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Kurzfassung

Während der letzten Jahrzehnte ist die Anzahl von Betroffenen der Alzheimer-
Krankheit, einer der häufigsten Gründe für Aktivitätseinschränkungen im fortge-
schrittenen Alter, rasch angestiegen. Immer öfter wird die Elektroenzephalographie
(EEG) verwendet, um die Änderungen in der Informationsverarbeitung des Gehirns
im Laufe der fortschreitenden Alzheimer-Erkrankung zu untersuchen und Ergän-
zungen zur klinischen Diagnostik zu liefern.

Im Rahmen dieser Arbeit wird das EEG-Signal als Sequenz von elektrischen Po-
tentiallandschaften mit gleichbleibender Topographie aufgefasst. Diese sogenann-
ten Mikrozustände werden bezüglich ihrer Dauer, ihrer Topographie, ihrem Anteil
und ihrem Auftreten analysiert. Diese Auswertung wird für 96 Alzheimer-Patienten
der PRODEM-AUSTRIA Datenbank durchgeführt. Dabei wird der Schweregrad der
Alzheimer-Krankheit mithilfe des Mini-Mental-State-Examination (MMSE) Score
gemessen.

Innerhalb dieser Arbeit werden zwei Vorgehensweisen für die Bestimmung der
EEG-Mikrozustände vorgestellt. Die erste Herangehensweise bestimmt die Zentren
der positiven und negativen Potentialgebiete, um verschiedene Mikrozustände zu
unterscheiden und dadurch die EEG-Sequenz zu segmentieren. Die andere verwen-
det einen modifizierten K-Means Algorithmus, um alle vorkommenden Mikrozu-
stände in eine zuvor bestimmte Anzahl an Klassen zu gruppieren.

Die statistische Auswertung besteht ebenfalls aus zwei voneinander unanbhängi-
gen Teilen. Im ersten werden die Daten in Bezug auf den MMSE Score mithilfe der
Methode der kleinsten Quadrate analysiert. Im anderen werden die Daten für 79 Pa-
tienten bezüglich des MMSE Scores ausgewertet, indem für die Methode der kleins-
ten Quadrate auch die demographischen Variablen Geschlecht, Alter, Dauer der
Alzheimer-Erkrankung und Ausbildungsgrad miteinbezogen werden. Für beide sta-
tistischen Vorgehensweisen kann sowohl bei der Segmentierung als auch der Grup-
pierung keine signifikante Änderung der Charakteristiken der EEG-Mikrozustände
im Laufe der fortschreitenden Alzheimer-Erkrankung festgestellt werden.

Für die zukünftige Forschung ist die Auswirkung von Longitudinalstudien in-
teressant, da die Grundeigenschaften von EEG-Mikrozuständen von Alzheimer-
Patienten sehr stark variieren. Daher könnte das Vergleichen von vergangenen und
aktuellen EEG-Aufzeichnungen in Bezug auf die Verschlechterung der Symptome
der Alzheimer-Erkrankung und die stärkere Einschränkung eines Patienten neue
Erkenntnisse liefern.
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Abstract

The last several decades have witnessed a rapid increase of people suffering from
Alzheimer’s disease (AD), one of the most popular causes of disability in late-life.
More and more frequently, electroencephalography (EEG) is used to investigate
the changes in the brain’s information processing in the course of AD in order to
find supplements for the clinical diagnostics.

In this thesis, the EEG signal is considered as a sequence of electric poten-
tial landscapes with stable topography. These so-called microstates are analyzed
with respect to their duration, topography, ratio and occurrences. The analysis is
performed for 96 AD patients of the PRODEM-AUSTRIA database. Thereby, the
severity of AD is measured by using the Mini-Mental-State-Examination (MMSE)
score.

Within this thesis, two approaches for the determination of EEG microstates are
presented. The first strategy determines the centroids of the positive and negative
potential areas to distinguish different microstates and thereby segment the EEG
sequence. The other approach uses a modified K-means algorithm to cluster all
occurring microstates into a predetermined number of classes.

The statistical evaluation also consists of two independent parts. In the former,
the data are analyzed versus MMSE score by using a least squares regression. In
the other, the data of 79 patients are evaluated versus MMSE score by using a
least squares regression including demographic variables as sex, age, duration of
AD and degree of education. For both statistical approaches and the segmentation
as well as the clustering procedure, the results could not document a significant
change in the characteristics of EEG microstates in the course of AD.

For future research, the impact of longitudinal studies is interesting since the
basic characteristics of EEG microstates of AD patients vary a lot. The compar-
ing of past and more actual EEG recordings in relation to the worsening of the
AD symptoms and the more severe impairment of one patient could therefore be
revealing.
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Chapter 1

Introduction

This chapter is written to provide a basic knowledge of the topic for the reader. It
includes information and facts about Alzheimer’s disease, electroencephalography
and the use of latter in the diagnostics of Alzheimer’s disease. Previous stud-
ies reporting EEG alterations of Alzheimer’s patients are presented. The research
question of this work and a thesis outline conclude this chapter.

1.1 Alzheimer’s Disease

Dementia (taken from Latin, meaning "without mind") is a disorder due to disease
of the brain which is characterized by a progressive impairment of cognitive abilities.
It affects predominantly elderly people and is one of the most common causes
of disability in late-life. There are different forms of dementia, namely vascular
dementia, frontotemporal dementia, dementia with Lewy bodies and Alzheimer’s
disease (AD) which is the most common [1]. The disease is named after the German
psychiatrist and neuropathologist Alois Alzheimer (1864-1915) who published first
findings in 1906 [2].

The neuropathology of AD is associated with a loss of cells in the brain and
the formation of cortical amyloid plaques and neurofibrillary tangles. The brain
changes over at least 20 to 30 years while the concretions spread up to the cortical
regions [3].

AD symptoms include the loss of cognitive abilities like memory, learning, ori-
entation, comprehension, judgment and, in a late stage, also the loss of motor
functions [2].

In 2010, there were about 35.6 million people with all forms of dementia in
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the world. It is supposed that the number of affected people is going to increase
to 65.7 million by 2030 and 115.4 million by 2050 [1]. In Austria, the estimated
number of patients with dementia in 2010 was 112 600. Among them, 74 300
were suffering from AD. New research and statistical expansions suggest that the
number increases more rapidly than first expected [4].

At the moment, there exist neither treatment nor drugs which cure AD. For
improving the patient’s life, there is symptomatic treatment for particular core
symptoms but not for stopping the progress of AD. So the principal goal is an
early diagnosis and detecting symptoms [3].

Up to this moment, the only way to attest AD is a post-mortem analysis of the
patient’s brain. In one’s lifetime, the disease is classified as possible or probable
AD according to the NINCDS-ADRDA Alzheimer’s Criteria [5]. This classification
includes a clinical and neuropsychological examination which analyzes the neu-
rological, internistic and psychiatric status and includes neuropsychological tests,
a complete blood count, and cerebral magnetic resonance imaging (MRI). There
are additional experimental examinations like genotyping, serology, liquor analysis,
positron emission tomography (PET), functional MRI (fMRI) and the electroen-
cephalography (EEG) which can be performed [4].

1.2 Electroencephalography and Alzheimer’s Disease

The words encephalo and graphy themselves are taken from Greek meaning "in-
head", which refers to the brain, and "write", which denotes the act of recording [6].
An EEG signal is a measurement of currents flowing during synaptic excitations in
the central cortex. These currents generate an electric field over the scalp which
can be measured by EEG systems, usually with scalp electrodes [7]. The human
EEG signal was first measured by Hans Berger (1873-1941) who experimented by
placing electrodes on his daughter’s scalp in 1929 [6]. The advantages of the EEG
in clinical diagnosis of AD are that it is non-invasive, a low-cost examination and
it is easier accessible than other imaging procedures.

Since each human scalp has a different form, there is a conventional electrode
setting, the so-called international 10-20 system [8]. The numbers 10 and 20 refer
to the fact that the distances between electrodes are either 10 or 20% of a measured
distance - nasion to inion - of the patients head. The electrodes are named in a
way that enables an easy assignment to a specific lobe and position. F stands for
frontal, C for central, P for parietal, T for temporal and O for occipital. Even
numbers are associated with the right hemisphere, odd with the left and z with the
middle line [6], [8]. Figure 1.1 explains this electrode placement on the patient’s
scalp.
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Figure 1.1: Electrode setting given by the international 10-20 system. This image
was taken from http://gerstner.felk.cvut.cz/biolab/bionika2004/cepek/bci.html,
accessed 05 November 2013.

There have already been several studies about changes in the EEG of AD
patients. Up to the present, three major alterations have been reported. First, there
is the EEG slowing which means an increase of power in low and a decrease of power
in high frequency range. By applying different measures, studies have also shown
that the complexity within the EEG is reduced when suffering of AD. A last finding
is that perturbations of EEG synchrony occur when comparing healthy controls
with AD patients [9]. There are only few studies concerned with EEG microstate
alterations in AD patients. All of them following the method of [10] revealed a
shortening of the microstate duration for more cognitive impairment [11], [12], [13].
Two of these studies reported an anteriorisation of the centroid locations, i.e. of
the brain electric fields [11], [13]. The usage of the clustering algorithm presented
in [14] to investigate EEG microstate changes of AD patients is, to the best of the
author’s knowledge, a novelty in this field.

1.3 Research Question

The data for this work were provided by the Austrian Alzheimer Society in form of
the multi-centric study PRODEM-AUSTRIA [15]. Within a subproject "Advanced"
EEG in der Vorhersage des Verlaufs der Alzheimerdemenz (project no. 827462),
EEG samples of patients suffering from AD were recorded. The database includes
recordings of 96 subjects with probable AD.

This work’s purpose is to examine whether changes in the parameters of EEG
microstates, e.g. duration or topography, relate with the severity of AD measured
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by the Mini-Mental State Examination score [16]. Two different approaches of
determining microstates within an EEG epoch will be introduced. The first is based
on the segmentation of an EEG epoch into microstates and the second on the
clustering into a finite number of microstate classes which represent different states
of the human brain. Particular attention is paid to the changes in duration of EEG
microstates in the course of AD.

The main hypothesis of this thesis are the following:

• H1
0 : The EEG microstate duration shortens in the course of AD.

• H2
0 : The topography of the microstates’ electric potential landscapes changes

in the course of AD.

• H3
0 : The characteristics, e.g. occurrences, duration or ratio, of specific mi-

crostate classes change in the course of AD.

1.4 Thesis Outline

The thesis is structured as followed: Chapter 2 provides a basic knowledge about
the sample data and the preprocessing. Two methods used to determine the EEG
microstates are explained. First, the segmentation of epochs into microstates and
afterwards the clustering of epochs into microstate classes. Chapter 3 presents
the results and the analysis by applying the methods discussed in Chapter 2. The
last part, Chapter 4 and Chapter 5, discusses the findings, completes the thesis
by comparing the results to the scientific status quo in the research field of EEG
microstates and provides some critical thoughts.



Chapter 2

Material and Methods

The purpose of this chapter is to describe the sample data used in this work,
the EEG preprocessing and the main mathematical tools for the signal processing.
Later on, the segmentation and clustering of EEG recordings into microstates is
introduced and the main characteristics of such short brain states are explained.

2.1 Sample Data

The data used in this work were provided by the Austrian Alzheimer Society in
form of the multi-centric study PRODEM-AUSTRIA [15]. The EEG samples were
recorded at the Medical Universities of Graz, Innsbruck, Vienna, and the General
Hospital Linz. The participants of this study have to fulfill the following criteria [17]:

• diagnosis of AD according to NINCDS-ADRDA Alzheimer’s Criteria [5]

• family caregiving

• older than 40 years

• consent of patient and caregiver.

The database includes EEG recordings of 96 subjects (57 female, 39 male)
with probable AD. The average age of the subjects is 73.39 years (σ = 8.75).
Additionally, the Mini-Mental State Examination score (MMSE score) is provided
for each participating subject [16]. This score quantifies the severity of AD on
the basis of cognitive impairment. The test is divided into two parts, consisting
of 21 and nine questions respectively, each worth one point. The first part covers
orientation, memory and attention and the participants have to give oral response.

5
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The second part tests the ability to name, follow verbal and written commands,
write a sentence spontaneously and copy a complex polygon. The results of the
test range from 0 to 30 points where lower scores are associated with more severe
impairment [16]. The subjects in this study have MMSE scores between 15 and 26
with an average of 22.16 (σ = 3.14). These empirical distributions are shown in
the histograms of Figures 2.1 and 2.2.

Figure 2.1: Empirical distributions of age (left) and sex (right) of the study’s
subjects.

Figure 2.2: Empirical distribution of the MMSE score of the study’s subjects.
Lower MMSE score is associated with more cognitive impairment.
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For 79 patients the following information is provided by the database and is later
on included in the analysis: additionally to age and sex, the duration of AD and the
degree of education are stated. The average age of these 79 subjects is 73.57 years
(σ = 9.22), ranging from 52 to 88 years. The duration of AD ranges from 2 to 120
months with a mean of 25.54 (σ = 22.08). The degree of education is scaled from 1
to 6 where 6 indicates the highest education level. Using this scale, the mean degree
of education is 2.37 (σ = 1.58). The levels are characterized as follows: 1 stands
for Volks/Hauptschule (primary school), 2 for Lehre (apprenticeship), 3 for AHS
(grammar school), 4 for BHS (higher vocational school), 5 Lehrerbildungsanstalt
(teacher training school) and 6 for Hochschule (tertiary institution). The empirical
distributions of age, sex, duration of AD and degree of education of the 79 patients
are given in Figure 2.3. The selected 79 subjects have MMSE scores between 15
and 26 with an average of 22 (σ = 3.12). This is presented in Figure 2.4.

Figure 2.3: Empirical distributions of age (top left), sex (top right), degree of
education (bottom left) and duration of AD (bottom right) of the 79 subjects with
more information given.

The PRODEM-AUSTRIA study uses the Neurospeed software of the alpha-
trace digitalEEG System with sampling rate of 256 Hz to digitalize the samples
[18]. For the EEG recordings, 19 gold cup electrodes are positioned on the scalp
according to the international 10-20 system, cf. Figure 2.5.

Additionally to the EEG, horizontal and vertical electrooculogram (EOG) chan-
nels and an electrocardiogram (ECG) channel are recorded. The EOG measures
the eye’s position by placing a pair of electrodes either above and below (vertical)
or to the left and right of the eye (horizontal). The recording starts with a resting
state sequence of 180 seconds in which the subjects are sitting in a resting but
awake condition with eyes closed. After that they open their eyes and are asked to
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Figure 2.4: Empirical distribution of the MMSE score of the 79 subjects with more
information given. Lower MMSE score is associated with more cognitive impair-
ment.

Figure 2.5: Positions of the 19 electrodes in this study according to the interna-
tional 10-20 system. The image was taken from [17].

perform the following tasks [17]:

• remember faces and corresponding names (50 seconds)

• recall names while only faces are shown

• memorize faces and names again (50 seconds) .
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2.2 Data Preprocessing and Artifact Removal

Due to physiological and technical reasons, it is very common that EEG recordings
are altered by so-called artifacts. Physiological interferences include eye movement,
muscular activity, sweating and cardiac electric fields [17]. Figures 2.6 and 2.7
show both eye and cardiac artifacts in EEG recordings. For a better analysis, it
is important to determine and remove these artifacts to obtain the true neuronal
signals. This was done as presented in [17] and summarized in this section. All
further computations of this work have been implemented in MATLAB® 7.10.0
(R2010a) [19].

Figure 2.6: A 14 seconds long EEG recording with vertical and horizontal EOG
and ECG signals corrupted by eye movement. Like in the majority of cases, the
frontal electrodes (indicated with F) are more affected.

In order to achieve the original signals, the EEG, ECG and EOG signals were
first high-pass filtered to remove slow variations. This was done by using a finite
impulse response (FIR) filter with order 340 and border frequency of 2 Hz.

Subsequently, the EEG signals were examined in order to determine a possible
alteration due to cardiac fields. A visual inspection and the so-called energy interval
histogram (EIH) method were applied to remove these artifacts [20], [21]. This
method uses the fact that cardiac artifacts are spike shaped and nearly periodically.

The also very common eye artifacts were corrected by applying a static linear
regression of each EEG signal on the EOG signals. Prior to that, the EOG signals
were low-pass filtered using a FIR filter with order 340 and border frequency 12 Hz.
Since the EOG also measures electric fields from neuronal activities, this filtering
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Figure 2.7: A 14 seconds long EEG recording with vertical and horizontal EOG
and ECG signals corrupted by cardiac activity.

was used to remove these high-frequency interferences.

The last step in this preprocessing was to low-pass filter (same filter properties
as above) the whole EEG recording at 15 Hz to remove high-frequency components
caused, for example, by muscle tension.

Figure 2.8 and Figure 2.9 demonstrate these preprocessing steps. The first figure
shows a corrupted signal which was then corrected and finally appears as in Figure
2.9.

The further computations and investigations are carried out on a artifact-free
EEG epoch of the resting state which has a duration of five seconds.
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Figure 2.8: A 14 seconds long EEG recording with vertical and horizontal EOG
and ECG signals corrupted by cardiac activity and eye movement.

Figure 2.9: A 14 seconds long EEG recording with vertical and horizontal EOG
and ECG signals after the preprocessing steps. All artifacts have been removed by
using the explained approach.



12

2.3 Foundations

In this section, the mathematical background and some basic definitions used in
the course of this work are presented. First, concepts of multivariate statistics
are introduced and applied to EEG recordings [22]. This is followed by a short
summary concerning eigenvalues, singular values, the Frobenius norm, the Rayleigh
quotient and a popular application in this field [22], [23], [24] [25]. The last part
provides a short introduction to multiple linear regression and the least squares
method [22], [26]. As indicated above, this mathematical introduction is mainly
based on [22], [23], [24] [25] and [26].

The measurements of a multichannel EEG indicate the electrical activity of the
brain. At each time point, the measurements, also referred to as a map, describe a
specific spatial potential distribution of the electric field. Therefore, each map can
be written as a column vector

v =


v1

v2
...
vN

 (2.1)

with N components which refer to the number of electrodes used. Hence, it is
possible to view the EEG recording as a sequence of maps of momentary spatial
distributions of electric potential instead of waveshapes. This can be written as a
(N × T ) matrix V where each column represents a time point t ∈ {1, ..., T} and
each row i ∈ {1, ..., N} an electrode

V =
(
v1, v2, . . . , vT

)
=


v11 v12 . . . v1T

v21 v22 . . . v2T
...

...
...

vN1 vN2 . . . vNT

 . (2.2)

2.3.1 Descriptive Statistics

To analyze maps and for the often needed average-referencing, the arithmetic mean
is introduced. It can be calculated for each column, thus each time point, of V
and will be referred to as

vt =
1

N

N∑
i=1

vit (2.3)
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where t indicates the time point and i the electrode. So for the whole (N × T )
data matrix V the multivariate arithmetic mean is the T dimensional vector

v =
(
v1, v2, · · · , vT

)
. (2.4)

Another important parameter is the empirical variance which is defined for all
time points t ∈ {1, ..., T}

qtt =
1

N

N∑
i=1

(vit − vt)2 . (2.5)

The empirical covariance, which is a measure of the linear relation of two time
points t and s, is given by

qts =
1

N

N∑
i=1

(vit − vt)(vis − vs) . (2.6)

Arranging the variance, along the main diagonal, and the covariance in a matrix,
the covariance matrix Q is formed. It is symmetric since qts = qst.

When normalizing the covariance, one obtains the so-called correlation coeffi-
cient

rts =

∑N
i=1(vit − vt)(vis − vs)√∑N

i=1(vit − vt)2

√∑N
i=1(vis − vs)2

(2.7)

which ranges from −1 to 1.

2.3.2 Eigenvalues, Eigenvectors and Singular Value
Decomposition

Definition 2.3.1 (Eigenvalues and Eigenvectors): Let A be a (T × T ) square
matrix. Then

p(λ) = |A− λI| (2.8)

is a polynomial of degree T in λ where |.| denotes the determinant and I the
identity matrix. The T roots of p(λ), namely λ1, λ2, ..., λT , are called eigenvalues
of A. Then

|A− λtI| = 0 (2.9)
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holds for all t ∈ {1, ..., T}, so that the matrix A − λtI is singular, which means
not invertible. Hence, there is a vector γt 6= 0 with

Aγt = λtγt for t ∈ {1, ..., T}. (2.10)

This vector γt is called eigenvector of A corresponding to λt.

Theorem 2.3.1 (Singular Value Decomposition): For any arbitrary matrix A ∈
Rm×n there exist orthogonal matrices U ∈ Rm×m, O ∈ Rn×n and a diagonal
matrix Σ ∈ Rm×n with Σjk = σjδjk such that

A = UΣO> and σ1 ≥ σ2 ≥ ... ≥ σmin{m,n} ≥ 0 (2.11)

where δ denotes the Kronecker’s delta. This factorization is called singular value
decomposition (SVD) and all σj are called singular values. The matrix Σ is unique.
The columns ui,i ∈ {1, ...,m}, of U and oi, i ∈ {1, ..., n}, of O are called left
singular vectors and right singular vectors respectively.

Remark 2.3.1. There are some useful relations between eigenvalues and singular
values for a matrix A ∈ Rm×n:

• The eigenvectors of the matrix AA> correspond to the left singular vectors
of A.

• The eigenvectors of the matrix A>A correspond to the right singular vectors
of A.

• The matrices A>A and AA> have the same non-zero eigenvalues which
correspond to the squared non-zero singular values of A.

The singular value decomposition has many applications in applied mathemat-
ics. One of it is the now presented matrix approximation which is stated in [25].
First, the Frobenius norm is introduced.

Definition 2.3.2 (Frobenius norm): The Frobenius norm of a matrix A ∈ Rm×n
is defined as

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

|aij |2 . (2.12)

Remark 2.3.2. It is also possible to denote the Frobenius norm by using the SVD
of A = UΣO> since

tr(AA>) = tr((UΣO>)(OΣ>U>)) = tr(UΣΣ>U>)

= tr(ΣΣ>) = tr(Σ2) =

min{m,n}∑
i=1

σ2
i

(2.13)
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where σ1, σ2, . . . , σmin{m,n} are the singular values of A. Hence,

‖A‖F :=
√
σ2

1 + σ2
2 + . . .+ σ2

min{m,n} . (2.14)

Theorem 2.3.2 (Rank k approximation in the Frobenius norm): Let A ∈ Rm×n
be a matrix of rank r. Then for all matrices B ∈ Rm×n with rank p < r, there
holds

‖A−B‖F ≥ ‖A−Ap‖F (2.15)

where

Ap = UΣpO
> (2.16)

and Σp is obtained from Σ of the singular value decomposition of A by setting all
but its p largest singular values σi to zero.

Proof. Since A = UΣO>,

‖A−B‖2F = ‖UΣO> − UU>BOO>‖2F = ‖Σ− U>BO‖2F .

Let U>BO = C. So this can be written as

‖Σ− C‖2F =
n∑
i=1

(σi − cii)2 +
∑
i 6=j

c2
ij ≥

n∑
i=1

(σi − cii)2 .

Thus, ‖A − B‖2F is minimized if cii = σi for i = 1, 2, . . . , p and cij = 0
otherwise, i.e. C = Σk. For this approximation the error is

‖A−Ak‖F =

√√√√ r∑
i=p+1

σ2
i .

2.3.3 Rayleigh Quotient

Definition 2.3.3 (Rayleigh quotient): Let A ∈ Rm×m be a symmetric matrix and
x ∈ Rm \ {0}. Then

r(x) =
x>Ax

x>x
(2.17)

is called the Rayleigh quotient.

Remark 2.3.3. Note that, if x ∈ Rm is an eigenvector to the eigenvalue λ of
A ∈ Rm×m, the following holds

r(x) =
x>Ax

x>x
=
x>λx

x>x
= λ . (2.18)
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2.3.4 Multiple Linear Regression

A linear regression model with one dependent variable is of the general form

y = β0 + β1x1 + . . .+ βqxq + ε . (2.19)

The unknown regression coefficients β0, β1, . . . , βq declare the relation, in this case
a linear one, between the regressors x1, x2, . . . , xq and the dependent variable y
including an error term ε. This error term is called residual and captures influences
of other factors than the regressors. When analyzing n independent observations
of y and the regressors x1, x2, . . . , xq, this results in a multiple linear regression
model of the form

y1 = β0 + β1x11 + β2x12 + . . .+ βqx1q + ε1
y2 = β0 + β1x21 + β2x22 + . . .+ βqx2q + ε2
...

...
yn = β0 + β1xn1 + β2xn2 + . . .+ βqxnq + εn .

(2.20)

When denoting this by using matrices, one obtains
y1

y2
...
yn


︸ ︷︷ ︸

=:y

=


1 x11 x12 · · · x1q

1 x21 x22 · · · x2q
...

...
...

. . .
...

1 xn1 xn2 · · · xnq


︸ ︷︷ ︸

=:X


β0

β1
...
βq


︸ ︷︷ ︸

=:β

+


ε1
ε2
...
εn


︸ ︷︷ ︸

=:ε

. (2.21)

Here, the matrix X ∈ Rn×(q+1) is called design matrix. It is assumed that

1. E(ε) = 0 and

2. Cov(ε) = E(εε>) = σ2In

hold for the residuals. Here, σ2 is the variance of the error term, which is the
same for all components. Moreover, different components of the error term are
uncorrelated.

The aim of regression analysis is to determine the unknown regression coeffi-
cients and σ2. One approach is the least squares method. Thereby, the sum of the
squared residuals

S(β) =

n∑
i=1

(yi − β0 − β1xi1 − . . .− βqxiq)2

= (y −Xβ)>(y −Xβ) = ε>ε

(2.22)
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is minimized. The specific β which minimizes S(β) is the so-called least squares
estimator β̂. Since all addends are scalars,

β>X>y = (β>X>y)> = y>Xβ (2.23)

holds and simplifying ε>ε yields

ε>ε = y>y − β>X>y − y>Xβ + β>X>Xβ

= y>y − 2β>X>y + β>X>Xβ .
(2.24)

When setting the partial derivative,

∂(ε>ε)

∂β
= 0− 2X>y + 2X>Xβ , (2.25)

to zero, one obtains the least squares estimator β̂ as

β̂ = (X>X)−1X>y . (2.26)

Here, it is necessary that X has full rank, since otherwise it is not possible to
determine (X>X)−1. The estimated values ŷ and the estimated residuals ε̂ can
then be calculated by using β̂ which yields

ŷ = Xβ̂ = X(X>X)−1X>︸ ︷︷ ︸
=:H

y (2.27)

and

ε̂ = y − ŷ = (I−H)y . (2.28)

Theorem 2.3.3: For a multiple linear regression model as in (2.21) with X ∈
Rn×(q+1) having full rank the following holds:

• The least squares estimator β̂ = (X>X)−1X>y is unbiased, i.e. E(β̂) = β
and Cov(β̂) = σ2(X>X)−1 .

• E(ε̂) = 0 and Cov(ε̂) = σ2(I−H)

• ε̂ and β̂ are uncorrelated.

Theorem 2.3.4 (Gauss-Markov): For a multiple linear regression model as in
(2.21) with X ∈ Rn×(q+1) having full rank, let the components of the residual
vector ε fulfill Cov(ε) = σ2In, then the following holds:

• The least squares estimator β̂ = (X>X)−1X>y is a unique, efficient and
linear estimator of β and



18

• s2 = ε̂>ε̂
n−q−1 = 1

n−q−1(y −Xβ̂)>(y −Xβ̂) is a unbiased estimator for the
residual variance σ2 .

An efficient estimator has a covariance matrix which is smaller than the covari-
ance matrix of all other linear, unbiased estimators. Therefore, the least squares
estimator is also called best linear unbiased estimator (BLUE).

2.4 Global Field Power and Global Map
Dissimilarity

The voltage potential field measured by the EEG has two main characteristics:
topography and strength, also called hilliness. The topography is related to the
location and orientation of the underlying neuronal activity and the strength de-
scribes the impact of simultaneously and synchronously working sources [27]. To
analyze these parameters, the measures Global Field Power (GFP) and Global Map
Dissimilarity (GMD) are introduced.

First proposed in [28], the GFP is a one-number statement for all electrode
measurements respectively one map at each time point t. It is defined as the
standard deviation of the measurements at all electrodes

GFP (vt) =
√
qtt =

[ 1

N

N∑
i=1

(vit − vt)2
] 1

2 (2.29)

where N is the number of electrodes, vit is the measured potential at electrode
i and time point t and vt the arithmetic mean defined as in (2.3). Calculated as
in (2.29), the GFP is rising with increasing hilliness of the electric field and turns
zero for a flat field [29]. Since in many cases the recordings are average-referenced,
meaning that they have zero mean, it can be simplified to

GFP (vt) =
[ 1

N

N∑
i=1

v2
it

] 1
2 (2.30)

where N is the number of electrodes, vit is the measured potential at electrode i
and time point t.

The second measurement is the GMD. Analogously to the GFP, it is a one-
number measure which estimates the difference of the spatial configuration of two
maps vt and vt+1. It is defined as the GFP of the difference map of these two
maps v̂t and v̂t+1, scaled to unity GFP

GMD(v̂t, v̂t+1) =
[ 1

N

N∑
i=1

[(v̂it − v̂t)− (v̂it+1 − v̂t+1)]2
] 1

2 (2.31)
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where (̂.) indicates maps scaled to unity GFP, N the number of electrodes, v̂it is
the measured potential at electrode i and time point t and v̂t the arithmetic mean
of the map scaled to unity GFP [27], [29]. To determine the range of the GMD, it
is described in terms of empirical variances and covariances:

GMD2(v̂t, v̂t+1) =
1

N

N∑
i=1

[(v̂it − v̂t)− (v̂it+1 − v̂t+1)]2

=
1

N

N∑
i=1

(v̂it − v̂t)2 − 2

N

N∑
i=1

(v̂it − v̂t)(v̂it+1 − v̂t+1)+

1

N

N∑
i=1

(v̂it+1 − v̂t+1)2

=qtt − 2qtt+1 + qt+1t+1

(2.32)

With (2.7) and the maps scaled to unity GFP, it follows that

GMD2(v̂t, v̂t+1) = qtt︸︷︷︸
=1

−2qtt+1 + qt+1t+1︸ ︷︷ ︸
=1

= 2− 2 qtt+1︸︷︷︸
∈[−1,1]

≤ 4 .
(2.33)

Therefore, the GMD ranges from 0 to 2, where 0 describes two topographically
homogeneous maps and 2 the topographic inversion [27]. Using this measure on
successive pairs of maps, GMD is a function of time indicating stable and unstable
periods within an EEG recording [29].

2.5 The Microstate Model

As described in [30], the sequence of maps as in (2.2) can be segmented into
so-called microstates which are characterized by quasi-stable spatial distributions,
called landscapes of electric potential. These stable topographic voltage patterns
are connected by rapid changes of the electric field. Since different spatial distri-
butions of the potentials must have been generated by different neuronal activity
in the brain, it is assumed that they belong to different functions in the brain.
When analyzing these short stable configurations, the task is to determine epochs
of variable length where the spatial configuration is stationary. Since the activity
of neuronal generators is oscillatory and includes repetitive polarity reversals, the
polarity of the maps is irrelevant. When comparing maps’ landscapes, also the map
strength can be disregarded [30]. There are different approaches of dealing with
that problem. One is to segment the recording and analyze the sequences of the
same spatial distribution. The other possibility is to cluster the given landscapes
into a specific number of groups, so-called microstate classes.
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2.6 Selection of Original Maps

For all further procedures, the data have to be average-referenced to enable com-
parison between the maps. This is followed by a selection of the maps with the
most information, i.e. the best signal-to-noise ratio (SNR) [31]. During times of
high GFP, the spatial configuration of maps is typically stable. The changing to
other configurations is indicated with high GMD and occurs during times of low
GFP. As a result, only data points of maximal GFP are representative for a whole
stable epoch and are further analyzed [29]. These selected maps are called original
maps of an EEG sequence [32]. In order to determine these local maxima of the
GFP, both the GFP and GMD were calculated and visually inspected. Figure 2.10
shows both the GFP and GMD for a three second epoch of a patient.

Figure 2.10: Plot of the GFP and GMD as functions of time for a three second
EEG epoch of one patient in the study.

Foremost, all local maxima of the GFP function with a minimal peak distance of
five time points were computed by using the MATLAB function findpeaks [33].
If at one time point the value of GFP is higher than both of its neighbors, the
function assigns it as a local peak. Then, each of these maxima x∗t , t ∈ {1, ..., T}
had to fulfill three criteria to be selected as original map:

x∗t is original map if


GFP (x∗t ) > z, z ∈ R
GFP (x∗t ) > GFP (x∗t + 5)

GFP (x∗t ) > GFP (x∗t − 5)

(2.34)

where z denotes a specific threshold. It was set to the average GFP of the whole
epoch and was found best by visual inspection. The second and third condition
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assure that each maximum is compared to its neighborhood and not only the
predecessor and the successor. This selection was based on the assumption that
microstates stay in a stable condition within a short period of time which legitimates
the elimination. The first condition was chosen to avoid low local maxima of GFP
which implies high GMD, i.e. high dissimilarities, and the other two because of the
possibility of small fluctuations and summits along the GFP function which are no
relevant peaks for the selection of the original maps. In Figure 2.11, the selected
maxima are shown for the same three second EEG epoch as in Figure 2.10. All
further computations were only applied to these selected original maps.

Figure 2.11: Plot of the GFP and GMD as functions of time for a three second EEG
epoch of one patient in the study. In both graphs the selected original maps, e.g.
local maxima of GFP, are marked by red circles. The green horizontal line indicates
the mean of the GFP function. In the majority of cases, high GFP indicates low
GMD.

2.7 Segmentation of EEG Recordings into Microstates

In this work, the goal of the segmentation is to create consecutive regions in which
all data fulfill a certain homogeneity criterion which rates their similarity. Therefore,
the matrix V , as in (2.2), is segmented into specific parts by comparing vt and vt+1

for all t ∈ {1, ..., T − 1} by using an arbitrary homogeneity criterion H. By setting
the first entry of the label vector, L ∈ NN , to L1 = 1, the segmentation is started.
If the homogeneity criterion applied to vt and vt+1 is smaller than a given tolerance
size, L(vt+1) = L(vt). If the tolerance size is exceeded, L(vt+1) = L(vt) + 1 and
a new segment begins. Repeating this procedure for all t ∈ {1, ..., T − 1} results
in a segmentation marked by L. All maps which have the same entry in the label
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vector are then seen as one microstate. This procedure leads to a simplification of
the given data set.

2.7.1 Segmentation Procedure

For performing a segmentation of maps within an EEG recording, these maps have
to be characterized by some specific features to rate their similarity. For the first
approach, the maps selected as in the previous section are assessed by a strategy
which results in two descriptors. Each map is characterized by two descriptors which
are the locations of the centroids of the positive and negative potential areas of
the map [10].

To be able to talk about centroid locations, the electrode setting is fitted into
a reference frame using an Euclidean coordinate system [31]. In this system, the
abscissa runs from left to right and the ordinate from anterior to posterior. The
units used are electrode distances (ED). In the original 10-20 system, the actual
size of one ED depends on the patient’s head size. As a relative measure, the unit
ED bears no metric unit. The reference frame in ED is necessary since different
head sizes would make the absolute measurements incomparable [31]. Figure 2.12
shows this introduced coordinate system with a typical topographic distribution of
potentials. For example, a position of x = 3 and y = 4 would indicate the electrode
Pz, cf. Figure 2.5.

Figure 2.12: This figure shows the introduced coordinate system for indicating the
descriptors of each map. The squares correspond to the 19 electrode positions, the
dark circles to the centroid locations and the plus and minus signs to the electric
potential measured in this area. This image was taken from [31].
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Since every electrode is indicated by a point in the newly introduced coordinate
system, each entry vi of a map v corresponds to a specific point ( xi, yi )>.
Using these coordinates and the indicator function, the descriptors D1 and D2 of
a map vt can be calculated as

D1(vt) =

∑N
i=1

(
xi
yi

)
· 1vit>0∑N

i=1 1 · 1vit>0

(2.35)

and

D2(vt) =

∑N
i=1

(
xi
yi

)
· 1vit<0∑N

i=1 1 · 1vit<0

. (2.36)

For easier notation, D1(vt) and D2(vt) are written as Dvt
1 and Dvt

2 respectively.

By proceeding like this, all maps are reduced to and quantified by their descrip-
tors. The descriptors of successive maps are then compared. An often observed phe-
nomenon is that the positive and negative areas switch polarity back and forth while
the centroid locations stay the same. That is a result of the oscillatory activity of the
generating neurons and for this reason polarity is disregarded [10], [30], [31]. There-
fore, each microstate can include standing waves with repeated polarity changes.
A new microstate is only defined if the whole configuration of the potential map
respectively the centroid locations change [31].

To include minor fluctuations of the electric field, small movements of the
descriptors, within a small circular area, are allowed. These windows are called
topographic windows of a specific window size given in ED [10], [31]. At the
first map v1, two topographic windows are set around Dv1

1 and Dv1
2 . Then the

distances of Dv1
1 and Dv1

2 to both descriptors Dv2
1 and Dv2

2 of the second map v2

are calculated. The distance is calculated as the Euclidean distance between the
two points. Either descriptor of map v1 is associated with the closest one of v2.
This is done in order to disregard polarity as claimed before. The next step is to
check if the corresponding descriptors of both maps can be accommodated within
the allowed topographic window. If it is possible to set this circular window of the
formerly fixed window size, given by a radius r (in ED), around the descriptors, the
label of map v2 is the same as of v1. If not, the segment is terminated which means
L(vt+1) = L(vt) + 1, and the rejected pair of descriptors serves as the starting
points for the next iteration. If the segment goes on, the center of the already
associated descriptors of both maps is used as the center of the new topographic
window.

To generalize this procedure, it is presumed that the process has already pro-
ceeded to map vt described by Dvt

1 and Dvt
2 . Without loss of generality, one can
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assume that there is no polarity reversal for this EEG recording, which means that
Dvt

1 is always associated with Dvt+1

1 and Dvt
2 with Dvt+1

2 for all t ∈ {1, ..., T − 1}.
So at time point t, it is already possible to set two topographic windows of radius
r around

(1) D
vt−k

1 , D
vt−k+1

1 , ..., Dvt
1 and

(2) D
vt−k

2 , D
vt−k+1

2 , ..., Dvt
2

for a certain k ∈ N. This means that these maps have been assigned to the same
label L(vt−k) = L(vt−k+1) = ... = L(vt). In the next step, the algorithm checks if
D

vt+1

1 and Dvt+1

2 also fit in the topographical window of (1) and (2) respectively.
There are two possible cases:

• Case 1
It is possible to fit both descriptors of map vt+1 to the topographical windows
given by (1) and (2). Then L(vt−k) = ... = L(vt) = L(vt+1) and the next
map is checked in the same way.

• Case 2
It is not possible to fit both descriptors of map vt+1 to the topographical
windows given by (1) and (2). Then L(vt−k)+1 = ... = L(vt)+1 = L(vt+1)
and a new segment starts. The procedure starts again by comparing vt+1 and
vt+2.

This segmentation procedure using centroids as descriptors is presented in Fig-
ure 2.13.

Figure 2.13: The figure illustrates the segmentation of a map series at seven
time points of GFP maxima into microstates. The upper row shows maps with
isopotential lines (white positive, hatched negative) and the lower row the corre-
sponding segmentation steps. Black dots indicate centroid locations (descriptors).
The vertical lines after map four indicate the beginning of a new microstate since
the descriptors of map five cannot be fitted into the topographical window of the
previous maps. This image was taken from [34].
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2.7.2 Determination of the Optimal Window Size

To determine the optimal window size for the topographic windows in the seg-
mentation process, the approach of [10] is used and summarized in this section.
This data-driven determination is based on the two goals of each segmentation:
the detection of similarity and the detection of dissimilarity between successive
maps. There are four different conditions for one map depending on the separation
between neighboring maps. The map can be separated from

• (1) both the preceding and the following map

• (2) only the preceding map

• (3) only the following map

• (4) from neither the preceding nor the following map.

If the segmentation process explained in Section 2.7.1 is executed for a wide
range of possible window sizes, r ∈ [0.1, 1.5], it is clear that for each r the maps
meet different conditions. For the smallest window size all maps are separated
from each other, i.e. all maps meet condition (1) and for the biggest all maps are
labeled to the same microstate, i.e. all maps meet condition (4). The first and
the last map are omitted since their conditions cannot be determined. Looking at
the information each map and its condition contains, it is possible to conclude
the following. A separate map (condition (1)) does not provide information about
the capacity of the segmentation procedure to identify similarities, and a map
which is not separated from the neighboring maps (condition (4)) does not offer
information about the capacity to identify differences. But maps in conditions (2)
or (3) contain information about both characteristics. So they share both goals of
the procedure [10].

Therefore, it is concluded that the window size which maximizes the number
of maps in condition (2) or (3), is optimal. Plotting the number of maps against
the window size for each patient, called the window-determining function, and
determining the maximum of maps in condition (2) or (3) leads to the optimal
window size r∗. This is presented in Figure 2.14 for maps in condition (2). The
corresponding plot for maps in condition (3) would be identical. If there is more
than one maximum, r∗ is defined as the mean of the maximal values [10].

2.7.3 Data Analysis and Microstate Classification

In a first run, the optimal window sizes for all patients are determined by using the
data-driven method explained in Section 2.7.2. So for each patient an individual
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Figure 2.14: This figure shows the so-called window-determining function for one
patient. It plots the window size given in ED against the number of maps in
condition (2). The maximum of this function is reached for r∗ = 0.664 and this
value is used as the optimal window size of this patient.

window size is calculated [31]. For comparison between all individuals, a standard-
ized window size has to be used since the window size directly affects microstate
properties. Therefore, in a second run, the segmentation procedure is repeated with
a fixed window size for all patients [31]. This group window size is given by the
mean of all individual window sizes.

The topographical properties of the microstates are analyzed by the location of
the microstate center of gravity [11]. This is the center of the two centroids, D1

and D2, which describe one microstate. For microstates which include more than
one map the center of all descriptors is used. As a second quantity of a microstate
the distance between the descriptors is examined [11].

The microstate duration is not calculated starting and ending at two GFP peaks
but starting and ending at the midpoint in time between the last original map of
the preceding microstate and the first original map of the following microstate [35].
Microstates consisting of one map are analyzed separately from microstates which
consist of more than one map. The former are called single map segments or single
peak segments, the latter multiple map segments [11]. This classification is done
because of the time-stability which is assumed for the microstates in this model.
Additionally the longest microstate is analyzed. These microstates are associated
with the most prominent microstate in that EEG epoch and are therefore considered
to be representative for the relevant mode of the working brain [11]. This results
in three microstate classes which are examined separately.
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For each of these three classes and each patient certain parameters are deter-
mined and analyzed according to the severity of AD [11], [31], [32], [35]:

• Mean Microstate Duration (ms): This is the mean microstate duration of all
microstates in this class. For the longest microstate it is the duration of this
specific microstate.

• Ratio Covered : This is the duration which is covered by one class divided by
the duration of the epoch.

• Centroid x-Position: This is the mean x-position of the center of D1 and D2

of this microstate class according to the introduced coordinate system (cf.
Figure 2.12).

• Centroid y-Position: This is the mean y-position of the center of D1 and D2

of this microstate class according to the introduced coordinate system (cf.
Figure 2.12).

• Distance (ED): This is the distance between D1 and D2 of this microstate
class.

Independent of microstate classes, the following parameters are analyzed [11],
[31], [32], [35]:

• Single Peak or Single Map Segments per Second : This is the total number
of single map segments of the epoch divided by the total time of the epoch
in seconds.

• GFP Peaks per Second : This is the total number of original maps (peaks of
GFP) of the epoch divided by the total time of the epoch in seconds.

• Optimal Window Size (ED): This is the window size calculated for each
patient individually.

2.8 Clustering of EEG Recordings into Microstates

Cluster analysis is a particular way of data segmentation where the goal is to group a
collection of objects into subsets or clusters [22], [36]. All objects within one cluster
should be similar, i.e. of high homogeneity, and at the same time the dissimilarity
between the clusters should be maximized. An object itself can be described by a
set of measurements or relations. So each clustering method attempts to group the
objects by a given definition of homogeneity [22], [36]. This measurement between
two objects within the data set is often given by the Euclidean distance.



28

There are four types of classifications within the clustering methods [22]:

• Overlapping Clustering: The objects are allowed to belong to more than
one cluster.

• Partitioning Clustering: This is a type of overlapping clustering, but the
clusters are not allowed to overlap, i.e. all clusters are disjunct.

• Quasihierarchical Clustering: This classification is based on a sequence of
overlapping clustering which leads to a hierarchy.

• Hierarchical Clustering: This classification is based on a sequence of parti-
tioning clustering which leads to a hierarchy where each object only belongs
to one cluster.

One of the most popular partitioning clustering methods is the K-means algo-
rithm. This clustering method is a so-called combinatorial algorithm which means
that it works directly on the observed data without a reference to an underlying
probability model [36]. In this kind of algorithms, each observation is labeled by an
integer k ∈ {1, ...,K} with K < N where K is the previously specified number of
clusters. Since it is a partitioning method, each object is assigned to one and only
one cluster [36].

The first run is started with a initial guess for the clusters, i.e. K objects are
selected randomly. The remaining N −K objects are than assigned to the cluster
which is the most similar. Then for each cluster the new cluster center is calculated
as a mean of the assigned objects. These steps are iterated until a certain error
measure can not longer be reduced [36]. This procedure is shown in Figure 2.15.

2.8.1 A Modified K-Means Algorithm for EEG Microstate
Analysis

When analyzing EEG microstates, a modified version of the classical K-means
algorithm is used. This algorithm, called the N-microstate algorithm, and the un-
derlying model was first presented in [14] by R. Pascual-Marqui and later used by
a multitude of publications related to this research topic. This section is based
on [14] and explains the mathematical method introduced by the authors.

To get an idea of the microstate model, it is easier to consider the case of only
two electrode measurements for each time point. Then, it is possible to imagine
a 2-D plane defined by the electric potential measurements of the two electrodes.
One point on this plane corresponds to one electrode measurement. Using that
coordinate system, microstates can be introduced by defining them as the coordi-
nate vectors of a point located at unit distance from the origin. If a point is lying
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Figure 2.15: This figure shows a K-means algorithm which leads to a successful
clustering within six iterations. The different clusters are marked with three differ-
ent colors: red, green and blue. The cluster centers are tagged with crosses. This
image was taken from http://apandre.wordpress.com/visible-data/cluster-analysis,
accessed 21 November 2013.

on this line defined by a microstate, it belongs to that microstate. Hence, as long
as successive measurements remain on that line, the brain remains in the same
microstate. The distance of one point to the origin is then directly related to the
intensity of the neuronal generators corresponding to that microstate.

Formulating this in a mathematical way and for all existing electrodes, this
model results in

vt =
M∑
k=1

aktΓk (2.37)

where M is the number of microstates, vt is a map at a specific time point t, t ∈
{1, ..., T}, Γk ∈ RN a normalized (N × 1) vector representing the k-th microstate
with N being the number of electrodes and akt the intensity of the k-th microstate
at time point t.

Since the microstates are always assumed to be non-overlapping at each time
point t, there is only one akt unequal to zero. So at each time point the sum in
(2.37) is reduced to a single nonzero term which means that only one microstate
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is active. Expressing that by using constraints, the following must hold

(1) ak1t · ak2t = 0, for all k1 6= k2, for all t and
(2)

∑M
k=1 a

2
kt ≥ 0, for all t.

(2.38)

In this model, Pascual-Marqui assumed that the measurements given by (2.37)
are contaminated additively with zero mean random noise which is independent
and identically distributed for all time points. Hence,

vt =

M∑
k=1

aktΓk + Et (2.39)

where all variables are defined as in (2.37) and Et is a (N ×1) random vector. For
the average-referenced data, it is further assumed that Et has a covariance matrix
given by σ2H with H = I − ι · ι>/N where I denotes the identity matrix and
ι =

(
1, 1, . . . , 1

)>.
To reproduce that, it is necessary to go back to the original, not average refer-

enced data, denoted by (̂.). Each map is than given by

v̂t =

M∑
k=1

aktΓ̂k + Êt . (2.40)

Using the so-called linear average reference transformation matrix H, the average
referencing can by written as

vt = v̂t − ι ·
1

N
· ι> · v̂t = (I − ι · ι> · 1

N
)︸ ︷︷ ︸

=H

·v̂t . (2.41)

This results in

vt = H · v̂t =

M∑
k=1

aktH · Γ̂k︸ ︷︷ ︸
=Γk

+H · Êt︸ ︷︷ ︸
=Et

(2.42)

when applying H to (2.40). Looking at H, one can see that it is an orthogonal
projection matrix with the properties:

• H is idempotent: H2 = H

• H is self-adjoint : H = H>.

Using these properties. it is possible to calculate the covariance and the expected
value of Et. Since E(Êt) = 0 by definition and Cov(Êt) = σ2I,

E(Et) = H · E(Êt) = 0 (2.43)
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and

Cov(Et) = Cov(H · Êt) = H · Cov(Êt) ·H>

= σ2 ·H ·H> = σ2 ·H2 = σ2H .
(2.44)

Hence, Et has a covariance matrix given by σ2H.

Given the number of microstates M , the model parameters can be estimated
by minimizing the functional

F =
1

T (N − 1)

T∑
t=1

∥∥∥vt − M∑
k=1

aktΓk

∥∥∥2
(2.45)

with respect to all Γk and akt under the constraints given in (2.38) where all
variables are defined as in (2.37).

The presented algorithm to determine these parameters and to minimize F
consists of two basic steps which are alternated. For the first step, it is considered
that the linearly independent and normalized microstates Γk are given for all k =
{1, ...,M}. Then the orthogonal squared distance between each map vt and each
microstate Γk is computed

d2
kt = v>t · vt − (v>t · Γk)2 . (2.46)

This formula results from minimizing the distance between each measurement vt
and the possible microstates Γk, k = {1, ...,M}, with respect to akt

‖vt − aktΓk‖2 → 0 . (2.47)

Simplifying this expression and using the fact that all microstates are normalized
leads to

‖vt − aktΓk‖2 = (vt − aktΓk)>(vt − aktΓk)
= v>t vt − v>t aktΓk − Γ>k a

>
ktvt + Γ>k a

>
ktaktΓk

= v>t vt − akt(v>t Γk + Γ>k vt) + a2
ktΓ
>
k Γk

= v>t vt − 2aktv>t Γk + a2
kt .

(2.48)

When setting the derivative to zero, the minimum is given at akt = v>t Γk =
Γ>k vt ∈ R. The minimum value of the norm in (2.47) is then obtained by

min
akt
‖vt − aktΓk‖2 = v>t vt − 2v>t Γkv>t Γk + (v>t Γk)

2

= v>t vt − (v>t Γk)
2 .

(2.49)

Now, each map is associated with the microstate to which it is closest. Hence, the
label is

Lt = arg min
k
d2
kt . (2.50)
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To estimate the intensity given by aκt, where κ = Lt, it is calculated as follows

aκt = v>t · Γκ . (2.51)

The second step assumes the labels Lt to be given and the minimum of func-
tional F with respect to Γk is obtained by minimizing the norm

‖Vk − Γk(ak1, ak2, . . . , akm)‖2F → 0 . (2.52)

Here, Vk is the matrix only including time points with Lt = k and m ∈ {1, ..., T}
marks the number of these time points. Using Theorem 2.3.2, we can approximate
Vk in the Frobenius norm by a rank p = 1 matrix

min
Γk

‖Vk − Γk(ak1, ak2, . . . , akm)‖2F = ‖Vk − Vp‖ (2.53)

where

Vp = UΣpO
> (2.54)

and Σp is obtained from Σ of the singular value decomposition (cf. Theorem 2.3.1)
of Vk by setting all but its p largest singular values σi to zero. Since p = 1,

Γk(ak1, ak2, . . . , akm) = UΣ1O
> (2.55)

which is in fact a multiple of the first singular vector u1 of Vk. As stated in Remark
2.3.1, the eigenvectors of VkV >k , which can also be computed as

VkV
>
k =

∑
t/Lt=k

vt · v>t (2.56)

where the summation only includes time points with Lt = k, correspond with the
left singular vectors of Vk. Hence, microstate Γk can be obtained as the eigenvector
of the largest eigenvalue of VkV >k . Since the matrix VkV >k is positive semidefinit,
all eigenvalues λi are greater or equal to zero. Because of that, it is enough to just
claim the largest eigenvalue instead of the largest positive eigenvalue. Therefore,
Γk is given by

Γk = arg max
x

x>VkV
>
k x with ‖x‖ = 1 (2.57)

when using the Rayleigh quotient as in Definition 2.3.3. If this is done for all
microstates Γk, k = {1, ...,M}, one gets an estimate for the microstates in this
iteration. The algorithm takes turns between these two basic steps to finally reach
the minimum of functional Fgiven in (2.45). This is done by initially guess either
the microstates Γk with k = {1, ...,M} or the labels Lt with t ∈ {1, ..., T}. The
algorithm is instructed to terminate if successive iterations of the functional F
differ negligibly.
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The minimum of F , in this case, is an estimator for the noise variance σ2

introduced in (2.39) and given by

Fmin = σ2 =

T∑
t=1

(v>t · vt − (Γ>κ · vt)2)/(T · (N − 1)) (2.58)

where κ = Lt. To measure the goodness of fit of this model, the squared correlation
coefficient can be calculated as

R2 = 1− σ2/σ2
D (2.59)

where

σ2
D =

T∑
t=1

(v>t · vt)/(T · (N − 1)) (2.60)

is the data variance of the EEG signal.

As many clustering algorithms, this one presented in [14] does not necessarily
find the absolute minimum of F since it is very sensitive to the selection of the
starting points. So it is possible that it terminates at a local minimum or saddle
point. To prevent these happenings, the algorithm is started several times using
different initializations. These initial microstates are obtained by randomly selected
normalized maps vt from the given data. Using all possible maps as the first mi-
crostate and randomly select a certain number of other maps to complete the
number of needed microstates, the algorithm is started T times since T is the
number of time points, i.e. number of maps. The result which corresponds to the
minimal value of F is then selected and used for further computations.

The segmentation of a whole four second epoch of spontaneous EEG by using
the clustering algorithm is shown in Figure 2.16. Figure 2.17 describes the clustering
algorithm for a simplified case of ten original maps and two microstate classes to
get an idea of the working mode.
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Figure 2.16: This figure shows the segmentation of a four second EEG epoch by
using cluster analysis. The first part is an EEG recorded from 42 electrodes from a
patient with closed eyes. The function at the bottom represents the GFP related
to the EEG. Four dominant microstate classes were found by using a modified K-
means clustering. These microstates are color-coded in the GFP curve and marked
by numbers. This image was taken from [30].
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Figure 2.17: This figure describes the clustering of a sequence of ten original maps
into two microstate classes. In the first box the maps are given with their potential
landscape. Two maps have been randomly selected to be the initial prototype
microstate classes. In the second box the first run of the algorithm is explained.
Here, the similarity is calculated between each map and the microstate classes A
(black) and B (white) using a arbitrary clustering criterion and plotted in the upper
part of the box. The maps are assigned to the more similar class shown by black
or white symbols. For each class, the prototypes are updated by combining the
information given by all maps belonging to that class. In the third box the second
iteration is shown. The same procedure as in box two is applied. It later runs until
no more changes of the prototypes occur and these last prototypes represent the
microstate classes of this selection of maps. This is given by the last box of this
figure. This image was taken from [37].
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2.8.2 Clustering Procedure

As explained in Section 2.8.1, the newly introduced modified K-means algorithm
needs a prefixed number of microstates M or in this case microstate classes. The
optimal number is chosen in dependence on [37]. In this paper, the optimal number
of microstate classes is determined by the minimum of a cross-validation index.
This index considers the number of classes used on the one hand and the percent
variance explained by the class mean maps. The class mean maps are the mean of
all maps within one class. This validation method was first presented in [14]. The
optimal number of microstate classes was found to be four.

Following the procedure in [35], in a first run all original maps of each patient are
clustered into four microstate classes using the algorithm in Section 2.8.1. Then
individual model maps are computed for all patients. This is done by averaging
all member maps of one class. Here, the polarity of the member maps has to
be permuted to obtain minimal variance of the mean [35]. After that, four so-
called group model maps are computed from the individual model maps. For this
computation the modified K-means algorithm introduced in Section 2.8.1 is used
again to cluster the individual model maps obtained in the previous step. It is
constrained to produce one-to-one assignments of the patients’ individual model
maps to the new group model maps [35]. This is done to ensure that each individual
model map of each subject is assigned to one of the newly calculated group model
maps. These are named randomly as microstate class ’A’, ’B’, ’C’ and ’D’ following
previous papers [35], [38]. In a final step, each original map is assigned to one of the
four microstate classes which are represented by the group model maps. Successive
original maps which are assigned to the same microstate class are then referred to
as one single microstate.

2.8.3 Data Analysis of Microstate Classes

Following parameters are computed for all microstate classes for each patient [32],
[35]:

• Mean Microstate Duration (ms): This is the mean duration of all microstates
belonging to one class starting and ending at the midpoint in time between
the last original map of the preceding microstate and the first original map
of the following microstate.

• Occurrences Per Second : This is the number of occurrences of the mi-
crostates of one class per second.

• Ratio Covered : This is ratio of time covered by all microstates of a given
class.



CHAPTER 2. MATERIAL AND METHODS 37

Additionally, global parameters are calculated for each individual [32], [35]:

• GFP Peaks per Second : This is the total number of original maps (peaks of
GFP) of the epoch divided by the total time of the epoch in seconds.

• Mean Microstate Duration All Classes (ms): This is the mean duration of all
microstates of all possible classes of one patient.

• Duration of Longest Microstate (ms): This is the duration of the longest
microstate of this patient in the analyzed epoch.

• Measure of Fit: This is the measure of goodness of fit of the algorithm
calculated as in (2.59). It is computed when determining the four microstate
classes of each patient and a second time for the four group model maps.

The visualization of the electric potential landscape of the four microstate
classes is done by using the software EEGLAB Toolbox for MATLAB [39].

2.9 Statistical Analysis of Calculated Parameter

In a first analysis, all parameters defined in Section 2.7.3 and Section 2.8.3 for
all 96 patients were analyzed versus MMSE score by using a multiple linear least
squares regression as described in Section 2.3.4. The MMSE score was introduced
both as a quadratic and a linear regressor which results in the following model

y = β0 + β1MMSE + β2MMSE2 + ε . (2.61)

For this model the null hypothesis

H0 : β1 = β2 = 0 (2.62)

is tested by Fisher’s F-test for a least squares quadratic regression model by us-
ing the MATLAB function regstats [40]. For each parameter of the analysis the
significance p and the coefficient of determination R2 were calculated. The signif-
icance obtained by the F-test is referred to as significant or highly significant if
p < 0.05 and p < 0.01 respectively.

In a second approach, the parameters obtained for the 79 patients with more
information given were analyzed versus MMSE score by using a multiple quadratic
least squares regression including demographic variables. This is a common ap-
proach when dealing with medical data sets since these variables can have a strong
influence on the measurements. For some patients, some of the demographic vari-
ables are missing, which finally results in 64 observations. The demographic vari-
ables age, sex, degree of education and duration of AD were used as additional
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regressors. Age, duration and degree of education were applied by both linear and
quadratic terms whereas sex was introduced only by a linear term. This results in

y =β0 + β1MMSE + β2MMSE2 + β3Age+ β4Age
2+

β5Sex+ β6DE + β7DE
2 + β8DAD + β9DAD

2 + ε
(2.63)

where DE denotes the degree of education and DAD the duration of AD. The null
hypothesis

H0 : β1 = β2 = 0 (2.64)

is tested by Fisher’s F-test for a least squares quadratic regression model by using
the MATLAB function regstats [40]. For this model the significance p and the
coefficient of determination R2 were calculated. The significance obtained by the
F-test is referred to as significant or highly significant if p < 0.05 and p < 0.01
respectively. Subtracting the influences of the demographic variables, the dependent
parameters were corrected and plotted versus their MMSE score.
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Results

This chapter is concerned with the results obtained by applying the different con-
cepts and procedures explained in Chapter 2 to the EEG data provided by the
PRODEM study. The first section presents the EEG measures versus MMSE scores
using a standard regression model for the segmentation concept and the clustering
procedure. The second part discusses the results obtained by a regression model
using demographic variables like age, sex, duration of AD and degree of education.
Again the first subsection is used to explain the results of the segmentation and
the second one for the clustering. Each subsection starts with the main results and
is followed by the significant parameters and their explanation.

3.1 Standard Regression Model

In this part, a common quadratic regression model as in (2.61) is used to obtain the
statistical results for the whole database including 96 patients. For each parameter
the significance p and the coefficient of determination R2 is calculated. These are
determined by Fisher’s F-test for a least squares quadratic regression model. The
significance obtained by the F-test is referred to as significant or highly significant
which means p < 0.05 and p < 0.01 respectively. Since for all used approaches
the selection of the original maps stays the same, the parameter GFP Peaks per
Second is similar for segmentation and clustering. For this general parameter the
regression parameters obtained by MATLAB are stated in Table 3.1. The results
are also explained in Figure 3.1.

39
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Parameter Coef StdError tStat pVal
Intercept 18.08700 0.76679 23.58800 5 · 10−41

MMSE 0.01426 0.31048 0.04594 0.96346

MMSE2 -0.00859 0.02568 -0.33451 0.73875

Table 3.1: In this table, the regression parameters for the standard regression
model, cf. (2.61), when analyzing the parameter GFP Peaks per Second are given.
Coef indicates the coefficient, StdError the standard error of the estimator, tStat
and pVal the t statistics and p-values for the coefficients. The regression resulted
in p = 0.5623 and R2 = 0.0123.

Figure 3.1: This figure shows the parameter GFP Peaks per Second versus the
MMSE score for each patient. The average number of GFP peaks is 17.87 per
second with a standard deviation of 2.55. A quadratic regression was fitted with
p = 0.5623 and R2 = 0.0123.

3.1.1 Segmentation of EEG Recordings into Microstates

In this section, the detailed results for segmenting EEG recordings into microstates
are presented. As introduced in Section 2.7.3 the obtained microstates are divided
in three classes: the longest microstate, single map segments and multiple map
segments. For both, the individual window size and the group window size, the
parameters are analyzed separately. The corresponding results are explained in
the same order after discussing the main parameters relevant for both ways of
examination. One is Optimal Window Size, the other two Single Map Segments per
Second for both the individual and the group window size. All three are presented
in Figures 3.2, 3.3, 3.4. The detailed results are given in Table 3.2.
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Figure 3.2: Here, the Optimal Window Size in ED versus the MMSE score for
each patient is presented. The average size for all patients is 0.56 with standard
deviation of 0.16 which corresponds to the group window size.

Figure 3.3: This figure shows the parameter Single Map Segments per Second
versus MMSE score for each patient using the individual window size. The average
number is 4.91 with a standard deviation of 2.05.

3.1.1.1 Individual Window Size

In the following, results calculated for each patient by using the individual window
size are presented. The three classes longest microstate, single map segments and
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Figure 3.4: Here, the parameter Single Map Segments per Second versus MMSE
score for each patient using the group window size is presented. The average num-
ber is 4.90 with a standard deviation of 1.97.

Parameter p R2

Optimal Window Size 0.2586 0.0287

Single Peak Segments/s
0.9605 9 · 10−4

- Individual Window
Single Peak Segments/s

0.6033 0.0108
- Group Window

Table 3.2: In this table, the significance p and the coefficient of determination R2

for the general parameters of the segmentation procedure are given. Starting with
the Optimal Window Size in ED and then stating the Single Map Segments per
Second for both the individual and the group window size.

multiple map segments are shown in Table 3.3 and the magnitude of the duration
of all microstate classes is stated in Table 3.4.



CHAPTER 3. RESULTS 43

Longest Microstate
Parameter p R2

Mean Duration 0.7665 0.0057

Ratio Covered 0.7665 0.0057

Centroid x-Position 0.1506 0.0399

Centroid y-Position 0.9332 0.0015

Distance 0.6361 0.0097

Multiple Map Segments
Parameter p R2

Mean Duration 0.5285 0.0136

Ratio Covered 0.9430 0.0013

Centroid x-Position 0.2684 0.0279

Centroid y-Position 0.0771 0.0536

Distance 0.4372 0.0176

Single Map Segments
Parameter p R2

Mean Duration 0.2967 0.0258

Ratio Covered 0.7233 0.0069

Centroid x-Position 0.2617 0.0284

Centroid y-Position 0.1730 0.0370

Distance 0.7531 0.0061

Table 3.3: In this table, the significance p and the coefficient of determination R2

for the parameters using the individual window size are presented.

Parameter Mean STD
Longest Microstate 570.78 319.88

Multiple Map Segments 212.69 75.51

Single Map Segments 55.50 9.12

Table 3.4: In this table, the mean and the standard deviation of the parameter
Mean Microstate Duration are given in ms. This is stated for each of the three
microstate classes for the individual window size.
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3.1.1.2 Group Window Size

The results for each patient by using the group window size are presented. The three
classes longest microstate, single map segments and multiple map segments are
shown in the corresponding order in Table 3.5 and the magnitude of the duration
of all microstate classes is stated in Table 3.6.

Longest Microstate
Parameter p R2

Mean Duration 0.1064 0.0470

Ratio Covered 0.1064 0.0470

Centroid x-Position 0.0116 * 0.0915 *
Centroid y-Position 0.6877 0.0081

Distance 0.6417 0.0095

Multiple Map Segments
Parameter p R2

Mean Duration 0.6684 0.0086

Ratio Covered 0.9326 0.0015

Centroid x-Position 0.1080 0.0467

Centroid y-Position 0.1892 0.0352

Distance 0.3654 0.0214

Single Map Segments
Parameter p R2

Mean Duration 0.1325 0.0425

Ratio Covered 0.8720 0.0029

Centroid x-Position 0.3478 0.0225

Centroid y-Position 0.2615 0.0284

Distance 0.9164 0.0019

Table 3.5: In this table, the significance p and the coefficient of determination R2

for the parameters using the group window size are presented. Significant results
are marked with *.

Here, the results for one parameter are significant. This is the Centroid x-
Position for the longest microstate class shown in Figure 3.5. The quadratic re-
gression was characterized by an increase for MMSE scores between 26 and 20,
and a slight decrease from 20 downwards. The regression parameters are given in
Table 3.7.
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Parameter Mean STD
Longest Microstate 620.28 244.04

Multiple Map Segments 254.69 92.73

Single Map Segments 55.62 8.88

Table 3.6: In this table, the mean and the standard deviation of the parameter
Mean Microstate Duration are given in ms. This is stated for each of the three
microstate classes for the group window size.

Figure 3.5: Here, the Centroid x-Position in ED for the longest microstate class
of the group window approach versus the MMSE score is shown. The quadratic
regression was fitted to the data with p = 0.0116 and R2 = 0.0915.

Parameter Coef StdError tStat pVal
Intercept 2.98320 0.00658 453.38000 2 · 10−157

MMSE 0.00690 0.00266 2.58840 0.01119

MMSE2 -0.00045 0.00022 -2.05180 0.04200

Table 3.7: In this table, the regression parameters for the standard regression
model, cf. (2.61), when analyzing the parameter Centroid x-Position for the longest
microstate class using the group window size are given. Coef indicates the coeffi-
cient, StdError the standard error of the estimator, tStat and pVal the t statistics
and p-values for the coefficients. The quadratic regression was fitted to the data
with p = 0.0116 and R2 = 0.0915.
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3.1.2 Clustering of EEG Recordings into Microstates

In this section, the results of the clustering procedure described in Section 2.8 are
presented. First, a general parameter, the Data Variance as explained in (2.60), is
plotted in Figure 3.6.

Figure 3.6: This figure shows the data variance computed as in (2.60) versus the
MMSE score of each patient.

Now, the results for the clustering procedure itself are presented. The Measure
of Fit, defined in (2.59), for the applied model when determining the four microstate
classes of each patient is discussed first in Figure 3.7. The later on applying of the
algorithm when computing the group model maps resulted in a squared correlation
coefficient R2 = 0.5997. Using EEGLAB, the group model maps are plotted for a
better visualization. This is presented in Figure 3.8.

The detailed results for each parameter and microstate class are given in Table
3.8 and the magnitude of the duration of the microstate classes follows in Table
3.9.

Here, for one parameter the results are significant. This is the Ratio Covered by
microstate class C shown in Figure 3.9. The quadratic regression was characterized
by an decrease for MMSE scores between 26 and 20, and an increase from 20
downwards. The parameters obtained by the regression analysis are stated in Table
3.10.
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Figure 3.7: This plot illustrates the Measure of Fit of the applied model by using
the squared correlation coefficient defined in (2.59) versus the MMSE score of all
patients. The average value is 0.73 with a standard deviation of 0.07.

Figure 3.8: This figure shows the scalp maps given by the calculated group model
maps. The four maps are named with Microstate Class ’A’, ’B’, ’C’ and ’D’ from
left to right, starting with the left upper corner.
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Class A
Parameter p R2

Mean Duration 0.9697 0.0007

Ratio Covered 0.8471 0.0034

Occurrences/s 0.9348 0.0014

Class B
Parameter p R2

Mean Duration 0.9081 0.0021

Ratio Covered 0.6420 0.0095

Occurrences/s 0.6961 0.0078

Class C
Parameter p R2

Mean Duration 0.5615 0.0123

Ratio Covered 0.0431 * 0.0654 *
Occurrences/s 0.1910 0.0350

Class D
Parameter p R2

Mean Duration 0.4433 0.0173

Ratio Covered 0.2372 0.0305

Occurrences/s 0.3360 0.0232

Table 3.8: In this table, the significance p and the coefficient of determination R2

for the parameters of the clustering procedure are presented. Significant results are
marked with *.

Parameter Mean STD
Class A 65.61 16.20

Class B 65.04 15.97

Class C 66.15 14.94

Class D 69.32 24.60

Table 3.9: In this table, the average Mean Microstate Duration and its standard
deviation in ms are given for each patient and microstate class.
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Figure 3.9: Here, the Ratio Covered by microstate class C versus the MMSE score
is shown. The quadratic regression was fitted to the data with p = 0.0431 and
R2 = 0.0654.

Parameter Coef StdError tStat pVal
Intercept 0.25560 0.02032 12.57700 9 · 10−22

MMSE -0.01937 0.00823 -2.35380 0.02069

MMSE2 0.00136 0.00068 2.00130 0.04828

Table 3.10: In this table, the regression parameters for the standard regression
model, cf. (2.61), when analyzing the parameter Ratio Covered by microstate class
C using the group window size are given. Coef indicates the coefficient, StdError
the standard error of the estimator, tStat and pVal the t statistics and p-values for
the coefficients. The quadratic regression was fitted to the data with p = 0.0431
and R2 = 0.0654.
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3.2 Regression Model with Demographic Variables

When applying the second regression model as in (2.63), the demographic variables
age, sex, degree of education and duration of AD are involved. Since for some of
the 79 patients demographic variables are missing, the analysis results in only 64
observations. For each parameter the significance p and the coefficient of determi-
nation R2 is calculated. These are determined by Fisher’s F-test for a least squares
quadratic regression model. The significance obtained by the F-test is referred to as
significant or highly significant which means p < 0.05 and p < 0.01 respectively.
Subtracting the influences of the demographic variables, the dependent parameters
were corrected and plotted versus their MMSE score.

Since for all used approaches the selection of the original maps stays the same,
the parameter GFP Peaks per Second is similar for segmentation and clustering.
For this general parameter the regression parameters obtained by MATLAB are
stated in Table 3.11. The results are also explained in Figure 3.10.

Parameter Coef StdError tStat pVal
Intercept 42.3650 26.97800 1.57040 0.12217

MMSE -0.09231 1.66360 -0.05549 0.95596

MMSE2 0.00997 0.03961 0.25167 0.80225

Age -0.59893 0.62343 -0.96070 0.34099

Age2 0.00358 0.00442 0.80996 0.42152

Sex -1.04870 0.86726 -1.20920 0.23186

DE -1.09320 1.17620 -0.92942 0.35681

DE2 0.10106 0.16729 0.60408 0.54832

DAD 0.02157 0.05328 0.40482 0.68721

DAD2 -0.00010 0.00048 −0.21342 0.83181

Table 3.11: In this table, the regression parameters for the regression model using
demographic variables, cf. (2.63), when analyzing the parameter GFP Peaks per
Second is given. Coef indicates the coefficient, StdError the standard error of the
estimator, tStat and pVal the t statistics and p-values for the coefficients. The
regression led to p = 0.0564 and R2 = 0.2153.

3.2.1 Segmentation of EEG Recordings into Microstates

In this section, the detailed results for segmenting EEG recordings into microstates
are presented. As introduced in Section 2.7.3, the obtained microstates are divided
in three classes: the longest microstate, single map segments and multiple map
segments. For both, the individual window size and the group window size, these
parameters are analyzed separately. The corresponding results are explained in
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Figure 3.10: This figure shows the parameter GFP Peaks per Second versus the
MMSE score for each patient. The average number of GFP peaks is 18.90 per
second with a standard deviation of 3.00. A quadratic regression was fitted with
p = 0.0564 and R2 = 0.2153.

the same order after discussing the main parameters relevant for both ways of
examination. One is Optimal Window Size, the other two Single Maps Segments per
Second for both the individual and the group window size. All three are presented
in Figures 3.11, 3.12, 3.13. The detailed results are given in Table 3.12.

Figure 3.11: Here, the Optimal Window Size in ED versus the MMSE score for
each patient is presented. The average optimal window size for all patients is 0.57
with standard deviation of 0.14 which corresponds to the group window size.
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Figure 3.12: This figure shows the parameter Single Map Segments per Second
versus MMSE score for each patient using the individual window size. The average
number of single map segments is 4.98 with a standard deviation of 2.01.

Figure 3.13: Here, the parameter Single Map Segments per Second versus MMSE
score for each patient using the group window size is presented. The average num-
ber of single map segments is 4.94 with a standard deviation of 1.81.

3.2.1.1 Individual Window Size

In this part, the results calculated for each patient by using the individual window
size are presented. The three classes longest microstate, single map segments and
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Parameter p R2

Optimal Window Size 0.4956 0.1577

Single Peak Segments/s
0.8499 0.1934

- Individual Window
Single Peak Segments/s

0.9574 0.1920
- Group Window

Table 3.12: In this table, the significance p and the coefficient of determination
R2 for the general parameters of the segmentation procedure are given. Starting
with the Optimal Window Size in ED and then stating the Single Map Segments
per Second for both the individual and the group window size.

multiple map segments are shown in the corresponding order in Table 3.13. Later
on, the magnitude of the duration of all microstate classes is provided in Table
3.14.

For one parameter, namely the Mean Microstate Duration for the single map
segment class, the results were significant. The corresponding plot is shown in
Figure 3.14 and the regression parameters in Table 3.15. The regressions is char-
acterized by an increase for more severe impairment.

Figure 3.14: Here, the Mean Microstate Duration for the single map segment class
of the individual window approach versus the MMSE score is shown. The quadratic
regression was fitted to the data with p = 0.0455 and R2 = 0.1733.
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Longest Microstate
Parameter p R2

Mean Duration 0.8985 0.1064

Ratio Covered 0.8985 0.1064

Centroid x-Position 0.4918 0.1483

Centroid y-Position 0.4210 0.1537

Distance 0.3762 0.1750

Multiple Map Segments
Parameter p R2

Mean Duration 0.7135 0.0986

Ratio Covered 0.2440 0.1521

Centroid x-Position 0.2562 0.1497

Centroid y-Position 0.1747 0.2138

Distance 0.1726 0.1633

Single Map Segments
Parameter p R2

Mean Duration 0.0455 * 0.1733 *
Ratio Covered 0.1121 0.2825

Centroid x-Position 0.0669 0.1918

Centroid y-Position 0.4128 0.1666

Distance 0.9794 0.1540

Table 3.13: In this table, the significance p and the coefficient of determination
R2 for the parameters using the individual window size are presented. Significant
results are marked with *.

Parameter Mean STD
Longest Microstate 563.44 301.45

Multiple Map Segments 207.51 77.78

Single Map Segments 54.12 9.95

Table 3.14: In this table, the mean and the standard deviation of the parameter
Mean Microstate Duration are given in ms. This is stated for each of the three
microstate classes for the individual window size.

3.2.1.2 Group Window Size

In this section, the results calculated for each patient by using the group window
size are presented. The three classes longest microstate, single map segments and
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Parameter Coef StdError tStat pVal
Intercept 0.00450 0.08881 0.05068 0.95977

MMSE 0.00434 0.00548 0.79316 0.43115

MMSE2 -0.00013 0.00013 -0.98458 0.32922

Age 0.00012 0.00205 0.05649 0.95516

Age2 1 · 10−7 0.00001 0.00954 0.99242

Sex 0.00221 0.00285 0.77579 0.44126

DE 0.00356 0.00387 0.91996 0.36169

DE2 -0.00030 0.00055 -0.53817 0.59267

DAD 0.00003 0.00018 0.18851 0.85118

DAD2 -2 · 10−7 1 · 10−6 -0.11928 0.90550

Table 3.15: In this table, the regression parameters for the regression model using
demographic variables, cf. (2.63), when analyzing the parameter Mean Microstate
Duration for the single map segment class and applying the individual window
size are given. Coef indicates the coefficient, StdError the standard error of the
estimator, tStat and pVal the t statistics and p-values for the coefficients. The
regression led to p = 0.0455 and R2 = 0.1733

multiple map segments are shown in the corresponding order in Table 3.16. Later
on the magnitude of the duration of all microstate classes is provided in Table 3.17.

Again for one parameter, namely the Centroid x-Position for the longest mi-
crostate class, the statistical analysis led to significant results. The corresponding
plot is shown in Figure 3.15. The regression parameters are stated in Table 3.18.
Again the regression was characterized by a slight increase for more severe impair-
ment.
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Longest Microstate
Parameter p R2

Mean Duration 0.4904 0.1242

Ratio Covered 0.4904 0.1242

Centroid x-Position 0.0454 * 0.2245 *
Centroid y-Position 0.6439 0.0616

Distance 0.7171 0.0894

Multiple Map Segments
Parameter p R2

Mean Duration 0.8349 0.0543

Ratio Covered 0.3190 0.1990

Centroid x-Position 0.0853 0.1874

Centroid y-Position 0.3267 0.1777

Distance 0.0909 0.2182

Single Map Segments
Parameter p R2

Mean Duration 0.0590 0.1533

Ratio Covered 0.5122 0.2164

Centroid x-Position 0.2439 0.1006

Centroid y-Position 0.3249 0.1615

Distance 0.9824 0.1607

Table 3.16: In this table, the significance p and the coefficient of determination R2

for the parameters using the group window size are presented. Significant results
are marked with *.

Parameter Mean STD
Longest Microstate 616.12 233.50

Multiple Map Segments 252.51 117.60

Single Map Segments 54.61 9.91

Table 3.17: In this table, the mean and the standard deviation of the parameter
Mean Microstate Duration are given in ms. This is stated for each of the three
microstate classes for the group window size.
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Figure 3.15: Here, the Centroid x-Position for the longest microstate of the group
window approach versus the MMSE score is shown. The quadratic regression was
fitted to the data with p = 0.0454 and R2 = 0.2245.

Parameter Coef StdError tStat pVal
Intercept 2.66640 0.14697 18.14200 1.2 · 10−24

MMSE 0.01116 0.00906 1.23160 0.22342

MMSE2 -0.00030 0.00022 -1.40660 0.16527

Age 0.00660 0.00340 1.94300 0.05724

Age2 -0.00005 0.00002 -1.87990 0.06552

Sex 0.00586 0.00472 1.24060 0.22013

DE 0.00055 0.00641 0.08506 0.93253

DE2 -0.00021 0.00091 -0.23484 0.81522

DAD -0.00010 0.00029 -0.35752 0.72210

DAD2 -8 · 10−8 0.00001 -0.32268 0.74819

Table 3.18: In this table, the regression parameters for the regression model us-
ing demographic variables, cf. (2.63), when analyzing the parameter Centroid x-
Position for the longest microstate class and the group window size approach are
given. Coef indicates the coefficient, StdError the standard error of the estimator,
tStat and pVal the t statistics and p-values for the coefficients. The regression led
to p = 0.0454 and R2 = 0.2245
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3.2.2 Clustering of EEG Recordings into Microstates

In this section, the results of the clustering procedure described in Section 2.8 are
presented. First, a general parameter, the data variance as explained in (2.60), is
plotted in Figure 3.16.

Figure 3.16: This figure shows the data variance computed as in (2.60) versus the
MMSE score of each patient.

Now, the results for the clustering procedure itself are presented. The Measure
of Fit, defined in (2.59), for the applied model when determining the four microstate
classes of each patient is discussed first in Figure 3.17. The later on applying of the
algorithm when computing the group model maps resulted in a squared correlation
coefficient R2 = 0.6072. Using EEGLAB, the group model maps are plotted for a
better visualization. This is presented in Figure 3.18.

The detailed results for each parameter and microstate class are given in the
Tables 3.19 and the magnitude of the duration of the microstate classes follows in
Table 3.20.

For the parameter Ratio Covered by microstate class C the statistical analysis
led to significant results. The corresponding plot is shown in Figure 3.19. The
regression is indicated by a decrease for more severe impairment caused by AD.
The parameters of the regression are shown in Figure 3.21.
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Figure 3.17: This plot illustrates the Measure of Fit of the applied model by using
the squared correlation coefficient defined in (2.59) versus the MMSE score of all
patients. The average value is 0.70 with a standard deviation of 0.08.

Figure 3.18: This figure shows the scalp maps given by the calculated group model
maps. The four maps are named with Microstate Class ’A’, ’B’, ’C’ and ’D’ from
left to right, starting with the left upper corner. These differ from the maps in
Figure 3.8 since less patients were included in the calculation. Here, there are also
two maps with diagonal isopotential lines, one with more or less horizontal ones
as before. Only map D (lower right corner) differs more significantly from map C
(lower left corner) in Figure 3.8.
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Class A
Parameter p R2

Mean Duration 0.1557 0.1126

Ratio Covered 0.2558 0.1196

Occurrences/s 0.9173 0.1824

Class B
Parameter p R2

Mean Duration 0.2142 0.1697

Ratio Covered 0.3145 0.1927

Occurrences/s 0.9689 0.1226

Class C
Parameter p R2

Mean Duration 0.8531 0.1283

Ratio Covered 0.0247 * 0.2145 *
Occurrences/s 0.0572 0.1258
hline

Class D
Parameter p R2

Mean Duration 0.3798 0.1132

Ratio Covered 0.4988 0.1398

Occurrences/s 0.3038 0.1681

Table 3.19: In this table, the significance p and the coefficient of determination
R2 for the parameters of the clustering procedure are presented. Significant results
are marked with *.

Parameter Mean STD
Class A 72.10 23.42

Class B 65.32 16.21

Class C 65.52 14.58

Class D 63.61 15.35

Table 3.20: In this table, the average Mean Microstate Duration and its standard
deviation in ms are given for each patient and microstate class.
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Figure 3.19: Here, the Ratio Covered by microstate class C versus the MMSE
score is shown. The quadratic regression was fitted to the data with p = 0.0247
and R2 = 0.2145.

Parameter Coef StdError tStat pVal
Intercept 0.82682 0.64362 1.28460 0.20440

MMSE -0.01304 0.03969 -0.32859 0.74374

MMSE2 0.00019 0.00095 0.19679 0.84473

Age -0.01216 0.01487 -0.81746 0.41726

Age2 0.00009 0.00011 0.82296 0.41415

Sex -0.00097 0.02069 -0.04710 0.96261

DE 0.01771 0.02806 0.63122 0.53056

DE2 -0.00211 0.00399 -0.53095 0.59763

DAD -0.00018 0.00127 -0.14077 0.88858

DAD2 -0.00001 0.00001 -0.45083 0.65392

Table 3.21: In this table, the regression parameters for the regression model using
demographic variables, cf. (2.63), when analyzing the parameter Ratio Covered by
microstate class C are given. Coef indicates the coefficient, StdError the stan-
dard error of the estimator, tStat and pVal the t statistics and p-values for the
coefficients. The regression led to p = 0.0247 and R2 = 0.2145





Chapter 4

Discussion

This chapter sums up and discusses the findings of this work provided in Chapter
3. The results are compared to other publications in the research field of EEG
microstates and the present scientific knowledge. The weak points and problems
of the used methods are analyzed and some critical thoughts are expressed. Again
the terms significant and highly significant will be used for the results of the
quadratic regression obtained by the F-test if the significance p < 0.05 and p <
0.01 respectively. Starting with the results of the first regression model and later
on followed by the second one, the main results are now presented.

Standard Regression Model

• H1
0 : The EEG microstate duration shortens in the course of AD.

The analysis of the EEG microstates of the 96 probable AD patients revealed
no significant changes in duration. For both, the segmentation and the clustering
procedure, the results could not document a shortening of EEG microstate duration.

• H2
0 : The topography of the microstates’ electric potential landscapes changes

in the course of AD.

Generally, the examining of the topography of the microstates by using the seg-
mentation procedure based on the locations of the positive and negative potential
areas revealed no significant changes. There was only one significant regression
for the Centroid x-Position parameter which was found by analyzing the longest
microstate class of the group window size. The quadratic regression was charac-
terized by an increase for MMSE scores between 26 and 20, and a slight decrease
from 20 downwards.

• H3
0 : The characteristics, e.g. occurrences, duration or ratio, of specific mi-

crostate classes change in the course of AD.
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Only one significant change could be found when using the clustering procedure.
This was the Ratio Covered by Microstate Class C which was described by an
decrease for MMSE scores between 26 and 20, and an increase from 20 downwards.

Regression Model with Demographic Variables

• H1
0 : The EEG microstate duration shortens in the course of AD.

The analysis of the EEG microstates of the 79 probable AD patients revealed
no significant changes in duration. For both, the segmentation and the clustering
procedure, the results could not document a shortening of EEG microstate duration.

• H2
0 : The topography of the microstates’ electric potential landscapes changes

in the course of AD.

Generally, the examining of the topography of the microstates by using the segmen-
tation procedure based on the locations of the positive and negative potential areas
revealed no significant changes. There was only one significant result analyzing the
Centroid x-Position for the longest microstate class and the group window ap-
proach. The regression showed a slight increase for more severe impairment which
remained stable after MMSE scores of 20.

• H3
0 : The characteristics, e.g. occurrences, duration or ratio, of specific mi-

crostate classes change in the course of AD.

There were two significant changes in the characteristics of certain microstate
classes. For the individual window size approach of the segmentation procedure,
this revealed an increase of duration for more severe impairment for the single map
segment class. The regression obtained was characterized by an increase which
sagged after MMSE score 20. For the clustering procedure, there was also one sig-
nificant result for microstate class C. The Ratio Covered showed a strong decrease
for more severe impairment.

Looking at the results obtained by the second regression model which takes
the demographic variables age, sex, duration of AD and degree of education into
account, this regression leads to higher R2 values throughout all parameters which
have been calculated. On the other hand, the inspection of the regression param-
eters obtained for the demographic parameters reveals no significance for them.
Since the regression including demographic variables is the more common one in
the medical research field, only the results obtained by this regression are compared
with other papers and publications in the following part of the section.

There are only few papers which deal with EEG microstate alterations of sub-
jects with AD. In all cases, the patients are compared with a group of healthy
controls. These papers found that the microstate duration decreases with cogni-
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tive impairment. In [11], the analysis resulted in a decreased microstate duration
for the longest microstate class and an anteriorisation of the electric fields on the
scalp for more severe AD. When observing the results for the resting condition, [12]
revealed a shortened EEG microstate duration and an increase in number of single
map segments for impaired or demented subjects. Another comparable paper found
that the optimal window size gets bigger with more severe cognitive impairment.
Also the microstate duration shortens and the potential areas tend to more anterior
positions [13]. The magnitude of the parameters obtained by this thesis is in the
same range as in the previous done research works.

Starting with the selection of the original maps, one has to consider the following
problem. Since the GFP as a function of time is very different for some patients,
the automatic selection by using an specifically instructed algorithm is hard to
implement. For some patients the GFP changes very quickly and therefore results
in a constantly increasing and decreasing function. This results in a high number
of GFP peaks, i.e. local maxima, to be selected as original maps. Other patients’
EEG signals have a quite steady GFP which increases and decreases slowly. These
patients have a quite low number of GFP peaks. For that reason, the automatic
selection is not always efficient. This also leads to a strongly varying number of
GFP peaks within the study which does not allow to make statements about the
changes of the number of GFP peaks in the course of AD. The highly different
GFP functions of two patients are shown in Figure 4.1 and 4.2. The number of
GFP peaks of the first patient is more than a double of the second one.

Figure 4.1: Plot of the GFP and GMD as functions of time for a three second
EEG epoch of a patient in the study. The patient’s GFP function varies a lot and
results in 60 GFP peaks, marked with small, red circles for the whole three second
epoch. The green horizontal line indicates the mean of the GFP function.
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Figure 4.2: Plot of the GFP and GMD as functions of time for a three second
EEG epoch of a patient in the study. The patient’s GFP function varies slowly and
results in 29 GFP peaks, marked with small, red circles for the whole three second
epoch. The green horizontal line indicates the mean of the GFP function.

There is only one paper to compare the general result of the parameter GFP
Peaks per Second, presented in Figure 3.10, with average of 18.90 (σ = 3.00),
to. In this paper, the average number of GFP peaks per second of patients in rest
with eyes closed is 22.7 (σ = 3.3) for demented (MMSE score under 21) and 22.2
(σ = 3.1) for impaired subjects (MMSE score under 24) [12].

Another problem occurs when using the segmentation approach related to the
optimal window sizes. When looking at Figure 3.11, it is clear that these are vary-
ing very much and make a comparison between patients very difficult. The mean
optimal window size is 0.57 (σ = 0.14). Compared to [13], where the optimal win-
dow size was smallest for healthy people and got larger for subjects with cognitive
impairment, the results in this work show no significant differences related to the
severity of AD.

Looking at the parameter Single Map Segments per Second for the group win-
dow size with a mean of 4.94 (σ = 1.81), cf. Figure 3.13, it is again possible to
compare the results to these published in [12]. This previous research found that
the average number of single map segments per second is 10.8 (σ = 10.8) for de-
mented and 7.6 (σ = 3.2) for impaired subjects. Since the number of GFP peaks
per second in [12] is also higher, it is quite the same ratio of number of single map
segments to number of GFP peaks as in the results obtained here.

Generally, when evaluating the segmentation procedure, one should note that
using centroid locations of positive and negative potential areas, the descriptors
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always tend to central regions [31]. This fact makes this kind of descriptors quite
imprecise and difficult to evaluate.

Now looking at the second way of analyzing microstates within EEG record-
ings, there were no directly comparable studies published. There are publications
concerning EEG microstate analysis by clustering them into classes but not with
subjects suffering from AD. Instead, patients with schizophrenia are examined for
example in [35] and [32], sleep stages are analyzed in [41] and microstate changes
within developmental stages and aging are presented in [38]. Concerning the to-
pography, always four prominent microstate classes are stated, named from ’A’ to
’D’ and characterized as follows, cf. Figure 4.3:

• Class A: right-frontal to left-posterior

• Class B : left-frontal to right-posterior

• Class C : frontal to occipital

• Class D: mostly frontal and medial, slightly less occipital than in C

Comparing the four prominent microstate classes to the results in this work,
the four classes found are more or less the same. Only class D is different - the
image is about-faced, cf. Figure 3.18.

Figure 4.3: This plot presents the four popular microstate classes which have been
found while researching on the field of EEG microstates. The human head is seen
from above, nose up, red marks positive and blue negative potential areas. This
figure was taken from [30].

The parameter Mean Microstate Duration of all four classes ranges from 63 to
73 ms. The analysis resulted in a mean microstate duration for all classes of 66.64
ms (σ = 15.23). Since there are no other publications concerning AD, the results
of papers treating with schizophrenia are stated now. In the first one the control
group had a mean microstate duration for all classes of 88.40 ms (σ = 10.70) and
the patients 81.50 ms (σ = 11.90) [32]. Another paper dealing with that disease
reported a mean microstate duration of controls of 89.90 ms (σ = 12.00) and
patients of 84.50 ms (σ = 13.70) [35].





Chapter 5

Conclusion

Concluding the findings of this work, there is no significant relation between EEG
microstates extracted either by clustering or the segmentation procedure using neg-
ative and positive potential areas and the severity of AD measured by the MMSE
score. There were only scattered significant findings which are not relevant for
the study. The usage of demographic variables in the regression model improved
the results in terms of variety but the detailed evaluation of the regression pa-
rameters revealed no significance of the additionally used demographic variables.
Future studies should think about a different procedure to extract original maps
and therefore improve the information provided by them. Also, if segmenting the
EEG recording, there should be ideas for better descriptors of the landscapes and
their characteristics since these always tend to central regions. Another approach
could be the splitting of EEG recordings into different frequency bands as it is
often used in EEG studies. In most cases, the four bands δ, θ, α and β are used to
describe to whole frequency range from approximately 2 to 30 Hz (frequency bor-
ders vary in literature). Also the impact of longitudinal studies could be interesting
since the basic characteristics of EEG microstates of AD patients vary a lot. The
comparing of past and more actual EEG recordings in relation to the worsening of
the AD symptoms and the more severe impairment of one patient could therefore
be revealing. This could improve the understanding of EEG microstates and their
changing in the course of AD.
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