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Abstract

Software model checking is an approach to formal software verification based on reasoning
about the states a program can be in. A software model checker can prove that certain properties
hold on a given program. Properties expressing that certain states must never be reached during
a run are called safety properties.

In this work, we aim to construct a model checker that can prove or refute safety properties
on certain programs. The approach for model checking is based on the principle of incremental,
inductive model checking. An incremental, inductive model checker proves safety properties by
incrementally constructing a description of a set of states that the program can never leave and
all of which are safe.

The model of the program that the checker operates on is the transition system. The transition
systems we derive from software programs are expressed as first-order formulas over the theory
of quantifier-free linear integer arithmetic. Such transition systems operate on infinitely many
states, since all first-order constants in the transition system can be interpreted as an arbitrary
integer value.

The method we develop in this work is based on the IC3 model checker ( [10]). IC3 can prove
properties only on systems that comprise finitely many states. Since we are aiming at proving
safety properties on systems working with infinitely many states, we reduce the problem to the
finite-state case by applying Boolean predicate abstraction on the state space. The reduced state
space is called the abstract domain.

However, Boolean predicate abstraction is subject to the difficulty of choosing a fitting set
of predicates that will allow the algorithm to prove safety properties. We approach the problem
by starting with a set of heuristically determined predicates, and adding new instances to the
abstract domain predicates as needed during the run of the algorithm, thus refining the abstract
domain.

In the model checker we developed, refinement is predominantly triggered by spurious coun-
terexamples: The abstract domain admits transitions which could not occur in the original state
space. In order to eliminate such spurious counterexamples, we refine the abstract domain with
predicates extracted from Craig interpolants ( [20, 21]) over a formula that describes the infea-
sibility of the spurious counterexample. Thus, our approach to abstraction is an instance of
counterexample-guided abstraction refinement ( [18, 19]).

The result of this thesis is IC3-CEGAR, an incremental, inductive model checker that is
capable of proving or disproving safety properties on certain software programs.
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Kurzfassung

Software-Modellprüfung ist ein Ansatz zur Verifikation von Software-Programmen, der auf
Schlussfolgerungen über Programmzustände aufgebaut ist. Ein Software-Modellprüfer kann be-
weisen oder widerlegen, dass bestimmte Eigenschaften für Software-Programme gelten. Eigen-
schaften, die beschreiben, dass gewisse Zustände während der Programmausführung nie vor-
kommen dürfen, heißen Sicherheitseigenschaften.

In dieser Arbeit wird ein Modellprüfungsalgorithmus entwickelt, der Sicherheitseigenschaf-
ten für gewisse Programme beweisen und widerlegen kann. Der Modellprüfungsansatz basiert
auf dem Prinzip der induktiven, inkrementellen Modellprüfung. Ein induktiver, inkrementeller
Modellprüfungsalgorithmus beweist Sicherheitseigenschaften, indem er nach und nach eine Be-
schreibung einer Zustandsmenge aufbaut, welche das Programm während der Ausführung nie
verlassen kann, und die alle sicher sind.

Die Modelle der Programme, auf denen der Modellprüfungsalgorithmus arbeitet, sind so-
genannte Übergangssysteme. Die in dieser Arbeit vorgestellen Übergangssysteme werden als
prädikatenlogische Formeln über der Theorie der quantorenfreien linearen ganzzahligen Arith-
metik beschrieben. Derartige Übergangssysteme arbeiten auf unendlich vielen Zuständen, da
jede prädikatenlogische Konstante im Übergangssystem als beliebige ganze Zahl interpretiert
werden kann.

Der in dieser Arbeit entwickelte Ansatz basiert auf dem IC3-Modellprüfungsalgorithmus
( [10]). IC3 beweist Eigenschaften allerdings nur auf Übergangssystemen, die auf endlich vielen
Zuständen arbeiten. Da wir allerdings Sicherheitseigenschaften für Systeme beweisen wollen,
die unendliche viele Zustände bearbeiten, reduzieren wir das Problem auf den endlichen Fall,
indem wir Prädikatenabstraktion auf den Zustandsraum anwenden. Der reduzierte Zustandsraum
heißt auch abstrakte Domäne.

Allerdings ist es im Zuge von Prädikatenabstraktion schwierig, herauszufinden, welche Prä-
dikate es dem Algorithmus ermöglichen, Sicherheitseigenschaften zu beweisen. Wir gehen an
das Problem heran, indem wir mit einer Menge von heuristisch gewählten Prädikaten für die ab-
strakte Domäne anfangen, und während der Ausführung des Modellprüfungsalgorithmus neue
Prädikate zur Menge hinzufügen, um die abstrakte Domäne zu verfeinern.

In unserem Modellprüfungsalgorithmus wird die abstrakten Domäne verfeinert, wenn un-
echte Gegenbeispiele gefunden werden: Das heißt, die abstrakte Domäne erlaubt Übergänge,
die im ursprünglichen Übergangssystem nicht vorkommen könnten. Um derartige unechte Ge-
genbeispiele zu beseitigen, wird die abstrakte Domäne mit Prädikaten verfeinert, die aus Craig-
Interpolanten ( [20, 21]) entnommen werden. Die Formeln, aus denen die Craig-Interpolanten
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entnommen werden, beschreiben, warum das Gegenbeispiel im konkreten Übergangssystem
nicht vorkommen kann. Daher ist unser Ansatz ein Beispiel für Counterexample-Guided Ab-
straction Refinement ( [18, 19]).

Das Ergebnis dieser Masterarbeit ist IC3-CEGAR, ein inkrementeller, induktiver Modell-
prüfungsalgorithmus, der Sicherheitseigenschaften auf gewissen Softwareprogrammen bewei-
sen oder widerlegen kann.
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CHAPTER 1
Introduction

1.1 Motivation

Formal Software Verification

Formal Software Verification is a name for a collection of formal techniques whose goal it is to
prove or disprove the correctness of a program in that it fulfills certain well-defined properties.

In order to check whether programs are bug-free, engineers typically perform testing on the
software they have produced. To this end, test cases are written; these test cases usually run
a program with a number of pre-specified inputs and check whether the outputs for these pre-
specified inputs are correct. If a test run is successful, then it has been proved that the program
does not contain bugs for these specific inputs. However, there are many other inputs, and
possibly infinitely many, that are left untested, and may result in a bug if the program is run on
them.

In contrast to testing, formal verification can be used to prove that a program is bug-free
according to the specification for any input. It is, of course, impossible to run a program with
infinitely many inputs to check whether it contains a bug for any of them. Therefore, sophis-
ticated formal verification techniques have been developed that allow to prove or disprove the
correctness of a program with different approaches.

Because formal verification is such a powerful technique, and because it is usually harder to
prove a program correct than to find bugs by running a number of test cases, formal software
verification is computationally expensive. In the early days of computing, proofs of program
correctness were constructed manually by computer scientists. Formal systems such as Hoare
Logic ( [31]) allowed computer scientists to prove that a program would return the correct output
given the right input.

More recently, techniques have begun to emerge that would allow the automatic or computer-
aided formal verification of software programs: Such automatic verifiers are programs that take
as input other programs and either prove them correct or return a counterexample to correctness.
It is in general undecidable to prove whether a program is correct. This means that all automatic
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verifiers can will fail on some programs: They cannot prove whether the program is correct or
incorrect. In such a case, the automatic verifier will either continue to run forever or terminate
with a message that the program cannot be either proved correct or proved faulty. The result that
there is no program that can prove all programs correct or incorrect is one of the oldest results
in computer science; it is provable by a reduction from the Halting Problem, which was shown
to be undecidable by Alan Turing in 1936 ( [46]).

Since formal software verification, whether manual or automatic, is such a costly technique,
it is less commonly applied than simple software testing. However, formal software verification
bears a distinct advantage over simple testing in certain environments: Formal software verifi-
cation is necessary if the correctness of a program is critical, and it must be ascertained that the
program will fail under no circumstances.

Testers will usually not succeed in finding those very rare corner cases in which inputs cause
catastrophic bugs, as there are usually millions of millions of possible inputs. However, in
safety-critical environments it is paramount to find these inputs, or to prove that no such inputs
exist. Indeed, even in programs that are less safety critical (such as common Microsoft Windows
device drivers) it is desirable to prove that no inputs will make the program crash. Crashes in
Windows device drivers cause the infamous blue screen of death. In order to reduce the number
of crashes due to device driver errors, Microsoft created a package called SLAM ( [2–4, 6]) that
is used as the engine of the Static Driver Verifier (SDV).

There are less harmless cases of bugs caused by software errors that resulted in massive
property damage or death. Two of the more well-known examples include:

• The Ariane 5 disaster: Due to unverified re-use of certain parts in the rocket’s control code
involving a data type conversion, it exploded on its first flight.

• Therac-25: A software error in this radiation therapy machine caused it to distribute mas-
sive overdoses of radiation in certain cases; at least six people are believed to have died
from them.

In both of these cases, formal software verification could have prevented the disasters, albeit
it would have taken some time and effort to prove the programs incorrect.

Since the great computation cost associated with formal software verification is a hindrance
in the way of making it more commonplace, there is a continuing effort in accelerating auto-
mated software verification tools. In order to measure the performance of software verifiers, a
competition exists: The Software Verification Competition, or SV-COMP, which measures the
performance of software verifiers in multiple categories. The formal verification method we de-
veloped in this thesis beats a gold-medal winner of the SV-COMP 2013 on some benchmarks,
thus making a step in the direction of establishing formal software verification as a feasible
software engineering method.

Model Checking

Model Checking is an automated formal verification technique that is rooted in the problem of
determining whether a temporal logic formula is a model of a temporal logic structure. It was
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introduced by E. Allen Emerson and Edmund Clarke, as well as Joseph Sifakis and Jean-Pierre
Queille in the early 1980s ( [16, 17, 25, 42, 44, 45]). Temporal verification of programs reaches
back even earlier, with notable works by Zohar Manna and Amir Pnueli ( [34, 40, 41]).

Model Checking is a method that works by automatically reasoning about the states of a
system. When software programs are executed, they are in a well-defined state at each moment.
This state is determined by the point of execution in the program (also known as the “program
counter”), and the values of variables in the program.

One important class of properties to prove for a software program are safety properties.
Such properties define which states of the program are safe, i.e., they are defined to cause no
unintended consequences. All states that are not safe are unsafe. The software verifier presented
in this thesis is a model checker capable of proving safety for software programs by showing
that a program can never reach an unsafe state during execution.

Model Checking and Invariants

In order to make the problem statement tractable, we will present a very high-level clarification
of the methodology employed in order to prove safety by model checking.

What our software verifier seeks to find is a so-called inductive invariant that suffices to
prove safety. Such an inductive invariant is a description of a set of program states. This set of
states must fulfill the following properties:

• It must include the initial state, i.e., state that the program starts in.

• If the program is in a state inside the inductive invariant, it cannot ever reach a state outside
the inductive invariant.

• All of the states in the inductive invariant are safe.

Intuitively, it is clear why a set of states that fulfill the following properties suffices to prove
that all of a program’s reachable states are safe. It is, of course, undecidable to find a description
of such a set of states for every program. However, finding an inductive invariant is possible for
many programs that occur in practice.

Main Contribution

The main contribution of this thesis is a model checker that is capable of proving safety by
coming up with an inductive invariant. Without inductivity, it is impossible to prove safety for
programs over integer arithmetic, as the program needs to be checked for correctness by trying
infinitely many inputs.

The main advantages of inductive software verification over model checking techniques such
as binary decision diagrams (BDDs, [12, 35]), bounded model checking ( [8]) or interpolating
verification ( [36, 37]) can be summarized as follows:

• Inductive model checking is capable of proving safety: In contrast to bounded model
checking techniques, which can only prove that there are now runs that lead to an error in

3



up to a fixed number of steps, inductive model checkers such as the one describe here are
able to prove that the error is unreachable in any number of steps.

• Inductive model checking is fast at calculating invariants that are good enough for
proving safety: In contrast to BDD-based model checking, which proves safety by cal-
culating the smallest set of reachable states and proving that these reachable states do not
overlap with error states, inductive verification will find a set of states that is does not
overlap with the error states, contains all reachable states and is inductive.

This results in a relaxation of the requirements for proving safety: It is computationally
expensive to construct the precise set of reachable states. Inductive model checkers such
as the one described here may come up with the precise set of reachable states as an
inductive invariant, but they may also come up with a different invariant that suffices for
proving safety.

• Inductive model checking will pursue concrete counterexamples to the error and tar-
get its effort on proving that concrete traces to the error are not feasible: Interpolating
software verifiers incrementally constructs over-approximations of sets of states reachable
in up to a certain number of steps that do not overlap with the error. Interpolating verifiers
rely on the assumption that the over-approximations of reachable states will become gen-
eral enough to prove that the program can never leave these sets of states in any number
of steps. This assumption will often not hold.

In contrast, inductive model checkers such as the one described here will make a targeted
effort at trying to prove that there are no concrete runs to the error by incrementally finding
new partial runs to the error and showing that these runs are infeasible.

Counterexamples

In case the model checker finds that a program cannot be proved correct, it will come up with a
so-called counterexample trace. A counterexample trace is a sequence of states of the program
that could occur during an actual run that finally leads to an unsafe state. It is possible to
determine the exact program inputs that lead to an unsafe state; thus, it is easy to verify that a
counterexample trace is actually feasible.

1.2 Technical Problem Statement

The problem we are aiming to solve is twofold:

• We aim at constructing a model checker that is capable of finding inductive invariants for
software programs that suffice to prove given safety properties correct for the program.

• If a property does not hold on a given program, a counterexample trace should be printed.

Deciding whether programs are correct is undecidable in general; therefore, we do not make
any termination guarantees for our model checker.
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The underlying principle is based on the method of IC3 (Incremental Construction of Inductive
Clauses for Indubitable Correctness). IC3 is a model checking algorithm designed for hardware
model checking. It can be adapted, however, to software model checking by employing a number
of techniques, the most notable of which is Boolean predicate abstraction.

The main problem in extending IC3 to software programs is that software model checking
usually deals with an infinite state space. That is, the model checker has to reason about an
infinite number of possible states the program could be in. This is in contrast to hardware model
checking, where the state space is both finite and the variables that describe a given state are
can only take a binary value. In software model checking, the variables that describe states will
usually be of different types, notably integers. In the approach described, we deal with programs
that only contain integer variables, as many other variable types can be reduced to integers.
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CHAPTER 2
Background

2.1 Prerequisites

The definitions in this section are loosely based on [23], especially regarding the notation.
In this section, the IC3 algorithm for hardware model checking is described. Understand-

ing the principle of the algorithm for the finite state case is paramount for understanding the
workings of the algorithm for the infinite state case.

Transition Systems and Inductive Sets of States

Definition 1 (Transition System) A transition system M is defined as a tuple 〈S, T 〉, where S
is a finite set of states and T ⊆ S × S is a transition relation.

The set I ⊂ S is a set of initial states. The set E ⊂ S is a set of error states, with P = S \E
being its complement. A system is correct if no error state can be reached by starting from an
initial state and stepping through the transition relation.

Given a set of states, the post-image operator post : 2S 7→ 2S returns the set of states
reachable in one step from the input states: post(Q) = {s′ ∈ S | s ∈ Q and (s, s′) ∈ T}. Let
post0(Q) = Q and posti+1 = post(posti(Q)): Then postn(Q) describes the states reachable
in n steps from any state in Q. In a similar way, the pre-image operator pre : 2S 7→ 2S return
the set of states from which any of the states in Q is reachable within one step: pre(Q) = {s ∈
S | s′ ∈ Q and (s, s′) ∈ T}.

Definition 2 (Inductive Sets) An inductive set of states is a set P with post(P ) ⊆ P . A set of
states P satisfies initiation if I ⊆ P . A set of states P is called an inductive invariant if it is
inductive and satisfies initiation.

The set of states RI that is reachable from an initial state in any number of steps is called
strongest inductive invariant. In a correct system, there is also a weakest inductive invariant
WE , which is the largest set of states from which no state in E is reachable.
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Both RI and WE can be defined as follows using the fixed point operator µ:

RI = µQ.(I ∪ post(Q))

WE = S \ µQ.(E ∪ pre(Q))

Suppose we had an approximate post-image operator ˆpost : 2S 7→ 2S that over-approximates
the states reachable in one-step: post(Q) ⊂ ˆpost(Q) for all sets of states Q. Using this approx-
imate post-image operator, we can calculate an approximate set of reachable states R̂I :

R̂I =
⋃
i≥0

ˆpost
i
(I)

If it turns out that R̂I ∩E = ∅, then the error is not reachable from an initial state, since the
set R̂I can only be a super-set of the set of actually reachable states RI . So the correctness of
a transition system can be proven by finding an apt over-approximation of the set of reachable
states.

Propositional and First-Order Logic

The definitions on propositional logic in this section follow the descriptions in [47].
Propositional Logic We follow the conventional definition of propositional logic over a

set of propositional variables X and the atomic constants > (for true) and ⊥ (for false). A
propositional atom is a variable or one of the atomic constants > and ⊥. We use the logical
connectives ∧,∨,⇒, and ¬ (denoting conjunction, disjunction, implication, and negation). A
literal is a variable or the negation of a variable.

A clause is a disjunction of literals. The empty clause � evaluates to ⊥. The negation of a
clause is a conjunction of literals and is called a cube. A formula is in conjunctive normal form
(CNF) if it is a conjunction of clauses.

An interpretation of a propositional formula is an assignment of truth values to propositional
variables. A model of a formula is an interpretation under which the formula evaluates to true.
A formula is valid if every interpretation is a model of it. A formula is satisfiable if it has at least
one model, and unsatisfiable otherwise.

Definition 3 (|=) For two formulas f and g, f |= g if every model of the formula f is also a
model of the formula g. This is also written as “f models g”.

The definitions on first-order logic in this section follow the descriptions in [47] and [27].
First-Order Logic First-order logic is defined over a set of variables, functions, and predi-

cates. The set of a formula’s predicate and function symbols forms the vocabulary of a formula.
The logical connectives are the same as in propositional logic. First-order formulas may be
quantified by a universal (∀) or existential (∃) quantifier. A formula is quantifier-free if it does
not contain quantifiers, and ground if it does not contain free variables. A literal is either a
ground atom or the negation of a ground atom.
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An interpretation of a first-order formula consists of a domain and an interpretation function.
The domain is an arbitrary set of individuals. The interpretation function defines function return
values and predicate truth values for given input tuples. The definitions of models, validity and
satisfiability are the same as in propositional logic.

A 0-ary function symbol is called a constant. A 0-ary predicate is called a Boolean constant.
A first-order word built of function symbols and variables is called a term. ℘(t1, . . . , tn) is called
an atom if ℘ is a predicate symbol and t1, . . . , tn are terms.

Definition 4 (First-Order Theory) A first-order theory consists of a signature σ defining valid
predicate and function symbols, and a set of axioms, which are Boolean expressions set to hold
over these predicate and function symbols.

Definition 5 (Linear Integer Arithmetic) Linear Integer Arithmetic is a first-order theory con-
sisting of the two constant symbols 0 and 1 as well as the binary function symbol + and the
binary predicate symbol ≤. Linear integer arithmetic is sufficiently expressive to build linear
equations/inequalities.

When solving linear integer arithmetic with an SMT solver, the interpretation domain is
defined as the set of integers Z, the + function is defined as addition and the ≤ predicate is
defined in its usual meaning.

A linear equation/inequality is a predicate
∑

i aixi + c ◦ 0, where ◦ ∈ {=,≤}, all xi are
constants and all ai as well as c are integers. (Using negation, the predicates =,≤ suffice to
express all of =, 6=, <,>,≤ and ≥.) Linear equations/inequalities can be expressed using linear
integer arithmetic.

The multiplication function ∗ is a short-hand for repeated addition in linear integer arith-
metic, as there are no multiplications of two variables in the theory.

Other predicates such as =, < and ≥ are defined as short-hands for Boolean formulas over
the predicate symbol ≤; for instance, the binary predicate a = b is defined as the formula
a ≤ b ∧ b ≤ a.

Sets of states are described by a predicate ℘ in propositional or first-order logic. The set of
states described by a formula is equivalent to the models of the formula: {s ∈ S | s |= ℘}.

Definition 6 (State/Formula Equivalence) In the propositional case, a state s is equivalent to
a vector of assignments of propositional constants to true or false. In this case, the state s is
also equivalent to a propositional conjunction of literals

∧
i `i, where each constant whose value

is false in the state occurs negated and each constant whose value is true in the state occurs in
plain form.

In the first-order case, a state s is equivalent to a vector of assignments of first-order con-
stants to elements of the first-order domain. In this case, the state s is also equivalent to a
first-order conjunction of equivalences

∧
i ci = vi, where each constant is set equal with the

domain element it is assigned to.
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SAT and SMT Solvers

Definition 7 (SAT Solver) A SAT solver is a program which, given a propositional formula f ,
can decide whether the formula is satisfiable or unsatisfiable. In case the formula f is satisfiable,
the SAT solver can produce a model of the formula.

Definition 8 (SMT Solver) An SMT solver is a program which, given a first-order formula f
that uses the vocabulary of a particular theory T (such as linear integer arithmetic), can decide
whether the formula is satisfiable or unsatisfiable modulo theory T . In case the formula f is
satisfiable, the SMT solver can produce a model of the formula.

AllSAT and the Unsatisfiable Core

Definition 9 (Unsatisfiable Core) Given an unsatisfiable formula φ consisting of the conjuncts
{φ1, φ2, . . . }, the unsatisfiable core of φ is a subset φc ⊆ {φ1, φ2, . . . } such that φc is also
unsatisfiable.

Definition 10 (AllSAT) Given a formula ψ, an AllSAT query over the formula returns all the
models of ψ. If a number of important atoms are defined for the call, the all models of the im-
portant atoms of the formula will be returned for which a satisfying assignment of the remaining
function symbols, constants and variables exists.

SAT and SMT solvers may support the output of unsatisfiable cores given unsatisfiable for-
mulas and AllSAT queries.

2.2 IC3 – The Finite State Case

The description of IC3 in this section is derived from the original IC3 papers [10] and [11].

Hardware Verification Prerequisites

The state space of a digital hardware element can be described as a set of vectors ~x = x1, x2, . . . , xn
of n propositional variables. Inspired by the notion of an underlying digital hardware element,
such binary variables are called latches in the common IC3 literature, and we will follow this
usage. One particular state of the hardware element is a vector of length n where each latch is
set to either 1 or 0.

The notation we will use to describe one state is the following: A state ~x = x1, x2, . . . , xn of
n propositional variables set to values v1, v2, . . . , vn is described as (x1 = v1|x2 = v2| . . . |xn =
vn). Following the definition 6, this state is equivalent to the following propositional formula:

∧
i

{
xi if vi = true
¬xi if vi = false

}
.
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The transition relation T is usually encoded by a formula T (~x, ~x′). A state s leads to a states
s′ iff the tuple models the transition relation:

(s, s′) ∈ T ⇔ s, s′ |= T (~x, ~x′).

Any primed variable always refers to the state of the system after one transition, while unprimed
variables refer to the current state of the system. A pair of states (~x, ~x′) that is in T is called a
pair of consecutive states.

Definition 11 (Primed formulas) A primed formula is defined as the original formula after all
the occurring variables have been replaced by their primed counterparts:

F (~x)′ = F ([~x′/~x]),

where [~x′/~x] means that all occurrences of unprimed variables ~x are to be replaced by primed
variables ~x′.

The set P is encoded by a propositional formula P (~x). The model checker tries to either
prove that no error state can be reached from any initial state, or to find a series of consecutive
states that starts from an initial state and ends in an error state. Such a series is called a coun-
terexample trace. An arbitrary series of consecutive states is called a trace. A formal definition
of trace follows that makes use of the equivalence between states and propositional formulas as
defined in definition 6:

Definition 12 (Trace) A trace is a sequence of states 〈s0, s1, s2, . . . , sn〉 such that for all 0 ≤
i < n, si ∧ T ∧ s′i+1 is satisfiable. A full counterexample trace is a trace for which the last state
sn overlaps with the error: sn ∧¬P is satisfiable and s0 is an initial state: sn ∧ I is satisfiable.
If the formula si ∧ T ∧ s′j is satisfiable for two states si and sj , this is also written as si → sj .

Hardware Verification Example

As a running example, suppose we have a system that contains just two latches, x1 and x2. The
state space of this element is {(x1 = 0|x2 = 0), (x1 = 0|x2 = 1), (x1 = 1|x2 = 0), (x1 =
1|x2 = 1)}. Since it is clear that the first 0 or 1 describes the state of the latch x1, while the
second 0 or 1 describes the state of the latch x2, we will from now own omit the variable names
when describing individual states, and just write a sequence of 0s or 1s to describe one state.
Thus, the state space of our example element is {00, 01, 10, 11}.

Suppose that in our running example system, the initial state set is the set {00, 01}. Thus,
I(~x) can be described by the propositional formula ¬x1. The models of this formula directly
correspond to the given state set.

Suppose that our running example system is a counter that always counts from zero to two
and then restarts again at zero. The transition relation can be visualized as the following:

11
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The transition relation T (~x, ~x′) is well-defined by the following formula in propositional
logic: (x1 ⇒ ¬x′1 ∧ ¬x′2) ∧ (¬x1 ∧ ¬x2 ⇒ ¬x′1 ∧ x′2) ∧ (¬x1 ∧ x2 ⇒ x′1 ∧ ¬x′2).

Consecution and Initiation in Symbolic Notation

Given a transition relation T , an initial condition I and an arbitrary formula F :

• F satisfies initiation iff I ⇒ F .

• F satisfies consecution iff F ∧ T ⇒ F ′.

• F satisfies consecution relative to an arbitrary formula G(~x) iff F ∧G ∧ T ⇒ F ′.

Outline of the Algorithm

IC3 tries to prove that all reachable states of the system satisfy the property to prove, or stated
otherwise: that the set of reachable states is a subset of the property. In order to do this, the
algorithm tries to construct a formula F (~x) that satisfies initiation, consecution, and implies the
property P to prove.

The IC3 algorithm finds such a formulaF by refining and extending a sequenceF0, F1, . . . , Fk

of formulas that describe over-approximations of the sets of states reachable in up to 0, 1, . . . , k
steps. In terms of the previously-defined post operator,

Fi ⊇
⋃
j≤i

postj(I).

Any such Fi is called a frame. Since the set of states reachable in 0 steps is known as the
initial condition I , it always holds that F0 = I . The index i of a frame Fi is called the level of
the frame. The frame Fk is called the frontier.

Initially, the sequence is very short, with k = 1. The algorithm increases k as necessary
such that frames are added to the end of the sequence. The algorithm then continues to make
the over-approximations of states reachable in up to k steps more precise; that is, these formulas
F1, . . . Fk describe ever smaller sets of states as the algorithm progresses. Making a frame more
precise is called strengthening.

The following four invariants always hold on the sequence F0, F1, . . . Fk:

Inv1 I = F0: The states reachable in 0 steps are equal to the initial set of states.
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Inv2 Fi ⇒ Fi+1 for 0 ≤ i < k: There are fewer states reachable in up to i steps than in up to
i+ 1 steps.

Inv3 Fi ⇒ P for 0 ≤ i ≤ k: The states reachable in up to i steps all satisfy the property to
prove.

Inv4 Fi ∧ T ⇒ F ′i+1 for 0 ≤ i < k: The states reachable in up to i + 1 steps are at most one
transition away from the states reachable in up to i steps.

Now suppose that IC3 arrives at a point where some frame Fi describes the same set of states
as the frame Fi+1, that is: Fi ≡ Fi+1. Then by the four invariants it holds that:

• F0 = I by Inv1, I ⇒ F1 ⇒ F2 · · · ⇒ Fi by Inv2: So initiation is satisfied for Fi.

• Fi ∧ T ⇒ F ′i+1 by Inv4, and since Fi ≡ Fi+1 it also holds that Fi ∧ T ⇒ F ′i : So
consecution is satisfied for Fi.

• Fi ⇒ P by Inv3: So the formula implies the property to prove.

Thus the algorithm has found an inductive invariant in the formula Fi. For the finite state
case, it is guaranteed that IC3 will eventually find an i with Fi ≡ Fi+1.

The two figures 2.1 and 2.2 outline some of the basic principles of IC3.

Detailed Description of the Algorithm

A graphical outline of the algorithm is given in the figure 2.3.
The formulas Fi are always stored in conjunctive normal form (CNF), so they are conjunc-

tions of clauses. A clause is a disjunction of literals. A literal is an atom or the negation of an
atom. The negation of a clause is a conjunction of literals and is called a cube.

We will now give an account of the basic workings of the algorithm, clarifying the following:

• How IC3 strengthens frames

• When IC3 adds a new frame to the end of the sequence

• When it checks whether two frames are equal

Note that, for clarity, the presentation in this thesis omits many implementation details and
various optimizations that make the algorithm run faster in practice.

Any of the queries in the following description can be answered by a SAT solver.

1. The base cases:

a) Set k = 0.

b) Check whether the initial states satisfy the property (I ⇒ P ); if not, return false and
an initial state that does not satisfy it.

13



Figure 2.1: Discovering paths to the error in order to strengthen frames. The states inside F1

and F2 will need to be excluded: they lead to the error. If there is an I-predecessor to the state
inside F1, then a feasible counterexample trace from an initial state to the error has been found.
If the state inside F1 has no I-predecessor, it can be generalized and excluded from F1, thus
strengthening the frame. Subsequently, if the state inside F2 has no further F1-predecessor, it
can be generalized and excluded from F2.

Error : ¬P

P

I = F0

F1

F2

Figure 2.2: Termination: F1 and F2 have been sufficiently strengthened and a fixed point has
been discovered. No path starting from the initial state set can ever leave the fixed point F1 (with
F1 = F2)

.
Error : ¬P

P

I = F0

F1 = F2
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Figure 2.3: The general outline of the algorithm. PQ is the proof obligations priority queue.

Base cases:
0- and 1-step error traces

Extend sequence:
k ← k + 1;Fk = P

Reachability of error:
Fk ∧ T ∧ ¬P ′?

PQ← PQ ∪ (t, k − 1)

→ Handle proof obligations

Clause propagation
to the next levels

Termination check:
Check whether some Fi ≡ Fi+1

Terminate with Fi

as proof

predecessor t
unsat

found i
no such i

c) Check whether the error (= the negation of the property) can be reached in one
transition from an initial state (I∧T ⇒ P ′); it yes, return false and a transition from
the initial state to the error.

2. Extending the sequence:

Set k ← k + 1

3. Set Fk = P .

4. Strengthening the frames (. . . making the over-approximations more precise):

a) Let there be a priority queue that stores pairs 〈s, i〉, where s is a state and i is a level.
Such a pair is called a proof obligation. The priority queue operates in lowest-level-
first output order.

b) Reachability of error:
Check whether it is possible to go from the frontier to the error in one step: Fk∧T ⇒
¬P ′.

c) If the error cannot be reached from the frontier in one step, go to the Clause propa-
gation phase (5).

d) If the error is reachable from the frontier in one step, extract a state s in Fk that leads
to the error. Put s into the priority queue at level k − 1.
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In order to expunge s from the level k, invariant Inv4 must be shown to hold on
the strengthened frames Fk ∧ ¬s and Fk−1 ∧ ¬s. This means checking whether
¬s ∧ Fk−1 ∧ T ⇒ ¬s′, otherwise it is not certain that Fk−1 ∧ T ⇒ F ′k. Putting s
into the priority queue at level k − 1 means that ¬s will be checked for consecution
relative to level k − 1.
Checking Fk−2 and all the lower frames for consecution is not necessary because s
must already be excluded from the frames Fk−1 downwards: s directly leads to the
error, but Fk−1 cannot lead to the error within one step, otherwise the frontier would
not be at the current k. So s must already have been excluded from the frame Fk−1
at an earlier point.

e) Handle the proof obligations, as described in the next subsection (2.2).

f) Return to step Reachability of error (4b).

5. Clause propagation to the next frame:

For 0 ≤ i < k:

a) For each clause c in Fi, check whether the clause will also hold in the next transition:
Fi ∧ T ⇒ c′. If yes, add c to Fi+1.

6. Checking for termination:

Check whether there is some Fi that contains exactly the same clauses as Fi+1. In such a
case, the algorithm terminates with true and outputs the frame Fi as a proof of correctness.
(Recall that Fi is an inductive invariant in this case.) If there is no such Fi, re-start at step
Extending the sequence (2).

Handling Proof Obligations

A pseudo-code outline of this description is given in algorithm 1.

1. Peek the state-level pair with the lowest level from the priority queue. (There might be
multiple states at the same lowest level; in this case, the algorithm may choose any of
them.)

Given a state-level pair 〈s, i〉 that was peeked from the queue, the algorithm tries to ex-
clude the state s from all frames up to Fi+1 by conjoining the clause ¬s, or a clause that
implies ¬s, to the formulas F1, . . . , Fi+1. (It will become clear that the proof obligation
is stored as 〈s, i〉 and not 〈s, i + 1〉 because the algorithm checks for consecution of ¬s
relative to frame Fi.)

Of course, whenever adding a clause to any frame via conjunction, heed must be taken
in order to ensure that the invariants Inv1-Inv4 still hold on the sequence of frames. We
will now describe how the algorithm strengthens the frames while maintaining the four
invariants.

Why not just conjoin ¬s to the level Fi+1, but also all the lower levels? Recall that
invariant Inv2 requires that Fj ⇒ Fj+1 for 0 ≤ j < k. Then why not the level F0? Recall

16



Algorithm 1 Outline of handling proof obligations. I is the initial condition. T is the transition
relation. Fi is the frame at level i.

1: function VOID HANDLEOBLIGATIONS(PQ: proof obligations priority queue)
2: while PQ.size > 0 do
3: 〈s, i〉 ← PQ.PEEK . 〈s, i〉 is the obligation with the lowest i
4: if I ∧ s is satisfiable then
5: Terminate with trace from s to ¬P
6: end if
7: if ¬s ∧ Fi ∧ T ⇒ ¬s′ then . ¬s satisfies consecution at level i?
8: PQ.POP . Eliminate proof obligation 〈s, i〉 from PQ
9: c← GENERALIZE(¬s) . GENERALIZE might be CTGDOWN

10: j ← max{j | ¬s ∧ Fj ∧ T ⇒ ¬s′} . Find max. j relative to which c satisfies
consecution

11: for l← 1 .. j + 1 do
12: Fl ← Fl ∧ c
13: end for
14: if i < j ≤ k then
15: PQ← PQ ∪ 〈s, j〉 . Push proof obligation forward
16: end if
17: else
18: SatModel mod←SATMODEL(¬s ∧ Fi ∧ T ∧ s′)
19: Predecessor t← unprimed variable assignments from mod
20: if i = 0 then
21: Terminate with trace from t to ¬P
22: end if
23: PQ← PQ ∪ 〈t, i− 1〉
24: end if
25: end while
26: end function

that I = F0 and s is not an initial state; thus conjoining ¬s to I would not change F0

anyway. In fact, Inv1 requires there must never be a strengthening of the initial states.

2. If i! = 0, skip this step. Otherwise, check whether the state s to exclude from level i is an
initial state (I∧s is satisfiable). If it is, we cannot exclude s from any level, as the invariant
Inv1 would be violated. However, in this case, there is a trace from the initial state s to
the error. (This trace must exist, since s is an initial state and was discovered by walking
backwards from the error. Storing the successor state along with a proof obligation ensures
that the discovery of the trace is trivial.) In this case, terminate the algorithm with false
and a trace from s to the error.

3. Assume that s is not an initial state. Then s must be excluded from all levels up to i+ 1.
To this end, it is necessary to add ¬s to the frames F1, F2, . . . , Fi+1. Doing so preserves
the invariant Inv2. Since Fi ⇒ P for all i in the first place, the invariant Inv3 is preserved
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by conjoining ¬s to any frame. In order to observe the invariant Inv4, the clause ¬s must
satisfy consecution relative to the frame Fi: ¬s ∧ Fi ∧ T ⇒ ¬s′.

• If the clause ¬s satisfies consecution relative to level Fi:

– Obliterate 〈s, i〉 from the priority queue.
– Clause Generalization:

Try to find a more general clause c with c ⇒ ¬s that satisfies initiation and
consecution. This basically works by systematically trying to drop literals from
¬s and checking whether the result still satisfies the two conditions.

– Find the maximum j such that c still satisfies consecution relative to Fj . Then
add the clause c to the frames F1, . . . , Fj+1. Why may c be added to level Fj+1?
Because c is inductive at level j, meaning that c∧Fj ∧ T ⇒ c′. Adding c up to
Fj+1 preserves all the invariants, notably Inv4.

– If i < j ≤ k, add the proof obligation 〈s, j〉 to the priority queue. Why this?
It is known that s is part of an error trace suffix. While s has been successfully
excluded up to level j+1, it is certain that s will turn up again at a higher k un-
less either the algorithm terminates first or it is taken care of at an earlier point.
In this way, IC3 tries to find sets of mutually inductive clauses. Experiments
validate that this is a good heuristic: It is better not to wager that the algorithm
terminates before s turns up again, so it is beneficial to exclude s at the highest
level currently possible.

• If the clause ¬s does not satisfy consecution relative to level Fi:

– Then there is a predecessor t that directly leads into s. (The consecution query
¬s∧Fi∧T ⇒ ¬s′ effectively asks for such an Fi-predecessor; if there is none,
the clause ¬s satisfies consecution.)

– If i = 0, is is certain that t must be in F0 and therefore is an initial state; that is,
there is a trace from an initial state to the error. Terminate the algorithm with
false and the counterexample trace.

– Otherwise, add the proof obligation 〈t, i − 1〉 to the priority queue: The algo-
rithm aims to prove consecution for ¬t at level i − 1, thus ensuring that t is
purged from any level up to i. The argument is the same as in step 5.

4. If the priority queue is not empty, handle the next proof obligation (go to step 1). Other-
wise, return to the main algorithm (see section 2.2).

Clause Generalization

One of the most important parts of IC3 is the generalization of states. Generalization in IC3
means: given a cube swhose associated clause ¬s satisfies initiation and consecution at a certain
level i, find a clause cwith c⇒ ¬s that also satisfies initiation and consecution at the same level.
Finding such a strong clause c is paramount for the performance of IC3: If only single states
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s are excluded from specific levels, IC3 degenerates to explicit-state model checking, which is
undesirable considering the state explosion problem.

The basic idea behind generalization is to take a cube q, drop a literal from the cube, ob-
taining a cube q̂, and then see whether ¬q̂ still satisfies initiation and consecution. If it does,
the procedure can be repeated with q̂. If ¬q̂ does not satisfy initiation, then a different literal is
dropped from q. If ¬q̂ does not satisfy consecution, the situation gets complicated. The easiest
thing to do is to try and drop a different literal. However, there is a number of tricks worth
performing when a literal cannot to be dropped.

The process of dropping literals is continued until no more literals can be dropped such that
consecution and initiation still hold. The result is a minimal inductive subclause that, in addition
to excluding s from up to the level i + 1, excludes similar states that are not reachable in up to
i + 1 steps either. The algorithm in which literals are systematically dropped and the resulting
clauses are checked for consecution is called MIC.

The most sophisticated approach so far that deals with literals that cannot to be dropped is
called CTGDOWN and is described in [30]. CTGDOWN accelerates IC3 markedly in comparison
with applying only MIC and joining generalized cubes with counterexamples to generalization.
Since the algorithm is such an important part of IC3, we will provide a short explanation of this
approach to find a minimal inductive subclause. Pseudo-code describing the algorithm is given
in listing 2. The algorithm handles cubes, the negation of which are clauses. Given a cube q, the
algorithm finds a minimal inductive subclause of ¬q.

The function MIC drops a literal ` from the cube q, obtaining q̂ (line 6) and then calls
CTGDOWN to perform the necessary checks on q̂ (line 7). If CTGDOWN returns true, MIC
continues to drop literals from the shortened cube. Otherwise, it continues with the unabridged
cube.

The function CTGDOWN that determines whether some cube is a proper generalization first
checks whether the clause ¬q̂ satisfies initiation (line 16). If it does not, the cube is not a proper
generalization and MIC continues without dropping the literal `. Otherwise, CTGDOWN checks
whether the cube satisfies consecution at the given level i (line 19). If it does, the cube is a
proper generalization and MIC continues with the shortened cube.

If the cube q̂ does not satisfy consecution, a counterexample to generalization is extracted:
This is a state s in the current frame Fi that is not in q̂, but leads into q̂ in one step. The existence
of this state s impedes the dropping of literal ` from q at the level i.

CTGDOWN then continues to exclude s recursively at level i, generalizing s in the process
if possible. Since trying to exclude s at level i might result in a large number of recursive calls,
the recursion depth is bounded in CTGDOWN.

In the case that s (or a generalized version of s) is successfully excluded at level i, CTG-
DOWN re-iterates and checks again whether the cube q̂ is a proper generalization. This might
result in the next discovery of a counterexample to generalization. In order to preclude the han-
dling of a disproportionate number of counterexamples to generalization, the number of such
states to handle is bounded by maxCTGs.

In the case that s can not be excluded at level i, CTGDOWN joins the cube q̂ with s. (This is
written as q̂ ← q̂ u s in the algorithm.) Joining q̂ with s means that only the literals that occur
both in q̂ and ŝ are kept in q̂. This is necessary because it is known that any generalization of q̂
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Algorithm 2 MIC with ctgDown. The presentation closely follows [30].
1: function VOID MIC(q: cube ref, i: level)
2: MIC(q, i, 1)
3: end function
4: function VOID MIC(q: cube ref, i: level, d: recDepth)
5: for each Literal ` in q do
6: q̂ ← q \ `
7: if CTGDOWN(q̂, i, d) then
8: q ← q̂
9: end if

10: end for
11: end function
12: function BOOL CTGDOWN(q̂: cube ref, i: level, d: recDepth)
13: ctgs← 0
14: joins← 0
15: while true do
16: if I 6⇒ ¬q̂ then
17: return false
18: end if
19: if Fi ∧ ¬q̂ ∧ T ⇒ ¬q̂′ then
20: return true
21: end if
22: if d > maxDepth then
23: return false
24: end if
25: State s |= Fi ∧ ¬q̂, s leads into ¬q̂
26: if (ctgs < maxCTGs) and (i > 0) and (I ⇒ ¬s) and Fi−1 ∧ ¬s ∧ T ⇒ ¬s′

then
27: ctgs← ctgs+ 1
28: for j ← i to k do
29: if Fj ∧ ¬s ∧ T 6⇒ ¬s′ then
30: break
31: end if
32: end for
33: MIC(s, j − 1, d+ 1)
34: for l← 1 .. j + 1 do
35: Fl ← Fl ∧ ¬s
36: end for
37: else if joins < maxJoins then
38: ctgs← 0
39: joins← joins+ 1
40: q̂ ← q̂ u s
41: else
42: return false
43: end if
44: end while
45: end function
20



that does not include s will have s as a counterexample to generalization. The only chance to
make q̂ inductive without explicitly excluding s from level i is to enlarge q̂ such that it includes
s. In the next iteration, the enlarged q̂ is checked for initiation and consecution. This continues
until some enlarged q̂ finally satisfies all the properties, in which case the enlarged q̂ is a proper
generalization, or it does not satisfy initiation anymore, in which case the literal ` cannot be
dropped from q in the first place, and MIC continues with dropping a different literal.

The constants maxCTGs, maxDepth and maxJoins govern some of the behavior of CTG-
DOWN. The algorithm never excludes more than maxCTGs counterexamples to generalization
for a given clause q̂, it does not handle counterexamples to generalization beyond a recursion
depth of maxDepth and it does not join more than maxJoins CTGs with q̂.

2.3 The Infinite State Case

Until now, we have described the IC3 algorithm for transition relations that reason over a finite
state space, as it occurs in hardware verification. In this section, we will describe the prereq-
uisites for extending IC3 to software model checking for transition relations over linear integer
arithmetic. We will describe how to construct transition relations from software programs and
will outline techniques needed for the adaptation of IC3 to software model checking.

Control Flow Graphs

A control flow graph (CFG) is a tuple 〈L,G〉, where L is a set of program counter values and
G ⊆ L × C × Ops × L is a set of edges that lead from one program counter value to the next.
Ops is a set of operations that modify the state of the program. C is a set of Boolean formulas
called “guards”. There is a special program counter value pc0 ∈ L that serves as the initial node
of the CFG. The following formulas are assumed to hold on a CFG:

∧
{
∧
{¬c1 ∨ ¬c2 | 〈l × c1 × _× l′1〉 ∈ G, 〈l × c2 × _× l′2〉 ∈ G, l′1 6= l′2} | l ∈ L}

This states that guards on edges emerging from the same node in the CFG must never be
simultaneously true for any variable assignment.∧

{
∨
{c | 〈l × c× _× l′〉 ∈ G} | l ∈ L}

This states that all the guards emerging from a single node in the CFG must be a valid
formula if disjoined.

The formula that encodes the transition relation of a program is usually obtained by translat-
ing the labeled control flow graph of the program to a first-order formula modulo a theory such
as linear integer arithmetic. The variables of the program are defined as first-order constants,
with a primed and an unprimed version of each constant. There is a special constant that serves
as the program counter.

User input is usually modeled as a non-deterministic assignment to a variable. In the tran-
sition relation, a non-deterministic assignment is obtained by eliminating all constraints on this
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variable, thereby granting the SMT solver liberty to assign any value to the variable in a satisfia-
bility call. It is assumed that if a variable is set non-deterministically at a given program counter
location, it does not occur in any guard expression at this program counter location.

Given a CFG, the symbolic transition relation T (~x, ~x′) in first-order logic (where ~x is a
vector of variables, including the program counter pc, and ~x′ is the corresponding set of primed
variables) is given by

T (~x, ~x′) =∧
{((pc = l) ∧ c)⇒ (pc′ = l′ ∧ ~x′ = op(~x)) | l ∈ L, (l × c× op× l′) ∈ G}

∧ pc ≥ 0 ∧ pc ≤ max(l) (2.1)

CFG Translation Example

As an example, consider the following program with two variables:

int a = 0;
int b = *;
while (a < b) ++a;
assert(a == 10);

Of course, the assertion at the end of the program may be violated, since b can take non-
positive values. The labeled control flow graph for this program is given in figure 2.4.

This labeled control flow graph might be encoded in a first-order formula modulo the theory
of linear integer arithmetic as follows:

(pc = 0 ⇒ pc′ = 1 ∧ a′ = 0) ∧
(pc = 1 ∧ a < b ⇒ pc′ = 2 ∧ a′ = a ∧ b′ = b) ∧
(pc = 2 ⇒ pc′ = 3 ∧ a′ = a+ 1 ∧ b′ = b) ∧
(pc = 3 ⇒ pc′ = 1 ∧ a′ = a ∧ b′ = b) ∧
(pc = 1 ∧ a ≥ b ⇒ pc′ = 4 ∧ a′ = a ∧ b′ = b) ∧
(pc = 4 ∧ a = 10 ⇒ pc′ = 5 ∧ a′ = a ∧ b′ = b) ∧
(pc = 4 ∧ a 6= 10 ⇒ pc′ = 6 ∧ a′ = a ∧ b′ = b) ∧
(pc = 5 ⇒ pc′ = 5 ∧ a′ = a ∧ b′ = b) ∧
(pc = 6 ⇒ pc′ = 6 ∧ a′ = a ∧ b′ = b) ∧
(pc ≥ 0 ∧ pc ≤ 6)

Note that the non-deterministic assignment to b is modeled by removing any b′ constraints
from the transition from pc = 0 to pc = 1.

The initial condition is modeled as pc = 0. The property to prove is modeled as pc 6= 6,
stating that there must not be any path from the initial state, where pc = 0, to a state where
pc = 6.

For this thesis, we wrote a compiler that translates from a simple C-like languages to first-
order formulas modulo linear integer arithmetic similar to the one given above.
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Figure 2.4: Labeled control flow graph for an example program. The numbers in the circles are
the values of the program counter. Note that in transitions where assignments to variables are
missing, the variable is assumed to keep the value it had in the last transition.
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Lattices

The concept of lattices will be needed in the context of abstraction, so we introduce it here.

Definition 13 (Partially Ordered Set) A partially ordered set (L,v), or poset, consists of a set
L together with a binary relation v. The following axioms hold for the binary relation v:

• ∀a ∈ L : a v a

• ∀a, b ∈ L : If (a v b) and (b v a), then (a = b)

• ∀a, b, c ∈ L : If (a v b) and (b v c), then (a v c)

Definition 14 (Supremum, Infimum) Let (L,v) be a partially ordered set and S is an arbi-
trary subset of L, then:

• An element u of L is an upper bound of S if s v u for each s ∈ S.

• An upper bound u of S is the supremum of S if u v x for each upper bound x of S.

• An element l of L is a lower bound of S if l v s for each s ∈ S.

23



• A lower bound l of S is said to be its infimum if x v l for each lower bound x of S.

Definition 15 (Lattice) A lattice is a partially ordered set in which every two elements have a
supremum and an infimum.

Any set of Boolean formulas P together with the logical implication operator ⇒ forms a
lattice: v is given by

∀a, b ∈ P : (a v b) iff (a⇒ b).

Abstraction

The description of abstraction in this section is based on [5]. In the infinite state case, log-
ical formulas are given as SMT formulas rather than propositional logic formulas. An SMT
(Satisfiability Modulo Theory) formula is a formula in a specific fragment of first-order logic.
The model checker described in this thesis works with formulas over linear integer arithmetic.
There is a number of SMT solvers that can decide satisfiability queries on SMT formulas.

Unfortunately, the word “predicate” has a different connotation in the context of abstraction
than in the context of first-order logic vocabulary. In the area of abstraction, a predicate is simply
a Boolean formula that may be built from many predicates in the first-order sense. Since the
use of “predicate” for an arbitrary Boolean formula is so widespread, we adopt the ambiguous
usage. Henceforth, the word “predicate” will denote an arbitrary Boolean formula in the context
of abstraction.

Sets of states are usually described by predicates. Assume that P is a set of predicates. If a
state satisfies a predicate, it is said to be in the predicate.

The set P divides the state space into equivalence classes. In a domain of size n, an equiva-
lence class can be described by a bit-vector s of length n. Such a bit-vector is called an abstract
state.

The abstract domain is the set of all abstract states for a given set of predicates P:

D = 2({0,1}
n).

There is a partial ordering on the abstract domain given by subset inclusion.
The function α : 2S 7→ 2D that maps from the concrete domain (the set of sets of states) to

the abstract domain is called the abstraction function. It is given by

Q 7→ {〈v1, . . . , vn〉 | Q ∩ {s | s |= v1℘1 ∧ · · · ∧ vn℘n} 6= ∅},

where 0℘i = ¬℘i and 1℘i = ℘i.
The function γ : 2D 7→ 2S that performs the reverse operation is called the meaning function

and is given by

V 7→ {s | ∃〈v1, . . . , vn〉 ∈ V : s |= v1℘1 ∧ · · · ∧ vn℘n}.
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Definition 16 (Most Precise Abstraction) Given a set of predicates P, the most precise ab-
straction of a formula φ is a formula ψ built of predicates in P such that φ⇒ ψ and there is no
formula ψ2 built of predicates in P such that ψ2 6≡ ψ and φ⇒ ψ2 ∧ ψ2 ⇒ ψ.

An abstract domain may admit spurious transitions between two abstract states. In the
scope of this thesis, a spurious transition is defined as follows: There is a concrete state s that
has no predecessor inside a particular frame Fi, but the most precise abstraction s does have a
predecessor inside the frame Fi.

As will be described in the next chapters, it is sometimes necessary to add predicates to
the set P, in order to eliminate spurious transitions. This process is called refinement. After
refinement, there will be concrete states that formerly were in the same abstract states, but then
are in different abstract states.

CFG Translation Example contd.

The state of a program is a vector of variable assignments. A program with the variables a and b
might be in the state (or concrete state, as opposed to abstract state) s : (pc = 2|a = 5|b = 11).
Following the definition 6, this state is equivalent to the first-order formula pc = 2∧a = 5∧b =
11.

Since a and b are integers, it is clear that the program can be in infinitely many concrete
states. (The values the program counter can take are usually bounded.) In order to apply an
IC3 derivative to a software program described in SMT terms, it is necessary to reduce the state
space to a finite size. We do this by Boolean abstraction as described below.

Analogously to the notation in the finite state case, we will use the notation (x1x2 . . . xn)a,
where x1, . . . , xn ∈ {0, 1} to describe an abstract state. xi = 0 means that the ith predicate
occurs negated in the conjunction, and xi means that the ith predicate occurs in its plain form in
the conjunction. An abstract state comprises multiple, and up to infinitely many, concrete states.

Take a program with the two variables a and b. Let the set of predicates of the abstract
domain be P = {℘1 : a < 4, ℘2 : b < 5} and let the abstract domain be D = 2P. The abstract
state (10)a comprises the set of states that are models of the formula (a < 4) ∧ ¬(b < 5). The
state s1 : (pc = 0|a = 0|b = 7) is in ℘1 but not in ℘2, so s1 |= (10)a. The same holds for state
s2 : (pc = 0|a = 1|b = 7). Thus, as long as the abstract domain stays this way, the algorithm
will treat these two states in the same way.
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CHAPTER 3
Technical Contributions &

Implementation

This section describes our implementation of the IC3 algorithm for software verification and
details various optimizations and improvements that make the algorithm run decidedly faster.
We will call the algorithm for software verification IC3-CEGAR from now on.

3.1 Description of IC3 for Software Verification by
Counterexample-Guided Abstraction Refinement

In the last chapter, we described the outline of IC3 for propositional systems. In this section,
we will explain how to adapt the algorithm to the verification of systems over linear integer
arithmetic SMT formulas.

Some basic adaptations to the algorithm are:

• An SMT solver will be used instead of a SAT solver.

• Concrete states need to be stored as vectors of variable assignments (or interpretations)
instead of bit vectors.

• Abstract states are stored as vectors of abstract domain predicates. (In practice, abstract
states are stored as vectors of indices to abstract domain predicates. If an index is negated,
the predicate is assumed to be negated in the abstract state. This representation allows for
fast computation and straightforward refinement of the abstract domain.)

The framework around the algorithm that is necessary for handling the SMT solver instances,
the different concrete and abstract states etc., expands quite significantly due to the overhead of
dealing with a more complicated logic. The basic algorithm, however, does not need to be
modified dramatically. The most important changes occur in the handling of proof obligations.

Figure 3.1 outlines some of the features used in IC3-CEGAR.

27



Figure 3.1: Infinitely large concrete state space. Two predicates (℘1, ℘2) splitting the state space,
thus obtaining an abstract state space. Two concrete states s0 and s1. Spurious transition from
the abstract state s0 to the abstract state s1. Craig interpolant J for refinement.

State Space

℘1

℘2

s0

s1
J

The Data Structures Involved

Assume that any data structures whose description is not updated in this section remains un-
changed in IC3-CEGAR.

The Sequence of Frames

As in the finite state case, IC3-CEGAR maintains a sequence of formulas F0, F1, . . . , Fk that
describe over-approximations of states reachable in up to 0, 1, . . . , k steps. These formulas are
still basically in conjunctive normal form; this means that they are a conjunction of clauses. A
clause in IC3-CEGAR is a negation of an abstract state.

Since an abstract domain predicate can be any SMT formula, no Fi is guaranteed to be in
CNF insofar as the abstract domain predicates can be an arbitrary Boolean formula. However,
the internals of a predicate are not of interest to the algorithm. If the abstract domain predicates’
internal structure is neglected, each frame Fi is in CNF.

Proof Obligations

In the simplest version of IC3-CEGAR, a proof obligation is, again, a tuple 〈s, i〉, where s is a
concrete state and i is a level.

The Abstract Domain

The predicates of the abstract domain are stored as follows:
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• There is a vector that holds all predicates of the domain as SMT terms. This vector allows
for easy indexing of predicates and easy refinement: New predicates simply get pushed to
the back of the vector after refinement.

• Additionally, there is a lattice data structure that stores predicates. Any set of logical
formulas can be sorted in a lattice with v being defined as the logical implication⇒ (cf.
section 2.3).

The lattice data structure represents this mathematical concept in memory. Obviously,
re-shuffling the lattice data structure becomes necessary when predicates are added to the
domain. The data structure allows for easy discovery of redundant predicates (which are
then skipped), as well as for fast discovery of stronger and weaker predicates.

The predicate lattice supports the following three operations:

• The operation PARENTS takes a predicate ℘ as argument and returns all abstract domain
predicates that are implied by ℘ and not implied by some predicate that is implied by ℘.

• The operation CHILDREN takes a predicate ℘ as argument and returns all abstract domain
predicates that imply ℘ and do not imply some predicate that implies ℘.

• The operation ADD takes a predicate as argument and adds it to the predicate lattice,
adjusting pointers where necessary.

Handling Proof Obligations

The basic outline of the algorithm as given in figure 2.3 stays the same. The main changes to the
algorithm occur during the handling of proof obligations. The handling of proof obligations in
IC3-CEGAR are described in this section.

A pseudo-code outline of this description is given in algorithm 3.

1. Peek the state-level pair with the lowest level from the priority queue.

Given a state-level pair 〈s, i〉 that was peeked from the queue, the algorithm will now try
to exclude the state s from all frames up to Fi+1 by conjoining the clause ¬s, or a clause
that implies ¬s, to the formulas F1, . . . , Fi+1.

2. If i 6= 0, skip this step. Otherwise, check if the state s to exclude from level i is an initial
state. In this case, terminate the algorithm with false and a trace from s to the error.

3. Assume that s is not an initial state. Then s must be excluded from all levels up to i+ 1.

4. Compute the most precise abstraction s = α(s). α is the abstraction function which,
given a set of Boolean formulas, computes the most precise formula of a set of con-
crete states by returning a formula in disjunctive normal form whose literals are the given
Boolean formulas. A more detailed explanation about the implementation of the abstrac-
tion function is given in the following section “Abstraction of States” (3.3). Therefore, let
s = s0 ∨ s1 ∨ · · · ∨ sy. (It will become clear in the following section “Lifting of states”
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Algorithm 3 Outline of handling proof obligations in IC3-CEGAR. I is the initial condition. T
is the transition relation. Fi is the frame at level i.

1: function VOID HANDLEOBLIGATIONS(PQ: proof obligations priority queue)
2: while PQ.size > 0 do
3: 〈s, i〉 ← PQ.PEEK . 〈s, i〉 is the obligation with the lowest i
4: if i = 0 and I ∧ s is satisfiable then
5: Terminate with trace from s to ¬P
6: end if
7: s = s0 ∨ · · · ∨ sy ← α(s)
8: set<clause ref> generalizations
9: level minLevel← k + 1

10: for each x← 0 .. y do
11: if ∃c ∈ generalizations with sx ⇒ c then
12: continue
13: end if
14: if ¬sx ∧ Fi ∧ T ⇒ ¬sx′ then . ¬sx satisfies consecution at level i?
15: c← GENERALIZE(¬sx) . GENERALIZE might be CTGDOWN

16: j ← max{j | ¬sx ∧ Fj ∧ T ⇒ ¬sx′} . Find max. j relative to which c
satisfies consecution

17: for l← 1 .. j + 1 do
18: Fl ← Fl ∧ c
19: end for
20: minLevel← min(j,minLevel)
21: else if ¬s ∧ Fi ∧ T ⇒ ¬s then . There is a spurious transition from s at level i
22: REFINEABSTRACTDOMAIN(〈s, i〉)
23: break
24: else
25: SatModel mod←SATMODEL(¬s ∧ Fi ∧ T ∧ s′)
26: Predecessor t← unprimed variable assignments from mod
27: if i = 0 then
28: Terminate with trace from t to ¬P
29: end if
30: PQ← PQ ∪ 〈t, i− 1〉
31: break
32: end if
33: end for
34: if all sx were successfully eliminated then
35: PQ.POP . Eliminate proof obligation 〈s, i〉 from PQ
36: if i < minLevel ≤ k then
37: PQ← PQ ∪ 〈s,minLevel〉 . Push proof obligation forward
38: end if
39: end if
40: end while
41: end function
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(3.2)) that the proof obligation s may describe multiple concrete states. Thus, the most
precise abstraction of s is a disjunction of abstract states.)

5. For each of the abstract states sx, loop over the the following:

• If ¬sx implies a clause c that was excluded in a previous loop iteration, continue the
loop with sx+1.

• It is known that sx does not overlap with the initial condition, since it is part of an
abstraction of a concrete state s that is not an initial state. (Recall that the abstract
domain predicates always contain the initial condition in order to ensure that the
most precise abstraction of any concrete non-initial state does not overlap with the
initial condition.)

• If the clause ¬sx satisfies consecution relative to level Fi:

– Clause Generalization: Try to find a more general clause c with c⇒ ¬sx that
still satisfies initiation and consecution.

– Find the maximum j such that c still satisfies consecution relative to Fj . Then
add the clause c to the frames F1, . . . , Fj+1.

• If the clause ¬sx does not satisfy consecution relative to level Fi:

– Check if the negation of the concrete state s satisfies consecution at level i. If
it does not satisfy consecution either, then there is a concrete predecessor t that
directly leads into s. If i = 0, then t must be an initial state, so terminate with
a trace from t to the error. Otherwise, add the proof obligation 〈t, i − 1〉 to the
priority queue. Then break the sx loop, as it is known that an obligation at a
lower level exists and must be handled first.

– If ¬s satisfies consecution at level i, but the abstract clause ¬sx does not, then
the abstract domain is too coarse: There is a concrete state in Fi that leads into
sx, but there is no concrete predecessor of s in Fi. Thus, the abstract domain
admits a spurious transition and abstract domain refinement is triggered at this
point.
Because refinement of the abstract domain is triggered when a counter-example
to induction occurs, this refinement strategy is a variation on the well-known
Counterexample-Guided Abstraction Refinement ( [18, 19]).
A number of refinement strategies are discussed below. After refinement, break
the sx loop, as the most precise abstraction of s has changed.

6. If the whole abstraction of s, i.e., all the abstract states sx, were successfully excluded up
to level i+ 1, obliterate 〈s, i〉 from the priority queue. In this case, and if i < j ≤ k, add
the proof obligation 〈s, j〉 to the priority queue, where j is the minimum level among all
the levels to which generalizations of any sx could be pushed.

7. If the priority queue is not empty, handle the next proof obligation. Otherwise, return to
the main algorithm.
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3.2 Lifting of States

Lifting states in finite-state transition systems in a propositional symbolic encoding was de-
scribed in [13, 24] and applied to IC3 for hardware verification. We describe how to adapt the
approach to IC3-CEGAR.

Algorithm 3 shows how the algorithm extracts a predecessor t and adds it to the list of
proof obligations. So far, we have assumed that t is a single concrete state: t is a vector of
assignments to all variables that in the program (including the program counter). Such a vector
of assignments describes exactly one state of the program.

However, consider that t is extracted for its feature of being a state that leads into its succes-
sor s in one step. There might be a lot of states very similar to t that also lead into s. Consider
the following program:

int x, y;
1: if (x > 0)
2: ++x;

else
3: assert(false);

. . . where the numbers 1, 2 and 3 are program counter locations. Assume that IC3-CEGAR
checks whether it is possible to reach the error ¬P : pc = 3 in one step — it is: Amongst others,
the state t : pc = 1, x = −1, y = 3 leads to ¬P in one step.

Observe that the error can be reached in one step from t regardless of the value of y. Instead
of adding t to the proof obligations queue, thus taking care of the specific case where pc =
1, x = −1, y = 3, the lifted state pc = 1, x = −1 should rather be added to the proof obligation
queue. This would ensure that any state with pc = 1, x = −1 is excluded from the current
frame, regardless of the value of y.

The process of lifting drops variable assignments from a concrete state t in such a way that
the resulting lifted state t̂ still leads into the successor state s. Lifting a state works as follows:

1. Let φ be a formula describing either the error ¬P (in case the algorithm checks for the
reachability of the error) or a given successor state s.

2. Let t be the concrete predecessor to be lifted. It is known that t leads into φ in exactly one
transition.

3. Let T be the transition relation, symbolically encoded as an SMT formula.

4. Perform the query t∧T ∧¬φ′ on an SMT solver. Since the single concrete state t is known
to lead into φ, this query must always be unsatisfiable.

5. Extract the unsatisfiable core from the last call. From the unsatisfiable core, take all
unprimed variable assignments and put them into a vector t̂ of variable assignments. These
unprimed variable assignments are parts of the concrete state t. Since the unsatisfiable
core contains a subset of the input predicates of a call that are sufficient for unsatisfiability,
the call t̂ ∧ T ∧ ¬φ′ is unsatisfiable.
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6. All states described by t̂ lead into φ in exactly one step, as evidenced by the fact that
t̂ ∧ T ⇒ φ′ is valid (which, in turn, follows from the unsatisfiability of the above query).

t̂ is a lifted state of the program: a lifted state is a vector of variable assignments just like an
ordinary concrete state. But in contrast to a single concrete state, a lifted state may describe up
to an infinite number of single concrete states.

Since all concrete states encompassed by t̂ lead into either the error ¬P or the successor
state s, all of them must be excluded from the level i− 1 in order exclude s or the error at level
i. Thus, instead of adding the possibly very specific concrete state t at level i− 1 to the priority
queue PQ, the lifted state t̂ is added as an obligation at level i− 1.

The most precise abstraction of a single concrete state is a single abstract state. However,
the most precise abstraction of a lifted state, which may describe infinitely many states, is a
disjunction of abstract states. This explains why the handling of proof obligations as given in
listing 3 must handle multiple abstract states for a single proof obligation.

Using lifted states instead of concrete states in the priority queue accelerates the algorithm
markedly. In addition, the produced counterexample traces are also easier to parse for humans.
Consider the following program, where * denotes a non-deterministic assignment to a variable:

int main() {
int m, n, i, j, k;

0: m = *;
1: n = *;
2: i = 0;
3: if (n <= m) {
4: return -1;

}
5: while (m < n) {
6: ++m;
7: ++i;

}
9: assert(m == (n + 1));
}

A lifted trace to the program, as generated by IC3-CEGAR, might looks like this (modified
slightly from the raw output for clarity of presentation):

.pc=0

.pc=1, main.m=-1

.pc=2, main.m=-1, main.n=0

.pc=3, main.m=-1, main.n=0

.pc=5, main.m=-1, main.n=0

.pc=6, main.m=-1, main.n=0

.pc=7, main.m=0, main.n=0

.pc=5, main.m=0, main.n=0

.pc=9, main.m=0, main.n=0
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In this trace, there values of the variables i, j and k are neglected, as they are not essential
for reaching the error.

Contrast this with the following non-lifted trace:

.pc=0, main.i=0, main.j=15, main.k=16, main.m=-3, main.n=0

.pc=1, main.i=0, main.j=15, main.k=16, main.m=-1, main.n=0

.pc=2, main.i=0, main.j=15, main.k=16, main.m=-1, main.n=0

.pc=3, main.i=0, main.j=15, main.k=16, main.m=-1, main.n=0

.pc=5, main.i=0, main.j=15, main.k=16, main.m=-1, main.n=0

.pc=6, main.i=0, main.j=15, main.k=16, main.m=-1, main.n=0

.pc=7, main.i=0, main.j=15, main.k=16, main.m=0, main.n=0

.pc=5, main.i=1, main.j=15, main.k=16, main.m=0, main.n=0

.pc=9, main.i=1, main.j=15, main.k=16, main.m=0, main.n=0

The situation becomes worse when there are more variables in an incorrect program.

Lifting Non-Deterministic Assignments

Lifting a state over a transition system in which a non-deterministic assignment to variables
occur poses a problem: IC3 checks whether it is possible to reach s in one step. If it is, a
predecessor t is extracted. Now a lifted version of t should be added to the priority queue at
level i− 1. In order to lift, the query t ∧ T ∧ ¬s′ is posed. This query is not unsatisfiable, for a
state that is in ¬s can also be reached from a state similar to t that contains a different value for
the variable that was non-deterministically assigned.

In order to lift a state t at a program counter location where non-deterministic assignments
to variables occur, it is necessary to store which variables are non-deterministically assigned at
t’s program counter value. Before lifting the predecessor t, all non-deterministic assignments
must be eliminated from the successor s before performing the lifting query. The resulting lifted
state t̂ may still (non-deterministically) lead into s in exactly one transition, and therefore needs
to be excluded.

In addition, since it is known that the values of non-deterministically assigned variables in t
must be irrelevant, these variable assignments can also be dropped from t before performing the
lifting query. (Recall that variables which are non-deterministically assigned at a given program
counter location must not be used in the Boolean guard expressions at this program counter
location.) The query must still stay unsatisfiable and yield a lifted predecessor t̂ that must be
excluded because it may lead into the successor s in one transition.

To illustrate this with an example, let the current proof obligation s : pc = 5, a = 3, b = 0
at level i.

4: a = *;
5: ...;

So in order to lift t it has to be known that at pc = 4, a non-deterministic assignment to
a occurs. Then it poses the modified query (pc = 4, b = 0) ∧ T ∧ ¬(pc = 5, b = 0). The
unsatisfiable core of this query reveals a lifting t̂ that may lead into s.
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3.3 Abstraction of States

The method we use for abstracting lifted states is based on [33]. Because of the large size of
the abstract domain, which often includes hundreds of predicates, and because of abstract state
generalization, we modified the approach.

Given a set of abstract domain predicates P, a Boolean formula over P is either a predicate
of P or a conjunction, disjunction or negation of Boolean formulas over P.

Given a ground formula φ, the approach described in [33] computes the strongest Boolean
formula αP(φ) over the set of predicates P for which φ⇒ αP(φ). The authors show that

αP(φ) ≡
∨
{s | s is an abstract state over P and s ∧ φ is satisfiable.}

(Recall that an abstract state is a conjunction of all predicates in P, where each predicate can
occur in either plain or negated form.) Thus, αP(φ) computes the most precise abstraction of φ.

The authors of [33] continue to show how this most precise abstraction αP(φ) can be con-
structed from an AllSAT call given the set of predicates P and the formula φ:

For each predicate ℘i ∈ P, introduce a Boolean constant bi. Construct the formula ψ as

φ ∧
∧
{bi ⇔ ℘i | ℘i ∈ P}

and feed ψ into an AllSAT call with the Boolean constants bi being the important atoms. αP(φ)
is constructed from the AllSAT-models by converting each model into an abstract state and
disjuncting these abstract states:

αP(φ) ≡
∨
{s | Given a model over all bi, s =

∧{
℘i if bi = true
¬℘i if bi = false

}
}.

Implementation

Our implementation of the abstraction function builds on the shown principle.

The Predicates Chosen for Abstraction

Recall that most states to be abstracted are lifted, that is, they are a vector of assignments to a
subset of the program’s variables. The current abstract domain will likely contain a number of
predicates that do not contain any of the lifted state’s variables. Including such predicates in
abstraction would lead to an exponential blowup in the number of abstract states per abstraction:
If there are n predicates in the abstract domain, of which m predicates do not contain any of
the lifted state’s variables, then each of these m predicates must occur in both negated and plain
form for each abstract state over the n−m other predicates. This means an increase by a factor
of 2m in the number of models per AllSAT call.

In order to avoid this exponential blowup, we do not feed all predicates of the current abstract
domain into the abstraction function α as shown above, but only such predicates that contain at
least one variable that is set by the lifted state.
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Aborting the Abstraction

A second important point about the implementation is that computing all models for a given
AllSAT call is often unnecessary. Abstracting lifted states is currently needed when handling
proof obligations and in CTGDOWN. In both cases, the loop that iterates over the abstract states
is sometimes terminated prematurely. In such cases, computing all the abstract states a priori is
a waste of resources.

Aborting an AllSAT call prematurely is supported by some SMT solvers: Instead of com-
puting all the models for a given formula and returning them, SMT solvers may provide a hook
for a callback function that is called each time a model is computed. Depending on the return
value of the callback function, the SMT solver continues to compute models or aborts. In our
current implementation, none of the loops over the abstract states in HANDLEOBLIGATIONS and
CTGDOWN is implemented exactly as shown; instead, the loop body that iterates over the sx is
passed as a callback to the AllSAT solver such that the AllSAT call may be aborted as soon as
possible.

An additional optimization that allows the abortion of the AllSAT call while handling proof
obligations: When performing abstract state generalization, the current proof obligation might
be completely excluded by a generalized clause before all the models of the AllSAT call have
been generated. In this case it is also correct to abort the AllSAT call. A separate solver checks
whether the current proof obligation has been covered by the generalized clauses so far. If this
is the case, the AllSAT call is aborted.

3.4 Refinement Strategies

The previous section clarified at which point in the algorithm the abstract domain was refined.
We will now show three possible ways of refining the abstract domain in order to eliminate
spurious transitions that obstruct the elimination of states from frames.

Refinement by Interpolation

The first refinement technique is based on Craig Interpolation ( [20, 21]).

Definition 17 An interpolant for a valid first-order formula A ⇒ B is a first-order formula J
such that A ⇒ J , J ⇒ B and and the vocabulary of J contains only symbols that are both in
the vocabulary of A and in the vocabulary of B.

In order to use Craig interpolation for the refinement of the domain, consider the following:
There is a state s in a frame Fi for which ¬s ∧ Fi ∧ T ⇒ ¬s′, but ¬s ∧ Fi ∧ T 6⇒ ¬s′.

Divide the formula ¬s ∧ Fi ∧ T ⇒ ¬s′ into the two parts

A : ¬s ∧ Fi ∧ T

and
B : ¬s′.
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SinceA⇒ B, there is a Craig interpolant J ′ withA⇒ J ′ and J ′ ⇒ B. (We call the interpolant
J ′ because it contains only primed atoms, since the B side contains only primed atoms.)

Since J ′ ⇒ B, it holds that J ′ ⇒ ¬s′. The unprimed converse of that is s ⇒ ¬J . The
abstract domain is refined by ¬J . Also, we know that s⇒ s. Therefore, s∧¬J is an abstraction
of s. So the new most precise abstraction of s is a formula s2, where

s⇒ s2 ⇒ s ∧ ¬J.

After this refinement of the abstract domain has been performed, the consecution query on
the abstract state will succeed:

Fi ∧ ¬s2 ∧ T ⇒ Fi ∧ ¬s ∧ T ⇒ J ′,

therefore (by weakening the consequent)

Fi ∧ ¬s2 ∧ T ⇒ (¬s ∨ J ′)⇒ ¬s2.

By refining with J , the consecution query succeeds for both s and the new abstraction s2, and
the algorithm continues to eliminate s from the appropriate levels.

Implementation Issues

The presented approach was implemented using the MathSAT5 SMT solver ( [15]), which pro-
vides support for computing interpolants over linear integer arithmetic. The interpolants gener-
ated by MathSAT are the only source of new abstract domain predicates in this approach.

The composition of the abstract domain is highly important for the algorithm in general,
as a good abstract domain can lead to great speed-ups, while a bad abstract domain or a bad
refinement strategy can lead to non-termination.

Considering that the formula ¬s′ alone is an interpolant, it is not surprising that MathSAT
turns up with interpolants that contain many variable assignments. An ideal interpolant is weaker
than ¬s ∧ Fi ∧ T and stronger than ¬s.

The definition of half-space is needed below, so it is given here.

Definition 18 (Half-Space) A half-space is a linear inequality. An open half-space takes the
form

∑
i aixi + c < 0, where all xi are constants and all ai as well as c are integers. Similarly,

a closed half-space takes the form
∑

i aixi + c ≤ 0.

Any negated unprimed interpolant that is added to the domain will usually be a conjunction
of many predicates, notably of half-spaces (and equalities, which are equivalent to a conjunction
of two closed half-spaces). For eliminating the particular spurious transition the algorithm is
concerned with, it does not matter whether the whole conjunction is added or the individual
predicates that form the conjunction. Therefore the domain is not simply refined with ¬J ,
but instead ¬J is split along all of the outermost conjunctions. The predicates that form the
conjunction are added to the abstract domain individually. This technique greatly increases the
expressiveness of the domain, since the formula ¬J is usually a very strong formula that cannot
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be reused in most future abstractions, but the parts of the conjunction are usually quite weak and
will be heavily reused in future abstractions.

Reusing predicates as far as possible instead of repeatedly refining is important because
a large abstract domain is one of the primary reasons of slowdown of the algorithm: Amongst
other reasons, abstracting concrete states and generalizing clauses becomes exponentially slower
with the size of the abstract domain.

Interpolation by “Beautiful Interpolants”

From the last subsection it should be clear that half-spaces are a desirable form of predicate to
have in the abstract domain, at least in contrast to variable assignments and other types of strong
predicates.

In order to fix this issue, we decided to try a different approach of building interpolants: The
approach described in the “Beautiful Interpolants” paper ( [1]).

Definition 19 (Beautiful Interpolant) A beautiful interpolant is a disjunction of convex poly-
topes. A convex polytope is a conjunction of half-spaces. Therefore, a beautiful interpolant takes
the form ∨

j

∧
i

LIij ,

where each LIij is a linear inequality. The beautiful interpolants approach applies heuristics in
order to find an interpolant with i and j being as small as possible.

The paper [1] describes how to compute beautiful interpolants from given input formulas
A and B. Since the returned interpolant is a disjunction, its negation is a conjunction. Again,
we split the interpolant along the uppermost conjunctions and then added the resulting parts as
predicates to the abstract domain for refinement.

The resulting performance was disappointing, however. It turned out that it took very long
for beautiful interpolants to be computed, and that the resulting half-spaces were often imprac-
tical to use because of the large coefficients. The reason for this might be the structure of our
interpolation calls: The A side is a large and structurally complex formula, while the B side is a
very small formula that describes very few states.

Refinement by Preimage Computation

We also tried a completely different refinement approach that relies on pre-image computation
instead of interpolation.

The underlying notion is the following: The best way to make sure that no state leads to
the error is to exclude the pre-image of the error from the frontier. Similarly, if a state t is on a
trace to the error at level i, then the best way to make sure that no state leads into t exclude the
pre-image of t at level i− 1.

A simple recursive calculation of all pre-images until a fixed point is reached is, of course,
intractable. Computing precise pre-images of the error and of abstract states requires ∃-quantifier
elimination, as will be seen below.
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Figure 3.2: Preimage-based refinement outline

let s→ t,
refine with pre-image of t

s := abstractD(s)

∃j ≥ i : Fj ∧ ¬s ∧ T
?⇒ ¬s′

goto
generalization

uncoverTrace([〈s2, t〉, 〈r2, s〉])

add uncovered trace
as obligations
starting from level i− 1

yes

no (r2 → s2 → t)

RETRY_CONSECUTION

new trace r2 → s2 → . . .

After the pre-image of the error or the abstract state t to exclude has been computed, the
domain is refined with the predicates that occur in the pre-image. Note that this alone does
not guarantee the elimination of the particular spurious counterexample s → t; the complete
algorithm is given below.

Explanation

The pre-image-based refinement scheme works as follows: Suppose there there is a state s with
an abstraction s to exclude at level i. The abstract consecution query ¬s∧Fi∧T ⇒ ¬s′ fails, but
the concrete consecution query ¬s∧Fi ∧T ⇒ ¬s′ succeeds. So there is a spurious predecessor
r that leads into s but not directly to s. Suppose that t is the successor of s.

Now the domain is refined with the pre-image of t. The pre-image is obtained in one of the
following ways:

• If the pre-image of the exact same t was computed in a previous refinement step, restore
the pre-image from memory. All pre-images computed in refinement are kept in memory,
as they do not take up much space, but eliminate the need to re-compute a previous pre-
image.

• Otherwise, compute the pre-image by quantifier elimination over the formula ∃x′.T (~x, ~x′)∧
t(~x′). The SMT solver Z3 ( [22]) is capable of performing such a quantifier elimination
over linear integer arithmetic.
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Figure 3.3: Preimage-based refinement: Uncovering a new trace

uncoverTrace
([〈s, t〉, 〈s2, t2〉, . . . ])

s ∧ T ∧ t′?

return [s→ t, s2 → s, . . . ]

s ∧ T ∧ ¬P ′

s ∧ T ∧ t′?
return
[s→ ¬P, s2 → s, . . . ]

refine with pre-image of t

extract successor u of s

return
RETRY_CONSECUTION

uncoverTrace
([〈u, t.succ〉, 〈s, t〉, 〈s2, t2〉, . . . ])

unsat
sat

unsat
sat

unsat sat

Refining with the pre-image of t does not guarantee the abstract consecution query to hold.
If it holds, then the abstract state s will be excluded at level i. If the abstract consecution query
fails, a transition r2 → s2 ∈ s → t is extracted. This transition needs to be eliminated in any
case because the next goal will be to exclude t at level i + 1, which will fail if there are any
transitions leading into t (even if these transitions do not lead directly to t).

The algorithm now tries to uncover a trace starting from the path prefix r2 → s2 that leads
to the error. By the previous refinement, it is guaranteed that there exists at least a path prefix
r2 → s2 → t2 ∈ t. Let u be the successor of t. The next step would be to find a concrete
successor to t2 in the abstraction u. If no such concrete successor is found, the domain is refined
with the (under-approximation of the) pre-image of u and the algorithm restarts by trying to
exclude the abstraction of s at level i.

The uncovering of the trace continues until either a concrete trace is found from a prede-
cessor of s to the error or the abstraction s satisfies consecution at level i. One of these cases
is guaranteed to hold: The trace is consecutively refined with (under-approximations of) pre-
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images that recursively eliminate spurious predecessors, resulting either in the elimination of all
predecessors or the finding of a non-spurious predecessor.

Each of these refinements is done only if there is a transition into an abstract state that does
not lead to the successor to exclude. If there are such transitions into an abstract state,

• they must either be eliminated, otherwise the abstract consecution query will never hold
on this state

• or they are part of an actual error trace and should be uncovered sooner rather than later.

However, it turned out that because of the following factors, the approach turned out to be
inferior to refinement by interpolation:

• Pre-images are very expensive to compute.

• The resulting predicates are similar to what one gets by interpolation, so the abstract
domain

• The phase of uncovering a new trace can lead to a number of refinement steps that is
up to quadratic in the number of steps of the current trace. While this rarely happens, it
is usually the case that a number of refinements must be made to eliminate the original
spurious transition s→ t.

A previous attempt at applying inductive verification to software ( [14]) also relies on pre-
image computation. Instead of computing the exact pre-image, as is done with quantifier elim-
ination, the approach computes an under-approximation of the pre-image. Despite the fact that
computing such an under-approximation is much faster than performing quantifier elimination,
we did not try it. The following challenges might occur when trying to implement pre-image
based refinement using under-approximation of pre-images:

• Suppose there is a spurious transition s → t. The under-approximation of the pre-image
of t must refine the domain in such a way that this spurious transition is eliminated. When
refining with the under-approximation of a pre-image, this is not the case anymore. In
order for this to be the case, one has to make sure to get an under-approximation of the
pre-image of t that refines the abstraction s of s, which is expensive again.

• If there is a fitting under-approximation: The predicates of the under-approximation of the
pre-image might not be better than the ones gathered by the exact pre-image, resulting in
no better performance.

Refinement State Mining

Motivation

Though the above refinement strategies suffice for correctness, they do not suffice for termina-
tion in many cases. We implemented an additional refinement strategy that we choose to call
Refinement State Mining.
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Non-termination of IC3-CEGAR is often caused by a diverging domain: The abstract do-
main is continually refined without ever achieving termination. Still, refining the domain is
necessary in order for IC3-CEGAR to be correct. But the predicates generated by any of the
discussed refinement strategies, notably by interpolation, may not be good enough to ensure
termination. Refinement State Mining is a technique that extracts predicates not to eliminate
a specific spurious transition, but to refine the domain with predicates which may eliminate
transitions that are likely to occur in the future.

Algorithm 4 Refinement State Mining
1: function VOID REFINEMENTSTATEMINING(s: concrete state, S: set of concrete states)
2: S ← S ∪ {s}
3: for each {G ⊆ S| all s ∈ A have the same pc value and the same variables } do
4: if |G| < minPoints then
5: continue
6: end if
7: Define concrete state set R;
8: if MINESTATES(G, R) then
9: S ← S \ R

10: end if
11: end for
12: end function
13: function BOOL MINESTATES(G, R: sets of concrete states)
14: if |G| ≤ 2 then
15: return false
16: Define concrete state set U
17: if CREATEPredicate(G, U ) then
18: R← G
19: return true
20: else . UNSAT core will contain a collection of points which together do not satisfy

the predicate
21: Let u1 ∈ U , U2 = U \ {u1}
22: if MINESTATES(G \ {u1}, R) then
23: return true
24: end if
25: if MINESTATES(G \ U2, R) then
26: return true
27: end if
28: return false
29: end if
30: end if
31: end function
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Conceptual Overview

In IC3-CEGAR, refinement is triggered when there is a proof obligation 〈s, i〉, consisting of a
state s and a level i, for which ¬s ∧ Fi ∧ T ⇒ ¬s′, but ¬s ∧ Fi ∧ T 6⇒ ¬s′, where s = α(s).

Assume that s is a vector of variable assignments that includes an assignment to the program
counter pc. (Note that a proof obligation’s state does not have to include an assignment to the
program counter pc because of lifting; in practice, all lifted states still contain the program
counter. Refinement state mining can be skipped for any proof obligation that does not contain
the program counter.)

Refinement state mining works can be split in two phases:

• Phase 1: States used in an interpolating refinement call are grouped by program counter
value (and stripped of the program counter assignment). All states that had the same
program counter value are grouped into sets where each state shares the same assigned
variables.

• Phase 2: Let G be a set of states that had the same program counter value and share the
same assigned variables. If |G| ≥ minPoints (where minPoints is a predefined threshold
with minPoints ≥ 2), then try to find a predicate that describes the states in G. The
only predicate matching scheme currently implemented is trying to find a linear equality
~a∗ ~var = c, where ~a is a line vector of integer constants, c is an integer constants and ~var
is a column vector of integer variables occurring in all states of G.

The Refinement State Mining algorithm tries to find out if there is a linear equality that
covers all states in G:

∃~a, c.∀ ~val ∈ G.(~a ∗ ~val = c),

where ~val is a column vector of the variable values in a given state.

– If fitting coefficients ~ai, c cannot be found, then the algorithm is re-started on a
subset of the states in G unless |G| ≤ 2, in which case the algorithm returns without
finding a fitting predicate.

– If fitting coefficients ~ai, c are found, then the domain is refined with the linear
equality ~a ∗ ~var = c.

Instead of trying to fit a linear equality on a set of points, one could also try to fit predicates
of different types on the set of points, such as non-linear predicates. We have only implemented
the fitting of linear equalities.

Implementation

A sample implementation of the principle as shown above is given in algorithms 4 and 5.
The algorithm 4 starts in by grouping states previously used for interpolating refinement

calls into sets by program counter value and by the assigned variables per state. If it determines
that there are enough states in a particular set (where “enough” means “more than minPoints”,
and minPoints ≥ 2), then it calls a function that tries to find a predicate that will describe all
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Algorithm 5 Fitting a linear equality on a set of points
1: function BOOL CREATELINEAREQUALITY(G, U : sets of concrete states) Formula f ← >
2: for each state s : G do
3: LinearEquality linEqs ←

∑
i aivi + c = 0 . where all ai and c are free and all vi

are instantiated with the values from s
4: f ← f ∧ linEqs
5: end for
6: Constraint nz ← MKNOTZEROCONSTRAINT(variables that occur in G)
7: f ← f ∧ nz . Assert that at least one of all ai or c must be non-zero
8: if f is satisfiable then
9: ∀iai, c← SATMODEL(f )

10: LinearEquality line←
∑

i aixi + c = 0 . where all ai and c are instantiated with
the SAT values from the model and all xi (which are the corresponding state variables) are
constants

11: abstractDomain.REFINE(line)
12: return true
13: else
14: U ← UNSATCORE(f ) . The UNSAT core determines which linear equalities and

corresponding states prevented the creation of a line through the given points
15: return false
16: end if
17: end function

given states. Such a function, which tries to fit a linear equality on a given set of states, is given
in algorithm 5.

The algorithm 5 will either find a linear equality that describes all given states, or return with
a set U of at least three states that cannot be described by a single linear equality.

In the first case, the abstract domain will be refined with the linear equality.

In the latter case, either G ≤ 2, in which case the function returns without finding a fitting
predicate. Otherwise, the original set of states is divided into two (possible overlapping) subsets:
The first subset G1 contains all points G
U , plus a subset U1 of the states in U . The second subset G2 contains all points G
U , plus a subset U2 with U2 = U
U1. Refinement State Mining is re-started recursively on the sets G1 and G2.

Since the trivial linear equality ~a = ~0, c = 0 can be found for any set of points, this trivial
solution is forbidden while trying to fit a linear equality on a set of states.

Related Work

Approaches similar to Refinement State Mining have been explored previously:
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• The Daikon invariant detector ( [26]) is a tool that discovers likely invariants by examining
actual runs of a program. The runs of the program are analyzed and the tool tries to
construct invariants that hold at specified points in the program.

• The approach described in [43] constructs linear and non-linear loop invariants by exam-
ining sets of concrete states that occur at specific points in the program. Invariants are
generated using a guess-and-check algorithm.

Both of the approaches could be used to enhance the capabilities of IC3-CEGAR in future
developments.

Lazy Refinement

So far, we have assumed that refinement occurs immediately when a spurious transition is dis-
covered. However, it is not necessary for correctness to refine immediately when a spurious
transition is detected: In this case, the algorithm could just continue without refining until a spu-
rious trace from the initial state to the error is discovered. At this point, the algorithm must refine
the domain in order to exclude the spurious transition. However, not all spurious transition will
allow spurious traces from an initial state to the error. Since it is generally favorable to deal with
a coarser domain, we experimented with lazy refinement: delaying refinement when discovering
spurious transitions until either a spurious trace from the initial state to the error is discovered
(in which case refinement is obligatory) or a spurious trace with too many spurious transitions
is discovered.

The main difference in the data structures is that a proof obligation is now a triple 〈s, i, n〉
instead of a tuple 〈s, i〉. The third tuple argument n is counts the number of spurious transi-
tions in the current proof obligations trace; if n exceeds the user-defined constant maxSpurious,
refinement is triggered regardless of whether a trace from the initial condition to the error was
discovered or not.

If a spurious predecessor t is discovered, then t is a predecessor to the abstraction s but not
to s. Therefore, t might not be inductive relative to level i − 2, so the proof obligation for t is
added at level 0.

If a trace from the initial state to the error is discovered that contains at least one spurious
transition, then all proof obligations up to the spurious transitions are deleted and the abstract
domain is refined such that this particular spurious transition is eliminated. A spurious transition
is known to occur if n > 0 in a proof obligation 〈s, i, n〉.

Pseudo-code outlining the handling of proof obligations with lazy refinement is given in
figures 6 and 7.

3.5 Abstract State Generalization

We employ minimal-inductive-clause generalization and the CTGDOWN algorithm to generalize
abstract states. The finite-state case as introduced in [30] was described in section 2.2.

45



Algorithm 6 Outline of lazily refinement in IC3-CEGAR. I is the initial condition. T is the
transition relation. Fi is the frame at level i.

1: function VOID HANDLEOBLIGATIONS(PQ: proof obligations priority queue)
2: while PQ.size > 0 do
3: 〈s, i, n〉 ← PQ.PEEK . 〈s, i, n〉 is the obligation with the lowest i
4: if i = 0 and I ∧ s is satisfiable then
5: if n = 0 then
6: Terminate with trace from s to ¬P
7: end if
8: BACKTRACKREFINE(〈s, i, n〉, PQ) . Refine with last known spurious

transition and delete proof obligations up to this transition
9: Continue

10: end if
11: s = s0 ∨ · · · ∨ sy ← α(s)
12: set<clause ref> generalizations
13: level minLevel← k + 1
14: for each x← 0 .. y do
15: if ¬ ELIMINATEABSTRACTSTATE(sx, i, generalizations, minLevel) then
16: break
17: end if
18: end for
19: if all sx were successfully eliminated then
20: PQ.POP . Eliminate proof obligation 〈s, i, n〉 from PQ
21: if i < minLevel ≤ k then
22: PQ← PQ ∪ 〈s,minLevel, n〉 . Push proof obligation forward
23: end if
24: end if
25: end while
26: end function

A variant of MIC and CTGDOWN that is applicable to the infinite state case is given in
algorithm 8. The main difference is that concrete counterexamples to generalization (CTG) now
need to be abstracted. Each of the abstractions is then treated as an abstract counterexample
to generalization. These abstract counterexamples to generalization are then either successfully
excluded at the given level, or they are joined to the cube q̂ by the u operator.

Our experiments with this variant of CTGDOWN indicate that good values for the max*
constants are: maxDepth = 1, maxCTGs = 3 and maxJoins =∞.

Geometric Generalization

In the infinite state case with an abstract domain, a certain type of generalization is possible that
is not feasible in the finite-state case: geometric generalization.
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Algorithm 7 Outline of eliminating abstract states in IC3-CEGAR with lazy refinement. I is
the initial condition. T is the transition relation. Fi is the frame at level i.

1: function BOOL ELIMINATEABSTRACTSTATE(sx: abstract state ref, i: level,
generalizations: set<clause ref> ref, minLevel: level ref)

2: if ∃c ∈ generalizations with sx ⇒ c then
3: continue
4: end if
5: if ¬sx ∧ Fi ∧ T ⇒ ¬sx′ then . ¬sx satisfies consecution at level i?
6: c← GENERALIZE(¬sx) . GENERALIZE might be CTGDOWN

7: j ← max{j | ¬sx ∧ Fj ∧ T ⇒ ¬sx′} . Find max. j relative to which c satisfies
consecution

8: for l← 1 .. j + 1 do
9: Fl ← Fl ∧ c

10: end for
11: minLevel← min(j,minLevel)
12: return true
13: else if ¬s ∧ Fi ∧ T ⇒ ¬s′ then . There is a spurious transition into s
14: SatModel mod←SATMODEL(¬sx ∧ Fi ∧ T ∧ sx′)
15: Spurious predecessor t← unprimed variable assignments from mod
16: if I ∧ t satisfiable or n ≥ maxSpurious then
17: REFINEABSTRACTDOMAIN(〈s, i〉)
18: return false
19: else
20: PQ← PQ ∪ 〈t, 0, n+ 1〉
21: return false
22: end if
23: else
24: SatModel mod←SATMODEL(¬s ∧ Fi ∧ T ∧ s′)
25: Predecessor t← unprimed variable assignments from mod
26: if i = 0 then
27: if n = 0 then
28: Terminate with trace from t to ¬P . t must be an initial state
29: else
30: BACKTRACKREFINE(〈s, i, n〉, PQ) . Refine with last known spurious

transition and delete proof obligations up to this transition
31: return false
32: end if
33: else
34: PQ← PQ ∪ 〈t, i− 1, n〉
35: return false
36: end if
37: end if
38: end function
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Algorithm 8 MIC with ctgDown for the infinite state case
1: function VOID MIC(q: cube ref, i: level)
2: MIC(q, i, 1)
3: end function
4: function VOID MIC(q: cube ref, i: level, d: recDepth)
5: for each Literal ` in q do
6: q̂ ← q \ `
7: if CTGDOWN(q̂, i, d) then
8: q ← q̂
9: end if

10: end for
11: end function
12: function BOOL CTGDOWN(q̂: cube ref, i: level, d: recDepth)
13: ctgs← 0
14: joins← 0
15: while true do
16: if I ∧ q̂ satisfiable then
17: return false
18: end if
19: if Fi ∧ ¬q̂ ∧ T ⇒ ¬q̂′ then
20: return true
21: end if
22: if d > maxDepth then
23: return false
24: end if
25: State s |= Fi ∧ ¬q̂, s leads into ¬q̂
26: s = s0 ∨ · · · ∨ sy ← α(s)
27: for each sx in s do
28: if (ctgs < maxCTGs) and (i > 0)
29: and (I ⇒ ¬sx) and Fi−1 ∧ ¬sx ∧ T ⇒ ¬sx′ then
30: ctgs← ctgs+ 1
31: for j ← i to k do
32: if Fj ∧ ¬sx ∧ T 6⇒ ¬sx′ then
33: break
34: end if
35: end for
36: MIC(sx, j − 1, d+ 1)
37: for l← 1 .. j do
38: Fl ← Fl ∧ ¬sx
39: end for
40: else if joins < maxJoins then
41: ctgs← 0
42: joins← joins+ 1
43: q̂ ← q̂ u sx
44: else
45: return false
46: end if
47: end for
48: end while
49: end function

48



Given a cube q, dropping a literal ` from q is the same as replacing the ` by> in q, obtaining
q̂. In previous sections, we discussed how to determine whether q̂ is a proper generalization of
q.

Consider the case that q̂ = q \ ` turns out not to be a proper generalization of q after the
CTGDOWN call. Instead of simply forfeiting on `, the literal might be replaced not by the
weakest possible predicate >, but by a literal £ that is weaker that ` but stronger than >, thus
generalizing q. The new cube q̂ = q ∪ {£} \ ℘ is then checked via CTGDOWN.

Where could this weaker literal £ come from? The easiest way to look for such a literal is
to search among the existing predicates of the abstract domain.

• In the case that ` = ℘, where ℘ is some predicate in the abstract domain, look for a
predicate ℘2 with ℘ ⇒ ℘2 and replace ℘ by ℘2 in q, obtaining q̂. Then check q̂ by
CTGDOWN.

• In the case that ` = ¬℘, where ℘ is some predicate in the abstract domain, look for a
predicate ℘2 with ℘2 ⇒ ℘ and replace ¬℘ by ¬℘2 in q, obtaining q̂. Then check q̂ by
CTGDOWN.

In practice, ` is repeatedly replaced by weaker literals as long as CTGDOWN returns true.
The modified MIC algorithm is given is algorithm 9.

Geometric generalization does not yield a better performance in all cases. There are bench-
marks for which it degrades performance, but also cases for which it results in a significantly
shorter run-time. We do not have a clear idea why geometric generalization hurts performance
in some cases; it is not the case that the additional code in MIC is responsible for all of the slow-
down. As far as we see currently, enabling geometric generalization can lead to both a higher
and a lower k until convergence. However, in some cases geometric generalization leads to the
termination of benchmarks that suffer from a diverging domain otherwise.

We experimented with bounding the number of geometric generalization attempts for each
MIC call by a constant, but bounding the number of attempts does not make a great differ-
ence. The main difference in the algorithm performance is determined by whether geometric
generalization is enabled at all or not.

3.6 Various Other Performance Improvements

Refinement with Inequalities

In practice, many refinement predicates from an interpolation call are linear equations. Perfor-
mance is drastically improved if for every linear equation

∑
i aixi+c = 0, a logically equivalent

conjunction of linear inequality
∑

i aixi + c ≤ 0 ∧
∑

i aixi + c ≥ 0 is taken instead. This is
then split up into the inequalities

∑
i aixi + c ≤ 0 and

∑
i aixi + c ≥ 0, which are then added

to the abstract domain predicates.
Experiments have revealed that in case geometric generalization in enabled, it is beneficial

to refine the domain with the original equality
∑

i aixi + c = 0 and one additional inequality,
namely

∑
i aixi + c ≤ 0.
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Algorithm 9 MIC with geometric generalization. P is the lattice of predicates of the abstract
domain. The operations on this lattice of predicates are described in section 3.1.

1: function VOID MIC(q: cube ref, i: level)
2: MIC(q, i, 1)
3: end function
4: function VOID MIC(q: cube ref, i: level, d: recDepth)
5: for each Literal ` in q do
6: q̂ ← q \ `
7: if CTGDOWN(q̂, i, d) then
8: q ← q̂
9: else

10: if ` = ℘ then
11: for each ℘2 ∈ PARENTS(℘) do
12: q̂ ← (q \ {`}) ∪ ℘2

13: if CTGDOWN(q̂, i, d) then
14: q ← q̂
15: break
16: end if
17: end for
18: else if ` = ¬℘ then
19: for each ℘2 ∈ CHILDREN(℘) do
20: q̂ ← (q \ {`}) ∪ ¬℘2

21: if CTGDOWN(q̂, i, d) then
22: q ← q̂
23: break
24: end if
25: end for
26: end if
27: end if
28: end for
29: end function
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Initial Abstract Domain

For correctness, it suffices if the initial abstract domain predicate lattice contains only >, ⊥ and
the initial condition I . Any abstract domain used in IC3-CEGAR contains the initial condition
by default, as this ensures that the most precise abstraction of any non-initial state does not
intersect with the initial condition. (However, including the initial condition as a predicate in the
domain is not required for correctness; if I is not included in the initial abstract domain, then a
check for initiation of abstract states and subsequent refinement may be necessary.)

Our experiments indicate that performance is markedly improved if the abstract domain
predicates are initialized with linear inequalities between pairs of program variables in the same
function: That is, the abstract domain predicate lattice is initialized with >, ⊥, the initial condi-
tion, and linear inequalities v1 < v2 for all pairs of program variables v1, v2.

In addition, the abstract domain predicate lattice is set up to contain all Boolean expressions
from the original program: The transition relation compiler saves Boolean expressions from the
program, and at the beginning of an IC3-CEGAR run, the abstract domain is refined with these
Boolean expressions.

Generalization in Consecution

This optimization was described in [10] and can be found in the reference implementation of
IC3 ( [9]).

Given an abstract state s, a query for consecution ¬s ∧ Fi ∧ T ⇒ ¬s′ is translated to
¬s∧Fi∧T ∧s′ and given as input to the SMT solver. If the solver returns UNSAT, the clause ¬s
satisfies consecution relative to level i. In this case, as a first attempt at clause generalization, the
unsatisfiable core of the SMT solver query is extracted. Let c′ be a cube made of the constituent
literals of s′ that occur in the unsatisfiable core of the query. The unprimed version ¬c of ¬c′
might be a first generalization of ¬s:

It holds that ¬s ∧ Fi ∧ T ∧ c′ is unsatisfiable, therefore ¬s ∧ Fi ∧ T ⇒ ¬c′ is valid, and by
strengthening of the antecedent, ¬c ∧ Fi ∧ T ⇒ ¬c′ is also valid. In the case that ¬c satisfies
initiation, it is taken as input for the generalization call instead of the possibly much larger ¬s.

However, ¬c is not a valid generalization of ¬s if it does not satisfy initiation: I ⇒ ¬cmight
not be valid, where I is the initial condition. In this case, the unsatisfiable core is not used for
preliminary generalization, and MIC is called on the original abstract cube.

In the finite-state case of IC3, the unsatisfiable core is then foregone and ¬s is used as input
for the generalization step. However, considering that ¬s will already satisfy initiation if it is
checked for consecution, the clause ¬c can be enriched by a simple disjunction with the initial
condition I , which is a single predicate in the domain. The resulting clause ¬c∨I is still entailed
by the original ¬s and will certainly satisfy initiation: I ⇒ (¬c ∨ I) always holds.

Thus, GENERALIZE call for a clause ¬s that satisfies consecution will already start off with
a generalized version ¬c of the original ¬s. In the process of generalization (notably in CTG-
DOWN), the unsatisfiable cores of consecution calls are again used to accelerate the process.
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CHAPTER 4
Empirical Evaluation

We implemented IC3-CEGAR in C++, on top of a reference implementation of IC3 available
at [9]. As an SMT solver, we used MathSAT5 ( [15]).

In order to translate C-like programs to transition relations readable by SMT solvers, we
wrote an ANTLR 4 ( [39])-based compiler. This very simple translator does not perform any
optimizations at all on the resulting control flow graphs. The performance gains after doing
very simple manual optimizations (like constant propagation, eliminating unused variables or
removing dead code) on the transition relations are sometimes astonishing.

4.1 Benchmark Selection

We chose three benchmark suites to run our model checker on:

• The InvGen benchmark suite, as it is found in [29]. We had to omit some benchmarks:

– Our translator could not handle the benchmarks crawl_cbomb.c, fragtest.c,
linpack.c, SpamAssassin-loop*.c as they contain pointers, structures, type
definitions or other advanced C constructs that we cannot handle.

– The benchmarks half.c, heapsort*.c and id_trans.c contain truncating
integer divisions, which we cannot handle.

– The benchmarks puzzle1.c, sort_instrumented.c, and test.c do not
contain any safety properties to prove (i.e., they do not contain assert statements).

– The benchmarks spin*.c rely on functions that provide mutex functionality (acquire
and release).

• The Dagger benchmarks suite as found in [28]. We omitted the three p*-ok.c bench-
marks as well as the three p*-bad.c benchmarks, since they contain pointers, which we
cannot handle.
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• The benchmarks suite as found in [1]. We did not duplicate those benchmarks that were
taken from the InvGen or Dagger benchmark suites.

4.2 Evaluation Configurations

We let IC3-CEGAR run in multiple configurations:

• NOOPT: This is a run where the CTGDOWN parameters maxCTG and maxDepth are
each set to 0, effectively disabling CTGDOWN, and geometric generalization as well as
refinement state mining are turned off.

• C: This is a run where the CTGDOWN parameters maxCTG is set to 3 and maxDepth is
set to 1, and geometric generalization as well as refinement state mining are turned off.

• CG: This is a run where the CTGDOWN parameters maxCTG is set to 3 and maxDepth is
set to 1, the MIC parameter maxGeo is set to 100 and refinement state mining is turned
off.

• CR: This is a run where the CTGDOWN parameters maxCTG is set to 3 and maxDepth is
set to 1, geometric generalization is disabled and refinement state mining is triggered as
soon as three possible points occur at a given program counter location.

• CGR: This is a run where the CTGDOWN parameters maxCTG is set to 3 and maxDepth is
set to 1, the MIC parameter maxGeo is set to 100 and refinement state mining is triggered
as soon as three possible points occur at a given program counter location.

• CRL: This is a run where the CTGDOWN parameters maxCTG is set to 3 and maxDepth
is set to 1, geometric generalization is disabled and refinement state mining is triggered
as soon as three possible points occur at a given program counter location. Additionally,
lazy refinement is turned on with the maxSpurious parameter set to 3.

• CGRL: This is a run where the CTGDOWN parameters maxCTG is set to 3 and maxDepth
is set to 1, the MIC parameter maxGeo is set to 100 and refinement state mining is trig-
gered as soon as three possible points occur at a given program counter location. Addi-
tionally, lazy refinement is turned on with the maxSpurious parameter set to 3.

CTGDOWN refers to the algorithm in section 3.5. Geometric generalization refers to the
technique described in section 3.5. Refinement state mining refers to the algorithm in section
3.4. Lazy refinement refers to the extension described in section 3.4 and is turned off unless
noted otherwise.

We compare our implementation of IC3-CEGAR against CPAChecker [7], the winner of
the 2nd software verification competition. CPAChecker is a highly configurable verifier. The
last column, “CPAChecker”, refers to a run of CPAChecker that was started with the parameters
-config config/sv-comp13--combinations-predicate.properties -timeout 1200.

The benchmarks were performed on “AMD Opteron(TM) Processor 6272” CPUs at 1400
MHz. We did not set a memory treshold. The timeout set for the benchmarks is 1200 seconds,

54



wall time. However, if IC3-CEGAR or CPAChecker do not run into the timeout, we report
the run times in the operating systems’s user mode used for the benchmark, as they are more
accurate than the wall time.

4.3 Run Time Results

A table listing the run time results for out seven configurations and the CPAChecker run on the
benchmark suites is presented here. A graphical representation of the run time results for the
IC3-CEGAR configurations with Refinement state mining and CPAChecker is presented below
in figure 4.1.

Regarding the values in the CPAChecker column:

• All cells that are empty designate a benchmark in which CPAChecker did not terminate
within 1200 seconds.

• All cells marked with an asterisk (*) designate a benchmark which CPAChecker failed
to prove because of an incomplete analysis. In such cases, CPAChecker returns with a
Verification result: UNKNOWN, incomplete analysis or a
Analysis incomplete: no errors found, but not everything could be checked.
message.
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Discussion of the Run Time Results

Discussion of Different Configurations

Some observations about specific optimizations can be drawn from the given run time results:

• Enabling CTGDOWN with the given parameters generally leads to significant speedups.

• Refinement state mining hardly impacts performance in a negative way, but can lead to
termination (e.g., in up.c, up3.c, up4.c).

• Geometric Generalization mostly leads to higher run times, but can also result in speed-
ups (e.g., in fig2.c).

• Lazy refinement can lead to both better and worse performance, but there are benchmarks
that can only be solved with lazy refinement (e.g., substring1.c).

Comparison with CPAChecker

The comparison with CPAChecker leads to two conclusions:

• IC3-CEGAR is slower than CPAChecker on most benchmarks that both model checkers
could solve.

• However, IC3-CEGAR in its best configuration (CR) solved 9 more benchmarks than
CPAChecker in total. Additionally, IC3-CEGAR in the CR configuration solved 26 bench-
marks that CPAChecker could not solve within the time limit of 1200 seconds. CPAChecker
solved only 18 benchmarks that IC3-CEGAR could not solve within the time limit of 1200
seconds.

Discussion of the Reasons of Termination for Selected Benchmarks

In this section, we do a short analysis of why certain benchmarks fail to terminate in some
configurations, but terminate (fast) in others.

xy0.c

First, we turn the attention to the benchmark xy0.c. This benchmarks fails to terminate without
refinement state mining, but terminates quite fast in any configuration where the algorithm is
enabled.

The reason for non-termination without refinement state mining lies in the fact that the do-
main diverges without it.

Without refinement state mining, in configuration C, the abstract domain gets repeatedly
refined with interpolants around concrete states that have a program counter value of 6. These
states look like:
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Figure 4.1: Scatter plot matrix depicting IC3-CEGAR (all configurations with Refinement state
mining and CTGDOWN) and CPAChecker run times. Each sub-plot compares two configura-
tions against each other. Each point corresponds to one benchmark; the position of the point
is determined by the run times in the two configurations. The red line is the main diagonal. A
point to the upper left side of the main diagonal indicates that the upper configuration performed
better on the given benchmark. A point to the lower right side of the main diagonal indicates
that the right configuration performed better on the given benchmark. All timeouts and failures
are indicated by a point at the upper or right border of the plot.
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main.x=1, main.y=0, pc=6
main.x=2, main.y=1, pc=6
main.x=3, main.y=2, pc=6
main.x=4, main.y=3, pc=6
...

The domain is refined with predicates of the form x ≤ 1, x ≥ 1, y ≤ 0, y ≥ 0, x ≤ 2,
x ≥ 2, . . . . This pattern continues until timeout, without any progress being made.

With refinement state mining turned on (e.g., in configuration CR), the state analysis will
start when at least three concrete states with a program counter value of 6 are found. The domain
will subsequently be refined with two linear inequalities of the form x− y ≤ 1 and x− y ≥ 1.
Using these predicates, the algorithm will exclude all of the concrete states that turned up without
refinement state mining in a single (or very few) strengthenings of a frame. Thus, IC3-CEGAR
can finish fast on this instance, provided that the right predicate to refine with is found.

substring1.c

Next, we turn the attention to the benchmark substring1.c. This benchmark fails to termi-
nate unless lazy refinement is enabled (which admits a number of spurious transitions in a proof
obligations trace).

Without Lazy Refinement (and even with refinement state mining enabled), the abstract do-
main diverges again. The abstract domain is repeatedly refined with interpolants around concrete
states that have a program counter value of 14. These states look like:

main.i=-19, main.j=83, main.k=-1,
main.i=-18, main.j=84, main.k=-1,
main.i=-17, main.j=85, main.k=-1,
main.i=-16, main.j=86, main.k=-1,
main.i=-15, main.j=87, main.k=-1,
main.i=-14, main.j=88, main.k=-1,
...

The domain is subsequently refined with inequalities describing these concrete states until
the program runs into the timeout.

Even refinement state mining does not help in this case. The linear equalities found by the
state analysis are of the form i + k − j = −103 and k + j − i = 101. A more sophisticated
algorithm like the one described in [43] might help in this case, but the approach is currently not
implemented.

Lazy refinement still leads to termination on this benchmark. With lazy refinement, the
algorithm simply admits spurious transitions into the abstractions of such concrete states, and
discovers that the trace never reaches the initial condition, thus enabling IC3-CEGAR to exclude
all such concrete states without refinement.
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Other Statistics

In this section, we present statistics about other aspects of IC3-CEGAR runs. All data sets used
in the figures are available in full form in the appendix. All of the following statistics present
results for instances where IC3-CEGAR successfully terminates.

Frontier Level at Termination

We present a plot depicting the approximate density of frontier levels for instances where IC3-
CEGAR successfully terminates in figure 4.2. About half of the benchmarks terminate with a
frontier level lower than 21, but the maximum observed frontier level is 107. The frontier level
correlates with the run time, with the correlation to the run time ranging from 68% to 86% on
different configurations.

The mean last frontier level across all configurations is 20 (rounded). The standard deviation
for the last frontier level across all configurations is 18 (rounded). For the full data for our
benchmark set, see appendix A.4.

Number of Predicates in the Domain at Termination

We present a plot depicting the approximate density of the number of predicates in the abstract
domain for instances where IC3-CEGAR successfully terminates in figure 4.3. About half of
the benchmarks terminate with a number of predicates less than 50, but the maximum observed
number of predicates for a terminating instance is 251. The number of predicates in the do-
main correlates with the run time, with correlations ranging from 68% to 84% for the observed
configurations.

The mean final number of predicates across all configurations is 51 (rounded). The standard
deviation for the final number of predicates across all configurations is 38 (rounded). For the
raw data, see appendix A.6.

In general, a smaller number of predicates in the domain is preferable, as the overhead of
abstraction and generalization grows with the number of predicates in the abstract domain.

Number of Interpolating Refinement Calls

The number of interpolating refinement calls elucidates how many times a spurious transition
was discovered that led to the refinement of the domain. The number of refinement calls corre-
lates strongly with the number of final predicates in the domain, with correlations between 91%
and 95% for the respective configurations.

We present a plot depicting the approximate density of the number of interpolating refine-
ment calls for instances where IC3-CEGAR successfully terminates in figure 4.4. About half of
the terminating benchmarks need less than twelve refinements of the domain, but the maximum
number of interpolating refinement calls for a terminating instance is 84.

The mean number of interpolating refinement calls across all configurations is 13 (rounded).
The standard deviation for the number of interpolating refinement calls across all configurations
is 12 (rounded). For the raw data, see appendix A.7.
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Figure 4.2: Density plot depicting IC3-CEGAR frontier levels at termination. The plot indicates
that about half of the benchmarks terminate with a frontier level lower than 21, but frontier levels
can also rise up to 109 on the given benchmark set and benchmarking configuration.
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Figure 4.3: Density plot depicting the number of abstract domain predicates for instances where
IC3-CEGAR terminates. The plot indicates that about half of the benchmarks terminate with a
number of predicates less than 50, but the number of predicates in the final abstract domain can
exceed 200.
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Figure 4.4: Density plot depicting the average number of interpolating refinement calls for in-
stances where IC3-CEGAR terminates. The plot indicates that about half of the terminating
benchmarks use less than twelve interpolating refinement calls, but the number of refinement
calls can exceed 80 in our benchmark set.
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Average Number of Literals/Clause in the Fixed Point

The average number of literals per clause in an important factor for judging the performance
of the generalization procedure (such as MIC with CTGDOWN). The less number of literals
per clause, the better the generalization procedure works. Good generalization procedures will
generally lead to fewer literals per clause and to speed-ups of the algorithm.

We present a plot depicting the approximate density of the average number of literals for
instances where IC3-CEGAR successfully terminates in figure 4.5. The average number of
literals per clause in the fixed points is about three. Considering that the average number of
predicates in the domain is around 50 and goes as high as 251 in our set of benchmarks, this
shows that the used generalization procedure (MIC with CTGDOWN) does indeed serve their
purpose well.

As seen in figure 4.5, the configurations with geometric generalization enabled emit a lower
average number of literals per clause in the fixed point than those configurations without geomet-
ric generalization (save NOOPT). Still, these configurations are, in general, slower. One reason
for this might be that the additional overhead for geometric generalization leads to significantly
greater run times that are not balanced by the higher quality of the clause generalization.

The mean average number of literals per clause in the fixed point across all configurations
is 2.96. The standard deviation for the average number of literals per clause in the fixed point
across all configurations is 0.59. For the raw data see appendix A.2

Number of Successful Refinement State Mining Attempts

We present a plot depicting the number of successful refinement state mining attempts (i.e., a
mining attempt wherefrom a predicate was extracted) for different configurations on our bench-
mark set in figure 4.6. The number of refinement state minings is surprisingly small for most
instances; still, the technique sometimes as a decisive impact on the performance of the algo-
rithm. For the raw data, see appendix A.8.

Other Statistics

Graphics and tables that present other statistical figures about the IC3-CEGAR runs are pre-
sented in the appendix (A). We sum up the most important values about these data here:

• The maximal depth of the proof obligations trace correlates with the run time (corre-
lation > 51% on all configurations) and can exceed 150. The mean maximal depth of a
proof obligations trace across all configurations is 15 (rounded), and the corresponding
standard deviation is 17 (rounded). About half of all successful IC3-CEGAR runs on the
benchmark set have a maximal proof obligations trace depth of less than 10.

Proof obligation trace depths beyond 100 prove that IC3-CEGAR is able to find deep
counterexamples. For the raw data, see appendix A.5.

• The percent of the run time spent in the SMT solver correlates weakly with the total
run time (correlation> 24% across all configurations). On average, about 70% of the total
run time is spent in the SMT solver (arithmetic mean weighted with the run time).

67



Figure 4.5: Density plot depicting the average number of literals per clause in the fixed point for
instances where IC3-CEGAR terminates. The plot indicates that the fixed points’ clauses usually
comprise around three literals. Observe that the configurations with geometric generalization
enabled emit a lower average number of literals per clause in the fixed point.
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Figure 4.6: Histograms depicting the number of successful refinement state mining attempts for
different configurations.
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Since the burden of the proof lies on the SMT solver, this indicates that there is room for
a performance acceleration of up to 30% by optimization of the IC3-CEGAR framework.

For the raw data, see appendix A.9.
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CHAPTER 5
Related Work

5.1 QF_BF Model Checking with Property Directed Reachability

The article [48] deals with extending Property Directed Reachability (a synonym for IC3) to
model checking transition relations over quantifier-free bit-vector systems. Our approach is
different in that it deals with transition relations over quantifier-free linear integer arithmetic.

Additionally, the article [48] does not use an explicit abstract domain or counterexample-
guided abstraction refinement. This alone sets our approach quite far apart from [48].

The approach extends IC3 in the finite-state case by reasoning over sets of states that are
described by integer polytopes. The simplest case of an integer polytope is a conjunction of
static interval constraints on variables. In the QF_BV approach, such a conjunction is called a
cube.

In order to generalize abstract states in case that initiation and consecution hold, the authors
use a technique called “interval simulation”. In the simplest version of the algorithm, this con-
sists of a set of rules that aid in determining maximum possible bounds for the intervals of the
cubes such that initiation and consecution still hold.

The approach is then extended to abstract states that are conjunctions of arbitrary linear
inequalities, i.e., general polytopes. In order to generalize polytopes, the authors present the
RESHAPE algorithm, which expands the area covered by the polytope such that it covers more
concrete states.

Since the authors deal with programs that contain a finite number of variables, they can
reduce their problems to classical finite-state IC3. They compare an implementation of their
approach to the classical IC3, showing that the implementation with polytopes can beat the
original IC3 implementation.
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5.2 Software Model Checking via IC3

The article [14] deals with extending IC3 to model checking transition relations over quantifier-
free linear integer arithmetic, similarly to our approach. However, the approach does not use an
explicit abstract domain or counterexample-guided abstraction refinement.

In this approach, IC3 is lifted to SMT by defining a cube as a conjunction of theory atoms.
The IC3 algorithm then proceeds in the standard manner, trying to find a proof obligation by
seeing if the error can be reached from the frontier. In case this holds, a proof obligation is
extracted at the level of the frontier.

While in our approach, a new proof obligation is generated by extracting a concrete prede-
cessor of the current proof obligation and adding it at the previous level, the approach described
in [14] does not deal with “concrete” states at all. Instead, a proof obligation is a tuple 〈s, i〉
where s is an cube (i.e., an arbitrary conjunction of theory atoms) and i is a level. Proof obliga-
tions are generally extracted by calculating under-approximations of pre-images of cubes or the
error. A procedure that calculates under-approximates of pre-images is described in the paper.

The authors then continue to modify the IC3 algorithm in order to improve performance,
resulting in an algorithm called TREE-IC3. To this end, they abandon the concept of checking
single clauses for consecution. Instead, they perform an unrolling of the abstract reachability
tree. Each node in the abstract reachability tree is associated with a set of clauses that describe
an over-approximation of the states reachable at this node. Proof obligations by trying to exclude
possible paths from the initial condition to each branch of the abstract reachability tree, one
branch at a time. When the algorithm determines that a node on a single branch contains a
subset of the clauses of a previous node on the same branch, this branch is assumed to be closed.

The sets of clauses that are computed on a closed branch are actually interpolants for the
path, like the interpolants in McMillan’s “lazy abstraction with interpolants” approach ( [38]).
Since the consecution checks and fixed point checks are abandoned in this highly modified
algorithm, the approach is actually more akin to this approach than to IC3.

The authors compare their implementation with various other model checkers, among them
CPAChecker. They show that an adaptation of their TREE-IC3 algorithm, which combines the
algorithm described above with proof-based interpolants generated by an SMT solver, beats the
other model checkers in terms of the number of benchmarks solved.

5.3 Generalized Property Directed Reachability

The article [32] describes a modification of IC3 that can be used for model checking Boolean
programs, generalizing IC3 to non-linear predicate transformers and generalizing IC3 to linear
real arithmetic. (IC3 is called “Property Directed Reachability”, or “PDR”, in the paper.)

A non-linear predicate transformer is a predicate transformer (such as the post operator) that
requires two or more “input” states in order to calculate one “output” state. Such transformers
are necessary in order to find fixed points for programs whose reachable state space is described
using recursive predicates. The article [32] describes how to modify the IC3 algorithm such
that it finds fixed points for also works on non-linear predicate transformers. This is done by
constructing a proof obligations tree instead of a proof obligations priority queue.
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The authors first extend IC3 in order to find fixed points for systems (recursive) Boolean
constraints. Then they go on to show how the approach could be modified in order to find fixed
points for systems of constraints over the theory of linear real arithmetic. In order to generalize
clauses that exclude states from certain levels, the authors use an interpolation approach that is
based on Farkas’ lemma.

The authors go on to show that their generalized version of IC3, together with interpolation
based on Farkas’ lemma, is powerful enough to decide safety for timed push-down systems.
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CHAPTER 6
Conclusion

In this thesis, we presented IC3-CEGAR, an incremental, inductive software model checker
based on IC3 ( [10]).

We presented methods for obtaining a symbolic transition relation from a software program.
In order to apply the principle of IC3 on the infinitely large state space, we described how

a Boolean predicate abstraction framework could be used to reduce the state space to the finite-
state case.

In order to refine the abstract domain, we described a CEGAR-based framework ( [18, 19])
that uses interpolation ( [20, 21]) in order to eliminate spurious transitions.

Additionally, we presented the technique of Refinement State Mining, which extracts predi-
cates by attempting to describe states previously used for refinement by single predicates.

We described how to adapt the method of lifting proof obligations as described in [13,24] to
IC3-CEGAR, including the handling of non-deterministic assignments.

Existing as well as novel approaches for generalizing abstract states were discussed: We
adapted the generalization methodologies described in [10, 30] to IC3-CEGAR and extended
them by geometric generalization techniques.

We implemented an abstraction framework based on AllSAT calls ( [33]) and adapted it so
it could take full advantage of the generalization techniques mentioned above.

Finally, we evaluated our model checker on three benchmark suites (as far as the bench-
marks were suitable for linear integer arithmetic software model checking) and showed that
IC3-CEGAR performs competitively in comparison with the verification tool CPAChecker ( [7]).

Future Challenges

Future challenges include:

• Extending IC3-CEGAR to verify transition relations over non-linear or bit-vector arith-
metics: Currently, IC3-CEGAR is cut out for linear integer arithmetic or linear rational
arithmic.
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• Extending IC3-CEGAR to the verification of parallel or distributed algorithms: The tran-
sition relations we currently verify using IC3-CEGAR are strictly single-threaded.

• Implementing optimizations on the transition relation that will allow the verification of
much larger code bases: Large code-bases result in large transition relations, which over-
whelm the SMT solver. Future work will need to address the problem of how to reduce the
size of the transition relation such that an SMT solver can handle it efficiently. Usually, it
is not necessary to load all of the transition relation for a single consecution check.

• Implementing different refinement techniques for the abstract domain: Currently, there
are two main refinement strategies: Interpolation-based refinement and Refinement State
Mining. Other techniques might yield even better results.

• Extending IC3-CEGAR such that it can handle recursive function calls: Recursive func-
tion calls are currently not supported.

• Implementing more sophisticated invariant detection techniques. An example would be
the approach in [43].
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APPENDIX A
Additional Statistics

A.1 Number of Abstractions

The number of abstractions of concrete states correlates highly with the run time (correla-
tion > 84% on all configurations) and can exceed 28000. The mean number of abstractions
across all configurations is 2500 (rounded), and the corresponding standard deviation is 4343
(rounded). About half of all successful IC3-CEGAR runs on the benchmark set use less than
586 abstractions. See figure A.1 for a graphical representation and table A.1 for the raw data.
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Figure A.1: Density plot depicting the number of abstractions of concrete states for instances
where IC3-CEGAR terminates.
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A.2 Average Number of Literals/Clause in the Fixed Point

In table A.2, we present the raw data used for the graphics in section 4.3.
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A.3 Number of Successful Geometric Generalizations

The number of successful geometric generalizations (where successful means that one literal
was successfully replaced by one weaker literal) correlates highly with the run time (correlation
> 90% on all configurations with geometric generalization) and can exceed 5400. The mean
number of successful geometric generalizations across all configurations where it is enabled is
760, and the corresponding standard deviation is 1244. About half of all successful IC3-CEGAR
runs on the benchmark set have less than 122 successful geometric generalizations. See figure
A.2 for a graphical representation and table A.3 for the raw data.

Num. Geometric Gen. CG CGR CGRL
apache-escape-absolute.c 1802 1802
apache-get-tag.c 2516 2516 2613
barbr.c
barbrprime.c
bind_expands_vars2.c 19 19 73
bkley.c 1816 1816 4221
bk-nat.c 3664 3664 2586
bound.c 210 210 2692
cars.c
dillig01.c 64 64 3
dillig03.c 5 5 16
dillig05.c 3948
dillig07.c 19 19 22
dillig12.c
dillig15.c 326 1476
dillig17.c 330 330 380
dillig19.c 3205 1946 827
dillig20.c 1517 1517 1856
dillig25.c 205 205 35
dillig28.c 189 156 273
dillig32.c 125 125 748
dillig33.c
dillig37.c 199 199 41
down.c 395 395 2072
efm.c
ex1.c 31 31 3026
ex2.c 5403
fig1a.c 2219 458
fig2.c 1749 1749
fragtest_simple.c
gulv.c
gulv_simp.c 122 122 85
gulwani_cegar1.c 70 70 78
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Num. Geometric Gen. CG CGR CGRL
gulwani_cegar2.c 67 67 86
gulwani_fig1a.c 1 1 1
hsort.c
hsortprime.c 4872 4872
id_build.c 79 79 40
ken-imp.c 1210 165
large_const.c
lifnat.c
lifnatprime.c
lifo.c
MADWiFi-encode_ie_ok.c
mergesort.c
nested1.c 3 3 3
nested2.c 3 3 3
nested3.c 10 10 9
nested4.c 16 16 12
nested5.c 76 76 318
nested6.c 945
nested7.c
nested8.c 1194
nested9.c 375 804
nested.c 0 0 0
nest-if1.c 33 33 29
nest-if2.c 67 67 11
nest-if3.c 17 17 14
nest-if4.c 36 36 15
nest-if5.c 24 24 103
nest-if6.c 8 8 9
nest-if7.c 201 201 537
nest-if8.c 3993 4239 1621
nest-if.c 0 0 0
nest-len.c 0 0 0
NetBSD_g_Ctoc.c
NetBSD_glob3_iny.c 252 252 3082
NetBSD_loop.c 113 118 1244
NetBSD_loop_int.c 1043 1043 901
pldi082_unbounded.c
pldi08.c 0 0 0
rajamani_1.c
seesaw.c 1852 1737
sendmail-close-angle.c 5274
sendmail-mime7to8_ok.c 226 226 572
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Num. Geometric Gen. CG CGR CGRL
sendmail-mime-fromqp.c 3757 1553
seq2.c
seq3.c
seq4.c
seq.c
seq-len.c
seq-proc.c
seq-sim.c
seq-z3.c
simple.c 9 9 11
simple_if.c 0 0 0
simple_nest.c 0 0 0
split.c
string_concat-noarr.c
substring1.c 386
svd1.c
svd2.c 367 367 522
svd3.c 29 29 260
svd4.c
svd.c
svd-some-loop.c
swim1.c
swim.c
up2.c 665 3452
up3.c
up4.c 516
up5.c 711 4846
up.c 486 1865
up-nd.c
up-nested.c 0 0 0
xy0.c 1018 299
xy10.c 3 3 19
xy4.c 521
xyz2.c 1744
xyz.c 2456

A.4 Frontier Level at Termination

In table A.4, we present the raw data used for the graphics in section 4.3.
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Figure A.2: Density plot depicting the number of successful geometric generalizations for in-
stances where IC3-CEGAR terminates.
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A.5 Maximal Depth of the Proof Obligations Trace

In table A.5, we present the raw data used for the calculations in section 4.3. In figure A.3, we
present a density plot for this data.

102



Figure A.3: Density plot depicting the maximal depth of the proof obligations trace for instances
where IC3-CEGAR terminates.
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A.6 Number of Predicates in the Domain at Termination

In table A.6, we present the raw data used for the calculations in section 4.3.
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A.7 Number of Interpolating Refinement Calls

In table A.7, we present the raw data used for the calculations in section 4.3.
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A.8 Number of Successful Refinement State Mining Attempts

In table A.8, we present the raw data used for the calculations in section 4.3.

RSM CR CGR CRL CGRL
apache-escape-absolute.c 0 0 0
apache-get-tag.c 0 0 1 0
barbr.c
barbrprime.c
bind_expands_vars2.c 0 0 0 0
bkley.c 0 0 0 0
bk-nat.c 0 0 0 0
bound.c 0 0 0 0
cars.c
dillig01.c 0 0 0 0
dillig03.c 0 0 0 0
dillig05.c 7 2
dillig07.c 0 0 0 0
dillig12.c 6
dillig15.c 2 1 5
dillig17.c 0 0 0 0
dillig19.c 5 3 0 1
dillig20.c 0 0 0 0
dillig25.c 0 0 0 0
dillig28.c 1 1 1 1
dillig32.c 0 0 2 3
dillig33.c 2 1
dillig37.c 0 0 0 1
down.c 2 0 0 0
efm.c
ex1.c 0 0 0 1
ex2.c 3 4
fig1a.c 6 3 1 1
fig2.c 0 4
fragtest_simple.c
gulv.c
gulv_simp.c 0 0 0 1
gulwani_cegar1.c 0 0 0 0
gulwani_cegar2.c 0 0 0 0
gulwani_fig1a.c 0 0 0 0
hsort.c
hsortprime.c 0 0 0
id_build.c 0 0 0 0
ken-imp.c 3 1 1
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RSM CR CGR CRL CGRL
large_const.c
lifnat.c
lifnatprime.c
lifo.c
MADWiFi-encode_ie_ok.c
mergesort.c
nested1.c 0 0 0 0
nested2.c 0 0 0 0
nested3.c 0 0 0 0
nested4.c 0 0 0 0
nested5.c 0 0 0 0
nested6.c 0 0
nested7.c
nested8.c 2 0 2
nested9.c 0 0 2
nested.c 0 0 0 0
nest-if1.c 0 0 0 0
nest-if2.c 0 0 0 0
nest-if3.c 0 0 0 0
nest-if4.c 0 0 0 0
nest-if5.c 0 0 0 0
nest-if6.c 0 0 0 0
nest-if7.c 0 0 0 0
nest-if8.c 1 1 0 0
nest-if.c 0 0 0 0
nest-len.c 0 0 0 0
NetBSD_g_Ctoc.c
NetBSD_glob3_iny.c 0 0 0
NetBSD_loop.c 0 1 0 1
NetBSD_loop_int.c 0 0 0 0
pldi082_unbounded.c
pldi08.c 0 0 0 0
rajamani_1.c
seesaw.c 0 3
sendmail-close-angle.c 1 0
sendmail-mime7to8_ok.c 0 0 0 0
sendmail-mime-fromqp.c 0 0 1
seq2.c
seq3.c
seq4.c
seq.c
seq-len.c
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RSM CR CGR CRL CGRL
seq-proc.c
seq-sim.c
seq-z3.c
simple.c 0 0 0 0
simple_if.c 0 0 0 0
simple_nest.c 0 0 0 0
split.c
string_concat-noarr.c
substring1.c 0 0
svd1.c
svd2.c 1 0 0 0
svd3.c 0 0 0 0
svd4.c
svd.c
svd-some-loop.c
swim1.c
swim.c
up2.c 1 3 3
up3.c 13
up4.c 4 3 2
up5.c 2 4
up.c 1 2 3 2
up-nd.c 1 3
up-nested.c 0 0 0 0
xy0.c 5 3 1 1
xy10.c 0 0 0 0
xy4.c 4 2 9
xyz2.c 1 3 2
xyz.c 2 1

A.9 Percent of the Run Time Spent in the SMT Solver

In table A.9, we present the raw data used for the calculations in section 4.3. In figure A.4, we
present a density plot for this data.
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Figure A.4: Density plot depicting the percent of the run time spent in the SMT solver for
instances where IC3-CEGAR terminates.

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Total Percent of Runtime Spent in SMT Solver

D
en

si
ty

NOOPT

C

CG

CR

CGR

CRL

CGRL

121



%
Ti

m
e

in
SM

T
So

lv
er

N
O

O
PT

C
C

G
C

R
C

G
R

C
R

L
C

G
R

L
ap

ac
he

-e
sc

ap
e-

ab
so

lu
te

.c
82

87
81

87
80

85
ap

ac
he

-g
et

-t
ag

.c
86

80
85

80
85

79
ba

rb
r.c

ba
rb

rp
ri

m
e.

c
bi

nd
_e

xp
an

ds
_v

ar
s2

.c
55

58
61

60
60

55
61

bk
le

y.
c

76
78

76
77

76
79

76
bk

-n
at

.c
78

79
77

79
77

81
76

bo
un

d.
c

65
74

69
72

68
74

69
ca

rs
.c

di
lli

g0
1.

c
68

71
69

70
67

69
68

di
lli

g0
3.

c
43

50
48

50
52

52
64

di
lli

g0
5.

c
68

63
67

70
di

lli
g0

7.
c

59
62

65
62

63
62

62
di

lli
g1

2.
c

68
di

lli
g1

5.
c

64
65

63
di

lli
g1

7.
c

65
70

68
68

68
69

68
di

lli
g1

9.
c

67
64

65
66

72
70

di
lli

g2
0.

c
74

72
70

73
70

73
71

di
lli

g2
5.

c
65

64
67

62
66

69
68

di
lli

g2
8.

c
67

67
64

68
65

68
68

di
lli

g3
2.

c
69

68
66

69
66

68
56

di
lli

g3
3.

c
74

68
65

70
di

lli
g3

7.
c

67
68

66
68

65
62

68
do

w
n.

c
67

68
68

68
66

69
64

ef
m

.c
ex

1.
c

73
72

73
72

71
67

65
ex

2.
c

76
70

76
72

fig
1a

.c
57

56
60

66
fig

2.
c

68
68

64
fr

ag
te

st
_s

im
pl

e.
c

122



%
Ti

m
e

in
SM

T
So

lv
er

N
O

O
PT

C
C

G
C

R
C

G
R

C
R

L
C

G
R

L
gu

lv
.c

gu
lv

_s
im

p.
c

65
71

67
71

68
68

69
gu

lw
an

i_
ce

ga
r1

.c
66

73
69

73
69

71
68

gu
lw

an
i_

ce
ga

r2
.c

68
68

67
64

66
64

66
gu

lw
an

i_
fig

1a
.c

71
55

48
45

59
52

55
hs

or
t.c

hs
or

tp
ri

m
e.

c
80

83
78

82
78

81
id

_b
ui

ld
.c

67
62

65
63

65
63

62
ke

n-
im

p.
c

51
62

61
62

65
la

rg
e_

co
ns

t.c
lif

na
t.c

lif
na

tp
ri

m
e.

c
lif

o.
c

M
A

D
W

iF
i-

en
co

de
_i

e_
ok

.c
m

er
ge

so
rt

.c
ne

st
ed

1.
c

47
54

53
57

57
55

65
ne

st
ed

2.
c

51
48

59
55

52
46

56
ne

st
ed

3.
c

57
60

59
63

62
61

63
ne

st
ed

4.
c

62
65

62
65

61
65

66
ne

st
ed

5.
c

69
72

68
70

70
71

70
ne

st
ed

6.
c

77
73

77
73

74
ne

st
ed

7.
c

ne
st

ed
8.

c
57

66
70

70
ne

st
ed

9.
c

73
68

73
70

69
ne

st
ed

.c
27

15
25

16
25

16
16

ne
st

-i
f1

.c
63

64
69

64
69

66
68

ne
st

-i
f2

.c
62

73
68

67
70

62
68

ne
st

-i
f3

.c
65

70
68

64
65

71
68

ne
st

-i
f4

.c
64

71
71

70
70

69
67

ne
st

-i
f5

.c
62

73
63

73
63

72
70

123



%
Ti

m
e

in
SM

T
So

lv
er

N
O

O
PT

C
C

G
C

R
C

G
R

C
R

L
C

G
R

L
ne

st
-i

f6
.c

51
60

53
58

51
49

52
ne

st
-i

f7
.c

70
72

70
70

70
72

72
ne

st
-i

f8
.c

71
74

70
72

70
74

71
ne

st
-i

f.c
16

7
14

25
8

8
15

ne
st

-l
en

.c
28

19
22

24
19

30
19

N
et

B
SD

_g
_C

to
c.

c
N

et
B

SD
_g

lo
b3

_i
ny

.c
73

78
71

78
72

76
N

et
B

SD
_l

oo
p.

c
69

69
67

69
67

69
66

N
et

B
SD

_l
oo

p_
in

t.c
75

69
66

69
66

71
70

pl
di

08
2_

un
bo

un
de

d.
c

pl
di

08
.c

50
59

36
56

41
50

45
ra

ja
m

an
i_

1.
c

se
es

aw
.c

69
76

74
76

74
se

nd
m

ai
l-

cl
os

e-
an

gl
e.

c
75

72
se

nd
m

ai
l-

m
im

e7
to

8_
ok

.c
78

81
78

80
78

81
77

se
nd

m
ai

l-
m

im
e-

fr
om

qp
.c

76
80

74
80

80
72

se
q2

.c
se

q3
.c

se
q4

.c
se

q.
c

se
q-

le
n.

c
se

q-
pr

oc
.c

se
q-

si
m

.c
se

q-
z3

.c
si

m
pl

e.
c

57
55

68
64

60
57

56
si

m
pl

e_
if

.c
22

22
10

30
22

30
10

si
m

pl
e_

ne
st

.c
0

10
27

27
20

20
20

sp
lit

.c
st

ri
ng

_c
on

ca
t-

no
ar

r.c
su

bs
tr

in
g1

.c
67

67

124



%
Ti

m
e

in
SM

T
So

lv
er

N
O

O
PT

C
C

G
C

R
C

G
R

C
R

L
C

G
R

L
sv

d1
.c

sv
d2

.c
74

77
76

77
75

80
76

sv
d3

.c
68

78
72

77
72

78
74

sv
d4

.c
sv

d.
c

sv
d-

so
m

e-
lo

op
.c

sw
im

1.
c

sw
im

.c
up

2.
c

68
60

60
up

3.
c

56
up

4.
c

62
64

60
up

5.
c

63
62

up
.c

67
65

57
58

up
-n

d.
c

69
64

up
-n

es
te

d.
c

18
21

30
27

14
16

16
xy

0.
c

62
63

68
67

xy
10

.c
34

45
52

46
55

61
59

xy
4.

c
63

64
51

xy
z2

.c
63

63
61

xy
z.

c
63

61

125





Index

Abstract Domain, 24
Initial Abstract Domain, 51
Predicate Lattice, 28

Abstract State, 24, 27, see also Abstraction
Abstraction, 24, 35

Most Precise Abstraction, 24
Abstraction Function, 24
AllSAT, 10

Beautiful Interpolants, 38
Benchmarks, 53

Beautiful Interpolants, 54
Configurations, 54
Dagger, 53
InvGen, 53

CEGAR, see Counterexample-Guided Ab-
straction Refinement

Clause, 8
Clause Generalization, see Generalization
CNF, see Conjunctive Normal Form
Concrete Domain, 24
Concrete State, 27
Conjunctive Normal Form, 13
Consecution, 12
Constant, 9
Control Flow Graph, 21
Counterexample-Guided Abstraction Refine-

ment, 31
CtgDown, 19
Cube Joining, 19

Equivalence Class, 24, see also Abstract State
Error States, 7

First-Order Logic, 8
First-Order Theory, 9
Fixed-Point Operator, 7
Frame, 12, 28
Frontier, 12

Generalization, 18
Abstract State Generalization, 45
Geometric Generalization, 46
in Consecution, 51

IC3, 7, 10
Invariants, 12
Termination, 13

Inductive Set, 7
Infimum, see also Lattice
Initial States, 7
Initiation, 7, 12
Interpretation, 8

Lattice, 24, see also Abstract Domain
Lazy Refinement, 45
Level, 12
Lifting, 32

Non-Determinism, 34
Linear Equation/Inequality, 9
Linear Integer Arithmetic, 9
Literal, 8

MathSAT5, 53
MIC, see Minimal Inductive Clause Algo-

rithm
Minimal Inductive Clause Algorithm, 19

CtgDown, 19
Model, 8
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Partially Ordered Set, 23
Post-Image Operator, 7
Predicate, 24, see also Abstraction
Primed Formula, 11
Priority Queue, 15
Proof Obligation, 15, 28

Handling, 16, 29
Propositional Logic, 8

Refinement, 25
by Interpolation, 36
by Preimage Computation, 38
Interpolation, see also Beautiful Inter-

polants
Lazy, 45
Strategies, 36
with Inequalities, 49

Refinement State Mining, 41

SAT Solver, 10
Sets of States, 9
SMT Solver, 10
Spurious Transition, 25
State, 9
State Space, 10
State/Formula Equivalence, 9
Strengthening, 12
Supremum, see also Lattice

Trace, 11
Transition Relation, 10, 22

First-Order Logic, 22
Transition System, 7

UNSAT Core, see Unsatisfiable Core
Unsatisfiable Core, 10
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