
Attribute Grammars for
Incremental Evaluation of Scene

Graph Semantics
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Harald Steinlechner
Matrikelnummer 0825851

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr. techn. Werner Purgathofer
Mitwirkung: Dipl.-Ing. Dr. techn. Robert F. Tobler

Wien, TT.MM.JJJJ
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Attribute Grammars for
Incremental Evaluation of Scene

Graph Semantics
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Harald Steinlechner
Registration Number 0825851

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dipl.-Ing. Dr. techn. Werner Purgathofer
Assistance: Dipl.-Ing. Dr. techn. Robert F. Tobler

Vienna, TT.MM.JJJJ
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Harald Steinlechner
Hofmannsthalgasse 24/14/22, 1030 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I want to thank Robert F. Tobler and Stefan Maierhofer for giving me the chance to work on the
AARDVARK rendering engine since its early days, as well as for mentoring me the last couple
of years.

Special thanks to Georg Haaser for algorithms, proofs and other support which was a crucial
point in finishing this work. I want to thank Michael Wörister for his seminal diploma thesis and
work in incremental scene graph evaluation.

Also, I want to thank the nice ladies from the diploma students room for cuddling and drink-
ing tea several times per day — this would not have been possible without you.

Thanks to my dearest reviewers, especially Stefan Maierhofer, Christian Luksch, Josef Eisl.

Finally, I want to thank my parents Ida and Gerhard for all the mental and financial support,
which made my studies possible.

iii

Abstract

Three dimensional scenes are typically structured in a hierarchical way. This leads to scene
graphs as a common central structure for the representation of virtual content. Although the
concept of scene graphs is versatile and powerful, it has severe drawbacks. Firstly, due to its hi-
erarchical nature the communication between related nodes is cumbersome. Secondly, changes
in the virtual content make it necessary to traverse the whole scene graph at each frame. Al-
though caching mechanisms for scene graphs have been proposed, none of them work for dy-
namic scenes with arbitrary changes. Thirdly, state-of-the-art scene graph systems are limited
in terms of extensibility. Extending framework code with new node types usually requires the
users to modify traversals and the implementations of other nodes. In this work, we use attribute
grammars as underlying mechanism for specifying scene graph semantics. We propose an em-
bedded domain specific language for specifying scene graph semantics, which elegantly solves
the extensibility problem. Attribute grammars provide well-founded mechanisms for commu-
nication between related nodes and significantly reduce glue code for composing scene graph
semantics. The declarative nature of attribute grammars allows for side-effect free formulation
of scene graph semantics, which gives raise for incremental evaluation.

In contrast to previous work we use an expressive computation model for attribute gram-
mar evaluation which handles fully dynamic scene graph semantics while allowing for efficient
incremental evaluation.

We introduce all necessary mechanisms for integrating incremental scene graph semantics
with traditional rendering backends. In our evaluation we show reduced development effort for
standard scene graph nodes. In addition to optimality proofs we show that our system is indeed
incremental and outperforms traditional scene graph systems in dynamic scenes.

v

Kurzfassung

In CAD-Software und Videospielen finden häufig sogenannte Szenegraphen Anwendung, um
die Relationen der Daten in einer Szene zu beschreiben. Durch die hierarchische Anordnung
der Knoten eines solchen Szenegraphen können Attribute und deren Gültigkeitsbereiche, wie
beispielsweise affine Transformationen oder Texturinformationen, einfach und konsistent mo-
delliert werden.

Szenegraphsysteme erlauben zwar durch ihre hohe Ausdrucksstärke die Modellierung von
dynamischen Sachverhalten, wie etwa Animation und Simulation, die Programmierung davon
gestaltet sich jedoch häufig als schwierig und ineffizient.

In dieser Arbeit zeigen wir Probleme von bestehenden Systemen auf, synthetisieren Design
Ziele und entwickeln ein Szenegraph Konzept, welches diese Probleme auf neuartige Art und
Weise löst.

Das hohe Abstraktionsniveau unseres Systems erlaubt eine effizientere Programmierung von
interaktiven Rendering Applikationen.

Die verbesserte Programmierbarkeit wurde anhand eines Anwendungsfall demonstriert. Da-
zu wurde der Programmieraufwand in unserem System mit dem von alternativen Implementie-
rungstechniken verglichen.

Anhand von synthetischen Testszenen zeigen wir, dass unser vorgestelltes System trotz des
hohen Abstraktionsniveaus, auch in dynamischen Szenen bessere Performance erreicht als be-
stehende Systeme.

vii

Contents

1 Introduction 1
1.1 Scene Graphs . 1
1.2 Motivation . 2
1.3 Aim of this Work . 3
1.4 Methodological Approach . 4
1.5 Structure of this Work . 4

2 Related Work 7
2.1 Scene Graph Systems . 7
2.2 Attribute Grammars and Systems . 10
2.3 Incremental Computation . 14

3 Limitations of current approaches and goals of this work 17
3.1 Traditional Scene Graph Rendering . 17
3.2 Problems of current Approaches . 18
3.3 Data Flow and Communication . 20
3.4 Performance . 21
3.5 Summary of Problems and their Interaction 21
3.6 Our Approach . 22
3.7 Scope of this work . 26

4 Methodology 29
4.1 Lazy Incremental Scene Graph Caching . 29
4.2 Limitations of Lazy Incremental Computation 33
4.3 Adaptive Functional Programming . 33
4.4 Problem solving with Attribute Grammars . 35

5 Incremental Scene Graph Semantics 39
5.1 Design Goals . 39
5.2 Key Design Decisions . 40
5.3 An EDSL for Attribute Grammars . 41
5.4 Attribute Evaluation . 43
5.5 Adaptive Functional Programming . 44

ix

5.6 A mixed Computation Model . 46
5.7 Representing Draw-calls purely functional . 46
5.8 Rendering Engine Integration . 47
5.9 Scene Graphs as Attribute Grammars - Nodes and Semantics 54

6 Evaluation 61
6.1 Software Design . 61
6.2 Performance . 70

7 Conclusions and Future Work 79
7.1 Future Work and Discussion . 79
7.2 Conclusions . 80

A The Expression Problem 81
A.1 Extensibility, a tension in language design . 81

Bibliography 85

x

CHAPTER 1
Introduction

Software development of interactive three dimensional graphics applications is tedious, time
consuming and complex due to the high number of concerns regarding interaction logic and
low level graphics API interaction. Although abstractions like RenderMan [52] or OpenGL [60]
help developing pure rendering applications, middleware for interactive applications still suf-
fers from a discrepancy between programmer convenience and performance. In order to fulfill
performance requirements, programming at low abstraction level is still predominant in high-
performance rendering engines.

Three dimensional scenes are usually hierarchically structured which leads to scene graphs
as central data structure for describing virtual content. Many toolkits, such as Inventor [45],
OpenSceneGraph [8] and SceniX [30], employ this concept. In this section we review scene
graphs as a central data structure for rendering applications. Subsequently, we discuss short-
comings of current solutions based on scene graphs, which eventually gives motivation for this
thesis. Finally, we give a short overview of the approach taken in this thesis.

1.1 Scene Graphs

A scene graph can be characterized as a directed acyclic graph (DAG). Leaf nodes typically
represent geometric entities. Inner nodes basically change the appearance of nodes within its
subgraph. Transformation nodes for example change spatial attributes of child nodes i.e. trans-
form contained geometries. From an abstract point of view each node type has some defined
meaning respective to rendering. Surface nodes for example change the appearance of con-
tained nodes, while camera nodes specify viewpoint and projection.

In this work we call the meaning of node types semantics, defined by semantic functions. In-
formally, semantic functions describe how to compute attributes for each node type in the graph.
Given semantic functions for all node types we can compute the meaning of a scene graph i.e.

1

the rendering result for a given scene graph. The concept is depicted in Fig. 1.1.

Render() = render all children

Render() = render children with surface s1

G

s1

Render() = render children with trafo t1t1

Render() = render geometric entity g1g1

Hierarchical Relations

Meanings for node types

Rendering Result:
Geometry Surface Transformation

g1 s1 t1

g2 s1 t2

g3 s1 t2

g1 s3 t2

g2 s1 t2

g3 s1 t2

g5 s2 t3

s1

G

t1

g1

t2

g2 g3

t2

s3

g1

s1

g2 g3

Figure 1.1: Abstract description of scene graphs. Separated from its actual representation se-
mantic functions describe the meaning of each node type. Given a scene graph and semantic
functions for each node type we compute the aggregate semantics, which corresponds to the
rendering result of the scene graph.

Traditional scene graph systems typically traverse the scene graph in depth-first manner in
order to produce the rendering result. In this implementation model each node type executes its
semantics by directly modifying the rendering state. Leaf nodes in turn issue graphics commands
to the graphics API.

1.2 Motivation

Although scene graphs seem natural for modeling graphical content, state-of-the-art systems
have several drawbacks:

1. Due to its hierarchical nature communication between related nodes becomes difficult
because child nodes are inherently dynamic and cannot be determined statically. There-

2

fore, instead of calling methods of other nodes directly, values need to be transferred via
environment dictionaries or other shared data structures.

2. Scene graph systems often suffer from limited extensibility — various files need to be
modified in order to add new node or operation types to the system. As we will see
in section 3 this extensibility is not easy to accomplish with standard object-oriented
programming.

3. Since scene graphs are dynamic in general, proper memory management becomes a
burden for the application programmer because each eventually traversed scene graph
needs to be properly disposed if it becomes inactive.

4. To be useful, nodes typically implement custom semantics and perform arbitrary effects
within the scene graph. Such effects include removal of sub-nodes or modification of
fields within other nodes. Note that a disciplined data flow and communication concept
(1) would reduce the need for arbitrary effects. For complex interaction logics however,
rendering semantics still need to perform arbitrary side-effects in general (e.g. a node
changes appearance parameters of some geometry node).

5. Scene graph traversal is inherently inefficient for static scenes: Although nothing changes,
all nodes need to be traversed because changes could possible occur due to (4).

To overcome this efficiency problem scene graph caching was introduced in previous work
(e.g. Durbin et al. [15] and recently Wörister [61]). In order to handle updates, usually
modeled with side-effects (4), Wörister for example, captures dependencies in the scene
graph using a dependency graph. The proposed computation model, based on dependency
graphs works well for value changes within the scene graph (for example moving objects),
but is not efficient for structural changes like additions or deletions. In this case cacheable
units, called rendering caches are invalidated and need to be recomputed from scratch.

As noted by Wörister et al. [62] the computation model needs to be extended and gener-
alized in order to support proper incremental updates for structural changes.

The motivation for this thesis is to eliminate these drawbacks by utilizing attribute grammars
as a declarative way for specifying data and its hierarchical relation. As we shall see, attribute
grammars offer well-founded mechanisms, effectively solving (1), (2), (3) and (4).

Finally, in order to solve the efficiency problem, evaluation of scene graph semantics needs
to be incremental. For this purpose we generalize the computation model as used by Wörister et
al. [62] to work with structural updates in an efficient manner. We show, that our computation
model integrates well with attribute grammars ultimately solving (5) while maintaining the clean
separation of syntax and semantics provided by attribute grammars.

1.3 Aim of this Work

The proposed system allows for incremental evaluation of scene graph semantics in fully dy-
namic scenes. Although incremental evaluation has been applied to scene graph evaluation

3

(e.g. [15, 61, 62]), previous approaches could not handle arbitrary changes in a uniform and
clean manner.

In order to allow for arbitrary dynamic scene content, we use a very disciplined approach
for authoring scene graph semantics by utilizing attribute grammars, a concept known from
compiler theory. This formulation has several benefits including simpler scene graph nodes as
well as better performance compared to traditional scene graph systems. A detailed description
of the goals and the scope of the thesis is given in section 3.7.

1.4 Methodological Approach

In order to validate our approach, we have implemented a prototype including implementations
for most important scene graph nodes. This includes a computation model for incremental eval-
uation of scene graph semantics as well as a domain specific language for attribute grammar
authoring.

We show decreased implementation effort for standard scene graph nodes. To this end we
compare our implementation and structure of typical scene graph nodes with traditional scene
graph systems.

Additionally, we analyze the incremental complexity of our update algorithms and show
performance characteristics.

1.5 Structure of this Work

This thesis is structured as follows:

• Chapter 2 gives an overview of three related areas: Scene Graph Systems, Incremental
Computation, Attribute Grammars and Systems.

• Chapter 3 analyzes state-of-the-art scene graph systems and identifies shortcomings and
limitations.

– Our Approach gives a short overview of the approach taken in this thesis.

– Rendering engines are complex software systems. Scope of this work defines how
the proposed system relates to other modules of rendering engines.

• Chapter 4 summarizes concepts used in this thesis:

– Lazy Incremental Scene Graph Caching describes the computation model used in
previous work for incremental scene graph evaluation.

– In Limitations of Lazy Incremental Computation we give an overview on lazy incre-
mental caching and discuss its limitations.

– Adaptive Functional Programming introduces an alternative computation model,
which handles all types of changes in a uniform manner.

4

– In Problem solving with Attribute Grammars we give a short introduction to attribute
grammars. More specifially, we show how to use attribute grammars to solve simple
programming tasks involving recursive data structures.

• Chapter 5 is structured as follows:

– In Design Goals we define design goals for our system.

– Key Design Decisions explores the design space for scene graph system implemen-
tations and synthesizes some design decisions in order to achieve the design goals
defined previously.

– An EDSL for Attribute Grammars introduces an implementation technique for at-
tribute grammars integrated in our implementation language F#.

– Attribute Evaluation describes an implementation technique of attribute grammars.

– Adaptive Functional Programming introduces a domain specific language which we
use to model incremental computations.

– Rendering Engine Integration shows how to integrate incremental evaluation of
scene graph semantics with rendering backends, as found in typical rendering en-
gines.

– In Scene Graphs as Attribute Grammars - Nodes and Semantics we present a simple
scene graph system based on attribute grammars.

• Chapter 6 investigates the performance of our system for synthetic scenes modeled with
incremental attribute grammars.

• Chapter 7 brings the thesis to its conclusion and points out future work.

5

CHAPTER 2
Related Work

This thesis is related to visual computing, software engineering as well as programming lan-
guages. First of all we will give an overview on design principles and state-of-the-art scene
graph systems (2.1). Next, since this thesis is strongly related to topics from the computer lan-
guages community as well we will give an overview on attribute grammars (2.2) and incremental
computation (2.3).

2.1 Scene Graph Systems

Software development of interactive three dimensional graphics applications is tedious, time
consuming, and complex due to the high number of concerns regarding interaction logic and
graphics API interaction. Early abstraction mechanisms, such as OpenGL [60] and Render-
Man [52] mainly focus on rendering. Especially integration with interactive concerns can be
cumbersome and limited in functionality. Researchers proposed various techniques for improv-
ing programmability and expressiveness of graphics applications. In the following we will give
an overview on middleware systems providing rich abstraction mechanisms for interactive ren-
dering applications.

Strauss and Carey introduced Inventor [45], an object-oriented toolkit for graphics applica-
tions which was specifically designed with interactive applications in mind. A scene database
stores the scene as a directed acyclic graph where nodes represent graphical entities.

Crucially, Inventor provides extensibility — application programmers can extend the system
with new node types as well as new rendering methods i.e. traversals.

Inventor uses so called traversal actions for specifying rendering semantics. Actions may
also be used to perform other specific operations such as computing bounding boxes or picking.
For user interaction Inventor uses events, which are deeply integrated in the system — events
basically traverse the scene graph just like other actions. Scene nodes in turn may handle events
themselves or pass them to its subgraph. Interactive scene nodes, depending on user events may

7

manipulate other parts of the scene. For example a keyboard event may trigger a trackball node
to become active, eventually taking over control of the scene.

OpenInventor [59] extends Inventor with support for animation. In addition to events and
manipulation nodes as used by Inventor, OpenInventor uses so called engines to model dynamic
behaviors. Engines essentially compute some output depending on various dynamic input fields.
For example consider a scene graph describing the geometry of a windmill. Transformation
nodes may now be connected to an engine which computes rotation angles, effectively moving
the windmill depending on external properties like wind force.

Similarly to Inventor, IRIS Performer [41] stores scene nodes in a scene database, repre-
sented as a graph. In contrast to previous approaches, IRIS Performer focuses on optimization
and multiprocessing. Due to lack of parallelization and optimization, early scene graph systems
suffer from unsatisfactory performance because traversal and application code fails to exploit
parallelism provided by graphics hardware. In order to overcome that issue, IRIS Performer
splits up independent traversals into separate processes which leads to better hardware utiliza-
tion. Rendering processes divide into culling, rendering and picking. The level of parallelism is
limited to independent traversals, thus the system works best in scenarios with multiple render
tasks which perform culling and rendering in parallel via a multi-process architecture. Further-
more IRIS Performer reduces graphics mode changes in the graphics subsystem by managing
graphics state explicitly.

OpenSG [35, 36, 56] has a strong focus on performance as well. Although IRIS Performer
provides parallel render tasks, there is no model for concurrency at the data level. While multiple
render tasks operate on shared data structures, the burden of synchronization is mostly left to the
user. Especially with rendering tasks running at different refresh rates this problem becomes
troublesome when keeping shared data consistent. OpenSG replicates data used by multiple
threads automatically. Each traversal therefore works on a private copy of the data. Eventually
synchronization makes replicas consistent again. Efficiency is maintained by the assumption
that most parts of the scene are static and therefore synchronization is rare.

Additionally OpenSG performs scene graph rewriting in order to speed up traversals by only
executing traversal actions for nodes significant to the specific traversal.

Similarly to IRIS Performer, OpenSceneGraph [8] separates culling from rendering and has
support for parallel execution of independent tasks. As other previously mentioned approaches,
OpenSceneGraph has a static view of scene graphs, i.e. content generation is orthogonal to the
scene graph system. In order to maintain efficiency while allowing external in place modifi-
cation of scene graphs, scene graph parts may be marked as static, which allows for common
optimizations like state sorting and graph rewriting.

NVIDIA SceniX [30] is an object-oriented approach to scene graphs with support for custom
traversals, i.e. operations on scene graphs. The framework provides a rich set of optimizations,
mostly realized with specialized traversals. Combine-Geometry traversals for example can be

8

used to group multiple geometric entities into more efficient, packed and pre-transformed ge-
ometries. Other optimizations include state sorting and redundancy removal. Notably, the sys-
tem supports concurrent traversals. All synchronization is on an per-object basis and mostly up
to the user. Rendering states are encapsulated within state sets, which need to be accessed in
mutual exclusion using locks, maintained by the state set. Although the design is flexible and
extensible, there is no dedicated mechanism for data-flow within scene graph nodes.

Ideally scene graphs model merely scene entities and their hierarchical relationship. Oper-
ations, i.e. semantics are provided by traversal objects while the data model remains free from
state and rendering-specific behavior. Previously mentioned approaches however inherently mix
rendering state and high-level node description. In SceniX for example, application program-
mers directly modify the rendering states living in scene graph nodes.

In rendering applications with complex interaction logic, this design principle has severe
drawbacks. First of all, applications need to store explicit references into scene graph data
structures in order to modify rendering states. Thus, application programmers need a way to
organize these references (see Fig. 2.1). Not surprisingly their structure is similar to the scene
graph structure itself, which leads to duplication. Additionally, with concurrent traversals scene
graph nodes and their content need to be synchronized.

scene graph

application
state

Figure 2.1: The application maintains references to scene graph nodes for external modification
and application logic. Application programmers need to organize these references which leads
to duplicated effort (taken from Tobler [51]).

Alternatively, it is possible to maintain application state in scene graph nodes directly (see
Fig. 2.2). This design principle avoids duplication effort as mentioned before but suffers from
another problem when it comes to complex application logic: Since scene graph nodes can be
seen as a model for different aspects (e.g. animation, interaction, simulation) represented by
traversals, application state is multifaceted as well. With complex application logic and render-
ing state scattered across multiple scene graph nodes maintenance becomes difficult.

In his work, Tobler [51] takes a fundamentally different approach. Instead of working with a
single representation for high level semantics and rendering, Tobler separates between two kinds
of scene graphs:

9

state

state

state

scene graph

Figure 2.2: State stored directly in the scene graph (taken from Tobler [51]).

The semantic scene graph embodies the scene graph as the user modeled it.

The rendering scene graph manages graphics API state, and issues draw calls.

Similarly to on-demand compilation in just-in-time compilers, semantic nodes are expanded
into rendering scene graph nodes. When traversing semantic scene graph nodes, translation rules
modify the output scene graph or create new content depending on application state stored within
the translation rule. Tobler compares this architecture to the well-known Model-View-Controller
(MVC) design pattern. The semantic scene graph corresponds to the model, stateful translation
rules to the controller and the rendering scene graph can be seen as the view component (see
Fig. 2.3). With application logic living in its own environment, state management becomes
much cleaner. Additionally on-the-fly expansion semantics allows for dynamic scenes, while
maintaining separation of data and operations.

Although on-the-fly translation is powerful, the approach suffers from slow traversals due
to the extra level of indirection. As noted by Wörister et al. [62] scene graph rendering quickly
becomes CPU bound due to high traversal cost.

In their work Wörister et al. utilize incremental computation to speed up scene graph eval-
uation. In order to track dependencies, a dependency graph is maintained. Traditionally appli-
cation state is modeled using mutable state and traversals perform arbitrary side-effects on state
while evaluating semantics of nodes. Since arbitrary state cannot be captured by the dependency
system, their system does not work efficiently for fully dynamic scenes.

2.2 Attribute Grammars and Systems

In this section we give a short informal overview of attribute grammars. Next we describe
state-of-the art attribute grammar systems in the context of functional as well as object-oriented
programming. Although powerful, attribute grammars have limited expressiveness. In the sub-
sequent section we give an overview of extensions to attribute grammars, making attribute gram-
mars suitable for a wider range of applications.

10

semantic scene graph rendering scene graph

state

state

state

state

state

state

state

state

Model Controller View

traversal cache

Figure 2.3: Stateful rule objects translate semantic scene graph nodes into rendering scene
nodes. The architecture can be seen as the well-known Model-View-Controller design pattern
(taken from Tobler [51]).

2.2.1 Attribute Grammars

The attribute grammar (AG) formalism was originally introduced by Knuth [26]. Knuth used
the concept to assign ‘meaning’ to strings of some language. While context-free grammars offer
a formalism for defining the syntax of programming languages, attribute grammars can be used
to define their semantics.

Attribute grammars have a long history in compiler technology in the field of compiler com-
pilers (e.g. [23, 39]) and are common for specifying static semantics of programming languages
i.e. implementing static analyzers (e.g. [14]).

Informally an attribute grammar consists of a context-free grammar with one extension:
Symbols of the grammar are equipped with attributes. Additionally, each production is equipped
with attribute equations for each attribute defined in the grammar. So for productions of the form
p : X0 → X1...Xn where Xi denotes an occurrence of a grammar symbol, each non-terminal
symbol is associated with a set of attributes. Each production p is associated with a set of
attribute equations. Attribute equations define attribute values in terms of other attribute values
or constants. We call these equations semantic functions. Attributes can be of two types:

Synthesized attributes are attributes defined by attribute occurrences on the right-hand side of
productions i.e. information flows upwards in the deviation derivation tree.

Inherited attributes are attributes defined by attribute occurrences on the left-hand side of pro-
duction i.e. information flows downwards in the deviation derivation tree.

Fig. 2.4 defines syntax and semantics of a simple expression based language. The language
contains expressions, which are either a numeric literal, an addition or an if expression. In the

11

〈expr〉 ::= 〈integer〉
| 〈expr〉 ‘+’ 〈expr〉
| ‘if’ 〈expr〉 ‘then’ 〈expr〉 ‘else’ 〈expr〉

(a) Concrete syntax.

expr → i n t e g e r { expr . v a l u e = p a r s e I n t e g e r (i n t e g e r) }
expr → expr0 + expr1 { expr . v a l u e = expr0 . v a l u e + expr1 . v a l u e }
expr → i f expr0

t h e n expr1

e l s e expr2 { expr . v a l u e = i f expr . v a l u e = 1
t h e n expr1 . v a l u e
e l s e expr2 . v a l u e }

(b) Attribute grammar of the language. Each production of the grammar is associated with a semantic function
for evaluating expressions. Semantic functions are enclosed by curly braces. Each semantic function computes the
numeric result for the synthesized attribute value.

Figure 2.4: Syntax and Semantics of a simple expression based language. Concrete syntax is
defined by a grammar in EBNF (top). The attribute grammar (bottom) defines abstract syntax as
well as semantics for evaluating expressions.

attribute grammar we annotate the abstract syntax with appropriate semantics.

As noted by Swierstra [48], attribute grammars can be used for a wide range of programming
tasks operating on hierarchical data. Attribute grammar systems take care of attribute evaluation
order by performing dependency analysis. Thus programmers can focus on semantics instead of
taking care of traversal objects or visitors.

2.2.2 Attribute Grammar systems

The synthesizer generator [38], a tool for automatically generating editors from language de-
scriptions first used attribute grammars for incremental static analysis [38]. In this context De-
mers et al. developed foundations for incremental evaluation [13, 37]. Reps et al. used static
analysis of attribute grammars to determine optimal execution plans for attributes [37].

The Utrecht University Attribute Grammar Compiler (UUAG) [47] is an attribute grammar
system in the setting of purely functional programming.

The system compiles an attribute grammar description, consisting of syntax and semantics
into catamorphisms1 implemented in the purely functional programming language Haskell. In
contrast to attribute evaluation systems which perform static analysis in order to generate ex-
ecution plans (e.g. [37]), UUAG works dynamically and evaluates attributes in an on-demand

1A catamorphism is a generalization of folds for lists [27]

12

manner. Surprisingly, lazy evaluation makes this dynamic approach efficient. As observed by
Augusteijn [5] the dynamic attribute evaluation coupled with lazy evaluation is typically just as
fast as static evaluation plans.

Additionally, Haskell’s type system guarantees semantic functions to be pure. This allows
for folding multiple traversals into single ones, since traversals are guaranteed not to interfere
with each other. With this optimization, the famous RepMin2 problem for example can be solved
with one single traversal.

The JastAdd system [17] extends Java with support for Rewritable Circular Reference At-
tributed Grammars (ReCRAGs) [16]. Again, an attribute grammar definition is compiled to a
target language – multiple aspects are ‘weaved’ into Java classes containing attribute evaluation
code.

Both approaches, JustAdd and UUAG compile the attribute grammar specification at once.
It is therefore not possible to extend a compiled program with syntax and semantics without
recompiling the complete grammar, which requires full source code and breaks extensibility.
Recent work shows how to extend the UUAG system with aspects [53]. The approach allows
for separate compilation of different aspects contributing syntax and semantics.

Although the approach allows for extensibility while maintaining separate compilation, still
type-checking is performed after code-generation, which leads to cumbersome type errors in
automatically generated code. Slone et al. [42] proposed an embedded domain specific language
for attribute grammars in the object-oriented programming language Scala. Instead of compiling
attribute grammar specifications to some general purpose language, attribute grammars can be
defined directly in the host language Scala. The approach however fails to provide static type
safety. Instead the system uses runtime checks to ensure proper typing.

Viera et al. [54] show an embedding in Haskell. By utilizing type-level programming the
approach is type safe i.e. no runtime typecasts are necessary.

2.2.3 Extensions to attribute grammars

Attribute grammars as introduced by Knuth are powerful, but sometimes limited in their expres-
siveness. One limitation of canonical attribute grammars becomes apparent if attributes depend
on other properties far away in the tree. In this case all required attributes need to be passed
as synthesized attribute to some common super node. Subsequently, they need to be inhereted
down the path to the actual client code.

Various approaches extend attribute grammars to support non-local attributes [19, 20, 55].
Door attribute grammars use special nonterminals, called doors, which allow dereferencing of
remote attributes, i.e. attributes far away from the current nonterminal [19]. Reference attribute
grammars allow direct references to other syntax nodes, which can in turn be used to access
remote attributes [20].

2Given some integer input list, compute its minimum element and replace each element with its minimum. As
shown by Bird [7], the problem can be solved using one single traversal by using circular programs.

13

Canonical attribute grammars work for tree-like structures. This is no problem for semantic
analyzers operating on parse trees. In applications like control flow analysis, structures tend to
be graphs instead of trees. This limitation can be solved by reference attribute grammars as well.
In our work, sharing of common scene graphs is crucial for performance. Instead of working
with reference attribute grammars we expand DAGs into trees in an on-the-fly manner. Thus,
attributes of shared nodes are in fact replicated, but internally point to shared structures (e.g.
vertex arrays).

As shown by Soderberg et al. [43] it is possible to extend attribute grammar evaluation
to work with dynamic dependencies. In our work, we take a different approach by strictly
separating incremental evaluation from attribute evaluation, thus canonical attribute grammars
suffice for our purpose while providing dynamic semantics.

2.3 Incremental Computation

In the subsequent sections we handle both, incremental attribute grammar evaluation as well as
general purpose incremental computation.

Let us first define the term incremental computation. In their survey on incremental compu-
tation Ramalingam and Reps give a concise definition:

The abstract problem of incremental computation can be phrased as follows: The
goal is to compute a function f on the user’s ‘input‘ data x — where x is often some
data structure, such as a tree, graph, or matrix and to keep the output f(x) updated
as the input undergoes changes. [34, p.1]

Historically incremental computations first appeared in the context of syntax directed edi-
tors. A syntax-directed editor is a tool for interactive program development. Syntactic analysis,
i.e. the construction of a context-free derivation tree as well as semantic analysis i.e. the evalu-
ation of semantic functions defined by an appropriate attribute grammar should be fast in order
to keep the system interactive. Attribute grammars, as underlying formalism for syntax directed
editors was first introduced by Demers et al. [13]. The main advantage of using attribute gram-
mars instead of procedural code is the applicative style of expressing semantics [13]. Semantic
attributes propagate through the tree in the formalism and need not be specified imperatively.
Due to its structure and functional style, attribute grammars offer opportunities for incremental
evaluation.

Reps et al. [37] introduced an update propagation algorithm for attribute grammars which
they show to be optimal i.e. the algorithm runs in O(|AFFECTED|) where AFFECTED de-
notes the number of changed attributes in the complete tree.

Later the algorithm was generalized by Hover [21] outside the domain of attribute grammars.
Both approaches are based on the central concept of a static dependency graph which can either
be synthesized out of attribute grammars or constructed by hand. Static dependency graphs may

14

be modified structurally in an explicit modification step. During change propagation however,
the dependency graph remains static. Given a set of changes of the graph, change propagation
ensures a consistent state for all attributes.

Although Reps’s algorithm is theoretically optimal with respect to re-computation of at-
tributes after modification, it does not perform well for non-strict semantic functions. Consider
a semantic function which conditionally evaluates an expensive attribute depending on some
other attribute. In this case Reps’s algorithm computes the expensive attribute independently of
the result of the condition, i.e. computing the expensive attribute is necessary.

Hudson [22] introduces a demand-driven algorithm for incremental attribute evaluation. In
this way the wasted work of computing values that are never actually used is avoided automat-
ically. With its lazy update scheme the algorithm loses optimality but performs better in the
presence of non-strict semantic functions.

Other approaches to incremental computation are function caching and partial evaluation.
Function caching tries to reuse previously computed sub solutions whenever appropriate. As a
consequence, the complete computation needs to be reevaluated from scratch in order to find
parts which can be reused. Dependency graph based solutions on the other hand try to reuse
the same computation and its intermediate results directly. With function caching however, sub
computations can be used in other contexts which is not possible for dependency based ap-
proaches. Another problem with function caching is equality. In order to cache function calls,
its arguments need to be compared to previous arguments in order to reuse previous results. Ad-
ditionally it is not clear when to evict old results from the cache. Partial evaluation (e.g. [46]),
another technique for incremental computation does not require equality and does not require
cache invalidation. The approach however is not general purpose and limited in its applicability.
A comprehensive summary on incremental computation techniques can be found in [34].

In their seminal work Acar et al. [2] introduce adaptive functional programming, a frame-
work for incremental computation. In contrast to previous approaches, the concept allows for
incremental evaluation of arbitrary functional programs. Unlike function caching, adaptive func-
tional programming uses a dependency graph in order to track dependencies precisely. In con-
trast to previous approaches based on dependency graphs (e.g. Reps et al. [37]), Acar et al.
maintain the dependency graph implicitly and transparent to the programmer. In their system,
the program automatically constructs the dependency graph when running the program for the
first time. Modifications of variables directly modify the dependency graph, thus graph modifi-
cation is no longer sperated from change propagation.

Although Adaptive Functional Programming tends to provide good incremental performance
for some programs, it fails to provide incremental performance for others. Later, in his PhD the-
sis Acar extends his approach with selective memoization and introduces Memoized dependency
graphs which provide incremental performance for trace-stable programs [1]. In their work,
Acar et al. give a full implementation of adaptive functional programming implemented in ML,
i.e. no compiler support is necessary. However, his library dictates programmers to write adap-
tive programs in destination passing style. In order to provide a simpler user interface Carlson

15

introduced a monadic interface on top of Acar’s adaptive primitives [10].

Later, Acar et al. introduced Delta-ML, an extension to Standard ML with built-in support
for adaptive computation [4].

16

CHAPTER 3
Limitations of current approaches and

goals of this work

State-of-the-art scene graph systems have shortcomings in both, design and performance. In this
section we analyze the design space, show limitations of current approaches and how resulting
problems interact with each other.

3.1 Traditional Scene Graph Rendering

In traditional scene graph systems (e.g. [41, 45, 59]) scene graph nodes and their relation are
stored in a scene database. For efficiency reasons, nodes may relate to common sub-nodes,
resulting in directed acyclic graphs (DAG).

Leaf nodes typically represent geometric entities containing vertex data like positions and
texture coordinates. Internal nodes describe a number of different attributes like spatial trans-
formation or surface properties. Attributes are inherited along the edges of the graph until they
reach leaf nodes — a central mechanism for communication between scene graph nodes. Leaf
nodes in turn use these attributes as arguments for draw calls. Inner nodes publish their attributes
by modifying a mutable traversal state which is threaded through the traversal function (which
we call RenderTraversal). A scene graph can be rendered by traversing it in a depth-first manner.

In flexible scene graph systems with dynamic scene graphs (e.g. Tobler’s semantic scene
graph [51]) nodes may additionally generate dynamic content or modify subgraphs. Switch
nodes for example return different subgraphs depending on some predicate. In order to support
dynamic scene graphs properly, it is necessary to compute aggregate values for subgraphs. Level
of detail nodes for example need to access information (e.g. bounding boxes) of subgraphs in
order to guide level of detail decisions. The need for computing aggregate values motivates
a generalization of the traversal concept. Instead of issuing draw calls to the graphics device,
traversals can be used to compute aggregate values for scene graphs. User defined traversals are

17

central to SceniX [30] and OpenSceneGraph [8]. Both systems use traversals for graph rewriting
optimizations like geometry batching. Since scene graph systems should be highly reusable in
many problem domains, we require scene graph systems to be extensible respective to node
types as well as traversals i.e. application developers need a way to specify custom scene graph
nodes and associated operations.

3.2 Problems of current Approaches

Next we will review fundamental design flaws in current scene graph systems.

3.2.1 Extensibility

In order to support extensibility, a main concern for scene graph systems, we require:

Data-Extensibility For application programmers it must be easy to add additional node types
fitting domain specific needs. As an example consider a new camera node for stereo
rendering.

Operation-Extensibility Additionally it shall be easy to add additional traversals in order to
implement dynamic behavior of new node types. As an example consider a special traver-
sal which extracts metadata from subgraphs which serves as basis for level of detail deci-
sions.

Interestingly these requirements are very similar to the Expression Problem [57], a well
known benchmark for expressiveness in language design (see appendix A). A valid solution for
the expression problems allows for data-extensibility as well as operation-extensibility while
maintaining separate compilation and type safety.

In static programming languages it is hard to provide this kind of extensibility. Surprisingly
object-oriented programming per se does not provide a valid solution for that problem. Consider
a type hierarchy: adding additional operations (methods) breaks extensibility because all node
types need to be adapted in order to implement the additional method required by their common
supertype1.

From a theoretical point of view this functionality can be elegantly achieved by object-
oriented double dispatch as provided by CLOS [44]. Unfortunately double dispatch, or multi-
methods in general are not supported by current object-oriented mainstream languages.

Inventor [45], implemented in C++ uses a two dimensional matrix which stores a traversal
function for each node/traversal combination2. Although flexible, the approach does not provide
full type safety. Traversal results need to be coerced unsafely in order to be used in strongly
typed node implementations.

1see appendix A for in depth explanation of non-solutions to the expression problem.
2Multi methods provide this functionality directly.

18

Instead of resorting to dynamic typing, OpenSceneGraph [8] uses the well-known visitor
pattern [18] to model scene graph traversals.

The visitor pattern can be seen as an approximation to double dispatch in mainstream lan-
guages. New traversals can be implemented by simply adding another class, implementing the
visitor interface. For new node types however, extensibility is violated — in order to add an-
other new node type one needs to modify the visitor interface and all its implementations [11].
Note that with subtyping, default implementations for node types may be provided, which sig-
nificantly reduces code duplication in visitor implementations [29]. Still, in general the visitor
pattern does not provide proper extensibility i.e. introducing new node types is hard, involving
adaptation in many actually unrelated source files.

In his scene graph system, Tobler [51] introduces a clean separation of Semantics from Ren-
dering which allows for a clever implementation basically solving the expression problem except
for semi-safe casts in the core implementation. Tobler identifies the interleaving of high level
semantics and low level rendering setup as the main root of scene graph complexity. Therefore
he distinguishes between a semantic description of the scene graph and its actual representation
for rendering.

In his design, the user models the scene graph in the semantic scene graph. Subsequently
the traversal algorithm generates the rendering scene graph from the semantic scene graph by
expanding semantic nodes in an on-demand manner. The semantics for this expansion is defined
by a user defined mapping for each semantic scene graph node. In his work the translation is
defined by a dictionary mapping from node type to rule object creator, whereby rules essentially
provides stateful expansion semantics. Note that the translation is no plain one-to-one mapping.
Rules may generate semantic nodes again, eventually emitting the final rendering scene graph.
Rule objects generated during traversal are stored in the so-called traversal cache of the rendering
traversal.

In order to support other operations than rendering (e.g. ComputeBoundingBox()), semantic
scene graph rule objects may implement additional interfaces. Each custom traversal is associ-
ated with such an interface. With this extension, the traversal algorithm either calls the interface
method directly, which means that the semantic node provides a specific semantic function for
that traversal or calls the generic expansion function defined within the rule object. For example
in case of the RenderingTraversal the associated interface Renderable has one single method,
called Render. Applied to our rendering traversal, nodes are expanded until a renderable node
is reached.

To summarize the traversal algorithm can be described like:

1. When visiting node n, consult the traversal cache to find an appropriate rule instance r
for node instance n. If no such rule exists, create a rule for n’s type as specified by the
semantic map.

2. Given a rule object r for node n and traversal t, check whether t’s traversal interface is
implemented by r. If so, call the interface method directly. Otherwise expand the node
and go to (1).

Extensibility is solved by the fact, that semantic scene graph nodes are decoupled from
concrete semantic functions. Whenever the rule defines no specific semantic function for a

19

given traversal, the traversal automatically continues in the generic traversal function. This way
additional operations can be introduced by the implementation of a new traversal with some
associated traversal interface. Rules affected from this traversal naturally need to implement
that interface, other nodes remain unaffected.

With generics as provided by mainstream languages such as Java and C#, Tobler’s con-
cept can be implemented in a type safe manner, except for some semi-safe casts in the abstract
traversal algorithm itself. However, the user-site API can be implemented in a type-safe manner.
Details on the implementation can be found in Tobler’s original paper [51].

To the authors knowledge Tobler’s approach is the only one solving the expression problem
in the context of scene graph systems.

3.3 Data Flow and Communication

Typically, scene graph systems make it easy to compute some value for a given scene graph.
Usually this is achieved by traversal functions or traversal objects. Traversals simply collect data
from leaf nodes and combine the resulting values into a single value, representing the outcome
of the traversal for some given scene graph. Beginning from leaf nodes (e.g. geometry nodes),
information basically flows upwards to the root.

Unfortunately, scene graph systems fail to provide a disciplined way for transferring values
downwards, i.e. from the nodes to their children. Although traversal state objects, stored within
the traversal object can be used to encapsulate state this approach has severe limitations:

• Traversal states break extensibility. Different kinds of traversals need different values,
stored in the traversal state. In this case clients extending the scene graph system with
additional traversals (operations) need to have access to the traversal state class definition,
which in turn leads to recompilation, violating the separate compilation requirement of
the expression problem. This limitation can be tackled by using an untyped dictionary
as environment. This approach however violates type safety. Additionally traversal state
objects tend to become a sink for many unrelated values, which leads to naming and
organization issues. Note that Tobler’s [51] approach in fact maintains extensibility for
specific traversals, since each rule object provides traversal specific entry-points.

• Traversal states are problemantic in respect to encapsulation, since all attributes need to
be visible for all traversals. Yet, it is possible to maintain encapsulation by using private
getter functions — still, traversal states need to be handled of carefully.

• The only efficient possibility to transfer values between different traversals is via side-
effects, i.e. one traversal updates a mutable cell, another one consumes the value of the
cell.

• It is very hard to track dependencies in a system with unrestricted side-effecting access to
traversal state.

20

• Executing traversals in parallel becomes tricky since traversal states cannot be imple-
mented efficiently as persistent data structures3.

To the authors knowledge no scene graph system provides a clean, comprehensible way for
providing values to other nodes within the scene graph.

3.4 Performance

Tobler’s semantic scene graph provides a clean separation of semantics and rendering. This
abstraction however, comes with significant performance cost. As found by Wörister et al. [62]
traversal overhead is relatively high in Tobler’s system.

Constant node overhead aside, still, scene graph traversals in general are not efficient in
interactive applications if most of the scene remains static between frames. Furthermore the
structure of the input scene graph directly affects performance since different kinds of graphics
API state changes have different cost. Surface switches for example are more expensive than
switching vertex arrays for different draw calls. Strauss [45] gives an overview on common
scene graph optimizations. All operations directly modify the scene graph in order to reduce
scene graph size or modify structure for faster traversal or less graphics API interaction. All
optimizations basically re-organize the input scene graph — which defeats the purpose of having
a clean semantic scene graph.

Recently, Wörister [61, 62] introduced a caching system for scene graphs, capable of elimi-
nating traversal overhead for semi-static scenes. Instead of repeatedly traversing static parts of
the scene, rendering caches are placed within the scene graph. Each cache stores a pre-optimized
array of draw commands representing the outcome of rendering traversals on the cached sub
scene graph. In order to cope with dynamism like user input Wörister maintains a dependency
graph which allows for fast in place updates of rendering caches. The algorithm however soley
works for non-structural updates within the scene graph. Changes like additions and removals
cannot be handled efficiently. In these cases rendering caches need to be rebuilt from scratch.
As noted by Wörister et al. [62] proper support for structural updates requires a more disciplined
approach for data flow and communication within nodes. Additionally, with static dependency
graphs as used by Wöerister et al. it is hard to capture the dynamic semantics for scene graph
traversals.

3.5 Summary of Problems and their Interaction

Traditional scene graph systems suffer from three fundamental problems:

No declarative model for communication Current scene graph systems ([8, 30, 35, 36, 51, 56,
59]) provide no declarative way for describing data dependencies between scene graph

3Here we mean persistent in the context of functional programming. Persistent data structures always preserve
previous versions when modified. In purely functional programming, all data structures are persistent automatically.

21

nodes. Instead imperative traversals are used to query data, and state is used for propa-
gating values downwards. For both mechanisms, side-effects are inevitable. Additionally
arbitrary side-effects make reasoning, debugging and software maintenance difficult.

Expressive nodes Scene graph nodes may generate new nodes or modify other nodes (e.g. se-
mantic scene graph [51]); other scene graph systems which allow for no dynamic con-
tent generation within the system use other mechanisms like manipulators to model dy-
namism [59]. Both variants essentially mutate scene graph nodes and properties in place.
Again, side-effects appear in an uncontrolled manner. Additionally, scene graphs may
become inactive due to modification. This complicates memory management due to
dangling scene graphs. Firstly, such inactive parts need to be detected. Secondly, all
associated rendering resources need to be freed appropriately.

Violation of Extensibility For programmers it shall be easy to add additional scene graph nodes
and extend existing scene graph nodes with functionality. Tobler [51] takes an important
step towards extensible scene graph systems. His approach however introduced additional
overhead for scene graph traversal, which in turn exacerbates performance issues imma-
nent to traditional scene graph rendering.

Due to expressiveness and the lack of declarative communication models side-effects be-
come inevitable. This in turn makes optimizations, as introduced by Wörister [61, 62] impracti-
cable — in order to support fully dynamic semantics in scene graph a more disciplined way for
communication is indispensable. An overview of problems and interactions thereof is given in
Figure 3.1.

3.6 Our Approach

Computing values for tree like data structures is a common exercise in many fields of computer
science. In compiler construction for example most compiler transformations operate on abstract
syntax trees. Since scene graphs and abstract syntax trees share a similar structure we looked at
solutions in the languages community. Compilers can be structured into three phases:

1. Parsing

2. Semantic analysis

3. Optimizations and code-generation or interpretation

Scene graphs are typically generated by the application developer directly, or synthesized from
other scene descriptions like VRML [9] or COLLADA [6]. This step of preprocessing can be
seen as parsing, i.e. the construction of a tree representation. Subsequently, scene graph opti-
mizations perform analysis (e.g. identifying identical geometry leafs) in order to possibly rewrite
and optimize the scene graph. This phase is very similar to semantic analysis in compilers. In a
final phase the scene graph is traversed in depth-first manner, eventually issuing draw calls for
leaf nodes. Again, this is similar to interpreting abstract syntax trees, or generating faster code

22

A

Semantics decide

Lifetime

Figure 3.1: Shortcomings of current scene graph systems and interactions thereof. Traditional
scene graph systems provide no declarative mechanism for communication, therefore side-
effects remain the only viable option for implementing dynamism. Additionally scene graph
nodes perform arbitrary changes within other parts of the scene graph. Performance optimiza-
tions like scene graph caching is not feasible in presence of arbitrary effects.

representing the semantics of interpreting the syntax tree.

Each of the three phases has been studied extensively. Context-free grammars are a com-
mon way for describing the syntactical structure of a programming language. Compiler genera-
tor tools like Yacc [24] can be used to generate parsers, given context-free grammars in EBNF
form. Thus, context-free grammars can be seen as theoretical foundation for parsing. Unfortu-
nately the formalism cannot be used to describe semantic analysis, which is inherently context
sensitive. In his seminal paper Knuth [26] introduced the concept of attribute grammars which
can be used to assign meaning to sentences in some input language, defined by an associated
context-free grammar. Attribute grammars extend context-free grammars with semantic actions
and form a solid foundation for semantic analysis. Attribute grammars provide two mechanisms
for communication:

• Synthesized attributes

• Inherited attributes

23

Attributes are defined in a purely declarative manner using attribute equations (semantic
functions). Therefore attribute grammars make data-flow and communication within hierarchi-
cal structures declarative, essentially solving the data-flow and communication problem: When
writing operations there is no need to access global variables. Inherited attributes in fact replace
the traversal state, while synthesized attributes replace data-gathering sub-traversals.

Let us first consider scene graphs without sharing, i.e. scene trees. Parse trees directly cor-
respond to scene trees. Since scene graphs traditionally issue draw calls immediately while
traversing, there is no obvious correspondence for traditional scene graph traversals since se-
mantic functions must be side-effect free. Attribute grammars however can be used to model
sequential composition. Instead of issuing draw calls as side-effect while traversing, we accu-
mulate an explicit representation of the draw calls. In a final execution step this explicit rep-
resentation can be executed safely, while maintaining pure semantic functions. At first glance
this decision seems arbitrary, limiting and inefficient — in this thesis we will show exactly the
opposite:

• Explicit representation of draw calls provides the opportunity for a rich set of optimiza-
tions.

• Draw calls and compositions thereof become first class values in the system, can be mod-
ified and passed around allowing for novel flexibility4.

Thus, each scene node defines semantics for rendering which explicitly generates a sequence
of draw calls that then can be executed by the rendering system. Figure 3.2 shows an attributed
scene tree as well as its attribution rules (i.e. attribute grammar). Later in this thesis we show
how to generalize attribute grammars to work with directed acyclic graphs instead of tree-like
structures.

As noted in the previous section, scene graph systems traditionally traverse the complete
scene over and over again, even if most parts remain static between successive frames. In order
to provide interactive frame rates for big scenes we looked into execution models for attribute
grammar systems. As noted in Related Work, attribute grammars are well studied and serve as a
solid basis for optimizations and incremental evaluation. Early work on attribute grammars (e.g.
Reps et al. [37], Hoover et al. [21]) use static dependency analysis in order to generate optimal
execution plans. This works well if user modifications are explicitly visible to the evaluation
system. In our system however, we don’t want to impose any restrictions regarding modifications
of the scene graph. We therefore use a fundamentally different approach: Motivated by recent
advances in the field of incremental computation (Acar et al. [1, 2]) we use a general purpose
incremental computation framework as basis for attribute grammar evaluation. This essentially
gives us incremental attribute evaluation for free and has advantages over specialized attribute
evaluation algorithms:

• Attribute evaluation incorporates well with other incremental data structures required for
efficient rendering because general purpose incremental computation is composable [1].

4In fact this concept is very similar to monads in pure functional programming and its expressiveness has been
studied extensively [58]. Another analogy is intermediate code, as known from compiler technology.

24

(a) Attributes and their data-flow. Blue arrows denote synthesized attributes, while red arrows denote inherited
attributes. Surface values (surface0,surface1) as well as geometry values (geometry0,geometry1) are provided by
respective scene graph nodes.

syn SEM RenderResult:
| Group this.RenderResult = { child0.RenderResult, child1.RenderResult }
| Surface this.RenderResult = child.RenderResult
| Geometry this.RenderResult = (this.surface, this.geometry)

inh SEM Surface:
| Group child0.surface = this.surface;

child1.surface = this.surface;
| Surface child.surface = this.surface

(b) Semantic functions for the synthesized attribute RenderResult and the inherited attribute Surface. Geometry
nodes have access to a private field geometry containing vertex data etc.

Figure 3.2: Attribution of a simple scene graph. Surface nodes publish provided surface values
(surface0,surface1) downwards. Geometry nodes produce render results by returning a tuple
consisting of its geometry and the inherited surface attribute. Render results propagates towards
the root node, which eventually combines render results of its children.

25

• We can decide not to use adaptive evaluation for parts of the scenes which either never
change or are cheaper re-evaluated from scratch than evaluated incrementally by the com-
putation framework.

• Our algorithm decides explicitly how to resolve shared nodes in the input scene graph. We
therefore expand the graph into tree form, while evaluating attributes.

Let us now restate how we tackle problems of current approaches.

Extensibility We use attribute grammars as the theoretical foundation for scene graph seman-
tics [26]. From a design point of view this solves the expression problem.

Data-flow and communication With attribute grammars, hierarchical relationships and seman-
tics are modeled in a uniform manner and provide well defined ways for communication
between semantically related nodes. Semantic functions are pure by definition, which fa-
cilitates reasoning and optimization. Additionally data-flow remains free from side-effects
which gives raise for incremental evaluation.

Performance We introduce an incremental attribute grammar evaluation scheme based on re-
cent advances in incremental computation [3]. The evaluation integrates well with se-
mantic functions, which are guaranteed to be pure and incremental. Unlike previous ap-
proaches [22, 37] our attribute evaluation is general purpose and naturally composes with
other adaptive program parts.

3.7 Scope of this work

We formalize rendering by capturing draw calls in a hierarchical data structure which we call
RenderJobs. In the scene graph system we use a synthesized attribute (RenderJobs) of type Ren-
derJobs. Note that RenderJobs is not intrinsic to our system, but is merely an interpretation of
rendering semantics defined for all scene graph nodes. In order to exploit temporal coherence
between frames, we reuse RenderJobs from previous frames. This is accomplished by making
all involved functions for computing RenderJobs incremental. Incremental evaluation of se-
mantic function makes the RenderJobs attribute incremental as well and therefore responsive to
arbitrary input changes. Given that RenderJobs are incremental itself, we synthesize the set of
changes (∆) between successive frames. We represent these changes as a set of additions and
removals of render jobs. An overview of the approach is given in Fig. 3.3.

In this work we focus on modules of the frontend. Parallel to this work we developed a
rendering backend, which efficiently maps RenderJobs to concrete draw calls, which can be
executed by graphics API’s like OpenGL and DirectX. However, efficient mapping of RenderJob
deltas to API calls is out of the scope of this work. To summarize our system consists of:

An attribute grammar system including a domain specific language for convenient authoring
of semantic functions. Attribute system evaluation is well understood and many efficient
evaluation algorithm have been proposed. In our system however, we assume attribute

26

Figure 3.3: Modules of the proposed system. Node types define their hierarchical relation-
ship. Adaptive semantics operating on nodes define attributes, including semantics for render-
ing. Evaluation of the RenderJobs attribute generates an incremental tree containing all Ren-
derJobs represented by the original scene graph. Eventually, we compute the change-set (∆) of
RenderJobs, which is finally transferred into the rendering backend.

evaluations to be rare because most scenes remain static most of the time and incremental
evaluation reduces attribute evaluation to a minimum. We therefore keep attribute gram-
mar evaluation simple and focus on extensibility and design.

A scene graph framework implemented on top of our attribute grammar system.

A incremental computation framework capable of expressing dynamism of scene graph sys-
tems. Although general purpose incremental computation is a relatively new research
field, algorithms for incremental evaluation are well understood.

In this thesis we present a prototypical implementation of the system. For evaluation we
compare our system with state-of-the-art scene graph systems in terms of design and perfor-

27

mance.

28

CHAPTER 4
Methodology

In order to take advantage of specialized graphics hardware, scene graph systems need to provide
fast traversals while maintaining high-level semantics and dynamism.

Naively, scene graph systems traverse the scene over and over again, although most scene
parts remain static. As mentioned in Related Work, scene graph systems often use caching in
order to speed up scene graph rendering (e.g. Durbin et al. [15], Wörister et al. [62]).

In this thesis we take a different approach. Instead of introducing rendering caches for
specific parts of the scene, we use a more general approach by describing scene graph semantics
fully incremental.

Our approach is influenced by lazy incremental scene graph caching, but our methods differ
significantly. In this section we revisit the computation model as used by Wörister et al. [62].

Subsequently we give a short overview on adaptive functional programming which serves
as basis for incremental evaluation of scene graph semantics. Moreover, the concept of attribute
grammars plays a central role in our approach. In the last section of this chapter we show how
to solve common programming tasks using attribute grammars.

4.1 Lazy Incremental Scene Graph Caching

Wörister et al. [62] utilize so called rendering caches which are placed in the scene graph man-
ually. Rendering caches can be executed which has the same effect as traversing the sub graph
represented by the cache (see Fig. 4.1). After modification, prior to rendering, the rendering
system first makes rendering caches consistent1 and executes the rendering cache instead of
traversing the scene graph it stands for.

Crucially for performance, rendering caches need to be updated incrementally whenever
attributes within the cached scene graph change.

Wörister et al. distinguish between two types of changes:

1in this thesis we use the term change propagation for making caches or dependencies consistent

29

Rendering(Cache

Figure 4.1: A rendering cache captures all rendering instructions in a sub graph and takes over
its rendering responsibilities (taken from Wörister et al. [62]).

In-place updates This type of change describes value changes, which have no effect on the
structure of the scene graph. Change propagation updates all necessary values like uni-
form buffers, textures in place i.e. no resource allocation needs to occur (see example in
Figure 4.2).

Structural updates This type of change describes changes of the scene graph itself. Thus,
addition, removal or reorganization of scene graphs is considered to be a structural update.
Update propagation involves creation and grafting of computation graphs.

The system proposed by Wörister et al. supports incremental updates for in-place updates.
Their system however cannot handle structural changes in an incremental manner i.e. rendering
caches need to be invalidated and rebuilt from scratch in order to make the system consistent
again.

b

a"""

Figure 4.2: Modifying some attributes (a and b) requires the update of rendering caches (blue
nodes) that capture on them (affected scene graph parts are shown in red). Taken from Wörister
et al. [62].

In order to track changes within the system, Wörister et al. use a dependency graph. In
order to model dynamism efficiently it is necessary to provide a flexible way for describing
dependencies. Therefore Wörister et al. distinguish between:

30

a b

Figure 4.3: An in-place update of a rendering cache due to a modification of an attribute
(affected scene graph parts and rendering cache parts shown in red). Taken from Wörister et
al. [62].

Dependencies. A dependency is a conservative predicate which describes if some value has
changed. As an example consider computations depending on camera position. The pred-
icate for example checks whether the camera has moved more than n units.

Value Sources. A value source is an item in the scene graph or global environment. User inputs
are typically value sources.

Dependent Resources. A dependent resource is an object whose content may change when-
ever one of its dependencies changes. Whenever a dependency of the dependent resource
evaluates to true, the object needs to be updated explicitly.

Nodes in the dependency graph represent intermediate computations as well as value sources
(inputs). Directed edges represent abstract dependencies operating on inputs of nodes. Given
some input scene graph, their system constructs the implied dependency graph (see Fig. 4.4 and
Fig. 4.5).

Leaf nodes in the dependency graph i.e. dependent resources correspond to hardware re-
sources like uniform buffers. Since the structure of rendering caches remains stable, a rich set of
optimizations (e.g. redundancy removal [62]) can be applied to rendering caches.

4.1.1 Update propagation

If value sources change and their output dependencies evaluate to true, all transitively reachable
dependent resources need to be updated appropriately.

To this end Wörister et al. use a variant of Hudson’s [22] algorithm for evaluating attributes
in attribution graphs. Hudson’s algorithm works in two phases:

1. Given some input change v, mark all nodes out of date depending on v.

2. Whenever a value is demanded, check whether it is marked out of date. If so, recursively
update all of its inputs, and recompute the value.

31

t1

g1

r1

t2

g2

r2

t3

g3

r3

d1 d2 d3 d4D = {d1, d2}

D = {d2, d3, d4}

D = {}

Figure 4.4: A small scene graph with transformation nodes as value sources (ti), a number
of dependencies for these value sources (dj), a number of geometries (gk), and a number of
dependent resources (rl). Taken from Wörister et al. [62].

t1

g1

r1

t2

g2

r2

t3

g3

r3

d1 d2 d3 d4

t1· t2

t1· t2 · t3

Figure 4.5: The dependency graph constructed from the scene graph in Figure 4.4. Taken from
Wörister et al. [62].

Wörister et al. use a flattened version of the dependency graph. Each dependent resources is as-
sociated with its transitively reachable input dependencies. If a dependent resource is demanded
by the rendering backend, it first checks all its dependencies and makes them consistent.

Rendering the contents of a rendering cache involves two steps:

1. Check all dependencies for consistency.

2. Update dependent resources.

3. Execute the rendering commands stored in the rendering cache.

32

This evaluation scheme2 might appear inefficient at first glance, but since dependent sets
are small for most draw commands, the algorithm turns out to be very efficient in the setting of
scene graph rendering.

4.2 Limitations of Lazy Incremental Computation

Lazy incremental computation for scene graphs provides high-performance for scenes with value
changes. Rebuilding caches as necessary in case of structural changes however is expensive and
does not employ benefits of incremental evaluation. In Hudson’s two phase approach evaluation
cannot be safely interleaved with marking. As a consequence, structural modification need to be
done right before marking. Technically this is no problem, but requires the programmer to be
explicit about modifications. Furthermore, the two-phase approach is impractical if the structure
of the computation is dynamic, i.e. depends on the evaluation of other computations. In our
attribute grammar based approach however, we strive for arbitrary dynamic semantics which
renders the approach taken by Wörister et al. infeasible.

4.3 Adaptive Functional Programming

In their seminal paper adaptive functional programming, Acar et al. introduce dynamic depen-
dency graphs. Unlike previous approaches (e.g. Hudson [22]) the dependency graph is con-
structed implicitly by running an instrumented version of the computation. As demonstrated by
Acar et al. the framework can be implemented purely as a library, i.e. no compiler support is
necessary. In this section we will give a short overview on the concepts of adaptive functional
programming.

The concept is based on the idea of modifiable references (modifiables for short). Modifi-
ables support three basic operations:

mod constructs a new modifiable with some initial content.

read reads the current content of a modifiable, and updates the dependency graph to reflect that
dependency.

write writes a value into a modifiable cell.

All operations implicitly maintain the underlying dependency graph. An expression depend-
ing on changeable values (contained by modifiables) needs to read its inputs explicitly using the
read primitive. Consequently, such expressions are also changeable and need to be represented
by modifiables. Expressions that are not changeable are said to be stable.

Adaptive functional programs produce a result of type t mod3, which is constructed by pos-
sibly reading other changeable values and writing the result to the destination cell. The SML

2Wörister et al. use the term lazy polling
3Since code examples in this section are given in Standard ML (SML) we use SML notation for polymorphic

types. In Java and C# t mod would be written like mod<T>

33

1 signature ADAPTIVE = sig
2 type ’a mod
3 type ’a dest
4 type changeable
5 val mod: (’a * ’a -> bool) -> (’a dest -> changeable) -> ’a mod
6 val read: ’a mod * (’a -> changeable) -> changeable
7 val write: ’a dest * ’a -> changeable
8

9 (* Meta operations *)
10 val change: ’a mod * ’a -> unit
11 val propagate: unit -> unit
12 val init: unit -> unit
13 val extract : ’a mod -> ’a
14 end

Listing 1: Signature for the SML adaptive library as introduced by Acar et al. [2] (Code is given
in SML)

signature for the adaptive functional programming library is given in Listing. 1. mod takes a
conservative comparison function, and a continuation function which writes a value to the des-
tination cell, passed as argument. read takes a modifiable and a continuation function which is
supplied with the actual value of the modifiable. When reading from a modifiable (using read),
the library introduces an edge to the dependency graph, which is called reader. Whenever the
source modifiable changes, all associated readers which correspond to edges in the dependency
graph need to be re-executed.

Adaptive functional programs look similar to ordinary functional programs except for their
types and some wrapper functions. Changeable expressions operate on t mod, while stable
expressions operate on ordinary types. Additionally, the original library implementation dictates
the programmer to write programs in destination passing style. The meta operation propagate
makes all output consistent again after modifications, while extract makes the changed outputs
observable for the program. When used in adaptive computations, the extract operations is
unsafe, because it does not maintain the dependency graph properly. Thus, extract should be
used soley for extracting modifiable values after making them consistent using propagate. Note
that in our implementation we use the name unsafeRead instead of extract, in order to stress
the fact, that it shall not be used within adaptive computations.

Listing 2 shows a simple adaptive program. The program first creates two modifiable cells
containing integer values. Another modifiable first reads both values and writes the sum of both
as a result to the destination cell. The system generates the dependency graph on-the-fly, thus in
line (16), we can extract the value 3 and print it to screen. After changing m1 to 100 and a call
to propagate, the system automatically updates m with its new value 102.

The dependency graph of Listing 2 is given in Fig. 4.6. The system maintains containment
relationship for all nested reader functions. The reader function r9 introduced in line (9) is con-
tained in r8 (line (8)). If m2 changes, all readers depending on the value of m2, need to be
re-executed. In this case r9 is re-executed, thus the line (10) is re-executed as well. Finally,

34

1 init () (* initialize library *)
2

3 (* create changeable expressions, write constants to modifieables *)
4 let val m1 = mod cmp (fun d => write(d,1))
5 let val m2 = mod cmp (fun d => write(d,2))
6

7 m = mod cmp (fn d =>
8 read(m1, fn v1 => (* read m1 *)
9 read(m2, fn v2 => (* read m2 *)

10 let val r = v1 + v2
11 in write(d,r) (* write result to new destination of m *)
12 end)
13 end)
14)
15

16 printfn "%d" (extract m) (* prints 3 *)
17 change (m1,100) (* change value of m1, this makes reads in line
18 8 and 9 inconsistent. *)
19 propagate () (* reexecutes inconsistent reads,
20 computes new v1 + v2 and updates m’s value *)
21 printfn "%d" (extract m) (* prints 102 *)

Listing 2: Adaptive program adding two integers, contained by modifieables. (Code given in
SML)

line (11) is re-executed and updates the value of m. In case of modification of m1 all readers
appearing after t1 need to be re-executed. Since r9 is contained in r8 it is executed as well. The
change propagation, as well as the complete ML library is given in Acar et al. [2]. Note that the
approach works for arbitrary functional programs including recursion. Implementation details as
well as optimality arguments is out of the scope of this theses and can be found elsewhere [1,2].

In contrast to Hudson’s approach, adaptive functional programming has no separate marking
phase. Additionally, change propagation is strict, i.e. change propagation updates all outputs in
an eager fashion.

4.4 Problem solving with Attribute Grammars

In this section we will give a short overview on how to solve common programming tasks declar-
atively by utilizing attribute grammars. The aim of the section is to make the reader familiar with
attribute grammars, semantics and associated vocabulary. Therefore, we use an illustrative ex-
ample, which operates on a simple recursive data structure4.

Our example and its implementation is heavily influenced by work of Swierstra [48]. Given
is a singly linked list. The task is simply to compute a new list with all elements replaced by the

4structurally similar to scene graphs

35

m1 m2

m

t1

Time

t2

t3
t3

r8
r9

Figure 4.6: Dependency graph corresponding to the example program, given in Listing 2.
Circles denote modifiable cells, blue directed edges denote readers attached to modifiables. In
this example, reader r9 is contained in reader r8.

average of the input list. For reference, a straightforward functional implementation in the F#
programming language is given in Listing. 3.

1 (* Sum type for describing linked lists. Each element
2 is of type float *)
3 type MyList = MyCons of float * MyList
4 | MyNil
5

6 let rec computeSum xs = match xs with
7 | MyCons(x,xs) -> x + computeSum xs
8 | MyNil -> 0
9 let rec computeLength xs = match xs with

10 | MyCons(x,xs) -> 1 + computeLength xs
11 | MyNil -> 0
12 let replace xs =
13 let avg = computeSum xs / computeLength xs
14 let repl avg xs = match xs with
15 | MyCons(v,xs) -> MyCons(avg,repl xs)
16 | MyNil -> MyNil
17 repl avg xs

Listing 3: Recursive solution to repl-avg. (Code given in F#)

As expected the solution is simple but not really extensible. Adding data variants requires
all traversal functions to be adapted. As noted earlier, no standard programming technique
provides a solution to the expression problem (also see The Expression Problem). Furthermore,
the implementation is not efficient, since sum and length of the list can easily be computed in a
single pass.

36

Let us now solve the problem using the The Utrecht University Attribute Grammar Compiler
(UUAGC) [47].

First let us define the syntax, which is identical to a sum type declaration5:

1 data List
2 | Cons head :: Float
3 tail :: List
4 | Nil

Let us now implement the attribute grammar counterpart of standard traversals i.e. synthe-
sized attributes and their semantics.

1 attr List -- for syntax List, define attributes:
2 syn sum :: Float -- a synthesized attribute of type Float
3 syn len :: Int -- a synthesized attribute of type Int
4

5 sem List
6 | Cons lhs.sum = @head + @tail.sum
7 lhs.len = 1 + @tail.len
8 | Nil lhs.sum = 0
9 lhs.len = 0

For each alternative (each derivable child production), we denote attribute equations (se-
mantic functions). The keyword lhs denotes the left-hand side of the production i.e. the current
non-terminal. For synthesized attributes the left-hand side contains the attribute we want do com-
pute (sum and len). The semantic function is arbitrary Haskell code, whereby identifiers starting
with @ are replaced by their semantics. @tail.sum for example, is conceptually replaced with
code computing the synthesized attribute sum for the tail list. Unqualified names refer to field
variables of syntactic nodes.

Next, we compute a new list by replacing all values of the initial list with some value, defined
by val. Note that val is a free (inherited) variable when computing the semantics, i.e. it is not
bound to an expression yet.

1 attr List
2 syn repl :: List
3 inh val :: Float
4

5 sem List
6 | Cons lhs.repl = Cons @lhs.val @tail.repl
7 tail.val = @lhs.val
8 | Nil lhs.repl = Nil
9

For the Nil case we simply return an empty list again. For Cons, we propagate the re-
placement value downwards to its tail. The synthesized attribute repl for Cons cells can be
constructed by constructing a new list using the replacement value and the replaced list of the
tail. We can now use the attribute grammar compiler to generate a composed semantic func-
tion for our grammar. The function has type List -> Float -> (Int, Float, List) which

5Note that the example is given as working UUAGC code, which is similar to Haskell code

37

means: provided with some syntax node of type List and a replacement value of type Float
the function computes a tuple consisting of list length, list sum and a replaced list, which are all
synthesized attributes defined for lists.

It remains to combine the attributes of computing replacement values and performing the
actual substitution. Of course we could manually apply the semantic functions defined on lists,
but here we use the attribute system for composing attributes which enables efficient evaluation
and composability. Therefore we define an artificial syntax node which essentially performs the
required attribute plumbing:

1 data Root
2 | Root list :: List
3

4 attr Root
5 syn repl :: List
6

7 sem Root
8 | Root lhs.repl = @list.repl
9 list.val = @list.sum / (fromIntegral @list.len)

Root now wraps a list, computes its average value by computing length and sum and as-
signs the replaced list to the synthesized attribute repl. As expected, the final result of compiling
the attribute grammar is a function of type Root -> List which elegantly solves the rep-avg
problem.

Indeed the UUAGC system generates an efficient evaluation function by combining multiple
traversals (length and sum) into a single one.

The attribute grammar implementation has several advantages compared to the naive F#
implementation:

• The solution is composable respective to different aspects of tasks. Aspects can be freely
composed by using attributes.

• The implementation is purely declarative – independent attributes can be evaluated in
parallel, multiple traversals can be folded into single traversals.

• Theoretically, attribute grammars can be checked for cycles, i.e. if they are well-formed [25]

• The concept allows for automatic incremental evaluation.

In the next chapter we show how to use the concept of attribute grammars for authoring
scene graph systems leveraging all previously mentioned advantages, ultimately solving prob-
lems synthesized in Summary of Problems and their Interaction.

38

CHAPTER 5
Incremental Scene Graph Semantics

At the beginning of this chapter we describe design decisions taken in this thesis and present
important modules of our concrete implementation.

Next, we discuss the implementation of simple scene graph nodes and associated operations.
We show the benefits of our declarative implementation and demonstrate how our approach
solves common problems of scene graph systems.

5.1 Design Goals

Extensibility Our approach should provide extensibility for both, nodes and operations (see
Chapter The Expression Problem).

Familiarity Object-oriented concepts and patterns should be reusable in our system. Another
goal is to use development tools programmers are already familiar with. Instead of intro-
ducing special editors or languages, we aim to reuse existing infrastructure. Additionally,
we want to maintain as much static type information as possible in order to support exist-
ing development tools such as auto-completion or refactoring.

Compatibility In order to prevent code-duplication, existing scene graph nodes should integrate
with our new system.

Expressiveness Semantics must be expressive. The system should support completely dynamic
scene graphs i.e. children may be computed in semantic functions. As an example con-
sider a switch node, which returns different sub scene graphs depending on some other
changeable property.

Aspect-oriented design When extending the system with a new feature, i.e. new nodes and
attributes, type definitions and functions associated with this new feature should be defined
as coherent package (as an aspect). This allows features to be bundled logically. As an
example consider level of detail, implemented as extension to an existing scene graph

39

system. For the application programmer, it shall be possible to implement the functionality
in a new module, without modifying other existing modules. This allows for development
of single features without interferring with other features.

Memory management When working with scene graphs, the computation framework must
take care of proper memory management. If dynamic semantics or user modifications
change the structure of a scene graph, then all values associated with the old structures
should be reclaimed automatically.

Efficiency One dedicated goal of our system is to maintain incremental performance for all
modules involved. This goal also involves backend integration. Ultimately, rendering
semantics need to be mapped to actual graphics hardware. Thus, we require the system
to provide integration techniques for incrementally mapping changes in scene graphs to
streams of draw calls.

5.2 Key Design Decisions

5.2.1 Embedded DSL for attribute grammars

Domain specific languages can be separated into two categories:

External Domain Specific Languages the language is implemented with its own parser, an-
alyzer etc. Programs are usually compiled into another programming language or used
directly to model semantics.

Embedded Domain Specific Languages (EDSL) The language is implemented within some
host language. In its extreme, APIs can be seen as simple internal domain specific lan-
guages. Parsing as well as the type system is also provided by the host language.

Most attribute grammar systems use an external domain specific language for describing
syntax and semantics.

In this work we use a internal domain specific language as implementation strategy in order
to cope with the requirement of seamless integration as well as separate compilation. Also, this
decision enables application developers to work in their familiar programming environment.

5.2.2 A mixed computation model for incremental evaluation

Adaptive functional programming introduced by Acar et al. [2] provides a powerful framework
for adaptive computations.

The system is general purpose and fits our needs regarding expressiveness and dynamism.
The framework allows for incremental evaluation of scene graph semantics and integrates with
other adaptive algorithms since adaptive programs are composable. Memory management of
dynamic dependency graphs is clearly defined: obsolete parts of the dependency graphs are
reclaimed automatically by change propagation and garbage collection.

40

However, note that change propagation is eager, i.e. change propagation makes all modifi-
ables consistent, even if the output is not actually required for rendering (e.g. because of view
frustum culling).

In the field of rendering, Wörister et al. [62] use a specialized computation model for eval-
uating computations in an on-demand manner. As we found in early experiments, adaptive
computation turns out to be quite expensive for simple value changes, especially if not all val-
ues need to be computed. Similar to Wörister et al., we distinguish between structural changes
and value changes. In order to get best of both worlds — lazy evaluation for value changes
and eager evaluation for structural changes, we use both computation models for describing dy-
namic semantics. Application programmers are free to decide which framework to use. Simple
computations like dynamic transformations should be modeled with lazy computation, while
modifiable scene graph nodes should use adaptive functional programming.

5.2.3 Monads for Incremental Computation

Acar’s adaptive library for adaptive computations is based on destination passing style. The
library requires to write destination cells of changeable expressions exactly once. Acar uses a
modal type system to enforce this restriction. Carlsson [10] introduced a monadic interface on
top of Acar’s library, which also enforces this restriction without the need to extend the type sys-
tem. Additionally, the monadic API takes away the burden of passing around destination mod-
ifiables. In order not to alienate programmers not used to continuation pass style programming
we adapt Carlsson’s approach for F#. Carlsson’s approach is implemented in Haskell, which has
syntactic support for monadic computation exposed via do-notation [33]. F# provides a similar
concept, called computation expressions [32, 50].

5.3 An EDSL for Attribute Grammars

F#, a mixed paradigm programming language, fully integrated in the .NET development environ-
ment provides a variety of facilities for embedded languages. The language comes with support
for code quotations [49]. Similarly to LISP, code can be interpreted as data which makes code
quotation a viable option for compiling F# expressions to other target languages. At first glance
the feature seems tailor-made for implementing attribute grammar descriptions.

The approach however turns out to be cumbersome since generated code is hard to under-
stand and not well suited for debugging.

In this thesis we take a pragmatic approach. We simply use standard object-oriented classes,
annotated with some special semantics attributes.

At load time we inspect all methods and its parameters and store their entry points in a
global dictionary mapping from semantic name to entry point. Given a mechanism for defining
entry points for semantic functions, accessing attributes is still unsolved. With semantic func-
tions being ordinary methods, their body cannot be analyzed. We therefore introduce special
operators for accessing attributes at run-time. F# has support for dynamic typing via dynamic
operator expressions [50, §6.4.4]. The binary dynamic operator ? of type obj -> string ->

41

’a is statically valid on any object. As noted in the specification, the operator is useful for im-
plementing custom property lookups like Expando objects [28] in C#. As the type suggests,
its return type can be of any type ’a. Thus, the type unifies with any type, i.e. static type safety
is violated. Interestingly, this feature integrates fine with type inference of F#. Since the context
of the attribute dictates types of the attribute and the type is inferred statically, we accept the loss
of static type safety. Theoretically, our system can be used from other languages such as C#.
Yet, our design significantly benefits from F# features. Thus, in the rest of this chapter we will
stick to F# code.

In our approach we use ? for looking up attributes and the ternary <-? operator for assigning
inherited attributes. Our top level attribute operators look like:

1 // given a syntactic entity of type obj, lookup the
2 // name attribute, and coerce the value to ’R.
3 let (?) (o:obj) (name:string) : ’R =
4 getAttribute o name typeof<’R> |> unbox<’R>
5
6 // Given a syntactic entitry of type obj, set its
7 // attribute name to some value of type ’a.
8 let (?<-) (syntax : obj) (name : string) (value : ’a) =
9 setAttribute syntax name value

Note that our implementation technique also works for languages without dynamic operator
overloads by simply providing functions for looking up attribute names for arbitrary objects. For
interoperability, we use this approach when accessing attributes from C# code.

In our F# implementation we distinguish syntactically between inherited and synthesized
attributes.

Assigning inherited attributes Inherited attributes can be assigned by using the ternary (?<-)
operator:
e.g. child?VertexAttributes <- va assigns va to the inherited attribute
(VertexAttributes), given in the child scene graph (child).

Accessing attributes We provide two syntactic forms for accessing attributes. Both operate on
the binary (?) operator. In order to distinguish between accessing inherited and synthe-
sized attributes we use different types:

1. In order to stress the operative intention of synthesized attributes, which is to com-
pute an attribute with some execution context, synthesized attributes are considered
to be functions of type: unit -> ’a. Thus, when accessing synthesized attributes
we apply unit explicitly, e.g. va.Child?RenderJobs(), computes the synthesized
attribute RenderJobs for the node va.Child.

2. For inherited attributes we simply use a the attribute as value,
e.g. let va = renderNode?VertexAttributes
binds the inherited attribute VertexAttributes for the syntactic entity renderNode
to va.

42

5.4 Attribute Evaluation

In contrast to attribute grammar systems with analysis and code generation (e.g. Reps et al. [37]),
our approach does not generate explicit static evaluation schedules, but evaluates attributes at
run-time in an on-demand manner. This approach is particularly well suited because:

1. Attributes are only evaluated if absolutely needed.

2. The approach integrates fine with the EDSL, which is dynamic and requires no explicit
analysis.

Our evaluation scheme basically simulates lazy evaluation, thus is comparable to traditional
implementation techniques as used in UUAGC [47] and Slone et al. [42].

At top level, only synthesized attributes can be demanded (e.g. RenderJobs), so our evalua-
tion always starts with evaluating a synthesized attribute a for a given syntax node s. We use an
auxiliary stack for maintaining the context while evaluating attributes (Ctx). In order to prevent
reevaluation of semantic functions for the same context we use a map from Ctx * Semantic
to the result of the semantic function (attribute cache). Additionally we store semantics in a
semantic map with the signature:

1 type SemanticMap =
2 abstract member GetSemanticFunction : Type * Identifier -> EntryPoint

Recall the definition of semantic functions:
1 member x.BoundingBox(n : RenderNode) : Mod<Box3d> = f

In this example, the semantic map contains an entry:
typeof<RenderNode> * ’BoundingBox’ -> EntryPoint(f).

Evaluation of synthesized attributes simply executes the appropriate semantic function. The
dynamic operators take care of attribute evaluaton, which occurs at run-time in an on-demand
manner. The algorithm for evaluating synthesized attribute a for the node s proceeds as follows:

• Safe the current context.

• Push s onto the node stack.

• Lookup (ctx, a) in the attribute cache. There are two cases:

– (ctx, a) exists, thus restore the context and simple return its cached value.

– Lookup (s, a) in the semantic map.

* No entry point for given (s, a): evaluation fails immediately.

* Invoke entry point with argument s and store its result in the attribute cache,
restore the context and return the result.

Whenever an inherited attribute is accessed we recursively search for the attribute value.
This corresponds to searching for the requested attribute in all parent nodes. Semantic func-
tions for inherited attribute have return type unit, thus the semantics depends on a side-effect.

43

The dynamic assignment operator s?a<-v writes v with key (s, a) to the attribute cache. Cru-
cially, evaluation of inherited attributes, works in an on-demand manner. If evaluation of another
attribute encounters the need for a inherited attribute a in node s, the algorithm proceeds as fol-
lows:

1. Safe the current context.

2. Push s onto the node stack.

3. Lookup (ctx, a) in the attribute cache. There are two cases:

• There exists a cache for attribute a. Restore the context and return the cache value.

• No cache value exists. Lookup (s, a) in the semantic map:

– If the attribute stack is empty, fail immediately. Otherwise, pop the syntax node
from the attribute stack and proceed in (2).

– Invoke entry point with argument s. Semantic functions for inherited attributes
have return type unit. If the semantic function was well-formed, now there
exists an entry in the Attribute. Lookup (ctx, a) in the attribute cache:

* No entry found. Semantic function was not well-formed. Issue error mes-
sage and fail.

* Restore the context and return cache value.

5.4.1 Capturing context for reevaluation

Since semantic functions are typically adaptive, attribute evaluation needs to restore the execu-
tion context of the initial execution. Thus, we provide a convenience function (Captured) for
pairing nodes with their initial exeuction context. The implementation simply attaches the exe-
cution context to the current object. Whenver the captured syntax node is accessed, the original
execution context is restored, which gurantees attribute getters to be safe while change propaga-
tion.

5.5 Adaptive Functional Programming

Our implementation of adaptive functional programming is based on the ML library introduced
by Acar et al. [2].

In order to provide the user with a simpler API, we use a variant of Carlsson’s monad for
incremental computation [10]. Carlsson uses an adapted continuation monad for representing
adaptive computations. Our implementation languages, C#, and F# do not provide proper sup-
port for monads. F# however, provides computation expressions which allow for overloading of
most F# language constructs. Computation expressions are syntactic sugar for calling methods
of a dedicated class instance (a computation-expression builder).

At this point we shall note one difference regarding the user API. Carlsson’s monad is basi-
cally a continuation monad, which makes it necessary to lift modifiable reads into the monad by
applying readMod to modifiables.

44

1 do m <- newMod (return 1)
2 mplus1 <- newMod (do v <- readMod m)
3 return (v+1))
4 r <- readMod mplus1
5 return r

By contrast, our implementation does not require readMod. We achieve this by statically
overloading let!. One overload corresponds to continuation bind, exactly like Carlsson’s monad
bind. The other one has an argument of type Mod<T>, thus readMod is applied implicitly:

1 adaptive
2 {
3 let! m = initMod 1
4 let! mplus1 = adaptive
5 {
6 let! v = m
7 return v + 1
8 }
9 return mplus1

10 }

Note that this is not directly possible in Haskell, since do-notation operates on generic
monad operations only. The implementation of our computation-expression builder is given
in Listing. 4, which defines the syntactic translation to Acar’s adaptive API. By applying the
semantics1, the (simplified) desugured version of our example essentially looks like:

1 adaptive.Bind(initMod 1, fun m ->
2 adaptive.Bind(adaptive.Bind(m, fun v ->
3 adaptive.Return(v+1)),
4 fun mplus1 ->
5 adaptive.Return(mPlus1)
6)

1 type Adaptive<’a> = (’a -> unit) -> unit
2
3 type Adapt() =
4 member this.Bind (m, f : ’a -> Adaptive<’b>) : Adaptive<’b> =
5 fun c -> m (fun a -> (f a) c)
6 member this.Bind (m : Mod<’a>, f : ’a -> Adaptive<’b>) : Adaptive<’b> =
7 this.Bind(readMod m, f)
8 member this.Return (x : ’a) : Adaptive<’a> =
9 fun k -> k x

10 member this.ReturnFrom (m : Adaptive<’a>) : Adaptive<’a> = m
11
12 member this.Run(m : Adaptive<’a>) = newMod m // correponds to Acars mkMod

Listing 4: A computation expression builder for adaptive computations. Its implementation is
similar to the continuation monad used by Carlsson [10]. Our computation expression builder
provides two implementations of the bind operator. One implementation corresponds the bind
operation of the continuation monad. The other one creates a continuation by implicitly read-
ing the content of a modifiable. Overload resolution resolves the appropriate bind operation
statically.

1Precise translation rules for computation expressions is given in [32]

45

5.6 A mixed Computation Model

In order to distinguish between structural changes and value updates, we use a second type
for modeling incremental evaluation, which we call Computation<T> (in contrast to Mod<T>).
For computations we build dependency graphs in an explicit manner. Each computation gives
rise for a new node in the dependency graph. At construction time of compound computations
(computation with computations as input), we connect the entities in the dependency graph. For
evaluation and update propagation we use Hudons algorithm [22].

5.7 Representing Draw-calls purely functional

Instead of issuing draw calls via side-effects while traversing the scene graph, we use the synthe-
sized attribute RenderJobs for modeling rendering semantics. Let us first introduce a description
of a single draw call, which we call RenderJob.

1 type RenderJob = Empty
2 | RenderJob of isActive : Computation<bool> *
3 surface : Computation<ISurface> *
4 rasterizerState : Computation<RasterizerState> *
5 drawCallInfo : Computation<DrawCallInfo> *
6 (* ... uniform attributes etc. *)

RenderJobs are either empty or a complete description of the draw call including all pa-
rameters for the draw call and uniform parameters like surfaces, spatial transformations etc.
For convenience, each render job is equipped with a boolean flag (isActive), which allows to
disable specific render jobs, without changing the scene graph structurally. If appropriate, pa-
rameters are changeable i.e. computations or modifiables. For example, the field drawCallInfo
is a computation, which makes in-place updates of rendering parameters possible.

Next, we need a data structure for describing multiple RenderJobs. Rendering is not commu-
tative in general, i.e. semantics imposes an order, in which render jobs need to be executed. In
this thesis however, we ignore order-dependent rendering and focus on unordered sets of render
jobs2.

In order to maintain the set of active render jobs efficiently, the structure needs to be incre-
mental. Modifiable lists are not sufficient, since we need constant time concatenation of render
job sets. Thus, we use a modifiable binary tree where leafs are RenderJobs.

1 type BTree<’a> = Node of Mod<BTree<’a>> * Mod<BTree<’a>>
2 | Leaf of ’a
3
4 type RenderJobTree = Tree<RenderJob>
5 type RenderJobsMod = Mod<RenderJobTree>
6
7 let renderJobSet (sg : ISg) : RenderJobsMod =
8 // compute modifiable render job tree, given a scene graph
9 sg?RenderJobs()

2This limitation can be lifted easily by associating render jobs with keys, denoting their intended order of execu-
tion.

46

5.7.1 Composing render job sets

Consider a binary group, which composes two render job trees. The adaptive semantics for
RenderJobs could be defined like:

1 type BinaryNode(l : Mod<ISg>, r : Mod<ISg>) =
2 interface ISg
3
4 member x.Left = l
5 member x.Right = r
6
7 [<Semantic>]
8 type RenderBinaryNode() =
9 member x.RenderJobs(b : BinaryNode) =

10 adaptive
11 {
12 let! l = b.Left
13 let! r = b.Right
14 let! leftJobs = l?RenderJobs()
15 let! rightJobs = r?RenderJobs()
16 return BNode(leftJobs,rightJobs)
17 }

Sequences of arbitrary length can be composed by folding concatenation over the sequence,
starting with a leaf containing an empty render job. Traditionally scene graph systems support
dynamic Group nodes with an imperative programming interface for adding and removing scene
graphs. For dynamic group nodes we maintain a render job tree explicitly. In order to support
addition, it is necessary to maintain an extension point within the binary tree. In our implemen-
tation we use a node, containing an empty render job. In case of additions we simply modify the
node, insert another internal node containing the new node, as well as a dummy leaf node which
serves as an extension point for future additions. For efficiency, we maintain an auxiliary data
structure which maps scene graph nodes to tree nodes. When removing a scene graph node, we
look-up its associated binary tree node and update it using the adaptive framework.

5.7.2 Adaptivity

In order to maintain incremental evaluation, the render job tree is stored in a modifiable (Ren-
derJobsMod).

Thus, the render job tree modifiable remains stable at all times, while the rendering backend
observes changes in the tree. Naively, the rendering backend traverses the complete render
job tree each frame. However, this approach defeats the purpose of incremental scene graph
semantics.

Next we show how to integrate a rendering backend which observes the render job tree while
maintaining efficiency, i.e. incremental evaluation.

5.8 Rendering Engine Integration

Our rendering backend handles dynamic semantics by maintaining a set of active render jobs
(active). In order to efficiently map dynamic semantics of scene graphs to render jobs, the

47

rendering backend keeps active consistent by incrementally applying changes to active. Changes
are defined by the data type:

1 type Change = Removal of RenderJob
2 | Addition of RenderJob

Our backend provides functionality for applying a set of changes to its internal set of active
render jobs:

1 type IBackend =
2 (* Update rendering with a list of changes *)
3 abstract member Update : List<Change> -> unit

Computing the set of changes incrementally is inherently a stateful operation, since ∆ de-
pends on the previous state of active. In this thesis we propose a customized algorithm for
computing the change set incrementally.

5.8.1 Preliminaries

Recall, that our binary tree structure is defined inductively by a sum type3:

1 type Tree = Node of Mod<Tree> * Mod<Tree>
2 | Leaf of RenderJob

Definition 1. A binary tree T is full if each node is either a leaf or possesses exactly two child
nodes.

Lemma 1. By construction, our binary tree is always a full binary tree.

Theorem 1. Let T be a nonempty, full binary tree then: If T has L leaves, the total number of
nodes is N = 2L – 1.

Definition 2. Two RenderJob trees are equal, if they have the same reference, i.e. point to the
same memory location.

Definition 3. Let R(A,B) be the containment relation of two RenderJob trees. We say R(A,B)
iff there exists a sub tree of A equal to B (A contains B).

Structure of the algorithm

The proposed algorithm only works for full binary trees. From a high-level point of view, the
algorithm installs dummy readers for each inner binary tree node. If the structure of the node
changes, the algorithm computes a list of changes reflecting the modified structure.

Let us summarize the preconditions for computing changes:

3A non generic version of BTree<’a> with type parameters specialized to RenderJob

48

R 1 R 2

NA

R 3 R 4 A

R 3 R 4

{ Add R 1, Add R 2 }

(a) R(N,A), i.e. N contains A. All nodes of N which are not A are additions to A. The operation corresponds to
write(root, BNode(N, unsafeRead root)).

R1 R2

O { Rem R1, Rem R2 }

A

R3 R4

A

R3 R4

(b) R(O,A), i.e. O contains A. All nodes of O except for A and its sub tree are removals. The operation corresponds
to write(root, unsafeRead root.Right).

Figure 5.1: Two cases of containment relation and its meaning in terms of additions and re-
movals. Change propagation or user modification modifies the root cell (dotted rectangle).

1. Each node reader is executed before its child nodes i.e. execution is essentially pre-order.

2. The binary tree is full.

The algorithm works in two phases:

Initialization. We traverse new trees exactly once and install independent readers r for each
modifiable node. Each reader is re-executed if the node cell is modified structurally. Since
∆ is the new tree, additional traversal has runtime proportional to the size of the new tree.

Change Propagation. A reader r of an inner node is re-executed if the structure of the node
is modified. Since readers are independent (due to construction) and executed in pre-
order due to pre-assumption (1) each reader handles modifications of its original node
modifiable. Change propagation involves three steps:

Computing containment. Nodes internally mutate via modification and change propa-
gation. When computing the containment relation for some non leaf node n, compar-
ing n by reference is sufficient, since child nodes have their own readers installed,
thus their own registration, which takes care of internal changes. A sketch com-
puting the containment relation is given in Listing. 5. Note that when computing
containment, we traverse both trees (old and new) in in parallel, i.e. the traversal
expands child nodes alternatingly. Intuitively this scheme provides an argument for

49

the performance of the algorithm, since the algorithm terminates exactly when one
tree has been visited completely.

Compute delta In order the compute the complete set of removals and additions, we
compute both sets seperately. Given the containment relation R(old, new) the al-
gorithm traverses old, while omitting the new. All visited leaf nodes of old are no
longer in new, thus add them to change list (removals). Given containment relation
R(new, old), i.e. new contains old, the algorithm traverses new while omitting old.
All visited leaf nodes of new are additions, thus add them to change list (additions).
The concept is depicted in Fig. 5.1. A sketch of the implementation is given in
Listing. 5.

Maintain registrations Remove registrations of inner nodes no longer appearing in the
new tree. Analogously add new registrations for new inner nodes.

Complexity of computing containment relationship

Let A,B be RenderJobs sets represented as full binary trees. If A and B are equal, i.e. describe
the same RenderJob set and share the same structure, change propagation and therefore the
algorithm terminates immediately. Otherwise A and B are not equal, i.e. the change list is
non-empty containing n elements consisting of a additions and r removals.

Theorem 2. Given the old state of an inner node of some render job tree, and the new state, the
containment relationship can be computed in O(∆).

Proof 1. There are two cases:

• For A and B there is neither R(A,B), nor R(B,A), i.e. they have no contains relation
which means the complete scene graph changed. In this case the algorithm visits 2 ∗ r− 1
nodes, reflecting removals, and 2 ∗ a− 1 additions. Thus the algorithm runs in O(∆).

• Without loss of generality R(A,B), i.e. A contains B. Let k be new RenderJobs appear-
ing in A, but not in B.

1. In worst case, the original tree B is lowest, right in the new sub tree. With k being
the number of leafs in the new sub tree, the number of nodes to be visited in total is
2 ∗ k − 1.

2. Our alternating traversal scheme ensures, that the number of traversed nodes differs
at most by 1. Thus, computing the containment relation runs in O(2 ∗ k).

Given (1) and (2) our algorithm for computing containment relation runs in O(4 ∗ k),
which is indeed O(∆).

Given a proper containment relation, it suffices to traverse the bigger tree omitting the con-
tained smaller tree. Let N be the new updated tree and O the old structure of a modified inner
node. There are two cases:

50

• R(N,O), i.e. the new tree is bigger. All nodes visited are additions (Fig. 5.8.1). The
algorithm visits add all new nodes, which is ∆, thus computing additions runs in O(∆).

• R(O,N), i.e. the new tree is smaller. All nodes visited are deletions (Fig. 5.8.1). The
algorithm visits all removed nodes. Thus computing deletions runs in O(∆).

Output of the algorithm

The proposed algorithm may detect self-vanishing4 add-remove sequences (i.e. remove x,add
x). Since the complete delta list needs to be traversed by the backend, such phantom modifica-
tions can be removed with memory overhead proportional to the delta list (using a hash table).

Discussion and other approaches

Computing deletions is very similar to automatic memory management. Additions in turn are
similar to allocations in memory management. In an early implementation we therefore used
change propagation (splice-out) and allocation for tracking changes in render job sets. Although
a valid approach, we found it to be intransparent and cumbersome. Our current algorithm by
contrast is explicit about modification.

4Phantom changes, occur due to using shallow equality for comparing trees.

51

1 let oldValues = Dictionary<Mod<BTree<RenderJob>>,BTree<RenderJob>>()
2 // active reader functions
3 let m_readerFunctions = Dictionary<Mod<BTree<RenderJob>>,Edge>()
4
5 let deregister (delta : List<Change>) (m : Mod<BTree<RenderJob>>) =
6 match m_readerFunctions.TryGetValue(m) with
7 | (true,reader) -> (m:>IMod).RemoveOutEdge(reader)
8 m_readerFunctions.Remove(m) |> ignore
9

10 // read modifiable node and store reader function in m_readerFunctions
11 let rec register (delta : List<Change>) (m : Mod<BTree<RenderJob>>) =
12 mkMod (fun d ->
13 let reader = readAndGetEdge (m, fun t -> computeDelta m delta)
14 m_readerFunctions.Add(m,reader)
15 write (d, ())
16) |> ignore
17
18 // traverse binary tree omitting endNode, execute edgeAction per node,
19 // execute leaf action per leaf (use to build ∆ set)
20 and traverseEdgesTo (original : BTree<RenderJob>) (endNode : BTree<RenderJob>)
21 (edgeAction : Mod<BTree<’a>> -> unit)
22 (leafAction : BTree<’a>> -> unit) = ...
23
24 // traverse complete binary tree, execute edgeAction per node,
25 // execute leaf action per leaf (use to build ∆ set)
26 and traverseAllEdges (tree : BTree<RenderJob>)
27 (edgeAction : Mod<BTree<’a>> -> unit)
28 (leafAction : BTree<’a>> -> unit) = ...
29
30 // computes delta for changes of one single modifiable node.
31 and computeDelta (m : Mod<BTree<RenderJob>>) (result : List<Change>) : unit =
32 let removeLeaf t = match t with
33 | Leaf(v) -> result.Add(Removal v)
34 let addLeaf t = match t with
35 | Leaf(v) -> result.Add(Addition v)
36 // read new structure, new structure is consistent due to
37 // change propagation of adaptive
38 let newValue = unsafeRead m
39 match oldValues.TryGetValue(m) with
40 | (true, oldValue) ->
41 // find oldValue in m, compute containment relation.
42 let cmp = findRelation oldValue newValue result
43
44 // adjust registration, deregister values no longer
45 // appearing in newValue. same for new values
46 if cmp = NewContainsOld
47 then // newValue is in oldValue
48 traverseEdgesTo oldValue newValue (deregister result) removeLeaf
49 elif cmp = OldContainsNew
50 then // oldValue is in newValue
51 traverseEdgesTo newValue oldValue (register result) addLeaf
52 else
53 // no relation, deregister all in old value,
54 // register all in newValue
55 traverseAllEdges oldValue (deregister result) removeLeaf
56 traverseAllEdges newValue (register result) addLeaf
57 | _ -> traverseAllEdges newValue (register result) addLeaf

Listing 5: computeDelta computes a list of changes and adds them to the result list. The
algorithm runs in O(∆). findRelation is given in Listing. 6

52

1 type Current = Old | New
2 type Relation = NewContainsOld | OldContainsNew | NoRelation
3 let findRelation (old : BTree<’a>) (node : BTree<’a>) : Relation =
4
5 let oldActive = Queue<BTree<’a>>()
6 let newActive = Queue<BTree<’a>>()
7 let current = ref Old // start with old
8
9 // enqueues children of node to q

10 let enqueueTree t (q:Queue<BTree<’a>>) =
11 match t with
12 | BNode(l,r) -> q.Enqueue l; q.Enqueue r;
13 | _ -> ()
14
15 // enqueue root nodes
16 enqueueTree old oldActive
17 enqueueTree node newActive
18
19 // switches current
20 let alternate c = match c with
21 | Old -> New
22 | New -> Old
23
24 // takes from current queue if possible, otherwise returns none
25 let takeNext (c:Current) =
26 match c,newActive.Count,oldActive.Count with
27 | New,cnt,_ when cnt > 0 -> Some <| newActive.Dequeue()
28 | New,_,_ -> None
29 | Old,_,cnt when cnt > 0 -> Some <| oldActive.Dequeue()
30 | Old,_,_ -> None
31
32 let rec run current =
33 // no more nodes on both sides, so there is no relation, i.e. all new
34 if oldActive.Count = 0 && newActive.Count = 0 then NoRelation
35 else
36 let other = alternate current
37 let next = takeNext current
38 match next,current with
39 | None,_ -> run other
40 | Some(v),New ->
41 if System.Object.ReferenceEquals(v,old) then
42 // old is in new (new contains old, R(new, old))
43 NewContainsOld
44 else enqueueTree v newActive
45 run other
46 | Some(v),Old ->
47 if System.Object.ReferenceEquals(v,node) then
48 // new is in old (old contains new, R(old, new))
49 OldContainsNew
50 else enqueueTree v oldActive
51 run other
52
53 run New

Listing 6: Parallel traversal algorithm for finding containment relationship of two full binary
trees.

53

5.9 Scene Graphs as Attribute Grammars - Nodes and Semantics

Consider a simple scene graph with some basic node types:

RenderNode Contains draw call parameters (e.g. draw mode5 and primitive count) as an im-
mutable structure called DrawCallInfo. RenderNode allows DrawCallInfo to be modi-
fied using the computation framework. This enables efficient manipulation of draw calls,
like switching draw modes.

TrafoApplicator Applies spatial transformation to its modifiable child sub graph. Note that the
transformation itself should be changeable as well.

Group Renders all child nodes in unspecified order. Group group is basically a set of scene
graphs.

VertexAttributeNode Applies a set of vertex attributes (e.g. Positions, Normals, Coordinates,. . .)
to some modifiable child sub graph.

In order to abstract over scene graph nodes we introduce a common marker interface, imple-
mented by all nodes: ISg.

Additionally observe, that TrafoApplicator and VertexAttributeNode share a similar
structure.

Let us abstract over the structure by introducing a common interface: IApplicator.
IApplicator contains exactly one member property, returning a modifiable sub scene graph.
Note that traditionally leaf nodes contain all necessary vertex data to be rendered. In our

design we describe geometry attributes with ordinary attributes, thus RenderNode contains no
geometry itself.

A straightforward object-oriented encoding using F# looks like:
1 (* marker interface *)
2 type ISg = interface end
3
4 (* all nodes with modifiable childs *)
5 type IApplicator = interface
6 inherit ISg
7 abstract member Child : ISg Mod
8 end
9

10 (* render node equipped with modifiable draw call info
11 struct (draw mode, primitive count etc.) *)
12 type RenderNode(callInfo : DrawCallInfo) =
13 interface ISg
14 member x.DrawCallInfo = new Mutable<DrawCallInfo>(callInfo)
15
16 (* applies a trafo computation to some modifiable child scene graph *)
17 type TrafoApplicator(trafo : Mod<Trafo3d>, child : ISg Mod) =
18 interface IApplicator with
19 member x.Child = child
20
21 member x.Child = child
22 member x.Trafo = trafo
23

5PrimitiveTopology in Direct3D 10

54

24 (* adaptive group implementation with imperative interface
25 for additions and removals (implementation omitted *)
26 type Group(xs : seq<ISg>) =
27 interface ISg
28
29 member x.Add(elem : ISg) = ...
30 member x.Rem(elem : ISg) = ...
31 member x.Children : Mod<BTree<ISg>> = ...

Since RenderNode contains only metadata of the draw call, we define an additional node
which we use for providing vertex data to some sub scene graph:

1 type VertexAttributeNode(vertexAttributes : Dictionary<Computation<Array>>,
2 indices : Computation<Array>, child : ISg Mod) =
3 interface IApplicator with
4 member x.Child = child
5
6 member x.Child = child
7 member x.Attributes = vertexAttributes
8 member x.Indices = indices

In order to access vertex data in leaf nodes we need a way to expose vertex data to child
nodes. Therefore, let us introduce an inherited attribute VertexAttributes, which we assign in
the semantics for VertexAttributeNode:

1 [<Semantic>]
2 type VertexAttributeSem() =
3 member x.VertexAttributes(va : VertexAttributeNode) =
4 va.Child?VertexAttributes <- va.Attributes

Next let us introduce semantics for rendering. As indicated earlier instead of using side-
effects we build an explicit representation of RenderJobs, which we compute for each scene
graph node by synthesizing the attribute RenderJobs.

1 [<Semantic>]
2 type RenderSem() =
3
4 member x.RenderJobs(r : RenderNode) : Mod<BTree<RenderJob>> =
5 let va = r?VertexAttributes // Lookup inherited attrib
6 let t = r?ModelTrafo // Lookup uniforms (e.g. trafos)
7 let job = makeRenderJob r va t // make renderjob for given
8 initMod (BLeaf job) // Wrap into incremental RenderJob tree
9

10 member x.RenderJobs(e : IApplicator) : Mod<BTree<RenderJob>> =
11 adaptive’ {
12 let! c = e.Child // Read child
13 return! c?RenderJobs() // Compute RenderJobs for child
14 }
15
16 member x.RenderJobs(g : Group) : Mod<BTree<RenderJob>> =
17 aggregateBTree g.Children (fun sg -> sg?RenderJobs())

Note that the implementation of RenderNode shown here is simplified. In practice a Ren-
derJob requires additional attributes like surface and uniform parameters. In our prototypical
implementation however, we simply use VertexAttributes and ModelTrafo for specifying a Ren-
derJob. The semantic function for group nodes involves computing an aggregate RenderJob for
its children. In order to accomplish this, we use an adaptive version of the map function, known
from functional programming (see Listing 7)

55

1 let rec aggregateBTree (tree : Mod<BTree<’a>>)
2 (f : ’a -> Mod<BTree<’b>>) : Mod<BTree<’b>> =
3 adaptive {
4 let! t = tree // read node
5 match t with
6 | BNil -> return BNil // keep nils
7 | BLeaf(v) -> let! nv = f v // use adaptive per leaf function
8 return nv
9 | BNode(l,r) -> // Create a new BNode, memoize its result

10 // Hence, contained nodes handle inner modifications
11 // themselfs
12 return! memoize (fun l1 r1 ->
13 initMod (BNode(modMapFoldBTree l1 f,
14 modMapFoldBTree r1 f))
15) l r
16
17 }

Listing 7: Adaptive aggregation function mapping over adaptive binary trees preserving the
structure.

The implementation is very similar to the standard map function for binary trees. In order
to make it efficient, recursive calls need to be memoized. Details on memoization for recursive
adaptive function is out of the scope of this paper and can be found in Acar’s thesis [1].

Next, as an example for introducing new operations, we define semantics for computing the
world-space bounding box. Therefore, we use the synthesized attribute BoundingBox to compute
the world-space bounding box of a given scene graph. There are essentially two methods for
computing bounding boxes using attribute grammars:

1. Additionally to BoundingBox, define an inherited attribute describing model to world
transformations (ModelToWorld). TrafoApplicators modify the inherited transforma-
tion attribute of its sub graph, by applying their transformation. In all leaf nodes (RenderNodes)
we now compute a bounding box in model space and transform it by the inherited Mod-
elToWorld attribute. In this case, for each render node the bounding box is computed
directly in the leaf node. This implementation technique is efficient, if the structure of the
scene tends to change rarely.

2. The semantic function for BoundingBox in TrafoApplicator productions now computes
the BoundingBox for its subgraph, applies its transformation and returns the transformed
bounding box. In this case each TrafoApplicator transforms the bounding box of the sub
scene graph.

Both variants can be useful in practice. In our implementation, we use method (2):
1 [<Semantic>]
2 type BoundingBoxSem() =
3 member x.BoundingBox(node : RenderNode) : Mod<Box3d> =
4 // Lookup inherited attribute <VertexAttributes>
5 let va = node?VertexAttributes : Dictionary<Computation<Array>>
6 computeBBForVertices va
7
8 member x.BoundingBox(app : IApplicator) : Mod<Box3d> =

56

9 adaptive {
10 let! c = app.Child // read child scene graph
11 return! c?BoundingBox()
12 }
13
14 member x.BoundingBox(g : Group) : Mod<Box3d> =
15 foldBTree (fun c -> c?BoundingBox()) // extract BB for each child
16 (fun c b -> Box3d(c,b)) // compose BBs by using union
17 (initMod <| Box3d.Invalid) // initial seed value
18 g.Children // children
19
20 member x.BoundingBox(app : TrafoApplicator) : Mod<Box3d> =
21 adaptive {
22 let! c = app.Child
23 let! bb = c?BoundingBox() // compute BB for child
24 let! trafo = app.Trafo // read app’s trafo
25 return bb.Transformed(trafo) // apply trafo and return
26 }

Note, the implementation for groups. Similar to aggregateRenderJobs, bTreeFoldM cor-
responds to an adaptive version of fold, known from functional programming.6

Let us now extend the scene graph system with a new node type stressing extensibility.
Level of detail (LoD), can be described hierarchically by using binary scene nodes where one
child represents a low quality version of the second child. Switching nodes shall be flexible,
i.e. not hard-coded in the semantics of the node. A traditional solution for plugging in different
implementations of LoD is the strategy pattern [18]. In our implementation however, we use a
first class function of type: Box3d -> Trafo3d -> bool for parameterizing LoD nodes:

1 type LodNode(viewDecider : (Box3d -> Trafo3d -> bool),
2 low : Mod<ISg>, high : Mod<ISg>) =
3 interface ISg
4
5 member x.Low = low
6 member x.High = high
7 member x.ViewDecider = viewDecider

Our scene graph system currently supports synthesized attributes:

1. BoundingBox

2. RenderJobs

Thus, we need to provide semantic functions for those attributes for level of detail nodes as
well.

Note that in our implementation the structure of semantic functions is up to the user. One
could extend BoundingBoxSem with additional semantic functions for LoD. However, this code
could be part of a library, the programmer has no direct access to. Alternatively, one can imple-
ment syntax and semantics of the new feature in one central place.

One important property of our approach is abstraction of similar nodes. Since Bounding-
BoxSem contains an implementation for nodes of type IApplicator, new node types can use
those implementation by implementing IApplicator. For clarity we use an explicit implemen-
tation of BoundingBox for nodes of type LoD.

6C# programmers know the function from LINQ, where it is called Aggregate

57

For computing a bounding box of a LoD node, we simply delegate the computation to the
simplified child. For RenderJobs, we actually need to execute our decision function in order to
decide what to render:

1 [<Semantic>]
2 type LoD() =
3 member x.BoundingBox(n : LodNode) : Mod<Box3d> =
4 adaptive {
5 let! c = n.Low
6 return! c?BoundingBox()
7 }
8
9 member x.RenderJobs(node : LodNode) : Mod<BTree<RenderJob>> =

10 adaptive’ {
11 // Read <low> sg
12 let! lowSg = node.Low
13 // Compute bounding box of lowSg
14 let! bb = lowSg?BoundingBox()
15 // Read <high> sg
16 let! highSg = node.High
17 // Compute <low> render jobs
18 let! lowJobs = lowSg?RenderJobs()
19 // Compute <high> render jobs
20 let! highJobs = highSg?RenderJobs()
21 //read the trafo
22 let! trafo = node?ModelViewTrafo
23
24 //view logic
25 if node.ViewDecider bb trafo then
26 return highJobs
27 else
28 return lowJobs
29 }

Since all fields are modifiable itself, the RenderJobs semantic must be adaptive. In our
implementation we first read the scene graphs in order to compute both render jobs. Additionally,
we use the BoundingBox attribute to extract a simplified bounding box which guides the level
of detail decision. Level of detail systems often perform pre-fetching and asynchronous loading
which can be integrated in the semantic function directly.

Let us now analyze distinctive features of our design and implementation:

• There is no typing restriction for node types. Semantics may be defined for arbitrary
nodes, there is no need to inherit special abstract classes or interfaces. This way, it is easy
to add semantics to existing node implementations.

• In contrast to traditional scene graph systems, geometry is defined just like any other
attribute. This uniformity allows for flexible node descriptions and abstraction.

• All computations subject to value changes can be implemented using computation types.
Structural changes by contrast are modeled by adaptive computations. This design allows
for fined-grained control of updates without resorting to event style programming.

• Subtyping can be used to abstract similar features. As an example consider IApplicator.
Whenever a new node type has a single child scene graph, we implement the IApplica-

58

tor interface for the new node. Given implementations of other attributes, operating on
IApplicator instances, default implementations for the new node come for free.

• The system is extensible in respect to new operations, i.e. synthesized attributes — each
aspect (Rendering, BoundingBox, Level of Detail) can be implemented as a coherent unit
providing all necessary semantic functions.

• Rendering semantics is explicit via render jobs and render job trees. The explicit modeling
allows render jobs to appear as arguments to other functions, basically promoting render
jobs to first-class values (e.g. Group semantics for RenderJobs and BoundingBox).

• Adaptive semantic functions allow for precise memory management.
Consider TrafoApplicators: If the child scene graph is modified, change propagation
(splice out) gets rid of all data associated with the old scene graph. Same applies for LoD
nodes. In traditional scene graph systems, memory management is cumbersome when it
comes to dynamic scenes.

• Although the attribute grammar is essentially dynamically typed, type inference integrates
fine with adaptive semantic functions, since types of attributes can be inferred locally in
most cases.

59

CHAPTER 6
Evaluation

This chapter is divided into two sections. Firstly we evaluate how our design based on attribute
grammars compares to traditional object-oriented scene graph designs. To this end we analyze
required lines of code for reusable scene graph nodes as required by prototypical scenes. Sec-
ondly we compare our system’s performance with traditional scene graph rendering based on
handcrafted traversals.

6.1 Software Design

In this section we consider the scenario of dynamic transformations assigned to specific scene
entities. As an example consider a windmill with rotating sails. The task should be solved as
simple as possible while providing reusability for similar use cases.

We compare our system to a simple visitor based solution as well as Tobler’s semantic scene
graph [51], which is most similar to our system in respect to extensibility and expressiveness.

Our embedded domain specific language for attribute grammars and adaptive functional
programming is implemented in F#. Although in principle, our system can be used from C#, the
F# version is cleaner and provides additional syntactic sugar, which we consider to be important
from a software engineering perspective. In order to provide a fair comparison we provide all
implementations in F#.

In our measurements we exclude basic framework functionality. More specifically we as-
sume implementations of default scene graph nodes such as Group. However, in cases which
require extensions of framework code we take those into account, when counting lines of code.

6.1.1 Example: Animated Trafo

The scene graph system shall be used to animate entities depending on some time-varying value.
In order to provide a modular system we use a special scene graph node which supplies time
values to its sub scene graph. The advantage of this approach is that different scene graphs
can use different time values. Additionally, code for supplying time values is decoupled from

61

code depending on time, which can be handy for non real-time applications. In our example
we simply use a rotation matrix, whose angle depends on time. Code concerning animation
should be modular and replaceable. Therefore, our animation node (MyRotorTrafo), uses a
user supplied animation function instead of computing the animated transformation directly. In
object-oriented terms this decoupling can be achieved by the Strategy pattern [18], while in
functional programming we simply use a function which is used by the animation node.

Visitor

The visitor pattern [18] as used by OpenSceneGraph [36] is a common implementation technique
for scene graphs.

For simplicity and familiarity our implementation is based on the standard design pattern
given in Gamma et al. [18].

ISg represents our base interface for all node types. Additionally we define a generic variant
of accept method as well as a generic visitor.

1 type ISg =
2 abstract member Accept : Visitor<’a> -> ’a
3
4 and Visitor<’a> =
5 abstract member Visit : Leaf -> ’a

Leaf nodes, i.e. geometry nodes are represented by the Leaf class, implementing ISg. In our
test setup we simulate rendering by printing a string representation of the draw call containing
all arguments needed for rendering (transformation matrix in our simplified case).

1 type Leaf(s : string) =
2 interface ISg with
3 member x.Accept(v) = v.Visit(x)
4
5 member x.Name = s
6
7 and DefaultRenderVisitor() =
8 interface Visitor<int> with
9 member x.Visit(r : Leaf) =

10 printfn "render node: %s with trafo: %A" r.Name x.Trafo; 0
11
12 member val Trafo = Trafo3d.Identity with get,set

Next, we introduce a new node Scene, which is constructed with a function providing time
values (function f). Additionally we define another node RotorTrafo, which is constructed with
an update function of type: double -> Trafo3d representing a function computing a transfor-
mation matrix given some time value of type double.

1 type Scene(f : unit -> double, sg : ISg) =
2 interface ISg with
3 member x.Accept(v) = v.Visit x
4
5 member x.SceneGraph = sg
6 member x.Time = f
7
8 and RotorTrafo(f : double -> Trafo3d, sg : ISg) =
9 let trafo = ref (f 0.0)

10
11 interface ISg with

62

12 member x.Accept(v) = v.Visit x
13
14 member x.UpdateWithTime(t : double) =
15 trafo := f t
16
17 member x.GetTrafo () = !trafo
18 member x.SceneGraph = sg

In order to render the scene graph we need to assign proper values to all dynamic attributes
(time and transformation). Therefore we construct a new visitor SetTimeVisitor which assigns
the current time to a given sub scene graph. To this end, the visit method overload taking values
of type Scene computes a new time and assigns the computed value to some local state of the
visitor (currentTime). For arguments of type RotorTrafo, we update the instance with the new
time value given in the local state. Since the visitor pattern provides no proper solution to the
expression problem, we need to adapt framework interfaces in order to provide the visitor with
additional visit methods for new scene graph nodes. Therefore we inherit the original rendering
visitor and provide additional visitor methods for Scene and RotorTrafo. The later computes
the transformation by using its GetTrafo method and assigning the result to the base visitors
public Trafo field.

1 type SetTimeVisitor() =
2 let currentTime = ref 0.0
3 interface Visitor<int> with
4 member x.Visit(scene : Scene) =
5 currentTime := scene.Time () // get time and set mutable ref
6 scene.SceneGraph.Accept(x)
7
8 member x.Visit(r : RotorTrafo) =
9 r.UpdateWithTime(!currentTime)

10 r.SceneGraph.Accept(x)
11
12 member x.Visit(l : Leaf) = 0;
13
14 member x.SetTime t =
15 currentTime := t
16
17 // introduce new Render visitor. modify ALL uses of Render visitors!
18 and MyRender() =
19 inherit DefaultRenderVisitor()
20 interface Visitor<int> with
21 member x.Visit(scene : Scene) =
22 scene.SceneGraph.Accept(x)
23 member x.Visit(r : RotorTrafo) =
24 x.Trafo <- r.GetTrafo ()
25 r.SceneGraph.Accept(x)

Note that due to the addition of new scene graph nodes, we need to adapt framework code
in order to satisfy the type checker1:

1 // fix up Visitor interface or introduce inherited Visitor and
2 // fixup all uses in class hierarchy.
3 type Visitor<’a> =
4 abstract member Visit : Leaf -> ’a
5 abstract member Visit : Scene -> ’a

1This violates separate compilation which makes clear, that the visitor pattern provides no solution to the expres-
sion problem. This limitation can be accepted if separate compilation is of no concern and application developers
may access and modify framework code.

63

6 abstract member Visit : RotorTrafo -> ’a
7
8 // fixup default render visitor
9 //(either abstract method declarations or virtual method stubs)

10 and DefaultRenderVisitor() =
11 interface Visitor<int> with
12 member x.Visit(scene : Scene) = failwith "extend with proper method"; 0
13 member x.Visit(r : RotorTrafo) = failwith "extend with proper method"; 0
14 member x.Visit(r : Leaf) =
15 printfn "render node: %s with trafo: %A" r.Name x.Trafo; 0

Client code needs to be adapted carefully as well. For correctness it is necessary to perform
traversals in the correct order. Otherwise attributes (like time), may not be assigned properly:

1 let time = ref 0.0
2 let objs = RotorTrafo((fun t -> Trafo3d.RotationZ t), Leaf "object 1" :> ISg)
3 let scene = Scene((fun () -> let t = !time
4 time := t + 1.0
5 t),
6 objs) :> ISg
7 let setTime = SetTimeVisitor()
8 let renderVisitor = MyRender()
9 scene.Accept(setTime) |> ignore

10 let result = scene.Accept(renderVisitor) |> ignore
11 result

Semantic scene graph

In this section we provide a solution to our use case using the semantic scene graph approach
introduced by Tobler [51]. First, we introduce a scene node which provides time values to its
sub scene graph. Therefore we create a scene graph node Scene:

1 type Scene(f : unit -> double, sg : ISg) =
2 inherit Instance("Scene")
3
4 member val Identifier = "Time" with get,set
5 member x.Time = f
6 member x.SceneGraph = sg

Next, we provide a rule implementation for scene nodes. Each traversal function is supplied
with a traversal state object, which is used to store time values. Note that for convenience we
use an entry in the environment field of the traversal state which is essentially a map from string
to object with some convenience functions hiding runtime casts. This approach allows other
traversals to simply access this property. Note that this is an implementation detail and we could
as well use an extra field in the traversal state. This however, requires modification in framework
code because, the traversal state is part of the core framework.

Since SetParameters returns the sub scene graph stored in the instance, the rendering scene
graph is dynamic in general. At first glance this flexibility comes for free in Tobler’s system.
This is not quite true, since for proper memory management it is necessary to track all returned
sub scene graphs in order to prevent traversals from leaking memory. In our implementation we
use a local field of type HashSet to track returned scene graphs. When removing the scene rule
(DisposeAndRemove(.)) we dispose all sub scene graphs as well:

64

1 [<Rule(typeof<Scene>)>] // register rule for scene instance
2 type SceneRule(instance : Scene, t : AbstractTraversal) =
3 // keeps track of all returned scene graphs
4 // in order to support proper disposal
5 let returnedSgs = HashSet<ISg>()
6 interface IRule with
7 member x.InitForPath t = ()
8
9 member x.SetParameters t =

10 // compute time and publish in traversal state
11 t.EnvironmentMap.[instance.Identifier] <- instance.Time ()
12 // register returned scene graph
13 x.ReturnSceneGraph instance.SceneGraph
14
15 member x.DisposeAndRemove(t) =
16 t.TryDisposeAndRemoveRule(instance, t, returnedSgs)
17
18 member x.ReturnSceneGraph g =
19 if not (returnedSgs.Contains g)
20 then returnedSgs.Add g |> ignore
21 else ()
22 g

Next, we introduce our actual RotorTrafo which takes care of computing a new transfor-
mation matrix. Similarly to the animation function as used in the visitor implementation we use
a function which computes a new transformation, given a traversal state:

1 type MyRotorTrafo(f : AbstractTraversal -> Trafo3d, sg : ISg) =
2 inherit Instance("MyRotorTrafo")
3
4 member x.Rotation = f
5 member x.SceneGraph = sg
6
7
8 [<Rule(typeof<MyRotorTrafo>)>]
9 type MyRotorTrafoRule(instance : MyRotorTrafo, t : AbstractTraversal) =

10 let leaf = MyTrafoLeaf(instance.Rotation(t))
11 // effectively make m_instance.SceneGraph immutable,
12 // values not synchronized between rule and instance
13 let rsg = Trafo3dApplicator(instance.SceneGraph, leaf) :> ISg
14
15 interface IRule with
16 member x.InitForPath t = ()
17
18 member x.SetParameters t =
19 leaf.Value <- instance.Rotation t
20 rsg
21
22 member x.DisposeAndRemove t =
23 t.TryDisposeAndRemoveRule(instance, t)

Finally let us take a look at client code creating a simple scene graph. Note that in contrast
to the visitor based approach there is no need to modify framework code. Additionally no
modifications at client code are necessary (no special new traversal etc.):

1 let obj = MyRotorTrafo((fun t ->
2 // Consume time.
3 let timeObj = t.EnvironmentMap.Get("TimeProvider")
4 let time = timeObj :?> double // extract time.
5 Trafo3d.RotationZ(time * 0.1)),

65

6 Primitives.Box(C4b.DarkBlue).ToVertexGeometrySet())
7 let scene = Scene((fun () -> Kernel.T), // grab system time
8 obj)
9 scene.Identifier <- "TimeProvider" // publish time in slot "TimeProvider"

10 let result = scene.Render()

Attribute grammar

First, we define the Scene node which provides time values to its sub scene graph, similarly
to previous approaches. Our system works fundamentally different than previous approaches.
Instead of repeatedly traversing the complete scene for rendering we compute the RenderJobs
attribute once. Due to the incremental nature of our approach changes of arbitrary input modifi-
ables are reflected in the RenderJobs attribute. Thus, instead of using a function for computing
time values we use the computation type Computation<T>. Similarly, the child scene graph
shall be modifiable in order to allow external modification of the scene. Since scene graph
modification might be a structural change we use Mod<ISg> instead of lazy computations.

1 type Scene(f : Computation<double>, child : Mod<ISg>) =
2 interface ISg
3
4 member x.Time = f
5 member x.Child = child

Next, we need to define semantics for rendering and time. time is an inherited attribute
i.e. the semantics function Time for Scene nodes assigns its current time computation to the
inherited attribute Time. For rendering we need to define the semantics function RenderJobs.
Applied with objects of type Scene, we read the modifiable sub scene graph, and compute the
synthesized attribute RenderJobs recursively.

1 [<Semantic>]
2 type SceneTimeSem() =
3 member x.Time(s : Scene) = s.Child?Time <- s.Time
4
5 member x.RenderJobs(s : Scene) : Mod<BTree<RenderJob>> =
6 adaptive {
7 let! child = s.Child
8 return! child?RenderJobs()
9 }

Actually we need to provide semantic functions for all attributes, which might be passed
through the new node. We solve this issue by abstraction. A common pattern is to define custom
attributes for a specific nodes, while delegating all other attributes to the modifiable sub scene
graph. Our scene graph framework contains a node which provides exactly this functionality:

1 // defined in core library
2
3 type IApplicator = interface
4 inherit ISg
5 abstract member Child : ISg Mod
6 end
7
8 [<Semantic>]
9 type RenderApplicatorSem()

10 member x.RenderJobs(e : IApplicator) : Mod<BTree<RenderJob>> =
11 adaptive’ {

66

12 let! c = e.Child
13 return! c?RenderJobs()
14 }

By using the IApplicator interface our complete implementation of Scene and Time se-
mantic reduces to:

1 type Scene(f : Computation<Time>, child : Mod<ISg>) =
2 interface IApplicator with
3 member x.Child = child
4
5 member x.Time = f
6
7 [<Semantic>]
8 type SceneTimeSem() =
9 member x.Time(s : Scene) = s.Child?Time <- s.Time

Next, we introduce the new scene graph node RotorTrafo for describing dynamic trans-
formations. Again we use the IApplicator interface instead of duplicating semantics for our
new node. Note that transformations are of type Computation<Trafo3d> in order to support
adaptivity. Thus we need to use the |>= combinator which performs some operation on two
arguments of type Computation<T>.

1 type RotorTrafo(f : Computation<Time> -> Computation<Trafo3d>, child : Mod<ISg>) =
2 interface IApplicator with
3 member x.Child = child
4
5 member x.Rotation = f
6
7 [<Semantic>]
8 type RotorTrafoSem() =
9 member x.ModelTrafo(rotor : RotorTrafo) : Computation<Trafo3d>=

10 rotor.Child?ModelTrafo <- (rotor?ModelTrafo,
11 rotor.Rotation rotor?Time) |>= (*)

From a client perspective, animated scene graphs can now be constructed like:
1 let mkScene () =
2 let time : Computation<Time> = .. // aquire system time computation
3
4 let cube = vgToSg (PolyMeshPrimitives.Box(C4b.Gray).GetIndexedGeometry()) :> ISg
5 let cubeMod = initMod cube
6 let trafoFun t = adaptive { let! t = t
7 return Trafo3d.RotationZ(t * 0.1)
8 }
9 let objs = RotorTrafo(trafoFun, initMod cube) :> ISg

10
11 Scene(time, initMod objs) :> ISg

A constructive comparison of previously presented approaches

Next, we analyze the different approaches and summarize distinctions. Additionally, we analyze
code complexity and measure lines of code of each approach.

Our toy use case is of manageable complexity for all approaches. All reference solutions
however have weaknesses regarding extensibility, flexibility and maintainability.

We evaluate the presented solution in terms of extensibility, type-safety, code complexity
and boilerplate code.

67

Extensibility When extending the visitor implementation with additional traversals the ap-
proach scales fine (e.g. SetTimeVisitor). New nodes can be handled by using default
implementations and subtyping [29]. If a new node cannot be made proper subtype of an
existing node, extensibility breaks and framework code as well as other visitors need to
be adapted in order to support the new node type: New node types like RotorTrafo and
Scene require modifications in framework code i.e. new methods need to be introduced in
the IVisitor<’a> interface.

Tobler’s semantic scene graph is extensible, since SetParameters can always be used as
fallback solution if a node type does not implement behavior specific to new traversals.
Adding new node types is easy as well, since all changes remain local to the implementa-
tion of its rule.

Similarly, our proposed system provides rich extensibility. With appropriate and extensi-
ble implementations of reusable framework nodes (e.g. IApplicator), new node types
automatically inherit all attribute implementations of similar nodes. Thus, new node types
define solely attributes associated to the new node type. Additionally, other attribute im-
plementations remain local to the definition of the node, which allows for coherent im-
plementation of similar attributes (aspects). As an example consider redefining rendering
semantics for all nodes. In this case a single semantics class suffices:

1 [<Semantic>]
2 type RenderNoneIncremental() =
3 member x.NonIncrementalRenderJobs(v : VertexAttributeNode) =
4 makeRenderCall v
5 member x.NonIncrementalRenderJobs(app : IApplicator) =
6 (unsafeRead app.Child)?NonIncrementalRenderJobs()

Type safety The visitor approach provides full static type safety i.e. the type checker guarantees
that no type error occurs at runtime.

Tobler’s semantic scene graph does not provide full static type-safety. Recall, that rules
are constructed by the runtime system (according to semantic map).

Thus, rule creators have type Instance -> AbstractTraversal -> IRule. Concrete
rule constructors have type:
ConcreteInstance -> AbstractTraversal -> ConcreteRule. The instance param-
eter appears at contravariant position, hence the runtime system needs to cast instances
to the concrete instance type. We consider this type hole to be benign, since type errors
may only occur at instantiation time of rules which usually appears in startup code and
is therefore easy to spot at development time. Another type hole occurs, when using the
environment map for data-flow between traversals. Again, we consider this type hole to
be benign, since it occurs rarely and data-flow needs to be documented anyways.

Our approach based on attribute grammars has several type holes when accessing at-
tributes. Each attribute lookup using the ? operator is basically unsafe. This limitation
essentially corresponds to environment map lookups, as often used in Tobler’s semantic
scene graph. F# type inference however integrates well with ? operators and appropri-
ate types are typically deduced by the type-checker. Trivial contexts are vulnerable to

68

runtime errors, since types are usually weak and generic. Yet, annotations usually help
to spot those runtime errors. Furthermore our implementation provides meaningful error
messages in error situations which makes run-time type errors easier to spot.

Complexity We found that the visitor approach is quite complex to understand. Even if the
pattern is clear, extensions are not trivial. The complex dispatch mechanism (static over-
loading and dynamic binding) makes the code difficult to understand which may result in
subtle errors due to calling wrong overloads.

The semantic scene graph approach has clean semantics: Either a specific traversal imple-
mentation is called or traversal proceeds in the scene graph returned by SetParameters.

Attribute grammars are composed of semantic functions and attributes. The semantic
is clean, well-founded and no magic is involved. Additionally the implementations are
guided by types, inferred automatically by the type system.

Boilerplate code The visitor approach imposes a considerable amout of boilerplate code (Accept,
Visit methods and inheritance).

Tobler’s semantic scene graph comes with virtually no boilerplate code at client side. Ex-
plicit memory management requires tracking of dynamic scene graph, resulting in similar
code in many rules. Yet, inheritance can be used to reduce boilerplate code to a minimum.

Our approach has a direct mapping from semantics to implementation and keeps boiler-
plate code to a minimum.

Memory management In the visitor approach, memory management is completely up to the
user. Unmanaged resources (i.e. resources requiring explicit disposal) need to be collected
(e.g. using a visitor) and disposed manually2.

Tobler’s semantic scene graph separates semantics from rendering which complicates
memory management. Active rules are stored in the traversal cache and need to be re-
claimed if parts of the scene graph become inactive or inaccessible. Thus, a special
DisposeAndRemove traversal is required to invalidate traversal caches. This task how-
ever is not trivial due to the dynamic nature of scene graphs. In order to properly dispose
all scene graphs returned by a dynamic rule, the rule needs to keep track of returned scene
graphs. Furthermore, in general reference counting is required in order to support proper
sharing of rules.

Integration of modifiables and semantics allows our approach to be implicit about memory
management. Although our approach keeps track of active attributes, inactive attributes
can be invalidated automatically.

Table 6.1 provides an overview of our analysis.
The direct mapping of semantics and semantic function, as employed by our approach sig-

nificantly reduces the complexity and code length. In Table 6.2 we show required lines of code
for each approach.

2disposal needs to be deterministic, thus traditional garbage collection cannot be used.

69

Approach Extensible Type safe Complexity Boilerplate
code

Memory
management

Visitor pattern 7 3 High High Explicit
Semantic scene graph 3 3 High High Explicit
Attribute Grammar 3 7 Low Low Automatic

Table 6.1: Software engineering and design aspects in comparison.

Use case Semantic scene graph Visitors Attribute grammar
Animated Trafo 68 F# (132 C#) 50 F# 35 F#

Table 6.2: Code length for animated trafo case study.

6.2 Performance

In this section we perform empirical performance analysis of our system. Recall that our system
operates fundamentally different than traditional scene graph systems. Instead of traversing the
complete scene each frame in order to issue draw calls, our approach performs incremental
updates of the render job set. Thus, comparing performance is non-trivial since traditional scene
graph systems have completely different performance characteristics. Our system’s performance
is independent of the actual scene size, while traditional scene graph systems need to traverse
the complete scene each frame. While traditional scene graph systems typically have small
constant overhead in case of changes, our system’s performance heavily depends on the size of
the modification. In our tests we validate our system by measuring overheads introduced by
incremental attribute evaluation. For fairness, our benchmarks are typically worst-case for our
system. We show, that incremental evaluation pays of, even if large parts of the scene change
each frame.

For reference, we use an implementation of Tobler’s semantic scene graph [51], which is to
the best of our knowledge the only system providing rich extensibility comparable to our sys-
tem. Although at the time of writing there exists an actual rendering backend for our system, our
benchmarks are purely artificial for simplicity and clarity. Instead of traversing the scene graph
our system computes changes in a resulting render job set, which remains persistent at run-time.
From a functional point of view this can be simulated in traditional scene graph systems by com-
puting a set of geometries each frame. To this end we use a custom traversal, which computes
the set of all containing geometries at the root node. In order to be fair, those geometries need to
be renderable, i.e. equipped with transformation and surface attributes. Although not expressed
by this setup, the incremental setup of render jobs serves as a good starting point for backend
optimizations, since optimizations may directly operate on ∆-sets of render jobs. In traditional
scene graph rendering, backend optimizations need build optimizations from scratch each frame,
since their input is transient and changes each frame.

Although our approach is conceptually superior to traditional scene graph traversal, our
approach imposes constant overhead in time and memory. In order evaluate overhead in practical
scenarios, we evaluate those overheads in worst-case situations for our system.

70

The overall performance of our system is mainly influenced by:

• The attribute grammar evaluation algorithm.

• Our incremental computation framework.

Although the modules cannot be tested completely independent of each other we focus on
benchmarks stressing either attribute grammar evaluation or incremental computation.

For all our tests we used an Intel(R) Core(TM) i7-920 @ 2.67GHz (4 cores with Hyper-
Threading), 10GB RAM, 64bit Windows 8 and a NVIDIA GeForce GTX 680 graphics card
with 2048MB memory. Both systems run on top of .NET4.5. In order to warm up the runtime
system we discard first iterations of each test run.

6.2.1 Performance of structural changes

In contrast to traditional scene graph rendering which needs to traverse the complete scene over
and over again, our system’s update mechanism has running time proportional to the size of the
change. In order to validate this claim in an empirical setting we use a dynamic scene.

Figure 6.1: Tree structure of a scene graph. Each Rose tree contains a group with n children
(branching factor). In order to simulate depth complexity we use additional transformation nodes
as well as group nodes, which accumulate rendering semantics for child nodes.

71

The structure of our test scene is shown in Fig. 6.1. In order to simulate user interaction, as
found in interactive applications we perform structural changes. Virtually these changes occur
each frame. Note that in practice, the scene remains stable for most of the time, while changes
appear rarely. In order to show overheads of our system, we perform structural changes of
varying size. The scene, organized as a quad tree contains 4096 leaf nodes. At runtime, we
repeatedly add nodes to the existing scene. We therefore randomly pick some inner node and
add an additional child scene graph of varying size. The results are shown in Fig. 6.2.

Indeed, update propagation is practically free if there are no changes. The reference sys-
tem by contrast uses time proportional to the original scene size (each frame), although nothing
changes. If actual rendering is considered to be free, still the frame rate of the reference system
is limited by traversal overhead. We also observe linear growth in update time, as the scene mod-
ification increases. Note that the reference system also needs additional time for modification.
This is mainly due to object allocation and growth of the actual scene size.

0

20

40

60

80

100

0 16 32 48 64 80 96 112 128

Fr
am

e
Ti

m
e

(m
s)

Additional geometry nodes per frame (Delta)

Dynamic scene with 4096 Geometries

Adaptive attribute grammar Semantic scene graph

Figure 6.2: Hierarchically structured scene (see Fig. 6.1) with 4096 leaf nodes. We compare
update propagation execution time of our system with non-incremental scene graph traversal
time for varying size of modifications. For small changes our system is significantly faster than
the reference solution. Beginning from 64 new geometry nodes per change, traditional scene
graph traversal outperforms our approach due to overheads in attribute grammar evaluation and
incremental computation.

At first glance our system seems to provide worse scalability, when compared to traditional
scene graph traversals. Our results are promising, since scenes typically change gradually at
run-time.

72

6.2.2 Performance of our incremental computation framework

In order to further assess overheads induced by our system, let us now consider constant over-
heads of the incremental computation framework. Incremental computation does not pay out, if
most of the scene changes each frame.

In order to measure overheads induced by the framework we use a scene, with dynamic level
of detail decisions. Our scene is naively structured as depicted in Fig. 6.3.

Figure 6.3: Scene graph structure of naive level of detail. Level of detail nodes are contained
in one monolithic group node. Intermediate singleton group nodes are inserted right above level
of detail nodes in order to simulate varying depth complexity.

Level of detail decisions are dependent on the current view transformation as well as the
local bounding box of the sub tree. This structure represents a worst case situation for our
system, since each level of detail node needs to be reevaluated if at least one input changes i.e.
incremental evaluation virtually provides no benefit over non-incremental approaches.

Fig. 6.4 compares our approach with traditional scene graph traversals. Note that although,
each level of detail decision needs to be re-executed each frame, our system outperforms tradi-
tional traversal. This is mainly due to the fact that our incremental computation framework is
precise i.e. re-execution starts immediately at the changed input. In our test this means, update
propagation starts re-execution directly within level of detail nodes i.e. no other nodes need to be
traversed. In summary we found that the constant overhead to be low, compared to the benefits
gained from incremental evaluation.

73

0
4
8

12
16
20
24
28
32
36
40

1 2 3 4 5 6 7 8 9

Fr
am

e
Ti

m
e

(m
s)

Scene depth

Level of detail with 2500 leaf nodes

Adaptive attribute grammar Semantic scene graph

Figure 6.4: Flat scene graph with dynamic level of detail decisions for each leaf node. In our
test setup, the camera changes each frame i.e. each level of detail node needs to be re-evaluated
each frame. In order to analyze overheads of incremental computation running time of update
propagation is compared to handcrafted traversal as used in traditional scene graph systems.

6.2.3 Performance of attribute grammar evaluation

Due to incremental evaluation, attribute grammar evaluation appeared not to be crucial for our
system performance. Thus the design of our attribute grammar language was basically driven
by usability and extensibility. At the current state, our system does not perform performance
optimizations for attribute grammar evaluation. As expected, our current implementation of
attribute grammars is slower than handcrafted traversals. In our benchmark we compute the
resulting render-job set for a given scene graph of varying size. The structure of the input scene
graph is depicted in Fig. 6.1. Our system assumes attribute evaluations to be rare at runtime.
Still our proposed system is significantly slower at startup (Fig. 6.5). Note that this overhead is
actually the overhead observed in the structural change benchmark presented earlier (6.2.1). The
reference solution has practically no startup cost in our artificial test setup. Note that this is not
true in practice, since resource allocations (GPU uploads) are typically the bottleneck at program
startup. For scenes with thousands geometries of moderate size, our test setup including GPU
uploads requires several seconds to load. In practical scenes, startup time is dominated by GPU
uploads, geometry and texture processing which effectively makes startup time of the scene
graph system less important. Still, relatively high startup cost revealed poor performance of our
attribute evaluation scheme (see Chapter 7.1).

74

0

100

200

300

400

500

0 256 512 768 1024

Ti
m

e
(m

s)

Scene size (number of leaf nodes)

Startup cost

Adaptive attribute grammar Semantic scene graph

Figure 6.5: Time required to compute render jobs for scene of varying complexity. The scene
structure is shown in Fig. 6.1. Additional overhead is introduced by the attribute grammar.
Furthermore currently attribute evaluation employs no static analysis and optimization.

6.2.4 Outlook: Performance in Real-World Scenes

In the previous section we analyzed the worst case performance of our system in fully synthetic
test scenes. We have shown, that our system is highly competitive even in fully dynamic scenes,
while providing a high-level programming interface with high flexibility and novel expressive-
ness.

In practical scenarios most parts of the scene remain static, while small parts are modified
due to simulation, animation or user input. Previously, scene graph caching (e.g. Wörister et al.
) was used to reduce the traversal overhead for those static parts. Furthermore Wörister et al.
demonstrated, that rendering caches give rise for a number of optimizations like state sorting,
redundancy removal or overdraw sorting. In their system, those optimization operate on a per-
cache basis. Placement of rendering caches is completely up to the user, thus dynamic parts of
the scene need to be known in advance.

By contrast, our approach works completely incremental, without the need for explicit place-
ment of rendering caches. This design gives raise to known optimizations operating on the com-
plete scene, instead of static parts only. Although not part of this thesis, our group3, implemented
a proof of concept implementation of an incremental rendering backend. The architecture, as
well as the interface corresponds to techniques presented in 5.8.

In order to validate our approach, we render the well-known Sponza scene, which represents
a part of a typical game level (see Fig. 6.7). For comparison we use:

Semantic Scene Graph An implementation of Tobler’s semantic scene graph concept. The

3Special thanks to my research group at VRVis Research Center, especially Georg Haaser

75

0

200

400

600

800

1000

1200

1400
Fr

am
es

 p
er

 se
co

nd
Real World Rendering Performance for static Scene

Semantic Scene Graph (no caching)
Adaptive Attribute Grammar + Incremental Backend (no optimizations)
Lazy Incremental Scene Graph Rendering [Wörister et al. 2013]
Adaptive Attribute Grammar + Incremental Backend (with optimizations)

Figure 6.6: Performance (in frames per second) for different rendering systems. As test scene
we use the well-known Sponza model (see Fig. 6.7). Semantic Scene Graph approach performs
worst, since rendering is CPU bound due to high traversal overheads. Our system with opti-
mizations enabled significantly outperforms Lazy Incremental Scene Graph Rendering Wörister
et al.

systems traverses the scene each frame and issues draw calls when visiting a leaf node.
The implementation is based on DirectX 10.

Lazy Incremental Scene Graph Rendering An implementation of the system proposed by
Wörister et al. with all optimizations turned on. The implementation is based on DirectX
11.

Adaptive Attribute Grammar + Incremental Backend Our system with a prototypical ren-
dering backend implemented in DirectX 11. For comparison we use two variants: One
with all optimizations turned off, another one with state sorting and redundancy removal.

Although we have not been able to make our first tests with real scenes completely unbiased
due ot the large number of variables involved (e.g. different optimization strategies, different
culling strategies, . . .) we include some first results here, as an indication of the potential of our
approach, and as a confirmation, that we do not sacrifice rendering performance in our quest for
an easily programmable and easily extendible framework.

The results are given in Fig. 6.6. Our system indeed integrates well with optimizing ren-
dering backends and allows for a wide range of optimizations. In fact, our system outperforms

76

Figure 6.7: The Crytek Sponza Atrium Scene, representing part of a typical game level [12].

previous approaches, although we use a more generalized approach to caching, which allows for
arbitrary changes in the scene.

6.2.5 Additional costs and overhead

Our system introduces some additional runtime overhead as shown previously. Most signifi-
cantly attribute evaluation is slow, compared to handcrafted traversals. Additionally the incre-
mental computation requires auxiliary data structures and numerous small objects as function
objects. However, our system performs reasonably well at startup considering the benefits at
runtime.

77

CHAPTER 7
Conclusions and Future Work

7.1 Future Work and Discussion

Given the promising results, presented in Evaluation, we think our approach is an important step
towards more efficient scene graph development and prototyping. We expect our system archi-
tecture to integrate well with optimizing rendering backends and future trends towards stateless
graphics programming interfaces. Our system, however has some limitations mitigating some
of the benefits of the system:

Threading Our incremental computation framework is not well suited for multi-threaded appli-
cations. In experiments we tried to overcome these issues, but we think this topic requires
more basic research in the field of incremental computation.

Lazy evaluation Our system’s incremental evaluation framework heavily builds on adaptive
functional programming for structural changes. We found, that lazy evaluation is vital for
rendering performance in many situations like culling. However, it is not clear how to
integrate efficient lazy evaluation with adaptive functional programming.

Attribute Grammar evaluation Our current implementation is naive, i.e. we perform no op-
timizations, although attribute grammars allow for a rich set of static analysis and opti-
mization.

Order dependent rendering Render jobs are currently treated as an unordered set. In order
to support order-dependent rendering (e.g. transparency), we plan to extend render job
sets with facilitates for explicit ordering of render jobs. As implementation technique on
could for example associate each render job with values for which a linear order can be
computed easily.

79

7.2 Conclusions

In this thesis we provided an in-depth analysis of state-of-the-art scene graph systems and their
limitations. We identified design goals and synthesized implementation techniques for solving
important challenges in scene graph design. In our work we use the concept of attribute gram-
mars for describing scene graph semantics in a clean and declarative manner. We developed an
embedded domain specific language for authoring attribute grammars. In contrast to previous
approaches, our solution provides high-level semantics while enabling efficient scene graph ren-
dering. To this end we utilize adaptive functional programming, a general purpose framework
for incremental evaluation. In order to support incremental rendering backends we developed
mechanisms for providing the rendering backend with incremental changes of the system’s state.

In our evaluation we compare traditional implementation techniques for scene graphs with
our system based on attribute grammars and incremental evaluation. Our system achieves similar
flexibility in a more concise way than previous approaches, without sacrificing performance. In
fact the incremental design our system gives rise for a rich set of optimizations in the field of
optimizing rendering backends, which we would like to explore in future work.

80

APPENDIX A
The Expression Problem

A.1 Extensibility, a tension in language design

When dealing with hierarchical data structures like scene graphs it is very likely to run into a
central tension in language design: Extensibility in operations and data variants. First noted by
Reynolds [40], the problem was later formulated by Wadler as the The Expression Problem:

The goal is to define a datatype by cases, where one can add new cases to the
datatype and new functions over the datatype, without recompiling existing code,
and while retaining static type safety (e.g., no casts). [57]

Consider a simple example scene graph with nodes: Square, Circle. Both should be con-
sidered as Shape whereby for all shapes we would like to compute its area. In object-oriented
programming style this functionality can be modeled like:

1 interface Shape
2 {
3 double computeArea();
4 }
5

6 class Square : Shape
7 {
8 double side;
9 Square(side) { this.side = side; }

10

11 computeArea() { return side * side; }
12 }
13

14 class Circle extens Shape
15 {
16 double radius;
17 Circle(radius) { this.radius = radius; }

81

18

19 computeArea() { return PI * radius * radius; }
20 }

In functional programming our example looks like:

1 type Shape = Square of double
2 | Circle of double
3

4 let computeArea (s : Shape) =
5 match s with
6 | Square a = a * a
7 | Circle r = r * r * pi

If we now add an additional variant of Shape, say Rectangle this is easy in the object-
oriented solution and can be achieved by simply adding another class.

1 interface Shape
2 {
3 double computeArea();
4 double computePerimeter();
5 }

By contrast, in the functional implementation all functions operating on Shapes (particularly
computeArea) need to be extended with the additional data variant.

1 type Shape = Square of double
2 | Circle of double
3 | Rectangle of double * double
4

5 let computeArea (s : Shape) =
6 match s with
7 | Square a = a * a
8 | Circle r = r * r * pi
9 | Rectangle (l,r) = l * r

Next, we extend the example with another function operating on Shapes. In the functional
approach we simply add an additional function. In the object-oriented version however, all
Shape implementations must be updated in order to properly implement the interface:

1 interface Shape
2 {
3 double computeArea();
4 double computePerimeter();
5 }

To sum up: Functional programming style makes it easy to add additional operations on data
types, but it is hard to add additional data variants. To the contrary, object oriented modeling
makes adding additional variants easy, but additional functions operating on data types hard. In
scene graph design we actually run into this problem. Adding additional nodes should be easy
for user code. Additionally adding operations like GetBoundingBox() or ExtractGeometry()
should be easy as well. Unfortunately mainstream languages do not fulfil these requirements

82

without violating separate compilation, type safety or understandability.
Recently Oliveira et al. [31] presented a simple solution to the expression problem, which

can be implemented in object-oriented languages supporting generics like Java or C#.

83

Bibliography

[1] Umut A. Acar. Self-adjusting computation. PhD thesis, Carnegie Mellon University, Pitts-
burgh, PA, USA, 2005. AAI3166271.

[2] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming.
In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’02, pages 247–259, New York, NY, USA, 2002. ACM.

[3] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming.
ACM Trans. Program. Lang. Syst., 28(6):990–1034, November 2006.

[4] Umut A. Acar and Ruy Ley-Wild. Self-adjusting computation with delta ml. In Pieter
W. M. Koopman, Rinus Plasmeijer, and S. Doaitse Swierstra, editors, Advanced Functional
Programming, volume 5832 of Lecture Notes in Computer Science, pages 1–38. Springer,
2008.

[5] Lex Augusteijn. Functional Programming, Program Transformations and Compiler Con-
struction. PhD thesis, Eindhoven Technical University, October 1993.

[6] Mark Barnes. Collada. In ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06, New York,
NY, USA, 2006. ACM.

[7] R.S. Bird. Using circular programs to eliminate multiple traversals of data. Acta Informat-
ica, 21(3):239–250, 1984.

[8] Don Burns and Robert Osfield. Open Scene Graph A: Introduction, B: Examples and
Applications. In Proc. of the IEEE Virtual Reality 2004, VR ’04, pages 265–, Washington,
DC, USA, 2004. IEEE Computer Society.

[9] Rikk Carey and Gavin Bell. The Annotated VRML 2.0 Reference Manual. Addison-Wesley
Longman Ltd., Essex, UK, UK, 1997.

[10] Magnus Carlsson. Monads for incremental computing. In Proceedings of the seventh ACM
SIGPLAN international conference on Functional programming, ICFP ’02, pages 26–35,
New York, NY, USA, 2002. ACM.

[11] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. Multijava: modular
open classes and symmetric multiple dispatch for java. SIGPLAN Not., 35(10):130–145,
October 2000.

85

[12] Crytek. http://www.crytek.com/cryengine/cryengine3/downloads. Accessed: 2014-15-01.

[13] Alan Demers, Thomas Reps, and Tim Teitelbaum. Incremental evaluation for attribute
grammars with application to syntax-directed editors. In Proceedings of the 8th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’81, pages
105–116, New York, NY, USA, 1981. ACM.

[14] Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The architecture of the Utrecht
Haskell compiler. In Proceedings of the 2nd ACM SIGPLAN symposium on Haskell,
Haskell ’09, pages 93–104, New York, NY, USA, 2009. ACM.

[15] Jim Durbin, Rich Gossweiler, and Randy Pausch. Amortizing 3d graphics optimization
across multiple frames. In Proceedings of the 8th Annual ACM Symposium on User In-
terface and Software Technology, UIST ’95, pages 13–19, New York, NY, USA, 1995.
ACM.

[16] Torbjörn Ekman and Görel Hedin. Rewritable reference attributed grammars. In ECOOP,
pages 144–169, 2004.

[17] Torbjörn Ekman and Görel Hedin. The JastAdd system — modular extensible compiler
construction. Sci. Comput. Program., 69(1-3):14–26, December 2007.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: el-
ements of reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[19] Görel Hedin. An overview of door attribute grammars. In Proceedings of the 5th Inter-
national Conference on Compiler Construction, CC ’94, pages 31–51, London, UK, UK,
1994. Springer-Verlag.

[20] Görel Hedin. Reference attributed grammars. Informatica (Slovenia), 24(3), 2000.

[21] R. Hoover. Incremental graph evaluation (attribute grammar). PhD thesis, Cornell Uni-
versity, Ithaca, NY, USA, 1987. UMI Order No. GAX87-24200.

[22] Scott E. Hudson. Incremental attribute evaluation: a flexible algorithm for lazy update.
ACM Trans. Program. Lang. Syst., 13(3):315–341, July 1991.

[23] Gregory F. Johnson and C. N. Fischer. A meta-language and system for nonlocal incre-
mental attribute evaluation in language-based editors. In Proceedings of the 12th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, POPL ’85, pages
141–151, New York, NY, USA, 1985. ACM.

[24] Stephen C. Johnson. Yacc: Yet another compiler-compiler. Technical report, AT&T Bell
Laboratories, 1979.

86

[25] Ken Kennedy and Scott K. Warren. Automatic generation of efficient evaluators for at-
tribute grammars. In Proceedings of the 3rd ACM SIGACT-SIGPLAN Symposium on Prin-
ciples on Programming Languages, POPL ’76, pages 32–49, New York, NY, USA, 1976.
ACM.

[26] Donald E. Knuth. Semantics of context-free languages. Mathematical systems theory,
2:127–145, 1968.

[27] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In Proceedings of the 5th ACM conference on Func-
tional programming languages and computer architecture, pages 124–144, New York, NY,
USA, 1991. Springer-Verlag New York, Inc.

[28] Microsoft. MSDN, C# online reference, 2012.

[29] Nordberg. Variations on the visitor pattern. In PLoP ’96, 1996.

[30] NVIDIA Corporation. SceniX | NVIDIA Developer Zone, 2013. devel-
oper.nvidia.com/scenix [Online; accessed February 12, 2013].

[31] Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the masses: practi-
cal extensibility with object algebras. In Proceedings of the 26th European conference
on Object-Oriented Programming, ECOOP’12, pages 2–27, Berlin, Heidelberg, 2012.
Springer-Verlag.

[32] Tomas Petricek and Don Syme. The F# computation expression zoo. In Matthew Flatt
and Hai-Feng Guo, editors, Practical Aspects of Declarative Languages, volume 8324 of
Lecture Notes in Computer Science, pages 33–48. Springer International Publishing, 2014.

[33] Simon Peyton-Jones. Haskell 98 language and libraries : the revised report. Cambridge
University Press, Cambridge U.K. ;;New York, 2003.

[34] G. Ramalingam and Thomas Reps. A categorized bibliography on incremental compu-
tation. In Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’93, pages 502–510, New York, NY, USA, 1993. ACM.

[35] Dirk Reiners. OpenSG: A scene graph system for flexible and efficient realtime rendering
for virtual and augmented reality applications. PhD thesis, TU Darmstadt, 2002.

[36] Dirk Reiners, Gerrit Voss, and Johannes Behr. Opensg: Basic concepts. In 1. OpenSG
Symposium, 2002.

[37] Thomas Reps, Tim Teitelbaum, and Alan Demers. Incremental context-dependent analysis
for language-based editors. ACM Trans. Program. Lang. Syst., 5(3):449–477, July 1983.

[38] Thomas W. Reps and Tim Teitelbaum. The synthesizer generator. In William E. Riddle
and Peter B. Henderson, editors, Software Development Environments (SDE), pages 42–48.
ACM, 1984.

87

[39] Thomas W. Reps and Tim Teitelbaum. The synthesizer generator: a system for construct-
ing language-based editors. Springer-Verlag New York, Inc., New York, NY, USA, 1989.

[40] J. C. Reynolds. User-defined types and procedural data structures as complementary ap-
proaches to type abstraction. In S. A. Schuman, editor, New Directions in Algorithmic
Languages, pages 157–168. IRIA, 1975.

[41] John Rohlf and James Helman. Iris performer: a high performance multiprocessing toolkit
for real-time 3d graphics. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’94, pages 381–394, New York, NY,
USA, 1994. ACM.

[42] Anthony M. Sloane, Lennart C. L. Kats, and Eelco Visser. A pure object-oriented embed-
ding of attribute grammars. Electron. Notes Theor. Comput. Sci., 253(7):205–219, Septem-
ber 2010.

[43] Emma Söderberg and Görel Hedin. Incremental evaluation of reference attribute gram-
mars using dynamic dependency tracking. Technical Report LU-CS-TR:2012-249, report
number 98, Computer Science, Faculty of Engineering , Lund University, 2012.

[44] Guy L. Steele, Jr. Common LISP: the language (2nd ed.). Digital Press, Newton, MA,
USA, 1990.

[45] Paul S. Strauss and Rikk Carey. An object-oriented 3d graphics toolkit. In Proceedings of
the 19th annual conference on Computer graphics and interactive techniques, SIGGRAPH
’92, pages 341–349, New York, NY, USA, 1992. ACM.

[46] R.S. Sundaresh and P. Hudak. Incremental computation via partial evaluation. In Pro-
ceedings 18th Symposium on Principles of Programming Languages, pages 1–13. ACM,
January 1991.

[47] Doaitse S. Swierstra, Pablo, and Joao Sariava. Designing and Implementing Combinator
Languages. In Advanced Functional Programming, pages 150–206, 1998.

[48] Wouter Swierstra. Why Attribute Grammars Matter. The Monad.Reader, 4, July 2005.

[49] Don Syme. Leveraging .NET Meta-programming Components from F#: Integrated
Queries and Interoperable Heterogeneous Execution. In Proceedings of the 2006 Work-
shop on ML, ML ’06, pages 43–54, New York, NY, USA, 2006. ACM.

[50] Don Syme. The F# 3.0 Language Specification, 2012.

[51] Robert F. Tobler. Separating semantics from rendering: a scene graph based architecture
for graphics applications. Vis. Comput., 27(6-8):687–695, June 2011.

[52] Steve Upstill. RenderMan Companion: A Programmer’s Guide to Realistic Computer
Graphics. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

88

[53] Marcos Viera, Doaitse Swierstra, and Arie Middelkoop. Uuag meets aspectag: how to
make attribute grammars first-class. In Proceedings of the Twelfth Workshop on Language
Descriptions, Tools, and Applications, LDTA ’12, pages 6:1–6:8, New York, NY, USA,
2012. ACM.

[54] Marcos Viera, S. Doaitse Swierstra, and Wouter Swierstra. Attribute grammars fly first-
class: how to do aspect oriented programming in haskell. In Proceedings of the 14th
ACM SIGPLAN international conference on Functional programming, ICFP ’09, pages
245–256, New York, NY, USA, 2009. ACM.

[55] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute grammars. SIGPLAN
Not., 24(7):131–145, June 1989.

[56] G. Voß, J. Behr, D. Reiners, and M. Roth. A multi-thread safe foundation for scene graphs
and its extension to clusters. In Proceedings of the Fourth Eurographics Workshop on
Parallel Graphics and Visualization, EGPGV ’02, pages 33–37, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.

[57] P Wadler. Email, Discussion on the Java Genericity mailing list, November 1998.

[58] Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM conference on
LISP and functional programming, LFP ’90, pages 61–78, New York, NY, USA, 1990.
ACM.

[59] Josie Wernecke. The Inventor Mentor: Programming Object-Oriented 3d Graphics with
Open Inventor, Release 2. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1st edition, 1993.

[60] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 3rd edition, 1999.

[61] Michael Wörister. A caching system for a dependency-aware scene graph. Master’s the-
sis, Institute of Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, December 2012.

[62] Michael Wörister, Harald Steinlechner, Stefan Maierhofer, and Robert F. Tobler. Lazy
incremental computation for efficient scene graph rendering. In Proceedings of the 5th
High-Performance Graphics Conference, HPG ’13, pages 53–62, New York, NY, USA,
2013. ACM.

89

	Introduction
	Scene Graphs
	Motivation
	Aim of this Work
	Methodological Approach
	Structure of this Work

	Related Work
	Scene Graph Systems
	Attribute Grammars and Systems
	Incremental Computation

	Limitations of current approaches and goals of this work
	Traditional Scene Graph Rendering
	Problems of current Approaches
	Data Flow and Communication
	Performance
	Summary of Problems and their Interaction
	Our Approach
	Scope of this work

	Methodology
	Lazy Incremental Scene Graph Caching
	Limitations of Lazy Incremental Computation
	Adaptive Functional Programming
	Problem solving with Attribute Grammars

	Incremental Scene Graph Semantics
	Design Goals
	Key Design Decisions
	An EDSL for Attribute Grammars
	Attribute Evaluation
	Adaptive Functional Programming
	A mixed Computation Model
	Representing Draw-calls purely functional
	Rendering Engine Integration
	Scene Graphs as Attribute Grammars - Nodes and Semantics

	Evaluation
	Software Design
	Performance

	Conclusions and Future Work
	Future Work and Discussion
	Conclusions

	The Expression Problem
	Extensibility, a tension in language design

	Bibliography

