
Meta-Heuristic Local Planning

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Markus Suchi
Matrikelnummer 9103533

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.-Prof. Dipl.-Ing. Dr. techn. Markus Vincze
Mitwirkung: Dipl.-Ing. Dr. techn. Markus Bader

Wien, 21.11.2014
(Unterschrift Markus Suchi) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Erklärung zur Verfassung der Arbeit

Markus Suchi
Karl Heinz Straße 67/11/51, 1230 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Markus Suchi)

i





M E TA H E U R I S T I C L O C A L P L A N N I N G

markus suchi

November 2014



A B S T R A C T

Navigation is a crucial task for mobile robots driving through dynamic envi-
ronments. Besides the difficulties involved in finding a way from a starting to
some goal location, the problem gets more difficult if unknown objects, dy-
namics of the robotic vehicle and uncertainties from sensor readings have to
be taken into account.

To guarantee a safe passage common approaches divide the navigation task
into two parts - global and local planning. A global planner finds an initial
path to the desired goal location based on a previous obtained map. The re-
trieved path is used as a guide for a local path planning component. This local
path planner uses so called local information obtained through recent sensor
readings and applies obstacle avoidance strategies to safely and efficiently fol-
low the guide as precise as possible.

Very effective local planning methods like the Dynamic Window Approach
(DWA) or Trajectory Roll-out are based on sampling the control space of the
robot. For a short amount of time the application of these controls is simulated
generating corresponding trajectories. By using appropriate cost functions the
resulting trajectories are weighted and the best one yields the optimal target
values for the motor controller.

The goal of this thesis is to analyze these approaches and improve the perfor-
mance of local planners by applying well known meta-heuristic search strate-
gies in the trajectory selection process.

For this purpose an introduction to local planning and obstacle avoidance
methods is presented, followed by a discussion of applicable single solution
based meta-heuristics.

Approaches based on Iterated Local Search (ILS), Variable Neighborhood
Search (VNS) and Tabu Search are implemented and tested using a sample
planner based on DWA. These algorithms are analyzed and evaluated using
random created instances of sensor maps. Results are documenting a signif-
icant increase in performance compared to the brute force evaluation com-
monly used in local planner.

With the gained knowledge of these tests the (VNS) approach is selected to
substitute the selection process in a popular implementation of local planner
within the Robot Operating System (ROS). Two algorithms based on trajec-
tory Roll-out (VNS-ROL) and DWA (VNS-DWA) are developed and evaluated
using a sophisticated simulation engine. The altered planner outperform the
original implementations on all tested instances.
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Z U S A M M E N FA S S U N G

Die Fähigkeit in dynamischen Umgebungen zu navigieren ist eine wesentliche
Funktion für mobile Roboter. Neben der Schwierigkeit einen Weg von einem
Startpunkt zu einem Zielpunkt zu finden, erhöhen sich die Anforderungen an
die Planung wenn Hindernisse und Messunsicherheiten vom Roboter während
der Navigtion berücksichtigt werden müssen.

Um eine sichere Fahrt zu garantieren, wird die Navigation üblicherweise in
zwei Schritte aufgeteilt - globale und lokale Planung. Ein globaler Planer findet
anhand einer vorher erstellten Karte einen ersten Weg zum gewünschten Ziel.
Der gefundene Weg fungiert dann als Orientierungshilfe für eine lokale Weg-
planungskomponente. Der lokale Planer verwendet unter Berücksichtigung
der aktuellsten Sensormessungen sogenannte lokale Informationen und Strate-
gien zur Kollisionsvermeidung um sicher und effizient der Orientierungshilfe
so exakt wie möglich zu folgen.

Sehr effektive lokale Planungsmethoden wie Dynamic Window Approach
(DWA) oder Trajectory Roll-out basieren auf einem Sampling des Controlspace
des Roboters. Für einen kurzen Zeitraum wird die Applikation von Steuerw-
erten simuliert und die resultierenden Trajektorien generiert. Mithilfe einer
geeigneten Kostenfunktion werden die Trajektorien gewichtet und die Steuer-
werte der besten Trajektorie werden and die Motorsteuerung weitergeleitet.

Das Ziel der vorliegenden Arbeit ist eine Analyse und eine Verbesserung
der Leistung von lokalen Planern durch Einsatz bekannter metaheuristischer
Suchstrategien bei der Selektion der Trajektorien.

Zu diesem Zweck wird eine Einführung zu lokalen Planungsmethoden und
Methoden der Kollisionsvermeidung präsentiert, gefolgt von einer Diskus-
sion zu „single solution based “ Metaheuristiken. Die präsentierten Ansätze
basierend auf Iterated Local Search (ILS), Variable Neighborhood Search (VNS)
und Tabu Search werden implementiert und mit einem auf DWA basieren-
den einfachen Planer getestet. Diese Algorithmen werden anhand zufällig
erzeugter Sensorkarten analysiert und ausgewertet. Die Resultate dokumen-
tieren eine signifikante Verbesserung der Leistung verglichen mit der Brute-
Force-Methode, die üblicherweise bei dieser Art lokaler Planung verwendet
wird.

Mit dem durch diese Untersuchungen erworbenen Wissen wird der VNS
Ansatz gewählt um den Selektionsprozess in einer existierenden Implemen-
tierung von lokalen Planern innerhalb des Robot Operating Systems (ROS)
zu ersetzen. Zwei Algorithmen basierend auf Trajectory roll-out (VNS-ROL)
und DWA (VNS-DWA) werden entwickelt und mit einer modernen Simula-
tionsoftware evaluiert. Die Leistung der adaptierten Planer übertrifft dabei die
ursprünglichen Implementierungen in allen getesteten Szenarien.
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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

Navigation and planning are essential for mobile robots to act in out- and
indoor environments. From self driving cars navigating 132 miles through
the Mojave desert, or mobile robots handling goods in distribution centers
and warehouses to mobile robots used for planetary exploration, autonomous
robots have conquered nearly every place on earth and beyond.

Articles like [48] and [19] present the relationship between the environmen-
tal complexity and the computational on-board processing power needed to
tackle the navigation problem. The self driving car Stanley has a six processor
computing platform provided by Intel whilst Kiva robots are using low cost
DSP’s for navigation and vision processing1 to drive within a known environ-
ment.

While the application domains and computational powers varies strongly
between the robotic systems, all of them have to move safely and efficient
from one location to another.

The method proposed in this thesis improves navigation for mobile robots
by combining local planning methods with search strategies based on meta-
heuristic algorithms.

This enables the local planner to:

• run at a higher frequency

• simulate trajectories for a longer time interval

• moving the robot at higher speed

• investigate a larger amount of trajectories

• use a higher costmap resolution

In order to give an impression of the importance of navigation and planning
in the field of mobile robotics the next section gives some motivation and
application examples.

1.1 motivation and applications

The goal of navigation encompasses the ability of robots to find a series of
actions based on its knowledge of the environment and sensor values to reach

1 Kiva Systems Uses "Smart" Blackfin-powered Robots for Warehouse Navigation | Analog De-
vices: http://www.analog.com/en/content/kiva_systems_bf548/fca.html

3
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4 introduction

its goal position in an effective and efficient manner. The resulting series of
actions is called a plan.

To ensure safety and flexibility in the presence of obstacles in a dynamic
environment obstacle avoidance is used to alter plans during execution and gen-
erating of collision free trajectories.

A common strategy to deal with complex navigation problems is to the
divide the planning task into a global and a local planning problem [27].

Global path-planning usually operates on a simplified representation of the
environment and the robot itself (e.g. static map, circle representation of the
robots outline) to efficiently compute an optimal shortest path using variants
of Dijkstra’s [8] or A∗ [22] algorithm, ignoring kinematic and acceleration con-
straints of the robot. In succession the retrieved global path is used by a local
planner for guiding the robot through the environment. Figure 1 illustrates the
view of the environment from a robot perspective together with a global and
local plan, which enables the robot to drive autonomous within a lab/office
environment.

global path

local path

detected obstacles

local costmap

global costmap

Figure 1: This figure shows a Pionner3DX and its view of the office environment while
passing through a door. The blue line shows the global path and the green line the
selected trajectory of the local planner.

The major responsibility for local planner is obstacle avoidance. It takes sen-
sor readings of the robot into account and is reactive to changes within the
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sensor range. It selects the best values of available motor controls in respect to
the kinematic and dynamic constraints of the robot, generating collision free
trajectories.

Navigation competence is essential for a broad spectrum of application do-
mains within the field of mobile robotics which are presented below:

self driving cars

Self driving cars (see Figure 2) like Stanley [48] which won the 2005

DARPA (Defense Advanced Research Projects Agency of the United States)
Grand Challenge and the Google car [20] are two examples which illus-
trate the enormous potential of autonomous vehicles. While the former
is confronted with rough terrain and maneuvers at high speeds, cars in
urban traffic have to be prepared for other vehicles, pedestrians and have
to incorporate traffic rules into the navigation task.

(a) Stanley (taken from [48]). (b) Google car (Credit: Google2).

Figure 2: Self driving cars designed for different environments. On the left the winner
of the 2005 DARPA Grand Challenge tackled wreckless driving through the Mojave
desert and the right picture shows the new Google car designed for urban traffic.

planetary exploration

Another example of autonomous vehicles are planetary rovers. Three
generations of Mars rovers developed at NASA are shown in Figure 3a.
The first Mars rover, Sojourner, which landed on Mars in 1997 as part
of the Mars Pathfinder Project was remotely operated from earth. The
next generation of rovers, Spirit and Opportunity which landed 2004,
did already have an autonomous navigation system. This enabled the
robots to avoid hazardous situations without human intervention. The
latest rover Curiosity is on its mission on Mars since August 2012 using
autonomous navigation to explore mars on safe paths without the need
of being remotely controlled by human operators.

An overview of recent developments in the field of planetary exploration
including navigation topics can be found in [31].
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(a) NASA Mars rover (Credit:
NASA JPL-Caltech).

(b) Mawson rover (taken from
[35]).

Figure 3: Different Mars rover for planetary exploration. On the left Sojourner, Spirit
and Curiosity from NASA which provided rich scientific information exploring Mars
and on the right Mawson an academic research project on a training track at the
Museum of Sydney.

search and rescue

Mobile robots provide a useful tool for rescue teams, whenever human in-
tervention is not possible due to imminent risk of health and life, like im-
mediate explosion hazard or threat of nuclear radiation. Figure 4 shows
two prominent representatives of search and rescue robots.

(a) Pioneer (Credit: Carnegie Mel-
lon University)

(b) Packbot (Credit: iRobot)

Figure 4: Search and rescue robots are useful tools for human rescue teams. The left
figure shows Pioneer at the nuclear disaster site in Chernobyl, the right robot shows
a Packbot which operated in the nuclear power plant in Fukushima.

The robot PIONEER sponsored by the US Department of Energy and
NASA was the first of its kind to be deployed to the remnants of the
nuclear power station in Chernobyl in the Ukraine after the supergau

2 Google self driving car available from http://googleblog.blogspot.co.at/2014/05/

just-press-go-designing-self-driving.html

http://googleblog.blogspot.co.at/2014/05/just-press-go-designing-self-driving.html
http://googleblog.blogspot.co.at/2014/05/just-press-go-designing-self-driving.html
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in 1986. The robots mission was to evaluate the sarcophagus which was
built to shield off radiation.

In 2011 after an earthquake caused a nuclear disaster at the Fukushima
Daiichi power plant in Japan, two PACKBOT robots of the American
company iRobot were deployed to perform on site observations.

While the aforementioned robots were remotely operated, autonomous
robots are a very active research topic in the academic domain. In the last
5 years more than 90 teams from universities participated in RoboCup
competitions and already provide impressive results like Hector [26] the
winner of the 2014 RoboCup Rescue League world championship.

assistance

Besides robots acting in outdoor environments, assistance robots have to
cope with the difficulties involved in operating side by side with humans
in indoor environments. Obstacles like desks and chairs located in small
corridors and rooms pose a challenging navigation problem. Tour guide
robots like Rhino [13] and Robox [42] are especially designed to deal
with this kind of setting. Figure 5b shows Robox at the Robotics@Expo.02

event.

Figure 5a shows the robot Hobbit [12][54] which goes one step further
in assisting elderly people in their everyday activities. It does not only
make an excellent job in dealing with the pitfalls of navigating in indoor
environments, in addition it is equipped with the capabilities to identify
and to remove obstacles on the floor to provide safe passages for its
human users.

(a) Hobbit (taken from [12]) (b) Robox (taken from [42])

Figure 5: Hobbit the care robot supporting elderly people and Robox working as a
tour guide.
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logistics and transportation

Automated guided vehicles (AGV) are an essential part in industry to
support automated manufacturing. Figure 6a shows a typical industrial
AGV from the Austrian company DS-Automotion. The mobile robots fol-
low markers, wires, or magnets in the floor, and make use of lasers and
computer vision methods to accomplish navigation tasks. Their main re-
sponsibility is to move materials safely and efficient around manufactur-
ing facilities, warehouses (eg. Kiva Systems [19]) or hospitals (eg. HELP-
MATE [10]).

If transportation by road is not possible a flying drone might do the job.
Projects from major companies like Googles project wing and Amazons
Prime Air are working on self flying drones to deliver packages. Figure 6b
shows a prototype drone on a test flight.

(a) AGV (Credit: DS-Automotion) (b) Project Wing delivery drone
(Credit: KEYSTONE)

Figure 6: Transportation on earth using Automated Guided Vehicles and in the air
with the support of self flying drones.

commercial

Robots play a vital role in the manufacturing of goods. Besides classi-
cal domains such as automotive industry, robots are used for mining,
construction and maintenance tasks. For example DeWaLoP, shown in
figure 7a, is used for cleaning fresh water pipes, navigating through a
3000 km pipeline network in Vienna [34].

The employment of autonomous robots is also a field of attention in
agriculture. Monitoring, harvesting and precision spraying pesticides of
crops have to be carefully accomplished without hurting fragile plants.
Figure 7b shows a harvesting robot developed at the Technische Univer-
sität München moving in a greenhouse [44].

challenges and competitions

Attractive competitions have the purpose to spur innovation and spon-

2 Project Wing delivery drones https://plus.google.com/+google/posts/TqrsvRyPeNH

https://plus.google.com/+google/posts/TqrsvRyPeNH
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(a) DeWaLoP (taken from [34]) (b) Harvesting robot (taken from
[44])

Figure 7: The right figure shows an in-pipe maintenance robot, the left image an
agricultural robot used for harvesting and spraying of sweet-pepper crops.

sor research development in the field of robotics . One of the most popu-
lar events are organized and sponsored by DARPA. Besides the already
mentioned Grand Challenge for wreckless self driving cars, the succes-
sor events DARPA Urban Challenge focused on autonomous vehicles
moving in urban areas. In 2012 the first DARPA Robotics Challenge took
place which provided a platform for wheeled and humanoid search and
rescue robots.

World Competitions of soccer playing robots fascinate and motivate thou-
sands of people every year and have a significant impact on the develop-
ment of innovative methods including navigation and planning for mo-
bile robots. Figure 8 shows wheeled and humanoid robots trying their
best at scoring more goals than their opponents. The biggest events are
organized by FIRA3 and RoboCup4, which provide annual competitions
for wheeled and humanoid soccer robots.

All of these examples show that navigation plays an essential role in mobile
robotics. Excellent planning algorithms are needed to enable a wide area of
applications and allow autonomous and semi-autonomous machines to safely
and economically move through in- and outdoor environments. In addition
they have to cope with uncertainties induced by sensor noise, the presents of
dynamic obstacles and the limits of computational power.

3 Federation of International Robot-soccer Association, founded in 1997. Details can be found at
www.fira.net.

4 RoboCup Federation, founded in 1993. Details can be found at www.robocup.org.

www.fira.net
www.robocup.org
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(a) MiroSot (taken from www.fira.

net)
(b) Standard Platform League
(taken from www.robocup2014.

org)

Figure 8: The right figure shows competitors of the MiroSot league, the left image
humanoid Nao robots playing soccer in the RoboCup Standard Platform League.

1.2 related work

Similar approaches using meta-heuristics are mostly present in the field of
global planning. Especially population based meta-heuristic algorithms are
used to tackle planning problems for single and multiple robots.

In [55] an ant colony optimization (ACO) algorithm is used to find global
minimal paths for soccer robots. The algorithm uses a combination of cellular
automata and a special designed pheromone model to find an initial global
path. In a second step the retrieved path is smoothed and can be used to guide
a robot.

In [5] the performance of finding optimal shortest global paths by apply-
ing an ACO algorithm is documented. The proposed method uses a special
heuristic to set the moving directions of the ants in the system based on short-
est distance between nodes in the search graph.

A combination of a local planner based on artificial potential field method
and a global planner based on ACO is presented in [36]. Here the pherhormon
traces of the ACO is used to prevent local minima in the local planning step.

Several approaches using genetic programming are presented in [30] where
solutions to planning problems for autonomous navigation are encoded as
chromosomes. According to a fitness function the best chromosomes are cho-
sen to create new solutions via cross over and mutation operations.

An early apporach of using single solution based meta-heuristics in the con-
text of local planning is presented in [41]. Here simulated annealing was ap-
plied to avoid the local planner of getting trapped in local minima.

Based on tabu search a sensor based navigation system for mobile robots is
presented in [33]. This local planning method utilizes different memory struc-
tures to avoid cycling back to already visited regions of the map. To escape

www.fira.net
www.fira.net
www.robocup2014.org
www.robocup2014.org
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local minima it provides an escaping mechanism by randomly approaching
unvisited areas.

The method proposed in this work differs from these works by analyzing
and using single solution based meta-heuristics strategies for local path plan-
ning only. In addition to the memory structures of tabu search, another contri-
bution is the use of algorithms based on Iterated Local Search (ILS) and Vari-
able Neighborhood Search (VNS). These single solution based meta-heuristics
are used to increase the efficiency of a local planner which uses trajectory gen-
eration methods like the Dynamic Window Approach (DWA) to find optimal
motor controls for the robot.

1.3 goal of thesis and scientific contribution

The goal of this thesis is to provide an extension to local planning systems
for mobile robots based on trajectory generation and parts of this work were
presented at the Austrian Robotics Workshop 2014 [47]. The proposed method
applies meta-heuristic search strategies to improve the performance of local
planner based on brute force evaluation of a fixed number of trajectories.

This includes the following sub-goals.

compilation of local planning approaches

A detailed overview of local planning and obstacle avoidance methods
has to be compiled.

investigating possible meta heuristic algorithms

Selection and adapting applicable meta-heuristics to make them usable
for trajectory selection.

design of benchmark instances and sample planner

Suitable test instances and a sample planning program which allow to
set the focus of investigating the proposed method on the local planning
task have to be developed.

implementation

The gained data from the benchmark instances and the sample planner
are used to implement meta-heuristic local planning in an existing navi-
gation system for mobile robots.

evaluation

Experiments have to be designed and evaluated to document the perfor-
mance of the meta-heuristic algorithms in comparison to their unaltered
counterparts.
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1.4 outline

This work is structured in the following way. Chapter 2 gives an overview of
important local planning and obstacle avoidance methods.

Chapter 3 represents the main part of this thesis and introduces meta-heuristic
extensions to local planning methods. Starting with an detailed overview of
meta-heuristic algorithms, two application based on ILS and VNS are used for
trajectory selection of a local planner and described in Section 3.4.

A detailed evaluation of these methods is presented in Chapter 4, using a
very simple implementation of a local planner and randomly generated sensor
maps. The gathered data is then used to implement a meta-heuristic trajectory
selection in a high sophisticated planner and tested using simulation software
with a robust physical engine.

Chapter 5 concludes the work of this thesis with a short summary and an
outlook on future research directions.
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L O C A L P L A N N I N G A N D O B S TA C L E AV O I D A N C E

In an environment which is not fully known a priori, the presence of dynamic
obstacles, uncertainties concerning the current localization and sensor reading
of the robot, local planning methods have to ensure the safety of the robotic
vehicle on its way to reach its desired goal configuration.

Taking current sensor readings into account the main task is to safely avoid
obstacles while continuously making progress towards the goal. To achieve
this task local planner have to make very fast decisions to be able to reactively
respond to changes in the environment. These decisions alter the current trav-
eled path by selecting appropriate motion commands for the motor controller.
To avoid getting stuck local planning methods include some degree of global
knowledge of the environment generated by a global planning component,
which is used during the decision process.

The following section describes common approaches of local planning and
obstacle avoidance methods.

2.1 bug algorithms

A straight forward strategy to generate collision free geometric paths is the
family of bug algorithms, inspired by simple path planning strategies from
insects.

Bug1 and Bug2 are the first mentioned algorithms in this family which are
introduced and analyzed in [29]. Both algorithms react to changes in the envi-
ronment by switching between two behaviors to create a path from the start
position to the goal position without hitting an obstacle:

1. goal-approaching: Follow the straight line from the current position to-
ward the goal position.

2. wall-following: Follow the contour of a detected obstacle.

The differences are in the way the algorithms apply those behaviors. Both
algorithms starts approaching the target on a straight line. If Bug1 algorithm
approaches an obstacles it follows the whole contour of the obstacles to deter-
mine the closest point from the contour to the goal position. From this point
the algorithm starts again by applying the goal-approaching behavior. The ap-
proach is visualized in Figure 9.

The Bug2 algorithm tries to immediately change from wall-following to goal-
approaching behavior as soon as it encounters a point on the contour which

13
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Start

Goal

(a)

Figure 9: A path created by Bug1 algorithm.(adapted from [43])

intersects with the straight line connecting starting and goal position, which on
average produces shorter paths than Bug1. Figure 10 shows the Bug2 strategy.

Start

Goal

(a)

Figure 10: A path created by Bug2 algorithm.(adapted from [43])

Many improvements on the original approach are presented in the literature
(eg.TangentBug [7], PointBug [6]).

2.2 vector field histogram (vfh)

Vector Field Histograms [3] simplify the representation of the environment in
a 2 step approach to allow for fast calculation of good directions for holonomic
robots. In a first step a small local two-dimensional Cartesian histogram grid is
created. Each cell of the grid is incremented if an obstacle is reported from the
sensors of the robot. Cells with higher values indicate a higher probability of
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an obstacle at this location, which account for the uncertainty of the sensor
readings.

In a second step the grid is further reduced into a polar histogram with an-
gles at the x-axis which indicate an obstacle. The angles are divided into a
discrete set of sectors and each sector obtains an obstacle density value based
on the values from the histogram grid. A threshold value is used to identify
valleys in the polar histogram which are used to find gaps large enough for the
robot. The identified valleys are then evaluated using a cost function. Figure
11 shows an example of the histogram grid, and figure 12 the corresponding
polar histogram.

(a) Histogram grid

Figure 11: This figure shows a histogram grid with three obstacles A,B and C. Darker
cells indicate a higher probability of obstacles. From this information a one dimen-
sional polar histogram is derived for further processing. (taken from [3])

Improvements of this method can be found in the VFH+ [50] and VFH∗ [51]
method. Here the second step yields an even simpler binary polar histogram,
where 1 indicate a blocked and 0 a free sector. In addition some of the kine-
matics and dynamics are taken into account and the purely local approach is
enhanced by adding information of a global path planning component using
A∗ algorithm.
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(a) Polar histogram

Figure 12: This figure shows the corresponding polar grid from the histogram grid in
Figure 11. Large enough gaps in the polar grid are used to find the optimal steering
directions for the robot.(taken from [3]). The horizontal axis shows the direction an-
gles and the values of the vertical axis indicate the probability of an obstacle in the
corresponding direction.

2.3 nearness diagrams (nd)

Another approach that makes use of graphic representation as a diagram is the
Nearness Diagram method presented in [37] and its refinement in ND+ [39].
The surrounding of the holonomic robot, approximated as a circle, is divided
into a set of different sectors similar to the VFH method.

Sensor information about obstacles is used online to generate two different
kind of diagrams. The PND represents the nearness to obstacles to the center
point of the robot, and the RND the nearness to obstacles to the robots bound-
ary. These diagrams are used to categorize different regions in the surrounding
of the robot. RND is used to guarantee safety constraints for the robot, while
PND is used to identify valleys which are used for further evaluation. The re-
gion which is closest to the goal and reachable by the robot is selected as the
Free walking area. Figure 13 shows identified regions and the corresponding
diagrams.

The best actual steering direction is evaluated using a binary decision tree
representing a set of predefined situation and action pairs. The values of RND
and PND are applied as input and are processed by the branching rules of the
tree.

Improvements to this mehthod are the Generald Nearness Diagrams (GND)
method presented in [38] which adds global information to the evaluation
process. The Smooth Nearness Diagrams (SND) introduced in [9] improves
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(a) Regions in the surrounding of the robot.

(b) PND diagram (c) RND diagram

Figure 13: Figure (a) shows identified regions using the PND diagram in (b) and RND
diagram in (c).(taken from [37])
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on the ND+ method by providing a unique motion law for all situations and
incorporating all visible obstacles surrounding the robot, creating smoother
paths for the robot.

2.4 curvature velocity method (cvm)

The Curvature Velocity Method in [46] describes an obstacle avoidance method
which considers kinematic and dynamic constraints of the robot and the en-
vironment. These constraints are added to a velocity space which consists of
translational velocity v and rotational velocity w. One basic assumption of this
approach is that the robot can only travel along circles with curvature c = w/v.
This approximation neglects acceleration issues and restricts the robot motions
to constant velocities over a given time horizon.

Another simplification is the representation of obstacles as circles, which
is used for fast transformation of the obstacles into the velocity space. All
curvatures which do not hit obstacles and adhere to the kinematic constraints
of the robot are then evaluated using a cost function. Since approximation
techniques like simulated annealing to maximize the cost function using the
whole velocity space did not succeed, the velocity space is divided into finite
sets of curvature intervals. The objective function is then evaluated over all
curvature intervals.

A problem of this method arises when confronted with narrow passages
which are perpendicular to the robots heading, which might lead to missing
shorter paths. This problem is solved by the Lane Curvature Method [25], by
dividing the workspace into finite number of lanes. The best angular velocity
for changing lanes is evaluated using the CVM method.

2.5 dynamic window approach (dwa)

A well known method for local planning is the Dynamic Window Approach
proposed in [13]. The method samples the velocity space (v,w) of the robot,
where again v is the linear velocity and w the angular velocity of the robot, to
create a set of feasible trajectories. The space is reduced to a dynamic window
which contains the reachable minimal and maximal velocity in one control
cycle, taken the acceleration limits of the robot into account.

Obstacles are transformed into the velocity space using a distance function.
Figure 14 shows the obstacles in velocity space and the corresponding dynamic
window.

For a fixed amount of velocity samples the corresponding trajectories are
created using a predefined granularity by performing forward simulation for
a short period of time, starting at the current position and speed of the robot.
The trajectories which stop safely before an obstacles are called feasible. Evalu-
ating all feasible trajectories with respect to a weighted cost function (cf. Equa-
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acutal velocity

dynamic window Vd

Vr

Vs 90cm/sec

−90deg/sec 90deg/sec

Figure 14: This Figure shows a dynamic window Vd of a robot together with obstacles
transformed in a velocity space Vs. Only the velocities within the small area around
the current robots speed Vr are used for evaluating trajectories by a cost function. The
best velocities are forwarded to the robots motor controller. (reproduced from [13])

tion 1) identifies the best velocity tuple, which is then forwarded to the motor
controller.

fc(v,w) = αfa(v,w) +βfd(v,w) + γfv(v,w) (1)

The function fa(v,w) judges the angle between the robots heading and a
given goal position. It is maximal if the heading is a straight line to the goal.
The distance to the closest obstacle is calculated in the function fd(v,w). The
function fv(v,w) takes the forward velocity into account and rewards faster
movements of the robot.

In this method the obstacles are not approximated by circles, instead small
lines are used to account for a more accurate representation of obstacles. The
robot is still approximated as a circle. The original method does not use a
global plan to guide the robot, so without further changes it is subject to get
captured in local minima.

The close relationship of the DWA to Model Predictive Control (MPC) has
been shown in [40]. In this paper the DWA is reformulated as a problem of
MPC which together with a navigation function has the proven property to
converge to a global optimal solution.



20 local planning and obstacle avoidance

Other applications of this approach in recent planning systems adapt the
corresponding cost function. The excellent move_base1 motion planning frame-
work introduced in [32] implements within the navigation stack of Robot Op-
erating System (ROS) a local planner which uses a global plan as a guide, and
uses a polygon to model the robot outline.

One implementation is based on DWA. There is also the option to use Tra-
jectory rollout [16] as a local planner which is very related to the DWA, but in
contrast improves in simulating the robots trajectory by accurately applying ac-
celeration limits over the whole simulation time. The cost function maximizes
characteristics like proximity to obstacles, proximity to the goal, proximity to
the global path, and speed. Furthermore a number of escaping strategies try
to avoid the vulnerability to local minima.

Collision detection and cost calculation is performed by using the footprint
of the robot following the calculated trajectory. Hence the discretized footprint,
which is usually given as a simple polygon, is projected on the costmap. Bre-
senham’s Line algorithm [4] is used for ray-tracing the contour of a robot in
the discrete workspace. Figure 15a shows the global view of the planning task.
In Figure 15b the corresponding local view is depicted, including all sampled
trajectories which are evaluated using a local costmap.

Concerning the optimization of the used cost functions the most common
approach for DWA and related local planner is to evaluate all possible trajec-
tories in a reduced discrete velocity space. Examples of this approach can be
found in [24][32][45].

The proposed method extends the DWA approach, by using approximation
algorithm to maximize the cost function in a discrete representation of the
velocity space.

1 move_base planning framework: http://wiki.ros.org/move_base

http://wiki.ros.org/move_base
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obstacle

global path

local map
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(a) Path planning in global costmap.(taken from [47])
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collision

trajectories (v,w)
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(b) Trajectory generation for linear, and angular velocities (v,w) in local
costmap guided by global path.(taken from [47])

Figure 15
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3
M E TA H E U R I S T I C L O C A L P L A N N I N G

This thesis proposes an approach to enhance certain types of local planning
systems. Examples of such local planners are the aforementioned Dynamic
Window Approach and Trajectory Roll-out planner, which were introduced in
Section 2.5.

The idea is to apply well established meta-heuristic search algorithms to find
good trajectories given a sample of different applicable velocities, a robotic mo-
tion model and a given time period for simulation. This work introduces tra-
jectory selection extensions using a combination of meta-heuristic algorithms.

• ILS-Tabu: Based on Iterated Local Search and the use of a simple mem-
ory

• VNSB-Tabu: Based on Variable Neighborhood Search and the use of a
simple memory and Best Improvement heuristic.

• VNSF-Tabu: Based on Variable Neighborhood Search and the use of a
simple memory and First Improvement heuristic.

The proposed methods are tested and refined and implemented into a robotic
navigation system which already supports implementations of a local planner
based on Dynamic Window Approach and Trajectory Roll-out.

• VNS-ROL: Refined VNSB-Tabu with short term memory for Rollout
planner

• VNS-DWA: Refined VNSB-Tabu with short term memory for DWA plan-
ner

The next section provides background information of meta-heuristic search.
Following well known classifications of meta-heuristics (see [2], [1] ) an intro-
duction of single solution based meta heuristics is given, which are the main
source for the proposed approach.

This chapter is then concluded by a detailed description about how meta-
heuristics are used to extend local planners in the trajectory selection pro-
cess. Furthermore all relevant information concerning the local planners is
provided.

3.1 meta-heuristic search

The family of meta-heuristic algorithms is known to be successful in solving
optimization problems, and are heavily used to solve hard problems whether

25
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they are discrete (Combinatorial Problems: e.g. Traveling Salesman Problem
(TSP), MAX-Sat problem, Nurse Rostering problems (NRP), Classical Vehicle
Routing Problem (CVRP),...), or real-valued (Continuous Optimization Prob-
lems: e.g. Pooling problem, Continues Min-Max problem,...).

In general an optimization problem and its solutions can be defined as fol-
lows [2]:

Definition 1. An optimization problem P = (S, fc) can be defined by:
- a set of variables X = {x1, . . . , xn};
- a set of domains, defining the values the variables can take D1, . . . ,Dn;
- possible constraints on the variables
- a cost function (or more general an objective function) fc which has to be mini-
mized, where fc : D1×· · ·×Dn → R+; (which is the same as maximizing −fc)

The set of all possible assignments S = {s = {(x1, v1), . . . , (xn, vn)} | vi ∈ Di}

to the variables in X is called the search or solution space. A continues opti-
mization problem is given if S = Rn, otherwise if S is finite but large set a
combinatorial optimization problem is given [21].

Solutions which fulfill all constraints are called feasible solutions, solutions
violating constraints are called infeasible. It is not necessary to allow only feasi-
ble solutions in the search space, as accepting infeasible solutions during the
search process can improve the overall solution quality and performance of
the algorithm.

The solution s∗ ∈ S of an optimization problem with minimum cost is called
a global optimal solution.

Definition 2. A global minimal solution is a solution s∗ ∈ S such that fc(s∗) 6
fc(s)∀s ∈ S [2].

Since there might be more than one optimal solution S∗ ⊆ S is the set of
globally optimal solutions.

Due to large solution space, or hard run time constraints finding an exact
global optimal solution is not always feasible. Instead a good approximate so-
lution, with the help of an heuristic is used and optimality is traded off with
good performance.

One basic heuristic approximation method is local search. Given an initial
solution local search tries to iteratively replace this solution with a better one
in a defined neighborhood of the current solution.

Definition 3. A neighborhood structure is a function N : S → 2S that assigns
to every s ∈ S a set of neighbors N(s) ⊆ S. N(s) is called the neighborhood of
s [2].

Defining the neighborhood function has an important influence on the good
performance of many meta-heuristic algorithms. A neighborhood may be in-
duced from metric functions introduced into S given some notion of nearness
within a given starting point.
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The steps from one local solution to another local solution within a neigh-
borhood is called a move. Neighborhoods can also be induced by the set of
applicable moves given a current solution [14].

Minimal solutions within a given neighborhood structure are defined as local
minimal solutions.

Definition 4. A local minimal solution w.r.t. a neighborhood structure N is a
solution ŝ such that ∀sn ∈ N(ŝ) : fc(ŝ) 6 f(sn) [2].

A visualization of the concepts of local vs. global minimal solutions is visu-
alized in Figure 16.
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Figure 16: This figures shows different kind of solutions to an optimization problem.
The solutions â and b̂ are local minimal solutions in the neighborhood N1(a) and
N2(b) respectively, whereas the global minimal solution is s∗.

The main idea of meta-heuristic algorithms is to combine heuristic methods
with higher level strategic components to guide the search in an effective and
economic manner. The name was introduced by Fred Glover who described his
tabu search approach “as a meta-heuristic superimposed on another heuristic
“[17].

How successful a meta-heuristic performs depends largely at how good it is
to balance two important objectives during a search:

intensification

The search focuses on regions with high quality solutions, which are
identified using knowledge gained during the search process.



28 meta heuristic local planning

diversification

The search escapes a local minimal solution and visits unexplored re-
gions of the search space.

3.2 single solution based meta-heuristics

As the name suggests these meta-heuristic approaches operate on improving
a single solution during the search. Starting from an initial solution the search
describes a single trajectory in the search space, when moving from one solu-
tion to another. Usually these methods incorporate local search as a compo-
nent, and additional strategies to escape from local minimal solution.

3.2.1 Local Search

The simple local search (LS) (cf. Algorithm 1) finds a local optimum according
to a cost function fc(x) in a region around an initial solution in the solution
space, defined by a neighborhood structure N(x).

Algorithm 1 Local Search (LS)

1: x← initial solution
2: repeat
3: x← Select(x)
4: until no improvement

Starting from an initial solution it iteratively selects elements from the neigh-
borhood which improve the current solution. The search stops at a local mini-
mal solution if there are no improving solutions which can be selected.

A frequently used selection functions is Best Improvement(or steepest descent)
(cf. Algorithm 2), which exhaustively looks at each neighbor to select the best
solution.

Algorithm 2 Best Improvement

1: function BestImprovement(x)
2: i← 0

3: repeat
4: i← i+ 1

5: xi ∈ N(x), retrieve the i-th neighbor
6: if cost(xi) < cost(x) then
7: x← xi
8: end if
9: until i = |N(x)|

10: return x
11: end function
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Another popular selection function is First Improvement (or first descent) (cf.
Algorithm 3), which looks at the neighbors in a specific order and returns as
soon as a better neighbor is found.

Algorithm 3 First Improvement

1: function FirstImprovement(x)
2: i← 0

3: repeat
4: i← i+ 1

5: xi ∈ N(x), retrieve the i-th neighbor
6: until i = |N(x)| or cost(xi) < cost(x)
7: return argmin(cost(xi) , cost(x))
8: end function

For selecting the next suitable neighbor it is also possible to choose a neigh-
bor at random, or choose the best neighbor among a random sample taken
from the current neighborhood. These strategies could be used if the number
of neighbors is very large, or their evaluation is computational expensive.

3.2.2 Tabu Search

An often successful meta-heuristic strategy is Tabu Search [17], which uses
memory structures called tabu lists to guide the search process.

The memory keeps track of complete solutions (explicit memory), moves,
partial solutions, or other solution attributes (attributive memory), which are
used to prohibit moves during the exploration of the search space for a given
amount of time - they are tabu1. In Algorithm 4 the basic form of this approach
is presented.

Algorithm 4 Tabu Search

1: Tabulist← 0

2: x← initial solution
3: repeat
4: X′ ← Neighborhood(x) 6∈ Tabulist
5: x′ ← best solution in X′

6: Tabulist = Tabulist∪ {x′}
7: x← x′

8: if x is overall best solution then
9: store x as best solution

10: end if
11: until stopping criteria satisfied

1 The word tabu (or taboo) stems from an Polynesian language and indicates things which may
not be touched [18]
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The main usage of tabu lists is to prevent cycling back to recent solutions,
and prevents from searching the same region of the search space over and over
again. This short term memory approach contributes to the diversification of the
search, since the neighborhood of solutions is changed dynamically according
to their tabu status.

Usable other types of memory structures are the following (presented in
[18]):

recency-based memory

Recording when an attribute or solution was used in the search process.

frequency-based memory

Recording how often an attribute or solution was used during the search
process.

quality-based memory

Recording attributes or solutions which lead to, or are common to good
solutions.

influence-based memory

Recording information of attributes or solution considering the impact
of solution quality and structure.

According to the short term memory analogy of the human memory, tabu lists
can be furthermore classified in intermediate term memory, and long term memory
strategies [14].

short term memory

Used for diversification of the search. Keep track of a small amount of
recent moves, thus avoid cycling back to recent solutions.

intermediate term memory

Used for intensification of the search. For example use a recency-based
memory, which records good solution and restart the search from these
elite solutions.

long term memory

Used for diversification of the search. For example implementing a fre-
quency based memory recording the total number of iterations in which
solutions or their components have been used in the current solution.
Restart the search using solutions which have a lower number of itera-
tions.

An important role in controlling the diversification of the search is the length
of tabu lists (tabu tenure). As a general rule the longer the tabu list the higher
the diversification effect, since preventing a larger number of candidate solu-
tions in a neighborhood drastically changes the solution landscape [2].
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Restricting the tabu lists length is usually achieved by implementing it as
cyclic lists, and deleting e.g. the oldest item as soon as a new item becomes
tabu. The tabu tenure can both be fixed or may be changed during the search.

To avoid the tabu lists being too restrictive, and possibly loose good solu-
tions, the tabu status of solutions may also be overridden using an aspiration
criteria. One example of such an criteria is to always allow solutions which are
overall best, even if they are tagged as tabu.

A big advantage of this method is, that it can be easily combined with other
meta-heuristic algorithms.

3.2.3 Iterated Local Search

Iterated Local Search provides a highly general scheme for search space explo-
ration. It emphasizes the idea of treating the local search procedure as a black
box, which in the ideal case incorporates all problem specific knowledge. A
detailed description of Iterative Local Search including the basic algorithm (cf.
Algorithm 5) can be found in [28].

Starting from an initial solution, the algorithm iteratively calls the embedded
local search procedure. In each iteration the current solution might be perturbed
by changing parts of the solution. The following local search takes this altered
solution as a new starting point and if it satisfies an acceptance criterion the
search restarts with perturbating this new solution.

The basic steps of ILS are visualized in Figure 17
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Figure 17: Perturbation of a local minimal solution ŝ, leads to an intermediate solution
s′. A local search is applied and a new local minimal solution ŝ′ is found. (reproduced
from [2])
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The strength of the perturbation is defined as the number of changed solution
components. If the perturbation strength is large, the diversification effect is
large and the procedure is similar to a random restart method. On the other
hand if the strength is small, perturbation favors the intensification of the search.
The strength may be fixed but may also be adapted during the search [28].

The acceptance criterion is the other mechanism in ILS which controls the in-
terplay between diversification and intensification of the search. On one extreme
accepting only better solution favors intensification, on the other extreme ac-
cepting all solutions without regards to its costs has a high diversification
effect. Every intermediate mechanism and incorporating adaptive strategies
may be used in designing acceptance tests.

Another important component is the use of short or long term memory
concepts, which may be included in form of a history of the search. The history
is used to steer the perturbation step and the acceptance test (compare to Tabu
Search memory structures in Section 3.2.2). As a simple example the history
counts the iterations and restarts the algorithm after reaching a specific amount
of iteration.

Algorithm 5 Iterative Local Search (ILS)

1: x0 ← initial solution
2: x∗ ← LocalSearch(x0)
3: repeat
4: x′ ← Perturbation(x∗,history)
5: x∗′ ← LocalSearch(x′)
6: x∗ ← AcceptanceCriterion(x∗,x∗′,history)
7: until stopping criteria satisfied

3.2.4 Variable Neighborhood Search

Instead of using a fixed neighborhood, the Basic Variable Neighborhood Search
(cf. Algorithm 6) as presented in [21] uses a neighborhood structure of possi-
bly nested neighborhoods (cf. Equation 2), which together are guaranteed to
explore the whole solution space.

Nk(x) = N0(x),N1(x), . . . ,Nkmax
(x) (2)

A specific neighborhood structure determines the topology of the search space
within this neighborhood, or in other words a neighborhood specific landscape
[2].

Different neighborhood structures yield different landscapes. Furthermore
a local minimal solution within one landscape, does not have to be a local
minimal solution in another, and a search procedure will find a better local
minimal solution (see Figure 18).
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Figure 18: This figures shows two different landscape from different neighborhood
structures. On the left image the local search stops at the local minimal solution ŝ1.
On the right the local search can proceed to a better local minimum ŝ2. (reproduced
from [2])

In the shaking phase the algorithm chooses a random solution of the current
neighborhood to avoid getting captured in a local minima.

If the solution found by local search does not improve the next neighborhood
will be considered (cf. Algorithm 7). The selection of this neighborhood might
be deterministic, but also other schemes are possible. For example one could
randomly choose the next neighborhood, or use additional parameter to adjust
the step sizes for the neighborhood change dynamically.

Variants of this basic scheme are obtained by removing the random shaking
phase, which results in deterministic descent method called Variable neighbor-
hood descent (VND). Omitting the local search step results in the Reduced VNS
(RVNS) method, which is a purely stochastic method.

Algorithm 6 Variable Neighborhood Search (VNS)

1: function VNS(x,kmax)
2: repeat
3: k← 1

4: repeat
5: x′ ← Shake(x,k)
6: x′′ ← LocalSearch(x′)
7: NeighborhoodChange(x, x′′,k)
8: until k = kmax

9: until stopping criteria satisfied
10: end function
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Algorithm 7 Neighborhood Change

1: function NeighborhoodChange(x, x′,k)
2: if cost(x′) < cost(x) then
3: x← x′

4: k← 1

5: else
6: k← k+ 1

7: end if
8: end function

3.2.5 Guided Local Search

Changing the neighborhood of solutions, as in the aforementioned algorithms
like ILS and VNS, is not the only mechanism to escape local minimal solu-
tions. A very different approach in guiding the search for optimal solutions
is Guided Local Search (GLS), and was introduced by Tsang and Voudouris
[49][52].

In this approach diversification is achieved by changing the cost function
itself. The neighborhood structure stays fixed. For intensification a local search
method is performed in each iteration. In Figure 19 the gradually change of
the cost function which may lead to new local minimal solutions is visualized.
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Figure 19: Escaping a local minimal solution by gradually increasing the cost function.
(reproduced from [2])

Altering the cost function is based on penalizing the presence of solution
features which are distinguishing properties of different solutions. The effect
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of the penalty parameters on the cost function is in addition balanced via a
regularization parameter.

3.2.6 Simulated Annealing

Simulated Annealing (SA), which is one of the first algorithms considered
a meta-heuristic, concludes this presentation of single solution based meta-
heuristics.

It was introduced in [23], and provides an explicit diversification mechanism
to avoid getting trapped in local minimal solutions. This is achieved by allow-
ing moves to worse solutions during a local search with a certain probability
(metropolis criterion, see 3).

P(accept(x′)) = exp (
−|fc(x

′) − fc(x)|

T
) (3)

The interplay between intensification and diversification is controlled by the tem-
perature parameter T . A high temperature yields a high probability for moving
to the new solution. On the other hand a low temperature makes it less proba-
ble to leave the current neighborhood.

Decreasing the temperature during the search is called annealing, referring to
the intuition of physical annealing processes, which sets materials in a stable
(optimal) state by reducing their temperature.

Beside this basic form of a cooling schedule oscillating schemes can be imple-
mented (reheating) which cycle between intensifiction and diversification phases.

3.3 summary

The presented meta-heuristics provide a powerful tool for general purpose op-
timization. This work restricts the collection of investigated algorithms which
operate on a single solution. In contrast to the aforementioned methods, pop-
ulation based meta-heuristics operate on a set of solutions. Instead of a single
trajectory, the search process describes “the evolution of a set of points in
the search space “[2]. Examples of such algorithms include methods based on
Evolutionary Computation, Ant Colony Optimization, and Artificial Immune
Systems. For an in depth presentation of current meta-heuristic methods see
[15].

The next section covers the approach to apply meta-heuristic search in the
context of local planning.
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3.4 trajectory selection using meta-heuristics

One basic step in creating a good local planner for mobile robots is the afore-
mentioned trajectory selection. Especially forward movements are of particular
interest, since their evaluation and collision tests are costly operations. Only
if forward movement does not yield valid movements, other strategies have
to be applied, which provide escaping mechanisms, like turning around for
relocation, or slow random backward movements to help the robot evade situ-
ations where it gets stuck. The use of escaping mechanisms should be limited,
since they are only relevant if the usual planning step fails.

In this thesis the focus lies on improving the trajectory selection of local
planners using meta-heuristic algorithm.

Instead of following an exhaustive generate and test procedure on all veloc-
ity samples, meta-heuristic algorithms are used to increase the search perfor-
mance.

Increasing the performance of the local planner has an important impact
on the resulting path and behavior of the robot. It allows for increasing the
following properties of local planner:

reactivity

Clearly one benefit of decreasing the time the local planning steps take is
its increased reactivity. The faster and hence more often the local planner
can be invoked to adapt to recent sensory information.

resolution

The performance gain can be used to increase the resolution of cost-maps
and collision test of the robot.

simulation-time

Performing longer simulation periods results often in smoother paths
since the robot can react early to possible obstructions. In addition it
might also find shortcuts at an earlier stage, which results in a shorter
path.

trajectory-number

Another very important quality benefit is the number of trajectory sam-
ples the local planner can use for making a decision. A higher number of
trajectories increases the granularity of the cost function it optimizes. In
the end this yields a smoother and more effective path (see Figure 20).

The choice of using single solution based meta-heuristics (see Section 3.2)
was driven by the properties these algorithms provide. They are general applica-
ble to optimization problems, since no domain specific knowledge is necessary,
or can easily be captured using only the local search procedure. Furthermore
they are easy to implement and incorporated into existing software solutions.
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150 trajectories

3500 trajectories

Figure 20: Comparison of two paths generated using different amounts of trajectories.
The dotted path was generated with 150, and the other one with 3500 trajectories. The
higher amount of sampled trajectories results in a smoother and more effective path.
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Looking at the high number of parameters used for configuring current naviga-
tion systems the configuration process is very tedious. Hence introducing lots of
new parameters does not make it easier to find suitable configurations. Meta-
heuristics are well suited for this task because they use only few parameters
to achieve good performance.

In order to use meta-heuristics the local planning problem has to be formu-
lated according to the definitions given in Section 3.1.

Since this work deals with the navigation of non-holonomic robots moving
on a 2D-plane workspace, the input variables are all tuples of forward and
angular velocities (v,w) the robot is capable. The domain of the variables is a
discrete set of the real valued search space induced by using a fixed stepping
size and selecting a specific amount of trajectories.

Forward and angular velocities (v,w) are furthermore constrained within
given limits vmin 6 v 6 vmax and wmin 6 w 6 wmax.

The optimization problem is given as a function over the control inputs (ve-
locity tuples) for the motor controller. The costs are calculated using a simula-
tion of the robot with the given input velocity tuple and projecting the outline
of the robot onto a cost-map.

A generated cost-map together with a visualization of consecutive local path
planning steps in a simulation is shown in Figure 21.

Solutions which do not exceed a given cost threshold are feasible and free
of collision. On the other hand solutions which reach a given maximum cost
value indicating a collision with an object are considered infeasible.

The neighborhood of a solution is simply defined by making a number of dis-
cretization steps to reachable regions from the current solution velocity tuple.
The 4-neighborhood makes a step by either increasing or decreasing the cur-
rent linear and angular velocity by one discretization step (Manhattan distance
= 1). The 8-neighborhood takes in addition also the diagonal neighbors into
account which are reachable in one discretization step (Moore neighborhood).
16-neighborhood are all neighbors reachable in two steps. This process contin-
ues until the whole search space is the neighborhood. Figure 22 visualizes the
neighborhood structure.

Using Local Search (see Section 3.2.1) the neighborhood is either exhaustively
searched for the best solution using Best-Improvement heuristic or stopped
after finding the first improving solution using First-Improvement heuristic.

The following list includes the meta-heuristic algorithms used for the pro-
posed approach.

tabu list

The memory structures (see Section 4) used in the proposed algorithms are
very simple. Since the run-time requirements are very demanding, long
term strategies are less suited to provide good results.
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start-position

end-position

goal

best trajectory

invalid trajectory

drivable trajectory

iteration 2

iteration 1

cell distance to obstacle

0 < γ5 10

Figure 21: This figure shows three applications of the local planning step in a sim-
ulated experiment. The greyscale background image visualizes obstacle costs of a
generated cost-map. The green trajectories are drive-able, whereas red trajectories col-
lide with obstacles. At each local planning step all possible trajectories are weighted
with respect to their distance to obstacles and their progression towards the goal des-
tination. For example in the second step a valid trajectory which comes closer to the
goal is rejected, while a shorter trajectory which stays farther away from obstacles is
selected for execution. After performing three local planning applications the robot
safely reaches the goal destination.(taken from [47])



40 meta heuristic local planning
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Figure 22: Neighborhood structure in the 2-dim velocity space.

The first strategy keeps all visited states during the search as tabu. They
will not be considered as valid solution in future steps of the search
process.

A slightly more sophisticated strategy is used in the extension of existing
planner. Here two types of tabu lists are present.

1. long term memory: Keeps all infeasible velocity tuples which lead to
collision. The are never considered again in future searches. This is
possible since the solution space is not too large.

2. short term memory: Classical tabu list, with parametrized tabu tenure
which keeps the most recently visited feasible velocity tuples.

The idea of avoiding the neighborhood of infeasible solutions and allow-
ing to return to good feasible solutions during search was inspired by the
grid like representation of the search space, which resembles the famous
guessing game Battleship.

The goal of the game is to try to hit all of the opponent ships, which
can be viewed as the dual problem to obstacle avoidance. If a player
hits a ship during the game, a good strategy is to try out the immediate
neighbors until the ship is destroyed. In obstacle avoidance the opposite
may be more efficient. If an obstacle is encountered, avoid its immediate
neighbors.

The tabu list is used by the other meta-heuristic algorithms during the
Local Search.
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iterated local search (ils)
The main structure of this algorithm was already shown in Section 5.
The algorithm searches iteratively a fixed neighborhood (eg. 4-, or 8-
connected neighborhood) with Best Improvement heuristic for the Local
Search.

Since the solution vector is only 2-dimensional, there is no need for com-
plicated perturbation schemes. It is possible to either randomly generate
a new linear velocity, a new angular velocity or both.

Using the history capability of ILS it is possible to apply the perturbation
step after a fixed amount of iterations. Furthermore one can parametrize
the algorithm to restart if the neighborhood is empty due to invalid
neighbors or the application of the tabu list.

variable neighborhood search (vns)
For the VNS algorithm local search is performed in one neighborhood
until no improvement occurs. The used algorithm follows the scheme
shown in Section 18.

The algorithm starts with either a random initial solution, or with the
best solution found in the previous local planning step. In the shaking
phase a new random solution in the current neighborhood is selected.
If shaking does not yield a solution, because the whole neighborhood is
tabu, or does not include a collision free trajectory, the next neighborhood
is chosen.

An ordering of neighborhoods according to their size yields the neigh-
borhood structures:

• N0(x) = 4-connected

• N1(x) = 8-connected

• . . .

• Nk(x) = k-steps reachable neighborhood.

The different neighborhoods are nested which yield the following struc-
ture of neighborhoods:

N0 ⊆ N1 ⊆ · · · ⊆ Nk

In theory the union of all neighborhood is larger or equal the whole solu-
tion space of velocity tuples. Unfortunately large neighborhoods are very
costly to evaluate. Therefore the neighborhood structure can be bounded
above by a parameter kmax. If no improvement is made up to the Nkmax

neighborhood, a new initial solution is generated at random and the
search starts up again.

Like the aforementioned ILS algorithm the VNS algorithm can use the
same memory structures during the search.
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The VNS algorithm can be used with Best-, or First-Improvement heuris-
tic for the Local Search.



4
E VA L U AT I O N

To evaluate the proposed method two classes of experiments are carried out.
In a first step an example planner is implemented which mimics the local plan-
ning step and provides an easy way to test the trajectory evaluation separated
from the rest of a conventional planning system.

With the gained data the algorithms are improved and used to extend exist-
ing local planner. A fully simulated environment and robotic model using a
sophisticated physic engine together with a complete robot navigation system
is used to compare the original implementation of the local planner with the
meta-heuristic approach.

4.1 experiments with sample planner

The trajectory sampling and selection of a common DWA approach are imple-
mented in python minimizing a simpler cost function fc(v,w) (cf. Equation 4),
where fg(v,w) is the distance of the center of the robot in the end position to
a predefined goal position, and fo(v,w) is the maximal distance to an obstacle
on the trajectory path.

fc(v,w) = αfg(v,w) −βfo(v,w) (4)

To select a benchmark cost a brute force search is performed on random
generated test instances, evaluating a fixed number of trajectories. The time
the algorithm needs to find this benchmark solution is used to compare their
performance.

All algorithm are tested using different minimal, and maximal velocities to
account for different acceleration limits.

The weighting coefficients of the cost function are fixed in our case to α =

0.01 and β = 1. The local goal is also at a fixed location in the map. The step
size of the collision test is fixed to 0.015 meter. Forward simulation time is
fixed to one second.

The following 60 test instances include different obstacle counts and random
placement of quadratic obstacles:

• 15 instances with 1 obstacle and side length 1 meter.

• 15 instances with 3 obstacles and side length 1 meter.

• 15 instances with 5 obstacles and side length 0.5 meter.

43
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• 15 instances with 25 obstacles and side length 0.1 meter.

The instances simulate a snapshot of the local environment of the robot at a
given time point, which is used as a local map for input of the local planner.
The resolution of the maps is fixed to 0.05 meter/pixel, resulting in a quadratic
map of size 7.5 meter. Figure 23 illustrates random instances with differ in size
and number of obstacles.

The following list shows the tested algorithm:

• Random Search with Tabu List: A repeated random guess of a velocity
tuple (v,w) (Random).

• Iterated Local Search: Performing Iterated Local Search with 4, 8 ,and 16

neighbors and Tabu List (ILS4, ILS8, ILS16).

• Variable Neighborhood Search: Variable Neighborhood search with Best-
,and First-Improvement heuristic, and Tabu List (VNSB, VNSF).

4.2 experiments extending existing local planner

To extend an existing local planner the navigation system implemented in
the ROS framework is used, which provides a variety of different planning
methods. The planning system chosen for testing comes ready to use in the
implementation of the navigation stack of the ROS framework, which was in-
troduced and implemented by Marder-Eppstein (see [32]). The local planning
system consists of two planners based on DWA implementation and Trajectory
Roll-out (see Section 2.5).

To simulate the environment and the robot the simulation framework Gazebo
is used, which provides a robust physical engine and is one of the most popu-
lar simulation engines in the field of mobile robotics.

In Figure 24 the 3D-model, which is a simple artificial building with four
corridors, used for the simulation together with a snapshot of the planning
information is depicted.

In Figure 25 the second 3D-model used for testing is shown. Based on a real
map this office environment includes more difficult planning situations, like
small doorways and corridors.

To compare the meta-heuristic approach with the unaltered versions of the
ROS-planners, a simulated robot has to fulfill a simple navigation task within
the provided environments. A route is provided by marker points which have
to be approached one by one until a round trip is completed. To account for the
probability aspect of the meta-heuristic implementations several round trips
have to be accomplished until the experiments stops.

At each call of the local planner first the original brute force evaluation of
the trajectories is conducted and the best score together with the time needed
to find the best trajectory is recorded. Immediately after a solution is found,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 23: Figures (a)-(l) show randomly generated local obstacle maps. The instances
differ in number and size of obstacles and are used for local costmap creation. Up to
60 instances are used to evaluate the proposed method.
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(a)

(b)

Figure 24: Figure (a) shows the 3D model of an artificial building used for the exper-
iments with the simulation software Gazebo. Figure (b) depicts planning information
used during the experiments.
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(a)

(b)

Figure 25: Figure (a) shows the 3D model of an office environment used for the exper-
iments with the simulation software Gazebo. Figure (b) depicts planning information
used during the experiments.
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the VNS search algorithm searches for the same exact best score. Again the per-
formance time until completion of the algorithm is recorded. The performance
time of the original and the altered version of the local planner are used for
comparing the different algorithms.

The following list shows the tested algorithm:

• VNS-ROL: This implementation uses Variable Neighborhood Search with
Best Improvement together with the Trajectory Roll-out planner.

• VNS-DWA: This implementation uses Variable Neighborhood Search
with Best Improvement together with the Dynamic Window Approach
planner.

4.3 results

All experiments account for the randomness of the proposed methods by run-
ning the algorithm multiple times.

The results are graphically visualized using box plots. The colored box is
bounded by the lower quartile and the upper quartile of the data (25% and
75% of the data). The median is indicated by a straight line through the box.
The upper whisker extending at one end of the box indicate the last data point
which lies below the 75% quartile plus 1.5 times the inter quartile range (IQR).
The lower whisker on the other end indicates the last data point which lies
above the 25% quartile minus 1.5 times the IQR. Points outside of the whisker
range are considered outliers. As a rule of thumb if the boxes between two
measured data sets do not overlap, the difference between those data sets is
significant.

Figure 26 shows a commmon boxplot.

4.3.1 Sample planner

In this set of experiments the algorithms were tested using the sample planner
and the artificial sensor map instances. These tests were performed on a 2.4
GHz, Intel Core 2 Duo processor using 4 GB RAM.

4.3.1.1 Influence of trajectory size

The algorithms were applied to all 60 instances to evaluate a broad spectrum of
possible environments. The main reason conducting this experiment is to get
a first impression on the usefulness of applying meta-heuristics in the context
of local planning. Figure 27 illustrates the results using 240 trajectories, and
using 2400 trajectory samples.

The results show that all algorithms, including RST, outperform the Brute
Force generate and test method significantly. As expected increasing the num-
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Figure 26: A classical boxplot diagram.

ber of trajectories greatly favors the meta-heuristic algorithms, since they ben-
efit from larger search spaces.

Notice that ILS and VNS algorithms differ apparently from the RST by ex-
hibiting much smaller variance in their test results, indicating that randomiza-
tion alone is not enough to achieve very good and stable performance. Further-
more the VNS exhibit a more stable performance than the ILS methods. Com-
paring the ILS algorithms reveals the connection of the search space size to the
size of the neighborhood. A small number of trajectories benefits smaller sized
neighborhoods, whereas increasing the number of trajectories benefits larger
neighborhoods.

4.3.1.2 Influence of trajectory size by specific instances

The following tests include the VNSF, VNSB and only one ILS4 algorithm for
comparison. The algorithms are executed with specific world instances, and re-
peated 50 times. The results in Figure 28 show the application of the algorithm
using 240 trajectories. Again all tested algorithms significantly outperform the
Brute Force method.

Increasing the number of trajectories favors the VNS algorithms over the
ILS4 algorithm. The results in Figure 29 show the application of the algorithm
using 960 trajectories.

In contrast to the smaller number of trajectories, the results of the ILS4 al-
gorithms shows that a too small environment will quickly degrade to random
search if the number of trajectories increases. Here the use of a neighborhood
structure pays off and the VNS approaches perform evidently better than ILS.
In addition, the results show that the algorithms perform good independent
of number and size of obstacles.
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Figure 27: This figure shows the results of testing all 60 randomly generated instances.
The top figure shows the run time performance for 240 trajectories, and the bottom
figure for 2400 trajectories. Compared to brute force search, the meta-heuristic algo-
rithms show a significant improvement. (adapted from [47])
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Figure 28: The results of 50 consecutively executions with 240 trajectories. Plots (a,b)
shows the result for 1 and 3 obstacles with size 1 meter. Plots (c,d) shows the result for
5 obstacles with size 0.5 meter, and plots (e,f) shows the result for 25 obstacles with
size 0.1 meter. The blue line marks the run time for brute force search, which is used
as a benchmark.(adapted from [47])
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Figure 29: The results of 50 consecutively executions with 960 trajectories. Plots (a,b)
shows the result for 1 and 3 obstacles with size 1 meter. Plots (c,d) shows the result for
5 obstacles with size 0.5 meter, and plots (e,f) shows the result for 25 obstacles with
size 0.1 meter. The blue line marks the run time for brute force search, which is used
as a benchmark.(adapted from [47])
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4.3.1.3 Influence of velocity bounds

The next analysis focuses on the influence of the velocity bounds on the perfor-
mance of the local planning step. The trajectory size is fixed to 240 trajectories
and the velocity bounds are varied. Since the previous test has shown that the
VNS approaches are more promising, the following experiments omit the ILS
algorithms. 5 experiments with 50 runs and increasing acceleration windows
are conducted. The test are again performed on different sizes and numbers
of obstacles.

In Figure 30 the results on instances with 1 to 3 obstacle with size 1 meter
are presented.

Figure 31 presents the results on instances with 5 obstacles with size 0.5
meter.

In Figure 32 the results on instances with 25 obstacles with size 0.1 meter
are presented.

All meta-heuristic algorithms outperform the Brute Force generate and test
method on all tested instances, regardless of the differences in the velocity
bounds. It can be observed that the small instances with many obstacles pro-
vide the most difficulties for the proposed methods. This is increased by using
a larger velocity space. While increasing the velocity windows clearly has an
obvious negative effect on the performance of both the brute force and the
meta-heuristic methods, the meta-heuristic algorithms soften this influence to
a large degree.

4.3.2 Existing local planner

This set of experiments are conducted using the simulation software Gazebo
for the artificial and office environment. All of these tests are performed on an
Intel Core2 Quad CPU with 2.66GHz and 8 GB RAM.

4.3.2.1 VNS and Trajectory Roll-out planner

The Trajectory Roll-out planner variant of the ROS-navigation stack implemen-
tation was altered to use the VNS approach (VNS-ROL) and compared to the
unaltered version in all of the following results.

The first experiment was executed using only one tabu list which holds
all visited solutions. The robot was tested with 300 trajectories in the logo
environment and had to perform 15 roundtrips. The results in figure 33a show
that the VNS-ROL algorithm significantly outperforms the original approach.

In a second experiment the experiment time was extended to 80 roundtrips
in the logo environment. Again the local planner used 300 trajectories. This
time both memory structures were used with a tabu tenure of 7. The results in
figure 33b show again that the VNS-ROL algorithm significantly outperforms
the original approach.
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Figure 30: The results of 50 consecutively executions with 240 trajectories, on instances
with 1 (a) and 3 obstacles (b-c) with size 1 meter. The blue line marks the run time for
brute force search, which is used as a benchmark.
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Figure 31: The results of 50 consecutively executions with 240 trajectories, on instances
with 5 obstacles with size 0.5 meter. The blue line marks the run time for brute force
search, which is used as a benchmark.
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Figure 32: The results of 50 consecutively executions with 240 trajectories, on instances
with 25 obstacles with size 0.1 meter. The blue line marks the run time for brute force
search, which is used as a benchmark.
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Figure 33: These figures show the result of using the VNS-ROL algorithm in the logo
environment. The results of 15 roundtrips with one tabu list is shown in (a). Figure
(b) shows the result of 80 roundtrips using an additional tabu list with tenure 7.
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Using the short term memory structure did have a small but not significant
performance increase, although less outliers and slightly smaller variance of
the measurements is observable.

The next four experiments show the effects of increasing the number of
trajectory samples and the influence of the tabu tenure. This time the robot
had to travel 40 roundtrips in the office environment. The planners are tested
with 300 and 600 trajectories with tabu tenure set to 10 and 100. The results
are shown in figure 34.

As in the experiments with the sample planner, the larger trajectory size
increased the performance difference between the original brute-force method
and the VNS approach. Increasing the size of the tabu tenure did have a nega-
tive effect on the performance, showing that a small tenure is not only enough
to avoid cycling but is also faster due to the smaller lookup time in a shorter
list.

4.3.2.2 VNS and DWA planner

This section contains the results of the experiments with the DWA variant of
the ROS local planner and the VNS approach (VNS-DWA).

Starting with 15 roundtrips using 300 trajectories in the logo environment
the meta-heuristic algorithm shows similar performance as the VNS-ROL al-
gorithm.

The long run experiment with 80 roundtrips revealed a problem for the
VNS-DWA approach with 2 tabu lists, which was not detected during the tests
with the Rollout planner. In some rare cases the meta-heuristic approach did
use exceptional long time to find the best solution, leading to instability of the
system. Even extending the tabu tenure to half of the solution size did not
solve this problem.

Through further analysis the problem was identified to occur only when the
robot approached a milestone in the roundtrip with very small velocity. Since
the robot did barely move at all the corresponding cost function had the same
value for most velocity tuples, providing no usable gradient for guiding the
local search.

In order to avoid this situation the VNS-DWA algorithm was altered to use
the brute force method whenever the velocity of the robot drops beyond a
predefined very small threshold value.

The result of these experiments are shown in figure 35

For the next experiments the robot had to travel 40 roundtrips in the office
environment. The planners are tested with 300 and 600 trajectories with tabu
tenure set to 10 and 100. The results are shown in figure 36.

The VNS-DWA algorithm outperformed the original approach in all exper-
iments. Again the experiments with the larger trajectory samples favor the
meta-heuristic approach. In contrast to the results of the VNS-ROL experi-
ments, the larger tabu tenure did not show to have any noticeable effect.
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Figure 34: These figures show the result of using the VNS-ROL algorithm in the office
environment. In each experiment the robot has to drive 40 roundtrips in the building.
Figure (a) shows the result using 300 trajectory samples with tabu tenure 10 while
Figure (b) uses a tenure of 100. Figure (c) shows the result of 600 trajectories with
tabu tenure 10 and Figure (d) a tenure of 100.
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Figure 35: These figures show the result of using the VNS-DWA algorithm in the logo
environment. The results of 15 roundtrips with one tabu list is shown in (a). Figure
(b) shows the result of 80 roundtrips using an additional tabu list with tenure 7.
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Figure 36: These figures show the result of using the VNS-DWA algorithm in the office
environment. In each experiment the robot has to drive 40 roundtrips in the building.
Figure (a) shows the result using 300 trajectory samples with tabu tenure 10 while
Figure (b) uses a tenure of 100. Figure (c) shows the result of 600 trajectories with
tabu tenure 10 and Figure (d) a tenure of 100.
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4.4 summary

As it is the case for nearly all optimization problems, the No Free Lunch the-
orems [53] apply also to the local planning domain. So it is no surprise that
looking at all the results of the sample planner, there is no clear winner among
the algorithms, but Variable Neighborhood search with tabu list and Best, or
First Improvement heuristic seem to yields the best and most stable overall
performance.

In general the run time of the python implementation used for the example
planner is not very efficient compared to tuned C++ implementations. There-
fore the absolute numbers of the run time evaluations should be handled with
care.

After analysis of the results with the sample python planner, the VNS ap-
proach is selected to be integrated into a navigation system based on a C++
implementation in the ROS framework.

The tests conducted with a simulation software show that the previous re-
sults carry over to a real navigation scenario. Extensions to the Trajectory Roll-
out planner within the navigation stack of ROS using the VNS algorithm out-
perform the unaltered version significantly.

While the application of the VNS search for the Roll-out planner was straight
forward, the tests revealed a problem with this approach for the DWA planner.
For very low velocities the corresponding costfunction did not provide enough
information for a fast local search, leading to instability of the system. In order
to deal with these situations, the VNS-DWA algorithm falls back to brute force
evaluation of trajectories whenever the robots moves very slow.

After this small change the VNS-DWA could be successfully tested and the
results showed, that the performance increase was still significant.

4.5 implementation details

The example planner was implemented using python version 2.7 (available at
http://python.com). This allows for a fast prototype implementation of a local
planner without the overhead and interruption of other parts of full planning
systems. Hence the optimization algorithms could be evaluated focusing on
the specific trajectory selection part.

For visualization, geometry related processing, and the creation of test scripts
the python packages Numpy (available at http://numpy.org), Python Imag-
ing Library (available at http://pythonware.com) and Matplotlib (available at
http://matplotlib.org) were an essential part of the created software.

The VNS algorithm used in the navigation framework within ROS, was cre-
ated using C++ and the BOOST-C++ Libraries (http://boost.org).

The source code was compiled using GCC 4.6.4 with optimization enabled.

http://python.com
http://numpy.org
http://pythonware.com
http://matplotlib.org
http://boost.org
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Without the use of these exceptional open-source libraries the work pre-
sented in this thesis would not have been possible.





5
C O N C L U S I O N S

In this work a promising approach to improve performance of existing local
planning systems which are based on generate and test trajectory methods by
using meta-heuristic search strategies was analyzed.

To this end this thesis presented a thorough overview of local planning and
obstacle avoidance methods. Identifying trajectory selection as the main part
of local planning tasks for improvement, well known meta-heuristic search
algorithms were introduced for optimizing the selection process.

From the large family of meta-heuristic algorithms the following search
strategies were selected to substitute the brute force approach of trajectory
selection in local planning methods based on trajectory roll-out and DWA:

• The basic algorithmic structure of the single solution based meta-heuristics
Iterated Local Search (ILS) and Variable Neighborhood Search (VNS).

• An appropriate formulation of a set of neighborhood structures, which
are used during Local Search with best improvement and first improvement
heuristic.

• Two basic memory structures inspired from tabu search to avoid infeasible
solutions and short cycles during the search process.

To evaluate the proposed method a set of random generated environments
simulating sensor information for one planning step were created. These in-
stances were used to test the algorithms using an example planner. This al-
lowed a focused investigation and improvement of the trajectory selection part
separated from the overhead of full planning systems.

The results of these experiments with the example planner showed, that the
meta-heuristic algorithms provide significant performance improvement on all
of the test instances. Especially the VNS implementations provided very good
and stable results.

In a next step the VNS approach was used to extent a popular existing plan-
ner implementation and tested using a sophisticated simulation environment
with realistic scenarios and physics. Two configurations were tested in an vir-
tual building:

• VNS-ROL: Using VNS with best improvement heuristic to extend the
roll-out method of the planner with continues acceleration limits.

• VNS-DWA: Using VNS with best improvement heuristic to extend the
classical DWA method of the planner.
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Both extensions showed superior run time performance compared to their un-
altered counterparts.

Summarizing the meta-heuristic algorithms are able to increase the perfor-
mance of local planning systems based on trajectory generate and test methods.
This allows the local planner to improve on reactivity, the used resolution for
collision tests, the simulation-time for look-ahead and the number of trajectories
used to model the robots motion capabilities.

5.1 further research

Applying meta-heuristic search to trajectory selection of local planners like
DWA shows to be a promising step in using the power of these search proce-
dures in the context of local planning. Therefore the following directions for
further research are suggested:

investigate additional meta-heuristics

This work presented the use of a very limited selection of single solution
based meta-heuristics. Therefore it would be of interest to investigate
related algorithm like GRASP [11], reduced VNS, or Simulated Anneal-
ing [23] or even population based meta-heuristics. In addition, develop-
ing and analyzing more sophisticated neighborhood structures would be
recommended.

application to high dof robotic models

The proposed method might also be applicable for robot models of higher
degree of freedom, since dealing with large trajectory samples is a par-
ticular strength of meta-heuristic search.

extending to three-dimensional space

This work considers exclusively two-dimensional workspaces. Applica-
tion of this method to three-dimensional spaces is an interesting chal-
lenge and would allow the use of new obstacle avoidance methods for
robotic models like unmanned air vehicles (UAV).

extending other planning systems

The applicability to similar path-planning methods using trajectory sam-
ples, like Curvature Velocity Method [46], would be of interest to show
the general applicability of this method.

increasing the planning horizon

The extended planning methods simulate trajectories by applying a con-
stant amount of velocity over a given time. This restriction simplifies the
planning step significantly and allows for brute force evaluation of tra-
jectories. With the help of the proposed method the evaluation of chain-
ing short series of different velocity commands may still be feasible and
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would allow for a better lookahead simulation, allowing more sophisti-
cated maneuver.
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[21] Pierre Hansen, Nenad Mladenović, and José A Moreno Pérez. Variable
neighbourhood search: methods and applications. Annals of Operations
Research, 175(1):367–407, 2010.

[22] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Trans. Systems
Science and Cybernetics, 4(2):100–107, 1968.

[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

http://dx.doi.org/10.1007/0-306-48056-5_2
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1016/0305-0548(86)90048-1


bibliography 71

[24] Domokos Kiss and Gábor Tevesz. Advanced dynamic window based nav-
igation approach using model predictive control. In Methods and Models
in Automation and Robotics (MMAR), 2012 17th International Conference on,
pages 148–153. IEEE, 2012.

[25] Nak Yong Ko and Reid G Simmons. The lane-curvature method for lo-
cal obstacle avoidance. In Intelligent Robots and Systems, 1998. Proceed-
ings., 1998 IEEE/RSJ International Conference on, volume 3, pages 1615–1621.
IEEE, 1998.

[26] Stefan Kohlbrecher, Johannes Meyer, Thorsten Graber, Karen Petersen, Os-
kar von Stryk, and Uwe Klingauf. Robocuprescue 2014 - robot league
team hector darmstadt (germany). Technical report, Technische Univer-
sität Darmstadt, 2014.

[27] S. M. LaValle. Planning Algorithms. Cambridge University
Press, Cambridge, U.K., 2006. ISBN 0521862051. Available at
http://planning.cs.uiuc.edu/.

[28] Helena R Lourenço, Olivier C Martin, and Thomas Stutzle. Iterated local
search. arXiv preprint math/0102188, 2001.

[29] Vladimir J Lumelsky and Alexander A Stepanov. Path-planning strate-
gies for a point mobile automaton moving amidst unknown obstacles of
arbitrary shape. Algorithmica, 2(1-4):403–430, 1987.

[30] Theodore W Manikas, Kaveh Ashenayi, and Roger L Wainwright. Genetic
algorithms for autonomous robot navigation. Instrumentation & Measure-
ment Magazine, IEEE, 10(6):26–31, 2007.
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