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Kurzfassung

Eine der größten Lärmquellen stellt der stetig zunehmende Straßenverkehr dar. Um
die Beeinträchtigung der in der Nähe von Hauptverkehrsachsen lebenden Bevökerung
trotzdem möglichst gering zu halten, werden o� Lärmschutzmaßnahmen wie z.B. das
Errichten von Lärmschutzwänden durchgeführt. Die Beurteilung dieser Lärmschutz-
maßnahmen ist durch verschiedene Normen geregelt; so befasst sich die Normenreihe
EN 1793 beispielsweise mit „Lärmschutzvorrichtungen an Straßen – Prüfverfahren zur
Bestimmung der akustischen Eigenscha�en“.

Die dieser Diplomarbeit zugrunde liegende Fragestellung ist die nach den Auswirkungen
von Einbaufehlern auf die akustischen Eigenscha�en von Lärmschutzwänden. Typische
Einbaufehler sind horizontale Spalte, die zwischen Boden und Lärmschutzwand oder
zwischen einzelnen Elementen frei bleiben, oder Löcher, die auf Beschädigungen der
Ecken der Elemente vor der Montage zurückzuführen sein können.

Die Schalltransmission durch diese Fehlstellen in Lärmschutzwänden wird numerisch
und experimentell betrachtet. Zur numerischen Berechnung wird die für nach außen
unbeschränkte Problemstellungen besonders geeignete Randelementemethode (BEM,
boundary element method) verwendet. Im experimentellen Teil werden an einem Lärm-
schutzwandprüfstand Messungen nach der Norm EN 1793-6 (aus dem EU-Projekt Adri-
enne) durchgeführt. Abschließend werden die experimentell und numerisch ermittelten
Werte mit analytischen Berechnungen nach demModell von Gomperts [14] verglichen.
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Abstract

�e steadily increasing amount of tra�c constitutes one of the largest noise sources in
the environment. To keep the annoyance for people living close to heavily used roads
as low as possible, noise reduction measures such as the erection of noise barriers are
o�en taken.�e assessment of these noise reduction measures is regulated by a number
of standards; the series EN 1793 for instance covers the topic “Road tra�c noise reducing
devices – Test method for determining the acoustic performance”.

�e problem forming the basis of this master’s thesis is the impact of construction faults
on the acoustic properties of noise barriers. Typical construction faults are horizontal
gaps that remain open between individual elements or holes that result through damages
to the corners of elements prior to the installation.

�e sound transmission through these faults in noise barriers is examined numerically
and experimentally. For the numerical treatment the boundary element method (BEM)
that is especially suited for externally uncon�ned problems is used. �e experimental
part consists of measurements according to the standard EN 1793-6 (from the EU project
Adrienne) that are carried out at a noise barrier test facility. Finally the results obtained
from the simulations and the measurements are compared with calculations according to
the analytical model by Gomperts [14].
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1 Introduction

Cars and other convenient means of transport enable people to cover great distances in
reasonable time, but at the same time bring about new problems like increased noise
pollution. Of course themost reasonable way of dealing with noise is reducing its emission,
but where this is not su�ciently possible, trying to shield o� noise by building barriers is
a strategy commonly employed.

Most noise barriers follow a simple design principle: Acoustic elements are stacked on
each other and held in position by posts.�is makes them rather easy to build: At the
construction site it is su�cient to make a deep foundation for the posts every couple of
metres and then insert the acoustic elements in between from above. Unfortunately, this
simple construction can lead to small gaps or holes to appear and let noise leak through
the barrier.

Figure 1.1: Train track with noise barriers
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Generally speaking, the e�ectivity of noise barriers is limited by the following properties
[16]:

• �e sound insulation of the elements – how much noise is transmitted through the
barrier,

• the height of the barrier and the geometry at the top – howmuch sound is di�racted
over the barrier,

• the re�ection properties – re�ections increase the noise levels at the opposite side
of the road,

• the positions of the sources – lower sources (e.g. tyres) are shielded better than
higher sources (e.g. the pantograph of a train).

�e aim of this thesis is to study the in�uence of gaps on the actual sound insulation.

In the following pages photos of three kinds of gaps are presented: Figure 1.2 shows a gap
between the base element of a barrier and one of the acoustic elements. Usually a rubber
band would seal this gap, but in this case the rubber band hangs out of the barrier and the
gap remains wide open.�e next �gure shows a case where the gap is not the result of
careless execution at the construction site, but part of a bad design:�e gap in �gure 1.3
remains open, because the acoustic elements sit on top of the feet of the posts through
which the posts are screwed on to the concrete base. Figure 1.4 shows holes in a barrier
next to the foot of a post. Even though the design of this barrier is superior to the previous
one, a signi�cant gap is still le� open. (�e noise barriers shown in �gures 1.2–1.4 were
built in 2011.)
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Figure 1.2: Gap between noise barrier elements

Figure 1.3: Gap underneath a noise barrier
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Figure 1.4: Holes around the base of the post



2 Theoretical Background

2.1 Introduction

Acoustics is the science that studies sound, its origin, propagation and perception.�e
term “sound” denotes mechanical vibrations of an elastic medium that spread out as sound
waves in gases, liquids and solids. For this thesis, only sound waves in air and within the
frequency range of human hearing, which is approximately from 20Hz to 20 kHz, are of
interest.

Sound waves can be characterised as small variations of the state variables pressure p,
density ρ of the media and displacement velocity v⃗ of the particles. �e total values
ptot(r⃗, t), ρtot(r⃗, t) and v⃗tot(r⃗, t) are the superimpositions of the static quantities without
any sound �eld p0, ρ0 and v⃗0 and the alternations due to the sound �eld p(r⃗, t), ρ(r⃗, t)
and v⃗(r⃗, t):

ptot(r⃗, t) = p0 + p(r⃗, t) (2.1)
ρtot(r⃗, t) = ρ0 + ρ(r⃗, t) (2.2)
v⃗tot(r⃗, t) = v⃗0 + v⃗(r⃗, t) = v⃗(r⃗, t) (2.3)

v⃗0 does not depend on the time t or the position r⃗, therefore it is always possible to choose
the coordinate system so that v⃗0 = 0.

2.2 Basic Equations

2.2.1 Adiabatic Equation of State

�e changes of the state variables in sound waves usually occur fast enough that they
do not involve heat transfer and are thus adiabatic.�e equation describing a reversible
adiabatic process in a gas is

p ⋅ V κ = constant (2.4)
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with the adiabatic index κ = Cp
CV
being the ratio of the heat capacity at constant pressure Cp

to the heat capacity at constant volume CV . Substituting V = m
ρ , we can apply equation 2.4

both to the static quantities p0, ρ0 without sound �eld and the total quantities ptot, ρtot
that include the sound �eld, thus arriving at

ptot
mκ

ρtotκ
= p0

mκ

ρ0κ . (2.5)

Moving all pressure variables to one side and the density variables to the other and applying
Taylor series up to the linear term, we get a relation between the relative sound pressure
p
p0 and the relative sound density

ρ
ρ0 :

ptot
p0

= (ρtot

ρ0
)κ = (2.6)

= p0 + p
p0

= 1 + p
p0

= (1 + ρ
ρ0

)κ = 1 + κ ⋅ ρ
ρ0
+O⎛⎝( ρ

ρ0
)2⎞⎠ (2.7)

Neglecting the higher-order terms yields

p
p0

= κ ρ
ρ0
. (2.8)

Solving equation 2.8 for the sound pressure p leads to the relation

p = ρ ⋅ κ p0
ρ0
, (2.9)

where the constant c = √
κ p0

ρ0 can be de�ned. Later on the wave equation will show that c
is the speed of sound in air.�e acoustic version of the adiabatic equation of state can
now be written as

p = ρc2. (2.10)

2.2.2 EULER’s Law of Compression

�e theoretical foundation of acoustics in gases is given by Euler’s equations of �uid
dynamics. �e �rst equation results from the following consideration:�e amount of
mass that leaks from the volumeV through its surface ∂V in the time dt equals the change
of mass in the volume V :

dt∮
∂V

ρtot v⃗tot dA⃗ = −dt ∂
∂t ∫

V

ρtot dV (2.11)
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Applying Gauss’s divergence theorem ∮∂V F⃗ dA⃗ = ∫V ∇ ⋅ F⃗ dV to the le� hand side and
comparing the integrands yields Euler’s law of compression:

∇ ⋅ (ρtot v⃗tot) + ∂ρtot

∂t
= 0 (2.12)

Inserting equations 2.2 and 2.3 and, to improve clarity, writing out the time and spatial
dependences produces

∇ ⋅ [ρ0 v⃗(r⃗, t)] +∇ ⋅ [ρ(r⃗, t) v⃗(r⃗, t)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≈0

+ ∂ρ0
∂t°
=0

+∂ρ(r⃗, t)
∂t

= 0. (2.13)

�e second term in equation 2.13 contains the quadratic product of the sound density and
the displacement velocity and therefore is small enough to neglect and the third term is
zero because ρ0 is constant in time. We thus arrive at the acoustic law of compression:

ρ0 ∇ ⋅ v⃗ + ∂ρ
∂t

= 0 (2.14)

Using the relation p = ρc2 from equation 2.10, we can also write

ρ0 ∇ ⋅ v⃗ + 1
c2
∂p
∂t

= 0. (2.15)

2.2.3 EULER’s Law of Inertia

�e second equation of �uid dynamics is along the lines of Newton’s second law F⃗ = m dv⃗
dt

that says that the force on an object is equal to its mass times its acceleration, but adds
another term that accounts for the pressure gradients. For the illustration of this second
term take a cube with side lengths dx, dy, dz as depicted in �gure 2.1 and consider the
forces in direction x only.�e force on the le� side of the cube is ptot(x)dy dz and the
force on the right side is −ptot(x + dx)dy dz:
ptot(x)dy dz − ptot(x + dx)dy dz = ptot(x) − ptot(x + dx)

dx
dx dy dz = −∂ptot

∂x
dx dy dz
(2.16)

Still accounting for forces along the x-axis only, the full equation becomes:

ρtot
dvtot,x
dt

+ ∂ptot
∂x

= Fx (2.17)

Adding the corresponding terms for directions y and z yields Euler’s law of inertia:

ρtot
dv⃗tot
dt

+∇ ptot = F⃗ (2.18)
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p(x) -p(x+dx)

z

y

x

Figure 2.1: Illustration for the derivation of Euler’s law of inertia

�e total di�erential dv⃗totdt in equation 2.18 can be calculated using the chain rule. Again
taking only the values in x direction at �rst leads to

dvtot,x
dt

= ∂vtot,x
∂t

+ ∂vtot,x
∂x

dx
dt

+ ∂vtot,x
∂y

dy
dt

+ ∂vtot,x
∂z

dz
dt

= ∂vtot,x
∂t

+ (dr⃗
dt

⋅ ∇) vtot,x = ∂vtot,x
∂t

+ (v⃗tot ⋅ ∇) vtot,x .
(2.19)

In three dimensions the relation becomes
dv⃗tot
dt

= ∂v⃗tot
∂t

+ (v⃗tot ⋅ ∇) v⃗tot . (2.20)

Hence the total acceleration dv⃗totdt can be viewed as the sum of the local acceleration
∂v⃗tot
∂t

and the convective acceleration (v⃗tot ⋅ ∇) v⃗tot. Assuming no convection and freedom of
forces F⃗ = 0 yields

ρtot
∂v⃗tot
∂t

+∇ ptot = 0. (2.21)

Again inserting equations 2.2 and 2.3 and writing out the time and spatial dependences
produces

ρ0
∂v⃗(r⃗, t)
∂t

+ ρ(r⃗, t)∂v⃗(r⃗, t)
∂t´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≈0

+ ∇ p0±
=0

+∇ p(r⃗, t) = 0. (2.22)

�e second term is negligible because it is quadratic and the third term is zero because p0
is constant in space. We thus arrive at the acoustic law of inertia:

ρ0
∂v⃗
∂t

+∇ p = 0 (2.23)
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2.2.4 Wave Equation

Taking the acoustic law of compression from equation 2.15 and calculating the time
derivative yields

1
c2
∂2p
∂t2

+ ρ0 ∇ ⋅ ∂v⃗
∂t

= 0. (2.24)

Solving the acoustic law of inertia from equation 2.23 for ∂v⃗
∂t results in

∂v⃗
∂t

= − 1
ρ0
∇ p. (2.25)

Inserting equation 2.25 into equation 2.24 results in the wave equation

1
c2
∂2p
∂t2

−∇2p = 0. (2.26)

2.3 Sound Pressure Level and Frequency Bands

�e range of sound pressure values from the human threshold of audibility (∼ 2 × 10−5 Pa
at 1 kHz) to the threshold of pain (∼ 20 Pa) is about six magnitudes. Additionally, the
human perception of loudness is logarithmic; a change of the sound pressure to the
double will be perceived as the same change of loudness independent of the starting sound
pressure. It is thus impractical to use the sound pressure values directly to indicate how
loud a certain sound wave is perceived. Instead, the logarithmic sound pressure level Lp
has been de�ned as

Lp = 10 log10 ( prms2p02
) = 20 log10 ( prmsp0

) with p0 = 2 × 10−5 Pa. (2.27)

�e quantity prms denotes the root mean square of the acoustic pressure p with T the
length of one period:

prms2 = 1T
T

∫
0

p2(t) dt. (2.28)

�e unit for the sound pressure level is 1 decibel = 1 dB; the range mentioned above thus
becomes an easier to grasp 0–120 dB.

�e perceived loudness of a sound source depends on a lot of factors in addition to the
sound pressure, the greatest of which is the frequency composition of the signal.�e most
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commonly usedmeans to get a single-number value for the loudness of a signal is by apply-
ing an A-weighting �lter.�e A-weighting curve is de�ned in the international standard
IEC 61672 [30] and is roughly equal to the inverted human threshold of audibility.

�e frequency perception of the human hearing is logarithmic, for example a doubling
of the frequency will be perceived as an equal change in pitch disregarding the starting
frequency. For analysing a signal it can be useful to split the frequency range in question
into several smaller bands.�e convention is to use either octave bands (lower frequency
limit to upper frequency limit fl ∶ fu = 1 ∶ 2) or third octave bands ( fl ∶ fu = 1 ∶ 3

√
2) and

start with a band centre frequency fc = √
fl fu of 1000Hz.

2.4 Signal Processing

2.4.1 LTI Systems

An acoustic system is formed by a sound source, a sound receiver and the sound path from
the source to the receiver.�e sound source, for example a passing car or for measurement
purposes a loudspeaker, can be described as the excitation or input signal x(t).�e output
signal y(t) of the system is the sound heard by neighbours or recorded by a measurement
microphone.�e sound path is then described by the operator L:

y(t) = L{x(t)} (2.29)

An acoustic system can be linear or non-linear. Linearity means that the principle of
superposition applies:�e net response caused by two stimuli is equal to the sum of the
responses which would have been caused by each of the stimuli individually:

L{a1x1(t) + a2x2(t)} = a1 L{x1(t)} + a2 L{x2(t)} (2.30)

with x1(t) and x2(t) being two independent signals and a1 and a2 two arbitrary con-
stants.

A system is referred to as time invariant, if the only change of the output by time shi�ing
the input is an equal shi� of time:

y(t) = L{x(t)} ⇔ y(t − τ) = L{x(t − τ)} (2.31)

Airborne acoustic systems with a constant temperature, no wind and sound pressure
levels low enough that they are not harmful to human hearing can be assumed to be both
linear and time-invariant.
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2.4.2 Impulse Responses

Any signal x(t) can be written as the convolution of the signal itself with the Dirac
delta:

x(t) = ∞

∫
−∞

x(τ) δ(t − τ) dτ. (2.32)

Applying the operator L of an LTI system yields

y(t) = L{x(t)}
= L⎧⎪⎪⎨⎪⎪⎩

∞

∫
−∞

x(τ) δ(t − τ) dt⎫⎪⎪⎬⎪⎪⎭
= ∞

∫
−∞

x(τ) L{δ(t − τ)}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h(t−τ)

dt.

(2.33)

Hence an impulse response is a su�cient description of an LTI system:

h(t) = L{δ(t)} (2.34)

To calculate the impulse response, the function xa(t) that satis�es the equation
h(t) = ∞

∫
−∞

xa(t − τ)y(τ) dτ, (2.35)

that is the convolution of xa(t) with the output y(t), produces the impulse response.
Considerations in the frequency space (see for example [8]) show that if the spectrum
of the system input x(t) is similar to that of white noise, meaning its spectral density is
constant, the function xa(t) is equal to the time reverse of the system input:

xa(t) = x(−t) (2.36)

Hence the impulse response is the convolution of the output signal with the time-reversed
input signal:

h(t) = ∞

∫
−∞

x(τ − t)y(τ) dτ (2.37)
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2.4.3 FOURIER Transform

�e Fourier transform produces the frequency spectrum of a signal x(t):
X( f ) = ∞

∫
−∞

x(t) e−i2π f t dt. (2.38)

In digital signal processing any signal is represented by a �nite number of time-discrete
values; it is therefore necessary to replace the integral with a sum. To calculate the
frequency spectrum of a discrete signal x [n], the discrete Fourier transform (DFT) can
be used:

X [k] = N−1∑
n=0

x [n] e−i 2π nk
N , (2.39)

with the frequency index k and the sample index n both going from 0 to N−1.�e inverse
discrete Fourier transform (IDFT) is

x [n] = 1
N

N−1∑
n=0

X [k] ei 2π nk
N . (2.40)

For real sample values x [n] the second half of the complex spectrum X [k] is equal to
the reversed and conjugate-complex �rst half:

x [n] ∈ R ∀ n ⇔ X [k] = X∗ [N − k] (2.41)

�e other direction is true as well: A real spectrum X [k] corresponds to complex sample
values x [n] for which holds

X [k] ∈ R ∀ k ⇔ x [n] = x∗ [N − n] . (2.42)

Althoughmostmeasurements produce only sound pressure amplitude information, results
obtained from computer simulations are complex numbers and contain both amplitude
and phase of the sound pressure. �ese complex sound pressure values together with
the relation in equation 2.41 will be used later on to calculate a real signal from the
simulations.

2.4.4 Maximum Length Sequences and HADAMARD Transform

Amaximum length sequence (MLS) is a pseudorandom binary sequence, that means it
has a frequency spectrum equal to white noise and it only contains the two amplitude
states 0 and 1. It can be generated using a linear feedback shi� register (LFSR). If the LFSR
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1
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Figure 2.2: Linear feedback shi� register of length 2 that generates a maximum length
sequence of length 22 − 1 = 3

is of length n, the generated MLS will be of length 2n − 1 and will be repeated a�erwards.
Figure 2.2 gives an example of an LFSR of length 2 generating an MLS of length 3.

An MLS is especially suited as a test input signal, because there is a fast algorithm for
the convolution of an MLS with a signal. Because in digital signal processing one uses
discrete functions, the calculation of the impulse response (equation 2.37) becomes

h [t] = N−1∑
τ=0

x [τ − t] y [τ] . (2.43)

�e calculation can be seen as a matrix-vector-multiplication of the MLS matrix x and the
systemoutput y.�eMLSmatrix contains theMLS in the �rst line and cyclic permutations
in the subsequent lines. Using only simple operations, theMLSmatrix can be converted to
the Hadamardmatrix. A Hadamardmatrix is a quadratic matrix of the size 2mx2m with
m an integer.�e Hadamardmatrix of order m can be constructed using the following
rule:

H0 = 1, Hm = ( Hm−1 Hm−1
Hm−1 −Hm−1

) (2.44)

For the multiplication of the Hadamardmatrix with another vector, there is a fast algo-
rithm called the fast Hadamard transform (FHT) similar to the fast Fourier transform
that produces the same result as the matrix-vector-multiplication in less time.�e FHT is
a divide and conquer algorithm that takes advantage of the symmetries and antisymme-
tries in the Hadamardmatrix and recursively breaks down the Hadamard transform
into smaller, similar operations. To convert an MLS matrix to the matching Hadamard
matrix, one needs to add a column and a line containing only zeros, then replace all ones
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with minus ones and all zeros with ones (1→ −1, 0→ 1) and apply the suitable row and
column interchanges. It is computationally more e�cient to interchange the appropriate
rows of the measured system output y, apply the FHT, interchange the suitable columns
and multiply with a scaling factor than to directly calculate the matrix-vector-product
in equation 2.43. When using an MLS as test signal, the MLS usually is played back
multiple times and the impulse response is then calculated for each time. Averaging over
multiple impulse responses improves the signal-to-noise-ratio, because the noise is a
stochastic signal not correlated to the impulse response; doubling the number of impulse
responses increases the signal-to-noise-ration by 3 dB [29]. If the aim of a measurement
is to get a Fourier spectrum, it is not possible to directly calculate the FFT from the
output of the system, because the length of the MLS is 2n −1, but the Cooley–Tukey FFT
algorithm, which is the most commonly used FFT algorithm, needs an input of length 2n.
Zero-padding the measured signal leads to an error, but calculating the impulse response
�rst and append a zero then is a valid approach to get a length suitable for the FFT.

2.5 Boundary Element Method (BEM)

While analytical solutions exist for some scattering problems, most complicated geome-
tries demand numerical techniques to �nd approximate solutions.�e most common
method for solving partial di�erential equations is the �nite element method (FEM) that
works by discretising the whole volume. For externally uncon�ned problems though it is
impossible to discretise the whole, in�nite volume; therefore FEM needs an additional
strategy like perfectly matched layers (PML) that allows the truncation of the computa-
tional region without adding re�ections from the borders. Another method, the boundary
element method (BEM), is better suited for externally uncon�ned problems, because
it only requires discretisation of the surface of the scattering object.�e mathematical
background to the BEM will be described in this chapter.

2.5.1 HELMHOLTZ Equation

In chapter 2.2.4 wave equation 2.26 was derived:

∇2p − 1
c2
∂2p
∂t2

= 0. (2.45)

Assuming time-harmonic waves p(r⃗, t) = Re{p(r⃗) eiωt}, the wave equation reduces to
the Helmholtz equation ∇2p + k2p = 0 (2.46)
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with the spatial dependencies and the time factor eiωt omitted and using the wave number
k = ω

c and the circular frequency ω = 2π f .

A point source or acoustic monopole is a mathematical abstraction that is extremely useful
for describing acoustic problems. A point source is an appropriate approximation of a
source of a size much smaller than a wavelength. It can be thought of as the limiting case
of a pulsating sphere where the radius tends to zero. Most loudspeakers used for acoustic
measurements are designed to have a spherical directional characteristic.

�e Green’s function is the fundamental solution to the Helmholtz equation. It is the
solution to the inhomogeneous equation with a point source represented by the Dirac
delta distribution on the right hand side:

(∇2 + k2)G(r⃗0, r⃗) = −δ(r⃗0 − r⃗). (2.47)

�e free-space Green’s function in three dimensions is

G(r⃗0, r⃗) = e−ik∣r⃗0−r⃗∣
4π∣r⃗0 − r⃗∣ . (2.48)

2.5.2 SOMMERFELD’s Radiation Condition

In order to solve the Helmholtz equation, it is necessary to specify a boundary condition
at in�nity.�e reason for doing so is to make sure that all sources are energy sources and
not sinks, that energy from these sources scatters to in�nity and that no energy is radiated
from in�nity. A solution to the Helmholtz equation that satis�es these conditions is
called radiating. For time-harmonic waves in three dimensions Sommerfeld’s radiation
condition can be written as

lim
r→∞

[r(∂p
∂r

+ ikp)] = 0. (2.49)

2.5.3 HELMHOLTZ Integral Equation

�e following development starts with the identity

G (∇2 + k2) p − p (∇2 + k2)G = ∇ ⋅ (G∇p − p∇G), (2.50)

which may be shown to be true by simply expanding the terms. Equation 2.50 is valid
in the volume V that has two surfaces: �e inner surface S is the one relevant for our
calculations and the outer surface S∞ faces in�nity (see �gure 2.3).
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Figure 2.3: Sketch of the volume V , the surfaces S and S∞ and the points P and Q

Integrating equation 2.50 over the volume V and applying Gauss’s divergence theorem to
the right hand side yields

∫
V

G (∇2 + k2) p´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

dV −∫
V

p (∇2 + k2)G dV
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=C(r⃗0) p(r⃗0)

= −∫
S

(G∇p − p∇G) n⃗ dS + IS∞°
=0

, (2.51)

where n⃗ is the unit vector perpendicular to S pointing into V . �e �rst integral in
equation 2.51 is zero because Helmholtz equation 2.46 is valid in all of V . Concerning
the second integral, writing out all spacial dependencies and applying the de�nition of
Green’s function (equation 2.47) results in

− ∫
V

p(r⃗) (∇2 + k2)G(r⃗0, r⃗) dV = C(r⃗0) p(r⃗0) (2.52)

with the factor

C(r⃗0) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for r⃗0 inside S
1 for r⃗0 outside S
1
2 for r⃗0 on S if S is planar at r⃗0.

(2.53)

�e remaining terms of equation 2.51, i.e. the terms on the right hand side of the equation,
are two integrals, one over the inner surface S and one over the outer surface S∞. Assuming
S∞ to be a sphere of radius rS∞ , the integral over S∞ is the only term that depends on
rS∞ and therefore the integral IS∞ needs to be constant. It can be shown that because of
Sommerfeld’s radiation condition IS∞ = 0 (see e.g. [8]).
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�e Helmholtz integral equation can thus be rewritten as

C(r⃗0) p(r⃗0) = ∫
S

(−G(r⃗0, r⃗)∂p(r⃗)∂n
+ p(r⃗)∂G(r⃗0, r⃗)

∂n
) dS (2.54)

�e case examined in this thesis is a scattering problem: A point source emits sound waves
that get scattered by a body with a rigid surface. One possible way to mathematically
deal with the point source would be to change the Green’s function, but the strategy
employed here is a di�erent one:�e pressure �eld is split up into two separate �elds, one
representing the incoming �eld without any scattering bodies and one representing the
scattered �eld:

p = pin + psc . (2.55)
�e scattered �eld psc does not take the source into account and therefore satis�es the
homogeneous Helmholtz equation 2.46. �e Helmholtz integral equation for the
scattered �eld psc therefore is

C(r⃗0) psc(r⃗0) = ∫
S

(−G(r⃗0, r⃗)∂psc(r⃗)∂n
+ psc(r⃗)∂G(r⃗0, r⃗)

∂n
) dS (2.56)

For the incoming �eld pin an inhomogeneous Helmholtz equation that considers the
point source has to be solved:

∇2pin + k2pin = q with q = −q̂ δ(r⃗ − r⃗S). (2.57)

�e vector r⃗S points to the position of the source.�e derivation is largely the same as for
the homogeneous Helmholtz equation.�e only di�erence is that, assuming that the
source is inside the volume V , the �rst integral in equation 2.51 does not vanish:

∫
V

G(r⃗0, r⃗) (∇2 + k2) pin(r⃗) dV = −q̂∫
V

G(r⃗0, r⃗) δ(r⃗ − r⃗S) dV = −q̂ G(r⃗0, r⃗S). (2.58)
�e Helmholtz integral equation for the incoming �eld pin therefore is

C(r⃗0) pin(r⃗0) = ∫
S

(−G(r⃗0, r⃗)∂pin(r⃗)∂n
+ pin(r⃗)∂G(r⃗0, r⃗)

∂n
) dS + q̂ G(r⃗0, r⃗S). (2.59)

�e full Helmholtz integral equation for p = pin + psc thus equals the sum of equa-
tions 2.56 and 2.59:

C(r⃗0) p(r⃗0) = ∫
S

(−G(r⃗0, r⃗)∂p(r⃗)∂n
+ p(r⃗)∂G(r⃗0, r⃗)

∂n
) dS + p f f (r⃗0) (2.60)

with p f f (r⃗0) = q̂ G(r⃗0, r⃗S).
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2.5.4 Numerical Implementation

It is convenient to assume that the surface S in equation 2.60 matches the surface of the
scattering body. Because the body has a rigid surface, the boundary conditions on S are
of the Neumann type:

∂p(r⃗)
∂n

= 0 ∀r⃗ ∈ S (2.61)

�e �rst term in the integral of equation 2.60 therefore vanishes.

For the numerical implementation, the surface S is split into N �at panels and the pressure
is considered to be constant within each panel (zero order approximation).�e pressure
can thus be taken out of the integral and the integral evaluated for each panel separately.
Calling the points that the vectors r⃗0 and r⃗ point to P and Q, the equation that needs to
be evaluated numerically can be written as

C(P) p(P) = p(Q)∫
S

∂G(P,Q)
∂n

dS + p f f (P). (2.62)

Calculating the sound pressure for a microphone point P anywhere in V requires two
steps:�e �rst step is to set up a system of equations for the pressure on the surface of the
scattering body by putting both P and Q on S.�en the factor C(P) always becomes 12 , p
becomes an N-dimensional vector containing the sound pressure values at each of the
panels, evaluating the integral ∫S ∂G(P,Q)

∂n dS for all points P and Q results in the NxN
matrixH and p f f becomes a vector containing the incident sound pressure values without
any scattering body.�e resulting system of equations can be written as

(H − 1
2
I)p = −p f f (2.63)

and needs to be evaluated for the vector p. Once the sound pressure is known on all panels,
the second step is to evaluate equation 2.62 for every microphone point. Because the
microphone points are not on but outside of S, C(P) now is 1. If there areM microphone
points, the vectors pM and p f f

M are of dimensionM.�eNxMmatrixHM is again obtained
by evaluating the integral with P one of theMmicrophone points andQ one of theN nodal
points at the panels.�e vector containing the sound pressure values at the microphone
points can thus be calculated by solving the system of equations

pM = pHM + p f f
M . (2.64)
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2.5.5 The Non-Uniqueness Problem

�e solution given above breaks down at certain characteristic frequencies.�is so-called
non-uniqueness problem is a purely mathematical problem inherent to the Helmholtz
integral equation and is not the result of a particular numerical implementation. It was
shown by Schenck [12] that the characteristic frequencies for a given exterior problem
with Neumann boundary conditions correspond to the eigenfrequencies of the related
interior problem with the same body shape and Dirichlet boundary conditions. In the
same paper, Schenck proposes a technique to overcome this problem, the Combined
Helmholtz Integral Equation Formulation CHIEF.�e basis of CHIEF is to introduce a
number of additional points inside S where the sound pressure is known to be zero.�is
yields an over-determined system that can be solved by approximation.

2.6 Analytical formula by GOMPERTS

In his paper published in 1964, Gomperts [14] deduced a formula for the sound transmis-
sion factor of narrow slit-shaped apertures in walls.�ree years later a follow-up paper by
Gomperts and Kihlman [15] included the results of measurements that showed a rather
good agreement with Gomperts’s formula.

�e transmission factor qsl is de�ned as the ratio of the power radiated through the
aperture on the receiving side to the power originally fed to the aperture on the source
side. For a plane wave falling perpendicularly upon the wall, the transmission factor of a
slit-shaped aperture in the middle of a wall was calculated by Gomperts to be

qsl = 2βk sin2(kl)
( cos2[k(l+α)]

cos2(kα) + k2β2
4 sin

2(kl))2 − 2 ( cos2[k(l+α)]
cos2(kα) + k2β2

4 sin
2(kl)) + 1 , (2.65)

with β the width of the gap, k = 2π f the wave number, l the thickness of the wall and α
the end correction (Euler’s constant γ′ = 0.57722):

α = β
π

¿ÁÁÀ(ln kβ
8
+ γ′)2 + (π

2
)2. (2.66)

�e end correction describes the e�ects of the gap on the sound �eld in front of the gap.
Smits and Kosten [13] explain the idea behind the end correction with the following
example: Consider the case of a regularly perforated panel at some distance from a rigid
wall. A sound wave falling upon the system can start a vibration and then the system
behaves like a mass-spring oscillator with the compressible air behind the panel acting
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as the spring and the air moved through the holes as the mass.�e kinetic energy of the
system is therefore found in the mass of the air directly in the holes, which is given by
the cross section of the holes times the thickness of the panel times the density of the
air. If one considered the limiting case of an in�nitely thin panel, the mass would also
tend to zero, which is contradictory to the fact that even for an in�nitely thin panel the
kinetic energy has to be greater than in the case without any panel at all.�erefore one
has to assume that the moved mass of the mass-spring system is greater than the mass
directly inside the holes.�e length of this imaginary extension of the holes is called the
end correction and does not depend on the thickness of the panel. Gomperts’s term for
the end correction given in equation 2.66 only depends on the width of the gap β and the
frequency f = k/2π. Naturally, the end correction does not only apply to in�nitely thin
panels but needs to be taken into account for panels of all thicknesses.



3 Measurement

3.1 European Standard EN 1793-6

�e series of standards “Road tra�c noise reducing devices”, published by the European
Committee for Standardization and its national members under the series EN 1793, de-
scribes test methods for the acoustic properties of noise barriers. Two parts of this series
of standards address sound insulation: EN 1793-2 [25] describes a method for assessing
the sound insulation of a barrier in a test bed. �e barrier gets mounted between two
reverberation rooms, one of which contains a loudspeaker.�e sound insulation is de-
termined by comparing the sound pressure levels of the di�use �elds on both sides of
the barrier. EN 1793-6 [27] describes a di�erent method that can also be applied in situ:
Impulse responses through the barrier are measured and time windowed and the energy
compared to equivalent free-�eld impulse responses.

Figure 3.1:�e noise barrier where the measurements have been carried out. �e gap
shown is the largest one that has been examined (2 cm)

27
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Figure 3.2: Sketch of the measurement setup: Loudspeaker on the le� hand side. Noise
barrier with a gap in the middle. Dots on the right hand side indicate the
microphone positions where the sound pressure was measured for the 2 cm
gap. (�e standard EN 1793-6 speci�es only three di�erent heights for the
microphone positions.) Indicated lengths in cm
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On the side of the barrier that faces the noise source a loudspeaker is placed at half the
barrier’s height at a distance of 1m. To make sure that the components di�racted over
the barrier are easy to separate from those transmitted through the barrier, that means to
make sure that the lengths of their sound paths are di�erent enough, the barrier needs
to be of su�cient height. �e standard speci�es a minimum barrier height of 4m for
quali�cation tests. For smaller heights the lower frequency limit below which the results
are not reliable increases. On the other side of the barrier nine microphones are placed
in a three-by-three grid at a distance of 25 cm from the barrier.�e central microphone
needs to be at the same height as the loudspeaker and the distance between adjacent
microphones should be 40 cm so that the nine positions form a square with a side length
of 80 cm. If only one microphone is available, it is also possible to measure the di�erent
positions consecutively.�e standard rules that an MLS sequence is played back and the
impulse responses are calculated from the signal measured by the microphones.

To cancel out any components di�racted over the barrier, a windowing operation on
the impulse response is performed in the time domain.�e so-called Adrienne window
consists of three parts:

• a leading edge of a length of 0.5ms shaped like the le� half of a Blackman-Harris
window,

• a �at part of a length of 5.18ms

• and a trailing edge of 3/7 the length of the main part (that is 2.22ms) consisting of
the right half of a Blackman-Harris window.

�e total length of the Adrienne window therefore is 7.9ms.�e Adrienne window should
be placed so that the main part starts 0.2ms prior to the arrival of the direct component
peak.�e components di�racted around the barrier should not arrive prior to the end of
the third part of the Adrienne window. If that is not the case, the second and third part of
the Adrienne window have to be shortened accordingly.�e arrival times of the direct
and the di�racted components should be determined by simple geometric considerations.
Figure 3.3B shows the Adrienne window.

To measure the corresponding free-�eld impulse responses, it is necessary to set up the
loudspeaker and the microphones again using the same distances but without the barrier
in between. For the free-�eld impulse responses the same Adrienne window length as for
the measurement with the barrier in between has to be applied.

�e sound insulation index SI j in decibels for each frequency band j can be calculated by
comparing the energy in the transmitted impulse response to the energy in the free-�eld
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Figure 3.3: Measured impulse responses of the microphone at the centre position. A: Bar-
rier with a 0.4 cm gap. B: Adrienne window. C: Windowed impulse response

impulse response:

SI j = −10 lg⎧⎪⎪⎨⎪⎪⎩
1
n

n∑
k=1

∫∆ f j ∣F[htk(t)wtk(t)]∣2 d f
∫∆ f j ∣F[hik(t)wik(t)]∣2 d f

⎫⎪⎪⎬⎪⎪⎭ (3.1)

hik(t) and htk(t) are the incident (free-�eld) and the transmitted impulse responses and
wik(t) and wtk(t) the corresponding Adrienne windows. F is the symbol of the Fourier
transform, j the index for the third-octave frequency band (between 100Hz and 5000Hz),
∆ f j the width of the jth band and n = 9 the number of microphone points.
Depending on the length of the used Adrienne window, the lower frequency limit has
to be determined, so that at least one full wavelength can be accommodated within the
Adrienne window. Figure 3.4 shows the lower frequency limit as a function of the height
of the noise barrier.

�e single-number rating DLSI in decibels is calculated by weighting the sound insulation
indices for the di�erent frequency bands with the standardised tra�c noise spectrum
L j:

DLSI = −10 lg⎛⎝∑
18
j=m 100.1L j10−0.1SI j

∑18j=m 100.1L j

⎞⎠ (3.2)

SI j is the sound insulation index in the third-octave band j, m the lowest reliable third-
octave band (typically the 200Hz band for a barrier of dimension 4m × 4m) and L j
the relative A-weighted sound pressure level of the normalised tra�c noise spectrum as
de�ned in EN 1793-3 [26] (see �gure 3.5 and table 3.1).

�e standard speci�es that all measurements have to be done twice, once in the middle of
the acoustic elements and once at a post.�e global single-number rating of the noise
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Figure 3.4: Lower frequency limit for sound insulation measurements as a function of the
height of the noise barrier

barrier is then calculated by logarithmically averaging the two single-number ratings at
the acoustic elements and at the post.

3.2 Measurement Setup

For this thesis a number of measurements have been carried out at a noise barrier test
facility. To study the e�ect of gaps of di�erent sizes, the sound insulation indices have
been measured multiple times with gaps of increasing width opened by wedges between
two elements. Speci�cally, measurements have been carried out for gap widths of 0.1 cm,
0.4 cm, 0.8 cm, 1.5 cm and 2.0 cm. �e barrier with the help of which the gaps were
studied (�gure 3.1) consists of aluminium boxes partly �lled with rock wool.�e front
side of the boxes that would face the noise source in a proper installation are perforated
to allow the sound waves to enter the absorbing rock wool. Each acoustic element has
a length of 4m, a height of 50 cm and a thickness of 12 cm.�e bottom and top of the
elements have a groove and a tongue that �t together, trying to reduce the amount of
sound leakage. Hence, the produced gaps don’t have a �at shape. For the smaller gap sizes
examined it was therefore not possible to look through the gap. Figure 3.6 gives a sketch
of the cross section of the produced gaps.
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Figure 3.5: Standardised tra�c noise spectrum (EN 1793-3)

Frequency L j

100Hz −20 dB
125Hz −20 dB
160Hz −18 dB
200Hz −16 dB
250Hz −15 dB
315Hz −14 dB
400Hz −13 dB
500Hz −12 dB
630Hz −11 dB

Frequency L j

800Hz −9 dB
1000Hz −8 dB
1250Hz −9 dB
1600Hz −10 dB
2000Hz −11 dB
2500Hz −13 dB
3150Hz −15 dB
4000Hz −16 dB
5000Hz −18 dB

Table 3.1: Standardised tra�c noise spectrum (EN 1793-3)
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Figure 3.6: Cross section of the gap in the noise barrier where the measurements were
carried out. Indicated lengths in cm

Figure 3.2 contains a sketch of the measurement setup: Both the loudspeaker and the gap
were positioned at a height of 2.5m above ground level. For the two conditions without
any gap and with a 2 cm gap, a large number of microphone points were evaluated.�e
results of these measurements showed that for this unstructured barrier the variation of
the sound insulation indices between di�erent microphone points at the same height was
negligible. In order to be able to examine a larger number of gap widths, the remaining
measurements were made for microphone points only in one vertical line. Chapter 5.5
contains a number of �gures presenting the variation of the sound insulation for di�erent
positions behind the barrier; in particular �gure 5.13 shows the variation for 17 di�erent
vertical positions for the 2 cm gap. In order to use the same positions for all gap widths,
for the third-octave band sound insulation indices presented later on in this thesis only
the following �ve positions have been taken into account: 40 cm above the gap, 20 cm
above, directly at the same height as the gap and 20 cm and 40 cm below the gap.

�e measurements were carried out using anMLS sequence of 65 535 samples played back
at 48 kHz. �e MLS sequence was repeated 32 times and the average over the impulse
responses calculated.�e barrier was 4.5m high, therefore the Adrienne window did not
need to be shortened. Figure 3.3 shows the measured and windowed impulse response
of the central microphone position directly behind the gap with a gap width of 0.4 cm.
(�e components di�racted over the barrier only arrive so late that they are outside of
the shown time frame.) A Brüel&Kjær OmniSource loudspeaker type 4295 was used
for the playback of the MLS.�e microphone employed for the measurements was a
MicW i436 omnidirectional condenser microphone that complies to IEC 61672-1 class 2
[30]. For digitising the signal, an RME Fireface UFX was used.�is interface has high
quality analogue digital converters and the ampli�cation values can be set digitally and
therefore reproducibly. Because determining the sound insulation indices only involves
the ratio of sound energy between two measurements conducted directly a�er each other,
a calibration of the whole measurement chain was not necessary.
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Figure 3.7:�e computer, audio interface and ampli�er that were used for the
measurements

Figure 3.8:�e loudspeaker and microphone that were used for the measurements



4 Simulation

4.1 Calculating Impulse Responses with BEM

In order to get results that are comparable to the usual measurements of the sound
insulation of noise barriers like the one described in the previous chapter, the simulations
were set up in a way that allowed calculating impulse responses.

�e boundary element method produces sound pressure values for a given frequency.
In contrast to the data obtained by measurement microphones, the simulated sound
pressure values are complex, that means in addition to the amplitude they contain phase
information. Equation 2.41 says that a conjugate-complex symmetric frequency spectrum
corresponds to real sample values in the time domain. To apply this relation, two properties
of the FFT have to be taken into account: Firstly, the FFT needs a sample count of 2N .
�is requirement can easily be satis�ed by zero-padding the spectrum at the end. Adding
zeros above the maximum simulated frequency is like specifying that the sound pressure
measured at the frequencies above the highest frequency of interest is zero and does not add
an error. Secondly, the FFT requires that the frequency values are equally spaced.�is goes
against the convention to use a logarithmic frequency scale due to the logarithmic human
perception of pitch. In other words, the FFT requires that for higher frequency third-
octave bands considerably more values need to be calculated than for lower frequency
third-octave bands.

�is is especially unfortunate, as calculating a result with a given accuracy for a higher
frequency requires substantially more computing power than for a lower frequency.�e
computationally most demanding part in the boundary element method lies in solving
the linear system of equations given in equation 2.63.�e time necessary to solve a linear
system of equations of order N is proportional to N3. In the case of the BEM, the order
N equals the number of panels on the surface. �e accuracy of a BEM simulation is
determined by the density of the mesh, usually speci�ed as the number of panels per
wavelength. Doubling the frequency for a simulation in three dimensions means that the
number of panels in a given area quadruples if the result should be of comparable accuracy.
�at means that the required computing time for one single frequency is proportional to
the frequency to the power of six.�e total calculation time for a range of frequencies as
a function of the maximum frequency is the integral over the time it takes to calculate
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the sound pressure for a single frequency and therefore proportional to the frequency to
the power of seven. In other words, doubling the maximum frequency means that the
calculation of the full frequency range will take about 128 times as long.

Say, the complex sound pressure values p( f ) have been calculated for the frequency range
up to 5000Hz with a frequency spacing of 2Hz.�e real impulse response can now be
calculated by applying the discrete Fourier transform to the following array:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
p[2Hz]
p[4Hz]
. . .

p[4998Hz]
p[5000Hz]

0
. . .
0

p∗[5000Hz]
. . .

p∗[2Hz]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.1)

�ere should be 3191 zeros between p[5000Hz] and p∗[5000Hz] so that the total length
of the array becomes suitable for the FFT: 2501 + 3191 + 2500 = 8192 = 213.
Results from computer simulations are exactly reproducible and don’t contain errors due
to small di�erences in the positioning of the microphones for instance. �erefore it is
possible to create two simulations for very similar conditions and calculate the di�erences
between the two impulse responses. �is fact was put to use for this thesis: For every
simulated noise barrier with a gap or a hole, a noise barrier without any gap but otherwise
identical in its size was simulated and the di�erence between the two impulse responses
for every microphone position was calculated in order to try to remove the components
di�racted over the top of the barrier.

Two independent pieces of so�ware were used for the BEM simulations, one operating in
three dimensions and one in two.

4.2 Acousto (3D BEM so�ware)

Acousto [18], short for Acoustic Simulation Tool, is an open source boundary element
solver written by Umberto Iemma and Vincenzo Marchese of the Roma Tre University. It
is written in the programming language C and uses the OpenMPI [20] library to distribute
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the computation over multiple processors or multiple computers. For this thesis, Acousto
version 1.5 was used.
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Figure 4.1: Time it took to calculate a given problem size with Acousto. Blue is the abso-
lute time from start to �nish (“wall clock time”), green is the absolute time
multiplied with the number of Acousto processes (“used processor time”)

�e option to distribute the computing load over multiple processors sounds promising,
but is only of limited use in practice.�e problem is that solving a large system of linear
equations with a dense coe�cient matrix is a task that is not easy to parallelise. Figure 4.1
gives an example of the used calculation times for a given problem size using one, two, four
or eight Acousto processes (BEMmatrix of the order N ≈ 11500, 20 frequencies around
3600Hz calculated, 25GB of RAM used). One can see that distributing the load onto
multiple processors is not very e�cient regarding the total processor time used. For this
thesis another approach was taken: Instead of running only one Acousto job distributed
over a larger number of processes at a time, multiple Acousto jobs for di�erent frequencies
were started in parallel. By doing so, all processors in the calculation server could be used
in a more e�cient way. Unfortunately, this approach has another drawback:

Acousto starts by calculating the integral coe�cients representing the in�uence of each
panel onto the collocation points on each panel and onto the microphone points. From
these coe�cients, thematrix describing the linear system of equations (H in equation 2.63)
can be calculated. Unfortunately, these coe�cients need a lot of memory; for the 5000Hz
calculation for the problem size used in this thesis the amount of storage occupied during
the calculation was over 60GB. Acousto allows to choose whether it should store this
huge amount of data in memory or write it to disk, but both options have their drawbacks:
�e calculation server that most of these calculations have been performed on has 48GB
of RAM and two processors with six cores each, making it only 4GB per processor core –
far too little to store all coe�cients in RAM only. Writing to and reading from the hard
disk is not so much a problem for one single Acousto process, because most access is
sequential anyway – just the kind of access that spinning hard drives deliver the best speed
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Figure 4.2: Sketches of the 3D simulations: Top: Loudspeaker on the le� hand side. Noise
barrier with any gap in the middle. Dots on the right hand side indicate
the microphone positions where the sound pressure was calculated. (Not all
microphones shown.) Symmetry planes are plotted blue and green. Indicated
lengths in cm. Bottom le�: Noise barrier with a gap. Bottom right: Noise
barrier with a hole
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at. Running multiple separate Acousto jobs in parallel however results in rapid jumping
back and forth of the heads of the disk at times and therefore a dramatically declining
total read rate, again increasing the time an Acousto job takes because the processor needs
to wait for its data. Overall, the following middle ground has been used for this thesis:
�e LAPACK installed on the computing server, ATLAS [21], always used two threads,
meaning that for every Acousto process two processor cores were put to use. Figure 4.1
shows that the trade-o� for two Acousto processes is not as big as for higher numbers
of parallel processes. �erefore, each Acousto job was con�gured to use two Acousto
processes and thus utilise four processor cores. With twelve processor cores available
in the computing server, three Acousto jobs were started concurrently. Each Acousto
job utilising four cores was also a good �t for two desktop computers with quad-core
processors that were available for calculations during the holidays.

Acousto allows to specify symmetry planes. Symmetries in the BEM are accounted for
by changing the Green’s function and consequently every symmetry plane cuts the
order of the system of equations in half, thereby reducing the time to solve the system to
one eighth. To deal with the non-uniqueness problem, Acousto implements the CHIEF
method. Unfortunately, a lot of CHIEF points are needed to successfully remove all
�ctitious resonances, thereby signi�cantly increasing the computation time.

For the �nal calculations, a Python [23, 24] script was developed that started with the
maximum frequency 5000Hz, took the next 10 frequencies (say, 4982, 4984, 4986, . . . ,
5000Hz for a frequency spacing of 2Hz), generated a mesh suitable for the highest
frequency in the current range, generated the necessary Acousto con�guration �les,
copied these �les to the calculation server and started Acousto there.�en these steps were
repeated twomore times for the calculation server and for each of the desktopworkstations
until each computer participating in the calculations was busy with calculations. Once an
Acousto job �nished, the Python program fetched the results and created a new job for
the computer until the whole frequency range 0Hz to 5000Hz was processed. By using
this approach, the available computing resources were used as e�ciently as possible.

4.3 OpenBEM (2D BEM so�ware)

OpenBEM [19] is a collection of Matlab [22] programs for solving the Helmholtz equa-
tion developed by Peter Juhl and Vicente Cutanda Henríquez of the University of
Southern Denmark. OpenBEM allows the treatment of problems in three dimensions
generally, with axisymmetry or in two dimensions. For this thesis, OpenBEM was used
for BEM simulations in two dimensions.
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In two dimensional BEM simulations there are no point sources; instead all sources are
line sources. To account for this change of the propagation characteristics, a di�erent
Green’s function needs to be used and the Helmholtz radiation condition changes
slightly.

OpenBEMdoes not really have a user interface. Instead, the user directly faces the program
code that sets up the relevant matrices and solves the system of equations. For this study,
the sample code given for noise barriers was put into a Matlab class with functions for
creating rectangular re�ecting surfaces, setting the position of the line source, setting
up the microphone positions, calculating the pressure values on the surface and �nally
calculating the pressure values at the microphone positions.�is class loses some of the
options of the original code like creating irregularly shaped or even bended surfaces or
changing the position of the CHIEF points, but was more convenient for automatically
adjusting the sizes of the gaps or the position of the source. Additionally, some parts
of OpenBEM were slightly changed to use multiple processors – Matlab o�ers a very
convenient way to parallelise loops by replacing the command “for” with “parfor” and
telling Matlab which variables are local to one iteration of the loop and which are global
for the whole program. Finally, a Matlab script was written that again loops over all
frequencies.

10
0

10
0

100 12 25

Figure 4.3: Sketch of the 2D simulation: Loudspeaker on the le� hand side. Noise barrier
with a gap in the middle. Dots on the right hand side indicate the microphone
positions where the sound pressure was calculated. (Not all microphones
shown.) Indicated lengths in cm
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4.4 Simulated Noise Barrier

To get the problem down to a reasonable computation time, the size of the simulated
barrier was rather small.�e standard EN 1793-6 expects thewall to have a height of at least
4m so that sound di�racted over the top arrives only a�er the end of the Adrienne window
and is therefore not evaluated. For the simulations however, the height of the noise barrier
was reduced to only 2m. Accordingly, the Adrienne windows were shortened and the
low frequency limit increased. All of these adjustments were done for each microphone
position individually so that microphones higher up that would be reached by sound
di�racted over the top earlier had a shorter Adrienne window than those microphones
further down.

Additionally, for the 3D simulations two symmetry planes were introduced: One plane cuts
through the middle of the simulated gap in the barrier and the other plane is orthogonal
to both the �rst symmetry plane and the barrier.�e disadvantage of this approach is that
the gap itself needs to be symmetric and therefore cannot include a groove and a tongue
like the barrier at which the measurements have been carried out.

�e other properties were chosen similar to the measured barrier:�e thickness of the
barrier was 12 cm, the surfaces fully re�ective, the source centred 1m in front of the
barrier and the microphones 25 cm behind the barrier. Figures 4.2 and 4.3 give sketches
of the setup.

For the 2D simulations the CHIEF technique was employed as a measure against the
non-uniqueness problem, but for the 3D simulations CHIEF was not used in order not to
increase the calculation time even further. Figure 4.4 gives an example of the output of
a simulation for the microphone position centred directly behind the gap:�e plotted
values are “single-frequency sound insulation indices”, that means for every frequency the
energy in the simulation with the barrier was compared to the energy in the free-�eld
simulation.�e data displayed in �gure 4.4 is nearly the direct output of the simulations
without the Adrienne window applied; it is therefore not comparable to the third-octave
band sound insulation indices presented later on. Figure 4.4 shows the e�ect of the non-
uniqueness problem: �e red curve represents the 2D simulation, which was carried
out with CHIEF points and is rather smooth, whereas the blue curve, which represents
the comparable 3D simulation without the CHIEF technique, is only smooth for lower
frequencies and contains lots of spikes above a frequency of about 1400Hz. �e limit
frequency of 1400Hz, above which the �ctitious resonances can be observed, corresponds
to a wavelength of about 24 cm, which is double the thickness of the barrier.

In order to decide which frequency spacing to use, the �rst 3D simulations were run with
a frequency spacing of 1Hz. Using the computing server and two desktop computers, the
�rst simulation took approximately ten days. Evaluating the results for all 5000 frequencies
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Figure 4.4: Unwindowed output of the simulation for a single microphone position.�e
spikes in the blue curve above 1400Hz are the result of the non-uniqueness
problem (CHIEF was only used for the 2D simulations)

250 500 1000 2000 4000
Frequency in Hz

0

10

20

30

40

50

SI
in

dB

6 nodes per wavelength (17.1 dB)
12 nodes per wavelength (17.0 dB)
18 nodes per wavelength (17.0 dB)

Figure 4.5: Sound insulation of noise barriers with gaps (2D simulation). Compare di�er-
ent densities of the applied BEMmesh
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and comparing with subsets with higher frequency spacing only showed changes if the
frequency spacing was signi�cantly increased.�erefore, all following 3D simulations
were performed with a doubled frequency spacing of 2Hz. Because the results obtained
from 2D simulations were smoother due to the use of the CHIEF technique, a frequency
spacing of 4Hz was used for the 2D simulations.

�e last remaining question concerns the appropriate mesh density. In order to get
an acceptable balance between reliability of the results and calculation times, the same
2D simulation has been carried out multiple times with mesh densities of 6, 12 and
18 nodes per wavelength.�e calculation times for these three simulations were about 12,
41 and 88 hours. Figure 4.5 gives the result of this comparison. It seems that the error for
the smallest mesh density of 6 nodes per wavelength is rather small for most third-octave
bands; therefore allmeshes used for this thesiswere generatedwith 6 nodes per wavelength.
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Figure 4.6: Simulated impulse responses in 3D of the microphone at the centre position.
A: Barrier with a 1 cm gap. B: Barrier without a gap. C: Aminus B. D: Adrienne
window. E: Windowed impulse response

Figures 4.6 and 4.7 give two examples for the processing of the impulse responses.�e �rst
of the �ve graphs (A) displays the impulse response directly obtained from the Fourier
transform of the sound pressure values produced by Acousto and OpenBEM.�e second
graph (B) shows the impulse response of the same barriers, but without any gap; that
means that everything seen in B should come from components di�racted around the
barrier. Graph C shows the di�erence between A and B:�e peak from the components
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Figure 4.7: Simulated impulse responses in 2D of the microphone at the centre position.
A-E like in �gure 4.6

di�racted around the barrier vanishes and almost only the peaks from the components
transmitted through the gap remain.�e fourth graph (D) shows the Adrienne window
and the ��h graph (E) is the window D applied to the impulse response C.�e impulse
response shown in this last graph was used for the evaluation of the sound insulation
index.

�e limits of the simulation method can be seen in the calculated impulse responses.�e
2D simulations show a nearly-constant shi� in the simulated impulse responses A and
B. Both impulse responses are not zero before the arrival of the expected peaks. For the
higher mesh density simulations mentioned before, this slowly changing component that
physically should not be there is considerably smaller. Fortunately this shi� is nearly the
same for both the simulation with a gap (graph A in �gure 4.7) and the one without any
gap (graph B); therefore the nearly-constant shi� can be mostly cancelled out simply by
calculating the di�erence between the two simulated impulse responses (graph C).

�e impulse responses obtained from 3D simulations don’t have a nearly-constant shi�
like the 2D ones, but they exhibit small �uctuations that look like noise.�ey are mostly
the result of the non-uniqueness problem – impulse responses calculated only from the
frequencies 0-1400Hz are much smoother.

Both 2D and 3D simulations show very well that multiple re�ections at the front and rear
end of the gap occur.�e �rst peak occurs at approximately 4ms, which corresponds to a
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sound path of 4 × 10−3 s ⋅ 343m/s = 1.37m and is what one would expect from geometric
considerations (see �gure 4.3).�e next two peaks follow at approximately 4.8ms and
5.6ms, with an interval corresponding to a sound path of 0.8 × 10−3 s ⋅ 343m/s ≈ 0.27m.
Double the barrier thickness is 0.24m, hence one can follow that the imaginary re�ection
point is not in the plane of the front or back side of the barrier, but a little beyond.
Comparison of the intervals between the peaks between simulations with di�erent gap
widths shows that for higher gap widths the intervals increase marginally, putting the
imaginary re�ection point a little further away from the barrier.



5 Results and Discussion

5.1 Measurement

Measurements have been carried out at a noise barrier of a thickness of 12 cm made from
aluminium boxes partly �lled with rock wool. Figure 5.1 shows the sound insulation
indices SI in third-octave bands for the barrier without any gap and for the same barrier
with gaps of di�erent sizes.�e single-number ratings DLSI are given in table 5.1.

250 500 1000 2000 4000
Frequency in Hz

0

10

20

30

40

50

SI
in

dB

no gap (30.7 dB)
0.1 cm gap (27.7 dB)
0.4 cm gap (28.2 dB)

0.8 cm gap (22.7 dB)
1.5 cm gap (22.2 dB)
2.0 cm gap (17.0 dB)

Figure 5.1: Measured sound insulation of noise barriers with gaps. Numbers in brackets
in the legend are the single-number ratings DL200−5000HzSI

�e sound insulation indices SI of the intact barrier start at about 20 dB at the lowest
frequency band at 200Hz, then increase for higher frequencies to 40 dB at the 800Hz
band and stay above 40 dB for nearly all of the remaining frequency bands. �e SI
measured with a gap in the barrier have a very di�erent shape: �ere is a signi�cant
impact especially in the higher frequency bands; in particular for nearly all frequency
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gap width measurement
DL200−5000HzSI DL400−4000HzSI

no gap 30.7 dB 35.9 dB
0.1 cm 27.7 dB 29.7 dB
0.4 cm 28.2 dB 29.4 dB
0.8 cm 22.7 dB 22.9 dB
1.5 cm 22.2 dB 22.3 dB
2.0 cm 17.0 dB 16.8 dB

Table 5.1: Measured sound insulation: Single-number ratings DLSI for gaps.�e single-
number ratingDL200−5000HzSI covers the largest reliable frequency range; for better
comparability with the simulations the single-number rating DL400−4000HzSI cov-
ering only a reduced frequency range is also given

bands above 1000Hz the sound insulation index is reduced by more than 10 dB. Relative
minima can be observed in the graphs for all gaps at the 1250Hz and the 2500Hz bands.
�e single-number ratings DLSI are also signi�cantly impacted by the gaps.

Comparing the SI of the di�erent gap widths with each other shows an unexpected
property:�ere are two pairs of gap widths with overlapping curves. For both the 0.1 cm
and 0.4 cm gap pair and the 0.8 cm and 1.5 cm gap pair the DLSI are very similar. In most
frequency bands the two SI of each pair are fairly close to each other; there are only a few
frequency bands where the SI of one curve of each pair is higher and a few other frequency
bands where the SI of the same curve is lower than the SI of the other curve of the pair. In
his study of the e�ect of apertures on the sound insulation of walls, Gomperts [14] found
a region of gap widths in which the sound insulation at the resonance frequencies is nearly
independent of the gap width.�e gaps that the measurements have been performed on
have a very di�erent, more complicated cross section than those analysed by Gomperts,
so his conclusion cannot be directly applied here, but at least Gomperts’s �ndings show
that certain physical e�ects can lead to unexpected variations of the sound insulation.
Further investigations need to be done to �nd out the reason for the observed grouping
of gap widths.

Finally, the author wants to stress again what he regards as a signi�cant result: Even
though the 0.1 cm gap was not really possible to spot without using a ruler, there is already
a signi�cant impact in the sound insulation. �e single-number rating DL200−5000HzSI
decreases about 3 dB, but even more important is that the sound insulation indices SI in
most frequency bands above 1000Hz are reduced by more than 10 dB!
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5.2 Simulation

�ree di�erent series of simulations have been carried out. In the �rst series the impact
of the size of the gap on the sound insulation has been analysed. Simulations have been
carried out in both 2D and 3D for gaps of four di�erent sizes between 0.5 cm and 5 cm
in a barrier of the same thickness as the barrier where the measurements have been
performed (12 cm). �e sound insulation indices SI in third-octave bands calculated
from these simulations can be seen in �gures 5.2 (2D) and 5.3 (3D) and the corresponding
single-number ratings DL400−4000HzSI are listed in table 5.2.

gap width 2D simulation 3D simulation

0.5 cm 21.1 dB 22.3 dB
1 cm 17.1 dB 18.8 dB
2 cm 13.9 dB 16.3 dB
5 cm 10.3 dB 11.3 dB

Table 5.2: Simulated sound insulation: Single-number ratings DL400−4000HzSI for gaps in a
12 cm barrier

For all simulated gaps in 12 cm barriers there are at least two obvious relative minima,
one approximately in the 1250Hz band and one in the 2500Hz band.�e presentation in
third-octave bands makes it impossible to determine the exact frequencies of the minima,
but the results in �gure 5.2 (2D) suggest that with increasing gap sizes the minima move
slightly to lower frequencies: For the 0.5 cm gap the �rst minimum is in the 1250Hz
frequency band and of the adjacent frequency bands the sound insulation index of the
1600Hz band is signi�cantly lower than the one of the 1000Hz band, suggesting that the
minimum is rather in the upper part of the 1250Hz band. Looking at the 1 cm gap, the
�rst minimum again is in the 1250Hz band, but this time the SI in the two neighbouring
frequency bands is approximately equal. Continuing with the 2 cm gap, the �rst minimum
still is in the 1250Hz band, but the adjacent sound insulation indices suggest that the real
minimum frequency is rather in the lower part of the 1250Hz band. Finally, with the
largest gap, the 5 cm gap, the �rst minimum sits unambiguously in the 1000Hz band and
accordingly continues the movement to lower frequencies with increasing gap width.�e
3D simulations (�gure 5.3) show a similar tendency:�e �rst minimum of the 0.5 cm gap
clearly is in a higher frequency band than the �rst minimum of the 5 cm gap.

Comparing the minima in the 2D simulations to those in the 3D simulations shows that
the frequencies of the minima are rather similar, but for the 3D simulations the minima
seem to be at slightly lower frequencies. A minor discrepancy between the 2D and 3D
results is to be expected because of the di�erent simulated setting:�e 3D simulation



Results and Discussion 49

250 500 1000 2000 4000
Frequency in Hz

0

10

20

30

40

50
SI

in
dB

0.5 cm gap (21.1 dB)
1 cm gap (17.1 dB)
2 cm gap (13.9 dB)
5 cm gap (10.3 dB)

Figure 5.2: Sound insulation of noise barriers with gaps from 2D simulations. Numbers
in brackets in the legend are the single-number ratings DL400−4000HzSI
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Figure 5.3: Sound insulation of noise barriers with gaps from 3D simulations. Numbers
in brackets in the legend are the single-number ratings DL400−4000HzSI
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assumes a point source and spherical waves, whereas the 2D simulation uses a line source
and cylindrical propagation characteristics.

Considering the general change of the magnitude of the SI and the depth of the minima,
one can see that generally smaller gaps lead to higher sound insulation as expected.�is is
true for the single-number ratings DL400−4000HzSI and also for the sound insulation indices
SI in nearly all frequency bands, but at the frequency bands of the minima the di�erence
in the SI is smaller than at frequency bands far from the minima. In other words, for
smaller gaps the depth of the minima is larger, but not large enough to compensate the
generally better sound insulation of smaller gaps.

�e second series covers the impact of the barrier thickness and comprises 3D simula-
tions of 1 cm gaps in barriers of a thickness of 8 cm, 12 cm and 16 cm.�e resulting sound
insulation indices SI are given in �gure 5.4 and the single-number ratings DL400−4000HzSI
are listed in table 5.3.

barrier thickness 3D simulation

8 cm 19.8 dB
12 cm 18.8 dB
16 cm 18.7 dB

Table 5.3: Simulated sound insulation: Single-number ratings DL400−4000HzSI for 1 cm gaps
in barriers of di�erent thicknesses

�e relative minima of the SI in this second series of simulations occur at very di�erent
frequency bands for barriers of di�erent thicknesses.�e shapes of the curves are rather
similar though; the changes look akin to simple shi�s of the whole curve to higher
frequencies for the thinner barriers.�e depths of the minima seem to be nearly the same
and the general magnitudes of the SI are also very close to each other.�e DL400−4000HzSI
di�er a bit, but that is to be expected because of the weighting with the tra�c noise
spectrum. Comparing the shi� of the minima observed here with the one observed in
the �rst series of simulations shows that the barrier thickness has a larger impact on the
position of the minima than the width of the gap: Doubling the barrier thickness moves
the frequency of the �rst minimum of the SI further than even a tenfold increase of the
gap width.�e overall sound insulation described by the DL400−4000HzSI though depends
more on the size of the gap than the thickness of the barrier.

Finally, in the third series of simulations quadratic holes were cut out from barriers of a
thickness of 12 cm. Figure 5.5 gives the sound insulation indices SI and table 5.4 show
the corresponding single-number ratings DL400−4000HzSI .
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Figure 5.4: Sound insulation of noise barriers of di�erent thicknesses with 1 cm gaps from
3D simulations. Numbers in brackets in the legend are the single-number
ratings DL400−4000HzSI
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Figure 5.5: Sound insulation of noise barriers with holes from 3D simulations. 1 cm gap
shown for comparison. Numbers in brackets in the legend are the single-
number ratings DL400−4000HzSI
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Again, relative minima of the SI can be observed: For the 1 cm × 1 cm hole there are min-
ima in the 1250Hz band and the 2500Hz band, and for larger holes these minima move
to lower frequencies.�e general magnitudes of the sound insulation of the simulated
holes are higher than those of the simulated gaps: Even a rather large hole of 3 cm × 3 cm
has signi�cantly less impact on the sound insulation of a barrier than a gap of 1 cm. It
takes an enormous hole of 10 cm × 10 cm in a barrier for the sound insulation to become
worse than the one of a barrier with a gap of 1 cm. One can follow that for barriers where
the post needs to be mounted on top of the base of the barrier, a design similar to the one
photographed for �gure 1.4 is superior to the one depicted in �gure 1.3.

hole size 3D simulation

1 cm 34.9 dB
3 cm 26.7 dB
10 cm 16.1 dB

Table 5.4: Simulated sound insulation: Single-number ratings DL400−4000HzSI for holes in
barriers of a thickness of 12 cm

5.3 Analytical formula by GOMPERTS

�e sound insulation index SI de�ned in EN 1793-6 [27] always compares the energies
in frequency bands. Gomperts’s analytical model lead to the the transmission factor qsl ,
which compares the energies for individual frequencies though. Despite this di�erent
starting point, a comparable curve can still be obtained by calculating the logarithm−10 log10 (qsl).
Figures 5.6 and 5.7 show the results of Gomperts’s formula with the variation of two
parameters of the barrier: In �gure 5.6 the size of the gap is varied between 0.5 cm and
2 cm and the thickness of the barrier is always 12 cm like in the �rst series of simulations
discussed in chapter 5.2. In �gure 5.7 the size of the gap is always kept at 1 cm and the
thickness of the barrier is varied between 8 cm and 16 cm like in the second series of
simulations. One can see that with di�erent gap widths the frequencies of the minima
change only slightly, whereas the thickness of the barrier has a large in�uence on the
frequencies of the minima.�e depth of the minima though mostly depends on the gap
width and not so much on the thickness of the barrier.

Figures 5.8 and 5.9 show the results from the same calculations, but this time the average
for every frequency band has been calculated.�e presentation in frequency bands hides
some of the information though: Both the frequency and the depth of the minima can
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Figure 5.6: Transmission factor as calculated by Gomperts for gaps of di�erent widths in
a 12 cm barrier
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Figure 5.7: Transmission factor as calculated by Gomperts for 1 cm gaps in barriers of
di�erent thicknesses
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Figure 5.8: Transmission factor as calculated by Gomperts but presented in third octave
bands for gaps of di�erent widths in a 12 cm barrier
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Figure 5.9: Transmission factor as calculated by Gomperts but presented in third octave
bands for 1 cm gaps in barriers of di�erent thicknesses
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only be determined with less accuracy. To give an example, it is harder to read from
�gure 5.8 than from �gure 5.6 that the �rst minimum for the 0.5 cm gap (blue) is at a
higher frequency than the �rst minimum for the 1 cm gap (green).

5.4 Comparison and Discussion

All three methods (measurements, BEM simulations, Gomperts’s analytical formula)
showminima in the sound insulation at roughly the same frequencies for barriers of a thick-
ness of 12 cm. No measurements have been performed for barriers of other thicknesses,
but simulations and Gomperts’s formula agree that for thicker barriers the frequencies of
the minima in the sound insulation move to lower frequencies and vice versa.

According to the simulations and Gomperts’s formula the width of the gap has only a
much smaller in�uence on the frequencies of the minima.�e gaps of the barrier at which
the measurements have been performed had a di�erent, more complicated geometry that
did not allow a direct line of sight through the gap for all but the largest twomeasured gaps
(see �gure 3.6 for a cross section of the measured gap). Probably this special geometry
is the reason for the observed grouping of gap widths that has already been discussed
in chapter 5.1. Comparing the two parts of each pair in �gure 5.1 shows that the �rst
minima are always in the same frequency band, though the di�erences in the neighbouring
frequency bands suggest that the frequency of the minimum is slightly lower for the larger
gap of each pair. To check if this is really the case, the measurements have been analysed
again, but this time the sound insulation has been calculated for single frequencies instead
of third-octave bands.�e results are plotted in �gure 5.10 and show that with both pairs
the minimum of sound insulation of the larger gap is at a slightly lower frequency than
the minimum of the smaller gap. �is �ts well with the simulations and Gomperts’s
formula.

To �nd out the source of the minima in the SI, the following considerations have been
made:�e measurements, the simulations and Gomperts’s formula all agree that for a
barrier of thickness 12 cm there are minima in the sound insulation circa in the 1250Hz
and the 2500Hz frequency bands. If the front and back of the gap re�ected parts of
the sound waves, the doubly re�ected wave could interfere with the direct wave and
resonances could occur. Using the thickness of the barrier as half a wavelength leads
to a frequency of about 1430Hz, which is higher than the �rst minimum.�e impulse
responses from the simulations discussed in chapter 4.4 showed peaks at intervals that
suggest that re�ections don’t occur directly at the beginning and end of the gap but a
little beyond.�is extension of the sound path corresponds to the end correction that
Gomperts used to account for the air directly in front of and directly behind the gap that
is moved together with the air inside the gap. Hence the frequency at which interference
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Figure 5.10: Measured sound insulation of noise barriers with gaps calculated for indi-
vidual frequencies instead of third-octave bands (single-frequency sound
insulation indices)

of the direct components through the gap and the components re�ected at the back and
front of the gap could occur is a little lower. Because the end correction and with it the
distance of the imaginary re�ection points from the end of the gap increase with the gap
width, the resonance frequencies should be slightly lower for higher gap widths. �is
�ts well with the movement of the frequencies of the minima observed with the BEM
simulations and with Gomperts’s formula and probably also with the measurements,
though the in�uence of the di�erent gap geometry is hard to quantify.

Comparing the results from the measurements with those from the simulations shows
that the sound insulation of the measured barrier with gaps is signi�cantly better than
the sound insulation of the simulated barrier. Taking the single-number ratings from
table 5.1 (measurements) and 5.2 (simulations) gives for instance for the measured 1.5 cm
gap a DL400−4000HzSI of 22.3 dB, but for both 2D and 3D simulations the sound insulation
of a barrier with a (smaller, i.e. better insulating) gap of 1 cm is signi�cantly worse; the
DL400−4000HzSI are less than 19 dB. �e most likely reason for this large di�erence is the
geometry of the gap: All simulated gaps are planar, but the gap in the measured barrier
had a groove and a tongue (see �gure 3.6), which reduced the visible cross section of the
gap by the height of the tongue (1 cm).�erefore the measured results are shown together
with simulated gaps of not the same width but of smaller width: Comparing the measured
1.5 cm gap with the simulated 0.5 cm gaps gives DL400−4000HzSI that are closer to each other
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Figure 5.11: Sound insulation of noise barriers with 1–2 cm gaps. Comparison between
measurement and simulations. Numbers in brackets in the legend are the
single-number ratings DL400−4000HzSI
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Figure 5.12: Sound insulation of noise barriers with 0.5–1.5 cm gaps. Comparison between
measurement and simulations. Numbers in brackets in the legend are the
single-number ratings DL400−4000HzSI
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– that is 22.3 dB in the measurement and 21.1 dB (2D) respectively 22.3 dB (3D) in the
simulation. �e presentation of these unequal gap sizes together can thus be justi�ed.
Figure 5.11 shows the sound insulation indices of the measured 2 cm gap together with
the two simulations for the 1 cm gap and �gure 5.12 shows a similar comparison of the
measured 1.5 cm gap with the simulated 0.5 cm gaps.

Still, simply subtracting the height of the tongue from the gap width does not lead to
satisfying results in the remaining cases: For the measured gap widths of less than 1 cm,
where therewas no direct line of sight through the gap because of the tongue, a considerable
amount of noisewas still able to pass through the gap and the SIwere therefore signi�cantly
reduced with respect to the gap-less barrier. It would be interesting to perform simulations
of gaps with a groove and a tongue to study the impact of the geometry of the gap on the
amount of sound leakage.

Both �gure 5.11 and 5.12 show similar patterns:�ere are minima of the SI circa in the
1250Hz band and the 2500Hz band. Around the �rstminimum, i.e. from the 630Hz band
to the 1600Hz band, there seem to be two di�erent shapes: In both comparison �gures
the measurement and the 3D simulation have a broader minimum than the 2D simulation
and Gomperts’s formula. It could be that the source of these two di�erent shapes is the
di�erence in the propagation characteristics:�e 2D simulation and Gomperts’s formula
assume cylindrical waves, whereas in the case of the 3D simulation spherical waves are
used that better re�ect the real, measured propagation characteristics.

Concerning the depth of the minima, the two simulations agree fairly well with each other
and with Gomperts’s formula.�e depth of the minima from the measurements seems
to be a little smaller though.�ere are two possible reasons for this:�e �rst reason is
that the sound insulation of the measured barrier with a gap is obviously limited by the
sound insulation of the barrier itself with its perforated metal boxes �lled with rock wool.
�is is especially evident for low frequencies, where the measured sound insulation is
lower than the corresponding results from the BEM simulation and Gomperts’s formula.
To show this upper limit the measured sound insulation of the gap-less barrier was added
to the two comparison �gures.�e simulated barriers do not have this upper limit for the
sound insulation, because it was assumed that the surface of the barrier is fully re�ective
and that sound can only pass through the gap and not through the barrier itself.

�e second possible reason for the di�erence in the depth of the minima between mea-
surements and simulations could be the di�erence in the gap width. Looking for example
at the four simulated gap widths in �gure 5.2, one can see that with increasing gap widths
not only the DLSI decreases, but also the depths of the minima become smaller. It could
be that the complicated cross section of the measured 2 cm gap makes it similar to the
simulated planar 1 cm gaps only in the single-number rating DLSI , but does not equally
change the depth of the minima of the SI. Again, simulations of gaps with a groove and a
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tongue could shed some light on which parts of the discrepancy between measurements
and simulations originate from the di�erent geometries of the gaps.

5.5 Directivity

�e following pages contain a number of �gures that illustrate the radiation pattern of the
gaps. Figures 5.13 and 5.15 to 5.23 show the single-frequency sound insulation indices;
that means that the plotted values are the logarithm of the ratio of the energy in the
impulse response with the barrier to the energy in the free-�eld impulse response.�e
only di�erence to the third-octave frequency band sound insulation indices SI given
earlier in this thesis is that for the single-frequency values the ratio has been calculated
for each frequency individually, whereas the method used earlier compares the total
energy in all frequencies within a certain third-octave band as speci�ed by the standard
EN 1793-6.

�e top of the �gures shows a contour plot of the single-frequency sound insulation indices.
�e frequencies are plotted on the abscissa, and the ordinate shows the position of the
microphone relative to the gap in cm.�e bottom of the �gures plots the single-frequency
sound insulation indices averaged over all microphone positions shown in the top of the
�gure (continuous line). For comparison, the single-frequency sound insulation indices
for the two microphones directly behind the gap (dashed line) and 40 cm above the gap
(dotted line) are also plotted individually.

Figures 5.13 and 5.14 show the results for the measured 2 cm gap in the 12 cm barrier. In
contrast to the simulations shown in the following �gures, with themeasured barrier sound
can leak not only through the gap but also through the noise barrier itself. Figure 5.14
shows the attempt to visualise only the sound transmitted through the gap by comparing
the energy in the impulse response with the gap to the energy in the impulse response of
the gap-less barrier instead of the energy in the free-�eld impulse response.

Figure 5.15 shows the results for the 1 cm gap in the 12 cm barrier from the 2D simulation.
�e upper half of the contour plot was calculated with a mesh density of 18 nodes per
wavelength, and the lower half of the contour plot was calculated for the same barrier
but with a mesh density of 6 nodes per wavelength. For most frequencies, the di�erence
between the two meshes is not large enough to justify the substantial increase of the
computation time for the denser mesh.

�e changes for the single-frequency sound insulation indices from the 3D simulations are
shown in �gures 5.16 to 5.19 for 0.5 cm to 5 cm gaps in 12 cm barriers, and in �gures 5.20
and 5.21 for 1 cm gaps in 8 cm and 16 cm barriers.
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For the 0.5 cm gap in the 12 cm barrier (�gure 5.16) there are three minima: �e �rst
minimum is located at a frequency of circa 1200Hz and exists for all microphone positions,
but for those microphone positions further away from the gap it is a bit less pronounced –
the di�erence between the minimum sound insulation for the centre microphone and for
the microphone 40 cm above is about 6 dB.�e second minimum is around the 2500Hz
frequency and has a slightly di�erent shape: Regarding the di�erent vertical microphone
positions there is one minimum at the centre position and two symmetric minima are
circa 30 cm above and below the gap. For the third minimum at around 3800Hz it is
harder to judge the shape of the contour lines, because for the higher frequencies the
sound insulation is not so smooth any more and the contour lines contain a lot of zig-
zag-patterns.�e author considers it possible that these uneven shapes are the result of
the rather coarse meshes used for the simulations in order to keep the computing time
acceptable. A small unevenness does not exert a large in�uence on the sound insulation
indices SI discussed in the previous chapters, because the sound insulation indices take
the average over full third octave bands, but the contour graphs shown here make the
unevenness very well visible. Around the 3000Hz frequency there are a few spikes for the
relative microphone positions of ±30 cm where the sound insulation locally increases for
more than 30 dB. Again, the author assumes that these are errors that stem from the used
meshes and not the result of physical e�ects. It would be interesting to perform additional
simulations for the very same barrier gap dimensions but with a �ner mesh to see how
much in�uence the density of the mesh has on the spatial changes of the sound insulation.
(In fact, two simulations of the same barrier gap combination have been performed in 2D
and the results are shown in �gure 5.15, but in that case even the wider, i.e. worse, mesh
does not exhibit comparable spikes in the sound insulation.)

Figure 5.17 shows the results from the 1 cm gap in the 12 cmbarrier and has a rather similar
pattern:�ere are three minima at nearly the same, only (as expected) marginally lower
frequencies.�e peaks around 3000Hz are not as prominent, but there are new spikes
close to 5000Hz. In comparison, �gure 5.18 (2 cm gap in the 12 cm barrier) looks rather
di�erent:�ere are a number of spikes at many frequencies for the microphone positions
more than 20 cm above or below the gap and the minima in the sound insulation are less
pronounced. Finally, the widest gap, i.e. the 5 cm gap in the 12 cm barrier (�gure 5.19),
again gives a di�erent view:�ere are no strange spikes, but the sound insulation is so low
for most frequencies and microphone positions that the di�erence in the sound insulation
between the minima and the maxima is rather small.

Figure 5.20 shows the case of a thinner barrier: With the 1 cm gap in the 8 cm barrier
there are two main minima, one at circa 1500Hz and one at circa 3500Hz, but the �rst
minimum has a side minimum directly attached at circa 2000Hz. For higher frequencies
starting around 3000Hz the contour lines become ragged again.

�e results for a barrier of increased thickness are presented in �gure 5.21: With the 1 cm
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gap in the 16 cm barrier there are �ve large minima.�e �rst minimum at about 800Hz
is smooth over all microphone positions, the second minimum at circa 1900Hz again has
one main minimum at the centre microphone position and two symmetric minima at the
microphone positions circa 30 cm above and below the gap. For the next three minima
up to the minimum at circa 5000Hz again the raggedness makes it harder to judge the
shape of the minima.

�e last two �gures rotate the displayed plane and show the changes of the sound insulation
indices along a line parallel to the gap: Figure 5.22 shows the results for the microphone
directly behind the gap and �gure 5.23 shows the same results but for microphones 40 cm
above the gap. In comparison to the changes perpendicular to the gap the changes of the
sound insulation parallel to the gap are insigni�cant.
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Figure 5.13: Change of the single-frequency sound insulation indices with the vertical
position for the 2 cm gap from the measurement. Top: Contour plot with
the vertical position of the microphone relative to the gap plotted on the
ordinate. Bottom: Average over all microphone positions shown above and
two microphones individually for comparison
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Figure 5.14: Change of the single-frequency sound insulation indices, relative to the en-
ergy measured at the gap-less barrier instead of the free-�eld energy with
the vertical position for the 2 cm gap from the measurement. Top: Contour
plot with the vertical position of the microphone relative to the gap plotted
on the ordinate. Bottom: Average over all microphone positions shown above
and two microphones individually for comparison
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Figure 5.15: Change of the single-frequency sound insulation indices with the vertical
position for the 1 cm gap in the 12 cm barrier from the 2D simulation. Top:
Contour plot with the vertical position of the microphone relative to the gap
plotted on the ordinate.�e upper half shows the results for a mesh density of
18 nodes per wavelength, whereas the lower half shows the result for a mesh
density of 6 nodes per wavelength. Bottom: Average over all microphone
positions shown above and two microphones individually for comparison.
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Figure 5.16: Change of the single-frequency sound insulation indices with the vertical
position for the 0.5 cm gap in the 12 cm barrier from the 3D simulation.
Top: Contour plot with the vertical position of the microphone relative to the
gap plotted on the ordinate. Bottom: Average over all microphone positions
shown above and two microphones individually for comparison
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Figure 5.17: Change of the single-frequency sound insulation indices with the vertical
position for the 1 cm gap in the 12 cm barrier from the 3D simulation. Top:
Contour plot with the vertical position of the microphone relative to the
gap plotted on the ordinate. Bottom: Average over all microphone positions
shown above and two microphones individually for comparison
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Figure 5.18: Change of the single-frequency sound insulation indices with the vertical
position for the 2 cm gap in the 12 cm barrier from the 3D simulation. Top:
Contour plot with the vertical position of the microphone relative to the
gap plotted on the ordinate. Bottom: Average over all microphone positions
shown above and two microphones individually for comparison
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Figure 5.19: Change of the single-frequency sound insulation indices with the vertical
position for the 5 cm gap in the 12 cm barrier from the 3D simulation. Top:
Contour plot with the vertical position of the microphone relative to the
gap plotted on the ordinate. Bottom: Average over all microphone positions
shown above and two microphones individually for comparison
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Figure 5.20: Change of the single-frequency sound insulation indices with the vertical
position for the 1 cm gap in the 8 cm barrier from the 3D simulation. Top:
Contour plot with the vertical position of the microphone relative to the
gap plotted on the ordinate. Bottom: Average over all microphone positions
shown above and two microphones individually for comparison
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Figure 5.21: Change of the single-frequency sound insulation indices with the vertical
position for the 1 cm gap in the 16 cm barrier from the 3D simulation. Top:
Contour plot with the vertical position of the microphone relative to the
gap plotted on the ordinate. Bottom: Average over all microphone positions
shown above and two microphones individually for comparison
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Figure 5.22: Change of the single-frequency sound insulation indices with the horizontal
position for the 1 cm gap in the 12 cm barrier from the 3D simulation with
the same vertical position as the gap. Top: Contour plot with the vertical
position of themicrophone relative to the gap plotted on the ordinate. Bottom:
Average over all microphone positions shown above and two microphones
individually for comparison
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Figure 5.23: Change of the single-frequency sound insulation indices with the horizontal
position for the 1 cm gap in the 12 cm barrier from the 3D simulation with the
vertical position 40 cm above the gap. Top: Contour plot with the vertical
position of themicrophone relative to the gap plotted on the ordinate. Bottom:
Average over all microphone positions shown above and two microphones
individually for comparison
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5.6 Improvements to the Simulation Method

�ere are a number of di�erent gap shapes that should be studied further: On the one
hand it would be great if measurements of a planar gap could be performed. On the other
hand it would be interesting to study the e�ect of the groove and the tongue in the gap
with the help of simulations. Unfortunately, modelling a groove and a tongue in 3Dmeans
that one of the symmetry planes disappears, thereby signi�cantly increasing the necessary
computation time.

�e authorwants to present an idea on how the simulations in this thesis could be improved
and sped up: A�er the simulations performed for this thesis were �nished, the author
tried to �nd out if it would be possible to get smoother results from 3D simulations than
those shown in �gure 4.4 with the help of a faster computer1.�e computation time of
the calculations performed for this thesis was kept to reasonable levels by two decisions:
Firstly, di�erent meshes were used for lower frequencies to keep the number of surface
panels as low as possible, and secondly, the CHIEF technique was not used to solve the
non-uniqueness problem.�is second choice was reviewed during the reconsiderations:
A small noise barrier was simulated with CHIEF points. While the use of CHIEF points
removed some of the “noise” from the impulse response, even a very large number of
randomly chosen CHIEF points (four times the number of calculated surface elements,
so that if the symmetry is ignored, the number of CHIEF points is equal to the number of
surface elements) did not produce perfectly smooth results.�e reason for this was that
with each change of the mesh, the calculated sound pressure at the microphone positions
jumped far enough that the impulse responses still contained the “noise”. (One attempt
with a higher mesh density of 14 nodes per wavelength still did not deliver the desired
results.) Finally, a smooth pressure curve and a good-looking impulse response were
achieved for at least 0-2000Hz by using the large number of CHIEF points and the same
mesh for every frequency. Still, using the same mesh for all frequencies up to 5000Hz is
not a viable option because of the computation time.

�e author therefore would like to propose the following idea: Calculating the impulse
response with the help of the FFT from sound pressure values at linearly-spaced frequen-
cies as done in this thesis brings about that for higher frequency bands a larger number of
BEM calculations have to be performed than for lower frequency bands. For a frequency
spacing of 2Hz, the 4000Hz band contains 459 frequencies for which the BEM calculation

1When most of the simulations performed for this thesis had been done, a faster computing server was
made available for acoustic simulations.�is new computer not only increased the number of processor
cores and their clock frequency, but the new processors support a newer instruction set that can perform
�oating point operations on twice as many numbers as was previously possible in the same time (256 bit
vector operations with AVX instead of 128 bit operations with the older SSE instructions).�e 3-4x
increased computing power of the new server made the following considerations possible.
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has to be performed, whereas there are only 46 equivalent frequencies in the 400Hz band.
Fortunately, most of the Adrienne analysis is performed in third octave frequency bands
anyway. It might therefore be possible to take for every frequency band for instance
100 equally spaced frequencies between the lower limit frequency and the upper limit
frequency and then calculate a separate impulse response for every frequency band from
this data, thereby setting the sound pressure for all lower and higher frequencies to zero.
�e subsequent calculations have to be performed always on the �tting impulse responses.
�is strategy has the advantage that it would be viable to use the same mesh for all fre-
quencies within a band, thereby avoiding the other of the two reasons for the “noise” in
the impulse response.



6 Summary

In this thesis the impact of gaps on the in situ airborne sound insulation of noise barriers
has been examined. With the help of wedges, gaps have been produced in a barrier and the
sound insulation has been measured in accordance to EN 1793-6. Computer simulations
of similar gaps have been carried out using the boundary element method. Besides, the
results have been compared to analytical calculations by Gomperts [14].

�e following observations have been made:

• �e sound insulation varies signi�cantly across the di�erent frequency bands, yet
the minima occur at the same frequency bands for both the measurements and
the simulations for comparable barrier and gap dimensions. A strong correlation
between the positions of the minima and the thickness of the barrier and thus the
length of the gap has been shown.�e width of the gap only has a small in�uence
on the positions of the minima, but is strongly associated with the overall decrease
of the sound insulation.

• �e measured sound insulation is a bit higher than the simulated one. One reason
for this di�erence is that the groove and tongue from the measured barrier have
not been reproduced in the simulation in order to maintain a symmetry plane that
helped avoid unreasonable computation times.

• �e measurements show that even a gap of only 0.1 cm signi�cantly reduces the
sound insulation especially at higher frequencies.

In conclusion, it can be said that a signi�cant amount of noise can be transmitted through
construction faults. To reach high sound insulation values it is therefore necessary to
exercise care in the assembly of noise barriers.
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