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Abstract

The study of measurable effects in non-inertial reference frames in quantum physics has

been paid a great deal of attention to in recent decades, since one must inevitably deal

with the effects of gravity and rotation in microscopic dimensions for a better under-

standing of nature. In this field neutron physics has played a prominent role in the past,

as the COW (Colella Overhauser Werner) - experiment and the measurement of the

Sagnac effect have impressively demonstrated. In 1988, Mashhoon [Phys. Rev. Lett.

61, 2639 (1988)] predicted a new relativistic quantum mechanical effect, i.e. a coupling

of spin with the angular velocity of a rotating reference system. Following the predic-

tion, the spin-rotation interaction has been successfully derived from the Dirac theory,

a concrete measurement however is still missing. The first proposal in this regard in-

cluded a measurement via neutron-interferometry. In this thesis an experimental study

of spin-rotation coupling is described. The original idea of the experiment by Mashhoon

has been adapted to a set-up using a neutron polarimeter. This measurement method

has advantages over neutron-interferometry, in particular because of higher insensitiv-

ity to ambient disturbances. Experimental parameters, such as dimensions of various

coils for spin-manipulation, were determined and a set-up was constructed. In the first

measurement, problems with stray fields were encountered. In order to avoid them, two

DC-coils were added to the original polarimeter arrangement. The final results show

that a phase shift due to an interaction of angular velocity of a rotating magnetic field

and spin could be measured successfully and agree well with theoretical predictions.



Kurzfassung

Der Untersuchung messbarer Effekte in Nicht-Inertialsystemen in der Quantenphysik

wurde in den letzten Jahrzenten eine große Aufmerksamkeit geschenkt, da man für ein

besseres Verständnis der Natur sich auch zwangsläufig mit den Einflüssen von Gravi-

tation und Rotationen in mikroskopischen Dimensionen auseinandersetzen muss. Die

Neutronenphysik stellte in der Vergangenheit diesbezüglich eine herausragende Rolle

dar, wie das COW (Colella Overhauser Werner) - Experiment und die Messung des

Sagnac Effekts eindrucksvoll bewiesen haben. Im Jahr 1988 sagte Mashhoon [Phys.

Rev. Lett. 61, 2639 (1988)] einen neuen relativistisch-quantenmechanischen Effekt vo-

raus, die Kopplung von Spin mit der Winkelgeschwindigkeit eines rotierenden Bezugssys-

tems. Nach der Vorhersage dieser Wechselwirkung gelang auch eine Herleitung dieser

Spin-Rotationskopplung aus der Dirac-Theorie, eine konkrete Messung blieb bis jetzt

jedoch aus. Der erste Vorschlag diesbezüglich umfasste eine Messung mittels der Neutro-

neninterferometrie. In dieser Diplomarbeit wird eine experimentelle Erforschung dieser

Spin-Rotationskopplung durchgeführt. Dabei wurde die ursprüngliche Grundidee jenes

Experiments an das Konzept eines Neutronenpolarimeters angepasst. Diese Messmeth-

ode hat Vorteile gegenüber der Neutroneninterferometrie auf Grund geringer Empfind-

lichkeit gegenüber äußeren Störungen. Experimentelle Parameter, wie die Dimensionen

verschiedener Spulen zur Spin-Manipulation, wurden bestimmt und ein Versuchsaufbau

wurde konstruiert. In der ersten Messung ergaben sich Probleme mit Streufeldern. Um

diese zu vermeiden, wurden zwei DC-Spulen der ursprünglichen Polarimeteranordnung

beigefügt. Die Endresultate zeigen, dass eine Phasenverschiebung auf Grund der Wech-

selwirkung der Winkelgeschwindigkeit eines rotierenden Magnetfeldes und des Spins

gemessen werden konnte und in guter Übereinstimmung mit der Theorie sind.



Acknowledgements

First of all I would like to express my deepest appreciation to my supervisor Yuji

Hasegawa for giving me the opportunity to participate in this experiment and support-

ing me throughout the entire project. I am grateful to him for his expert, his patient

guidance and his thoughtful comments.

Besides, I would like to thank Stephan Sponar, who contributed tremendously to this

project with his assistance. In addition, a thank you to my fellow students, who would

always lend a sympathetic ear to my problems. I would also like to acknowledge the

services of the workshop at the Institute of Atomic and Subatomic Physics.

I’m particularly indebted to my family. This thesis is dedicated to my parents and my

sister, who supported me all the time and helped me reaching my personal goals.



Notations

The following conventions are used in this thesis:

Latin indices i, j, k run from 1-3 and stand for the space components.

Greek indices run from 0-4 and stand for the spacetime components. Lorentz indices,

non-coordinate indices are given by the first four letters of the Greek alphabet α, β, γ,

δ, whereas general spacetime, coordinate indices are given by µ, ν, σ, ρ.

The canonical form of the metric tensor in flat spacetime is ηαβ = diag(1,−13). The

spacetime metric tensor is denoted as gµν .

Basis vectors are will be given in the form ê(µ). Parentheses emphasise that the index

labels not components of a single vector, but a collection of vectors.
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1 Introduction

Accelerating frames of reference are essential in physics. Because of gravity and rotation

every measurement in a stationary laboratory on Earth takes place in a non-inertial

frame in the strict sense. In classical mechanics the description of the equation of

motion introduces the well known Coriolis force and the centrifugal force. In the middle

of the 19th century the Foucault pendulum has been one of the fascinating observational

consequences of the rotational nature of local laboratory frames. About 60 years later

Sagnac observed the correlation of angular velocity and the phase-shift of light in a ring

interferometer.

Through the development of quantum physics at the beginning of the 20th century, the

question of measurable effects of rotations in microscopic dimensions came up. Moreover

the discovery of the spin by the Stern Gerlach experiment expanded the idea of rotation

by an intrinsic form of angular momentum, the spin of an elemental particle, which is

however not a rotation in the ’real’ sense. Parallel to the discussions on the wave-particle

duality, experiments succeeded in showing the wave nature of elementary particles, for

instance the interference of neutrons. In the last few decades the use of neutron waves

enabled the verification of a wide spectrum of quantum phenomena, such as the Sagnac

effect, the influence of the earth’s gravitational potential on the neutron phase, see the

COW (Colella Overhauser Werner) experiment, or the measurement of the geometric

phase. It is therefore not surprising that neutrons have been used in many experiments

to measure effects in non-inertial frames.

In his study of the description of rotating observers, in 1988 physicist B. Mashhoon

predicted a coupling of the intrinsic spin S with rotation [1], i.e. a term of the form

Ω · S, by theory. If a particle with respect to an inertial frame and a frame that is in

relative rotation to the other by the angular frequency Ω is considered, the (classical

or quantum-mechanical) Hamilton operators of the respective frames only differ by an

angular momentum term Ω · L, which is the basis of the well known Sagnac effect [2].

Expanding this concept by performing the appropriate replacement of L with the total
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1 Introduction

angular momentum operator J, i.e. L → J = L + S, would create the aforementioned

additional spin rotation coupling. The Sagnac term has already been observed in exper-

iments [2]. A derivation from the Dirac theory has further established the existence of

this interaction, yet measurements still had to verify the theoretical predictions. There

have been some indications of the existence of this effect though [3], [4] and an analogous

helicity-rotation coupling for photons [5] could be detected.

Ever since the publication of [1] experimental set-ups have been proposed to measure

this effect. In 2005 Mashhoon, Kaiser have clearly outlined a neutron interferometer

experiment [6], which is the original model for the neutron polarimetry experiment

described in this work.

This thesis is devoted to the measurement of the spin-rotation coupling in neutron po-

larimetry. The aim of the 2. Chapter is to summarize the theoretical foundations that

are needed to derive the spin rotation coupling from the Dirac theory, which is the

correct relativistic equation to describe spin 1/2 particles. Afterwards a change to the

prescription of the Dirac equation in a rotating frame of reference is implemented, where

all important terms are introduced. Subsections will then deal with the non relativistic

limits and then solve the analogous Pauli equation in a rotating magnetic field. Chapter

3 will give a brief overview of the experimental tools and instruments that are needed for

the polarimeter set-up. In addition, examples of quantum-mechanical investigations and

accomplishments with neutron polarimeter are described. In Chapter 4, the measure-

ment of the spin-rotation coupling is explained. According to preliminary calculations

a longer coil is fabricated. First trials show unexpected results and make improvements

on the original set-up necessary. In the final section the results are presented and show

the verification of the predicted spin-rotation coupling.

9



2 Theoretical foundations

2.1 Derivation of spin rotation coupling in the Dirac

theory

2.1.1 Dirac equation in flat spacetime

The opening of this chapter starts with an opportunity to briefly recall some familiar

properties of the Dirac theory, which will be needed to sketch the derivation of the Spin-

Rotation coupling ω · S. Mathematical formulas of the Dirac theory in flat spacetime

will be introduced axiomatically without evidence or any efforts to emphasise or prove

the relations, giving references to certain terms and equations, that are suspected to be

unknown. Major sources for the following relations are [7] and [8].

In the relativistic regime the evolution of a massive particle is given by the Dirac equation

i~
∂

∂t
ψ(r, t) =

[
c

3∑
i=1

α̂ip̂
i + β̂mc2

]
ψ(r, t) , (2.1)

where the Dirac Hamiltonian HD is given by the expression in the square bracket

HD = c α̂ip̂
i + β̂mc2 , (2.2)

where the Einstein summation convention has been implemented casually in Eq. (2.2)

and will be used from now on. In this representation Eq. (2.1) resembles the typical

form of the famous Schrödinger equation

i~
∂

∂t
ψ(r, t) = HDψ(r, t) . (2.3)

There are however new elements in Eq. (2.2) that need some explanation. To be more
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2 Theoretical foundations

precise the two new components α̂i and β̂, that have been introduced, come along with

several conditions:

• For the Hamiltonion HD in Eq. (2.2) to be Hermitian, α̂i and β̂ also have to be

Hermitian matrices.

• The components α̂i and β̂ have to obey the following three mathematical conditions

making these elements belong to a certain algebraic structure, i.e. the Clifford-

Algebra:

α̂iα̂j + α̂jα̂i = {α̂i, α̂j} = 2δij1 (2.4)

α̂iβ̂ + β̂α̂i = {α̂i, β̂} = 0 (2.5)

β̂2 = 1 . (2.6)

For spin-1/2 particles the Eqs. (2.4) - (2.6) require α̂i and β̂ to be 4× 4 matrices, whose

standard representation is given by

α̂i =

(
0 σ̂i

σ̂i 0

)
β̂ =

(
12 0

0 −12

)
, (2.7)

where the typical block notation with 2 × 2 matrices has been used for the identity

matrix 12 = diag(1,1) and the Pauli matrices σ̂i, witch are

σ̂x =

(
0 1

1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0

0 −1

)
. (2.8)

The Hermicity and the anti-commutation rules are the only constraints on α̂i and β̂.

The representation of the matrices α̂i and β̂ is unique up to a unitary equivalence

α̂i → Û α̂iÛ
−1 and β̂ → Û β̂Û−1 with Û Û † = 1.

As a consequence of the matrix property of α̂i , β̂ the wave-function ψ(r, t) becomes a

vector of 4 wave functions, which is called spinor

11



2 Theoretical foundations

ψ(r, t) =


ψ1(r, t)

ψ2(r, t)

ψ3(r, t)

ψ4(r, t)

 . (2.9)

Lorentz Covariant representation of the Dirac equation

In a majority of cases the Dirac equation for a free particle is given not in the form (2.1)

but in an equivalent, yet more obvious, Lorentz covariant form

[i~γ̂α∂α −mc]ψ(x) = 0 , (2.10)

where the anti-commutation relations Eqs. (2.4) - (2.6) now reads as

{γ̂α, γ̂β} = 2ηαβ1 (2.11)

and the new gamma matrices γ̂α = (γ̂0 , γ̂i)
T

, also called Dirac matrices, are related to

α̂i and β̂ by

γ̂0 = β̂ γ̂i = β̂α̂i . (2.12)

The gamma matrices γ̂α are unitary, but for α 6= 0 not Hermitian: γ̂i = −(γ̂i)†. This

property is called skew-Hermitian. With the relations above the Hamiltonian Eq. (2.2)

can also be written in terms of the gamma matrices

HD = cγ̂0γ̂ip̂i + γ̂0mc2 . (2.13)

At this point the definition of covariance should be clarified.

The meaning of general covariance refers to physical laws, which are invariant under

arbitrary differentiable coordinate transformations. A mathematical description that is

independent of charts can be obtains by employing tensorial quantities, that under a

change of coordinates obey the general tensor transformation law

T µ
′
1···µ′m

ν′1···ν′n =
∂xµ

′
1

∂xµ1
· · · ∂x

µ′m

∂xµm
∂xν1

∂xν
′
1
· · · ∂x

νn

∂xν′n
T µ1···µm

ν1···νn . (2.14)

12



2 Theoretical foundations

For example, the components of a vector V µ transforms like

V µ′ =
∂xµ

′

∂xµ
V µ . (2.15)

For a mixed tensor of rank 2, Eq. (2.14) yields

F µ′
ν′ =

∂xµ
′

∂xµ
∂xν

∂xν′
F µ

ν . (2.16)

These objects transform under general coordinate transformations. Lorentz covariance

is a special kind of linear coordinate transformation in flat spacetime, that only calls for

invariance under a global Lorentz transformation

V α′ = Λα′
αV

α , (2.17)

where the Λ̂’s also satisfy the relation

ηαβ = Λα′
αΛβ′

βηα′β′ . (2.18)

Hence the indices of a tensor, that is covariant under Lorentz transformation, is given

by

Tα
′
1···α′m

β′1···β′n = Λα′1
α1 · · ·Λα′m

αm Λβ′1
β1 · · ·Λβ′n

βnTα1···αm
β1···βn , (2.19)

where Λβ′
β ≡ (Λ−1)

β′

β, i.e. the inverse of the Lorentz transformation. If the Dirac

equation is Lorentz covariant, then results of this theory are valid in all frames in flat

spacetime. A set of these spacetime independent matrices Λ̂ form the Lorentz group

under matrix multiplication O(3,1). Employing the following two conditions

det(Λ) = +1 Λ0
0 ≥ 1 , (2.20)

yields the proper, orthochronous Lorentz subgroup SO+(3, 1), which is the Lorentz group

that is usually being referred to.

Since Eq. (2.1) is conform with quantum mechanics and special relativity, the question

remains how spinors change under a Lorentz transformation. One has to distinguish

between Minkowski-space and 4-spinors, that are elements of a complex vector space.

13



2 Theoretical foundations

For this purpose a matrix Ŝ(Λ̂) is applied to the spinor, which takes ψ′(xµ
′
) (notice that

the prime is not just over the index) to ψ(xµ) under a Lorentz transformation

ψ′(x′) = Ŝ(Λ̂)ψ(x) . (2.21)

Inserting this ansatz into Eq. (2.10) in the primed reference frame, i.e. spin and coor-

dinate transformed representation, yields

Ŝ(Λ̂) γ̂α Λα′
αŜ
−1(Λ̂) = γ̂α

′
. (2.22)

The inclusion of Lorentz covariant spin transformation has led to the necessary transfor-

mation (2.22), that connects two distinct sets of Dirac - matrices, of which both satisfy

the Clifford relations. The Lorentz covariance of Eq. (2.10) is ”usually approached by

keeping the same representation of the γ̂ matrices in the Lorentz transformed coordi-

nate system so that the burden of the transformation is thrown on the wave function by

means of an equivalence transformation” [9]. As an aside, in mathematical jargon spinors

transform according to the covering group SL(2;C) and there exists a homomorphism

from SL(2,C) to the Lorentz group SO+(1, 3).

An explicit representation for Ŝ can be determined by an infinitesimal proper Lorentz

transformation

Λα
β = δαβ + εαβ , (2.23)

where εαβ = −εβα is antisymmetric. Without proof the form of Ŝ for finite Lorentz

transformation in spinor space is given by [10]

S(Λ̂) = exp
(
iΣαβε

αβ
)
, (2.24)

where Σαβ are the generators of the Lorentz group and can be expressed in terms of the

gamma matrices as

Σαβ = − i
8

[
γα, γβ

]
. (2.25)

The information so far is standard in relativistic quantum mechanic and has been im-

plemented with forethought of the sections to come.

14



2 Theoretical foundations

2.1.2 Dirac equation in curved spacetime

In the last section it has been stressed that the Dirac equation is Lorentz covariant, thus

expresses the correct transformation between inertial observers. However, to describe

accelerating particles mathematically, e.g. particles in a rotating frame, in the relativistic

aspect one has to make modifications on the theory. A generally covariant equation is

needed, which transforms like a tensor according to Eq. (2.14) and which differentiates

the Dirac spinor in curved spacetime correctly. The solution of this problem will be

given right after the following necessary preliminary subsection, which is designed to

only comprise the most rudimentary explanation of important terms.

The ’frame’work

Often it is required to decompose a vector using some particular coordinate system,

that can not only be rectangular but also curvilinear. Common examples of curvilinear

coordinates are the polar coordinate system in 2 dimensions or cylindrical and spherical

coordinate systems in 3D. In general coordinate lines can also run like in Fig. 2.1, which

illustrates a few concepts of curvilinear coordinates. The upcoming content has been

extracted primarily form [11] and [12].

The number of coordinate lines (see dashed lines) equals the dimension of the space

viewed. In flat spacetime one could define now a globally orthogonal basis. The basis

vectors in curved spacetime at a specific position, which is indicated by the black vectors

in Fig. (2.1), are given only locally by the tangent vectors to the coordinate lines

ê(µ) = ∂(µ) . (2.26)

This is the ’natural’ differential basis that spans the tangent space Tp at a point p.

A basis like this, that is derived from coordinate lines, is called a holonomic basis or

coordinate basis. Any vector V ∈ Tp is therefore given by a linear combination of the

∂(µ)

V = V µê(µ) = V µ∂(µ) . (2.27)

In finite dimensions there exists another associated dual vector space V ∗ of equal dimen-

sion. A local cobasis in a cotangent space T ∗p is given by the gradients of the coordinate

15
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êHaL
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Figure 2.1: Curvilinear chart on a two-dimensional manifold. Black vector are tangents

to the coordinate lines and depict the coordinate basis. The red vectors are

a random basis, known as tetrad.

functions

θ̂
(µ)

= dx(µ) (2.28)

and a covector, also called dual vector or one-form, can be decomposed as

ω = ωµθ̂
(µ)

= ωµdx
(µ) . (2.29)

The tensor product of the basis and cobasis gives the orthonormality relation

ê(µ) ⊗ θ̂
(ν)

= δνµ . (2.30)

With the dual vector space introduced, a linear map from the original vector space to

16



2 Theoretical foundations

the space of real numbers V × V ∗ → R, can be given by

ω(V) = ωµV
ν ê(µ)θ̂

(ν)

= ωµV
νδµν

= ωµV
µ ∈ R .

(2.31)

Since these results cannot depend on the coordinate system used, it is possible to choose

a different basis, preferably an orthonormal one (which must have the the appropriate

signature of the manifold that is worked on). The red vectors ê(α) in Fig. (2.1) illustrate

two bases at two points on the manifold. In reference to the definition above, these bases

are called non-holonomic basis or non-coordinate basis and one particular set of basis is

known as tetrad or n-Bein.

Unlike a coordinate basis, tetrads are independent of a coordinate system, which will,

in analogy to flat spacetime indices, be indicated by the first four Greek letters α, β,

γ, δ . It is now possible to write the position-dependent coordinate basis as a linear

combination of the tetrad

ê(µ)(x) = Eµ
α(x) ê(α) , (2.32)

where Eµ
α(x) is called vierbein field, which is a n × n invertible matrix. The last fact

enables the representation of the tetrad in terms of the coordinate basis

ê(α) = Eµ
α(x) ê(µ)(x) (2.33)

and orthonormality conditions read as

Eµ
α(x)Eν

α(x) = δµν Eµ
α(x)Eµ

β(x) = δαβ . (2.34)

It is favourable for the tetrad to be orthonormal, in which case the metric tensor can be

written in the canonical form ηαβ, so that the inner product can be expressed as

g
(
ê(α), ê(β)

)
= ηαβ . (2.35)

Using Eq. (2.33), this relation in terms of the vierbein fields yields

gµν (x)Eµ
α(x)Eν

β(x) = ηαβ . (2.36)

17



2 Theoretical foundations

Naturally, there is a non-coordinate dual basis in the cotangent space T ∗p , where (2.30)

is analogously defined as

θ̂
(α) ⊗ ê(β) = δαβ , (2.37)

just as the Eqs. (2.32), (2.33) change to

ê(µ)(x) = Eµ
α(x) ê(α) ê(α) = Eµ

α(x) ê(µ)(x) . (2.38)

Recapitulating the previous definitions, the important concept to be remembered is that

there exists an ’inherent basis’, that is a set of vectors derived from the mesh of coordinate

lines, and an arbitrary ’laboratory frame’. These bases can be mutually related to each

other by introducing the vierbein field. Same goes for the dual basis. One important

property of this vierbein field can be seen by the representation of a vector in the two

distinct bases

V = V µê(µ) = V αê(α) . (2.39)

This indicates that the vierbein field makes it possible to switch between the bases as

well as the sets of indices

V α = Eµ
α(x)V µ V µ = Eµ

α(x)V µ , (2.40)

a method, that can be easily expanded to tensors with mixed indices of arbitrary rank

(see (2.44)). The Minkowski metric ηαβ and the general metric tensor gµν belong to their

respective index and can be used to lower and raise indices, for example

Eµ
α(x) = gµν(x) ηαβ Eν

β(x) . (2.41)

The next point to settle is to define a transformation of the tetrads ’among each other’.

This is achieved by a local Lorentz transformation

ê(α′) = Λα
α′(x) ê(α) , (2.42)

18



2 Theoretical foundations

with

ηα′β′ = Λα′
αΛβ′

βηαβ . (2.43)

With these matrices Λα
α′(x), which depend on spacetime, Lorentz transformation can

now be locally applied in all frames at every point in spacetime. The general coordinate

transformations of a mixed (2,2) tensor can be written as

Tα
′µ′
β′ν′ = Λα′

α(x)
∂xµ

′

∂xµ
Λβ′

β(x)
∂xν

∂xν′
Tαµβν . (2.44)

Before introducing further concepts the commutator of the tetrads shall be shortly ex-

amined here. Unlike in the coordinate base

[ê(µ), ê(ν)] = [∂(µ), ∂(µ)] = 0 , (2.45)

the tetrad components do not commute, instead they give rise to the ’commutation

constants’ Cγ
αβ [13]

[ê(α), ê(β)]
(2.33)
=
[
Eµ

α(x) ∂(µ), E
ν
β(x) ∂(ν)

]

= Eµ
α
∂Eν

β

∂xµ
∂

∂xν
− Eν

β
∂Eµ

α

∂xν
∂

∂xν
≡ Cγ

αβê(γ) .

(2.46)

This equation makes the coefficient constants Cγ
αβ depend only on the tetrad used. In

general they will not vanish, but pretty soon they will be of good use.

Connections

The requirement for modifications on the Dirac theory in curved spacetime shall be

made apparent by the following point. In flat spacetime tensorial objects are subjected

to the transformation Eq. (2.19) and it has been implied, that spinor representations are

defined in relation to the double cover of the Lorentz group. To describe a physical law in

curved spacetime in all frames equivalently, one uses tensors satisfying the general tensor

transform Eq. (2.14), where a set of these tensor transformation matrices represent

elements of the general linear group GL(4,R). However, this group has no ’multi-
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valued representation’. For a finite-dimensional spinorial representation a restriction of

GL(4,R) onto the orthogonal subgroup SO+(1, 3) is needed [14].

To put it briefly, spinors in curved spacetime are usually defined relative to a locally

Minkowski frame. The piece that needs to be added to the theory is the construct of

a connection, a mathematical instrument to correctly compare one local geometry with

another one at another point of the manifold and relate them correctly.

Writing the Lorentz covariant Dirac equation once more

[i~γ̂α∂α −mc]ψ(x) = 0 , (2.10)

the first modification sought is a change of the Lorentz tensors with generally covariant

tensors (sometimes known as the principle of general covariance), thus

ηαβ → gµν(x)

γ̂α → γ̂µ(x)

∂α → ∂µ(x) .

(2.47)

The first two relations are fine and give the generalization of the anti-commutation rule

{γ̂α, γ̂β} (2.40)→ {γ̂µ, γ̂ν} = 2gµν1 , (2.48)

but the partial derivative of a tensor is not generally covariant. For example the trans-

form of the derivative of a covector ∂µVν yields

∂µ′Vν′
(2.14)
=

(
∂xµ

∂xµ′
∂µ

)(
∂xν

∂xν′
Vν

)
=
∂xµ

∂xµ′
∂xν

∂xν′
∂µVν + Vν

∂2xν

∂xµ′∂xν′
. (2.49)

Due to the existence of the second term, clearly this is not a (0,2) tensor. A ’correction’

term has to be added to the partial derivative, to account for the change of the vector

basis along a direction in curvilinear coordinates

∂µê(ν) = ∂µ∂(ν) ≡ ∂(σ)(Γµ)σν . (2.50)
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The matrices (Γµ)σν are called the affine connection or connection coefficients, where

the parentheses are usually dropped. With this, the covariant derivative can be obtained

from

∂µV = ∂µ(∂(ν)V
ν) = ∂(ν)∂µV

ν + ∂µ∂(ν)V
ν

(2.50)
= ∂(ν)∂µV

ν + ∂(σ)Γ
σ
µνV

ν

= ∂(σ)

(
δσν ∂µ + Γσµν

)
V ν ≡ ∂(σ)(∇µ)σνV

ν .

(2.51)

Thus the correct change from Lorentz covariant to general covariant is given by ∂α →
∇̂µ, where ∇̂µ is an abbreviation of (∇µ)σν . The usual properties of the covariant

derivative (not all of them are essential) are [12]:

1. Linearity: ∇̂(T + S) = ∇̂T + ∇̂S

2. Leibniz product rule: ∇̂(T ⊗ S) = (∇̂T )⊗ S + T ⊗ (∇̂S)

3. Commutation with contractions: ∇̂µ(T λλρ) = (∇̂T ) λ
µ λρ

4. Reduction to partial derivative for scalars: ∇̂µφ = ∂µφ

5. Torsion-freeness : Γσµν = Γσνµ

6. Metric compatibility: ∇̂σgµν = 0 .

The last point in the list of properties is usually defined, because this fixes a unique affine

connection on a manifold, called the Levi-Civita connection or Christoffel symbols. Point

1-4 also enables to write the covariant derivative of vector and covector components as

∇̂µV
ν = ∂µV

ν + ΓνµσV
σ

∇̂µων = ∂µων − Γσµνωσ
(2.52)

or generally the covariant derivative of a tensor with upper and lower indices as

∇̂σT
µ1···µm

ν1···νn = ∂σT
µ1···µm

ν1···νn + Γµ1

σλT
λ···µm

ν1···νn · · · − Γλσν1
T µ1···µm

λ···νn · · · (2.53)

With this Eq. (2.53), the metric compatibility can be rewritten as

∇̂σgµν = ∂σgµν − Γρσµ gµρ − Γρσν gρµ = 0 . (2.54)
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It goes without saying that the affine connection and the equations corresponding to it

can also be represented in a non coordinate basis. For example Eq. (2.50) changes to

[15]:

∂µê(α) = ωβµαê(β) , (2.55)

where ωβµα(x) in an orthonormal basis is called spin connection, Lorentz connection or

Ricci rotation coefficients. A list of important relations for this spin connection shall be

given. A comparison to (2.52) shows the close analogy to the definitions

∇̂µV
α = ∂µV

α + ωµ
α
βV

β

∇̂µVα = ∂µVα − ωµβαVβ ,
(2.56)

where the affine connection Γ and the spin connection ω can be related to each other,

if the covariant derivative of a vector is examined in both bases

∇̂X =
(
∇̂µê

(µ) ⊗Xν ê(ν)

)
= (∂µX

ν + ΓµνσX
σ)
(
ê(µ) ⊗ ê(ν)

)
=
(
∇̂µê

(µ) ⊗Xαê(α)

)
=
(
∂µX

α + ωµ
α
βX

β
)(
ê(µ) ⊗ ê(α)

)
.

(2.57)

Using Eqs. (2.39) and (2.41) for the lower right-hand side reveals

Γσµν = Eα
σ
(
∂µE

α
ν + ωµ

α
βE

β
ν

)
ωµ

α
β = −Eβν

(
∂µE

α
ν − ΓσµνE

α
σ

)
.

(2.58)

On the the basis of this, the tetrad postulate can be derived, by taking the covariant

derivative of the vierbein field

∇̂µE
α
ν(x) = ∂µE

α
ν − ΓσµνE

α
σ + ωµ

ν
βE

β
ν

(2.58)
= 0 , (2.59)

where the Lorentz index got a spin connection term and the general index the affine

connection term. This relation shows that covariant derivative and the vielbein field

commute. The next important relation unfolds from the metric compatibility

∇̂σgµν = 0
(2.35)→ ∇̂σηαβ = ∂σηαβ − ωµγα ηγβ − ωµ

γ
β ηαγ = 0 . (2.60)

22



2 Theoretical foundations

Thus the connection coefficient is antisymmetric in two indices

ωµαβ = −ωµβα . (2.61)

From the vanishing of the torsion it can be shown that under cyclic permutations of the

first equation in (2.58) and using the antisymmetric property of the connection coefficient

in the orthonormal basis Eq. (2.61) results in [15]

ωαβµ = −1

2
(Cαβµ + Cβµα − Cµαβ) . (2.62)

It shall be mentioned that both, affine and spinor connections, do not transform as

tensors, but are build such that the covariant derivatives are tensors. In case of the spin

connection local Lorentz invariance imposes additionally that ∇̂µΛα′
α(x) = 0, since

∇̂µV
α′ = ∇̂µ(Λα′

αV
α) = (∇̂µΛα′

α)V α + Λα′
α(∇̂µV

α) (2.63)

is only a tensor if the first term on the right side of the equation equals zero. The

vanishing of the covariant derivative of the Lorentz transformation can be used to see

how the spin connection transforms

0 = Λβ′
α
(
∇̂µΛα′

α(x)
)

= Λβ′
α
(
∂µΛα′

α + ωµ
α′

γΛ
γ
α − ωµγαΛα′

γ

)
.

(2.64)

Since Λβ′
αΛγ

α = δγβ′ the inhomogeneous spin connection transformation is

ωµ
α′

β′ = Λβ′
αΛα′

γωµ
γ
α − Λβ′

α∂µΛα′
α . (2.65)

Now that all tools for describing spinor fields and taking their derivatives have been

developed, the issue of the Dirac equation in curved spacetime can be tackled (without

delving too much into the subject).
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Explicit Solution

The following two points will be incorporated to devise a generally covariant represen-

tation of the Dirac equation:

1. The spinor field ψ(x) transforms as a scalar under general coordinate transforma-

tion and under a local Lorentz transformation as

ψ(x)→ ψ′(x′) = Ŝ(Λ̂(x))ψ(x) . (2.66)

2. A local spin transformation is carried out by a covariant derivative with B̂µ(x)

being the spin connection field, thus

∇̃µψ(x) = (∂µ + B̂µ)ψ(x) . (2.67)

Using the correct principle of general covariance the Dirac equation in curved spacetime

yields

[
i~γ̂µ∇̃µ −mc

]
ψ(x) = 0 , (2.68)

with γµ = Eα
µγ̂α, where the gamma matrices γ̂α are given by the standard representation

Eq. (2.12). Local Lorentz invariance of Eq. (2.68) yields a new transformation property

of the field B̂µ(x), which can be derived from the requirement [10]

∇̃µ′Ŝ(Λ̂(x))ψ(x) = Ŝ(Λ̂(x))∇̃µψ(x) . (2.69)

Evaluating the requirement Eq. (2.69) gives

B̂µ′(x) = Ŝ−1(Λ̂(x))Bµ(x)Ŝ(Λ̂(x)) + Ŝ−1(Λ̂(x))(∂µŜ(Λ̂(x))) . (2.70)

Representation invariance under a combined local Lorentz and general coordinate trans-

formation in analogy to invariance for the Dirac equation in flat spacetime [10] also

yields [
i~γ̂αEαµ∇̃µ −mc

]
ψ(x) = 0

=

[
i~γ̂α

(
∂xµ

∂xµ′
Λα′

αEα′
µ′
)
∇̃µ −mc

]
Ŝ−1(Λ̂(x))ψ′(x′) = 0
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Ŝ(Λ̂(x))
(
i~γ̂αΛα′

αEα′
µ′∇̃µ′

)
Ŝ−1(Λ̂(x))ψ′(x′)−mcψ′(x′) = 0

[
i~Ŝ(Λ̂(x))γ̂αΛα′

αŜ
−1(Λ̂(x))∇̃µ′ −mc

]
ψ(x) = 0 , (2.71)

The comparison of Eq. (2.71) with the original representation (2.68) has brought back

the identical expression of flat spacetime, given by Eq. (2.22), except that Ŝ(Λ̂(x)) here

is local and that another transformation has been imposed on the spinor connection field

B̂µ(x).

Simply put, the invariance under a local Lorentz transformation and and general coor-

dinate transformation for the Dirac equation in curved spacetime is achieved by

γ̂α
′
= Ŝγ̂αΛα′

αŜ
−1

Bµ′ = Ŝ−1BµŜ + Ŝ−1(∂µŜ) .
(2.72)

As a final point, the connection field Bµ(x) has to be given an explicit expression, which

can be derived by considering an infinitesimal Lorentz transformation

Λα
β = δαβ + εαβ(x) , (2.73)

where εαβ is antisymmetric, but in comparison to Eq. (2.23) depends on spacetime. The

matrix Ŝ(Λ̂(x)) in this form is given by

Ŝ(1 + ε) = 1 + i εαβΣαβ . (2.74)

The following derivation and argumentations has been found in [10]. Inserting the

infinitesimal form (2.74) for Ŝ(Λ̂(x)) into the transformation relation of B̂µ′ , gives to

first order in εαβ

Bµ′(x) = Bµ(x) + iεαβ [Σαβ, Bµ(x)]− i∂µεαβΣαβ . (2.75)

”The connection should take its value in the Lie algebra of SO(1, 3)”, so Bµ may be

written
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B̂µ(x) = Bµ
αβ(x)Σαβ . (2.76)

Inserting this ansatz into the Eq. (2.75) gives

Bµ′
αβ = Bµ

αβ +Bµ
β
γ ε

γα −Bµ
α
γ ε

γβ − i∂µεαβ . (2.77)

This result can be compared with the transform of the spin connection Eq. (2.65), where

the insertion of the infinitesimal Lorentz transformation Eq. (2.73) yields

ωµ′
αβ = ωµ

αβ + ωµ
β
γε
γα − ωµαγε

γβ − ∂µεαβ . (2.78)

This term is identical to the previous equation, except in the last term. Thus, comparison

of the connection and the field results in

Bµ
αβ = i ωµ

αβ . (2.79)

This relation justifies the name spin connection for ωαβµ , since the coefficients are used

to properly transform the Dirac field with respect to local transformations. Another

diligent derivation of this relation shows the link of the spin connection to the vierbein

field [11]

ωµ
α
β = −Eν

β∇̃µEν
α . (2.80)

Finally, the covariant derivative of the spinor field can be written as

∇̃µψ(x) = (∂µ + B̂µ)ψ(x)

= (∂µ + iωµαβΣαβ)ψ(x)

(2.25)
=

(
∂µ +

1

8
ωµαβ[γ̂α, γ̂β]

)
ψ(x)

(2.81)

and consequently the final form of the Dirac equation in a non-inertial frames is[
i~γ̂µ

(
∂µ +

1

8
ωµαβ[γ̂α, γ̂β]

)
−mc

]
ψ(x) = 0 . (2.82)
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2.1.3 Deriving the Spin Rotation coupling

The derivation of the spin rotation coupling from the generally covariant Dirac equation,

given by Eq. (2.82), will be performed shortly on the basis of Ryder’s article [16]. The

prediction of an interaction of intrinsic spin with the angular frequency was made with

respect to a non-inertial, rotating frame. Therefore one considers a frame rotating about

the z-axis, with

t′ = t x′ = x cos(Ωt)− y sin(Ωt) y′ = −x sin(Ωt) + y cos(Ωt) z′ = z , (2.83)

where Ω is the real-valued, angular frequency. From the definition

ds2 = ηαβdx
αdxβ = gµνdx

µdxν , (2.84)

the Minkowski line element ds2 = c2dt′2−dx′2−dy′2−dz′2 in these coordinates becomes

ds2 (2.83)
=

[
1−

(
Ω

c

)2

(x2 + y2)

]
c2dt2 + 2

Ω

c
(ydx− xdy)cdt− dx2 − dy2 − dz2 . (2.85)

Defining the cobasis (2.28) as

θ0 = cdt θ1 = dx− Ωydt θ2 = dy + Ωxdt θ3 = dz , (2.86)

puts the line element into the orthonormal form

ds2 =
(
θ0
)2 −

(
θ1
)2 −

(
θ2
)2 −

(
θ3
)2
. (2.87)

Utilizing the orthonormality relation ê(µ) ⊗ θ̂
(ν)

= δνµ (2.30) a rotating orthonormal

tetrad can be obtained

e0 =
1

c
∂t +

Ωy

c
∂x −

Ωx

c
∂y e1 = ∂x e2 = ∂y e3 = ∂z . (2.88)

At this point it is helpful to recall two important relations, which have been established

in the previous sections
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[ê(α), ê(β)] = Cγ
αβê(γ) (2.46)

ωαβµ = −1

2
(Cαβµ + Cβµα − Cµαβ) . (2.62)

It is evident that the only commutators that do not vanish are

[e0, e1] =
Ω

c
e2 = C2

01 e2 [e0, e2] =
Ω

c
e1 = C1

02 e1 . (2.89)

With Cαβγ = ηαδC
δ
βγ the spinor coefficients are given by

ω120 = −ω210 =
Ω

c
. (2.90)

Finally, the spin connection matrices for this tetrad are given by B̂i = 0 and

B̂0
(2.81)
=

1

8
[γ̂α, γ̂β]ωαβ0 =

1

4

Ω

c
[γ̂1, γ̂2] = − i

2c
ΩΣ3 , (2.91)

where Σi ≡ diag(σ̂i, σ̂i). Thus the Dirac equation is given by[
i~γ̂µ∂µ +

1

c
γ0~Ω

2
Σ3 −mc

]
ψ(x) = 0 , (2.92)

from which an explicit form of the Hamiltonian in the rotating frame can be deduced

by transforming back according to Eq. (2.12)

H ′D = mc2β̂ − i~c α̂i∂i −
~Ω

2
Σ3 . (2.93)

The last term in given by Eq. (2.93) is the interaction of spin with the angular velocity

of a frame rotating around the z-axis. An important insight, mentioned by Ryder [16]

and Hehl & Ni [17], is that the tetrad Eq. (2.88) is a rotating tetrad in reference to

Fermi-Walker transport. The condition of Fermi-Walker transport is [18]

dvm

dτ
= ui∇iv

m = (uman − unam) vn , (2.94)

where ui is the velocity and aj the acceleration of an observer along a curve. A frame

28



2 Theoretical foundations

that is Fermi-Walker transported defines a spatial triad êi which is not rotating. ”It

ensures that the tetrad remains orthonormal and the time direction coincides with the

direction of the four velocity”. The factor (uman − unam) vn accounts for the inevitable

’rotation’ and Fermi-Walker transport ensures that there is no additional rotation of the

spacial basis vectors” [18].

However it can be calculated [16] that ∇0e1 = −Ω
c
e1 6= 0, thus the frame is a rotating

system.

2.2 Nonrelativistic limit and Foldy-Wouthuysen

transformations

In the previous section it has been described that the coupling of spin to angular velocity

arises in the relativistic case. An important requirement of relativistic theories is the

derivation of physical laws in the non-relativistic limit. For that purpose a procedure

is sought to find the non-relativistic limit of the Dirac Hamiltonian, which generates

diagonal correction terms to arbitrary orders. One suited method for this aim is the

Foldy-Wouthuysen transformation (FWT), whose central idea is the separation of posi-

tive and negative-energy states [19] and which can be used to find a proper Hamiltonian

in the non-relativistic limit. This method is briefly explained in the following section.

The Dirac Hamiltonian can be grouped into two types of operators, odd Ô and even Ê
operators. Odd operators couple large and small components of the Dirac spinor (e.g.

α̂i, γ5), whereas an even operator has no such matrix elements (e.g. 1, β̂, σ̂i). Every

operator can be decomposed into a sum of an odd and an even operator. In the case of

the Hamiltonian in Eq. (2.93)

HD = β̂mc2 + Ê + Ô , (2.95)

with Ê = −~Ω
2

Σ3 = −ΩS and Ô = −i~c α̂i∂i = cαp. The ambition of the FWT is to find

a unitary transformation, that ”successively removes odd terms from the Hamiltonian

to any desired order in (1/mc2)”. The decoupling is performed by

ψ′ = eiSψ , (2.96)
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where S can be in general time-dependent. Inerting this ansatz into the Dirac Hamilto-

nian in the Schrödinger form Eq. (2.3) yields

i~
(
∂te
−iS)ψ′ + i~e−iS∂tψ′ = HDe

−iSψ′ . (2.97)

Rearranging the terms

i~∂tψ′ =
[
eiS (HD − i~∂t) e−iS

]
ψ′ ≡ H ′Dψ

′ , (2.98)

delivers the form of the FWT

H ′D = eiS (HD − i~∂t) e−iS . (2.99)

This formula can be expanded into a series of nested commutators by Hadamard’s Lemma

(see Baker-Campbell-Hausdorff formula)

eXY e−X =
∞∑
m

1

m!
[X, Y ]m

= Y + [X, Y ] +
1

2!
[X, [X, Y ]] +

1

3!
[X, [X, [X, Y ]]] + · · · ,

(2.100)

where [X, Y ]0 ≡ Y and [X, Y ]m ≡ [X, [X, Y ]m−1]. Applying this on the Hamiltonian

given by Eq. (2.99) for the case that S is time-independent yields to second order

H ′D = HD + [iS, HD] +
1

2
[iS, [iS, HD]] + · · · . (2.101)

From this the non-relativistic approximation can be calculated with the canonical trans-

formation for S, given by

S = − i

2mc2
β̂Ô . (2.102)

The first commutator of H ′D is

[iS, HD] = i

[
−i

2mc2
β̂Ô,

(
β̂mc2 + Ê + Ô

)]
=

1

2mc2

(
[β̂Ô, β̂]mc2 + [β̂Ô, Ê ] + [β̂Ô, Ô]

)
.

(2.103)
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The product of two even matrices or of two odd matrices is an even matrix, while the

product of an odd matrix and an even matrix is an odd matrix. Furthermore β̂ commutes

with all even matrices [β̂, Ê ] = 0 and anti-commutes with all odd operators {β̂, Ô} = 0.

Thus, the three commutators in Eqs. (2.103) are given by

[β̂Ô, β̂] = −2Ô

[β̂Ô, Ê ] = β̂[Ô, Ê ]

[β̂Ô, Ô] = 2β̂Ô2

(2.104)

and the commutator relation Eq. (2.103) becomes

[iS, HD] = −Ô +
1

2mc2
β̂[Ô, Ê ] +

1

mc2
β̂Ô2 . (2.105)

The first term in this expression is −Ô, which inserted into the FW- Hamiltonian in Eq.

(2.101) erases the odd operator to first order in H ′D, so that odd matrices only occur in

orders of 1
mc2

and smaller, thus

H ′D = β̂mc2 + Ê +
1

2mc2
β̂[Ô, Ê ] +

1

mc2
β̂Ô2 +

1

2
[iS, [iS, HD]] + · · · . (2.106)

It is possible to evaluate the commutators of higher orders and separate the new operator

again into odd and even components H ′′D = β̂mc2+E ′+O′. However, instead of exploring

this further, the result of the Hamiltonian to order of 1
mc2

is given here following reference

[19], where the derivative Ṡ has been set zero (Ṡ = 0), so

H ′D = β̂mc2 + E +
1

2mc2

(
β̂O2 + β̂[O, E ]

)
+ · · · . (2.107)

With O2 = c2(αp)2 = c2p2 the Hamilton operator in the lowest order reduces to three

terms, i.e the rest mass, the kinetic energy and the spin - rotation coupling

H = β̂mc2 + β̂
p2

2m
−ΩS . (2.108)

Two asides shall be made here. First, this derivation has been performed in a very
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close analogy to the paper of Hehl & Ni [17]. Thereby they have used a frame that is

subjected to both rotation Ω and acceleration a. In the non-relativistic approximation

they found the solution to a more general case

H = β̂mc2 + β̂
p2

2m
+ β̂m(a · r)

β̂

2mc2
p (a · r) · p

−Ω · (L + S) +
~

2mc2
σ̂(a× p) + higher-order terms ,

(2.109)

witch for L = 0 and a = 0 reduces to the previous equation (2.108). Secondly, it has

been alluded to the fact that the FWT’s central idea is to separate the positive and

negative energy states of the Dirac field. Consequently, it is actually possible to find a

solution that is valid at all energies. The retrieval of an relativistic exact form of the

Foldy-Wouthuysen in the special case of a Hamiltonian with spin-rotation coupling can

be found in [20].

Eventually, there is a quantum-classical analogue to the spin-rotation coupling. The

motion of a particle with magnetic moment µ in the presence of an uniform external

magnetic field B is given by the Hamiltonian

HP = H0 +
q

mc
p ·A− µ ·B , (2.110)

where A = 1
2
B× r is the vector potential [21].

2.3 Interaction of free neutrons with magnetic fields

After the implementation of the mathematical foundations of the spin rotation coupling,

the theory of the applicative part is described here. For the experiment described in

chapter 4 the behaviour of neutrons in magnetic fields has to be analyzed.

To measure observational effects of the spin-rotation coupling, a rotating frame of ref-

erence has to be arranged in the experiment. Instead of mechanically rotating, the

neutrons’ spins can be manipulated in magnetic fields, in this case a uniformly rotating

field B(Ω). The non-relativistic equation of motion for these neutrons is given by the

Pauli equation Eq. (2.110), which in the non canonical form of the momentum operator

is given by
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[
~2

2mn

∆ + µσ̂B

]
ψ(r, t) = −i~ ∂

∂t
ψ(r, t) , (2.111)

where ψ(r, t) is a two dimensional spinor wave function, analogue to the four dimensional

spinor (2.9). From the definition of the time evolution of an operator in quantum theory

d

dt
〈Â〉 = 〈∂Â

∂t
〉 − i

~
〈[Â,H]〉 , (2.112)

the Larmor precession can be deduced, by examining the evolution of the Pauli matrices

d

dt
〈σ̂〉 = − i

~
〈[σ̂, H]〉 = −iµ

~
〈[σ̂, σ̂B]〉 . (2.113)

From [σ̂i, σ̂j] = 2iεijkσ̂k follows

d

dt
〈σ̂〉 = −2µ

~
〈B× σ̂〉 ≡ −γ 〈B× σ̂〉 , (2.114)

where γ = 1.833 · 108 [rad/ (s T)] is the gyromagnetic ratio of the neutron. For a

spatially homogeneous field Eq. (2.114) can be written as

d

dt
〈σ̂〉 = −γB× 〈σ̂〉 . (2.115)

The polarization vector of a particle is the expectation value of its spin

P = 〈σ̂〉 = 〈ψ| σ̂ |ψ〉 . (2.116)

Thus the relation Eq. (2.115) can also be written as

Ṗ = P× γB . (2.117)

Formally, this equation has the same appearance as a classical magnetic dipole in a ho-

mogeneous magnetic field. This means that the polarization vector P precesses counter-

clockwise about the external magnetic field’s momentary axis B with the angular Larmor

frequency ω̂L(t) = γB(t).

The definition of the polarization vector Eq. (2.116) can be generalized to an ensem-

ble of mixed spin states. The expectation values have to be weighted with a clssical
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probabibility distribution, which motivates the definition of the density matrix

ρ̂ =
∑
i

|ψi〉 pi 〈ψi| , (2.118)

where pi is the probability in the quantum system |ψi〉. The expectation value of a

neutron beam with mixed spin state is given by

P = 〈σ̂〉 = Tr (ρ̂σ̂) . (2.119)

An important measure for the intermixture of the spin states is given by the degree of

polarization

P =
N↑ −N↓
N↑ +N↓

. (2.120)

For an unpolarized beam, the number of up-spins N↑ equals the number of down-spins

N↓, thus P = 0. Pure spin states on the other hand are given in the case P = 1 = 100%.

The degree of polarization of the initial beam of neutrons is almost 100% and the mixture

of the spin states will be neglected.

It is possible to find an analytic solution of Eq. (2.111) for

B(Ω, t) =


B0 cosΩt

0

B0 sinΩt

 B(Ω, t) = 0 for t < 0, t > T . (2.121)

The proper derivation to the solution can be found in the appendix A. The wave function

is given by

ψ(y, t,Ω) =
1√
2π
e
i
(
ky− ~k2

2m
t
)
ei

Ωt
2
σ̂y e−

i
2
α·σ χ(0) . (2.122)

This result has the significant role of describing the evolution of the rotating-spins in

magnetic coils, which is further analyzed in section 3.3.
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3 Experimental Concepts in neutron

polarimetry

The following chapter will give a brief theoretical and practical explanation of the devices

that have been used for the experiment. The tools and technicalities are more or less

standards in neutron polarimetry. The content of the following subsections come mostly

from the diploma thesis [22].

3.1 Neutron source

3.1.1 Reactor

The most common neutron sources that can supply high neutron fluxes and convenient

measurement durations are atom reactors. Our experiment has been executed at the

TRIGA Mark-II research reactor in Vienna. The characteristics of the reactor are in

[23] or [24].

The maximum continous thermal power of the reactor is 250 kWth. The fuel elements

consists of 8%wt uranium with an U235 enrichment of 20%, 91%wt zirconium and 1%wt

hydrogen providing a thermal neutron flux of 1013cm−2s−1 in the central irradiation tube.

The term ”thermal neutron” refers to a subdivision of the free neutron’s kinetic energy,

respectively the neutron velocity, that is analogue to their thermodynamic temperature

(see Tab. 3.1). The corresponding conversion is used

E [meV] = 5.2267 · 10−6v2 = 0.086173T . (3.1)

The nuclear chain reaction is initiated by a Sb-Be neutron source and controlled via

three boron carbide rods, witch serve as absorbers. The insertion of the rods into the

reactor core causes the reactor to get sub-critical due to following two possible nuclear
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Energy [eV] Velocity [m/s] Temperature [K] Subdivision

< 10−5 < 40 < 0.1 ultra cold neutr.

10−5 - 5 · 10−3 40− 1000 0.1− 60 cold neutr.

5 · 10−3 - 0.5 103 − 104 60− 6000 thermal neutr.

0.5 - 103 104 − 4 · 105 6 · 103 − 107 epithermal neutr.

103 - 105 4 · 105 − 4 · 106 107 − 109 intermediate neutr.

105 - 2 · 107 4 · 106 − 6 · 107 109 − 3 · 1011 fast neutr.

> 2 · 107 > 6 · 107 > 3 · 1011 relativistic neutr.

Table 3.1: The neutrons’ names are corresponding to their thermodynamic energies. Ve-

locity and Temperature have been calculated according Eq. (3.1).

reactions

10
5B + 1

0n→ 7
3Li + 4

2He + 2.8MeV (3.2)

10
5B + 1

0n→ 7
3Li∗ + 4

2He + 2.3MeV . (3.3)

Both of the nuclear absorption reactions are so called (α,n) - reactions, since an α -

particle is emitted. These two decay channels occur with a probability of 94% in the

first case (Eq. (3.2)) and 6% in the second case (Eq. (3.3)) [25]. The withdrawal of the

absorber rods enables the fission of the uranium anew and increases the reactors power.

The main moderation of the neutrons takes place in the irradiation tube due to the

zirconium-hydride. This chemical compound has the advantage of a small absorption

cross-section for neutrons and the special property of a moderating efficiency, that is

temperature-dependent, making the nuclear reaction inherently safe at high power. After

the neutrons exit the irradiation tubes, they are moderated in the water by collision with

the hydrogen atoms.

In theory the physical properties of moderators are described by the ’mean logarithmic

reduction of neutron energy per collision’ ξ , which only depends on the atomic mass A

[26]

ξ = ln

(
E0

E

)
= 1 +

(A− 1)2

2A
ln

(
A− 1

A+ 1

)
, (3.4)
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where E0 is the initial energy of the neutron and E is the energy of the neutron after a

collision. The number N of necessary collisions of the neutron that is required to reduce

the kinetic energy from E0 to E can be deduced from 3.4 [27]

N =
1

ξ
ln

(
E0

E

)
. (3.5)

In Tab. 3.2 are shown some results for a moderation of neutrons from 2 MeV to thermal

neutron energy for hydrogen, deuterium and carbon.

H D C

mass [u] 1 2 12

ξ 1 0.73 0.16

N 18.20 25.09 115.34

Table 3.2: Moderation quality of hydrogen, deuterium and carbon. Neutron’s and the

hydrogen’s mass are almost equal, which makes hydrogen a good moderator.

Eventually, the neutrons exit the reactor vessel through one of the beam holes. Further

details and technical aspects can be received at [23].

3.2 Preparation of neutrons

3.2.1 Monochromator

The neutrons that emerge from the reactor have a typical Maxwell-Boltzmann distribu-

tion and therefore posses different wavelengths. To filter one particular, yet continuous

neutron beam (in contrast to pulsed signals) out of a polychromatic ray, a monochro-

mator has to be used. The ordinary way to achieve this is to use certain crystals and

make use of Bragg’s law, i.e.

nλ = 2 dhkl sin (θ) . (3.6)

The list of constants are: n integer, determining the order of the reflecion of the incident

beam at the n-th atomic lattice plane; λ is the wavelength; dhkl spacing between the

planes in the atomic lattice with h,k,l indicating the Miller indices and θ, angle of

incidence.
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In many cases the monochromators are made from mosaic crystals, i.e. blocks of small

crystals aligned in the same orientation. The monochromator installed at the polarimeter

beamline of the TRIGA Mark-II research reactor in Vienna is pyrolytic graphite, where

the neutron beam has a 1st order wavelength of λ(n=1) = 1.99Å and a monochromaticity

of (∆λ)/(λ(n=1)) ∼= 0.02, which have been verified by time of flight measurements. To

remove Bragg peaks of higher order the incident angle between the supermirrors and the

neutrons’ direction of flight has to be adjusted (see chapter 3.2.2). [28]

3.2.2 Suppermirror polarizer

An important issue for neutral particles for optical experiments is controlling and guiding

them without loss, since they cannot be deflected with electric fields. Thermal and cold

neutrons undergo optical effects, which includes the phenomenon of total reflection in

so called guide tubes. They usually have the form of a rectangular cuboid and are made

of highly polished glass, evaporated with layers of nickel, titanium, a nickel/titanium

composite or another reflecting substance with a large nuclear scattering length b.

A major limitation is given by the critical grazing angle φc of the incident beam, which

for single layer mirrors is very small. For Ni and a neutron wave length of λ = 2 Å the

critical angle is φc ≈ 0.2◦. To extend the range of reflection the mirrors are evaporated

with a multilayer of reflecting material with varying refractive index and depth, where

the diffraction maxima are given again by Bragg’s law. Starting from the surface the

lattice constant of the crystals successively increases to achieve constructive interference

of the reflected waves. The concept of the multilayer is illustrated in Fig. 3.1.

If the supermirror’s material is magnetic one can utilize this for the scattering process

and also polarize the neutrons, i.e. prepare all particles to have the same spin states.

Some elemental properties of nuclear and magnetic interaction are explained here.

The effective interaction responsible for the magnetic scattering is the magnetic potential

Vm = −µσ̂B. The corresponding magnetic scattering length p is related to the potential

Vm by the following Fourier transform [29] (also [30])

p (Q) =
mn

2π~2

∫
eiQrVm (r) dr , (3.7)

where Q is the momentum transfer. The second contribution to be considered is the

scattering of bound nucleons with the neutrons. The interaction of a free neutron with a
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Figure 3.1: Schematic principle of a multilayer.

single, point-like nucleon was first introduced by Fermi [29] and is therefore called Fermi

pseudopotential Vn

Vn (r) =
mn

2π~2
bδ(r) , (3.8)

with b being the nuclear scattering length. This potential is presupposing isotropic wave

scattering in the Born approximation and depends only on the nuclear scattering length

b.

The magnitude of nuclear and magnetic scattering is determined by their respective

scattering lengths. The reflectivity of the spin states {+,-} on a multi-bilayer with

material A and B in the guide tube is given by

R± ∝ [NAbA −NB(bB ± pB)] , (3.9)

For a suitable choice of materials (bB = ∓pB) the reflectivity of one spin component can

be removed from the beam. A prominent couple of materials is Ni-Ti, which are also

used in the guide tubes of this experiment. The Fig. 3.2 shows one of the supermirrors

that has been used for the experiment.
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Figure 3.2: Real picture of the supermirrors, that were in use.

Since the critical angle

φc = λ

√
Nb

2π
(3.10)

is proportional to the wavelength of the particles, a removal of higher wavelengths can

be achieved by slightly changing the incident angle of the supermirror from the ideal

value.

3.3 Neutrons in magnetic fields

After the neutrons have been prepared, they are led to the actual set-up. To understand

how spin-dependent effects can be measured, the possibilities to control and manipulate

the neutron spin in magnetic fields has to be investigated. A polarimeter consists of

polarizer and analyzer together with spin-manipulator devices in between. Two kinds of

coils are conventionally used; the Helmholtz coil for guiding the neutrons and stabilize

them against exterior magnetic fields and the spin rotator coil to change the polarization.

3.3.1 The Helmholtz coil

The experiments with neutrons in a laboratory are usually exposed to the influences of

external magnetic fields, for instance earth’s magnetic field. To prevent the neutrons

from depolarizing by this undesired fields, a magnetic shielding or a stronger, more
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dominant guide field has to ensure the preservation of the initial polarization of the

spin. Magnetic shielding with mu-metal has the disadvantage that the field lines are

inhomogeneous at the frame of the shielding body. Therefore the method of the guiding

field is favoured over the magnetic shielding.

The Helmholtz coils consist of a pair of two identical magnetic coils installed over the set-

up. Ideally, the coils are separated by a distance that equals the radius of the coils in a

circular arrangement. The Fig. (3.3) shows a small Helmholtz coil in a more rectangular

form.

Figure 3.3: Smaller version of the Helmholtz coil, that was used during the experiment.

Since homogeneity of the field along the coil’s axis is not given entirely in practice,

it is favourable that the neutrons fly closely collimated along the middle in a small

region, where the field in axial direction is almost constant. Furthermore the ends of

the supermirrors are inserted in the guide field’s region to prevent boundary effects of

perturbing the constancy of the magnetic field.

3.3.2 Spin Rotator

The spin rotator is the most relevant tool of a polarimeter set-up. Essentially, it is a

coil that provides a local magnetic field, where neutron spin and field interact. These

spin rotators must have a suitable size to fit between the Helmholtz coils and are usually
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installed on tiltable plates to adjust their alignment relative to the direction of flight

of the particle beam. The Fig. 3.4 shows two such coils that have been used in the

experiment.

Figure 3.4: Two coils with 6 cm × 6 cm × 20 cm on the right side and 6 cm × 6 cm ×
2 cm the left one.

Two cases of transitions can be distinguished for the neutrons that enter the coils, the

adiabatic and the non-adiabatic case.

• Adiabatic case: The direction of the magnetic field changes spatially by a small

amount, so that the polarization vector can follow the field configuration. The

potential of the neutron is practically constant. This condition requires that the

variation of the field, more precisely that the frequency of the change of this field

ωvar is smaller than the Larmor frequency ωL.

• Non-adiabatic case: The change of the magnetic field in the coil happens instanta-

neously for the neutrons. The polarization vector precesses about the new direction

of the field, in which some spins are flipped, causing an energy splitting due to the

Zeeman effect. This case is given for ωvar � ωL.

Non-adiabatic transitions are used in our experiment to rotate the spins in the coil. For

this purpose a magnetic field orthogonal to the direction of flight and the guide field is

applied. If the influence of the guide field needs to be cancelled, a compensation field

has to be implemented. The field configuration of a spin flipper is illustrated in Fig. 3.5.
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Bx y

Bc

Bgf

wire

Figure 3.5: The neutrons fly in y-direction. On the x-Axis the Bx field is applied, in-

ducing the spin rotation. The guide field Bgf by the Helmholtz coil, that is

penetrating the coil, is locally compensated with Bc.

Since magnetic field lines form closed loops, the influence of the stray-field by Bx in the

vicinity of the coil can make the polarization vector slightly tilt. This problem greatly

depends on the form and the magnitudes of the fields in the coil. In section 4.3, this

effect is described for our experiment.

The evolution of a neutron in a spin rotator flying in y-direction in an uniformly rotating

field given by Eq. (2.121) has been given in the form Eq. (2.122), which in matrix form

is given by

ψ(y, t,Ω) =
1√
2π
e
i
(
ky− ~k2

2m
t
) (

cos
[

Ωt
2

]
sin
[

Ωt
2

]
−sin

[
Ωt
2

]
cos
[

Ωt
2

] ) ×

×

 cos
[
α1

2

]
− (iB0γ+Ω)sin[α1

2 ]
Beffγ

(−iB0γ+Ω)sin[α1
2 ]

Beffγ
cos
[
α1

2

]
 χ(0) , (3.11)

where the rotation angle α1 = α1(t,Ω, B0) and the effective magnetic field Beff are

related by

α1(t,Ω, B0) = ±γt

√
B0

2 +

(
Ω

γ

)2

≡ ±γtBeff (3.12)
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and χ(0) is the initial spin state. An analysis of Eq. (3.11) for an incident neutron with

χ(0) = |+z〉 suggests:

• Ω = 0. Special case: DC spin rotator. The rotation of the field is turned off and

only a static magnetic field in the x - direction is applied. As to be expected the

wave function is

ψ(y, t) =
1√
2π
e
i
(
ky− ~k2

2m
t
)
e−i

α1
2
σxχ(0) (3.13)

and the polarization vector is rotating in the yz plane

P(α1) =


0

−Sin[α1]

Cos[α1]

 . (3.14)

• α1 = 0. For α1 = 0 → Ω = B0 = 0. This is the trivial case with zero field, thus

the coil is deactivated, the neutron preserves its original state

ψ(y, t) =
1√
2π
e
i
(
ky− ~k2

2m
t
)
χ(0) (3.15)

P(α1 = 0) =


0

0

1

 . (3.16)

• α1 6= 0. The AC spin rotator. For a random rotation angle α1 the polarisation

vector with the following conditional dependence: Ω = 2πν =
√(

α1

t

)2 −B0
2γ2

has components in all directions

P(α1) =


−cos[α1]sin[Ωt] + Ωcos[Ωt]sin[α1]

γBeff

− sin[α1]B0

Beff

cos[α1]cos[Ωt] + Ωsin[α1]sin[Ωt]
γBeff

 . (3.17)

• α1 = nπ. Special case, where α1 is a multible of π and the polarization has no

value in the y-component.
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P(α1 = nπ) = (−1)n


−sin[Ωt]

0

cos[Ωt]

 . (3.18)

In case that n is odd, the coil acts as a spin flipper.

3.4 Detector

At the end of the set-up the neutrons enter the detector and are detected. Since neutrons

have no charge a conversion process is needed, in which the emission of ionized particles

is triggered. A gas proportional detector, filled with elements that have a high cross-

section for thermal neutrons, e.g. BF3 or 3He, are conventional detectors for neutrons.

Our detector is a BF3 detector. The nuclear reaction for boron has been given in Eqs.

(3.2), (3.3). This compound is suited for the detection of slow neutrons, because of

its proportional behaviour, high natural abundance of boron and higher signal heights,

leading to lower noise. Naturally, these tube-shaped detector are surrounded by moder-

ating materials, which drastically increases the volume of the detector. The Fig. (3.6)

shows the BF3 detector of our experiment.
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Figure 3.6: The actual BF3 detector is very small. The shielding contributes the most

to the volume of the detector. Cables at the back side lead to computers for

data processing.

3.5 Some examples of neutron-polarimeter experiments

Neutron polarimetry plays an outstanding role in the determination of quantum-mechanical

effects. Brief descriptions of examples shall illustrate how this method has helped to dis-

cover and measure interesting phenomenons.

A measurement of geometric phase in a neutron polarimeter

A quantum particle acquires generally a total phase consisting of a dynamical phase and

a geometrical phase (also known as Berry’s phase). This geometric phase only depends

on the evolution path of quantum states, not on dynamical properties like time or energy

[31]. An investigation of the geometric and dynamical phase of neutrons in a polarimetry

has been reported [32]. The arrangement of the set-up is illustrated in Fig. 3.7.

In this experiment, conducted at the TRIGA Mark-II reactor of the Atominstitut, lots

of efforts are made to discern the geometric phase from the much larger dynamical

phase. The polarized neutrons generate exactly half a Larmor precession in R1 and are

converted from |+z〉 into |+y〉, so that the spin state becomes a superposition of |+z〉
and |−z〉. In the first arrangement the spin flippers are rotated about the same angle,
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Figure 3.7: Schematic sketch of the polarimeter experiment as depicted in [32]. The spins

are prepared in |+z〉 - states in the supermirror polarizer and a guide field is

applied over the set-up. Four coils are used. R1 converts the spin from |+z〉
into |+y〉 state and R2 |+y〉 back into |+z〉. The F1 and F2 spin flippers,

are not parallel, but slightly detuned by an angle δβ . An translation δx of

F2 is performed before the neutrons are analyzed in the second supermirror

and detected.

thus no geometric phase is induced. In a second set the spin flippers are rotated each by

and angle δβ/2 in opposite direction along the z-axis. The occurrence of a geometrical

phase shift can be visualized on a so called Bloch sphere (also called Poincaré sphere),

which is illustrated in Fig. 3.8. The incident |+z〉 state traverses a π flip at an angle β1,

which corresponds to a geodesic semi - great circle from the ’north pole’ to the ’south

pole’. After the flip in F1 the spin |+z〉 and |−z〉 precesses about the guide field by φ↑

and φ↓ respectively, before the spin states traverse back due to the second π flip in F2

oriented at the angle β2. This cyclic evolution on the sphere is corresponding to the

geometrical phase ΦG, which is half the solid angle Ω12

ΦG = −Ω12

2
= δβ , (3.19)

whereas the dynamical phase is equal to (φ↑ − φ↓)/2.

In their final results a linear dependence of the dynamical phase due to the translation of

the coil F2 and the geometric phase variation due to rotations of the coils F1 and F2 are
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Figure 3.8: Illustration of the geometric phase on the Bloch sphere as found in [32]. The

solid angle Ω12 is given by the paths 1 and 2, which span a plane from |+z〉
to |−z〉 on the sphere. The horizontal fields in the spin flippers are oriented

at angles β1 and β2. The guide field between F1 and F2 make the spin |+z〉
and |−z〉 precesses about the guide field by φ↑ and φ↓ respectively.

observed. The results of the dynamical phase and geometric phase shifts are illustrated

in Fig. 3.9. Least square fits of the data exhibit the high level of accuracy, which show

an improved by 23% in comparison to previous interferometer measurements (see [33]

in [32]). The phase shifts agree with theory within about 1%.

Demonstration of the noncommutation properties of the Pauli spin operator in a

neutron polarimeter.

Another example of a neutron polarimetric measurement has been published in [34],

where the non-commutation of the Pauli matrices are demonstrated. A schematic illus-

tration of the experiment is shown in Fig. 3.10.

The incident neutrons are polarized and the set-up is arranged in a guide field to minimize

depolarization. The spin-turn devices enable to give the polarization vector an arbitrary

orientation. Two spin rotators work in the middle of the experiment and can be rotated

in the xz-plane to realize a rotation UR(α̂A) in the α̂A direction and UR(α̂B) in the α̂B

direction respectively. The rotation has still to maintain a π flip. An orientation of the
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Figure 3.9: Plots of the obtained dynamical and geometrical phases [32]. The left plot

shows the pure geometric phase ΦD as a function of the translation δx of the

flipper F2. On the right, the observed geometric phase as a function of the

angle δβ between the flippers.

Figure 3.10: Experimental arrangement as depicted in [34]. The spin turn devices enable

to give the polarization vector an arbitrary orientation. The spin rotators

turn the spin in the sequential orders AB and BA in the directions α̂A and

α̂B.

magnetic field in +x direction corresponds to α̂A = (1, 0, 0) and for a field in the xz
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plane to α̂B = (cos(β), 0, sin(β)), which give the following π flip operators

A ≡ UR(α̂A) = −iσ̂x
B ≡ UR(α̂B) = −i (σ̂xcos(β) + σ̂zsin(β)) .

(3.20)

The normalized spin state |χ〉 of the neutron can be described by

|χ〉 =

(
cos [θ/2]

eiφsin [θ/2]

)
, (3.21)

where θ and φ are the polar and azimuthal angle. The final polarization vectors after

the passage of the coil for the wave-functions |χBA〉 = BA |χ〉 and |χAB〉 = AB |χ〉 are

given by

PBA = 〈χBA| σ̂ |χBA〉 =


sin [θ] cos [θ] cos [2β]− cos [θ] sin [2β]

sin [θ] sin [φ]

−sin [θ] cos [θ] cos [2β] + cos [φ] cos [2β]

 (3.22)

and

PAB = 〈χAB| σ̂ |χAB〉 =


sin [θ] cos [θ] cos [2β] + cos [θ] sin [2β]

sin [θ] sin [φ]

sin [θ] cos [θ] cos [2β] + cos [θ] cos [2β]

 . (3.23)

A mutual interchange of the two magnetic regions will therefore result in different final

polarization state due to the non-commuting Pauli matrices.

The experiments show the results for incident neutrons polarized either in +z or -z

direction, whose final polarization vectors are given by PAB = (±sin(2β), 0,±cos(2β))

and PBA = (∓sin(2β), 0,±cos(2β)). The final results show that, as theory predicts,

commutation of the two spin rotation operators leads to an inverse modulation of the

x component for both initially |+z〉 and |−z〉 states. The plots in Fig. 3.11 show the

different phase shifts induced by the actions of the operators AB and BA as a function

of the angle β. Writing the evolution of the spin states as a superposition of the |±y〉
states shows that different phase shifts ±β are accumulated in |±y〉. ”The final states

depends on the intermediate states, that is, on the chosen trajectory in spin space” [34].
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3 Experimental Concepts in neutron polarimetry

Figure 3.11: Results as illustrated in [34]. There are no dependence on the angle β of

the z-polarization components, but the modulations of the x-components

yields an inverse modulation.

The set-up of our experiment will be in close analogy to the examples given above and

contain equivalent considerations. One of the major differences will be the application

of a rotating magnetic field, instead of DC-coils only. The next chapter will deal with

the measurement of the spin-rotation effect in a neutron polarimeter.
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coupling

4.1 Original proposal and adoption to a polarimeter

An observable measurement of the spin-rotation coupling has first been proposed in [1]

and later in [35] for a neutron interferometer experiment. An explanation of the original

concept makes it easier to grasp the idea of the polarimeter set-up.

The original set-up: Polarized neutrons are split into two arms of a Mach- Zehnder type

interferometer. Each of the two paths contain a spin flipper. Along one arm is a static

spin flipper, while the other arm has a spin flipper which is slowly rotating parallel to the

neutron wave vector. Instead of mechanically rotating, the idea of using a quadrature

coil, which produces a rotating magnetic field B(Ω), has been suggested at a later date

in the paper [6].

Both spin flippers are aligned parallel and adjusted to induce a flip of the neutrons’

spin, thus initially up spins become down spins after the flipper. Subsequently, the

neutron beams recombine again and are measured in the detectors. If the 180◦ flipped

neutrons in the static and in the rotating coil behave the same, then no change of the

interferometer fringes are expected. However, if the rotating coil creates a phase shift

due to spin-rotation coupling, the interference fringes will shift. The top sketch in Fig.

4.1 depicts the fundamental idea.

Intermediate set-up: In the first set-up the interferometer arm with the static coils serves

as a reference for the rotating coil. Instead of a static coil, another spin flipper rotating

in opposite direction could be installed. This would induce positive and negative phase

shifts in each arm of the interferometer, thus doubling the contribution from the spin-

rotation effect. See the middle of Fig. 4.1.
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4 Measurement of the spin-rotation coupling

The same phase shift would arise if the initial neutrons were anti-parallel and would

rotate in the same direction. This perspective can be easily transferred to the concept

of a polarimeter.

Polarimeter set-up: One of the interferometer arms is removed, instead of a two-path

superposition a two-spin superposition is utilized, which is illustrated at the bottom of

figure 4.1. The second path of the interferometer is no longer the reference system, but

rather the spin compared to the other one. The phase shift no longer modulates the

intensity of an interference pattern, but reveals itself as a change of the polarization

vector of the neutron.

Figure 4.1: Simple black arrows imply flight directions and void arrows the spin state.

SF1 and SF2 are the respective spin flippers, of which one is rotating. Origi-

nal set-up at the top (a). The intermediate set-up in the middle (b) serves as

an aid to understand the concept of the polarimeter experiment (c), depicted

at the bottom.

In comparison with a polarimeter strategy set-up, an interferometer set-up has more
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4 Measurement of the spin-rotation coupling

limitations. The largest size of a neutron interferometer is roughly 30 cm, making it

hard to place two bigger coils between the silicon crystals. Also the interferometer is

extremely sensitive over mechanical movements and temperature fluctuations. To get

a decent contrast a high flux has to be provided to compensate for the inevitably high

loss of neutrons in interferometer experiments. All of these issues can be overcome by

employing a polarimeter experiment.

4.2 A priori results

The following calculations enable to predict the evolution of the spin in the polarimeter

and optimize the parameters for the actual measurement. As convention the wave vector

of the neutron is chosen in the +ŷ-direction and the guide field in the +ẑ-direction. The

central element of the experiment is the quadrature coil with the rotating field. The

spin-rotation interaction will be described via the magnetic potential according to the

Pauli equation (2.111), thus S ·Ω→ σ̂ ·B(Ω). The solution to this problem is given by

Eq. (2.122) or equivalently Eq. (3.11). The 3D graphic of the arrangement in Fig. 4.2

makes the comprehension of the following calculations easier.

Figure 4.2: 3D model of the initial set-up. (P) 1st supermirror polarizer; (GF) guide

field; (AC-B) Big AC-coil; (DC-S) Scanning DC-coil; (A) 2nd supermirror

analyzer; (D) detector.
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4 Measurement of the spin-rotation coupling

The superposition of the incident neutron can be represented as a χ(0) = |+z〉 =
1√
2

(|+y〉+ |−y〉). In the previous exemplification the rotation angle α1 of the spin has

been set to 180◦, but further calculation will consider a 2π rotation instead, so the

evolution of the spin parallel |+y〉 and anti-parallel |−y〉 to the flight direction after a

α1 = 2π yields

|+y〉 (t1) = −e−i
~k2

2m
t1 e

iΩt1
2 |+y〉

|−y〉 (t1) = −e−i
~k2

2m
t1 e

−iΩt1
2 |−y〉 .

(4.1)

A 2π rotation of the spin obviously results in an additional frequency-dependence, where

the parallel and anti-parallel states have the same phase shift with opposite signs. The

minuses of the functions come from the 4π periodicity of the spinor.

Putting the wave-function together yields

ψ(y, t1,Ω) = φ(y)χ1(t1,Ω) =
−1√
2π
e
i
(
ky− ~k2

2m
t1
)

1√
2

(
ei

Ωt1
2 |+y〉+ e−i

Ωt1
2 |−y〉

)

=
−1√
2π
e
i
(
ky− ~k2

2m
t1
) (

cos
[

Ωt1
2

]
-sin

[
Ωt1
2

] ) ,

(4.2)

where χ1(t1,Ω) indicates the outcome of the spinor function after the rotation. For 2π

the polarisation vector Eq. (3.18) becomes

P1(α1 = 2π) =


−sin[Ωt1]

0

cos[Ωt1]

 . (4.3)

The decisive difference to a static spin flipper (Ω = 0) is that the polarization vector is

not reverting exactly back to its initial direction, but is positioned somewhere in the xz-

plane depending on the frequency of the rotating magnetic field. This is the observational

consequence that was predicted in [35] for a neutron interferometer experiment.
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Scanning coil

After the AC spin rotator, the neutrons re-enter the area of the guide field and start to

precess around the z-axis. The intensity at the detector corresponds to the projection

of the polarization vector onto the z-axis, so the guiding field leaves the intensity un-

changed. Instead of recording only a single point for each frequency, it is possible to get

a full oscillographic picture per frequency by employing a DC-flipper after the AC-coil.

This scanning process incorporates another parameter, that can be varied to generate a

periodic intensity modulation.

If the distance between the AC-coil and the scanning coil is chosen, so that the ’amount’

of precession inside the guide field, i.e. the rotation angle α2, equals (2m+ 1) π
2
,m ∈ N

then the polarisation vector of the neutron will turn into the yz-plane

χ2(t2) = e
−i

(
~k2

2m
t2
)
e−i

α2
2
σz χ1(t1,Ω)

∣∣∣∣
α2=(2m+1)π

2

(4.4)

P2

(
α1 = 2π, α2 = (2m+ 1)

π

2

)
=


0

−sin[Ωt1]

cos[Ωt1]

 . (4.5)

Afterwards the neutron enters the scanning coil where a magnetic field B3x is varied to

finally give an oscillating signal, with

χ3(t3) = e
−i

(
~k2

2m
t3
)
e−i

α3
2
σx χ2(t2) (4.6)

and for the final wave-function ψf

ψf =
1√
2π
e
i
(
ky− ~k2

2m
T
)
e−i

α3
2
σx e−i(2m+1)π

4
σz

1√
2

(
ei

Ωt1
2 |+y〉+ e−i

Ωt1
2 |−y〉

)
, (4.7)

where T = t1 + t2 + t3 and α3 = γt3B3x .

Calculating the expectation value in this state ψf (y, T,Ω) the final polarization looks in

the following direction

Pf =


0

−sin[α3 + Ωt1]

cos[α3 + Ωt1]

 . (4.8)
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This result in comparison with the polarization vector given by Eq. (4.3) shows that

the phase shift from the spin-rotation coupling has been preserved and differs only by

a variable parameter α3, controlled via the static magnetic field B3x. The analyzer (i.e.

the second supermirror) at the end of the set-up post-selects only the |+z〉 spin states,

which leads to an intensity I = | 〈+z|ψf〉 |2. Thus the measurement at the detector will

show the following sinusoidal form

I (Ω, α3) = cos

[
α3 + Ωt1

2

]2

. (4.9)

This outcome indicates the expected results of the actual experiment. For each frequency

of the AC spin rotator an oscillographic signal is going to be recorded with a constant

phase shift. The shift of the intensity maximum between −π and π is given by

α3 = −Ωt1 . (4.10)

It is important to check what consequences occur, if the rotation angle α1 does not

correspond to a 2π rotation. The intensity for the same set-up with a general rotation

angle α1 is

I (Ω, α1, α3) =
1

2

(
1 + cos [α1] cos [α3 + Ωt] +

Ω

γBeff

sin [α1] sin [α3 + Ωt]

)

=
1

2

1 + cos [α1] cos [α3 + Ωt] +
sin [α1] sin [α3 + Ωt]√(

B0γ
Ω

)2
+ 1

 .

(4.11)

This implies for α1 6= 2nπ that the intensity maximum does not only shift, but also

decrease in amplitude, i.e. a decrease of the contrast. Physically this corresponds to the

general case given by (3.17), where the polarization vector has components in all axes.

4.3 Adjustments

The following explanations will describe the various actions that have been undertaken

in the experimental process.
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4 Measurement of the spin-rotation coupling

The first step was to adjust the Helmholtz coils, for which all unnecessary components

between the source and the detector were removed. Two Co-Ti supermirrors were used.

The first one guided and polarized the neutrons that came from the reactor, while the

second one, which was installed at the other end of the Helmholtz coil, was used as an

analyzer that only reflected one of the spin states to the detector. To remove higher

order harmonics the incident angle between the second supermirror and the center of

the neutrons’ flight path was slightly detuned. A Cd-diaphragm with an opening of 6

mm × 15 mm served as a collimator for the neutron beam. After aligning the height

and the distance of the pair of Helmholtz coils the degree of polarization in this ’empty

polarimeter set-up’ was brought to a maximal value of roughly 99% for Bgf =10 G.

4.3.1 Small coil

In the next step the coils had to be inserted and adjusted. By default, the coils in use

are the small ones as shown on the right side of Fig. 3.4. Because of their compact size

they are insusceptible to most inhomogeneities of the exterior magnetic field and can

be easily aligned, for which a good example is depicted in Fig. 4.3. Typical maximal

intensity was 0.38 n/sec. The sinusoidal intensity modulation is characterized by the

contrast C, defined as:

C =

∣∣∣∣Imax − IminImax + Imin

∣∣∣∣ . (4.12)

The graph Fig. 4.3 exhibits a reasonable curve progression of a typical DC-flipper. Zero

current implies zero magnetic field in the coil, so that the spin passes through the coil

unchanged. For (±) ≈1182 mA a (±) π spin flip of the neutrons is induced, which are

thereafter ’sorted out’ from the analyzer, i.e. the second supermirror. A misalignment

of the coil would appear as a phase shift and cause an asymmetry of the intensity at the

minima.

4.3.2 Big coil

The disadvantage of a small coil in the case of a rotating field can be clearly seen by

restating the relation (3.12) in the form
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Figure 4.3: Almost perfectly aligned coil with a high contrast of rougly 99% and a phase

shift less then 1◦.

Ω = 2πν =

√(α1

t

)2

−B0
2γ2 =

√(
2π vn
l

)2

−B0
2γ2 . (4.13)

For a 2π rotation and a mean abode time t = l/vn of the neutrons, the frequency Ω

is determined by the length of the coil. As experience has shown, high frequencies,

circa at 50 kHz and above for instance, lead to undesired problems, mostly caused by

parasitic effects in the coil, which make it hard to generate a homogeneous, uniformly

rotating magnetic field. Furthermore, a resonant circuit would have to be build for each

frequency to minimize the electrical impedance and enable enough current to pass the

coil.

To avoid this issues the length of the coil was increased to l = 20 cm (see left photo

in Fig. 3.4). The frequency-dependence Ω(B0) of the magnetic field’s amplitude B0,

required to accomplish a 2π rotation, is plotted in Fig. 4.4 for a neutron velocity of

vn ≈ 2000 m/s. The increase of length of the coil has reduced the necessary frequencies

to a maximum of 10 kHz, which is moderate for operation. The stronger the magnetic

field, respectively the current in the coil, the less angular velocity is needed with a

minimum at approximately B0 (0 kHz) = 3.4 G.

Before the appliance of the coil as an AC spin rotator, the alignment had to be made,

which needed to be performed in DC mode. The enlargement of the coil however brought
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Figure 4.4: Only values on the arc correspond to a 2π flip for a coil of 20 cm lenght and

a neutron velocity of vn ≈ 2000 m/s.

along two major difficulties. Firstly, increased susceptibility to misalignments and sec-

ondly, problems in obtaining non-adiabatic conditions. The following approaches were

made to resolve these issues.

To correctly align the big coil in z-direction a ’(de)acceleration’ test was performed in

the middle of the polarimeter. The principle of this test is depicted in Fig. 4.5. Neutrons

with up-spin are flipped into the xy plane and precess about the magnetic field of the big

coil, which is modulated to generate a periodic signal. If the the big coil is misaligned the

contrast will decrease, contrariwise if the directions of the guide field and the magnetic

field coincide the spin can be fully flipped back to the z-axis for the appropriate field

configuration.

Figure 4.6 shows the result of such a measurement, where three sinusoidal fits have been

made to determine the contrasts. The direction of the magnetic field in the big coil was

set to compensate the exterior guide field. According to the graph the contrast increases

for higher currents, i.e. less field in the coil, hence lower Larmor frequency. This fact

explains the term deacceleration test. Of course the same experiment could have been

made for the case of both fields adding up.

As a side note, it can be seen that the contrast reaches ’only’ a value of rougly 96%.
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4 Measurement of the spin-rotation coupling

Figure 4.5: Initially χ(0) = |+z〉 spins are flipped by π
2

in the first small coil. The second
π
2

flipper will only be able to flip the neutrons back into the z-direction, when

the directions of the guide field and the magnetic field of the big coil coincide.
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Figure 4.6: Oscillations of the big coil in the π
2
-π

2
set-up in each region.

This is primarily caused by a slight loss of neutrons at each coil, due to absorption

in the copper wires or depolarization due to large rotation angle, which itself depends

again on the wavelength (respectively velocity). It can also be noticed that the intensity

changed in comparison to Fig. 4.3. The source of this are occasional changes of the

Cd-diaphragm opening.

Switching to the x-field in the big coil was way more troublesome then the alignment in

the z-direction. In a first attempt the coil was used without a compensation field. The

consequences can be seen in Fig. 4.7.

The form of the curve for low currents strongly differs from a cosine, because the guide

field exceeds the field in the x-direction. Since the lengthening of the coil has reduced the

field strength needed to induce a π flip, no changes of the polarization can be observed

in the low limit. To affirm this idea the magnitude of the guide field was reduced by

one-third. The result is shown in Fig. 4.8, where it can be seen that the ’recess’ of the

function has gotten deeper.
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Figure 4.7: Big coil with a magnetic field in x-direction only, thus uncompensated.

’Lower order spin flips’ are suppressed from the Bgf=15 G guide field.
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Figure 4.8: Bgf=10 G. The next minima started to appear after the guide field was

reduced.

In the next step the compensation field was turned on. Unfortunately, this has not

brought the desired result. Although the minima of the ±π - flip were recovered, the

peaks were still at different levels. See Fig. 4.9.

After some consideration, we found that this asymmetry at higher currents stems from
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Figure 4.9: Big Coil with compensation field switched on. The higher order minimas

show that the spin of the neutrons are only partially flipped.

non-adiabatic alteration of the neutron spin. In the compensated state small magnetic

fields have no influence outside of the coil, but with increasing current this range expands,

engulfing the vicinity with a weak magnetic field, that change the initial polarization of

the neutron prior to the entry into the coil.

The first measure to get rid of this effect was to increase the guide field’s magnitude,

which proved to be both ineffective and disadvantageous. Instead, two additional small

DC-coils were placed directly before and after the big coil, each generating an addi-

tional magnetic field in the negative z-direction. This ’sandwich’ arrangement enabled

to successfully operate the big coil as a standard DC-flipper and correctly align it in the

polarimeter. Figure 4.10 shows the final adjustment of the big coil.

4.3.3 AC Set-up

Employing the big coil as a time-dependent sinusoidal spin rotator was only a matter of

connecting the wires to a signal generator and an amplifier. To generate a compensation

field, the current of the periodic signal for the z-direction had to be superposed with a DC

bias current. Since the amplifier would not respond to the bias of the function generator

(probably AC-coupled, so it only amplifies signals which change with time), it was set at

the amplifier itself. To monitor the current signal of the conductor a current clamp was

used to read the magnitude of the sinusoidal signal. The input signals and the induced
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Figure 4.10: Best aligned big coil exhibits a contrast of C = 0.94549, Period = 611.89 ±
0.28 and a phase offset of −0.71◦ ± 0.21◦.

current in the current clamp were all connected and monitored on an oscilloscope. An

illustration of the various connected tools is shown in Fig. 4.11

The following settings were made to generate the correct inputs. Two periodic signals

with a phase shift of 90◦ were triggered and the bias was set at the amplifier. To induce

a 2π rotation of the spin, the appropriate values of frequency and amplitude had to

bee set in each coil (see Fig. 4.4). After the fixing of the frequency and setting the

current of the scanning coil to the point of the expected phase shifted maximum, the

amplitude was varied. According to Eq. (4.11) the maximal intensity only occurs for

the appropriate amplitude. This procedure was executed for each frequency.

It should be mentioned that for increasing frequencies the amplitude did not behave

as Fig. 4.4 would imply, due to the impedance of the coil. Instead of connecting the

circuit with two capacitors and operate in resonance mode, the voltage was increased. A

short comparison for 5 kHz showed that approximately the tenfold voltage was required

because of the dissipation. For an electrical resistance of R = 1 Ω approximately 9 V

at 9 kHz were needed, which corresponds to only ≈ 1 G. It can be assumed that higher

frequencies will most likely have to handle with the damping by incorporating a resonant

circuit.
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4 Measurement of the spin-rotation coupling

Figure 4.11: Connections applied for AC operation mode. (SG) Signal generator (Yoko-

gawa - FG120) with two channels connected. (Amp-I) First power amplifier

(EPS - TO/E7610); (Amp-II) Second power amplifier (EPS TO/E7610).

(CC) Current clamp (TEKTRONIX - P6021A AC); (OSC) Oscilloscope

(TEKTRONIX - TDS 2004B); (AC-B) Big AC-coil.

4.4 Measurement of the spin rotation phase shift

Before presenting the experimental results the final arrangement is shown in Fig. 4.12,

which has changed slightly in comparison to Fig. 4.2, since two additional coils were

added to avoid adiabatic phase shifts. Moreover the final parameters, for which all

subsequent results were measured, are summarized in Tab. 4.1. All coils were aligned

and the distance between the coils was set.

The frequencies and strengths of the magnetic field were adjusted for 12 different values

and each of them was measured three times at least to reduce statistical errors. The

corresponding amplitudes varied between 3 V and 9 V and were determined by the

method described in the previous section.
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4 Measurement of the spin-rotation coupling

Figure 4.12: Final set-up. (P) 1st supermirror polarizer; (GF) guide field; DC-1) First

additional DC-coil; (AC-B) Big AC-coil; (DC-2) Second DC-coil; (DC-S)

Scanning DC-coil; (A) 2nd supermirror analyzer; (D) detector.

Quantity Value

Aperture: B × H 6 mm × 15 mm

Guide field Bgf 5 G

Compensation current for the big AC-coil 948 mA

Current in the small coils 236 mA

Table 4.1: Final test parameters of the experiment.

According to Eq. (4.10) the phase shift in degrees is given by

α3 = −2πν
l

vn
∼= −

360[deg] 0.2 m

2000 m
s

ν = −36

[
deg

s

]
ν[kHz] . (4.14)

This relation shows the advantage of the polarimeter again. Pro 1 kHz, an absolute

phase shift by 36 [deg] is expected in the 20 cm coil.

For Ω = 0 kHz the the big coil is only working as a DC-flipper in practice. There is no

change of the polarization vector between the initial and the final state. Therefore the

result equals the form in Fig. 4.3. The other frequencies are phase shifted due to the

spin-rotation coupling. The results are all assembled and shown in Fig. 4.13 and Fig.

4.14. For optical aid the graphs on one site run from top to bottom.
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4 Measurement of the spin-rotation coupling

Each of these intensity oscillations was measured for three times at least. To check

the systematic reproducibility of the phase shift the oscillations of the frequency 5 kHz

were measured another three times consecutively under the same conditions. The de-

viation between the maximum and minimum value of the phase shift for 5 kHz yielded

a repeatability rate of roughly 1.14◦. Apart from the statistical deviation (least square

fit, confidence interval 68.3%) each standard deviation is corrected by this rate. Other

sources of error, e.g. length of the coil, monochromaticity, distance between the coils,

are omitted, since their contributions are assumed to be negligibly small compared with

this systematic value. The final results are summarized in Tab. 4.2, which show a good

agreement between the obtained values and the theoretical values.

ν [kHz] φ [◦] C |α3| [◦]

0 -0.46 ± 1.51 0.972 ± 0.002 0

1 35.43 ± 1.40 0.938 ± 0.003 36

2 71.76 ± 1.42 0.968 ± 0.003 72

2.5 88.83 ± 1.45 0.964 ± 0.002 90

3 107.88 ± 1.41 0.952 ± 0.005 108

4 143.71 ± 1.53 0.952 ± 0.012 144

5 179.64 ± 1.46 0.958 ± 0.002 180

6 215.16 ± 1.43 0.944 ± 0.015 216

7 254.27 ± 1.44 0.936 ± 0.022 252

7.5 269.78 ± 1.47 0.943 ± 0.020 270

8 289.54 ± 1.49 0.913 ± 0.026 288

9 325.59 ± 1.43 0.940 ± 0.026 324

Table 4.2: Final phase shifts and contrasts for each frequency. Predicted values on the

right column.

Except for 7 kHz, 8 kHz and 9 kHz all measurements are within the error bounds of the

theoretically predicted values. The frequency dependences of the phase shift and the

contrast are plotted in Fig. 4.15 and Fig. 4.16 respectively. The linear dependence is in

agreement with Eq. (4.14).

The contrasts of almost all measurements are over 94% on average, with a minimum for

8 kHz at 91.3 %. It is assumed that the decrease of the contrast for higher frequencies
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(b) 2.5 kHz.

0.15

0.10

0.05In
te

ns
ity

  [
ar

b.
 u

ni
t.]

-1000 0 1000

Current of scanning coil  [mA]

C   = 0.93425
Phi = 36.74° ± 0.24°
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Figure 4.13: Typical intensity modulations obtained by scanning the current of the DC-

S. Sinusoidal modulations are shifted due to spin-rotation coupling. Con-

trast C and Phase shift Phi are also shown for each result, which run from

0 - 4 kHz.
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Figure 4.14: Typical intensity modulations obtained by scanning the current of the DC-

S. Sinusoidal modulations are shifted due to spin-rotation coupling. Con-

trast C and Phase shift Phi are also shown for each result, which run from

5 - 9 kHz.
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has two sources. On the one hand, at higher impedances the resistive losses in the

windings start to appear and cause inhomogeneities, on the other hand higher frequencies

correspond to lower magnetic field making the coil more susceptible to the influence of

exterior magnetic fields.
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Figure 4.15: Linear phase shift. The blue points represent the measured points, while

the red lines indicates the ideal value.
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Figure 4.16: Development of the contrast for different frequencies. To guide the eye, the

average value has been placed on the graph as well.
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5 Conclusion

In this thesis, spin rotation coupling has been studied and confirmed by using a neutron

polarimeter set-up. For the experimental optimization the dependence of the phase shift

on the frequency was calculated and it was found, that the strength of the Bx field had

to be adjusted following the change of frequency (see Fig. 4.4). After consideration of a

priori results for the proposed polarimeter set-up and the potential difficulties for coils

operating at high frequencies, we found a longer AC-coil to be more advantageous. For

a practical dimension of the set-up, the coil’s length was determined to be 20 cm.

When the experiment was carried out, the operation of the AC-coil in the experiment

posed some problems at the first stage. The issue of the stray-field was solved by in-

serting two additional DC-coils just before and after the big AC-coil, which ensured

non-adiabatic transitions of the neutrons. It should to be stressed here that this experi-

ment has benefited from the length of the coil, which could not have been incorporated

in a neutron interferometer.

The phenomenon of spin-rotation coupling has been computed in the preliminary cal-

culations of sec. 4.2, where the original interaction Ω · S has been substituted via the

Larmor rotation, which relates the angular velocity of a magnetic dipole with the mag-

netic field. This way the mechanical rotation was replaced by a rotation of a magnetic

field in a quadrature coil, thus B(Ω) · σ̂.

The final results obtained are in good agreement with theory and the accuracy of the

values is high. The deviations from most of the predicted values are within the error

bound of the measurements. The average contrast has been roughly 94%, highlighting

once more the significance of the neutron polarimetry.

Further polarimeter experiments are planned in near future. It is assumed that for low

frequencies no Bx field adjustment is required and the same results can be obtained in

the original model of the set-up. Also a realization of the proposed experiment [35] or

[6] is imaginable.

In my opinion, it will be interesting to further elucidate observational consequences of
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accelerated frames of reference in the quantum-physical regime.
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Appendix A: Interaction in a uniformly

rotating magnetic field

Derivation of the analytic solution of the wave function for a neutron in a uniformly

rotating magnetic field, which has been found in [36] and [37].

For a uniformly rotating magnetic field

B(t) =


B0 cosΩt

0

B0 sinΩt

 B(t) = 0 for t < 0, t > T (A.1)

and a particle moving into the y - direction the Schrödingergleichung equation is

i~
∂

∂t
ψ(y, t) =

(
− ~2

2m

∂

∂y2
− µ σ̂B(t)

)
ψ(y, t) . (A.2)

Performing a separation ansatz ψ(y, t) = φ(y)χ(t) ≡ φ(y)

(
χ1(t)

χ2(t)

)
we receive the

following two differential equations

i~
1

χ(t)

∂

∂t
χ(t) + [µB0(σ̂xcos(Ωt) + σ̂zsin(Ωt))] = − ~2

2m

1

φ(y)

∂

∂y2
φ(y) ≡ λ . (A.3)

The solution of the right side for a plane wave moving into the +y direction yields

φ(y) =
1√
2π
eiky , (A.4)

with λ = ~2k2

2m
, whereas the differential equation of the time dependent spinor gives
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Appendix A: Interaction in a uniformly rotating magnetic field

i~
1

χ(t)

∂

∂t
χ(t) + [µB0(σ̂xcos(Ωt) + σ̂zsin(Ωt))] =

~2k2

2m
. (A.5)

Doing the following substitution

χ(t) = ξ(t)e−i
~k2

2m
t (A.6)

transforms the last equation into a homogeneous differential equation

i~
∂ξ(t)

∂t
+ [µB0(σ̂xcos(Ωt) + σ̂zsin(Ωt))]ξ(t) = 0 . (A.7)

To solve this equation we perform a transformation onto the rotating frame by the

following unitary operation

ξ(t) = Û(t) ξr(t) = ei
Ωt
2
σ̂y ξr(t) . (A.8)

Inserting this ansatz into Eq. (A.7):

−~Ω

2
σ̂y e

iΩt
2
σ̂yξr(t) + i~ ei

Ωt
2
σ̂y
∂ξr(t)

∂t
+ [µB0(σ̂xcos(Ωt) + σ̂zsin(Ωt))] ei

Ωt
2
σ̂y ξr(t) = 0

(A.9)

and multiplying from the left side with Û−1(t), finally yields

−~Ω

2
σ̂y ξr(t) + i~

∂ξr(t)

∂t
+ µB0 σ̂x ξr(t) = 0 , (A.10)

where we used the fact that

e−i
Ωt
2
σ̂y [σ̂xcos(Ωt) + σ̂zsin(Ωt)] ei

Ωt
2
σ̂y = σ̂x . (A.11)

Using the definition of the Larmor frequency ω0 = −2µ
~ B0 = −γB0 and rearranging the

terms leads to the following equation

i~
1

ξr(t)

∂ξr(t)

∂t
=

(
~Ω

2
σ̂y +

~ω0

2
σ̂x

)
. (A.12)

This equation can finally be integrated, giving the following solution
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ξr(t) = e−i(
Ω
2
σ̂y +

ω0
2
σ̂x )t ξr(0) = e−

i
2
α·σ̂ ξr(0) , (A.13)

where α = (ω0t,Ωt, 0)T = α(t) â is the rotation vector,

α(t) = t
√
ω0

2 + Ω2 = γt

√
B0

2 +

(
Ω

γ

)2

≡ γtBeff (A.14)

is the magnitude and â = −B̂eff the unit vector of the rotation. Undoing the previous

transformation, the time evolution of the spin in this uniformly rotating frame is given

by

χ(t) = e−i
~k2

2m
t ei

Ωt
2
σ̂y e−

i
2
α·σ̂ χ(0) (A.15)

and finally the wave-function is given by

ψ(y, t) =
1√
2π
e
i
(
ky− ~k2

2m
t
)
ei

Ωt
2
σ̂y e−

i
2
α·σ̂ χ(0) . (A.16)

Using the identity e−
i
2
α·σ̂ =

[
1 cos

(
a(t)

2

)
− i σ̂ â sin

(
a(t)

2

)]
the matrix representation of

the wave-function can be written as

ψ(y, t) =
1√
2π
e
i
(
ky− ~k2

2m
t
) (

cos
[

Ωt
2

]
sin
[

Ωt
2

]
−sin

[
Ωt
2

]
cos
[

Ωt
2

] ) ×

×

 cos
[
α
2

]
− (iB0γ+Ω)sin[α2 ]

Beffγ

(−iB0γ+Ω)sin[α2 ]
Beffγ

cos
[
α
2

]
 χ(0) .

(A.17)

The consequences of this result are analyzed for an initial spin state of χ(0) = |+z〉 =
1
2

(|+y〉+ |−y〉) in sec. 3.3 and 4.2.
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[24] H. Böck, Y. Hasegawa, E. Jericha, G. Steinhauser and M. Villa, The Past and the

Future of the TRIGA Reactor in Vienna, J. Energ. Power. Eng. 7, 654 (2013).

77



Bibliography

[25] G. Knoll, Radiation detection and measurement (Wiley, 1989).

[26] W. Stacey, Nuclear Reactor Physics (John Wiley & Sons, 2007).
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