
A Non-Blocking Fault-Tolerant
Asynchronous Networks-on-Chip

Router
PhD THESIS

submitted in partial fulfillment of the requirements of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

Syed Rameez Naqvi
Registration Number 0928544

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.-Prof. Dipl.-Ing. Dr. techn. Andreas Steininger

External reviewers:
Prof. Dr.-Ing. Eckhard Grass. Institute for Informatics, Humboldt-University of Berlin, Germany.
Ao. Prof. Martin Schöberl. Dept. of Applied Math. and Comp. Science, DTU, Denmark.

Wien, 15.10.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Declaration of Authorship

Syed Rameez Naqvi
Längenfeldgasse 22, Top 16, 1120 Vienna, Austria

I hereby declare that I have written this Doctoral Thesis independently, that I have com-
pletely specified the utilized sources and resources and that I have definitely marked all parts of
the work - including tables, maps and figures - which belong to other works or to the internet,
literally or extracted, by referencing the source as borrowed.

(Place, Date) (Signature of Author)

i

Acknowledgments

First and foremost I am sincerely grateful to Prof. Andreas Steininger who has not just been a
supervisor but also a mentor to me. His guidance, encouragement and patience kept me going
throughout my studies here at the Vienna University of Technology. He has always given me
immense courage on a personal as well as a professional level and I owe him for inspiring me
on various levels of study.

I am also obliged to my other colleagues, especially Robert Najvirt, Jakob Lechner, and
Varadan Savulimedu Veeravalli, who coauthored most of my research papers and always helped
to add that extra tinge of flavor to the spirit of my work. Our long discussions and hard talks
have been very insightful and opened many new horizons for me regarding my research. I will
miss all our fun times and lunches together.

I cannot thank Prof. Hannes Werthner, enough for having faith in me and considering me a
rightful candidate for this prestigious scholarship at the PhD School of Informatics. My deepest
regards to Mrs. Clarissa Schmid, Mrs. Edeltraud Sommer and Ms. Maria del Carmen Calatrava
Moreno, whose cooperation from day one has added tremendously to ease my concerns regard-
ing any and all administrative matters and helped me concentrate better on my studies. I would
also like to pay my gratitude to Heinz Deinhart and Karl Malle, the system and network admin-
istrators, for providing the required tools and software, by and large, on a very short notice. I
truly appreciate the diligence with which all of you work day in and day out as well as your
resourcefulness in ensuring that all researchers stay up-to-date in terms of the network status.

Last but not the least I have no words to thank my family, especially my mother, and my
wife for all their support and encouragement. You are the reason I kept going through the lows
and stayed grounded through the highs.

This is merely a humble effort to express my gratitude towards everything you all have
contributed in helping me realize my dream. I will always cherish the memories and try my best
not to let you down to the best of my potential.

iii

Kurzfassung

Die Gesamtleistung der heutigen komplexen Systems-on-Chip (SoCs) wird entscheidend durch
die Leistungsfähigkeit der Networks-on-Chip (NoCs) bestimmt. Die zunehmende Verkleinerung
der Halbleiter-Strukturgrößen ermöglicht hier zwar immer höhere Taktraten, stellt jedoch gle-
ichzeitig das übliche global synchrone Paradigma vor wachsende Herausforderungen. Hierzu
zählt die Verteilung des Taktsignals über den gesamten Chip ebenso wie die Beherrschung der
signifikanten Variationen der Signallaufzeiten. Im Gegensatz dazu basieren asynchrone Schal-
tungen auf Handshakes, womit sie Probleme mit dem Takt elegant vermeiden. Gleichzeitig er-
lauben sie einen effizienten Umgang mit Prozessvariationen und sogar dynamisch auftretenden
Veränderungen von Laufzeitparametern. Das Interesse an asynchronen Schaltungen nimmt da-
her stark zu, und auch wir konzentrieren uns in dieser Arbeit auf asynchrone NoCs.

Ein entscheidender Vorteil von NoCs gegenüber traditionellen Busstrukturen ist ihre Fähigkeit,
über verschiedene Pfade parallel Nachrichten zu übertragen. Das Blockieren eines Pfades ist
in diesem Kontext unerwünscht, da es mit gravierenden Leistungseinbußen und dem Verlust
der Echtzeitfähigkeit verbunden ist. Demgemäß beschäftigt sich die Literatur auch ausführlich
mit nicht-blockierendem Verhalten, allerdings nicht immer in korrekter Weise. So konnten wir
zeigen, dass einige existierende Lösungen einen sicheren Datenaustausch nicht immer garantieren
können. Ein Ergebnis unserer Arbeit ist daher ein Framework, welches notwendige Bedin-
gungen zur Konstruktion eines nicht-blockierenden NoCs definiert. Wir zeigen die Korrek-
theit unseres Frameworks anhand des Entwurfes eines neuen NoC Protokolls, welches nicht
nur alle funktionalen Anforderungen erfüllt, sondern auch den Leistungsverbrauch auf langen
Verbindungen reduziert und die Anforderungen an die Bandbreite lockert.

Eine weitere Folge der Miniaturisierung ist eine erhöhte Anfälligkeit von Chips gegenüber
transienten Fehlern. Ursache dafür sind kleinere Transistor-Geometrien sowie niedrigere Span-
nungspegel, was zu geringeren kritischen Ladungen führt. Dem entsprechend wächst auch die
Bedeutung von Fehlertoleranz. Asynchrone NoCs enthalten allerdings einige Komponenten,
für welche die konventionelle Fehlertoleranzmethode der Replikation nicht bzw. nicht effizient
eingesetzt werden kann. Ein Beispiel hierfür sind Arbiter, die auf nicht deterministische Weise
den Zugriff auf geteilte Ressourcen regeln. Das zweite wesentliche Ergebnis dieser Arbeit ist
daher der systematische Schutz einiger dieser Komponenten, insbesondere eines Arbiters, vor
transienten Fehlern. Außerdem präsentieren wir das Design eines vollständigen fehlertoleran-
ten Routers, welcher zudem einen hochperformantenArbiter enthält. Zur Evaluierung unseres
Designs verwenden wir funktionale Verifikation anhand von teilautomatisierten post-layout Sim-
ulationen, gepaart mit formaler Verifikation mittels Model Checking.

v

Abstract

It is well understood that the throughput of Networks-on-Chip (NoCs) is decisive for the per-
formance of today’s complex Systems-on-Chip (SoCs). On the one hand, proceeding miniatu-
rization has allowed these systems to operate at ever increasing clock rates, on the other hand,
however, the globally synchronous designs face certain challenges that are difficult to overcome
for recent technology nodes. This includes the distribution of clocks across a complete chip, and
robustness against delay variations. The handshake based style of control flow in asynchronous
communication style naturally eliminates the need for a global clock, and at the same time provi-
des an inherent ability to adapt to uncertainties and even dynamic changes of timing parameters.
Because of these reasons they are receiving increasing attention, and for the same reason we will
also concentrate on asynchronous NoCs in this work.

A crucial advantage of NoCs over traditional bus structures is the ability to perform se-
veral independent message transfers in parallel, namely along different routes. In this situation
blocking of a link is highly undesired, as it severely degrades performance and real time capa-
bilities of a NoC. A very important property of a NoC is therefore non-blocking behavior. The
latter is widely addressed in literature, but unfortunately not always correctly understood and
presented. We will show that a few existing solutions do not guarantee a safe data exchange
between two communicating entities. One contribution of our work, therefore, is to present a
framework that precisely elaborates the minimum requirements of building a nonblocking NoC.
We also demonstrate the correctness of our framework by proposing a novel solution that not
just satisfies all the functional requirements, but reduces the power consumption on long inter-
connects, and relaxes the bandwidth requirements.

Another undesired consequence of the miniaturization process is the higher susceptibility of
VLSI circuits to transient faults, which is due to the smaller geometries and lower supply volta-
ges which in turn reduce the critical charge. Fault tolerance is therefore predicted to become a
crucial property in context with future technologies. As far as asynchronous NoCs are concer-
ned, they comprise several such circuits that cannot be made fault-tolerant by using conventional
replication techniques. One such circuit is an arbiter that allows resource sharing in a nonde-
terministic manner. Therefore the second major contribution of this work is to systematically
harden a few of those circuits, including an arbiter cell. Other than these, we also present the
design of a complete fault-tolerant asynchronous router, which in addition promises high speed
resource sharing capability. Our evaluation is supported with formal verification using model
checking, and post layout functional verification based on Modelsim scripts.

vii

Contents

List of Figures xv

List of Tables xix

Acronyms xxi

1 Introduction 1
1.1 Motivation . 2

1.1.1 Non-blocking Behavior . 2
1.1.2 Reliability . 3

1.2 Contribution and Significance of the Work . 3
1.3 Organization . 4

2 Background 7
2.1 Principles of Asynchronous Design . 7

2.1.1 Data-path and Control . 7
2.1.2 The Concept of Handshaking . 8
2.1.3 Classification of Asynchronous Circuits/ Delay Models 8

Delay Insensitive Circuits . 8
Quasi Delay Insensitive Circuits . 9
Speed Independent Circuits . 9

2.1.4 Signaling Conventions and Data Representation 10
4-phase Signaling . 10
2-phase Signaling . 11
Comparison between 4-phase and 2-phase signaling 11
Single Rail Encoding . 12
M-of-N Encoding . 12

2.1.5 Asynchronous Circuits and Pipeline Implementations 15
The Concept of Valid Tokens, Empty Tokens, and Bubbles 15
Elementary Primitives . 15
4-phase Bundled Data Pipeline . 20
Micropipelines . 21

2.1.6 Modeling and Synthesis of Asynchronous Circuits 21

ix

2.2 Fundamentals of Networks-on-Chip . 23
2.2.1 The Basic Architecture . 24
2.2.2 Networks with Multiple Routers . 25
2.2.3 Function Layers . 25

Application Layer . 26
Transport Layer . 26
Network Layer . 26
Physical Layer . 26
Data-link Layer . 28

2.2.4 Flow Control . 28
Packet-Buffer Flow Control . 29
Wormhole Flow Control . 29
Virtual Channel Flow Control . 30

2.2.5 Backpressure Management . 30
2.2.6 Routing Algorithms . 31

2.3 Communication Infrastructure for MP Platforms 33
2.3.1 Globally Asynchronous Locally Synchronous Systems 33
2.3.2 Asynchronous NoC . 33

2.4 Reliability Concerns in ANoCs . 34
2.4.1 Error Control on SPL . 35
2.4.2 Fault-Tolerance in Routing Components 35

Asynchronous Transient Resilient Links 36
Fault-Tolerant DI Codes for GALS Setup 36
Dependable Fully Asynchronous On-Chip Networks 37

2.5 Major Contributions of this Work . 37

3 The Baseline NoC Design 39
3.1 Related Work . 39
3.2 Baseline Router Design . 40

3.2.1 IH – Flit Categorization Logic (FCL) 41
3.2.2 IH – Destination Bits Shifter (DeBS) 43
3.2.3 IH – Destination Bits Latch . 43
3.2.4 IH – Input CONtroller (ICON) . 43
3.2.5 IH – Crossbar . 44
3.2.6 OG – Output Port Arbiter . 44
3.2.7 OG – Select/Merge . 45
3.2.8 Summary of Operation . 45

3.3 Virtual Channel Design . 45
3.3.1 Number of VCs per IO Port . 47
3.3.2 Allocation of VCs . 48

3.4 Classification of the Access Control Schemes 51
3.4.1 VC Controllers . 51
3.4.2 Decoupled producer . 53

x

3.4.3 Decoupled consumer . 53
3.5 Flow control schemes . 55
3.6 Proposed Flow Control Scheme . 58
3.7 Proposed Implementation . 61

3.7.1 Sender . 61
3.7.2 Receiver . 62
3.7.3 Timing Assumptions . 63

Pulse Generation Circuit . 64
Toggle Flip-Flop in the Credit Generation Unit 64

3.8 Evaluation . 64
3.8.1 Simulation Results . 64
3.8.2 Analysis and Comparison . 65

Number of transitions on the credit link 65
Area utilization . 66
Throughput . 67

3.9 Summary . 67

4 High Speed Resource Sharing 69
4.1 Background and Related Work . 69
4.2 Proposed Tree Arbiter Cell . 71

4.2.1 Window of Improvement . 71
4.2.2 Design Concept . 72
4.2.3 Adaptation to TAC . 72

Rapid local clients’ interlocking . 74
Interlocking multiple TACs . 74
Timing assumptions . 75

4.2.4 Unfairness Window . 75
4.3 Implementation and Evaluation . 77

4.3.1 Worst and Best Case Latencies . 77
4.3.2 Handoff Latencies . 79
4.3.3 Throughput Estimation . 80

4.4 Summary . 81

5 Protection of FIFO Control Path 83
5.1 Background and Related Work . 83
5.2 Robust Asynchronous Muller Pipeline (RAMP) 84

5.2.1 Assumptions and Fault Model . 84
5.2.2 Operation Principle . 86
5.2.3 Initial Circuit Design . 87

5.3 Formal Verification . 90
5.3.1 Fault Simulation Methodology . 91
5.3.2 Observations and Post-verification Modifications 92

Circuit’s faulty behavior . 92
Improvement in latency . 93

xi

5.4 Simulation Results and Discussions . 94
5.4.1 Simulation Results . 94
5.4.2 Comparison and Discussion . 96

5.5 Summary . 98

6 Fault-Tolerant Switch Allocation 99
6.1 Related Work . 99
6.2 Arbiter Failure Modes and Causes . 101

6.2.1 Failure modes on the client interface 101
6.2.2 Failure modes at the interface to the common resource 101
6.2.3 MUTEX failures . 102
6.2.4 Fault effects on the TAC . 103

6.3 Proposed Fault Tolerant Tree Arbiter Cell . 104
6.3.1 Architectural Considerations . 104
6.3.2 Hardening the generation of CRreq 105
6.3.3 Hardening the generation of C1gr and C2gr 107

6.4 Formal Verification . 108
6.5 Simulation Results . 109
6.6 Analysis and Discussion . 110
6.7 Summary . 111

7 Fault-Tolerant Inter-switch Communication 113
7.1 Related Work . 113
7.2 Baseline Interconnection Network . 114

7.2.1 Retransmission Module . 115
7.2.2 Input Module . 116

7.3 Encoding Schemes . 116
7.3.1 Single Error Detection with Retransmission (SED) 117
7.3.2 Double Error Detection with Retransmission (DED) 117
7.3.3 Single Error Correction (SEC) . 117
7.3.4 Time Redundant Transmission with Voting (TRV) 117

Transmitter . 118
Receiver . 119

7.3.5 Adaptive Delayed Twice Sampling with Double Error Detection (ADTS-
DED) . 119

7.4 Simulation Results . 121
7.4.1 Simulation Results of ADTS-DED Mechanism 121
7.4.2 Area Overhead Comparison . 124
7.4.3 Performance Penalty . 124
7.4.4 Discussion . 124

7.5 Summary . 125

8 Fault-Tolerant Router: The Complete Design 127
8.1 Preliminaries . 128

xii

8.1.1 Assumptions . 128
8.1.2 Simplifications . 128
8.1.3 Prior Knowledge . 128
8.1.4 Design Methodology . 129

8.2 Hardening the Components . 129
8.2.1 Interface X1 . 129
8.2.2 Fault Tolerant Input Controller (FT-ICON) 129
8.2.3 Fault Tolerant Flit Categorization Logic (FT-FCL) 131
8.2.4 Interface X2 . 131
8.2.5 FT-Switch Demux . 131
8.2.6 Interface X4 . 132
8.2.7 Interface X3 . 132
8.2.8 FT-Select Module . 132
8.2.9 FT-Latch Enable Signals . 134

8.3 Fault Injection and Simulation Results . 136
8.3.1 Fault-free Operation . 136
8.3.2 Fault Injection and Verification . 136
8.3.3 Simulation Results . 137
8.3.4 Discussion . 137
8.3.5 Summary . 139

9 Conclusion and Prospective Directions 141
9.1 Overview of Research Contributions . 141

9.1.1 VC Access Control Framework . 141
Relevant Publications . 142

9.1.2 Robust and Efficient Resource Sharing Mechanisms 142
Relevant Publications . 143

9.1.3 Transient Fault Tolerant Channels and Input Buffers 143
Relevant Publications . 143

9.2 Prospective Directions . 144
9.2.1 Limitation of Model Checking . 144
9.2.2 Multiple Fault Tolerance . 144
9.2.3 Fault Tolerance: A Quality of Service Metric 144
9.2.4 Modeling Fault-Tolerance Behavior 145
9.2.5 Design for Testability . 145

A UPPAAL Models 147
A.1 NOT Gate . 147
A.2 AND Gate . 147
A.3 SET Injector . 148
A.4 Muller C-element . 148
A.5 MUTEX . 150

Bibliography 153

xiii

List of Figures

2.1 (a) push channel, (b) pull channel . 9
2.2 (a) QDI, (b) DI . 10
2.3 2-phase Signaling . 11
2.4 Various 4-phase Signaling Conventions . 12
2.5 Dual rail signaling: (a) 4-phase, (b) 2-phase . 13
2.6 Completion Detection Mechanism: (a) 1-bit message and 4-phase signaling, (b) m-

bit message and 4-phase signaling, (c) m-bit message and 2-phase signaling 14
2.7 An example of LEDR encoding . 15
2.8 MC: (a) symbol, (b) transistor level, (c) gate level, (d) truth table 16
2.9 Asymmetric MC: (a) symbol, (b) transistor level, (c) gate level, (d) truth table . . . 17
2.10 Operation of a Join module . 17
2.11 (a) Fork in a Join, (b) Join in a Fork . 18
2.12 Gate level schematic of MUTEX . 18
2.13 Toggle Circuits: (a) Merge, (b) Split . 19
2.14 Muller Pipeline [127] . 20
2.15 4-phase bundled data pipeline [127] . 21
2.16 2-phase bundled data pipeline [127] . 22
2.17 Simple STGs, (a) MC, (b) Data and Control Mixed 23
2.18 A simple router . 25
2.19 A typical NoC with minimum requirements [126] 26
2.20 Most widely adopted NoC topologies: (a) Ring, (b) Butterfly [126] 27
2.21 Overview of Flow Control: Producer (P), Consumer (C) 30
2.22 Permissible (a, ... ,d) and forbidden (e, f) turns in XY-routing algorithm 33

3.1 Block Diagram of the Async Router . 42
3.2 STG of ICON . 43
3.3 Schematic of ICON . 44
3.4 Traversal of a flit on Local input port . 46
3.5 4x4 2D mesh of routers . 48
3.6 Minimal requirements in terms of VCs per routing node 49
3.7 Connections needed on node (2,2) shown in fig. 3.6 50
3.8 The maximally concurrent controller: (a) SG, (b) Simplified SG 52
3.9 STG of the maximally concurrent controller . 53

xv

3.10 Maximally concurrent bufferless controller: (a) SG, (b) STG 53
3.11 Decoupling of the consumer: (a) SG, (b) STG . 54
3.12 STG showing dependencies in a VC . 55
3.13 The sharebox from [15]: (a) SG, (b) STG . 56
3.14 The unsharebox from [15]: (a) SG, (b) STG . 56
3.15 STG of a credit-uncredit scheme with two credits 56
3.16 SG of the receiver for a credit-uncredit scheme with two credits 57
3.17 The creditbox from [15]: (a) SG, (b) STG . 57
3.18 The uncreditbox from [15]: (a) SG, (b) STG . 57
3.19 SG of the uncreditbox from [15] . 58
3.20 VC timing using the baseline credit scheme . 60
3.21 VC timing using the MCFC scheme . 60
3.22 Comparison of flow control mechanisms . 60
3.23 Proposed sender . 62
3.24 Proposed receiver . 63
3.25 Proposed Credit Generation Unit . 63
3.26 Operation of MCFC in an eager producer-consumer environment 65
3.27 Operation of MCFC in a mixed environment . 66
3.28 Comparison of throughputs of the three schemes 67

4.1 STG of a 4-phase Two Input TAC . 70
4.2 Gate level netlist of a 4-phase Two Input TAC . 70
4.3 Proposed 2-way Arbiter: (a) STG, (b) conceptual schematic 72
4.4 STG of the proposed TAC . 73
4.5 Circuit of the proposed 2-way Arbiter . 73
4.6 Proposed rapid interlocking within 2-way Arbiter 74
4.7 STG of the proposed TAC with multiple TACs interlocking 76
4.8 Schematic incorporating the interlocking logic . 76
4.9 Worst-case Unfairness Window: (a) TAC, (b) Proposed Circuit 78
4.10 Impact of increasing wtCx on latency of the proposed arbiter 79
4.11 Impact of wtCx on handoff latency: (a) same TAC, (b) different TACs 80

5.1 Handshake Protocol . 84
5.2 The operation principle of RAMP . 87
5.3 RAMP circuit for F2 and F4, (a) STG, (b) Equivalent circuit 87
5.4 Simulation of up/down transient on “rin” . 88
5.5 RAMP circuit for F1, (a) STG, (b) Equivalent circuit 88
5.6 Closed-loop RAMP: (a) 1-stage, (b) 2-stage . 89
5.7 Effect of an up/down fault on “rout1” in a two-stage RAMP 89
5.8 Closed-loop RAMP with duplicated gates: (a) 1-stage, (b) 2-stage 90
5.9 Closed-loop RAMP with protected datapath: 2-stage 91
5.10 Faulty behaviour of the initial circuit . 92
5.11 Modified closed-loop single stage RAMP . 94
5.12 Simulation of faults 1 to 4 . 95

xvi

5.13 Simulation of faults 5, 6 and 7 . 95
5.14 Simulation of faults at Join MC . 95
5.15 Area Overhead incurred by (1) RAMP, (2) Martin_FD, (3) Martin_PD 97

6.1 Glitch filter implementation . 105
6.2 Modified Part of the Circuit protecting from g1 and g2 flips 105
6.3 Modified Gates: (a) u7, (b) u0 . 106
6.4 Modified Part of the Circuit with Duplicated Gates 107
6.5 Operation of the FT-TAC in a Fault-free Scenario 109
6.6 Mitigation of Faults Applied at C1req, g1, and CRgr 109
6.7 Affect of Packet Size on the Latency Overhead 111

7.1 Flit Retransmission Logic . 115
7.2 Input Module . 116
7.3 (a) CNWP, (b) CWP, (c) Block Diagram of the transmitter for TRV 118
7.4 Waveform of the ADTS Receiver . 120
7.5 Block Diagram of ADTS-DED Mechanism . 120
7.6 Fault Injection and Testing Methodology . 121
7.7 Fault Detection and Retransmission Waveform 122
7.8 Working of ADTS in Presence of Faults . 123

8.1 Main focus of this chapter . 127
8.2 Interface Circuit between RAMP and Input Handler 130
8.3 FT Input Controller . 131
8.4 Schematics of FT-FCL and X2: (a) Initial design, (b) Passed all the verification tests,

Sec. 8.3.2 . 132
8.5 Schematics: (a) X3, (b) X4 . 133
8.6 FT_Select Module . 133
8.7 FT Switching Demux and FT Latch Enable . 134
8.8 A critical fault with FT-Latch enable signals . 135
8.9 Operation of the router in a fault-free environment 136
8.10 Operation of the Router in presence of faults on input request 138
8.11 Faults applied on input request of Interface X1 . 138
8.12 Faults applied on input request of FCL . 138

A.1 Model of a NOT Gate . 148
A.2 Model of an AND Gate . 149
A.3 Model of an SET injector . 149
A.4 Model of an MC . 150
A.5 Model of an MC with bit-flip Fault Support . 151
A.6 Model of a MUTEX . 152

xvii

List of Tables

2.1 Representation of 2-bit message using dual rail, and 1-of-4 codes 14
2.2 LEDR Encoding . 14

3.1 Packet Format and Size: (a) Header Flit, (b) Tail Flit, (c) Body Flit 42
3.2 Variables used in fig. 3.1 . 44
3.3 Area Utilization (µm2) of the sender and receiver modules 66

4.1 Arbiters’ latencies for only one active client . 78
4.2 Handoff Latencies . 80
4.3 Comparison of Throughput . 81

5.1 Verified properties . 92
5.2 Pattern of Area Utilization with Number of Pipeline Stages 96
5.3 Pattern of Area Utilization with N Pipeline Stages 96

6.1 Possible Faults at the Outputs of MUTEX . 103
6.2 Verification Results of Faults at TAC . 103
6.3 Verified properties . 108
6.4 Area and Latency Comparison . 110

7.1 Device Utilization Summary of the Common Modules in µm2 123
7.2 Comparison of Different Fault-Tolerance Mechanisms 124

8.1 ICON Verified Properties . 130
8.2 Verified Properties . 139

xix

Acronyms

ANoC Asynchronous Networks-on-Chip

BER Bit Error Rate

CMP Chip Multiprocessor

CRC Cyclic Redundancy Check

DI Delay Insensitive

ECC Error Control Code

E2E End-to-End

FEC Forward Error Correction

Flits Flow-control Units

FSM Finite State Machine

FT Fault-Tolerance/Tolerant

GALS Globally Asynchronous Locally Synchronous

HBH Hop-by-Hop

IO Input/Output

IP Intellectual Property

LEDR Level Encoded Dual Rail

MC Muller C-element

MUTEX Mutual Exclusion

MUX Multiplexer

NCL Null Convention Logic

xxi

NoC Networks on Chip

NRZ Non Return to Zero

PE Processing Element

PVT Process, Voltage, and Temperature

QDI Quasi Delay Insensitive

RTZ Return to Zero

SET Single Event Transient

SER Soft Error Rate

SEU Single Event Upsets

SG State Graph

SI Speed Independent

SoC Systems on Chip

SPL Shared Physical Link

STG Signal Transition Graph

S2S Switch-to-Switch

TAC Tree Arbiter Cell

TFF Toggle Flip-Flop

VC Virtual Channel

VLSI Very Large Scale Integration

xxii

CHAPTER 1
Introduction

While we have witnessed a tremendous reduction in feature sizes during the last decade, the
basic techniques behind building high speed processors, such as pipelining and superscalar ap-
proaches, did not prove proportionally beneficial [44]. In the quest for high performance, the
designers were willing to integrate many computing resources on a single die, rather than in-
creasing the complexity of just one. These computing resources included intellectual property
(IP) cores from various manufacturers, or identical processing elements (PE), thus leading to
systems-on-chip (SoC) [74] and chip multiprocessors (CMP) [68] platforms.

However, to make such systems a reality and allow leveraging their full potential, the de-
signers had, and still have to overcome certain bottlenecks, perhaps the most important of which
was the slow interconnection of the PEs. For the global interconnect it soon turned out that the
conventional shared bus topology was inefficient, since it did not scale suitably. Consequently,
it had to be replaced with something more robust and flexible, which would allow several in-
dependent message transfers in parallel, and might be programmed according to the application
requirements, the so called Networks-on-Chip (NoC) [12, 31, 96]. An NoC provides a generic
regular structure, comprising a network of routers, which facilitates more flexibility and high
throughput, and is also amenable to 3D VLSI technology [60, 112, 145].

While the advent of this programmable interconnect solution has somewhat addressed the
bandwidth issues, the constantly growing number of function units on a chip has given rise to
some other critical challenges, such as clock distribution in the GHz range. In order to make
a clock tree with sufficiently low skew possible at all, a significant share of the power bud-
get must be spent for strong clock drivers [116], thereby giving rise to another grave concern,
energy efficiency. Secondly, a fixed clock rate determined by a corner case analysis of the max-
imum propagation delays is considered overly pessimistic in face of the significant variances
of chip parameters, specifically timing parameters. An automated balanced multiple clock do-
main H-tree [123] was recently proposed to reduce clock skew and PVT variations impact, but
unfortunately no work guarantees their complete elimination.

Issues such as energy efficiency and clock distribution proved to be cumbersome to achieve
in a globally synchronous design style. Instead, the globally asynchronous locally synchronous

1

design style [22] has become popular, allowing fully synchronous design within locally con-
strained islands that are, in turn, connected in an asynchronous fashion. Often an NoC connects
function units of the SoC that run at their individual clock rates optimized for their respec-
tive purpose. In order to circumvent performance penalties incurred by the synchronizers re-
quired at the timing domain boundaries between the function units and the routers within the
NoC [80, 97, 151], an asynchronous implementation of those routers suggests itself. As a fur-
ther benefit, with their demand driven activity, asynchronous designs facilitate a better energy
efficiency than their synchronous counterparts [48,139]. And finally, the delay-insensitive asyn-
chronous design styles exhibit great flexibility with respect to PVT variations [21, 32], thus
solving a problem that is currently considered most severe in synchronous nanoscale implemen-
tations. In view of these advantages we put our focus on asynchronous NoCs (ANoCs) in the
rest of this work.

1.1 Motivation

During our literature survey for a systematic design of fault-tolerant (FT) ANoCs, we came
across a few concepts related to ANoCs that we felt were either not sufficiently addressed, or
somehow misunderstood despite being used formerly on a number of occasions. We believe
they deserved a thorough investigation, and providing (one of the possible) solutions to those
concerns makes the core message of this work. In the following we briefly overview each of
them in turn.

1.1.1 Non-blocking Behavior

A crucial advantage of NoCs over traditional bus structures is the ability to perform several
independent message transfers in parallel, namely along different routes. This requires routers
and the interconnect links between them to be flexibly available for different transfers. In this
situation blocking of a router or link is highly undesired as it severely degrades performance
and real time capabilities of the NoC. Blocking may occur due to the unavailability or slow
speed of the destination, due to overload of a router (too many incoming messages from many
directions), in which case back-pressure may keep further routers or links along the path to the
origin blocked and thus unavailable for other transfers, or due to the failure of a path.

As shall be discussed in detail in chapters 2 and 3, several measures can be taken to mitigate
this risk, one of them being the concept of virtual channels, where the physical link is shared
among several transfers in a time division manner. The virtual channels are always augmented
with another mechanism called flow-control, responsible for the backpressure management. Al-
though known to the community for a long time, there is no formally defined set of requirements
for building a safe flow control scheme. As a result of this lack of knowledge, their design can get
deceptive, not fulfilling the nonblocking criterion. In the coming chapters we shall highlight a
few examples in support of our argument. Therefore, we thought a framework that could (some-
how formally) elaborate the minimum requirements of building a safe flow control mechanism
was much needed by the NoC community.

2

1.1.2 Reliability

An undesired consequence of the miniaturization process is the higher susceptibility of VLSI
circuits to two types of faults: 1) those that occur due to variations in manufacturing process –
they normally lead to alteration in the circuit’s delays, and 2) those that occur due to variations
in the environment, such as temperature, electrical noise, and most importantly radiation particle
hits – they typically cause undesired voltage pulses of very limited length, called transient faults
or single event transients (SET).

At deep submicron technology, due to the smaller geometries and lower supply voltages
which in turn reduce the critical charge, SETs are becoming more frequent. When a high energy
particle (alpha particles or neutrons from atmosphere) strikes a slicon substrate, it can generate
electron-hole pairs inducing current, which may easily upset the small critical charge, thereby
changing the output of the gate [62]. In case an SET somehow gets stored in one or more storage
elements, it is said to be a single event upset (SEU) [108] or a soft fault [54]. An SEU has a
potential to propagate to other parts of the circuit as well, giving rise to persistent errors [87]
that may remain in the logic circuit indefinitely. According to a few research works [98,136], in
today’s deep submicron technology, around 80% of the total errors in digital circuits are due to
SETs. The soft error rate (SER) in digital circuits in general is thus rising, and this concerns the
NoC as well.

Since the operation of the asynchronous circuits does not rely on stringent timing assump-
tions, the latter by default (usually) proves more robust against the first type of faults than the
synchronous circuits [8]. However, the other type of faults is equally critical for the operation of
both asynchronous, and synchronous circuits.

Because of the absence of the clock signal, a fault in an ANoC may exhibit a behavior that
would not be observed in the synchronous equivalent, thereby making the current fault tolerant
schemes ineffective [104]. This especially applies to those circuits that are simply not seen in
the synchronous setup, mostly controllers. Two such circuits are Muller Pipeline and Arbiter,
which play a vital role in the ANoC architectures, and their protection against SETs has become
prudent. Unfortunately, neither their protection is sufficiently addressed, nor is their behavior in
presence of the faults (to the best of our knowledge) properly understood. This is what convinced
us to explore these circuits, and their response to SETs in more detail, in order to formulate the
possible fault cases that a designer must consider while designing a fault-tolerant version of the
same circuits.

1.2 Contribution and Significance of the Work

In this study we not just propose a working solution, but also emphasize on defining a certain set
of protocols for building efficient and reliable ANoC architectures. We specifically focus on two
critical concepts: flow control, and resource sharing, the correct operation of which is extremely
critical for the performance of the ANoCs.

As far as the first concept, i.e., the flow control is concerned, our proposed framework elabo-
rates the minimum requirements for building a safe, nonblocking, communication infrastructure
between switches, which is supposedly the most fundamental property of the NoCs. We used

3

our framework to identify a weakness in one of the existing works in literature. Although the
weakness could have been solved by other means as well, nevertheless, our systematic approach
did point out its implication if not tackled properly. It also allowed us to come up with a novel
mechanism, that not just follows all the protocols, but also saves dynamic power on the commu-
nication channel.

Considering the importance of resource sharing in an ANoC, beside building a high speed
solution, we propose to systematically harden it against SETs and upsets. More importantly, we
present an indepth analysis of the sensitivity of a tree arbiter cell (TAC) against such faults; our
study shall benefit the designers who might overlook a few of those faulty cases. Other than
this, we also propose to harden a few other critical components forming an ANoC router, such
as input buffer controllers, and the crossbar.

Pointing out deficiencies in existing works, supporting our claims with simulations, and
(partially) formal verification, describing a certain set of requirements that must be fulfilled by
the components bulding the ANoC, and finally proposing a working solution that meets all the
criterion defined in the framework, are a few credits to our study that make it useful to the
community, and a reasonable contribution. In short, the objective of this work is to elaborate a
systematic design of FT ANoCs.

1.3 Organization

Chapter 2 is divided into two parts. The first one presents the background on Async Circuits.
We briefly overview the elementary primitives that form the foundation of asynchronous design
methodology, the communication protocols between asynchronous components, the hardware
supporting the protocols, and finally the tools used to model, simulate, and synthesize the asyn-
chronous systems. In the second half, the emphasis is on discussing the fundamentals of the
NoC architectures. Starting from the minimum requirements to build an NoC, we go to discuss
the widely adopted network topologies, switching techniques, routing algorithms, virtual chan-
nels and flow control. The chapter is concluded by highlighting the main topics of the thesis,
i.e., flow control and reliability concerns with the ANoCs.
Chapter 3 presents the design of a simple ANoC prototype with virtual channel support. We also
present our framework that eases the design of an ideal (nonblocking) flow control mechanism
for the ANoC. The chapter is concluded with a comparison of our proposed flow control scheme
with the state-of-the-art mechanisms in terms of bandwidth requirement and dynamic power
consumption on the communication channels.
Chapter 4 presents the design of a high speed arbiter, which is the basic building block of
a router used in the NoCs designs. We propose to internally pipeline the existing TAC, and
compare the throughput of the resulting design with a few others available in literature.
Chapter 5 discusses the fault sensitivity of the controller for the input buffers used in routers,
called dataless Muller Pipeline. We propose a systematic hardening of the controller for a single
stage, and subsequently address the possible interconnection of multiple stages. Our verification
methodology is based on model checking, for which we define a set of properties that the pro-
posed fault-tolerant solution must satisfy. The chapter is concluded with a comparison with two
other possible hardening solutions in terms of area and performance.

4

Chapter 6 follows the same structure as chapter 5, except for that here we analyze the fault
sensitivity of a 4-way TAC. We once again define a set of properties that an arbiter is supposed
to guarantee, and verify the operation of the arbiter by injecting transient faults of limited length,
at arbitrary points in time, using model checking. Then we propose a systematic hardening of
the arbiter, verify its operation, and compare the solution with other possible solutions.
Chapter 7 proposes a mechanism for the protection of the data path (payload). In contrast to
conventional error detection with retransmission schemes, we propose a method to resample
data from the communication channel, rather than requesting for a retransmission. The latter is
only needed in case of a soft fault, that does not fadeoff with time. A comparison is made with
conventionally used mechanisms in terms of latency and area utlization.
Chapter 8 puts together the pieces to form a complete fault-tolerant switch by means of a
few other components; this mainly concerns the simple logic circuits, such as multiplexers,
demultiplexers, and latches. The primary method used here to harden those components is
the hardware replication. We ensure that all the previously hardened circuits could easily be
integrated with the rest.
Chapter 9 sumarrizes the findings of our work, and discusses a few prospective areas of further
research.

5

CHAPTER 2
Background

This chapter is divided into two parts: In the first half, the principles of asynchronous designs
and their communication styles are discussed, followed by an overview of fundamentals of the
NoC architectures in the second half. At the end of the chapter we highlight some fault-tolerance
aspects of each of them. Note that there is much more to this class of digital circuits than what
has been described here; we only emphasize on their basics, and on what is sufficient to build the
rest of the thesis on. To this end, we describe an asynchronous circuit as a class of digital design
in which sequential components are driven by handshakes rather than a global clock signal.

2.1 Principles of Asynchronous Design

2.1.1 Data-path and Control

The part of the design that is responsible to perform operations on data, such as addition, multi-
plication, encoding, decoding, and storing is termed as the data-path. On the other hand, the part
of the circuit that controls the timing and sequence of operations that the data-path performs is
called the control-path. The control-path instructs the data-path when is the right time to perform
an operation, and the latter simply follows that instruction. Two asynchronous circuits are con-
nected in such a way that their data-paths are connected to each other, and the control-paths are
directly connected to each other over a pair of signals, request and acknowledge. The latter are
responsible to communicate to one another the completion of operation by their corresponding
data-paths. In simple cases, a control circuit assumes the completion of operation after a certain
delay (requires making some timing assumptions) and signals this to the other control circuit, in
others, however, a number of computation steps must be taken to guarantee the correctness be-
fore communicating completion to the other circuit. This choice classifies asynchronous circuits
to be using either bounded or unbounded delay models. Usually these two paths are synthesized
to gate level netlists separately since they require a different methodology and set of tools.

7

2.1.2 The Concept of Handshaking

Two asynchronous circuits are connected to each other on a channel. The channel comprises
of at least three signals, one of which is the acknowledgement, as mentioned above, while the
rest forms the data bus with the request signal. In some cases, request is added as an explicit
signal, in others it is encoded into the data bus. Hence a channel forms a unidirectional, point-
to-point, communication link between the two circuits, where the sender submits its data on
the data bus, and the receiver accepts them and performs the desired operation (arithmetic,
logical, storing, forwarding etc). Once the sender has delivered its data on to the bus, it is
its responsibility to indicate the validity of the data to the receiver as well. This exchange
of request and acknowledgment between the sender and receiver pair is termed as handshake.
Usually there are two naming conventions used for a channel that determine who initiates the
communication: 1) If the sender initiates the communication by applying its data on the bus
and asserting the request signal, then the channel is named as a push channel where the receiver
accepts the data and asserts the acknowledgment in response. 2) In case the receiver wishes to
initiate, it asserts the request signal first (normally indicating to the receiver about its availability,
or enough storage space to hold the next data item), following which the sender applies the data
on the bus, and asserts the acknowledgment signal in response. This type of a channel is called a
pull channel. The block diagram and waveform depicting the operation of each type of channel
are presented in fig.2.1. Historically, producer and initiator terminologies have also been used
alternatively for the sender, and similarly consumer and target have been used to refer to the
receiver. However, in case of a pull channel, the receiver is always the initiator. In the rest of the
work, the term channel will always refer to a push channel, unless mentioned otherwise, and req
and ack will be used as short for request and acknowledgment signals respectively.

2.1.3 Classification of Asynchronous Circuits/ Delay Models

Asynchronous circuits are said to have three classes according to their robustness against delay
variations.

Delay Insensitive Circuits

Delay Insensitive (DI) circuits are the most robust form of asynchronous circuits. They do not
make any assumption about wire or gate delays [25,132]. Every transition from the sender must
be properly acknowledged by the receiver. This indirectly means that every transition at the input
of a gate/circuit must be correctly seen at the output before the next transition could be allowed
to happen. However, the number of useful circuits that may be built DI is very limited [78],
and have certain restrictions on their states for the correct operation: e.g., an OR gate must
never enter the state where both inputs are high since the entry into this state will not have any
impact on the output, and similarly the departure from this state will not be seen on the output
as well [18]. In their implementation, req is embedded within the data, so the transitions on the
data bus themselves indicate their own validity.

8

ReceiverSender

ReceiverSender

Figure 2.1: (a) push channel, (b) pull channel

Quasi Delay Insensitive Circuits

The Quasi Delay Insensitive (QDI) circuits assume all the forks to be isochronic, thereby com-
promising the delay insensitivity of the circuit. In isochronic forks, it is assumed that the re-
ceivers connected to the two prongs of the fork will, more or less, receive the data at the same
time. In other words, the two prongs add identical delays. So, only one of the receivers needs
to acknowledge the data, and it is assumed that the other has also received them correctly. Al-
though very widely used, isochronic forks, if not implemented carefully, can lead to hazardous
behavior in the circuits as demonstrated by Berkel [140].

A block diagram highlighting the difference between QDI and DI methods is presented in
fig.2.2. The black box in (b) is a component that ensures the acknowledgment to the sender is
forwarded only once both the receivers have correctly acknowledged the data. The detail on this
black box shall be discussed later in the chapter.

Speed Independent Circuits

This class of asynchronous circuits most closely resembles the synchronous style: They assume
that the data are stable at the receiver before the validity signal req is asserted, just as the clock
edge must occur only once the data are valid and stable in the synchronous approach. In order
to achieve that, appropriate delay elements must be added in the req path. In doing so, however,

9

R
1

R
2

S

(a)

R
1

R
2

S

(b)

black
box

Figure 2.2: (a) QDI, (b) DI

these circuits lose their robustness against PVT variations. The only difference between these
and synchronous designs, thus, is that the former are not worst case designs since they do not
require global synchronization; as soon as one computation has finished, the next may start.
Thus they exhibit average-case performance [117]. The push and pull channels shown in fig.2.1
are made as matched delay circuits without delay elements, which must be added on req and ack
in (a) and (b) respectively.

2.1.4 Signaling Conventions and Data Representation

Since there is no global time involved in asynchronous designs, local controllers govern all
transactions that happen on a channel [137]. No matter it is a push or a pull channel, the control
signals, i.e., req and ack must follow an order of transitions. Normally there can be two types of
signaling that would guarantee the validity of data on both ends, as discussed next.

4-phase Signaling

The 4-phase signaling protocol makes use of four transitions in total on the control path to com-
plete one handshake cycle, or exchange one message in other words. Two transitions take place
on req and ack signals each. An example of these protocols is already shown in fig.2.1. It may
be noted in any part of the figure that validity and acknowledgment of data are indicated by
level 1, whereas the down transitions on both signals simply make the phase, which is impor-
tant because it resets the communicating entities to their default states, and thus the successive
handshake cycle may happen. That is why this protocol is also known as return-to-zero (RTZ)
protocol. It may also be possible to use the inverted logic levels, i.e., level high for req and ack
may indicate the reset state. In that case, however, the name RTZ will be no more applicable.

10

valid validdata

req

ack

Figure 2.3: 2-phase Signaling

2-phase Signaling

In contrast to the 4-phase signaling protocol in which only one level indicates the validity, the
2-phase protocol makes use of both levels; hence each transition, i.e., up-down and down-up,
becomes a signaling event. This protocol is also known as Non-return-to-zero (NRZ) protocol,
fig.2.3.

Comparison between 4-phase and 2-phase signaling

Since the 2-phase protocol does not have to go through the RTZ phase, clearly it can attain twice
as much data rate as that of the 4-phase protocol [133]. Furthermore, the less the number of
transitions to forward a given number of messages (from the sender to the receiver), the more
energy efficient the protocol will be.

On the other hand, the 4-phase protocol is somewhat more robust against PVT variations
as compared to its counter part [106, 109, 111]. Another advantage that the 4-phase protocol
provides is the several design possibilities according to the required functionality. For example,
late data validity protocol may be employed when several senders like to communicate with a
common receiver, and the latter is in charge of making a choice between the contenders. Hence,
the first active (high e.g.) transition from the sender simply informs the receiver about its desire
to use the channel, and only once acknowledged by the receiver, can the sender place the data
on the bus, and their validity may be indicated by the opposite (falling e.g.) transition. In other
situations where the sender is in control of the channel, the more traditional early data validity
protocol may be employed in which the first transition is the active signal indicating the validity
of data, while the following transitions simply form the RTZ phase. The remaining design
possibility is called the broad data validity protocol, which requires data to be valid during the
entire handshake protocol. Hence it may be used in place of either of the preceding options. In
our work, Ch. 5 and Ch. 6, we will show that such protocols come in very handy in tackling
SETs. The operation of these schemes is summarized in fig.2.4, and their detailed description
may be found in [103].

Finally, the most important difference between the two protocols becomes visible when it
comes to implementing the storage elements, latches. The 4-phase protocol can simply use the
control signals to drive a level controlled latch (one level makes it transparent, and the other
makes it opaque). In 2-phase protocol, however, a latch needs some additional logic, which
must make its transitions twice as fast as the inputs, since every alternate input transition repeats

11

valid

valid

valid valid

valid

valid

req

ack

early

broad

late

Figure 2.4: Various 4-phase Signaling Conventions

the same operation. Although complicated, the 4-phase protocol allows rather simple imple-
mentation of the control circuits as well as the latches [6]. Throughout in the remainder of this
work, we make use of the 4-phase protocol, unless mentioned otherwise. Especially because our
major concern is reliability of asynchronous circuits, we have experienced that the redundancy
that these protocols have (RTZ phase), may play a vital role in building fault-tolerant circuits. In
chapters to come, we will further elaborate on our findings in the same context.

So far we have discussed about the handshakes that happen on the control path. The data,
which form the actual information to be communicated must find a suitable representation as
well, encoding. Usually there are two ways of representing these messages: 1) each wire carries
one bit of information, single rail encoding, 2) each bit of the message may be transported on
multiple lines, M-of-N encoding. These encoding schemes are discussed next.

Single Rail Encoding

As mentioned above, in single rail encoding, each wire carries one bit of information [103].
There are explicit rails to carry the control signals. Since the control signals are somehow
bundled with the data signals, this encoding scheme is also called as bundled data encoding. If
the corresponding control signals follow 4-phase handshaking, then the protocol is termed as 4-
phase bundled data protocol, otherwise 2-phase bundled data protocol. These schemes are most
widely adopted due to their simplicity, and area cost which is roughly the same as that of the
synchronous designs [6]. All the simulations shown so far used this type of data representation.

M-of-N Encoding

This type of encoding is used within the DI class of asynchronous circuits, where N wires carry
log2(N) bits of information, and there is an explicit wire to carry the acknowledgment [137].
The dual rail encoding [144] is a special case of 1-of-N encoding, with N = 2. Each bit is
encoded using two rails, true, and false. Level 0 is represented by logic ’1’ on the false rail,

12

true-rail

false-rail

ack
(a) data 10

true-rail

false-rail

ack

(b) data 100

Figure 2.5: Dual rail signaling: (a) 4-phase, (b) 2-phase

while logic ’1’ on the true rail represents logic level 1. Both rails when at logic level 0 means
no valid data are available. It might also be possible to reverse this representation, i.e., level 1
may indicate that no valid data are available. Recently in their work, Moreira et al. [86] showed
that this representation, Return-to-One protocol, reduces static power dissipation in Muller C-
elements (MC) of QDI circuits.

As may be understood conveniently, the two rails are mutually exclusive, i.e., only one of
them is allowed to make a transition at a time. Since there is no explicit req available, the
receiver is supposed to detect that transition to be sure about the validity of new data. The
circuit responsible to perform this task is called completion detection mechanism. An example
of completion detection and the corresponding dual rail encoding for each type of signaling is
presented in fig. 2.5 and fig. 2.6.

Note that it is equally important to detect the RTZ phase on all lines within the completion
detection mechanism. Since just one input being low on an AND-gate may drive it to logic level
low, it is essential to replace it with something that must wait for both data lines to return to zero.
An MC [88] replaces the AND-gates in the completion detection circuit. The MC is discussed
in the next section. The 4-phase dual rail protocol is specifically used in QDI designs, however,
its cost due to the duplicated wires, and the completion detection circuit is a major drawback.

One-hot encoding also belongs to the same class of 1-of-N encoding. They use 2n lines
to represent n bit data. For n = 2, the primary difference between a dual rail implementaion
and that of one-hot encoding is that in the former each bit is encoded separately using two bits,
whereas, in the latter the entire two bit message is encoded using a unique 4-bit code. Table
2.1 [121] demonstrates this difference for n = 2. While the overhead incurred by the two
schemes is the same (for this specific case), the smaller number of transitions in the one-hot
encoding method forms a more energy efficient mechanism. The 4-phase protocol in the 1-of-2
encoding is also called Null Convention Logic (NCL) [41], in which each pair of code words

13

data
valid

true (t)

false (f)

C

C

C

C

C

C

(b)(a) (c)

data

valid

f.0
t.0

t.1
f.1

t.m−2
f.m−2

t.m−1
f.m−1

t.0
f.0

f.1
t.1

t.m−2
f.m−2

t.m−1
f.m−1

data

valid

Figure 2.6: Completion Detection Mechanism: (a) 1-bit message and 4-phase signaling, (b)
m-bit message and 4-phase signaling, (c) m-bit message and 2-phase signaling

Table 2.1: Representation of 2-bit message using dual rail, and 1-of-4 codes

Message Dual Rail Code 1-of-4 Code
true.1 false.1 true.0 false.0

00 0 1 0 1 0001
01 0 1 1 0 0010
10 1 0 0 1 0100
11 1 0 1 0 1000

Table 2.2: LEDR Encoding

Parity/Data 0 1
Even 00 11
Odd 01 10

is separated by an empty word or a spacer. Instead of the MCs, as used in dual-rail codes in
completion detection circuit, majority or threshold gates [125] are used in NCL. However, for
n = 2, the completion detection circuits are identical to those of dual rail codes.

Another important dual rail encoding scheme is the level encoded dual rail (LEDR), pro-
posed in [33]. In this scheme the first bit of the code represents the original data bit, and the
second bit forms a phase, which keeps alternating between odd and even representation. Even
if two consecutive words are identical, their phase difference will be sufficient to trigger the
completion detection circuit at the receiver. This way, the requirement to having a spacer or

14

data

parity

even odd even odd even odd

Figure 2.7: An example of LEDR encoding

the empty word separating the codes (as in case of NCL) is no more needed, resulting in more
power and performance efficient codes. Table 2.2 and fig. 2.7 summarize the concept of LEDR
encoding. Communication dominant systems [81] have been designed using LEDR encoding.

In our work we have emphasized solely on the single rail, 4-phase handshake protocol.
Therefore, we have deliberately ommitted details on the rest of the schemes that we have men-
tioned here. Further literature may be found in [127].

2.1.5 Asynchronous Circuits and Pipeline Implementations

There are some fundamental components that lay the foundation of most of the asynchronous
circuits and systems. Since in our chapters to come all those components will be repeatedly
used, it is, therefore, essential to briefly review them in turn. Based on these components, and
the protocols that we have revisited in the previous sections, we will discuss the design and
implementation of various asynchronous pipeline styles.

The Concept of Valid Tokens, Empty Tokens, and Bubbles

Data transfer between communicating circuits (including data- and control- paths) may be thought
of as tokens which travel from the sender to the receiver [127]. The req becoming high is re-
ferred to as a valid token, and the RTZ phase (in 4-phase protocol) is termed as an empty token.
Hence every pair of valid tokens is separated by an empty token. Once the receiver has asserted
ack, a bubble is said to have been sent to the sender, only after which the sender can place the
empty token. So, every pair of valid and empty token is separated by a bubble. The tokens
are capable of diverging-to, and converging-from, thus allowing one-to-many and many-to-one
connectivity. There are dedicated circuits that perform these mappings, also discussed in the
following elementary primitives.

Elementary Primitives

The MC is the basic building block of asynchronous circuits. Fig. 2.8 presents symbol, transistor-
and gate- level schematics of a 2-input MC. For identical inputs, an MC behaves like an AND-

15

b
a c

b

a

b

a

c

a

b
cc

(a)

(b)

(c)

a b c_next
0 0 0
0 1 c
1 0 c
1 1 1

(d)

Figure 2.8: MC: (a) symbol, (b) transistor level, (c) gate level, (d) truth table

gate. On the other hand, it applies a hysteresis when its inputs are at different logic levels, i.e., it
behaves like a conventional latch.

There is a variant of an MC called an Asymmetric MC, in which only some of the inputs affect
the operation of the gate either in rising or in falling transitions. In other words, some inputs
become irrelevant for the operation. Naturally, in such MCs n- and p- stacks have different
structures, unlike the symmetric ones in which n- and p- stacks are images of each other [6].
Fig. 2.9 presents the corresponding symbols and truth tables of asymmetric MCs. Note that in
the example shown, input b is common, and hence required in both rising and falling transitions.
On the other hand, a is just needed in rising, and d is needed in falling transitions.

On various occassions it is required that all the clients be active before they can access the
common resource (receiver). In other words, it must never happen that only some inputs may
access the resource while others are still inactive. What is needed here is called synchronization
of all inputs. A component that synchronizes (waits for) all the inputs, and then initiates the
handshake is called Join. Subsequently, ack from the receiver must be forwarded to all the
clients. Fig. 2.10 presents the operation of this module: in (a) one input is still missing while
the other already has valid data available, token in other words. In (b) the missing input has also

16

b c

a

d

c

+

-

d

b

a

c

b

a c

d

(a)

(b)

(c)

a b d c_next
- 0 0 0
0 1 - c
- 0 1 c
1 1 - 1

(d)

Figure 2.9: Asymmetric MC: (a) symbol, (b) transistor level, (c) gate level, (d) truth table

v v

v

(a) (b)

Missing
Input

empty empty valid

(c)

Figure 2.10: Operation of a Join module

arrived, followed by the transfer of token to the receiver, as depicted in (c).
In contrast to join, there is a component called fork. It simply forwards the data available

at the input to two (or multiple) outputs, called prongs of the fork. This process is also called
multicasting. Interestingly, the join and fork modules always work together in a DI environment.
For example, ack in case of join must be forked to the clients. Similarly, ack from both the
receivers in fork, must be joined using a symmetric MC. This organization is depicted in fig.

17

C1

C2

R

fork

(a) Join

R1

R2

C
C

join

(b) Fork

Figure 2.11: (a) Fork in a Join, (b) Join in a Fork

r1

r2

g2

g1a2

a1

Figure 2.12: Gate level schematic of MUTEX

2.11.
Closely related to the concepts of join and fork are merge and split respectively. However,

the merge module simply forwards the token to the receiver as soon as one of the inputs is
available, forcing the other input to wait for the current handshake to complete. Similarly, the
split module only forwards the token to the active client: In case ack from the receiver is being
split, then the circuit must remember the client that recently accessed the receiver. In case req
from the sender needs to be split, then there must be some additional information to choose the
winner, just as multiplexers (mux) have explicit selection lines.

The merge module, operating in an environment where the inputs are mutually indepen-
dent, and may occur simultaneously, can lead to hazardous results: the acknowledgment may be
forwarded to all the inputs for instance. In such environments the merge module is normally re-
placed with a circuit called MUTEX [79] short for mutual exclusion element, which guarantees
just one winner. It is constructed using two cross-coupled NAND-gates, which tend to block
one another from making a transition. Simultaneous, or very close input transitions may re-
sult in metastable (lingering between levels high and low for some time) outputs of these gates,
which are then filtered using a pair of inverters, as shown in fig. 2.12. The arrangement of the
inverters, i.e., Vdd of one is the input to the other, ensures that an inverter will only switch to
high if the input to the other one is sufficiently high as well, thereby waiting for the metastability
to completely vanish. Usually instead of ack, the term that is used to denote the output of the
mutex is grant (g in the figure). Details on mutex will follow in the chapters to come.

Another interesting component is a variant of a merge module called toggle, which possess

18

c

c

C2

TFF

C1{

{

R

c

c

TFFC

R1

R2

(a) (b)

Figure 2.13: Toggle Circuits: (a) Merge, (b) Split

a token that freely circulates between the clients. The client that currently holds the token is
only allowed to access the resource, and the other one is simply put to wait until the bearer of
the token has finished its handshake. Once the current handshake is complete, the token flies to
the other client, which can then proceed with its transfer. This module is made up of a toggle
flip-flop (TFF), which after completion of every handshake flips its state, thereby allowing the
other client access to the output port. On reset, the first winner depends upon the initial value of
TFF. Likewise, toggling may be done in a split module, where the input is alternately switched
to the two output ports. Toggle merge and split modules are presented in fig. 2.13. Note that
the TFF is activated with the falling transition of output ack, i.e., with the completion of the
handshake. The MC at each of the input ack makes sure that the TFF has already flipped and
settled to a valid state before the handshake with the left environment may be completed. This
guarantees correct behavior of the circuit.

Efficient asynchronous circuits are usually built as pipelines, which increase the overall
throughput by distributing the task among several function units operating in parallel on dif-
ferent data values. There are several types of asynchronous pipelines, micropipelines [133],
mousetrap [124], GasP [134], QDI [76, 99], asP* [83], wave [19, 53], and surfing [146]; all of
them have a common Muller pipeline as their backbone though. The Muller pipeline is a simple
arrangement of MCs, such that each of them forms a single stage. The output of each stage
(MC) serves two purposes: 1) it becomes the input req to the successor stage, 2) it is sent as
the inverted ack to the predecessor stage. The first stage receives its input req from the sender,
and generates ack in return. Similarly the last stage generates the output req to the receiver,
and receives the ack in return. The Muller pipeline, shown in fig. 2.14 is a mechanism that
relays handshakes [127]. The pipeline is said to be empty when all the MCs are initialized to
zero. At this point in time, the left-environment (also called sender or producer) can initiate
the handshake by asserting req. While this transition ripples through the pipeline to the right-

19

Cons**

c c c

Ack Ack Ack Ack Ack Ack

Req Req Req Req Req Req

Ack

Req

C [i-1] C [i] C [i+1]

Prod*

*Producer
**Consumer

Figure 2.14: Muller Pipeline [127]

environment (also called receiver or consumer), due to the symmetry, each stage sends the ack
to the previous stage. Now in case the producer is faster than the consumer, it may deassert its
req which should traverse the entire pipeline up to the last stage and get blocked, waiting for
the receiver to consume the token by asserting the ack. Sooner or later, a time may come when
all the stages get blocked because of the slow nature of the receiver. A fully filled pipeline has
an interesting characteristic, i.e., alternating stages will always store opposite values. Singh et
al. [124] made use of this feature to build the mousetrap pipeline, and the same feature will be
repeatedtly discussed in the coming chapters. Here we discuss only basic pipeline styles that are
relevant to our work.

4-phase Bundled Data Pipeline

The Muller pipeline once equipped with the datapath becomes a 4-phase bundled pipeline, fig.
2.15. Each box with an MC and a storage element forms a pipeline stage, where each output
of an MC makes the associated latch transparent or opaque. The remaining boxes comprise
the actual processing units with delay elements on top to ensure that the control signals reach
the successor stage only once the function unit has completed its processing. An interesting
observation is that in a completely filled pipeline (i.e., successive MCs hold alternating logic
levels), only half of the stages store some data, every other stage is transparent. This is just like
a Master-Slave setup in synchronous environment, and requires 2n storage elements to store
n values. This is one drawback of such pipelines. The other drawback is the slow processing
speed, since each stage needs to perform handshake with both neighbors, only after which a data
item may proceed to the next stage [127].

20

Ack

Req

Data

Ack

Req

DataLatch Latch Latch

Ack

Req

Ack

Req
c c c

Comb* Comb*

*Combinational Logic

Figure 2.15: 4-phase bundled data pipeline [127]

Micropipelines

Micropipelines or 2-phase bundled data pipelines were proposed by Sutherland [133]. The con-
trol path is identical to the Muller pipeline once again, fig. 2.16, only the interpretation of the
signals is different, which makes it follow the 2-phase handshaking. Sutherland proposed a set
of dedicated components, one of which was the design of an event controlled, the so called
Capture-Pass latch. Each event controlled latch comprises two side by side latches that are ac-
tivated alternatively to generate similar response on rising and falling events [137]. This makes
the design of the latch more complex and the circuit slow. Each MC is responsible to determine
if the current and the successor stage are at the same or different levels. In the latter case, this
indicates that one of the latches is full, and the other empty, which allows the current stage to
forward new data to the successor.

2.1.6 Modeling and Synthesis of Asynchronous Circuits

The designers of asynchronous circuits and systems do not have a large number of modeling
and synthesis tools that match their specifications. Usually for smaller designs event- or state
machine- based specification is employed. The former requires the designer to describe the
behavior of the entity (that he wishes to model) in a Petrinet [105] or a state transition graph
(STG)1, modeled using a tool, such as Workcraft [107], and sythesized using Petrify [28]. The
state machine based specification, on the other hand, is based on Huffman’s asynchronous finite
state machine (FSM) [58], which was later modified and formalized to operate in burst mode on
several occassions [95, 129], and supported by the synthesis tools [47, 128] respectively. Unfor-

1An STG is an interpreted petrinet in which each transition is either marked with +/− indicating a rising/falling
transition, or ∼ representing a level change.

21

Ack

Req

Data

Ack

Req

DataLatch Latch Latch

Ack

Req

Ack

Req
c c c

C C CP P P

Figure 2.16: 2-phase bundled data pipeline [127]

tunately this methodology does not prove too feasible when it comes to describing large systems.
In such situations either small circuits synthesized individually are integrated using some hard-
ware description language (HDL), or specialized high level description and synthesis platforms
for asynchronous circuits, such as Balsa [7], are used. Although Balsa makes the description
of some complicated components extremely easy (adds the control signals automatically, the
designer simply needs to describe the functionality), and the synthesis process entirely invisi-
ble to the designer, it has some disadvantages: The gate-level netlist that it generates is fairly
complicated to understand and modify as may be needed occassionally. It is already equipped
with certain predefined (frequently used) components and does not provide flexibility to the de-
signer to mold the description according to his needs, e.g., select(), and arbitrate() are two
predefined functions implementing merge and MUTEX operations. In case the resulting netlists
do not meet the designer’s requirements, he will eventually have to design his circuit using the
former approach based on STGs. Subsequently, he needs to spend a lot of effort and time to
locate the piece of code in Balsa’s netlist that described those components, and replace them
with Petrify’s netlist, which becomes a tedious task to accomplish. Based on these observations,
and the nature of our objectives, in our work we always used the former approach; and in the
rest of this work whenever we mention of synthesizing an asynchronous circuit, it would always
refer to the same, i.e., describing the logic as STG, and verifying using Workcraft, synthesizing
using Petrify, integrating small circuits using Verilog HDL.

An STG comprises of transitions, places and arcs. The arcs join a transition with another
transition, a transition with a place, and a place with a transition, and desribe the sequence of op-
erations. Transitions may be rising or falling, represented with + or− respectively. Arcs coming
in, and going out of a place can deposit and withdraw a token into/from the place respectively,
upon transitions connected on the other sides of the arcs. A transition can only happen if each
arc coming into it either possesses a token, or the place before the arc possesses one. A safe STG
guarantees that each place and arc may only have one token at a time. In some cases, an STG

22

req−

ack+

req+

ack−

sel+

sel−

a+ b+

a− b−

c+

c−

(b)(a)

Figure 2.17: Simple STGs, (a) MC, (b) Data and Control Mixed

may not have a place; one such example is an MC shown in fig. 2.17(a). The black marks on
the arcs between c− and a+, and c− and b+ indicate the availability of tokens. It means upon
reset, the first transition that may happen is either a+ or b+. Recall the operation of an MC:
Both rising and falling transitions of the output require all the inputs to make their corresponding
transitions, i.e., in this case, c+ will wait for both a+ and b+; likewise for c−. This behavior is
nicely modeled in the STG since c always has two arcs coming into it, and hence requires each
arc to possess a token before it can make a transition.

In some cases, control signals must be used with the data signals, although in most cases
this is undesirable. Mux and demultiplexer (demux) are two such circuits in which the selection
line must be taken into account other than the validity of data. A very simple, dummy, STG is
shown in fig. 2.17(b) where sel is an example of such selection line, and req and ack are the
associated control signals. Note the two bi-directional arcs, called read arcs between a place and
the two transitions of sel. They do not steal the token from the place, but the place must have
a token inside for sel to make its transitions. As may be conveniently understood, sel can keep
making its alternating transitions until stopped by req+, which steals the token from the middle
place. The token is returned with req− allowing the sel to change as per its wish. The ack+ in
between guarantees that the receiver has already stored or used the previous data.

A very usual problem with a carelessly described STG is a deadlock. Deadlock refers to
situations where none of the transitions in the STG can happen due to poor initial placement of
the tokens. For example, if in fig. 2.17(a), the arc between c− and b+ was not initialized with
a token, then only a+ could happen, after which the circuit would be in the deadlock state, not
allowing c+ to happen. Workcraft provides this feature to check the STG if it contains any traces
that may lead to deadlocks. However, it is completely a manual effort to check and subsequently
correct the STG.

2.2 Fundamentals of Networks-on-Chip

An NoC is a programmable grid-like arrangement (network) of routers, allowing interconnec-
tion of several subsystems, called processing elements (PE) or computing resources. Unlike the
shared bus architecture, an NoC allows several PEs (not all) to communicate with each other

23

simultaneously, therefore scales well with the increasing number of PEs. An NoC is termed as
homogenous if all the PEs in the network are identical processors leading to a symmetric chip
multiprocessor (CMP) architecture [141], and hetrogenous if the CRs are various intellectual
property (IP) modules with largely varying parameters and characteristics, leading to an asym-
metric multiprocessor systems-on-chip (MPSoc) design [26]. Because of varying characteristics
of the PEs (such as clock speed, width of the data bus, etc), a component, called network in-
terface (NI), is needed between each PE and the network of routers, which would allow each
of them to access one another by encoding their messages into a suitable (compatible) format.
This leaves the router, and the entire network for that matter to be made generic. Since messages
from one PE may be directed to any other PE within the network, it is another responsibility of
the NI to append the destination information (address of the target node) with each message, and
to request the routers to route those messages towards their appropriate destinations. While an
NI is specifically designed to operate between the network and the subsystem it is connected to,
in this work we limit ourselves to more generic issues related to the network of routers, which
makes our study applicable to both types of the multiprocessor platforms. In what follows, we
briefly describe the components, protocols, and the requirements of building such a network of
routers.

2.2.1 The Basic Architecture

A switch2 allows several devices to be interconnected efficiently. Since the shared bus archi-
tecture does not fulfil the bandwidth requirements, the switch has become the core component
of the NoC designs. The primary objective of a switch is to guide the incoming traffic from
a computing resource to its desired output port of the router connecting to another computing
resource. This job becomes complicated when there are multiple resources requesting access to
the same output port. As a result, the switch must choose the winner amongst them, and store
the other traffic (that has been blocked) to avoid congestion on the input port. This description
suggests the minimum requirements to designing a router: 1) Input buffers at each input port
to temporarily store the incoming traffic, 2) An internal switch, and 3) An arbiter3, which is a
circuit responsible to make a fair choice among the contending data messages. Since a switch
must know which inputs are to be connected to which outputs, a router is thus equipped with
an additional controller that must provide this information to the switch. Sometimes this con-
troller is referred to as routing and arbitration unit, and sometimes as input controllers. Fig. 2.18
presents a simple design of a router.

The data packages, from the source PE while traversing their route (towards their target
node), are divided into packets, which are further divided into fixed sized flow control units
(flits). It is one of the responsibilities of the NI to perform this division. Normally, each package
has two or more flits, where the first one, called the header, carries the routing information,
i.e., the information about the desired computing resource. This information is supplied to
the routing logic, which then programs the switch to form the required connection between

2Sometimes the terms switch and router are used alternatively. In our work we assume a switch to be a component
inside a router.

3Details on arbiters and arbitration are given in the coming chapters.

24

Switch

Switch
Controller

Input
Buffers

Output
Buffers

Input
Links

Output
Links

Figure 2.18: A simple router

the requesting computing resource and the one it needs to access. Since size of each packet
may be different from the others, dedicating a large storage space on each router may cause an
unnecessary overhead. Dividing those variable sized packets into fixed sized flits, thus, proves
to be a more elegant solution.

2.2.2 Networks with Multiple Routers

With the increasing number of computing resources, the complexity of the switch grows badly,
thereby making it infeasible to use a single router. It is, therefore, required to build networks
comprising multiple routers, and connect them with each other using some pattern, and spec-
ify how a path may be established between the requesting computing resource and its desired
destination. This pattern is generally termed as the network topology. Fig. 2.19 presents a sim-
ple schematic (showing the minimum requirements) of an NoC. Each router in a network may
connect to none, one, or multiple PEs depending upon the topology. For example, in a mesh of
routers, each router is normally connected to one PE (such type of a network is termed as a direct
network [126]), whereas, in case of a butterfly network, the corner routers are connected to two,
and the intermediate ones are not connected to any PE. The type of a network in which there are
some routers not connected to any processing nodes is called an indirect network [126]. Some
most widely adopted topologies are depicted in fig. 2.20. The 2-D mesh of routers, shown in
fig. 2.19 is the most commonly used topology, the reason being its easy scalability.

2.2.3 Function Layers

There is no concensus about the function layers of an NoC [126]; while a few authors have
argued that it may be divided into application, transport, network, data-link, and physical layers
[138], others have described physical, switching, and routing layers as the only function layers of
NoCs [39]. The description of the layers provided in the latter is simply a subset of that described
in the former; here we would summarize what was discussed in detail in [138], emphasizing on
those aspects that later will constitute the major portion of this thesis.

25

Router Router Router

RouterRouterRouter

PE PE

PE PE PE

Processor Cache/
Memory

IPs/
Function
Blocks

Network
Interface

Processing Element

Figure 2.19: A typical NoC with minimum requirements [126]

Application Layer

At the application layer the target application is broken into smaller computation tasks to achieve
optimum performance and energy parameters.

Transport Layer

The primary task of the transport layer is to make sure that overflow in the input buffers at
any node never occurs, otherwise, the channel between the communicating routers (also called
a global link, or a shared physical link-SPL) may be indefinitely blocked, thereby, preventing
other trafic to use the SPL as well. This functionality is termed as flow control.

Network Layer

Issues related to the network topology, and the interconnection architectures, (such as how the
resources are connected etc.) are handled at the network layer. Transfer of packets between
nodes, i.e., routing, is another task performed at this layer.

Physical Layer

The focus of this layer is on signal drivers and receivers, design of the input and output buffers,
and pipelining on long global interconnects. Because of the decrease in the noise margin due to
low voltage swings in submicron technology, reliability of the interconnects has become a grave
concern for the NoC architects. For the same reason, the data-link layer has been introduced
to the NoC’s function layers between the network and the physical layers. It addresses all the
reliability concerns of the interconnection networks.

26

Router Router Router

RouterRouter

PE PE PE

PEPE

RouterRouterRouter

PEPEPE

(a)

Router Router Router

Router Router Router

Router Router Router

Router Router Router

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(0)

(1)

(2)

(3)

(4)

(5)

(7)

(6)

(b)

Figure 2.20: Most widely adopted NoC topologies: (a) Ring, (b) Butterfly [126]

27

Data-link Layer

At this layer, the data packages traveling on the long interconnects are protected against radiation
induced transient faults, and electrical noise due to cross-talk. A wide range of error-detection
with retransmission, forward error correction (FEC), and temporal redundancy approaches have
been presented. The objective of all these approaches has been to come up with a fault-tolerance
mechanism that does not incur an enormous performance and energy overhead. While some
authors have advocated the use of switch-to-switch (S2S), also known as hop-by-hop (HBH),
data protection, the others have argued for end-to-end (E2E) approach. The latter is based on
the law make the common case fast, since an error free communication is expected to happen
more often than the erroneous ones, the E2E approach proves very efficient avoiding several
error detection checks. However, the S2S approach is preferable because of its simplicity: 1) a
retransmission request only needs to make one hop to its immediate neighbor rather than going
all the way to the source, 2) the errors will normally be contained within a packet; its recovery
does not affect other packets in transit. This type of protection already suits the packet-by-packet
communication style always adopted in the NoC architectures.

In the coming chapters our emphasis shall be on the last four layers: We present fault-
tolerant designs for a few critical components within the last three layers, and describe a formal
methodology to classify flow control mechanisms for ANoCs. Subsequently, we propose our
own flow control mechanism that minimizes the number of transitions on the global intercon-
nects, thereby resulting in smaller dynamic power consumption. Meanwhile in the sections to
follow within this chapter, we provide a background on different flow control mechanisms, rout-
ing algorithms, reliability issues within the ANoCs, and conclude the chapter with an overview
of the state-of-the-art ANoCs.

2.2.4 Flow Control

Flow control determines how efficiently the network resources, such as channel bandwidth and
buffer capacity, may be allocated to the arriving packets. In case of competing requests, the
flow control resolves the contention by allocating the resources to one candidate, while tackling
the blocked packet by other means: This choice is something that categorizes the flow control
mechanisms into two. The first category is the bufferless flow control, in which the blocked
packet may either be dropped, and thus requires the source to resend that packet later, or simply
rerouting the blocked packet to any other available channel. Clearly, the source of the blocked
packet must ensure that it has a valid copy of the packet still available. In addition, flow control
requires an acknowledgment or negative acknowledgment [30] signal between every pair of
communicating nodes, so that whether the packet was discarded, may be communicated back
to the predecessor node. Circuit switching is another form of bufferless flow control in which
the header flit reserves the entire path, and then the body flits traverse the reserved path. In
case of blocking, instead of being dropped, the header flit is forced to wait, and contend for
the channel every cycle repeatedly, unless it finally gets the resources. On one hand, the circuit
switching approach does not waste any resources (on a packet that is later dropped), on the other
hand, it leads to high average packet latency, low throughput [30], and may indefinitely block
the channel (it traversed to reach the current node) thereby prohibiting all other packets from

28

progressing that might wish to access one of the other output ports having free resources. Note
that this type of blocking is equally applicable in other flow control mechanisms as well, and
this is addressed in Sec. 2.2.5.

An alternative to the bufferless flow control is the buffered flow control. In this approach,
the blocked packet need not be dropped or rerouted; while the winner is traversing the allocated
channel with all the other resources in possession, the blocked packet can simply wait in the
available buffer slots until the resources are once again available4. This scheme does add some
overhead, but results in more efficient flow control in that the channel bandwidth is not wasted
in rerouting or discarding a valid packet [30]. The manner in which the buffers and the channel
bandwidth are allocated to packets, determines the type of buffered flow control mechanism.
These types are overviewed next.

Packet-Buffer Flow Control

In this type of flow control, the resources (buffers and channel bandwidth) are allocated to entire
packets. The packet-buffer flow control is further divided into two classes: Store-and-Forward
and Virtual Cut-Through flow controls. In the former, the resources are allocated to an incoming
packet only once it has been completely received. Thus, its transfer to the subsequent node may
only commence after it has been completely buffered and resources allocated, leading to high
average packet latency. In contrast to this, in the virtual cut-through flow control, a packet may
be transferred as soon as the header flit has arrived. While the header flit progresses through, the
body flits keep following up. In this manner, this class of the buffered flow control achieves better
average packet latency as compared to the other alternative. However, once again the channel
bandwidth and the buffers are allocated to the entire packet, thus requiring the intended receiver
to have sufficient space to hold the entire packet – inefficient use of buffer space. Secondly,
whenever the channel bandwidth is allocated to an entire packet, high priority5 traffic may be
forced to wait for a long time before acquiring the channel [30].

Wormhole Flow Control

The wormhole flow control operates exactly like the virtual cut-through does. The only differ-
ence is that, in this type of flow control, the resources are allocated to flits rather than the entire
packets. The header flit reserves a one-flit buffer, and just one flit of the channel bandwidth is
needed. This means, in case of competing requests, all the contenders can access the physical
channel on a flit-by-flit basis, (ideally) without having to wait for a long packet latency. The
body flits simply follow the path reserved by the header, where the tail flit is responsible to re-
lease all of the reserved resources. With just one input buffer as a requirement, this flow control
provides efficient buffer space utilization. Having more than one input buffer can significantly
increase the throughput though, provided there is a sufficient number of pipeline stages on the
physical channel; this shall be discussed in one of the coming chapters.

4Normally the number of buffers is sufficiently large to store an entire packet, thus avoiding a possible buffer
overflow.

5Priorities are considered in the context of Quality of Service (QoS). Throughout our work, we do not consider
priorities for any type of traffic.

29

A
R
B

shared
media

HF
FC FC

receiversender
CP

Figure 2.21: Overview of Flow Control: Producer (P), Consumer (C)

Consider a case where a flit on the physical channel fails to find a buffer space in the receiver
(due to congestion at the physical channels on intended subsequent hops, say towards East). It
will keep the physical channel blocked until a space has been finally created, no matter there are
other packets that may use the available bandwidth to reach their respective destinations (say,
North, South, etc). This indicates that the wormhole flow control has a potential to block the
channel indefinitely, leading to extended average packet latencies. This type of blocking is called
Head-of-line blocking. This drawback is circumvented by employing multiple virtual channels
(VC) per physical channel, introducing a scheme called virtual channel flow control.

Virtual Channel Flow Control

The virtual channel flow control resolves the problem of channel blocking by associating the
physical channel to multiple VCs. While flits belonging to one packet fail to progress due
to traffic congestion, this flow control allows other packets to share the channel bandwidth that
would have remained idle in the other flow control mechanisms. However, this requires the chan-
nel bandwidth to be properly decoupled from the channel state, otherwise, flit(s) of a blocked
packet (in possession of the physical channel) would simply not let other packets use the idle
bandwidth. Decoupling the channel means that as soon as a flit is stored in an available buffer
slot, the channel must be free for other packets to use, no matter it gets the resources it requested
for or not. This can be ensured only by providing the sender knowledge about the buffer state
on the correspoding VC in the receiver, so that if there is not sufficient space to hold further, the
sender must not apply any more flits. This phenomenon, of avoiding buffer overflow on each
VC, is termed as backpressure management.

2.2.5 Backpressure Management

As stated above, the backpressure management schemes are essential to avoid buffer overflow
in each VC. There are several algorithms that have been proposed to perform this task. One
thing that all those algorithms have in common is their structure, shown in fig. 2.21. To this
end, the common interconnect, called shared physical link (SPL) requires circuitry to merge
data streams from different channels including arbitration of access requests, the funnel (F),
and at the receiving end a demux distributing the data, the horn (H). The circuits required for
flow control are called the sender, connecting the producer with the funnel, and the receiver,
connecting the consumer to the horn.

30

To facilitate flow control, information about the receiver’s buffer fill level must be conveyed
to the sender requiring an additional link in the reverse direction (upstream) of the main data
link (downstream). This information has to be available separately for each VC, requiring either
one link per VC or again merging those links into an (upstream) SPL.

There are several VC flow control schemes for links in NoCs employing different ways of
upstream communication. On some occasions, the senders are made aware of the total amount
of space available with the receiver, so that they do not block the SPL by sending more flits
than the receiver can take. Generally this scheme is termed credit based communication, the
implementation details may slightly vary though. In [43] the authors proposed to make use
of the same strategy, but dedicated counters were employed for each VC at the sender, that
would always keep a count of transmitted flits. These counters were decremented once a flit was
submitted to the scheduler, and incremented once a credit was received back from the receiver,
indicating an available slot. Alternatively, a credit-uncredit approach was presented in [15], in
which each sender comprised a credit FIFO containing as many credits as the number of buffers
available in the receiver’s data FIFO. These credits are tokens, each of which (virtually) flows
to the receiver with a transmitted flit, and (physically) returns to the receiver over the credit link
once a flit has been consumed. Another interesting access control scheme, called share-unshare,
was presented in [15]. Here the authors got rid of the complex credit and data FIFOs, and
circulated a single token between a pair of communicating nodes. The sender could not send
the next flit until the credit had been received. Although the methodology had a poor bandwidth
utilization, the design was much simpler, and energy efficient.

On other occasions [10, 11, 36, 38, 115], the senders do not have knowledge of the storage
capacity of the intended receivers, they simply keep transmitting until they are explicitly stopped.
While these so-called ON/OFF protocols [30] reduce the traffic on the upstream channel, their
implementation in NoCs must satisfy relatively critical timing assumptions.

One disadvantage of flow control schemes for VCs is that for each transmitted flit a token
denoting its removal from the receiver’s buffer needs to be sent back. This inevitably means that
the upstream link has to provide the same total bandwidth (for credits, obviously data are not
supposed to be sent back) as the downstream link. In the following chapter, we will introduce a
credit scheme that achieves lower bandwidth requirements for the upstream link.

2.2.6 Routing Algorithms

In the networks of multiple routers, data must reach their destinations via several hops (inter-
mediate routers). The set of routers that a specific packet goes through to reach its destination,
determines the path or route of that packet. For each packet, the path is selected by some pro-
tocol, called routing algorithm. Various routing algortihms have been proposed, each having
its advantages and shortcomings, however, the principal distinction between these lies in their
deterministic or nondeterministic nature. In the former, there is always a fixed route between
a specific pair of nodes that the packets follow, thereby enabling a rather simple design of the
router. Usually, the source node (the point of origin of the packet) incorporates the entire routing
information within the header flit of the packet (called source encoding), i.e., each switch on
the way knows to which output port it must guide the incoming (header) flit. While the header
flit progresses towards its destination, each node keeps storing the relevant routing information

31

for this packet, so that the successive flits (that arrive without any routing information) may be
swiftly guided to the correct output port. Because of the predetermined path, the average flit la-
tency per switch is generally very small when using these algorithms, however, the unbalanced
nature of traffic on channels may lead to contention, and hence, poor throughput. The unbal-
anced nature of traffic means that there may be several channels that are idle, while a few have
full utilization, and hence becoming a bottleneck.

On the other hand, in nondeterministic, sometimes also refered to as adaptive, routing, the
subsequent hop (jump to one of the neighboring nodes) is determined on the fly, depending
upon a certain criterion, one of which is traffic congestion on links. The routers supporting such
adaptive routing mechanisms are said to have load balancing strategies employed. Although this
feature allows efficient and dependable routing strategies, this leads to complex router designs,
and some major problems associated with this approach are out-of-order arrival of flits at the
destination, livelocks, and deadlocks. Addressing the first is not so complicated: An additional
flit identifier field needs to be incorporated within each flit, that would help the destination node
rearrange (sort) the arrived flits. As understandable, this requires the width of each flit to be
increased, consequently, increasing the complexity of the overall network architecture.

A livelock refers to an undesirable scenario, where a flit might get stuck (everytime rerouted)
in a loop formed by a certain set of routers without progressing towards its intended destination.
Resolving this once again requires addition of a state to each flit, which keeps a count of rerout-
ing on each router, and beyond a certain threshold, a flit is not allowed to be rerouted. Age-based
priority is another method to address this issue, in which the oldest flits are always given the pri-
ority in case of conflicts (competing requests).

A deadlock in the network occurs when a set of flits wait on one another to release a resource,
forming a cyclic dependency. Adaptive routing, which is based on the concept of rerouting, can
very often form such cycles, and end up in a deadlocked network. Various deadlock free routing
mechanisms are available in literature, however, the most widely adopted approach has been
to restrict the turns for a given flit. For example, the XY-routing algorithm does not allow
a flit/packet arriving on north/south input ports to go on east/west output ports, i.e., a given
flit/packet must first move towards the destination in the hortizontal (X-axis) direction (until it
is in the same column of routers as the destination), followed by moving in the vertical (Y-axis)
direction. This way, a dependency cycle can never be formed. The permissible turns in XY-
routing are depicted in fig. 2.22. Similarly, ODD-EVEN turn models [24], and West first routing
mechanisms guarantee deadlock free routing as well [148].

Since, in this work, building a high performance NoC is not the ultimate objective, we
have decided to stick to the simple deterministic source-encoded, XY-routing algorithm, that
guarantees deadlock/livelock free routing. Details on our baseline NoC architecture shall be
provided in the following chapter.

32

Figure 2.22: Permissible (a, ... ,d) and forbidden (e, f) turns in XY-routing algorithm

2.3 Communication Infrastructure for MP Platforms

2.3.1 Globally Asynchronous Locally Synchronous Systems

The global asynchronous communication paradigm has attracted the designers for its features de-
tailed above. However, the fact remains that plentiful CAD support is available for synchronous
circuits and systems, which take much shorter to design as compared to their asynchronous
counterparts. In view of these advantages, use of partial asynchrony was proposed [22]: The
router-router (global) communication was done asynchronously, and the routers were made
as conventional synchronous circuits. While the asynchronous communication got rid of the
global clock and its distribution problem, the synchronous routers could easily operate with a
local clock that was anyway needed for the computing resource (forcing each router to run at
a different speed, thereby leading to multiple clock domains across the chip). This arrange-
ment of synchronous islands (routers) communicating using asynchronous means, is given the
name globally asynchronous, locally synchronous (GALS) design paradigm. While the global
interconnects reduce the design difficulties [121], the synchronous routers may be easily imple-
mented using the design tools available. The elastic nature of asynchronous global interconnects
allows easy integration of multiple clock domains on a single chip.

2.3.2 Asynchronous NoC

The ANoCs are a special case of GALS, in which even the routers do not share the local clock
with the computing resource. Instead, a synchronous-asynchronous interface circuit is installed
within the NI on each node [119], which would allow the synchronous computing resource
to communicate with the asynchronous environment, the router. This approach seems more
promising as compared to the conventional GALS in that the data while traversing the inter-
mediate switches along their path do not need to cross several clock domain boundaries [120],
thereby eliminating the need for synchronizers that would have been there on every IO port
in the switch while using GALS approach. This significantly reduces the area overhead, and
dynamic power dissipation across the entire network. Several ANoCs have been developed,

33

mostly in the academics SpiNNaker [100,122], MANGO [14–16], QoS [42,43], FAUST [10,11],
QNoC [36, 38, 115], [56], a few times commercially [4]. Considering the potential of asyn-
chrnous design style discussed above, we have also decided to build our NoC using the same,
fully asynchronous approach. However, as mentioned earlier, asynchronous circuits prove to be
more vulnerable against soft errors, therefore, considering and adressing their reliability issues
has become a critical challenge for the designers.

2.4 Reliability Concerns in ANoCs

Proceeding miniaturization has allowed digital systems to operate at ever increasing clock rates,
thus boosting their performance. At the same time the miniaturization process has made these
circuits more susceptible to faults, in particular transient faults like radiation particle hits, crossta-
lk or electromagnetic interference. These faults typically cause undesired voltage pulses of very
limited length. Since the rate of transient faults is thus in general rising, fault tolerance tech-
niques, as known from highly critical and aerospace systems, receive attention in more general
applications as well. This concerns the NoCs as well. Fault tolerance is therefore predicted to
become a crucial property in context with future technologies.

Protecting an ANoC requires fault tolerance on two axes: asynchronous communication
on global interconnects, and, the asynchronous components that constitute a router in general.
Dally and Towles [30] listed some failure modes and fault models for a typical interconnection
network. The list included transient bit errors on channels, soft errors on memory modules and
logic circuits, stuck-at faults, fail-stop faults and/or Byzantine faults. These faults, typically,
would lead to data corruption, but in the worst case, a (finite) number of flits (or packets) may
go missing, sometimes resulting in orphan flits within the network, which require a mechanism
to drop those flits, and retransmit them from the source.

In case of hard faults within the router components, and/or link break down, it is essential to
have a fault-tolerant routing algorithm that would bypass the faulty node or link, and establish an
alternate (deadlock free) path to reach the destination. Several such algorithms exist in literature
[34, 55, 59, 64–66, 101], however, in this study we do not focus on hard faults, and restrict
ourselves on soft errors on the channels, and logic circuits only. Therefore, we do not provide
any robust routing strategies in this work. Generally for a given system having a total of 6,144
channels, and a channel rate of 1010 bps, it is observed that the soft error rate (SER) on off-
chip links may be between an error every 16 seconds and two errors per month, depending
upon the reliability of channels, the bit error rate(BER) of which, may vary between 10−15 and
10−20 [30]. These figures surely indicate how essential it is to have some protection against
transient faults in the NoCs as well.

The number of ANoCs that somewhat addresses the reliabilty concerns mentioned above is
unfortunately scarce. There have been some contributions towards fault-tolerant asynchronous
communication on global interconnects [73, 98, 122], however, the only significant work that
employs fault-tolerance features both on global interconnects, as well as the fully asynchronous
router, was by Imai and Yoneda [59]. Pontes [108] has also presented schemes for hardening
different components in a GALS NoC against soft errors. We shall review a few ANoCs in

34

context of flow control in the following chapter, here we will briefly discuss some of the works
towards fault-tolerance in fully asynchronous routers and/or on global interconnects.

2.4.1 Error Control on SPL

The global interconnects are usually protected by the logic circuits, augmented on the two ends
of the communication link, working together, the so called encoder and decoder. The protection
is a three fold procedure: detection, recovery, and link shut down. The detection may easily be
done using a parity bit, but normally, a cyclic redundancy check (CRC) of sufficient length is
employed, capable of detecting multple bit errors. The recovery is normally done via retrans-
mission of the faulty flit (packet) – requesting the sender for a retransmission using a separate
retransmission request signal. Furthermore, the channels may have explicit counters that count
the number of faulty receptions on each channel. Once a certain threshold has expired, the chan-
nel must be considered as permanently faulty and shut down. In this work, we do not consider
permanent faults. The details on the error- detection and correction codes follow in Sec. 7.1.

2.4.2 Fault-Tolerance in Routing Components

Since we have decided to build the entire router using asynchronous components, it is not pos-
sible to make it fault-tolerant without considering the fault sensitivity of the elementary compo-
nents used at the lowest level in its design. Considering the input buffers for example, they not
just require their datapath (latches) to be protected (which may be done at E2E level using some
FEC schemes), the protection of their control path (formed as a Muller pipeline) is even more
essential, going to the level of an MC. An MC, having an internal storage loop, has this tendency
to make a transient fault an upset: when the inputs to the MC are at different logic levels, any
transient fault may manifest itself in the storage loop, inverting the state of the MC. Since it is
a component that is always seen in the pipelines and other critical designs, an upset in one MC
can thereby cause the entire design to malfunction, or worse, lead it to a deadlocked state.

Shi [121] presented a fault sensitivity analysis of the MC (originally done in [84]) and vari-
ous asynchronous pipelines. It was shown that the sensitivity of a 2-input MC to a transient pulse
on one of its input ports is 1/2, since out of the total of four possible states, two can respond to a
transient fault by flipping to the incorrect state. For example, if an input port of an MC receives
a short up-down pulse (↑↓) while the second input is already high, it can conveniently flip the
output state to high, however, the second input if faulty would not make a difference. Using the
same explanation, it may be concluded that the sensitivity of the Muller pipeline is the same as
that of a 2-input MC, since each stage consists of a single MC. Since the focus of our work is just
the 4-phase bundled data pipeline, we simply do not consider the sensitivities of other pipelines.
Details on the fault sensitivity of the 4-phase bundled data pipeline will follow shortly, however
it is worth mentioning that such faults can create superfluous tokens in the pipelines, or may lead
to the loss of correct tokens. In any case, it is essential to protect asynchronous pipelines.

Usually the methods used to make circuits tolerant against transient faults include various
types of redundancy. Triple Modular Redundancy (TMR) is a form of hardware redundancy, in
which the desired operation is performed by three units, and the decision is based on majority
voting [49]. Sometimes the hardware redundany causes enormous overhead, replicating mem-

35

ory units for instance. On other occasions, replication based approaches simply do not work
correctly, in nondeterministic circuits for example. We will later show such a scenario for the
TAC. Information redundancy requires that more information must be provided to the compu-
tation unit than what is adequate, i.e., it must not rely on one source of information. Temporal
redundancy requires the information to be computed multiple times. A fault in one computation
is likely to not show up in the subsequent computations. Sometimes it is essential to use a hybrid
methodology that adopts all or some of these mechanisms. In our work, we also make use of all
of these redundancies to protect the data- and control- paths, and argue which of them is the best
under given circumstances.

Asynchronous Transient Resilient Links

Ogg et al. have proposed delay insensitive communication links for ANoCs resilient against
single event transients [98]. The number of wires used to encode n data bits is 2n + 2, where
two additional bits represent a reference symbol beside dual-rail codes. For each data symbol, a
reference symbol is also generated and transmitted to the receiver, which upon reception com-
pares the two symbols. If they are found to be in-phase, the data bit is decoded as 0, and if they
are 180 degree out of phase, the bit is considered to be 1. A phase difference of 90 degree in-
dicates an invalid data, corresponding to an error. It is mentioned that a fault that occurs during
the setup time of a flip-flop on the receiver may go undetected, and operating at a frequency
beyond 1GHz, the probability of undetected faults approaches 1. The links are synthesized for
120nm technology, resulting in an area cost of 409µm2 per bit, and energy per bit of 356fJ .
The latency through the link is found to be 800ps, and a maximum operational frequency of
1.056GHz.

Fault-Tolerant DI Codes for GALS Setup

A single/double error correction with DI global communication for GALS setup has been re-
cently proposed by Lechner and Najvirt [73]. Just as was done for SpiNNaker, they have com-
bined delay insensitivity with error detection codes; what is different here is that once a fault is
detected, the receiver samples the data from the global interconnect once again rather than re-
questing a retransmission. At the output port of the node, the data to be transmitted are encoded
for error detection (parity bit or Double Error Detection Hamming codes), followed by DI en-
coding, and then submitted onto the global interconnect. Once new data are available at the input
port of a node, they are first checked for completeness, and DI decoded simultaneously. The out-
put of the completion detection circuit is responsible to generate the local clock, which stores the
decoded data in a register. After this, the error detection decoder checks for any possible faults,
generating an error signal, which, when 1, causes resampling of the input data. If the decoder
does not indicate an error, the control unit generates the acknowledgment, completing the hand-
shake protocol. It is assumed that a transient fault on the links will disappear in a finite number
of decoding cycles. The implemented circuits are mapped to UMC 90nm standard cell library.
The experiments are performed using various data widths, and a comparison, in terms of various
metrics, between 2-phase and 4-phase dual rail protocols is given. It is shown that the latencies
(encoder and decoder pair with zero wiring delays, single parity bit, and 16bit wide data) for

36

2-phase and 4-phase protocols are 1.27ns and 1.37ns for the fault free case respectively, which
increase to 1.78ns and 1.92ns for the faulty case with one time resampling respectively. The
area utilization for the two protocols in the same order is 1767µm2 and 1642µm2 respectively.

Dependable Fully Asynchronous On-Chip Networks

Imai and Yoneda have proposed a complete design of a dependable ANoC architecture [59].
Their contributions include a novel dependable routing algorithm, which is capable of detouring
a faulty link or a router by using the local fault information communicated to all the neighbors
of the faulty router. Furthermore, the algorithm analyzes the traffic on all the links of imme-
diate neighbor nodes to adaptively choose the next hop. The routers are based on transition
signaling internally, and are protected against SETs mostly through duplicated logic. The links
are LEDR encoded, and a novel time-out mechanism is proposed to detect permanent faults on
them. The elegant design is accompanied with an in depth evaluation: Four designs are im-
plemented for 130nm technology, including a non fault-tolerant asynchronous design and its
synchronous equivalent, and two fault-tolerant versions, first with duplicated control-path, and
the other with the data-path duplicated as well. SETs of length up to 5ns are randomly injected
with a constant rate of 1x10−10 per µm2.ns with flits injected at 0.067flits/ns/node. It is
shown that the synchronous design costs the smallest area and latency, with a failure rate of
2.86, better than the two asynchronous designs in almost every aspect (except for the failure rate
which is almost the same as the asynchronous version with only duplicated control). The fully
duplicated asynchronous version reduces the failure rate to 0.897 with a tremendous area and
latency penalties (area reaching almost three times than the unprotected designs, and two times
in latency) making it an infeasible option.

A few loop holes that we could identify in their work includes: 1) the global interconnects are
not protected against transient faults, hence there is no retransmission mechanism provided, 2)
the authors have correctly pointed out that the arbiters are such circuits that cannot be protected
by hardware duplication, but the solution they have provided is also not bullet proof. They
have simply duplicated the input requests that are joined using a single MC, making it a single
point of failure. In our work, Ch. 6 we will demonstrate a step-by-step design of an arbiter
that guarantees elimination of all single point of failures, the performance, however, is slightly
compromised.

2.5 Major Contributions of this Work

We have identified some outstanding issues in ANoCs especially within the control path that
either have not been sufficiently addressed in the available literature, or have been historically
misunderstood. In the next chapter after presenting the design of our own asynchronous router
with VC support, we formally describe the requirements of building a functionally correct flow
control mechanism, and point out a deficiency in a widely adopted scheme. We conclude the
chapter by proposing and evaluating our own flow control mechanism that fulfills all the require-
ments that we had pointed out in our framework earlier in the same chapter.

37

Other than the flow control mechanism, we also propose a novel high speed switch controller
(arbitration circuit) to support our router. The proposed arbiter makes use of internal pipelining,
which allows other clients to resolve the next winner (the one who accesses the output port) while
the current is still accessing the shared resource. This significantly improves the throughput of
the router, as shall be presented in the fourth chapter.

The remainder of the thesis is strictly dedicated to addressing some of the fault tolerance is-
sues within the ANoCs. Broadly, fig. 2.18 depicts all the major areas that we want to emphasize
on in this work. We begin with the protection of the control path for the input buffers in the fifth
chapter, where we present a systematic approach to harden the 4-phase handshake controller.
Unlike the conventional approaches of duplication, we are specifically concerned about resolv-
ing all single points of failure, and make use of model checking to verify the correctness of our
approach.

While a switch comprises of several relatively simpler asynchronous components, such as
mux and demux that can be protected using replication methods, we rather concentrate on hard-
ening the switch controller, which is a nondeterministic circuit, and cannot be protected using
replication. Hardening an arbiter is another topic widely misunderstood; in our work we not
just point out problems with a few existing solutions in this respect, but also present a step-
by-step hardening methodology for its protection against soft errors that once again guarantees
elimination of all single points of failure. This is covered in chapter 6.

Although the payload (data traversing the SPL) may easily be protected using any E2E FEC
scheme, in chapter 7 however, we propose a simple error detection with retransmission method
that suits our ANoC. Our approach is based on the double error detection (DED) algorithm,
but we aim to improve its performance by avoiding unnecessary retransmissions, leading to a
simple, yet an effective methodology.

In chapter 8, we build the complete FT switch, compatible with all the individual FT com-
ponents discussed above, before we conclude the thesis in chapter 9.

38

CHAPTER 3
The Baseline NoC Design

The design of a novel ANoC is presented in this chapter. We specifically emphasize on three
important aspects: 1) Designing a fully asynchronous router with VC support, 2) elaborating a
generic framework to formulate requirements for building a correct VC flow control mechanism
for ANoCs, and 3) proposing our own flow control scheme. Before we proceed with those
however, in the next section we overview some of the distinguished relevant works available in
literature.

3.1 Related Work

One of the earliest contributions to ANoCs was the QoS router proposed in [42]. It employed the
4-phase handshake protocol and 1-of-4 data encoding. The data bus was 32 bits wide, and the
packet format, having an end of packet symbol, allowed variable sized packets to be transmitted.
The NoC adopted the deterministic, source encoded routing algorithm, with the credit-based
flow control mechanism [30] to avoid blocking the SPL. The sender maintained a count of the
flits transmitted on each VC in a dedicated counter that was decremented upon submission of a
flit to the scheduler, and incremented once a credit was received from the receiver. If the counter
reached zero, the specific channel remained blocked. Dedicated wires were used to transport
credits for each channel. The latter were arbitrated by means of a static priority arbiter (SPA),
which would allow one channel (having the highest priority) to block the rest indefinitely. Thus
each output port of the router provided QoS to one channel, and considered the rest to carry only
the best-effort (BE) traffic (for which there were no hard guarantees).

FAUST [10], [11] also employed the 4-phase, 1-of-4 encoding, with source routing, and
wormhole packet switching. It supported two service levels (SLs): real-time (RT) and BE, and
the backpressure was controlled with the acknowledgment signal of the handshake protocol.
Although the RT traffic could preempt the BE one, but this was one example where the concept
of flow control had been misused: The SPL could be blocked indefinitely [37] until the receiver
had consumed the token.

39

The authors of [115] proposed the QNoC asynchronous router that also made use of 4-
phase handshaking with 1-of-4 encoding, wormhole packet switching, and provided four SLs.
A specific SL could acquire the SPL only if there was a free space available with the receiver.
Hence, a separate free space indication (FSI) signal was required for each SL. The receiver
employed a Muller pipeline, and the control signals associated with the first two stages were
used to compute the FSI signal. The same authors in [38], [36] modified the QNoC to support
multiple VCs per SL. However, none of their designs provided SI flow control; they had to make
some stringent timing assumptions on the FSI signal [89].

Bjerregaard [15] proposed the MANGO architecture. The router was built having two sub-
routers: one dedicated to guaranteed services (GS) traffic, and the other for the BE. The design
adopted the wormhole packet switching, where each header flit traversed the BE router, and
programmed the GS router (using the routing information) on every hop. This way the following
body flits would always find a path already established, just as in the case of circuit switching.
The handshaking was done using the 4-phase bundled protocol. In one of the other works [16],
the same authors proposed a supporting scheduling algorithm to guarantee QoS in the MANGO
architecture. Furthermore, the same authors proposed two VC access control schemes [14]; a
brief overview of each of those is as follows.

In the first method, called share-unshare, a single token was circulated between sender and
receiver per VC by means of an unlock wire: the latter toggled once every flit reception, i.e.,
only when the output handshake cycle completed. This generated a small pulse at the sender
side, which allowed the share-box to complete the handshake cycle at the input, followed by
placing another token onto the shared media. The authors acknowledged that in case of a single
eager VC the bandwidth utilization was poor due to the long handshake cycle spanning the share
and unshare boxes, shared media, and the unlock wire. Furthermore, the scheme scaled badly
(same as for [42], [115]) with the number of VCs, since each of them needed an independent
unlock signal [15]. However, one transition per flit reception on a single unlock wire made the
scheme extremely energy efficient.

The other scheme that the authors proposed in [15] was an efficient credit-based flow control
mechanism, in which the sender maintained a credit FIFO in the credit box, which lost a credit
with every submission of a flit to the scheduler. The credits returned to the sender as soon as the
flits left the uncredit box at the receiver side. This flow of credits still maintained the handshake
protocol, requiring two wires per VC, which turned out to be even worse in scaling as compared
to the previous approaches. The authors proposed to merge the credit links for all the VCs on
to a single shared credit channel, which reduced the number of wires spanning between the two
communicating nodes.

3.2 Baseline Router Design

Note that most of the ANoCs presented above have a certain features in common, such as, worm-
hole packet switching in which the header flit containing the routing information encoded by the
source node reserves a path towards the target node, and the body flits simply progress with-
out having to wait on every hop. Because of its simplicity, efficiency, and smaller input buffer
requirements, the wormhole packet switching technique has become the standard in ANoC ar-

40

chitectures. The best suited routing algorithm for this packet switching approach is the deter-
ministic XY-routing, since it tends to keep the packet latency minimal (obviously having a few
drawbacks as well). Moreover, all the NoCs made use of VCs with a flow control mechanism
to provide GS to a certain class of traffic. Finally the topology that each ANoC adopted was the
2D mesh of routers due its symmetric and easily scalable structure.

To be able to compare our architecture with the existing solutions, we have also decided to
stick to the same features with 4x4 routers arranged in a 2D mesh. The only difference between
our work and the existing solutions is that we argue about the number of VCs to employ con-
sidering their overhead on area, and complexity of the switch and the VC allocation controllers.
A router may have a miximum of five IO ports: east (towards right), west (towards left), north
(upwards), south (downwards), and local (connected to the PE). We assume that the NI divides
a packet into two or more flits, the first of which is always a header flit containing the routing
information. There can be three types of a flit, header, body and tail. Table 3.1 presents the
chosen flit- size and format for all the flit types. The two little-endian, most significant bits
(MSBs) indicate the type of flit. ’00’ represents a header flit, ’11’ is reserved for a tail flit,
and ’01’ and ’10’ for the body flits. Since we keep an explicit specifier for the tail flit, we do
not need an extra adder to count the number of flits that have arrived. In addition, this gives a
flexibility to transmit and receive packets of variable sizes, just like the QoS router [42]. The
addressing scheme that we have adopted is influenced by MANGO [14], in which each pair of
bits, starting from 31 down to 0, in the header flit, indicates the next hop; and thus each pair
needs to be removed/rotated on every hop so that the next pair can indicate the next subsequent
hop. For instance in Table 1(A), ’00’ at positions 31:30 tells the switch that the incoming data
has to be directed to east. Therefore, ’00’ after being written into the destination latch, must be
rotated, thus bringing ’10’ at its positions. Subsequently, at the next hop, the switch will direct
the incoming data to north corresponding to the pair ’10’. In the same manner, ’01’ corresponds
to the west output port, and ’11’ to the south. If the next hop is identical to the input port, then
the packet is assumed to be directed to the PE; therefore, backtracking [66] is not supported.

Fig. 3.1 presents the block diagram of our router. Primarily, the overall design is divided
into two parts: An Input Handler (IH) and an Output Generator (OG) per input port and output
port respectively. The former is responsible for capturing input data, and switching them to
the appropriate OG. On the other hand, the latter comprises an arbiter module for each output
port, which is reserved with an incoming request from the corresponding IH. Once the requested
arbiter is reserved, the OG guides the incoming data to the appropriate output port. Note that
this setup only corresponds to one input-output (I/O) port. The same needs to be replicated for
each IO port. In the following we briefly describe the submodules building IH and OH.

3.2.1 IH – Flit Categorization Logic (FCL)

As explained above, the two MSBs indicate the type of the incoming flit. Depending upon the
type, the flit has to be directed to the appropriate unit. The Flit Categorization Logic (FCL) is
responsible to: i) identify the flit, ii) report its type to the Input Controller (ICON), and iii) guide
it to the output handler through DeBS, which only operates on header flits.

41

Table 3.1: Packet Format and Size: (a) Header Flit, (b) Tail Flit, (c) Body Flit

1 1 1 0 ... 0 1 0 0 0 0
Bit-0 1 2 3 ... 28 29 30 31 32 33
Dest-16 Dest-15 ... Dest-2 Dest-1 Flit-Type

(a)
1 0 0 0 ... 0 0 1 0 1 1

Bit-0 1 2 3 ... 28 29 30 31 32 33
Payload Flit-Type

(b)
0 0 0 0 ... 0 0 1 0 1 0

Bit-0 1 2 3 ... 28 29 30 31 32 33
Payload Flit-Type

(c)

Hr
Ha

Tr
Ta

FCL

ICON

Crossbar

Inut Handler
Output Generator

From Other
Input Ports

To_
Arbiter

Arbiter
From_

DeBS

Switch
Controller

or

Logic
ArbitrationC

S

E

L

ack_in

rin

data
ack_out
data

rout

From Other Input Ports

Figure 3.1: Block Diagram of the Async Router

42

Hr+

From_Arbiter+

Ha+

Ha−

Hr−

To_Arbiter+

Tr+

Ta+

Tr−

To_Arbiter−

From_Arbiter−

Ta−

Figure 3.2: STG of ICON

3.2.2 IH – Destination Bits Shifter (DeBS)

The DeBS module is responsible to rotate the bits 31:30 of the header flit to the least significant
bit (LSB) places, so that the new pair at places 31:30 indicates the output port of the succeeding
node.

3.2.3 IH – Destination Bits Latch

Since the header flit is the only flit to have the destination bits, these bits need to be stored in a
latch until the tail flit has been switched, and the other resources released. This latch is made
a part of the crossbar, and is enabled with the grant coming from the associated arbiter to the
ICON, i.e., once an arbiter is acquired, the destination bits may be safely latched, and reset as
soon as the arbiter has been released.

3.2.4 IH – Input CONtroller (ICON)

Two important functionalities that ICON is made to perform are: 1) on-demand reservation of the
arbiter associated with each output port, 2) generating the latch-enable signal for the destination
latch. The ICON has been modeled as an STG in Workcraft [107] and synthesized using Petrify
[28]. In fig. 3.2 we have presented its STG along with explanation of the variables used in
Table 3.2. Its gate level schematic is presented in fig. 3.3. Following is the brief description of
its operation.

At the arrival of the header flit, a request is raised and sent to the ICON, so as indicated
by Hr+ in the STG. The arrival of the header flit must be followed by the reservation of the
arbiter. As a result, a request is sent to the arbiter associated with the target output port. This is
indicated by To_arbiter+. Once the grant from the arbiter is received, From_arbiter+, the
destination bits must be latched. The body and tail flits proceed similarly except for the release

43

Hr

Ha

Tr

Ta

FCL

To_
Arbiter

Arbiter
From_

Hr

Ha

Ta

Tr

(a) (b)

From_Arbiter

To_Arbiter

Figure 3.3: Schematic of ICON

Table 3.2: Variables used in fig. 3.1

Signal Input/Output Explanation
Hr Input request signal from the header flit
Tr Input request signal from the tail flit

From_Arbiter Input grant/ack signal from the arbiters
To_Arbiter Output req signal to the arbiters

Ha Output ack signal to the header flit
Ta Output ack signal to the last/tail flit

of the arbiter, which happens with the tail flit. This is done by lowering the request to the arbiter,
To_arbiter−, on receiving Tr− from the FCL.

3.2.5 IH – Crossbar

The crossbar is implemented as a set of demuxs. Each input port is connected to one of the
demuxs, which is controlled by a destination latch, write-enabled by its corresponding ICON.
Each output signal of the crossbar submits the bundled data to exactly one of the OGs in such
a way that the data (without control) reach the select module directly, while the output request
signal goes through an MC where it is joined with the To_Arbiter signal from the ICON. The
MC ensures that only one OG must be active for a given incoming packet.

3.2.6 OG – Output Port Arbiter

Each output port is equipped with an arbiter, which receives requests from all the input ports
that may access that specific output port. For example, considering XY-routing, the East output
port may only be accessed either by the West input port or the local PE. Therefore, a 2-way
arbiter shall suffice. In contrast to this, the North, South, and local output ports require 4-way
arbiters since all the input ports are allowed to access these ports. There are various designs
of arbitration mechanisms available in literature; throughout this work, we have made use of

44

TACs, the design and description of which shall follow in the chapters to come. As far as its
operation is concerned, all that an arbiter does is that it ensures exactly one winner (giving grant
to just one IH out of all those requesting to the common output port), even if it receives several
simultaneous requests. It may take quite long in reaching its decision though.

3.2.7 OG – Select/Merge

Once an IH has received the grant from the arbiter, it asserts a request signal with bundled
payload going to the select module. The select module is the merge module presented in the
background chapter. Recall that it requires only one active request at a time, which is already
guaranteed by the arbiter discussed above. Therefore, the data with the active request make their
way through to the output port.

3.2.8 Summary of Operation

Fig. 3.4 depicts the flow of a flit arriving at the Local input port through the router. The input
request signal of an incoming packet (initiated with a header flit, on any input port) goes to the
ICON through FCL, as well as to the switch. The latter guides the data towards its intended
output port, and the ICON simultaneously sets the request to reserve the arbiter for that port.
Upon acquisition of the arbiter, data propagate to the desired output port through a select module.
Note that the allocation of a switch is done on per packet basis, i.e., until and unless a packet has
completely traversed through the router, it keeps the switch locked. Had this not been the case,
the flits belonging to different packets (from different input ports, willing to follow different
paths on subsequent nodes, etc) could easily interleave, thereby requiring even more complex
strategies to distinguish and reorder them on the receiving routers. Our scheme does bring
forth a drawback in that if the packet currently in possession of the switch (output port in other
words) fails to make progress, all others waiting for their turn, would in a way starve, causing the
congestion to go upstream (path that led the packets to this node). As a remedy, we incorporate
a few VCs and input/output (IO) buffers in our router.

3.3 Virtual Channel Design

Historically VCs have been used to serve multiple purposes: On one occasion, designers have
used them to reduce the latency of the network by hopping over a few intermediate nodes [67,
69–71], on other occasions employed them to achieve fault tolerance [17, 20, 75, 147]. Mostly
however, they are used to by-pass the slowly progressing packets on the SPL that would other-
wise lead to extended delays, causing traffic congestion on the upstream as mentioned above,
and even deadlocks on some occasions [1,9,30,153]. Just as their utility, the number of VCs per
node, and their allocation are the designer’s choice. In what follows, we describe and justify our
methodology.

45

(4
:1

)

SEL

(4
:1

)

SEL

C

C

L
atch

CCCC

en

D
eB

S

In
p

u
t P

o
rts

F
ro

m
 o

th
er

A
rb

iter
S

o
u

th

(4
:1

)

N
o

rth
A

rb
iter

W
est

A
rb

iter

E
ast

A
rb

iter

IC
O

N
F

C
L

D
eM

u
x

S
w

itch

SELSEL

(2
:1

)

(2
:1

)

S
o

u
th

N
o

rth

W
est

E
ast

ainrin

In
p
u

t P
o
rt

L
o

cal

D
ata

(2
:1

)

(2
:1

)

(4
:1

)
S

o
u

th

E
ast

W
est

N
o

rth

H
r

H
a

T
r

T
a

T
o

 A
rb

iter
A

rb
iter

F
ro

m

Figure 3.4: Traversal of a flit on Local input port

46

3.3.1 Number of VCs per IO Port

As mentioned previously, it is up to the designer to choose an appropriate number of VCs per
IO port. However it must be considered that the more VCs, the higher shall be the area cost,
the more complex the arbiters1 shall be, which allow each VC to access the SPL, and the higher
shall be the average packet latency since flits from different packets are to be time multiplexed
on the SPL. In short, the choice of the number of VCs per IO port must be kept reasonable, and
justified.

The routing algorithm may suggest the number of VCs to be employed, e.g., in the XY-
routing algorithm, since turns from y-axis to x-axis are forbidden, the number of packets con-
testing for the y-direction will always be greater than those contesting for the x-direction. This
suggests that the number of VCs in the two directions needs not be the same. However, which
of the two directions must be given more number of VCs, once again depends upon the re-
quirements of the design, and somewhat on the topology as well. We will keep our discussion
restricted to 2D mesh of 4x4 nodes. One thing that is certain for now is that the network must be
built generic: Assuming that the computing resource is neither capable of processing multiple
incoming packets, nor can it generate multiple packets at a time, the local IO port will always
have a single VC support.

Now consider the network presented in fig. 3.5. The routers at positions (1,1), (1,2), (2,1),
and (2,2) have the maximum connectivity, i.e., five IO ports. On the other hand, the routers in the
corners, i.e., (0,0), (1,3), (3,0), and (3,3) have the minimum connectivity of three, and the others
have the medium connectivity of four. Beginning with the simplest, say (0,0), the north input
port can only access the local output port capable of handling only one packet at a time. This
means that the north input port may not need more than a single VC. By the same definition,
the east input port must have at least two VCs since it has access to both local and north output
ports. Applying the same method on node (1,0) would suggest that there must be two VCs on
the south input port, and so on. Addressing the same for the west input port of (0,1) raises an
important issue though: it requires three VCs to provide access to east, north, and local output
ports, implying three VCs on the east output port of (0,0). However, note that the only source
driving these VCs is the local input port of (0,0). Since it can only submit one packet on the
network at a time, only one VC on the east output port will be used, hence this leads to wastage
of resources. In order to keep the resources minimal, each node in the network must be analyzed
and built separately with different VC requirements considering the number of sources feeding
them, as well as the number of output ports they are going to feed on the neighbor tile. Fig. 3.6
depicts our methodology for the 4x4 network.

It is obvious that there may be several other solutions, and arguments in their support. All we
have done is that we have employed minimal number of VCs that satisfy our criterion, i.e., every
input port must always find an available virtual channel on its desired output port. Consider the
node (2,2) for illustration: It is equipped with just one east input VC, since the local input of
(2,3) is the only one to access it. It has two VCs on north input port since there are only two
output ports that it can drive, local and south. The west input port has two VCs, since there are

1These arbiters are not the same as were used for switch allocation. Although the two functionalities may be
performed together, but only at the cost of complexity of each arbiter, and the switch allocation would become even
more complicated, as shall be highlighted in the next subsection.

47

PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

Figure 3.5: 4x4 2D mesh of routers

only two sources that can feed them, local port of (2,0) and local port of (2,1). Similarly, two
VCs on south input port suggest that there are only two possible routes, local and north output
ports. Similarly, all other nodes are built using the same aproach. In the next section we describe
how the VCs are allocated to incoming packets, and the modifications necessary in each node to
support their allocation.

3.3.2 Allocation of VCs

The foremost reason to employ VCs in our router was to ensure that no slowly progressing
packet blocked the SPL indefinitely. This means each VC may only access the SPL for a limited
time, and then wait for its next turn while the other VCs access it. Since there is no notion of
time available in asynchronous design, the allocation of the SPL to each VC may rather be done
on per flit basis. Therefore, each flit must acquire an arbiter, traverse the SPL, and release the
arbiter subsequently. In such situations round robin arbitration is usually employed [14, 15],
which guarantees fair allocation of channel bandwidth among the contenders.

From the previous discussion, it builds that the number of VCs between the output and
input ports of a communicating pair of routers is the same, i.e., if the node (0,0) has two output

48

W1
W2

E

S
N

S
L

N
S

N
L

EN

EL
ES

N

S
S

S
L

EW

LW

L
L

(2,2)

Figure 3.6: Minimal requirements in terms of VCs per routing node

VCs on its north port, then the node (1,0) has the same number of input VCs on its south port,
for example. This makes the input VC allocation quite simple to implement: whenever a flit
traverses the SPL, a bit called VC-identifier is appended on it, which informs the receiver about
the VC it belongs to – a demux does this job conveniently. The allocation of the output VC on
the other hand, is somewhat more complicated, and requires considering three scenarios:

1. If the number of VCs on an output port is the same as the sources that can feed them, then
it does not matter how slow each packet progresses. For example, the two output VCs on
north port on tile (0,0) are driven exactly by two sources, even if one of them is too slow
to progress, the other will still get access to the free VC. Therefore, one-to-one mapping
in those cases works perfectly.

2. If the number of VCs on an output port is smaller than the input ports willing to access
them, then slow and/or blocked packets must not be allowed to retain all the VCs indef-
initely. To resolve this matter to some extent, we define a rule that the packets that are
directed towards the same output port on the next hop, must be transferred one after the
other on the same VC. For example, if packets from local and east input ports on (3,2)
wish to access the south port of (2,2), then both of them will be allocated the same output
VC on (3,2), leaving the second VC available for the west input port in case it wanted to
access the local port on (2,2). Therefore it is required to read the four bits (31:28) of each
packet to be able to direct it to an appropriate output VC: the bits (31:30), as before, are
needed for switching, the next two bits (they must not be rotated through DeBS) are used
for VC allocation.

49

W1 W2 SN SL L E NS NL

EN EL ES N SS SL L EW LW

Output Generators

Input Handlers

Figure 3.7: Connections needed on node (2,2) shown in fig. 3.6

3. If 1. holds on any node (n,m), and the VCs associated with one output port drive a larger
number of output VCs on a neighbor tile (n,m+1) or (n,m-1), then (n,m) does not use the
rule defined in 2. to perform VC allocation. Instead, any output VC can carry packets for
any direction on the neighbor tile. For example, the east output port of node (2,1) has two
VCs, and it may access the output port in any direction on (2,2). By following this rule
(each output VC can carry packets for any direction), we increase the complexity of the
output VC arbiters on (2,2), but we ensure that no output VC on (2,1) remains idle, which
could have been the case with rule 2.

Summing everything up, our scheme has some pros and cons: Sticking to the same analogy,
if the west input port on (3,2) is simply not active, we still allocate the packets on east and local
ports on the same VC, which leads to under utilization of the available resources. However,
this ensures that a slow south output port on (2,2) (that may be connected to a slow computing
resource, such as a memory controller) does not cause contention upstream, since data from the
third input port on (3,2) will always find a VC available that it may use to reach the local port
of (2,2), and so on. Another benefit of our scheme is described next. On tile (2,2), now we

50

know that data arriving on one VC on north input port is always directed towards south, and that
arriving on the other VC tends to go to the local output port, the arbiter on the local output port,
for example, needs only be made 5-way (supporting two VCs for the west, and one VC for each
of the other input ports) instead of supporting eight VCs in total. The type of allocation in which
an input VC is always assigned the same output VC is termed as static, whereas, the output
VC allocation, which requires information embedded within the header flits, is called dynamic
VC allocation. Fig. 3.7 presents the possible mapping of input VCs on to the output VCs on
node (2,2). It is clear that our approach reduces the number of VC connections (31 connections
instead of 58 that would be needed if each input VC could access all output VCs) significantly
because of static allocation between several IO ports. All the nodes having smaller connectivity
than (2,2), will have even smaller number of VC mappings, thereby further reducing the switch
complexity.

Note that evaluating our VC allocation scheme, in terms of efficiency against overhead, is
not a part of this work. In what follows, we describe a framework that prescribes the minimum
requirements of buiding a safe VC access control mechanism to avoid blocking the SPL.

3.4 Classification of the Access Control Schemes

In the virtual channel flow control paradigm, several data transfers share one common SPL,
dividing the available bandwidth by multiplexed access through an arbitration scheme. As shown
in fig. 2.21, handshaking is performed between any two neighboring blocks along the message
path: data producer / sender / funnel / horn / receiver / data consumer. The proper planning of
these handshakes is one problem we want to address. From the view of the SPL the procedure
works as follows: A rising edge of the request wire at the funnel’s interface denotes a request of
a VC for exclusive use of the SPL to transmit a flit. This starts arbitration between competing
requests from other VCs. Once the SPL has been allocated and the flit was transmitted, the
funnel raises the acknowledgement wire. With the falling transition of the request wire, the VC
frees the SPL. The interface to the SPL at the receiving end also expects a full handshake cycle
for each transmitted flit. Therefore, a flit is only considered delivered when both the request and
acknowledgement wires return to low.

3.4.1 VC Controllers

Recall that implementing a correct VC flow control mechanism requires the producer and con-
sumer to be properly decoupled from the SPL (Sec. 2.2.4). We will derive constraints on the
controllers that must be fulfilled in order to truly decouple producers and consumers from the
SPL while still generating an appropriate sequence of events for guiding the data flow through
the latches without loss or corruption of data. For doing this we will use state graphs (SGs) and
STGs to describe handshake controllers to be used in the sender and receiver circuits.

SGs with all but the request and acknowledgement signals hidden were shown to elegantly
describe handshake controllers and allow their systematic classification [13,142]. In the follow-
ing, we will use the same structure for SGs as the authors of [142], depicted in fig. 3.8. State
transitions on the horizontal axis correspond to events on the left (L) hand interface (of any

51

La+ Lr− La− Lr+ La+ Lr− La− Lr+ La+ Lr− La− Lr+

Rr+

Ra+

Rr−

Ra−

(a) (b)

Figure 3.8: The maximally concurrent controller: (a) SG, (b) Simplified SG

block along the message path) while transitions on the vertical axis correspond to events on its
right (R) hand interface. Starting from the initial state, at both interfaces the transitions are in
the (repeating) sequence r+, a+, r− and a− corresponding to the 4-phase protocol. Note that
the transition Ra− wraps around the SG – the resulting state upon the firing of this transition is
in the top row, shifted four columns to the left.

STGs, in comparison to SGs, clearly depict the causal dependencies of signal transitions
and are well established for description of asynchronous control circuits. However, it is not so
simple to abstract away internal signals (such as the signal controlling the latch in a handshake
controller). As a consequence, STGs usually imply implementation details. In the figures, edges
in STGs that restrict input signals and thus represent an assumption about the environment, will
be drawn with dashed lines.

As a starting point for our discussions, fig. 3.8(a) shows the state graph of the maximally
concurrent handshake controller with storage for one data word (one latch), referred to as max
in [142] and in the rest of this chapter. Fig. 3.8(b) shows the simplified representation of the same
with all edges removed, and fig. 3.9 shows the corresponding STG. By maximally concurrent
we mean that as soon as the left hand interface receives an input request and data are latched,
the two interfaces may handshake with their respective environments independent of each other.
While adding concurrency to this controller would result in violating the protocol and therefore
loss of data/synchronization, there are several ways to reduce concurrency – either by removing
reachable states from the SG (“cutting” states) or adding edges in the STG – deriving optimized
controllers respecting the 4-phase handshake protocol. To keep the shape of the simplified SG
representation constant, states of max that are not reachable in a less concurrent handshake
controller are replaced by dots (see e.g. fig. 3.10).

The green (shaded) bars in fig. 3.10(a) denote when data are stable at the input (vertical bar)
and when data are expected to be stable at the output (horizontal bar). We can now make the
following important observation: If a handshake controller only allows crossing the horizontal
bar within the vertical bar, this implies that data will not be removed from the input before they
have been safely consumed on the output side. Thus there is no need for storing them. The
handshake controller depicted in fig. 3.10(a), is thus the most concurrent one which allows a
direct connection of the data wires from the left interface to the right without the need for a
latch. It corresponds to the STG in fig. 3.10(b), where an edge was added from L− to La+ in
max allowing the latch (and its control signal L) to be optimized away completely. We will call

52

Lr+

La+

Lr−

La−

Rr+

Ra+

Rr−

Ra−

L+

L−

Figure 3.9: STG of the maximally concurrent controller

Lr+

La+

Lr−

La−

Rr+

Ra+

Rr−

Ra−

L+

L−

(a) (b)

Figure 3.10: Maximally concurrent bufferless controller: (a) SG, (b) STG

subsets of these protocols bufferless.
As a further observation, the handshake controller that has all concurrency removed can be

implemented with a wired connection of the request and acknowledgement wires respectively.

3.4.2 Decoupled producer

To prevent a producer from stalling the SPL by not lowering its request, we need a handshake
controller in the sender, that allows arbitrarily slow producers, yet completes the handshake
with the funnel immediately after the latter raises the acknowledgement. In the STG of a sender
fulfilling this requirement, the handshake on the right interface must be allowed to finish without
any dependencies on transitions on the left interface after it has started withRr+; Rr− shall not
have an incoming edge other than the one from Ra+. We can see, that max has this behavior. In
the SG, the right interface (vertical) must be allowed to complete once the request is generated,
without any transitions on the left interface (horizontal). Note that this also allows bufferless
controllers to be used. They may, however, only remove additional states from the right of the
maximally concurrent bufferless controller – a wired connection of all signals is not sufficient.

3.4.3 Decoupled consumer

To protect the SPL from slow consumers, we require that once the horn issues a request with
a new flit, the handshake must complete without any actions from the consumer. The receiver
will thus have a similar restriction on its STG as the sender – transitions on the left interface

53

Lr+

La+

Lr−

La−

Rr+

Ra+

Rr−

Ra−

L+

L−

(a) (b)

Figure 3.11: Decoupling of the consumer: (a) SG, (b) STG

must not depend on any transitions on the right interface. This is, however, somewhat more
intricate to fulfill, since removing dependencies of La+ on the state of the latch or consumer
would inevitably lead to loss of data, since the acknowledgement of flits would no longer depend
on them being properly stored or consumed.

An examination of the STG of max reveals that La+ is dependent on L+, which in turn is
dependent on the consumer through L−; unless a stored flit is consumed, the latch cannot store
a new one. Since the most possible amount of concurrency for a handshake controller does not
provide decoupling of the consumer, it is clear that concurrency must be restricted by adding a
new edge to the STG. The only possibility to restrict the left interface without losing the behavior
required for decoupling is to restrict when the Lr+ transition may occur – only after the flit in
the latch has been consumed. Fig. 3.11(b) depicts the resulting STG.

In the SG of max, a similar observation can be made. Once a request on the left interface is
received, the handshake must be allowed to complete without any action on the right interface.
This means that for each reachable state, all states to the right until the boundary to a new
handshake cycle (just before the Lr+) must be reachable. Fig. 3.11(a) depicts the SG of the
most concurrent controller for the decoupling of the consumer. It is also corresponding to the
STG in fig. 3.11(b).

In both the STG and SG it can be observed that, since Lr+ is an input, an assumption about
the environment was necessary to achieve decoupling of the consumer. In [142], such controllers
are called timed. However, this assumption cannot be implemented by modifying system timing.
If it were a timing assumption, it would not allow backpressure, i.e. a slower consumer than the
producer. This would however somehow defeat the purpose of VC schemes. Since we do allow
the consumer to stall for arbitrarily long times and we do not want to restrict the transmission
speed of the producer other than by back-pressure, the assumption when a new request (flit) may
arrive at the receiver must be enforced by a circuit. This is the task of what is generally known
as flow control.

Furthermore, it can be observed that bufferless handshake controllers cannot be used for
decoupling the consumer. It is thus apparent, that the main purpose of latches in VC receivers is
not to serve as a FIFO storage for incoming flits, even though they obviously do. Their primary
purpose, however, is to allow decoupling. When there is a requirement for more storage in the
receiver, it should be placed between the receiver and the consumer and not become part of the
receiver, where it increases the overhead of flow control schemes.

54

LrS+

LaS+

LrS−

LaS−

RrS+

RaS+

RrS−

RaS−

LS+

LS−

LrR+

LaR+

LrR−

LaR−

RrR+

RaR+

RrR−

RaR−

LR+

LR−

Figure 3.12: STG showing dependencies in a VC

3.5 Flow control schemes

In this section we will analyze two most widely adopted SI flow control schemes with respect
to the requirements prescribed above. In order to change the assumption in the receiver to a
real dependency enforced by the implementation, first we must consider both the sender and the
receiver connected over the SPL. The sender’s right interface performs its handshake with the
funnel and the receiver’s left interface with the horn. Depending on the SPL implementation,
the handshakes can be independent of each other. However, there is one real causal dependency
between the two – the Lr input at the receiver only goes high when Rr at the sender went high.
It is even more obvious when stated more informally – a flit can only be received once it has
been sent. Considering the STGs of the sender and receiver, we can thus add an edge fromRrS+
to LrR+, the indexes S and R used to distinguish between signals at the sender and receiver,
respectively. To remove the assumption made about the LrR+ input, we can now move the
required edge LR− → LrR+ to the causally preceding RrS+. Fig. 3.12 depicts the resulting
STG with both the sender and receiver being maximally concurrent as discussed in the previous
section.

It should be noted that flow control establishes a communication path between the sender and
the receiver of each VC in a link. If a shared media is also used for these backwards paths like
in [15], the same requirements hold as for the data path in the forward direction. In particular,
proper decoupling is required.

Out of the two flow control mechanisms, conceptually the share-unshare scheme introduced
in [15] is much simpler. It directly corresponds to the STG in fig. 3.12. The idea is to let one
flow control token be exchanged between the sender and the receiver (on the RrS+ → LrR+
and LR− → RrS+ edges) corresponding to a flit being sent and an event on a flow control wire.
Since both edges are safe – the reception of the event is “acknowledged” by the next request,
if the event is implemented with a single transition (2-phase handshake) – this scheme really
requires only a single additional wire for flow control, even for delay insensitive links.

Having formalized the requirements on circuits for true decoupling in the previous section,
we are now able to verify the chosen implementation for the share-unshare scheme in [15]. Both
STG and SG of the handshake controller implemented in the sharebox (sender) are depicted
in fig. 3.13. Flow control is implemented by delaying Lr+ of the handshake controller until
the flow control token from the unsharebox is available. This is depicted with the unconnected
green edge in the STG and the green arrow in the SG. As can be seen, the requirement for proper

55

Lr+

La+

Lr−

La−

Rr+

Ra+

Rr−

Ra−

(a) (b)

Figure 3.13: The sharebox from [15]: (a) SG, (b) STG

Lr+

La+

Lr−

La−

Rr+

Ra+

Rr−

Ra−

(a) (b)

Figure 3.14: The unsharebox from [15]: (a) SG, (b) STG

LrS+

LaS+

LrS−

LaS−

RrS+

RaS+

RrS−

RaS−

LS+

LS−

LrR+

LaR+

LrR−

LaR−

RrR+

RaR+

RrR−

RaR−

LR+

LR−

Figure 3.15: STG of a credit-uncredit scheme with two credits

decoupling of the producer from the funnel is met.
The descriptions of the unsharebox (receiver) are depicted in fig. 3.14. Here, flow control

is implemented by issuing a transition on the unlock wire with the falling edge of Ra, again
depicted with the unconnected edge in the STG and the green dashed line in the SG marking
the transition which causes the flow control token to be returned. The crossed states represent
states allowed by the handshake controller implementation, however not reachable due to flow
control. It can now be seen that in both representations the requirement is not met – in the STG
La− is dependent on Ra+, in the SG, a state is missing in the second row on the right (circled).
This means that this implementation, connected to an SPL without decoupling on its own, would
allow a single consumer to block the whole SPL.

The next scheme to be discussed is the credit-uncredit scheme, also proposed in [15]. Here

56

Figure 3.16: SG of the receiver for a credit-uncredit scheme with two credits

Lr+

La+

Lr−

La−

Rr+

Ra+

Rr−

Ra−

(a) (b)

Figure 3.17: The creditbox from [15]: (a) SG, (b) STG

Lr+

La+

Lr−

La−

Rr+

Ra+

Rr−

Ra−

(a) (b)

Figure 3.18: The uncreditbox from [15]: (a) SG, (b) STG

the idea is to allow more tokens in the sender-receiver cycle. Considering the STG in fig. 3.12,
this would mean initializing the edge LR− → RrS+ with more than one token. (As an impor-
tant side note, to keep the discussion general, with as little implementation details as possible,
we sacrifice the safeness of the STG allowing places with higher capacity.) This is used to allow
the sender to place multiple flits on the link without any flow control event from the receiver,
thereby preventing underutilization of a pipelined SPL when only one VC is transmitting. Since
the tokens control how much a sender can send, they are known as credits. When adding tokens
to the flow control loop, the same number of tokens must also be added to the storage loop in
the receiver (the LR− → LR+ edge) for decoupling to work. This effectively means that there
must be as many latches provided for incoming flits in the receiver, as there are credits in the
VC. Fig. 3.15 depicts an STG for a VC with two credits, fig. 3.16 depicts the SG of a receiver
for a two credit VC scheme. Also, since the flow control edges in the STG are no longer safe,
either timing assumptions are required or a bidirectional handshake must be implemented for
delay insensitivity.

We now proceed with the analysis of the chosen implementation for the credit-uncredit

57

Figure 3.19: SG of the uncreditbox from [15]

scheme in [15]. Again, describing only the handshake controller and sketching the effect of
the flow control circuit, fig. 3.17 depicts the STG and the SG for the creditbox (sender). Again,
it is properly implemented, satisfying the requirements. Since the presented implementation
has two credits in the VC, the uncreditbox (receiver) also requires two latches. For each, the
handshake controller described in fig. 3.18 was chosen. Fig. 3.19 thus depicts the SG of the un-
creditbox. Here, the problem is that credits are returned to the sender with the rising transition
ofRr, making the three states not allowed by the requirement for non-blocking not only allowed
by the handshake controller, but also reachable. As a result, this scheme also allows blocking of
the SPL by a single consumer if the horn is not decoupled itself2.

To summarize, our framework has allowed us the following key conclusions:

1. For a bufferless implementation, in the STG of the handshake controller, the rising edge
of the left acknowledgement must depend on that of the right acknowledgement. See
fig. 3.10.

2. For decoupling of the producer, the handshake on the right interface must be allowed to
finish without any dependencies on the left interface. In the STG Rr− must not have an
incoming edge other than the one from Ra+. See Sec. 3.4.2.

3. Decoupling of the consumer can only be achieved with a matched choice of handshake
controllers and flow control circuits. In the STG, transitions of the left interface may only
depend on themselves and on L+. Flow control must ensure Lr+ does not fire before
L−. See Sec. 3.4.3.

4. Requirements for decoupling of the consumer and for bufferless handshake controllers are
contradictory. There is thus a direct requirement for storage in the receiver for decoupling,
more precisely for as many buffers as there are credits. Eventual additional buffers are not
required and should be placed outside of the receiver. See Sec. 3.4.3.

3.6 Proposed Flow Control Scheme

In this section we build upon the credit-uncredit scheme from [15] which we refer to as “base-
line” in the following, and while keeping its main concept unchanged, we modify the way credits
are returned to the sender – instead of transmitting each credit separately, we propose to send
them in bundles, i.e. M credits at a time. This is possible, since credits are only synchronization

2It should be mentioned that the authors of [15] are aware of this deficiency but did not further address it in that
publication

58

events (no data is transferred). The obvious choice to transmit them is a synchronization hand-
shake on a channel for each credit, however, the semantics of this dataless handshake can also
be chosen to mean M credits. For example, with M = 2 each transmission on the upstream link
corresponds to a pair of credits being returned.

This concept will be referred to as Multi-Credit Flow Control (MCFC) in the rest of the
thesis. Note that a choice of M = 1 forms the baseline scheme, therefore we can consider the
latter a special case of MCFC. Moreover, we will use N to denote the total number of credits
in a virtual channel. Here, a choice of N = 1 leads to the share-unshare scheme from [15]
where a new flit can only be sent if the consumer has read the previous one. Since MCFC is a
modification of the baseline credit scheme, we will first show how they compare.

Fig. 3.20 shows a typical (high level view of) timing of a virtual channel with baseline flow
control. In this figure, we assume communication on only one VC of the SPL (no arbitration
overhead), between an eager producer-consumer pair. We abstract the communication cycle into
the following four phases and respective time intervals:

• Crossing the downstream SPL (δDL). This resembles the propagation delay of the link
and overheads of the funnel, horn and pipelining.

• Consumption of the flit (δR). This subsumes crossing the FIFO pipeline in the receiver,
consumption of the data by the consumer and the generation of the credit.

• Crossing the upstream link (δUL). This includes the propagation delay of the upstream
link and overheads of pipelining and of the funnel and horn if the link is shared.

• Credit handling in the sender (δS). This represents the time from receiving the credit from
the upstream link until a new pending flit can be sent, including the overheads of the credit
FIFO.

Additionally, TDL denotes the minimal transmission cycle time for the downstream link, thus
the reciprocal value of the maximal bandwidth. The circled values denote which credit (if they
were numbered) has been consumed for a transmission or has become available, respectively.
As can be seen in the figure, we assume both pipelined downstream and upstream links (a new
flit/credit is sent before the previous one reaches its destination) and the chosen system timing
is such that four credits are required to sustain the maximum downstream transfer rate (the first
credit has returned and is available just before the fifth transmission). Note that there is a slack
time tSL between the reception of a credit and its use. Its value is a subject of optimization when
designing links employing a credit based flow control. When it is negative, the downstream link
operates below its performance limits. A too high tSL indicates that the upstream link can be
further optimized for low power, or a credit be removed from the loop.

Fig. 3.21 shows how the system’s behavior changes when the MCFC scheme with M = 2
is used, while the timing parameters remain unchanged. The most prominent observation is the
lower bandwidth on the upstream link (fewer credit arrivals depicted with vertical lines) which
reduces to 1/M of the baseline scheme. This allows the removal of pipeline stages from the
upstream link; in this example the link would no longer require pipelining since, as can be seen
in the figure, a new credit (pair) is only sent when the previous has already arrived at the sender.

59

1

2

3

4

1

2

δDL δR δUL δS
1

2

3

4

1

2

TDL

tSL

Figure 3.20: VC timing using the baseline credit scheme

1

2

3

4

5

1

δDL δR
δUL δS

12

34

51

TDL

tSL

Figure 3.21: VC timing using the MCFC scheme

1 2 3 1 2 3 1 2 3 1 2 31 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 312 31 23

1 2 3 1 2 3 1 231 23 12

1 2 1 2 1 2 1 21 2 1 2 1 2

N = 3,M = 1

N = 3,M = 2

N = 3,M = 2

N = 2,M = 1

Figure 3.22: Comparison of flow control mechanisms

Another observation is the unchanged slack: While the upstream bandwidth is reduced with
our scheme, the latency requirement (δUL) is not relaxed. In other words, the upstream link
will transfer fewer tokens but it must do so with the same speed as compared to the baseline
scheme. A final observation, that unveils the overhead of the MCFC scheme, is that the VC
now requires five credits to reach maximum performance. This directly follows from the fact,
that every other credit is returned one flit (TDL) later compared to the baseline credit scheme,
thus an extra credit must be added to the loop to allow transmission during the time where this
credit is missing. Inevitably, each credit added to the loop also requires one more buffer in the
receiver. This does not necessarily result in an overhead – often buffers are already there to even
out speed variations in producer and consumer, and we can take advantage of them for MCFC.

In general, the MCFC scheme is equivalent to a baseline credit scheme where the link’s
timing is the same and M − 1 credits are added to each VC. To illustrate this, fig. 3.22 shows
the flow of tokens in a link with four configurations of MCFC. For simplification, the slack is
assumed to be exactly zero (allowing us to use ‘cycles’ with period TDL), and the four times
listed above are assumed to sum up to 4TDL and are reduced to two events – flits being sent and
credits becoming available. The values again denote the credit numbers.

The first row shows the baseline credit scheme (M = 1) with three credits and the last row
shows the same with two credits. The two rows in the middle show the MCFC scheme with
three credits in total and transmission in pairs (N = 3, M = 2) in the two possible stable states,
which can also be chosen for the initial state. In one case all credits are in the credit FIFO of the
sender (second row), in the other case one credit has been consumed already but not returned

60

since the receiver is waiting for the pair to complete (third row). As can be seen, after the initial
burst, a scheme with M = 2 really does perform equivalently to the baseline credit scheme with
two credits validating the claim in the above paragraph.

Now that the N and M constants have been introduced, an interesting property can be ob-
served: When M > N/2 the receiver will never produce two successive events on the upstream
link without having received at least one flit in between. The correctness of this claim can be
seen by considering the worst case – while a consumer was halted, the receiver’s FIFO has been
filled with flits (the sender has consumed all tokens). Now the producer is halted and the con-
sumer starts a burst read emptying the FIFO in minimal time. The generation of two successive
events requires the consumption of 2M flits, so because the FIFO can only store N flits, it will
not happen.

There are also other stable states to be considered. If the receiver was initialized holding an
incomplete bundle of k < M credits, the first event will be produced after reading M − k flits,
the second after 2M − k. While this number can be smaller than N , it should be noted that the
k credits that are being held by the receiver initially are also missing in the sender’s credit FIFO.
Therefore, it cannot have sent more than N − k flits, which again is smaller than 2M − k. As
a conclusion, there can never be enough flits on the fly (in the SPL) and in the receiver’s FIFO
such that their consumption alone would generate two credit bundles.

This property can be used to design systems with a unidirectional upstream link (no ac-
knowledgment wire) while preserving delay insensitivity of the system. When M and N are
chosen according to the requirement above, it is certain that each event on the upstream link
will be followed by at least one event on the downstream link (flit) which causally depends on
the former being correctly processed. Therefore the reception of a flit is semantically equivalent
to an acknowledgment signal rendering the explicit acknowledgment wire in the upstream link
unnecessary. Of course, this only holds if the link is not shared. As an example, consider the
two flow control schemes presented in [15] with respect to this property. The credit-uncredit
scheme (N > 1 and M = 1) requires a full delay insensitive upstream link while the share-
unshare scheme (N = 1, M = 1) fulfills the requirement above and therefore can be – and is –
implemented without an acknowledgment in the upstream link.

3.7 Proposed Implementation

From the design space sketched in Sec. 3.6 we will now pick one specific instance, namely N =
3 and M = 2 to give an implementation example. This choice allows us to use a unidirectional
upstream link and represents a good tradeoff between link performance and area overhead. In
Fig. 2.21, we have already seen the fundamental elements making up a flow control mechanism.
While in this work the funnel and horn modules are made identically to those proposed in [15,
42], here we will only present the design and implementation of the sender and the receiver
modules.

3.7.1 Sender

Fig. 3.23 presents the proposed sender for our MCFC. Its operation may be divided into four
steps: (1) generating a short pulse for every transition on the credit link (2-phase/4-phase con-

61

C

Toggle
Merge

&

C
media
decoupling

xor credit

credit FIFO pulse generation

C
La

Lr
Rr

Ra

Ld Rd

Figure 3.23: Proposed sender

version), (2) generating multiple credits from one received token on the upstream channel, (3)
joining a credit with the producer’s request to transmit a new flit on to the SPL, and (4) de-
coupling of the SPL from a (possibly) slow producer. While the steps 1, 3, and 4 are identical
to those described for the share-unshare scheme proposed in [15], (2) is something that distin-
guishes the proposed sender from the existing baseline methodology.

The toggle merge module (already introduced in the background chapter) merges the M
incoming requests on to its output in an alternating manner (M = 2 in our case study), i.e. no
particular input channel may transmit two credits in succession, no matter how many more it
possesses. Fig. 3.23 depicts the initial state of the module, where the black dot points to the
bearer of the token: an inverter generating requests from acknowledgments always possesses a
credit for the producer to transmit a new flit on the SPL. The other input receives a credit via an
MC, which is also initialized to 1 (i.e., holding an initial credit), thereby giving the producer a
permission to submit N (3 in our case) flits in quick succession, without waiting for a credit to
arrive. This also indicates that the receiver has to provide N available places to store those new
flits.

Obviously after three transmissions, the input channel with the MC possesses the token, and
is forced to wait until a new credit has been received. From this point onwards, with reception
of every credit, the toggle merge module allows the producer to submit M (2 in this case) new
flits on to the SPL.

3.7.2 Receiver

The receiver comprises two major units: data FIFO, and credit generation unit. The FIFO is
identical to the one used in the uncredit box from [15] except for that it contains one more
storage element (now N). Besides storing, the FIFO naturally provides decoupling of the SPL
from a possibly slow consumer. The design of the FIFO is presented in fig. 3.24.

The design of the credit generation unit is illustrated in fig. 3.25. It performs two major tasks:
(1) to provide decoupling from a potentially slow consumer, a credit must only be generated once
the handshake is completed between the FIFO and the consumer, i.e., with Ra_receiver−, and

62

C
C

&

en

La_receiver

Lr_receiver

Ld_receiver

C
C

&

C
C

&

en

Ra_FIFO

en

Data FIFO

Rr_receiver

Ra_receiver

Rd_receiver

generation
unit

credit

credit

Figure 3.24: Proposed receiver

credit
Toggle

FF

en rout1

Toggle
Split

aout2

rout2

aout1

Ra_receiver

Ra_FIFO

Figure 3.25: Proposed Credit Generation Unit

(2) it must send a credit on the upstream channel only after consumption of two data flits by the
consumer. The latter is achieved with a Toggle Split module (also introduced in the background
chapter). The first handshake cycle is completed (in other words wasted) between the input and
the lower output, since the latter possesses the token initially, as shown in fig. 3.25. This cycle
represents the consumption of the first data flit by the consumer. At this point, the token is
handed over to the other output channel, which then waits for the second handshake cycle, i.e.,
consumption of the second data flit. Notice that the T-FF is enabled with the falling transition
of rout1, which corresponds to the falling Ra_receiver. The output of the T-FF is the required
credit bundle, which indicates to the sender the availability of two buffer places. We chose to
use a transition signaling protocol here to further save dynamic power.

3.7.3 Timing Assumptions

In our general context of delay insensitive designs it is important to point out the timing require-
ments that are still essential for the correct operation. Although all of the requirements that we
mention in the following may be completely eliminated, we opt for trading off delay insensitiv-
ity for area, dynamic power dissipation, and simplicity, since the associated timing requirements
can be satisfied quite conveniently.

63

Pulse Generation Circuit

The delay element in this circuit must ensure that the pulse generated is long enough to properly
drive the MC in the credit FIFO.

Toggle Flip-Flop in the Credit Generation Unit

Since the T-FF is not within the timing closure formed by the split module (a_out1 does not
wait for credit to alter), it is essential to make sure that the credit link has settled down to its
new state well before the next event on Ra_receiver. Meeting this requirement is definitely
easy due to two reasons: a) Ra_FIFO has to drive an MC, which then requires the consumer
to complete the handshake cycle. In practice, this procedure already takes sufficiently longer
than the T-FF propagation delay. b) rout1 will not receive the next event until Ra_receiver has
completed a handshake cycle with the second output channel. This adds a further safety margin
to the timing of the circuit.

In addition, when implementing the toggle split and toggle merge blocks, we encountered a
few further timing assumptions. Those, however, were very similar to the one discussed above
for the T-FF.

3.8 Evaluation

3.8.1 Simulation Results

In this section we present the pre-layout Modelsim simulations of the proposed MCFC mech-
anism, more specifically its implementation with M = 2, as described above. The simulated
network comprises two pairs of nodes, which communicate over two VCs. In the first simula-
tion, fig. 3.26, we have presented the case of eager producer-consumer pairs on both VCs. For
a more meaningful analysis, we connected both the producers with 32-bit counters, the first of
which counts the even numbers, and the other the odd numbers.

The signals must be interpreted as follows: Lr_sender1, for example, is the input request to
the sender of the first VC, which is the output of the first counter that counts the even numbers,
starting from zero. Ra_receiver1 is the output acknowledgment for the receiver of the first VC.
Note that we have a buffer that simply feeds backRr_receiver1 toRa_receiver1 mimicking an
eager consumer. In this symmetric setting of two eager VCs, each of them gets hold of the SPL
in turn. This case corresponds to the maximum bandwidth utilization, as may be conveniently
observed. Finally, observe the propagation of credits credit1_r2s and credit2_r2s correspond-
ing to VC1 and VC2 respectively. Both make alternating transitions following consumption of
two data tokens.

Fig. 3.27 presents two interesting scenarios where one of the VCs is non-eager, i.e. slow,
either due to a slow producer, or a slow consumer. The solid arrows between Rr_receiver2
and Ra_receiver2 indicate a slow response from the consumer associated with the second VC.
On the other hand, the dashed arrows between La_sender2 and Lr_sender2 highlight the
slow response of the producer associated with the second VC. The purpose of presenting these
scenarios is to demonstrate how efficiently an eager VC (VC1 in this case) is able to utilize the

64

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 ...

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 ...

0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Lr_sender1

La_sender1

Ld_sender1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Lr_sender2

La_sender2

Ld_sender2 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 ...

Rr_receiver1

Ra_receiver1

Rd_receiver1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 ...

credit1_r2s

Rr_receiver2

Ra_receiver2

Rd_receiver2 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

credit2_r2s

Figure 3.26: Operation of MCFC in an eager producer-consumer environment

SPL, no matter how slow (or completely blocked due to traffic congestion) the other VC might
be.

3.8.2 Analysis and Comparison

The most appropriate candidates to compare our MCFC mechanism with are the implementa-
tions from [15], that are, the share-unshare and credit-uncredit schemes. Our comparison is
based on three metrics: Number of transitions on the credit link per flit transfer, area utilization,
and throughput. For a fair comparison we implemented both these circuits along with our own
methodology and synthesized all these designs for the same 90nm standard cell library.

Number of transitions on the credit link

The credit-uncredit approach, having two wires in the upstream channel, requires four transitions
per flit transfer to complete its handshake cycle. The share-unshare scheme, on the other hand,
requires just one transition per flit. The proposed MCFC method merely requires half a transition
per flit on average, i.e., one transition per two flit transfers. Considering the case of v VCs with
all eager producer-consumer pairs, the credit-uncredit scheme would require 4vf transitions in
total for f flit transfers per VC. For the share-unshare, and the MCFC schemes it should be vf
and vf/2 transitions respectively.

In an NoC the downstream and upstream channels represent the global, and hence the longest
interconnects. It is known that the dynamic power consumed by those long interconnects tends
to dominate dynamic power consumption, therefore reducing the number of transitions by a

65

......0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

1 3 5 7 9 11

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 ...

0 1 ...5 7 9

Lr_sender1

La_sender1

Ld_sender1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Lr_sender2

La_sender2

Ld_sender2 1 3 5 7 9 11

Rr_receiver1

Ra_receiver1

Rd_receiver1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 ...

credit1_r2s

Rr_receiver2

Ra_receiver2

Rd_receiver2 0 1 ...5 7 9

credit2_r2s

Figure 3.27: Operation of MCFC in a mixed environment

factor of 8 maps to an equally large saving of dynamic power on the upstream channel. The
downstream channel remains unchanged for all solutions.

Area utilization

Table 3.3 presents the area utilization of the sender and receiver modules for each of the method-
ologies we implemented. The share-unshare scheme is of course the most area efficient, requir-
ing the lowest number of storage elements. The creditbox requiring a storage element consumes
more area as compared to our proposed sender, which is, however, balanced on the receiver side
where we have employed an additional one (recall, however, that we are pessimistic here by
not assuming a buffer is available in the receiver anyway). Overall we observe only a marginal
difference in the area utilization of the two latter mechanisms.

Table 3.3: Area Utilization (µm2) of the sender and receiver modules

No Flow Control Scheme Sender Receiver Overall
1 Share-Unshare 85.5 490.8 576.3
2 Credit-Uncredit 635 1096 1731
3 Proposed (MCFC) 135.6 1675.4 1811

66

200 400 600

Interconnect delay (ps)

0

100

200

300

400

500

600

700

D
a
ta

 r
a
te

 (
M

F/
s)

SU pipelined
SU unpipelined
CU pipelined
CU unpipelined
MCFC pipelined
MCFC unpipelined

Figure 3.28: Comparison of throughputs of the three schemes

Throughput

In order to compare the throughput of the candidate schemes, we synthesized and simulated
a sender-receiver pair connected over interconnects with delays ranging from 200 to 600 ps,
for both up- and downstream links. Since pipelined interconnects can significantly affect the
throughput, we also decided to compute values using a single stage pipelined interconnect, where
the latter was carefully installed in the middle of the SPL. Fig. 3.28 presents the corresponding
data rates in million flits per second (MF/s). As can be seen, all the three compared schemes
perform equally well with direct interconnects. When pipelining was employed, not suprisingly,
the credit based shemes (CU, MCFC) performed much better than the share-unshare scheme
(SU). It should be pointed out that CU generates a credit with Rr_receiver+ (see fig. 3.24) in
comparison to MCFC’s receiver which does the same later withRa_receiver−, which increases
the cycle time. However we have verified in our simulations that a credit forwarded to the
sender with Rr_receiver+ can lead to indefinitely blocking the SPL in case the consumer
delays Ra_receiver+(−), making our approach an essential requirement [89].

3.9 Summary

The design of a fully asynchronous router was presented. Our VC allocation methodology al-
lowed us to minmize the number of VCs per IO port, yet satisfying the minimum requirements of
avoiding any slowly progressing packet from blocking the SPL. We also proposed a framework
to systematically treat some fundamental properties of the handshake controllers for ANoCs,
which allowed us to pinpoint a deficiency in one of the most widely adopted VC access control
methodologies. Our novel flow control mechanism satisfied all the requirements set within our
framework, and minimized the bandwidth requirements by transmitting credits in bundles. The
reduction in the number of transitions needed to transmit a given number of credits reduced the
dynamic power dissipation on the SPL by a factor of eight, and the area overhead incurred as
compared to the state-of-the-art approaches was found to be negligible when synthesized with
the UMC 90nm library.

67

CHAPTER 4
High Speed Resource Sharing

In this chapter we begin by explaining the operation and design of an arbiter, and go on to
present a novel tree arbiter cell that allows a pipelined processing of requests. In this way it can
achieve significantly lower delay in the critical case of frequent requests coming from different
clients. We elaborate the necessary extension to facilitate a cascaded use of this cell in a tree-like
fashion, and we show by theoretical analysis that in this configuration our cell provides better
fairness than the standard approach. We implement our approach and quantitatively compare
its performance properties with related work in a gate-level simulation. Our new cell proves
to increase the throughput of three different designs available in literature by approximately
61.28%, 69.24%, and 186.85% respectively.

4.1 Background and Related Work

The purpose of an arbiter is to control the access of several clients to a shared resource. As
shown in fig. 4.2 for the case of 2 clients, it has one pair of req/grant signals per client, and one
additional req/grant signal pair for the shared resource.

The arbiter’s task becomes difficult as soon as two or more clients concurrently request the
resource; here the common rule is that the first one will win. However, if the contending requests
arrive at (nearly) the same time, this decision becomes particularly problematic, and it is known
to involve the risk of metastability then. A dedicated mutual exclusion (MUTEX) circuit is
therefore employed for this decision: It has one pair of req/grant inputs per client, and its only
duty is to assert the grant associated with the request that arrived earlier. In case of concurrent
(very close) requests the MUTEX is free to make a choice; any decision will work, as long as
only one grant is asserted at a time. Fig. 4.1(a) illustrates the operation of a MUTEX using a
4-phase protocol: The activation of the earliest request is acknowledged by a grant that remains
activated until the request is withdrawn. At that point the second request, if activated, will get
serviced in the same way.

Although in principle a multi-way MUTEX can be built [63], the simpler two-way MUTEX
is often preferred, and the remaining arbitration logic is arranged in several levels, so as to extend

69

r1

g1

r2

g2

(a)

(b)

CRreq+

C1req+

r1+

g1+

C1gr+

C2req+

r2+

g2+

C2gr+

C2req−

r1−

g1−

C1gr−
CRgr−

r2−

g2−

C2gr−

CRreq−

C1req−

CRgr+

Figure 4.1: STG of a 4-phase Two Input TAC

C

C

&

&

&

&

&
u0

u1

u2u3

u4

u5

u6

buffer buffer

client1

client2

r1 r2 g2g1

C1req

C2req

C2gr

C1gr

TAC

CRgr

CRreq
Common
Resource

MUTEX

Figure 4.2: Gate level netlist of a 4-phase Two Input TAC

a two-way (n-way) arbiter to a four-way (2n-way) arbiter. The circuit used for this purpose is
the tree arbiter cell (TAC), an implementation example of which is shown in fig. 4.2. This low
latency 4-phase two input TAC has been proposed by Yakovlev et al. [149], and we will use
it throughout the rest of the chapter to illustrate our approach. Its key function is to properly
convert the req/grant signals from clients, shared resource and MUTEX. The corresponding
signal transition graph (STG) is presented in fig. 4.1(b). While the letters C and CR in both
the figures stand for client and common resource respectively, req and gr stand for request and
grant. Finally r and g refer to the in(out)-puts to(from) the MUTEX respectively.

A close analysis of the TAC’s STG reveals a possible window of improvement (in terms of its
latency): On the one hand, the down transitions on clients’ requests (C1req−, C2req−) release
the MUTEX (r1−, r2−) and the common resource (CRreq−) simultaneously. On the other
hand, however, the requests to lock the arbiter (C1req+, C2req+) first acquire the MUTEX
(r1+, r2+), followed by reserving the common resource (CRreq+) in series. Ghiribaldi et.
at [50] recently proposed an efficient 4-way arbiter that exploits the same window to achieve

70

higher performance in their arbitration scheme. A MUTEX forms the common resource which
is reserved and released in parallel with the local MUTEXs. This roughly saves delay of a
MUTEX and that of a standard gate.

Some fast fixed priority programmable arbiters already exist in literature that work perfectly
in synchronous environment (routers) [35], [57]. All those arbiters, in addition to the arbitration
circuitry, require scheduling logic to dynamically generate new priority vectors every clock cy-
cle. Although such priority vectors may be generated for asynchronous environments as well,
the arbitrary arrival time of the input requests in that case makes the choice of the winner tedious,
and usage of the MUTEX, in any case, becomes mandatory. Furthermore, the scheduling logic
itself incurs area, power, and performance penalties. All these observations make such arbiters
irrelevant to asynchronous design styles.

Felicijan proposed a low latency static priority asynchronous arbiter in [42]. The design
did not need any explicit scheduling logic, since it comprised a linear priority module, which
allowed one of the n clients, ck, to block the rest (k − 1) having lower priority. The drawback
associated with this approach is the number of MUTEXs that scales linearly with clients, and
the number of Muller C-elements also scales badly.

In this chapter we propose an arbitration logic for fair and nondeterministic decision (where
all clients have the same priority). Like [42] we assume that the arbiter is not the slowest compo-
nent of the design, and that the clients, once received the grant, would keep the arbiter reserved
at least for the duration longer than the latency of the arbiter. These assumptions are not so
optimistic, especially for switch controllers in NoCs, where the header flit reserves the shared
resources, and the tail flit releases them. Although our methodology is equally applicable to
Ghiribaldi’s approach [50], we only emphasize on the TAC because of its simple architecture
that allows systematic modifications that are relatively easy to illustrate.

4.2 Proposed Tree Arbiter Cell

4.2.1 Window of Improvement

Refer to the STG of the TAC, fig. 4.1(b). Once the common resource (further called CR) is
acquired (CRgr+) and the grant to one of the clients is set (e.g., C1gr+), then the control waits
for the corresponding client’s request to go low (C1req−) before the MUTEX and the CR may
be given to the other client (if already active). Now assume that C1 takes indefinitely long to
remove its request, which forces C2 to wait indefinitely as well. Let’s denote this waiting time
(C1gr+→ C1req−) as wtC1. Once C1 has set its request low, a sequence of events must take
place before C2gr+ could happen (we refer to the sequence Cxreq− → Cygr+ as the handoff
HCxCy in the following). These include the release of the MUTEX and the CR (propagation
delay of the arbiter while a grant switches from high to low, tphl), which happen simultaneously,
followed by the events needed to reserve both of them for C2 (propagation delay when a grant
switches from low to high, tplh). While it is not possible to optimize wtC1 (a client can keep the
arbiter locked for as long as it needs it), the latter two, being local to the TAC, however, can be
reduced.

Now refer to fig. 4.2. Gates {u3, u5}, and {u4, u6} form a mutual interlocking mechanism,

71

C2req+

r2+

g2+

C2gr+

r2−

g2−

C2gr−

r1+

g1+

C1gr+

r1−

g1−

C1gr−

C1req− C2req−

C1req+

C2req

&

&
&

&
C

C

C1gr

C2gr

M

C1req

(a) (b)

Figure 4.3: Proposed 2-way Arbiter: (a) STG, (b) conceptual schematic

through which C1gr+ prevents C2gr+ to happen, and vice versa. Consider if, in our example,
g2 would be already active, and the CR reserved when C1gr− happens, then C2gr+ only sees
a delay of two gates, thereby completely eliminating tphl, and significantly optimizing tplh.

4.2.2 Design Concept

For simplicity we begin describing our methodology for the case of two clients. Fig. 4.3(a)
presents the partial STG of the original TAC with all the instances relevant to the CR removed.
A small difference that we have brought in into this mechanism is the release of the MUTEX
(r1−, r2−) without waiting for the client’s request going down: since the mutual interlocking
already prevents the pre-mature handoff, the MUTEX is free to be allocated to the other client.
In simple words, Cygr+ will not happen until Cxreq− has happened, however Cy already
possesses the MUTEX.

Fig. 4.3(b) presents a possible implementation of the STG. Although our strategy clearly
allows the waiting client to acquire the MUTEX while the winner is yet to release it knowingly,
one still might argue that the delay introduced through the C-gates and the cross coupled AND-
gates, would be larger than that for releasing/acquiring the MUTEX itself. If so, there is no
obvious benefit in terms of performance, and we unnecessarily introduced a number of gates in
the system. The benefit, however, will become visible in the following section when we apply
the same strategy to the TAC.

4.2.3 Adaptation to TAC
The STG shown in fig. 4.4 illustrates how the TAC adapts to the modifications we had previously
described. A client may acquire the arbiter by following the identical sequence of events as in
case of the standard TAC, i.e., the requesting client first acquires the local MUTEX, followed

72

C1req+ C2req+

r1+ r2+

g1+ g2+CRreq+

CRgr+

CRreq−

CRgr−

C1gr− C2gr−

g1−

r1− r2−

g2−

C1gr+
C2gr+

C2req−C1req−

Figure 4.4: STG of the proposed TAC

C

u10

u9

&

&

&
u0

u1

u2
C C

C

u5u7

&
u4

&

C1req

C1gr

C2gr

C2req

u3

u8 u6

CRreq

CRgr

g1

g2

r2

r1

Figure 4.5: Circuit of the proposed 2-way Arbiter

by acquiring the common resource (like [50] we use a MUTEX here as well, further called
CRM). The difference that we propose shows up in the other phase: As soon as one of the
clients receives the grant, the CRM and the local MUTEX are simultaneously released, and the
other client is allowed to lock both of them. The latter type of locking may be termed as virtual
locking, since the first client is still in charge of the CRM until it literally lowers its request.

This STG when synthesized generates the schematic shown in fig. 4.5. Apparently it seems
to have incurred a further overhead in terms of area and latency; the benefit, however, is hidden
in the fact, as mentioned earlier already, that tphl no more depends on wtCx; it is initiated as
soon as the grant is given. So far we have simply generated a circuit that meets our criterion.
However, there are some other challenges that we address in the following in turn.

73

C

CC

C

C1req

C2req

g1

g2

CRgr

C2gr

C1gr

u6

u3

u4

u5

Figure 4.6: Proposed rapid interlocking within 2-way Arbiter

Rapid local clients’ interlocking

As may be conveniently observed in fig. 4.5, the handoff HCxCy still sees a delay of three
C-gates and an AND-gate1. Since this interlocking is essential, it cannot be avoided, but this
latency may be reduced to two C-gates by adopting the interlocking shown in fig. 4.6. This
solution was achieved by manual optimization of the circuit. Note that all the C-gates used in the
method are asymmetric, i.e., the inverted inputs are only relevant during low to high transitions
of the gates. With symmetric C-gates in place, each of them can easily end up in a deadlock
state. While u5 and u6 interlock each other to prevent the premature handoffs, u3 and u4 do the
same to guarantee a safe handshake protocol with the CRM.

A small improvement in terms of performance may be brought into the circuit by adopting
the methodology proposed in [50]: The local MUTEX and the CRM may be reserved simulta-
neously with a client’s request. This only requires the gates u0 and u1 to have C1req and C2req
as inputs, instead of g1 and g2 respectively.

Interlocking multiple TACs

In a tree structure arbitrating multiple clients (n = 2k) requires multiple TACs (2k−1) to be
employed. In case of n = 4, a CRM may be placed as the common resource for both the TACs,
as already mentioned. Interestingly, as soon as one of the TACs, say T1, has released the CRM,
while one of its grants, say C1gr is still high, the other TAC, say T2 may acquire the CRM, and
one of its grants, say C3gr may also go high, thus violating the most fundamental property of an
arbiter. This happens because our pipelined scheme relies on the mutual interlocking between
the two grant outputs within a TAC, which is not effective across different TACs. Just like C1
prevents C2 within T1 from getting a grant in parallel via interlocking, it must also do the same
to C3 and C4 in T2. An SI solution will require complete handshaking between the two TACs,
which may be conveniently inserted in the STG of fig. 4.4: The winning TAC, T1, sends out
a lock_others_request signal right after CRgr+. On the receiving TAC, T2, the same signal
appears as lock_me_request, which must be mutually exclusive with CRgr+, since the CRM
already belongs to T1. From this point onwards, T2 sends the acknowledgment, and does not
allow any of its grants to go high, until the unlock signal has arrived from T1. This completes the
handshake protocol between the contending TACs. Fig. 4.7 presents the STG described above

1Recall that we assume wtCx is sufficiently large to allow the other client to acquire the local MUTEX and
virtually reserve the CRM in the meantime.

74

(for simplicity we have shown the case of a single client). This STG synthesizes to an SI circuit.
However, this solution may incur a significant performance penalty since T1 has to wait for the
acknowledgment before its Cxgr+ could happen. This may be slightly relaxed by making the
following timing assumptions.

Timing assumptions

We insert a (complex) AOI-gate between the output grants of the TAC that generates the lock_ot-
hers_request signal, and a pair of AND-gates (one for blocking each client) that implements the
required functionality of the lock_me_request signal, as shown in fig. 4.8. Recall from the previ-
ously discussed scenario that T1 and T2 can generate simultaneous grants if lock_others_request
from the former does not reach the latter timely. The condition for safe interlocking is evaluated
as follows: T1 while releasing the CRM roughly sees the delay of two NAND-gates (u0+, u2−),
handoff at the CR (CRgrT1−, CRgrT2+), and a wire delay2 between the TAC and the CRM,
refer to fig. 4.5. On the other hand, T2 between reserving the CR and generating a grant sees
two C-gates (u5+ → u7+, or, u6+ → u8+) and a wire delay. T1 can block T2 within a delay
of one AOI-gate. For the TAC interlocking to be safe, the following condition must hold true,
which we believe is quite simple to achieve;

δ(AOI−) + δ(wire) < δ(u5+) + δi(u7+) + δ(wire) +

δ(u0+) + δ(u2−) + δ(HCRM)

Here δ(X) and δi(Y) refer to the switching and inertial delays of gates X and Y respectively.
HCRM refers to the handoff at the CRM. For simplicity, if we assume similar wire delays on
both sides of the equation, then everything boils down to assuming that the AOI-gate will be
faster than a C-gate, two NAND-gates and a MUTEX connected in series, which is very safe.

4.2.4 Unfairness Window

Fair arbitration demands that the grant be given to the first amongst all the clients that requested
the CR. Neither the design of the TAC, nor of that proposed in [50], fulfil this demand. For
example, consider a scenario where clients C1 and C2 request for the CRM simultaneously
through TAC T1, and C1 wins the grant while C2 is put to wait. Now after a while C3 makes its
request through T2, which will immediately reach the other input of the CRM, since C4 is still
inactive on the same TAC. Although C2 made its request before C3, the latter would unfairly
win the grant as soon as C1 has released it. This unfairness happened because the request
from C2 to the CRM still had to go through two NAND-gates within T1, and this time would
always be sufficient for T2 to acquire the CRM. In fig. 4.9 we have presented the maximum
length of this unfairness window, i.e., the period during which a client can unfairly reserve the
CR. The abbreviations CR and M refer to the delays inserted due to the CRM and the local
MUTEX respectively, and FL and BL refer to the forward and backward latencies of the TAC
(Cxreq + /− → CRreq + /−, CRgr + /− → Cxgr + /−). Note that the events shown in

2We assume that wires within the same TAC have zero communication delay, while those connecting with other
cells cost some non-negligible delays.

75

Figure 4.7: STG of the proposed TAC with multiple TACs interlocking

C

CC

C

g1

g2

CRgr

u6

u3

u4

u5

C2gr

C2req

C1gr

C1req

AOI

lock_others lock_me

Figure 4.8: Schematic incorporating the interlocking logic

76

part (a) of the figure correspond to the response of the standard TAC setup, and (b) presents the
behavior of the proposed circuit.

The request of C2, which occurred at time instance t2, reached the CRM at t12 due to long
wtC1. C3’s request, meanwhile, reached and acquired the CRM at t11 and t13 respectively.
Without losing generality, the following condition, if true, will lead to unfair grants;

t11 < t12

By substituting the values for t11 and t12 as depicted, and making few simplifications, such as,
FL and BL of T1 are approximately equal to that of T2, and rise and fall times of each gate are
identical, the condition leading to unfairness becomes;

t8 < t1 + 2(FL+BL) + wtC1

In the worst case, C2req may occur at the same time with C1req and still lose the grant, i.e.,
t1 = t2;

t8 < t2 + 2(FL+BL) + wtC1

where wtC1 may be substantial.
In contrast to above, the condition leading to unfairness using the proposed circuit becomes;

t11 < t17

which upon simplification becomes;

t8 < t2 + 2(FL+BL)

Clearly, the unfairness window in the latter case is restricted to releasing and acquiring the
arbiter in quick succession, and therefore guarantees relatively fairer arbitration.

4.3 Implementation and Evaluation

We implemented four different designs for a four-clients setup, (a) standard TAC, (b) Ghiribaldi’s
4-way arbiter [50], (c) SPA proposed in [42], and (d) the pipelined high speed TAC proposed in
this chapter. All of the designs were synthesized for 90nm technology.

4.3.1 Worst and Best Case Latencies

Table 4.1 presents the latency of each arbiter when just one client is active. Note that the Fe-
licijan’s design [42] presents a range of latencies; this is due to the different sized C-elements
associated with each client: the lowest priority client has the largest C-element, and therefore, is
the slowest as well. Something that is not apparent in the table is the fact that the cycle time for
each design may be interpreted differently: For the first two, the given cycle times correspond
to the best-case since this evaluation does not consider any delays due to the environment. In
case the environment delays were considered, the cycle time for each of them would linearly

77

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t12t11 t14

C1req

C2req

CRreq1

CRgr1

C1gr

C2gr

C3req

CRreq2

CRgr2

C3gr

t13

FL

CR

BL

wt_Cx

FL-M

CR

BL

FL

CR

BL

FL-M

BL + FL-M

t15 t16 t17

CRreq1

CRgr1

FL-M
CR

CR

(a)

(b)

t5 t18

Figure 4.9: Worst-case Unfairness Window: (a) TAC, (b) Proposed Circuit

grow. On the other hand for the remaining two designs, this time corresponds to the worst-case
analysis, since both of them have some (virtual) pipelining employed, which would only be-
come visible when multiple clients were active and the delays of the environments were also
considered. In simple words, increase in the cycle time (due to the environment) for one client,
reduces tphl for itself, and tplh for the other client. This complementary behavior of the clients
is obviously not visible in our evaluation. For Felicijan’s work, this shall have an impact only
on tphl, and that also would be marginal, roughly equivalent to saving a delay of a cascaded
AND-gate and C-element pair. Refer to [42] for details.

Table 4.1: Arbiters’ latencies for only one active client

Design tplh tphl Cycle time
(ps) (ps) (ps)

STD TAC 401 266 667
Ghiribaldi 324 343 667
Felicijan 278 — 536 217 — 336 495 — 872
Proposed 400 548 948

Finally for our design, the given values hold true if only one client is active, and wtCx is as
small as the delay of an inverter, which, as we have already argued, is extremely pessimistic. In
that case there is no slack time for our proposed pipelining to become effective. Fig. 4.10 depicts
the improvement in tphl with increasing wtCx. Starting from the delay equivalent to an inverter
(corresponding to the worst case latency) up to a point around 360ps, tphl falls almost linearly

78

0 100 200 300 400 500 600

Cxgr+ --> Cxreq- (wt_Cx) (ps)

0

100

200

300

400

500

600

tp
h
l
(p

s)

Figure 4.10: Impact of increasing wtCx on latency of the proposed arbiter

with wtCx. From this point onwards, the latency becomes constant (206ps), and is governed by
the logic that we have added on top of the standard TAC. This adds to tplh to represent the best
case cycle time of 606ps for our design.

4.3.2 Handoff Latencies

Once again we assume that clients C1 and C2 share a common local MUTEX, and C3 and C4 do
the same with each other. This means that a handoff between C1 and C2 (in any direction) will
be much slower than their handoffs with C3 or C4 for all the designs except for the Felicijan’s
SPA in which HC1C2 shall be the fastest, and HC1C4 shall be the slowest. Similarly for all the
designs except Felicijan’s, handoffs between C3 and C4 will be slower than their handoffs with
C1 or C2 on the other arbiter.

Table 4.2 summarizes these handoff latencies. For designs 1,2 and 4, the worst case latencies
were computed by placing an inverter between Cxgr and Cxreq that would minimize wtCx. On
the other hand, the best case latencies were computed by making wtCx longer than the arbiters’
internal latencies. Note that the first two designs have identical best and worst case values.
Because of its dependence upon wtCx, the results obtained for the proposed solution are so
diverging. Given an environment satisfying our assumptions, the proposed work can result in
significantly faster arbitration, especially with all eager clients.

As far as design 3 is concerned, it is rather difficult to estimate the worst case latencies. In
their design, the authors have used two variable environments: right hand side (rhs), and left
hand side (lhs) of the arbiter, the former of which must be slower than the arbiter’s internal
latency in order for the design to work correctly. In our evaluation, that is how we computed the
best case latency for this design. As a result, the worst case is determined by the upper bound
on the rhs logic, which is obviously design specific.

To evaluate the threshold client’s delay essential for the proposed methodology to allow high
speed resource sharing, we have observed the behavior by gradually increasing wtCx from 20ps
to 600ps, and plotting it against the average case latencies of other designs. Fig. 4.11 presents
the handoff latencies between the clients on the same and different TACs. It may be conveniently
observed, that beyond the 200ps mark, the proposed methodology achieves the best throughput,
which comes to saturation around 500ps mark. The saturation occurs since the elapsed time is

79

Table 4.2: Handoff Latencies

Design best case worst case best case worst case
C1→ C2 C1→ C2 C1→ C3 C1→ C3

C1→ C4 C1→ C4
(ps) (ps) (ps) (ps)

1 STD TAC 613 613 355 355
2 Ghiribaldi 619 619 328 328
3 Felicijan 740 - 814 -

889 -
4 Proposed 299 764 119 410

20 46 100 150 200 300 400 500 600

Cxgr+ --> Cxreq- (wt_C1) (ps)

0

100

200

300

400

500

600

700

800

H
a
n
d

o
ff

_C
1

C
2

 (
p

s)

This work
STD TAC
Ghiribaldi
Felicijan

20 46 100 150 200 300 400 500 600

Cxgr+ --> Cxreq- (wt_C1) (ps)

0

100

200

300

400

500

600

700

800

900

h
a
n
d

o
ff

_C
1

C
3

/C
1

C
4

 (
p

s)

This work
STD TAC
Ghiribaldi
Felicijan

(a) (b)

Figure 4.11: Impact of wtCx on handoff latency: (a) same TAC, (b) different TACs

sufficient for the virtual pipelining to have effectively completed its task in the background, and
further delay of the client should not bring any further improvements.

One advantage that the design 3 enjoys over the rest is its guarantee to not generate over-
lapping grants. In all other circuits, due to different rise and fall times of the standard gates, it
may be possible that shortly before the grant to client 1 or client 2 has been removed, the grant
to client 3 or client 4 is already set (this equally applies vice versa). Therefore all those designs
require the clients to have some decoupling logic with the CR (that forces a null into the protocol
no matter the grants are overlapping) to ensure safe handshaking. This additional logic will add
a small performance overhead on designs 1, 2 and 4, which is not included in our analysis.

4.3.3 Throughput Estimation

To have a fair estimate of the best case throughput for each of the four designs considering
equal priority traffic, we simulated two different orders of arbitration. In the first one, called
alternating order, we made sure that the requests from the clients arrived simultaneously, leading
to a round of arbitrations, in the order of grants G1, G3, G2, and G4 (therefore only observing
the handoffs between the clients on different TACs). In the second case, called sequential, the
requests from the clients arrived strictly in the order C1, C2, C3, and C4 (with sufficient delays

80

in between, so that the effect of handoffs between the clients on the same TAC could also be
observed), leading to the grants being given in the same manner as well (G1→ G4). Table 4.3
presents the throughput for each design corresponding to the two orders of arbitration, measured
in Mega rounds (of arbitration) per second (Mrps). It is evident from the results that on average,
the proposed work promises around 61.28%, 69.24%, and 186.85% higher throughput than the
designs 1,2, and 3 respectively.

Table 4.3: Comparison of Throughput

Design Throughput (Mrps)
Alternating Sequential

1 STD TAC 400 330
2 Ghiribaldi 384 312
3 Felicijan 206 206
4 Proposed 666 515

4.4 Summary

In this chapter we have proposed a novel tree arbiter cell that allows a pipelined processing
of requests, i.e. arbitrating for the next request while the current one is still ongoing. The
extra logic required for this feature initially increases the arbiter delay; however, in the relevant
case of frequent requests from different clients our scheme yields a considerable speed-up. We
have introduced an inter-TAC communication path for cascaded use of our TAC cell that not
only enforces exclusive activation of a single grant at a time, but also improves the fairness of
the arbitration process. Our simulation results clearly indicate that in most realistic cases our
scheme provides superior performance; in an example NoC application we gained a speed-up
of 61.28%, 69.24%, and 186.85% as compared to three different designs from literature. In
environments where one client is more eager than the rest, designs 1 and 2, having the smallest
cycle times, shall prove more useful than the proposed methodology.

81

CHAPTER 5
Protection of FIFO Control Path

While it is well understood how to efficiently protect the data path in an asynchronous transmis-
sion channel against transient faults, as we shall discuss in one of the coming chapters, much
less is known about protecting the handshake signals along with their associated logic – mostly
a Muller Pipeline – although these are equally critical for the proper function. In this chapter
we analyze the possible failure scenarios in the handshake of a 4-phase bundled data protocol
that can arise from transient faults and systematically elaborate mitigation techniques for the re-
sulting effects, namely SETs and SEUs. By simulated fault injection we show the effectiveness
of the proposed extensions for protecting the channel. We take care to make these extensions
themselves immune against transient faults, and we prove their proper and deadlock-free opera-
tion under fault conditions by means of model checking. Finally we show that, while providing
superior coverage, our approach is in line with comparable approaches with respect to the area
overhead.

5.1 Background and Related Work

Recall from the background chapter that each stage of the Muller pipeline consists of a single
MC with two inputs. The left input is connected to the request signal arriving from the previous
stage, whereas the right input serves as acknowledge signal from the subsequent stage. The MC
acts as a synchronization element which relays request transitions, as soon as a new input request
is available and the previous handshake transition has been acknowledged by the successor stage.
As can be seen in fig. 2.15 the output signal of the MC has multiple functions: It is used to drive
the request signal for the successive stage and at the same time serves as acknowledge signal
for the predecessor. Furthermore it is used as control signal which opens and closes the latches
of the pipelined data path. As discussed previously, the MC’s function implies waiting for a
transition on each of its inputs to occur and changing its output afterwards. So the transition that
arrives earlier just arms the MC, while only the transition on the other input will then actually
create an effect on the output. Since the purpose of the Muller pipeline is to co-ordinate the flow
of data tokens through the pipeline, its malfunction will eventually lead to data errors.

83

++
T1 T2

T5T6

T7 T4

Available
Sender Data

Transparent
LatchLatch

Hold

Ready
Receiver

T8 T3

rin+ rout+

aout+

ain+

rin−rout−

aout−

ain−

Figure 5.1: Handshake Protocol

In [82] a method is presented to increase robustness of control circuits. The general idea
is to use a dual-rail encoding for all handshake signals, where the second rail represents the
negated value of the first rail. Consequently the gates of the control circuit have dual-rail inputs
and outputs. This redundancy is expected to increase resilience against SETs and SEUs to
some extent. The main focus of this method, however, is to increase robustness against delay-
variations, e.g., when operating with extremely low supply voltages.

Another method for protecting delay-insensitive circuits against soft-errors is presented in [62].
For this approach all the gates, which are already implemented as dual-rail gates to achieve
delay-insensitive operation, are duplicated. Then all duplicated dual-rail signals (data and con-
trol) are double-checked by MCs. This effectively masks faulty transitions on one of the dupli-
cated rails since the MCs only forward transitions which occur on both rails. However, duplica-
tion of the complete data path, already built with dual-rail components, significantly increases
the circuit area.

A related line of research is concerned with the protection of asynchronous communication
channels against transient faults. In [23, 98], e.g., delay-insensitive data transmission schemes
are used and data words are encoded with a suitable error-correcting code.

5.2 Robust Asynchronous Muller Pipeline (RAMP)

5.2.1 Assumptions and Fault Model

For the elaboration of our protection scheme we make the following assumptions on faults as
well as the operation of the pipeline:

A1) We assume, and aim to tolerate just one fault per handshake cycle.
A2) We consider only transient faults, i.e. pairs of opposing transitions on the same signal,

whose distance defines the fault length. As will become clear later on, we will only tolerate faults
with a length of less than a value δT representing the (best case) delay between the transitions
T1 and T3, fig. 5.1. This assumption is not very restrictive in practice, considering that, e.g.,
radiation induced voltage pulses are typically in the order of 100ps, while the cycle time of the
protocol is in the nanosecond range. For transients caused by crosstalk or power supply noise a
similar argument can be made and our method applies as well. Later, we relax this assumption
slightly.

84

A3) In this work we do not address metastabililty issues. Although these may emanate from
transient faults, their occurrence may be considered sufficiently improbable, and, moreover,
metastability mitigation is a topic of its own.

On a global level, the possible effects of an error in the operation of the Muller pipeline can
be derived from its function to control the data flow through the latches:

C1) correct data tokens are lost,
C2) incorrect data tokens are erroneously inserted,
C3) the circuit ends up in a deadlock.
As far as C3 is concerned, we have formally verified that the Muller Pipeline never runs

into a deadlock for a single fault scenario (please refer to Sec. 5.3 for our formal verification
methodology). Therefore we only need to consider the first two cases. In essence both cases
resemble a mismatch in the sequence and/or timing between control path and data path, with
the only interface between them being the pipeline signal aout that is also used to control the
datapath latch operation, in this way synchronizing the two concurrent paths.

For a more detailed analysis we have to consider a glitch on every signal in every possible
state of the protocol. This analysis can be simplified by considering the following general issues:

• As already mentioned earlier the MC operates on pairs of transitions that arrive on its two
inputs. The earlier of the two transitions (say at input A) just arms the MC, and only the
one arriving later (say at input B) will fire it. This principle masks all glitches on input A
until the transition on B arrives. Depending on the actual sequence of transitions this may
provide for some degree of inherent fault masking.

• Similarly, inherent fault masking may become effective when an erroneous data token
(that may have been captured due to a glitch) is simply overwritten by the correct one
before being captured by the successor stage.

• In this context it is very important to mention that the act of switching a latch to transparent
is uncritical in the local pipeline stage, an error is manifested by capturing the data, i.e.
with the falling edge of aout. It will be a key principle of our approach to prevent the
latter in case of a fault (while we will not be able to prevent the former). However, a latch
becoming transparent because of a fault, can let the latch in the successor stage capture an
incorrect data; we have addressed this problem later in this section.

• The timing of an SET may be such that it does not show up as an isolated glitch but
rather lines up back to back with an intended transition such that the timing of the latter
is changed. In this way a correct transition may be moved to an earlier or later point in
time (by the amount of the fault length at most). Due to the delay insensitive nature of the
Muller pipeline this simply shifts all subsequent transitions of the control path accordingly
without causing any errors there. Usually in a 4-phase design there will be enough safety
margins in the relative timing between the two transitions to tolerate such shifts.

Considering these arguments only the following failure situations remain to be studied:

85

F1) Up/down pulse on rin: The leading up-transition can initiate a complete new handshake
cycle without a new data token actually being available. The extra token inserted in this way
corresponds to case C2.

F2) Down/up pulse on rin: Here the trailing up-transition of the transient can have the same
effect as F1).

F3) Up/down pulse on aout: The leading up-transition of this pulse has the potential to
prematurely acknowledge a token to the sender which may therefore get corrupted (case C1).

F4) Down/up pulse on aout: Here the trailing up-transition may cause case C1, in the same
way as F3).

F5) Up/down pulse or down/up pulse on rout: As the receiving stage cannot distinguish
whether the fault occurred on the predecessor’s output (rout) or its own input (rin), these cases
coincide with F1) and F2), respectively.

F6) Up/down pulse or down/up pulse on ain: For the same reason these cases coincide with
F3 and F4.
F7) Bit-flips at MCs: If the MC is affected by a transient while being in the armed state (one

transition already arrived) it will change its state, otherwise it will just produce a glitch at the
output and then return to its correct state. In any case there will be an erroneous transition on
both handshake signals that are sourced by its output, namely rin and aout.

These examples illustrate that, although the 4-phase bundled-data handshake primitive is
quite a small circuit, yet it is prone to several types of faults and its protection is definitely
essential.

5.2.2 Operation Principle

In the first place, it is obviously not possible for the circuit to distinguish between a correct and
an incorrect transition, even more so since the execution of the protocol is done jointly by a
pair of neighboring MCs which, therefore, locally only have a partial view of the protocol state.
However, even with its restricted local view one stage can perform some sanity checks: From
fig. 5.1 it is clear that a new input transition on rout (or ain) is not allowed to occur before the
previous one has been acknowledged1 by issuing aout (or rin). While this still leaves room for
the leading transition of a transient to be accepted, the trailing transition will definitely be too
early and hence be easily recognized as erroneous (recall assumption A2). Our aim is to detect
this situation and suspend the acknowledgment even for the leading transition until the next,
correct transition (recall A1) arrives. Although it is (fundamentally) not possible to mask the
fault’s leading transition, we can in this way block the handshake cycle from being completed.
The subsequent correct data token will therefore overwrite the potential effects of the fault and
retain correct operation of the pipeline (including the data path). Fig. 5.2 illustrates RAMP’s
envisioned operation principle, the dashed circle highlights a faulty up/down transition on rin.

Note that this blocking is enabled by the fact that the 4-phase protocol involves two transi-
tions on each signal for completing a handshake cycle. Although this redundancy is sometimes
criticized as inefficient, it can be conveniently leveraged here for fault tolerance.

1In this context the term “acknowledge” also applies to the sender issuing rin as an “acknowledge” for ain.

86

Figure 5.2: The operation principle of RAMP

rin+

rout+

ain+

rin−

ain−

rout−

aout+ aout−aout1+ aout1−

rin1−rin1+

(b)(a)

aout

rout

ain

rin

C2

C1

Figure 5.3: RAMP circuit for F2 and F4, (a) STG, (b) Equivalent circuit

It is clear from the functional principle that this approach only works if the trailing transition
of the fault is recognized before the leading one has already been acknowledged. Therefore, as a
necessary condition, the transient must be shorter than the regular delay between rout and aout
as well as that between ain and rin.

5.2.3 Initial Circuit Design

For modeling the desired behavior of the RAMP circuit we used STGs, which can be conve-
niently synthesized into gate-level circuit implementations using the tool Petrify [28]. As a
starting point we synthesized an STG identical to fig. 5.1, which resulted in simple wire connec-
tions between rin and rout, and aout and ain respectively. In this section we will now present,
step by step, what modifications of this initial circuit were required to design a circuit able to
tolerate all the seven fault scenarios F1 to F7 we have introduced in Sec. 3-A.

The simplest faults to be tolerated are F2, F3 and F4. To be able to mitigate these faults,
rout must fire only if there was a valid rin+ transition, and aout is still set to logic-0. Similarly,
ain must fire only if aout+ has arrived following a valid rin+ transition. These requirements can
be conveniently described in the STG as shown in fig. 5.3(a), where the dotted arcs indicate the
modifications. Note that the new signals rin1 and aout1 are simply copies of the original signals
rin and aout respectively. This trick was required to bypass the logic optimization performed
by Petrify. Obviously the new arcs just add redundant dependencies to the STG for the sake of
fault-tolerance. Petrify, however, does not consider faulty executions and therefore would simply
ignore these dependencies. In the synthesized netlist we then manually replace the signal names
rin1 and aout1 again with rin and aout. The resulting circuit, which now is able to maintain
correct operation in case of F2, F3 and F4 faults, can be seen in fig. 5.3(b).

The next fault scenario to be considered is F1: A glitch on rin (T1) is supposed to force rout

87

Figure 5.4: Simulation of up/down transient on “rin”

C1rin+

rout+

ain+

rin−

ain−

rout−

aout+ aout−

(b)(a)

aout

rout

ainain1+ ain1−

rin C2

C3

Figure 5.5: RAMP circuit for F1, (a) STG, (b) Equivalent circuit

to fire (T2), and then wait for aout+ to occur (T3). According to the operation principle (please
refer to Sec. 3B), once aout (T3) has occurred, the circuit must ensure that neither ain (T4) nor
rout (T6) makes its subsequent transition until the next valid rin (T1) has happened. As long as
our primary assumption A2 holds, the circuit given in fig. 5.3(b) guarantees the former. However,
the simulation given in fig. 5.4 shows that the circuit fails to prevent rout from making its falling
transition (T6), and as a result there is a spurious completion of the handshake on the receiver’s
end. Obviously, this property is not a threat for the local pipeline stage, say n, but the successor
stage n + 1 will definitely consume an invalid token, which completely destroys the operation
of the pipeline. To cope with this situation we need to add another layer of protection between
rin and rout. Since ain is supposed to remain stable until the valid rin arrives, it can be used to
“sanitize” transitions on rout. This behavior is modeled with the STG shown in fig. 5.5(a). Note
that we modified the original STG again for the sake of simplicity. After synthesis this STG
was translated into a single MC with the input rin and ¬ain. The result of manually merging
this MC into the circuit from fig. 5.3(b) can be seen in fig. 5.5(b). As required, the additional
MC prevents rout from making its falling transition (T6) until a valid rin (T1) happens. The new
circuit now is able to withstand all fault classes from F1 to F4.

The remaining faults from the list are F5, F6 and F7. Concerning F5 and F6 it can be argued
that they are identical to the faults discussed above, in case of a closed loop RAMP stage (see
fig. 5.6(a)). However, if we connect two successive stages as shown in fig. 5.6(b), these faults
possess a completely different interpretation and effect. Consider, e.g., the case when both stages
are in reset state (rin2 = aout1 = ain2 = 0), and an up/down transient occurs on rout1. This
obviously forces the MC CJ to change its logic state. The key problem here is that a short pulse
is converted into an apparently valid signal. For the left-hand stage (SS1) this does not have any
effect since the correct rin signal will not allow the fault to propagate to ain. The same fault,
however, becomes a valid rin2+ (T1) for stage SS2 and will be forwarded to the subsequent

88

rin

ain

rout

aout

SS

(a)

C2

C3

C1

(b)

rin

ain

rout

aout

rout1

aout1

rin2

ain2

SS2SS1 CJ

Figure 5.6: Closed-loop RAMP: (a) 1-stage, (b) 2-stage

Figure 5.7: Effect of an up/down fault on “rout1” in a two-stage RAMP

stages. The corresponding waveform is presented in fig. 5.7. Please observe how a glitch on
rout1 leads to stable (not just glitches) transitions on aout1 and rin2 (T1). While aout1+ is
successfully prevented to propagate to ain of stage SS1, the faulty transition on rin2 leads to an
invalid activation of rout (T2). The receiver reacts on this request with an acknowledge on aout
(T3), which subsequently completes this spurious handshake cycle.

Exactly the same situation occurs when there is a bit-flip/SEU in MC C1 of SS1, MC C3
of SS2 or MC CJ, which connects both stages. In all these cases the stages are on their own,
i.e., they cannot mutually protect each other. While SS1 is able to detect and block the faulty
transition on aout, SS2 cannot distinguish the fault from a valid input request. The solution to
this problem is to duplicate the MCs and the associated signals. In this setup bit-flips in a single
gate can be tolerated since the duplicated version of the gate still holds the correct value.

Fig. 5.8 shows the modified versions of the RAMP circuits with duplicated gates. Obviously
the single MC, which was previously used to connect two stages, now needs to be duplicated
as well (see gates CJ1 and CJ2 in fig. 5.8(b)). In order to provide a single request signal to
the second stage and a single acknowledge signal to the first stage, the outputs of CJ1 and
CJ2 then are joined by a third MC CJ3. Note that this gate is always driven with identical
inputs (except for short transition times). Therefore it is resilient to SEUs as the correct output
value would be immediately recovered. The worst thing that can happen is a short glitch at the

89

CS

aout

rin

CR

C11

C12

C21

C22
C31

C32

rout1

rout2

ain1

ain2

SS

(a)

(b)

CS

delay1

delay2

SS1

ain1
ain2

rout11
rout12

rin

aout1

CR

rout1
rout2

SS2

rin2
CJ1 CJ2

ain21
ain22 aout

CJ3

Figure 5.8: Closed-loop RAMP with duplicated gates: (a) 1-stage, (b) 2-stage

output. While in the control path, this is not a problem since glitches can be tolerated by SS1
and SS2 with the mechanisms discussed above, the same problem, however, can lead to data
overriding in the datapath. Consider a down/up pulse on CJ3 between stages N and N+1, call it
CJ3_N, when rout11 and rout12 are already set to low. The falling transition of the fault would
immediately lead to an up transition on CJ3_N-1 making the associated latch, latch_N-1, go
transparent, thereby overriding its previous data which still would not have been latched by the
successor stage, i.e., latch_N, because the trailing up transition of the fault would have already
put the latch_N into the transparent mode once again. Now once the correct down transition has
arrived, latch_N would capture the new data while the previous has been completely lost. This
problem can be solved without modifying SS1 and SS2: CJ3_N is duplicated, call the duplicated
version CJ3_N’, which now becomes the third (inverted) input of CJ3_N-1. This way, even if
one of CJ3_N or CJ3_N’ is faulty, the other one should be able to maintain the correct state, and
probihits the latch from making an erroneous mode transition. These changes are presented in
fig. 5.9 for a case of 2-stage pipeline. In case CJ3 erroneously lets ain1 and ain2 to fall, CJ3’
still shall be able to hold CS from generating a new rin.

The duplication ensures that the presented circuit now is able to mitigate the faults F5 and
F6, and for the same reason bit-flips can be tolerated in all gates as well. Therefore the last
missing fault class F7 is also covered. Note that we have assumed that both the sender and
receiver add their own delays which are greater than the maximum length of the transients.
These delays are marked as black triangles on rin and aout in fig. 5.8(a).

5.3 Formal Verification

Although we have derived our implementation in a systematic manner, it is mandatory to provide
evidence for its coverage of all target faults. We used the UPPAAL model checker [72] for this

90

rout11
rout12

rin

aout1

rin2
CJ1 CJ2

ain22 aout
ain2
ain1 CJ3’ CJ3

CS ain21

rout1
rout2

CR’CR
SS1 SS2

Figure 5.9: Closed-loop RAMP with protected datapath: 2-stage

purpose. Starting from suitable UPPAAL models for every used elementary gate, i.e., the 2-input
MCs, inverter and buffer gates (see Appendix), we derived a gate-level representation of our
circuit that we subjected to the model checking. Since UPPAAL models are based on networks of
timed automata, the switching behavior of these gates could be nicely incorporated: Each gate
model contains two stable states (s0, s1) and two transition states (wait_s0, wait_s1), where
the gate is about to change from one stable state to the other within certain time bounds. The
latter effectively model the possibility of input glitches being masked: If the input is not stable
throughout the transition state, an ongoing transition can be reverted and the gate settles again
in the old stable state.

5.3.1 Fault Simulation Methodology

For simulating faults we inserted saboteur units at each and every node of the model. These
can produce a single transient pulse on the associated signals, whose length is restricted in order
to satisfy assumption (A2). However, the exact point in time when the pulse is generated is
completely arbitrary. In order to model soft-errors (bit-flips) of the state-holding elements of the
RAMP circuit as shown in fig. 5.8(a), the MCs’ models are able to spontaneously change from
one stable state to the other. Again, such a fault can be triggered at an arbitrary point in time.

Table 6.3 lists the expressions used for checking the desired properties of the RAMP circuit.
Note that the query language used in UPPAAL is a subset of TCTL (timed computation tree logic).
The first formula verifies that the number of requests issued by the sender matches with the
number of requests that arrived at the receiver. Obviously, the difference of these two numbers
must be less than or equal to 1, as the sender can only be one request ahead of the receiver. By
this check we can ensure that no correct token is lost (C1). The second and the third expressions
are responsible to verify that no superfluous data token can be inserted by a fault (C2). Note that
the second expression allows for the receiver to have seen at most one request more than has
actually been issued by the sender. This can obviously be the case if there is a faulty transition
at the rin input of the receiver. Recall that the expected behavior of RAMP in this case is to stall
the handshake protocol until the sender issues a real request, which turns the faulty data token
into a correct one. This behavior is nicely captured by the third property, which checks that if
the receiver has processed a faulty request, the sender will eventually catch up. Then the two
request counters have to be equal again.

The final formula in Table 6.3 verifies that there are no deadlocks on all possible execution

91

Figure 5.10: Faulty behaviour of the initial circuit

paths. Since we use a closed-loop RAMP model for verification, the execution should be infi-
nite: After a handshake cycle is successfully completed, the sender immediately issues another
request. Therefore the check for “no deadlocks” should evaluate to true. Note that by using
this setup we also verify that every handshake cycle is correctly acknowledged. Otherwise the
execution would stop, which in turn would violate the “no deadlock” property.

Table 5.1: Verified properties

CTL-Expression Check
1. A� (sender.requestCount - receiver.requestCount) ≤ 1 C1
2. A� (receiver.requestCount - sender.requestCount) ≤ 1 C2
3. (receiver.requestCount - sender.requestCount) == 1 C2

– –> (receiver.requestCount == sender.requestCount)
4. A� not deadlock C3

5.3.2 Observations and Post-verification Modifications

The observations made during the verification process led us to the following two modifications:

Circuit’s faulty behavior

The verification of the circuit of fig. 5.8(a) yielded one problem with an up/down pulse on aout
in case of pronounced timing asymmetry between forward and backward paths:

Let’s assume that an up/down pulse on aout coincides with a valid rin+ (T1) at C31 and
C32, and that the receiver is slower than the sender. So rin makes its falling transition (T5)
before aout can make its rising transition (T3). Also according to (A2), the fault has supposedly
settled down already. This allows ain to make its falling transition (T8), followed by a new rin+.
This scenario is presented in fig. 5.10. Note that, when the receiver responds with the correct
aout+, the second rin+ has already been issued. Similarly, the next aout+ arrives after the third
rin+, which means the second valid data token is not latched properly; this violates the first
property in Table 6.3, and corresponds to the case C1 described in Sec. 3-A.

To remove this weakness, the circuit must prevent the fault from reaching C31 and C32
somehow. We can place another pair of MCs (C41 and C42) that allows aout to reach C31 and
C32 only if rout1 and rout2 have already fired correctly, see fig. 5.11. It is obvious that the
fault on aout can still coincide with rout (even before the correct aout has arrived) and manage
to reach C31 and C32, and subsequently force rin to make the opposite transition. This time
however, C41 and C42 having maintained their logic states, do not allow ain–, and therefore a

92

new rin+ cannot be issued. Once the correct aout+ has arrived, rout–, followed by aout– can
occur. Only then ain– is allowed, which leads to the next valid rin+. This makes the feedback
path completely symmetric to the forward one, and allows the receiver to be arbitrarily faster or
slower than the sender. The correct behavior of the circuit against the discussed case is presented
in a waveform in Sec. 5

Improvement in latency

Refer to fig. 5.8(a): By varying the upper and lower bounds on gate delays and repeatedly
running the verification tests, it could be observed that the length of the transient to be tolerated
on aout should be smaller than the delay of the feedback loop:

δtmax,aout < max(d(C31), d(C32)) + d(CS) + delay1 +

max(d(C11), d(C12)) + d(wire)

where d(xy) is an abbreviation for delay of gate xy. Similarly, for the transients on rin:

δtmax,rin < max(d(C11), d(C12)) + d(CR) + delay2 +

max(d(C21), d(C22)) + d(wire)

Interestingly, max(d(C11), d(C12)) is common to both the cases, which implies that it is
possible to remove delay1 and delay2, and keep one implicit delay at the outputs of the C11 and
C12 gates. This significantly improves the performance of the circuit, since one handshake cycle
only needs two times the delay to complete, whereas, previously it was four times. In an ideal
situation, where we can assume that all the MCs operate at the same speed, and d1 and d2 insert
identical delays, this new circuit needs no modification at all. However in reality it is hardly
possible to achieve such precision in digital circuits. Our no deadlock property indicated that the
circuit would run into a deadlock if the two inputs of CR are at different logic levels (because
of the difference in speeds of the two paths) when an SET strikes CR, resulting in a bit-flip.
Solving this requires us to force aout to wait until both C21 and C22 have made their respective
transitions. Therefore, we insert another small delay d_prec, acronym for delay_precision, as
shown in fig. 5.11:

d_prec >= |d1− d2|+ |d(C11)− d(C12)|+max(di(C21), di(C22))

where di(C2x) refers to the inertial delay2 of gate C2x. This ensures that no pulse is suppressed,
irrespective of the relative speed of the two paths.

Note that d_prec does not depend upon d(CR), which allows the sender and the receiver to
run independently at their own speeds. Secondly, the difference in gate delays is some picosec-
onds for 90nm technology; therefore, d_prec merely incurs a negligible performance overhead

2An input pulse that can successfully reach the output of a component A must be longer than a specific delay
called the inertial delay of A. Otherwise, the output of A will remain unchanged.

93

rin

C31

C32

C11

C12 C22 rout2

rout1

aout

C41

C42

d1

d2
C21

SS−RAMP

d_prec
ain1

ain2

CS

CR CR’

Figure 5.11: Modified closed-loop single stage RAMP

as compared to the case where we had two explicit delays on the sender and the receiver sides.
Since, all the other faults are already tackled through duplication, this change of delays does not
affect them at all. Fig. 5.11 presents the completely verified closed loop single stage RAMP,
where d1 and d2 control the length of the transient faults to be tolerated.

5.4 Simulation Results and Discussions

In this section, we present the experimental evaluation of RAMP in terms of fault tolerance,
and later we briefly comment on its performance and area overhead in comparison with the
solutions based on duplication. All the simulations are done using Modelsim, in compliance
with assumption A2: the delays d1 and d2 are fixed to 5ns, and we vary the length of the
transients between 1ns and 3ns.

5.4.1 Simulation Results

To verify the correct operation of RAMP, we built a two stage RAMP circuit, identical to that
of fig. 5.9 except that “SS” was replaced with “SS-RAMP” of fig. 5.11. We extensively tested
the circuit for each and every fault described in Sec. 3-A . Fig. 5.12 presents a snapshot of a
few simulations for faults 1 to 4, where rin, rout1, aout1, and ain are the handshake signals
of stage-1, and rin2, ain2, rout, and aout correspond to the handshake signals of stage-2. The
different circles highlight the injected faults on rin and aout. The important thing to note is
that the number of valid input requests rin (total cycles less the encircled transitions) remains
equivalent to the number of output requests rout, which verifies the fault-tolerance at rin since all
the faulty transitions are mitigated before they could reach the respective outputs. Similarly, the
faults injected at aout do not have an impact on the number of transitions on ain which verifies
the fault-tolerance on aout as well.

Likewise, fig. 5.13 presents the fault injection and operation verification against F5, F6, and
F7, i.e., faults at rout1, ain2, CJ1, and CJ2 of fig. 5.9. If any of the applied faults manages to
alter the state of the join MC CJ3, it would lead to consumption of an invalid token at SS2, case

94

Figure 5.12: Simulation of faults 1 to 4

Figure 5.13: Simulation of faults 5, 6 and 7

Figure 5.14: Simulation of faults at Join MC

C2. However, fig. 5.13 confirms that none of them manages to do that because the duplicated
instance of the same gate maintains its valid state and prohibits the false transition to reach the
output of CJ3. The fault in dotted circle represents a case of bit-flip, F7, while the dashed and the
bold circles correspond to transient faults on one of the two wires of rout and ain respectively.

Finally, consider the case when the join MC CJ3 is affected by an SET. Since its inputs are
identical, this MC is not supposed to end up in a bit-flip. The only two possibilities, i.e., down/up
and up/down are both presented in fig. 5.14. Importantly, none of the transients is able to affect
either ain or rout, which confirms the fault-tolerance characteristic of RAMP against the faults
occurring at the merge modules.

95

Table 5.2: Pattern of Area Utilization with Number of Pipeline Stages

Mechanism Single Stage Two Stage Pipeline
CE* Data SED/ Area CE* Data SED/ Area

Path SEC (µm2) Path SEC (µm2)
Non-FT 1 1 — 573 2 2 — 1147

Martin_FD 4 2 2 2289 8 4 2 3453
Martin_PD 3 1 1 2106 6 2 1 2697

RAMP 8 1 1 2333 20 2 1 3186
*CE — Number of Control Elements

Table 5.3: Pattern of Area Utilization with N Pipeline Stages

Mechanism N Stage Pipeline
CE Data Path SED/SEC Area (µm2)

Non-FT N N — 573N
Martin_FD 4N 2N 2 1165N+2x562
Martin_PD 3N N 1 591N+1x1515

RAMP 8N+4(N-1) N 1 818N+36(N-1)

5.4.2 Comparison and Discussion

Inarguably, the proposed solution incurs a substantial area overhead to the original (non fault-
tolerant) control logic. Notice, however, that compared to the data path with its wide latches
and potentially complex logic function units, the area of the control logic is usually very small.
In order to evaluate the area overhead, we compared RAMP with two possible solutions using
Martin’s Duplicated Double-checking (DD) [62] approach: In the first of the two solutions,
called Martin_FD (FD for full duplication), each MC of the pipeline was replaced with a DD-
gate3, and the accompanying datapath was also duplicated. On the other hand, in the second
solution, each MC was duplicated, and checked with a single MC, thus resulting in 3 MCs in
total. Furthermore, in the datapath, the storage elements were not duplicated. The latter is
termed as Martin_PD (PD for partial duplication). In order to protect the data paths, we made
use of Single Error Correction (SEC) Hamming codes [51] for RAMP and Martin_PD. On the
other hand, since Martin_FD already had duplicated storage elements, it just needed to detect an
error using Single Error Detection (SED), and it should be able to correct it without any complex
logic, and area penalty, since the latter is significantly more area efficient as compared to SEC.
We have presented a comparison between the two schemes in terms of area and latency in [94].
In chapter 7, we have proposed our own error detection and correction mechanism based on
Double Error Detection with Retransmission (DED) hamming codes, which could also be used

3A DD-gate is a four gate circuit that protects a plain gate by first duplicating it, and then double checking their
states using two MCs [62].

96

Figure 5.15: Area Overhead incurred by (1) RAMP, (2) Martin_FD, (3) Martin_PD

here in this work. However the circuits required for retransmission would unnecessarily increase
the complexity without having any impact on the protection of the control path, we decided to
make use of more commonly known algorithms for this work.

We varied the number of pipeline stages between 1 and 39 to observe the impact of the size
of the datapath on the overall area utilization. The number of stages comes from HERMES
NoC [85] in which the maximum number of flits per packet was 39, and the length of each flit
(34 bits) was assumed from [93]. All the designs were synthesized for the 90nm technology.
Table 5.2 presents the pattern of area utilization that each methodology follows with single and
double pipeline stages, and Table 5.3 does the same for N stages. The area is measured as the
sum of individual areas of the control path, datapath, and the error- detection/correction scheme
(where applicable). In case of RAMP, this also includes the number of buffers needed to form
the additional delays assuming the maximum length of the transient fault to be 1ns.

In case of the non-FT version, the area of the N stage pipeline is simply the area of a single
stage times N. For Martin_FD, the overall area is the sum of N times the area of control- and data-
path, and two SED modules. The areas for Martin_Pd and RAMP are also computed identically,
except for the area of SEC module, which is counted only once. It may be conveniently observed
that Martin_FD causes the most overhead relative to the Non-FT version. Fig. 5.15 presents
the comparison between the overheads of the three methods. With just a single pipeline stage,
RAMP stands out the worst because of the expensive control path, along with SEC methodology
which already utlizes significantly higher area as compared to the SED mechanism. Note that,
with the increasing number of storage elements, Martin_PD turns out to be the most efficient
approach; however, with a single checker MC in the control logic, it cannot guarantee protection
against all transient faults. Martin_FD, as expected, incurs significant overhead, but guarantees
tolerance against both SETs and SEUs. Notice, however, that the pipeline input signals are
not duplicated and hence not protected. Their duplication, on the other hand would require
adding redundancy to the source, which may become quite costly in terms of area. As can be
seen in the figure, RAMP stands between the two alternatives, incurring around 50 percent area
overhead, and guarantees full tolerance for all transient faults conforming to (A2), including the
input signals. This clearly gives RAMP a profound edge on the state-of-the-art fault-tolerance

97

methodologies for asynchronous control circuits.
The performance overhead of the individual methods can be estimated by the number of

MCs in one handshake round: For the non-FT version it is just 2 MCs, for the Martin_PD we
have 4 MCs lined up. The Martin_FD approach requires more MCs overall, but still there are 4
MCs lined up sequentially along the path. Finally, RAMP requires 8 MCs4. For a 90nm CMOS
technology our simulations yielded a handshake cycle time of 174ps for the two Martin-methods
and 348ps for RAMP, which exactly confirms this estimation. While in this comparison RAMP
obviously incurs a much higher performance penalty, one should, however, consider that we have
looked at a very specific case that is particularly unfavorable for RAMP. In practice, a bundled-
data pipeline contains combinational logic between the registers, and delay elements need to be
inserted between the MCs in the control path to match the timing of data path and control path.
Here the data path dictates the performance limit, and in case of complex combinational blocks
in the data path the higher delay of RAMP in the control path will simply become invisible.

5.5 Summary

In this chapter we have motivated the need for protecting the control path of an asynchronous
pipeline against transient faults, complementary to existing approaches for data path protection.
For the very popular case of a Muller pipeline in a bundled data architecture we have analyzed
the potential fault scenarios and, based on this analysis, systematically developed an extension to
attain fault tolerance. Unlike mere duplication approaches, our design exploits the redundancy
immanent to the 4-phase protocol for mitigating transient faults, thereby eliminating all potential
single points of failure. By means of model checking we have proven that our solution can
withstand all transient faults in the control logic, including the proposed extension itself.

44 MCs in a stage, and 2 on it’s each side to connect with the neighbor stages. This does not include the redundant
MCs.

98

CHAPTER 6
Fault-Tolerant Switch Allocation

As stated earlier, due to their inherently indeterministic behavior arbiters cannot simply be made
fault tolerant by replication. In this chapter we present an in-depth analysis of a tree arbiter
cell with respect to possible faults and failure modes. Based on these results we devise a fault
tolerant implementation of this cell that carefully avoids all single points of failure and can hence
withstand transient faults as well as bit flips in its stateful elements. We verify the fault tolerance
of our implementation by means of model checking and compare its overheads and performance
penalties with a TMR-based solution. While the validation confirms that our approach is indeed
suitable for use within an overall fault tolerance concept, the penalties turn out to be lower than
for a comparable TMR approach.

6.1 Related Work

In context of fault-tolerance, it is important to note that under fault free circumstances the se-
quence of req+ / grant+ / req- / grant- is strictly followed in the arbiter’s operation, fig. 4.1. Any
deviation in the protocol would spoil the timing closure, and hence indicates an error. The need
for a fault tolerant arbiter is well understood in the literature, but not always correctly addressed.

Most of the existing works rely on modular redundancy with a majority voting mechanism.
For example, in [27] the authors have used n-modular redundancy (NMR) [131] to guarantee re-
liability. Similarly, triple modular redundancy (TMR) has been widely adopted for components
and links to ensure fault tolerance [130, 150]. The basic principle of replication-based schemes
is to provide a sufficient number of correctly operating units whose majority can then mask the
behavior of a minority of potentially erroneous units. Besides the significant (namely N-fold)
area and power penalty those NMR schemes incur, they further suffer from several problems
with the voter implementation: Obviously, a single, unprotected voter forms a single point of
failure. Replicating the voter, on the other hand, causes a substantial further overhead, since for
a thorough approach not only the voter circuit itself but in essence the whole design needs to
be replicated. Finally, some authors protect the (simplex) voter by other means [90, 152], which
again incurs an area penalty and makes the voter more complex.

99

Complexity of the voter is another issue by itself: In the simplest approach each outgoing
signal X is derived by a purely combinational majority voting over the outputs X1, X2, X3 of
the associated replicated function blocks. In the context of arbiters, however, this raises a fun-
damental problem: The operation of an arbiter (specifically of the MUTEX inside it) is not fully
deterministic. As outlined in Section 6.1, its specification allows the arbiter to make an arbitrary
decision in case of simultaneous requests. Due to this operation principle two arbiters that op-
erate in parallel may exhibit contradicting behavior even in the fault free case. Unfortunately
this inhibits the above-mentioned masking principle of the NMR approach: Assume a set of N
simple two-way arbiters, each with two request inputs (R1, R2) and two grant outputs (G1, G2)
on the client side. For coincident requests R1, R2, one half of the components may correctly
decide for G1, and the other half (also correctly) for G2. This “tie” situation can only be re-
solved by choosing an odd number of components (say N=2k+1) along with a threshold of k+1.
Now imagine the case where k components decide for G1 and another k decide for G2, while
the remaining one is faulty. Obviously the faulty component’s behavior is now relevant for the
output, rather than being masked. In this way the single faulty component can cause incorrect
output behavior like granting both requests simultaneously, no matter how large N is chosen.

In principle, such types of invalid output can be identified and blocked by an intelligent voter
that not just has a local view of one output, but a global view of all outputs, which allows the
identification and prevention of illegal patterns. Such an approach necessarily involves a mutual
interlocking of the grant outputs (to prevent the case of multiple grants) – which ultimately
requires MUTEX properties from the voter. To some extent this moves the original problem into
another box without actually solving it.

A solution of this kind is presented in [61] for a MUTEX circuit. Here duplicated input and
output signals are used, and a simplex MUTEX is cleverly augmented with additional circuitry
to attain a high degree of fault tolerance. At the output, however, special ’mutual excluders’
are required for mutual interlocking. Another solution proposed by Pontes [108] made use of
NC2 MUTEXs to arbitrate N clients, in such a way that each client competes with every other.
Finally an MC is used to cross check if the client that has been given the grant actually made
a valid request. Unfortunately, this mechanism only mitigates one simple fault on the client’s
request, and ignores every other possibility.

The decision problem with non-deterministic inputs, as mentioned above with the simple
voters, is well understood in the distributed algorithms community, and the common solution
there is to use consensus algorithms [3]. In the general case, however, consensus requires at
least 4 components (more generally 3f+1 components to tolerate f faults), and it involves round
based communication among those. Overall, it thus causes prohibitive area overhead and timing
penalty and is therefore not practical for an arbiter.

Finally there are some existing solutions that make use of inherent information redundancy
instead of the hardware, and have been shown to be much more efficient than TMR [35,101,154].
Since none of the papers actually presented the gate-level designs, it is impossible to verify
whether those solutions would successfully eliminate all single points of failures. Radiation
hardening by transistor sizing is another common approach to protect circuits from single event
transients (SETs). As shown, e.g, in [143], this involves a huge (up to 100x) area overhead.

In this work, rather than replicating or hardening the TAC cell from fig. 4.2, we modify its

100

internal circuit to make it resistant against transient faults on all nodes and inputs. To this end
we will exploit knowledge about the 4-phase protocol to detect and mitigate faults wherever
possible. In the remaining cases we will employ hardware replication, and we will ensure that
all single points of failure are carefully resolved as well. Note that this relieves us from all the
mentioned problems associated with the voter.

6.2 Arbiter Failure Modes and Causes

In this section we will study the effects of single transient faults on an arbiter, more specifically
the TAC from fig. 4.2. As a single fault we consider a bit flip in a single stateful element (MC
in our case) or the transient inversion of the logic state on a single signal line. This will also
include single faults in the MUTEX element. The term “single” refers to our assumption of at
most one fault per client handshake cycle. Concerning the fault duration we envision pulses of
width less than 1ns, as they are observed with radiation particle hits1 [54].

6.2.1 Failure modes on the client interface

Considering the description of the arbiter operation given in Section 4.1 we can state for the
client interface the following requirements (R) along with failure modes (F) that result from
their violation:
(R1): The arbiter issues only one grant at a time.

(F1) Multiple grants: More than one grant is active at a time.
(R2): A grant is issued (eventually) iff the corresponding client request is active.

(F2) Deadlock: The arbiter simply does not produce any grants even in presence of active
requests. Since we excluded permanent faults, the TAC must have been driven to a deadlock
state by a transient fault2.

(F3) Undue activation of grant: A grant is activated without being caused by a preceding
request.
(R3): A grant is deactivated (eventually) iff the corresponding request is deactivated.

(F2) Deadlock: Like above the failure to remove the grant can only be explained by the TAC
being in a deadlock state.

(F4) Premature Removal of Grant: A grant is deactivated although the request that caused it
is still active.

6.2.2 Failure modes at the interface to the common resource

(R4): A CR request is issued (eventually) iff a client request is active.
(F2) Deadlock: The arbiter does not produce any CR request even in presence of active

client requests.
1In rare cases those short pulses can also cause metastability issues. However, we generally do not consider this

issue here, as that constitutes a topic of its own.
2We do not consider the case of starvation (only one requester gets the grant all the time) here as it only occurs

if (1) one requester continuously activates its request and (2) we have a continuous sequence of transient faults with
very specific, adverse timing.

101

(F3) Undue activation of CR request: A CR request is activated without being caused by a
preceding client request. Under our fault assumptions the client will perceive this as an undue
activation of grant (already covered by F3).
(R5): The CR request is deactivated (eventually) iff the client request that caused it is deacti-
vated.

(F2) Deadlock
(F4) Premature removal of CR request: A CR request is deactivated while the client request

that caused it is still active. In consequence this leads to a premature removal of grant, which is
already covered by F4.
(R6): The client grant is activated (eventually) iff the CR grant is activated.

(F2) Deadlock
(F5) Premature activation of grant: A client request is answered by a grant before the CR is

actually ready.
(R7): The client grant is deactivated (eventually) iff the CR grant is deactivated.

(F2) Deadlock
(F6) Premature removal of client grant: A client grant is deactivated while the CR grant

associated with it is still active. The problem here is that the timing closure with the CR may get
broken.

So in summary the failure modes of the TAC cell can be described by the cases (F1)...(F6).
These favorably match with the failure list given in [35] for an arbiter circuit in an NoC router.

6.2.3 MUTEX failures

As outlined above it is not possible to protect the MUTEX by replication due to its indetermin-
istic behavior in borderline decisions. At the same time, however, the circuit of a MUTEX is
highly optimized to eliminate the potential for metastability, and any changes intended to harden
it against transient faults would certainly compromise that important property. Consequently the
best strategy seems to be hardening the TAC in a way to withstand erroneous behavior of the
MUTEX. To investigate whether this is possible, let us examine the very common implementa-
tion of the MUTEX element from [63] that is shown in fig. 2.12.

Table 6.1 summarizes the effects of transient faults on all the 6 nodes it comprises3 in all
states of the circuit. Note in the table that the symbols ↓↑ and ↑↓ indicate faulty down-up, and
up-down pulses respectively on the corresponding nodes. Similarly, the symbols ↓ and ↑ indicate
the bit-flips from high to low, and low to high logic states respectively. In each line the signal
transition(s) marked with a “*” correspond(s) to the fault origin, whose effects are visible in the
columns to the right.

Note that entries 1-5 of Table 6.1 correspond to faults occurring at the input request r1,
which not only covers potential MUTEX faults, but also faults originating from the TAC. Cases
2 and 5 do not lead to any further faults, since the victim of the transient fault is still waiting for
its turn to acquire the MUTEX, so the request (including the fault) is masked by the NAND gate.
Faults 1, 3, 6, 8, 11, and 12 are propagated as short pulses on the corresponding output grant g1,
without disturbing g2.

3As the circuit is symmetric we can restrict our analysis to faults on half of the nodes.

102

Table 6.1: Possible Faults at the Outputs of MUTEX

No r1 r2 a1 a2 g1 g2
1 ↑↓ ∗ 0 ↓↑ 1 ↑↓ 0
2 ↑↓ ∗ 1 1 0 0 1
3 ↓↑ ∗ 0 ↑↓ 1 ↓↑ 0
4 ↓↑ ∗ 1 ↑ ↓ ↓ ↑
5 ↓↑ ∗ 1 1 0 0 1
6 0 0 ↓↑ ∗ 1 ↑↓ 0
7 0 1 ↓↑ ∗ ↑↓ ↑↓ ↓↑
8 1 0 ↑↓ ∗ 1 ↓↑ 0
9 1 1 ↑ ∗ ↓ ↓ ↑
10 1 1 ↓ ∗ ↑ ↑ ↓
11 0 X 1 X ↑↓ ∗ X
12 1 X 0 1 ↓↑ ∗ 0

The remaining cases lead to effects on both grant outputs: while case 7 leads to short pulses
on both grants, cases 4, 9 and 10 result in soft-errors (bit-flips) in the RS-latch formed by the
cross-coupled NAND gates that inversely change both g1 and g2. These latter cases resemble
snatching the grant from the original winner of the arbiter and present it to the other client. In
the design of our TAC protection scheme we will definitely have to consider all these cases.

6.2.4 Fault effects on the TAC

Knowing the failure modes of the MUTEX and the internal structure of the TAC we are now in
the position to analyze how transient faults in those components map to the TAC failure modes
(F1)...(F6) as identified above. We have done this by means of model checking (for details see
Sec. 6.4). Table 6.2 lists the applied faults and their outcomes.

Table 6.2: Verification Results of Faults at TAC

Fault C1req C2req CRgr g1 g2 g1 and g2 Internal (node outputs)
u0 u1 u2 u3 u4 u5 u6

F1
√ √ √

X X X
√ √ √

X X X X
F2

√ √ √ √ √ √ √ √ √ √ √ √ √

F3 X
√ √

X
√

X
√ √ √

X
√

X
√

F4 X
√ √

X X X
√ √ √

X X X X
F5 X X X X X X X X X

√
X X X

F6 X X X X X X X X X
√

X X X

The table should be read as follows: A
√

symbol in the row F1 and column C1req, for ex-
ample, indicates that no faulty pulse on C1req leads to behavior F1 (multiple grants). Similarly,

103

the X symbol in the column g1 and g2 and row F4 indicates that if g1 and g2 flip simultaneously,
then they can snatch the grant from C1gr and incorrectly present it to C2gr – corresponding to
the scenario F4, and so on for the rest. In other words, all the X symbols refer to the faults that
the TAC presented in fig. 4.2 cannot tolerate by itself, and it will generate incorrect outputs to
the environment.

Throughout our simulation and verification activities we made the following additional ob-
servations that are not fully reflected in Table 6.2:
(O1): The circuit by default does not result in F2 against any fault, so it guarantees deadlock
freedom. However, this property will have to be checked again after our modifications.
(O2): In case of F1, one of the client grants will settle down eventually (since both being high
will force the CR request to fall, and as a result CR grant must also fall). However, the length
of the pulse generated at the client grant cannot be restricted, since it is determined by the CR,
which might take arbitrarily long to release its grant.
(O3): The gates u0, u1 and u2 need no protection, since their purpose is to generate CRreq
whose faulty behavior is, if not detected and ignored by the common resource anyway, simply
reflected to CRgr as a transient fault.

6.3 Proposed Fault Tolerant Tree Arbiter Cell

6.3.1 Architectural Considerations

We have already laid out why it is not possible to protect the MUTEX (or the complete TAC
including the MUTEX, resp.) from faults by means of replication. Consequently, in our attempt
to design a fault tolerant TAC we will, no matter which solution we finally choose, have to
take care of handling all types of erroneous behaviors of the MUTEX as listed in Table 6.1.
Another invariant will be to use unprotected (i.e. single rail, non-redundant) input and output
signals. This decision distinguishes our approach from [61] and avoids the need for replicating
CR and clients (i.e. allows protecting them by other means if necessary). So no matter in which
way we finally protect the logic internal to the TAC, the interface lines will remain subject to
faults, and we will have to handle that. However, faults originating on those signals (or on their
combinational source gates) can, according to our fault hypothesis, only be transient; so they
can be handled by glitch filtering in the receiving stage. So we finally end up with the following
constraints:

• use of a single MUTEX only

• TAC must be capable of handling erroneous inputs from MUTEX, CR and client

• client must be capable of handling erroneous inputs from TAC

• for CR we assume it handles transient input faults by exhibiting transient faults of the
same length at its output (which then need to be handled by the TAC). Otherwise it also
needs specific protection.

104

C yx Fx y

Figure 6.1: Glitch filter implementation

&

C+
+

F

C
+
+F

&

CRreq

u2

C1req

C2sel C1sel

&

u1.1

C2gr

C2req
C1gr

g1 g2

CR1

u0.0

u1.0

u0.1

u8

u7

Figure 6.2: Modified Part of the Circuit protecting from g1 and g2 flips

The remaining choice is how to cope with TAC internal faults. Considering the issues with
voting in a replication-based approach mentioned in Section 6.1, we chose to rather pursue a
solution involving a fault tolerant implementation of the simplex TAC in the following.

6.3.2 Hardening the generation of CRreq

Let us start with the part of the circuit that is responsible for generating CRreq, which is com-
prised of gates u0, u1 and u2. Obviously u0 governs the activation of CRreq consequent to
C1req under the following conditions4: (U0.A) C1req is active, (U0.B) g1 has been received,
and (U0.C) C2gr is inactive, ensuring that client 2 is given sufficient time to safely finish its
access cycle to the CR. Gate u2 only merges the requests from the two clients. A transient fault
(glitch) on C1req may propagate to CRreq if client 2 is currently idle (U0.C), and if g1 is re-
ceived before the fault has vanished (U0.B). We can safely prevent the latter by adding sufficient
delay to g1. More specifically we introduce a glitch filter, proposed in [5], as shown in fig. 6.1
into the signal line leading g1 from the MUTEX to u0. In the dimensioning of the delay element
we can exploit the knowledge that the fault length is in the order of some 100ps for radiation
induced transients. A large delay will allow us to tolerate faults with longer duration, while at
the same time performance of the TAC suffers. The choice of the delay must therefore be done
with care and consistently with the expected fault duration.

This solution will also be effective against all glitches originating in the arbiter. From Ta-
ble 6.1 we know, however, that we must also expect bit flips at the MUTEX. In that case U0.B
may immediately be invalidated, thus u0 will prematurely withdraw CRreq (F5). To safely pre-
vent this we need to replace u0 by an MC (u0.0) as shown in fig. 6.2. Now changing its output
requires both g1 and C1req to change.

The two inverted inputs of the MC turned out to be necessary due to subtle timing effects
we discovered in our verification runs: Due to the propagation delay of the involved gates, the

4For brevity we will refer our explanations to client 1 only, but they equally hold for client 2, as well.

105

F C

F

C+
+

C

C

C
+
+

u0.03

&

u0.04

u0.1

(b)

C1req

u7’

u0.01

u0.02

u0.05

C2gr

g2g1 C2sel’ C2sel’’ C1sel’ C1sel’’ CR1

C

C

x

y1

y2

x y1

y2

(a)

Figure 6.3: Modified Gates: (a) u7, (b) u0

interlocking established by U0.C needs some time to become effective. The specific case of a
MUTEX bit flip occurring right during that stabilization phase can therefore become problem-
atic.

We counteract this by two means: (I) We additionally establish a second, faster interlocking
loop (that does in particular not depend on the response time of the CR), namely between u0
and u1. (II) To protect this loop during its stabilization phase (where our verification has shown
it is prone to deadlocking), we use g2 as an additional input to u0. At the first glance using
the mutually exclusive signals g1 and g2 as inputs seems redundant, but notice that we use the
non-delayed version of g2 here. As a consequence a bit flip at the MUTEX will first disable both
gates and only after the delay safely enable one of them. This works reliably as long as the delay
is larger than the stabilization time of the interlocking, which is easy to achieve. Preventing
CRreq from being generated before C2gr has been deactivated is still required but does not have
critical behavior, so we can still rely on an AND function for this task (u0.1).

It remains to be checked whether the changes we performed in the original circuit introduced
any further fault potential. In particular bit flips of u0 and u1, the glitch filter, as well as fault
pulses on their inputs and outputs need to be considered.

Not surprisingly, our verification has indicated that the newly introduced MCs are prone to
bit flips that cannot be handled by the circuit. Therefore we need to duplicate u0.0 as shown in
fig. 6.3(b), with u0.0.5 as the merging element. Note that the latter does not require duplication,
as in the fault free case its inputs will match, thus a potential state flip will immediately be
restored (non-matching inputs plus a state flip represents a double fault). For the glitch filter we
do not need the merging, since we can use both its outputs individually (see fig. 6.3(a)).

This circuit could finally be proven in our verification to reliably generate CRreq under
transient faults.

106

&

&

F

C

C &

&

C

C

u3

u4

C
C1gr

CC2gr

u6

CRgr
u5

C1_sel’

C1_sel’’

C2_sel’

C2_sel’’

u5.2

u6.2

u5.0

u5.1

u6.0

u6.1

u3.0

u3.1

u4.0

u4.1

Figure 6.4: Modified Part of the Circuit with Duplicated Gates

6.3.3 Hardening the generation of C1gr and C2gr

The other part of the TAC circuit, constituted by u3...u6 is responsible for generating the client
grants C1gr and C2gr. More precisely, u3 is responsible for arming u5 to activate C1gr when
(U3.A) g1 has been received from the MUTEX and (U3.B) C2gr is inactive. The latter is used to
interlock the two client grants. The actual activation (and deactivation) of C1gr is under control
of CRgr, which finally makes u5 fire.

Like above we have to take care of a state flip of u5, which we accomplish by duplication
and merging, as shown in fig. 6.4. Still a transient at u3 could consistently upset the state of both
replica of u5, therefore we duplicate u3 as well. Finally we need to prevent a transient on CRgr
from upsetting u5. Here we can use our fault tolerant version of the glitch filter. This also covers
glitches on CRreq that originated in the logic generating the latter and have been propagated by
the CR.

A further important change in the circuit is to use the internal signal C1sel (that we derived
to safely trigger the activation of CRreq as outlined above) instead of g1 for arming u5. This
is again to provide protection against glitches and state flips of the MUTEX. Since, due to the
duplication of u0, we have a duplicated version of C1sel available, we use that to supply the
inputs of the duplicated gate u5 individually.

This completes our protection strategy for the TAC cell, and, as we will see in Section 6.4,
provides protection against all hypothesized faults. The only uncovered faults are transients
affecting the output nodes directly. Here we assume the connected clients (or the CR) to incor-
porate suitable protection measures at their inputs, like the glitch filtering.

107

6.4 Formal Verification

We once again made use of UPPAAL to formally verifiy the correct operation of our derived
implementation. Table 6.3 lists the expressions used for checking the desired properties of the
FT-TAC circuit. The first formula verifies that the two output grants are never active simultane-
ously, i.e., F1 never occurs. The second formula in Table 6.3 verifies that there are no deadlocks
on all possible execution paths. Since we use a closed-loop model for verification, the execution
should be infinite: After a handshake cycle is successfully completed, the sender immediately
issues another request. Therefore, if the check for “not deadlock” evaluates to true we have also
verified that every handshake cycle is correctly acknowledged.

While verifying the third expression (C2gr == 0 for example), we made sure that the corre-
sponding request (C2req) was connected to ground. This formula checks for a possible wrong
grant, i.e., if a client did not request access to the common resource, the arbiter must never
reserve the latter for that specific client. This equally applies to C1req.

Expression 4 verifies that u5.2 and u6.2 never enter the transition state wait_s0 unless this
was due to the removal of the corresponding client request. This checks for a premature removal
of a client grant (F4).

Expression 5 checks for the early grant fault, F5. In case of the unprotected TAC, C1gr
(C2gr) may go high as a consequence of a transient on CRgr. However, once the transient fades
off, this property would be invalidated indicating that the client grant was activated due to a
fault. Similarly, the next property corresponds to the premature removal of the client grant, case
F6, caused by a transient fault on CRgr. The check is essentially the same as above; in this case,
however, we only need to consider the faults that occur once the client grant has already been
activated following a correct common resource grant. The operator –> ensures that the property
on its right hand side is tested only if the parameter on the left hand side holds true.

Table 6.3: Verified properties

No CTL-Expression Faults
1 A� (C1gr && C2gr) == 0 F1
2 A� not deadlock F2
3 A� (C2gr == 0) F3

A� (C1gr == 0)
4 A� (u5.2.wait_s0 imply !C1req) F4

A� (u6.2.wait_s0 imply !C2req)
5 A� ((C1req && C1gr) imply d_CRgr) F5

A� ((C2req && C2gr) imply d_CRgr)
6 C1gr –> ((!C1req && !C1gr) imply !d_CRgr) F6

C2gr –> ((!C2req && !C2gr) imply !d_CRgr)

108

C1req

C2req

r1

r2

g1

g2

CRreq

CRgr

C1gr

C2gr

Figure 6.5: Operation of the FT-TAC in a Fault-free Scenario

C1req

C2req

r1

r2

g1

g2

CRreq

CRgr

C1gr

C2gr

Figure 6.6: Mitigation of Faults Applied at C1req, g1, and CRgr

6.5 Simulation Results

Fig. 6.5 presents the operation of the FT-TAC in a fault-free scenario. For this simulation, as
well as for the one to follow, we use a buffer in place of the common resource, which eventually
generates grants to every incoming request, CRreq. We apply input requests from the two clients
simultaneously, which, as can be seen in fig. 6.5, correctly win the arbitration in turn.

Fig. 6.6 demonstrates three critical fault cases which our FT TAC successfully mitigates: In
the first case (left of the dotted line) C1req is hit with a down-up pulse (highlighted with a shaded
circle). In the case of a standard (non fault tolerant) TAC, this would lead to F4; however, in this
case, the pulse has been successfully mitigated by the short pulse filter at g1. As a result, C1gr↓
only occurs once the correct C1req↓ and CRgr↓ have occurred.

The second case (between the two lines) corresponds to the bit-flip fault at the outputs of the
MUTEX. Note that g2↓ happens before C2req↓, which means the standard TAC, in this case,
would have either incorrectly snatched the grant from client2, and presented it to client 1 (F4), or
given a grant to the latter simultaneously (F1), of course depending upon CRgr↑. In our FT-TAC
however, the situation is tackled by disallowing CRreq↓ until the client request correctly makes
the falling transition. This property is ensured by the MC in the forward path.

The last case corresponds to a simple down-up pulse on CRgr which is mitigated by the
pulse filter. All the simulations and fault injections were done using Modelsim macro files.

109

6.6 Analysis and Discussion

Table 6.4 presents the comparison of four different designs (left column) that we synthesized
for 90nm technology. For those we compare the delays for acquiring (column 2: tplh), and
releasing (column 3: tphl) the grant by the client, assuming it immediately wins the arbitration
and the CR is immediately available (i.e. CR is replaced by a buffer). Finally we also compare
the area utilization (right column).

Table 6.4: Area and Latency Comparison

No. Design tplh (ps) tphl (ps) Area (µm2)
1 STD_TAC 172.88 97.96 53.32
2 TMR_TAC 3488.83 2432.32 795.56
3 IFT_TAC 2305.8 2234.9 359.41
4 FFT_TAC 2426.32 2374.65 447.19

The first design (line no 1) is the unprotected standard tree arbiter cell from fig. 4.2 that
we use as a reference. The second design is the triplicated (TMR) version of the standard TAC
with a common MUTEX, five combinational voter circuits (for client grants, one for the CR
request, and two for the MUTEX requests), each voter with a glitch filter at its output (which is
still needed to cover faults in the voter circuit). For this circuit we observe an enormous timing
penalty for the activation that is obviously due to the fact that three glitch filters and voters
have been added in series to the critical path, each introducing 1ns delay for the filter and some
100ps for the voter. For deactivation the situation is somewhat more relaxed, since MUTEX and
CR now operate in parallel rather than in series (see fig. 4.1), thus saving one filter delay. The
considerable area overhead is also dominated by the glitch filters (implemented as long inverter
chains), each of which contributes an overhead of 91.06µm2 to the overall area. Notice that this
solution cannot reliably handle bit flips in the MUTEX, since that would require an interlocking
between signals across the replica.

The next implementation, termed Input-only Fault-Tolerant (IFT) -TAC, still does not em-
ploy any duplication5; the circuit merely comprises glitch filters to protect its inputs against
transient faults. Furthermore we have used MCs in place of the NAND gates, such that the pro-
tection also includes the bit-flip faults of MUTEX. The three input filtering circuits that are now
employed, result in a massive area and latency overhead. However, as we only need 3 glitch
filters, the situation is not as bad as with the TMR approach.

The final design is the Fully Fault-Tolerant (FFT) -TAC that additionally has all the internal
gates duplicated, ensuring that no internal transient or bit-flip fault can lead to an incorrect
behavior. As can be seen in Table 6.4 the duplication does not incur a remarkable overhead.
Furthermore, it is clearly visible that this fully fault tolerant solution outperforms the TMR
approach with respect to both delay penalty and area. Still the penalties are substantial. While
one might argue that the area penalty, albeit large on a relative scale, is, due to the small size of
the TAC in general, acceptable in terms of absolute area, the delay penalty seems prohibitive. In

5This may be a useful assumption if the TAC implementation is radiation hardened (albeit the resulting area
increase is not considered here)

110

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Number of Flits/Packet

0

100

200

300

400

La
te

n
cy

 O
v
e
rh

e
a
d

 (
%

)

1G flits/sec
500M flits/sec
250M flits/sec

Figure 6.7: Affect of Packet Size on the Latency Overhead

comparison with [61] our approach buys its better overall area efficiency with a delay penalty
that is determined by the maximum length of the transient faults to be tolerated (while there is
no such restriction in [61]). However, the impact of this delay penalty on the overall system
performance is often mitigated through an infrequent use of the TAC. In the case of a switch
allocator [35] for the ANoC the TAC is only involved when the header flit reserves the output
port, and when the latter is subsequently released by the tail flit. Consequently the throughput
penalty caused by the TAC decreases with rising number of flits per packet. Fig. 6.7 illustrates
this trend for three different data rates (the values have been chosen according to those reported
for asynchronous NoCs in [15], [11], [36], [4]).

6.7 Summary

In this chapter we have shown that the usual technique of replication does not work for the
specific problem of arbitration. We have analyzed possible fault sources and failure modes
of a TAC, and subsequently we have proposed our novel fault tolerant implementation which
successfully mitigates all anticipated transient faults. We have taken specific care to resolve
all potential single points of failure. The fault tolerant operation has been verified by means
of model checking. We have given a comparison between the original circuit, a TMR-based
solution, and (different versions of) our approach concerning delay penalty and area overhead.
The results have suggested that our approach is indeed useful, and comparable to an equivalent
TMR solution in terms of area and performance overhead.

111

CHAPTER 7
Fault-Tolerant Inter-switch

Communication

In this chapter we compare different redundancy schemes with the aim of providing a reliable
communication service where error detection and correction is transparent to the higher system
levels, and we also propose a new scheme for data (flit) protection. Our comparison is supported
by results from simulation and synthesis. While all solutions are designed to withstand at least
one transient fault, they largely differ in their area and delay penalty as well as potential extra
coverage that some of them offer.

7.1 Related Work

Resilience to cross-talk and SEUs in NoCs is a widely discussed topic. Data protection mecha-
nisms are either implemented on a hop-by-hop (HBH) basis, or at end-to-end (E2E) level. The
choice of the approach strictly depends on the structure of the flit and the switching technique.
The HBH approach becomes mandatory in case each flit of the packet contains the routing in-
formation (or some other control signals such as header-, body- and tail- flit indicator). On the
other hand, if the header flit alone carries the routing information, then it is the only flit of the
packet to be decoded on every hop; whereas, the payload can be protected using an E2E level
mechanism.

Tamhankar et al. [135] provide data protection against soft errors, on HBH basis, using
delayed twice sampling; a mismatch results in a retransmission. Pipelined buffers, each com-
prising a control circuit and two flip-flops (FFs), are inserted on interconnects. This leaves the
NoC links to be synchronous, requiring stringent timing assumptions, and leading to increased
dynamic power dissipation.

Franz et al. [46] carry the same approach to delayed multiple sampling (to handle cross-talk
errors), and single error correction and double error detection (SEC-DED) (to address SEUs at
input buffers on HBH basis). They base their approach on three times data sampling at different

113

points in time, and majority voting decides the correct data. As an extension to their own work,
Franz et al. [45] propose an E2E packet protection by appending a cyclic redundancy check-
sum (CRC) to the payload. This proves to be an efficient approach as far as the throughput
is concerned, but leads to several orphan messages on the network, which continue to utilize
network resources and increases traffic congestion.

Dutta et al. [40] make use of store and forward (SAF) switching scheme and address soft-
errors on links and input buffers based on HBH protection. They heavily equip each link and
buffer with an encoder-decoder pair, and adopt unequal error protection code for multiple error
correction capability. The SAF scheme itself requires a large storage space on each tile to hold
the entire packet before it is forwarded; this is another significant drawback of this approach
besides being slow in nature.

Although the E2E level encoding schemes normally lead to high throughput, they suffer
severely from the errors in the routing information [101], which results in several packets being
misdirected or lost. This further requires a complete packet retransmission from the source
adding a significant performance overhead, and an increase in average packet latency. Gag et
al. [77] present an attractive HBH header flit protection scheme, which reduces the number of
erroneous header flits, and hence misrouted packets, and assume the payload to be protected at
E2E level.

One of the hardest tasks while designing fault-tolerance is to choose the appropriate mech-
anism, i.e., to make a choice between hardware, information and time redundancy. Each one
of these mechanisms has its own merits and demerits. With respect to information redundancy,
there are a lot of error detecting and correcting codes in the literature. The most prominent
codes are Hamming, Reed-Solomon, Berger, BCH, Cyclic, m-out of-n codes, etc. [29, 110]. Of
these codes we choose the Hamming code [51] for our system as it is very efficient and has the
lowest possible hardware overhead. Time redundancy mechanisms [52], are often augmented
with diversity enhancements like shifting [102], rotating, inverting [114], or swapping operands,
etc. [113]. We will consider these as well. For our system, however, we do not choose hardware
redundancy as it increases the area and, in result, the power of the ANoC. In this work we im-
plement, and present a comparative analysis of four different existing coding schemes, namely:
single error detection (SED), DED, SEC, and time redundant transmission with voting (TRV).
For TRV, we combine the time redundancy with swapped operands and inverting logic. The
design and implementation of a novel approach, called Adaptive Delayed Twice Sampling with
Double Error Detection (ADTS-DED), is also presented for our ANoC. The working principle
and implementation of all these algorithms are presented in Sec. 7.3.

7.2 Baseline Interconnection Network

In this work we adopt our own ANoC presented in chapter 3, as the benchmark on-chip inter-
connection network. Since each flit contains the flit type that must be read on every node, our
approach requires an HBH encoding scheme. For simplicity, we only consider one VC per IO
port on every node. This simplification is reasonable since all the VCs are symmetric, and any
data protection mechanism would operate on them in the same manner.

114

Amongst all the encoding schemes that we present in the next section, most require a re-
transmission mechanism to be able to retransmit the previously sent flit in case it was identified
as incorrect upon decoding at the receiver’s end. Furthermore, an input latch needs to be placed
before the decoder at every input port irrespective of the encoding mechanism. Before going
to discuss the encoding schemes, in the following we present a brief overview of both these
enhancements we made.

7.2.1 Retransmission Module

The retransmission module, fig. 7.1, is placed between the router-encoder pair. Primarily, it com-
prises a two-input pull channel multiplexer (mux), and a capture-pass latch proposed in [133].
The selection line of the mux is the retransmission request line (error flag), which comes from
the decoder of the neighbor tile. If this selection line carries a logical 0, it indicates that the
previous flit has correctly been decoded by the neighbor tile. As a result, the mux forwards a
new flit available at the router’s output. The new data from the router is latched only once the
mux requests for a new flit, i.e., error flag carries a 0. The request signal from the mux for a new
flit makes the latch transparent, and the input acknowledgment makes it opaque, or capture the
new flit. Note that the same capture signal on its way to the MC, is sufficiently delayed to allow
the data to be safely latched. The delay element is not shown in the figure.

It is to be highlighted that all the control signals between each pair of tiles are duplicated, so
that they can be protected against possible SETs as well. These include data validity signals (req
and ack) associated with 34-bit flits, the retransmission request flag, and also the validity signals
associated with the flag. In short, four wires carry the control signals for data flits in a specific
direction, and the number of wires carrying the retransmission request flag and its associated
control signals is six. The number of wires required to transmit a flit solely depends upon the
encoding scheme being employed.

data
ack
req

Router

Encoder

PP

C

Latch

PC

PP

req_out

req_in
data

ack_in

Re_Tx_req
Re_Tx_ack

error_flag

ack_out
data

PP

Figure 7.1: Flit Retransmission Logic

115

C

LATCH

in_req out_req

in_ack out_ack

PP

in_data out_data

r1

a1

r2

a2

in out

INPUT
PORT To

DECODER

AND

Figure 7.2: Input Module

7.2.2 Input Module

A conventional latch [133] operates in one of the two modes at a time, capture or pass. In the
former, the contents are preserved by means of an internal loop in the latch (any faulty transition
at the input is automatically mitigated); however in the latter, the latch behaves as transparent,
thereby enabling any transition in the input to be visible at the output. Hence, it is essential
that the pass time must be minimal to minimize the probability of transients reaching the output
of the latch and subsequently the other combinational circuits that may react to every event, no
matter valid or not. Fig. 7.2 illustrates our mechanism to open and close the latch in a manner
as fast as possible. Once the ack signal makes a rising transition (forcing the latch into pass
mode), the req signal is supposed to make a falling transition, and it alone is sufficient to set the
ack signal low once again by means of an AND-gate. In this way, the latch does not need to
wait for a round trip cycle of the control signals. In the same figure, the MC makes sure that the
circuit does not violate its SI property. The box labeled as “PP” is identical to CWP described
in Sec. 7.3.4.

7.3 Encoding Schemes

As a baseline for the comparison later on, we define the requirements we put on the transmission
scheme as follows:

1. We assume, and aim to tolerate only one SET per flit per channel at any time.

2. We compromise the real-time performance of the ANoC by employing an HBH retrans-
mission mechanism facilitated by the retransmission module described in Sec. 7.2.1. This
allows us to save area and power.

3. Performance in terms of message delay and throughput (specifically in the fault free case,
but also in case of faults) is not the primary concern, since our key focus is fault tolerance.
However a relative comparison of performance will help in identifying a more efficient
solution.

4. Given the increasing integration density, we do not consider hardware overhead too criti-
cal. However, more transistors consume more static power and are more prone to faults,
therefore we include area (at least rough estimates) in our comparison.

116

7.3.1 Single Error Detection with Retransmission (SED)

As a first step in providing fault-tolerance for the interconnection network we use a Hamming
SED mechanism [51] with retransmission. We need just one parity bit for this mechanism, so
the datapath of the interconnection network increases by 1 bit and it is 35 bits. When a fault is
detected a retransmission of the flit is requested.

While the encoding mechanism for SED is quite simple to understand, decoding on the
other hand requires three combinational blocks, namely: receiver, which separates the received
parity from the payload, encoder, which computes a new parity using the received payload, and
comparison circuit, which compares the received and the computed parities with each other, and
generates the error signal.

7.3.2 Double Error Detection with Retransmission (DED)

In order to tolerate both single and double faults in the interconnection network we used a Ham-
ming DED mechanism [51] with retransmission. It requires a little more hardware than the SED
mechanism. We need six parity bits for this mechanism, so the datapath of the interconnection
network increases by 6 bits and it is 40 bits. Any single and double faults in the interconnection
network and the decoder can be detected with the DED mechanism. If a fault is detected, a re-
transmission of the flit is requested. Any fault in the control signals can also be tolerated as these
are duplicated. The control logic is similar to the one used in SED which has been explained
previously.

7.3.3 Single Error Correction (SEC)

With the Hamming SEC code [51] we can correct all single faults in the interconnection net-
work. Due to the correction ability offered by SEC there is no need for retransmission, so we
gain performance relative to the above error detection mechanisms. The correction hardware
consumes a lot of gates; it is, however, more or less equivalent to the retransmission block used
in the other mechanisms. We need six parity bits for this mechanism, so the datapath of the
interconnection network increases by 6 bits and it is 40 bits. The control logic for this code is
almost identical to the previous two; the only difference is that it requires a fourth block which
corrects the fault. Therefore, another control logic circuit has to be inserted. Moreover, the
retransmission path is not required for SEC, which makes the overall design less complicated.

7.3.4 Time Redundant Transmission with Voting (TRV)

Time redundancy is an efficient approach to tolerate transient faults, because with time the tran-
sient faults fade off. To get some additional protection by diversity, we carefully combined
recomputing with swapped and inverted operands, as the required hardware overhead is low
compared to the other variants, like shifted and rotated operands. The idea is to transmit the
flit three times at different instants t, t + δt and t + 2δt. At time t we transmit the flit without
any encoding. At time t + δt we invert 25% of the bits (i.e. 8 bits) and swap the positions of
MSBs with least significant bits (LSBs) and vice versa before transmission. The decoding is
done at the receiver’s end accordingly. Similarly at time t + 2δt we invert 50% of the bits (i.e.

117

r1+

a1−

dummy0

a1+

r2+

r1−

a2−

a2+

r2−

r1+

dummy0

a1+

r2+

r1−

a2+

r2−

dummy0

a2−a1−

(a) (b)

Router

CNWP

CNWP

CWP
C

T

T+ T

T+2 T

1

0

2

Output
Portreq

ack

data

(c)

Figure 7.3: (a) CNWP, (b) CWP, (c) Block Diagram of the transmitter for TRV

17 bits) and swap the positions of MSBs with LSBs and vice versa. The first two transmissions
are stored in a latch and when the third transmission arrives we do a voting of all the three and
eliminate a potential fault. As these three transmissions occur in any (even the fault free) case,
this scheme incurs a substantial performance degradation. This could be improved by perform-
ing the comparison already after the second transmission and requesting the third one only if
the first two do not match. However, the control logic required to implement this conditional
strategy is quite complex, which will finally again degrade performance. The control logic used
for the unconditional time redundancy mechanism is explained below.

Transmitter

The transmitter for this encoding scheme, fig. 7.3(c), requires the router be forced to wait until
all the three versions of a flit have been acknowledged. To achieve that we design a circuit called
customized non-waiting passivator push (CNWP), fig. 7.3(a). r1 and r2 in the STG correspond to
the inputs of the CNWP from the router and the mux respectively. When both of these requests
have made their positive transitions, acknowledgments in both the directions are forwarded.

118

Since ack to the router is blocked through an MC, r1 cannot make a falling transition until all
the three versions of the flit have been forwarded. Whereas, a2+ is alone sufficient to let r2
make its falling transition, leading to the completion of the handshake at the right hand side of
the CNWP, and hence the mux proceeds with the second version of the flit corresponding to
t+ δt.

The CNWP, as it is, does not work for the third copy of the flit. The reason is that, the
moment a1+ occurs, the MC’s output goes high, and subsequently the router sets its req low.
Obviously, the router, being on the same tile, is faster than the decoding taking place at the
neighbor tile. As a result, the handshake on the left hand side of the CNWP completes first, and
the router is allowed to place the next flit on its output even before the previous flit has been
correctly decoded at the neighbor tile, resulting in data overriding. To tackle this issue, CNWP
is modified to wait for both requests r1 and r2 to go low, and only then set the acknowledgments
a1 and a2 to low. This way, the router can only place the new flit on the output once the previous
flit has been correctly decoded at the neighbor tile. The modified circuit, fig.7.3(b), is called
customized waiting passivator push (CWP).

Receiver

The control circuit for the receiver allows each of the first two versions of a flit to reside in a
separate latch, from where they are forwarded to the majority voting circuit; the third version
is directly forwarded to the voter. The 4-phase bundled data protocol still applies between both
control-latch, and control-voter pairs.

7.3.5 Adaptive Delayed Twice Sampling with Double Error Detection
(ADTS-DED)

In this work we slightly modify two encoding schemes [135], [46] to achieve better perfor-
mance and higher robustness by reducing the number of retransmissions, and employing the
DED mechanism respectively. The idea is to follow the double sampling approach [135], where
a flit is sampled for the second time if the DED decoder circuit indicates a fault. If the decoder
persists with an indication of a faulty reception even after the second time sampling, it is as-
sumed that the fault has occurred during encoding at the transmitter’s end, and the flit needs to
be retransmitted. As a result, a retransmission request is sent to the previous tile.

The transmitter for the approach remains the same as before for the DED scheme, however
the receiver is much more complicated. The waveform of the ADTS receiver and the block
diagram of the entire mechanism are presented in fig. 7.4 and fig. 7.5 respectively. The process
starts with the input request rin, in response to which the ADTS unit sends out a request dec_in_r
to the decoder. Subsequently, the DED circuit generates an error signal error_out_r, which goes
back to the ADTS unit. The latter then inspects the error flag error_out_d, and either forwards
the flit to the router, router_r, in case of correct decoding, or goes for a re-sample by forwarding
another request to the decoder, in case the first sample is detected as erroneous. Following the
second faulty detection, the error signal re_tx_d is submitted to the retransmission module, with
a validity signal re_tx_r. The SI property of the entire design is once again consistent through
the RTZ bundled data protocol.

119

Figure 7.4: Waveform of the ADTS Receiver

DED

rin

ain

din [39:0]

router_r
router_a

re_tx_a

router_d [33:0]

ADTS

re_tx_d

re_tx_r

dec_in_a

dec_in_r

dec_out_a

dec_out_r

error_out_r
error_out_a
error_out_d

Figure 7.5: Block Diagram of ADTS-DED Mechanism

Unlike previous approaches [135], [46], a correct transmission does not require unnecessary
multisampling in our scheme, and costs approximately the same latency as in the normal DED
mechanism. In case of a transient fault on a specific channel that fades out with time, our scheme
avoids a retransmission that would require a complete RTZ handshake protocol between the two
ends, in addition to the long path delay between the two tiles, and obviously exposed to further
SETs.

This mechanism adds a slight device utilization overhead, and the maximum combinational
path delay (MCPD), which is only visible in case re-sampling has to be done, is approximately
twice the normal DED operation. However, the probability of transient faults occurring on links
is much higher than stuck-at wire faults, and hard faults within the encoder circuits, since the
transient faults make up 80% of the total faults [136]. This indicates that our algorithm will
outclass the other schemes, which base their efficiency solely on retransmissions.

All the methodologies based on retransmission require a simple interface (demux) between

120

Router
10

Router
11

Router
00

Router
01

Core
00

Core
01

Core
10

Core
11

north__out_01

Figure 7.6: Fault Injection and Testing Methodology

the decoder and the router called Decoder-Router Interface (DRI). Its responsibility is to de-
cide whether the decoded data needs to be forwarded to the router or a retransmission has to
be requested depending upon the error signal received from the decoder circuit. For instance,
the signals router_r and re_tx_r in fig. 7.5 have to be mutually exclusive. The demux merely
forwards a valid data token in the right direction.

7.4 Simulation Results

We tested all the encoding schemes for a 2x2 2D mesh ANoC. We used Modelsim script files
to inject 50 packets from each of the three tiles 00, 01 and 10 towards the same destination tile
11 (please refer fig. 7.61). Each packet consists of three flits (header, body, and tail), and we
randomly injected a fault, in one of the flits of every packet. As mentioned in Sec. 7.2.2, the
pass time of the input latch is the most critical point since any transition that occurs during this
time would be visible at the output of the latch, and could further propagate to other modules.
In order to make sure that all such critical points are tested, we carefully injected faults at both
rising and falling edges of the data validity signals of the input latch.

7.4.1 Simulation Results of ADTS-DED Mechanism

For the case of ADTS-DED, an example is shown in fig. 7.7 (we focus on this one mechanism
here for illustration). A transient is injected on bit 39 of north__out_01d. In this label, 01
indicates the xy coordinates corresponding to the position of the tile in the mesh, and the flit
is being forwarded to the neighbor tile connected to its north output port. lin_0a refers to the
data validity signal of the input latch, which operates in the pass mode between the rising and
the falling edges of this signal. If the transient settles down well before2 the falling edge, then

1The figure only contains the arrows indicating the intended direction of flit traversal.
2We do not consider any timing (setup/hold time) violation in this work.

121

3
c
...

d
0
0
0
0
0
0
0
0
3

5
0
0
0
0
0
0
0
0
3

0
0
0
0
0
0
0
0
0
0

d
0
0
0
0
0
0
0
0
3

1
1

...00
...11

...00

1
1

...00
...11

...00

0
0

...11

0
0

...11
...00

...11

0
0

...11
...00

...11

...d0
0
0
0
0
0
0
0
3

5
0
...

d
0
0
0
0
0
0
0
0
3

0
0
0
0
0
0
0
0
0
0

d
0
0
0
0
0
0
0
0
3

lin
_
0
r

lin
_
0
a

o
u
t_

0
d

3
c
...

d
0
0
0
0
0
0
0
0
3

5
0
0
0
0
0
0
0
0
3

0
0
0
0
0
0
0
0
0
0

d
0
0
0
0
0
0
0
0
3

n
o
rth

_
e
n
c
_
re

s
e
n
d
_
0
1
r

1
1

...00
...11

...00

n
o
rth

_
e
n
c
_
re

s
e
n
d
_
0
1
a

1
1

...00
...11

...00

n
o
rth

_
e
n
c
_
re

s
e
n
d
_
0
1
d

0
0

...11

n
o
rth

_
_
o
u
t_

0
1
r

0
0

...11
...00

...11

n
o
rth

_
_
o
u
t_

0
1
a

0
0

...11
...00

...11

n
o
rth

_
_
o
u
t_

0
1
d

... d0
0
0
0
0
0
0
0
3

5
0
...

d
0
0
0
0
0
0
0
0
3

0
0
0
0
0
0
0
0
0
0

d
0
0
0
0
0
0
0
0
3

[3
9
]

Figure 7.7: Fault Detection and Retransmission Waveform

122

Figure 7.8: Working of ADTS in Presence of Faults

Table 7.1: Device Utilization Summary of the Common Modules in µm2

Router Retransmission DRI Input Module
Area 3765.6 854.6 73.7 591.9

MCPD (ps) 1552 1215 724 1431

the fault is masked automatically. On the other hand, if the fault overlaps the falling edge, then
it must be caught followed by a retransmission. Fig. 7.7 depicts the latter case. The signal
north_enc_resend_01d indicates the retransmission request flag received from the neighbor tile,
and north_enc_resend_01a indicates its validity. When both of these signals are at state 11, a
retransmission takes place. Subsequently, the correct flit d000000003 is retransmitted. Fig. 7.8
explains the working of the ADTS module in the two possible scenarios: i) the transient fades
out before the second sample, ii) retransmission has to be requested. The dotted line separates
the two cases from each other. The transients are highlighted with two bold ovals on top in both
cases. On the left side of the line, the two rising transitions on the signal dec_in_r indicate the
instructions from ADTS to DED to sample the flit. Since the fault has already settled down, the
retransmission request flag re_tx_d is low when its corresponding request signal goes high. The
flag is highlighted with a dashed rectangular box. Similarly, for the latter case, re_tx_d remains
high since the error has prolonged over the second sample as well. As a result, retransmission
proceeds. In this case, the signal router_d indicates the consistent faulty flit on the right side of
the dotted line.

123

Table 7.2: Comparison of Different Fault-Tolerance Mechanisms

Mechanism Transmitter Receiver Tx/flit Fault Coverage
Area MCPD Area (µm2) MCPD

(µm2) (ps) (µm2) (ps)
SED 231.3 527 255.6 651 1 Single
DED 453.9 579 519.0 715 1 Double
SEC 453.9 579 1288.1 976 1 Single

Time-Red 902.4 1199 1656.6 932 3 Multiple
ADTS 453.9 579 689.9 814 1 Double

1440

7.4.2 Area Overhead Comparison

We synthesized the design for 90nm technology. While Table 7.1 shows the post layout device
utilization summary for each module that is independent of the coding mechanism, the post
layout device utilization summary for each of the coding schemes is presented in Table 7.2. Not
surprisingly, SED requires the least overhead. The transmitters for DED, SEC and ADTS-DED
are identical and therefore incur the same overhead, but the receiver is significantly simpler for
DED, followed by ADTS-DED and then SEC. TRV requires by far the highest overheads.

7.4.3 Performance Penalty

Performance can be measured along several lines: Of course, the delay penalty resulting from
the flit having to pass additional logic stages is relevant here. These figures are shown as MCPD
in Tables 7.1 and 7.2. Precisely, MCPD corresponds to the latency of the handshake protocol,
from input request↑ to input acknowledgment↓. Again SED is the winner, followed by DED,
ADTS-DED, and SEC. TRV appears to be much slower due to the high penalty of the transmitter.

Even more important than the path delay, however, is the number of transmissions in the
fault free case as well as in case of a fault. For the fault free case the column Tx/flit in Table 7.2
gives this number. For a rough estimation it can be multiplied with the MCPD value, which
instantly seems to make TRV the slowest option. Note, however, that SEC and TRV do not
require retransmission and DRI modules. Also, TRV does not need an input module either,
since it already makes use of two latches to store the flits.

Furthermore, recall from Sec. 7.4.1 that there are two single fault scenarios for ADTS-DED:
A fault that can be mitigated just by re-sampling and one that requires retransmission. The value
814 under MCPD for the receiver circuit corresponds to the fault free case, where no resampling
is needed, and 1440 is the worst case latency corresponding to the resampling case.

7.4.4 Discussion

Considering the above criteria, and the amount of resources available on-chip in state-of-the-art
VLSI designs where area utilization is not a major concern any more, the DED and ADTS-
DED mechanisms are the most attractive choices: Their fault coverage is better than SED (see

124

Table 7.2) with only a marginal increase in performance overhead. Their coverage properties
even surpass that of TRV which cannot tolerate faults in more than one replica of the same flit.

A brief comparison can be made between DED and ADTS on two aspects: Area utilization,
and performance penalty in case of a faulty reception (note that MCPDs for the two are almost
identical for a fault-free reception). The DED approach clearly outclasses ADTS as far as the
area is concerned. On the other hand, in case of a faulty reception, a complete retransmission is
the only way out for DED, which roughly adds an overhead of 4.01 ns corresponding to the delay
{DRI +Retransmission+ Transmitter +Receiver + Inputmodule}, in addition to two
long path delays between the two communicating tiles, one for the error flag, and the other for
the retransmission of the actual flit. Relative to this figure, ADTS-DED mechanism adds a net
overhead delay of 2.87 ns corresponding to the worst case MCPD of 1.44 ns and an additional
Input Module delay. Only in such circumstances where a retransmission is inevitable, DED
proves to be more efficient than the ADTS-DED approach, since the latter must have already
made a useless attempt to resample the faulty flit, incurring an overhead of approximately 2.245
ns corresponding to one resampling latency of 814 ps, and an Input Module delay of 1.43 ns.
As stated previously, however, the dominant fault class is represented by the transient faults that
fade out by themselves, most likely within one computation of the decoder; and therefore the
number of retransmissions needed must be minimal, making ADTS-DED approach the most
optimal choice.

7.5 Summary

Simply implementing a DED mechanism combined with on-demand retransmission for the pro-
tection of the communication channels of our ANoC may severely degrade throughput and hence
system performance in the presence of frequent transient faults. In this chapter we have de-
scribed a more efficient error recovery mechanism called ADTS-DED, which does not require
retransmission for single faults and hence reduces the performance degradation of the system
by a considerable measure. The pitfalls with this mechanism are the hardware overhead and
the worst case delay overhead (approximately 57.62% more propagation delay than the DED
in case of retransmission) which will also increase the power dissipation. Still we feel that in
future technology extra transistors will readily be traded for increased reliability, and hence the
approach is very useful.

125

CHAPTER 8
Fault-Tolerant Router: The Complete

Design

In the previous chapters we have proposed fault-tolerance concepts for components that we
considered most crucial because they are the building blocks of almost every ANoC available
in literature, and their performance significantly contributes to the overall performance of the
router. In this chapter we present the complete design of the fault-tolerant router built using
those components, namely RAMP and FT-TAC. Fig. 8.1 highlights the blocks that are the main
contribution of this chapter: We focus on the colored and shaded modules of the circuit. The
former already exist and need to be made fault-tolerant, whereas the shaded components are to
be introduced to allow compatible interconnection between various components.

RAMP RAMP

SELECT

FT−TACICON

L

Switch

X: Interface Circuit

L: Destination Latch

X1

X2 X3

X4

FCL

FT

FT

FT

FT

Figure 8.1: Main focus of this chapter

127

8.1 Preliminaries

Before proceeding with the description of the design and its evaluation, we have to make a few
assumptions and simplifications as follows.

8.1.1 Assumptions

A few radiation hardened, and SEU tolerant latches have been proposed, and are already avail-
able in standard cell implementations [2, 118]. In our work, we simply assume to have such a
latch to store the destination bits used in the crossbar, and therefore, do not intend to take further
provisions for protecting the latch contents. However, we do allow SETs on the write-enable
signal of the latch (grant from the switch allocator), and propose to tackle those.

8.1.2 Simplifications

Considering the complexity of the entire router, we make a few simplifications regarding the
design and functional verification to begin with:

1. Since the IO ports are symmetric, we confine our analysis to just one input - one output
pair. We ensure that building the entire router shall simply require replicating the circuit
presented here.

2. Because of the huge complexity of the overall design, verifying the entire router by means
of model checking is not a viable option; the number of traces grows in millions. As a
result, we rely on model checking for individual function blocks, and apply functional
verification based on Modelsim simulations for the overall design composed of these pre-
verified blocks.

8.1.3 Prior Knowledge

We already possess some prior knowledge from the designs of RAMP and FT-TAC circuits, and
we must take that into consideration to avoid any unnecessary logic overhead, and to guarantee
the correctness of data exchange. For instance, we already know:

1. PK1: that the RAMP and FT-TAC rely on the broad data validity protocol, i.e., the data
must remain valid throughout the handshake cycle. The entire router requires the same
protocol in place.

2. PK2: that each stage of the RAMP inserts a delay element in the control path that is
longer than the length of a fault that we wish to tolerate, and the FT-TAC inserts another
couple of such delays. This means that the activation of the control signals, specifically
the grant from the FT-TAC, is separated from the valid data at least by three times the
maximum length of the expected fault. This information is extremely critical in protecting
the destination bits from being corrupted, as shall be explained later in the chapter.

128

3. PK3: that the RAMP and FT-TAC circuits are capable of tackling SETs on their inputs,
so we do not need duplicated logic to drive these modules.

4. PK4: that the outputs of FT-TAC may produce faults as pulses of a limited length, but
they will never have their states flipped.

5. PK5: that upon a faulty input request (↑↓) the RAMP module will issue an early resource
request. If this signal propagates to the FT-TAC, it will appear as a valid request, and may
acquire the switch incorrectly, which would only be released with a valid tail flit – until
then everything else would remain blocked. We need some logic between the RAMP and
the ICON to address this problem.

8.1.4 Design Methodology

1. In this chapter, we generally rely on the conventional duplicate and double check strategy,
i.e., mostly using the DD-gates proposed in [62]. This proven approach does not require
a formal proof of correctness.

2. Without altering the design and requirements of the two important circuits, RAMP and FT-
TAC (for the latter there is an exception that we explicitly highlight later), we ensure that
the rest of the components, which we propose to harden in this chapter, are conveniently
integrable with those.

8.2 Hardening the Components

8.2.1 Interface X1

As stated above, PK5, the output of the RAMP cannot be immediately used to acquire the FT-
TAC, an intermediate circuit is needed to wait for the falling transition, and only then the request
may be forwarded to the input handler. However, even such a circuit may acquire the arbiter with
a faulty ↓↑ pulse, the difference in this case is that the previous up transition (which was followed
by this fault) must have been a correct request, and the reservation of the FT-TAC, therefore, will
not result in indefinite blocking. Fig. 8.2 presents the resulting circuit. Note that now there are
two separate requests, one going to the FCL and the other to the switching demux. Since the
circuit already has the required redundancy available, it needs no further protection.

8.2.2 Fault Tolerant Input Controller (FT-ICON)

Recall that the request from a header flit acquires an arbiter, and an ↑↓ pulse on the tail request
releases it. If the arbiter is acquired as a result of a faulty header request (Hr ↑), it may block the
operation until a correct flit really arrives and its tail flit releases the earlier acquired arbiter. This
may be undesired, but not as devastating as an incorrect tail flit releasing the arbiter (Tr ↓), leav-
ing behind several orphan flits in the network. Therefore, protecting a tail request is relatively
more important than protecting a header flit.

129

C

C
C

C

ramp_rout1

ramp_aout1

Switch_rin

Switch_ain

FCL_rin

FCL_ain
FCL_ain1

FCL_ain2
C

ramp_rout2

ramp_aout2

RAMP HANDLER

INPUT

Figure 8.2: Interface Circuit between RAMP and Input Handler

Property Remarks
A[] not deadlock No deadlock in any

execution path
A[] (u6.wait_s0 && u7.wait_s0) imply (!Tr1 && !Tr2) At least one Tail request ↓

must be correct
A[] (u6.wait_s1 && u7.wait_s1) imply (Hr && Switch_rin) Hr or Switch_rin

must have a correct ↑

Table 8.1: ICON Verified Properties

An easy solution to protect this simple circuit is duplication. However a careful analysis
of its operation reveals that the part of the circuit responsible to handle Hr could rather be
protected using a much simpler way. Recall that when the input request of the switching de-
mux (Switch_rin, see fig. 8.2) makes a rising transition along with Hr ↑, it corresponds to a
header flit, and in response the output of FT-ICON (to_arbiter↑) is produced. The following
rising events on Switch_rin (corresponding to body and tail flits) do not have any impact on the
to_arbiter signal since the latter is already set (high). This means that if the event Hr ↑ happens
simultaneously with Switch_rin↑, either it really is a correct header request, or it is a fault that
will have no impact on the value of the to_arbiter signal. Therefore we propose to cross check
the to_arbiter signal (of fig. 3.3) with Switch_rin to make sure that no faults on Hr disturb the
output signal.

Note that this scheme cannot work for the other part of the circuit responsible to carry the tail
flit request to the output, since the switching demux may have simultaneously received a correct
body flit request (Switch_rin↑), which would help the faulty tail request (Tr ↑↓) at ICON bypass
the protection logic and subsequently release the FT-TAC. Therefore, duplication of that part of
the circuit, including the Tr signal, seems to be the only infallible solution in that scenario. The
resulting circuit is depicted in fig. 8.3. Note the difference between the internal loops formed
by the output OR-gate (generating Ta) and the AND-gate feeding it in fig. 3.3 and fig. 8.3; the
2-input AND-gate has been replaced with a 3-input one. This ensures that a fault on Tr1 does
not manifest itself in the loop, thereby generating an incorrect Ta – leading to a deadlock. This
deficiency was pointed out by our model checking verification. The final circuit, presented in
fig. 8.3, now passes a verification of all the properties given in Table 8.1.

130

Hr

Ha From_Arbiter

C

C

C

C

C

C

To_Arbiter2

To_Arbiter1

Tr2

Ta

Tr1

Switch_rin

Figure 8.3: FT Input Controller

8.2.3 Fault Tolerant Flit Categorization Logic (FT-FCL)

Since the FCL is a simple demux without any storage element, its state cannot be upset. The only
gate that needs to be duplicated is the AND-gate responsible to generate the tail output request
as required by the FT-ICON, described above. All other faulty transitions on output requests
and input acknowledgments are already mitigated by double checking them with Switch_rin
in FT-ICON and Switch_ain in X1 respectively. Its schematic is given in fig. 8.4(a).

8.2.4 Interface X2

The X2 interface only comprises a single MC in fig. 3.3, which must be duplicated now to allow
the two tail requests from the FCL to reach the FT-ICON.

8.2.5 FT-Switch Demux

Just like the FCL, this demux does not comprise any storage element, however, its outputs are
joined with the to_arbiter signal from the FT-ICON through an MC before reserving the FT-
TAC as was shown in fig. 3.4. It is obvious that a faulty ↑↓ pulse can conveniently flip the MC,
and reserve the arbiter in an incorrect direction. This requires all the gates generating output
requests in the switching demux to be duplicated. In addition to this, the two demuxs may be
driven by two different input requests, i.e., FCL_rin and Switch_rin. This ensures no single
faulty input request can transmit two transient faults on the output requests.

131

Tr2

Tr1

Hr

Ha

Ta

C

C

Flit Data

X2

FCL
ain2

FCL_ain1

Switch
ain

FCL_rin

(a) (b)

Tr2

Tr1

Hr

Ha

Ta

C

C

Flit Data

X2

FCL
ain2

FCL_ain1

Switch
ain

Switch_rinFCL_rin

Figure 8.4: Schematics of FT-FCL and X2: (a) Initial design, (b) Passed all the verification
tests, Sec. 8.3.2

8.2.6 Interface X4

X4 is the collection of AND-gates within the output generator in fig. 3.4. Since the outputs of
the switching demux have been duplicated, all the AND-gates in X4 must also be duplicated,
each driven by a different output request of the demux. This further forces the FT-Select module
to have duplicated inputs.

8.2.7 Interface X3

This module initially had a single MC that joined the output request of the switching demux with
the to_arbiter signal. Since the outputs of the demux have been duplicated, this MC must also
be duplicated. The resulting two MCs are then joined by another MC, since the FT-TAC does
not need duplicated input requests. The schematics of the interfaces X3 and X4 are presented in
fig. 8.5.

8.2.8 FT-Select Module

The schematic of FT-Select module is presented in fig. 8.6. Because of duplication it requires
two output acknowledgments, which are already provided by the RAMP connected next to it.
However, the RAMP requires a single input request, that is why the duplicated outputs of the
gates are joined using an MC. Secondly, the input acknowledgments have the potential to flip
to the incorrect logic value thereby spoiling the broad data validity protocol required by the
RAMP. This is prevented by double checking the input acknowledgments generated by the FT-
Select module.

132

To_Arbiter1

To_Arbiter2

rout1 rout1
dup

en1
Arbiter

en2From

C1req

C1gr

C1gr_dup

C

C

C

X3

en1
rout1

en2
rout1_dup

from other
handlers

X4

rin1
Sel

Sel
rin1
dup

Sel
rinn

Sel
rinn
dup

input

(a) (b)

Figure 8.5: Schematics: (a) X3, (b) X4

Sel_rin1_dup

Sel_rin2_dup

C

C

C

C

ain2_dup

ain1_dup

Sel_rin2

ain2

ain1

Sel_rin1

C

C

C

C

Sel_rout1

Sel_aout1

double checking

Sel_aout2

Figure 8.6: FT_Select Module

133

Latch1 Latch2

FCL_rin

Switch_rin

Switch_ain

rout1

rout_dup

rout2

rout_dup

rout3

rout3_dup

rout4

rout4_dup

aout1
aout2
aout3
aout4

aout1_dup
aout2_dup
aout3_dup
aout4_dup

(a)

en1 en2

(b)

FT

en1

en2

Latch1 Latch2

Flit Flit

Switching Demux

FCL_ain2

MUX1 MUX2

Figure 8.7: FT Switching Demux and FT Latch Enable

8.2.9 FT-Latch Enable Signals

Recall that the selection line of the switching demux comes from the 2-bit SEU hardened latch
that does not need further protection. However, if the latch enable signal, which in fact is the
from_arbiter signal, is faulty, it can replace the correct destination information with any corrupt
data available on the flit data bus. Therefore it needs to be duplicated, which forces the output of
the FT-TAC, gates u5.2 and u6.2 shown in fig. 6.4, to be duplicated in turn. This is one exception
we indicated in Sec. 8.1.4(2). Note that this does not require alteration in the FT-ICON, since
any one of the two outputs of FT-TAC can still be used.

Using duplicated latch-enable signals to control a single latch will always result in a single
point of failure. This can only work with the latch being duplicated as well, and then each enable
signal controls one of them. Since all the gates in the switching demux are already duplicated,
the output of each latch can control one demux, as shown in fig. 8.7(a).

This situation in particular is more complicated than it looks. Consider one of the enable
signal being faulty, which forces the latch it controls to capture some corrupt data. From this
point onwards, these bits are not going to recover to their original state, and therefore will result
in two different output requests of the demux going high. This will certainly lead to a deadlock
at the duplicated MCs where the outputs of the demux are joined with the to_arbiter signal in
X3. This undesired situation can only be prevented by overriding the corrupted destination bits
with the correct bits stored in the other latch. Our proposed protection mechanism is depicted in
fig. 8.7(b). We allow the destination bits to enter a latch either directly from the flit on the data
bus, or from the other latch through a mux. This mux is controlled by the latch-enable signal
of the other latch. This scheme applies to both the latches to ensure we leave no single point of

134

en1

Flit Data Latch1 DataMux2

en2

Mux1 Flit Data Latch2 Data

ValidFlit Data

Figure 8.8: A critical fault with FT-Latch enable signals

failure.

A ↓↑ fault simply does not create any problems: 1) The latch that becomes transparent,
forwards the correct data from the other latch, 2) The multiplexer that receives the fault at its se-
lection line, and consequently forwards the corrupted data from the flit to its corresponding latch,
only finds the latter opaque, and cannot make it store the corrupted destination bits. Therefore
one type of fault is always mitigated.

An ↑↓ fault on the other hand is relatively complicated to tackle. Consider the situation
depicted in fig. 8.8: A faulty ↑ happens on en1 when the destination bits available on the flit
data are still invalid, and the fault does not settle down until the flit becomes valid, and the
other en2 makes its valid transition. It may be possible that en1 completely overlaps with en2
and simply does not go back to low. Since en1 has already made its corresponding latch opaque
with the faulty rising tansition, its contents are guaranteed to be invalid. At the same time Latch2
never saw the valid destination bits since MUX2 was already forwarding the corrupted data from
Latch1. This way both the latches may store invalid values, thereby leading to a deadlock or flit
misrouting.

This particular problem requires resorting to some timing assumption. Recall PK2 that valid
data and the correct enable signals are separated by at least three times of an expected fault
length, which means any fault that happens when the data were still invalid, would already be
settled down at the time the other enable signal has made its legal transition. And we know
that the 4-phase bundled data protocol already provides a sufficient safety margin, which makes
the delay between the data and the enable signals conveniently longer than our requirement. In
short, with our timing assumptions, the above sketched scenario should never happen, and the
proposed mechanism will work perfectly under other circumstances. The results of our fault
injection experiments using Modelsim scripts shall be given in the next section.

135

000000000 100000000 200000000 300000000

000000000 100000000 200000000 300000000

rin

ain1

ain2

ain3

din 000000000 100000000 200000000 300000000

rout1

aout1

rout2

aout2

dout 000000000 100000000 200000000

Figure 8.9: Operation of the router in a fault-free environment

8.3 Fault Injection and Simulation Results

8.3.1 Fault-free Operation

For functional verification of our router, we described the system shown in fig. 8.1 in Verilog
HDL. In our testbenches we joined the three input acknowledgments, ain1, ain2, and ain3 (of
the RAMP – input buffer) using a three input MC, and inverted its output to automatically gen-
erate new input requests rin. Similarly the output requests, rout1, and rout2 (of the output buffer
RAMP) were joined using duplicated MCs to automatically generate the output acknowledg-
ments aout1, and aout2. Each packet comprises four flits. For simplicity we have kept the
payload constant, however, the flit categorization bits already distinguish the flits from each
other (header → 00, body → 01, 10, tail → 11). Fig. 8.9 presents the simulation waveform
in a fault-free environment. Note that the delays between the second, third, and fourth hand-
shake cycles are significantly smaller than the delay between the first two cycles – the header
flit reserves the FT-TAC, which is a relatively slower component. Beyond giving evidence that
the overall design actually works, this waveform clearly depicts the correct protocol, both on
the input and the output sides. In the following experiments when we randomly inject faults
(of limited lengths) on various signals, the same protocol must be observed to guarantee suc-
cessful mitigation of faults. In case an SET manages to spoil this protocol, we have to propose
appropriate modifications in the overall circuit.

8.3.2 Fault Injection and Verification

We have carefully selected a subset of signals in the entire router to verify its fault-tolerance
capability by injecting a series of transient faults on those. Although a thorough verification
would require all the signals to be tested, it is not viable to present the detailed fault injection
process and analysis of the results, as mentioned already. To make a selection of the signals to
be tested, we ignore the internal nodes of the components that we have already model checked,
and emphasize on the new components presented in this chapter. In the following we present
a few simulation results, in each of which we have injected a series of 100,000 transient faults
(one per handshake cycle) on the selected signals. We carefully observe the outputs of the router

136

to ensure with high confidence that all of the faults are successfully mitigated before reaching
any of the outputs. Precisely, we expect our proposed extensions to guarantee three properties:

1. Deadlock: No fault must lead to a deadlock in any execution path.

2. MF: No fault must result in a flit being misrouted. By keeping the payload constant, we
ensure that all the flits are directed to the same FT-TAC, forcing all the flits to go to the
same output port of the switching demux, rout1, in fig. 8.7. In case at any point in time,
rout2 goes high, it would indicate a misrouted flit.

3. TI/TL: Neither an incorrect flit must be inserted, nor a correct one be lost. This can be
easily detected by comparing the currently received flit on the output port with the last
received flit: The flit identification bits of the current are always supposed to be one more
than the last received flit. If this is not true, then either a flit has been lost, or a superfluous
token has been incorrectly inserted.

Table 8.2 presents the list of nodes where the faults were injected, and the properties that they
satisfied. Except for a single case, all of the tests initially satisfied all the properties without
requiring modification in the design. One exception was the fault applied on the input request
of FCL, FCL_rin in fig. 8.4(a), in which the same faulty signal was supposed to generate both
the tail requests. By chance, the falling transition of the fault on the tail requests coincided with
the Switch_ain ↓ for a body flit, and prematurely released the FT-TAC, which resulted in a
deadlock. This fault was mitigated by generating original tail request with FCL_rin, and its
duplicated version with Switch_rin as shown in fig. 8.4(b).

8.3.3 Simulation Results

In the following we present few of the critical fault cases that we simulated:
• The first simulation, fig. 8.10 corresponds to the faults injected on the input signal, rin,

of the RAMP (input buffer). This test is critical since a single input fault may diverge on both
the output requests and cause the entire circuit to malfunction. The faults have been highlighted
using colored ovals. It may be clearly observed that no fault has managed to reach any of the
output signals.
In the following figures, we have omitted the data bus from the waveform.
• Fig. 8.11 presents the case when faults were injected on one of the outputs of RAMP,

i.e., an input of the interface X1. Once again, due to duplicated request signals, no fault has been
able to reach the output.
• Fig. 8.12 corresponds to the faults injected on one of the input requests of the FCL. Note

that this experiment was conducted with duplicated input requests, each of which is responsible
to generate a different tail request. The router now satisfies all the tested properties against this
fault.

8.3.4 Discussion

As Table 8.2 indicates, the final design can withstand all injected faults. In contrast, the non-
FT version of the router failed in all the test runs. We synthesized both the non FT and FT

137

0... 1... 2... 3... 000000... 1... 2... 3... 000000... 1... 2... 3... 000000... 1... 2... 3... 000000... ...

0... 1... 2... 3... 000000... 1... 2... 3... 000000... 1... 2... 3... 000000... 1... 2... 3... 000000... ...

ain1

ain2

ain3

din 0... 1... 2... 3... 000000... 1... 2... 3... 000000... 1... 2... 3... 000000... 1... 2... 3... 000000... ...

rout1

rout2

aout1

aout2

dout 0... 1... 2... 3... 000000... 1... 2... 3... 000000... 1... 2... 3... 000000... 1... 2... 3... 000000...

rin

Figure 8.10: Operation of the Router in presence of faults on input request

rout1

rout2

ain1

ain2

ain3

X1_rin1

Figure 8.11: Faults applied on input request of Interface X1

ain1

ain2

ain3

rout1

rout2

FCL_rin1

Figure 8.12: Faults applied on input request of FCL

138

Table 8.2: Verified Properties

Faulty Signal FT Version Non FT Version
MF TI / TL Deadlock MF TI / TL Deadlock

RAMP rin
√ √ √

– – –
RAMP rout1

√ √ √
– – –

FCL rin
√ √ √

*
√

X X
Switch rin

√ √ √ √
X X

To_arbiter1
√ √ √

X X X
From_arbiter1

√ √ √
X X

√

Sel_rout
√ √ √ √

X
√

Sel_aout
√ √ √

X X
√

FCL ain1
√ √ √ √

X
√

Switch ain
√ √ √ √

X
√

MF: Misrouted Flit
TI / TL: Token Inserted/Lost

*Failed initially, but satisfied when duplicated input requests were used.

routers for 90nm technology using Synopsis. The FT version obviously costs more in area
utilization, 2250.1µm2, in comparison to 1208.9µm2 of the non FT version. The performance
has been degraded significantly as well: 31MHz in comparison to 644MHz. However, the
reason behind this restricted throughput of the FT version is the small number of flits per packet.
As we have argued already in chapter 6, the greater the number of flits per packet, the better
the throughput would be. The primary objective of this work was to conduct a thorough fault
analysis of an asynchronous router, and to propose ways to mitigate their effects. Of course,
a few conventional techniques, such as pipelining, may be employed internally to increase the
overall router’s performance. This is something we plan to investigate in near future.

8.3.5 Summary

We have proposed an FT router, based on RAMP and FT-TAC circuits previously proposed.
In this chapter our focus has been on hardening the components that bind everything together,
and we have ensured a safe and FT integration of those. We have verified a few properties by
injecting a large number of transient faults on several nodes within the circuit using Modelsim
simulations. To make a fair comparison, we injected the same number of faults on the non FT
version of the router, and not surprisingly, most of the properties failed. On the other hand, our
proposed extensions have degraded the performance of the router, and have caused some over-
head in terms of area utilization. While in the future technology extra transistors will be readily
traded for increased reliability, making the area overhead a less significant issue, we plan to im-
prove the performance of the FT router by investigating conventional pipelining mechanisms in
future.

139

CHAPTER 9
Conclusion and Prospective Directions

9.1 Overview of Research Contributions

Networks-on-Chip (NoCs) have proven to be an efficient replacement of the shared bus architec-
ture, addressing the scalability limitations of the latter for the future multiprocessor platforms.
However, tolerance against transient faults and delay variations emerge as crucial challenges for
future CMOS logic cells, and this applies to NoCs as well. In this work we have contributed to
making design of NoCs fit for these future challenges by;

1. Elaborating an efficient fault-tolerant implementation for its most fundamental compo-
nents.

2. Adopting asynchronous implementation to cope with PVT variations.

3. Proposing a framework for systematic check of a protocol implementation with respect to
potential blocking behavior to support Quality of Service (QoS).

In the following we summarize the contributions of this research study.

9.1.1 VC Access Control Framework

We have used the notations of signal transition graphs and state graphs as presented in [142] to
introduce a systematic treatment of some fundamental properties of handshake controllers for
NoCs with virtual channels. In particular we have formulated requirements for safe data trans-
mission (with an option for bufferless implementation) and decoupling of sender and receiver.
Furthermore, we have expressed the role of flow control within this framework and analyzed two
basic schemes from the literature in this context. This allowed us to apply our rules for a system-
atic analysis of handshake controllers, and indeed we were able to pinpoint some deficiencies
concerning their nonblocking property that is crucial for Quality of Service. At the example of

141

the credit-uncredit scheme we illustrated how the exact identification of a weakness can be used
for a systematic improvement of the controller.

Our framework also allowed us to come up with a novel flow control scheme. Starting from
the observation that the messages conveyed over the credit channel are usually just data-less
synchronization tokens, we proposed to give those credit tokens a higher significance by asso-
ciating each with M credits instead of a single one, as usual. We have investigated the mutual
relations between number of pipeline stages in the upstream and downstream link, number N
of tokens in the loop, number of buffers in the receiver, and size M of those credit bundles. In
our implementation example we have shown the choice of N = 3 credits along with bundles
of M = 2 to be very efficient, in conjunction with a 2-phase protocol on the credit channel.
Furthermore, we have been able to classify some solutions from the literature as specific instan-
tiations of our generic scheme (namely with M = 1), and we have assessed the properties of
our MCFC scheme in comparison with those baseline solutions. The bottom-line is that MCFC
is in line with most of those schemes with respect to area and performance, while reducing the
transmission rate on the upstream channel by a factor of 8, thus substantially saving dynamic
power on that global interconnect, and at the same time allowing to choose a slower, more power
efficient implementation.

Relevant Publications

1. S. R. Naqvi, R. Najvirt, and A. Steininger. A Multi-Credit Flow Control scheme for asyn-
chronous NoCs. In Design and Diagnostics of Electronic Circuits and Systems (DDECS),
2013 IEEE 16th International Symposium on, pages 153-158, 2013.

2. R. Najvirt, S. R. Naqvi, and A. Steininger. Classifying Virtual Channel Access Control
Schemes for Asynchronous NoCs. In Asynchronous Circuits and Systems (ASYNC), 2013
IEEE 19th International Symposium on, pages 115-123, 2013.

3. S. R. Naqvi. AÁRAF: An Asynchronous Router Architecture using Four-Phase Bundled
Handshake Protocol. In Computing in the Global Information Technology (ICCGI), 2012
The Seventh International Multi-Conference on, pages 200-205, 2012.

9.1.2 Robust and Efficient Resource Sharing Mechanisms

We have proposed a novel tree arbiter cell that allows a pipelined processing of requests, i.e.
arbitrating for the next request while the current one is still ongoing. The extra logic required
for this feature initially increases the arbiter delay; however, in the relevant case of frequent re-
quests from different clients our scheme yields a considerable speed-up. We have introduced an
inter-TAC communication path for cascaded use of our TAC cell that not only enforces exclusive
activation of a single grant at a time, but also improves the fairness of the arbitration process.
Our simulation results clearly indicate that in case of a four client router in an all-eager envi-
ronment, our scheme provides superior performance; we gained a speed-up of 61.28%, 69.24%,
and 186.85% as compared to three different designs from literature.

Given that an arbiter, due to its inherently non-deterministic operation, cannot be appro-
priately protected by simple replication and voting on the module level, we have enhanced an

142

existing implementation of a TAC to make it fault tolerant on circuit level. To this end we have
carefully analyzed the failure modes of all involved components and introduced protection at
selected locations. Our protection schemes comprise pulse filtering, signal interlocking, and
duplication of gates. In this way we have tried to establish seamless protection with minimum
overheads. We have verified the tolerance against all single transient faults within the proposed
TAC cell as well as at the interfaces by means of model checking. An assessment of area and
performance has shown that the overheads are considerable, but still lower than those of a TMR-
based solution that, however, cannot provide full coverage.

Relevant Publications

1. S. R. Naqvi, and A. Steininger. A TAC for High Speed Resource Sharing. submitted to
Design, Automation, and Test in Europe (DATE), 2014.

2. S. R. Naqvi, A. Steininger, and J. Lechner. An SET Tolerant Tree Arbiter Cell. In Asyn-
chronous Circuits and Systems (ASYNC), 2013 IEEE 19th International Symposium on,
pages 31-39, 2013.

9.1.3 Transient Fault Tolerant Channels and Input Buffers

We have motivated the need for protecting the communication channels and the input buffers in
an asynchronous router against transient faults. For the very popular case of a Muller pipeline
in a bundled data architecture we have analyzed the potential fault scenarios and, based on this
analysis, systematically developed an extension to attain fault tolerance. Unlike mere duplication
approaches, our design exploits the redundancy immanent to the 4-phase protocol for mitigating
transient faults, thereby eliminating all potential single points of failure. Once again by means of
model checking we have proven that our solution can withstand all transient faults in the control
logic, including the proposed extension itself.

As far as protection of the channels is concerned, simply implementing a DED mechanism
combined with on-demand retransmission for this purpose severely degrades throughput and
hence system performance in the presence of frequent transient faults. Therefore we came up
with a more efficient error recovery mechanism namely ADTS-DED, which does not require
retransmission for single faults and hence reduces the performance degradation of the system by
a considerable measure.

All of our proposed solutions are conveniently integrated to form an efficient fully asyn-
chronous routing node that is capable of mitigating a single transient fault in the control path,
and two faults on the global communication channel per flit transmission.

Relevant Publications

1. S. R. Naqvi, J. Lechner, and A. Steininger. Protection of Muller-Pipelines from Transient
Faults. To appear in Quality Electronics Design (ISQED), 2014 International Symposium
on, 2014.

143

2. S. R. Naqvi, V. S. Veeravalli, and A. Steininger. Protecting an Asynchronous NoC against
Transient Channel Faults. In Digital System Design (DSD), 2012 15th Euromicro Confer-
ence on, pages 264-271, 2012.

9.2 Prospective Directions

In what follows, we briefly state a few open issues concerning the modeling, functional verifica-
tion, and synthesis of asynchronous circuits. All of these are in fact based on our observations
during this research work. Each of the following forms a separate area of research, addressing a
few of which is our primary objective, and the rest we simply point out.

9.2.1 Limitation of Model Checking

Although being bullet proof for the properties it verifies, the model checking cannot guarantee
coverage of all possible functional behaviors of the circuit under test. In other words, it checks
whatever it is asked to. As a result, it is eventually up to the designer to provide all properties
that are essential for a thorough functional verification of the circuit. Linking these properties
with the specification in a rigorous way is certainly an essential next step, not only for this work,
but for the verification community in general.

9.2.2 Multiple Fault Tolerance

The rapidly increasing soft error rates (SER) in digital circuits suggest that it shall be soon when
we witness multiple errors during a handshake cycle, and this concerns both the data path and
the control path. While the existing methodologies for the former, such as Adaptive Delayed
Twice Sampling with Double Error Detection (ADTS-DED), proposed in this work, shall still
be applicable, it is almost certain that our contribution in this work of mitigating a single fault
per handshake cycle in the control path, is not going to hold valid for too long. As a result, there
shall be a need to extend our design to tolerate multiple (two faults to begin with for instance)
faults.

9.2.3 Fault Tolerance: A Quality of Service Metric

The constant rise in SER motivates the fault-tolerance capability to be considered a QoS metric.
To the best of our knowledge, there is no single work that promised the guaranteed services and
fault-tolerance together in one design. We believe this specific area deserves a thorough inves-
tigation, and a possible starting point could be proposing a fault-tolerant Static Priority Arbiter.
Also in the context of QoS, the use of virtual channels (VC) is common albeit their overhead
on area and energy. We have commented on the same in our work as well, however, we believe
that a quantitative analysis of their optimal number per routing node against area and energy
efficiency, and their application to provide fault-tolerance capability, may prove beneficial for
the future many core systems.

144

9.2.4 Modeling Fault-Tolerance Behavior

During our research we have realized that the modeling and synthesis tools available for asyn-
chronous circuits do not provide much flexibility to the designer. As we have indicated in chap-
ter 5, whenever we attempted to add redundancy in a signal transition graph (STG), Petrify would
always optimize the redundant arcs during synthesis. We believe, the behavior of a circuit in re-
sponse to a single event transient (SET) must be given a logical representation while modeling
the circuit using an STG. In simple words, the designer must ensure that the STG he has built
considers each and every possible transition, including the ones resulting from an SET. This
way every circuit, by default, would be able to mitigate the input and local faults. However, the
existing tools restrict the designers from building such STGs, and there is a need for a platform
that accommodates such behavior.

9.2.5 Design for Testability

Despite their vastly acknowledged potential, the asynchronous circuits and systems struggle to
find a place in the electronics industry. It has been reported several times already that the primary
reason behind this is the challenge of designing them for testability, which does not follow the
conventional approaches, and especialy due to the lack of quality asynchronous EDA tools.
Our research group is particularly interested in automatic synthesis of asynchronous circuits.
We believe, together with modeling of the fault-tolerance behavior, the automatic synthesis and
designing for testability forms a truly prospective direction of research.

145

APPENDIX A
UPPAAL Models

The models presented here are extracted from the joint work conducted at our department [91,
92], and correspond to chapters 5 and 6. We are going to describe only a few elementary models
here; the remaining may be easily understood since all of them are built in the same way.

A.1 NOT Gate

Fig.A.1 presents the model of an inverter. Starting from the initial state upon system reset
rstComb, depending upon the initial value the control may jump to one of the two possible states
s0 or s1 respectively corresponding to the output logic levels low and high. At the same time,
setting the output variable y accordingly. The control then waits in the current state until an
event on the input a happens, and subsequently jumps to one of the waiting states w0 and w1.
The control must stay in the waiting state for a certain duration (minimum delay), depicted by
N_delay, before settling into the other logic state. If the input variable makes another transition
before N_delay has elapsed, the control returns to the previous state – this nicely emulates the
inertial delay of the inverter. Once the inertial delay has elapsed, the control ignores all further
input transitions, waits for the maximum delay, X_delay (depicting the switching time of the
gate), to elapse, generates the synchronizing event, y_c! (which notifies an event to any other
component it is connected to), and moves into the opposite state. At this point, the control once
again starts checking the input signal.

A.2 AND Gate

In principle, the AND gate, shown in fig. A.2, is modeled exactly like the inverter. However,
since there are two inputs, and a transition on any one of them may alter the output, events on
both the channels (a_c?, b_c?) must be detected, and the condition, a && b or !(a && b), must
be checked before entering the wait state w1 or w0 respectively.

147

clk <= X_delay
clk >= N_delay

y := false

y := true

y := false clk := 0
!a

clk := 0
a

y_c!

clk <= X_delay

y_c!

rstComb?

!initValue

y := false

rstComb?

y := true

y := true

clk >= N_delay

initValue

s0

w1

s1

w0

a

clk := X_delay

!a

clk := X_delay

Figure A.1: Model of a NOT Gate

A.3 SET Injector

The fault injector, shown in fig. A.3, comprises two loops: one (normal) that simply forwards
the input to the output whenever an event occurs on the input, the second loop (SET) is executed
only if a fault is enabled at an arbitrary point of time. During its execution, this loop inverts the
input value, keeps the control in the faulty state, SET, for the duration equivalent to the maximum
length of the fault fault_M, and then returns the control to the correct state.

A.4 Muller C-element

The model for an MC, fig. A.4 is almost identical to the AND-gate, except for the guard to
leave the state s1, and its reset signal is synchronized with the clock, rstSeq. Just like any other
combinational gate, an MC may also be connected to the SET injector, which could randomly
upset the output of the MC for a limited duration. However the SET injector does not model the

148

!initValue

y := false

y := true

s0

s1

initValue

clk := 0
a&&b
a_c?

b_c?a_c? a_c? b_c?

clk := 0

rstComb?

rstComb?

wait_s1
clk <= X_delay

b_c?

clk := 0
a&&b

a&&b a&&b
!(a&&b) !(a&&b)

a_c?
!(a&&b)
y := false

b_c?
!(a&&b)
y := false

y_c!

clk := X_delay

y_c!

clk := 0

wait_s0
clk <= X_delay

clk >= N_delay

clk >= N_delay
y := true,

y := true,

clk := X_delay

Figure A.2: Model of an AND Gate

rstComb?
done := false
y := initvalue

C

y_c!
a_c?

y := a

C
y_c!

clk <= fault_M

done := true

clk >= fault_N
y := a

!done && enabled
&& resetDone

y := !a, clk := 0
normal

SET

Figure A.3: Model of an SET injector

149

!initValue

y := false

y := true

s0

s1

wait_s1 clk <= X_delay
clk >= N_delay

rstSeq?

rstSeq?

initValue C

y_c!

C

y := false

y_c!

clk := 0
a&&b

clk := 0
a&&ba_c? b_c?
a_c? b_c?

y := true

wait_s0
clk <= X_delay

clk >= N_delay

b_c?a_c? a_c? b_c?

clk := 0

!(a&&b) !(a&&b)

clk := 0
!(!a&&!b) !(!a&&!b)

!a&&!b !a&&!b

Figure A.4: Model of an MC

bit-flip faults in which case the state of the MC remains inverted until one of the inputs makes a
transition. We incorporated this feature into the model of the MC as described next.

The two highlighted edges in fig. A.5 depict how we have modeled the MC’s ability to flip
its state in response to an SET. Whenever the inputs are not at the same logic level, and an SET
is enabled, the control may leave the stable state and directly enter the committed state from
where it cannot return to its original state. That is why we introduced a committed state in the
state holding elements, and not the other combinational gates. Note that we keep a fault count
variable since we have alwas assumed a single fault scenario. Thus an MC flips its state if the
fault count is currently zero.

A.5 MUTEX

The MUTEX is modeled as an entirely combinational circuit. Our model makes sure that the
two grants are not activated simultaneously, however, all the faults presented in Table. 6.1 are
incorporated: The SET injector modules, which may be placed at the two output grants, make
sure that all the transient faults are covered, whereas, the faulty inputs to the MUTEX always
snatch the grant from one client and give it to the other, thereby covering the bit-flip cases as

150

!initValue

y := false

y := true

s0

s1

clk <= X_delay
clk >= N_delay

rstSeq?

rstSeq?

initValue C

y_c!

C

y_c!

clk := 0
a&&b

clk := 0
a&&ba_c? b_c?
a_c? b_c?

y := true

clk <= X_delay

clk >= N_delay

b_c?a_c? a_c? b_c?

clk := 0

!(a&&b) !(a&&b)

clk := 0
!(!a&&!b) !(!a&&!b)

!a&&!b !a&&!b

wait_s0

(a!=b) && enabled

wait_s1

y := true
count = count+1

(a!=b) && enabled
&& count < MAX_SEU

y := false
count = count+1

y := false

&& count < MAX_SEU

Figure A.5: Model of an MC with bit-flip Fault Support

well. In this case, we allow two faults simultaneously.
All other gates are modeled similarly, therefore we are ommitting their details from the

thesis.

151

g1 := true
g2 := false

g2 := false
g1 := false

initValue_g1 && (!initValue_g2)

!initValue_g1 &&

g1 := false
&& !initValue_g1

!initValue_g2 && (!r1 && !r2)

initValue_g2 && (!r1 && r2)

g2 := true

rstComb?

rstComb?

g1 := false
!r1

g1 := true
r1

rstComb?

S0

S1

S2

r2 && !r1
g2 := true

g2 := false
!r2

g1_c!

g1_c!

g2_c!

g2_c!

Figure A.6: Model of a MUTEX

152

Bibliography

[1] A. Agarwal, C. Iskander, and R. Shankar. Survey of NoC Architectures and Contribu-
tions. Engineering, Computing and Architecture, 3(1), 2009.

[2] O.A. Amusan, A.L. Steinberg, A. F. Witulski, B.L. Bhuva, J.D. Black, M. P. Baze, and
L.W. Massengill. Single event upsets in a 130 nm hardened latch design due to charge
sharing. In Reliability physics symposium, 2007. proceedings. 45th annual. ieee interna-
tional, pages 306–311, 2007.

[3] Hagit Attiya and Jennifer Welch. Distributed Computing. John Wiley & Sons, 2nd edi-
tion, 2004.

[4] J. Bainbridge and S. Furber. Chain: a delay-insensitive chip area interconnect. Micro,
IEEE, 22(5):16–23, 2002.

[5] John Bainbridge and Sean Salisbury. Hardening of self-timed circuits against glitches.
Patent Application, 03 2009. WO 2009/030997 A3R4.

[6] William John Bainbridge and University of Manchester. School of Computer Science.
Asynchronous System on Chip Inteconnect. University of Manchester, 2000.

[7] A. Bardsley and University of Manchester. Dept. of Computer Science. Balsa: an Asyn-
chronous Circuit Synthesis System. University of Manchester, 1998.

[8] R. P. Bastos. Transient-Fault Robust Systems Exploiting Quasi-Delay Insensitive Asyn-
chronous Circuits. University of Grenoble and TIMA Lab, France, 2010.

[9] E. Baydal, P. López, and J. Duato. Avoiding network congestion with local information.
In HansP. Zima, Kazuki Joe, Mitsuhisa Sato, Yoshiki Seo, and Masaaki Shimasaki, edi-
tors, High Performance Computing, volume 2327 of Lecture Notes in Computer Science,
pages 35–48. Springer Berlin Heidelberg, 2002.

[10] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin. An asynchronous NOC
architecture providing low latency service and its multi-level design framework. In Proc.
11th IEEE Symposium on Asynchronous Circuits and Systems (ASYNC 2005), pages 54 –
63.

153

[11] E. Beigne and P. Vivet. Design of on-chip and off-chip interfaces for a gals noc architec-
ture. In Proceedings of the 12th IEEE International Symposium on Asynchronous Circuits
and Systems, ASYNC ’06, pages 172–, Washington, DC, USA, 2006. IEEE Computer
Society.

[12] Luca Benini. Networks on chip: a new paradigm for systems on chip design. In In
Proceedings of Conference on Design, Automation and Test in Europe, pages 418–419.
IEEE Computer Society, 2002.

[13] G. Birtwistle and K.S. Stevens. The family of 4-phase latch protocols. In Asynchronous
Circuits and Systems, 2008. ASYNC ’08. 14th IEEE International Symposium on, pages
71 –82, april 2008.

[14] T. Bjerregaard and Sparso. A router architecture for connection-oriented service guaran-
tees in the mango clockless network-on-chip. In Design, Automation and Test in Europe,
2005. Proceedings, pages 1226 – 1231 Vol. 2, march 2005.

[15] T. Bjerregaard and J. Sparso. Virtual channel designs for guaranteeing bandwidth in
asynchronous network-on-chip. In Norchip Conference, 2004. Proceedings, pages 269 –
272, nov. 2004.

[16] T. Bjerregaard and J. Sparso. Scheduling discipline for latency and bandwidth guarantees
in asynchronous network-on-chip. In Asynchronous Circuits and Systems, 2005. ASYNC
2005. Proceedings. 11th IEEE International Symposium on, pages 34 – 43, march 2005.

[17] R.V. Boppana and S. Chalasani. Fault-tolerant routing with non-adaptive wormhole algo-
rithms in mesh networks. In Supercomputing ’94., Proceedings, pages 693–702, 1994.

[18] C. Brej, J. Garside, and University of Manchester. School of Computer Science. Early
Output Logic and Anti-tokens. University of Manchester, 2005.

[19] W.P. Burleson, M. Ciesielski, F. Klass, and Wentai Liu. Wave-pipelining: a tutorial and
research survey. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
6(3):464–474, 1998.

[20] Suresh Chalasani. Adaptive fault-tolerant wormhole routing algorithms with low virtual
channel requirements. In In Proc. Int’l Symp. on Parallel Architectures, Algorithms and
Networks, pages 214–221, 1994.

[21] Kok-Leong Chang, J.S. Chang, Bah-Hwee Gwee, and Kwen-Siong Chong. Synchronous-
logic and asynchronous-logic 8051 microcontroller cores for realizing the internet of
things: A comparative study on dynamic voltage scaling and variation effects. Emerg-
ing and Selected Topics in Circuits and Systems, IEEE Journal on, 3(1):23–34, 2013.

[22] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stand-
ford University, 1984.

154

[23] Fu-Chiung Cheng and Shuen-Long Ho. Efficient systematic error-correcting codes for
semi-delay-insensitive data transmission. In Computer Design, 2001. ICCD 2001. Pro-
ceedings. 2001 International Conference on, pages 24 –29, 2001.

[24] Ge-Ming Chiu. The odd-even turn model for adaptive routing. IEEE Trans. Parallel
Distrib. Syst., 11(7):729–738, July 2000.

[25] Wesley A. Clark. Macromodular computer systems. In Proceedings of the April 18-20,
1967, spring joint computer conference, AFIPS ’67 (Spring), pages 335–336, New York,
NY, USA, 1967. ACM.

[26] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades, Y. Thonnart, P. Vivet,
and N. Wehn. A 477mw noc-based digital baseband for mimo 4g sdr. In Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, pages
278–279, 2010.

[27] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S. Mahlke, T. Austin,
and M. Orshansky. Bulletproof: a defect-tolerant cmp switch architecture. In High-
Performance Computer Architecture, 2006. The Twelfth International Symposium on,
pages 5 – 16, feb. 2006.

[28] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and Alex
Yakovlev. Petrify: A tool for manipulating concurrent specifications and synthesis of
asynchronous controllers, 1996.

[29] D. K. Pradhan. Fault-Tolerant Computing: Theory and Techniques, volume II. Prentice
Hall, Englewood Cliffs, New Jersey, 2003.

[30] William Dally and Brian Towles. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[31] W.J. Dally and B. Towles. Route packets, not wires: on-chip interconnection networks.
In Design Automation Conference, 2001. Proceedings, pages 684–689, 2001.

[32] Al Davis and Steven M. Nowick. An introduction to asynchronous circuit design. Techni-
cal report, THE ENCYCLOPEDIA OF COMPUTER SCIENCE AND TECHNOLOGY,
1997.

[33] Mark E. Dean, Ted E. Williams, and David L. Dill. Efficient self-timing with level-
encoded 2-phase dual-rail (ledr). In Proceedings of the 1991 University of Califor-
nia/Santa Cruz conference on Advanced research in VLSI, pages 55–70, Cambridge, MA,
USA, 1991. MIT Press.

[34] A. DeOrio, D. Fick, V. Bertacco, D Sylvester, D Blaauw, Jin Hu, and G. Chen. A reli-
able routing architecture and algorithm for nocs. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 31(5):726–739, 2012.

155

[35] Giorgos Dimitrakopoulos and Emmanouil Kalligeros. Low-cost fault-tolerant switch al-
locator for network-on-chip routers. In Proceedings of the 2012 Interconnection Network
Architecture: On-Chip, Multi-Chip Workshop, INA-OCMC ’12, pages 25–28, New York,
NY, USA, 2012. ACM.

[36] R. Dobkin, R. Ginosar, and I. Cidon. Qnoc asynchronous router with dynamic virtual
channel allocation. In Networks-on-Chip, 2007. NOCS 2007. First International Sympo-
sium on, page 218, may 2007.

[37] Rostislav (Reuven) Dobkin. Credit-based communication in nocs. Lecture on introduc-
tion to networks on chips: Vlsi aspects, Technion, 2007.

[38] Rostislav (Reuven) Dobkin, Ran Ginosar, and Avinoam Kolodny. Qnoc asynchronous
router. Integr. VLSI J., 42(2):103–115, February 2009.

[39] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Networks: An Engi-
neering Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[40] A. Dutta and N.A. Touba. Reliable network-on-chip using a low cost unequal error pro-
tection code. In Defect and Fault-Tolerance in VLSI Systems, 2007. DFT ’07. 22nd IEEE
International Symposium on, pages 3 –11, sept. 2007.

[41] Karl M. Fant and Scott A. Brandt. Null convention logic. Technical report, Available
online, http://www.theseusresearch.com/Downloads/NCL.PDF, 1997.

[42] F. Feliciian and S.B. Furber. An asynchronous on-chip network router with quality-of-
service (qos) support. In SOC Conference, 2004. Proceedings. IEEE International, pages
274 – 277, sept. 2004.

[43] T. Felicijan, J. Bainbridge, and S. Furber. An asynchronous low latency arbiter for quality
of service (qos) applications. In Microelectronics, 2003. ICM 2003. Proceedings of the
15th International Conference on, pages 123 – 126, dec. 2003.

[44] Jose Flich and Davide Bertozzi. Designing Network On-Chip Architectures in the
Nanoscale Era. Chapman & Hall/CRC, 2010.

[45] Arthur Pereira Frantz, Maico Cassel, Fernanda Lima Kastensmidt, Érika Cota, and Luigi
Carro. Crosstalk- and seu-aware networks on chips. IEEE Des. Test, 24(4):340–350, July
2007.

[46] Arthur Pereira Frantz, Fernanda Lima Kastensmidt, Luigi Carro, and Erika Cota. De-
pendable network-on-chip router able to simultaneously tolerate soft errors and crosstalk.
In Test Conference, 2006. ITC ’06. IEEE International, pages 1 –9, oct. 2006.

[47] Robert M. Fuhrer, Steven M. Nowick, Michael Theobald, Niraj K. Jha, Bill Lin, and
Luis Plana. Minimalist: An environment for the synthesis, verification and testability of
burst-mode asynchronous machines, 1999.

156

[48] S.B. Furber, D.A. Edwards, and J.D. Garside. Amulet3: a 100 mips asynchronous embed-
ded processor. In Computer Design, 2000. Proceedings. 2000 International Conference
on, pages 329–334, 2000.

[49] Lake Hiawatha NJ Gar Moy. Majority vote circuit, 11 1984.

[50] Alberto Ghiribaldi, Davide Bertozzi, and Steven M. Nowick. A transition-signaling bun-
dled data noc switch architecture for cost-effective gals multicore systems. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, pages 332–337, 2013.

[51] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical
Journal, 29(2):147–160, April 1950.

[52] H. H. Hana and B. W. Johnson. Concurrent Error Detection in VLSI Circuits Using Time
Redundancy. In Proc. of the IEEE Southeastcon ’86 Regional Conf., pages 208–212,
March 1986.

[53] O. Hauck and S.A. Huss. Asynchronous wave pipelines for high throughput datapaths.
In Electronics, Circuits and Systems, 1998 IEEE International Conference on, volume 1,
pages 283–286 vol.1, 1998.

[54] Tino Heijmen. Radiation-induced soft errors in digital circuits – a literature survey, 2002.

[55] R. Holsmark, S. Kumar, M. Palesi, and A. Mejia. Hira: A methodology for deadlock free
routing in hierarchical networks on chip. In Networks-on-Chip, 2009. NoCS 2009. 3rd
ACM/IEEE International Symposium on, pages 2–11, 2009.

[56] M.N. Horak, S.M. Nowick, M. Carlberg, and U. Vishkin. A low-overhead asynchronous
interconnection network for gals chip multiprocessors. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 30(4):494–507, 2011.

[57] Wei Huang, Mircea R. Stan, Kevin Skadron, Karthik Sankaranarayanan, Shougata Ghosh,
and Sivakumar Velusam. Compact thermal modeling for temperature-aware design. In
Proceedings of the 41st annual Design Automation Conference, DAC ’04, pages 878–883,
New York, NY, USA, 2004. ACM.

[58] D.A. Huffman and Massachusetts Institute of Technology. Research Laboratory of Elec-
tronics. The Synthesis of Sequential Switching Circuits. Technical report (Massachusetts
Institute of Technology. Research Laboratory of Electronics). Research Laboratory of
Electronics, Massachusetts Institute of Technology, 1954.

[59] M. Imai and T. Yoneda. Improving dependability and performance of fully asynchronous
on-chip networks. In Asynchronous Circuits and Systems (ASYNC), 2011 17th IEEE
International Symposium on, pages 65–76, 2011.

[60] M.H. Jabbar, D. Houzet, and O. Hammami. 3d multiprocessor with 3d noc architecture
based on tezzaron technology. In 3D Systems Integration Conference (3DIC), 2011 IEEE
International, pages 1–5, 2012.

157

[61] W. Jang and A. J. Martin. A soft-error-tolerant asynchronous microcontroller. In 13th
NASA Symposium on VLSI Design, June 2007.

[62] Wonjin Jang and A.J. Martin. Seu-tolerant qdi circuits [quasi delay-insensitive asyn-
chronous circuits]. In Asynchronous Circuits and Systems, 2005. ASYNC 2005. Proceed-
ings. 11th IEEE International Symposium on, pages 156 – 165, march 2005.

[63] David J Kinniment. Synchronization and Arbitration in Digital Systems. Wiley, 2007.

[64] A. Kohler and M. Radetzki. Fault-tolerant architecture and deflection routing for degrad-
able noc switches. In Networks-on-Chip, 2009. NoCS 2009. 3rd ACM/IEEE International
Symposium on, pages 22–31, 2009.

[65] A. Kohler, G. Schley, and M. Radetzki. Fault tolerant network on chip switching with
graceful performance degradation. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 29(6):883–896, 2010.

[66] M. Koibuchi, H. Matsutani, H. Amano, and T.M. Pinkston. A lightweight fault-tolerant
mechanism for network-on-chip. In Networks-on-Chip, 2008. NoCS 2008. Second
ACM/IEEE International Symposium on, pages 13–22, 2008.

[67] T. Krishna, A Kumar, P. Chiang, M. Erez, and Li-Shiuan Peh. Noc with near-ideal express
virtual channels using global-line communication. In High Performance Interconnects,
2008. HOTI ’08. 16th IEEE Symposium on, pages 11–20, 2008.

[68] V. Krishnan and J. Torrellas. A chip-multiprocessor architecture with speculative multi-
threading. Computers, IEEE Transactions on, 48(9):866–880, 1999.

[69] A Kumar, Li-Shiuan Peh, P. Kundu, and N.K. Jha. Toward ideal on-chip communication
using express virtual channels. Micro, IEEE, 28(1):80–90, 2008.

[70] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jha. Express virtual channels:
towards the ideal interconnection fabric. SIGARCH Comput. Archit. News, 35(2):150–
161, June 2007.

[71] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jha. Express virtual channels:
towards the ideal interconnection fabric. In Proceedings of the 34th annual international
symposium on Computer architecture, ISCA ’07, pages 150–161, New York, NY, USA,
2007. ACM.

[72] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Int. Journal on
Software Tools for Technology Transfer, 1:134–152, 1997.

[73] Jakob Lechner and Robert Najvirt. A generic architecture for robust asynchronous com-
munication links. In JoséL. Ayala, Delong Shang, and Alex Yakovlev, editors, Integrated
Circuit and System Design. Power and Timing Modeling, Optimization and Simulation,
volume 7606 of Lecture Notes in Computer Science, pages 121–130. Springer Berlin Hei-
delberg, 2013.

158

[74] Yun-Tae Lee. Low power soc in deep-submicron era. In SOC Conference, 2003. Pro-
ceedings. IEEE International [Systems-on-Chip], pages 421–, 2003.

[75] D.H. Linder and J.C. Harden. An adaptive and fault tolerant wormhole routing strategy
for k -ary n-cubes. Computers, IEEE Transactions on, 40(1):2–12, 1991.

[76] Andrew M Lines. Pipelined asynchronous circuits. Technical report, Pasadena, CA, USA,
1998.

[77] M. Gag, P. Gorski, T. Wegner, D. Timmermann. Evaluation of Switch-to-Switch Header
Flit Protection Schemes in Networks-on-Chips. In Zuverlässigkeit und Entwurf - 5.
GI/GMM/ITG-Fachtagung, sept. 2011.

[78] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In Pro-
ceedings of the sixth MIT conference on Advanced research in VLSI, AUSCRYPT ’90,
pages 263–278, Cambridge, MA, USA, 1990. MIT Press.

[79] Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1979.

[80] D.G. Messerschmitt. Synchronization in digital system design. Selected Areas in Com-
munications, IEEE Journal on, 8(8):1404–1419, 1990.

[81] A. Mitra, W.F. McLaughlin, and S.M. Nowick. Efficient asynchronous protocol convert-
ers for two-phase delay-insensitive global communication. In Asynchronous Circuits and
Systems, 2007. ASYNC 2007. 13th IEEE International Symposium on, pages 186–195,
2007.

[82] Andrey Mokhov, Victor Khomenko, Danil Sokolov, and Alex Yakovlev. On dual-rail
control logic for enhanced circuit robustness. Research report, Newcastle University,
2010.

[83] C.E. Molnar, I.W. Jones, W.S. Coates, J.K. Lexau, S.M. Fairbanks, and I.E. Sutherland.
Two fifo ring performance experiments. Proceedings of the IEEE, 87(2):297–307, 1999.

[84] Y. Monnet, M. Renaudin, and R. Leveugle. Asynchronous circuits sensitivity to fault
injection. In On-Line Testing Symposium, 2004. IOLTS 2004. Proceedings. 10th IEEE
International, pages 121–126, 2004.

[85] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller, and Luciano Ost. Her-
mes: an infrastructure for low area overhead packet-switching networks on chip. Integr.
VLSI J., 38(1):69–93, October 2004.

[86] M.T. Moreira, R.A. Guazzelli, and N.L.V. Calazans. Return-to-one protocol for reducing
static power in c-elements of qdi circuits employing m-of-n codes. In Integrated Circuits
and Systems Design (SBCCI), 2012 25th Symposium on, pages 1–6, 2012.

159

[87] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M. Wirthlin. Seu-
induced persistent error propagation in fpgas. Nuclear Science, IEEE Transactions on,
52(6):2438–2445, 2005.

[88] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proc. Int’l Symp.
Theory of Switching, Part 1, pages 204–243. Harvard Univ. Press, 1959.

[89] R. Najvirt, S.R. Naqvi, and A. Steininger. Classifying virtual channel access control
schemes for asynchronous nocs. In Asynchronous Circuits and Systems (ASYNC), 2013
IEEE 19th International Symposium on, pages 115–123, 2013.

[90] Ali Namazi. Design-for-reliability techniques for nanometer VLSI. PhD dissertation,
THE UNIVERSITY OF TEXAS AT DALLAS, USA, 2010.

[91] Rameez Naqvi, Andreas Steininger, and J. Lechner. Protection of muller-pipelines from
transient faults. International Symposium on Quality Electronics Design 2014, Mar. 2014.

[92] S.R. Naqvi, A. Steininger, and J. Lechner. An set tolerant tree arbiter cell. In Asyn-
chronous Circuits and Systems (ASYNC), 2013 IEEE 19th International Symposium on,
pages 31–39, 2013.

[93] Syed Rameez Naqvi. A’araf: An asynchronous router architecture using four-phase bun-
dled handshake protocol. ICCGI 2012, June 2012.

[94] Syed Rameez Naqvi, Varadan Savulimedu Veeravalli, and Andreas Steininger. Protecting
an asynchronous noc against transient channel faults. 15th Euromicro Conference on
Digital System Design, Sep. 2012.

[95] Steven M Nowick. Automatic synthesis of burst-mode asynchronous controllers. Tech-
nical report, 1995.

[96] J. Nurmi. Network-on-chip: A new paradigm for system-on-chip design. In System-on-
Chip, 2005. Proceedings. 2005 International Symposium on, pages 2–6, 2005.

[97] Jabulani Nyathi, S. Sarkar, and P.P. Pande. Multiple clock domain synchronization for
network on chip architectures. In SOC Conference, 2007 IEEE International, pages 291–
294, 2007.

[98] Simon Ogg, Bashir Al-Hashimi, and Alex Yakovlev. Asynchronous transient resilient
links for noc. In Proceedings of the 6th IEEE/ACM/IFIP international conference on
Hardware/Software codesign and system synthesis, CODES+ISSS ’08, pages 209–214,
New York, NY, USA, 2008. ACM.

[99] R.O. Ozdag and P.A. Beerel. High-speed qdi asynchronous pipelines. In Asynchronous
Circuits and Systems, 2002. Proceedings. Eighth International Symposium on, pages 13–
22, 2002.

160

[100] Eustace Painkras, Luis A. Plana, Jim D. Garside, Steve Temple, Simon Davidson, Jeffrey
Pepper, David M. Clark, Cameron Patterson, and Steve Furber. Spinnaker: A multi-core
system-on-chip for massively-parallel neural net simulation. In CICC, pages 1–4. IEEE,
2012.

[101] Dongkook Park, C. Nicopoulos, Jongman Kim, N. Vijaykrishnan, and C.R. Das. Explor-
ing fault-tolerant network-on-chip architectures. In Dependable Systems and Networks,
2006. DSN 2006. International Conference on, pages 93–104, 2006.

[102] J. Patel and L. Fung. Concurrent Error Detection in ALUs by Recomputing with Shifted
Operands. IEEE Trans. on Computers, 31(7):589–595, July 1982.

[103] A. Peeters and K. Van Berkel. Single-rail handshake circuits. In Asynchronous Design
Methodologies, 1995. Proceedings., Second Working Conference on, pages 53–62, 1995.

[104] Song Peng and Rajit Manohar. Self-healing asynchronous arrays. In Proceedings of the
12th IEEE International Symposium on Asynchronous Circuits and Systems, ASYNC ’06,
pages 34–, Washington, DC, USA, 2006. IEEE Computer Society.

[105] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1981.

[106] Matthew Pierson. Self timed, self tuned state machines using low power pass transistor
logic.

[107] Ivan Poliakov, Victor Khomenko, and Alex Yakovlev. Workcraft – a framework for inter-
preted graph models. In Giuliana Franceschinis and Karsten Wolf, editors, Applications
and Theory of Petri Nets, volume 5606 of Lecture Notes in Computer Science, pages
333–342. Springer Berlin Heidelberg, 2009.

[108] JULIAN JOSÉ HILGEMBERG Pontes and Faculty of Informatics PUCRS. Soft Error
Mitigation in Asynchronous Networks on Chip. August.

[109] N. R. Poole. Self-timed logic circuits. Electronics Communication Engineering Journal,
6(6):261–270, 1994.

[110] D. K. Pradhan. Fault-Tolerant Computing: Theory and Techniques, volume I. Prentice
Hall, Englewood Cliffs, New Jersey, 2003.

[111] Jan M. Rabaey, Anantha P. Chandrakasan, and Borivoje Nikolic. Digital integrated cir-
cuits : a design perspective. Prentice Hall electronics and VLSI series. Pearson Educa-
tion, 2 edition, January 2003.

[112] Amir-Mohammad Rahmani, Khalid Latif, Pasi Liljeberg, Juha Plosila, and Hannu Ten-
hunen. A stacked mesh 3d noc architecture enabling congestion-aware and reliable inter-
layer communication. In Proceedings of the 2011 19th International Euromicro Confer-
ence on Parallel, Distributed and Network-Based Processing, PDP ’11, pages 423–430,
Washington, DC, USA, 2011. IEEE Computer Society.

161

[113] D. A. Rennels, A. Avizienis, and M. Ercegovac. A Study of Standard Building Blocks
for the Design of Fault-Tolerant Distributed Computer System. In Proc. of the 8th Int’l.
Conf. on Fault-Tolerant Computing Systems, pages 208–212, June 1978.

[114] D. A. Reynolds and G. Metze. Fault Detection Capabilities of Alternating Logic. IEEE
Trans. on Computers, 27(12):1093–1098, December 1978.

[115] Dobkin (Reuven) Rostislav, Victoria Vishnyakov, Eyal Friedman, and Ran Ginosar. An
asynchronous router for multiple service levels networks on chip. In Proceedings of the
11th IEEE International Symposium on Asynchronous Circuits and Systems, ASYNC ’05,
pages 44–53, Washington, DC, USA, 2005. IEEE Computer Society.

[116] S. Rusu. Clock generation and distribution in high-performance processors. In System-
on-Chip, 2004. Proceedings. 2004 International Symposium on, pages 207–, 2004.

[117] Maitham Shams, Jo C. Ebergen, and Mohamed I. Elmasry. Asynchronous circuits.

[118] X. She and N. Li. Low-overhead single-event upset hardened latch using programmable
resistance cells. Computers Digital Techniques, IET, 4(5):420–427, 2010.

[119] A. Sheibanyrad and A. Greiner. Two efficient synchronous ↔ asynchronous con-
verters well-suited for networks-on-chip in gals architectures. Integr. VLSI J., 41(1):17–
26, January 2008.

[120] A. Sheibanyrad, A. Greiner, and I. Miro-Panades. Multisynchronous and fully asyn-
chronous nocs for gals architectures. Design & Test of Computers, IEEE Transactions on,
25(6):572 – 580, Dec. 2008.

[121] Y. Shi, S. Furber, and University of Manchester. School of Computer Science. Fault-
tolerant delay-insensitive communication. University of Manchester, 2010.

[122] Yebin Shi, S.B. Furber, J. Garside, and L.A. Plana. Fault tolerant delay insensitive inter-
chip communication. In Asynchronous Circuits and Systems, 2009. ASYNC ’09. 15th
IEEE Symposium on, pages 77–84, 2009.

[123] Lai Yit Siang, B.A. Bin Rosdi, Teh Eng Keong, Teh Chai Forng, and C.L.S. Xying. An
automated clock distribution topology in soc designs. In Industrial Electronics and Ap-
plications (ISIEA), 2011 IEEE Symposium on, pages 454–458, 2011.

[124] M. Singh and S.M. Nowick. Mousetrap: ultra-high-speed transition-signaling asyn-
chronous pipelines. In Computer Design, 2001. ICCD 2001. Proceedings. 2001 Inter-
national Conference on, pages 9–17, 2001.

[125] G.E. Sobelman and K. Fant. Cmos circuit design of threshold gates with hysteresis.
In Circuits and Systems, 1998. ISCAS ’98. Proceedings of the 1998 IEEE International
Symposium on, volume 2, pages 61–64 vol.2, 1998.

162

[126] W. Song, D. Edwards, and University of Manchester. School of Computer Science. Spa-
tial Parallelism in the Routers of Asynchronous On-chip Networks. University of Manch-
ester, 2011.

[127] Jens Sparso and Steve Furber. Principles of Asynchronous Circuit Design: A Systems
Perspective. Springer Publishing Company, Incorporated, 1st edition, 2010.

[128] Kenneth Stevens. Automatic synthesis of fast, compact self-timed control. Technical
report, In IFIP Working Conference on Design Methodologies, 1992.

[129] Kenneth S. Stevens. Practical verification and synthesis of low latency asynchronous
systems, 1994.

[130] A. Strano, A. Ghiribaldi, M. Favalli, and D. Bertozzi. Power efficiency of switch architec-
ture extensions for fault tolerant noc design. In Sustainable Computing and Computing
for Sustainability. The Third International Green Computing Conference (IGCC’12), jun.
2012.

[131] C.E. Stroud. Reliability of majority voting based vlsi fault-tolerant circuits. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 2(4):516 –521, dec. 1994.

[132] Mishell J. Stucki, Severo M. Ornstein, and Wesley A. Clark. Logical design of macro-
modules. In Proceedings of the April 18-20, 1967, spring joint computer conference,
AFIPS ’67 (Spring), pages 357–364, New York, NY, USA, 1967. ACM.

[133] I. E. Sutherland. Micropipelines. Commun. ACM, 32(6):720–738, June 1989.

[134] Ivan Sutherland and Scott Fairbanks. Gasp: A minimal fifo control. In Proceedings of the
7th International Symposium on Asynchronous Circuits and Systems, ASYNC ’01, pages
46–, Washington, DC, USA, 2001. IEEE Computer Society.

[135] Rutuparna Ramesh Tamhankar, Srinivasan Murali, and Giovanni De Micheli. Perfor-
mance driven reliable link design for networks on chips. In Proceedings of the 2005 Asia
and South Pacific Design Automation Conference, ASP-DAC ’05, pages 749–754, New
York, NY, USA, 2005. ACM.

[136] Teijo Lehtonen, Pasi Liljeberg, Juha Plosila. Online Reconfigurable Self-Timed Links for
Fault-Tolerant NoC. VLSI Design, 2007.

[137] Navid Toosizadeh. Enhanced Synchronous Design Using Asynchronous Techniques. The
University of Toronto, 2010.

[138] Wen-Chung Tsai, Ying-Cherng Lan, Yu-Hen Hu, and Sao-Jie Chen. Networks on chips:
structure and design methodologies. JECE, 2012:2:2–2:2, January 2012.

[139] K. Van Berkel, R. Burgess, J. Kessels, A. Peelers, M. Roncken, and F. Schalij. A fully-
asynchronous low-power error corrector for the dcc player [cmos technology]. In Solid-
State Circuits Conference, 1994. Digest of Technical Papers. 41st ISSCC., 1994 IEEE
International, pages 88–89, 1994.

163

[140] Kees van Berkel. Beware the isochronic fork. Integr. VLSI J., 13(2):103–128, June 1992.

[141] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A. Singh,
T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar. An
80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS. Solid-State Circuits, IEEE
Journal of, 43(1):29–41, 2008.

[142] S.N. Varanasi, K.S. Stevens, and G. Birtwistle. Concurrency reduction of untimed latch
protocols - theory and practice. In Asynchronous Circuits and Systems (ASYNC), 2010
IEEE Symposium on, pages 26 –37, may 2010.

[143] Varadan Savulimedu Veeravalli and Andreas Steininger. Performance of radiation hard-
ening techniques under voltage and temperature variations. In 2013 IEEE Aerospace
Conference, Mar. 2013.

[144] T. Verhoeff and Technische Universiteit Eindhoven. A Theory of Delay-insensitive Sys-
tems. CIP-Gegevens Koninklijke Bibliothek, 1994.

[145] P. Vivet, D. Dutoit, Y. Thonnart, and F. Clermidy. 3d noc using through silicon via:
An asynchronous implementation. In VLSI and System-on-Chip (VLSI-SoC), 2011
IEEE/IFIP 19th International Conference on, pages 232–237, 2011.

[146] B.D. Winters and M.R. Greenstreet. A negative-overhead, self-timed pipeline. In Asyn-
chronous Circuits and Systems, 2002. Proceedings. Eighth International Symposium on,
pages 37–46, 2002.

[147] Dong Xiang, Yueli Zhang, and Yi Pan. Practical deadlock-free fault-tolerant routing in
meshes based on the planar network fault model. Computers, IEEE Transactions on,
58(5):620–633, 2009.

[148] Yongfeng Xu, Jianyang Zhou, and Shunkui Liu. Research and analysis of routing algo-
rithms for noc. In Computer Research and Development (ICCRD), 2011 3rd International
Conference on, volume 2, pages 98–102, 2011.

[149] A. Yakovlev, A. Petrov, and L. Lavagno. A low latency asynchronous arbitration circuit.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2(3):372 –377, sept.
1994.

[150] A. Yanamandra, S. Eachempati, N. Soundararajan, V. Narayanan, M.J. Irwin, and R. Kr-
ishnan. Optimizing power and performance for reliable on-chip networks. In Design
Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific, pages 431 –436,
jan. 2010.

[151] Chengmo Yang and Alex Orailoglu. Light-weight synchronization for inter-processor
communication acceleration on embedded mpsocs. In Proceedings of the 2007 inter-
national conference on Compilers, architecture, and synthesis for embedded systems,
CASES ’07, pages 150–154, New York, NY, USA, 2007. ACM.

164

[152] Keun Soo Yim, V. Sidea, Z. Kalbarczyk, Deming Chen, and R.K. Iyer. A fault-tolerant
programmable voter for software-based n-modular redundancy. In Aerospace Conference,
2012 IEEE, pages 1 –20, march 2012.

[153] Young Jin Yoon, Nicola Concer, Michele Petracca, and Luca Carloni. Virtual channels vs.
multiple physical networks: a comparative analysis. In Proceedings of the 47th Design
Automation Conference, DAC ’10, pages 162–165, New York, NY, USA, 2010. ACM.

[154] Qiaoyan Yu, Meilin Zhang, and P. Ampadu. Exploiting inherent information redundancy
to manage transient errors in noc routing arbitration. In Networks on Chip (NoCS), 2011,
pages 105 –112, may 2011.

165

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Non-blocking Behavior
	Reliability

	Contribution and Significance of the Work
	Organization

	Background
	Principles of Asynchronous Design
	Data-path and Control
	The Concept of Handshaking
	Classification of Asynchronous Circuits/ Delay Models
	Delay Insensitive Circuits
	Quasi Delay Insensitive Circuits
	Speed Independent Circuits

	Signaling Conventions and Data Representation
	4-phase Signaling
	2-phase Signaling
	Comparison between 4-phase and 2-phase signaling
	Single Rail Encoding
	M-of-N Encoding

	Asynchronous Circuits and Pipeline Implementations
	The Concept of Valid Tokens, Empty Tokens, and Bubbles
	Elementary Primitives
	4-phase Bundled Data Pipeline
	Micropipelines

	Modeling and Synthesis of Asynchronous Circuits

	Fundamentals of Networks-on-Chip
	The Basic Architecture
	Networks with Multiple Routers
	Function Layers
	Application Layer
	Transport Layer
	Network Layer
	Physical Layer
	Data-link Layer

	Flow Control
	Packet-Buffer Flow Control
	Wormhole Flow Control
	Virtual Channel Flow Control

	Backpressure Management
	Routing Algorithms

	Communication Infrastructure for MP Platforms
	Globally Asynchronous Locally Synchronous Systems
	Asynchronous NoC

	Reliability Concerns in ANoCs
	Error Control on SPL
	Fault-Tolerance in Routing Components
	Asynchronous Transient Resilient Links
	Fault-Tolerant DI Codes for GALS Setup
	Dependable Fully Asynchronous On-Chip Networks

	Major Contributions of this Work

	The Baseline NoC Design
	Related Work
	Baseline Router Design
	IH – Flit Categorization Logic (FCL)
	IH – Destination Bits Shifter (DeBS)
	IH – Destination Bits Latch
	IH – Input CONtroller (ICON)
	IH – Crossbar
	OG – Output Port Arbiter
	OG – Select/Merge
	Summary of Operation

	Virtual Channel Design
	Number of VCs per IO Port
	Allocation of VCs

	Classification of the Access Control Schemes
	VC Controllers
	Decoupled producer
	Decoupled consumer

	Flow control schemes
	Proposed Flow Control Scheme
	Proposed Implementation
	Sender
	Receiver
	Timing Assumptions
	Pulse Generation Circuit
	Toggle Flip-Flop in the Credit Generation Unit

	Evaluation
	Simulation Results
	Analysis and Comparison
	Number of transitions on the credit link
	Area utilization
	Throughput

	Summary

	High Speed Resource Sharing
	Background and Related Work
	Proposed Tree Arbiter Cell
	Window of Improvement
	Design Concept
	Adaptation to TAC
	Rapid local clients' interlocking
	Interlocking multiple TACs
	Timing assumptions

	Unfairness Window

	Implementation and Evaluation
	Worst and Best Case Latencies
	Handoff Latencies
	Throughput Estimation

	Summary

	Protection of FIFO Control Path
	Background and Related Work
	Robust Asynchronous Muller Pipeline (RAMP)
	Assumptions and Fault Model
	Operation Principle
	Initial Circuit Design

	Formal Verification
	Fault Simulation Methodology
	Observations and Post-verification Modifications
	Circuit's faulty behavior
	Improvement in latency

	Simulation Results and Discussions
	Simulation Results
	Comparison and Discussion

	Summary

	Fault-Tolerant Switch Allocation
	Related Work
	Arbiter Failure Modes and Causes
	Failure modes on the client interface
	Failure modes at the interface to the common resource
	MUTEX failures
	Fault effects on the TAC

	Proposed Fault Tolerant Tree Arbiter Cell
	Architectural Considerations
	Hardening the generation of CRreq
	Hardening the generation of C1gr and C2gr

	Formal Verification
	Simulation Results
	Analysis and Discussion
	Summary

	Fault-Tolerant Inter-switch Communication
	Related Work
	Baseline Interconnection Network
	Retransmission Module
	Input Module

	Encoding Schemes
	Single Error Detection with Retransmission (SED)
	Double Error Detection with Retransmission (DED)
	Single Error Correction (SEC)
	Time Redundant Transmission with Voting (TRV)
	Transmitter
	Receiver

	Adaptive Delayed Twice Sampling with Double Error Detection (ADTS-DED)

	Simulation Results
	Simulation Results of ADTS-DED Mechanism
	Area Overhead Comparison
	Performance Penalty
	Discussion

	Summary

	Fault-Tolerant Router: The Complete Design
	Preliminaries
	Assumptions
	Simplifications
	Prior Knowledge
	Design Methodology

	Hardening the Components
	Interface X1
	Fault Tolerant Input Controller (FT-ICON)
	Fault Tolerant Flit Categorization Logic (FT-FCL)
	Interface X2
	FT-Switch Demux
	Interface X4
	Interface X3
	FT-Select Module
	FT-Latch Enable Signals

	Fault Injection and Simulation Results
	Fault-free Operation
	Fault Injection and Verification
	Simulation Results
	Discussion
	Summary

	Conclusion and Prospective Directions
	Overview of Research Contributions
	VC Access Control Framework
	Relevant Publications

	Robust and Efficient Resource Sharing Mechanisms
	Relevant Publications

	Transient Fault Tolerant Channels and Input Buffers
	Relevant Publications

	Prospective Directions
	Limitation of Model Checking
	Multiple Fault Tolerance
	Fault Tolerance: A Quality of Service Metric
	Modeling Fault-Tolerance Behavior
	Design for Testability

	UPPAAL Models
	NOT Gate
	AND Gate
	SET Injector
	Muller C-element
	MUTEX

	Bibliography

