
A New Partition-based Heuristic
for the Steiner Tree Problem in

Large Graphs
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Martin Luipersbeck
Matrikelnummer 0725756

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Lektorin Mag.rer.nat. Dr.techn. Ivana Ljubić, Privatdoz.
Mitwirkung: Dipl.-Ing. Dr.techn. Markus Leitner

Wien, 04.12.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

A New Partition-based Heuristic
for the Steiner Tree Problem in

Large Graphs
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Martin Luipersbeck
Registration Number 0725756

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Lektorin Mag.rer.nat. Dr.techn. Ivana Ljubić, Privatdoz.
Assistance: Dipl.-Ing. Dr.techn. Markus Leitner

Vienna, 04.12.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Martin Luipersbeck
Batthyany-Allee 29, 7431 Bad Tatzmannsdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Danksagung

In erster Linie möchte ich mich bei Dr. Ivana Ljubić und bei Dr. Markus Leitner für die kompe-
tente Betreuung beim Verfassen dieser Diplomarbeit bedanken.

Ein herzliches Dankeschön gilt auch allen meinen Freunden, die mich in den letzten Jahren un-
terstützt haben. Im Besonderen bedanke ich mich bei Max Resch für die gute Zusammenarbeit.

Schließlich möchte ich auch meinen Eltern danken, die mir mein Studium ermöglicht haben.

ii

Abstract

The Steiner tree problem in graphs (STP) is a fundamentalNP-hard combinatorial optimization
problem of theoretical and practical interest. Common applications range from VLSI design
to problems in computational biology. The STP can be informally described as the problem
of connecting a subset of special vertices called terminals in a weighted graph at minimum
cost. Due to the problem’s complexity the computation of optimal solutions may not always be
feasible. This holds true especially for large-scale instances which are quite common in real-
world scenarios. In such cases, heuristic methods specialized on finding near-optimal solutions
in reasonable amounts of time, are generally the only choice.

In this master’s thesis we propose a new partition-based heuristic for the efficient construc-
tion of approximate solutions to the STP in very large graphs. Our algorithm is based on a
partitioning approach in which instances are divided into several subinstances which are small
enough to be solved optimally. A heuristic solution of the complete instance can then be con-
structed through the combination of the subinstances’ solutions.

To this end we combine state-of-the-art exact and heuristic methods for the STP and general
graph partitioning. For the exact solution of subinstances we apply a branch-and-cut procedure.
The underlying integer linear programming (ILP) model augments a formulation based on the
well-known directed-cut-constraints with node variables. The associated separation procedure
includes several improvements from literature. For partitioning we use the METIS graph parti-
tioning framework as well as a greedy partitioning algorithm based on the contraction of Voronoi
regions.

The implemented algorithms are also embedded into a memetic algorithm, which includes
the partition-based construction heuristic, reduction tests, an algorithm for solution recombi-
nation and a variable neighborhood descent. We use common neighborhood structures from
the STP literature: Steiner node insertion, Steiner node elimination, key-node elimination and
key-path exchange.

All algorithms are evaluated through practical experiments on the SteinLib, a state-of-the-
art benchmark set for the STP, and a set of new real-world instances from network design. The
results show that our approach yields good quality solutions with reasonable runtime, even for
large graphs.

iii

Kurzfassung

Das Steinerbaumproblem in Graphen (STP) ist ein NP-schweres kombinatorisches Optimie-
rungsproblem, welches sowohl aus theoretischer als auch aus praktischer Sicht relevant ist. Die
Anwendungsfälle reichen vom VLSI-Design bis hin zum Lösen von wissenschaftlichen Proble-
men in der Bioinformatik. Beim STP sollen eine Menge an Basisknoten in einem gewichteten
Graphen kostenminimal verbunden werden. Da dieses Problem sehr schwierig ist, ist es nicht
immer möglich eine optimale Lösung zu finden. Problematisch sind vor allem große Instan-
zen, die in praktischen Anwendungen relativ häufig auftreten. In solchen Fällen bleibt oft nur
die Verwendung von heuristischen Methoden. Diese sind auf die Berechnung von guten, jedoch
suboptimalen Lösungen in relativ kurzer Zeit spezialisiert.

In dieser Diplomarbeit wird eine neue Konstruktionsheuristik vorgestellt, die Partitionie-
rungsmethoden nutzt, um speziell mit großen Probleminstanzen umgehen zu können. Hierzu
wird eine Instanz systematisch in kleinere Instanzen zerlegt, die einfach genug sind, um sie
mit einem exakten Algorithmus optimal zu lösen. Danach wird eine heuristische Lösung der
ursprünglichen Instanz durch Zusammensetzen der Teillösungen erzeugt.

Zur Realisierung dieses Verfahrens werden sowohl exakte und heuristische Lösungsmetho-
den für das STP als auch Algorithmen zur Partitionierung von Graphen kombiniert. Für die Be-
rechnung von exakten Lösungen wird ein Branch-and-Cut Verfahren verwendet. Das zugrunde-
liegende ILP-Model basiert auf den bekannten directed-cut-constraints, führt jedoch zusätzlich
noch die Verwendung von Knotenvariablen ein. Der zugehörigen Separierungsmethode liegen
verschiedene Verbesserungen aus der Literatur zugrunde. Zur Partitionierung wird das METIS
Graph Partitioning Framework verwendet. Außerdem wird ein einfacher Greedy-Algorithmus
vorgestellt, welcher eine Instanz durch die Kombination mehrerer Regionen in einem Voronoi-
Diagram erstellt.

Die implementierten Algorithmen werden zusätzlich in einen memetischen Algorithmus in-
tegriert, darunter die vorgestellte Konstruktionsheuristik, Reduktionstests, ein Algorithmus zur
Rekombination von Lösungen und Variable Neighorhood Descent. Die verwendeten Nachbar-
schaftsstrukturen basieren auf Steiner node insertion, Steiner node elimination, key-node elimi-
nation und key-path exchange.

Alle Algorithmen werden experimentell evaluiert. Die Testinstanzen dafür stammen aus der
SteinLib, welche eine Sammlung von Benchmark-Instanzen für das STP darstellt, und aus einer
Gruppe aus neuen Instanzen, die Netzwerkdesignprobleme aus der Praxis beschreiben. Die Er-
gebnisse zeigen, dass Lösungsqualität und Laufzeit des vorgestellten Verfahrens auch für große
Instanzen akzeptabel sind.

iv

Contents

List of Figures vii

List of Tables viii

List of Algorithms ix

1 Introduction 1
1.1 Background & Motivation . 1
1.2 Outline of the Thesis . 3

2 Preliminaries 4
2.1 MST-based Construction Heuristics . 4

2.1.1 Distance Network Heuristic . 5
2.1.2 Shortest Path Heuristic . 6

2.2 Metaheuristics . 7
2.2.1 Basic Local Search . 7
2.2.2 Variable Neighborhood Descent . 8
2.2.3 Greedy Randomized Adaptive Search Procedure 9
2.2.4 Path Relinking . 11
2.2.5 Memetic Algorithms . 12

2.3 Exact Solution . 13
2.3.1 Branch & Bound . 13
2.3.2 Integer Linear Programming . 15
2.3.3 Branch & Cut . 17
2.3.4 Dual Ascent . 18

2.4 Reduction Techniques . 21
2.4.1 Bound-based Reductions . 22

3 Previous & Related Works 24

4 A Partition-based Construction Heuristic 28
4.1 Partitioning Algorithms . 32

4.1.1 Edge-based Partitioning . 32
4.1.2 Voronoi-based Partitioning . 37

v

4.2 Instance Decomposition . 40
4.3 Solution Repair . 42
4.4 Solving Subproblems to Optimality . 43

4.4.1 ILP Model . 43
4.4.2 Separation . 45
4.4.3 Application of Bound-based Reductions 47

5 A Partition-based Memetic Algorithm 48
5.1 Solution Recombination . 50
5.2 Solution Archive . 51
5.3 Solution Improvement . 51

5.3.1 Steiner Node Insertion . 52
5.3.2 Steiner Node Elimination . 54
5.3.3 Key-path Exchange . 57
5.3.4 Key-node Elimination . 59
5.3.5 Variable Neighborhood Descent . 62

6 Computational Results 63
6.1 Benchmark Instances . 65
6.2 Preprocessing . 66
6.3 Parameter Analysis for the Exact Approach 67
6.4 Comparison of Local Search Heuristics . 68
6.5 Tuning the Partition-based Construction Heuristic 70

6.5.1 Evaluation of Partitioning Schemes . 70
6.5.2 Evaluating Decomposition and Repair Methods 72

6.6 Tuning the Partition-based Memetic Algorithm 74
6.7 Final Results . 76

7 Conclusion 80

Bibliography 82

Abbreviations 86

vi

List of Figures

1.1 A simple STP instance . 2

2.1 Solution spaces defined by different neighborhood structures 8
2.2 Binary B&B search tree . 13

4.1 PCH solution construction . 29
4.2 Partition-based construction procedure . 31
4.3 Multilevel partitioning scheme . 34
4.4 Example for a good edge-cut partition . 36
4.5 Example for a bad edge-cut partition . 36

5.1 Steiner node elimination: subtrees . 55

6.1 Graphical representation of test results . 78

vii

List of Tables

6.1 External implementations and libraries . 63
6.2 Preprocessing results for the instance set ES . 66
6.3 Preprocessing results for the instance sets TSPFST, VLSI and I 67
6.4 Performance comparison for B&C . 68
6.5 Comparing local search procedures w.r.t. the average gap 69
6.6 Comparing local search procedures w.r.t. the average runtime 69
6.7 Comparing partitioning schemes in PCH w.r.t. the average gap 71
6.8 Comparing partitioning schemes in PCH w.r.t. the average runtime 72
6.9 Comparing decomposition and reapir methods in PCH 73
6.10 Comparing different parameter configurations for MPCH 75
6.11 Comparing average gap and runtime per generation in MPCH 76
6.12 Comparing different methods w.r.t. the average gap 77
6.13 Comparing different methods w.r.t. the average runtime 77
6.14 Comparing algorithms w.r.t. the average dual gap 79

viii

List of Algorithms

1 Basic Local Search . 8
2 Variable Neighborhood Descent . 9
3 Greedy Randomized Adaptive Search Procedure (GRASP) 10
4 Semi-greedy solution construction . 10
5 Path Relinking . 11
6 A population-based search algorithm . 12
7 Branch & Cut procedure . 18
8 Dual Ascent . 20

9 Voronoi-based partitioning scheme . 38
10 Augmented instance decomposition . 41
11 Repair partial solution . 42
12 Separation procedure . 45

13 Partition-based memetic algorithm . 50
14 Steiner node insertion: neighborhood evaluation 53
15 Steiner node elimination: neighborhood evaluation 56
16 Key-path exchange: neighborhood evaluation 58
17 Key-node elimination: neighborhood evaluation 61

ix

CHAPTER 1
Introduction

1.1 Background & Motivation

Optimization problems are ubiquitous in virtually any area of human endeavour. Since resources
are generally scarce, finding optimal decisions on how to use them is clearly a relevant problem.
The list of practical applications is quite large. Some important examples are network design
and routing. Informally, optimization can be described as finding the best solution among al-
ternatives. Mathematically, an optimization problem corresponds to maximizing or minimizing
an objective function over some domain and some set of feasible solutions which is usually re-
stricted by a set of constraints. A combinatorial optimization problem (COP) is a specific type
of optimization problem, in which the domain of choosable elements is finite or countable in-
finite. Such problems are of special interest, since a large number of real-world problems can
be modeled in these terms. It is noteworthy that the restriction from an infinite to a finite set
does not necessarily make problems any easier, since the set of possible combinations between
elements is still exponentially large. A fundamental example is the NP-hard [35] Steiner tree
problem in graphs.

Definition 1.1 Steiner tree problem in graphs (STP) [77]
Consider an undirected graph G = (V,E) where V is the set of vertices and E the set of edges,
for which a cost function c : E → Q+ assigns a value to each edge. Given a set T ⊆ V of
special vertices called terminals, the objective of the STP is to find a subgraph S = (VS , ES) of
G spanning all terminals that minimizes the cost function c(ES) :=

∑
e∈ES

c(e).

Figure 1.1 shows a simple STP instance and a weight-minimal subgraph which connects
all terminals. Here, the subgraph contains both terminals and non-terminals. A non-terminal
is generally referred to as Steiner node. We observe that if the edge costs are positive and the
objective is to minimize cost, the subgraph will always correspond to a tree, which is called a

1

Steiner minimal tree in literature [77]. However, in the remainder of this work we will refer to a
Steiner minimal tree simply as an optimal solution, and to any subgraph connecting all terminals
which is not weight-minimal as a feasible solution.

Figure 1.1: A simple STP instance and an optimal solution when assuming that all edge costs
are equal. The terminals are marked black and the non-terminals are marked white. Some of
the Steiner nodes are chosen to be part of the connected subgraph. The edges belonging to the
solution are marked bold.

The STP appears in many practical network design problems. Some of these problems may
be modeled by the STP directly. The construction of phylogeny trees in computational biology
is a relevant example. A phylogeny tree describes inferred evolutionary relationships between
known species. Other problems may be derived from the STP, e.g., through the augmentation of
additional constraints. An example is the hop constrained Steiner tree problem, which restricts
the maximum number of edges by which a terminal may be connected from a specific root
terminal. Such a restriction is especially relevant for routing in computer networks [74]. In
some cases the STP appears as a subproblem in algorithms for the efficient solution of other
problems. For decomposition techniques like column generation and Lagrangian schemes the
resulting subproblems may take the form of the STP [13].

Due to its wide applicability, much scientific effort has been invested into the design of
efficient algorithms for solving the STP. A general classification of solution approaches is to dis-
tinguish between exact and heuristic methods. While exact methods guarantee that an optimal
solution is found given enough time, heuristic methods give no such guarantee, but usually com-
pensate by taking less computation time. During the last decades the exact solution approaches
to COPs have made much progress through the advance of efficient multipurpose integer lin-
ear program (ILP) solvers like CPLEX. However, when applying exact methods to the class of
NP-hard problems, to which many practically relevant problems belong, their runtime is still
exponential in the worst case, assuming that the conjecture P 6= NP holds. Thus their appli-
cation is often impractical for large-scale problem instances with several thousand elements to
choose from, which are quite common in real-world applications. If insufficient computational

2

resources are available, exact methods may have to be cancelled prematurely, which effectively
turns them into heuristic methods. In such cases methods that specialize primarily in the con-
struction of heuristic solutions may create better solutions in a shorter time frame, while the exact
approaches may calculate useful bounds on the value of the optimal solution. The development
of efficient heuristic methods is a relevant research topic of important practical concern.

This master’s thesis proposes a new partition-based construction heuristic to compute near-
optimal Steiner trees in graphs, especially for large-scale problem instances. The algorithm
applies heuristic partitioning techniques to divide graphs into subcomponents which are small
enough to be solved by an exact algorithm. The advantages of this approach are twofold: Firstly,
it provides good capabilities for parallelization and distribution. This is clearly the case, since
the subproblems can be solved independently. Secondly, fine-grained control over the trade-off
between solution quality and speed is achieved by adjusting the size and number of partitions.
In addition, the dual ascent algorithm is used to estimate the value of the optimal solution from
below.

The proposed construction heuristic is also tested in the context of a partition-based memetic
algorithm. In this procedure the partitioning is guided by the best available solution and is
used iteratively in combination with local search. As a local search strategy we apply Variable
Neighborhood Descent (VND).

The evaluation of the presented algorithms is conducted on the SteinLib [42], a state-of-the-
art benchmark set for the STP, and on a set of new real-world instances (arising from telecommu-
nication applications) with graphs containing up to 89 000 nodes. In addition to the algorithms’
evaluation of effectiveness, we hope to gain insights on the effects of heuristic partitioning on
the solution quality in the context of NP-hard problems.

The results of this work are further enhanced through the master’s thesis of Max Resch [62],
which focuses on the analysis and evaluation of the proposed algorithms’ parallel aspects and
tests the developed approaches on applications in bioinformatics.

1.2 Outline of the Thesis

The rest of this thesis is organized as follows: In Chapter 2 relevant preliminary concepts and
definitions are introduced. Chapter 3 lists related works and gives an overview of the state-
of-the-art concerning the STP. Chapters 4 and 5 describe the implementation of the partition-
based STP heuristic and a partition-based memetic algorithm, respectively. In Chapter 6 the
computational results are analyzed. Finally, Chapter 7 summarizes the results and concludes the
thesis.

3

CHAPTER 2
Preliminaries

In this chapter, we introduce definitions and concepts relevant to this work. These include data
structures for efficient and simple implementations as well as useful algorithms which have been
successfully applied to the STP or related problems. The presented algorithms follow various
paradigms and have different objectives, but complement each other nicely.

2.1 MST-based Construction Heuristics

Many applications require the fast construction of feasible Steiner trees from scratch. Such
procedures are not only useful by themselves, but are frequently needed to build more complex
exact and heuristic algorithms in which they may appear as a subcomponent. Some of the
simplest algorithms in this category are based on concepts for solving the minimum spanning
tree (MST) problem to optimality. The MST problem is the special case of the STP for which all
vertices are terminals. This special case can be solved in polynomial time by a greedy algorithm.
An algorithm is considered as greedy if for each step the currently best option is chosen, without
the consideration of past decisions [40].

In the following, we will present two well-known MST-based heuristics for the STP: the
distance network heuristic (DNH) [49] and the shortest path heuristic (SPH) [70]. The approx-
imation ratio of both algorithms is roughly equivalent, and can be bounded by two, i.e., the
produced solutions have cost ≤ 2 · OPT, where OPT is the objective function value of an opti-
mal solution.

The empirical results of the algorithms can often be improved by applying a simple postpro-
cessing phase denoted as MST-Prune [3].

MST-Prune(S):

1. Given a solution S = (VS , ES), compute the MST S′ of the subgraph induced by VS ∈ S.

2. Recursively remove (prune) all Steiner nodes of degree one in S′.

4

MST-Prune can be executed in O(|E| + |V | log |V |), since an MST can be computed in
O(|E|+ |V | log |V |) using a Fibonacci heap data structure and the number of pruned vertices is
bounded from above by |V |.

2.1.1 Distance Network Heuristic

The distance network heuristic (DNH) [43] computes an approximate solution to the STP by
applying an exact algorithm for solving the MST problem in the so-called distance network.
More formally stated, given a weighted graph G = (V,E, c) and terminals T ⊆ V , the distance
network DG = (T,E′, d) corresponds to a complete network on all terminal nodes. The edge
weights d correspond to the shortest distance between each pair of terminals. The DNH finds
the MST onDG and re-maps all the edges to a new graph S = (VS , ES), to which the procedure
MST-Prune is finally applied.

The main drawback of this approach is the fact that computing the full distance network is
rather costly and requires |T | executions of the Dijkstra algorithm. Thus the worst-case runtime
is bounded by O(|T | · (|E|+ |V | log |V |)).

In 1988 Mehlhorn [49] proposed an implementation which reaches a lower worst-case run-
time by exploiting the fact that it is not necessary to compute the full distance network. The
idea behind the implementation can be formalized through the concept of Voronoi diagrams in
graphs.

Definition 2.1 Voronoi diagram in graphs [3]
Given a graph G = (V,E) and a set T ⊆ V , the Voronoi diagram of G with respect to T is a
partitioning of V into a set of Voronoi regions. There exists a Voronoi region for each t ∈ T ,
denoted by vor(t). A node v belongs to the Voronoi region vor(t) iff it is closer to t than to any
other t′ 6= t, t′ ∈ T . Ties are broken arbitrarily.

Thus a node v ∈ V belongs exactly to one Voronoi region. In the remainder of this work, we
will denote an edge that connects two Voronoi regions as border edge and an edge that connects
nodes inside a Voronoi region as inner edge. The improved implementation comprises three
sequential steps:

1. Construct Voronoi Diagram:
A Voronoi diagram can be built efficiently through a single call of a modified version of
the Dijkstra algorithm, in which all terminals are considered as sources. In a heap-based
implementation, this is achieved by simply inserting the terminals into the heap at the start
of the algorithm (which is equivalent to adding a single artificial source connected to all
terminals by zero-weight edges) [73]. The following information is stored for each node
v ∈ V :

• base(v): the terminal which is closest to v.

• dist(v): the distance of the shortest path from v to the closest terminal.

• pred(v): the predecessor node of v on the shortest path to the nearest terminal.

5

2. Construct MST:
It is sufficient to apply an arbitrary exact algorithm for solving the MST on the subgraph
implied by the set of border edges [49]. A new weight value is computed for each border
edge e = (v, w) as follows:

c′e = ce + dist(v) + dist(w)

3. Construct Solution:
A solution S can now be constructed from the set of MST edges mst as follows:

S = mst

∀e = (v, w) ∈ mst : S = S ∪ path[base(v), v] ∪ path[base(w), w]

Here, path[base(v), v] denotes the unique path which connects v to its nearest terminal.
This path can be efficiently retrieved through the stored predecessors pred(v).

4. Prune Solution:
MST-Prune is applied to improve the constructed solution S.

The construction of a Voronoi diagram and the MST takes O(|E| + |V | log |V |), as does
MST-Prune. Extracting the paths is bounded by O(|E|). Thus the overall runtime is O(|E| +
|V | log |V |), which is a vast improvement compared to computing the full distance network.

2.1.2 Shortest Path Heuristic

The shortest path heuristic (SPH) [70] is based on Prim’s MST algorithm. Prim’s algorithm
solves the MST problem by starting with a tree S consisting of a single node. In each step, the
tree is extended by the cheapest adjacent edge connecting a node v ∈ V \ S. This is repeated
until all nodes are part of the tree. This concept can be naturally extended to the STP. Since not
every vertex is a terminal, shortest paths as computed by the Dijkstra algorithm can be used to
iteratively connect terminals together. We observe that the problem of finding a shortest path
between two nodes is a special case of the STP, if there are exactly two terminals.

In its original implementation the runtime is bounded by O(|T |(|E| + |V | log |V |)), since
|T | shortest paths have to be computed. Contrary to the DNH, no implementation is currently
known which improves the asymptotic worst-case runtime. However, an implementation has
been proposed in [3] which manages to reduce the average runtime to be empirically close to the
runtime required for solving the MST problem.

The improvement is achieved by exploiting the fact that only a part of the distance labels
computed by Dijkstra’ algorithm may change when computing a new shortest path to connect
the next terminal. Thus most of the distance data can be reused and is only updated if necessary.

Practical experiments have shown that the average solutions quality of SPH is far better
than the one of DNH. Therefore the SPH is generally a better choice when using the improved
implementation, considering that for both algorithms runtime and approximation factor are com-
parable.

6

2.2 Metaheuristics

A metaheuristic is a problem-independent heuristic procedure, which means the algorithmic
concept is not restricted to a certain class of optimization problems [58]. This form of indepen-
dence is achieved through the incorporation of basic problem-specific heuristics into a higher
level framework. Such heuristics act as subcomponents which provide information to guide the
metaheuristic’s search process. The overall objective is to effectively and efficiently traverse the
space of feasible solutions.

For NP-hard problems, the application of metaheuristics represents an effective way to
handle large-scale problems for which exact methods would be too slow. However, no guarantee
is given that an optimal solution is indeed found.

Ideas for metaheuristic approaches can take all sorts of forms. Many are derived from real-
world phenomena, like physical processes, biological evolution and animal behavior. However,
this form of description through metaphor may also lead to confusion and makes it difficult
to recognize common principles [68]. It is thus easier to categorize such metaheuristics ac-
cording to their common principals. Metaheuristics can be roughly divided into trajectory- and
population-based algorithms [6]. While trajectory-based methods focus on intensifying search
by following the best available solution, population-based methods diversify search to cover a
larger search area. Although some methods are clearly classifiable into one of these groups,
most sophisticated algorithms may incorporate elements from both categories.

In the following we will present a selection of metaheuristic concepts which are relevant in
the context of this thesis: Local Search, Variable Neighborhood Descent, the Greedy Random-
ized Adaptive Search Procedure (GRASP), Path-Relinking and Memetic Algorithms.

2.2.1 Basic Local Search

Local search is a fundamental example of trajectory-based metaheuristics [6]. Given an initial
solution, changes are introduced iteratively so that the solution’s objective value is improved.
Due to its simplicity and effectiveness it is often applied as a subcomponent in more sophisti-
cated metaheuristics.

An abstract view of the procedure is given in Algorithm 1. In each iteration the neighborhood
N(S) of the current solution S is explored and an improving solution is chosen. The elements
of a neighborhood are defined by the neighborhood structure, usually through a transformation
rule that specifies how a new solution can be derived from a given solution. The search continues
until no improving solution exists in the current neighborhood. The result is a solution which is
locally optimal with respect to the chosen neighborhood structure.

There exist different strategies for the exploration of N(S). Common approaches are first
improvement (select the first found improving solution) and best improvement (select the best
improving solution in the neighborhood).

7

Algorithm 1: Basic Local Search

Data: A feasible solution S.
Result: A locally optimal solution S′ with respect to the chosen neighborhood structure.

1 S′ ← S
2 repeat
3 S′ ← Improve(N(S′))
4 until no improvement possible

The concept of local search forms the basis for numerous extended algorithms that follow the
same fundamental idea, e.g., Variable Neighborhood Search (VNS), Variable Neighborhood De-
scent (VND), Large Neighborhood Search (LNS), Guided Local Search (GLS) or Tabu Search
(TS) [6].

2.2.2 Variable Neighborhood Descent

A natural extension of the basic local search approach is to use multiple neighborhood struc-
tures [6]. The goal is to exploit different characteristics of the search space, so that for a given
solution each neighborhood potentially contains improving solutions that do not exist within
another neighborhood.

This concept is illustrated by Figure 2.1. For a single neighborhood structure the local
search process might get stuck, because no more improving solutions can be found. The search
terminates in a so-called basin of attraction, which is defined by the set of solutions where
the local search stops at the same local optimum. Since the basins of attraction depend on the
solution space defined by a neighborhood structure, switching structures might still yield an
improvement. This strategy can greatly enhance the achieved improvement, since often more
improvement steps are possible.

Figure 2.1: Two landscapes defined by different neighborhood structures, illustrating that
switching between neighborhoods can lead to better local optima. The figure is borrowed
from [6].

A high-level representation of VND is given in Algorithm 2. The procedure uses kmax neigh-
borhood structures, and each Nk denotes a different neighborhood. If no improving solution is

8

found within the current neighborhood, the procedure switches in a deterministic manner to the
next one. VND terminates if no improving solution is found in any considered neighborhood
structure.

Algorithm 2: Variable Neighborhood Descent

Data: A feasible solution S.
Result: A locally-optimal solution S′ with respect to the used neighborhoods.

1 S′ ← S
2 repeat
3 k ← 1
4 while k < kmax do
5 S′′ ← Improve(Nk(S

′)))
6 if OBJ(S′′) < OBJ(S′) then
7 S′ ← S′′

8 else
9 k ← k + 1

10 end
11 end
12 until no improvement possible

The order in which neighborhoods are explored may potentially affect solution quality as
well as computation time. This issue has been addressed by Hu and Raidl [32], who propose
a VND variant in which neighborhoods are ordered dynamically according to their observed
success probability and required runtime. Results indicate that their method can reduce search
time while preserving solution quality.

A conceptually similar technique is Variable Neighborhood Search (VNS). In contrast to
VND, the basic VNS uses a randomized approach to escape basins of attraction. Each itera-
tion consists of a perturbation and an improvement phase. In the first phase, the solution is
perturbed by choosing a neighbor at random from a specified set of neighborhoods, so that the
result hopefully lies within a different basin of attraction. In the second phase, the result is im-
proved until a local optimum is reached. The benefit of this approach is that the perturbation
introduces additional diversity into the search process. Both VNS and VND provide advantages,
and combinations thereof are referred to as general VNS [23].

2.2.3 Greedy Randomized Adaptive Search Procedure

GRASP is a trajectory-based metaheuristic which combines a greedy randomized (semi-greedy)
construction heuristic with local search in a multistart approach. The algorithm was initially
proposed by Feo and Resende [20] in 1989.

9

Algorithm 3 depicts the procedure’s structure. In each iteration a new solution is constructed
and then improved by local search. After the termination conditions are met (usually a specified
number of iterations) the best found solution is returned. The semi-greedy construction proce-
dure is essential for the procedure’s success. The constructed solutions should be of good quality
but at the same time diverse enough to end up in different basins of attraction [51].

Algorithm 3: Greedy Randomized Adaptive Search Procedure (GRASP)

Result: A feasible solution S.

1 while termination conditions not met do
2 S ← ConstructGreedyRandomizedSolution()
3 ApplyLocalSearch(S)
4 if OBJ(S) < OBJ(Sbest) then
5 Sbest ← S
6 end
7 end

8 S ← Sbest

GRASP’s construction procedure incorporates randomization into a dynamic greedy con-
structive heuristic. A solution is iteratively constructed by adding elements until the solution is
feasible. In the case of a purely greedy algorithm, the currently best element is chosen in each
iteration. The ranking of elements is defined by a greedy function, which heuristically assigns
each element a value based on its perceived benefit. Such an algorithm is considered dynamic if
the values of the greedy function are re-computed after each choice.

Algorithm 4: Semi-greedy solution construction

Result: A feasible solution S.

1 S ← ∅
2 α← DetermineCandidateListLength()

3 while solution not complete do
4 RCLα ← GenerateRestrictedCandidateList(S)
5 x← SelectElementAtRandom(RCLα)
6 S ← S ∪ {x}
7 UpdateGreedyFunction(S)

8 end

GRASP extends this form of solution construction by selecting new elements uniformly at
random from a set of best solutions. This set is referred to as restricted candidate list RCL.
Multiple approaches on how to build the RCL have been proposed. A simple strategy is to
let the parameter α denote the cardinality of RCL. In this case, for α = 1 the construction

10

procedure is equivalent to a deterministic greedy heuristic. In contrast, for α = n, where n
denotes the number of available elements, the construction is completely random.

The construction procedure is illustrated in Algorithm 4. In its simplest form, α is only
chosen at the beginning. In each iteration theRCL is generated by selecting the α best elements.
Then an element x is selected at random and added to S. Finally, the ranking of elements is
adapted according to the current state of the partial solution [6].

The original GRASP does not specify any kind of long-term memory to retain information
between iterations. Several improvements have been proposed that address this issue. A hash
table can be applied to remember solutions which have already been constructed, so that un-
necessary local search iterations are avoided. Another option is to let the set of already found
solutions influence the random selection of new elements. Thus the search is optionally focused
on elements which already have been part of many good solutions, or more diversity is intro-
duced by avoiding this kind of elements. Adapting the parameter α has also been considered. In
Reactive GRASP, α is changed according to the quality of previous solutions [51].

2.2.4 Path Relinking

In contrast to the approaches presented in the previous sections, Path Relinking belongs to the
class of population-based metaheuristics [6, 24]. Such methods are characterized by the fact
that in each iteration they operate on a set of solutions (i.e., a population) rather than on a single
solution. In the case of Path Relinking, new solutions are generated through combination from
the population. Combination corresponds to the exploration of solutions lying on the trajectory
in the search space defined by two given solutions: the initiating solution and the guiding so-
lution. The trajectory is explored through iterative transformation of the initiating solution, so
that elements from the guiding solution are introduced. The intermediate results are called trial
solutions, and may be infeasible. In such cases a repair procedure needs to be applied.

Algorithm 5: Path Relinking

Data: An initial population pop.
Result: An improved population pop.

1 repeat
2 pop′ ← SubsetGeneration(pop)
3 trial← SolutionCombination(pop′)
4 trial← ImprovementAndRepair(trial)
5 pop← PopulationUpdate(pop, trial)

6 until termination criteria met

A high-level representation of Path Relinking is given in Algorithm 5. In each iteration, a
subset pop′ of the population pop is chosen and its solutions are combined among themselves.
The resulting trial solutions trial are repaired and then improved (usually through local search).
Finally, the population is updated with the newly constructed solutions. The population size is
generally limited, so only a subset of all existing solutions is kept. In addition to solution quality,

11

the diversity of the new population is also an important criterion for selecting solutions. Keeping
the population diverse enough will make it more likely that new areas of the search space are
explored during the following iterations.

Since new solutions are only generated through combination, the success of Path Relinking
strongly depends on the diversity of the initial population. Exploring trajectories should dis-
cover solutions which lie in different basins of attraction. This guarantees that local search will
terminate in previously unexplored areas of the search space. GRASP is usually a good choice
for generating an initial population, since the constructed solutions are both locally optimal and
diverse.

2.2.5 Memetic Algorithms

Memetic algorithms (MA) represent a class of evolutionary algorithms (EA) which is character-
ized by the intention to exploit all available knowledge about the problem at hand. In contrast
to traditional evolutionary approaches, the incorporation of problem domain knowledge is a
fundamental characteristic [23].

The term “memetic” is inspired by Richard Dawkins’ concept of a meme which represents
a unit of cultural evolution that can exhibit local refinement. In the context of MA’s, memes
refer to strategies used to enhance solutions [44] (e.g., local search, reduction tests, truncated
exact methods, approximation and fixed-parameter tractable algorithms, heuristics, specialized
recombination operators, etc. [23, 50]).

The notion of designing algorithms that are more focused on exploiting problem-specific
knowledge is supported by the No-Free-Lunch Theorems for optimization [78]. Their general
implication is that a search algorithm that specializes in solving a specific problem will outper-
form an algorithm for general problems.

Like EAs, MAs are population-based metaheuristics, i.e., a population of solutions is main-
tained over the course of the search. It is notable that the population may not only include
feasible solutions, but also infeasible or partial solution, which can be extended or repaired. The
basic structure of a memetic algorithm is that of a generic population-based metaheuristic, which
is depicted in Algorithm 6.

Algorithm 6: A population-based search algorithm [23]

1 pop← GenerateInitialPopulation()

2 repeat
3 pop′ ← GenerateNewPopulation(pop)
4 pop← UpdatePopulation(pop, pop′)
5 if pop has converged then
6 pop← RestartPopulation(pop)
7 end
8 until termination criteria met

12

In the previous section, Path Relinking has been explored as an example for a population-
based method. The purpose of GenerateInitialPopulation and UpdatePopulation
should already be apparent. On the other hand, the GenerateNewPopulation step is clearly
the core element of a memetic algorithm. In this step, operators are applied to the population
to generate new solutions. A given operator can be defined for any number of arguments. For
example, operators that traditionally appear in EAs are recombination, in which two solutions
are combined in some way to generate a set of offspring solutions, and mutation, in which a
single solution is altered to introduce diversity. Memetic algorithms extend this idea, so that any
problem-specific algorithm can be applied as operator. A popular example is local search, which
can be interpreted as a specialized mutation operator that improves a solution.

The RestartPopulation step is also of particular importance in a memetic algorithm.
Due to the application of problem-specific knowledge to improve solution quality, the popula-
tion might converge faster to a point in which not enough diversity is available to explore more
of the search space. In such a case it makes sense to restart the current population. Gener-
ally, some of the best solutions of the old population are kept, and the rest is reseeded as in
GenerateInitialPopulation.

2.3 Exact Solution

2.3.1 Branch & Bound

Branch-and-bound (B&B) is a universal algorithmic concept which facilitates the design of ex-
act algorithms for various optimization problems. Due to this reason it represents an important
tool when attempting to solve NP-hard problems to optimality [12]. The method itself can be
considered as an intelligent enumeration scheme, in which the optimality of a solution is guaran-
teed by excluding the possibility that a better solution can exist anywhere in the search space of
all feasible solutions. Normally this would require the enumeration of the whole search space,
which is clearly not very efficient. However, in B&B this is avoided through the systematic
division of the solution space and the elimination of whole subspaces.

S

S0

S00

S000 S001

S01

S010 S011

S1

S10

S100 S101

S11

S110 S111

Figure 2.2: A binary B&B search tree.

13

The current state of the B&B procedure can be represented in the form of a search tree. An
example is given in Figure 2.2. Each node corresponds to a different search space. Initially,
the tree contains just a single node. Throughout the procedure the search space is split and
restricted through the addition and removal of nodes. Each node corresponds to a separate
solution subspace. The processing of a single node can be described in three separate operations:
bounding, branching and pruning.

1. Bounding:
Given a B&B node, a lower and upper bound to the objective value of the optimal solution
is computed for the corresponding solution space. An upper bound can be computed by
solving the problem heuristically, as presented in the previous sections.

A lower bound can be obtained through the solution of a simpler form of the original
problem. In this context, simpler means that it is relatively easy to solve the problem
optimally. The new problem is referred to as a relaxation of the original problem. A
problem relaxation has to fulfill the following properties:

a) S ⊆ Sr
b) cr(s) ≤ c(s), ∀s ∈ S

The first property states that the solution space S of the original problem has to be con-
tained in the solution space Sr of the relaxed problem. The second property states that
for any solution s ∈ S, the objective function value of the relaxed problem cr is a lower
bound of the objective function value of the original problem. If the evaluation function
cr = c, then (a) implies (b). But in general, we may also use lower estimators of the orig-
inal objective function. For a minimization problem, the value of the relaxation provides
a valid lower bound of the objective function value.

2. Branching:
The solution space S of a given B&B node v is partitioned into a set of disjunct subspaces
S0 . . . Sn. An additional child is appended to v for each new subspace. A general idea for
binary branching in COPs is to choose some element e so that:

∀s ∈ S0 : e ∈ s

∀s ∈ S1 : e /∈ s

For all solutions s in the respective solution space, e is either always or never part of s.
Examples for e in the context of the STP are a single edge or Steiner node.

3. Pruning:
Pruning prevents a B&B node from being branched, because exploring its solution space
cannot contribute to finding a better solution. Let lb(v) and ub(v) denote the lower and
upper bound of a B&B node v, respectively, and L the set of leaf nodes in the B&B tree.
If the lower bound of the current node v is greater or equal to the best known upper bound,

14

then clearly no better solution can exist in this space. Hence, a node v can be pruned if
the following condition holds:

∀w ∈ L : lb(v) ≥ ub(w)

In each iteration of the B&B procedure, a leaf node v is selected from the B&B tree. This can
occur in a random manner or optionally through a more complex scheme. Then the bounding
operation is executed for v. Based on the computed bounds, v is either pruned or branched.
The B&B procedure terminates if no nodes remain for further evaluation, i.e., all available leaf
nodes have been pruned. If the problem is feasible, the best obtained upper bound is the optimal
solution.

2.3.2 Integer Linear Programming

A large number of COPs can be formulated as an integer linear program (ILP). An ILP optimizes
a set of integer variables with respect to a linear objective function and a set of linear constraints.
The standard form of an ILP is defined as follows:

min cTx

s.t. Ax ≤ b
x ≥ 0

x ∈ Z

(2.1)

Here x represents a vector of variables which have to be determined to minimize the objec-
tive function. The variables x are subjected to a number of linear constraints which are defined
by the given constraint matrixA and the right hand side vector b. Vector c represents coefficients
related to the cost of the variables. ILPs which are not in standard form can be transformed into
this form, e.g., inequalities can be represented as equalities by introducing slack variables.

Solving ILPs is NP-hard in general. The most efficient way to solve an ILP is through
B&B. Originally, the technique was introduced in this context [45]. A natural relaxation of an
ILP can be achieved by allowing the variables to take non-integer values. Such a relaxation
is called a linear program (LP). Contrary to ILPs, an LP can be solved in a relatively efficient
way using the Simplex method. Although its worst case runtime is exponential, the algorithm is
generally much faster in practice. The solution of an LP is a lower bound to the corresponding
ILP.

Since a COP has multiple representations as ILP, it is often favorable to select formulations
which yield good LP relaxations, i.e., which are close to the optimal value. There exists a
wide array of ILP formulations for the STP. For a catalog of formulations the reader is referred
to [25, 53]. In this work two well-known formulations are presented: the multicommodity-flow
formulation and the directed-cut formulation. Both formulations can be stated for directed or
undirected instances. We will focus on the directed versions, since it can be shown that these
may result in stronger relaxations.

15

A directed formulation can also be applied to the undirected STP. To this end the graph of an
undirected STP instance G = (V,E) has to be transformed into an equivalent directed instance
GD = (V,A), where A is the set of arcs created by adding two anti-parallel arcs for each edge
e ∈ E. Clearly, in an optimal solution of the ILP, only one arc is selected for each edge, so a
directed solution can be transformed back into an undirected solution.

The presented formulations differ mainly in the idea of how the constraints ensure that the
created solution is connected, i.e., the solution should take the form of a single tree. In both
cases, the binary variables xij are used to represent that one arc is part of the solution. An
arbitrary terminal is selected as the root r of the created arborescence. The principles used
in these formulations are not restricted to the STP, but are useful for all kinds of ILPs that
model connectivity constraints. The choice of the root node has no effect on the strength of
the LP relaxation. For brevity, we use the following notations: Given a set W ⊂ V , we de-
fine δ+(W) := {(i, j) ∈ A | i ∈W ∧ j ∈ V \W} as the set of all arcs with tail inside W and
head in its complement. Conversely, δ−(W) denotes the set of arcs pointing into W from its
complement set. IfW contains only a single element v, we write δ+({v}) as δ+(v) and δ−({v})
as δ−(v), respectively. Given a variable vector a and a set of arcs A, a(A) denotes

∑
a∈A a, i.e.,

the sum of all variables associated with the arcs in A.

(MCF) min cTx (2.2)

s.t. fk(δ+(vi))− fk(δ−(vi)) =


1, vi = r

−1, vi = t

0, else

∀k ∈ T \ {r}, vi ∈ V (2.3)

fkij ≤ xij ∀(i, j) ∈ A, k ∈ T \ {r} (2.4)

fkij ≥ 0 ∀(i, j) ∈ A, k ∈ T \ {r} (2.5)

xij ∈ {0, 1} ∀(i, j) ∈ A (2.6)

In the multicommodity flow formulation, a connected graph is enforced through the addition
of flow variables fkij , ∀k ∈ T \ {r},∀(i, j) ∈ A. These simulate the flow on which one unit
of commodity is sent from the root node to each terminal. The flow itself is represented by the
flow conservation constraints (2.3). The constraints (2.4) ensure that for each arc on which flow
exists, the corresponding arc variable xij is also set.

The multicommodity flow formulation represents the flows as independent from each other,
thus for each terminal k there exist flow variables for the whole graph. This may result in a
high number of variables if the graph contains many terminals, which is a disadvantage of this
formulation. Alternatively, the flow for each arc could be aggregated into a single variable. The
corresponding formulation is called single-commodity flow. However, it has been shown that
this form of representation yields a weaker LP relaxation. Another formulation that has the
same strength as (MCF) is the well-known directed cut formulation.

16

(DCF) min cTx (2.7)

s.t. x(δ+(W)) ≥ 1 ∀W ⊂ V, (2.8)

r ∈W,
(V \W) ∩ T 6= ∅

xij ∈ {0, 1} ∀(i, j) ∈ A (2.9)

The directed cut formulation ensures a connected graph solely through the constraints (2.8).
No additional variables are necessary. For each cut introduced through the set of nodes W ,
which contains the root terminal, and for which at least one terminal is on the other side of the
cut, at least one edge has to be chosen. It can be shown that the LP relaxation of (DCF) is equal
to the relaxation of (MCF) [79].

However, there exist exponentially many cuts in a graph, and thus unlike the (MCF) model,
(DCF) contains an exponential number of constraints. Therefore the application of the complete
formulation is generally infeasible. In practice the (DCF) can still be useful, because rarely all
constraints are needed to compute an optimal solution.

2.3.3 Branch & Cut

An effective algorithm for solving an LP formulation with exponentially many constraints is
the well-known cutting-plane method. For this purpose the LP is initialized without the set of
exponential constraints. Then an optimal solution x of this relaxation is computed, which will
usually violate some of the not considered constraints. So in each iteration of the cutting-plane
method, inequalities are identified which are valid for the original formulation but violated by
x. Geometrically, such an inequality defines a hyperplane in Rn, where n is the number of
variables, separating x from the polyhedron, hence the name “cutting plane”.

The problem of identifying such inequalities is referred to as separation problem and a pro-
cedure that solves it as separation method. The identified inequalities are added to the LP and it
is solved again. This process is repeated until no further violated inequalities can be identified
by the separation method [27].

The application of the cutting-plane method in the context of a B&B procedure is called
branch-and-cut (B&C). The simplified operation of the B&C procedure is described in Algo-
rithm 7.

17

Algorithm 7: Branch & Cut procedure [41]

1 Initialization
2 repeat
3 Select B&B leaf

4 repeat
5 Solve LP
6 Call separation procedure
7 until no violated inequalities

8 Prune or branch B&B leaf
9 until B&B tree is empty

2.3.4 Dual Ascent

The dual ascent algorithm for the STP was first proposed by Wong [79] in 1984. In general,
a dual ascent procedure aims to compute heuristic solutions to the dual of an LP. A general
introduction to LP duality can be found in [15]. In the case of the STP, the dual of the directed
multicommodity flow formulation is solved heuristically. In [79], the dual problem is stated as
follows:

(DUAL)(MCF) max
∑

k∈T\{r}

(vkk − vkr) (2.10)

s.t. vkj − vki − wkij ≤ 0 ∀k ∈ T \ {r}, ∀(i, j) ∈ A (2.11)∑
k∈T\{r}

wkij ≤ cij ∀(i, j) ∈ A (2.12)

wkij ≥ 0 ∀k ∈ T \ {r}, ∀(i, j) ∈ A (2.13)

Variables vki correspond to the flow conservation constraints (2.3) in the original problem.
The variables wkij correspond to the linking constraints (2.4). The objective function (2.10)
maximizes the sum of the variables vki . Since the constraint for the root node is redundant, we
can set vkr = 0 for all k ∈ T , and therefore transform the objective function to

∑
k∈T v

k
k , k ∈

T \ {r} ∈ T .
In the presented dual ascent procedure, all dual variables are initially set to zero. The goal

is to increase the variables vkk , k ∈ T \ {r}, since these are part of the objective function. We
note that due to the constraints (2.3) and (2.4), the variables wkij limit how much the variables
vki and vkj are allowed to diverge. Therefore, the feasibility of the current solution can only be
guaranteed by increasing multiple variables in each iteration, so that all constraints are satisfied.
By the duality of linear programming, any feasible solution to the (DUAL)(MCF) provides a
valid lower bound to the optimal (MCF) value. Rather than explicitly keeping track of each dual

18

variable’s current value, the procedure only manages the slack for the constraints (2.11). The
dual ascent algorithm operates on the following data:

• Reduced costs c̃:
The reduced cost vector c̃ represents the slack of the constraints (2.12). Each reduced cost
variable c̃ij ∈ c̃ is associated to a specific arc (i, j) ∈ A. The slack is initialized with the
original arc costs cij and is decreased in each iteration.

• Auxiliary graph GA:
Initially, GA contains only the nodes V of G. As the algorithm progresses, arcs from G
are iteratively added to GA. An arc (i, j) ∈ A is added if the corresponding reduced cost
c̃ij variable is decreased to zero. For this reason, the auxiliary graph is sometimes referred
to as saturation graph, as it contains only arcs for which the corresponding constraints are
saturated.

• Lower bound LB:
The current value of the objective function of (DUAL)(MCF) is stored in LB. Whenever
slack is decreased, LB is updated accordingly to reflect the change in the dual variable
values.

Intuitively speaking, the algorithm decreases slack iteratively around the specific terminals,
until some termination condition is met. The saturation graph governs in what manner the dual
variables are increased, and thus also the objective function. The auxiliary graph GA is used
to ensure that the solution to (DUAL)(MCF) is feasible in each iteration. In the presented dual
ascent algorithm the following definitions are essential to describe the operations in GA:

Definition 2.2 Strongly Connected Component
In a directed graph, a set of nodes represents a strongly connected component, if from each node
all other nodes of the set can be reached by a directed path.

Definition 2.3 Dangling node
A node i is said to dangle from node j if j is reachable from i, but not vice versa.

Definition 2.4 Root Component
A root component is a strongly connected component which contains at least one terminal k ∈
T \ {r}, but no terminal outside of this component dangles from any member.

The concept of root components is used to decide for which terminal k ∈ T \ {r} the
associated dual variables should be implicitly increased. We note that this is not essential for the
feasibility of the dual solution, but influences the quality of the achieved objective value [79].

At each iteration, GA contains a set of root components. As slack is decreased and GA
grows, root components are eliminated. If no root component exists anymore, this implies that
each terminal k ∈ T \ {r} can be reached from r, and the objective value stored in LB cannot
be increased anymore. Thus the dual ascent algorithm terminates. In Algorithm 8 an abstract
presentation of the dual ascent procedure is shown.

19

Algorithm 8: Dual Ascent

Data: A digraph G = (V,A, c) with T ⊆ V .
Result: A lower bound LB.

1 LB ← 0
2 c̃ij ← cij ,∀(i, j) ∈ A
3 GA ← (V, ∅)
4 while root component exists in GA do
5 R← ChooseRootComponent()
6 W ←W (R)
7 ∆← min(i,j)∈δ−(W)cij
8 c̃ij ← c̃ij −∆, ∀(i, j) ∈ δ−(W)
9 LB ← LB + ∆

10 end

The algorithm’s behavior can be divided into three steps:

1. Initialization:
At the beginning LB is set to zero and the slack is at its maximum, because the algorithm
starts at the feasible dual solution in which all dual variables are set to zero. The auxiliary
graph initially contains only the nodes V in G, but no edges.

2. Choice of the root component:
The choice of a root component can be important to reach better lower bounds. Generally,
choosing a root component can be done arbitrarily. However, there exist more elaborate
schemes which may perform better, e.g., a heuristically constructed Steiner tree can be
used to guide the choice of the next root component [56].

3. Slack reduction:
The algorithm takes the set of nodes W which are reachable from t in GA. Then the set
of arcs which enters W in G is computed. The slack belonging to those arcs is reduced by
the minimal slack left in this set, and the objective value is increased.
This corresponds to an increase of the dual variables for an arbitrary terminal t ∈ R:

∀i ∈W : vti = vti + ∆

∀(i, j) ∈ δ−(W) : wtij = wtij + ∆

It can be shown that the algorithm actually produces a feasible solution for the dual problem
in each step. Here, we will only give an intuitive proof sketch. For an inductive proof, the reader
is referred to [79].

Two things have to be made sure: For constraints (2.11), all the variables v are increased
when extending a cut. In addition, the variables w of the cut have to be increased by the same

20

amount, to keep the first constraint satisfied. Since the slack for each arc implies that each
variable w can only be decreased for this amount for all terminals, the second constraint also
holds throughout the run.

In each iteration, the variables vi, i ∈ R, of a root component are all increased by the
same amount. Thus all constraints (2.11) which belong to nodes i, j ∈ R hold. For these
constraints (2.11), for which only one node is in R, the variables wkij are increased by the same
amount. Thus these constraints also hold. Due to the constraints (2.12), the reduced costs are
initialized by cij , thus this is the maximum value which the sum in the constraint can effectively
reach.

The dual ascent algorithm is not only useful for computing lower bounds, but can also sup-
port the construction of higher-quality primal solutions. The basic idea is to apply a heuristic
method to a subgraph GS of G, which is constructed based on the reduced costs. There exist
multiple approaches of how to construct this subgraph.

In [79], GS corresponds to the subgraph induced by the set of nodes VA in G, where VA
denotes the set of nodes reachable from r in GA after the termination of dual ascent. For each
edge e = {v, w} ∈ GS , c(e) corresponds to the cost of the undirected edge in G that connects v
and w. We note that the dual ascent algorithm only terminates after all terminals are reachable
from r in GA, so a feasible solution to the original instance exists in this subgraph.

In a more recent approach presented in [53], GS is constructed in a way so that it only
contains the undirected edges that correspond to edges in GA with zero reduced costs at the
termination of dual ascent. The edge costs are computed as in the previous approach.

We note that in both methods, GS does not necessarily contain a solution that is also optimal
for G. However, GS can still encourage the construction of better primal solutions than in G,
since more information is available due to the use of reduced costs.

2.4 Reduction Techniques

The purpose of reduction techniques is to simplify a given problem, i.e., to transform it into a
smaller, yet equivalent problem [72]. Especially for the STP the effectiveness of reduction tests
has been widely-acknowledged. Naturally, their application is strongly recommended prior to
time-consuming approaches like B&B.

In the context of the STP, reductions may simply take the form of deleting edges and Steiner
nodes. More complex tests require the application of transformations to the original graph, e.g.,
the contraction of nodes or placement of additional edges. If transformations are used, a way for
efficiently mapping a solution in the reduced graph to one in the original graph is necessary.

Major classes of reduction techniques are alternative-based and bound-based tests. The first
class infers information about an element through the existence of alternative solutions. If it can
be shown that for any solution that an element is part of, there exists a better solution without
that element, then the element can clearly be deleted. Conversely, if it can be shown that for
any solution the element is part of, there exists no better solution without that element, then
the element can be chosen. The second class makes use of lower and upper bounds to evaluate
elements.

21

There exist reduction tests of varying complexity and effectiveness. Some of them are spe-
cialized to certain types of graphs, e.g., rectilinear graphs with holes, which appear in VLSI
design [72]. In any case, the repeated application of different reduction tests is often beneficial,
since the graphs resulting from the application of one test may be susceptible to other tests.
Therefore it is generally useful to have a wide selection of tests available [53].

2.4.1 Bound-based Reductions

A simple bound-based reduction test can be constructed by using the information gained from
running the previously presented dual ascent algorithm. The test requires a lower bound lb, an
upper bound ub and the reduced costs c̃ij . The argumentation presented in this work originates
from [53], but the test itself is much older and was already introduced in [16].

Proposition 2.1 Given a directed network G = (V,A, c) with c̃ij ≤ cij . Let G′ = (V,A, c′)
be a directed network with c′ = c − c̃ and let lb′ be a lower bound of the costs of any feasible
solution in G′. Then for each feasible solution S in G the following inequality holds:
lb′ + c̃(S) ≤ c(S) [53].

The proposition holds, since c(S) = c′(S) + c̃(S) and lb′ ≤ c′(S). The lower bound lb′

corresponds to the lower bound lb returned by the dual ascent algorithm, and is also a lower
bound for the graph G, thus lb+ c̃(S) ≤ c(S). Through this proposition, a simple reduction test
for Steiner nodes and edges can be devised:

1. Elimination test for Steiner nodes:
Assume a Steiner node v is part of the optimal solution S. We observe that in this case
k will be connected by at least two paths in S. The costs of the optimal solution are
not known. However, we can bound c̃(S) from below through the reduced costs of two
arc-disjoint paths which connect v: one connecting it to the root r, and the other one
connecting it to an arbitrary terminal node. Let p̃[a, b] describe the costs of a directed path
p[a, b] using the cost vector c̃. The costs of the optimal solution can be approximated by
an upper bound ub. The Steiner node v and its adjacent edges can be eliminated if the
following inequality holds:

lb+ p̃[v, r] + p̃[v, t] > ub

2. Elimination test for edges:
An edge e = {i, j} can be deleted if the cost of both arcs (i, j) and (j, i) in the directed
graph is too high for the bounds. The test can be represented by the following inequality:

lb+ min(c̃ij , c̃ji) > ub

22

The second test can clearly be executed in O(|E|). The first test can run in O(|E| +
|V | log |V |). For the Steiner node elimination, two executions of Dijkstra are sufficient to com-
pute all necessary data: The first run computes the distances from the root node to all other
nodes. The second run starts at the terminal nodes, but traverses the directed graph in reverse.
This is essential, since the arcs in a solution of a directed STP instance have to form an arbores-
cence rooted at r. However, the tests require that the dual ascent algorithm has been applied
before to generate the essential information. It is also noteworthy that running dual ascent from
various roots may result in different reduced costs, and thus eliminate different parts of the graph.
Running the tests from multiple roots in a row can therefore increase the test’s efficiency [53].

23

CHAPTER 3
Previous & Related Works

The STP in graphs was originally formulated independently by Hakimi [29] and Levin [46] in
1971. During the last decades the scientific community has dedicated much effort to the design
of efficient algorithms. The presently available techniques span several conceptually different
areas, including exact methods, heuristic methods, approximation algorithms and reduction tests.

As an exact method, B&B has been applied successfully to solve general problem instances
to optimality. Several approaches have been proposed to compute lower bounds. In this context
linear programming formulations have been analyzed extensively. Surveys of known formula-
tions can be found in [25, 53]. Koch et al. have shown that the directed-cut formulation can
yield successful results when applied in a B&C algorithm [41]. They have also proposed several
methods that can speed up the solution process by enhancing the separation procedure.

Alternative methods for bound generation include Lagrangian relaxation and dual ascent.
In [5], Lagrangian relaxation is applied to a MST-based problem formulation. In [79], a dual
ascent algorithm is proposed which solves the dual problem of the well-known multicommodity-
flow formulation heuristically. The algorithm’s performance has been improved in [2] through
the addition of several dual heuristic techniques.

Some special cases of the STP can be efficiently solved to optimality, e.g., on strongly
chordal graphs. A graph is chordal if every cycle of length at least four contains a chord, i.e.,
an edge that is not part of the cycle but which connects two nodes within the cycle. A graph
is strongly chordal if it is chordal and every cycle of even length at least six has an odd chord,
i.e., a chord for which the distance between its incident nodes in the cycle is odd. A parallel
algorithm is presented in [14] which solves the STP on this type of graphs in O(log2 n). Other
restrictions to the instance structure may facilitate the application of efficient algorithms by ex-
ploiting the problem’s fixed parameter tractability. Such an algorithm has been proposed for
planar graphs [52]. Another method has been proposed by Polzin and Daneshmand [53], which
solves instances efficiently in linear time if the corresponding graph is bounded by a small width
parameter. The applied width concept is similar to path-width.

Polzin and Daneshmand [53] propose a more complex framework which combines a wide
array of algorithmic techniques, integrated into a B&B procedure. B&B ensures that optimal

24

solutions are found eventually, however the essential work is done by the algorithms executed
within each B&B node. These include an extensive set of reduction tests, a dual ascent heuristic,
a repetitive SPH enhanced by heuristic preprocessing and an algorithm for the exact solution
of instances restricted by a width-parameter closely resembling path-width. Through the itera-
tive tightening of bounds and strong reduction methods, problems can often be heavily reduced
before branching occurs. For a large part of the examined test instances branching is not even
necessary at all. To the date of this master’s thesis Polzin and Daneshmand have achieved the
best available practical results for the STP.

The importance of preprocessing in the form of reduction tests also becomes apparent in
other works, since most competitive algorithms are applied only after an initial preprocessing
step. Several reduction tests for general instances can be found in [16]. Most instances occurring
in real-world applications can be greatly reduced in size. For this reason more challenging
benchmark instances have been proposed, which have been artificially constructed to be resistant
to known reduction tests [67]. The experiments performed in [41] indicate that these general
reduction tests are not very successful at reducing grid graphs that appear in STP instances for
VLSI design. This issue has been addressed in [64] and a set of specialized reduction tests
for this type of instances has been proposed. An additional set of extended reduction tests has
been proposed by Polzin and Daneshmand [54], which examine more complex graph structures
for reduction. They are able to remove larger parts of the graph at the cost of a higher time
complexity.

Aside from exact methods numerous classic and novel metaheuristic approaches have been
evaluated with the goal to compute good feasible solutions within a short time.

Genetic algorithms (GA) have been proposed by Kapsalis et al. [34] and Esbensen [19]. In
both approaches solutions are encoded by bitstrings, where each bit denotes whether a corre-
sponding Steiner node is part of the solution or not. The typical GA operators crossover and
mutation are used in both algorithms to evolve a population. In the approach by Kapsalis et
al. the evolution of infeasible solutions is allowed, but is penalized to favor feasible solutions.
In contrast, in Esbensen’s approach solution feasibility is preserved in each step. A solution
is decoded from the bitstring through application of the DNH. Furthermore, an additional GA
operator referred to as “inversion” is added. The algorithm has been designed with the aim to
provide robustness with respect to the chosen GA parameters, so that they do not have to be
adapted for each problem instance. Esbensen’s approach outperforms the GA by Kapsalis et al.
with respect to runtime and solution quality.

A parallel GRASP has been applied by [64]. The approach uses a randomized version of
Kruskal’s MST-algorithm for solution construction. Ribeiro et al. [64] propose an enhanced
GRASP approach, referred to as hybrid GRASP with perturbations and path relinking (HGPPR).
HGPPR does not use the classic GRASP construction method, since not all MST-based construc-
tion heuristics are well suited for randomized construction. Instead, perturbation is introduced
by adjusting the edge weights after each iteration. A so-called strategic oscillation approach is
applied, which regularly introduces intensification and diversification based on the number of
constructed solutions an edge has already been part of. Path relinking is applied to the popu-
lation that results from the GRASP procedure. Two different relinking strategies are proposed.
The first one iteratively evaluates all trial solutions between two given solutions. The second one

25

only adjusts the edge weights of the original graph, such that edges that are part of two given
solutions are preferred in a subsequent heuristic solution.

Tabu search, an extension to the well-known local search, has been the topic of several
works [4, 22, 63]. A memory structure called tabu list is used to prevent the search process
from revisiting solutions, thus hopefully finding improved solutions. Ribeiro and Souza [63] ex-
tend the work of Gendreau et al. [22] through several improvements aimed at speeding up local
search: move estimations, elimination tests and neighborhood reduction techniques. Their ap-
proach is based on the neighborhood structure defined through Steiner node insertion/elimination.

An algorithm based on the well-known metaheuristic concept of ant colony optimization
(ACO) has been applied to the STP in [47]. Multiple generations are performed in which a
whole population is constructed through SPH. The greedy choices of the construction heuristic
are guided by a long term memory, which provides information on the estimated importance of
each Steiner node. Fundamentally, a Steiner node is ranked higher than others if it is part of many
good quality solutions. The long term memory is updated using different schemes after each
solution construction and generation. According to the performed experiments, the achieved
solution quality is comparable to the tabu search proposed in [22]. However, the consumed
computation time has been higher. The authors note that none of the well-known improvements
for ACO have been considered, e.g., lookahead, local search or backtracking.

A novel metaheuristic called pilot method has been proposed by Duin and Voß [17]. The
basic algorithm is greedy, but with the extension that a so-called pilot heuristic is called repeat-
edly to estimate the influence of each possible greedy insertion. In the specific case of the STP,
the SPH is used as pilot heuristic. Since a straight-forward application of this algorithm leads
to a high-order time complexity, several improvements have been demonstrated that decrease
runtime without sacrificing solution quality. Furthermore, the calls to the pilot heuristic within
a single iteration are relatively independent and can potentially be executed in parallel.

It is notable that the STP is not fully approximable in polynomial time. It has been proven
that computing an approximation closer than 96

95 times the optimal cost is alreadyNP-complete [11].
Through MST-based construction algorithms one can reach an approximation-ratio of two [3].
An improved rate has been achieved by Zelikovsky et al. [36, 80]. In their contraction based-
algorithm different contraction schemes have been devised, which have eventually led to an
approximation ratio of 1.55 [65, 66]. The algorithm has also been applied in a practical frame-
work [10]. Until now the best achieved approximation-ratio has been reached by Byrka et al. [8],
who propose an LP-based approximation algorithm which achieves an approximation ratio of
1.39.

Components which are present in almost all frameworks are the fast generation of feasible
solutions, local search procedures and reduction tests. Accordingly, great effort has been ex-
pended into creating efficient implementations for these techniques. For the construction of fea-
sible solutions, MST-based heuristics have been proposed in [3]. Improvements for local search
neighborhoods have been introduced in [73]. In [55], several fast implementations for reduction
tests have been proposed that perform in O(|E| · |V | log |V |). Furthermore, in [53] a version
of the dual ascent algorithm has been implemented which also achieves O(|E| · |V | log |V |),
but produces slightly worse bounds. For large-scale instances, such implementations are often
indispensable.

26

The concept of partitioning is generally very effective to design algorithms for solving spe-
cial cases of NP-hard problems or for efficient approximation schemes. A parallel algorithm
for solving the STP in chordal graphs [14] has been designed which makes use of the optimal
substructure of the problem. Polzin et al. [53] employ partitioning in a reduction technique fo-
cused on discovering independent subproblems, i.e., subgraphs which are only connected to the
rest of the graph through terminals. Clearly, the solution of such a subgraph does not depend on
the rest of the graph.

A heuristic construction algorithm which is quite similar to the one presented in this work
was proposed for the Euclidean Steiner tree problem (ESTP) by Kalpakis and Sherman [33] in
1994. The algorithm has also been empirically successful as experiments show [60]. In the
ESTP, a given set of terminal points in the plane has to be connected at minimum length using
straight lines. Steiner points can be introduced anywhere as additional intersection points for
the lines. The proposed algorithm partitions terminals recursively by splitting the current set at
the terminal with the median coordinates, until the sets are small enough. The split terminal is
added to both adjacent partitions, to ensure that the resulting Steiner tree is connected. The sets
of terminals are then connected independently using an exact algorithm. The resulting Steiner
tree is improved by computing an MST over the full graph of all terminal and Steiner nodes.
After that, further ESTP-specific post-processing heuristics are applied.

During the past years attempts have been made to develop efficient parallel and distributed
solvers for NP-hard COPs which can leverage the power of cluster computing. Budiu et al.
propose DryadOpt [7], a library for distributed execution of branch-and-bound. For evaluation
the system has been applied to the STP. DryadOpt has been implemented on top of DryadLINQ,
a technology similar to Hadoop which follows the Map-Reduce paradigm. The idea is to divide
a computation-intensive task into smaller, completely independent tasks that can be processed in
parallel. To maximize utilization of the cluster’s commodity hardware using branch-and-bound,
problems concerning load balancing, task scheduling and fault-tolerance had to be solved. In
their experimental results the obtained speed-up through parallelization has been linear. Further-
more, the known bounds for several previously unsolved instances from the SteinLib could be
improved.

We note that practically successful algorithms are rarely based on a single algorithmic con-
cept, but are rather hybrids of multiple algorithmic concepts. This type of combined effort
often proves to be very effective at tackling complex problem instances that cannot be handled
by applying a single technique alone. However, classifying and relating available approaches
can prove rather complex when a high number of different techniques is integrated. Puchinger
and Raidl [57] propose a classification for combinations between metaheuristics and exact al-
gorithms, based on how those algorithms interact. They distinguish between collaborative and
integrative combinations. A collaborative combination means that algorithms exchange infor-
mation, but are not part of each other. An integrative combination means that one algorithm acts
as a master, which embeds at least one algorithm as a subcomponent. This form of classification
is not only useful to classify hybrids between exact and heuristic methods, but also provides
a more general perspective for understanding frameworks which combine different algorithmic
concepts in some manner.

27

CHAPTER 4
A Partition-based Construction

Heuristic

This chapter presents the implementation and reasoning behind the partition-based construction
heuristic (PCH), which is one of the main contributions of this thesis. The proposed algorithm
is a hybrid that integrates well-known methods for an exact and heuristic solution of the STP
through the application of graph partitioning techniques.

A feasible solution is constructed in four simple steps: partition, decompose, solve and
repair. In the first step, a heuristic partition of the instance graph is constructed. In the second
step, the partition is used to decompose the original instance into several subinstances. In the
third step, these subinstances are solved by an exact algorithm. Finally, in the fourth step, the
solutions to the subinstances are combined to form a single solution of the original problem,
which is repaired heuristically in case of infeasibility. Figure 4.1 depicts each stage of the
process when applied to a simple problem instance.

In the context of the proposed algorithm graph partitioning is used as a form of heuristic
problem decomposition, a concept that has been applied in the past to compute good feasible
solutions to large-scale instances of NP-hard problems which require too much computational
effort for current exact methods [28]. This approach has both advantages and disadvantages that
affect runtime and solution quality, respectively.

The main advantage and primary goal of decomposition is to decrease the computational
effort necessary to find a solution to a given problem instance. The resulting subinstances are
smaller than the original instance and thus generally far easier to be solved by exact methods
than the original instance. This is clearly the case since known exact methods for NP-hard
problems require exponential computation time in the worst case.

We note that size is not the only indicator for instance complexity. Some instance types
can be solved to optimality solely through the application of simple reduction tests. In most
cases the instance size is considerably decreased. Therefore we assume that preprocessing in the
form of reduction tests is applied prior to the PCH. Another considerable benefit of reduction
tests is that they tend to make instances more sparse. This is especially important for finding

28

(a) (b)

(c) (d)

Figure 4.1: PCH solution construction. Figure (a) shows the graph after a partition has been
computed. Each partition is marked in a different color. The terminal nodes are colored black.
Figure (b) shows the set of subinstances, which is result of the decomposition step. Figure (c)
shows the solutions that have been constructed for each subinstances. The red edges indicate
computed solutions. Figure (d) shows the solution to the original instance after repair.

29

a good heuristic partition, which minimizes dependency between subinstances. Minimizing
dependency is clearly essential, since otherwise solutions that are optimal within a subinstance
may be quite suboptimal when considering the original instance. For a highly connected graph,
this task is generally difficult to achieve, which adversely affects solution quality.

In contrast to large instances that can be solved easily through reduction tests, there also
exist relatively small instances that are not susceptible to such tests, and in addition are difficult
for exact methods. Such instances exhibit a regular, symmetric cost structure, which implies the
existence of a large number of solutions with the same objective value. B&B procedures are not
well-suited for these methods, and known relaxations yield a large optimality gap. For this type
of instances we do not insist on optimal solutions, but rather limit the time available to an exact
method to compute a feasible solution.

The potential for designing parallel and distributed algorithms is another area that clearly
benefits from decomposition. We note that the exact solutions of the created subinstances are
completely independent from each other, so no communication or synchronization is required
during the solve-step of the proposed procedure. Therefore the algorithm is also well-suited for
execution on a distributed cluster which implements the Map-Reduce paradigm.

Another beneficial aspect of using a heuristic procedure for problem decomposition is that it
can be adapted to control the necessary computational effort to construct a feasible solution. In
the proposed algorithm this is achieved through limiting the size of the resulting subinstances.
Solving a larger number of small subinstances through exact methods will generally take less
time than solving fewer larger subinstances. We note that this choice will not only affect com-
putation time, but also solution quality, since the problem decomposition is only of a heuristic
nature. Dividing the original instance into more separate problems is likely to decrease solution
quality – the inherent price of heuristically decomposing a problem which does not contain truly
independent subproblems.

In this context it is important to note that there also exist exact decomposition approaches
for the STP, e.g., applying dynamic programming to tree decompositions of graphs. Dynamic
programming on tree decompositions yields only efficient algorithms for certain instances that
adhere to a low width-parameter with respect to the instance graph. In contrast, the algorithm
proposed in this work decomposes a problem heuristically, and is aimed at providing a fast,
although heuristic, procedure for general instances. This approach sacrifices the possibility to
achieve provable optimality, because there exists no guarantee that the created decomposition
yields a solution that is optimal. Finding a partitioning that would yield an optimal solution is
NP-hard in general. Nevertheless, it has been shown that heuristic partitioning is an effective
approach to design heuristic procedures for otherNP-hard problems, e.g., for the graph coloring
problem [21].

PCH is defined through the interaction between multiple algorithmic components. Thus we
will begin by introducing a high-level framework which defines the algorithm’s structure, and
shows how the various components are allowed to interact with each other. After this we will
examine the components themselves and their respective parameters.

Figure 4.2 gives a graphical representation of the framework. The four steps of the proce-
dure are executed in a strictly sequential manner. The input is an instance of the STP, i.e., an
undirected weighted graph and a subset of terminals. The output is a feasible solution, which is

30

instance I

Partition

Decompose

Solve[1. . . k]

Repair

solution S

partial
solution Sp

partition algorithm AP
number of partitions k

partition imbalance parameter d
guiding solution S′

decomposition algorithm AD

repair algorithm AR

solution algorithm AS
time limit t

partition P

subinstances I1 . . . Ik

solutions S1 . . . Sk

Figure 4.2: A partition-based procedure for heuristic solution construction.

stored as the set of associated edges. Each step is represented by a separate component, which
applies a specified algorithm and creates a result that is passed on to the next component. The
white arrows on the left enumerate the parameters which are used to influence the behavior of
the respective component. The arrows between them represent the information passed on. The
purpose of each step and thus each component can be succinctly described as follows:

• Step 1: Partition
Given the preferred number of partitions k and the partition imbalance parameter d, ap-
ply the specified partitioning algorithm AP to divide the given graph G into a set of k
subsets, each containing no more than d · |V |k nodes. Thus d should reside in the range
of 1 . . . k. Optionally, a guiding solution SG can be specified, so that partitioning process
also attempts to minimize the number of edges from the solution which cross subsets.

• Step 2: Decompose
The original instance I is decomposed into the subinstances I1, . . . , Ik according to the
partition P and the specified decomposition algorithm AD. Certain decomposition algo-
rithms will produce an additional partial solution Sp that is used to connect subinstances.

31

• Step 3: Solve
Construct a solution Si for each subinstance I1, . . . , Ik. Exact or heuristic methods can be
selected through the solution algorithm parameter AS .

• Step 4: Repair
Use the subinstance solutions S1, . . . , Sk and the optional partial solution Sp to build a fea-
sible solution for the original instance I . Based on the previously chosen decomposition
algorithm, the solution might still be infeasible, and may need to be repaired according to
the chosen repair algorithm AR.

4.1 Partitioning Algorithms

The partitioning step is clearly a critical part of the proposed procedure, since the chosen par-
tition P will substantially affect solution time of subinstances. However, this is not the only
important aspect. Since the subinstance solutions Si will later be combined into a solution S to
the original instance, the question arises whether P can be chosen in a way so that the quality of
S is maximized.

The used partitioning algorithms in this work are all based on the same heuristic objective:
terminals which are likely to be directly connected in the subgraph that corresponds to optimal
solution should be grouped into the same partition. By directly connected we mean that two
terminals are connected through a path that does not contain any other terminals in between.
Of course, this assumption can only capture a restricted view on how terminals depend on each
other.

Two partitioning algorithms which focus on different aspects of the input graph’s topology
are applied. In the first algorithm, a partition is chosen which minimizes the number of edges
between subsets. The second algorithm attempts to minimize the distance between the terminals
within a partition. Both algorithms solve their respective problem heuristically.

4.1.1 Edge-based Partitioning

Partitioning the nodes in a graph with respect to the edge-cut between subsets is a well-known
COP with many important applications. The edge-cut of a partition refers to the set of edges with
endpoints in different subsets. Problems in this category are generally NP-hard and heuristic
methods are essential when dealing with large-scale graphs. Luckily, there already exist many
publicly available implementations for computing a graph partition efficiently. Exploring their
suitability with respect to the task of identifying relatively independent regions within an STP
instance is thus a natural first choice. Good performance can be expected for instances in which
graphs contain areas which are more sparse than others. An example is the area of VLSI design,
in which obstacles on the chip area are represented as holes in the graph. Reduction tests can
often help to further intensify such structures.

The problem of partitioning a graph into k roughly equal sized parts based on the edge-cut
can be formulated as follows:

32

Definition 4.1 k-way graph partitioning problem (kGPP) [37]
Let G = (V,E) be a graph with node weights wi, i ∈ V , and edge weights cij , e = {i, j} ∈ E.
Given an integer k > 1, the goal is to find a partition of V into k disjoint, balanced subsets
V1, . . . , Vk, so that

⋃
i Vi = V and the weight of edges between different subsets is minimized.

By balanced we mean that for each subset
∑

i∈Vi wi =
∑

i∈V wi/k.

The kGPP is NP-hard for general graphs. Furthermore, a partition that is exactly balanced
might not even exist for the given graph. However, we note that for our purposes an approximate
balance is sufficient, since only the occurrence of large subinstances has to be prevented. A
relaxed version of the kGPP can be formulated by allowing a certain factor of deviation from the
exact balance: ∑

i∈Vi

wi ≤
∑
i∈V

wi ·
d

k

The partition imbalance parameter d is used to limit the maximum size of each subset in a
partition. For d = 1, the balance of the resulting partition is close to the exact balance.

To compute a feasible k-way graph partition, the publicly available framework METIS [37]
is used. It contains several graph partitioning algorithms, including a multilevel procedure that
computes a heuristic k-way partition. This algorithm has been chosen for the partitioning of
STP instances.

The operation of the multilevel k-way partitioning procedure can be divided into three
phases: coarsening, partitioning and uncoarsening. Figure 4.3 gives a graphical representa-
tion of the multilevel partitioning scheme for k = 2 as implemented in METIS. The procedure
manages to partition a graph in linear time with respect to the number of nodes, since parti-
tioning operations with a higher time-complexity are only applied to a coarsened version of the
original graph.

In the coarsening phase, the given graph is transformed into a smaller graph in several passes.
In each pass, a subset of adjacent nodes is contracted with each other. Since the goal is to
find a partition that minimizes the edge-cut, nodes that are connected by heavy edges should
be contracted first. To this end, edges are chosen for contraction in each pass according to a
maximal matching. A matching is a set of edges in a graph in which no two of them are incident
to the same node. A matching is maximal if each edge not in the matching is incident to a
node that is incident to an edge in the matching. The process is repeated until the original graph
reaches a certain size.

After that, a k-way partitioning is computed for the coarsened graph using a recursive bi-
section algorithm. Due to the coarsening, the required runtime is greatly decreased. Since the
resulting partition has to fulfill the balance property, the nodes in the coarsened graph reflect the
weight of the previously contracted nodes.

In the uncoarsening phase, the coarsened graph is iteratively projected back to the original
graph. In each iteration, the contractions introduced in the respective coarsening phase are
reverted. The resulting nodes are assigned to the same subset as the node they result from. This
approach may reduce the quality of the partition, so a refinement algorithm is used to improve
the partition in each iteration. An extended version of the Kernighan-Lin algorithm [39] is used

33

as a greedy refinement procedure. The algorithm performs several iterations, in which nodes that
lie on the boundary between subsets are checked if moving them to another subset can improve
the edge-cut’s weight.

Figure 4.3: The multilevel partitioning scheme. The figure is borrowed from [37].

To successfully achieve the goal of computing a partition that corresponds to roughly in-
dependent regions in an STP instance, the algorithm has to be configured specifically for this
objective. To this end, edge and node weights are assigned which reflect the specific STP infor-
mation.

1. Node Weight
Each node v ∈ V is assigned weight wv = 1 if it is a terminal, and wv = 0 else. Node
weights are used solely to balance the complexity of generated subinstances. We note
that this weighting scheme only considers terminals for balancing purposes, and ignores
Steiner nodes. However, the number of Steiner nodes certainly has an impact an instance’s
complexity. Preliminary experiments have shown that assigning weight to Steiner nodes is
generally not beneficial, since it could potentially result in components that do not contain
any terminal nodes.

34

2. Edge Weight
Two weighting schemes have been considered for edges. Let c′ denote the new edge
weight used in the partitioning algorithm, and c the weight in the original STP instance
(cmax corresponds to the weight of the heaviest edge in E).

a) Uniform: ∀e ∈ E : c′(e) = 1

b) Original Weight: ∀e ∈ E : c′(e) = cmax − ce

The uniform weighting scheme minimizes the size of the edge-cut. The second scheme
uses the original weight of the problem instance, but inverts it. This is due to the fact that
the partitioning algorithm minimizes the weight of the edge-cut. However, for identifying
independent components, this weight needs to be maximized.

Both weighting schemes can incorporate additional heuristic information provided by a
guiding solution. The weights c′ of edges which are part of the guiding solution are scaled
by a certain priority factor p to become heavier than regular edges. The goal is to make
these edges less likely to be included into an edge-cut, since partition subsets should be
computed so that they decompose the guiding solution into subtrees. For our experiments
we have chosen p = 2.

The number of partitions k and the partition imbalance parameter d can be directly applied
to the k-way partitioning algorithm. We note that trying to force balance too aggressively is
generally detrimental to solution quality for most practical problem instances. If their structure
is not completely regular, the edge-cut will be bigger, because it is sacrificed for more balance.
An example showing the different values of d is given in the Figures 4.4 and 4.5.

35

Figure 4.4: The STP instance eil101fst partitioned based on an edge-cut for k = 4 and d = 1.1.
The cut edges are marked in red. A subset’s Steiner nodes and edges are presented in color.

Figure 4.5: The STP instance eil101fst partitioned based on an edge-cut for k = 4 and d = 1.1.
This parameter choice for d clearly shows that without too much freedom in partition imbalance,
the algorithm cannot find good partitions.

36

4.1.2 Voronoi-based Partitioning

Partitioning an STP instance based on the edge-cut as shown in the previous section may not
always be a favorable choice for the heuristic identification of independent regions. This holds
true especially for instances which do not contain regions that are more sparse than others. Here,
the worst-case example is clearly a complete graph. In this case an edge-cut-based partition
simply groups together terminals that are adjacent in the corresponding distance network, but no
additional information about their independence would be incorporated.

In this section, we consider an alternative partitioning scheme based on the instance graph’s
Voronoi diagram, induced by the set of terminals (see Section 2.1.1 for a formal definition).
Clearly, the Voronoi diagram encodes some kind of dependency information for Steiner nodes,
as each Steiner node is assigned to the Voronoi region associated to its closest terminal. Further-
more, the Voronoi diagram already defines an initial partition of the graph, in which each subset
contains exactly one terminal node. It is thus balanced with respect to the number of terminal
nodes in each subset.

The proposed partitioning algorithm aims to exploit these aspects for the identification of
independent regions. To this end a Voronoi region is considered as an atomic unit. Instead of
finding a partition on the original instance graph, a coarsened graph is considered, in which each
Voronoi region corresponds to a node in the graph. The objective is to find a partition on this
coarsened graph which minimizes the distances among nodes within the same subset.

The initial partition defined by the Voronoi diagram serves as a starting point which is iter-
atively transformed into a partition that complies to the specified partitioning parameters k and
d. To this end, the algorithm employs a simple strategy in which regions are merged greedily. In
the remainder of this work, we will refer to this algorithm as Voronoi-based partitioning.

The procedure is depicted in Algorithm 9. Initially, a Voronoi diagram Vor is built based on
the given instance graphG and the set of terminals T . Subsequently, the partition defined by Vor
is encoded into an auxiliary graph GA = (VA, EA, c

′), where each node v ∈ VA corresponds
to a subset and each edge e ∈ EA corresponds to an edge crossing between subsets. For each
edge e = {v, w} ∈ EA, the edge weight c′(e) is computed based on the Voronoi diagram as in
Mehlhorn’s implementation of the DNH (see Section 2.1.1):

c′(e) = ce + dist(v) + dist(w)

Furthermore, to encode the current state of the constructed partition, for each node v ∈ VA
the set p(v) contains all nodes that currently belong to the associated subset. The sets p(v) are
initialized based on Vor and are thus initially equivalent to the set of Voronoi regions (i.e., sets
of nodes which share the same base).

In the main part of the algorithm, the nodes in GA are contracted greedily to form larger
subsets. In each iteration, the node v with the smallest associated subset (i.e., min(|p(v)|)) is
chosen for contraction. A priority queue implemented by heap H is used to realize this behavior
efficiently. Initially, H contains a node with key |p(v)| for each v ∈ VA. The node with the
minimal key in H is extracted in each iteration.

Let EA(v) denote the set of edges that are incident to the node v ∈ VA. After the selection
of v, an adjacent node w is chosen so that the weight c′(e) of the connecting edge e ∈ EA(v)

37

is minimal. Intuitively, this means that the terminals residing in the associated subsets can be
connected by a path of length c′(e).

The selected nodes are only contracted if the size of the resulting subset does not violate the
partition balance constraint as specified through d. Two nodes v and w are contracted in GA by
deleting v and associating all edges in EA(v) to w. Loops are deleted, and for multi-edges only
the cheapest edge is kept. The node set p(w) of the remaining node w now also contains p(v).
Its priority is updated by reinserting it into H .

The procedure continues until the number of nodes in GA equals the specified number of
partitions k, or if no further nodes exist that can be contracted without violating the balance
specified by d. Before termination, a partition vector P is constructed which encodes the final
state of the partition by assigning each v ∈ V an integer value that denotes its subset.

Algorithm 9: Voronoi-based partitioning scheme

Data: An instance G = (V,E), T ⊆ V , partition number k, imbalance parameter d.
Result: A partition vector P of G.

// Initialization
1 Vor ← buildVoronoiDiagram(G,T)
2 GA = (VA, EA, c

′)← buildAuxiliaryGraph(Vor)
3 foreach v ∈ VA do
4 p(v)← {w ∈ V : Vor.base(w) = v}
5 H.insert(|p(v)|, v)

6 end

// Contraction
7 while |VA| > k ∧ ¬H.empty() do
8 v ← H.extractMin()
9 e← minc′(E(v))

10 w ← GA.opposite(v)

11 if |p(v)|+ |p(w)| < d · |V |/k then
12 GA.contract(v, e)
13 p(w)← p(w) ∪ p(v)
14 H.insert(|p(w)|, w)

15 end
16 end

17 P ← buildPartitionVector(p)

We note that due to the employed greedy strategy, there exists no guarantee that the result-
ing partition actually has only k subsets. This becomes especially apparent when a very strict
balance is enforced (e.g., d = 1). Since Voronoi regions are regarded as atomic, a greedy strat-
egy may end up at a point where all available contraction operations are not allowed due to the
balance constraint. In this case the algorithm will terminate with |VA| > k.

38

The employed greedy approach does not only affect k, but also the partition balance. We note
that in contrast to the employed edge-based partitioning scheme, the Voronoi-based partitioning
scheme considers Steiner nodes in its balancing constraint. Clearly, this is an advantage, since
Steiner nodes contribute to the solution time needed by exact methods.

However, it should be apparent that the Voronoi-based partitioning does not focus on dis-
tributing nodes uniformly into subsets. The balancing objective is a subordinate to the goal of
minimizing distance between terminals. Only the maximum subset size as defined by d is en-
forced. We consider this as acceptable, since it is in line with the overarching goal of preventing
the generation of subinstances that are too time-consuming for an exact method.

The only aspect that is beneficial to achieving a rough balance between subsets is the priority
scheme that is employed to choose the next candidate node for contraction. Always choosing the
node v with smallest |p(v)| increases the likelihood that v can be contracted without violating the
balance constraint. Thus the number of subsets with low cardinality that remain at termination
will most likely be small.

In contrast, a Voronoi region with a very large neighborhood of Steiner nodes is likely to
remain uncontracted until the end. This behavior is generally beneficial, since contraction of
such nodes will include lots of Steiner nodes and increase subinstance complexity. So we do not
want to solve them together, but rather hope that another, high-level method is used to connect
them.

We note that the employed greedy strategy might not always yield good results, since the
only criterion for the contraction of two subsets is that there exists a cheap path between them.
Clearly, this is only a very simplified perspective on how edges in the optimal solution are
chosen. If terminals are closer together, they are more likely to be connected, but the distance to
other terminals in the graph still plays a role. This kind of global information is not considered
in the presented greedy strategy. As in the edge-based partitioning scheme, we propose the use
of a heuristic guiding solution to improve the results of the Voronoi-based partitioning.

If a guiding solution S is available, the partitioning scheme is adapted as follows: Whenever
a node v ∈ GA is chosen for contraction, an adjacent edge e ∈ EA(v) with minimal costs is
selected if the corresponding edge in the original graph is part of S. Thereby, two subsets are
only contracted if a path connects them directly in S, i.e., without passing through another subset
first.

Proposition 4.1 A partition can be computed by the Voronoi-based partitioning heuristic in
O(|T | · |E|) time.

A Voronoi diagram Vor can be built inO(|E|+|V | log |V |) [49]. An auxiliary graphGA can
be built in |E| by examining base(v) and base(w) of each edge e ∈ E. We note that initially
|VA| = |T |. The sets p(v) for each node v ∈ VA can be built in |V | by simply examining
Vor.base(v) for each node v ∈ V .

The priority queue is implemented using a binary heap data structure. The number of ele-
ments that reside in the heap at any time is bounded by |T |. Thus the operation insert takes
O(log |T |) time. The operations extractMin and opposite take always O(1) time.

Each subset is inserted into the heap at most two times – once during initialization and once
when another node is contracted to it. The number of contractions is bounded by |T | − 1, since

39

in each iteration the number of elements in the heap is decreased by one. The runtime for finding
the minimum cost incident edge of a node and contract require both O(|E|) time.

Thus the overall runtime of the loop isO(|T | · (|E|+log |T |)). Keeping track of each subset
p can be done efficiently using a union-find data structure. A partition vector can be built in
O(|V |) time.

4.2 Instance Decomposition

During the decomposition step a set of subinstances I0, . . . , Ik is constructed from the original
instance I = (G,T), where G = (V,E, c) is the instance graph and T ⊆ V is the set of
terminals. The decomposition is performed based on the partition P of G. Without further
additions, this procedure is a simple process. The edge-cut defined by P already divides V
into a set of disjunct components, so that V = V0 ∪ · · · ∪ Vk. Let EP be the edge-cut defined
by partition P . Removing EP from E separates G into a set of subgraphs G0, . . . , Gk. Each
subgraph Gi = (Vi, Ei, c) and its set of contained terminals Ti = Vi ∩ T defines a subinstance
Ii = (Gi, Ti).

After the decomposition step, the set of subinstances is solved in the solution step, resulting
in a corresponding set of solutions S0, . . . , Sk. The combination of these solutions forms an
infeasible solution S in I , since I0, . . . , Ik are disjunct. To make S feasible, additional edges
have to be added during the repair step. We note that the described decomposition process can
also result in a subinstance which only contains a sole terminal. In such cases the solution to the
corresponding subinstance contains no edges, and the terminal is only connected after repair.

A potential improvement to this approach is to augment I0, . . . , Ik with additional, heuristic
information. The idea is based on the observation that after the previously described simple de-
composition procedure, each Ii is solved separately from each other, without any consideration
of the neighboring subinstances’ structure. Such a situation suggests that the resulting solution
S, which results from the connection of S0, . . . , Sk, will not necessarily be close to the optimal
solution of I .

Therefore it can be assumed that additional improvement is possible by adjusting each subin-
stance, so that their optimal solution takes into account neighboring subinstances that are likely
to be connected later on by the repair step. A straight-forward approach to influencing the opti-
mal solution of an instance is to fix Steiner nodes. For a given subinstance Ii and a Steiner node
v ∈ Vi, fixing v corresponds to adding it to the set of terminal nodes, so that Ii = (Gi, Ti∪{v}).

In the following we present a decomposition procedure in which Steiner nodes are fixed
based on a heuristically computed partial solution Sp to I . The intuition behind this approach
is that the solutions to I0, . . . , Ik are solved while already taking Sp into account. To this end,
each Steiner node incident to the edges in Sp is fixed in its corresponding subinstance.

A side effect of this approach is that the combination of Sp and S0, . . . , Sk forms a con-
nected subgraph which connects all terminals in the original instance, thus resulting in a feasible
solution. Therefore, no sophisticated repair procedure is necessary.

In the rest of this work, we will refer to the decomposition strategy without fixation of Steiner
nodes as simple decomposition and to the other one as augmented decomposition.

40

The implementation of the first approach is straight-forward. The second approach is more
sophisticated, since the main goal is to identify a good heuristic connection between subsets. We
note that at this point, no information on the solutions of subinstances is available. Algorithm 10
shows the procedure that is used to identify the edges for Sp. A simple greedy heuristic has
been implemented which connects partitions. The heuristic is similar to the DNH, but here we
generalize a neighborhood into having multiple terminals.

Algorithm 10: Augmented instance decomposition

Data: Original instance I = (G,T) and subinstances I0, . . . , Ik
Result: A partial solution Sp, augmented subinstances I0, . . . , Ik

1 U ← initUnionFind(V)
2 foreach Ii = (Gi = (Vi, Ei), Ti) ∈ I0, . . . , Ik do
3 U.unionSubgraph(Vi)
4 Vori ← buildVoronoiDiagram(Gi)

5 end
6 Vor ←

⋃k
0 Vori

7 EP ← E \ {E1, . . . , Ek}
8 foreach e = {v, w} : EP do
9 c′(e)← Vor.dist(v) + c(e) + Vor.dist(w)

10 end

11 Sp ← RestrictedMST(EC , U, c
′)

12 foreach e = {v, w} ∈ Sp do
13 fixSteinerNode(v)
14 fixSteinerNode(w)

15 end

For the algorithm, we assume that the simple decomposition has already been executed.
Thus the initial parameters are the original graph and the subgraphs.

A union-find data structure (denoted by U) is used to keep track of the node set of each
subgraph. We use unionSubgraph(V) to denote that the sets corresponding to the nodes in
V is merged in the union-find U . The union-find is thus initialized so that the nodes in each
subgraph correspond to a different set in U .

First, a Voronoi diagram Vor is constructed on each subgraphGi. The purpose is to compute
the distance for each Steiner node to the nearest terminal in the subgraph. All Voronoi diagrams
are then combined to form a single Voronoi diagram for the whole graph.

Subsequently, this information is used to compute alternative weights c′(e) for each edge
e ∈ EP . These weights represent the cost to connect two terminals in neighboring subgraphs.
The operation RestrictedMST(E,U,c) computes an MST on the given edge set E, such
that the sets defined by U are connected, and the cost of the MST is minimized with respect to
the provided cost vector c.

41

Finally, for each edge e, both incident nodes are fixed. The operation fixSteinerNode(v)
adds v to the terminals of the corresponding subinstance if necessary (i.e., if it is a Steiner node).

4.3 Solution Repair

The objective of the repair-step is the construction of a feasible solution for the original instance.
Based on the chosen decomposition algorithm, the combination of all partial solutions to the
subinstances might already form a feasible solution. Otherwise, the resulting solution might
be infeasible. For example, a black-box algorithm solves each subinstance Ii, let Si denote the
obtained solution, and let Sp be the set of edges connecting the subinstances with each other. The
union of all Si plus Sp may be feasible, but suboptimal. Even worse, in most cases the union
is infeasible, and therefore it is necessary to repair the obtained solution. We have therefore
provided two repair algorithms that turn a set of disjoint partial solutions into a feasible solution:

1. Heuristic Repair
The remaining edges are chosen through a simple greedy construction heuristic. The SPH
is applied with a randomly selected terminal as root node.

2. Exact Repair
An exact algorithm is applied to identify the optimal connection between partial solutions.
The same B&C algorithm is applied which is also used for the solution of subinstances.

Algorithm 11 describes a generic procedure which is applied to repair an infeasible solution.
First, all edges corresponding to a solution in the graph are contracted into a single node. Loops
are deleted and for multi-edges only the cheapest edge is kept. Each resulting node is marked
as a terminal. The method solve denotes the application of a heuristic or exact algorithm to
the new graph. The union of the resulting solution Sp and the remaining partial solutions form
a solution for the original instance S. Subsequently, the improvement procedure MST-Prune is
applied to S, since no guarantee can be given that S is optimal.

Algorithm 11: Repair partial solution

Data: An instance G = (V,E), T ⊆ V , a disjoint set of partial solutions S1 . . . Sk.
Result: A feasible solution S.

1 GA ← (V,E, c)
2 TA ← ∅
3 foreach Si ∈ S1, . . . Sk do
4 v ← contractSubgraph(GA, Si)
5 TA ← TA ∪ {v}
6 end

7 Sp ← solve(GA, TA)
8 S ← Sp ∪ S1 ∪ · · · ∪ Sk
9 MST-Prune(S)

42

4.4 Solving Subproblems to Optimality

The algorithm for the exact solution of the STP is based on a branch-and-cut (B&C) approach
similar to the one proposed by Koch et al. [41]. It has been chosen in favor of a more sophisti-
cated B&B procedure as proposed by Polzin [53], even though the achieved results by the latter
one are significantly better. This decision is based mainly on the fact that Polzin’s procedure is
rather complex and derives its effectiveness from a large pool of different techniques, which all
contribute to the end result in equal parts. In contrast, the implementation of a state-of-the-art
B&C procedure for the STP that includes available improvements recommended in literature is
rather straight-forward when using the ILOG CPLEX framework. In addition, an even faster
exact algorithm would not really have contributed much to our objective, which is the evaluation
of the effects of partitioning on solution quality and runtime.

4.4.1 ILP Model

The used ILP model is an extension of the well known directed cut formulation by Wong [79].
In [41], this formulation has been extended through the addition of flow balance inequalities,
which have originally been proposed by [16]. These constraints can strengthen the LP relaxation
and decrease overall solution time of the ILP. In our formulation we add node variables for
Steiner nodes, through which a consistent runtime improvement has been achieved in practical
experiments.

For each arc (i, j) ∈ A, an arc variable xij denotes membership of the corresponding arc
to the Steiner tree (xij = 1) or not (xij = 0). Similarly, additional node variables yi for
i ∈ (V \ T) denote if i is spanned by the Steiner tree (yi = 1) or not (yi = 0). An arbitrary
terminal is chosen as root node r.

(EDCF) min
∑

(i,j)∈A

cij · xij (4.1)

s.t. x(δ−(i)) = 1 ∀i ∈ T \ {r} (4.2)

x(δ+(i)) ≥ yi ∀i ∈ V \ T (4.3)

x(δ−(i)) = yi ∀i ∈ V \ T (4.4)

x(δ+(r)) ≥ 1 (4.5)

x(δ−(r)) = 0 (4.6)

x(δ+(W)) ≥ 1 ∀W ⊆ V, r ∈W, (V \W) ∩ T 6= ∅ (4.7)

xij + xji ≤ yi ∀(i, j) ∈ A (4.8)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.9)

yi ∈ {0, 1} ∀i ∈ V \ T (4.10)

The objective function (4.1) minimizes the weight of the selected arcs. Constraints (4.2)
ensure that each terminal except the root has exactly one incoming arc. Constraints (4.3) and
(4.4) ensure that Steiner nodes that are part of the solution have only one incoming arc and
at least one outgoing arc. Constraints (4.5) and (4.6) ensure that the root terminal r has no

43

incoming arc and at least one outgoing arc. Constraints (4.7) are the directed cut constraints.
Finally, constraints (4.8) ensure that only one arc of each antiparallel pair is selected. We note
that introducing node-variables and extending constraints (4.3), (4.4) and (4.8) does not improve
the lower bound of the cut model, but provides a computational speed-up if a lot of branching is
necessary during solution.

In the following we describe important components of the used B&C procedure:

1. Initialization:
The undirected instance G is transformed into a directed instance. As already stated,
the LP is initialized without any cut constraints (4.7) at all. However, the time needed
to separate all violated constraints may be decreased by initializing the LP with a set of
heuristically separated cuts. We have generated an initial set of cuts through Wong’s dual
ascent algorithm [79]. The expected runtime saving is as high as the time required by
B&C to reach the same lower bound as dual ascent [2, 53].

2. Primal heuristic:
Good upper bounds are clearly important for an exact algorithm like B&B. They can be
used to prune nodes from the search tree early and thus decrease runtime and memory re-
quirements. Improved results can be achieved through the application of problem-specific
heuristics for the STP.

We apply SPH combined with MST-Prune to the directed instance in which adapted
weights are computed using the assignment of the arc variables in the LP solution:

c′ij = cij · (1−max(xij , xji)) ∀{i, j} ∈ E

The heuristic is called after each cutting-plane iteration.

3. Separation procedure:
The separation procedure takes the current LP solution as input and identifies a set of
violated inequalities which need to be added to the model. The procedure’s concrete
operation is described in the next section.

4. Branching and node selection strategy:
The branching strategy should create a roughly balanced B&B tree. When branching on
arc variables, this implies that an arc is part of the solution in one branch, and excluded in
the other one. Since in most cases the probability that an arc will be part of the solution is
lower than not being part of the solution, this results in an unbalanced tree. Furthermore,
the LP relaxation may not be influenced much through the exclusion/inclusion of a single
edge [13].

A more effective choice is to branch on Steiner nodes. The inclusion/exclusion of a Steiner
node restricts the set of available solutions more strongly, because multiple arc variables
may be affected. In addition, the number of possible B&B nodes is smaller for dense
graphs. Due to the inclusion of node variables in the model, node branching using CPLEX
can be achieved by simply setting a higher branching priority for node variables.

44

As a B&B node selection strategy we have chosen strong branching [1]. Strong branching
evaluates the LP-value resulting from selecting all possible variables and then branching
on the one which leads to the best LP relaxation.

4.4.2 Separation

Given a current LP solution x̃ an efficient way to solve the separation problem is to view the
directed graph GD = (V,A, c) of the instance as a flow network. In this network, the arc
capacities correspond to the assignment of the arc variables x in the current LP solution. A
violated cut inequality can then be identified through the application of a maximum flow algo-
rithm. For this we note that the maximum flow corresponds to the minimum cut in the network
(max-flow min-cut theorem). If a violated inequality exists in the flow network, the computed
minimum cut will clearly be a violated inequality. In our implementation the push-relabel max-
imum flow algorithm [9] is applied, which runs in O

(
|V |2 ·

√
|E|
)

. Through the application
of a dynamic tree data structure the worst-case runtime of the algorithm could be theoretically
improved to O

(
|V | · |E| · log(|V |2/|E|)

)
[26]. This improvement has not been considered.

The separation procedure is described in Algorithm 12. The procedure MaxFlow computes
a maximum flow / minimum cut from the root node r to each other terminal t ∈ T \ {r}. The
current LP solution x̃ is used as arc the capacities for GD. The maximum flow is stored in f .
Since the used implementation computes the flow in both directions (from r to t and t to r), two
different cut sets are returned, Sr and St.

Algorithm 12: Separation procedure

Data: The directed graph GD = (V,A), T ⊆ V , LP variable values x̃.
Result: A set of violated inequalities inserted into the LP.

1 for (i, j) ∈ A do
2 x̃ij = x̃ij + ε // minimum cardinality cuts
3 end

4 repeat
5 for t ∈ T \ {r} do
6 f = MaxFlow(GD, x̃, r, t, Sr, St)
7 if f < 1− ε then
8 Insert the violated cut

∑
(ij)∈δ+(Sr)

xij ≥ 1 into the LP
9 x̃ij = 1 ∀(i, j) ∈ δ+(Sr)

10 Insert the violated cut
∑

(ij)∈δ−(St)
xij ≥ 1 into the LP // back cuts

11 x̃ij = 1 ∀(i, j) ∈ δ−(St)

12 end
13 end
14 until no cuts added // loop for nested cuts

45

A violated cut is identified if the computed maximum flow f is lower than one minus a
small value ε (in our implementation ε = 10−6). The subtraction of ε is essential, since due
to the numerical inaccuracy of the LP solver, inequalities may be added even though the LP
solution is valid. Thus the termination of the row generation process would not be guaranteed.

Three improvements from literature as presented by Koch and Martin [41] have been incor-
porated into the separation procedure, namely back cuts, nested cuts and minimum cardinality
cuts. The objective is to improve the strength and number of the separated cuts.

A higher number of separated inequalities per call of the separation method usually de-
creases the number of necessary row generation iterations, and thus may decrease overall run-
time. Another factor which can influence runtime is the strength of the separated inequalities. If
the inequalities are strong, less row generation iterations may be necessary to reach a valid LP
solution. The LP model stays more compact and resolving takes less time.

1. Back Cuts:
If the maximum flow is computed in both directions for each terminal, from source to
sink and from sink to source, two cuts can be added in each call by the separation method
instead of one. The extra cuts can be identified efficiently through an extended implemen-
tation of the maximum flow algorithm. As already stated, the used implementation returns
the cut set from the root to a terminal in Sr and the cut set from the terminal to the root
in St.

2. Nested Cuts:
The number of separated inequalities can be further increased through the application
of nested cuts. The objective is to add violated inequalities until the Steiner tree corre-
sponding to the LP solution is connected. This can be achieved by setting the LP variable
values xij = 1 which correspond to the arcs of the new violated inequality. The maximum
flow algorithm is called iteratively until no further violated cuts are found. This approach
generally adds many violated inequalities in one step, so fewer row generation iterations
are necessary.

3. Minimum Cardinality Cuts:
A way to strengthen the cut inequalities is to ensure that the maximum flow algorithm
returns cuts which are not only minimal with respect to the arc capacity, but also to the
number of arcs. Clearly, such inequalities restrict the solution space more, since less
variables are part of each constraint.

In an LP solution, many arc variables may be set to zero, so these arcs are normally not
considered when computing a minimum cut. To include all arcs, a small value ε is added
to all arcs. Although this makes computing a minimum cut take longer since the flow
network is denser, for the STP it has been shown in practical experiments that the stronger
inequalities lead to an overall runtime decrease for most instances.

46

4.4.3 Application of Bound-based Reductions

An additional improvement to the row generation approach using directed cut constraints is
proposed in [13]. The application of the bound-based reduction tests (also described in sec-
tion 2.4.1) may be executed efficiently in between iterations to fix variables in the LP.

However, we have been unable to include this improvement in our implementation due to the
way the ILOG Concert framework handles reduced costs. In the Concert framework, the reduced
costs are not accessible during the B&C procedure. They are only accessible after termination.
Alternatively, the CPLEX C API provides methods for accessing the reduced costs even during
B&C. Nevertheless we have refrained from adapting this approach in our framework. The model
which CPLEX uses internally to compute an LP relaxation does not necessarily correspond to
the originally provided model. A set of reductions is applied to the model, which makes the
available reduced costs incompatible with the original model. Thus the reduced costs cannot be
used to execute any reductions.

47

CHAPTER 5
A Partition-based Memetic Algorithm

In the previous chapter, the partition-based construction heuristic (PCH) has been described as
a stand-alone procedure. In this chapter, we present a memetic algorithm in which PCH is ap-
plied in combination with several other problem-specific algorithms for the STP. The objective
is to evaluate PCH with respect to emergent synergy effects arising from the interaction be-
tween multiple algorithmic components. This approach seems especially promising, since many
state-of-the-art optimization algorithms achieve impressive results through hybridization. In the
remainder of this work we will refer to the new memetic algorithm as MPCH.

The role of PCH in this new procedure slightly deviates from how it has been presented in
the previous chapter. Rather than constructing feasible solutions from scratch, PCH is always
supplied with already available heuristic information in the form of a guiding solution. Given
a population of solutions, PCH can be interpreted as a specialized mutation operator, which
introduces new information and potentially enhances a given solution. Its application is also
similar to the iterative improvement provided by a local search procedure. In the proposed
algorithm PCH is not only applied to a solution once, but several times. The solution produced in
the previous iteration is subsequently used as a guiding solution in the next step. This procedure
is allowed to continue until no improving solution has been found after a specified number
of iterations. In the end, the best found solution replaces the original guiding solution in the
population.

PCH is not the only employed problem-specific algorithm. The following methods have
been incorporated into the memetic algorithm:

1. SPH: construction of a diverse set of starting solutions by the shortest path heuristic
followed by MST-Prune (cf. Section 2.1)

2. DA: computation of lower bounds using the dual ascent approach (cf. Section 2.3.4)

3. Bound-based reduction tests: reduction of the instance size based on
reduced costs (cf. Section 2.4.1)

48

4. Solution recombination: construction of new solutions with a specialized
recombination algorithm

5. Solution archive: already calculated solutions are stored to avoid multiple evaluations of
one and the same solution

6. VND: improvement of solutions through a Variable Neighborhood Descent algorithm

Algorithm 13 shows the structure of MPCH. Basic population-based parameters are the pop-
ulation size popmax and the maximum number of generations g. The parameter n restricts the
number of PCH applications without improvement. The whole procedure returns the best found
solution S∗ and an associated lower bound lb as an estimate of the solution’s quality. In the fol-
lowing, let best(pop) return the best solution of the population popwith respect to the objective
value, and let obj(S) denote the objective value of a solution S.

As a population-based approach, the algorithm can be divided into two phases: generation
of the initial population and the generation step process.

The initial population is generated as follows: In each iteration, the dual ascent algorithm
(DA) is executed with an arbitrary terminal as root node. The result is a reduced graph GR
(cf. Section 2.3.4), a lower bound lb′ and the reduced costs c̃. Subsequently, the shortest path
heuristic (SPH) is run in GR to construct a feasible solution. The result is improved through the
application of Variable Neighborhood Descent (VND). This procedure is described in detail in
Section 5.3. The resulting solution S is inserted into the population pop. Finally, the currently
best lower bound lb and upper bound (i.e., the objective value of the best solution in pop), as
well as the reduced costs c̃ from the current iteration are used to apply bound-based reduction
tests to the instance I .

After the completion of the population initialization, the following goals will hopefully have
been achieved: A population pop of diverse, feasible solutions has been generated, a lower
bound lb is available, and the instance graph G has been reduced.

In the main phase, the population is evolved for a fixed number of iterations, also called
“generations”. Each generation consists of two steps: individual improvement and solution
recombination.

In the first step, PCH followed by VND is applied in a multi-start fashion to each solution
S ∈ pop. For the first iteration of the multi-start procedure, S is used as a guiding solution
for PCH. The guiding solution for each subsequent iteration is the solution from the previous
iteration. The multi-start procedure continues until no better solution has been found within
the last n iterations. Let S′ denote the best obtained solution within this multi-start. After the
termination of the multi-start, S′ replaces S in the population.

In the second step, the current population is recombined to potentially construct new high
quality solutions. An elaborate description of this process is given in Section 5.1.

MPCH employs a solution archive with the purpose to speed up PCH and solution recom-
bination. The objective is to prevent the calculation of the exact solutions of subinstances that
have already been solved. Again, an extensive description is given in Section 5.2.

49

Algorithm 13: Partition-based Memetic Algorithm

Data: Instance I = (G,T, c), population size popmax,
maximum number of generations g, number of iterations without improvement n
Result: The best found solution S∗ and an associated lower bound lb.

1 pop← ∅
2 lb← 0

3 for popmax individuals do // Initialize population
4 (lb′, GR, c̃)← DA(I)
5 I ′ ← (GR, T, c)
6 S ← SPH(I ′)
7 S ← VND(I, S)

8 insertInPopulation(pop, S)
9 lb← max(lb, lb′)

10 reduce(I, c̃, lb, obj(best(pop)))
11 end

12 for g generations do // Generation step
13 foreach S ∈ pop do
14 S′ ← S
15 repeat
16 S ← PCH(I, S)
17 S ← VND(I, S)
18 S′ ← minobj(S

′, S)

19 until n iterations without improvement
20 replaceInPopulation(pop, S, S′)

21 end
22 pop← recombination(pop)

23 end

24 S∗ ← best(pop)

5.1 Solution Recombination

The purpose of the solution recombination step is the generation of improved solutions from the
current population. A straight-forward way to achieve this objective is to choose good solution
parts from a subset of the population and recombine them into a new solution. If the population
is diverse enough and the chosen solutions correspond to different local optima of the search
space, the result of the recombination is likely to be a solution of higher quality.

In the context of the proposed algorithm only two solutions are combined at each time. A
new solution is constructed through the following procedure:

50

1. Given two feasible solutions S1 and S2, construct a graph GU that corresponds to the
union of the subgraphs defined by the solutions. Clearly, all terminals are reachable in
GU , since S1 and S2 are feasible.

2. Solve the STP for GU through the application of an exact or heuristic algorithm.

In each recombination step, each solution in pop is combined with a randomly chosen other
solution. The algorithm ensures that each recombination pair is distinct from each other, i.e., the
same pair of solutions is only combined once during a recombination step. The new population
consists of the popmax best solutions with respect to the objective value. All additional solutions
are discarded.

5.2 Solution Archive

The concept of storing already visited solutions is an approach worth considering whenever the
calculation of the objective function / optimal subsolution is an expensive procedure. Especially
for population-based methods like EA, the use of a solution archive has been proposed to prevent
wasted computation time [31], which is especially important if solution decoding is costly, and
to prevent the search from getting stuck if not enough diversity is available.

In MPCH, the solution archive is solely used as a means to save computation time. This
is especially important in the case of the PCH, which uses exact solutions of subinstances to
construct a feasible solution. Due to the fact that it is applied iteratively, this can be a rather
computation-intensive task. Thus the use of a solution archive seems straight-forward. This
proposition is further encouraged by the observation that iterative repartitioning is likely to
change only some regions of the graph. Some subsets may stay the same. In such cases, we
expect the computational load to drastically decrease.

The solution archive is implemented as follows: A hash is computed based on the subin-
stance graph. The associated optimal solution of the subinstance is stored for further reference.
No optimizations have been made according to efficient storage. However, we note that a trie
data structure may be used [31, 59].

In addition to improving the runtime of PCH, the solution recombination procedure can also
profit. Unions between solutions that already yield similar graphs do not have to be solved
exactly a second time.

5.3 Solution Improvement

In this section several neighborhood structures are presented which are subsequently combined
in a Variable Neighborhood Descent (VND) procedure. Improved algorithms for fast neighbor-
hood evaluation have been proposed recently by Uchoa and Werneck [73]. The ideas behind the
fast neighborhood evaluation are explained and re-implementations are presented.

There exist several neighborhood structures for the STP. We consider the following four
well-known neighborhood structures: Steiner node insertion, Steiner node elimination, key-path
exchange and key-node removal.

51

The following notations are used to describe the neighborhood evaluation algorithms for a
given solution S:

ES . . . edges part of S
VS . . . nodes part of S
EC . . . candidate edges for the construction of a neighboring solution S′

E(S, v) . . . the set of edges {(v, w)|w ∈ VS} that connects v to VS .
KS . . . the set of key nodes in S

(a key node is a Steiner node with a degree of at least three in the solution S)
CS . . . the set of crucial nodes in S, i.e., CS = KS ∪ T

The given neighborhood structures mainly differ according to how S is represented. In
the Steiner node insertion / elimination neighborhoods, S is defined by its nodes VS . For any
given solution S, a solution of equivalent cost can be constructed by computing the MST of the
subgraph induced by VS .

The other two neighborhood structures use key paths and key nodes to represent S. A key
node is a Steiner node in S with degree at least three. For a given solution S, a solution of
equivalent cost can be constructed by applying the DNH to the graph, where all crucial nodes
CS are interpreted as terminals. A key path is a path which connects two crucial nodes in S,
with no other crucial node in between.

We note that the neighborhood exploration methods considered in this work do not corre-
spond to the classic algorithms, but to the improved methods proposed in [73]. These algo-
rithms aim to efficiently explore the whole neighborhood of a solution while introducing mul-
tiple improvements. Each algorithm evaluates all solutions in its respective neighborhood in
O(|E| log |V |). We have re-implemented procedures described in [73] and in the following we
give a description of our re-implementation.

This runtime bound is achieved through the use of several types of non-trivial data structures
(dynamic tree, heap, union-find) and by exploiting the fact that the difference between a solution
and one of its neighbors is generally quite small. Hence, to evaluate the cost of a neighbor, it
is sufficient to compute the cost of this difference. Some of the presented algorithms depend on
evaluating their respective neighborhood in a specific order. This way, some of the information
that is necessary to evaluate a given neighbor can be reused from previous evaluations, instead
of computing it from scratch.

5.3.1 Steiner Node Insertion

The Steiner node insertion neighborhood structure contains all feasible solutions which can be
constructed from an initial solution S through the insertion of a single Steiner node v /∈ VS and
the application of the procedure MST-Prune to the subgraph induced by VS . The re-implemented
fast neighborhood evaluation algorithm has been presented originally in [73].

To explain how the improved neighborhood evaluation works, we first consider the naive
approach, in which a neighbor is evaluated by computing the MST on the subgraph induced by
VS ∪ {v}, where v is the inserted Steiner node. It has been shown that it is not necessary to

52

compute the MST on the full induced subgraph, but that it is enough to restrict the computation
toG = (VS∪{v}, ES∪E(S, v)), see Spira and Pan [69]. The intuition behind this improvement
is that the insertion of v does not change the structure of the MST, but instead some of the edges
E(S, v) are exchanged with the edges in ES . A more precise description is given by Tarjan’s
red rule [71], which states that the heaviest edge on any cycle in a graph G cannot belong to the
corresponding MST. This rule can be applied to compute the required MST more efficiently, by
adding the edges E(S, v) to ES and removing the heaviest edges on each cycle.

Algorithm 14: Steiner node insertion: neighborhood evaluation

Data: A feasible solution S.
Result: A potentially improved version of S.

1 D ← InitializeDynamicTree(S)

2 for v /∈ VS : |E(S, v)| > 1 do
3 i = 0
4 for e = {v, w} ∈ E(S, v) do
5 if i = 0 then
6 D.link(e)
7 else
8 f ← D.findHeaviestEdge(v, w)
9 if cf > ce then

10 D.cut(f)
11 D.link(e)

12 end
13 end
14 i← i+ 1;
15 end

16 D.pruneSteinerNodes(ES)

17 if obj(D) > obj(S) then
18 D.revertChanges(v)
19 end
20 end

21 S ← ConvertToSolution(D)

Algorithm 14 presents an abstract representation of the procedure described in [73]. The
algorithm makes use of a dynamic tree data structure (denoted byD) to represent the solution S.
Using this data structure, the heaviest edge in a cycle can be detected efficiently. At each point
in time, the data structure represents all nodes in the graph as a forest of trees. Nodes can be
connected or disconnected using the link and cut operation. Other operations include finding
the root of a given node in a tree and finding the heaviest edge on the path from a node to its root
node. All operations of D can be performed in O(log |V |).

53

At the beginning of the algorithm, the solution S is represented in D by linking all nodes
VS . In the main loop, each node v /∈ VS that is adjacent to VS is checked for insertion.

As already stated, we attempt to find the heaviest edge in each cycle introduced by adding
v to the solution. For a node v /∈ VS , an arbitrary edge (v, u) for which u ∈ VS is added by
linking v and u in D. Afterwards, the addition of a further edge (w, u) would form a cycle.
We note however that in a dynamic tree data structure, cycles cannot be present. Therefore,
edges are linked iteratively and for each cycle that would be introduced, the heaviest edge is
removed before linking the next edge. In Algorithm 14, finding the heaviest edge on a potential
cycle is abstracted as findHeaviestEdge(v, w) for two given nodes v and w that would be
connected through adding the next edge. If the returned edge f is heavier than the edge e that we
currently try to add, these edges are exchanged in D. Otherwise, we do not add e and continue.

The operation findHeaviestEdge(v, w) actually describes several operations, including
the identification of the nearest common ancestor (NCA) for v andw, as well as the identification
of the heaviest edge on both paths to their NCA node. The NCA is formally defined as follows:

Definition 5.1 Nearest Common Ancestor (NCA) [30]
Given an arborescence S with the root r, the nearest common ancestor of a pair of nodes v, w ∈
V , v, w 6= r denoted by nca(u, v) is the first node that the paths from v to r and w to r have in
common.

After all edges from E(S, v) have been checked for insertion, S is pruned in D to remove
unnecessary Steiner nodes of degree one. Finally, we check if the new solution is cheaper
than the original solution. For brevity, let obj(D) denote the objective value of the solution
represented by D. If no improvement has been achieved, the changes in D have to be reverted.
To this end, we store all executed link/cut operations, so that the original state of D can be
restored efficiently.

After all nodes have been checked, the solution stored in D is converted back into a solution
S, represented by an edge set.

In contrast to the other neighborhood evaluation algorithms presented in this work, the
Steiner node insertion does not require a specific order of insertion. The algorithms that are
presented in the following sections all evaluate their respective neighborhood in post-order for
efficiency reasons.

5.3.2 Steiner Node Elimination

The Steiner node elimination neighborhood structure contains all feasible solutions that can be
constructed by removing a single Steiner node v ∈ VS from the solution and applying MST-
Prune to the subgraph induced by VS . The described fast neighborhood evaluation algorithm
has been proposed in [73].

The given solution S is seen as a tree rooted at an arbitrary terminal r. Without loss of
generality, we assume that S is a tree which has only terminals at its leaves. All nodes v ∈ VS
are checked for removal in post-order. The elimination of v splits the tree into the subtrees
S0, . . . Sk, where r ∈ S0 and S1, . . . Sk, are rooted at the children v1, . . . , vk of v. To construct

54

an optimal solution for the given node set VS \ {v} it suffices to find an MST that connects the
components corresponding to these subtrees. The other edges in ES remain unchanged.

Figure 5.1: A set of subtrees that results from the elimination of node v. A solution edge
is marked as bold, while the horizontal and vertical edges are marked as dashed and dotted,
respectively. The figure is borrowed from [73].

At this point we note that the number of candidate edges EC that needs to be evaluated to
compute the MST from scratch in each iteration may still be very high (up to Θ(|E|)). This
set includes all edges that connect the subtrees S0, . . . Sk with each other. However, due to the
employed post-order traversal, parts of EC can be eliminated or pre-built.

To this end, the candidate edges EC are divided into two groups, relative to the currently
removed node v and the resulting subtrees: vertical edges and horizontal edges. A vertical edge
connects the root tree S0 with a child tree Si (i > 0), while a horizontal edge connects two child
trees Si and Sj (i > 0). Figure 5.1 shows an example.

Both the set of horizontal and vertical edges can be built efficiently. We begin with the set
of horizontal edges, which are defined succinctly using the definition of the nearest common
ancestor (NCA). We observe that an edge e = {a, b} is horizontal with respect to a given node
v ∈ VS , if v is the NCA of a and b. It is therefore sufficient to compute the NCA for each pair
of nodes in VS which are connected by an edge. The NCAs for all adjacent nodes in S can be
built in O(|E| log |V |) using a dynamic tree which represents the solution S as an arborescence
rooted at the terminal r. We note that there also exist algorithms which perform this task in
linear time. For each node v, a list L(v) stores all edges e = {a, b} for which nca(a, b) = v.

55

Concerning vertical edges, we note that only the cheapest edge for each subtree can poten-
tially be part of an MST which connects the subtrees. These edges are identified as follows: Let
H(v) be a heap that stores all edges that are incident to the subtree rooted at v. Cheaper edges
are given higher priority.

Algorithm 15: Steiner node elimination: neighborhood evaluation

Data: A feasible solution S.
Result: A potentially improved S.

1 L← computeNCAs(VS)
2 postT ← postOrderTraversal(S, VS)
3 U ← initializeUnionFind(VS)
4 H ← initializeEmptyHeaps(VS)

5 for v ∈ postT do
6 if v /∈ T then
7 EC ← L(v)
8 for w ∈ children(v) do
9 while {a, b} = H(v).top() : a /∈ S0, b /∈ Si, i > 0 do

10 H(v).extractMin()
11 end
12 EC ← EC ∪H(v).top()

13 end

14 EMST ← MST-Components(EC , U)

15 if c(E(S, v)) > c(EMST) then
16 ES ← ES \ E(S, v) ∪ EMST

17 end
18 end

19 for w ∈ children(v) do
20 H(v).merge(H(w))
21 U.union(v, w)

22 end
23 for {v, w} ∈ E(S, v) : w /∈ Si, i > 0 do
24 H(v).insert({v, w})
25 end
26 end

All heaps can be built efficiently while traversing the tree in post-order. For this we observe
that each heap H(v) contains all edges that are present in the heaps of its child nodes. This is
the case, since the subtrees rooted at the child nodes are part of the subtree rooted at v. The heap
H(v) is thus a combination of all edges within the children’s heaps and E(S, v). An efficient
implementation can exploit this fact by using heap data structures which perform merging in

56

constant time (we use a Fibonacci heap). The cheapest vertical edge can be extracted fromH(v)
by iteratively calling extractMin, until the top element is a vertical edge.

The evaluation of the Steiner node elimination neighborhood using these data structures is
shown in Algorithm 15. At the beginning, the list L(v) is built for each node v using a dynamic
tree and a post-order traversal is performed for the given solution S. We use a union-find data
structure (denoted as U) to efficiently represent the sets of disconnected subtrees.

In the main loop all nodes in VS are traversed. Thereby, terminals cannot be removed, but
the corresponding data structures have to be updated. If the chosen node v is not a terminal, it
is considered for removal. To evaluate the resulting neighbor, we initialize the candidate list EC
for computing the MST. All horizontal edges stored in L(v) are added to EC . Subsequently, the
vertical edges are added. Edges are removed from each child heap, until the top element is a
vertical edge.

After building EC , the MST is computed by calling MST-Components. This MST algo-
rithm chooses the cheapest set of edges so that each subtree is connected and where v is left out.
The union-find data structure is used to represent the subtrees. To check if the new solution is
better than the original, we only have to compare the costs of the changed edges, i.e., the cost of
the new connection (EMST) and the cost of the old connection (E(S, v)).

In any case, the heap and union-find data structures need to be updated. Thereby, the heaps
are combined, and the new edges are added. In the union-find data structure, the sets of the
children are combined with the node v to form a single set.

5.3.3 Key-path Exchange

The key-path exchange neighborhood structure contains all feasible solutions which can be con-
structed from an initial solution S through exchanging key paths P1 by P2, where P1 ∈ S and
P2 /∈ S. A path is called a key path if its endpoints are both crucial (i.e., terminal or Steiner node
with degree at least three in the solution), and no crucial nodes lie in between. The presented
algorithm is a re-implementation of the fast neighborhood evaluation which is described in [73].

We note that the removal of an arbitrary key path with endpoints v and w from the solution
splits the tree into two disconnected components, denoted by Sv and Sw. The classic way to
compute a new solution is to apply the Dijkstra algorithm to find a path between the components.
However, this is not very efficient, as it requires O(|T | · (|E|+ |V | log |V |)) in the worst case to
explore the complete neighborhood. In each iteration, all information is computed from scratch.
In contrast, the exploration procedure proposed in [73] exploits the fact that in each iteration,
only a part of the distance information generated by Dijkstra’s algorithm will change.

In the following, a Voronoi diagram is used to encode the distance information at any point
in the algorithm. All nodes in the solution (VS) are used as the set of bases. In contrast to the
previously described algorithms, key-path exchange deals with paths instead of edges. A unique
path in the Voronoi diagram is described by a border edge. The border edge can be simply
extended into a path based on the predecessor list stored in the Voronoi diagram.

We begin by describing the basic idea behind the presented neighborhood evaluation algo-
rithm: For each key path in the solution S, two Voronoi diagrams exist: one before removing the
path, and one after the removal. The second one changes according to the removed path, while

57

the first one always stays the same. A potentially better path is identified by choosing a bound-
ary edge in the second Voronoi diagram (which corresponds to a unique key path). However,
as already stated, constructing a Voronoi diagram in each iteration is costly. A more efficient
approach is to only recompute the area of the original Voronoi diagram that changes. A new key
path is then selected from two sets of border edges: the original border edges that have remained
unchanged, and the new border edges which appear only after the removal.

Since the set of original border edges will most likely be larger than the new set, it pays off
to keep track of it efficiently. Again, heap data structures are used for this task. For each base v
in Vor, the heap H(v) stores the set of original boundary edges with one endpoint in the subtree
rooted at v.

Algorithm 16: Key-path exchange: neighborhood evaluation

Data: A feasible solution S.
Result: A potentially improved S.

1 Vor ← initVoronoiDiagram(VS)
2 postT ← postOrderTraversal(S,CS)
3 H ← initHeaps(Vor)
4 U ← initUnionFind(V)

5 for v ∈ postT do
6 w ← parentC(v)
7 Ivw ← Pvw \ {v, w}
8 Vor.removeBases(Ivw)

9 enewb ← Vor.repair()

10 while {a, b} = H(v).top() : Vor.base(a) /∈ Sv,Vor(b) /∈ Sw do
11 H(v).extractMin()
12 end
13 eorigb ← H(v).top()

14 eb ← min(c(P (enewb)), c(P (eorigb)))

15 if c(Pvw) > c(P (eb))) then
16 ES ← ES \ Pvw ∪ P (eb)
17 end

18 Vor.revert()

19 for u ∈ Ivw do
20 H(w).merge(H(u))
21 U.union(w, u)

22 end
23 H(w).merge(v)
24 U.union(w, v)

25 end

58

Algorithm 16 shows an abstract representation of the neighborhood evaluation procedure. In
the beginning, the Voronoi diagram (denoted by Vor) is computed, where VS are considered as
bases. Initially, each heap H(v) stores the set of original boundary edges with one endpoint in
v’s Voronoi region. These heaps will later be merged to represent the boundary edges of whole
subtrees. A post-order traversal is built for the set of crucial nodes CS ∈ S. Again, a union-find
data structure is used to keep track of the disconnected components.

In each iteration of the main loop, the solution that results from exchanging key path Pvw
is evaluated. The end point w is retrieved by a call to parentC(v), which can be computed
efficiently while building the post-order traversal. Subsequently, the set of internal nodes Ivw of
Pvw are considered. These nodes have to be removed from the set of bases in Vor, so that the
influence ofPvw is removed from the Voronoi diagram. This also requires a call to Vor.repair,
which recomputes the stored information only for the affected nodes (i.e., the set of nodes which
had a base in Ivw). During this repair step, new border edges are created in Vor. The best new
border edge is stored in enewb .

After this, the boundary edges which do not connect the subtrees Sv and Sw are discarded
by iteratively calling extractMin. In the end, the best original boundary edge that connects
these subsets is stored in eorigb . Let P (e) denote the corresponding key path of boundary edge e.
The path with the lowest cost is chosen from eorigb and enewb . If the cost of the new key path is
smaller than the removed key path, the current solution is adapted accordingly.

Finally, Vor has to be reverted to its original state, and the data structures are updated. All
heaps and sets in the union-find data structure are merged for all nodes on path Pvw.

5.3.4 Key-node Elimination

The key-node elimination neighborhood structure contains all feasible solutions which can be
constructed from an initial solution S through the removal of a single key node v ∈ KS and its
incident key paths. We note that this neighborhood also contains all solutions from the Steiner
node elimination. A straight-forward way to evaluate each neighbor is to apply the DNH to the
remaining set of crucial nodes CS . The presented algorithm provides a more efficient approach
by combining elements from the previously described algorithms for key-path exchange and
Steiner node elimination.

First, we observe that the removal of a key node v and its incident key paths from S creates
a set of disconnected subtrees S0, . . . , Sk, where S0 is the parent component rooted at r. Let
v1, . . . , vk be the roots of the subtrees Si (i > 0). The goal is to identify a set of key paths that
connect all subtrees at minimal costs.

Again, the concept of updating a Voronoi diagram to reflect the changes after the removal
is used for efficiency. Like in the key-path exchange algorithm, we deal with new and original
boundary edges. Similar to the Steiner node elimination algorithm, we now consider horizontal
and vertical boundary edges. To this end, the already familiar data structures are used, but with
some changes.

The listL(v) has already been used to store horizontal edges for the Steiner node elimination,
but now we store the original horizontal boundary edges. An original boundary edge is contained
in L(v), if its endpoints have v as nearest common ancestor, i.e., nca(base(u), base(w)) = v.

59

Since these boundary edges correspond to the state of the Voronoi diagram before any removal,
it can be precomputed. For each v ∈ VS , a heap H(v) contains all boundary edges with one
endpoint in the subtree rooted at v. They are used to identify the cheapest original vertical
boundary edge for each subtree. The set of new boundary edges, both vertical and horizontal,
are computed during the repair of the Voronoi diagram.

Algorithm 17 shows the neighborhood evaluation procedure. In the beginning, the data
structures are initialized. The initialization is exactly the same as in the key-path exchange
procedure, with the exception that L(v) is computed for each v ∈ VS .

In each iteration of the main loop, a neighbor solution is created by the elimination of one
key node v ∈ KS and subsequently evaluated. Let Pi denote the path that connects v to subtree
Si and let Ii denote the set of internal nodes for each path. Furthermore, let childrenC(v) and
parentC(v) denote the set of child nodes and the parent node, respectively, when only crucial
nodes are considered in the solution tree. Similarly, adjacentC(v) is the union of childrenC(v)
and parentC(v).

At the beginning of an iteration, the internal nodes of Iw, where w is the crucial parent of v,
are combined into a set in the union-find data structure. Since CS is evaluated in post-order, the
same operation has already been executed for each Ivi , for all vi ∈ childrenC(v).

The next step is to clean data structures L(v) and H(v). In contrast to Steiner node elimi-
nation where the full list L(v) is always considered, here the boundary paths could potentially
have endpoints that are internal nodes. All such paths have to be removed from L(v).

The heaps H(vi), where vi ∈ childrenC(v) have to be cleaned in a similar manner. Each
heap contains boundary edges associated to paths with an endpoint in Si. The top element of
each heap is removed using extractMin until the path of the top boundary edge has one
endpoint in S0 and one endpoint in Si (i > 0). This edge is thus the cheapest vertical boundary.

Until now, we have only dealt with the data structures that contain original boundary edges.
The missing part are the new boundary edges that are the result of repairing the Voronoi diagram.
To this end, the Voronoi diagram Vor needs to be adapted to the state that appears after v and its
adjacent key paths are removed from the solution. First, v and the set of internal nodes in Ii for
each subtree are removed from the set of bases in Vor. Second, Vor is repaired by applying the
Dijkstra algorithm to the set nodes of nodes without a base. The set of new boundary edges that
appears during this repair process is stored in R(v).

Finally, a set of candidate boundary edges EC is built as the union of R(v), L(v) and the top
of each heap for each child node vi. The neighboring solution is computed by finding the MST in
this set of edges which connects each subtree, represented by the union-find data structureU . Let
P (S, v) denote the set of key paths that connect v in S. For brevity, for a set of boundary edges
Eb, let P (Eb) be the set of boundary paths. The costs of the removed and the new connecting
boundary paths are compared. If the new connection is cheaper, the current solution is adapted.

Before starting the next iteration, Vor has to be reverted to its original state, and the data
structures have to be updated along the key paths.

60

Algorithm 17: Key-node elimination: neighborhood evaluation

Data: A feasible solution S.
Result: A potentially improved S.

1 L← computeNCAs(VS) // Initialize data structures
Vor ← initVoronoiDiagram(VS)

2 H ← initHeaps(Vor)
3 postT ← postOrderTraversal(S,CS)
4 U ← initUnionFind(V)

5 for v ∈ postT do
6 if v ∈ KS then // Test key node
7 w ← parentC(v)
8 U.union(Iw)
9 foreach e = {a, b} ∈ L(v) : base(a) /∈ Ii, base(b) /∈ Ii, i > 0 do

10 L(v).remove(e)
11 end
12 foreach w ∈ childrenC(v) do
13 while {a, b} = H(w).top() : base(a) /∈ Si, base(b) /∈ S0, i > 0 do
14 H(w).extractMin()
15 end
16 end
17 foreach w ∈ adjacentC(S, v) do Vor.removeBases(Iw)
18 R(v)← Vor.repair()

19 EC ← R(v) ∪ L(v)
20 foreach u ∈ childrenC(v) do EC ← EC ∪H(u).top()

21 EMST ← MST-Components(EC , U)

22 if c(P (S, v)) > c(P (EMST)) then
23 ES ← ES \ P (S, v) ∪ EMST

24 end
25 Vor.revert()

26 end

27 for w ∈ childrenC(v) do // Update data structures
28 H(v).merge(H(w))
29 U.union(v, w)
30 for u ∈ Iw do
31 H(v).merge(H(u))
32 U.union(v, u)

33 end
34 end
35 end

61

5.3.5 Variable Neighborhood Descent

VND is used as the primary method for solution enhancement within the proposed algorithm.
The application of VND to the STP has already yielded good results in other heuristic procedures
like GRASP and Path Relinking [48, 64].

Experiments from literature suggest that using multiple neighborhood structures in combina-
tion is essential for achieving robustness with respect to solution quality, since their effectiveness
is generally influenced by the instance structure. In [64], tests on SteinLib benchmark instances
indicate that the Steiner node insertion / elimination neighborhoods are more effective for dense
graphs that contain a large number of terminals, while key-path exchange performs better on
sparse graphs with fewer terminals.

Furthermore, we note that the Steiner node elimination neighborhood is dominated by the
key-node elimination neighborhood, so it is excluded from the VND. We have specified the
following order for the exploration of neighborhoods:

1. Steiner node insertion

2. Key-path exchange

3. Key-node elimination

We note that in general the order in which these neighborhoods are evaluated can have an
effect on the achieved solution quality. However, in [64] the experiments do not suggest any
significant differences for the STP, at least for the tested neighborhoods (Steiner node insertion
/ elimination, key-path exchange). In our own preliminary experiments, also for the key-node
elimination no significant influence has been measured. Thus, in the applied VND we only
iterate through neighborhoods in a fixed, deterministic manner.

62

CHAPTER 6
Computational Results

In this chapter the computational results are presented and analyzed. All algorithms in this
work have been implemented in C++ and compiled using GCC 4.8.1 with the full compiler
optimization flag (-O4). A collection of pre-existing implementations and software libraries
has been incorporated to facilitate the solution of the more complex tasks. Table 6.1 lists each
element and its purpose.

Table 6.1: External implementations and libraries

Implementation / library Purpose

ILOG CPLEX 12.5 solution of ILPs through B&C
METIS [38] computation of a k-way graph partition
dtree [18] an implementation of link-cut trees used for efficient

Steiner node insertion
bossa [76] preprocessing of STP instances
Push-relabel maximum flow [26] implementation of the B&C separation procedure

The presented experiments are grouped into four parts. First, a set of suitable benchmark
instances is identified through preprocessing. Naturally, only instances which are still large
after the application of common reduction tests are of relevance for testing PCH and MPCH,
which are both aimed at the solution of large-scale instances. Second, the performance of B&C
and the VND procedure is evaluated by themselves. Both are algorithmic components which
play a major role within the other algorithms. Third, we experiment with different parameter
combinations for PCH and MPCH to identify their best configurations. Finally, we compare the
proposed algorithms to state-of-the-art methods.

All tests excluding the comparison with other methods have been executed on a Phenom II
X4 965 3.4 GHz with 12 GB RAM. The test runs for the final comparison have been computed

63

on an Intel Xeon E5540 2.53 GHz with 24 GB RAM. In each case only a single core of the
processor is utilized.

Unless noted otherwise, all average values are computed as shifted geometric meanAsg. For
a set of n data values x1, . . . xn, and a given shift value s, this measure is computed as follows:

Asg = n

√√√√ n∏
i=1

(xi + s)− s

Using the geometric mean instead of the arithmetic mean has the advantage that a small
number of extreme outliers does not affect it as much. However, if a single one of the data
values is zero, the result is also zero. Therefore, we use s = 1, so that no data value can be zero.

In all tests the performance of algorithms is measured in runtime and solution quality. All
runtime values are given in seconds. The solution quality of a given solution S is denoted as the
percentage gap to the best known or optimal objective value (denoted by OPT), computed as
follows:

gap =
obj(S)−OPT

OPT
· 100%

Some algorithms also give a lower bound, which can be used to estimate the quality of the
constructed solutions. We measure the gap between the objective value and this lower bound lb
in percent, and denote it as dual bound. It is computed as follows:

gapD =
obj(S)− lb

lb
· 100%

To measure the quality of the lower bound independently from the best upper bound, we also
measure the error in percent from the best known or optimal objective value.

gapDO =
OPT − lb

lb
· 100%

64

6.1 Benchmark Instances

A set of benchmark instances has been chosen from the SteinLib [42]. These instances have
been selected according to their sparsity and size. Since the design of PCH does not imply that
good results can be achieved for small graphs with a large number of edges, this type of instances
has been excluded from the tests. However, the total number of instances which are rather large
with respect to the number of nodes (i.e., over 10 000) is relatively small. Since our main focus
lies on the efficient construction of heuristic solutions in instances with large graphs, we have
included additional real-world instances into our tests to further evaluate the capabilities of PCH
and MPCH.

The benchmark instances are grouped into four sets. The first three sets (ES, TSPFST and
VLSI) have been selected from the SteinLib, while the fourth (I) is the set of new large-scale
real-world instances. In the following we will give a short description of each instance set.

• Instance set 1: ES
The instances belong to the SteinLib sets ES1000FST and ES10000FST. The numbers
within them refer to the number of contained terminals, 1 000 and 10 000, respectively.
They have been generated from random instances of the Euclidean Steiner tree problem
in the plane by the software GeoSteiner [75]. The ratio of terminals to nodes is generally
quite high, with ~30% on average.

• Instance set 2: TSPFST
These instances belong to the SteinLib set of the same name, and have also been generated
through GeoSteiner. The original instance graphs are taken from the TSPLIB [61], a
benchmark library for the traveling salesman problem. The ratio of terminals to nodes is
the same as in ES.

• Instance set 3: VLSI
This set contains instances from VLSI applications. The instances correspond to grid
graphs with rectangular holes, and are taken from the SteinLib sets TAQ, ALUE and
ALUT. In comparison to the other sets, only very few terminals exist in these instance
graphs.

• Instance set 4: I
These are the new large-scale real-world instances from infrastructure network design.
Compared to the other sets the average instance size is quite high, with the largest instance
consisting of over 85 000 nodes, 135 000 edges and 3 900 terminals. The terminal to
node ratio is on average lower than in the sets ES and TSPFST, but still higher than in
VLSI. Since the instances model the design of real-world infrastructure, the distribution
of terminals within the graphs is likely to form groups which are closer to each other than
to other terminals. We therefore expect to achieve good results through the application of
partitioning.

65

6.2 Preprocessing

Prior to the application of any other algorithms, common reduction tests have been applied to all
the tested instances. The preprocessing has been handled by the bossa framework [64], which
implements specialized preprocessing procedures for both general and VLSI instances.

Table 6.2 and Table 6.3 list the results of preprocessing. Each entry contains the post-
preprocessing and the original instance properties (numbers of nodes, edges and terminals),
the preprocessing runtime in seconds and the percentage of remaining edges (denoted by ER%).
The instances are grouped according to their specific instance set, and sorted in decreasing order
according to the number of nodes after preprocessing. The tables are restricted to the instances
that have been selected as benchmark instances for the implemented algorithms. For the sets
TSPFST, VLSI and I, only the ten instances with the highest number of nodes after prepro-
cessing have been chosen. For the set ES, all instances originally part of the SteinLib sets
ES1000FST and ES10000FST have been selected.

We note that preprocessing runtimes are generally quite low, except for large-scale instances.
The runtimes for I-instances are especially high, e.g., instance I024 took approximately 5.8
days to finish preprocessing. The high computational effort is most likely due to the iterative
application of complex reduction tests to a large number of nodes. It is important to note that the
bossa framework is probably primarily optimized for SteinLib instances, which do not contain
that many nodes, and that better results could possibly be achieved through optimization of its
reduction procedures.

Concerning the effectiveness of preprocessing, we note that for instances with a low number
of terminals (i.e., VLSI and I), instance size is reduced heavily, so that ~60% of all edges have
been typically removed. The reduction tests are less successful for the ES and TSPFST sets, e.g.,
the largest TSPFST instance fnl4461fst has still ~82% of its original edges after preprocessing.

Table 6.2: Preprocessing results for the instance set ES

Instance |Vorig| |Eorig| |Torig| |Vprep| |Eprep| |Tprep| time[s] ER%

ES es10000fst01 27019 39407 10000 15464 24774 4875 10,33 62.87
es1000fst01 2865 4267 1000 1833 2958 544 0.22 69.32
es1000fst02 2629 3793 1000 1443 2317 465 0.2 61.09
es1000fst03 2762 4047 1000 1609 2583 492 0.22 63.83
es1000fst04 2778 4083 1000 1596 2569 490 0.2 62.92
es1000fst05 2676 3894 1000 1584 2543 479 0.14 65.31
es1000fst06 2815 4162 1000 1693 2741 486 0.19 65.86
es1000fst07 2604 3756 1000 1453 2306 462 0.18 61.40
es1000fst08 2834 4207 1000 1742 2824 502 0.17 67.13
es1000fst09 2846 4187 1000 1743 2801 518 0.18 66.90
es1000fst10 2546 3620 1000 1334 2109 437 0.14 58.26
es1000fst11 2763 4038 1000 1638 2630 490 0.21 65.13
es1000fst12 2984 4484 1000 1943 3126 566 0.22 69.71
es1000fst13 2532 3615 1000 1235 1983 387 0.19 54.85
es1000fst14 2840 4200 1000 1785 2864 525 0.2 68.19
es1000fst15 2733 3997 1000 1597 2570 487 0.15 64.30

66

Table 6.3: Preprocessing results for the instance sets TSPFST, VLSI and I

Instance |Vorig| |Eorig| |Torig| |Vprep| |Eprep| |Tprep| time[s] ER%

TSPFST fnl4461fst 17127 27352 4461 13699 22453 3290 5.87 82.09
nrw1379fst 5096 8105 1379 3990 6528 988 0.73 80.54
fl1400fst 2694 4546 1400 1973 3642 967 1.72 80.11
fl3795fst 4859 6539 3795 1827 3415 895 5.39 52.23
rat783fst 2397 3715 783 1729 2822 492 0.18 75.96
rat575fst 1986 3176 575 1557 2566 412 0.12 80.79
pcb3038fst 5829 7552 3038 1346 2146 532 0.59 28.42
dsj1000fst 2562 3655 1000 1328 2130 415 0.16 58.28
vm1748fst 2856 3641 1748 925 1474 332 0.14 40.48
att532fst 1468 2152 532 904 1456 256 0.05 67.66

VLSI alue7065 34046 54841 544 13073 23017 445 119.22 41.97
alut2625 36711 68117 879 12196 22457 764 88.93 32.97
alut2610 33901 62816 204 10760 20185 182 212.09 32.13
alue7080 34479 55494 2344 9270 16016 1402 47.96 28.86
taq0377 6836 11715 136 2040 3603 118 5.4 30.76
taq0903 6163 10490 130 1851 3294 90 4.95 31.40
alue7066 6405 10454 16 1791 3151 9 16.44 30.14
taq0014 6466 11046 128 1766 3155 86 7.23 28.56
alut2288 9070 16595 68 1224 2195 59 17.46 13.23
alue5345 5179 8165 68 1191 2012 64 2.75 24.64

I I027 85085 138888 3954 40772 60555 3490 246569.16 43.60
I083 89596 148583 4991 34221 50301 4138 77571.68 33.85
I024 68464 108732 3001 32357 48250 2511 503528.64 44.38
I064 63158 107345 3458 31712 46711 3182 332814.54 43.51
I044 68905 113889 3358 31500 46757 2954 122199.74 41.05
I016 72038 115055 4391 27214 39824 3434 472546.85 34.61
I002 49920 77871 1665 23800 35758 1282 165874.52 45.92
I062 66048 110491 3343 23714 35305 2812 9369.44 31.95
I061 39160 63659 1458 20958 31465 1337 32477.62 49.43
I015 48833 79987 2493 20573 30541 2119 59274.99 38.18

6.3 Parameter Analysis for the Exact Approach

The B&C procedure is used for the exact solution of subinstances, for exact repair in PCH
and the exact solution recombination in MPCH. Since B&C is clearly the most computation-
intensive procedure, optimization is essential. In the following we compare the performance of
a simple B&C (without any improvements to the separation procedure and without any heuristic
separation of cuts through dual ascent) and the B&C with all the improvements presented in
Section 4.4.

Table 6.4 shows the average results for each algorithm and instance set. The first column
(# inst) gives the number of instances per set. The second and third columns (gapD and gap) are
computed as already specified. The fourth column (time) gives the average runtime in seconds.
The fifth column (# S) denotes the number of solved instances and the sixth column (# nodes)
denotes the average number of B&B nodes. For the sets ES, TSPFST and VLSI, the time avail-

67

able for exact solution has been limited to three hours. For the large-scale I instances, the time
limit has been set to 24 hours.

Table 6.4: Performance comparison for B&C

simple B&C improved B&C
inst gap [%] gapD [%] time [s] # S # nodes gap [%] gapD [%] time [s] # S # nodes

ES 16 1.19 13.30 10800 0 644 0.005 0.007 56 15 3
TSPFST 10 1.03 9.06 10800 0 346 0.037 0.065 201 7 11
VLSI 10 1.80 38.84 10800 0 253 0.186 0.187 458 8 1
I 10 0.08 0.87 86000 0 5 0.0 0.0 21907 10 2

The results show that the simple B&C has not solved any instance to optimality within
the specified time limit. For all instance sets, gapD and gap are on average relatively high,
especially for the VLSI instances. Concerning the I instances, we note that in their specific
case the preprocessing has already fixed many heavy edges, so the resulting gaps appear lower
than for the other instance sets. On average, the percentage of fixed costs relative to the known
optimum is 78% for the I instances and 10% for the VLSI instances. We note that this does not
affect the usefulness of the instance set I for performance comparison purposes.

The improved B&C performs much better than the simple B&C. We observe that both gapD
and gap are quite small (significantly below 1%) after the specified time limit, and most instances
have been solved to optimality. In comparison to the simple procedure, the improved B&C also
requires much fewer B&B nodes, with most instances solved in the root node. We observe that
the average runtime for all instance sets except I is below ten minutes. The results for the I
instances are achieved on average after approximately six hours. We conclude that the B&C
procedure becomes only effective due to its improvements. Without these, the exact solution
takes an unacceptable amount of time.

6.4 Comparison of Local Search Heuristics

Clearly, the algorithms used for local search represent a performance-critical factor. Espe-
cially for large-scale instances, their iterative application can potentially require an unacceptable
amount of time. The use of efficient neighborhood exploration algorithms is therefore essential.
In this section we evaluate whether the performance of the implemented VND is also accept-
able for the large-scale instances. For all tests a starting solution is constructed through a single
application of SPH from an arbitrary terminal as root node, which subsequently is improved by
MST-Prune.

Table 6.5 and 6.6 show the average gap to the optimal value and the average runtime, re-
spectively. The column SPH lists the construction time and quality of the starting solution.
First, each single neighorhood is separately explored, so that its potential contribution becomes
apparent. The following abbreviations are used in the tables: SNi and SNe denote the Steiner
node insertion and elimination, KPe is key-path exchange and KNe is key-node elimination.
The last column (VND) lists the results for the whole VND procedure. In this procedure, we

68

have excluded SNe, which is dominated by KNe. Every local search procedure is applied until
no further improvements can be found.

Table 6.5: Comparing local search procedures w.r.t. the average gap [%]

SPH SNi SNe KPe KNe VND

ES 1.770 1.366 1.482 1.058 1.310 0.793
TSPFST 1.947 1.552 1.463 1.246 1.414 0.881
VLSI 2.983 2.758 2.694 1.332 2.588 1.229
I 0.064 0.053 0.060 0.025 0.022 0.018

Table 6.6: Comparing local search procedures w.r.t. the average runtime [s]

SPH SNi SNe KPe KNe VND

ES 0.002 0.012 0.015 0.036 0.058 0.075
TSPFST 0.002 0.014 0.017 0.052 0.069 0.114
VLSI 0.003 0.016 0.015 0.059 0.057 0.114
I 0.047 0.307 0.301 2.876 5.672 6.788

First, we note that the solution quality obtained by SPH is always quite robust. For each
instance set except VLSI, the average gap is less than 2%. Considering its low runtime, these
results are quite acceptable. Even for the large-scale instances, the construction takes less than
50 milliseconds on average.

Subsequently, each neighborhood exploration procedure achieves a substantial improvement
in solution quality. Moreover, the results clearly show that some neighborhood structures are
better suited for certain types of instances. Especially noteworthy is KPe, which manages to
outperform the other neighborhoods in almost every case. This behavior is easily explained by
the fact that all tested instance sets consist of large, sparse graphs, in which the insertion or
elimination of single Steiner nodes does not make much difference. The performance discrep-
ancy is especially noticeable for the VLSI-instances, which contain the smallest percentage of
terminals, so key paths tend to be rather long. In contrast, the achieved improvement for SNi

and SNe is similar toKPe when applied to instances with many terminals, i.e., ES and TSPFST.
Compared to the other neighborhoods, their exploration is also faster.

As expected, for all tested instances KNe achieves better results than SNe. For the instance
sets ES, TSPFST and VLSI the difference in runtime is not very pronounced, with KNe requir-
ing only a few milliseconds more than SNe. The runtimes of KPe and KNe are comparably
high for the large-scale instances. In any case, KNe achieves a higher improvement than other
procedures, which implies that its use in the VND is justified.

The evaluation of single neighborhoods already proves the effectiveness of the implemented
local search techniques. The results suggest that for each instance set, their combination in a
VND is able to further enhance the achieved improvement. In most cases, the introduced addi-
tional runtime is negligible, as it is relatively close to the performance of the slowest neighbor-
hood exploration technique (in this case KNe). We therefore conclude that it is more effective
and robust to apply the VND instead of only exploring a single neighborhood.

69

6.5 Tuning the Partition-based Construction Heuristic

In this work a number of different algorithms have been suggested that attempt to solve the
subtasks of PCH. An interesting question is if there exist algorithms that clearly outperform
others in their respective task, or if some of them are more suited for certain instance types. In
the following, we evaluate the presented algorithms for partitioning, decomposition and repair in
the context of PCH. Their performance is measured by comparing solution quality and runtime.

As there exists a large number of algorithm combinations that need to be evaluated, we set
the time limit for each exact solution to t = 100 (seconds). This ensures that the runtime of
PCH is more predictable, since in the worst case the exact solution of a subinstance may require
a large amount of time. In our experiments, most subinstances can be solved before this time
limit, and only certain special cases require more time.

Moreover, each algorithm combination is evaluated for certain configurations with respect to
the partitioning parameters k (the number of subsets in the partition) and d (allowed imbalance
in the partition P , such that |Vi| ≤ |V | · d/k for each subset i ∈ P), which represent a trade-off
between solution quality and runtime. We note that all tested instances are of different sizes, so
k is always computed according to the number of terminals: k = |T |/10 and k = |T |/100 has
been considered. The results are grouped accordingly. We have chosen terminals as the basis for
computing k instead of the number of nodes, because the terminal to node ratio is also different
for each test instance.

6.5.1 Evaluation of Partitioning Schemes

We first evaluate the proposed partitioning algorithms. For comparison purposes, each algorithm
is applied together with the simple decomposition and heuristic repair algorithm, since these are
expected to require the lowest runtime. This choice does not have any impact on the performance
of partitioning, since the application of these techniques is independent from each other.

Table 6.7 and 6.8 show solution quality and runtime for the different partitioning schemes.
Each column contains results for a different partitioning scheme and the given parameters k and
d. The following abbreviations are used: Eb and V b denote the edge-based and Voronoi-based
partitioning schemes, cu and corig are the uniform and original weighting strategies forEb, while
SG denotes the use of a guiding solution. This guiding solution is constructed by applying SPH
and MST-Prune in the reduced graph generated by dual ascent (cf. Section 2.3.4). In Table 6.7,
the smallest average gap per instance set and partitioning scheme has been marked bold, while
in Table 6.8 the configuration with the smallest runtime is marked.

First, we note that the results confirm that the parameters k and d affect PCH as intended.
In most cases, a clear progression is visible concerning runtime and solution quality when the
values of |T |/k and d are increased. The creation of larger, imbalanced subinstances leads to an
improved solution quality, but increases runtime, since the created subinstances take longer to
be solved.

As was have already noted in Section 4.1.1, the solution quality for Eb is quite bad if d = 1.
In addition, d = 3 also affects quality adversely, which is frequently worse than for d = 2. We
conclude that the performance of Eb highly depends on its partitioning parameters, and requires
them to be fine-tuned to achieve its full potential. For all instance sets, using corig outperforms

70

Table 6.7: Comparing partitioning schemes in PCH w.r.t. the average gap [%]

Edge-based partitioning (METIS) New Voronoi-based
partitioning

|T |/k d cu corig cu, SG corig , SG w/o SG w. SG

ES 10 1 8.88 9.13 8.57 8.13 1.54 0.98
2 1.99 1.43 1.37 1.05 1.03 0.69
3 1.82 1.24 1.29 0.94 0.97 0.63

100 1 3.41 3.90 1.35 1.53 0.37 0.18
2 0.67 0.64 0.58 0.42 0.22 0.14
3 1.63 0.95 0.80 0.75 0.20 0.13

VLSI 10 1 55.39 44.57 45.02 42.67 3.30 1.25
2 8.65 7.95 5.22 4.62 1.29 0.97
3 11.82 12.92 6.61 6.74 1.00 0.81

100 1 25.50 25.15 19.99 20.09 1.86 0.65
2 3.30 1.61 1.34 1.14 0.63 0.58
3 3.27 1.46 1.23 1.11 0.71 0.68

TSPFST 10 1 7.42 7.33 8.50 7.50 1.69 1.12
2 1.82 1.34 1.37 1.14 1.07 0.82
3 1.80 1.30 1.33 1.12 0.98 0.81

100 1 4.55 4.24 4.03 4.02 0.43 0.28
2 0.59 0.53 0.40 0.73 0.35 0.19
3 0.57 0.34 0.41 0.35 0.23 0.14

I 10 1 0.903 0.863 0.986 0.826 0.094 0.039
2 0.241 0.198 0.144 0.125 0.056 0.028
3 0.234 0.201 0.149 0.112 0.046 0.028

100 1 0.340 0.296 0.320 0.281 0.094 0.011
2 0.090 0.109 0.058 0.083 0.038 0.006
3 0.097 0.076 0.065 0.111 0.016 0.006

cu. This implies that the distance between nodes is more important than minimizing the number
of crossing edges between subsets. Furthermore, the use of a guiding solution almost always
leads to better results. There exists however no strict guarantee that using a guiding solution
increases solution quality. Especially when a high partition imbalance is allowed (i.e., d = 3),
the average quality is decreased. Clearly, this is another indicator that the edge-cut of a graph is
not a good measure to encourage the construction of good quality solutions.

On the other hand, we observe that the solution quality when using V b does not depend that
much on the partitioning parameters. The algorithm produces better average solution quality
than all variants using Eb. In all but one cases, the increase of d leads to better results. The
exception is the VLSI instance set, for which d = 2 achieves the best results. We conclude
that in instances which contain only a very small percentage of terminals, making subsets in a
partition too big may lead to less favorable results than making smaller subsets and connecting
them heuristically.

Comparing the value shown in 6.8, we note that in almost every case, the average runtime
of V b is lower than the one of Eb. In Table 6.8, the lowest runtimes for each configuration are
marked bold. For the instance sets ES, VLSI and TSPFST, if Eb is faster than V b it is only by

71

Table 6.8: Comparing partitioning schemes in PCH w.r.t. the average runtime [s]

Edge-based partitioning (METIS) New Voronoi-based
partitioning

|T |/k d cu corig cu, SG corig , SG w/o SG w. SG

ES 10 1 0.87 0.88 0.87 0.88 0.98 1.10
2 1.06 1.06 1.04 0.76 0.86 0.92
3 1.08 1.09 1.07 1.07 0.87 0.93

100 1 2.24 1.84 2.18 2.15 1.53 1.61
2 4.06 3.60 4.17 4.75 2.91 3.21
3 6.65 7.25 6.30 7.48 3.74 3.93

VLSI 10 1 1.75 2.02 1.87 1.52 1.56 1.73
2 9.30 8.07 4.72 4.92 3.47 3.01
3 15.07 20.93 10.54 11.40 4.01 3.87

100 1 10.66 9.80 11.80 9.10 13.28 13.05
2 118.53 64.72 44.38 33.05 40.07 28.76
3 127.50 72.69 37.46 30.77 41.10 28.43

TSPFST 10 1 1.15 1.25 1.16 1.22 1.22 1.32
2 1.49 1.49 1.45 1.51 1.15 1.22
3 1.53 1.49 1.52 1.52 1.44 1.45

100 1 7.28 7.99 7.82 6.07 6.97 7.69
2 16.33 15.88 15.68 17.20 13.14 14.39
3 25.21 25.90 23.80 25.29 17.79 18.01

I 10 1 35.33 36.51 59.48 58.68 27.55 53.08
2 36.70 36.80 53.60 51.02 24.71 47.63
3 36.79 37.67 52.30 56.25 26.11 48.14

100 1 92.77 91.77 95.91 101.90 43.77 66.10
2 78.23 108.83 101.92 100.12 97.46 124.90
3 93.60 93.71 112.64 115.39 173.28 171.52

a small amount of time less than a second. In instance set I, Eb outperforms V b only for larger
values of d, but the longer runtimes of V b are compensated by better solution quality.

Especially interesting is the fact that the use of a guiding solution speeds up V b for all d > 1.
This can be explained by the fact that due to the restricted merging process in V b, subsets stay
smaller, but at the same time the connections are more meaningful due to the guiding solution.

We conclude, that V b performs much better both with respect to solution quality and run-
time, and is also a much more robust strategy with respect to the choice of parameters. Thereby,
in the remainder of this thesis, V b with a guiding solution as specified before is used when
referring to the PCH.

6.5.2 Evaluating Decomposition and Repair Methods

Next, the algorithms for decomposition and repair are evaluated. Table 6.9 lists the average gap
and runtime for each instance set. Again, the results are given for different combinations of k
and d. Each column shows a different combination of decomposition and repair algorithm. Here,
Ds and Da denote the simple and augmented decomposition procedures (see Section 4.2), and

72

Table 6.9: Comparing decomposition and reapir methods in PCH w.r.t. average gap and runtime

Ds,Rh Ds,Re Da

|T |/k d gap [%] time [s] gap [%] time [s] gap [%] time [s]

ES 10 1 0.98 1.28 0.87 2.04 1.18 1.35
2 0.69 1.03 0.62 1.84 0.86 1.00
3 0.63 1.05 0.55 2.01 0.89 1.03

100 1 0.18 1.66 0.18 2.08 0.21 1.63
2 0.14 3.34 0.14 3.82 0.15 3.40
3 0.13 4.15 0.13 4.66 0.14 4.10

TSPFST 10 1 1.12 1.50 0.98 3.09 1.49 1.51
2 0.82 1.26 0.74 2.40 1.03 1.23
3 0.81 1.39 0.73 2.75 1.07 1.41

100 1 0.28 7.76 0.28 8.47 0.46 8.02
2 0.19 14.45 0.18 15.27 0.25 14.09
3 0.14 18.05 0.13 18.91 0.21 18.99

VLSI 10 1 1.25 1.73 1.12 7.50 2.25 1.89
2 0.97 3.05 0.94 7.58 1.81 3.37
3 0.81 3.88 0.76 8.16 2.00 4.38

100 1 0.66 13.41 0.65 15.28 0.65 13.78
2 0.59 31.04 0.58 32.19 0.65 31.49
3 0.65 29.92 0.65 30.97 0.72 30.55

I 10 1 0.039 52.21 0.037 175.58 0.062 55.50
2 0.033 45.44 0.030 173.79 0.053 50.24
3 0.032 44.46 0.028 166.37 0.052 50.02

100 1 0.010 60.01 0.010 128.09 0.016 63.95
2 0.007 111.41 0.006 200.31 0.012 118.37
3 0.007 169.07 0.007 258.79 0.011 177.04

Rh and Re are the heuristic and exact repair algorithms. We note that repair is only necessary
for Ds, so combinations between Da and repair algorithms do not exist. For each instance set
the best average gap and the fastest runtime are marked bold.

First, we observe that for the simple decomposition, the exact repair always results in solu-
tions that are at least as good as the heuristic repair. This is to be expected, since both algorithms
are applied to the same partial solution. For |T |/k = 100, the difference in solution quality is
only marginal. For |T |/k = 10, the difference is slightly higher, since the partition contains
more subsets, and thus the potential for optimization is larger.

In each case, the exact repair requires more runtime than the heuristic repair. This is espe-
cially apparent for the I-instances, for which the exact solution often exceeds the specified time
limit of 100 seconds. We conclude that the exact repair does not bring much benefit when the
number of subsets is small, and the heuristic repair achieves the same solution quality much
faster in such cases. However, if the number of subsets is large, the improvement achieved by
the exact repair may be worth the increase in runtime.

Surprisingly, the augmented decomposition has not performed as well as the simple decom-
position. While having a runtime that is comparable to the simple decomposition and heuristic
repair, it is outperformed with respect to solution quality even without exact repair in almost

73

every case. This suggests that fixing Steiner nodes to optimize the solutions of subinstances
decreases the overall solution quality. Thus it seems to be more effective to compute solutions
independently and optimize their connection afterwards.

6.6 Tuning the Partition-based Memetic Algorithm

The combination of several algorithmic concepts results in a vast number of additional configu-
rations that can influence the whole procedure’s behavior. In this work, we concentrate on testing
MPCH’s aspects which we consider most essential: the influence of local search in combination
with PCH and the solution recombination.

In each test, PCH is applied using the Voronoi-based partitioning scheme, simple decom-
position and heuristic repair. For the partitioning parameters of PCH, we use k = |T |/10 and
d = 3. The guiding solution for partitioning is always taken from the solutions within the popu-
lation (cf. Section 5.1). Again, the limit for exact solution is set to t = 100 (seconds). This limit
applies whenever the B&C algorithm is used, i.e., for solving subinstances and for the exact
solution recombination. MPCH is performed for a population of ten individuals, and three gen-
erations are executed. For the iterated application of PCH, two iterations without improvement
are allowed (n = 2).

Table 6.10 shows the performance overview for different sets of parameters. We test the al-
gorithm both with and without VND. In addition, we apply either an exact or heuristic approach
as a black-box procedure for solving the subinstances and performing recombination. As spec-
ified in Section 5.1, B&C is used to solve subinstances to optimality and SPH+MST-Prune is
applied to the auxiliary graph generated by DA. For both approaches we apply VND to further
enhance the solution.

For the reductions, Rn and Re denote the average number of reduced nodes and edges,
respectively. We note that only a few instances have been reduced. We conclude that the used
reduction tests are not strong enough to make a significant difference compared to the elements
already removed by the reduction tests during preprocessing.

In each experiment, a different configuration of local search and solution recombination
algorithm is used. In the following tables, columns VND and E denote whether local search or
exact solution recombination is used. If exact recombination is disabled, the solution will be
recombined heuristically.

Table 6.10 is divided into three parts. The first part describes the construction of the initial
population. We note that this experiment also shows the strength of a multi-start approach when
using local search. The constructed solutions are likely to reside in different basins of attraction,
and the results are much better when compared to a single iteration (cf. Section 6.7).

We observe that the population initialization step already yields a good result when com-
bined with VND. Compared to the parameter tests for local search, the multistart for ten solu-
tions can further enhance the solution quality. Compared to single start, the gap is almost halved
for all instance sets (cf. Section 6.4). Since we apply SPH on the subgraph generated by DA,
we also have access to a lower bound.

We note that the executed reductions only reduce the instance graph for the sets VLSI and I.
These sets contain fewer terminals than the two other sets. In any case, the number of reduced

74

Table 6.10: Comparing different parameter configurations for MPCH

Initialization Reductions Result
Exact VND gap [%] gapD [%] time [s] Rn Re gap [%] gapD [%] time [s]

ES 0 0 1.42 2.21 0.62 0 0 0.37 1.15 6.63
0 1 0.48 1.27 1.26 0 0 0.30 1.09 11.44
1 0 1.44 2.24 0.65 0 0 0.28 1.08 21.99
1 1 0.48 1.27 1.19 0 0 0.18 0.96 25.17

TSPFST 0 0 1.60 2.43 0.56 0 0 0.44 1.30 9.70
0 1 0.55 1.32 1.15 0 0 0.33 1.13 9.99
1 0 1.70 2.57 0.58 0 0 0.29 1.21 66.07
1 1 0.53 1.31 1.28 0 0 0.19 0.99 69.80

VLSI 0 0 1.86 3.39 2.32 1.41 2.01 0.43 1.93 16.34
0 1 0.66 2.13 3.99 1.76 2.49 0.32 1.78 21.72
1 0 1.86 3.39 2.18 1.41 2.01 0.29 1.77 24.09
1 1 0.66 2.13 3.50 1.76 2.49 0.25 1.70 29.77

I 0 0 0.0762 0.0978 283.56 3.51 4.19 0.0078 0.0295 496.99
0 1 0.0132 0.0349 460.72 3.55 4.24 0.0069 0.0286 963.37
1 0 0.0762 0.0978 291.35 3.51 4.19 0.0069 0.0286 1372.59
1 1 0.0132 0.0349 461.98 3.55 4.24 0.0060 0.0277 1915.04

nodes is rather small. The reason for this is that the employed reduction tests are very simple,
and most of the parts which they could have reduced had already been removed by the initial
preprocessing.

Finally, after the execution of three generations, the difference in the final result between
starting from a locally optimal initial generation is not very large. The results are only slightly
improved.

A greater change is achieved from switching between exact and heuristic combination. Us-
ing the exact combination yields much smaller gaps. This improvement comes at the price of
much higher runtimes. This becomes especially apparent for the larger instance sets with many
terminals. In such sets, solutions contain more edges, and thus the union subgraph is also larger.
In contrast, the I and VLSI sets only double their runtimes, while the ES and TSPFST have a
much higher runtime increase. The use of exact combination is thus more feasible for instances
with fewer terminals.

Table 6.11 gives a more detailed view on the performance of different generations (denoted
by G1, G2 and G3). Here, the use of the solution archive becomes especially apparent. If
diversity is too low, and solutions do not change much, the required time to apply PCH drops
extremely. The drop in runtime attains a maximum if local search and exact combination are not
used. Without the time required for exact combination, it is obvious that without local search, the
iterative application of PCH does not introduce enough diversity to actually change the produced
solutions much. Only in combination with local search, the solution is sufficiently different, so
that a new partition is created. We observe that in each iteration, the gap is only improved using
the exact combination.

75

Table 6.11: Comparing average gap and runtime per generation in MPCH

G1 G2 G3

Exact VND gap [%] time [s] gap [%] time [s] gap [%] time [s]

ES 0 0 0.40 3.48 0.38 1.58 0.37 0.96
0 1 0.33 5.90 0.31 2.26 0.30 2.00
1 0 0.35 9.73 0.31 6.81 0.28 4.81
1 1 0.23 10.96 0.20 7.09 0.18 5.90

TSPFST 0 0 0.47 5.28 0.45 2.45 0.44 1.41
0 1 0.38 5.96 0.34 2.97 0.33 1.88
1 0 0.38 32.37 0.32 18.42 0.29 14.70
1 1 0.25 32.00 0.20 18.88 0.19 17.64

VLSI 0 0 0.50 10.20 0.43 2.57 0.43 1.25
0 1 0.35 11.43 0.32 4.60 0.32 1.66
1 0 0.39 14.18 0.31 5.43 0.29 2.30
1 1 0.30 15.79 0.26 6.85 0.25 3.59

I 0 0 0.0081 126.65 0.0079 51.50 0.0078 35.28
0 1 0.0072 276.89 0.0070 127.72 0.0069 97.34
1 0 0.0076 457.86 0.0072 360.80 0.0069 262.58
1 1 0.0066 679.46 0.0061 410.87 0.0060 362.14

6.7 Final Results

In this section we give a final performance overview for all implemented algorithms. In addi-
tion, the results are compared with another successful metaheuristic approach from literature,
namely a hybrid GRASP with perturbations and Path Relinking (HGPPR), proposed by Ribeiro
et al. [64]. Their implementation is publicly available in the program bossa [76].

The tests have been executed for several configurations. First,the performance of the simple
construction heuristic SPH combined with MST-Prune is tested, for which the results are en-
hanced by an iterative improvement through VND. The goal is to provide a basic reference for
the other algorithms, since it is usually instructive to see how more complex algorithms perform
in comparison to simpler ones. For both SPH and VND, root nodes are chosen at random from
the set of terminals. We denote this configuration by SPH+VND.

As another reference, we apply the same procedure to the reduced graph that is constructed
based on the reduced costs which results from a single execution of dual ascent (cf. Sec-
tion 2.3.4). This procedure may find solutions of higher quality, but more importantly gives
a lower bound for the estimation of the solution’s quality. In the following, this procedure is
referred to as DA+VND.

In the next configuration, PCH is used as an initial solution for VND. Here, the best param-
eters from the previous experiments are used: Voronoi-based partitioning with k = |T |/100,
d = 3 and a guiding solution, simple decomposition and heuristic repair. The guiding solution
is constructed as in DA+VND. Again, the time limit for the exact solution of subinstances is set
to t = 100 (seconds). The whole procedure is denoted as PCH+VND.

For MPCH, the same parameters as in the previous experiments are used (g = 3, popmax =
10, n = 2), but only the exact solution recombination is applied. For the internal application of

76

PCH, the number of partitions is decreased to k = |T |/100, which leads to better solutions at
the cost of increased runtime.

For HGPPR, the number of iterations for GRASP is fixed to 128. For the Path Relinking
phase, no restriction is enforced, and the algorithm only terminates if no improved solution can
be found based on the current population. Adaptive Path Relinking is used, which means that
the program tests the runtime of two different Path Relinking algorithms for a few iterations, and
chooses the faster one. In the following, we present both solution quality and runtime for both
the GRASP phase and also the full procedure. The results after the GRASP phase are denoted
by GRASP, while the result of the full procedure is denoted by HGPPR.

In addition to the heuristic approaches, we also compare the results for the B&C with limited
runtime, which have been already presented in Section 6.3.

In Table 6.12 and Table 6.13, the average gaps to the known optimum and the average run-
times are shown. The results are divided into two groups: In the first group, the results for VND
with different starting solutions are compared. In the second group reside the remaining, more
complex algorithms. For each group the best results of each instance set are marked in bold.
In figure 6.1, a graphical representation of the most important test results is given (PCH+VND,
MPCH, HGPPR and B&C).

Table 6.12: Comparing different methods w.r.t. the average gap [%]

SPH+VND DA+VND PCH+VND MPCH GRASP HGPPR B&C

ES 0.82 0.57 0.12 0.04 0.32 0.09 0.005
TSPFST 0.88 0.70 0.14 0.03 0.31 0.09 0.037
VLSI 1.41 0.99 0.33 0.17 0.30 0.10 0.186
I 0.0264 0.0167 0.0019 0.0008 0.0100 0.0044 0.0000

Table 6.13: Comparing different methods w.r.t. the average runtime [s]

SPH+VND DA+VND PCH+VND MPCH GRASP HGPPR B&C

ES 0.08 0.21 4.47 69.55 148.51 365.96 56.11
TSPFST 0.13 0.26 19.16 261.02 167.29 380.07 201.54
VLSI 0.11 0.39 37.77 117.63 47.33 76.76 458.13
I 4.14 31.31 156.95 1621.09 6262.05 63134.15 21906.91

As already shown in the local search experiments, the combination of SPH and VND pro-
duces good quality solutions in a short amount of time, even for large-scale instances. For
DA+VND, the average gap is smaller than SPH+VND in every case, but the procedure scales
slightly worse with respect to the average runtime. We expect that the runtime of our dual as-
cent implementation can be further improved, since the algorithm has already been applied to
large-scale instances successfully [53].

In relation to the previous procedures, PCH+VND achieves a much better average gap. How-
ever, the average runtime is also significantly higher. We note that in contrast to the other meth-
ods, the runtime of PCH could potentially be decreased through parallelization, which has not

77

been tested in this master’s thesis. For an extensive analysis concerning PCH’s parallel aspects,
the reader is referred to [62].

We note that for the large-scale I instances, PCH+VND manages to outperform HGPPR
both with respect to average gap and runtime. Thereby we conclude that the used partitioning
scheme successfully captures the dependencies between terminals in the instance graph. The
extremely high average runtime of HGPPR can be explained by the fact that the procedure itera-
tively applies local search procedures to suboptimal solutions created through MST-construction
heuristics. In addition, HGPPR does not make use of the fast local search procedures presented
in [73].

In comparison to the single-start procedure PCH+VND, MPCH always achieves a signifi-
cantly better average gap. This highlights the importance of population-based procedures. How-
ever, the average runtime of MPCH is one order of magnitude higher than PCH+VND for each
instance set except VLSI. We also note that for the VLSI set, MPCH yields the smallest im-
provement with respect to the average gap compared to PCH+VND. This may be due to the
fact that MPCH does not introduce much diversity, and thus the constructed solutions are almost
identical. Since a solution archive is used to speed-up the repeated solution, this results in a
lower runtime.

Figure 6.1: A graphical representation of the performance comparison from Table 6.12 and
Table 6.13. Only a selection of algorithms is compared: PCH+VND, MPCH, HGPPR and B&C.

0.00

0.05

0.10

av
er

ag
e

ga
p

in
%

ES

0.00

0.05

0.10

TSPFST

0.00

0.10

0.20

0.30

VLSI

0.000

0.002

0.004

I

0

100

200

300

av
er

ag
e

ru
nt

im
e

in
se

c.

0

100

200

300

0

200

400

0

20,000

40,000

60,000

PCH+VND MPCH HGPPR B&C

We note that the use of B&C, although an exact method, is quite competitive to the other
methods. The average runtimes for the sets ES, TSPFST and VLSI are not that far away from the
heuristic value. The worst performance is achieved for the VLSI instances. As already stated,
their regular cost structure makes it harder for exact approaches to achieve good bounds. For ES,
the average runtime and gap is even better than for other approaches. The average runtime for

78

the I instance set is large, but not as large as HGPPR. Only MPCH seems to achieve an average
gap close to B&C. We therefore conclude that B&C is a very powerful approach by itself, and
that even if the time available for exact solution is limited, acceptable heuristic solutions can be
achieved through the use of a primal heuristic.

In Table 6.14 we compare the dual values for each configuration that produces lower bounds
(i.e., DA+VND, PCH+VND, MPCH and B&C) of the implemented procedures. Again, the best
values for each instance set are marked bold. For each column, we specify the gap between the
lower and the upper bound, as well as the gap between the lower bound and the optimal objective
value. We note that for DA+VND and PCH+VND, the dual ascent algorithm is executed on a
single terminal as root node, so the lower bounds are identical. The procedure uses ten different
roots for dual ascent, however only for the VLSI instances the gap is increased more strongly.
We conclude that in the VLSI instances, which contain a smaller terminal to node ratio than the
other instance sets, the lower bounds created by dual ascent differ by a larger amount. For each
instance set, the B&C achieves the best results, since the procedure is initialized with the cuts
produced by dual ascent (cf. Section 4.4).

Table 6.14: Comparing algorithms w.r.t. the average dual gap

DA+VND PCH+VND MPCH B&C
gapD[%] gapDO[%] gapD[%] gapDO[%] gapD[%] gapDO[%] gapD[%] gapDO[%]

ES 2.37 0.80 0.95 0.80 0.84 0.79 0.0070 0.0022
TSPFST 2.69 0.92 1.09 0.92 0.96 0.91 0.0651 0.0319
VLSI 3.92 1.51 2.37 1.51 1.64 1.46 0.3209 0.1854
I 0.0920 0.0207 0.0259 0.0207 0.0200 0.0206 0.0000 0.0000

79

CHAPTER 7
Conclusion

The aim of this master’s thesis has been the design and evaluation of heuristic methods for the
near-optimal solution of large-scale STP instances. At its center stands the concept of partition-
ing, which is employed as a means to find heuristic decompositions of problem instances.

A new partition-based construction heuristic (PCH) has been proposed which makes use
of this concept to speed-up the construction of STP solutions, while attempting to maximize
solution quality. Several partitioning schemes have been implemented and tested with respect to
their performance.

Furthermore, a partition-based memetic algorithm (MPCH) has been proposed, in which
PCH is used in combination with several well-known methods for the STP. The objective has
been to further increase solution quality on the basis of the already high-quality solutions that
are constructed by PCH.

In both algorithms exact and heuristic methods from the STP literature are used, which have
been reimplemented in a common framework.

A computational evaluation has been performed, and the performance of all algorithms has
been compared with respect to solution quality and runtime. In the following, the core contribu-
tions of each area are summarized:

• Partition-based construction heuristic (PCH):

– Introduction of a new Voronoi-based partitioning scheme

– Improvement of partition quality through the introduction of global information in
the form of a heuristic solution (guiding solution) to the unpartitioned STP instance

– Interchangeable use of heuristic and exact methods for different subtasks like the
solution of subinstances and repair of infeasible solutions

• Partition-based memetic algorithm (MPCH):

– Improvement of solution quality by multi-start application of PCH and VND

80

– Estimation of solution quality through lower bounds generated by the dual ascent
algorithm and instance simplification through bound-based reduction tests

– Prevention of unnecessary computations through a solution archive

– Construction of new high-quality solutions by a specialized recombination algorithm

• Implementation of several state-of-the-art methods for the STP:

– Shortest Path Heuristic

– Dual Ascent

– Bound-based reductions

– Branch & Cut

– Fast local search procedures

∗ Steiner node insertion
∗ Steiner node elimination
∗ Key-path exchange
∗ Key-node elimination

• Computational evaluation and comparison of algorithms:

– Introduction of a new set of large-scale real-world instances for benchmark purposes

– Comparison of PCH and MPCH with other solution methods for the STP

The performed computational experiments have shown that the heuristic decomposition of
an STP instance through a Voronoi-diagram-based partitioning scheme enables PCH to construct
solutions that are of comparable quality to those of other methods. The procedure has been
compared to a B&C procedure and a hybrid GRASP with perturbations and path-relinking. In
comparison, PCH is on average orders of magnitude faster than these methods for large-scale
instances.

In each case, the application of PCH in the memetic algorithm MPCH led to the construction
of solutions of higher quality. Here, the exact recombination of solutions has yielded the best
results, although in large-scale instances this procedure can be costly.

81

Bibliography

[1] ACHTERBERG, T., KOCH, T. AND MARTIN, A. Branching rules revisited. Operations Research
Letters 33, 1 (2005), 42–54.

[2] ARAGÃO, M. P. DE, UCHOA, E. AND WERNECK, R. F. F. Dual Heuristics on the Exact Solution
of Large Steiner Problems. Electronic Notes in Discrete Mathematics 7 (Mar. 3, 2009), 150–153.

[3] ARAGÃO, M. P. DE AND WERNECK, R. F. F. On the Implementation of MST-Based Heuristics for
the Steiner Problem in Graphs. In: ALENEX. Ed. by Mount, D. M. and Stein, C. Vol. 2409. Lecture
Notes in Computer Science. Springer, 2002, 1–15.

[4] BASTOS, M. P. AND RIBEIRO, C. C. Reactive Tabu Search with Path-Relinking for the Steiner
Problem in Graphs. English. In: Essays and Surveys in Metaheuristics. Vol. 15. Operations Re-
search/Computer Science Interfaces Series. Springer US, 2002, 39–58.

[5] BEASLEY, J. E. An SST-based algorithm for the Steiner problem in graphs. Networks 19, 1 (1989),
1–16.

[6] BLUM, C. AND ROLI, A. Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys (CSUR) 35, 3 (2003), 268–308.

[7] BUDIU, M., DELLING, D. AND WERNECK, R. F. DryadOpt: Branch-and-bound on distributed
data-parallel execution engines. In: Parallel & Distributed Processing Symposium (IPDPS), 2011
IEEE International. IEEE. 2011, 1278–1289.

[8] BYRKA, J. et al. Steiner Tree Approximation via Iterative Randomized Rounding. Journal of the
ACM 60, 1 (Feb. 2013), 6:1–6:33.

[9] CHERKASSKY, B. V. AND GOLDBERG, A. V. On implementing push-relabel method for the maxi-
mum flow problem. Lecture Notes in Computer Science 920 (1995). Ed. by Balas, E. and Clausen,
J., 157–171.

[10] CHIMANI, M. AND WOSTE, M. Contraction-based Steiner tree approximations in practice. In:
Algorithms and Computation. Springer, 2011, 40–49.

[11] CHLEBI K, M. AND CHLEBI KOVÁ, J. The Steiner tree problem on graphs: Inapproximability
results. Theoretical Computer Science 406, 3 (2008), 207–214.

[12] CLAUSEN, J. Branch and bound algorithms-principles and examples. Department of Computer
Science, University of Copenhagen (1999), 1–30.

[13] CRONHOLM, W., AJILI, F. AND PANAGIOTIDI, S. On the minimal Steiner tree subproblem and its
application in branch-and-price. In: Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems. Springer, 2005, 125–139.

[14] DAHLHAUS, E. A parallel algorithm for computing Steiner trees in strongly chordal graphs. Dis-
crete Applied Mathematics 51, 1 (1994), 47–61.

[15] DANTZIG, G. B. AND THAPA, M. N. Linear programming: 1: Introduction. Vol. 1. Springer, 1997.
[16] DUIN, C. W. Steiner’s problem in graphs. PhD thesis. PhD thesis, University of Amsterdam, 1993.

82

[17] DUIN, C. AND VOSS, S. The pilot method: A strategy for heuristic repetition with application to
the Steiner problem in graphs. Networks 34, 3 (1999), 181–191.

[18] EISENSTAT, D. dtree. http://www.davideisenstat.com/dtree/. (visited on 2013-10-
23). 2012.

[19] ESBENSEN, H. Computing near-optimal solutions to the Steiner problem in a graph using a genetic
algorithm. Networks 26, 4 (1995), 173–185.

[20] FEO, T. A. AND RESENDE, M. G. A probabilistic heuristic for a computationally difficult set
covering problem. Operations research letters 8, 2 (1989), 67–71.

[21] GEBREMEDHIN, A. H. AND MANNE, F. Scalable parallel graph coloring algorithms. Concurrency
- Practice and Experience 12, 12 (2000), 1131–1146.

[22] GENDREAU, M., LAROCHELLE, J.-F. AND SANSÒ, B. A tabu search heuristic for the Steiner Tree
Problem. Networks 34, 2 (July 2, 2003), 162–172.

[23] GENDREAU, M. AND POTVIN, J.-Y. Handbook of metaheuristics. Vol. 146. Springer, 2010.
[24] GLOVER, F., LAGUNA, M. AND MARTI, R. Fundamentals of scatter search and path relinking.

Control and cybernetics 39, 3 (2000), 653–684.
[25] GOEMANS, M. X. AND MYUNG, Y.-S. A catalog of Steiner tree formulations. Networks 23, 1

(1993), 19–28.
[26] GOLDBERG, A. V. AND TARJAN, R. E. A new approach to the maximum-flow problem. Journal

of the ACM 35, 4 (1988), 921–940.
[27] GRÖTSCHEL, M., MONMA, C. L. AND STOER, M. Computational eesults with a cutting plane

algorithm for designing communication networks with low-connectivity constraints. Operations
Research 40, 2 (1992), 309–330.

[28] GUSCHINSKAYA, O. et al. A heuristic multi-start decomposition approach for optimal design of
serial machining lines. European Journal of Operational Research 189, 3 (2008), 902–913.

[29] HAKIMI, S. L. Steiner’s problem in graphs and its implications. Networks 1, 2 (1971), 113–133.
[30] HAREL, D. AND TARJAN, R. E. Fast algorithms for finding nearest common ancestors. SIAM

Journal on Computing 13, 2 (1984), 338–355.
[31] HU, B. AND RAIDL, G. R. An evolutionary algorithm with solution archive for the general-

ized minimum spanning tree problem. In: Computer Aided Systems Theory–EUROCAST 2011.
Springer, 2012, 287–294.

[32] HU, B. AND RAIDL, G. R. Variable neighborhood descent with self-adaptive neighborhood-ordering.
In: Proceedings of the 7th EU/MEeting on Adaptive, Self-Adaptive, and Multi-Level Metaheuris-
tics. Citeseer. 2006.

[33] KALPAKIS, K. AND SHERMAN, A. T. Probabilistic analysis of an enhanced partitioning algorithm
for the Steiner tree problem in Rd. Networks 24, 3 (1994), 147–159.

[34] KAPSALIS, A., RAYWARD-SMITH, V. J. AND SMITH, G. D. Solving the graphical Steiner tree
problem using genetic algorithms. Journal of the Operational Research Society (1993), 397–406.

[35] KARP, R. M. Reducibility among combinatorial Problems. In: Complexity of Computer Computa-
tions. Plenum Press, 1972, 85–103.

[36] KARPINSKI, M. AND ZELIKOVSKY, A. New approximation algorithms for the Steiner tree prob-
lems. Journal of Combinatorial Optimization 1, 1 (1997), 47–65.

[37] KARYPIS, G. AND KUMAR, V. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing 20, 1 (1998), 359–392.

[38] KARYPIS, G. AND KUMAR, V. Metis-unstructured graph partitioning and sparse matrix ordering
system, version 2.0 (1995).

83

http://www.davideisenstat.com/dtree/

[39] KERNIGHAN, B. AND LIN, S. An efficient heuristic procedure for partitioning graphs. Bell system
technical journal (1970).

[40] KLEINBERG, J. AND TARDOS, E. Algorithm design. Pearson Education India, 2006.
[41] KOCH, T. AND MARTIN, A. Solving Steiner Tree Problems in Graphs to optimality. Networks 32,

3 (July 2, 2003), 207–232.
[42] KOCH, T., MARTIN, A. AND VOSS, S. SteinLib: An updated Library on Steiner Tree Problems in

Graphs. eng. Tech. rep. 00-37. Takustr.7, 14195 Berlin: ZIB, 2000.
[43] KOU, L., MARKOWSKY, G. AND BERMAN, L. A fast algorithm for Steiner trees. Acta informatica

15, 2 (1981), 141–145.
[44] KRASNOGOR, N. AND SMITH, J. A tutorial for competent memetic algorithms: model, taxonomy,

and design issues. Evolutionary Computation, IEEE Transactions on 9, 5 (2005), 474–488.
[45] LAND, A. H. AND DOIG, A. G. An automatic method of solving discrete programming problems.

Econometrica: Journal of the Econometric Society (1960), 497–520.
[46] LEVIN, A. J. Algorithm for the shortest connection of a group of graph vertices. In: Soviet Math.

Doklady. Vol. 12. 1971, 1477–1481.
[47] LUYET, L., VARONE, S. AND ZUFFEREY, N. In: Applications of Evolutionary Computing. Ed. by

Giacobini, M. Vol. 4448. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2007,
42–51.

[48] MARTINS, S. L. et al. A parallel GRASP for the Steiner Tree Problem in Graphs using a Hybrid
Local Search Strategy. Journal of Global Optimization 17 (1999), 267–283.

[49] MEHLHORN, K. A faster Approximation Algorithm for the Steiner Problem in Graphs. Informa-
tion Processing Letters 27, 3 (1988), 125–128.

[50] MOSCATO, P. AND COTTA, C. An introduction to memetic algorithms. Revista Iberoamericana de
Inteligencia artificial 19, 2 (2003), 131–148.

[51] PARDALOS, P. M. AND RESENDE, M. G. Handbook of applied optimization. Vol. 1. Oxford Uni-
versity Press Oxford, 2002.

[52] PILIPCZUK, M. et al. Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar
Graphs. In: 30th International Symposium on Theoretical Aspects of Computer Science (STACS
2013). Ed. by Portier, N. and Wilke, T. Vol. 20. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2013, 353–364.

[53] POLZIN, T. Algorithms for the Steiner Problem in Networks. PhD thesis. Saarbrücken: Saarland
University, May 2003.

[54] POLZIN, T. AND DANESHMAND, S. V. Extending reduction techniques for the Steiner tree prob-
lem. In: Algorithms—ESA 2002. Springer, 2002, 795–807.

[55] POLZIN, T. AND DANESHMAND, S. V. Improved algorithms for the Steiner problem in networks.
Discrete Applied Mathematics 112, 1 (2001), 263–300.

[56] POLZIN, T. AND VAHDATI, S. Primal-dual approaches to the Steiner problem. In: Approximation
Algorithms for Combinatorial Optimization. Springer, 2000, 214–225.

[57] PUCHINGER, J. AND RAIDL, G. R. Combining metaheuristics and exact algorithms in combinato-
rial optimization: A survey and classification. In: Artificial intelligence and knowledge engineering
applications: a bioinspired approach. Springer, 2005, 41–53.

[58] RAIDL, G. R. A unified view on hybrid metaheuristics. In: Hybrid Metaheuristics. Springer, 2006,
1–12.

[59] RAIDL, G. R. AND HU, B. Enhancing genetic algorithms by a trie-based complete solution archive.
In: Evolutionary Computation in Combinatorial Optimization. Springer, 2010, 239–251.

84

[60] RAVADA, S. AND SHERMAN, A. T. Experimental evaluation of a partitioning algorithm for the
Steiner tree problem in R2 and R3. Networks 24, 8 (1994), 409–415.

[61] REINELT, G. TSPLIB – A traveling salesman problem library. ORSA journal on computing 3, 4
(1991), 376–384.

[62] RESCH, M. Parallel Solving of the (Prize-Collecting) Steiner Tree Problem in Graphs through
Partitioning. MA thesis. Vienna University of Technology: Faculty of Informatics, Dec. 2013.
unpublished.

[63] RIBEIRO, C. C. AND DE SOUZA, M. C. Tabu search for the Steiner problem in graphs. Networks
36, 2 (2000), 138–146.

[64] RIBEIRO, C. C., UCHOA, E. AND WERNECK, R. F. F. A Hybrid GRASP with Perturbations for
the Steiner Problem in Graphs. INFORMS Journal on Computing 14, 3 (2002), 228–246.

[65] ROBINS, G. AND ZELIKOVSKY, A. Improved Steiner tree approximation in graphs. In: Proceed-
ings of the eleventh annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial
and Applied Mathematics. 2000, 770–779.

[66] ROBINS, G. AND ZELIKOVSKY, A. Tighter bounds for graph Steiner tree approximation. SIAM
Journal on Discrete Mathematics 19, 1 (2005), 122–134.

[67] ROSSETI, I. et al. New benchmark instances for the Steiner Problem in Graphs. In: Metaheuristics.
Ed. by Resende, M. G. C., Sousa, J. P. de and Viana, A. Kluwer Academic Publishers, Norwell,
MA, USA, 2004, 601–614.

[68] SÖRENSEN, K. Metaheuristics – the metaphor exposed. International Transactions in Operational
Research (2013).

[69] SPIRA, P. M. AND PAN, A. On finding and updating spanning trees and shortest paths. SIAM
Journal on Computing 4, 3 (1975), 375–380.

[70] TAKAHASHI, H. AND MATSUYAMA, A. An approximate solution for the Steiner problem in
graphs. Math. Japonica 24, 6 (1980), 573–577.

[71] TARJAN, R. E. Data structures and network algorithms. Vol. 14. SIAM, 1983.
[72] UCHOA, E., POGGI DE ARAGÃO, M. AND RIBEIRO, C. C. Preprocessing Steiner problems from

VLSI layout. Networks 40, 1 (2002), 38–50.
[73] UCHOA, E. AND WERNECK, R. F. F. Fast Local Search for Steiner Trees in Graphs. In: ALENEX.

Ed. by Blelloch, G. E. and Halperin, D. SIAM, 2010, 1–10.
[74] VOSS, S. The Steiner tree problem with hop constraints. Annals of Operations Research 86 (1999),

321–345.
[75] WARME, D., WINTER, P. AND ZACHARIASEN, M. GeoSteiner 3.1. Department of Computer Sci-

ence, University of Copenhagen (DIKU) (2001).
[76] WERNECK, R. F. F. Bossa. http://www.cs.princeton.edu/~rwerneck/bossa/.

(visited on 2013-10-06). 2003.
[77] WINTER, P. Steiner Problem in Networks: a Survey. Networks 17, 2 (Apr. 1987), 129–167.
[78] WOLPERT, D. H. AND MACREADY, W. G. No free lunch theorems for optimization. Evolutionary

Computation, IEEE Transactions on 1, 1 (1997), 67–82.
[79] WONG, R. T. A Dual Ascent approach for Steiner Tree Problems on a Directed Graph. English.

Mathematical Programming 28, 3 (1984), 271–287.
[80] ZELIKOVSKY, A. Z. An 11/6-approximation algorithm for the network Steiner problem. Algorith-

mica 9, 5 (1993), 463–470.

85

http://www.cs.princeton.edu/~rwerneck/bossa/

Abbreviations

ACO ant colony optimization. 26

B&B branch-and-bound. 13

B&C branch-and-cut. 17

COP combinatorial optimization problem. 1

DNH distance network heuristic. 5

GA genetic algorithm. 25

GRASP Greedy Randomized Adaptive Search Procedure. 7

HGPPR hybrid GRASP with perturbations and path relinking. 25

ILP integer linear program. 2

kGPP k-way graph partitioning problem. 33

LP linear program. 15

MA memetic algorithm. 12

MPCH partition-based memetic algorithm. 48

MST minimum spanning tree. 4

PCH partition-based construction heuristic. 28

SPH shortest path heuristic. 6

STP Steiner tree problem in graphs. 1

VND Variable Neighborhood Descent. 8

86

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background & Motivation
	Outline of the Thesis

	Preliminaries
	MST-based Construction Heuristics
	Distance Network Heuristic
	Shortest Path Heuristic

	Metaheuristics
	Basic Local Search
	Variable Neighborhood Descent
	Greedy Randomized Adaptive Search Procedure
	Path Relinking
	Memetic Algorithms

	Exact Solution
	Branch & Bound
	Integer Linear Programming
	Branch & Cut
	Dual Ascent

	Reduction Techniques
	Bound-based Reductions

	Previous & Related Works
	A Partition-based Construction Heuristic
	Partitioning Algorithms
	Edge-based Partitioning
	Voronoi-based Partitioning

	Instance Decomposition
	Solution Repair
	Solving Subproblems to Optimality
	ILP Model
	Separation
	Application of Bound-based Reductions

	A Partition-based Memetic Algorithm
	Solution Recombination
	Solution Archive
	Solution Improvement
	Steiner Node Insertion
	Steiner Node Elimination
	Key-path Exchange
	Key-node Elimination
	Variable Neighborhood Descent

	Computational Results
	Benchmark Instances
	Preprocessing
	Parameter Analysis for the Exact Approach
	Comparison of Local Search Heuristics
	Tuning the Partition-based Construction Heuristic
	Evaluation of Partitioning Schemes
	Evaluating Decomposition and Repair Methods

	Tuning the Partition-based Memetic Algorithm
	Final Results

	Conclusion
	Bibliography
	Abbreviations

