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Abstract 

 

When visiting a new city, tourists often need help to identify personally interesting places or locations 

from a potentially overwhelming set of choices. Recently, the increasing availability of GPS-enabled 

devices and the rapid advances in geotagged social media have led to the accumulation of a large 

amount of location histories, which may reflect people’s travel experiences in the environment. 

Research has shown that experiences from past users (especially similar ones) in similar contexts can 

help the current users to solve their problems efficiently, e.g., choosing where to visit next. 

Motivated by the above aspects, this thesis explores a methodology of deriving recommendations 

from location histories in Location Based Services (LBS). More specifically, we investigate how human 

location histories (e.g., GPS trajectories and trajectories constructed from Flickr photos) and 

collaborative filtering (CF) can be integrated in LBS to provide users with personalized and 

context-aware location recommendations. The main work and findings are summarized as follows. 

1) In order to represent the information extracted from users’ location histories, a model of 

contextual user profiles is developed based on the concepts of stops and moves, which have 

been shown to be a useful conceptual framework for processing raw location histories in the 

literature. The proposed model provides a uniform conceptual framework for representing 

users’ interests in various locations (reflected by their visits to these locations and the 

duration of these visits) as well as their behavior of visiting such locations, as extracted from 

different types of location histories. Methods of extracting meaningful user profiles from raw 

location histories are also developed. 

2) We investigate how information extracted from other users’ location histories (i.e., their 

interests in various locations, and their behavior of visiting such locations) can be aggregated 

for providing the current user with personalized location recommendations. The evaluation 

shows that considering other people’s movements, sequence relationships of locations 

visited, location popularity, duration at locations, and transit time between locations 

contributes to the improvement of recommendation quality. Among them, considering other 
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people’s movements achieves the biggest improvement. 

3) The personalized recommendation algorithm developed above is further improved by 

integrating additional contextual information, such as weather and companion (with whom). 

Specifically, we develop a methodology of identifying context parameters/dimensions that 

are relevant for making recommendations, and explore a context similarity measure. We then 

design three approaches to integrate the similarity measure into CF for making context-aware 

location recommendations. The evaluation demonstrates that: (a) When including contextual 

information into CF, choosing a suitable set of relevant context parameters is very important 

and may greatly affect the recommendation performance; the identification of a set of 

relevant context parameters can be achieved by analyzing how users’ aggregated movements 

differ in different situations; (b) The contextual post-filtering method achieves the best 

results, followed by the contextual modeling method, and finally the contextual pre-filtering 

method; (c) More importantly, contextual methods perform better than non-contextual 

methods, meaning that including contextual information into CF improves the 

recommendation quality. 

The overall solution can be implemented in LBS to provide tourists with personalized and 

context-aware location recommendations when visiting a new environment (e.g., city or museum). As 

our approaches do not require an explicit representation of domain knowledge, they are very suitable 

for LBS, which might often need to provide services in scenarios with little (or no) available domain 

knowledge. Additionally, our approaches employ a non-intrusive user modeling technique and do not 

require users to state their preferences explicitly, which are very promising in LBS, as LBS users are 

often involved in many tasks and activities during their use of mobile devices. Furthermore, our 

approaches can provide users with personalized and context-aware recommendations, which are 

very welcome in LBS, as context-awareness plays a key role in LBS applications. 

The insights gained in this research can be transferred to many other applications, such as friend 

recommendations in location-based social networks, artwork recommendations in museums, 

recommendations in the shopping domain, human behavior understanding, and activity recognition.   
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1 Introduction 

 

1.1 Motivation 

Recent years have witnessed rapid advances in Location Based Services (LBS) with the continuous 

evolvement of mobile devices and communication technologies. At a high level of abstraction, LBS 

are computer applications that deliver information depending on the location of the device and user 

(Raper et al. 2007a). Recently, LBS have become more popular in not only citywide outdoor 

environments, but also shopping malls, museums, and many other indoor environments. They have 

been applied in emergency services, tourism services, intelligent transport services, gaming, assistive 

services, etc. (Raper et al. 2007b). Among them, mobile guides (LBS for tourists, such as city guides 

and museum guides) are the largest group of LBS applications.  

When visiting a new city, tourists often need help to effectively identify personally interesting 

places/locations from a potentially overwhelming set of choices. The task is further complicated by 

the physical attributes of the environment (Bohnert 2010), as it takes time for people to move 

between places, and personally interesting places may be scattered throughout the environment. LBS 

have a high potential to help tourists to solve this problem by providing location recommendations 

relevant to the current position, context, interests and needs of the users. This research investigates 

methods for making personalized and context-aware location recommendations in LBS.  

Recently, with the increasing availability of GPS (Global Positioning System)-enabled devices, more 

and more people start to record their travel experiences with GPS loggers, and then upload, visualize 

and browse their GPS data on web maps. A large number of GPS data sharing websites have 

appeared on the Web, and received considerable attention, for example, Bikely1, Wikiloc2, GPS Share3 

                                                           
1
 http://www.bikely.com/ 

2
 http://www.wikiloc.com/ 

3
 http://www.gpsshare.com/ 
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and Trimble Outdoors4, just to name a few. Therefore, large amounts of location histories (e.g., GPS 

trajectories) are potentially available. In the meantime, with the rapid advances in geotagged5 social 

media, recent years also witness many people publishing their travel information and experiences via 

social media, such as Foursquare6 check-ins and Flickr7 photos. These “self-reported” information 

and implicit “footprints” can be also used to construct users’ location histories. Research on using 

these location histories often focuses on developing data mining methods to detect significant 

locations of a user (Liao et al. 2005, Ye et al. 2009), infer transportation modes (Zheng, Chen, et al. 

2010), and analyze people’s behavior patterns (Giannotti et al. 2007, Han et al. 2008, Nanni 2013, 

Renso and Trasarti 2013). However, these location histories also reflect people’s travel experiences in 

the environment. Research has shown that experiences from past users (especially similar users) in 

similar contexts can help the current users efficiently to solve their problems (Wexelblat 1999, Zheng, 

Xie, et al. 2010). Therefore, by aggregating the experiences (as recorded in location histories) from 

other people, LBS can provide the current user with “social advice” for making decisions, such as 

services like “in similar contexts, other people similar to you often …”.  

This research aims to explore methods for deriving personalized and context-aware location 

recommendations in LBS. We employ the recommendation technique of Collaborative filtering (CF), 

which recommends a user the items that other users with similar tastes liked/used in the past. CF is 

often applied in Web-based applications, such as movie recommendations, music recommendations 

and product recommendations (Hayes and Cunningham 2004, Adomavicius et al. 2005, Karatzoglou 

et al. 2010, Panniello and Gorgoglione 2012). In this research, CF is enriched with contextual 

information, and integrated into LBS to aggregate similar users’ movements (experiences) for making 

personalized and context-aware location recommendations for the current user.  

Our research differs from other research on personalized and context-aware LBS services on the 

following aspects. 

1) There was a large body of research on location-aware and personalized services (Oppermann 

                                                           
4
 http://www.trimbleoutdoors.com/ 

5
 Geotagging is the process of adding geographical location information (e.g., latitude/longitude coordinates) 

to various media, such as videos, photos and texts (Luo et al. 2011).  
6
 http://foursquare.com 

7
 http://www.flickr.com/ 
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and Specht 1999, Sparacino 2002, Reichenbacher 2004, Wakkary and Evernden 2005, 

Sarjakoski and Sarjakoski 2005, Cena et al. 2006, Stock and Zancanaro 2007, Weakliam et al. 

2008, Raubal and Panov 2009, Kenteris et al. 2011, Kim and Park 2011, Chen et al. 2013). 

Most of the research focused on adapting content presentation and visualization to users’ 

current position, tasks, context, personal interests, and devices. In contrast to the above 

research, we aim to help people identify locations matching their interests and contexts, by 

deriving context-aware location recommendations from location histories. 

2) Many approaches proposed for generating recommendations employed knowledge about 

locations/places (domain model, DM), knowledge about users and their context (user model), 

and an adaptation engine (Cheverst et al. 2000, Schmidt-Belz et al. 2002, Hagen et al. 2005, 

Park et al. 2007, Bader et al. 2011, Yılmaz and Erdur 2012, Yu and Chang 2013). The engine 

measured the appropriateness of a specific location for satisfying a particular user’s interests, 

need and context, and returned relevant objects. However, building DM and the adaptation 

engine requires a good understanding of the application domain and has to undergo a long 

process of knowledge acquisition, both of which are very time-consuming and impractical for 

many LBS applications. Most importantly, these approaches were unable to effectively 

provide users with personalized and context-aware recommendations in situations with little 

(or no) previous knowledge, which are very common in LBS applications. In contrast to the 

above approaches, we aim at using CF to provide context-aware recommendations. CF 

requires little domain knowledge about the recommendation scenarios, as it generates 

recommendations solely based on users’ feedback (e.g., explicit or implicit ratings) on items. 

In this sense, our approaches are very suitable for LBS applications, which might often need 

to provide services in scenarios with little (or no) available domain knowledge. 

3) There were also LBS providing recommendations by asking users to explicitly state their 

interests in some form (Cheverst et al. 2000, Hagen et al. 2005, Horozov et al. 2006, Park et al. 

2007, Li et al. 2009, Hung et al. 2012, Yang and Hwang 2013). In contrast to these systems, 

we investigate techniques of deriving context-aware location recommendations from 

non-intrusive observations of users (i.e., location histories), which do not require users’ 

explicit inputs. These kinds of techniques are very promising and preferred in LBS applications 

due to the following reasons. Firstly, explicit inputs bring some burden to users, and interrupt 
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normal patterns of users’ action (Nichols 1997). Secondly, LBS users are often involved in 

many tasks and activities during using mobile devices, which makes it difficult to state their 

interests explicitly. This is further complicated by the small size of mobile screens and 

restricted input functionalities. A field study conducted by Filippini Fantoni (2003) showed 

that 94% of the participants preferred systems that change their services automatically 

according to the users’ need. Filippini Fantoni (2003, p. 4) argued that what makes this 

technique so exceptional is that “little effort is required on the part of the user because 

individual profiles are automatically built based on normal use.” 

4) There was also research focusing on deriving personalized recommendations from 

non-intrusive observations of users, such as location histories or interaction histories (Han 

and Cho 2006, Takeuchi and Sugimoto 2006, Bohnert 2010, Zheng et al. 2011, 2012, Yoon et 

al. 2012, Cheng et al. 2013). For example, Takeuchi and Sugimoto (2006) recommended 

shops to users based on their preferences, estimated by their past GPS trajectories. Han and 

Cho (2006) combined self-organizing maps and Markov models to predict users’ movements 

based on past GPS trajectories. Bohnert (2010) analyzed users’ location histories to extract 

their duration at exhibits and frequency counts of transitions between exhibits, and 

aggregated the extracted information to provide exhibit recommendations in a museum. 

Zheng et al. (2011) modeled users’ GPS trajectories as hierarchical graphs, and made place 

recommendations by considering the sequence property of users’ movement and the 

hierarchy property of geographic spaces. Our research differs from the methods mentioned 

above mainly on three aspects. Firstly, our methods are developed based on the concepts of 

stops and moves, which provide a fundamental and common framework for processing 

different kinds of location histories, such as GPS trajectories and trajectories constructed 

from Foursquare check-ins. In this sense, our methods are not restricted to a specific kind of 

location history. Secondly, we investigate whether considering the order in which 

locations/places are visited, location popularity, duration at locations and transit time 

between locations contributes to the improvement of recommendation quality. More 

importantly, most of the other research only employed location as contextual factor, and did 

not consider other contextual factors that might be potentially relevant for generating 

recommendations, e.g., weather, companion (with whom), and weekend/weekday. Our 
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research addresses these issues, and explores a methodology of deriving context-aware 

locations recommendations from different types of location histories.  

 

1.2 Challenges 

Deriving context-aware location recommendation from location histories is challenging for the 

following reasons.  

1) Building user profiles from feedback/opinions on items made over time is the first step when 

making CF recommendations. In most of the existing CF applications, such as movie 

recommendations, a user profile is often represented as a set of ratings given by the user on 

different items, and each rating is modeled as a triple <user, item, rating>. When making 

location/place recommendations based on location histories, the user profile model employed in 

traditional CF methods (i.e., rating-based) is insufficient, as it cannot model users’ behavior of 

visiting various locations, e.g., in which orders these locations are visited, and transit time 

between locations. Furthermore, methods of extracting meaningful user profiles from raw 

location histories (e.g., GPS trajectories) should be developed. 

2) Existing CF methods often work with rating-based user profiles. However, when deriving location 

recommendations from location histories, it is still unclear how users’ interests in various 

locations and motion behavior of visiting such locations (as extracted from location histories) can 

be used to identify other users who are similar to the current one. Furthermore, the question of 

how these similar users’ movements can be aggregated for generating recommendations is still a 

subject of research. Existing CF methods cannot be directly applied to these questions. 

3) Existing methods on deriving recommendations from location histories fail to consider contextual 

information, such as weather and companion (i.e., with whom)8. For incorporating more 

contextual information into the recommendation algorithms, several challenges still exist. Firstly, 

in order to provide context-aware recommendations, user profiles should be annotated with 

                                                           
8
 “Weather” and “companion” are examples of contextual dimensions. However, it does not mean that they 

are always relevant for generating recommendations in LBS. We argue that whether they are relevant or not 

should be carefully evaluated. In Section 5.2, we propose a methodology of identifying contextual 

dimensions/parameters that are relevant for a specific recommendation task. 
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contextual information. A context (situation) can be characterized by a set of context 

parameters/dimensions, such as “weather”. Not all context parameters are relevant for 

generating recommendations. However, methods on identifying relevant context parameters for 

LBS applications are still missing9. Secondly, how contextual information can be integrated into CF 

for making location recommendations is still unclear. It is also unclear about whether considering 

contextual information can help to improve recommendation quality.  

 

1.3 Research questions and contributions 

Research aims. This research aims to answer the question of how human location histories can be 

used to derive location recommendations in LBS. Specifically, we are interested in how human 

location histories (e.g., GPS trajectories and trajectories constructed from people’s “self-reported” 

information on social media), and collaborative filtering (CF) can be integrated in LBS to provide 

users with personalized and context-aware location recommendations.  

In this research, the locations for recommendation are places that one may find useful or interesting. 

Similar to Zheng et al. (2011) and Li et al. (2008), we understand these kinds of locations as 

geographic regions, each of which can be represented as a topologically closed polygon in the 

geographic space. A location or geographic region may contain several points of interest (POIs), such 

as shops and restaurants10 . In the following, we use location, place, and geographic region 

interchangeably. 

                                                           
9
 One exception was given by Keßler (2010), who developed a cognitively plausible dissimilarity measure to 

compare information retrieval result rankings (DIR). DIR was employed to identify which context parameters 

heavily influence the outcome of the retrieval task, and should therefore be modeled as relevant ones. This 

approach required that the ranking result for each context is available in advance, which might be hard to 

generate. In Keßler’s Surf Spot Finder, he used the domain knowledge about each spot and rules to generate 

ranking result for each context. However, as mentioned before, this knowledge-based approach requires a good 

understanding of the application domain and has to undergo a long process of knowledge acquisition (for 

building rules), both of which are very time-consuming and impractical for many LBS applications. 
10

 Due to the constraints of current location-acquisition technologies, it is not always possible to identify the 

exact POI users are visiting, especially in a dense urban environment. Therefore, we make location 

recommendations instead of POI recommendations. However, we argue that with more accurate 

location-acquisition technologies, POI recommendation can be achieved by employing the methods proposed 

in this research. 
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The overall research question is comprehensively addressed in the following sub-questions: 

Sub-Question 1: How can a user’s interests in various locations/places and motion behavior of visiting 

such locations, which are required for CF, be modeled and extracted from his/her location 

histories? 

Building a profile from the feedback of a user is the first step of CF. Existing CF approaches often 

represent a user profile as a set of ratings given by the user on different items. These kinds of 

user profile models are insufficient for making location recommendations from location histories, 

as it cannot model users’ behavior of visiting various locations, e.g., in which orders these 

locations are visited, and transit time between locations. In this research, we first explore a 

model of contextual user profiles based on the concepts of stops and moves, which were 

introduced by Spaccapietra et al. (2008) and have been shown to be a useful abstraction of raw 

location histories (e.g., raw GPS trajectories) in the literature (Palma et al. 2008, Bogorny et al. 

2009, Andrienko et al. 2011, Yan et al. 2011, Renso et al. 2013, Rinzivillo et al. 2013). With the 

proposed model, users’ interests in different locations as well as their behavior of visiting such 

locations can be represented. In order to extract meaningful user profiles from raw location 

histories (e.g., raw GPS trajectories), a duration-threshold-free SMoT (DTF-SMoT) and a 

stay-point-based SMoT (SP-SMoT) are developed. 

Sub-Question 2: How can other users’ interests in various locations and motion behavior of visiting 

such locations, as extracted from their location histories, be utilized to provide the current user 

with personalized location recommendations? 

Existing CF methods often work with rating-based user profiles, and are not suitable for deriving 

location recommendations from location histories. This research investigates how users’ 

interests in various locations (reflected by their visits to these locations and the duration of these 

visits11) and motion behavior of visiting such locations can be combined to identify other users 

who are similar to the current user. More specifically, we explore a novel user similarity measure 

by considering the sequence property of movement (i.e., the order in which various locations are 

visited), location popularity, duration at locations and transit time between locations. We then 

                                                           
11

 This is in line with Bohnert (2010) and Zheng et al. (2011), which also used a user’s stop and the stop 

duration at a location to approximate his/her implicit interest rating for the location.  
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employ this user similarity measure to identify users who are similar to the current one, and 

aggregate the “opinions” (i.e., movements) of these similar users to generate location 

recommendations for him/her.  

Furthermore, we empirically investigate whether considering the order in which locations are 

visited, location popularity, duration at locations and transit time between locations contributes 

to the improvement of recommendation quality. 

Sub-Question 3: How can context-awareness be introduced to improve location/place 

recommendation in LBS? 

Existing methods on deriving recommendations from location histories often only consider users' 

current position and preferences, and fail to consider contextual information, such as weather 

and weekend/weekday, which may be potentially relevant for the recommendation tasks. In 

answering the former Sub-Question, we develop a non-contextual collaborative filtering (CF) 

method for deriving personalized location recommendations from a large number of users’ 

location histories. This method is further improved by integrating contextual information. 

Specifically, we develop a methodology for identifying context parameters that are relevant to 

the recommendation task, and explore a statistics-based approach for measuring similarity 

between different contexts (situations). We then design three approaches to integrate the 

similarity measure into CF for making context-aware location recommendations. 

The methods developed for answering the above questions are comprehensively evaluated with 

three real-world datasets: 1) contextual GPS dataset in Delft city center (The Netherlands); 2) 

contextual GPS dataset collected from Vienna zoo (Tiergarten Schönbrunn, Austria), and 3) 

trajectories constructed from Flickr photos uploaded for the city of Vienna. These datasets consist of 

different types of location histories and reflect different scales of application scenarios.  

 

1.4 Organization of the dissertation 

This dissertation is structured as follows: 
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Chapter 1 (Introduction) introduces the background, motivation, and research aims, and outlines the 

contributions.  

Chapter 2 (State of the Art) provides a state-of-the-art survey of related research, such as LBS, 

recommender systems, and applications of location histories. 

Chapter 3 (Implicit User Profiling from Location Histories) addresses the Sub-Question 1, and mainly 

focuses on exploring a model of contextual user profiles, and methods of extracting meaningful user 

profiles from raw location histories. 

Chapter 4 (Personalized Location Recommendations from Location Histories) addresses the 

Sub-Question 2, and mainly investigates how other users’ interests in various locations and motion 

behavior of visiting such locations, as extracted from their location histories (as in Chapter 3), can be 

utilized to provide the current user with personalized location recommendations. Please note that 

the CF method proposed in this chapter does not use contextual information like weather and 

companion (with whom). Therefore, it can be considered as a non-contextual CF model. 

Chapter 5 (Improving Location Recommendations through Context-awareness) addresses the 

Sub-Question 3, and aims to improve the non-contextual method (developed in Chapter 4) by 

integrating contextual information like weather and companion (e.g., alone or with others). 

Chapter 6 (Conclusions and Future Work) concludes the research by summarizing the main 

contributions of this dissertation, and points out the future research directions.  
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2 State of the Art 

 

 

Our research concerns how human location histories (e.g., GPS trajectories) and collaborative filtering 

(CF) can be integrated in LBS to provide users with personalized and context-aware location 

recommendations. This chapter provides a brief discussion of related research. Section 2.1 discusses 

the field of LBS and mobile guides. In Section 2.2, we discuss different recommendation techniques, 

and focus on recent advances in CF. Section 2.3 discusses research on using human location histories. 

Section 2.4 provides a brief survey of related LBS systems.  

 

2.1 LBS and mobile guides 

At a high level of abstraction, LBS are computer applications that deliver information/services 

depending on the position of device and user (Raper et al. 2007a). Recently, LBS have become more 

popular in not only citywide outdoor environments but also shopping malls, museums and many 

other indoor environments. They have been applied in emergency services, tourism services, 

intelligent transport services, gaming, assistive services, etc (Raper et al. 2007b). Among them, 

mobile guides (LBS for tourists, such as city guides or museum guides) are the largest group of LBS 

applications. 

LBS often consist of three basic modules (Huang and Gartner 2010): positioning, modeling and 

adaptation, and information presentation and user interface (UI). The positioning module determines 

the current location of a user. For outdoor LBS applications, GPS is often employed. For indoor 

applications, additional installations (e.g. WiFi, Bluetooth and Radio-frequency identification RFID) 

are required (Retscher 2007). How to provide reliable and stable positioning information in complex 

and changing environments (indoor or outdoor) is still a challenging research question. Modeling and 

adaptation aim to model the user and his/her context, and intelligently adapt the services to them. 
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Research on information presentation and UI focuses on exploring technologies to 

convey/communicate information efficiently to the user, such as Augmented Reality (AR) and mobile 

maps (Gartner 2013). In many LBS applications, the last two modules may interconnect with each 

other.  

 

2.1.1 Context-awareness and adaptation 

For effectively supporting users, LBS should provide information and services adapted to the current 

location, context, and need of a mobile user. From this sense, context-awareness and adaptation play 

an essential role in LBS (Raper et al. 2007a).  

The term context-aware computing was first introduced by Schilit et al. (1994). Since then, numbers 

of definitions of the term context have been proposed in the literature. Among them, Dey proposed a 

broadly adopted definition of context in computer science: “Context is any information that can be 

used to characterize the situation of an entity. An entity is a person, place or object that is considered 

relevant to the interaction between a user and an application” (Dey 2001, p. 5). Dourish (2004) 

further studied the definition of context, and identified two views for context: representational and 

interactional. The representational view understood that “context is a form of information, it is 

delineable, it is stable, and it is independent from the underlying activity” (Adomavicius and Tuzhilin 

2011, p. 68). This view assumed that context acts as a set of conditions under which an activity (i.e., 

interaction) occurs, and it could be modeled using a set of observable attributes of these situations. 

These attributes can be considered as context parameters, which can help to differentiate/recognize 

different situations. These parameters were known at the stage of system development, and the 

structure of them did not change over time. On the opposite, in the interactional view, the scope of 

context was defined dynamically; therefore, enumeration of context conditions was not possible 

beforehand. This view assumed “a cyclical relationship between context and activity, where the 

activity gives rise to context and the context influences activity” (Adomavicius and Tuzhilin 2011, p. 

68). Compared to the interactional view, the representational view is much simpler and more 

computationally feasible for many applications (Baltrunas 2011). Therefore, similar to the majority of 

relevant work, the representational view is also adopted in this dissertation. 
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When developing context-aware systems the developer must pre-determine what aspects of the 

world can be considered as context parameters, i.e., the attributes characterizing the situations that 

the system might encounter. Different categories have been proposed for context. Dey (2001) 

categorized context into primary context and secondary context. Primary context elements were 

place, time, identity, and activity. The primary context elements can work as indices to secondary 

elements, e.g., weather conditions. Schmidt et al. (1999) distinguished context related to human 

factors and context related to the physical environment. The former one was structured into three 

categories: information on the user, the user’s social environment, and the user’s tasks. Context 

related to the physical environment was structured into three categories: location, infrastructure, and 

physical conditions. Nivala and Sarjakoski (2003) developed a classification of context for map-based 

mobile services: user, location, time, orientation, navigation history, purpose of use, social and 

cultural situation, physical surroundings, and system. Reichenbacher (2004) structured context into 

different dimensions in the field of mobile cartography: situation, user, activities, information, and 

system. The described classifications provide some structures for consideration of context (Schmidt et 

al. 1999). For practical uses of context, the general challenge is to identify which attributes (i.e., 

context parameters) are relevant and needed to be modeled for context-aware services. Current 

context-aware systems often choose some features as context parameters from their own views 

(Huang and Gartner 2009). What is missing, however, is a method about how to identify relevant 

context parameters. We address this issue when discussing the context-aware recommendation 

algorithms (Chapter 5).  

Recognizing the context (situation) that the user is currently in is another key issue in context-aware 

services. As mentioned above, a situation can be characterized as a set of relevant parameters. The 

values of these parameters can be provided either by users themselves or by different sensors. 

Different approaches have been proposed for using sensor output for situation recognition (Schmidt 

2002, Coutaz et al. 2005, Ye 2009). Coutaz et al. (2005) proposed three layers of abstraction for 

translating sensor output into situation recognition: the sensor layer, the perception layer, and the 

situation/context identification layer. The sensor layer collected numeric output of a collection of 

sensors. Some transformations were needed to determine meaning from numeric observables. The 

perception layer was independent of the sensing technology and provided symbolic observables at 

the appropriate level of abstraction. The situation/context identification layer identified the current 



13 

situation and context from symbolic observables, e.g., by reasoning. Ye (2009) proposed a lattice 

theory based approach to infer situations from sensor output. Each type of sensor reading was 

considered as a context predicate. A situation’s specification can be expressed as a logical description 

that takes context predicates as input and applies the logical operators on them. The specifications of 

different situations can be learnt from training data.  

When the context/situation of the current user is identified, adaptation techniques can be used for 

fitting the services according to the current context (Reichenbacher 2004, Raubal and Panov 2009). 

Fischer (1993) proposed two ways for achieving adaptation: adaptable and adaptive. This 

classification was a differentiation between manually and automatically performed adaptation 

processes. Adaptable systems enable users to customize the functionality of the services by 

themselves. The advantage of this approach is that “the user is in control”, while the disadvantage is 

that “the user must do substantial work”. On the contrary, adaptive systems adapt their services 

automatically according to the user and his/her context. The advantage of this approach is “little (or 

no) effort by the user”, while it has the weakness of “loss of control”. Raubal and Panov (2009) argued 

that services requiring large amounts of explicit interaction have less potential of being used, as they 

tend to be obstructive. A field study conducted by Filippini Fantoni (2003) showed that 94% of the 

participants preferred systems that change their services automatically according to the users’ need. 

Therefore, considering the fact that LBS users are often involved in many tasks and activities during 

using mobile devices, adaptive services rather than adaptable ones should be introduced into LBS. 

This dissertation aims to provide LBS users with adaptive location recommendations matching their 

interests and context, such as weather and companion (with whom). Location/place 

recommendations are derived from users’ location histories, which can be considered as 

non-intrusive observations of these users’ previous movements. With this, we expect to provide users 

with context-aware location recommendations while requiring little (no) explicit interaction from 

them.  

 

2.1.2 Mobile guides and location recommendations 

Mobile guides are the largest group of LBS applications (Raper et al. 2007b). In this section, we survey 
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related research on mobile guides, and focus on location recommendations. 

Mobile guides aim to provide users with enjoyable and informative guidance when visiting an 

unfamiliar environment, such as a new city or a new museum. When travelling around a new 

environment, tourists often need help to identify personally interesting places/locations from a 

potentially overwhelming set of choices. The task is further complicated by the physical attributes of 

the environment (Bohnert 2010), as it takes time for people to move between places, and personally 

interesting places may be scattered throughout the environment. Furthermore, when visiting a place, 

tourists often expect information about the place, such as history, stories, and other relevant 

information. In other words, they need personalized information about the places they visit.  

For providing place/location recommendations and information about places in mobile guides, 

personalization and context-awareness play an essential role. There is a large body of research 

focusing on providing users with personalized information about places, and location-tailored and 

context-tailored visualization (Oppermann and Specht 1999, Sparacino 2002, Sarjakoski and 

Sarjakoski 2005, Wakkary and Evernden 2005, Cena et al. 2006, Stock and Zancanaro 2007, Tallon and 

Walker 2008, Kenteris et al. 2011, Kim and Park 2011, Chen et al. 2013). For example, Oppermann 

and Specht (1999) developed a museum guide, in which content selection and presentation of 

exhibits were adapted to the current device, network connection, current location, as well as users’ 

knowledge and preferences. Sarjakoski and Sarjakoski (2005) visualized relevant POIs on map views, 

while the visualization was adapted to different seasons. Cena et al. (2006) adapted the content of 

the mobile guide being provided and presentation according to the device, user preferences, and the 

context (i.e., the user location and time of the day). In summary, the research focused on providing 

and presenting information adapting to users’ interests, tasks, and context.  

There are also mobile guides aiming to provide location recommendations matching users’ interests, 

need, and context. For example, Cheverst et al. (2000) recommended attractions according to the 

current location, users’ interests, and the opening time of the attractions. A static user model 

obtained from explicit user input was employed to generate a tailored city tour. Hagen et al. (2005) 

employed ontology to identify locations relevant to users’ interests, the available time period, and 

the current position. Users need to explicitly state their interests. Horozov et al. (2006) developed a 

restaurant recommendation system for mobile users. Restaurants were recommended based on the 
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current location and users’ interests. It proposed a location-enhanced collaborative filtering (CF) 

method, which required a large amount of explicit ratings about nearby restaurants. Li et al. (2009) 

proposed a multi-stage collaborative filtering method to provide event recommendations based on 

the current location and users’ interests. However, the approach required users to provide their 

profiles explicitly. While these approaches successfully provided users with relevant location 

recommendations, they had the drawbacks that users were required to state their interests explicitly. 

As LBS users are often involved in many tasks and activities during using their devices, mobile guides 

employing the above approaches might tend to be obstructive, and therefore have less potential of 

being used (Filippini Fantoni 2003, Raubal and Panov 2009).  

In recent years, many researchers have started to explore methods that provide location 

recommendations to users in a non-intrusive manner, by learning user profiles from their interaction 

histories or location histories. For example, Schmidt-Belz et al. (2002) developed a mobile guide 

adapted to the current location and user interests. It learnt a user’s interests from his/her 

interactions with the system. Services were then tailored to user interests by using a domain 

taxonomy. van Setten et al. (2004) reported on the COMPASS project, which provided location-based 

personalized POI recommendations to users. A user’s interest model was manually initialized and 

further automatically updated by the system based on the user’s feedback for specific POIs. An 

ontology describing the class hierarchy of POIs was employed during the recommendation process. 

Takeuchi and Sugimoto (2006) recommended shops to mobile users by considering the current 

location and users’ interests. Users’ interests were estimated by analyzing their past location history 

recorded by GPS. An item-based CF was employed for recommending nearby shops matching users’ 

interests. Bohnert (2010) analyzed users’ location histories to extract their interests, and aggregated 

the extracted information to provide exhibit recommendations in a museum. Zheng et al. (2011) 

made friend recommendations and place recommendations by mining a large amount of GPS 

trajectories. The place recommendations were mainly generated by employing CF technique.  

Several drawbacks of the above non-intrusive methods should be mentioned. Firstly, many of the 

non-intrusive methods employed knowledge bases (e.g., adaptation rules) or ontologies for making 

location recommendations (e.g., Schmidt-Belz et al. 2002, van Setten et al. 2004). For building the 

knowledge bases and ontologies, a long underlying learning (knowledge acquisition) process has to 
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be carried out, and knowledge about the application domain should be extracted, both of which are 

very time-consuming and impractical for lots of LBS applications. More importantly, these approaches 

were not able to provide users with context-aware services in situations with little available (or no) 

domain knowledge, which are very common in LBS applications. Secondly, for other systems 

employing a collaborative filtering technique rather than knowledge-based technique, most of them 

only provided location/place recommendations according to users’ interests and current position, 

and did not consider other contextual factors that may be potentially relevant for generating 

recommendations, e.g., weather, companion (with whom), and weekend/weekday.  

Summary. Mobile guides have gained increasing interest in recent years (Stock and Zancanaro 2007, 

Wiesenhofer et al. 2007, Yılmaz and Erdur 2012, Cheng et al. 2013, Yang and Hwang 2013). Different 

approaches have been applied for providing personalized and context-aware services in mobile 

guides. However, many of them focused on adapting content presentation rather than location 

recommendations. There were also many mobile guides generating location recommendations by 

asking users to state their interests explicitly. As LBS users are often involved in many tasks and 

activities during using mobile guides, these intrusive recommendation approaches might have less 

potential of being used. Furthermore, some of the mobile guides employed a knowledge-based 

approach for adaptation. These knowledge-based approaches often required a long underlying 

learning (knowledge acquisition) process and a good understanding of the application domain, both 

of which are very time-consuming and impractical for many LBS. There were also systems employing 

the collaborative filtering technique, and avoiding the problem of “knowledge acquisition bottleneck”. 

However, they often generated recommendations only according to users’ interests and current 

location.  

This dissertation addresses the above challenges. We mainly focus on deriving context-aware location 

recommendations from location histories (such as GPS trajectories), which can be considered as 

non-intrusive observations of users’ previous movements. Collaborative filtering (CF) is employed in 

the recommendation process. In the following, related work on recommendation systems and mining 

location histories is summarized.  
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2.2 Recommendation systems 

Recommendation systems (RSs) aim to provide a user with a personalized list of items that are 

relevant to his/her interests, need, and context. Various types of information about users, items, and 

interactions between users and items are often collected and exploited for making recommendations. 

In terms of interactions between users and items, the most commonly used information is the set of 

subjective ratings assigned by the users to previously experienced items. The system then uses these 

ratings to predict the ratings for items not yet experienced. Items with higher estimated ratings will 

be recommended to the user (Baltrunas 2011). RSs have been applied in many domains, such as 

movies, music, news, jokes, city tours, museum, and e-commerce (Bohnert 2010).  

 

2.2.1 RS techniques 

A variety of techniques has been proposed for RSs. Among them, collaborative filtering, 

content-based filtering, knowledge-based filtering, and hybrid RS are the most popular ones (Hanani 

et al. 2001, Ricci et al. 2011). 

Collaborative filtering (CF) provides a user with the items that other users with similar tastes liked in 

the past (Resnick and Varian 1997). The recommendations on the amazon.com website (“people who 

bought … also bought …”) are well-known CF examples. CF is a domain independent approach, which 

makes recommendations based on users’ opinions/ratings on different items. A rating is often 

modeled as a tuple <user, item, rating>. Ratings can be expressed explicitly, e.g., by indicating a rating 

on a scale, or can be inferred implicitly, e.g., from purchase behavior or moving trajectories. 

User-based CF is a typical CF approach. It identifies users that are similar to the current users, and 

aggregates these users’ “opinions” to generate recommendations for the current users. 

The biggest advantage of CF is that it requires little domain knowledge about the recommendation 

scenarios, as it generates recommendations solely based on ratings. CF can also recommend items 

outside the observed interests of a user (i.e., “surprising” items), and this is possible because 

recommendations are based on the ratings of other similar users. However, pure CF has some 

disadvantages (Desrosiers and Karypis 2011). Two of them are data sparsity (too few common ratings) 
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and cold-start problem (new user problem and new item problem). For example, pure CF cannot 

generate recommendations for new users, as no ratings from them are available.  

Content-based filtering (CBF, or content-based recommendation) recommends items (e.g., locations) 

similar to those the user has liked in the past. Only the ratings of the current user are exploited for 

making recommendations. These systems build a model or profile of user’s preferences based on the 

features (description) of the objects rated/chosen/liked by that user (Lops et al. 2011). A profile is a 

structured representation of a user’s preferences. The recommendation process matches up the user 

profile with the attributes of an item (item profile). The result is a relevant judgment representing the 

user’s level of interest in that item. Items with higher relevant judgment values are often 

recommended to the end user. The performance of content-based RSs mainly depends on how 

accurate the profile reflects the user’s preferences. Recently, approaches aiming to integrate 

context-awareness into CBF have been also proposed in the literature (Yap et al. 2005, 2007).  

CBF systems do not suffer from the new item problem. Therefore, they are preferred to CF in those 

domains where the main need is to recommend recent items or data sparsity is very high (Pazzani 

and Billsus 2007), for example in the news domain. CBF systems also have several limitations 

(Adomavicius and Tuzhilin 2005, Lops et al. 2011), such as limited content analysis in building profiles 

(for both users and items), and overspecialization. The former one refers to the aspect that the 

recommendation quality of CBF depends on the availability of information about the items. If little 

description about items is available, it is hard to build profiles that accurately reflect the 

characteristics of items and preferences of users. Overspecialization means content-based RSs have 

no inherent method for finding something “surprising” (McNee et al. 2006, Lops et al. 2011). 

Knowledge-based Filtering (KBF, or knowledge-based recommendation) recommends items based 

on predefined knowledge bases that contain explicit rules about how certain item features meet 

users’ need and preferences, or ultimately, how useful the item is for the user (Schafer et al. 1999, 

Felfernig et al. 2011).  

A knowledge base is typically defined by two sets of variables (VU, VPROD) and three different sets of 

constraints (CR, CF, CPROD) (Felfernig et al. 2011). User Properties VU describe possible requirements of 

users, i.e., requirements are instantiations of user properties, which may be explicitly provided by 

users via a series of dialogs. Product Properties VPROD describe the properties of a given product 
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assortment. Constraints CR systematically restrict the possible instantiations of user properties. Filter 

Conditions CF define the relationship (rule) between potential user requirements and the given 

product assortment. Products CPROD store all the products, and represent them by using the 

properties defined in VPROD. Among them, Filter Conditions CF plays a key role. An example of a CF rule 

can be  

CF = {CF1: With_cash = not  Credit_cards_accepted = Yes} 

It can be explained as “users without cash should receive recommendations (restaurants) that accept 

credit cards”. 

Compared to CF and CBF, KBF has no cold-start problems since users’ requirements are directly 

elicited within a recommendation session through a series of dialogs. However, it suffers from “the 

knowledge acquisition bottleneck in the sense that knowledge engineers must work hard to convert 

the knowledge possessed by domain experts into formal, executable representations” (Felfernig et al. 

2011, pp. 187–188). Therefore, it is often combined with other RS techniques.  

Hybrid RS. As mentioned above, each RS technique has advantages and disadvantages. Hybrid RSs 

combine two or more of the above techniques. A hybrid system combining techniques A and B tries 

to use the advantages A to fix the disadvantages of B (Ricci et al. 2011). For instance, pure CF suffers 

from the cold-start problem (new item and new user), i.e., they cannot recommend items that have 

no ratings, and they cannot make recommendations to users who have not given ratings. These can 

be solved by applying a knowledge-based technique at the beginning. Adomavicius and Tuzhilin (2005) 

and Burke (2002) provided some surveys on hybrid RSs. 

Ricci et al. (2011) distinguished RS into additional classes, i.e., demographic RS and community-based 

RS. Demographic RS recommends items according to the demographic user profile (age, language, 

country), while community-based RS recommends those items that the user’s friends like.  

In summary, different RS techniques have advantages and disadvantages, and require different inputs. 

Among these RS techniques, CF requires little domain knowledge about the recommendation 

scenarios, as it generates recommendations solely based on ratings. In terms of recommendations in 

LBS, we are aware that LBS (e.g., mobile guides) often need to effectively provide users with 

context-aware services in situations with little (or no) domain knowledge. Therefore, CF is a very 
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promising technique for providing recommendations in LBS. Furthermore, with the increasing 

availability of GPS-enabled devices and geotagged social media, large location history datasets (e.g., 

GPS trajectories or trajectories constructed from social media) are potentially available for LBS. These 

location histories reflect people’s travel experiences and implicit feedback about the environment, 

which enable CF with an abundance of data for accurate recommendation. To summarize, CF is a 

promising technique for making recommendations in LBS, especially location/place recommendations 

in mobile guides. Therefore, this research investigates how CF can be used in LBS to derive 

context-aware location recommendations from location histories. In the following, we provide a more 

detailed survey on collaborative filtering.  

 

2.2.2 Collaborative filtering (CF) 

As mentioned before, CF uses “opinions” of similar users to help the current user efficiently identify 

items of interest (Resnick and Varian 1997). 

The first stage of CF is to build user profiles from users’ feedback on items made over time. A user 

profile is often represented as a set of ratings given by the user on different items, and a rating is 

modeled as <user, item, rating>. Feedback can be explicit and implicit (Nichols 1997). Explicit 

feedback requires explicit actions from users (e.g., indicating a rating on a scale) which bring some 

burden to them, and interrupt normal patterns of their action (Nichols 1997). For implicitly collecting, 

the system tracks users’ implicit feedback (i.e., moving tracks, interaction history) to unobtrusively 

infer their preferences. For example, Froehlich et al. (2006) found that there existed a positive 

correlation between explicit place ratings and implicit aspects of travel behavior such as visit 

frequency and travel time. It is also important to note that while rating-based approaches are 

effective for representing user profiles, especially in the domain of movie and product 

recommendations, they might be insufficient to represent the information extracted from users’ 

movements. For example, when making location recommendations based on GPS trajectories, the 

rating-based approaches cannot effectively represent users’ behavior of visiting various 

locations/places, e.g., in which orders these locations are visited, and transit time between locations. 

We address this issue in Chapter 3.  
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Algorithms for CF can be grouped into two general classes (Adomavicius and Tuzhilin 2005):  

1) Model-based CF (Pavlov and Pennock 2002, Hofmann 2003, Marlin 2003, Karatzoglou et 

al. 2010) uses the collection of ratings to learn a model, which is then used to make 

rating predictions. Probabilistic models (such as Bayesian networks and cluster model) 

are often employed for model learning.  

2) Heuristic-based or neighborhood-based CF (Resnick et al. 1994, Delgado and Ishii 1999, 

Desrosiers and Karypis 2011) can be divided into user-based approach and item-based 

approach. Given an unknown rating (of an item by the current user) to be estimated, 

neighborhood-based CF first measures similarities between the current user and other 

users (user-based), or between the item and other items (item-based). Then the 

unknown rating is predicted by averaging (weighted) the known ratings of the item by 

similar users (user-based), or the known ratings of similar items by the current user 

(item-based). 

Research has found that state-of-the-art model-based approaches can achieve better prediction 

accuracy than neighborhood-based approaches (Takács et al. 2007, Koren 2008). However, 

neighborhood-based approaches also have their own advantages, such as simplicity, justifiability (the 

ability to provide a concise and intuitive explanation about why the items are recommended), 

efficiency, and stability (Desrosiers and Karypis 2011). 

In recent years, researchers have started to investigate how CF can be improved by considering 

contextual information, such as shopping purposes, weather, and seasons. Several context-aware CF 

(CaCF) approaches have been proposed in the literature (Herlocker and Konstan 2001, Hayes and 

Cunningham 2004, Adomavicius et al. 2005, Oku et al. 2006, Anand and Mobasher 2007, Panniello et 

al. 2009, Karatzoglou et al. 2010, Baltrunas 2011, Panniello and Gorgoglione 2012). For example, 

Adomavicius et al. (2005) proposed a contextual pre-filtering CaCF method, in which ratings collected 

in other conditions as the current one were discarded, and a standard CF algorithm was then applied 

on this reduced set of data to generate contextual recommendations. Oku et al. (2006) incorporated 

context-aware Support Vector Machine (C-SVM) into CF for providing contextual recommendations. 

C-SVM was used to compute user similarities. Karatzoglou et al. (2010) extended Matrix Factorization 

(MF) by adding contextual information, and designed a Tensor Factorization (TF) to provide 
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context-aware recommendations. To better understand different CaCF methods proposed in the 

literature, Adomavicius and Tuzhilin (2011) proposed to classify them into three groups, based on 

how (when) the contextual information is used. They were contextual pre-filtering (contextualization 

of recommendation input), contextual post-filtering (contextualization of recommendation output), 

and contextual modeling (contextualization of recommendation algorithms). Panniello and 

Gorgoglione (2012) empirically compared these three approaches for contextual product 

recommendations using transaction data (purchasing information) from e-commerce websites. They 

showed that there was no clear winner for all settings, while “filter” based post-filtering 

outperformed other contextual approaches in many settings. However, it is unclear whether this 

conclusion still holds for other application domains or not, as different domains may have different 

characteristics. 

It is important to note that, most of the above CF methods and CaCF methods were designed for and 

evaluated in movie, music, and product domains, and employed explicit ratings. There were some 

attempts on applying CF in LBS for making recommendations, such as restaurant recommendations 

(Horozov et al. 2006), event recommendations (de Spindler et al. 2006, Li et al. 2009), shop 

recommendation (Takeuchi and Sugimoto 2006), exhibit recommendations in museums (Bohnert 

2010), and place recommendations (Zheng et al. 2011). However, as mentioned in Section 2.1.2, 

many of these approaches required users to explicitly state their interests, e.g., Horozov et al. (2006), 

de Spindler et al. (2006) and Li et al. (2009). For other systems learning from users’ behavior 

(Takeuchi and Sugimoto 2006, Bohnert 2010, Zheng et al. 2011), recommendations were often only 

adapted to users’ interests and their current location. However, there are also many other contextual 

factors such as weather and companion, which might be relevant for generating recommendations.  

This dissertation tries to address the above challenges. A non-intrusive context-aware CF method is 

developed to derive personalized and context-aware location recommendations from location 

histories, such as GPS trajectories and trajectories constructed from social media.   

 

2.3 Mining location histories 

With the availability of different tracking technologies (e.g., GPS), recent years have seen an 
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increasing abundance of data about the trajectories of moving objects (such as cars, humans, animals, 

goods) being recorded. In the meantime, more and more trajectories can be constructed from users’ 

“self-reported” information on social media, such as Foursquare check-ins, and Flickr photos. Such 

location histories play an essential role in a variety of novel applications in different scientific and 

social domains. Therefore, in recent years, research on movement data analysis and application has 

been blooming. Many research communities such as MODAP12 (mobility, data mining, and privacy), 

MOVE13, and SEEK14 (SEmantic Enrichment of trajectory Knowledge discovery) are actively focusing 

on this issue. 

A trajectory is defined as an evolution of the position (perceived as a point) of an object that is 

moving in space during a given time interval in order to achieve a given goal (Spaccapietra et al. 2008). 

It is often represented as a discrete sequence of points, with an interpolation function to 

approximate the movements between two consecutive points. Different technologies can be used for 

tracking trajectories of moving objects, such as GPS, GSM (Global System for Mobile 

Communications), Bluetooth, and RFID. As mentioned above, trajectories can be also constructed 

from social media.  

Real-life trajectory data, collected using the technologies previously mentioned, are not ready for 

further applications. Such data are often imprecise due to limitations of tracking technologies (e.g., 

inaccurate GPS measure and sampling errors, signal loss). Therefore, trajectory data cleaning is often 

needed before the actual data analysis process (Marketos et al. 2013). Different filtering methods 

(e.g., filtering noisy points by considering maximum allowed speed of a moving object) and smooth 

methods (e.g., Gaussian kernel based local regression model, Kalman filtering) can be employed. For 

objects which are restricted to move within a given spatial network (e.g., road/railway network), 

map-matching approaches can also be used for data cleaning. 

  

                                                           
12

 http://www.modap.org/ 
13

 http://www.move-cost.info/ 
14

 http://www.seek-project.eu/ 

http://www.modap.org/
http://www.move-cost.info/
http://www.seek-project.eu/
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2.3.1 Semantic trajectory processing and mining 

Early research mainly focused on the geometric properties of trajectories, and therefore tended to 

discover geometric patterns. Geometric patterns were normally extracted based on the concept of 

dense regions and trajectory similarity. However, without considering semantic information that is 

available from background geographic information, it is very difficult to have a meaningful 

interpretation of movement behavior based on the extracted geometric patterns (Yan et al. 2011). In 

order to extract meaningful knowledge, raw trajectories should be enriched and integrated with 

additional semantics, such as geographic information, events related to the movement, and activities 

performed by the moving object when it stopped (Spaccapietra et al. 2013).  

Recently, adding semantics to trajectories has received increasing attention. Spaccapietra et al. (2008) 

proposed a conceptual view on trajectories, modeling a trajectory as a sequence of stops and moves. 

Stops were the important parts of a trajectory where the moving object did not move, as far as the 

application view of this trajectory is concerned. Moves were the sub-trajectories describing the 

movements between two consecutive stops. They were often based on the moving speed of the 

object, but the semantic expression depended on the application. Based on the concepts of stops and 

moves, users can enrich trajectories with semantic information according to the application domain. 

The conceptual view based on stops and moves has been applied in various trajectory-based 

applications, such as Palma et al. (2008), Bogorny et al. (2009), Yan et al. (2011), Andrienko et al. 

(2011), Renso et al. (2013), Rinzivillo et al. (2013), just to name a few.  

Extracting stops and moves: Different approaches have been proposed to identify stops and moves 

from raw trajectories. Alvares et al. (2007) proposed the SMoT (Stops and Moves of Trajectories) 

method. The method required a set of pre-defined geographic places/areas (i.e., candidate stops) and 

their minimum duration thresholds as inputs. If an object had stayed in a pre-defined area for the 

duration longer than the duration threshold, it was considered to have stopped in this area. The 

method verified the intersection of the trajectory with this set of geographic areas and their duration 

thresholds to extract stops and moves. The main challenge of this method is the definition of a 

suitable set of geographic areas and their duration thresholds, which is application-dependent. The 

method CB-SMoT (Clustering-Based SMoT), proposed by Palma et al. (2008), is a clustering method 

based on the variation of the speed of the trajectory. It firstly extracted clusters (potential stops), 
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where the speed was lower than a given threshold, for a minimal amount of time. In a second step, 

the method verified for each cluster if it intersected the pre-defined geographic areas. All clusters 

that intersected the geographic areas for a minimal amount of time were labeled with the names of 

the areas; otherwise, they were named as unknown stops. CB-SMoT can help to discover stops that 

are unknown a priori, but may be potentially interesting to the application. However, CB-SMoT is still 

very sensitive to the input parameters, such as the speed and thresholds. Rocha et al. (2010) 

proposed another clustering method DB-SMoT (Direction-Based SMoT), based on the variation of 

trajectory direction. Stops were generated for sub-trajectories where the direction variation is lower 

than a given threshold and for a minimal amount of time. This method is useful in specific domains 

where the direction variation has a greater impact than speed. Zheng et al. (2011) proposed a stay 

point based approach (tree-based hierarchical graph, TBHG) for processing raw GPS trajectories. A 

stay point stood for a geographic region where a user stayed over a certain time interval. For each 

trajectory, a set of stay points were extracted based on a time threshold and a distance threshold. As 

the stay points pertaining to different individuals were not identical, a density-based clustering 

algorithm was employed to hierarchically cluster all users’ stay points into several geospatial regions 

in a divisive manner. The nearby stay points from various users were assigned to the same cluster on 

different layers. This organization of clusters provided various users with a uniform framework to 

represent their own location history (i.e., as a hierarchical graph). This approach was developed in the 

GeoLife project (Zheng, Xie, et al. 2010) for friend and location recommendations (see Section 2.3.2). 

It is important to note that, this approach was based solely on spatio-temporal properties, and 

returned some geometric clusters as output. It might be hard to annotate these clusters with 

semantics due to the absence of semantic information during clustering. To sum up, the above 

methods can help to extract stops and moves from raw trajectories. However, all the above methods 

are very sensitive to the input parameters. Defining suitable values for the input parameters is still a 

challenge.  

Mobility data mining: A large body of research has focused on developing methods to understand 

moving objects’ behavior based on their movement trajectories. In the following, we mainly focus on 

research using human movement data. There was research using personal movement to study 

individual behavior. Liao et al. (2005) detected personally significant places (e.g., home, workplace, 

shopping centers) and personally significant transportation routines (i.e., the paths and 
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transportation modes) from GPS trajectories. Ye et al. (2009) proposed a mining approach using an 

individual’s location history to extract significant-place-based life patterns, i.e., regularity of the ways 

of visiting these places. Many other studies have focused on mining multiple users’ location histories. 

Giannotti et al. (2007) developed an extension of the sequential pattern mining paradigm that 

analyzed the trajectories of multiple moving objects, and extracted trajectory patterns which 

described frequent behavior of visiting the same sequence of places with similar travel times. In 

addition to sequential mining, other data mining techniques, such as clustering, classification and 

outlier detection, were often employed to discover interesting behavior patterns (Han et al. 2008, 

Yuan and Raubal 2012, Nanni 2013, Renso and Trasarti 2013). Visual analytics, which helps to 

interpret large amounts of movement data by interactive, visually-driven exploratory data analysis 

techniques, is another approach for extracting behavior patterns (Andrienko and Andrienko 2007).  

 

2.3.2 Applications using trajectories  

The increasing abundance of trajectory datasets has enabled many innovative applications in 

different scientific and social domains, such as ethology (Focardi and Cagnacci 2013), traffic 

management (Janssens et al. 2013), urban studies and planning (van der Spek et al. 2009), crowd 

management and safety at mass events (Versichele et al. 2012), marketing (Versichele et al. 2013), 

and Location-Based Services (e.g., the GeoLife project by Zheng, Xie, et al. (2010)). In the following, 

we mainly focus on LBS applications using trajectories.  

The GeoLife project, implemented by Mircosoft Research Asia, aimed at understanding the 

correlation between users and locations in terms of user-generated GPS trajectories (Zheng, Xie, et al. 

2010). In this project, the TBHG-based approach (please refer to the “Extracting stops and moves” 

part in Section 2.3.1 for an introduction) was employed for processing raw GPS trajectories. Different 

LBS applications have been developed in this project. Zheng et al. (2009) recommended classical 

travel sequences among locations (i.e., non-personalized), considering users’ interests towards these 

locations and their travel experience levels. Users’ interests towards a location and their travel 

experience were computed with a HITS (Hypertext Induced Topic Search)-based inference model. 

Zheng et al. (2011) proposed a CF-based approach to generate personalized place recommendations 
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based on individual location history (GPS trajectory). Firstly, a hierarchical-graph-based similarity 

measure (HGSM), originally proposed by Li et al. (2008), was employed to uniformly model each 

individual’s location history, and effectively measure the similarity among users. A set of unvisited 

locations that were liked (visited) by the current user’s similar users were then recommended to 

him/her. Finally, a content-based method was also incorporated to alleviate the new item problem. 

Xiao et al. (2012) enriched the HGSM with semantic information for measuring user similarity. 

Similarity measure was then applied to friend recommendations. They showed that the new 

similarity measure outperformed the original one proposed in Li et al. (2008) and Zheng et al. (2011). 

In addition to friend and location recommendations, Yoon et al. (2012) proposed a social itinerary 

recommendation by learning from multiple GPS trajectories. Firstly, a Location-Interest Graph was 

learnt offline. This graph contained locations (interest, typical staying time) as vertices, travel time 

and classical level between two connected locations as edges. An online processing framework, 

composed of query verification, trip candidate selection, trip candidate ranking, and re-ranking by 

travel sequence, was employed to generate itinerary recommendations. It is important to note that, 

interest-based personalization has not been introduced into their approach. Zheng et al. (2012) 

proposed a model-based CF approach for location recommendations (e.g., “where should I go if I 

want to go shopping”) and activity recommendations (e.g., “what can I do there if I visit this place”). 

Different information was extracted to feed the CF tasks: location features from POI database, 

activity-activity correlations from the Web, user-user similarities from the user demographics 

database, and user-location preferences from GPS trajectories. To sum up, in the GeoLife project, 

different approaches have been proposed to use GPS trajectories for novel applications, such as 

friend, location, and activity recommendations, which illustrate the benefits of using GPS trajectories 

in LBS. However, it is important to note that, contextual information, such as weather and companion 

information, has not been considered in the above approaches. Furthermore, their approaches were 

designed for GPS trajectories, and might be hard to apply for other trajectories, such as trajectories 

constructed from social media. 

Other researchers have also proposed some innovative applications using trajectories. A significant 

number of articles have presented work aiming to mine GPS trajectories of taxi drivers for route 

recommendation for car navigation (Letchner et al. 2006, Gonzalez et al. 2007, Ziebart et al. 2008, 

Yuan et al. 2010). Many of them tried to provide routes with less travel time for car drivers. There 
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were also applications mining trajectories for tourists. Takeuchi and Sugimoto (2006) recommended 

shops to users based on their individual preferences and need, estimated from their past location 

histories (GPS trajectories). Han and Cho (2006) combined self-organizing maps (SOM) and Markov 

models to predict users’ movements based on past GPS trajectories. Bohnert (2010) mined visitors’ 

moving tracks to provide exhibit recommendations in a museum. There is also research focusing on 

constructing travel itineraries based on geotagged photos on the Web (De Choudhury et al. 2010). 

Metadata (e.g., timestamp, tags, GPS) of the photos were used to generate past tourists’ travel trails, 

which were then combined to generate travel itineraries for future tourists. De Choudhury et al. 

(2010) showed that high quality itineraries can be automatically constructed from Flickr data. 

However, again it is important to note that contextual information (except location) was not 

considered in these studies.  

Summary. Research on trajectories has gained increasing interest in recent years, probably due to the 

increasing abundance of trajectory datasets in daily life. Most of the studies have focused on 

developing methods to understand moving objects’ behavior based on their movement trajectories. 

Compared to these data mining applications, this research uses trajectories for generating 

recommendations in LBS.  

In terms of using trajectories in LBS, different approaches have been proposed for creating novel 

applications, such as user, location, and activity recommendations. However, several limitations 

should be pointed out. Firstly, current approaches were often designed for and evaluated with a 

specific type of location history. These approaches might not be easily applied to other types of 

location histories. For example, the approach developed for GPS trajectories in Zheng et al. (2011) is 

hard to apply for trajectories constructed from social media. A uniform conceptual model for 

representing human behavior extracted from different kinds of location histories is still missing. 

Secondly, current approaches employing location histories for recommendations often fail to consider 

contextual information except the current location and user preferences. However, other contextual 

information, such as weather, time (weekday vs. weekend), and companion, might be potentially 

relevant for generating recommendations, especially location/place recommendations in LBS. It is still 

unclear how these additional contextual factors can be integrated into recommendation algorithms, 

and whether adding these additional contextual factors can help to improve recommendation quality. 
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In addition, existing approaches in the literature are often designed for and evaluated within a 

specific geographic scale, such as citywide or indoor (e.g., museum).  

This dissertation attempts to address the above limitations. A methodology of deriving context-aware 

location recommendations from different kinds of location histories is proposed for LBS applications. 

We are interested in how contextual information can help to provide more relevant 

recommendations. The proposed methodology is evaluated with three real-word location history 

datasets, which reflect different scales of application scenarios and consist of different types of 

location histories: Delft city GPS dataset (city center), Vienna zoo GPS dataset, and trajectories 

constructed from Flickr photos uploaded for Vienna (citywide). 

 

2.4 Related projects  

This section provides a brief survey of LBS applications in a chronological order, with a focus on 

mobile guides. The systems were selected based on their technological innovation, scientific novelty, 

and relevance to our research. There were several reviews on mobile guides in the literature (Chen 

and Kotz 2000, Baus et al. 2005, Krüger et al. 2007, Raper et al. 2007b, Bohnert 2010, sec. 2.4). Here, 

we provide an up-to-date survey. More importantly, when describing these applications, we are 

especially interested in how they model users’ interests and need, which additional contextual 

features they use, and how services are adapted to these kinds of information. 

Hippie was an internet based museum guide which may be used in a stationary context at home and 

in a mobile scenario on the spot (Oppermann and Specht 1999). Content selection and 

presentation was adapted to the current devices, network connection, current location, as 

well as user knowledge and preferences (obtained from interaction history). A rule-based 

system and a domain hierarchy were exploited to determine appropriate content or 

recommend routes through the museum.  

GUIDE was a handheld mobile guide for tourists (Cheverst et al. 2000). The context features used by 

GUIDE included the user’s current location, profile, and the opening times of the attractions. 

Information about the city and attractions was tailored by utilizing the current context, e.g., 
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the current location and the opening times of nearby attractions. GUIDE also employed a 

static user model obtained from explicit user input to generate a tailored city tour.  

The CRUMPET project developed a personalized and location-based mobile guide (Schmidt-Belz et al. 

2002). The context features used by CRUMPET were location and user interests. It employed 

an adaptive user model, which learnt user interests from the user’s interaction with the 

system. Services were tailored to users’ interests by using a domain taxonomy of 

tourist-related services.  

Museum Wearable was a wearable computer for museum visitors, which provided a user-adapted 

audiovisual augmentation of the surrounding environment (Sparacino 2002). It built a 

progressively refined user model (with the help of a Bayesian network) from users’ physical 

path in the museum and length of stops. The user model was then used to deliver a 

personalized audiovisual narration to the visitor. 

COMPASS made location-based personalized POI recommendations to tourists (van Setten et al. 

2004). Location was considered as a primary criterion to select relevant services in the near 

surroundings of the user. A user’ interest model was manually initialized and further 

automatically updated by the system based on the user’s feedback for specific POIs. A map 

view visualizing the current location and a selection of nearby POIs was presented to the user. 

An ontology describing the class hierarchy of POIs was employed for this purpose.  

DTG (Dynamic Tourist Guide) provided personalized sightseeing tours in real-time by considering 

explicitly-stated static user interests, the available time period, and the current location 

(Hagen et al. 2005). An ontology was employed to automatically select relevant POIs.  

ec(h)o was an audio museum guide acting as an augmentation of an existing exhibition installation 

(Wakkary and Evernden 2005). The soundscapes changed based on the position of the visitor 

in the space, the visitor’s history with viewing the artifacts, and their individual interests in 

relation to the museum collection. Users’ interests were first provided by themselves, and 

then updated by learning from their interaction and movement. Relevant content was 

retrieved with the help of an ontology and rule-based system.  

CityVoyager recommended shops to mobile users by considering the current location and users’ 
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interests (Takeuchi and Sugimoto 2006). Users’ interests (i.e., implicit ratings on shops) were 

estimated by analyzing their past location history acquired with GPS. An item-based 

collaborative filtering was employed to predict ratings for “nearby” (considering transition 

probability) shops. Those shops with higher ratings were recommended to the users. 

GeoWhiz was a restaurant recommendation system for mobile users (Horozov et al. 2006). 

Restaurants were recommended based on the current location and users’ interests. It 

proposed a location-enhanced collaborative filtering (CF) method: location was used as a key 

criterion to select nearby restaurants (e.g., within 1 km radius), and a traditional CF based on 

explicit ratings was used to rank these nearby restaurants.  

UbiquiTO was an agent-based mobile guide for tourists (Cena et al. 2006). It adapted the content and 

its presentation according to the device used, users’ preferences, and the context of 

information (i.e., the user location and time of the day). It kept tracking the user’s behavior, 

and refined/updated the user model during the interaction. Some knowledge bases were 

employed for user modeling and service adaptation.  

Park et al. (2007) proposed a personalized restaurant recommendation system. It provided 

personalized recommendations using a Bayesian network, which was defined by an expert 

and refined by using a training dataset. The network modeled the probabilistic influences of 

users’ interests and context (e.g., season, time of a day, position, weather, and temperature) 

on the restaurant attribute values (class, price and mood).   

The PEACH (Personal Experience with Active Cultural Heritage) project developed a multimedia 

mobile guide for museums (Stock and Zancanaro 2007). It also dealt with automatic 

adaptation of content presentation to different output devices and user interests. It 

combined both mobile and stationary systems in parallel, where the latter ones were used to 

show details. A user’s interests were modeled based on both explicit feedback (e.g., by 

changing a different virtual character) and implicit observations of his/her interactions with 

the devices. 

Li et al. (2009) proposed a multi-stage collaborative filtering method to provide event 

recommendations based on the current location and users’ interests. Firstly, the Adaptive 
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Resonance Theory network was used to perform users’ clustering, based on users’ profiles 

which were explicitly provided by the users themselves. For each user, the sequential pattern 

mining method was used to extract individual sequential rules. The current location was used 

to predict a user’s next places (by matching the sequential rules). Events for those next places 

were recommended to the users. In order to address the cold-start problem, cluster 

sequential rules were also extracted for each user cluster. Recommendations of new users 

were performed by matching their cluster sequential rules.  

The Kubadji project aimed to provide personalized mobile guidance for museum visitors (Bohnert 

2010). It recommended exhibits of interest, and provided personalized content delivery for 

these exhibits according to users’ interests and current location. A user’s interests were 

inferred from the non-intrusive observations of his/her behavior in the physical environment.  

The GeoLife project developed several LBS applications for location and friend recommendations 

(Zheng, Xie, et al. 2010, Zheng et al. 2011). The recommendations were made by considering 

users’ interests and location (current location and location history). Users’ interests were 

modeled from their location histories, i.e., GPS trajectories. A user similarity measure was 

developed by using users’ location histories. Users with high similarity to the current user 

were his/her potential friends. Locations visited by these potential friends were then 

recommended to the current user. For a detailed description, please refer to Section 2.3.2. 

Bader et al. (2011) employed multi-criteria-decision-making methods to make gas station 

recommendations for car drivers. The recommendations were generated by considering the 

current time, location, gas level of the car, and prices. They used utility functions to model 

the importance of different context elements, which were derived from a preliminary user 

study.  

Hung et al. (2012) combined a knowledge-based approach and collaborative filtering for making 

artwork recommendations in a museum. A visitor had to describe his/her interests before 

using the system. The initial user profile was then used in the knowledge-based approach for 

making recommendations. During the visit, users can also give ratings to the artworks, which 

were then employed to improve the recommendation.  
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Pombinho et al. (2012) recommended POIs by considering the users’ previous interaction (i.e., 

searches) with the system, and therefore a content-based approach was employed. They 

allowed the user to define geographic areas (e.g., work area or home area) and used 

temporal distances to identify which POIs are open by the time the user gets there.  

iConAwa provided a user with a list of nearby POIs and users who permit sharing of their location 

information according to his/her current location, time, and preferences (Yılmaz and Erdur 

2012). Contextual information and POIs were modeled using ontology.  

Yu and Chang (2013) developed a personalized mobile travel planning system. It employed a 

rule-based approach for making hotel, restaurant, and sightseeing spot recommendations.   

Cheng et al. (2013) recommended places by using users’ check-in history on social media. A user 

similarity measure was developed based on not only the positions of the check-ins but also 

their semantic categories, such as “shopping” and “eating”. A user-based CF was then 

employed for making place recommendations.  

Yang and Hwang (2013) made location recommendations by using ratings provided by other tourists. 

CF was employed for this purpose. Users were required to indicate their ratings on attractions. 

The system then employed mobile peer-to-peer communications for exchanging ratings 

between different users.  

Table 2.1 summarizes and compares the main characteristics of the above systems. We mainly focus 

on the aspects of application domain, context features exploited, user profiling, and adaptation 

(prediction) mechanism employed, and adaptation level (“what is adapted?” e.g., content 

presentation and item recommendations).  

 

Table 2.1 Comparison of related projects 

 Domain Context User profiling Adaptation 

mechanism 

What is 

adapted? 

Hippie Museum 

guide 

Location, user, 

device, network 

Learning from 

interaction  

Knowledge-

based 

Content 

selection, 

presentation 
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GUIDE City guide Location, user, 

time 

Explicit user 

input 

Knowledge-

based 

Recommend

ation 

CRUMPET City guide Location, user  Learning from 

interaction  

Knowledge-

based 

Recommend

ation 

Museum 

Wearable 

Museum Location, user Learning from 

interaction  

 Content 

presentation 

COMPASS City guide Location, user Explicit user 

input, Refining 

from 

interaction  

Knowledge-

based 

Recommend

ation, 

presentation 

DTG City guide Location, user, 

time 

Explicit user 

input 

Knowledge-

based 

Recommend

ation 

ec(h)o Museum 

guide 

Location, user Explicit user 

input, refining 

from 

interaction  

Knowledge-

based 

Content 

presentation 

CityVoyager Shop 

recommenda

tion 

Location, user Learning from 

interaction  

Collaborativ

e filtering 

Recommend

ation 

GeoWhiz Restaurant 

recommenda

tion 

Location, user Learning from 

explicit ratings 

Collaborativ

e filtering 

Recommend

ation 

UbiquiTO City guide Device, user, 

location, time 

Refining from 

interaction  

Knowledge-

based 

Content 

selection, 

presentation 

Park et al. 

(2007) 

Restaurant 

recommenda

tion 

Location,  user, 

time, weather 

Explicit user 

input 

Knowledge-

based 

Recommend

ation 

PEACH Museum 

guide  

Device, user Explicit user 

input, refining 

from 

interaction  

Knowledge-

based 

Content 

presentation 

Li et al. 

(2009) 

Event 

recommenda

tion 

Location, user Explicit user 

input 

Collaborativ

e filtering 

Recommend

ation 

Kubadji Museum 

guide 

Location, user Learning from 

interaction  

Collaborativ

e filtering 

Recommend

ation, 

content 
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presentation 

GeoLife Location and 

user 

recommenda

tion 

Location, user Learning from 

interaction  

Collaborativ

e filtering 

Recommend

ation 

Bader et al. 

(2011) 

Gas station 

recommenda

tions 

Location, time, 

gas level of the 

car, prices 

 Knowledge-

based 

Recommend

ation 

Hung et al. 

(2012) 

Museum 

guide 

Location, user Explicit user 

input 

Knowledge-

based, 

collaborativ

e filtering 

Recommend

ation, 

content 

presentation 

Pombinho 

et al. (2012) 

Location 

recommenda

tion 

Location, time, 

user 

Explicit user 

input, learning 

from 

interaction 

Content-bas

ed 

Recommend

ation 

iConAwa Location 

recommenda

tion 

Location, time, 

user 

 Knowledge-

based 

Recommend

ation 

Yu and 

Chang 

(2013) 

Location 

recommenda

tion 

Location, time, 

user 

Explicit user 

input 

Knowledge-

based 

Recommend

ation 

Cheng et al. 

(2013) 

Location 

recommenda

tion 

Location, user Learning from 

users’ 

check-ins 

Collaborativ

e filtering 

Recommend

ation 

Yang and 

Hwang 

(2013) 

Location 

recommenda

tion 

Location, user Explicit user 

input 

Collaborativ

e filtering 

Recommend

ation 

 

Some important insights can be observed from table 2.1. 

1) Many mobile guides have provided users with location-aware and personalized services. However, 

many of them focused on adapting content presentation rather than location recommendations. 

2) Some of the systems made recommendations by asking users to explicitly state their interests, 

e.g., GUIDE, DTG, GeoWhiz, Park et al. (2007), Li et al. (2009), Hung et al. (2012), Yu and Chang 

(2013), and Yang and Hwang (2013). It is important to note that, LBS users are often involved in 
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many tasks and activities during using mobile devices. Therefore, non-intrusive user modeling 

which does not require explicit user input should be introduced.  

3) There were also mobile guides employing knowledge-based approaches for adaptive 

recommendations. These knowledge-based approaches often required a long underlying learning 

(knowledge acquisition) process and a good understanding of the application domain, both of 

which are very time-consuming and impractical for many LBS applications.  

4) Systems employing CF for recommendations do not suffer from the problem of “knowledge 

acquisition bottleneck” (see Section 2.2.1). However, existing mobile guides of this kind only use 

location and user as context features, and fail to consider additional contextual information such 

as weather and companion. 

In this dissertation, we investigate techniques for providing personalized and context-aware location 

recommendations in LBS that (a) model users from their location histories (e.g., GPS trajectories), 

which can be considered as non-intrusive observations of their previous movements, (b) employ CF, 

and (c) exploit more contextual information (e.g., weather, companion, time) than location and user. 

These are very promising: (1) LBS users prefer non-intrusive user modeling, as they are often involved 

in many other tasks and activities during their use of mobile devices. (2) With the increasing 

availability of GPS-enabled devices, more and more people start to record their travel/sports 

experience with GPS logs. In the meantime, with rapid advances in geotagged social media, recent 

years have also witnessed many people publishing their travel information and experiences via social 

media, such as Foursquare check-ins and Flickr photos. This “self-reported” information can be also 

used to construct users’ location histories. These location histories may reflect people’s travel 

experiences in the environment. Research has shown that experiences from past users (especially 

similar users) in similar contexts can help the current user efficiently solve their problems (Wexelblat 

1999, Zheng et al. 2011). Therefore, these location histories provide an abundance of data for 

deriving recommendations. (3) Exploiting more contextual information might improve the 

recommendation quality. (4) CF-based methods do not require an explicit representation of domain 

knowledge, which is very welcome in real world LBS applications.  
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3 Implicit User Profiling from Location Histories 

 

 

Collaborative filtering (CF) is probably the most popular and widely implemented recommendation 

technique (Adomavicius and Tuzhilin 2005). It recommends to a user the items that other users with 

similar tastes liked/used in the past (Resnick and Varian 1997). CF exploits information about existing 

users’ behavior (e.g., usage) towards or opinions/feedback on items for predicting which items the 

current user will most probably like or be interested in. Items can be of any type, such as movies, 

books, products, or locations/places. 

The first step of CF is to build user profiles from users’ feedback/opinions on items made over time. In 

most of the existing CF applications, such as movie and product recommendations, a user profile is 

often represented as a set of ratings given by the user on different items, and each rating is modeled 

as a triple <user, item, rating>, e.g., <”Tom”, “Titanic”, 4>. Ratings can be explicit and implicit (Nichols 

1997). Explicit ratings require explicit actions from users (e.g., indicating a rating on a scale) which 

bring some burden to them, and interrupt normal patterns of their action (Nichols 1997). Ratings can 

be also inferred from users’ implicit feedback, such as moving tracks and interaction history. With the 

increasing availability of GPS-enabled devices, more and more people start to record their travel 

experiences as GPS trajectories. In the meantime, recent years have also witnessed many people 

publishing their travel information via social media, for example, Flickr photo uploading and 

Foursquare check-ins, which might be used to construct their location histories. When making 

location recommendations based on these location histories (recorded by GPS devices or constructed 

from the web), the user profile model described before (i.e., rating-based) is insufficient, as it cannot 

model users’ behavior of visiting various locations, e.g., in which orders these locations are visited, 

and transit time between these locations. 

Furthermore, in order to extract meaningful user profiles, methods on semantically processing raw 

location histories (e.g., GPS trajectories) should be developed. Due to their commonality in many 
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trajectory applications, the concepts of stop and move, as proposed by Spaccapietra et al. (2008)), 

have been often employed. Different approaches have been proposed to extract stops and moves 

from raw trajectories (Alvares et al. 2007, Palma et al. 2008). However, as discussed in Section 2.3.1, 

these methods need to carefully calibrate the input parameters, whose optimized values are 

application-dependent, and sometimes should be personalized. For example, when visiting the 

Vienna zoo, the duration threshold that defines a stop in the panda house (Giant Panda) might vary 

for different tourists. 

This chapter addresses the above two challenges, and aims to develop a methodology of implicit user 

profiling from location histories. Section 3.1 explores a model of contextual user profiles, which can 

be used to represent users’ interests in various locations as well as behavior of visiting such locations. 

In order to extract meaningful user profiles from raw location histories, a duration-threshold-free 

SMoT (DTF-SMoT) and a stay-point-based SMoT (SP-SMoT) are developed in Section 3.2. As an 

improvement of the original SMoT method, DTF-SMoT only requires a set of pre-defined geographic 

areas as inputs. The duration thresholds, which are geographic area-dependent and user-dependent, 

are automatically learnt from the data. Similar to SMoT, DTF-SMoT is effective for scenarios with 

sufficient background geographic information. For scenarios where defining a complete set of 

candidate stops is rather difficult, we develop SP-SMoT, which improves the existing CB-SMoT by 

replacing its original input parameters with parameters that are more intuitive to understand and 

easier to configure and tune. We evaluate the proposed DTF -SMoT and SP-SMoT methods in Section 

3.3, and summarize the results in Section 3.4.  

DTF-SMoT and SP-SMoT can be used to semantically process location histories for extracting/building 

contextual user profiles. These methods can be combined with the context-aware CF methods 

developed in Chapters 4 and 5 to make personalized and context-aware location recommendations in 

LBS. 

 

3.1 Contextual user profile model 

In this section, we define some terms and propose a model of contextual user profile. This model can 

be used to represent a user’s semantic location history, which can be extracted from her/his raw 
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location histories, such as GPS trajectories. 

 

3.1.1 Definitions 

Definition 1 (Location history or trajectory). A raw location history (LocH) or trajectory is a sequence 

of points, each of which contains a location (pi.L), and a timestamp (pi.T). Thus, LocH = p1 → p2 → … → 

pn, where ∀ 1 ≤ i ≤ n-1, pi.T <pi+1.T. In this research, the terms “location history” and “trajectory” are 

used interchangeably. 

Depending on the types of location history, pi.L might be very different. For example, in terms of 

GPS-based location histories (i.e., GPS trajectories), pi.L is a latitude/longitude pair. For Bluetooth 

trajectories, pi.L might be represented as a symbol (e.g., the ID of a Bluetooth scanner or beacon) or a 

relative location. For Foursquare check-ins, pi.L is a place or venue. 

In order to have a meaningful interpretation of movement behavior, raw trajectories should be 

semantically processed. Spaccapietra et al. (2008) conceptualized a trajectory as a sequence of stops 

and moves. This conceptual view has been shown to be a useful framework for semantic trajectory 

processing in the literature (Palma et al. 2008, Bogorny et al. 2009, Andrienko et al. 2011, Yan et al. 

2011, Renso et al. 2013, Rinzivillo et al. 2013). Similar to Spaccapietra et al. (2008), we define stops 

and moves as follows. 

Definition 2 (Stop). A stop s is a sub-trajectory (pi → pi+1 → … → pi+k) of LocH, such that (i) the moving 

object does not move, as far as the application view of this trajectory is concerned; (ii) the temporal 

extent is a non-empty time interval; (iii) all stops in LocH are temporally disjoint. A stop s = (Loc, arvT, 

levT, Dur), where s.Loc = {pi, pi+1, …, pi+k}, s.arvT = pi.T, s.levT = pi+k.T, and s.Dur = pi+k.T - pi.T. 

Stops are application-dependent. A sub-trajectory is a stop in an application, but it might not be a 

stop in another application. 

A stop happens at a place/location. It can be considered as a user’s visit to this place/location. In this 

research, based on the information about other users’ stops (visits) at various places/locations, we 

recommend places/locations for the current user to visit. 

Definition 3 (Move). A move m is a sub-part (pi → pi+1 → … → pi+k) of LocH, such that the part is 
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delimited by two extremities that represent either two consecutive stops, or p1 and the first stop, or 

the last stop and pn, or p1 and pn (if LocH has no stop). p1 is the first point of LocH, while pn is the last 

point of LocH. A move m = (Loc, arvT, levT, Dur), where m.Loc = {pi, pi+1, …, pi+k}, m.arvT = pi.T, m.levT = 

pi+k.T, and m.Dur = pi+k.T - pi.T. 

Definition 4 (Semantic Location history or user profile). An individual’s semantic location history 

(Sem_LocH) is a sequence of stops and moves. 

           
  
     

  
    

    
       , where ∀ 1 ≤ i ≤ n-1, si.levT < mi.arvT < mi.levT < si+1.arvT. 

In many applications, stops and moves extracted from a trajectory can be enriched with semantics. 

For example, stops can be enriched with more information, such as where a stop is (e.g., name of its 

geographic area) and activity (i.e., what activity was carried out during stop). Moves are often labeled 

with speed and transportation mode. Different applications might have different attributes for stops 

and moves. 

 

3.1.2 Context and contextual user profile model 

Context is a multifaceted concept that has been studied in different disciplines, such as computer 

science, cognitive science, linguistics and psychology (Adomavicius and Tuzhilin 2011). In this research, 

we adopt the definition proposed by Dey (2001, p. 5): “Context is any information that can be used to 

characterize the situation of an entity. An entity is a person, place, or object that is considered 

relevant to the interaction between a user and an application”. We also adopt a “representational” 

view of context as described in Dourish (2004). According to this view, contexts/situations that the 

system may be in can be characterized or differentiated by a set of observable attributes, such as 

“weather”. These attributes can be regarded as context dimensions (parameters). Contextual 

dimensions and their possible values are known at the stage of system development, and the 

structure of them does not change over time. This view gives us a simple and intuitive definition for 

building accurate predictive models (Baltrunas 2011). In this research, each contextual dimension is 

represented as nominal types, e.g., the contextual dimension “weather” can have values of “sunny”, 

“rainy” and “windy”, dimension “companion” can be “alone”, “with family”, “with small kids”, and 

“with others”. Therefore, an attribute-value based structure is used to represent these contextual 
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dimensions. 

Definition 5 (Attribute and context parameter). An attribute A is a pair (name, range) where A.name 

is a unique label out of some name spaces, and A.range is the set of valid values that can be assigned 

to the attribute, also known as value range. Each contextual dimension (parameter) CP is an attribute. 

Sometimes, values of a contextual dimension (e.g., temperature) are obtained from sensors, and 

represented as numeric data. As pointed out by many other authors, such as Coutaz et al. (2005) and 

Keßler et al. (2009), these numeric values are often mapped to nominal symbols for further 

applications. Therefore, without loss of generality, this research models context parameters as a 

nominal type, whose value range is an explicit enumeration of all allowed nominal values (e.g., an 

enumeration of “day_of_week {weekend, weekday}”).  

This research aims at providing context-aware location recommendations in LBS, i.e., recommending 

locations/places matching the context of a user’s visit, which is defined as follows: 

Definition 6 (Context model of visits). Context model of visits CM contains an ordered list of relevant 

context parameters, each of which is represented as an attribute. Thus, CM = (CP1, CP2, … , CPn), 

where n > 0. The symbol     denotes the space of the context model. In other words,     is the 

set of all possible situations under which a visit can occur. 

CM is application-dependent. A context parameter is considered as relevant in application A, but it 

might not be relevant in application B. For example, weather might be a relevant context parameter 

for outdoor travel activities, but it might not be relevant for indoor shopping. Therefore, one of the 

challenges of employing this “representational” view of context is the identification of relevant 

context parameters from a large set of potential context parameters. We will address this issue in 

Chapter 5. 

Definition 7 (Context of a visit). The context of a visit Context_of_visit ∈      is an instance of CM. 

Context_of_visit = (v1, v2, …, vn), where ∀ 1 ≤ i ≤ n, vi ∈  CPi.range. 

Definition 8 (contextual user profile). A contextual user profile C_LocH is a pair of semantic location 

history, and its context of visit. Thus, C_LocH = (Context_of_visit, Sem_LocH). 

Please note that, for simplicity, we also assume that the context of visit does not change during a 
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user’s visit. 

To illustrate the model introduced above, an example of a contextual user profile is shown in Figure 

3.1. A series of stops and moves can be extracted from each visit (sampled by raw trajectory), and 

each stop and move can be annotated with different attributes, such as duration of stops, 

transportation modes between stops, activities at stops. The whole visit happens within a specific 

context/situation, which is characterized by a set of relevant context parameters. For example, a 

situation can be <”weather: rainy”, “companion: alone”, “purpose: shopping”>.  

 

 

Figure 3.1 An example of contextual user profile: a user profile consists of a sequence of stops and 

moves. Its context_of_visit defines the situation under which the movement happened. 

 

As discussed before, a contextual user profile consists of two parts: semantic location history, and its 

context of visit. The context of visit can be obtained from different sources. For example, “weather” 

can be obtained from the Internet, e.g., via Weather Underground API15; “Day of a week” and “time 

of a day” can be derived from raw trajectories or different sensors on mobile phones; “Companion” 

and “purpose” can be provided by users via questionnaires before asking for a recommendation. In 

                                                           
15

 http://www.wunderground.com/weather/api 
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order to extract semantic location history from raw trajectories, methods on semantically processing 

of raw trajectories should be developed. In the following, we mainly focus on GPS trajectories, which 

are the most common type of location histories. 

 

3.2 Extracting semantic location history from raw trajectories 

Raw location histories, e.g., GPS trajectories, often contain a sequence of positions. In order to have a 

meaningful interpretation, these data are often semantically annotated with background geographic 

information and other relevant information. In this research, we adopt the concepts of stop and 

move proposed by Spaccapietra et al. (2008) for semantic trajectory processing. We aim to extract 

users’ semantic location history from their trajectories, which can be then used for making 

location/place recommendations in LBS. 

As mentioned above, current state-of-the-art methods (e.g., SMoT and CB-SMoT) on extracting stops 

and moves from GPS trajectories require many input parameters, and these input parameters are 

hard to tune and optimize. In this section, two improvements of the existing methods are developed: 

a duration-threshold-free SMoT (DTF-SMoT) and a stay-point-based SMoT (SP-SMoT). DTF-SMoT 

(Section 3.2.1) is an improvement of SMoT method, and it frees users from defining a set of duration 

thresholds. On the other hand, SP-SMoT (Section 3.2.2) improves the existing CB-SMoT by replacing 

its original input parameters with parameters which are more intuitive to understand and easier to 

configure. 

DTF-SMoT and SP-SMoT can be used to semantically process location histories for extracting/building 

contextual user profiles. These methods can be combined with the context-aware CF methods 

developed in Chapter 4 and Chapter 5 to make personalized and context-aware location 

recommendations in LBS. 

 

3.2.1 Duration-threshold-free SMoT (DTF-SMoT) 

Duration-threshold-free SMoT is an improvement of the SMoT method proposed by Alvares et al. 

(2007). In SMoT, a set of pre-defined geographic areas (i.e., “candidate stops”, a polygon in the 
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geographic space) and their minimum duration thresholds are required as additional inputs. If an 

object has stayed in an area for a duration longer than the time threshold, it is considered to have 

stopped in this area. The main challenge of this method is the definition of a suitable set of areas and 

their duration thresholds. 

In order to reduce the number of parameters required, we develop a two-stage approach. This 

approach only requires a set of pre-defined geographic areas (“candidate stops”) as inputs, and 

therefore, it is named as duration-threshold-free SMoT (DTF-SMoT). As mentioned above, each 

geographic area is represented as a topologically closed polygon (  ∈   ,   denotes the set of real 

numbers, and    denotes the two-dimensional geographic space) in the geographic space. Every 

polygon is disjoint (i.e., non-overlapping) with each other, i.e., ∀                      , 

where   is the number of areas. The definition of this set of areas is often carried out domain 

experts by carefully studying the application domain, i.e., only the areas that are interesting to the 

application are included, e.g., only the areas being worth to visit are included. The definition of this 

set also needs to consider the GPS accuracy in the target environment, i.e., each geographic area 

should be defined appropriately to make sure that every user’s visits to different areas can be 

differentiated with the current location-acquisition techniques. Therefore, a geographic area might 

contain one or more POIs, such as shops and restaurants. Recall that the aim of this research is to 

make personalized and context-aware location recommendations. These pre-defined geographic 

areas can be considered as candidate locations/places for recommendation. 

In the following, we describe in detail the workflow of the DTF-SMoT algorithm. At the first stage, 

DTF-SMoT continually verifies the intersection of the trajectory with this set of polygons, and extracts 

a set of intersections. At the second stage, for each intersection, we determine whether it is a stop or 

not by comparing the current duration (       ) with a duration threshold (    ).      is 

geographic area-dependent and user-dependent. It is dynamically determined by the characteristics 

of the user itself (reflected by            – the average duration of the user at all the pre-defined 

areas she/he visited) and the characteristics of the intersected area (reflected by the ratio of 

           and       ).            stands for the average duration of other users at this 

area, and        is the average duration of all users at all the areas they visited. 

We observe that 
       

          
 can be considered as the user’s normalized duration at the current 
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geographic area/polygon (i.e., normalized by the average duration of the user at all the areas she/he 

visited), and 
          

      
 is the normalized average duration at this geographic area (i.e., normalized 

by the average duration of all users at all the areas they visited). The difference between 
       

          
 

and 
          

      
 measures whether the current user spent (relative to her/his average duration) 

more and less time at the geographic area than an average user. If the user spent more time at the 

area than an average user (i.e., 
       

          
 

          

      
, or                    

          

      
), 

she/he might be more likely to have stopped in this area. Therefore, 

                
          

      
     (Eq. 3.1) 

Algorithm 3.1 summarizes the DTF-SMoT algorithm. We first tag all the points in the trajectory as 

move point “M”. Then, for each point, we check whether it is in one of the pre-defined geographic 

areas or not. If yes, the point is tagged as the name of the pre-defined area. At the second stage (lines 

12-21), we check each sub-trajectory with a same tag other than “M”. If the duration in this 

sub-trajectory is bigger than the dynamic duration threshold (     ) obtained from the 

get_duration_threshold function, this sub-trajectory is a stop, otherwise, all the points in this 

sub-trajectory will be tagged as “M”. During the process, all the intersections and corresponding 

duration will be stored in a database on the server to allow effective computation of            

and        (as required in the get_duration_threshold function) for new trajectories (see line 11). 

After these two stages, each user’s semantic location history can be extracted from her/his trajectory. 

Currently, the algorithm performs two scans in the second stage. However, it is possible to combine 

them together for better performance. 

As an improvement of SMoT, DTF-SMoT automatically learns a set of duration thresholds, which are 

geographic area-dependent and user-dependent, from the data. Similar to SMoT, DTF-SMoT is 

suitable for scenarios where defining a complete list of candidate stops is possible. In the following, 

we explore approaches to discover stops that are unknown a priori, but may be potentially interesting 

to the application. 
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3.2.2 Stay-Point-based SMoT (SP-SMoT) 

The stay-point-based SMoT (SP-SMoT) method is based on the concept of stay point proposed by 

Zheng et al. (2011). A stay point (region) stands for a geographic region where a user stayed over a 

certain time interval. Therefore, the extraction of a stay region depends on a distance threshold       

and a duration threshold     . In SP-SMoT, firstly, we extract stay regions from a trajectory with an 

algorithm similar to the one in Zheng et al. (2011). Then, SP-SMoT verifies for each stay region if it 

intersects the pre-defined candidate stops (polygons). If a stay region does not intersect any of the 

pre-defined polygons, it is still regarded as an interesting place, and tagged as “unknown stop”. 

Otherwise, the intersection between the stay region and each intersected candidate stop is extracted 

and expanded to include neighboring points that are also in the candidate stop. If the duration of the 

expended sub-trajectory is longer than the pre-defined duration threshold of the candidate stop, a 

stop annotated with the name of the candidate stop is created. All the other parts of the trajectory 

will be considered as moves. Algorithm 3.2 depicts the SP-SMoT algorithm. 
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The proposed approach is very similar to CB-SMoT (Clustering-based SMoT) proposed by (Palma et al. 

(2008). However, they differ from each other with regard to two aspects. Firstly, CB-SMoT uses 

density-based clustering to identify low-speed clusters of a trajectory, while SP-SMoT employs a 

distance threshold       and a duration threshold      to extract stay regions. We believe that 

SP-SMoT would be more interesting, as the required parameters (i.e., duration/distance threshold) 

are more intuitive to understand and easier to configure. Secondly, CB-SMoT maps each low-speed 

cluster to either an unknown stop or a known stop, while each stay region in SP-SMoT can consist of 

several known stops or an unknown stop. In real world applications, a low-speed cluster might 

contain several stops. In these senses, SP-SMoT would be more appropriate than CB-SMoT. 
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Compared to DTF-SMoT, SP-SMoT can discover stops that are unknown a prior. If two or more 

unknown stops intersect with each other, they can be merged together, and receive the same name. 

Therefore, SP-SMoT is more useful for scenarios where defining a complete list of candidate stops is 

difficult (e.g., the lack of sufficient domain information). 

In many applications including mobile guides, knowing users’ presence (or absence) at different 

places/locations is very important. From this sense, both DTF-SMoT and SP-SMoT are very useful as 

they can identify the places/locations a user has visited. In this research, based on the information 

about other users’ stops (visits) at various places, we recommend places for the current user to visit. 

 

3.3 Evaluation and discussions 

In this section, we discuss some experimental evaluations to study the performance of the proposed 

DTF-SMoT and SP-SMoT methods on extracting stops and moves from GPS trajectories. The datasets 

used for the experiments are discussed in Section 3.3.1. In Section 3.3.2, we describe the 

experimental setting, and discuss the results. 

 

3.3.1 Datasets 

Two real world GPS datasets were used for experimental evaluations, and they reflected different 

scales of application scenarios: 1) contextual GPS dataset collected from Vienna zoo (Tiergarten 

Schönbrunn, Vienna, Austria); 2) contextual GPS dataset in Delft city center (Netherlands). 

 

1)  Vienna zoo dataset 

In cooperation with Vienna zoo (Tiergarten Schönbrunn), we collected trajectories in the zoo in 2011. 

At the gate of the zoo, we approached visitors, and invited them to carry GPS loggers with them while 

walking through the zoo. Different GPS loggers were used in the data collection, such as QStarz 

BT-Q1000XT16 and Blumax GPS-4044 Datalogger17. Visitors were told to put the logger in their bag or 

                                                           
16

 http://www.qstarz.com/Products/GPS%20Products/BT-Q1000XT-F.htm 
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pocket. Before they start, we recorded some additional information about their visits, such as having 

an annual pass (“Y” or “N”), with whom (“alone”, “with children”, or “others”), weather (“rainy” or 

“sunny/cloudy”). A small gift (e.g., a pen) was given to them after returning the GPS loggers. 

 

 

Figure 3.2 Visualization of the cleaned GPS dataset collected from Vienna zoo (Map data: 

OpenStreetMap and Contributors, CC-BY-SA) 

 

In total, we collected 209 valid trajectories of all kinds of visitors in different situations. As mentioned 

above, raw GPS trajectories are often very noisy. A simple mean smoothing was applied to clean 

these trajectories. We also removed GPS points that were outside of Vienna zoo, as users cannot be 

outside of the zoo during the visit. Figure 3.2 visualizes these cleaned trajectories using the open 

source GIS software Quantum GIS18. This visualization uses OpenStreetMap19 as the background base 

map. A vague outline of the road network in the zoo can be seen from this visualization. 

In order to have a closer look at the dataset, we checked the duration and length profile of these 

trajectories. On average, the trajectories have a length of 3,393 meters, and duration of 9,596 

seconds (~2.67 hours). Figure 3.3 shows the distribution of duration and travel distance of these 

                                                                                                                                                                                     
17

 http://www.blu-max.com/products/gps_4044_logger.html 
18

 http://www.qgis.org/ 
19

 http://www.openstreetmap.org/ 

http://www.qgis.org/
http://www.openstreetmap.org/
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trajectories. 

 

 

 

Figure 3.3 Distributions of trip duration and trip length (Vienna zoo dataset) 

 

2)  Delft city dataset 

This dataset was shared by Prof. dr. ir. S.C. van der Spek from Delft University of Technology, who 

tracked visitors in the city center of Delft (the Netherlands). Prof. van der Spek and his team collected 

this dataset from 18 November to 21 November 2009. They handed out GPS loggers (e.g., Qstarz 

BT-Q1000X Travel Recorder) to participants at one of the two parking facilities, located on the south 

side (i.e., Zuipoort parking) and west side (i.e., Phoenix parking) of the Delft city center. To 

understand the behavior better, a questionnaire was filled in by participants on returning the GPS 

loggers. The questionnaire included demographic data (age, home, family status, and profession), the 

purpose of the trip (e.g., shopping, tourism, leisure, and other) and the frequency of visiting Delft city 
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center. Additionally, the weather condition was recorded by the data collection team. 

A total number of 325 participants (= the number of GPS tracks) participated in the research. We 

validated this dataset, and removed trips with inconsistent GPS track and questionnaire. Finally, 255 

trips were valid. In order to clean up the trajectories, a simple mean smoothing was applied. A 

visualization of all these cleaned trajectories using Quantum GIS is presented in Figure 3.4, with 

OpenStreetMap being the background base map. 

 

 

Figure 3.4 Visualization of the cleaned GPS trajectories collected from Delft city center (Map data: 

OpenStreetMap and Contributors, CC-BY-SA) 

 

In order to have a closer look at the dataset, we checked the duration and length of these trajectories. 

On average, the trajectories have a length of 2,776 meters, and duration of 6,299 seconds (~1.75 

hours). Figure 3.5 shows the distribution of duration and travel distance (length) of these trajectories. 

 



52 

 

 

Figure 3.5 Distributions of trip duration and trip length (Delft city dataset) 

 

3.3.2 Experimental setting, results and discussion  

We used the real-world datasets described above to evaluate the performance of the proposed 

DTF-SMoT and SP-SMoT methods in extracting stops and moves from GPS trajectories. Specifically, 

we compared these two methods with a state-of-the-art method, i.e., the original SMoT method 

proposed by Alvares et al. (2007). SMoT is a benchmark method for extracting stops and moves if a 

set of candidate stops and their duration thresholds can be defined. We were interested in the 

following two questions: 

1) Does DTF-SMoT, which requires fewer parameters as inputs, achieve similar results to 

SMoT?  

2) Can SP-SMoT discover known stops as SMoT while also discovering unknown stops? 

In order to measure how much the results obtained from these methods are similar, we designed a 
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sequential similarity measure based on the Longest Common Subsequence (LCS). LCS is the longest 

subsequence (not necessarily consecutive) common to all sequences in a set of sequences (often just 

two) (Bergroth et al. 2000). A longer LCS implies a more similar value between two sequences. 

Therefore, the LCS-based similarity between sequences extracted by SMoT and DTF-SMoT/SP-SMoT 

was measured as: 

                 
       

               
      (Eq. 3.2) 

Where       is the number of stops in the LCS,            and        are the number of stops in 

the sequence extracted from SMoT and that from DTF-SMoT/SP-SMoT. The similarity value of 1 

means the results are identical, while 0 means the results do not have any overlap. Please note that 

the LCS measure considers not only the stops (i.e., stop places and duration) but also the sequential 

relationships of these stops20.  

All these methods require a set of pre-defined geographic areas (“candidate stops”, i.e., polygons) as 

inputs. We defined this set of areas by carefully studying the layouts and GPS accuracy of both 

scenarios (Vienna Zoo and Delft city center)21. Therefore, each area might contain one or more POIs22, 

such as shops and restaurants. The final sets of areas used for the Vienna zoo dataset and the Delft 

city dataset are depicted in Figures 3.6 and 3.7 respectively. 

 

                                                           
20

 This measure can be improved by considering both false positives and true negatives as introduced in the 

field of information retrieval (Salton and McGill 1986).  
21

 For example, we visited all the POIs defined in the official Vienna zoo map (http://www.zoovienna.at), and 

aggregated some of the close POIs as a single area according to the GPS accuracy. 
22

 As mentioned above, this is due to the constraints of current location-acquisition technologies, which make 

it not always possible to identify the exact POI a user is visiting. 
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Figure 3.6 Candidate stops for the Vienna zoo dataset 

 

Figure 3.7 Candidate stops for the Delft city dataset 

 

In addition to the set of areas, both original SMoT and SP-SMoT require a set of duration thresholds 

for all the pre-defined areas. We empirically defined these duration thresholds according to the size 

of the pre-defined areas as well as the types of areas23. For SP-SMoT, two additional parameters (i.e., 

                                                           
23

 For example, we asked three university students (two females and one male, all are new to the zoo) to visit 

all the pre-defined areas in Vienna zoo and recorded the duration they visited each area. We then averaged 

these students’ duration to approximate the duration threshold for each area. 
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a distance threshold       and a duration threshold     ) are also required as inputs.       and 

     play a key role in detecting stops, and their optimal values are application dependent. Derived 

from the layout of the zoo and average walking speeds of tourists in the zoo,       and      were 

empirically set to 30 meters and 90 seconds for Vienna zoo dataset. In other words, if a user stays 

over 90 seconds within a distance of 30 meters (i.e., walking speed lower than 0.33 m/s, which is 

comparable to the average walking speeds of tourists in the zoo 0.35 m/s), a stay point is detected. 

Similarly, we set      =25 and     =60 for the Delft city dataset. In the future, we will investigate 

the sensitivity of these parameters in detail and identity means to calibrate these parameters in an 

automatic manner. 

 

1) Results from the Vienna zoo dataset 

Table 3.1 shows the comparisons of DTF-SMoT, SP-SMoT and the original SMoT for the Vienna zoo 

dataset. We compared these methods with regard to the aspects of input parameters, the number of 

(known) stops detected, the number of unknown stops detected, and similarity of the results. 

 

Table 3.1 Comparisons of DTF -SMoT, SP-SMoT and SMoT (Vienna zoo dataset) 

Algorithm Inputs (in addition to trajectories) # of (known) 

stops detected 

# of unknown 

stops detected 

Similarity with 

SMoT results 

SMoT A set of candidate stops (polygons), 

their duration thresholds 

2648 - - 

DTF-SMoT A set of candidate stops (polygons) 2762 - 0.93 

SP-SMoT  

 

A set of candidate stops (polygons), 

their duration thresholds, a 

distance threshold      , a 

duration threshold      

2470 79 0.92 

 

Comparisons of DTF-SMoT and SMoT: As can be seen from Table 3.1, DTF-SMoT has found more 

stops than the original SMoT. This is because the duration threshold for each candidate stop in 

DTF-SMoT is dynamically computed, and the duration of stop detected by DTF-SMoT is no longer 
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enough to be considered as a stop by SMoT. However, on average, the results obtained from 

DTF-SMoT are about 93% similar with the results computed by SMoT. In other words, even with fewer 

parameters as inputs, DTF-SMoT still achieves comparable results as SMoT. 

Comparisons of SP-SMoT and SMoT: SP-SMoT has detected fewer known stops than the original 

SMoT. This is because stops in SP-SMoT are extended from stay points, and the duration of some 

stops detected by SMoT is no longer enough to be considered as stay points. Table 3.1 also shows 

that on average, the results obtained from SP-SMoT are about 92% similar with the results computed 

by SMoT. We also observe that the number of unknown stops detected by SP-SMoT is relatively small 

(i.e., ~0.38 unknown stops per trajectory), this is due to the fact that the candidate stops, which were 

carefully designed, were dense and covered most of the parts of Vienna zoo. 

 

2) Results from the Delft city dataset 

Similarly, for the Delft city dataset, we compared DTF-SMoT, SP-SMoT and the original SMoT with 

regard to input parameters, the number of (known) stops detected, the number of unknown stops 

detected, and similarity of the results. Table 3.2 shows the comparisons.  

 

Table 3.2 Comparisons of THF-SMoT, SP-SMoT and SMoT (Delft city dataset) 

Algorithm Inputs (in addition to trajectories) # of (known) 

stops detected 

# of unknown 

stops detected 

Similarity with 

SMoT results 

SMoT A set of candidate stops (polygons), 

their duration thresholds 

2283 - - 

DTF-SMoT A set of candidate stops (polygons) 2172 - 0.90 

SP-SMoT  

 

A set of candidate stops (polygons), 

their duration thresholds, a 

distance threshold      , a 

duration threshold      

2033 203 0.87 

 

Table 3.2 shows that the results obtained from DTF-SMoT are about 90% similar with the results 
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computed by SMoT. This confirms the results of the Vienna zoo experiment that even with fewer 

parameters as inputs, DTF-SMoT still achieves comparable results to SMoT. We also observe that the 

number of unknown stops detected by SP-SMoT is relatively small (i.e., ~0.80 unknown stops per 

trajectory), this is also because the candidate stops were dense and covered most of the parts of the 

study area. 

In summary, the evaluation results of both datasets are similar. The results demonstrate that even 

with fewer parameters as inputs, DTF-SMoT still achieves comparable results to SMoT. On the other 

hand, SP-SMoT can discover known stops as SMoT while discovering unknown stops. 

The current evaluation can be improved by using experiments with human participants. For each 

participant, we can compare how well DTF-SMoT, SP-SMoT and SMoT can identify stops reported by 

him/her. As DTF-SMoT uses personalized duration thresholds to identify stops, we expect that 

DTF-SMoT will generate much better results than the state-of-the-art method, i.e., the original SMoT. 

We will investigate this issue in the future. 

 

3.4 Summary and conclusions 

Building user profiles from users’ feedback/opinions on items made over time is the first step when 

making CF recommendations. This chapter explored a methodology of implicit user profiling from 

location histories. Specifically, we proposed a model of contextual user profiles to represent users’ 

interests in various locations (reflected by their visits to these locations and the duration of these 

visits) as well as behavior of visiting such locations, which can be implicitly derived from users’ 

location histories, such as GPS trajectories and trajectories constructed from Foursquare check-ins. A 

duration-threshold-free SMoT (DTF-SMoT) and a stay-point-based SMoT (SP-SMoT) were then 

developed to semantically process location histories for extracting/building these contextual user 

profiles. 

We evaluated the proposed methods with two real-world GPS datasets: Vienna zoo dataset and Delft 

city dataset. Our evaluation shows that for both datasets, DTF-SMoT, which requires fewer 

parameters as inputs, achieves comparable results to the state-of-the-art method, i.e., the original 

SMoT method proposed by Alvares et al. (2007). Therefore, DTF-SMoT is a good replacement of 
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SMoT for scenarios where duration thresholds for candidate stops are rather difficult to define. On 

the other hand, SP-SMoT achieves comparable results to SMoT approach, however, it can also 

discover stops that are unknown a priori, but may be potentially interesting to the application. 

Therefore, SP-SMoT is more useful for scenarios with insufficient background geographic information, 

in which defining a complete list of candidate stops is difficult. 

In the following two chapters, we develop context-aware collaborative filtering (CF) methods based 

on the model of contextual user profiles proposed in this chapter. These CF methods can be 

integrated with the DTF-SMoT and SP-SMoT methods to derive personalized and context-aware 

location recommendations from location histories for LBS applications. 
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4 Personalized Location Recommendations from 

Location Histories 

 

 

Recent research has recognized that as LBS users are often involved in many tasks and activities 

during using mobile devices, non-intrusive recommendations, which are derived from the 

non-intrusive observations of users and do not require users’ explicit inputs, should be introduced 

into LBS (Filippini Fantoni 2003, Bohnert 2010). This chapter discusses a collaborative filtering (CF) 

method for deriving personalized location recommendations from a large number of users’ location 

histories, which can be considered as non-intrusive observations of these users’ previous movements. 

We are interested in how other users’ interests in various locations (reflected by their visits to these 

locations and the duration of these visits) and motion behavior of visiting such locations, as extracted 

from their location histories (as in Chapter 3), can be utilized to provide the current user with relevant 

location recommendations. Please note that, the CF method proposed in this chapter does not use 

contextual information like weather and companion (with whom), and therefore, it can be considered 

as a non-contextual CF method. This method will be enriched with contextual information in Chapter 

5 to provide users with personalized and context-aware location recommendations in LBS.  

As discussed in Chapter 2, there was research focusing on deriving personalized recommendations 

from location histories or interaction histories (Han and Cho 2006, Takeuchi and Sugimoto 2006, 

Bohnert 2010, Zheng et al. 2011). Our research differs from these methods mainly on two aspects. 

Firstly, our methods are developed based on the concepts of stops and moves (see Section 2.1), 

which provide a fundamental and common framework for semantically processing different kinds of 

location histories, such as GPS trajectories and trajectories constructed from Flickr photos. In this 

sense, our method is not restricted to a specific kind of location history. Secondly, we investigate 

whether considering the order in which places/locations are visited, location popularity, duration at 

locations and transit time between locations contributes to the improvement of recommendation 
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quality.  

This chapter is structured as follows. Section 4.1 provides some notations and defines the problem. 

Section 4.2 develops a novel user similarity measure by considering the sequence property of 

movement (i.e., the order in which locations/places are visited), location popularity, duration at 

locations and transit time between locations. This measure is then used in Section 4.3 to identify 

users who are similar to the current user, and “opinions” (i.e., movements) of these similar users are 

further aggregated to generate personalized location recommendations for the current user. We 

evaluate our approaches in Section 4.4 and Section 4.5, and summarize this chapter in Section 4.6. 

 

4.1 Notations and problem definition 

In order to define the recommendation task, we need to introduce some notations. The set of users 

in the system will be denoted by  , and the set of items (i.e., locations/places in this research) by  . 

According to definition 4 in Chapter 3, for any user  ∈  , his/her visit to these items can be 

modeled as a sequence of stops and moves,             
       

  
 

  
     

 
 

         
       

  
 

  
     

 
 

        

 
    
     

 
 

           
       

  , which can be considered as his/her user profile. ∀         
 ∈  .      

  

denotes the amount of time that   spends at   
 , and    

     
 

  denotes the duration of the 

movement between   
  and   

 . We also use    to denote the subset of places/locations that have 

been visited by the user  . Please note that user profiles can be extracted from raw location histories 

by employing the DTF-SMoT and SP-SMoT methods in Chapter 3. 

In this chapter, we mainly focus on personalized location recommendations, e.g., recommend a 

location to visit next. The problem consists in finding, for a particular user   and his/her current 

location (i.e.,   
 ), the new location  ∈      that   is most likely to visit.  

CF, which recommends to a user the items that other users with similar tastes liked/used in the past, 

is probably the most popular recommendation technique (Adomavicius and Tuzhilin 2005). Among 

different CF methods, neighborhood-based CF (user-based and item-based) has gained a large 

popularity because of its simplicity, justifiability (easy to explain the reason behind prediction), 
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efficiency (less computation and memory cost, suitable for mobile application scenarios), and abilities 

to provide serendipitous recommendations (Desrosiers and Karypis 2011). As a result, in this research, 

user-based CF is employed for deriving personalized location recommendations from location 

histories. Two important steps exist in user-based CF: identifying users who are similar to the current 

user with the help of user similarity measures (Section 4.2), and aggregating “opinions” of these 

similar users for making recommendations (Section 4.3). 

 

4.2 User similarity measure 

The key in CF is to locate other users whose “opinions” (i.e., movements in this research) can be used 

for generating recommendations for the current user. In this research, we identify these users in 

terms of their similarities with the current user, and similar users are defined as users with similar 

interests in various locations and similar motion behavior of visiting such locations.  

As discussed in Chapter 3 and Section 4.1, a user profile consists of a sequence of stops and moves, 

and can be represented as: 
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In the following, we explore a user similarity measure for comparing the profiles of any two users. In 

line with Bohnert (2010) and Zheng et al. (2011), a user’s visit24 to a place/location (represented as a 

stop) and duration at this location can be used to approximate his/her implicit interest rating for the 

location; while his/her motion behavior of visiting different locations is reflected by the aspects of 

sequence relationships of locations visited (e.g., the order in which locations were visited), and transit 

time between locations. Therefore, a user similarity measure based on users’ interests in various 

locations/places and motion behavior is developed, by considering sequence relationships of 

locations visited, location popularity, duration at locations, and transit time between locations. 

 

                                                           
24

 Please recall that, a user’s visit to a place is identified if he/she stays at this place longer than a duration 

threshold. The literature has shown that the amount of time that a user spends at a place often correlates 

positively with preference and interest in this place (Froehlich et al. 2006, Bohnert 2010).  
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1) Considering sequential relationships of locations visited 

Suppose there are three places A, B and C, users a and b visit them in the order of A -> B -> C, and 

user c visits them in the order of B -> A -> C. It is obvious that user a is more similar to b than to c. In 

this sense, we consider the sequential relationships of locations visited when measuring user 

similarity. In fact, the sequence property of users’ movement is one of the vital characteristics 

differentiating location recommendations in LBS from other recommendations, such as movie 

recommendations or product recommendations (Zheng et al. 2011).  

In the literature, different methods have been proposed for measuring trajectory similarity in terms 

of sequential relationship, such as the Longest Common Subsequence (LCS) approach in Yan and Zeng 

(2009), and Edit Distance on Real Sequence approach in Chen et al. (2005). In this research, the LCS 

approach is used, as it enables us to consider other aspects, such as location popularity, and duration 

at locations. It finds the longest subsequence (not necessarily consecutive) common to all sequences 

in a set of sequences (Bergroth et al. 2000). For example, the LCSs between G->C->A->T and G->A->C 

are GA and GC. 

A longer LCS implies a higher user similarity value when only considering sequence relationship. 

Therefore, the user similarity considering sequence relationship is measured as: 

              
       

                       
 

       

                 
     (Eq. 4.1) 

      is the number of locations/places in the LCS,              and              are the 

number of locations/places visited by users   and  . Gap* is the index difference between the LCS’s 

first location and the LCS’s last location in each trajectory. The second part of the above measure 

gives a higher value when the LCS is consecutive in the trajectories. 

Please note that, several LCSs might exist for two sequences. Therefore, we use the LCS achieving the 

highest similarity value.  

 

2) Considering location popularity 

It is obvious that two users accessing a set of locations visited by a few people might be more 
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correlated than others who share a set of locations accessed by many people (Zheng et al. 2011). For 

instance, many people have visited the Stephansdom and Schönbrunn Palace, two well-known 

landmarks in Vienna (Austria). It might not be the case that all these people are similar to each other. 

However, if two users visited a location/place, which is not very popular, they might indeed share 

some similar preferences. 

As a result, location popularity is considered when measuring similarity between two users. Different 

measures like entropy and inverse document frequency (IDF) have been proposed in the field of 

information theory. Due to its simplicity, IDF is employed in this research to model the popularity of a 

location. IDF is often used in information retrieval and text mining to measure whether a term (e.g., 

word) is common or rare across all documents. It is obtained by dividing the total number of 

documents by the number of documents containing the term, and then taking the logarithm of that 

quotient (Salton and McGill 1986). Similarly, we measure the popularity of a location p as:  

        
 

  
         (Eq. 4.2) 

where N is the number of all users, Np is the number of users who visits location p. 

IDF of each location is then used as a weighting factor and added to Eq. 4.1. Therefore, the similarity 

considering both sequence relationship and location popularity is measured as:  

                  
            

                   
 

       

                 
   (Eq. 4.3) 

 

3) Considering duration at locations (viewing time) 

The amount of time that a user spends at locations/places often correlates positively with preference 

and interest in locations (Bohnert 2010). Users spending similar time at places might be more similar 

to each other than those who do not. However, viewing time is also positively correlated with the 

complexity of the item being visited (Dean 1996, Johnston 1998). Based on the above consideration, 

we measure the similarity between two users’ duration at a same location p as follows: 

                
    

   
 

   
       

   
 

   
        

   
 

   
       

   
 

   
   

      

    (Eq. 4.4) 
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where     is the average duration at location p considering all users, and it reflects the complexity 

of the location. 

   
 

   
 can be regarded as user  ’s normalized duration at the current location. 

   
 

   
   means that 

user   spends more time at the location p than an average user, and therefore, user   might be 

more likely to like this location. If both users spend more (or less) time at p than an average user, they 

might all like (or dislike) the current location. Therefore, they are similar when considering duration at 

this location. Please note that Eq 4.4 simply maps the similarity value to either 1 or 0. It can be 

further improved by mapping the similarity value to a continuous scale between 1 and 0. In the 

evaluation, we show that even with this simple mapping (Eq 4.4), the results are already promising. 

Eq 4.4 is then extended to measure the duration similarity for locations commonly visited by both 

users. 

              
                    

     
    (Eq. 4.5) 

Finally, we combine Eq 4.3 and Eq 4.4 to measure user similarity, considering sequential relationships, 

location popularity, and duration at locations. We consider          as a weight for 

            , and therefore, multiplication instead of addition is applied in Eq 4.625.  

                                                       (Eq. 4.6) 

 

4) Considering transit time between locations  

Users having similar transit between locations are more similar to each other than those who do not. 

For example, suppose that users   and   travel from A to B by foot, and user   travels from A to B 

by car. It is obvious that user a is more similar to b than to c. In this sense, we consider transit 

between locations when measuring user similarity. Here, we mainly focus on transit time between 

locations, i.e., movement duration between locations.  

Similarly, we measure the similarity between two users’ transit time between the same pair of 

                                                           
25

 Another reason is that we try to avoid finding suitable weights, which is required when using addition.   
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locations p q as follows: 

                   
    

    
 

    
       

    
 

    
        

    
 

    
       

    
 

    
   

      

   (Eq. 4.7) 

where      is the average transit time from location p to location q.  

Again, if both users spend more (or less) time to travel from p to q than an average user, they are 

similar when considering transit time between these locations.  

Eq 4.7 is then extended to measure the transit similarity of two users.  

               
                            

       
     (Eq. 4.8) 

Finally, we combine Eq 4.6 and Eq 4.8 to measure user similarity, considering sequential relationships, 

location popularity, duration at locations, and transit time between locations. 

                                                                    (Eq. 4.9) 

With Eq. 4.9, we can measure the similarity between any two users by comparing their user profiles, 

as extracted from their location histories. 

 

4.3 Location recommendations 

In this section, we use the user similarity measure (Eq. 4.9) to identify users who are similar to the 

current user (i.e., the one asking for recommendations), and aggregate these similar users’ “opinions” 

(movements) for making personalized location recommendations, e.g., recommend a location/place 

to visit next. 

Assume that the current user u has visited a set of locations/places. Currently he/she is at the 

location p, and asking “which place to visit next”. The steps of the recommendation are as follows: 

1) Identifying users whose next location after visiting p has not been visited by the current user; 

2) Identifying the N users who are most similar to the current user u, using the user similarity 

measure in Eq. 4.9; 
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3) For the N most similar users, aggregating their next locations after visiting p (weighted by the 

user similarity values); 

4) Selecting the location with the highest predicted value, and recommending it to u. 

The above algorithm consists of one parameter N – the number of similar users (i.e., neighborhood 

size). We investigate the sensitivity of this parameter in Section 4.5.  

In the following sections, we evaluate the method for personalized location recommendations with 

three real-world location history datasets. Section 4.4 describes the datasets for the evaluation. 

Section 4.5 presents and discusses the results of the experiments. 

 

4.4 Datasets 

In order to have a comprehensive evaluation of the proposed methods, the two real-world GPS 

trajectory datasets (Delft city dataset and Vienna zoo dataset) introduced in Chapter 3, as well as an 

additional trajectory dataset constructed from Flickr photo stream for the city of Vienna (for short, 

Flickr dataset) were used for the experimental evaluations. These three datasets reflected different 

scales of application scenarios and consisted of different types of location histories. In the following, 

we briefly describe how we processed these datasets.  

 

4.4.1 Delft city dataset 

As mentioned in Section 3.3, this dataset consisted of GPS trajectories and some additional 

information such as users’ demographic data and purpose of the trip. For more details about the 

dataset, please refer to Section 3.3. In this chapter, we mainly aggregate the movement tracks for 

making personalized recommendations, while contextual information will be considered in Chapter 5. 

After data cleaning, 255 GPS trajectories were valid. We then used the duration-threshold-free SMoT 

(DTF-SMoT) as proposed in Section 3.2.1 to extract a sequence of stops and moves from each GPS 

trajectory. As required in the DTF-SMoT method, a set of candidate stops and their boundaries 

(polygons) were defined (see Figure 3.7) by carefully studying the layouts of Delft city center and GPS 
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accuracy. As mentioned in Section 3.1, the sequence of stops and moves extracted from a trajectory 

can be considered as the profile of the user who generated the trajectory. We evaluated the above CF 

methods for personalized location recommendations using these profiles.  

 

4.4.2 Vienna zoo dataset 

As mentioned in Section 3.3, the Vienna zoo dataset also consisted of GPS trajectories as well as 

some contextual information about users and their visits such as demographic data and weather. 

After data cleaning, 209 GPS trajectories were valid. Similar to what we did for the Delft city dataset, 

we then used the DTF-SMoT method to extract a sequence of stops and moves from each GPS 

trajectory. As required in the DTF-SMoT method, a set of candidate stops and their boundaries were 

defined (see Figure 3.6) by carefully studying the layouts of the zoo and GPS accuracy.  

 

4.4.3 Flickr dataset 

Currently, with the rapid advances in geotagged social media, location histories about people’s travel 

can be also constructed from their “self-reported” information on the Internet, such as Foursquare 

check-ins and Flickr photos. The Flickr dataset was of this kind, and was constructed from the photos 

uploaded for the city of Vienna during January 2007 and January 2011 on the Flickr website.  

Flickr APIs were used to retrieve photos within the boundary of Vienna. For each photo, different 

metadata were extracted, such as the owner of the photo, date uploaded, date taken, and 

latitude/longitude. In total, metadata of 154,343 geotagged photos were extracted. We cleaned the 

dataset according to some heuristic rules proposed in De Choudhury et al. (2010), and removed 

photos with inaccurate timestamps. We also filtered out photos from Viennese residents. We 

employed the heuristic rule proposed in De Choudhury et al. (2010) to differentiate tourists and 

residents. The rule was based on the assumption that while most tourists concentrate their visits 

within a short time period for several days, residents tend to take pictures of the city over a much 

longer period of time. Therefore, the differentiation of tourists and residents can be done by 

checking the span of the taken times between a user’s first and last photos. Similar to De Choudhury 
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et al. (2010), we set the time span threshold as 21 days.  

In order to map photos to the locations visited, we used the list of Top 30 popular locations 

(landmarks, tourist attractions) compiled and published by the Vienna Tourist Board (Wiener 

Tourismusverband) according to the ticket sales statistics of 200926. This list also contains the 

latitude/longitude information for each location. Similar to De Choudhury et al. (2010), we associated 

a photo to a location p whenever p is the closest location to the photo, and it was taken within 100 

meters of p. The mapping results were then integrated with timestamps to construct a travel 

trajectory for each user, and further refined as a sequence of stops and moves according to the 

model of user profile in Section 3.1. We also filtered out user profiles with less than six locations 

visited. In total, we got 112 user profiles. 

In the dataset, sometimes it is impossible to compute the duration at a location, if there is only one 

photo mapped to the location. We therefore did not extract duration at locations for each profile.  

 

4.5 Evaluation and discussions 

This section reports on the evaluation of the proposed method for personalized location 

recommendation, against some benchmarking methods. In Section 4.5.1, we describe the 

experimental setting. Section 4.5.2 discusses the sensitivity analysis of relevant parameters. In 

Section 4.5.3, we present and discuss the evaluation results of the three real-world datasets. Section 

4.5.4 summarizes and discusses the results. 

 

4.5.1 Experimental setup 

Objectives. For the experimental evaluation, we aimed to investigate the effectiveness of the 

proposed properties (i.e., the order in which locations are visited, location popularity, duration at 

locations and transit time between locations) in the improvement of recommendation quality. In 

addition, we performed a sensitivity analysis on the number of similar users (neighborhood size) N to 

                                                           
26

 http://en.wikipedia.org/wiki/Tourist_attractions_in_Vienna 
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study its impact on the recommendation quality.  

Benchmarking methods. In order to address the above objectives, we designed the following 

benchmarking methods for location recommendations: 

1) Distance-based approach (in short, “Dist”): it recommends the closest location/place that 

has not been visited by the current user. This method was designed based on the 

observation that when no/little knowledge about a place is available, LBS often recommend 

to users with places that are close to the current location. 

2) Set-based approach (in short, “Set”): instead of using the similarity measure  

                      (Eq. 4.9), it measures the similarity between by comparing the 

locations visited by them, without considering the sequential relationships between 

locations. Specifically, the user similarity in this set-based approach is defined as: 

               
                       

                       
     (Eq. 4.11) 

Where                       denotes the number of locations/places commonly 

visited by users   and  . 

3) Sequence-based approach (in short, “Seq”): instead of using the                      , 

it measures user similarity by only considering sequence relationships between locations.  

4) Seq + Idf: It measures user similarity by only considering sequence relationships between 

locations, and location popularity (computed as IDF).  

5) Seq + Dur: It measures user similarity by only considering sequence relationships between 

locations, and duration at locations. 

6) Seq + Tran: It measures user similarity by only considering sequence relationships between 

locations, and transit time between locations. 

7) Seq + Idf + Dur: It measures user similarity by only considering sequence relationships 

between locations, location popularity, and duration at locations. 

8) Seq + Idf + Tran: It measures user similarity by only considering sequence relationships 

between locations, location popularity, and transit time between locations. 

9) Seq + Dur + Tran: It measures user similarity by only considering sequence relationships 

between locations, duration at locations, and transit time between locations. 

Datasets. The three datasets described in Section 4.4 were used for the experiments. We only 
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considered user profiles with at least six locations/places. In total, for the Delft city dataset, we had 

116 user profiles (the number of locations visited per profile: M=8.8, SD= 2.4, range 6-18). For the 

Vienna zoo dataset, we had 167 user profiles (the number of locations visited per profile: M=11.9, 

SD= 4.5, range 6-27). For the Flickr dataset, we had 112 user profiles (the number of locations visited 

per profile: M=7.4, SD= 1.4, range 6-12). 

Evaluation metric. Precision and recall are the most popular metrics for evaluating information 

retrieval systems (Salton and McGill 1986). Herlocker et al. (2004) pointed out that recall is an 

impractical measure in a recommendation system, due to the difficulty of identifying all the items 

that are relevant to the recommendation task. Therefore, we employed precision to evaluate the 

recommendation methods. In all the methods, we only recommended the top one location to the 

current user. Therefore, precision is either 1 or 0, depending on whether the recommended location 

is actually visited immediately by the current user or not27. We averaged the precision values for each 

method to represent its recommendation quality. In other words, the recommendation performance 

of each method was measured as the ratio of the number of successful recommendations (i.e., the 

recommended location is actually visited immediately by the current user) and the number of 

recommendation processes. In short, it can be considered as the percentage of successful 

recommendations.  

Evaluation framework. We used a leave-one-out validation: For example, we trained all the 

recommendation methods on 115 of the 116 users for the Delft city dataset, and tested them on the 

remaining user. For each remaining user, we made recommendations starting from their fourth 

location, i.e., we did not make recommendations for the first four locations of each visit. 

All the recommendation methods (except “Dist”) have one parameter to calibrate, i.e., the number of 

similar users (neighborhood size) N. In the experiments, we first implemented a sensitivity analysis to 

study the impact of neighborhood size N on recommendation quality. We then evaluated the 

                                                           
27

 The literature has shown that the amount of time that a user spends at a place often correlates positively 

with preference and interest in this place (Froehlich et al. 2006, Bohnert 2010). In other words, users tend to 

pass through a place quickly if they do not like this place. In our evaluation, a user’s visit to a place is identified 

if he/she stays at this place longer than a duration threshold. With this, we neglect the places users passing 

through quickly (e.g., places they do not like). In other words, we only extract places that users visited, and 

probably liked or were happy with. Therefore, if the recommended location is the same as the user’s next 

visited location, we consider the recommendation process as successful. 
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performance of the proposed method by comparing it with the benchmarking methods. We only 

used the parameter values achieving the best results for the comparison.  

Therefore, the experiments can help us to answer the following questions: 

1) What is the impact of the neighbor size N on the recommendation quality? Can the optimized 

parameter value be learnt from the training datasets? 

2) Does considering other people’s “opinions”, sequential relationship, location popularity, 

duration at locations, and transit time between locations contribute to the improvement of 

recommendation quality?  

 

4.5.2 Sensitivity analysis 

All the recommendation methods (except “Dist”) have one parameter to calibrate, i.e., the number of 

similar users (neighborhood size) N. Research has shown that the neighborhood size has a significant 

impact on the recommendation quality (Herlocker et al. 1999, Sarwar et al. 2000). In order to 

determine the effect of neighborhood size, we performed some experiments by varying the sizes. The 

results are shown in Figure 4.1. Due to the missing duration information in the Flickr dataset, we only 

compared the Set, Seq, Seq_Idf, Seq_Tran, Seq_Idf_Tran methods for this dataset.  
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Figure 4.1 Impact of neighborhood size on recommendation quality 

 

Figure 4.1 shows that the neighborhood size does affect the recommendation quality of all the 

methods. An interesting observation is that after a certain point, the recommendation quality 

becomes stable for all the methods. This is probably due to the way we aggregated similar users’ 

movements. Recall that at the last two steps of the methods (see Section 4.3), we aggregated every 

similar user’s next location/place after visiting the current location, by considering its similarity value 

with the current user. For each user, only a small group of users have higher similarity values with 
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him/her, and all the other users have a similarity value closer to 0. Therefore, after a certain point, 

the recommended location remains the same, and the recommendation quality becomes stable. 

Another interesting observation is on the Set method in the Flickr dataset, whose performance 

decreases when the neighborhood size changes from 10 to 20. This might be due to the increasing 

“options” (i.e., candidate locations) when having more neighbors. More work should be done on this 

aspect. This result also suggests that finding a suitable neighborhood size is very important for CF 

methods.  

We also observe that the optimal number of neighbors is dataset dependent. In the Delft city dataset, 

the proposed Seq_Idf_Dur_Tran reaches its peak after 30, in the Vienna zoo dataset the peak is 

reached after 40, whereas in Flickr dataset the proposed Seq_Idf_Tran reaches its peak at 10. Given 

this fact, it is important to see if we can accurately estimate the optimal number of neighbors using 

the training dataset alone. One way of doing this is to perform a sensitivity analysis of the 

neighborhood size on the training datasets only (Sarwar et al. 2000). We focused on the best 

performing methods only (i.e., the Seq_Idf_Dur_Tran method for the Delft city dataset and the 

Vienna zoo dataset, and the Seq_Idf_Tran method for the Flickr dataset). Figure 4.2 shows the results.  

 

 

Figure 4.2 Impact of neighborhood size on recommendation quality of the best performing methods. 

The experiment was done by only using the training datasets. 
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Comparing Figures 4.1 and 4.2, the impact of neighborhood size on the recommendation quality of 

the best performing methods is similar for both cases. More importantly, the first peaks in Figure 4.2 

are the same as those in Figure 4.1. Therefore, the optimal number of neighbors can be correctly 

learnt from the training dataset alone.  

For the rest of the experiments in this section, we used a neighborhood size of 30 for the Delft city 

dataset, that of 40 for the Vienna zoo dataset, and that of 10 for the Flickr dataset.  

 

4.5.3 Evaluation results 

In order to investigate the effectiveness of the proposed properties (i.e., the order in which 

locations/places are visited, location popularity, duration at locations and transit time between 

locations) on improving the recommendation quality, we designed an experiment comparing the 

Seq_Idf_Dur_Tran method and all the benchmarking methods. All statistical tests in the following 

were one-tailed paired t-tests at the significance level       . 

 

1) Evaluation with the Delft city dataset 

The Delft city dataset was collected in Delft city center, which is a typical urban scenario. Figure 4.3 

depicts the comparison of all the methods, which used different similarity measures. 
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Figure 4.3 Comparison of the recommendation quality among different similarity measures (Delft city 

dataset) 

 

Figure 4.3 shows that the proposed user similarity measure which considers the aspects of sequence 

relationships of locations visited, location popularity, duration at locations, and transit time between 

locations achieves the best result. In the following, we investigate each aspect/property in detail.   

Considering other people’s movements: Among all the methods, Dist recommends nearby 

place/location, while Set and Seq make location recommendations by considering the movements of 

other like-minded users. Figure 4.3 shows that both Set and Seq achieve significant better 

recommendation results than Dist (p<0.001), with improvements of 0.15 and 0.17 respectively. 

Therefore, considering other people’s movements can help to improve recommendation quality. The 

results are consistent with the finding of Bohnert (2010) and suggest that other users’ movements 

are better predictors of a user’s movements than the distances between locations. 

Considering the orders in which locations are visited (sequential relationships): Seq can be 

considered as an improvement of Set by considering sequential relationships. Figure 4.3 shows that 

Seq achieves better results than Set. However, the difference is only close to significant (p=0.08).  
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Considering location popularity: Seq_Idf, Seq_Idf_Dur, Seq_Idf_Tran and Seq_Idf_Dur_Tran can be 

considered as variants of Seq, Seq_Dur, Seq_Tran, and Seq_Dur_Tran that consider location popularity. 

The results in Figure 4.3 show that these variants achieve better results than the original ones. 

However, the differences are not significant (Seq_Idf vs. Seq: p=0.22; Seq_Idf_Dur vs. Seq_Dur: 

p=0.17; Seq_Idf_Tran vs. Seq_Tran: p=0.09; Seq_Idf_Dur_Tran vs. Seq_Dur_Tran: p=0.27). The 

non-significant results might be due to the small amount of user profiles, which cannot accurately 

reflect the actual popularity of locations.  

Considering duration at locations: Seq_Dur, Seq_Idf_Dur, Seq_Dur_Tran and Seq_Idf_Dur_Tran can 

be considered as variants of Seq, Seq_Idf, Seq_Tran, and Seq_Idf_Tran that consider duration at 

locations. Figure 4.3 shows that these variants achieve better results than the original ones. However, 

the differences are not significant (Seq_Dur vs. Seq: p=0.26; Seq_Idf_Dur vs. Seq_Idf: p=0.12; 

Seq_Dur_Tran vs. Seq_Tran: p=0.09; Seq_Idf_Dur_Tran vs. Seq_Idf_Tran: p=0.27). The non-significant 

results might be due to the way we extracted user profiles from raw location histories as a sequence 

of stops and moves. Recall that a stop is defined when a user has stayed in a location over a duration 

threshold. The use of duration threshold might already reduce the variance of duration at locations, 

which leads to a very close similarity value on the aspect of duration at locations. 

Considering transit time between locations: Seq_Tran, Seq_Idf_Tran, Seq_Dur_Tran and 

Seq_Idf_Dur_Tran can be considered as variants of Seq, Seq_Idf, Seq_Dur, and Seq_Idf_Dur that 

consider transit time between locations. Figure 4.3 shows that these variants achieve better results 

than the original ones, and the differences are significant, except Seq_Tran vs. Seq (Seq_Tran vs. Seq: 

p=0.20; Seq_Idf_Tran vs. Seq_Idf: p=0.03; Seq_Dur_Tran vs. Seq_Dur: p=0.02; Seq_Idf_Dur_Tran vs. 

Seq_Idf_Dur: p=0.047). 

In order to have a clearer comparison of the effectiveness of the above properties, we visualize the 

differences between the original similarity measures with their variants. Figure 4.4 shows the results. 

In this figure, the effectiveness of each property was computed as the averaged differences between 

the original similarity measures and their variants that consider the property. For example, the 

effectiveness of “transit between locations” was measured as the average of the following differences: 

Seq vs. Seq_Tran, Seq_Idf vs. Seq_Idf_Tran, Seq_Dur vs. Seq_Dur_Tran, and Seq_Idf_Dur vs. 

Seq_Idf_Dur_Tran. 
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Figure 4.4 Comparison of the effectiveness of different properties (Delft city dataset) 

 

Comparison of different properties: Figure 4.4 shows that all the properties have a positive effect on 

the recommendation quality. However, their effects differ greatly. Considering other people’s 

movements achieves the biggest improvement, followed by transit time between locations, 

sequential relationships, duration at locations, and finally location popularity. Please refer to Section 

4.5.4 (Summary of the results and discussions) for discussions on this aspect.  

 

2) Evaluation with the Vienna zoo dataset 

The Vienna zoo dataset was collected in the Vienna zoo (Tiergarten Schönbrunn, Austria), which is a 

restricted area, and very similar to an indoor scenario. Figure 4.5 depicts the comparison of all the 

recommendation methods, which used different similarity measures.  
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Figure 4.5 Comparison of the recommendation quality among different similarity measures (Vienna 

zoo dataset) 

 

Similar to the results of the Delft city dataset, the proposed user similarity measure which considers 

the aspects of sequence relationships of locations visited, location popularity, duration at locations, 

and transit time between locations achieves the best recommendation quality. In the following, we 

investigate each aspect/property in detail. 

Considering other people’s movements: Set and Seq can be considered as improvements of Dist by 

considering other people’s movements. Figure 4.5 shows that both Set and Seq achieve significant 

better recommendation quality than Dist (p<0.001), with improvements of 0.13 and 0.14 respectively. 

Therefore, considering other people’s movements can help to improve recommendation quality.  

Considering the orders in which locations are visited (sequential relationships): Seq can be 

considered as an improvement of Set by considering sequential relationships. Figure 4.5 shows that 

Seq achieves better results than Set. However, the difference is not significant (p=0.16). 

Considering location popularity: Seq_Idf, Seq_Idf_Dur, Seq_Idf_Tran and Seq_Idf_Dur_Tran can be 

considered as variants of Seq, Seq_Dur, Seq_Tran, and Seq_Dur_Tran that consider location popularity. 
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Figure 4.5 demonstrates that these variants achieve better results than the original ones. However, 

the differences are not significant, except Seq_Idf_Dur_Tran vs. Seq_Dur_Tran (Seq_Idf vs. Seq: 

p=0.48; Seq_Idf_Dur vs. Seq_Dur: p=0.26; Seq_Idf_Tran vs. Seq_Tran: p=0.47; Seq_Idf_Dur_Tran vs. 

Seq_Dur_Tran: p=0.006). 

Considering duration at locations: Seq_Dur, Seq_Idf_Dur, Seq_Dur_Tran and Seq_Idf_Dur_Tran can 

be considered as variants of Seq, Seq_Idf, Seq_Tran, and Seq_Idf_Tran that consider duration at 

various locations. Figure 4.5 shows that these variants achieve better results than the original ones. 

However, the differences are not significant (Seq_Dur vs. Seq: p=0.14; Seq_Idf_Dur vs. Seq_Idf: 

p=0.13; Seq_Dur_Tran vs. Seq_Tran: p=0.47; Seq_Idf_Dur_Tran vs. Seq_Idf_Tran: p=0.27). 

Considering transit time between locations: Seq_Tran, Seq_Idf_Tran, Seq_Dur_Tran and 

Seq_Idf_Dur_Tran can be considered as variants of Seq, Seq_Idf, Seq_Dur, and Seq_Idf_Dur that 

consider transit time between locations. Figure 4.5 demonstrates that these variants achieve better 

results than the original ones, and the differences are significant, except Seq_Dur_Tran vs. Seq_Dur 

(Seq_Tran vs. Seq: p=0.03; Seq_Idf_Tran vs. Seq_Idf: p=0.04; Seq_Dur_Tran vs. Seq_Dur: p=0.07; 

Seq_Idf_Dur_Tran vs. Seq_Idf_Dur: p=0.02). 

In order to have a clearer comparison of the effectiveness of the above properties, we also visualize 

the differences between the original similarity measures with their variants in Figure 4.6. 

 

 

Figure 4.6 Comparison of the effectiveness of different properties (Vienna zoo dataset) 
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Comparison of different properties: Figure 4.6 shows that all the properties have a positive effect on 

the recommendation quality. However, their effects differ greatly. Similar to the results of the Delft 

city dataset, considering other people’s movements achieves the biggest improvement, followed by 

transit time between locations, sequential relationships, duration at locations, and finally location 

popularity.  

 

3) Evaluation with the Flickr dataset 

Compared to the above datasets collected by GPS loggers, the Flickr dataset was constructed from 

the photos Flickr users uploaded for the city of Vienna during 01.2007 – 01.2011. The application 

scenario can be considered as a bigger urban scenario, compared to the Delft city center. Please note 

that, due to the missing duration information in the Flickr dataset, we only compared the Dist, Set, 

Seq, Seq_Idf, Seq_Tran, Seq_Idf_Tran methods for this dataset. Figure 4.7 depicts the results.  

 

 

Figure 4.7 Comparison of the recommendation quality among different similarity measures (Flickr 

dataset) 
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Similar to the results of the other two datasets, the proposed user similarity measure considering all 

the proposed aspects achieves the best recommendation quality in the Flickr dataset. In the following, 

we investigate each aspect/property in detail. 

Considering other people’s movements: Set and Seq can be considered as improvements of Dist by 

considering other people’s movements. Figure 4.5 shows that both Set and Seq achieve significant 

better recommendation quality than Dist (p<0.001), with improvements of 0.11 and 0.13 respectively. 

Therefore, considering other people’s movements can help to improve recommendation quality.  

Considering the orders in which locations are visited (sequential relationships): Seq can be 

considered as an improvement of Set by considering sequential relationships. Figure 4.5 shows that 

Seq achieves better results than Set. However, the difference is not significant (p=0.18). 

Considering location popularity: Seq_Idf and Seq_Idf_Tran can be considered as variants of Seq and 

Seq_Tran that consider location popularity. The results in Figure 4.7 show that these variants achieve 

better results than the original ones. However, the differences are not significant, (Seq_Idf vs. Seq: 

p=0.18; Seq_Idf_Tran vs. Seq_Tran: p=0.41). 

Considering transit time between locations: Seq_Tran and Seq_Idf_Tran can be considered as 

variants of Seq and Seq_Idf that consider transit time between locations. Figure 4.7 shows that these 

variants achieve better results than the original ones. However, different from the other two datasets, 

the improvements are not significant (Seq_Tran vs. Seq: p=0.22; Seq_Idf_Tran vs. Seq_Idf: p=0.10). 

Our similarity measure based on transit time between locations did not work well on the Flickr 

dataset, as users might have many other activities during the transit, which were not represented in 

the Flickr dataset. 

In order to have a clearer comparison of the effectiveness of the above properties, we also visualize 

the differences between the original similarity measures with their variants. Figure 4.8 shows the 

results. 
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Figure 4.8 Comparison of the effectiveness of different properties (Flickr dataset) 

 

Comparison of different properties: Similar to the results of the other two datasets, considering 

other people’s movements achieves the biggest improvement, followed by transit time between 

locations, sequential relationships, and finally location popularity.  

 

4.5.4 Summary of the results and discussions 

In summary, the results of the three datasets are similar. The main findings of the experiments are as 

follows: 

1) The size of the neighborhood does affect the recommendation quality of the proposed 

method. After a certain size of neighbors, the recommendation quality becomes stable 

(Figure 4.1). However, the optimal number of neighbors can be correctly learnt from the 

training set alone (Figure 4.2). As discussed in Section 4.5.2, these results are probably due to 

the way we aggregate similar users’ movements. 

2) All the proposed properties have a positive effect on the recommendation quality. However, 

their effects differ greatly. Considering other people’s movements achieves the biggest 
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improvement, followed by transit time between locations, sequential relationships, duration 

at locations, and finally location popularity (Figures 4.4, 4.6 and 4.8). 

3) The proposed user similarity measure that considers all the proposed aspects achieves the 

best recommendation quality, among all the other benchmarking methods (Figures 4.3, 4.5 

and 4.7).  

In general, these findings are consistent with what we expected. The big improvement when 

considering other people’s movements confirms the findings of Bohnert (2010), which showed that 

other users’ movements are better predictors of the current user’s movements than the distances 

between locations. The results also confirm the findings of Wexelblat (1999) and Zheng et al. (2011), 

and suggest that experiences from past users (especially those users similar to the current user) can 

help the current user to solve his/her own problems efficiently, e.g., choosing where to visit next.  

The interesting result is on the aspect of transit time between locations. It has a greater impact than 

sequential relationships, duration at locations, and location popularity. This might be explained by the 

way we extracted user profiles from raw location histories, and the way we made recommendations. 

Please recall that we used the concepts of stops and moves, and a stop is defined when a user has 

stayed in a location/place over a duration threshold. With this, we might miss a user’s visits to some 

places/locations whose duration is too short to be defined as stops. To some extent, the similarity 

measure on the aspect of transit time between locations can help to discover this situation, and 

therefore, it can provide recommendations that are more appropriate. However, this similarity 

measure can be also improved by mapping the similarity value to a continuous scale between 1 and 0, 

or by considering more aspects of transit between locations, e.g., transportation modes and short 

occurrences at other locations during transit. We expect that having a more comprehensive measure 

on these aspects will further improve the recommendation quality.  

Another interesting result is that considering duration at locations did not bring a significant 

improvement to the recommendation quality. This might be again explained by the way we extracted 

user profiles from raw location histories as a sequence of stops and moves. The use of duration 

threshold for defining a stop might already reduce the variance of duration at locations, which leads 

to a very close similarity value on the aspect of duration at locations. Therefore, considering duration 

at locations does not lead to a big improvement of recommendation quality.   
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It is also interesting to see that for all the three datasets, the orders of the effectiveness of different 

properties are the same: Considering other people’s movements achieves the biggest improvement, 

followed by transit time between locations, sequential relationships, duration at locations, and finally 

location popularity. However, conclusions on this aspect should be made carefully, as the differences 

among the last four properties are very small, and therefore, the relative orders of these four 

properties might be slightly changed with different datasets. 

To sum up, these experiments demonstrate that considering other people’s movements, sequence 

relationships of locations visited, location popularity, duration at locations, and transit time between 

locations contributes to the improvement of recommendation quality. These experiments also 

confirmed that the proposed user similarity measure considering all the above aspects achieves the 

best recommendation quality, among all the other benchmarking methods. 

It is important to note that the current evaluation (and also the one in Chapter 5) used the DTF-SMoT 

method to identify a sequence of stops and moves from each trajectory, which requires a set of 

candidate stops and their boundaries (polygons) as inputs. In the current evaluation, these inputs 

were defined by carefully studying the layouts of the scenarios and the accuracy of the 

location-acquisition technologies. As mentioned in Chapter 3, definition of these inputs can be 

improved by involving domain experts, such as tourism experts, behavior experts, and experts in zoo 

management. We expect that with the involvement of domain experts in defining these candidate 

stops and their boundaries, we can have a more meaningful abstraction of the location histories, and 

therefore, the proposed recommendation methods will generate better results than what we have in 

the current evaluation. 

 

4.6 Summary and conclusions 

This chapter presented a CF method for deriving personalized location recommendations from a large 

number of users’ location histories. Specifically, we investigated how other users’ interests in various 

locations (reflected by their visits to these locations and the duration of these visits) and motion 

behavior of visiting such locations, as extracted from their location histories (as in Chapter 3), can be 

utilized to provide the current user with personalized location recommendations. We explored a 
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novel user similarity measure by considering the sequence property of movement (i.e., the order in 

which locations are visited), location popularity, duration at locations and transit time between 

locations. We then employed this user similarity measure to identify users who are similar to the 

current user, and aggregated the “opinions” (i.e., movements) of these similar users to generate 

location recommendations for the current user. The proposed CF derives personalized 

recommendations from the non-intrusive observations of users (i.e., location histories) and does not 

require users’ explicit inputs, and therefore, it is very suitable for LBS applications, as LBS users are 

often involved in many other tasks and activities during using their mobile devices.  

We evaluated the proposed method for personalized location recommendations, against some 

benchmarking methods. Three real-world location history datasets were used for the evaluation: GPS 

trajectories at Delft city center, GPS trajectories at Vienna zoo, and trajectories constructed from 

Flickr photos uploaded for the city of Vienna. These datasets reflected different scales of application 

scenarios and consisted of different types of location histories. The results of the evaluation on the 

three datasets are similar. The evaluation shows that considering other people’s movements, 

sequence relationships of locations visited, location popularity, duration at locations, and transit time 

between locations contributes to the improvement of recommendation quality. Among them, 

considering other people’s movements achieves the biggest improvement. The results are also 

consistent with what we expected: experiences from past users (especially similar users) can help 

current users solve their own problems efficiently. These experiments also confirm that the proposed 

user similarity measure considering all the above aspects achieves the best recommendation quality, 

among all the other benchmarking methods. 

Although the proposed method performs considerably better than the benchmarking methods, the 

actual performance is modest. These results might be explained by the relatively small sizes of our 

datasets, as well as a lack of considering contextual information in the recommendation process. We 

will address the latter issue in the next chapter (Chapter 5). Specifically, the non-contextual CF 

method proposed in this chapter will be enriched with contextual information to provide users with 

personalized and context-aware location recommendations. We expect that the recommendation 

quality will be further improved through the integration of contextual information, such as weather 

and companion.  
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5 Improving Location Recommendations through 

Context-awareness 

 

 

Chapter 4 presented a non-contextual CF method for deriving personalized location 

recommendations from a large number of users’ location histories. This chapter aims to improve the 

non-contextual method by integrating contextual information such as weather and companion (e.g., 

alone or with others). With this, location recommendations matching users’ interests and context can 

be provided in LBS.  

There was research focusing on deriving recommendation from location histories or interaction 

histories in LBS (Takeuchi and Sugimoto 2006, Bohnert 2010, Zheng et al. 2011). However, as 

mentioned in Chapter 2, most of the research only employed the current location as contextual factor, 

and did not consider contextual factors which are also relevant for generating recommendations, e.g., 

weather, companion (with whom), and weekend/weekday. 

This chapter is structured as follows. Section 5.1 analyzes the key issues of incorporating contextual 

information into CF in LBS applications. Sections 5.2-5.4 address these key issues. Section 5.2 explores 

a methodology for identifying relevant context parameters. A novel context similarity measure is 

proposed in Section 5.3. Section 5.4 investigates ways to integrate the similarity measure into the CF 

process for making context-aware location recommendations. We evaluate and discuss the proposed 

methods in Section 5.5. Finally, we summarize the chapter in Section 5.6.  

 

5.1 Key issues of incorporating contextual information into CF 

Context-aware collaborative filtering (CaCF) aggregates what similar users chose in similar contexts 

for recommendations. Several key issues have to be considered when providing CaCF in LBS: 
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identifying relevant context parameters, measuring context similarity, and incorporating contextual 

information into the CF process. 

1) Identifying relevant context parameters: In Section 3.1, we have developed a model of user 

profiles, which can be used to represent users’ visiting information as extracted from location 

histories. In order to provide context-aware recommendations, user profiles should be 

annotated with contextual information, i.e., information about the situation in which users’ 

movement happens. A context (situation) can be characterized by a set of context 

parameters/dimensions. Not all the context parameters are relevant for generating 

recommendations. In order to annotate user profiles with context, a key question has to be 

answered: Which context parameters are relevant and thus needed to be modeled? Many 

researchers chose some features of the world as context parameters from their own views 

(e.g., Adomavicius et al. (2005), and Panniello and Gorgoglione (2012)). What is missing, 

however, is a method of identifying relevant context parameters for CaCF in LBS28.  

2) Measuring context similarity: In general, movements in contexts/situations similar to the 

context of the current user (who asks for recommendations) are more useful for making 

location recommendations than those happening in dissimilar contexts. Therefore, similarity 

measures between different contexts/situations should be developed.  

3) Incorporating contextual information into the CF process: Adomavicius and Tuzhilin (2011) 

proposed three approaches to incorporate contextual information into CF: (a) contextual 

pre-filtering (contextualization of recommendation input): filter out irrelevant ratings (i.e., 

trajectories in our case) before using the non-contextual CF method; (b) contextual 

post-filtering (contextualization of recommendation output): use the non-contextual CF 

method, and then filter the results with contextual information; (c) contextual modeling 

(contextualization of recommendation algorithms): use contextual information directly inside 

the recommendation process. Currently, the approaches have not been applied to provide 

CaCF in LBS. How these approaches can be combined with the other key issues to provide 

CaCF in LBS should be carefully investigated. 

                                                           
28

 As mentioned in Chapter 1, one exception was given by Keßler (2010). His approach required that the 

ranking result for each context is available before the identification of relevant context parameters. However, 

this assumption might be impractical for many LBS applications. 
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5.2 Identification of relevant context parameters 

As mentioned before, contextual user profiles are important for context-aware recommendations. 

For annotating user profiles with contextual information, we have to answer the question: Which 

context parameters are relevant and thus needed to be modeled?  

We adopt the context definition given by Dey (2001, p. 5): “Context is any information that can be 

used to characterize the situation of an entity. An entity is a person, place or object that is considered 

relevant to their interaction between a user and an application.” We also adopt a representational 

view on context proposed by Dourish (2004), as this view is much simpler and more computationally 

feasible for many applications (Baltrunas 2011). This representational view assumes that context acts 

as a set of conditions under which an activity (i.e., interaction) occurs, and it could be modeled using 

a set of observable attributes. These attributes can be considered as context parameters/dimensions, 

which can help to differentiate/recognize different context (situations). We also understand that 

something is context (parameter) only if users’ decision-making (e.g., choosing which 

places/locations to visit), interaction with the system, or the behavior of the system depends on it, 

otherwise it is just a feature of the world (Winograd 2001, Huang and Gartner 2009). For example, 

the temperature of the room is a relevant context parameter only if the adaptation of the interaction 

between human and the current system depends on it (or the behavior of the system depends on it, 

e.g., when the temperature is higher than 30°C, start the air-conditioner), but otherwise it is a feature 

of the world. 

Based on this understanding, a statistical-test-based method to identify context parameters that are 

relevant for the recommendation tasks is designed. We assume that a preliminary set of context 

parameters have been identified from the literature, or by domain experts or brainstorming, and data 

from users are collected in different situations characterized by this preliminary set.  

In the following, we describe how the set of relevant context parameters can be extracted by refining 

the preliminary set according to the collected dataset. The basic strategy of refining is to analyze how 

some key aspects/characteristics (e.g., the number of locations/places visited) of users’ movements 

differ with different values of each context parameter in the preliminary set. If context parameter c1 
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has n values, and the differences of the key aspects of visits are significant among these n values, 

then the current context parameter c1 is relevant and thus needed to be modeled, otherwise it is 

irrelevant. Statistical approaches such as independent T-test, analysis of variance (ANOVA), 

Mann-Whitney Test, and Kruskal-Wallis Test can be employed to test the significance of differences29. 

For example, if context parameter “weather” has two values “sunny” and “rainy”, and the difference 

between the key aspects of visits (e.g., the number of places visited) in “sunny” and the key aspects 

of visits in “rainy” is significant (i.e., “people behave differently in different weather condition”), then 

“weather” is relevant and thus needed to be modeled for CaCF, otherwise it is irrelevant.  

It is necessary to note that we do not need to consider the current geographic position as a relevant 

context parameter when annotating user profiles (as extracted from location histories) with context. 

The reason is that users’ current position is already stored in their trajectories. When recommending 

a location/place for the current user, his/her current position (location) is used to select places 

matching his interests and context (see step 1 of all the methods in Section 5.4).  

 

5.3 Context similarity measure 

In general, movements happening in a context similar to the current one are more useful for making 

recommendations for the current user. In the following, we explore a statistics-based approach for 

measuring similarity between different contexts (situations).  

With the method proposed in Section 5.2, relevant context parameters can be identified. By varying 

values for each parameter, all possible situations can be identified. In the following, we propose an 

approach to measure the similarity between any two situations.  

We assume that if visits in a situation (e.g., A) are similar to visits in another situation (e.g., B), these 

two situations (contexts) can be considered as similar. Please note that, for “visits”, we do not mean 

each individual visit, but rather an aggregation of all the visits happening in the situation. Based on 

this assumption, we measure the similarity between any two contexts (situations) with the following 

                                                           
29

 As suggested by many statistic textbooks, e.g., Field (2013), the former two tests are for data with a normal 

distribution, while the latter two are non-parametric tests and meant for non-normal data. 
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two steps. 

1) The profile of each context (situation, e.g., A) is represented as a vector        
  

  
        

  . Each member of the vector corresponds to the usage of a location/place in 

this situation, and therefore, n is equal to the number of places defined in the application 

scenario. We use the term frequency-inverse document frequency (TF-IDF) measure to 

compute the value of each   
 . TF-IDF is often used in the field of information retrieval to 

measure how important a word is to a document in a collection or corpus. The TF-IDF value 

increases proportionally with the number of times a word appears in the document, but is 

offset by the frequency of the word in the corpus (Salton and McGill 1986). The latter part 

helps to control for the fact that some words are generally more common than others.    is 

computed as: 

  
            

    

    
    

    

    
   (Eq. 5.1) 

where      is the number of movements in situation A which visit the     location/place, 

     represents the number of movements in situation A,      denotes the number of 

movements in all situations which visit the     location/place, and      is the total number 

of movements in all situations. The first part of the Eq. 5.1 denotes how often the     place 

is visited in situation A, while the second part measures whether the place is commonly or 

rarely visited across all movements. 

The profile of a context can be considered as an aggregated view of usage of different 

locations in this context (situation), which can be used to characterize the situation. In fact, 

the TF-IDF measure is also often used in content-based recommendation for representing the 

profile of an item (Adomavicius and Tuzhilin 2005).  

2) The similarity between two contexts (situations) can be then computed by the cosine 

similarity measure. Cosine similarity is often used for measuring the similarity between 

objects that are represented as vectors, and it measures the cosine of the angle between 

these two vectors (Singhal 2001). Two vectors with the same orientation have a cosine 

similarity of 1, while two vectors at 90° have a similarity of 0. Therefore, the similarity 

between two contexts (situations) can be measured as the cosine similarity between their 

corresponding profile vectors. 

http://en.wikipedia.org/wiki/Proportionality_(mathematics)
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   (Eq. 5.2) 

With these two steps, similarity between any two situations can be calculated. 

 

5.4 Context-aware location recommendation 

As mentioned in Section 5.1, Adomavicius and Tuzhilin (2011) proposed that contextual information 

can be incorporated into CF by contextual pre-filtering, contextual post-filtering and contextual 

modeling. Other research has applied this classification for making movie recommendation and 

product recommendations (Adomavicius et al. 2005, Panniello et al. 2009, Panniello and Gorgoglione 

2012). However, this classification has not been applied to location recommendations in LBS. In this 

section, we apply this classification, and develop several methods for deriving context-aware location 

recommendations from location histories.  

 

5.4.1 Contextual pre-filtering 

The basic idea of contextual pre-filtering approaches is to filter out irrelevant movements before 

using a non-contextual CF method, e.g., the one proposed in Chapter 4. Based on this idea, we 

develop the following contextual pre-filtering approach (in short, CaCF_Pre).  

Assume that the current user u has visited a set of locations/places. Currently he/she is at the 

location p, and asking “which place to visit next?”. The steps of the CaCF_Pre method are designed as 

follows: 

1) Identifying users (movements) whose next location after visiting p has not been visited by the 

current user; 

2) Filtering out users (movements) whose context similarities with the current user do not 

exceed a threshold  . Context similarity is measured using the method proposed in Section 

5.3; 

3) For the results of step 2, identify the N users who are most similar to the current user, using 
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the user similarity measure in Eq. 4.9 (i.e., Seq_Idf_Dur_Tran); 

4) For the N most similar users, aggregating their next locations after visiting p (weighted by the 

user similarity values); 

5) Selecting the location with the highest predicted value, and recommending it to the current 

user. 

The above algorithm consists of two parameters:   – the context similarity threshold, and N – the 

number of similar users (i.e., neighborhood size). We investigate the sensitivity of these parameters 

in Section 5.5. 

 

5.4.2 Contextual post-filtering 

Compared to contextual pre-filtering CF approaches which filter out irrelevant movements before 

using a non-contextual CF method, contextual post-filtering approaches first use the non-contextual 

CF, and then adjust the results according to contextual information. Based on this idea, we develop 

the following contextual post-filtering approach (in short, CaCF_Post).  

Assume that the current user u has visited a set of locations. Currently he/she is at the location p, and 

asking “which place to visit next?”. The steps of the CaCF_Post method are designed as follows: 

1) Identifying users whose next location after visiting p has not been visited by the current user; 

2) Identifying the N users who are most similar to the current user, using the user similarity 

measure in Eq.4.9 (i.e., Seq_Idf_Dur_Tran); 

3) For the N most similar users, aggregating their next locations after visiting p (weighted by the 

user similarity values); The results of this step are a set of candidate locations/places and 

their corresponding predicted values; 

4) For each candidate location from the results of step 3, computing its visit probability for the 

current context. The visit probability of a location   is computed as the percentage of 

neighbors (i.e., similar users) who visited the location/place in similar contexts (i.e., contexts 

whose similarity value with the current context    is bigger than a threshold  ).  

               
                                                         

           
 (Eq. 5.3) 



93 

where the denominator denotes the number of neighbors (=N), and the numerator 

represents the number of neighbors who visited the location/place in similar contexts. 

The final predicted value for each candidate location is computed as: 

                                              (Eq. 5.4) 

Where           is the predicted value computed from step 3. 

5) Selecting the location with the highest predicted value, and recommending it to the current 

user. 

The above algorithm consists of two parameters:   – the context similarity threshold, and N – the 

number of similar users (i.e., neighborhood size). We investigate the sensitivity of these parameters 

in Section 5.5. 

 

5.4.3 Contextual modeling 

Compared to the above two approaches, contextual modeling approaches use contextual information 

directly inside the CF process. Based on this idea, we develop the following contextual modeling 

approach (in short, CaCF_Mdl).  

Assume that the current user u has visited a set of locations/places. Currently he/she is at the 

location p, and asking “which place to visit next?”. The steps of the CaCF_Mdl method are designed as 

follows: 

1) Identifying users whose next location after visiting p has not been visited by the current user; 

2) Identifying the top N users whose movements are most useful for making recommendations 

for the current user. The utility of a user  ’s movement to the current user is measured as a 

combination of user similarity and context similarity. 

                                         (Eq. 5.5) 

where              measures the user similarity between   and  , using the user 

similarity measure in Eq. 4.9 (i.e., Seq_Idf_Dur_Tran).              denotes the context 

similarity between the contexts of the movements of   and  , using the context similarity 

measure in Eq. 5.2.  
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3) For these N users, aggregating their next locations after visiting p (weighted by the utility 

values); 

4) Selecting the location with the highest predicted value, and recommending it to the current 

user. 

The above algorithm consists of one parameter N – the neighborhood size. We investigate the 

sensitivity of this parameter in Section 5.5.  

 

5.4.4 Comparisons 

When comparing the above methods, one might discover that they differ in the aspect of when user 

similarity measure and context similarity measure are introduced. CaCF_Pre uses context similarity 

measure and then employs user similarity measure. CaCF_Post uses them in a complete inverse way. 

Compared to CaCF_Pre and CaCF_Post, CaCF_Mdl combines both measures to generate a utility 

measurement to measure the usefulness of a movement for making recommendations for the 

current user. 

 

5.5 Evaluation and discussions 

This section evaluates the above methods for context-aware location recommendations with the two 

real-world location history datasets introduced in Chapter 3 (Delft city dataset and Vienna zoo 

dataset). In Section 5.5.1, we describe how we processed these datasets. Section 5.5.2 employs the 

proposed method in Section 5.2 to identify relevant context parameters. We describe the 

experimental setting in Section 5.5.3. The evaluation and results are presented and discussed in 

Section 5.5.4 and Section 5.5.5, and summarized in Section 5.5.6.  

 

5.5.1 Datasets 

As mentioned in Section 3.3, the Delft city dataset and the Vienna zoo dataset consisted of 
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movements (recorded as GPS trajectories) and some additional information about each movement, 

such as weather and companion (with whom). Therefore, these two datasets were employed for the 

evaluation of the proposed CaCF methods. In the following, we describe the details of both datasets, 

with a focus on their contextual information. 

 

1) Delft city dataset 

In the Delft city dataset, in addition to the movement trajectories, some information about users and 

their visits was also recorded. Table 5.1 shows the additional information recorded. 

 

Table 5.1 Additional information recorded together with GPS trajectories (Delft city dataset) 

Additional information Description or available options 

Date The visit date 

Start location Zuipoort ZP or Phoenix PH 

Purpose of visit Shopping, tourism, leisure, other 

With whom Alone, with partner, with kids, family (kids + partners), other 

First visit Yes/No 

Personal data Gender, age, origin, occupation 

Weather Sunny, cloudy, rainy, rain, windy 

 

In order to alleviate the problem of data sparsity, we processed the above information by aggregating 

some of the values. Following is the final list of all the additional information we used for the final 

experiments. Please note that, we did not use personal data (such as gender and age), as they are 

static attributes of the users.  

a) marketday: Yes/No. On Thursday and Saturday, a market is held in Delft city center, which might 

affect people’s visiting behavior. Therefore, we mapped the visit date to either marketday or 

non-marketday.  

b) Start_loc: ZP/PH. This is the location where users started their visits.  
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c) Purpose_of_visit: shopping/not-shopping. Due to the number of visits labeled as tourism, 

leisure and others is small, we aggregated visits of these three types as “not-shopping”.  

d) First_visit: Yes/No. This dimension indicates whether this is a user’s first visit to the Delft city 

center or not. 

e) With_whom: alone/with kids/with others. We introduced “with kids” to replace both “with 

kids” and “family (kids + partners)”.  

f) Weather: rainy/not rainy. In the original recorded information, weather was reported as a 

vector, whose member denoted each dimension. An example is <sunny: no, cloudy: yes, rainy: 

no, rain: no, windy: yes>. Due to the number of visits happening in many weather conditions is 

very small, we simplified it as either rainy or not-rainy30.   

The above aspects can be viewed as the preliminary set of contextual dimensions (parameters). In 

the following sections, we use the method proposed in Section 5.2 to extract context parameters that 

are relevant for making location recommendations.  

Similar to Chapter 4, we used the duration-threshold-free SMoT (DTF-SMoT) as proposed in Section 

3.2.1 to extract a sequence of stops and moves from each GPS trajectory. We also removed 

movements with incomplete contextual information, as well as movements that stopped at less than 

six locations. In total, we got 114 movements, which were used for the final experiments.  

 

2) Vienna zoo dataset  

In the Vienna zoo dataset, the following information was recorded together with GPS trajectories: 

gender, age, having an annual pass (yes/not), with whom (alone/with kids/with others), and weather 

(sunny/cloudy, or rainy). For our experiments, we also did not use gender and age, as they are static 

attributes of the users. In addition, we added a new dimension to indicate whether the visits happed 

on holidays (weekend and public holidays) or not. Therefore, the final list of all the additional 

information we used for our final experiments is: holiday (yes or not), annual_pass (yes or not), 

with_whom (alone/with kids/with others), and weather (rainy/non rainy). 

                                                           
30

 Other classifications of weather conditions are also possible. However, due to the small sizes of visits, we 

decided to classify weather conditions into rainy and non-rainy. In an intuitive sense, rainy or not might affect 

users’ visiting behavior for outdoor scenarios.  
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Similarly, the above aspects can be viewed as the preliminary set of context parameters. In Section 

5.5.2, we identify context parameters that are relevant for making location recommendations, using 

the proposed method in Section 5.2. 

Similar to the evaluation in Chapter 4, we used DTF-SMoT as proposed in Section 3.2.1 to extract a 

sequence of stops and moves from each GPS trajectory. We also removed movements with 

incomplete contextual information, as well as movements that stopped at less than six locations. In 

total, we got 165 movements, which were used for the final experiments.  

 

5.5.2 Identifying relevant context parameters 

The recorded contextual information (i.e., <marketday, start_loc, purpose_of_visit, first_visit, 

with_whom, weather> for the Delft city dataset, and <holiday, annual_pass, with_whom, weather> 

for the Vienna zoo dataset) can be considered as the preliminary set of context parameters. In the 

following, we apply the method proposed in Section 5.2 to identify relevant context parameters from 

these preliminary sets. 

As we were interested in identifying context parameters that are relevant for making location 

recommendations, we mainly compared the number of visited locations/places among different 

situations. In order to test whether the differences among different conditions for each context 

parameter were significant, we employed a significance test. For each test, we first used 

Kolmogorov-Smirnov test to investigate whether the data were normally distributed or not. If yes, an 

independent T-test or an independent one-way ANOVA (Analysis of Variance) was employed, 

otherwise, non-parametric tests such as Mann-Whitney test or Kruskal-Wallis test were employed. p 

< 0.05 was used to denote statistical significance. Table 5.2 and Table 5.3 show the results of the 

comparison for both datasets. Each data cell in Table 5.2 and Table 5.3 contains the following 

information: p-value of significance tests, mean of condition1, mean of condition2, and so on. 
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Table 5.2 How visits differed among different conditions for each context parameter (Delft city 

dataset) 

Context parameters The number of places visited  

‘marketday’ (Yes/No) p=0.977 (8.90 vs. 8.83) 

‘start_loc’ (ZP/PH) p=0.189 (8.56 vs. 9.20) 

‘purpose_of_visit’ (shopping/not shopping) p=0.682 (8.76 vs. 9.21) 

‘first_visit’ (Yes/No) p=0.041 (9.94 vs. 8.69) 

‘with_whom’ (alone/with kids/with others) p=0.043 (7.93 vs. 8.83 vs. 9.35) 

‘weather’ (rainy/not rainy) p=0.431 (9 vs. 8.81) 

 

Table 5.3 How visits differed among different conditions for each context parameter (Vienna zoo 

dataset) 

Context parameters The number of places visited 

‘holiday’ (Yes/No) p=0.712 (11.75 vs. 12.03) 

‘annual_pass’ (Yes/No) p<0.001 (10.46 vs. 13.72) 

‘with_whom’ (alone/with kids/with others) p=0.382 (11.22 vs. 11.54 vs. 12.62) 

‘weather’ (rainy/not rainy) p=0.009 (9.67 vs. 12.30) 

 

For the Delft city dataset, the significance tests indicated that the numbers of visited places among 

different “first_visit” conditions were significantly different. Similarly, for different “with_whom” 

conditions, people also behaved differently (see the bold parts in Table 5.2). Therefore, “first_visit” 

and “with_whom” were considered as relevant, and taken as the final set of context parameters. 

Similarly, for the Vienna zoo dataset, “annual_pass” and “weather” were relevant, and therefore 

taken as the final set of context parameters. In the following section, we provide an evaluation to test 

the correctness of these decisions. 

Please note that, current comparisons on different conditions mainly focused on the number of 

visited places. We are aware of other possible attributes that can help to characterize travel behavior, 

such as length of visits and duration of visits. However, as we were interested in identifying context 
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parameters that are relevant for making location recommendations, we mainly compared the 

number of visited locations/places among different situations. In the following experiments, we show 

that even with this simple attribute, the results are already promising.  

As mentioned in Section 5.5.1, in order to alleviate the problem of data sparsity, we aggregated the 

original categorical values for some of the initial context parameters in the Delft city dataset, e.g., for 

‘weather’, we aggregated different weather conditions, and classified them into ‘rainy’ and ‘not rainy’. 

This kind of aggregation might increase or decrease the observed influence of the context parameter, 

and might lead to different results. However, as the proposed method for identifying relevant context 

parameters is a statistics-based approach, sometimes, aggregation of the original categories is 

needed to allow for meaningful significance tests, especially when the datasets for some of the 

original categories are rather small. Research on Statistics provides some hints on what makes a 

significance test statistically meaningful (Field 2013), which can be used to decide whether 

aggregation is necessary or not. Domain knowledge should be also applied during aggregation. 

It is also important to note that, the relevant context parameters identified above are valid for the 

current datasets only. For other datasets collected in different scenarios or even collected in the same 

scenarios, the list of relevant context parameters might be different. Our research does not aim at 

identifying a set of context parameters that are generally applicable to the recommendation 

scenarios. Instead, the goal is to explore a methodology that can help to identify relevant context 

parameters from each dataset.  

 

5.5.3 Experimental settings 

We used the datasets in Section 5.5.1 to evaluate the recommendation performance of different 

CaCF methods, against the non-contextual method proposed in Chapter 4. 

Main objectives. For the experimental evaluation, we were mainly interested in investigating whether 

including contextual information in CF can improve the recommendation performance or not. In 

addition, we aimed to evaluate the effectiveness of the proposed methodology (Section 5.2 and 

Section 5.5.2) in identifying relevant context parameters.  
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Methods for evaluation: In order to address the above objectives, the following recommendation 

methods were evaluated in the experiments: the non-contextual method (nonCaCF, Chapter 4), 

contextual pre-filtering method (CaCF_Pre, Section 5.4.1), contextual post-filtering method 

(CaCF_Post, Section 5.4.2), and contextual modeling (CaCF_Mdl, Section 5.4.3). 

Evaluation metrics. Similar to Chapter 4, the performance of each method was measured as the 

percentage of successful recommendations, while successful recommendations referred to the case 

when the recommended location is actually visited immediately by the current user.  

Evaluation framework. We used a leave-one-out validation. We made recommendations starting 

from each user’s fourth location, i.e., we did not make recommendations for the first four locations of 

each visit. 

Among all the methods for evaluation, nonCaCF and CaCF_Mdl have one parameter to calibrate, i.e., 

the number of similar users (neighborhood size) N, while CaCF_Pre and CaCF_Post have one more 

parameter to calibrate, i.e., the context similarity threshold  . In the experiments, we first 

implemented a sensitivity analysis to study the impact of these parameters on recommendation 

quality. We then evaluated the performance of the proposed CaCF methods when using different sets 

of context parameters. We were interested in studying whether using the sets of relevant context 

parameters identified in Section 5.5.2 achieves the best recommendation quality. This evaluation was 

very useful for testing the effectiveness of the methodology proposed in Section 5.2 (i.e., identifying 

relevant context parameters). Finally, we compared the CaCF methods with the non-contextual 

method to study the improvement brought by introducing contextual information. For the last two 

experiments, we only used the parameter values achieving the best results.  

 

5.5.4 Evaluation results and discussions: Delft city dataset 

In this section, we describe the evaluation results of the Delft city dataset, while the results of the 

Vienna zoo dataset are reported in the next section. 
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1) Sensitivity analysis 

In order to determine the effect of the parameters, we performed some experiments by varying 

neighborhood sizes and varying context similarity thresholds. For these experiments, we used the set 

of relevant context parameters identified in Section 5.5.2, i.e., “<first_visit, with_whom>”. The results 

are shown in Figure 5.1. Please note that Figure 5.1 is generated by keeping the other parameters 

fixed at their optimum values. By this, our sensitivity analysis focused on all methods’ 

recommendation quality around the highest-ranked configuration. 

 

 

 

Figure 5.1 Impact of neighborhood size and context similarity threshold on recommendation quality 

(Delft city dataset) 
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As can be seen from Figure 5.1, the neighborhood size does affect the recommendation quality of all 

the methods. Similar to the sensitivity analysis in Chapter 4, after a certain point, the 

recommendation quality becomes stable for all the methods. This is probably because the 

recommended location is an aggregated result of similar users’ movements, weighted by their 

similarity values. For each user, only a small group of users have higher similarity values with him/her, 

and all the other users have a similarity value closer to 0. Therefore, after a certain point, the 

recommended location remains the same, and the recommendation quality becomes stable. 

Concerning the context similarity threshold, the recommendation quality of both CaCF_Pre and 

CaCF_Post increases when increasing the threshold. However, after a certain point, the quality 

becomes worse. Please note that, setting the threshold as 1 means that we only use the movements 

happening in the same context (situation) as the current users. With this, we might not have 

sufficient movements for making relevant recommendations. Figure 5.1 also shows that the impact 

effect of the context similarity threshold for CaCF_Pre is bigger than that for CaCF_Post, especially 

when the threshold is close to 1. This is probably because CaCF_Pre uses the threshold for filtering 

out movements before the CF process.  

For the rest of the experiments in this section, we used a neighborhood of size 40 for nonCaCF, that 

of 20 for CaCF_Pre, that of 10 for CaCF_Post, and that of 20 for CaCF_Mdl. We also used a context 

similarity threshold of 0.7 for CaCF_Pre, and that of 0.8 for CaCF_Post. 

 

2) Impact of different sets of context parameters on recommendation quality 

This experiment studied whether using the proposed set of context parameters “<first_visit, 

with_whom>” can achieve the best performance among all the possible sets of context parameters. 

As we had six preliminary context parameters, in total we had another 62 =  
 
 
   

 
 
   

 
 
  

 
 
 
   

 
 
   

 
 
    possible sets of context parameters. Figure 5.2 shows how the 

recommendation performance of all the CaCF methods changes when using different sets of context 

parameters.  
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Figure 5.2 The recommendation performance of the proposed CaCF methods changes when using 

different sets of context parameters (Delft city dataset). 

 

Using different sets of context parameters: Figure 5.2 shows that among all the possible sets of 

context parameters, all CaCF methods using the proposed set “<first_visit, with_whom>” achieve the 

best recommendation performance. Therefore, the proposed method (in Section 5.2 and Section 

5.5.2) to identify relevant context parameters is feasible and useful.  

In the meantime, it is also important to note that incorporating more context parameters into the CF 

process did not mean an improvement of performance. This can be explained by the increasing 

difficulty of accurately measuring context similarity when using more context parameters, and the 

increasing demand of data. 
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3) Comparison of CaCF and nonCaCF methods 

In order to experimentally study whether including contextual information in CF can improve the 

recommendation performance, we compared all the CaCF methods with the non-contextual method 

(nonCaCF). Figure 5.3 shows the comparison. The proposed set of context parameters “<first_visit, 

with_whom>” was employed. All statistical tests in the following were one-tailed paired t-tests at the 

significance level       . 

 

 

Figure 5.3 Comparison of recommendation quality among the non-contextual method and the CaCF 

methods (Delft city dataset) 

 

non-contextual CF vs. context-aware CF (CaCF): The recommendation performance of CaCF methods 

(i.e. CaCF_Pre, CaCF_Mdl, and CaCF_Post) is better than the performance of the non-contextual CF 

method (i.e. nonCaCF). More specifically, both CaCF_Post and CaCF_Mdl achieve significant better 

quality than nonCaCF, with improvements of 11.68% and 7.01% respectively (CaCF_Post vs. nonCaCF: 

p=0.007; CaCF_Mdl vs. nonCaCF: p=0.001). CaCF_Pre achieves better results than nonCaCF, with a 

non-significant difference (p=0.13).  
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This is consistent with what we expected: as CaCF methods are aware of the context (situation) the 

user is in, they might generate recommendations that are more suitable to visit. 

Contextual pre-filtering (CaCF_Pre) vs. contextual post-filtering (CaCF_Post) vs. contextual 

modelling (CaCF_Mdl): Among all the CaCF methods, CaCF_Post performs the best, followed by 

CaCF_Mdl, finally CaCF_Pre. The difference between CaCF_Post and CaCF_Pre is significant (p=0.017). 

In addition, the difference between CaCF_Post and CaCF_Mdl is close to significant (p=0.083). The 

diverse performance of CaCF methods might be explained by the ways they incorporate contextual 

information: CaCF_Pre filters out movements that happened in dissimilar situations, which might 

cause the data sparsity problem; CaCF_Mdl uses context similarity and user similarity to measure the 

utility of each movement, which makes use of all the movements, but at the same time might 

introduce some other uncertainties; CaCF_Post generates a set of candidate locations using the 

non-contextual method, which uses all the movements; the candidate results are then adjusted 

according to contextual information. 

 

5.5.5 Evaluation results and discussions: Vienna zoo dataset 

This section reports on the evaluation results of the Vienna zoo dataset. 

1) Sensitivity analysis 

Similar to what we did for the Delft city dataset, we performed some experiments by varying 

neighborhood sizes and varying context similarity thresholds. For these experiments, we used the set 

of relevant context parameters identified in Section 5.5.2, i.e., “<annual_pass, weather>”. The results 

are shown in Figure 5.4.  
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Figure 5.4 Impact of neighborhood size and context similarity threshold on recommendation quality 

(Vienna zoo dataset) 

 

In general, the results of the Vienna zoo dataset show the same trends as those of the Delft city 

dataset. In terms of the neighborhood size, after a certain point, the recommendation quality 

becomes stable for all the methods. Again, this is probably because the recommended location is an 

aggregated result of similar users’ movements, weighted by their similarity values. Concerning the 

similarity threshold, the recommendation quality of both CaCF_Pre and CaCF_Post increases as the 

threshold increases. Both methods achieve their peak at 0.9. After that, the quality becomes worse.  

Please note that the performance of CaCF_Pre is slightly poorer than nonCaCF. This is because: 

Compared to nonCaCF, CaCF_Pre filters movements happening in dissimilar contexts, which might 

cause the data sparsity problem.  
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For the rest of the experiments in this section, we used a neighborhood of size 50 for nonCaCF, that 

of 40 for CaCF_Pre, that of 30 for CaCF_Post, and that of 50 for CaCF_Mdl. We also used a context 

similarity threshold of 0.9 for both CaCF_Pre and CaCF_Post. 

 

2) Impacts of different sets of context parameters on recommendation quality 

Similarly, we also studied whether using the proposed set of context parameters “<annual_pass, 

weather>” can achieve the best performance among all the possible sets of context parameters. As 

we had four preliminary context parameters, in total we had another 14 =  
 
 
   

 
 
   

 
 
   

 
 
  

  possible sets of context parameters. Figure 5.5 shows how the recommendation performance of all 

the CaCF methods changes when using different sets of context parameters.  

 

 

Figure 5.5 The recommendation performance of the proposed CaCF methods changes when using 

different sets of context parameters (Vienna zoo dataset). 
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Using different sets of context parameters: Similar to the results of the Delft city dataset, among all 

the possible sets of context parameters, CaCF_Post and CaCF_Mdl methods using the proposed set 

“<annual_pass, weather>” achieve the best recommendation performance. This is not the case for 

CaCF_Pre, which achieves the best performance when using “<weather>”. However, the performance 

difference of using “<annual_pass, weather>” and “<weather>” is very small (<0.01). 

Figure 5.5 also shows that including more context parameters into CF did not mean an improvement 

of performance. This can be again explained by the increasing difficulty of accurately measuring 

context similarity when using more context parameters, and the increasingly demand of data. 

 

3) Comparison of CaCF and nonCaCF methods 

Similarly, we compared all the CaCF methods with the non-contextual method (nonCaCF) to 

experimentally study whether including contextual information in CF can improve the 

recommendation performance. Figure 5.6 shows the comparison. The proposed set of context 

parameters “<annual_pass, weather >” was employed. 

 

 

Figure 5.6 Comparison of recommendation quality among the non-contextual method and the CaCF 

methods (Vienna zoo dataset) 
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In general, the results of the Vienna zoo dataset are very similar to those of the Delft city dataset. 

non-contextual CF vs. context-aware CF (CaCF): The recommendation performance of CaCF methods 

(i.e. CaCF_Pre, CaCF_Mdl, and CaCF_Post) is better than the performance of the non-contextual CF 

method (i.e. nonCaCF). More specifically, both CaCF_Post and CaCF_Mdl achieve significant better 

quality than nonCaCF, with improvements of 15.76% and 3.32% respectively (CaCF_Post vs. nonCaCF: 

p<0.001; CaCF_Mdl vs. nonCaCF: p=0.002). CaCF_Pre achieves better results than nonCaCF, with a 

non-significant difference (p=0.098).  

Contextual pre-filtering (CaCF_Pre) vs. contextual post-filtering (CaCF_Post) vs. contextual 

modelling (CaCF_Mdl): Among all the CaCF methods, CaCF_Post performs the best, followed by 

CaCF_Mdl, finally CaCF_Pre. The difference between CaCF_Post and CaCF_Pre is significant (p<0.001). 

In addition, the difference between CaCF_Post and CaCF_Mdl is also significant (p=0.003). These 

results are consistent with the results in the Delft city dataset. Again, the diverse performance of 

CaCF methods might be explained by the ways they incorporate contextual information.  

 

5.5.6 Summary of the results and discussions 

In summary, the results of the two datasets are similar. The main findings of the experiments are as 

follows: 

1) The size of the neighborhood N and the context similarity threshold   do affect the 

recommendation quality of all the methods. The trends of these effects in both datasets are 

similar (Figure 5.1 and Figure 5.4).  

2) When including contextual information in the CF process, choosing a suitable set of relevant 

context parameters is very important and may greatly affect the recommendation 

performance. Using the proposed set of context parameters, as identified by the proposed 

method in Section 5.1, achieves the best results (except CaCF_Pre for the Vienna zoo dataset) 

(Figure 5.2 and Figure 5.5).  

3) Among all the CaCF methods, CaCF_Post performs the best, followed by CaCF_Mdl, finally 
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CaCF_Pre. The difference between CaCF_Post and CaCF_Pre is significant (Figure 5.3 and 

Figure 5.6).  

4) More importantly, the recommendation performance of the CaCF methods (i.e. CaCF_Pre, 

CaCF_Mdl, and CaCF_Post) is better than the performance of the non-contextual CF method 

(i.e. nonCaCF). The difference of CaCF_Post and nonCaCF, and that of CaCF_Mdl and nonCaCF 

are significant.  

In general, these findings are consistent with what we expected.  

1) We believed that choosing a suitable set of context parameters is very important, and the 

identification of this set can be achieved by analyzing the travel behavior at different 

conditions. The results of the experiments confirm this expectation, and show that the 

proposed methodology is feasible and useful to identify context parameters that are relevant 

to the recommendation task.  

Please note that the sets of relevant context parameters identified using this methodology 

are only valid for the current datasets. It does not mean that they are relevant for all other 

datasets collected in the same scenarios. Our research does not aim to identify a set of 

context parameters that work in general for the scenarios. Instead, the goal is to explore a 

methodology that can help to identify relevant context parameters from each dataset. 

2) We expected that as CaCF methods were aware of the context (situation) the user was in, 

they could identify users whose movements are more relevant and useful for deriving 

location/place recommendations for the current user, and therefore, recommendations that 

are more appropriate can be generated. These experiments confirm this expectation, and 

show that introducing contextual information into the CF process can help to improve the 

recommendation quality.  

3) The above results might suggest that among all the CaCF methods the contextual 

post-filtering (CaCF_Post) method and the contextual modeling (CaCF_Mdl) method might be 

more suitable for deriving context-aware location recommendations from location histories. 

As CaCF_Post has one more parameter to calibrate, in practical use, one might use CaCF_Mdl 

for a quick and “acceptable” result. For a better result, CaCF_Post can be then employed by 

calibrating both parameters, i.e., the neighborhood size N, and the context similarity 
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threshold  . 

 

5.6 Summary and conclusions 

This chapter studied how contextual information can be integrated into non-contextual CF methods 

for deriving context-aware location recommendations from a large number of users’ location 

histories. Specifically, we proposed a methodology for identifying context parameters that are 

relevant to the recommendation tasks (Section 5.2). We then explored a context similarity measure 

to measure the similarity between any two contexts (situations) (Section 5.3). We further integrated 

this context similarity measure to the non-contextual method (as developed in Chapter 4), and 

developed three kinds of context-aware CF methods (CaCF): contextual pre-filtering, contextual 

post-filtering, and contextual modeling (Section 5.4). With these CaCF methods, personalized and 

context-aware location recommendations can be provided in LBS applications.  

We evaluated the CaCF methods, against the non-contextual CF method (nonCaCF) as developed in 

Chapter 4. Two real-world location history datasets were used for the evaluation: GPS trajectories at 

Delft city center, and GPS trajectories at Vienna zoo. These datasets reflect different scales of 

application scenarios. The results of the evaluation on the two datasets are similar, and demonstrate 

that: 1) When including contextual information in CF, choosing a suitable set of relevant context 

parameters is very important and may greatly affect the recommendation performance; 2) The 

identification of a set of relevant context parameters can be achieved by analyzing how users’ 

aggregated movements differ in different situations; 3) The contextual post-filtering method achieves 

the best results, followed by the contextual modeling method, and finally the contextual pre-filtering 

method; 4) More importantly, all the CaCF methods perform better than nonCaCF. From these 

experiments, the following conclusion can be drawn: Including contextual information into the CF 

process provides users with more appropriate recommendations.  

We believe that context-awareness plays a key role in LBS, and we plan to apply the idea of 

context-aware collaborative filtering (CaCF) to other LBS services, such as content selection and 

presentation. We are also interested in implementing the proposed CaCF methods into an LBS system, 

and therefore evaluating the CaCF methods in the field.  
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6 Conclusions and Future Work 

 

6.1 Research contributions and conclusions 

When visiting a new city, tourists often need help to effectively identify personally interesting 

places/locations from a potentially overwhelming set of choices. The task is further complicated by 

the physical attributes of the environments, as it takes time for people to move between places, and 

personally interesting places may be scattered throughout the environment (Bohnert 2010). Recently, 

the increasing availability of GPS-enabled devices and the rapid development of social media have led 

to the accumulation of a large number of location histories, such as GPS trajectories and trajectories 

constructed from users’ “self-reported” information on the Internet. These location histories may 

reflect people’s travel experiences in the environment. Research has shown that experiences from 

past users (especially similar ones) in similar contexts can help the current user to efficiently solve 

their problems (Wexelblat 1999, Zheng et al. 2011), e.g., choosing where to visit next or which route 

to take.  

Motivated by the above two aspects, this research explored a methodology of deriving personalized 

and context-aware location recommendations from location histories in LBS applications. More 

specifically, we investigated how human location histories, such as GPS trajectories and trajectories 

constructed from people’s “self-reported” information on social media, and collaborative filtering can 

be integrated in LBS to provide users with personalized and context-aware location recommendations. 

In the following, we summarize our research contributions. Similar to Bohnert (2010), we report on 

the summary by addressing the Sub-Questions as defined in Chapter 1.  

Sub-Question 1 (Chapter 3): How can a user’s interests in various locations/places and motion 

behavior of visiting such locations, which are required for CF, be modeled and extracted from 

his/her location histories? 

 Existing CF approaches often represent a user profile as a set of ratings given by the user on 
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different items, which is insufficient to model information extracted from users’ location 

histories. Specifically, the rating-based approach cannot model users’ behavior of visiting various 

locations/places, e.g., in which orders these locations are visited, and transit time between 

locations. Based on the concepts of stops and moves, Chapter 3 explored a model of contextual 

user profile, which can be used to represent users’ interests in various locations (reflected by 

their visits to these locations and the duration of these visits) as well as their behavior of visiting 

such locations. In order to extract meaningful user profiles from raw location histories, especially 

raw GPS trajectories, a duration-threshold-free SMoT (DTF-SMoT) method and a 

stay-point-based SMoT (SP-SMoT) method, which were extended from the state-of-the-art 

method, were developed.  

Evaluation with two real-world GPS datasets shows that DTF-SMoT, which requires fewer 

parameters as inputs, achieves results that are comparable to the state-of-the-art method, i.e., 

the original SMoT method proposed by Alvares et al. (2007). Therefore, DTF-SMoT is a viable 

replacement of SMoT for scenarios where duration thresholds for candidate stops are rather 

difficult to define. On the other hand, SP-SMoT achieves results that are comparable to the 

SMoT approach, however, it also discovers stops that are unknown a priori, but may be 

potentially interesting to the application. Therefore, SP-SMoT is more useful for scenarios with 

insufficient background geographic information, in which defining a complete list of candidate 

stops is difficult. 

The proposed model of contextual user profiles and the DTF-SMoT and SP-SMoT methods 

provide a basis for deriving recommendations from location histories. This non-intrusive user 

modeling technique can be also employed for other innovative applications, such as 

understanding of moving objects’ behavior, activity recognition, and location-based social 

networking.  

Sub-Question 2 (Chapter 4): How can other users’ interests in various locations and motion behavior 

of visiting such locations, as extracted from their location histories, be utilized to provide the 

current user with personalized location recommendations? 

 CF is a promising technique for deriving location recommendations from location histories. 

Existing CF methods often work with rating-based user profiles, and are not suitable for making 
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location recommendations from location histories. Chapter 4 addressed this issue, and 

investigated how information extracted from other users’ location histories (i.e., their interests in 

various locations, and motion behavior of visiting such locations) can be aggregated for providing 

the current user with personalized location recommendations. More specifically, a novel user 

similarity measure, which considers the sequence property of movement (i.e., the order in which 

locations are visited), location popularity, duration at locations and transit time between 

locations, was developed to identify users who are similar to the current user. “Opinions” (i.e., 

movements) of these similar users were then aggregated to generate location recommendations 

to the current user.  

 We evaluated the proposed method with some benchmarking methods, via three real-world 

location history datasets (two GPS datasets and one dataset constructed from Flickr photos). The 

evaluation demonstrates that considering other people’s movements, sequence relationships of 

locations visited, location popularity, duration at locations, and transit time between locations 

contributes to the improvement of recommendation quality. Among them, considering other 

people’s movements achieves the biggest improvement. These experiments also confirmed that 

aggregating past users’ location histories (“travel experiences”) helps to provide the current 

users with personalized location recommendations. 

 The user similarity measure developed in this research also enables many other interesting 

applications, such as identifying potential friends in location-based social networks, and 

understanding interactions among people.  

Sub-Question 3 (Chapter 5): How can context-awareness be introduced to improve location 

recommendation in LBS? 

 Context-awareness is a key aspect of LBS. However, existing methods for deriving 

recommendations from location histories often only consider users’ current location and 

preferences, and fail to consider additional contextual information, such as weather and 

companion (i.e., with whom), which may be also relevant for the recommendation tasks. 

Chapter 5 addressed this issue, and investigated how the non-contextual CF method, as 

developed in Chapter 4, can be further improved by integrating contextual information.  
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We adopt the context definition proposed by Dey (2001, p. 5): “Context is any information that 

can be used to characterize the situation of an entity. An entity is a person, place, or object that 

is considered relevant to the interaction between a user and an application”. We also adopt a 

“representational” view of context as described in Dourish (2004). According to this view, 

contexts/situations that the system may be in can be characterized or differentiated by a set of 

observable attributes (i.e., context parameters or dimensions), such as “weather”. We developed 

a methodology for identifying context parameters that are relevant to the recommendation tasks. 

We then explored a statistics-based approach for measuring similarity between different 

contexts (situations). Three approaches were then designed to integrate the context similarity 

measure into the CF process, i.e., contextual pre-filtering, contextual post-filtering and 

contextual modeling. With these contextual methods, personalized and context-aware location 

recommendations can be provided in LBS. 

The proposed methods were evaluated against the non-contextual methods as developed in 

Chapter 4, via two real-world location history datasets. The evaluation demonstrates that: 1) 

When including contextual information into CF, choosing a suitable set of relevant context 

parameters is very important and may greatly affect the recommendation performance; 2) The 

identification of a set of relevant context parameters can be achieved by analyzing how users’ 

aggregated movements differ in different situations; 3) The contextual post-filtering method 

achieves the best results, followed by the contextual modeling method, and finally the 

contextual pre-filtering method; 4) More importantly, context-aware CF methods perform better 

than the non-contextual CF method. From these experiments, the following conclusion can be 

drawn: Including contextual information into CF improves recommendation quality, as it can 

provide users with more appropriate recommendations matching their context. 

It is worth noting that, all the methods developed above are based on the concepts of stops and 

moves, which provide a fundamental and common conceptual framework for semantically processing 

different kinds of location histories, either recorded by devices/sensors or constructed from the 

Internet. In this sense, our methods are not restricted to a specific kind of location history.  

Research addressing the above Sub-Questions can be then integrated to answer the overall research 

question of this research: “How can human location histories (e.g., GPS trajectories and trajectories 
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constructed from people’s “self-reported” information on social media), and collaborative filtering (CF) 

be integrated in LBS to provide users with personalized and context-aware location 

recommendations?”  

Summarizing the whole research, we have gained insights about deriving personalized and 

context-aware recommendations from location histories in LBS applications. Specifically, we 

understand how relevant information about users’ movement can be modeled and extracted from 

raw location histories, and how the extracted information can be aggregated and enriched with 

contextual information such as weather and companion (with whom) to provide personalized and 

context-aware recommendations. The overall solution can help tourists to identify personally 

interesting places from a potentially overwhelming set of choices when visiting an unfamiliar 

environment, such as a new city or a new museum.  

As our approaches do not require an explicit representation of domain knowledge, they are very 

suitable for LBS applications, which might often need to provide services in scenarios with little (or no) 

available domain knowledge. Additionally, our approaches employ a non-intrusive user modeling 

technique and do not require users to state their interests and preferences explicitly, which are very 

promising in LBS applications, as LBS users are often involved in many tasks and activities during using 

their mobile devices. Furthermore, our approaches can provide users with personalized and 

context-aware recommendations, which are very welcome in LBS, as context-awareness plays a key 

role in LBS applications. In conclusion, we believe that the methods and findings discussed in this 

dissertation significantly advance the field of context-aware adaptation and personalization in LBS. 

It is important to note that while this research focused on location recommendations, the insights 

gained in this research can be easily transferred and extended to other domains, e.g., product 

recommendations in mobile shopping guides, artwork recommendations in museums, friend 

recommendations in location-based social networks, human behavior understanding, and activity 

recognition. The principle of CF can be also applied to personalized and context-aware content 

selection/visualization in LBS. 
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6.2 Future work 

This research has addressed some important questions in the area of personalization and 

context-aware adaptation. In this section, we list and motivate several promising areas for future 

development and research.  

Evaluation with human participants. In the current research, approaches of leave-one-out validation 

on historical datasets were employed to evaluate the proposed algorithms. This evaluation can be 

improved by using experiments with human participants. For example, we can ask each participant to 

comment on the recommendation results generated by the proposed algorithms, like Zheng et al. 

(2011). We expect that similar results can be obtained in these kinds of human experiments. 

Sequential recommendations. Current recommendation systems seldom provide sequence 

recommendations, e.g., a sequence of locations/places to visit next. In many LBS applications, this 

function is very important. For example, it might not make sense to recommend a location in the 

south, and then recommend another one in the north, and finally another one in the south again. In 

addition to travel distance, sequence recommendations might also need to consider the diversity of 

items in the recommended set, and co-occurrence interaction effects of different items (Hansen and 

Golbeck 2009). The proposed method in this research can be extended to provide sequence 

recommendations, by considering different constraints and interaction effects among items. 

Furthermore, the proposed method can be also extended to generate itinerary recommendation, for 

example, “recommend a two-day trip for visiting Vienna” or “recommend some exhibits to visit for a 

two-hour stay at the Albertina Museum”. 

Developing more comprehensive CaCF. In this research, we developed a methodology to identify 

relevant context parameters, and assumed the independence between context parameters. Even 

though the results of the experiments were very promising, this approach can be further improved by 

considering the correlation/multicollinearity31 among different context parameters. Furthermore, 

the methodology can be extended to identify user-specific context parameters, and item-specific 

context parameters. With these, more relevant recommendations might be provided.  

As mentioned in Section 3.1.2, the current research assumed that the context of a visit does not 

                                                           
31

 http://en.wikipedia.org/wiki/Multicollinearity 
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change during a user’s visit. In order to further improve the recommendation performance, the 

current CaCF methods should be expanded to deal with dynamic contextual information. 

Implicit profiling. In this research, a user’s visit to a place/location (represented as a stop) and 

duration at this location is used to approximate his/her implicit interest rating for the location. 

However, the approximation of users’ interest rating for a location/place can be improved by 

considering more aspects, such as users’ travel behavior and activities at this location. We expect that 

having a more comprehensive approximation of users’ implicit ratings in various locations will further 

improve the recommendation quality.  

Recommendation user interfaces and explanations. In this research, we did not consider how to 

communicate the recommendation list to the end users. However, the way of communicating and 

visualizing the recommendation results also affects the usability of recommendation systems. Maps 

and Augmented Reality (AR) can be viable interfaces for showing these results. However, techniques 

for differentiating the results according to their predicted values (utilities) are still a topic of research. 

On the other hand, it is also interesting and useful to investigate methods that are able to generate 

explanations on why these locations are recommended. Again, how these explanations are 

communicated to the users is also an interesting research topic.  

Integration with other recommendation techniques. In the current research, we employed CF for 

deriving recommendations from location histories. CF is an effective recommendation technique 

requiring little domain knowledge, which is very promising in LBS applications. However, it also 

suffers from the “cold-start” problem, as it cannot make recommendations for users who have little 

or no information available in the system (new user problem), and cannot recommend items which 

are newly added to the system (new item problem). This “cold-start” problem can be addressed by 

providing general and random recommendation (i.e., non-personalized). However, it can also be 

addressed by integrating other recommendation techniques (as introduced in Section 2.2), such as 

content-based, knowledge-based recommendations. As shown in other recommendation domains, 

such as movie recommendations and music recommendations, hybrid systems might help to further 

improve the recommendation quality (Adomavicius and Tuzhilin 2005). Therefore, it might be 

interesting to investigate how hybrid recommendation techniques can be used to provide more 

appropriate recommendations in LBS.  
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