car inspection.

The questions contain the same structure but different instances, e.g., in question 3 one instance
asks about the worst drought in Austria and the other about Germany. The participants had to
answer only one instance of a question, but the choice of the instance was randomized to limit
the possibility to exchange answers with other participants. As mentioned above, the questioned
were localized to Central Europe. Depending on the browser setting, the questions were pre-
sented in either English or German language, as some candidates did not feel confident enough
to search only English written web pages.

The rating classification of visited web pages was also taken from [22] and include the following
values:

• 1 star - Did not satisfy the information need at all.

• 2 stars - Barely satisfied any of the information need.

• 3 stars - Only partially satisfied the information need.

• 4 stars - Satisfied most of the information need.

• 5 stars - Completely satisfied the information need.

After the participant finished one task, she was prompted with a dialog to enter the answer for
the current question. Each subject was told that there is no right or wrong answer and the correct
answer solely depends on the personal interpretation of the question. This surprisingly lead to
very divergent answers, but did not matter for the measurement of the ranking factors. Figure
6.1a depicts the question answering process for the participants.

At step 1 the participant receives a new task from the browser extension, which contains a
question she should answer. For each question, Google has to be queried to find the document
with the perfect answer, step 2 . While surfing web pages, the browser extension measures
the ranking factors presented in Chapter 4. In case no answer was found, step 4 , the user is
prompted to rate the currently visited web page and has to continue at step a until the question
can be answered. At step 5 , all documents for the current task are ordered according to their
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(a) User rating process

(b) Document score calculation process

Figure 6.1: Design of the question answering experiment.

ratings in descending order. Unless the user has completed all tasks, she continues the process
at step 1 .

After each participant has completed each task, the document score calculation process, as
shown in Figure 6.1b, is executed to evaluate the significance of each ranking factor. At step
a , the documents of each submitted task are examined. The document score is calculated based

on the currently evaluated ranking factor, step b . The documents for one task, for one user, are
ordered by their score in descending order, at step c . Based on the document order of step 1
and the order of step c , the NDCG value can be obtained, at step d . The closer the NDCG
value approximates 1 the more similar both document ranking are.
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Implementation

This Section uses the core implementation presented in Chapter 5, such as the ranking factor
measurement and the ranking algorithm, but uses a different interface on top to retrieve the
manual web site ratings. Furthermore, for the sake of evaluation, the results have to be col-
lected centrally, which is not provided in the former implementation. Similarly to Chapter 5 this
evaluation browser extension was implemented using CoffeeScript and the Grunt.js build tool.
Additionally the code base was written to allow an easy deployment to Google Chrome and also
Mozilla Firefox, as the implementation for those browsers are very similar and they both cover
in total over 60% of the worldwide browser market [75].

The core of the implementation is the content_handler.coffee file, which gets injected
into the currently accessed web page. As in Chapter 5, this files takes care of capturing ranking
factors based on term level. For each term the click count, mouse hover duration, fraction of
visibility and duration of visibility is measured.

When the browser extension gets installed it generates an identifier for the user, which is sim-
ply the timestamp provided by the JavaScript function new Date().getTime(). No other
information about the identity of the user is captured. Additionally, the question instances were
chosen at install time. A popup window showed the necessary steps to complete this survey, as
shown in Figure 6.2

Figure 6.2: Popup which gives the user instructions how to proceed with the experiment.
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A click on the button "Start new task" displayed the next question the user had to answer. While
surfing the current question was permanently displayed in the upper part of the screen, as shown
in Figure 6.3.

Figure 6.3: Question displayed to the user in upper part to screen.

The user had the possibility to either finish or cancel the task, or hide the green question bar
to not get too distracted. A click on "Finish Task" prompted a dialog where the user had the
answer to question. No specific format was required, as the answer is not relevant for the evalu-
ation. This input prompt was merely meant to be a hoop for the user to deal with a task properly.
In case the user would have been interrupted to complete the task, the button "Cancel Task"
deleted all tracked information about answering the current query, so the user would not submit
skewed measurements.

After leaving one website, the user was prompted to rate the previously visited page accord-
ing to the extend the information need was satisfied, as shown in Figure 6.4. When clicking
"Finish Task" an implicit rating of 5 stars was save, since it was assumed the last page helped to
give the final answer.

Figure 6.4: The 1-5 star rating for the previously visited website is shown in the red area.

After finishing one task, the captured factors for the visited web sites of that current task were
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sent to a sever. The format of the sent data is shown Figure 6.5. task.resultText denotes
the answer the user has entered into the input prompt and task.taskQuery the instance of
the question for that task, page.duration is the duration in milliseconds or dwell time the
user has spent on the current page, and term.factor_* and term.markup_* are the mea-
sured ranking factors as introduced in Chapter 4.

Figure 6.5: Class diagram of the data sent from the extension to the server when finishing a
task.

Having the measured ranking factors and an explicit human page rating for a specific task, the
weight factors, which were arbitrarily chosen in Table 5.4, can now be changed in a way to im-
prove the Normalized Discounted Cumulative Gain (NDCG) to approximate to the ideal DCG
value, as demonstrated in Section 2.4. Each visited and rated document is stored in the inverted
index for later evaluation. To compute the NDCG value, each query from pages.query is re-
run against the document collection to get the DCG value and divided by the IDCG value which
is computed out of the human rated documents.

Result Discussion

A total amount of 181 tasks have been submitted by 28 users, who have been asked to participate
in that experiment, where 16 participants could complete 8 or more tasks. For this evaluation it
did not matter how many tasks one user had completed, but rather how many tasks had been sub-
mitted in total. Table 6.1 shows a statistic about the captured data. Table 6.2 shows how many
users have finished each task, and how many pages have been visited on average to answer each
question.

The remainder of this section shows different ranking factor weight configurations and their
calculated NDCG value. As summarized in Section 2.4, the closer the NDCG value is to 1, the
more likely the ranking method presented in Equation 4.5 ranks their result documents according
to the human relevance ratings, e.g., documents rated with 5 stars should appear first in the result
list followed by 4 stars rated documents etc. Table 6.3 gives an overview of the calculated NDCG
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Total amount of tasks submitted 181
Total amount of pages submitted 531
Total amount of terms submitted 290.000
Average duration spend on one website 34s

Table 6.1: Base statistics about captured data.

Question
# of users who
solved question

AVG # of visited
pages for question

What is the average temperature in Vienna / Madrid /
Frankfurt / Rome for summer / winter?

28 1.75

Name three bridges that collapsed in Germany / the
US since 2001 / 2007.

20 2.45

In what year did Austria / Germany experience its
worst rought? What was the average precipitation

in the country that year?
15 5.27

How many pixels must be dead on a MacBook before
Apple will replace the laptop? Assume the laptop is

still under warranty.
19 2.26

Is the band Snow Patrol / Green Day / Goo Goo Dolls
coming to Austria / Germanywithin the next year?
If not, when and wherewill they be playing closest?

14 6.29

What as the best selling TV (brand & model) of 2012? 16 3.88
Find the opening hours of MediaMarkt / Saturn nearest

to Mannheim, Germany / Graz, Austria.
18 2.17

How much did the ATX / DAX increase / decrease at
the end of its last trading day?

17 2.29

Find three coffee shops with WI-FI in Vienna 1st
district, Austria / Mannheim, Germany.

18 2.61

Name four places to get a car inspection. 16 2

Table 6.2: Statistics about each task / questions.

values for each user while only evaluating one ranking factor. Unlike for the document score
calculated by Equation 4.5 in this calculation only the behavioral and structural ranking factors
are evaluated and not the tfidf component of the equation.

As shown in Table 6.3, every NDCG value for each ranking factor, is almost close to 1.0, which
means that each factor is individually distinctive enough to rank the documents of one task in
the same order, as provided by the human page ratings, at step 4 of Figure 6.1a. This proves
the hypothesis, that the degree of personal relevance correlates with the user’s interactivity with
the document’s content.
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User m_url m_title m_head m_bold m_other f_cl f_dur f_hov f_vis
user01 0.95 0.97 0.93 0.96 0.96 0.93 0.96 0.97 0.95
user02 0.97 0.97 0.97 0.97 1.00 0.97 1.00 0.97 1.00
user03 0.97 0.95 0.93 0.97 0.95 0.89 0.94 1.00 1.00
user04 0.97 0.96 0.95 0.98 0.96 0.94 0.93 0.96 0.96
user05 0.93 0.94 0.92 0.94 0.93 0.96 0.96 0.95 0.94
user06 0.94 0.88 0.85 0.85 0.85 0.81 0.90 0.94 0.91
user07 0.96 0.96 0.96 0.99 0.99 0.95 0.96 0.99 0.98
user08 0.94 0.85 0.83 0.84 0.82 0.87 0.79 0.88 0.88
user09 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
user10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
user11 0.96 0.96 0.95 0.95 1.00 0.95 0.96 0.96 1.00
user12 0.95 0.97 0.96 0.94 0.94 0.96 0.94 0.98 0.94
user13 0.95 0.95 0.93 0.93 0.97 0.94 0.92 0.92 0.93
user14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
user15 0.95 0.98 0.94 0.96 0.98 1.00 0.96 1.00 0.98
user16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
user17 0.99 0.96 0.97 0.95 0.98 0.95 0.98 0.97 0.98
user18 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
user19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
user20 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
user21 0.93 0.95 0.94 0.91 0.94 0.91 0.93 0.94 0.97
user22 0.78 1.00 0.78 1.00 0.78 0.78 0.78 1.00 0.78
user23 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
user24 0.90 0.90 0.93 0.89 0.91 0.92 0.92 0.92 0.89
user25 0.94 0.99 0.97 0.96 0.97 0.94 0.95 0.98 0.95
user26 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
user27 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
user28 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AVG 0.96 0.97 0.95 0.96 0.96 0.95 0.95 0.97 0.96

Table 6.3: NDCG values separately for each ranking factor.

6.2 Benchmark of HTML5 Storage Structures

This section concludes the taken design decisions by measuring the performance of the most
common use cases when using different HTML5 storage structures. IndexedDB [62] has been
selected to be the superior large scale database since the W3C stopped working on the specifica-
tions for WebSQL [31] in November 2010. Despite the fact that the latter database never made
it as a W3C Candidate Recommendation, it is the only HTML5 database which can be used
on desktop and mobile Safari [19]. Table 6.4 shows the current implementation status of those
databases for the most recent versions of Mozilla Firefox, Apple Safari and Google Chrome.
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While Chrome supports both IndexedDB and WebSQL, the other browsers only provide one
database implementation. Microsoft Internet Explorer is excluded intensionally since it does not
support JavaScript extension development.

IndexedDB WebSQL
Firefox 23.0.1 X
Safari 6.0.4 (8536.29.13) X
Chrome 29.0.1547.65 X X

Table 6.4: Browser support of HTML5 databases.

The benchmarks in this section compare the performance development of insert, update and
search tasks executed on IndexedDB and WebSQL for each of the above mentioned browsers.
The database layer described in Chapter 5 supports only IndexedDB, but can be easily replaced
by another layer supporting WebSQL. Alternatively, an additional layer can be placed between
the Data Access Object layer and the database implementation, which exposes the same API
as IndexedDB does, but internally calls WebSQL functions. This abstraction procedure for not
supported HTML5 features is called polyfilling. Facebook provided an IndexedDB polyfiller
which uses WebSQL as the database implementation to support Apple Safari [34].

The only performance measurement is the execution time of one use case, which can be mea-
sured by the JavaScript functions console.time() and console.timeEnd() as shown
in Listing 6.1.

console.time("expensive function");
expensiveFunc();
console.timeEnd("expensive function");

// result: ’expensive function: 121ms.’

Listing 6.1: JavaScript CPU execution profiling.

Benchmark Use Cases

There are several resources online which benchmark IndexedDB against WebSQL, e.g., [9],
but almost all of them perform the tests on a very low level basis. This benchmark although
groups several low level API calls to one use case and measures the execution duration of many
subsequent use cases. The following use cases are benchmarked in the next sub section:

• Insert; the insertion occurs when the user leaves one website. All measured factors are
transformed in their correspondent term and document values as shown in Listing 5.3 and
5.4 respectively. Typically, one document consists of many terms and one screenshot, so
this use case consists of a variable count of low level insert operations for the term table,
one insert for the document table and one for the screenshot table.
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• Update; updates occur only in the term tables, e.g., when an already stored website is
visited again. Assuming that the term is already present in the database, its document list
(property d, as in Listing 5.3) has to include the newly visited web page.

• Search; the user only searches for terms, but expects a list of documents in return. The
search task, therefore, first retrieves all matching terms from the database and from their
d property all matching documents.

Results

The benchmark has been executed on an Apple MacBook Pro Retina with 2,7 GHz Intel Core i7
and 16 GB 1600 MHz DDR3 RAM for the following browsers: Mozilla Firefox 23.0.1, Apple
Safari 6.0.4 (8536.29.13) and Google Chrome 29.0.1547.65. The results are summarized in
Table 6.5 and plotted in Figure 6.6. As mentioned before, Safari does not support IndexedDB,
as well as Firefox does not support WebSQL. The average web site has between 1000 and 3000
terms, so a best and worst case for 100 and 10000 terms respectively has been added.

Storage Action # of terms Firefox
23.0.1

Safari 6.0.4
(8536.29.13)

Chrome
29.0.1547.65

IndexedDB

insert
100 2 ms N/A 5 ms

1.000 10 ms N/A 34 ms
10.000 93 ms N/A 290 ms

update
100 3 ms N/A 9 ms

1.000 29 ms N/A 101 ms
10.000 271 ms N/A 926 ms

search
10 11073 ms N/A 45 ms
50 11721 ms N/A 4 ms

100 11528 ms N/A 5 ms

WebSQL

insert
100 N/A 42 ms 41 ms

1.000 N/A 315 ms 201 ms
10.000 N/A 2.828 ms 2.247 ms

update
100 N/A 166 ms 175 ms

1.000 N/A 1.758 ms 1.783 ms
10.000 N/A 15.317 ms 16.959 ms

search
10 N/A 1.253 ms 1.787 ms
50 N/A 5.633 ms 9.455 ms

100 N/A 11.084 ms 18.294 ms

Table 6.5: CPU execution time of insert, update and search tasks on HTML5 databases.

When comparing the IndexedDB results, Firefox is performing slightly better than Chrome for
insert and update operations, but is slow for search operations. Write tasks are allowed to have
a longer execution time, as they occur only once, when the user leaves a web page, and are pro-
cessed in the background. Slow search operations, although, hinder a fluent search experience,
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Figure 6.6: Plot of insert, update and search operations on different browser / storage combina-
tions.

as it cannot be expected from the user to wait up to 11 seconds until the search engine returns
results. This behavior can be avoided through proper caching of term - document mappings.
Interestingly, after several runs of the search task, Chrome performs worse when searching for
10 terms, but is almost 10 times as fast when searching for 50 or 100 terms. Caching inside the
V8 JavaScript engine could be a possible explanation.

For WebSQL Safari and Chrome are performing almost identically for insert and update op-
erations, but Chrome is slightly slower in searching for documents.
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CHAPTER 7
Conclusion and Future Work

7.1 Conclusion

This thesis has summarized state-of-the-art concepts to design and build an information retrieval
system. Furthermore it has analyzed related work in the area of web search personalization and
result reranking, and introduced a method to retrieve the relevancy of a visited web site by ana-
lyzing the terms on that page. More specifically, how the user has been interacting with the web
page’s content by clicking, hovering or simply seeing information on her screen. Additionally,
the markup structure of terms is considered when calculating the relevance value of one docu-
ment.

A ranking method has been introduced, which, firstly, uses the traditional term frequency inverse
document frequency in the vector space model to calculate the similarity between the query and
the result documents, and secondly, considers the measured relevancy as an additional compo-
nent to give a score to a document.

An implementation has been discussed how to build an information retrieval system for already
seen content as a browser extension for Google Chrome. While Chrome’s performance on in-
sert, update and search operations on IndexedDB is the fastest, other browser-HTML5-storage
combinations have proven to be too slow to assist the user in searches for content.

An online experiment has been conducted to get insight, how the measured structural and behav-
ioral ranking factors influence the document ranking. The results have proven the hypothesis,
that the degree of content interaction correlates with the personal relevance of one document.
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7.2 Future Work

This thesis laid the ground work for a concept of a personal search engine, with the focus of re-
retrieving already perceived content. The following list summarizes open research tasks, which
could improve the accuracy and performance of the service:

• Carrying out large scale evaluations. For the experiment in this thesis, the surf behavior
of 28 participants has been evaluated. A bigger user base needs to be tested, to find out
which of the proposed ranking factors influences the ranking of documents the most.

• Using implicit feedback instead of human judgments. As the latter information is hard and
expensive to get, implicit feedback can be obtained to determine the rating of one search
result without interfering with the user’s search behavior, so longer empirical tests can be
executed.

• Automatic learning of ranking factor weights. As not every user has the same web surfing
behavior, some ranking factors are more important to userA than to userB. In combina-
tion with implicit feedback and machine learning algorithms such as RankNet [8], factor
weights can be learned automatically and individually for every user.

• Estimating a proper value for p-coefficient. The p-coefficient in the document score equa-
tion denotes the influence of traditional tfidf weighting over behavioral and structural
relevance factors. While binary values are not beneficial, a proper setting of p has to be
examined and tested.

• Implementing a desktop solution. The configuration Google Chrome with IndexedDB as
an HTML5 storage structure works well in practice, but others do not. This is the case be-
cause of the lack of implementation of IndexedDB across all browsers. A simple solution
is to implement the information retrieval system as a desktop software, which hooks into
networking API of the operating system. All needed information can be intercepted and
stored in a faster key-value database such as MongoDB [41] or Redis [69].

• Considering dynamic document changes. The content of documents can either be static
or it can change dynamically, such as web sites using Asynchronous JavaScript and XML
(AJAX). The concepts in this thesis highlight methods do not highlight volatile content
and hence leave that use case open for future work.
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