
How to Execute Parts of BPMN

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Christian Gutschier
Matrikelnummer 0826184

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Kaindl
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Roman Popp

Wien, 20.03.2014
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

How to Execute Parts of BPMN

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Christian Gutschier
Registration Number 0826184

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Kaindl
Assistance: Univ.Ass. Dipl.-Ing. Dr.techn. Roman Popp

Vienna, 20.03.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Christian Gutschier, Schüttelstrasse 13/14, 1020 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Wien, 20.03.2014) (Unterschrift Verfasser)

i

Acknowledgements

First, I want to thank my fiancee Angelina Schaupal, who was a great help and support during my
study. I also want to thank my parents, sister and brother, who always have been supporting me.
Furthermore, I want to thanks Ralph Hoch, David Raneburger and my cousin Thomas Huber,
who have helped with words and deeds during this master’s thesis. I would also like to thank
my supervisor Prof. Hermann Kaindl and my assistant Dr. Roman Popp for the great support
and helpful feedback. Finally, I want to thank all my fellow students for the great time while
studying.

iii

Abstract

The introduction of version 2.0 of Business Process Model and Notation (BPMN) promised di-
rect executability of compliant business processes. In the previous versions of BPMN (1.x), a
transformation of BPMN models into another, executable format (e.g., Business Process Execu-
tion Language, BPEL) was required to make these models executable. The reason why direct
execution is now possible with BPMN 2.0 is that attributes necessary for execution were added
to the XML-representation. This master’s thesis investigated how BPMN 2.0 models (based on
the BPMN 2.0 standard) can be executed directly. Furthermore, the standard should support
portability between different tools.

Direct execution has been investigated based on a simple business process example, which
was modeled with BPMN 2.0. The focus is on Tasks that can connect to software (e.g., Web
Services or Java) and do not required human interaction (e.g., User Tasks). During the investi-
gation, a pitfall was found related to the number of parameters (which a Service Task accepts)
and solutions are proposed for circumventing this pitfall. Due to this pitfall it is not possible to
use BPMN 2.0 as a general orchestration language (such as BPEL). Based on the simple BPMN
2.0 model, also the portability between tools was investigated. To select suitable tools, the fol-
lowing three criteria were defined. First, the tools have to be freely available (e.g., open source
or trial version). Second, the tools have to support BPMN 2.0 modeling. Third, the tools have
to support direct execution of BPMN 2.0 models.

All selected tools in this master’s thesis were able to directly execute the business process
example. However, adjustments in the XML-representation of this example were needed when
it was not created with the designer of the same tool. For this reason, portability between the
tested tools was not given without adjustments.

v

Kurzfassung

Mit der Einführung der Business Process Model and Notation (BPMN) Version 2.0 wird die di-
rekte Ausführbarkeit von Business Prozessen versprochen, da bei den vorherigen Versionen von
BPMN 1.x eine Transformation der erstellten BPMN Modelle in eine andere Ausführungsspra-
che (z.B. Business Process Execution Language, kurz BPEL) erforderlich war. Für die direkte
Ausführung wurden in der XML-Repräsentation von BPMN die notwendigen Attribute hinzu-
gefügt. Im Rahmen dieser Diplomarbeit wurde untersucht, wie BPMN 2.0 Modelle (basierend
auf dem BPMN 2.0 Standard) direkt ausgeführt werden können. Außerdem wird untersucht, ob
die Portabilität zwischen Tools, wie sie durch den Standard unterstützt werden sollte, gegeben
ist.

Die direkte Ausführbarkeit wird anhand eines einfachen Business Prozesses, welches in
BPMN 2.0 modelliert wurde, untersucht. Der Fokus liegt dabei auf Tasks, welche mit einer
Software (Web Service oder Java) verbunden und automatisch ausgeführt werden können (d.h.
kein User Task). Dabei wurde ein sogenannter „Pitfall“ in Bezug auf die Parameter-Anzahl ei-
nes Service Tasks gefunden und Lösungen zur Umgehung vorgeschlagen. Durch den „Pitfall“ ist
eine Verwendung von BPMN 2.0 als allgemeine Orchestrierungssprache (wie z.B. BPEL) nicht
möglich. Anhand dieses einfachen BPMN 2.0 Models wurde ebenfalls die Portabilität zwischen
verschiedenen Tools untersucht. Um die Auswahl der Tools einzuschränken, wurden folgende
drei Kriterien definiert. Erstens, diese Tools müssen frei verfügbar (d.h. Open Source, Trial-
Version, etc.) sein. Zweitens, die Tools müssen die Modellierung von BPMN 2.0 konformen
Modellen unterstützen und drittens, die Tools müssen die direkte Ausführung von BPMN 2.0
konformen Modellen unterstützen.

Im Rahmen dieser Arbeit wurde festgestellt, dass die direkte Ausführung in den getesteten
Tools möglich ist. Allerdings mussten in jedem Tool vor der Ausführung Anpassungen an dem
BPMN 2.0 Model durchführt werden, wenn das Modell nicht mit dem dazugehörigen Designer
modelliert wurde. Aus diesem Grund ist die Portabilität zwischen den getesteten Tools ohne
Anpassungen nicht gegeben.

vii

Abbreviations

BAM Business Activity Monitoring
BPD Business Process Diagram
BPE Business Process Engine
BPEL Business Process Execution Language
BPDM Business Process Definition Meta-model
BPML Business Process Modeling Language
BPMN Business Process Model and Notation
BPMS Business Process Management System/Suite
EPC Event-driven Process Chain
MEP Message Exchange Pattern
UML Unified Modeling Language
WfMS Workflow Managment System
WSBPEL Web Services Business Process Execution Language
WSDL Web Services Description Language
XPDL XML Process Definition Language

ix

Contents

1 Introduction 1
1.1 Motivation and Research problem . 1
1.2 Approach . 2
1.3 Overview of the master’s thesis . 3

2 Background on BPMN 5
2.1 Historic development – BPMN 1.x . 6
2.2 Current status – BPMN 2.0 . 7
2.3 Explanation of selected BPMN notation and different diagram types 8

3 Non-direct execution of BPMN 2.0 models 25
3.1 Execution via Business Process Execution Language (BPEL) 25
3.2 Execution via XML Process Definition Language (XPDL) 35

4 Direct execution of BPMN 2.0 models 39
4.1 Defining an executable BPMN 2.0 model . 40
4.2 A Pitfall in BPMN 2.0 . 49
4.3 Execution of BPMN 2.0 models with Business Process Management Systems . 54

5 Conclusion 101

List of Figures 103

A Appendix - Tool-specific XML-representations of the running example 105

Bibliography 137

x

CHAPTER 1
Introduction

1.1 Motivation and Research problem

Today it is necessary for managing business processes that they are well specified and docu-
mented. Previously, simple business processes mostly have been described in textual form in
natural language, or a flowchart was created as a mean of presentation. However, descriptions
in natural language are inherently ambiguous and it is not possible to represent more complex
business processes with the flowchart, because important aspects cannot be considered (like
branching rules, data flows, etc.). To address these problems specific notations for business
process have been developed. The notation defines which graphical symbols represent certain
processes and declare how to link these symbols to each other [2].

A notation is important, because it makes it possible to define a uniform language for certain
processes (e.g., business processes). The language helps to draw uniform models and also allows
people who have learned the language to understand models which were created by another
person more easily. This leads to a communicative value of a model and so processes can be
analyzed better due to the standardized representation of the models [2].

Business Process Model and Notation (BPMN) published by the Object Management Group
(OMG) 1 is a standard for the graphical representation of workflows and business processes.
Due to the clear and simple graphical representation of processes in BPMN, it can be used for
various business processes (e.g., baking bread in a bakery or complex production of a product
with shipping) within an organization, but also between organizations. BPMN was the first
specification language that has successfully merged the two worlds of the operating department
and the information technology department. The first versions of BPMN (BPMN 1.x) put great
importance to the graphical representation of business processes [3]. However, for the execution
of business processes the created BPMN models had to be transformed into an other executable
format, e.g., Business Process Execution Language (BPEL).

1http://www.omg.org/

1

Today processes are often executed by business process management systems (BPMS). Here,
the execution of the processes occurs by a process engine on the basis of formal process descrip-
tions, e.g., in the form of business process models. A challenge here is that the created models
have to fully specify all details required for automated execution by the machine [2]. This also
allows simulating models. With the knowledge gained from simulations, business processes
can be improved inexpensively and money and time can be saved. Many commercial and non-
commercial tools very often provide the functionality to execute BPMN models. This has been
solved in different ways in the tools.2

Direct execution was not supported by BPMN 1.x, but is supported by BPMN 2.0. This is
at this stage the latest available version. In this version, a BPMN model is stored in a standard-
ized XML-based format, which facilitates the portability between different tools (e.g., tools for
modeling, simulation or execution of process models).

BPMN 2.0 promises also direct execution, because in addition to storing the model in a
standardized format, execution semantics have been introduced. Important attributes were added
to the notation of BPMN, which are required for the direct execution of BPMN models. This
has the advantage that no transformation of BPMN models into another executable format (e.g.,
BPEL) is needed anymore.

The research question to be answered in this master’s thesis is, whether the same BPMN
2.0 model is directly executable by different tools and if not, which additional modifications are
required for direct execution.

In the BPMN 2.0 standard, so-called extensions are allowed, but the standard does not spec-
ify exactly how these extensions must be implemented. This entails that the extensions are
implemented differently in the tools and this is a problem for the portability. Therefore, models
using extensions are out of the scope for this master’s thesis. In addition, the master’s thesis
only investigates direct execution of BPMN 2.0 models. Therefore, parts of BPMN which re-
quire human interaction are not examined in the master’s thesis. In this investigation, the focus
lies only on Tasks which can be connected to software (Web Service or Java), the other kinds of
Tasks are out of scope.

1.2 Approach

The major aim of the master’s thesis is to find out, how BPMN 2.0 models can be automatically
executed. Another aim is to investigate the portability of the different tools. This means that a
created model should be executable in any tool which supports the direct execution of BPMN
2.0 models without modifications. For this purpose, only tools were used for the investigation,
which support the modeling and execution of BPMN 2.0 models. These tools have been checked
for their suitability. This has been done by comparing information from Websites, books and
papers about the various tools. Based on this comparison, the eligible tools were selected. Then
a simple business process example was created. The created model was tried to import and to
execute in the different tools. This simple business process example is “Issuing Invoice” with
two Tasks, Start-Event, End-Event, three Data Inputs and a Data Output. In the first Task, an

2directly or through transformation into an execution language e.g., BPEL

2

invoice is created with two Data Inputs (amount and address). In the second Task, the created
invoice is sent to a customer. If necessary, the BPMN 2.0 model or the implementation of the
tool (if possible) were adapted.

1.3 Overview of the master’s thesis

The remainder of this master’s thesis is organized in the following manner.
Chapter 2 provides general information about BPMN. After that, the reader gets a historical

overview of the development of BPMN in recent years, and also the current situation of BPMN
is presented. Afterwards important notations and diagrams are explained which are offered by
BPMN 2.0.

Chapter 3 analyzes and discusses already available non-direct execution approaches for
BPMN.

Chapter 4 explains the principle of a Business Process Engine. Furthermore, the BPMN
model example is defined and created. Based on this model, an explanation is given how Busi-
ness Process Engines execute a BPMN model. However, the created model has no integrated
services (like Web Services). In the next step, it is shown how the BPMN model needs to be
changed so that a service can be integrated.
Here it is shown that the BPMN 2.0 Standard has a restriction for Service Tasks. This entails that
only a small number of available services can be involved. Different approaches to solving the
problem of restricting Service Tasks are presented. These approaches are BPMN 2.0 standard
compliant. Then the various Business Process Engines of selected tools are examined. Finally,
a comparison of the various tools is given with respect to execution.

In Chapter 5 the conclusion is presented.

3

CHAPTER 2
Background on BPMN

Business Process Model and Notation (BPMN) is a graphical specification language which pro-
vides symbols to model business processes, workflows and business activities. BPMN was in-
troduced to the public in 2004 by BPMI (Business Process Management Initiative). BPMI is an
organization whose representatives consist mainly of software companies which had taken on
the task of defining standards in the scope of business process modeling [2].

Today BPMN is an essential part of business informatics and mostly used by professionals
and computer science experts. The BPMN standard can be used for a direct execution (possible
in the current Version BPMN 2.0) of a BPMN-model (which show the business processes) or for
the transformation of a BPMN-model into an execution language for business processes (e.g.,
Business Process Execution Language (BPEL)) so that the business processes may be executed.
However, this transformation does not always work perfectly and it is possible that in some cases
there is a semantic difference. More detailed information about this can be found in Chapter 3.

Nowadays it is possible to find BPMN in many big organizations as an integral part of busi-
ness modeling, because it offers a standard for modeling and it is used internationally. Another
reason was that BPMN was first to merge the operating department and the IT department. A
benefit for organizations is the ability to simulate business operations. The obtained information
from the simulation is very important for organizations because this processes can be improved
based on it.

One aim of BPMN is to be easily understandable and comprehensible for all parties. This
includes business analysts, technical developers and even end users. All of them should be able
to read and understand the created model easily [6].

An advantage of BPMN is that it offers different types of diagrams, which are explained in
detail in chapter 2.3.2. This section gives a view at business processes from different perspec-
tives. Each type of diagram represents certain aspects of a business process better than another
type and so the participants get a better overview of the business process [6].

Another aim of BPMN is the executability of the models which represent the business pro-
cesses. In the last version of BPMN at the time of this writing (BPMN 2.0) it was attempted to
implement executability. Details are described below.

5

2.1 Historic development – BPMN 1.x

As mentioned above, BPMN was presented by BPMI in 2004, but the development has begun in
the year 2001 under the direction of Stephan A. White from IBM. The aim was to create a graph-
ical notation, so that process descriptions of BPML (Business Process Modeling Language) can
be represented visually. With BPML which is similar to BPEL, it is possible to specify process
models which are executed by Business Process Management Systems (BPMS). However, other
approaches (like BPEL), which have been established in this area, have subsequently replaced
BPML [2].

It was important for the developers, that both business and also technical models can be
represented with the graphical notation. BPMN can be read and understood by IT experts but
also from business experts. So there should be a common language for differently qualified
people.

This was, of course, not an easy task. It is possible to use the same notation for both models
(business and technical). In practice, a significant difference between them was found. For
example understanding the process flow is more needed for a business model and therefore
we don’t need to model too many details. In contrast in a technical model a lot of details are
extremely important for the subsequent executability [2].

“In June of 2005, the Business Process Management Initiative (BPMI.org) and the Object
Management GroupTM (OMGTM) announced the merger of their Business Process Management
(BPM) activities to provide thought leadership and industry standards for this vital and growing
industry.” 1

OMG is a society that developed standards for object-oriented programming since 1989.
Therefore, the OMG already had a good reputation in standardization in the software sector. A
well-known standard modeling language of OMG is, for example, the Unified Modeling Lan-
guage (UML).2

In 2006, the first official BPMN version 1.0 was introduced and presented by OMG as a
standard. Two years later (2008) a new version (1.1) was released. The main difference to
version 1.0 was in their presentation of the model. This was an important criterion, which had to
be taken into account, because many tools supporting BPMN included the version 1.0. A more
detailed overview of the change from version 1.0 to version 1.1 is available in [10]. In 2009,
the next version (1.2) was released. Only small corrections and clarifications were made and so
most of the content of version 1.1 was unchanged [2].

However, the direct execution of business process model was not possible including version
BPMN 1.2, because the focus was laid only on the modeling. So that a BPMN model could
be executed, the model had first be transformed to another execution language for business
processes (describe in chapter 3).

1http://www.bpmi.org/
2http://de.wikipedia.org/wiki/Object_Management_Group

6

http://www.bpmi.org/
http://de.wikipedia.org/wiki/Object_Management_Group

2.2 Current status – BPMN 2.0

Only the next and current version (2.0) of BPMN which was fully developed in 2011, brought
again important changes and interesting innovations. In this version bugs and problems of the
previous version have been fixed, so that the new one is more stable. Until today it appeared
that after the release of version 2.0 no changes are planned or expected during the next years.
So some manufactures began to develop modeling tools which integrate the new version of
BPMN [2].

During the development of the new version it was important, that the notation elements of
version 1.2 have not changed essentially. The graphical notations are extended only by some
constructs and some model types. So an already created model of version 1.2 is compatible with
version 2.0. The following overview (taken from [2, p. 11]; translated from German) provides a
brief survey of the most important extensions of the graphical notation which was added to the
current version of BPMN:

• “New Event types: parallel multiple Events and escalation

• Parallel Event-Based Gateway to the start of processes

• Intermediate Events tacked at the Activities, so that they indeed start an exception flow,
but they don’t stop their Activities

• Event-Sub-processes which are performed only when a specific Event occurs and run in
parallel to the surrounding process or cancel it

• Extended possibilities for modeling data processes

• Extensions in modeling of collaborations

• Identification of the different types of tasks by symbols

• New representation of the call from Activities defined elsewhere

• Identification of different multiple Activities, depending on whether they are performed in
parallel or sequentially”

Furthermore two new types of diagram have been introduced into BPMN 2.0:

• Choreography diagram

• Conversation diagram

These are visible changes. However, there are also hidden changes which have a much
greater importance than the mentioned visible changes. In BPMN 2.0, a formal definition has
been implemented in the form of a meta-model, also called Business Process Definition Meta-
model (BPDM). Due to this new development, a consistent language was achieved. Furthermore,
in the meta-model additional language constructs exist which cannot be displayed in graphical
models, since they are only required by the process engine for the execution of the model (some
additional information for the process engine) and unimportant for understanding the process.
Another reason, why these constructs should not be in the diagram, is that without them a better

7

and quicker overview of the business process can be given, so that everyone can understand the
diagram [2].

Due to the meta-model it was also possible that models are uniformly designed (modeled),
because only certain constructs are allowed by the specification of the meta-model. In addition,
a standardized exchange format for BPMN models in the version 2.0 was developed/integrated,
which allows models to be transferred from one tool to another. This was more difficult and a
lot of effort with earlier versions of BPMN [2].

A further major milestone in the development of BPMN 2.0 was the introduction of execu-
tion semantics. BPMN 2.0 models can already be executed directly and do not to have to be
converted into an executable format (like BPEL) first. However, this only works partially and
only for very detailed and simple BPMN models [2].

As mentioned above, today BPMN is a standard, and so more and more tool manufactures
integrated BPMN into their software in recent years. But BPMN has not always been exten-
sively integrated into the vendor tool as needed. Sometimes only a part of BPMN was integrated
and the vendor still claimed support for BPMN. The reason was that there were no requirements
for the software which had to be satisfied in order to conform with the BPMN requirements.
Therefore, it was important to introduce certain criteria during the last years. Due to the sev-
eral kinds of tool for BPMN, different BPMN conformities have been defined. These different
BPMN conformities can help to choose the right software tool. The two most important are: [2]

• Process modeling conformity (only modeling tool)

• Process execution conformity

2.3 Explanation of selected BPMN notation and different diagram
types

In this section first the different main core elements of a Business Process Diagram (BPD) are
briefly described. After that an overview and a short description of the different diagram types
in BPMN 2.0 is presented.

2.3.1 Explanation of the different core elements of a BPD

One of the main goals of the developers of BPMN has been that the creation of models can
be made without great effort, but anyway very complex business processes can be modeled.
Therefore, they tried to ensure that the number of different elements is as small as possible. The
elements are divided into various categories. Due to the small number of category assessors,
the observer is able to identify very quickly the basic elements of the diagrams. We distinguish
between the following basic graphical categories of elements in BPMN [8]:

• Flow Objects [2.3.1.1]

• Connecting Objects [2.3.1.2]

• Swimlanes (Pools and Lanes) [2.3.1.3]

8

• Artifacts [2.3.1.4]

• Data [2.3.1.5]

2.3.1.1 Flow Objects

These elements are responsible for the definition of the behavior of a business process and,
therefore, they are the most important graphical elements in BPMN. They are divided into the
following three types:

• Activity

• Event

• Gateway

Activity
Activity elements are used to model different work steps in a BPMN-Model. An Activity is
modeled as a rectangle with rounded corners as shown in Figure 2.1 and can fundamentally
distinguish between an atomic and a non-atomic Activity. An Activity can be a Task (atomic),
Sub-Process (non-atomic) or Call Activity. A Task is work which has be done in the business
process. A Sub-Process can be modeled in either collapsed or expanded state and can be con-
tained all BPMN elements. The Sub-Process is used that several work steps (Tasks) put together
in an abstract Task (if the Tasks pursue the same goal). The reason is that so a complex dia-
gram (with many Tasks) can be better understood. A task and a Sub-Process differ by a “+”
symbol in the rounded rectangle. The Task and Sub-Process are the most commonly used types
of representing Activities in BPMN. Figure 2.1 shows the different presentations of Task and
Sub-Process [6] [1]:

Figure 2.1: a.) atomic Activity (Task), b.) collapsed Sub-Process, c.) expanded Sub-Process

The Call Activity is used, if a Task, Process or Sub-Process will be used again in the diagram.
All these elements of the activity can be distinguished into other types. A good overview of
different types of Task, Sub-Process and Call Activity can be found in [1].

Event
Events occur in the course of a process and there are also different types. In BPMN 2.0, we
distinguish between three different types of Events (start Events, intermediate Events and final

9

Events). The three basic types of Events do not only differ in their name, but also their graphics
and their semantics.

The Start Event has the form of a circle with a thin line. This Event is always at the beginning
of a process or a section and has no incoming edge. The opposite is the End Event. It has to
be always at the end of the process or section. The final Event is also modeled as a circle like
the Start Event, but the circle is represented with a thicker line. Furthermore, it must not have
any outgoing edge, only incoming edges are allowed. An Intermediate Event may occur during
the process execution and can be used between the other two types of Events in a process. It is
also shown as a circle, but it is plotted with a double thin line [6]. Figure 2.2 shows the different
representation of the above mentioned basic Events.

Figure 2.2: Representation of basic types of Events taken from tool Yaoqiang BPMN Editor 2.2

In most cases, intermediate events have an incoming and an outgoing edge (Sequence Flow)
in contrast to the other two types of events. However, there exist also certain events which only
have one outgoing edge (for example interrupt and non-interrupt intermediate events). Such
types of intermediate events occur mostly within an Activity or a Sub-Process, and therefore
they are placed at the border of the Activity or Sub-Process [2]. An example of an interrupt in-
termediate event within an Activity shows Figure 2.3. Here the Activity “Try to solve Exercise”
has two outgoing edges (Sequence Flows), but only one can be executed. If the exercise has
been completely solved within the given time, the student gets the full number of points. If not,
the student gets only a reduced number of points.

Figure 2.3: Example with an interrupt intermediate event

All three types of basic Events can be represented with various symbols. Each symbol has a
different meaning, for example if a letter-symbol (shows in Figure 2.4) is modeled in the middle
of the Event, it is possible to expect or send here a message. A good and detailed overview of
the various symbols representing Events can be found in [6].

10

Figure 2.4: Different basic Events with the letter-symbol taken from tool Yaoqiang BPMN Editor
2.2

Gateway
BPMN introduced elements called “Gateways”. There are several types of gateway with differ-
ent semantics. A gateway is used for splitting (fork) and/or bringing together (join) the control
flow (Sequence Flow) from a business process. Gateways have the form of a rhombus, and con-
form to a so-called decision point. Gateways can have usually one or more incoming edges and
multiple outgoing edges. In the most cases, the outgoing edges of the Gateway are connected
with a condition. Depending on which condition is satisfied, one or more edges are activated or
on e or more paths are pursued.

Figure 2.5 shows a simple example for a Gateway. In this section of a process example,
it is important that the letter is correctly sent. After weighing, the letter can go abroad or not.
If so, the letter needs a priority sticker. If the letter does not go abroad, the letter does not
need a priority sticker (nothing has to be done). In this example the Gateway is an “Exclusive
Gateway”, because the decision at the Gateway is an XOR decision. This means that due to a
predefined condition only one of the outgoing paths (edges) will be pursued. Therefore it has
to be ensured, that the conditions are mutually exclusive. As seen in Figure 2.5, we have two
Gateways constituted, namely a fork- and a join-Gateway. The fork Gateway has the condition
(“Does the letter go into foreign?”) and splits the Sequence Flow based on this decision. This
condition can only be “true” or “false”, and therefore the conditions are mutually exclusive and
only one of the two outgoing paths is pursued. A join Gateway merges two or more Sequence
Flows back together. It is also important that only one Sequence Flow can be activate on the
joining Exclusive Gateway. This can only be guaranteed if the Sequence Flow was split with
an Exclusive Gateway. Figure 2.5 shows that the Sequence Flow is first split by an Exclusive
Gateway and then merged together. This type of Exclusive Gateway is also called Data-Based
Exclusive Gateway and a further type of Exclusive Gateway is called Event-Based, which is
describe below [6]. More detailed information and examples of the various possibilities which
can occur in an Exclusive Gateway can be found on the homepage of BPMN3. The representation
of an “Exclusive Gateway” can has an “X”-symbol in the middle, but this is not required, because
the Exclusive Gateway is the default Gateway in BPMN. This means that a blank Gateway is
seen as an exclusive one.

3http://www.bpmn.org/

11

http://www.bpmn.org
http://www.bpmn.org/

Figure 2.5: A simple example with a Gateway

This example shows that the business process is done sequential, but in the most business
processes, it happens often that the work is not to done sequentially, but to be done in parallel.
For this reason BPMN has introduced the following four types of Gateway, which differ not only
graphically but also semantically.

• Inclusive Gateway

• Parallel Gateway

• Complex Gateway

• Event-Based Gateway

The “Inclusive Gateway” is drawn with a circle-symbol in the middle of the Gateway rep-
resentation. In contrast to the Exclusive Gateway the Inclusive Gateway can have multiple out-
going edges activated. In a split Inclusive Gateway all outgoing edges are associated with a
condition which does not have to eliminate them mutually and, therefore, it is possible to fol-
low several paths. So the semantics is here interpreted as “OR”. It is also possible to define a
default path which is executed only if no other conditions of the outgoing paths are met. The
“join Inclusive Gateway” has the analogous behavior as the “join Parallel Gateway”. The task
that comes after the “join Inclusive Gateway” can be executed only if all paths which have been
activated at the “fork Inclusive Gateway”, are also activate at the “join Inclusive Gateway”.

Yet another type of Gateway is the “Parallel Gateway”. Here is a “+”-symbol drawn in
the middle of the Gateway symbol. There are two important differences as compared with
the Exclusive Gateway explained above. The first difference is, that no further conditions in
a Parallel Gateway are needed, which split the control flow. All outgoing paths from the “fork
Parallel Gateway” are pursued concurrently. The second difference is, that a task that comes after
a “join Parallel Gateway”, will be executed as soon as all the converging paths of the Gateway
were completed [6]. Figure 2.6 shows an example for both differences. It shows a part of the
process when a goal is scored in a hockey game. If a goal is scored, the process will started. At
the first Gateway (fork Parallel Gateway) the Sequence Flow is split into two Sequence Flows.
This means that task “increase the goal-counter on scoreboard” and task “enter the goal into the
system” are performed at the same time in the process. At the second Gateway (join Parallel
Gateway) the two sequence flows are reunited to a sequence flow. This means that task “confirm
the goal by speaker” can only be executed if both task “increase the goal-counter on scoreboard”
and task “enter the goal into the system” are completed.

12

Figure 2.6: A simple Parallel Gateway

Another type of Gateway is the “Complex Gateway”. In this Gateway different semantics
can be defined, which would not be possible with any one of the other three types of Gateways.
The exact semantics can be defined in an Expression. An example to use a Complex Gateway
is, if a Gateway has three incoming flows, but the following task only needs two of three flows
to complete its work. Then the gateway waits for only two of them to switch to the task (they
two flows deliver required information). This can only be modeled with a Complex Gateway.
Therefore, it is important that the semantics is described as precisely as possible. [6].

The last type of Gateway is the Event-Based Gateway. “The Event-Based Gateway repre-
sents a branching point in the Process where the alternative paths that follow the Gateway are
based on Events that occur, rather than the evaluation of Expressions using Process data (as
with an Exclusive or Inclusive Gateway). A specific Event, usually the receipt of a Message,
determines the path that will be taken. Basically, the decision is made by another Participant,
based on data that is not visible to Process, thus, requiring the use of the Event-Based Gate-
way.” [1, p. 297]. For example, a company has made and sent a customer an offer and is waiting
for the reply proceed in the process. Depending on the decision of the customer to accept or
refuse the offer another branch is to be pursued in the Process.

As in the Events listed above, the representation of the different Gateways distinguish through
the symbol in the middle of Gateways. Figure 2.7 summarizes the graphical representations of
the different types of Gateways as described above:

Figure 2.7: The graphical representations of different Gateways taken from the tool Yaoqiang
BPMN Editor 2.2

A BPMN model can also include branches without using gateway. It all depends on what
style of modeling or modeling convention is defined in the organization. Figure 2.8 shows an
example. This Figure shows two BPMN model. In both model an amount is first checked and

13

then it is decided if the amount is transferred (if the amount is over 100) or the amount is paid
in cash (if the amount is under 100). On the left side there is the model drawn with a Gateway
and on the right side the model is drawn without a Gateway. In the left model the Gateway is
an Exclusive Gateway, which means either the upper or the lower path is pursued. In the right
model there is no Gateway, but the behavior is the same as in the left model. This is guaranteed
by the two Sequence Flows. The upper Sequence Flow with the small route is a “Conditional
Sequence Flow”. This means it is only activated as soon as the condition on it is satisfied. The
lower Sequence Flow with the oblique stroke is a “Default Sequence Flow” and it is activated
if no other outgoing Sequence Flow is activated. But these drawn models (if they are bigger
than this simple example) are often very difficult to understand as opposed to a model that uses
Gateway. In addition not all types of gateway can be replaced through the various types of
Sequence Flows.

Figure 2.8: Branches with and without Gateway taken from the tool Yaoqiang BPMN Editor 2.2

2.3.1.2 Connecting Objects

Connecting Objects are responsible for connecting Flow Object elements described above. They
represent in a BPMN model the different types of edges. The following three types of Connect-
ing Objects are distinguished:

• Sequence Flow

• Message Flow

• Association

Sequence Flow
The Sequence Flow is the most used form of Connecting Objects. It is used to define the order
in which the Flow Objects of a business process are executed. Sequence Flows are only allowed
to connect Flow Objects inside of a Pool, but not to another Pool. Graphically a Sequence Flow
is represented as a directed edge and shows in which order the Flow Objects are executed. This
means that, for example, the Activity with an incoming Sequence Flow may only be performed,
if the preceding Activity has been carried out (the Activity where the Sequence Flow comes
from). Due to this modeled order, a well-structured and easy-to-read model is obtained [6].

14

A simple example of such a dependency is shown in Figure 2.9. First task 1 must be finished,
before the execution of task 2 can start.

Figure 2.9: Sequence Flow

Sequence Flows are distinguished in three different types. First, there is the “Normal Se-
quence Flow”, this is a simple directed edge, as seen it in Figure 2.8 (The left model is drawn
with a normal Sequence Flow). Another type of Sequence Flow is the “Conditional Sequence
Flow” (Figure 2.8 in the right model the upper Sequence Flow) which has a small rhomb at the
beginning of the directional edge and is taken only under certain conditions (as an alternative to
Gateways). The last one is the “Default Sequence Flow” (Figure 2.8 in the right model the lower
Sequence Flow) which has an oblique stroke at the beginning of the directional edge. It is only
taken if no other outgoing Sequence Flow can pass through.

Message Flow
Message Flows always connect Lanes, Pools or Flow Objects together and they are supposed to
show, how messages flow between various parties which are involved in the process. Message
Flows are only allowed between different Pools, but not within a Pool [2]. An example of a
Message Flow is shown in Figure 2.10. Here, the customer sends an order to the bakery with a
message using a Message Flow. Once the order has been produced, the customer gets a message
back via Message Flow. In this message, the customer is informed that the order has been
delivered.

Figure 2.10: Message Flow (copied from 4)

15

Association
Associations connect Artifacts (see 2.3.1.4) with Flow Objects and Connecting Object. They are
simple links without any semantics in the model, like comments. An association is represented
by a dotted edge [8].

Figure 2.11: Association example

2.3.1.3 Swimlanes (Pools and Lanes)

Swimlanes are available in the latest version (2.0) of BPMN and they are important to recognize
who is responsible for which tasks in the model. They are used to group different notations of
BPMN. Swimlanes can be in Pools or Lanes. A Pool usually constitutes of an involved party of a
process, like a person or a department. In addition all the other elements of BPMN cab occur in a
Pool. It is necessary to make sure that a Sequence Flow only connects other object flows within a
Pool, while the other connecting flows can refers to other Pools [6]. The graphical representation
of a Pool is shown in Figure 2.10. The customers as well as the bakery are represented as a Pool,
and a message is flowing back and forth by Message Flows.

However, a Pool, if it has to represent a department or a company, for example, is not always
sufficient to obtain a good structure. In most cases, sub-groupings are required, like in a company
which has various workers. Therefore, there is the possibility of BPMN to divide the Pool into
so called Lanes, so it is easier to understand the whole process and to know quickly who was
responsible for what [6]. Figure 2.12 shown an example of a Pool landscape.

Figure 2.12: A Pool landscape (copied from 5)

4http://commons.wikimedia.org/wiki/File:Bpmn-7.png
5http://commons.wikimedia.org/wiki/File:Bpmn-6.png

16

http://commons.wikimedia.org/wiki/File:Bpmn-7.png
http://commons.wikimedia.org/wiki/File:Bpmn-6.png

2.3.1.4 Artifacts

Artifacts are used to display additional information in a process model or to get a better overview,
which elements belong together. Here a distinction is made between “annotation” and “group”.
Annotations are comments which are connected with the elements of a business process. Groups
summarize the elements of a process for a better overview, but they are not a Sub-process.
Figure 2.13 shows these artifacts in an example [8].

Figure 2.13: Artifacts (copied from 6)

2.3.1.5 Data

The last category explains the data elements and distinguishes four different kinds:

• Data Objects

• Data Inputs

• Data Outputs

• Data Stores

Data Objects have or provide information. This information may be data which are required
for the execution of the process. “Data Objects can represent a singular object or a collection
of objects.” [1, p. 30].7 Data Input and Data Output provides the same information for the
execution of activities and processes as Data Objects. Data Inputs are specifically declared data
items which are used as inputs for Tasks and Processes. Via Data Associations it is possible to
map Item Definitions (e.g., Data Objects and Properties) to a given Data Input. The same applies
to Data Outputs with the difference that these items are produced by Tasks or Processes.

“A Data Store provides a mechanism for Activities to retrieve or update stored information
that will persist beyond the scope of the Process. The same Data Store can be visualized, through

6http://commons.wikimedia.org/wiki/File:Bpmn-8.png
7http://manual.altova.com/de/umodel/umodelenterprise/index.html

17

http://commons.wikimedia.org/wiki/File:Bpmn-8.png
http://manual.altova.com/de/umodel/umodelenterprise/index.html

a Data Store Reference, in one or more places in the Process” [1, p. 208]. Figure 2.14 shows
the different graphical representation of data elements.

Figure 2.14: Different data notations taken from the tool Yaoqiang BPMN Editor 2.2

2.3.2 Explanation of the different diagram types

While the previous version 1.2 of BPMN could distinguish only two types of diagram, two new
types of diagrams (“Choreography” and “Conversation”) were added in the current version 2.0.
So, it is possible now to distinguish between the following four different types of diagram:

• Process diagram [2.3.1.1]

• Choreography diagram [2.3.2.2]

• Collaboration diagram [2.3.2.3]

• Conversation diagram [2.3.2.4]

As mentioned above, this distinction is important, because it is possible to represent business
processes from different perspectives. In these different types of diagram, the above-mentioned
main core elements can also be used. However, the various diagrams have also other additional
elements which are explained briefly below at the associated type of diagram.

2.3.2.1 Process diagram

Process diagrams are used to model processes which e.g. a company has to perform to do
its work. Here, the individual steps (tasks) of the processes are defined and displayed [6]. This
should lead to a visual and a good structuring of processes and it should provide a quick overview
of the task and the business process.

Figure 2.15 shown a simple Process diagram. The nodes (e.g., “Write Job Posting”) corre-
sponds to a single Activity or Event and the directed connected edges (e.g., between “Report Job
Opening” and “Write Job Posting”) are a sequence of Activities. In such given sequence also
from a control flow is spoken. In addition, there is also another node which can either divide or
join this control flow. More detailed information on the individual notations can be found in the
previous section [2.3.1].

Furthermore it is possible to distinguish between two types of Process diagrams. There is on
the one hand the internal (private) process which maps the internal processes of an organization
in a certain sequence [8]. Figure 2.16 shown an example.

On the other hand the public (abstract) process which represents the interactions between an
internal and one or more other processes or users. Only the Activities and the Connecting Object
elements (control flow) of the process are shown, which are important for the communication
with the partners. The other elements are not shown [8]. Figure 2.17 shown a public process.

18

Figure 2.15: A simple BPMN Process diagram model (copied from [2, p. 16])

Figure 2.16: A simple internal process

Figure 2.17: A simple abstract process

2.3.2.2 Choreography diagram

The Choreography diagram was introduced in the current version of BPMN 2.0. In contrast to
the Process diagram, here the priorities lie on the exchange of messages (communication traffic)
which is performed by the participants of the process. These diagrams model so called “Message
Exchange Pattern” (MEP). The most popular patterns are “sending messages”, “send a message
synchronously”, “wait for a message”. The advantage is, that as accurate and detailed the model
is, it can later serve as interface specification between the participants. Mostly the receiver, the
sender and the message are usually shown graphically in a Choreography diagram [6].

Figure 2.18 shows an example. As seen in this Figure, most of the elements are already
known and are described in subsection [2.3.1]. In the most cases, they also have the same

19

semantics. One element is new, it is called “Choreography task”. It is introduced, so that it is
possible to model a MEP. A task exactly models a MEP between two participants. They have
the same shape as an Activity (rounded rectangle) but in contrast to an Activity they consist of
three components:

• The central field, which describes the task (as well as the Activity).

• A field above the central field, which specifies one communication partner and,

• a field below the central field, which specifies the other communication partner.

The different color of the communication partners, as shown in Figure 2.18, helps to distin-
guish between the recipient (gray background) and the sender (white background).

Figure 2.18: BPMN Choreography diagram (copied from 8)

A Choreography task can (like an Activity-task) be provided with different symbols below
the task name. A more detailed description of the different Choreography tasks can be looked
up in [6]. As already mentioned and shown in Figure 2.18, also other main core elements can be
used in a Choreography diagram. In [6] a more detailed description can be found. There also an
explanation is given, which elements can be used and which cannot be used.

2.3.2.3 Collaboration diagram

In the previous two sections two types of diagrams which provide two different perspectives
of a process are described. While the focus of the Process diagram lies on the individual task
sequences in a business process, the focus of the Choreography diagram lies on the exchange
of messages between different process participants (e.g., people, companies, software systems,
etc.). However, it would be useful sometimes to see both views at once (either detailed or
abstract). For this purpose the Collaboration diagrams were introduced in BPMN 2.0 [6].

Collaboration diagrams show the interaction of at least two or more different involved process-
parties. It can show on the one hand the exchange of messages like the Choreography diagrams

8http://manual.altova.com/de/umodel/umodelenterprise/index.html?
umchoreography_diagram.htm

20

http://manual.altova.com/de/umodel/umodelenterprise/index.html?umchoreography_diagram.htm
http://manual.altova.com/de/umodel/umodelenterprise/index.html?umchoreography_diagram.htm

and on the other hand the sequence of process, on the basis of a Process diagram. This means
that Collaboration diagrams can combine and represent elements of the two kinds of diagram
(Choreography diagram and Process diagram) [6]. Figure 2.21 shown an example. The advan-
tage is that it is possible to integrate both views in this type of diagram. As a result designers,
engineers and managers get a better overview of the business process.

Process participants are represented as a Pool, shown in Figure 2.21. Furthermore, the two
different perspectives can be represented by modelers. The various processes can be modeled as
black box (customer in Figure 2.21), public (newspaper publisher in Figure 2.21) or abstract [6].

In conclusion, Collaboration diagrams are important to get a good overview of the different
perspectives of the business process. Depending on which processes are important or what is
important for the modeler the model can be presented more or less detail [6].

2.3.2.4 Conversation diagram

The Conversation diagram is used to represent an overview of the communication between the
process-participants. Here an attempt is made to summarize the messages according to certain
characteristics to abstract them. It is possible to get a very rough and quick overview of the com-
munication behavior/dependencies of the involved parties. The messages are then centralized to
a form called “Conversations”. In this case it is not necessary to model every Message Flow,
but to summarize related Message Flows to a global Message Flow [6]. The next two figures
(Figure 2.19 and Figure 2.20) are intended to represent an example, how is looks like to abstract
multiple Message Flows between two involved parties into a global Message Flow.

Figure 2.19: Normal Message-Flow (copied from [6, p. 38])

As seen in Figure 2.19, multiple Message Flows are sent back and forth. These Message
Flows have one and the same challenge which is “giving up an announcement”. And so it
is possible to summarize the Message Flows to a global Message Flow, if it is interesting to
show the dependency between the involved parties and not in which way the involved parties
communicate actual. This is the purpose of a Conversation diagram.

In a Conversation diagram two new elements are introduced, the “Conversation Node” and
“Conversation-Link”. While the conversation node (represented by a hexagon as shown in Fig-
ure 2.20) summarizes Message Flows which are responsible for the same tasks, the conversation
link connects the nodes with the involved process parties. This provides a quick overview of the
communication dependencies of involved parties. The advantage here is that if there is a change

21

Figure 2.20: Conversation diagram (copied from [6, p. 38])

in the model, it is easy to see where dependencies are, and where changes are necessary. In a
more detailed model this step would be much more complicated [6].

22

Figure 2.21: Collaboration diagram (copied from [6, p. 37])

23

CHAPTER 3
Non-direct execution of BPMN 2.0

models

As in chapter 2 mentioned, the created BPMN models are not directly executable before the
introduction of BPMN 2.0. Non directly executable means that the BPMN model first had to
be transformed into an other executable format. For this reason, the selected approaches of
non direct executable format for the feasibility of executing BPMN models are described in this
chapter based on literature. These include the following approaches:

• Business Process Execution Language (BPEL) [3.1]

• XML Process Definition Language (XPDL) [3.2]

3.1 Execution via Business Process Execution Language (BPEL)

BPEL or Web-service BPEL (WS-BPEL) is an XML-based language. It is an imperative,
domain-specific programming language that is used to define business processes and to make
them executable. In contrast to BPMN, which is based on graphs, BPEL is a block-oriented
language. It specifies the control flow through structured activities, it tries to integrate a rigid
structure into a process [4] [15].

BPEL combines Web Services to new and more powerful services, which is also called or-
chestration. At the beginning BPEL was used rather for the execution of business processes
(backend processes which could be executed without human interaction). Later BPEL was ex-
tended with two other approaches (BPEL4People and WS-Human Task) so that manual steps in
the execution are allowed. However, BPEL is not really suitable for front-end processes [4] [15].
BPEL was mostly used (before the introduction of BPMN 2.0) for the execution of created
BPMN models.

BPEL was introduced by major IT companies (e.g. IBM) in 2002. The current version (2.0)
was introduced in 2008. The main goals for the development of BPEL were according to [4] [8]:

25

• Web Service as a basis

• XML for description

• collective approaches to orchestration and choreography

• control flow

• data processing

• identification (based on users)

• lifecycle

• transaction model (for specification, so that it is possible to intercept errors)

• modularization (for processes Web Services should be used)

• composition

A BPEL process specification and its main components are described in an XML document.
The BPEL process consists of basic activities (atomic activities) and structured activities (deter-
mine the order in which the basic activities should be executed). Figure 3.1 shows a graphical
representation of the different types of activities [15].

A brief description of the key elements is given in Table 3.1. For a more detailed description
[15] or the BPEL specification1 are recommended:

In the following Figure 3.2 a general structure of a BPEL process is shown.
In recent years, BPEL has become well established and it was a standard for technical and

executable processes in the area of the Web Service technology. Many of the major manufac-
turers integrated it in their BPMS products (e.g., IBM, Oracle, Microsoft, Intalio, etc.). An
advantage of BPEL is that BPEL process definitions are much more accurate and detailed as the
BPMN process definitions (in the older version of BPMN) and so they can have elements which
can be related for example to data manipulation, Web Service binding and other implementation
aspects [10]. But a disadvantage of BPEL is that the specification of a graphical representation
of business processes has been neglected and so BPMN has established itself as a standard for
this area. Another disadvantage of BPEL is that neither the graphical representation of a BPEL
model nor the BPEL code from a BPEL model can easily be maintained or modified without
background knowledge.

It was possible to transform BPMN models of many BPMS providers to BPEL processes.
This transformation tries first to locate certain patterns in a BPMN model, which are transformed
into BPEL constructs. Thereafter, the patterns found are chained together or nested, and form
the BPEL process [4] [14].

The following example should help to get a better understanding about the transformation
from BPMN to BPEL. Figure 3.3 shows a graphical representation of a simple BPMN model.
Here, task A is executed until condition (c = 0) is satisfied. This is also called as a simple nested
loop. Once the condition is satisfied, task B is executed, and the process ends thereafter.

1http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

26

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Figure 3.1: Graphical Representation of the basic and structured activities (copied from [4, p.
238]) 27

Basic activities
Name Description
<receive> Reception of a message (providing a Web interface for external partners)
<reply> Sending a message (providing a Web interface for external partners)
<exit> Terminates the process instance
<invoke> Calling Web Service
<compensate> Starts the compensation of the immediately surrounding scope
<assign> Manipulates and stores variable values
<compensateScope> Compensates a certain scope
<validate> Validates one or more variables against their schema definition
<wait> Process or process branch is stopped for a certain period of time
<throw> Cast an error
<empty> Activity simply does nothing
<rethrow> Possibility to treat an already casted error later
<exentsionActivity> Allows the developer to define a new custom activity

Structured activities
Name Description
<flow> All contained activities are performed in parallel
<sequence> All contained activities are performed in sequence in a certain order
<while> All contained activities are executed as long as the condition is met. The

difference to the command <repeatUntil> is that the condition is checked
before passing the loop.

<repeatUntil> All contained activities are executed as long as the condition is met. The
difference to the command <while> is that the condition is checked at the
end of passing the loop.

<pick> Not exactly waiting for one message, but several, which can be treated dif-
ferently.

<forEach> All contained activities are carried out for a specified number of passes. The
number is set before the first execution and not changeable. Unlike the com-
mands <while> and <repeatUntil> the activities can be executed simultane-
ously.

Other important components
Name Description
<scope> To group activities logically and for example perform them transactional
<variable> Specifies the data for a message exchange. Once a process receives a mes-

sage, the message content is written to the corresponding variable.
<partnerlink> An optional service which invokes the process or reverses it

Table 3.1: Description of the BPEL key elements

28

Figure 3.2: Simple general structure of a BPEL process
29

Figure 3.3: Example process in BPMN notation

In Figure 3.4 the related XML-code of this BPMN-model is shown simplified, in which the
“startEvent”, “endEvent”, “task” and “exclusiveGateway” represent the nodes from the BPMN-
model and the “sequenceFlow” represents the links between the nodes. Also in Figure 3.3 there
are two sequence flows which have a condition. This means that in the XML-representation the
sequence flow is expanded to include the “conditionExpression” element, shown in Figure 3.4.

Figure 3.4: Example process from Figure 3.3 in BPMN 2.0 XML-representation is shown

The transformation from BPMN to BPEL (as mentioned above) tries to break down the
model in blocks. Each block represents a pattern found. This is done until no more patterns can
be found. After that the blocks are joined together. Figure 3.3 includes two different types of
patterns. The first pattern at the bottom level in Figure 3.3 is marked with the red rectangle (it
is the previously mentioned nested loop). The second pattern is one level above and is marked
with a blue rectangle in Figure 3.3. The transformation of the found pattern from BPMN-model

30

to BPEL-XML-code is shown in Figure 3.5, where the transformation of the first pattern (nested
loop) is shown in the red rectangle and the second pattern is shown in the blue rectangle.

Figure 3.5: Example process from Figure 3.4 as block-oriented BPEL code

As can be seen in the two XML-representations in Figure 3.4 and Figure 3.5, there are not
only differences between the element/tag-name. Also the structures of these XML-representations
are different. In the XML-representation of BPMN it does not matter, if a Sequence, a Task or
a Gateway is at the beginning, at the end or even in the middle (they are only must be between
the “process”-tag) of the XML-representation (Figure 3.4). In the XML-representation of BPEL
(Figure 3.5), there is a well-structured order between the elements. Further transformation pat-
terns of BPMN to BPEL for control structures can be found in Figure 3.6.

A good explanation for the transformation from BPMN to BPEL can be found in [10]. In
this paper an algorithm is presented which can translate BPD components to a block-structured
BPEL process. Here, three different approaches are suggested for this transformation [10].

• For well-structured BPD components which can be directly mapped to BPEL structured
activities.

• For non well-structured, but acyclic BPD components, which can be mapped to control
link-based BPEL code.

• Using event-action-rules, if a component is neither non well-structured nor can be trans-
lated to using control links.

Basically it can be said that a transformation from BPMN to BPEL is possible in most
cases. But during the transformation also problems can occur, because the two languages are
conceptually very different. For example, many mistakes are created by the need to decompose
the graphical BPMN models first into blocks, as BPEL works block-structured. The problem is,
that there could be links within the block to another block (which is also known as the “goto”
statement in programming languages). However, this is not allowed in blocks of BPEL, and so
a mapping is in some case very difficult [4] [15].

31

Figure 3.6: Basic transformation patterns (copied from [11, p. 5])

32

Further transformation problems are mentioned in the BPMN standard: “Not all BPMN
orchestration Processes can be mapped to WS-BPEL in a straight-forward way. That is because
BPMN allows the modeler to draw almost arbitrary graphs to model control flow, whereas in
WS-BPEL, there are certain restrictions such as control-flow being either block-structured or
not containing cycles. For example, an unstructured loop cannot directly be represented in WS-
BPEL.” [1, p. 445]

Also BPEL processes can be graphically represented in a BPEL designer, but this was never
a main goal for the developers of BPEL and so the graphical representation was never standard-
ized [13]. Therefore the graphically representation with a BPEL-editor-tool is usually not or
very difficult to read for non-technical people (even for a very simple business processes). An
example for the difference in graphical output between BPMN- and BPEL-editors is shown in
Figures 3.7 and 3.8.

In both Figures 3.7 and 3.8 a normal ordering process of a company is represented by a sup-
plier. In the ordering process is attempted (once a message “Artikel Bestellmenge” arrives from
the “Lagerverwaltung”) to determine the supplier who has the best price, short delivery time
and where the product is available. Once the supplier is found, the item will be ordered by him.
The obtained data from the supplier (available, delivery time) will be sent to the “Lagerverwal-
tung” and the process is finished, but if no supplier have this item available, an exception will be
thrown and this message then is sent to the “Lagerverwaltung” and the process is finished.

Figure 3.7: Graphical representation of a shopping process with a BPMN-editor (copied from
[15, p. 36])

While in the BPMN model (Figure 3.7) a non IT-professional can understand the individual
graphical steps without much explanation, the viewer needs for the graphical representation of
the BPEL model (Figure 3.8) background knowledge of BPEL. Otherwise the BPEL model is
very difficult or impossible to understand.

For example, the element in the BPMN model with “the letter” (circled with a line and also
called “event”) is mostly intuitively interpreted as a message. Depending on whether a dashed
line with arrow goes in or out, this is also most intuitively interpreted as an incoming or outgoing

33

Figure 3.8: Graphical representation of the same shopping process (from Figures 3.7) with a
BPEL-editor after transformation from BPMN to BPEL (copied from [15, p. 167])

34

message.
However, in contrast to the BPMN model the reader of the BPEL model has to know exactly

which element is used for which purpose. For the case of a incoming message, the element
is used where the arrow points into a rectangle. In the XML representation, both models are
equally hard to read and can only be interpreted by experts.

This transformation of BPMN models to BPEL processes was up to the current version of
BPMN 2.0 necessary, because additional attributes and execution semantics were missing for
the execution of process models until BPMN 2.0. But since the introduction of BPMN 2.0,
BPMN is now also a competitor in the field of execution, because now it has introduced an
execution semantics and the missing attributes in addition to an XML-based interchange format,
which is very similar to BPEL. The question is, if BPMN 2.0 can be established in these areas
(exchange format and execution semantics) as a standard, is there still a need for BPEL? On the
whole, the two specifications of BPEL and BPMN are similar, and many constructs in the XML
representation are even quite similar in both languages. Differences between BPEL and BPMN
are mainly according to ([4] [15]):

• Control flow as a graph (graph-based BPMN, block-oriented BPEL)

• BPMN has no fixed link to Web Services and XML.

• Graphical representation

At this stage, BPEL is certainly needed, because it is integrated on the one hand in BPMS of
many major manufacturers, and on the other hand BPEL currently meets certain requirements
better (e.g., interoperability, interchangeability and execution) [15].

3.2 Execution via XML Process Definition Language (XPDL)

As mentioned above, in the previous version of BPMN (before BPMN 2.0 introduces) no at-
tention was paid in execution, storage and exchange (with other tools) of business processes
definitions (this was outside of the scope of the BPMN-standard), but only the graphical repre-
sentation of business processes was important. That was the reason why XML Process Definition
Language (XDPL) came to use.

XPDL was designed by Workflow Management Coalition (WfMC) in 1993 and is an XML-
based language which describes business processes and related workflows. The goal of the
developers was to store and exchange process models. So it should be possible to open, modify
or execute models not only in the tool, in which the process was created, but also in any other
tool that supports XPDL.2,3,4

At the beginning, XPDL was rather an exchange format, based on XML, it was seen more as
an interface of Workflow Reference Models. “XPDL sollte ein minimales Meta-Model beschrei-
ben, das gemeinsam verwendete Konstrukte in einer Prozessdefinition identifizieren sollte [9, p.
36].” In 2005, a new version (2.0) has been adopted, in which the focus was to provide an

2http://de.wikipedia.org/wiki/XML_Process_Definition_Language
3http://www.ebizq.net/topics/human_centric_bpm/features/7852.html
4http://www.wfmc.org/xpdl.html

35

http://de.wikipedia.org/wiki/XML_Process_Definition_Language
http://www.ebizq.net/topics/human_centric_bpm/features/7852.html
http://www.wfmc.org/xpdl.html

XML-based interchange format for BPMN. It should consider both the graphical representation
as well as the executable features [9].4

The latest version is at the moment version 2.2. “The new XPDL 2.2 allows existing XPDL
users and supporters to continue to exploit their investment in XPDL whilst extending BPMN
support to encompass the new process modeling constructs of BPMN 2.0.”4

For ensuring a full support of BPMN, certain elements from BPMN had to be implemented
in XPDL (e.g., events, gateways).

Figure 3.9 shows the Process Definition Meta-Model of XDPL [9]. In this Figure, there are
some elements in the process meta-model of XPDL which also occur in the BPMN meta-model,
for example Process, Activity and Sequence Flow. They also have the same semantics, e.g., that
a sequence flow determines the order in which the activities should be executed. Noteworthy in
the XPDL process model is, that the activities are divided into different types. A “Task/Tool”
is an activity which requires no human interaction for execution. A “Block Activity” specifies
sub-processes and are triggered by an “Activity Set”. “Route Tasks” are responsible for join-split
conditions of the control flow and “Events” were adopted, as mentioned above, from the BPMN
specification.

XPDL is also used (like BPEL) for the execution of business processes. However, XPDL
is graph-oriented and not block-oriented like BPEL. Due to the graph-based approach, BPMN
models can be transformed better into XPDL. XPDL also offers a “one-to-one representation”
for BPMN models in contrast to BPEL. Another difference is that XPDL has placed the focus
on human activities, while BPEL (as mentioned in the previous section “BPEL”) has the focus
rather placed on the orchestration of Web Services. An advantage of BPEL over XPDL is that
BPEL can handle error situations that XPDL currently does not take into account. The bottom
line is that both languages have certain advantages and disadvantages.2,3 [5]

Although both languages (BPEL and XPDL) have different approaches, it must not neces-
sarily mean that only one of them can be used. In some BPM suites even both languages come
to use (e.g., TIBCO or ActiveVOS). The new version of BPMN (2.0) tries to combine the ad-
vantages of both languages (XPDL and BPEL), to achieve the best possible execution of process
models.2

5http://www.xpdl.org/standards/xpdl-2.2/XPDL%202.2%20%282012-08-30%29.pdf

36

http://www.xpdl.org/standards/xpdl-2.2/XPDL%202.2%20%282012-08-30%29.pdf

Figure 3.9: Process Definition Meta-Model (copied from 5)

37

CHAPTER 4
Direct execution of BPMN 2.0 models

Since the introduction of BPMN 2.0, the created models of a business processes can be executed
directly. This is made through a so-called Business Process Engine integrated in the different
tools. In this chapter, the reader gets an explanation about Business Process Engines. Then a
BPMN 2.0 model is defined which is used for the analysis of the various tools which provide a
Business Process Engine.

A Business Process Engine or Process Engine is used for the execution of processes, there-
fore the processes which should be executed have to be precisely defined first (e.g., their order
of tasks). This can be done in a template for processes or in a process definition. If the processes
are properly defined (in a technical process model that provides no room for interpretation), then
the Business Process Engine can complete all activities and their links with other activities in
the course of the execution.

The people involved will be notified regarding the open tasks and the results will be pro-
cessed. Moreover, the systems (internal and external) can be called via interfaces (also called
service orchestration).

Figure 4.1 shown a graphical representation of a possible process execution with a Business
Process Engine. Here, a technical process model is given to the Business Process Engine in the
form of an XML representation. Based on this technical model, the Business Process Engine
can control the business process. In this process, the Business Process Engine either informs the
process participants about their tasks (in the diagram represented as “Human Workflow Manage-
ment”), which they have to do in the course of the process or call internal or external services
(in the diagram represented as “Service Orchestrierung”) via interfaces [4]. A more specific
example with more detailed information is shown below.

The Business Process Engine decides on the basis of the technical process model which
tasks or service calls to execute, and also the order in which they are made. A Business Process
Engine can execute a process, but it is not always possible to allow the entire process to run fully
automatically, because a business process may have tasks with human interaction or manual
tasks.

39

Figure 4.1: Process execution with a Business Process Engine (copied from [4, p. 7])

In a broader sense, the Business Process Engine can be seen as an interpreter (or a compiler)
and the technical process model as code. The Business Process Engine can also provide impor-
tant measures because the process control has a complete overview (e.g., where is the process at
the moment, how long did it last, etc.). Processes that are currently in execution are also called
process instances.

Basically, there are two different types of activities, human activities and machine activities.
Business Process Engines are able to integrate these two types of activities during a process
execution. A Business Process Engine is integrated in a workflow management system (WfMS)
or a BPMS and so an important component of both. In contrast to a Business Process Engine,
which is only responsible to carry out the execution of defined processes, the WFMS or BPMS
has further functions to define processes and to monitor and control process instances of the
Business Process Engine. This is also known as Business Activity Monitoring (BAM).

4.1 Defining an executable BPMN 2.0 model

Before investigating the individual tools with integrated Business Process Engines, the reader
gets a fundamental understanding of how Business Process Engines work in general. For this
reason, an example (called “Issuing Invoice”) has been selected/created, which is also used
below for the investigation of the tools.

Before the process can run with the Business Process Engine, it must be created in a model-
ing tool. Most BPMS providers offer their own modeling tools for BPMN models. A modeling
tool is mostly used by non-IT-experts. Therefore, their use is in general very simple. The in-
dividual elements of BPMN (e.g., tasks, gateways, events) are simply drawn and afterwards

40

connected. These elements are mostly offered in a palette left or right from the main windows
(where the process is to be shown). By doing so, an XML-representation is created in the back-
ground.

Figure 4.2 shows the graphical output of a modeling tool. The output shows the selected
example “Issuing Invoice”, which has a start-, an end-node, two Tasks, three Data Inputs and
one Data Output. The first Task (“Create Invoice”) creates a invoice entity for two given inputs
(Amount of money and a recipient Address). The second Task (“Send Invoice”) sends the
created invoice to a customer.

The two Tasks and nodes are connected with a Sequence Flow (line with arrow head), which
shows the execution order. The Data Input and Data Output elements are connected with Tasks
through a Messages Flow (dotted line with arrow head) and represent the data association.

Figure 4.2: Modeler Output draw with Elcipse Modeler

As already mentioned above, an XML-file describing the “Issuing Invoice” is created in the
background. A snippet of the generated XML representation is shown in Listing 4.1. To get a
quick understanding about the function of the Business Process Engine. This generated XML
is fed to the Business Process Engine for execution. First the Business Process Engine searches
where the startEvent-tag (process entry point) is. At this startEvent tag, the Business Process
Engine gets the information, which BPMN elements are connected by a Sequence Flow with
the startEvent tag and which elements are to be executed next. This is possible due to the
unique ID, which each BPMN element gets after generating the XML representation. With the
help of this ID the Business Process Engine knows exactly which outgoing Sequences Flows
connect to which Tasks, Events, Gateways, or rather which elements are to be executed next. As
shown in Figure 4.2, the start node is connected to the Task “Create Invoice”. The same fact is
represented in Listing 4.1 as code line 30. This Sequence Flow owns three attributes called “id”,
“sourceRef”, and “targetRef”.

Due to the last two attributes (the unique ID’s “start” and “createInvoice” as shown in List-

41

ing 4.1 as code line 30) the Business Process Engine knows that the startEvent is followed by the
Task “Create Invoice”. In BPMN 2.0 there are different types of Task, which are responsible for
different functions. Such the Script Task, which can execute a piece of code. The Task “Create
Invoice” is a Task without further specification (function). Therefore, it can be defined an Input
Output Specification which defines the input and output of a Task (Listing 4.1, code line 14 – 16)
and also Data Input and Data Output Association can be defined, which is used for the mapping
of input and output. However, this make no sense for this type of Task, because the Task make
nothing without further specification. A exactly specification is made below for this Task.

But back to our example, when the Task “Create Invoice” is finished, the Business Process
Engine (based on the outgoing Sequence Flow) goes to the next Task “Send Invoice”. This is also
a Task without further specification and it has the same behavior like the Task “Create Invoice”.
After this Task is finished and the Business Process Engine tries to find the next BPMN elements
based on the outgoing Sequence Flows. Since this was the last Task, the Business Process Engine
achieves the endEvent and the process is completed/finished, and the Business Process Engine
stops the execution.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <definitions xmlns="..."
3 xmlns:tns="..."
4 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
6 id="..."
7 name="Issuing Invoice">
8

9 <process id="PROCESS_1" isClosed="false" isExecutable="true">
10

11 <startEvent id="start"name="Start Event"/>
12

13 <task id="createInvoice" name="Create Invoice">
14 <ioSpecification id="IO1">
15 ...
16 </ioSpecification>
17 <dataInputAssociation>
18 ...
19 </dataInputAssociation>
20 <dataOutputAssociation>
21 ...
22 </dataOutputAssociation>
23 </task>
24 <task id="sendInvoice" name="Send Invoice"/>
25 ...
26 </task>
27

28 <endEvent id="end" name="End Event">

42

29

30 <sequenceFlow id="sf_6" sourceRef="start" targetRef="
createInvoice"/>

31 <sequenceFlow id="sf_7" sourceRef="createInvoice" targetRef
="sendInvoice"/>

32 <sequenceFlow id="sf_8" sourceRef="sendInvoice" targetRef="
end"/>

33 </process>
34 ...
35 </definitions>

Listing 4.1: Generated XML representation of the Issuing Invoice.

But this BPMN model “Issuing Invoice” (shown in Figure 4.2) is still not executable, because
there are still some attributes missing in the implementation, also the model has to be made more
specific/accurate. In this example, the BPMN element “Task” was defined in such a way, that
some of the required attributes for execution are missing.

Generally in BPMN 2.0, there are different types of Task elements which are in use for
automatic execution. For the example “Issuing Invoice” the “Service Task” and the “Script
Task” can be used. If the Service Task is used, the Task can be linked with a Web Service
or with an automated application (like Java), which does the necessary work without human
interaction. The Script Task is used to be directly executed by a Business Process Engine. The
Script Task is only used to execute small and simple pieces of code. It is important that the
modeler uses a scripting language which can be interpreted by the Business Process Engine [1].

The two Tasks can be distinguished graphically by an icon, which is located on the top
left side. The various symbols are shown in Figure 4.3. In the generated XML code, they are
represented differently as shown in Listing 4.2. Since both elements are specializations of the
Task element, there are only a few attributes not contained in both.

Figure 4.3: a.) Service Task, b.) Script Task

A Service Task exclusively uses the attributes “implementation” (shows what kind of ser-
vice the Task is connected) and “operationRef” (where an operation reference can be speci-
fied). In the given example, the Service Task is associated with a Web Service (implementa-
tion = “##WebService”) by the Web Service Description Language (WSDL) operation (opera-
tionRef=“createInvoice”), which is defined by the interface (also defined in the XML represen-
tation) and related directly to the Web Service.

“In contrast to a Service Task, a Script Task is designed for execution of simple tasks that
are usually implemented in a scripting language. Therefore, it has an attribute “scriptFormat”
instead of the attribute “operationRef”. This attribute specifies the language in which the code
is written and which the process engine has to interpret and execute.” [7, p. 4] In Listing 4.2 the
language “groovy” is used for the Script Task.

43

“Furthermore, the Script Task has another important attribute called “script”, in which
the script itself is implemented. This is the main part of the Script Task and is used during
execution.” [7, p. 4]

1 <serviceTask id="createInvoice" name="Create Invoice"
implementation="##WebService" operationRef="createInvoiceWS"
>

2 ...
3 </serviceTask>
4

5 <scriptTask id="createInvoice" name="Create Invoice"
scriptFormat="groovy">

6 ...
7 <script>...</script>
8 </scriptTask>

Listing 4.2: Difference in XML representation between Service and Script Task

For executing the example “Issuing Invoice” automatically, Tasks are replaced by Service
Tasks (illustrated in Figure 4.4). The graphical difference between the Task symbols is minor,
but in the XML representation now the missing attribute needed to link the Task with a Web
Service or automated application are added.

Figure 4.4: Replace (General) Task with Service Task (copied form [7, p. 3]).

Listing 4.3 shows an example of how an XML representation of a Service Task connected
with a Web Service looks like. The link to the Web Service has already been explained above,
but there are other things that are relevant for execution. There is an Input Output Specification,
which defines the input and output for the Service Task. In Listing 4.3 the two parameters and the
result for the Web Service are defined as Data Inputs (code lines 4 and 5) and Data Output (code
line 6). The Data Input and Data Output Association can map the Data Input and Data Output
to local variables, which can be used then in the further course of the process. In Listing 4.3 two
parameters (amount and address) are provided for the Web Service and the result is a invoice,
which is stored in a local variable named “invoice”.

In BPMN 2.0 Data Associations are used for moving data. For doing this, the BPMN 2.0
standard defines two ways. Listing 4.3 shows the simple variant in the Data Input and Data
Output Association. Here the Data Input “amount” (code line 16) is directly mapped to a local
variable “input_WS_amount”(code line 17). The second variant is the use of so-called Assign-
ments. Here the Data Input is mapped to a local variable with the help of Expressions. For
both variants it is important that the Data Input structure is the same as the local variable. The
structure is defined in an Item Definition.

1

44

2 <serviceTask id="createInvoice_ServiceTask" implementation="##
WebService" operationRef="createInvoice" name="Create
Invoice">

3 <ioSpecification>
4 <dataInput id="dataInputCreateInvoiceServiceTaskAmount"

itemSubjectRef="createInvoiceInvoiceInputSoap"/>
5 <dataInput id="dataInputCreateInvoiceServiceTaskAddress"

itemSubjectRef="createInvoiceInvoiceInputSoap"/>
6 <dataOutput id="dataOutputCreateInvoice" itemSubjectRef="

createInvoiceBooleanOutputSoap"/>
7 <inputSet>
8 <dataInputRefs>dataInputCreateInvoiceServiceTaskAmount</

dataInputRefs>
9 <dataInputRefs>dataInputCreateInvoiceServiceTaskAddress</

dataInputRefs>
10 </inputSet>
11 <outputSet>
12 <dataOutputRefs>dataOutputCreateInvoice</dataOutputRefs>
13 </outputSet>
14 </ioSpecification>
15 <dataInputAssociation id="dataInpAssoc_22">
16 <sourceRef>amount</sourceRef>
17 <targetRef>input_WS_amount</targetRef>
18 </dataInputAssociation>
19 <dataInputAssociation id="dataInpAssoc_23">
20 <sourceRef>address</sourceRef>
21 <targetRef>input_WS_address</targetRef>
22 </dataInputAssociation>
23 <dataOutputAssociation id="dataInpAssoc_25">
24 <sourceRef>output_WS_invoice</sourceRef>
25 <targetRef>invoice</targetRef>
26 </dataOutputAssociation>
27 </serviceTask>

Listing 4.3: XML representation of a Service Task.

Before a Web Service (like the WSDL specification in the “Issuing Invoice” example) can
be used, it has to be imported by an import statement into the BPMN model. An example is
shown in Listing 4.4, in code line 1.

The attribute “importType” defines the type of document, which should be imported. Ac-
cording to the BPMN 2.0 standard, at least the following three types of document have be sup-
ported [1]:

• Web Service Description Language 2.0 (WSDL 2.0)

• BPMN 2.0

45

• XML Schema 1.0

But also all other document types can be supported. The next attribute “location” defines the
location of the imported service. The last attribute “namespace” defines the namespace of the
imported service.

Also the Data structures can be imported from a WSDL specification and reused in BPMN.
For example, structureRef=“createInvoiceOperationResponse” references to the structure de-
fined in WSDL.

For access to the WSDL operation an interface is used, which defines the required WSDL
operations. Listing 4.4 (code line 15) shows an example for an interface implementation. This
interface has only one operation with the ID “createInvoice” defined. This operation is also ref-
erenced in the preceding Service Task (Listing 4.3, line code 2, operationRef=“createInvoice”).

The attribute “implementationRef” of the interface allows referencing a particular artifact in
the underlying implementation technology represented by that interface (e.g., a WSDL porttype)
[1]. The attribute “implementationRef” allows the same with an operation. Figure 4.5 illustrates
the link between the operation of the interface and the operation of the WSDL.

For communication between the operation of the Web Service and the operation of the
BPMN model interface, so-called messages (Listing 4.4, code lines 10 and 11) are used. Every
operation needs two messages, for the request and the response. Respectively the message must
be compatible with the structure in the Web Service (in the example with the WSDL) or with
the structure in the automated application. This is done with the attribute itemRef=“...” of the
message. The message structure is defined in the item definition (Listing 4.4, code lines 6 and
7). It is defined by the attribute “structureRef” shown above. The incoming and outgoing mes-
sage of the operation is defined with the attributes “inMessageRef“ (input of the operation) and
“outMessageRef“ (output of the operation) in the operation. This is shown in Listing 4.4, code
lines 17 and 18.

According to the BPMN 2.0 Standard an operation has to have exactly one input message,
while an output message is not necessarily required [1].

Figure 4.6 shows an example illustrating the relationship between the structure of the item
definition, the structure of the WSDL specification, messages and the associated operation de-
fined in the interface. In Figure 4.5 is shown that in the interface of the BPMN model XML-
code an ID with “sendInvoice” exists, and this operation references the WSDL operation “send-
InvoiceOperation”. Also it is shown that the WSDL operation has an output message with the
name “sendInvoiceOperationResponse”. The structure of response is defined in the WSDL spec-
ification. Figure 4.6 shows that the structure is boolean (upper framing in red) and referenced
to an item definition (with the ID “sendInvoiceOutputSoap”). This is made with the attribute
“structureRef“ in the XML-code. The blue framing shows which message references which
item definition (by the attribute “itemRef“). And the green framing shows which operation uses
which message. Based on this information, the output of the operation (with the id “sendIn-
voice”) has to be boolean. If is tried to use another structure at the Item Definition with the ID
“sendInvoiceInvoiceOutputSoap” (e.g. String), it receives an error message.

An good description with respect to the import, messages, item definitions and the use of
Web Services can be found in the BPMN 2.0 standard. A specific overview can be found in the
user guides of the particular tools.

46

1 <import importType="http://schemas.xmlsoap.org/wsdl/"
2 location="..."
3 namespace="..."/>
4

5 <!-- Item Definitions -->
6 <itemDefinition id="createInvoiceInputSoap" structureRef="

createInvoiceOperation"/>
7 <itemDefinition id="createInvoiceInvoiceOutputSoap"

structureRef="createInvoiceOperationResponse"/>
8

9 <!-- Messages -->
10 <message id="createInvoiceRequestMessage" itemRef="

createInvoiceInputSoap" name="createInvoiceRequestMessage"/>
11 <message id="createInvoiceResponseMessage" itemRef="

createInvoiceInvoiceOutputSoap" name="
createInvoiceResponseMessage"/>

12

13

14 <!-- WSDL-Interface -->
15 <interface id="Interface_1" implementationRef="IssuingInvoice"

name="IssuingInvoice">
16 <operation id="createInvoice" implementationRef="

createInvoiceOperation" name="createInvoiceOperation">
17 <inMessageRef>createInvoiceRequestMessage</inMessageRef>
18 <outMessageRef>createInvoiceResponseMessage</outMessageRef>
19 </operation>
20 </interface>

Listing 4.4: XML representation of a Service Task

If the Service Task is connected with a Web Service, the client applications require a Web Service
stub. These stubs handle the connection to the service implementations and they have to be
generated or created according to the WSDL specification of the Web service. “There are several
frameworks available that allow automatic generation of a client stub from a WSDL specification
during runtime. These stubs are then used to create service calls and hide the marshalling of
objects and messages that are exchanged between client and server. A call to a Web service then
acts like a local call of a procedure.” [7, p. 2]

As already mentioned, Service Tasks can be linked not only with Web Services, but also with
automated applications. Figure 4.7 shows an example, where the Service Task is linked with a
Java class. When calling an automated application, the attribute “implementation” of the Service
Task has the value “##unspecified”. This means that the implementation technology is left open
and the tool provider can decide how to link the Service Task and the automated application.
In Figure 4.7 the example was created with the tool “Activiti”. Here the tool extends the Meta-
Model of BPMN 2.0 with the attribute “class” and use this attribute to link a Java class, where
the value given is equal to the Java class name (marked in red in Figure 4.7).

47

Figure 4.5: Illustration of link between interface operation and WSDL operation

Figure 4.6: Illustration of link between WSDL, message and item definition

According to BPMN 2.0 standard the tools (which are BPMN 2.0 compliant) have to support
the link to Web Services or automated applications (like Java). While the link to Web Services
is explicitly mentioned in the standard, the link to alternative implementation technologies for
automated applications is open and, therefore, it is tool dependent. However, the BPMN 2.0
standard also leaves open how exactly Web Services are linked with Service Tasks. There is in-
deed the attribute “operationRef” which is linked to the invoked operation, but it is not described
in detail. Several attributes that are necessary for an automatic invocation (like WSDL encod-

48

Figure 4.7: Service Task linked with Java created with the tool Activiti

ing or WSDL namespaces) are not mentioned at all. Thus the tools can interpret the BPMN
2.0 specification in various ways, which results in different XML-representations of the same
model.

Since the link from a Service Task to an automated application is not specified at all, the
implementation is tool dependent. Therefore, the investigation of the tools lead to a problem
with the portability and so the Service Tasks of the running example “Issuing Invoice” are linked
with Web Services (WSDL) which are supported by the BPMN 2.0 standard. If a tool also
supports the link with an automated application, it was also tried to execute the example with this
approach. For this purpose, the programming language “Java” was used, since it was supported
by the majority of the tools.

A running example of an “Issuing Invoice” has been created and was used for the investiga-
tion of the different tools. The complete created example can be found in Listing A.1.

4.2 A Pitfall in BPMN 2.0

This section is based on the paper [7].
When the Tasks are replaced in the “Issuing Invoice” example above with Service Tasks an

adapted model is created (shown in Figure 4.8). The graphical representation is similar to the
model of Figure 4.8 and the model of Figure 4.2, but Figure 4.8 represents a business process
with embedded service call specifications, which are only seen in the XML representation.

So far, everything looks plausible and the process model more or less straight-forward. How-
ever, simply replacing the Tasks from Figure 1 with Service Tasks actually leads to a model that
is not compliant with the BPMN 2.0 standard. This very standard imposes an additional con-
straint on Service Tasks, i.e., it does not allow more than one input set and a single Data Input

49

Figure 4.8: Adapted BPMN 2.0 model of the Issuing Invoice example process with Service
Tasks

per Service Task. Even this simple process model, however, has two input parameters for the
Service Task implementing the creation of an Invoice.

This constraint can be found in the BPMN 2.0 standard on page number 158 at the Service
Task. 1

This constraint might be a reaction to Web Service specifications where the SOAP message
only consists of one body part. However, the Service Task itself should not be involved with the
actual encoding and message passing of a Web Service and should only deal with the parame-
ters themselves. If the Service Task is supposed to receive an already fully constructed message
object with all parameters embedded, it would make it difficult for somebody without techni-
cal background to understand how this service is invoked. Furthermore, the specification above
does not only hinder invoking Web Services but also simple procedure calls in a programming
language, which BPMN 2.0 is capable of. Since the encoding of parameters to message objects
(in case of WSDL/SOAP) is not at the same level of abstraction as input parameters of meth-
ods/operations, this should not be mixed up. So, the definition of parameters of a Service Task
should not involve any information about the actual encoding or how they are transported. This
should be part of the Service Task and its specification (which BPMN already handles through
an import statement and additional attributes).

The question now is how to solve the problem and still remain standard compliance.
There are several possibilities to accomplish this, all of which involve changes to the BPMN

process as well. One possible solution is to change the WSDL specification of the Web service
so that only one parameter is passed as input. This would make the service itself compatible with
the BPMN Service Task specification, but would still require additional mapping techniques in
the BPMN process to combine all inputs into one single input. Furthermore, it puts an uncom-
mon constraint on the development of Web services, and only a small subset of available services
can be integrated into business processes modeled in BPMN 2.0.

Figure 4.9 shows a modified process model for our running example, which uses a wrapper
so that the Service Task does not directly have more than one input. In our example, a Script

1http://www.bpmi.org/

50

http://www.bpmi.org/

Task is used as the wrapper, because a Script Task can have, in contrast to a Service Task, more
than one input set and more than one Data Input. The wrapper Script Task is added before the
Service Task, and it receives all the inputs which the Service Task needs for its operation. The
function of the Script Task is to prepare the inputs for the Service Task in such a way that they are
combined into a single input. In this case, all inputs are combined into one map. Viewed from
a higher level, however, this modified model is not really appropriate any more for a business
expert, since preparing input for another Task is not really a business-relevant Task per se.

Figure 4.9: Modified BPMN 2.0 model of the Issuing Invoice example process with a wrapper

Listing 4.5 shows the XML representation of the Script Task used as a wrapper for the
Service Task Create Invoice. Since both Script Task and Service Task are derived from the more
general Task specification in the BPMN 2.0 Meta-Model, their syntax is similar. Both have an
Input Output Specification and associated Data Input and Data Output Association. This Input
Output Specification defines the parameters of the Script Task which are combined in a map
variable.

But the main task is shown in the attribute “script”. Listing 4.5 shows that in this attribute
first an object of type “InvoiceParameterList” is created and stored in a variable “ParameterList”.
The object “InvoiceParameterList” has two operations — one to add parameters and one to delete
parameters. The behavior is similar to a Java Hashmap, and is required to operate with WSDL
specifications, since there simple or well-defined parameter types are allowed only. The two
inputs of the Script Task are then added to the created object via the “addParameter” operation.
In a last step, the object is set as the process variable that corresponds to the Data Output of the
Script Task.

1 <!-- Script Task -->
2 <scriptTask id="PrepareParameters" scriptFormat="groovy">
3 <ioSpecification id="InputOutputSpecification_5">
4 <dataInput id="dataInputScriptTaskAmount"

itemSubjectRef="inputScriptTaskAmount" name="
Amount"/>

5 <dataInput id="dataInputScriptTaskAddress"
itemSubjectRef="inputScriptTaskAddress" name="
Address"/>

51

6 <dataOutput id="dataOutputScriptTask" itemSubjectRef=
"outputScriptTask" name="Result"/>

7 <inputSet id="InputSet_5">
8 <dataInputRefs>dataInputScriptTaskAmount<

dataInputRefs>
9 <inputSet>

10 <inputSet id="InputSet_9">
11 <dataInputRefs>dataInputScriptTaskAddress<

dataInputRefs>
12 <inputSet>
13 <outputSet id="OutputSet_5">
14 <dataOutputRefs>dataOutputScriptTask<

dataOutputRefs>
15 <outputSet>
16 <ioSpecification>
17 <dataInputAssociation id="DataInputAssociation_8">
18 <sourceRef>amount</sourceRef>
19 <dataInputAssociation>
20 <dataInputAssociation id="DataInputAssociation_10">
21 <sourceRef>address<sourceRef>
22 <dataInputAssociation>
23 <dataOutputAssociation id="DataOutputAssociation_9">
24 <targetRef>ParameterList<targetRef>
25 <dataOutputAssociation>
26 <script>
27

28 def parameters = new at.ac.tuwien.ict.proreuse.
webservices.icas.icasservices.InvoiceParameterList
();

29 parameters.addParameter("amount", amount);
30 parameters.addParameter("address", address);
31

32 execution.setVariable("ParameterList", parameters);
33 <script>
34 <scriptTask>

Listing 4.5: XML Representation of a Script Task used as a Wrapper.

The approach described in Listing 4.5 shows how a complex object of type InvoiceParam-
eterList is created and other parameters, which have been specified as the input of the Script
Task PrepareParameters, are attached to it. After all parameters have been added in the “script”
section, the resulting variable is set in the execution engine. Note, that the name of this resulting
variable is set according to the output specification in the dataOutputAssociation. Thus the input
and output of the Script Task can be specified according to the script in the “script” section, and
the input/output behavior of the Script Task is fully specified. Since the script directly oper-

52

ates in the execution engine, it would also be possible to set other variables. Some frameworks
automatically define an additional output specification for them.

However, this approach has a drawback. It requires the Web service to only take a single
parameter, where all other parameters are embedded in one single object. A better solution
would be to call the Web service directly from a Script Task or maybe an attached Java class.
The idea is to hide the call to the Web service in a Script Task and thus avoid the unusual
constraint with just one parameter. Figure 4.10 gives an example for the graphical notation for
such a wrapper. As it shows, there is no indication for a Web service call given, which makes it
harder to understand. Another major advantage is that this process model fits better the modeled
process of our running example. A business expert can still see the essential tasks in this model
and not an extra one irrelevant for the process. The specializations of Task to Script Task and to
Service Task, respectively, are only visualized as small icons and should not be irritating to the
business expert.

Figure 4.10: Modified BPMN 2.0 Model of the Issuing Invoice example process with Script
Task instead of Service Task

Another approach would be to use Java implementations as a back-end for Script Tasks and
to employ them to call the Web services. Since Java classes are executed in the same runtime
environment, they can access all available properties and values during the execution. In this
case, the definition of the Data Input and Data Output could technically be omitted (which
makes the overview of the business process difficult, of course). The BPMN 2.0 standard does
not provide a clear specification on how other implementations can be attached to a Script Task
or Service Task, but simply states that other implementations can be included. This means that
the technical implementation of calling back-end Java classes is permitted, though not entirely
specified. Using this method has the advantage that during execution there is full control on
all variables and definitions but that the graphical notation does not fully represent the business
process.

Both techniques, calling the Web service directly from a Script Task or a reference Java
class, require to make manual Web service calls. This means that there needs to be an imple-
mentation available for the client part of the service call. This is in contrast to the normal Service
Task where most frameworks support automatic generation of the required client stub from the
referenced WSDL file. Since most frameworks already provide such a generation, their imple-

53

mentation can be reused. However, the call to create the client stub has to be provided manually.
In addition, it is possible to use external frameworks to generate all necessary classes on the
client side.

In addition, the BPMN 2.0 standard provides another possibility for mapping Data Objects,
the Assignment construct in the DataInputAssociation. This construct allows mapping one Item
Definition to another one and thus enables BPMN users to specify how locally defined Data
Objects can be transferred to (parts of) input parameters. This is similar to what we accomplish
with the ScriptTask but has the disadvantage that only short expressions can be used and that still
the input parameter of a Service Task has to be defined as a more complex structure that embeds
the local objects into one single object. Additionally, this approach requires the process designer
to know of the existence and state of local Data Object definitions and thus the transparency of
the process is obscured.

Since all these possible solutions rely on active tool support, it is necessary to state that the
BPMN 2.0 standard does not allow for a compliant solution to this only-one-parameter problem
it poses, so that solutions are tool-specific. However, the general idea behind the wrappers
should work for all available frameworks. In addition, the frameworks provide the means to call
the Web services and thus it might be necessary, depending on the framework, to provide client
stub implementations or the shared objects in the same class path.

4.3 Execution of BPMN 2.0 models with Business Process
Management Systems

In this section, some tools with integrated Business Process Engines are investigated. Most
tools extended their Business Process Engine so that they can offer a complete BPMS. Table 4.1
shows the various found tools listed and some important properties.

Certain criteria are defined:

• The tool must be standard conform with BPMN 2.0.

• The tool must either be open source or offer a trial version.

• The tool must support modeling and direct execution of BPMN 2.0 models without trans-
formation.

According to this selection, the following tools are investigated below.

• Activiti [4.3.1]

• jBPM [4.3.2]

• Bonita BPM [4.3.3]

• Camunda BPM [4.3.4]

2“+” == commercial | “+/-” == partially commercial | “-” == open source
3no longer available

54

B
PM

S
B

PM
N

2.
0

M
od

el
di

re
ct

ex
ec

ut
io

n

O
ld

er
ve

rs
io

n
of

B
PM

N
B

PE
L

ex
ec

ut
io

n
co

m
m

er
ci

al
2

Tr
ia

l
ve

rs
io

n
W

eb
-s

er
vi

ce
lin

k
Ja

va
lin

k

A
ri

st
aF

lo
w

+
X

X
A

pp
ia

n
B

PM
Su

ite
+

X
IB

M
W

eb
Sp

he
re

Pr
oc

es
s

M
an

ag
er

X
+

Fu
eg

e
(A

qu
aL

og
ic

B
PM

)
+

X
X

in
ub

it
B

PM
X

+
X

X
X

Fu
jit

su
In

te
rs

ta
ge

X
+

X
X

O
ra

cl
e

B
us

in
es

s
Pr

o-
ce

ss
M

an
ag

er
Su

ite
X

X
+

X

SA
P

N
et

W
ea

ve
r

B
PM

X
+

X
X

So
ft

Pr
oj

ec
t

X
4

B
PM

Su
ite

X
+

X

Pe
ga

sy
st

em
s

+
So

ft
w

ar
e

A
G

w
eb

-
M

et
ho

ds
B

PM
S

X
+

St
ol

z
IT

C
on

su
lti

ng
Pr

oc
es

s
E

ng
in

e
+

Ti
bc

o
iP

ro
ce

ss
Su

ite
X

+
X

X
V

itr
ia

iB
PM

S
X

+
X

IY
O

PR
O

B
PM

S
X

+
Sy

dl
ee

Se
ed

X
+/

-
X

X
X

In
ta

lio
B

PM
S

X
X

+
X

X
A

ct
iv

eV
O

S
X

X
+

X
jB

PM
X

-
X

X
A

ct
iv

iti
X

-
X

X
B

on
ita

B
PM

X
+/

-
X

X
C

am
un

da
B

PM
X

+/
-

X
X

R
ou

br
oo

3
X

-
X

X

Table 4.1: Overview of the founded tools with integrated business process engine 55

• Sydlee Seed [4.3.5]

• Inubit BMP [4.3.6]

For the investigation of the selected tools the created “Issuing Invoice” business process is used.
Figure 4.9 shows the business process. This business process is imported and tried to execute in
the selected tools. If the process is not executed, the BPMN model is adapted so that the BPMN
model can be executed.

4.3.1 Activiti

“Activiti is a light-weight workflow and Business Process Management (BPM) Platform tar-
geted at business people, developers and system admins. Its core is a super-fast and rock-solid
BPMN 2 process engine for Java. It’s open-source and distributed under the Apache license.
Activiti runs in any Java application, on a server, on a cluster or in the cloud. It integrates
perfectly with Spring, it is extremely lightweight and based on simple concepts.“ 4

Activiti is written in Java and consists of a number of specific components and applications.
These are used in the whole process from definition to the execution of a Business Process.
Figure 4.11 shows the various components and applications. Table 4.2 gives their description
[12].

Figure 4.11: Different components and applications of Activiti (copied from 5)

4http://activiti.org/
5http://www.activiti.org/components.html

56

http://activiti.org/
http://www.activiti.org/components.html

Name Description
Activiti Modeler “a web-based modeling environments for creating BPMN 2.0-compliant

business process diagrams. This component is donated by Signavio.“
[12, p. 5]

Activiti Designer an Eclipse plugin for the creation of BPMN 2.0 business process dia-
grams [12].

Activiti REST “a web application that provides REST interface on top of the Activiti
engine.“ [12, p. 5]

Activit Explorer a web application used to access the Activiti Engine at runtime. This
allows task management, gathering reports, monitoring the system or
the state of process instances, starting process instance, aso [12].

Activiti Engine “the core component of the Activiti to stack that performs the process
engine functions.“ [12, p. 5]

Table 4.2: Description of Activiti components and applications.

The current version of Activiti is 5.14 and was introduced at the end of 2013. It can be
downloaded from 6.

A more detailed overview and description of Activiti and its components can be found in
the book [12] or on the Activiti homepage 4. On this homepage also the user guide can be
found, as well as various examples and explanations of the different BPMN elements. Also the
installation process of Activiti and the implementation in Eclipse is shown. Activiti needs the
following components:

• JDK 6+

• Eclipse (Indigo or Juno)

• Apache Tomcat

After the installation and configuration, which are described in the user guide Chapter 1
(Introduction) and 2 (Getting Started), the business process “Issuing Invoice” can be imported
as an example in Eclipse (shown in Figure 4.9). After the import, the business process can be
opened with the Activiti Designer.

Figure 4.12 shows the opened business process with the Activiti Designer. It is immediately
apparent that in the process the Tasks, Sequence Flows and Events appear, but all Data Inputs
and Data Outputs are missing in this representation. The reason is, as shown in Figure 4.13
(which lists all possible graphical representations for Activiti) that the Activiti Designer does
not provide a graphical representation for Data Input and Data Output.

As already mentioned above, when a diagram is created (graphically), also an XML repre-
sentation is generated in the background with all BPMN elements, which are needed. And so
the Data Inputs and Data Outputs are still in this XML representation. Figure 4.14 shows a part
of the Script Task “Prepare Input for Invoice” in XML-representation. However, such an XML
representation is very difficult to read for non IT-experts.

6http://www.activiti.org/download.html

57

http://www.activiti.org/download.html

Figure 4.12: Business process Issuing Invoice opened with Activiti Designer in Eclipse

Another problem with Activiti Designer is that a Service Task cannot link with a Web Service
(e.g., WSDL-file), but only with Java classes, expressions or delegate expressions (shown in
Figure 4.15). To import Web Service (e.g., WSDL) and integrate Data-Input and Data-Output
in a BPMN model, one can use the two following possibilities. One possibility is to implement
these functionalities directly in the generated XML representation. The second possibility is to
use another modeler in Eclipse (e.g., Eclipse Modeler for BPMN2 Project/Diagram).

In Activiti there are two ways to define DataInputAssociation and DataOutputAssociation
(using expression or using the simplistic approach), which are responsible for the mapping of
the required Data Inputs or Data Output. For both approaches, examples can found in the user
guide of Activiti 7. In the example “Issuing Invoice” the simplistic approach is used. Here
it is important when the Service Task is linked to a WSDL specification (as in the example
“Issuing Invoice”) that the attributes of a DataInputAssociation or DataOutputAssociation from
a Service Task (“sourceRef“ and “targetRef“) have to refer to an Item Definition or Property. In
the example they refer to Item Definitions.

However, it needs to be considered that the structure and the naming of the WSDL input/out-
put message types and especially their subtype definitions have to be equivalent to the Item
Definition of the corresponding BPMN Data Input/Output association. In case of the input as-
sociation the target reference and in case of the output association, the source reference has to
have the same name.

The reason is shown graphically in Figure 4.16. The Service Task “Send Invoice” is as-
sociated with the WSDL operation “sendInvoiceOperation”, which has an input and an output.
These are defined by Messages. The messages are in turn linked to an Item Definition (link is
marked in blue in Figure 4.16), in which the structure of the Message based on the WSDL is
defined (green marked in Figure 4.16). Therefore an object “invoice” is passed. The red mark in
Figure 4.16 shows, why the Item Definition ID (which is used in Service Task “Send Invoice”
for the Data Input) in Activiti have to have the same name as in WSDL defined. If another name
is chosen the process throws an error message (org.apache.cxf.binding.soap.SoapFault) during
the execution and the process stops.

Otherwise, the imported business process “Issuing Invoice” should be executable without
further adjustments. Listing A.2 shows the complete executable BPMN 2.0 model of the “Issu-
ing Invoice”.

An advantage of Activiti is that the mentioned constraint (which allows only one parameter
for the Service Task, explained in the section 4.2) is not implemented in Activiti and so also
the BPMN 2.0 model shown in Figure 4.8 is executable in Activiti, but the BPMN model is not

7http://www.activiti.org/userguide/

58

http://www.activiti.org/userguide/

Figure 4.13: All elements provided by the Activiti Designer in Eclipse. The Figure contains two
screenshots with different opened rubric of the Activiti Designer

59

Figure 4.14: The XML-representation of Script Task “Prepare Input for Invoice” from the busi-
ness process Issuing Invoice

60

Figure 4.15: Service Task properties in Activiti Designer

61

Figure 4.16: XML representation of the Service Task “Send Invoice” and the link to WSDL

62

standard compliant. This has at least an advantage for the graphical representation of large and
complex BPMN models, because the Script Task is no longer needed for preparing the inputs
of the Service Task. The fully generated and executable XML representation of the example
“Issuing Invoice” in Activiti with integrated Web Service and more than one Parameter passed
to the Service Task can be found in Listing A.1.

Another advantage in Activiti is that during the execution of the business process, the stub
classes for the Web Services are automatically generated.

As mentioned above, there is in addition to the link of the Service Task with a Web Service
also the possibility to link the Service Task with an automated application. But how this link
looks like is not defined in the BPMN standard. In Activiti this is a link to a Java class and, there-
fore, two types of Service Task (which is used for automatically execution) are distinguished in
Activiti.

• Web Service Task

• Java Service Task

The graphical representation of these Tasks is the same. The difference can only be seen in
the generated XML representation. Listing 4.6 shows the different XML representations. The
attribute of both Service Tasks were already explained in section 4.1 above. The generated and
executable XML representation of the example “Issuing Invoice” with integrated Java can be
found at Listing A.3.

1 <!-- WSDL -->
2 <serviceTask id="createInvoice" name="Create Invoice"

implementation="##WebService" operationRef="tns:
createInvoice">

3 ...
4 </serviceTask>
5

6 <!-- JAVA -->
7 <serviceTask id="createInvoice" name="Create Invoice" activiti

:class="CreateInvoice">
8 ...
9 </serviceTask>

Listing 4.6: Generated XML representation of a Web- and Java-Service Task

However, this link with Java is tool-specific, because is done via the attribute “class” in
Activiti and this is not BPMN 2.0 Standard compliant. In Activiti, there are four different ways
to connect Java Service Task with Java Logic: 7

• “Specifying a class that implements JavaDelegate or ActivityBehavior

• Evaluating an expression that resolves to a delegation object

• Invoking a method expression

63

• Evaluating a value expression”7

In Listing A.3 the most common way to integrate a Java classes is shown. Here it is impor-
tant that the Java class has the same name as the value of the attribute “class” in the Java Service
Task. Listing 4.7 shows an example of a Java class that is integrated into a BPMN model. In
addition to the Java class name, an interface called “org.activiti.engine.delegate.JavaDelegate”
is implemented at the used Java class. This interface provides the required operation “execute”
which is called during the execution from the Process Engine. In this operation, the needed logic
for this Service Task is implemented. The passed Parameter (exec) of the type “DelegateExecu-
tion” is used to store or receive the important process instance information. Listing 4.7 shows
that first a object “Invoice” is created in the Java Class with the name “CreateInvoice” (which is
the same used in the example “Issuing Invoice”). After that the required input variables (amount
and address) are assigned to the invoice object. Subsequently, the invoice object is stored back
to the process instance variable (exec) and the Service Task is finished. The Process Engine
searches for the next BPMN element following the outgoing Sequence Flows.

1

2 public class CreateInvoice implements JavaDelegate{
3

4 private static final Logger log = Logger.getLogger(
CreateInvoice.class.getName());

5

6 @Override
7 public void execute(DelegateExecution exec) throws Exception

{
8

9 //get execution varaiable
10 Invoice invoice = new Invoice();
11 invoice.setAddress((String) exec.getVariable("address"));
12 invoice.setAmount((Float) exec.getVariable("amount"));
13

14 exec.setVariable("invoiceProperties", invoice);
15 }
16 }

Listing 4.7: Java class for the Service Task “Create Invoice”

A more detailed description of all four types for integrated Java can be found in the current
user guide of Activiti (under the section Java Service Task 7).

Another type of executable Task in Activiti is the Script Task. As mentioned in the previous
Section 4.2, the Script Task is a specialization of the Task and, therefore, it is very similar to
the Service Task. The difference between and the important attribute of the generated XML
representation for the Script Task is explained in the section 4.1. In Activiti, “groovy is used as
scripting language, which is very similar to Java.

For generating and starting a process instance one needs another Java class. Listing 4.8
shows a possibility how such a Main Java class can look like. First, in code line 12 the Process

64

Engine is constructed by the command “ProcessEngines.getDefaultProcessEngine()“. With this
command a file named “activiti.cfg.xml“ is searched in the project. In this file the configuration
of the Process Engine is defined. Several examples of how this file may look like, can be found
in the user guide of Activiti. 7

If the Process Engine is defined, the next step is shown in code line 17. Here the Activiti
Services Repository is created, which provides operations for manipulating and managing de-
ployments and process definitions. It can be used to deploy one, or multiple BPMN 2.0 XML
files, or other resources. This process is also called deployment. The created files are uploaded
to the Process Engine and there all resources are audited and parsed before they are stored into
database. If an error occurs, an error message is thrown. If no error message is thrown then the
deployment is known for the Process Engine and every process (which is in this deployment)
can be started. In code line 21 the statement is used to deploy the BPMN model. 7

After that, the Runtime Service is created. It is responsible for the storage and using of
the process variables. In addition, the Runtime Service can be used for queries on the process
instances and the execution and it is also used if a waiting process instance is to be continued
(e.g. due to a wait state). But it is also used to start a process instance, this is shown in Listing 4.8
(code line 31). In this statement a process definition with the name “IssuingInvoice” is searched
in the loaded BPMN model. Furthermore, the required variables are passed, which are needed
for the business process. After that, a process instance of the process definition is started.7

1

2

3 public class Main {
4

5 /**
6 * @param args
7 */
8

9 public static void main(String[] args) {
10

11 //create Activiti process engine
12 ProcessEngine processEngine = ProcessEngines.

getDefaultProcessEngine();
13

14

15 // get Activiti services Repository, Runtime
16 // operations for managing and manipulating deployments and

process definitions
17 RepositoryService reposService = processEngine.

getRepositoryService();
18

19

20 //Deploy the process definition
21 reposService.createDeployment().addClasspathResource("

65

diagrams/IssuingInvoice.bpmn").deploy();
22

23 //starting new Process Instance of process definitions
24 RuntimeService runtiService = processEngine.

getRuntimeService();
25

26 Map<String, Object> variables = new HashMap<String, Object
>();

27 variables.put("amount", 13f);
28 variables.put("address", "Am Hof 544, 1020 Wien");
29

30 //Start process instance
31 ProcessInstance procInstance = runtiService.

startProcessInstanceByKey("IssuingInvoice", variables);
32

33 }
34 }

Listing 4.8: Main java class for starting a business process in Activiti.

4.3.2 jBPM

jBPM is a business process management suite (BPMS) developed from JBoss. It is an open
source project for the execution of worklfows. It is written in Java and it supports multiple
process languages natively (e.g., BPMN 2.0, jPDL, BPEL, etc.). jBPM is used to model, execute
and monitor business processes throughout their life cycle.8

“The core of jBPM is a light-weight, extensible workflow engine written in pure Java that
allows you to execute business processes using the latest BPMN 2.0 specification. It can be run
in any Java environment, embedded in your application or as a service.”8

“Since jBPMN 5 the tool offers open-source business process execution and management,
including

• an embeddable, lightweight Java process engine, supporting native BPMN 2.0 execution

• BPMN 2.0 process modeling in Eclipse (developers) and the web (business users)

• process collaboration, monitoring and management through the Guvnor repository and
the web console

• human interaction using an independent WS-HT9 task service

• tight, powerful integration with business rules and event processing”8

8https://www.jboss.org/jbpm
9WebService-HumanTask

66

https://www.jboss.org/jbpm

The latest version at the time of this writing is jBPM 6, which was introduced in late 2013.
The current version of jBPM can be download from 10. The example “Issuing Invoice” was
tested in the previous version 5.4. jBPM can also be run on other application servers, servlet
containers or SE environments since version 5. This is possible, because jBPM is no longer
dependent on the JBoss application server.8

jBPM is composed of various components. The most important are:11

• “Core engine: used to execute your business processes”

• “Eclipse plugin: graphical modeling, development and debugging of your processes”

• “Designer: web-based editing of your processes”

• “Console: web-based management of your processes, user tasks, reports, etc.”

• “Other components that the jBPM project integrates with”11

Figure 4.17 shows the various components and their interaction.

Figure 4.17: jBPM Components (copied from12)

10http://sourceforge.net/projects/jbpm/files/
11https://www.jboss.org/jbpm/components
12http://www.activiti.org/components.html

67

http://sourceforge.net/projects/jbpm/files/
https://www.jboss.org/jbpm/components
http://www.activiti.org/components.html

“jBPM can be combined with the Drools project to support one unified environment that
integrates these paradigms where you model your business logic as a combination of processes,
rules and events.”8 Drools is a business rule management system (BRMS). It is a so-called
production rule system which uses an enhanced implementation of the Rete algorithm.13 It
offers a unified and integrated platform for workflow, rules and event processing.14

A more detailed overview and description of jBPM and its components can be found on the
homepage 8. Furthermore, the user guide of various jBPM versions can be found here, as well
as various examples and explanations of the different BPMN elements. Also the installation
process of jBPM and the implementation in Eclipse are shown. jBPM needs the following
components for its installation:

• Java 1.5+

• Eclipse

• Ant 1.7+

After the installation of jBPM, Eclipse can be started and the example business process
“Issuing Invoice” can be imported as a jBPM project. Then the imported example can be opened
with the jBPM designer for Eclipse.

In contrast to Activiti, all elements are shown (also Data Inputs and Data Outputs). However,
if one wants to create a new model, no Data Input and Data Output can be added, because the
provided Designer for Eclipse has no graphical representation for them (shown in Figure 4.18).
The Designer has only a graphical representation for Data Objects.

In contrast to Activiti Designer, the Service Task can link with a Web Service (e.g., WSDL
file). In jBPM the client stub class for the Web Service has to be generated before the execution
of the business process (e.g., using Maven). So it is possible to integrate the Web Service using
the previously created client stub class.

To make the business process model “Issuing Invoice” executable with jBPM, a few tool-
specific modifications in the XML representation had to be made. While it does not matter in
Activiti if the Item Definitions for the Messages (needed for the communication between Web
Service and BPMN model) come before or after the Message, in jBPM these Item Definitions
have to be given before the Messages. Furthermore, in jBPM Properties are used for Data Input
and Data Output instead of Item Definitions at the Task. The difference is shown in Figure 4.19.
Here, in the DataInputAssociation a Property “amount_pro” (blue framing) is used instead of an
Item Definition as used in Activiti (red framing). However, the BPMN 2.0 standard does support
both possibilities.

In Activiti, the Item Definition has to have the same name as in the WSDL file for map-
ping the DataInputAssociation and DataOuputAssocation. In jBPM the ID of the Data Input
and Data Output at the Service Task is used. The ID’s are defined in the Service Task in the
IOSpecification. Figure 4.20 shows the difference between jBPM (blue framing) and Activiti
(red framing).

13http://en.wikipedia.org/wiki/Drools
14http://www.jboss.org/drools/

68

http://en.wikipedia.org/wiki/Drools
http://www.jboss.org/drools/

Figure 4.18: All data elements which the jBPM Designer provides in Eclipse

Figure 4.19: Differences between using Property and Item Definition at the DataAssociation in
Activiti and jBPM

A further modification regarding the Script Task is that jBPM uses Java as script language.
The example “Issuing Invoice” uses groovy, which is similar to Java. Listing 4.9 shows an
example of a Script Task in jBPM, in which Java is used as script language.

69

Figure 4.20: Difference between the mapping at the DataAssociation in Activiti and jBPM

1 <scriptTask id="PrepareParameters" name="Prepare Parameters
for Input" scriptFormat="java">

2 <ioSpecification id="InputOutputSpecification_3">
3 <dataInput id="dataInputScriptTaskAmount"

itemSubjectRef="inputScriptTaskAmount" name="Amount
"/>

4 <dataInput id="dataInputScriptTaskAddress"
itemSubjectRef="inputScriptTaskAddress" name="
Address"/>

5 <dataOutput id="dataOutputScriptTask" itemSubjectRef="
outputScriptTask" name="Result"/>

6 ...
7 <script>
8 at.ac.tuwien.ict.proreuse.

invoiceissuingcomplexwithoneparameter.

70

InvoiceParameterList parameters = new at.ac.tuwien
.ict.proreuse.
invoiceissuingcomplexwithoneparameter.
InvoiceParameterList();

9 parameters.addParameter("amount",
amount_pro);

10 parameters.addParameter("address",
address_pro);

11 kcontext.setVariable("invoice_pro",
invoice_pro);

12 </script>
13 </scriptTask>

Listing 4.9: Script Task for “Create Invoice”.

The complete executable example is shown in Listing A.4.
In jBPM a Java class is used to start a process instance of a business process. Listing 4.10

shows an example of such a Java main class. First, a so-called knowledge builder is generated.
It can load the needed resources from a specified location. After this, a so-called knowledge
base is created that contains all the required process definitions. The commands are shown in
Listing 4.10, code lines 10 – 12. Then a session is created using the knowledge base, which com-
municates with the Process Engine (Listing 4.10, code line 14). A session can also start a process
instance. This is made in Listing 4.10, code line 25. Furthermore, the required parameters are
passed to the process.

1

2 public class Example_Main_jBPM {
3

4 /**
5 * @param args
6 */
7 public static void main(String[] args) {
8 // TODO Auto-generated method stub
9

10 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.
newKnowledgeBuilder();

11 kbuilder.add(ResourceFactory.newClassPathResource("
Example_WS_jBPM.bpmn"), ResourceType.BPMN2);

12 KnowledgeBase kbase = kbuilder.newKnowledgeBase();
13

14 StatefulKnowledgeSession ksession = kbase.
newStatefulKnowledgeSession();

15

16 Map<String, Object> params = new HashMap<String, Object>();
17 params.put("employee", "krisv");

71

18 params.put("address_pro", "Weg 1, 1010 Wien");
19 params.put("amount_pro", 33f);
20

21 ServiceTaskHandler stHandler = new ServiceTaskHandler(
ksession);

22

23 ksession.getWorkItemManager().registerWorkItemHandler("
Service Task", stHandler);

24

25 ProcessInstance processInstance = ksession.startProcess("
CallInvoiceIssuingWithOneParameter", params);

26

27 }
28

29 }

Listing 4.10: Main java class for starting a business process in jBPM.

An important point in jBPM is that for the execution of a Service Task a so-called Service
Task Handler is needed. This handler must be created and registered for the session. This is
made in Listing 4.10 in code line 21 and code line 23. Here the general Service Task Handler
implemented in jBPM (org.jbpm.process.workitem.bpmn2.ServiceTaskHandler) is used.

In contrast to Activiti, the Service Task in jBPM has the constraint (according the BPMN
2.0 standard) implemented that only one Parameter can be passed. When the general Service
Task Handler is used in jBPM, a few points have to be changed in the XML representation due
to its implementation. The example “Issuing Invoice” has two Service Tasks. Each Service Task
in the model must have the attribute “name” with the value “Parameter” at the Data Input. Also
each Service Task in the model must have the attribute “name” with the value “Result” at the
Data Output. An example is shown in Listing A.4, code lines 69 and 70 at the Service Task
“Send Invoice”. If the attribute “name” is missing or the attribute has another value, then an
error message is thrown. The reason for this is given in the implementation of the Service Task
Handler in the operation “executeWorkItem“. The complete implementation of the operation is
shown in Listing A.6.

The operation “executeWorkItem“ has two input parameters “WorkItem“ and “WorkItem-
Manager“. The WorkItemManager ensures, that the program is continued if the WorkItem is
complete. It is also responsible for the registration of WorkItemHandler (e.g., Service Task Han-
dler). The WorkItem is a Service Task in this case. Furthermore, it includes all the important
parameters from the BPMN model for the Service Task (e.g., Implementation, interfaceImple-
mentationRef, Interface, Operation, Inputs, etc.).

In the course of the operation, first a check is done if the passed WorkItem is connected with
a Web Service (shown in Listing A.6, code line 3) or another service like Java (then another op-
eration “executeJavaWorkItem“ is called, but both operations only one parameter can be passed
to the service).

After this check, the needed parameters are stored in variables. In jBPM, a Service Task can
be executed in three different ways (synchronous, asynchronous or one way). In the business

72

process “Issuing Invoice”,none of them is specified at the Service Tasks. In this case, the syn-
chronous way is used by default. But all three ways have similar structure. First, a client object
is created and then the operation “invoke” is called. This operation is responsible for the link
with the required operation of the Web Service and gets a result back (not in “one way”). After
this, the Service Task is finished.

The question may above why the attribute “name” is needed at the Data Input and why the
attribute has to have the value “Parameter“. This is shown in code line 6 in Listing A.6. Here
an object from the WorkItem is retrieved by the name “Parameter” and is stored in a variable.
So, when another value has been chosen or the attribute “name” is missing at Data Input, “null”
is stored in the variable. The variable and the associated operation are then passed to the client
operation “invoke” (shown in Listing A.6, code line 13). This operation links to the Web Service
operation. If the type/structure of the variable is not compatible with the type/structure defined
in the WSDL file an exception is thrown. If it is compatible a return value is expected. This
return value is stored in a Hashmap with the key “Result”, and the Data Output has to have
the attribute “name” and the value “Result”. Otherwise, the BPMN model has no result at the
Service Task. Further modifications are not required and the BPMN model is executable.

In jBPM there is also the possibility to link a Service Task with an automated application
(e.g., Java), but as mentioned above this is not specified in the BPMN 2.0 standard and so it is
tool specific.

For linking a Service Task with Java. the XML-representation of the BPMN model must be
adapted first. An interface is needed for every Java class used. The attribute “implementation-
Ref” of the interface has to refer to the relevant Java class. The attribute “implementationRef“
of the operation has to refer to the operation of the Java class. In the Service Task, the value
of the attribute “implementation“ has to be changed to the value “##unspecified“. Furthermore,
the structure of the Item Definition must also be changed to the required types/structure (e.g.,
String). The changes and the link between Java class, Service Task and interface are shown in
Figure 4.21. The Service Task handler does not need any change, because (as mentioned above)
the Service Task Handler uses another operation if the Service Task is not linked with a Web
Service. But the operation can also have only one parameter.

The BPMN 2.0 standard allows extensions to the base element (abstract type of most BPMN
elements), but the standard does not define precisely how do implement this extension. jBPM has
implemented the two extensions “onEntry-script“ and “onExit-script”. The extension “onEntry-
script” is executed before the Service Task begins its work, while the extension “onExit-script”
is executed when the Service Task has finished its work. Due to this extension, the Script Task
as Wrapper is no longer needed, because the required parameters can be merged into one object
and this object is passed to the Service Task before it is executed. With this approach, the
constraint of the BPMN 2.0 standard can be circumvented. One drawback is that this approach
is tool-specific and so causes problems for the portability.

In the example “Issuing Invoice” only the Service Task “Create Invoice” needs this exten-
sion. Here two Data Inputs (amount and address) are required. An example of the extension
of the Service Task “Create Invoice” is shown in Listing 4.11. Here only the “onEntry-script”
extension is needed and implemented. In this extension the attribute “script” is executed. This
attribute defines the code which should be executed before the Service Task is executed. Much

73

Figure 4.21: Link between Java class and BPMN model

as for the Script Task, Java is used as script language. In Listing 4.11, an object “InvoiceParam-
eterList”(similar to Hashmap) is created and is filled with the required Data Inputs (amount and
address). The object is stored in a local variable (“parameters_pro”) in code line 8. The same is
done with the Script Task “Prepare Parameters for Input” in the BPMN model “Issuing Invoice”.
After that the DataInputAssociation passes the local variable to the Web Service.

1 <serviceTask id="createInvoice" name="Create Invoice"
implementation="##WebService" operationRef="createInvoice"
>

2 <extensionElements>
3 <onEntry-script scriptFormat="http://www.java.com/java">
4 <script>
5 InvoiceParameterList parameters_pro = new

InvoiceParameterList();
6 parameters_pro.addParameter("amount",

amount_pro);
7 parameters_pro.addParameter("address",

address_pro);
8 kcontext.setVariable("parameters_pro",

parameters_pro);
9 </script>

10 </onEntry-script>
11 </extensionElements>
12 <ioSpecification>
13 <dataInput id="dataInputOfCreateInvoiceServiceTask"

itemSubjectRef="createInvoiceInputSoap" name="Parameter"

74

/>
14 <dataOutput id="dataOutputOfCreateInvoiceServiceTask"

itemSubjectRef="createInvoiceInvoiceOutputSoap" name="
Result"/>

15 <inputSet>
16 <dataInputRefs>dataInputOfCreateInvoiceServiceTask</

dataInputRefs>
17 </inputSet>
18 ...
19 </ioSpecification>
20 <dataInputAssociation>
21 <sourceRef>parameters_pro</sourceRef>
22 <targetRef>dataInputOfCreateInvoiceServiceTask</

targetRef>
23 </dataInputAssociation>
24 ...
25 </serviceTask>

Listing 4.11: Example of an extension at the Service Task in jBPM.

Much as in Activiti, also in jBPM more than one parameter can be passed to the Service
Task. One possibility to achieve this is to rebuild the Service Task Handler, but this solution is
not BPMN 2.0 standard compliant. If one only wants to use a Web Service, only the operation
“executeWorkItem“ has to be changed. Listing 4.12 shows the modified operation of the Service
Task Handler. The other parts of the Service Task Handler do not need to be changed. The
first change is shown in Listing 4.12 in code line 7, where the retrieval of the parameter from
the WorkItem is commented out, because more than one parameter should be passed to the Web
Service. For this, one needs a Hashmap in which all parameters of the WorkItem are stored (code
line 10). In this case also parameters from the WorkItem (Interface, interfaceImplementationRef,
etc.) are stored into the Hashmap, which are not needed for the Web Service. Therefore, these
parameters have to be deleted from the Hashmap (shown in Listing 4.12, code lines 12 – 17).
Because the client operation (“invoke“) receives an object array, the Hashmap with the required
parameters has to be rebuilt to an object array “params” (shown in Listing 4.12, code lines 19 –
26) and this new object array is passed to the client operation (shown in Listing 4.12, code line
32). After this modification, more than one parameter can be passed to a Web Service.

1 public void executeWorkItem(WorkItem workItem, final
WorkItemManager manager) {

2 workI = workItem;
3 String implementation = (String) workItem.getParameter(

"implementation");
4 if ("##WebService".equalsIgnoreCase(implementation)) {
5 String interfaceRef = (String) workItem.

getParameter("interfaceImplementationRef");

75

6 String operationRef = (String) workItem.
getParameter("operationImplementationRef");

7 // Object parameter = workItem.getParameter("
Parameter");

8 WSMode mode = WSMode.valueOf(workItem.getParameter(
"mode") == null ? "SYNC" : ((String) workItem.
getParameter("mode")).toUpperCase());

9

10 Map<String, Object> parameters = new HashMap<String
, Object>(workItem.getParameters());

11

12 parameters.remove("Interface");
13 parameters.remove("Operation");
14 parameters.remove("ParameterType");
15 parameters.remove("implementation");
16 parameters.remove("operationImplementationRef");
17 parameters.remove("interfaceImplementationRef");
18

19 Object[] params = null;
20

21 params = new Object[parameters.size()];
22 int counter =0;
23 for (Object param : parameters.values()) {
24 params[counter] = param;
25 counter++;
26 }
27

28 try {
29 Client client = getWSClient(workItem,

interfaceRef);
30 switch (mode) {
31 case SYNC:
32 Object[] result = client.invoke(

operationRef, params);
33 ...
34 }
35 } catch (Exception e) {
36 logger.error("Error when executing work item",

e);
37 }
38 } else {
39 executeJavaWorkItem(workItem, manager);
40 }

76

41 }

Listing 4.12: Service Task Handler adaption.

When a Service Task should be associated with a Java class and multiple parameter should
be allowed, then only the Service Task Handler operation “executeJavaWorkItem“ needs to be
changed. An example of the use of a changed operation is shown in Listing A.7. The mod-
ifications are similar to those for the Web Service described above. First, all parameters of
the WorkItem are stored in a Hashmap. Then the parameters not needed are deleted from the
Hashmap. After that, the required parameters are rebuilt from the Hashmap, an object array is
created and then passed to the operation of the Java class. Listing 4.14 shows an example of a
Java class including an operation with multiple parameters.

One difference to the Service Task Handler operation for the Web Service is that no client
object is needed. The Java classes and their operations can simply be integrated. A problem here
is that the operation of the interface in BPMN models may have only one input message accord-
ing to the BPMN 2.0 standard. This message is referenced to an Item Definition, which defines
the structure of the message (using the attribute “structureRef”) and so also the structure of the
parameter(s) passed. The structure of the parameter(s) is taken out of the WorkItem in the Ser-
vice Task Handler (shown in Listing A.7, code line 4). The problem here is that the Service Task
Handler expects only one particular structure for the parameter(s) without modifications.This
means that indeed one can pass multiple parameters, but the structure of these parameters has to
be the same (e.g., String). This problem is not caused by the integration of a Web Service. The
structure of the message is defined in the WSDL file and thus can be a complex type, which can
have more elements (parameters) with different structure.

To solve this problem, first the value of the attribute “strutureRef” of the Item Definition
in the XML-representation responsible for the Input Message has to be changed. In business
process “Issuing Invoice”, for example, this is only the operation “createInvoice”, which requires
more than one parameter (amount and address). These parameters have different structures
(amount is a float and address is a string). Therefore, in the value of the attribute “structureRef”
one has to define both structures separated by a dash (“–”). Listing 4.13 shows the modification.

1 <itemDefinition id="createBillInput" structureRef="java.lang.
String-java.lang.Float"/>

Listing 4.13: Adaption Item Definition.

It is important, that the attributes (parameters) defined are given in the same order as they
are implemented in the Java class. Listing 4.14 shows the corresponding Java class. It can be
seen that in the operation “createInvoiceOperation” the first parameter defined as String and
the second parameter as Float. The same sequence has to be defined in the Item Definition
in Listing 4.13. If the parameters are given in the wrong order, an error message is thrown
(operation not found).

The String in Listing A.7, code line 4 “java.lang.String–java.lang.Float” contains two differ-
ent structures for the parameters. It is split on the dash (“–”) and the result is stored in a String
array (shown in Listing A.7, code line 15). After this, the different structures/types as well as
the parameters are stored into a new array. This is made in the “for” loop between code lines

77

26 and 31 in Listing A.7. Then the new arrays are passed to the associated operation (shown in
code lines 32 and 33) and so more than one parameter with different structures can be passed to
the Service Task.

1 public class CallCreateInvoiceClass {
2

3 public Invoice createInvoiceOperation(String address, Float
amount) {

4

5 Invoice invoice = new Invoice();
6 invoice.setAddress(address);
7 invoice.setAmount(amount);
8

9 return invoice;
10 }
11

12 }

Listing 4.14: Example for Service Task connect with Java Class.

A advantage of jBPM is that one can create custom Service Tasks. Here the number and
structure of the passed parameter and also the result of the Service Task can be defined. As
a drawback, the BPMN model is then no longer BPMN 2.0 standard conform and also tool
dependent.

To create a custom Service Task, first a work definition has to be created. Listing 4.15
shows an example of a work definition for the Service Task “Create Invoice”. First, the name
of the custom Service Task is defined. This name must be unique. Then the name, number and
types/structure of the parameters are defined. After that, the result and the type/structure of the
result is defined. Finally, the name of the graphical representation of the custom Service Task
is defined. The example of the work definition in Listing 4.15 defines the custom Service Task
“createInvoice” with two parameters (a Float “amount” and a String “address”), the result (a
Object “Invoice”) and the displayed name “Create Invoice”.

1 import org.drools.process.core.datatype.impl.type.FloatDataType
;

2 import org.drools.process.core.datatype.impl.type.
ObjectDataType;

3 import org.drools.process.core.datatype.impl.type.
StringDataType;

4 [
5 // the Create Invoice work item
6 [
7 "name" : "createInvoice",
8 "parameters" : [
9 "amount" : new FloatDataType(),

10 "address" : new StringDataType(),

78

11],
12 "results" : [
13 "invoice" : new ObjectDataType(),
14],
15 "displayName" : "Create Invoice",
16]
17

18]

Listing 4.15: Example for custom Service Task Work Definition.

After the work definition has been created, it has to be registered before it can be used.
To link the Service Task with the work definition, only the first and the last line in the XML-
representation of the Service Task have to be changed (shown in Listing 4.16).

1 <task id="Task_1" taskName="createInvoice" tns:displayName="
Create Invoice" icon="task.png" name="Create Invoice">

2 ...
3 </task>

Listing 4.16: Adaption Service Task for Linking with Work Definition.

For using a custom Service Task, a custom Service Task Handler has to be written. List-
ing 4.17 shows a custom Service Task Handler example for the custom Service Task “Create
Invoice”. This handler is also derived from WorkItemHandler as the general Service Task Han-
dler. Therefore, the handler has also the operation “executeWorkItem” with the two parameters
“workItem” and “manager”, which has the same properties as explained above for the general
Service Task Handler. The two parameters (amount and address) first are retrieved from the
passed WorkItem and are stored in variables. An invoice is created and stored in a Hashmap.
This Hashmap is passed to the WorkItemHandler with the ID of the WorkItem. After that, the
Service Task is finished.

1 public class CallWorkItemCreateInvoice implements
WorkItemHandler{

2

3 public void executeWorkItem(WorkItem workItem,
WorkItemManager manager) {

4

5 // extract parameters
6 Float amount = (Float) workItem.getParameter("amount");
7

8 String address = (String) workItem.getParameter("
address");

9

10 Invoice invoice = new Invoice();
11 invoice.setAddress(address);
12 invoice.setAmount(amount);

79

13

14 Map<String,Object> result = new HashMap<String,Object
>();

15 result.put("invoice", invoice);
16

17 // notify manager that work item has been completed
18 manager.completeWorkItem(workItem.getId(), result);
19

20 }
21 public void abortWorkItem(WorkItem workItem,

WorkItemManager manager) {
22

23 // Do nothing this task cannot be aborted
24

25 }
26 }

Listing 4.17: Example for Service Task Handler for the custom Service Task.

For using this defined Work Definition and the associated custom Service Task Handler, they
have to be registered in the main java class with the following command shown in Listing 4.18.

1 ksession.getWorkItemManager().registerWorkItemHandler("
createInvoice", new CallWorkItemCreateInvoice());

Listing 4.18: Example for Registration of custom Service Task handler .

Detailed instructions for creating and registering a custom Service Task can be found in the
user guide on the homepage of jBPM 15.

4.3.3 Bonita BPM

Bonita BPM is developed by Bonitasoft and combines three solutions in one:

• Bonita Studio

• Bonita User Experience Portal

• Bonita Execution Engine

Bonita Studio is responsible for process modeling. There the process can be created graphi-
cally on a whiteboard. For connection to other technologies (e.g., database, Web Service, Java,
etc.) Bonita BPM use so-called connectors. Over 100 connectors are available in Bonita Studio
at the moment. Also custom-created connectors can be easily created whit the connector cre-
ator, which is part of Bonita Studio. Furthermore, it is also possible to create a so-called form
in Bonita Studio, which supports user interaction, but also templates of forms can be imported.

15http://docs.jboss.org/jbpm/v5.4/userguide/ch.domain-specific-processes.
html

80

http://docs.jboss.org/jbpm/v5.4/userguide/ch.domain-specific-processes.html
http://docs.jboss.org/jbpm/v5.4/userguide/ch.domain-specific-processes.html

After creating a BPMN model in Bonita Studio, the model can be directly executed here without
further initial aid.16

The Bonita User Experience Portal shows the daily tasks for the user. Through its user-
friendly interface, the tasks are easy to manage and track.16

The Bonita Execution Engine is the heart of Bonita BPM. It can be continuously extended
with new services and BPMN standard. The performance is very good so that the utilization is
very high.16

Bonita BPM supports a business process in every phase of its life cycle: modeling, develop-
ment, execution and monitoring. Bonita BPM is available in four different editions:

• Community

• Teamwork

• Efficiency

• Performance

A comparison between the editions can be found on the Website under product comparison.
17 For our comparison with the business process “Issuing Invoice” the Community edition was
used because only this version is free to download from 18. Here it is possible to choose between
different version of operation systems. The downloaded file is a so-called installer, which installs
the Bonita BPM Community edition completely. No further configuration is necessary. Each
edition contains at least the Bonita BPMN Studio to create and test processes and the Bonita
BPM Platform containing the server.

The Community edition of Bonita BPM contains Bonita BPM Studio, Bonita BPM Platform
and includes an Apache Tomcat application server, a database (h2), Bonita BPM Portal 19 and
the Bonita BPM Engine. It is also possible to integrate another application server in Bonita
BPM. The documentation of Bonita BPM can be found on the homepage 18.

After installation and starting Bonita BPM Studio, the business process “Issuing Invoice”
can be imported. Figure 4.22 shows the business process with Bonita BPM Studio. Here one
can see the same problem as in Activiti above. The Data Inputs and Data Outputs are not shown.
The reason can be seen in the palette on the left side of the Whiteboard. There are no graphi-
cal representations available for Data Inputs and Data Outputs. However, Data Inputs and Data
Outputs can be shown using the “properties view”, which is located below the Whiteboard (Fig-
ure 4.23 shows an example), but cannot be displayed graphically. Furthermore, a new symbol
appears which is not BPM 2.0 Standard conform on the Service Task representation (marked in
red in Figure 4.24). The symbol means that the Service Task contains a connector.

In Figure 4.22 an icon (framed in green) in the main menu is shown for starting the execution
of the business process. When the icon is pushed and the execution starts, the model is checked
first and an error appears. In order to obtain more precise information about the error(s), the
“more details” button has to be clicked. According to this information, the error only occurs at

16http://de.bonitasoft.com/produkte/bonita-open-solution-open-source-bpm
17http://de.bonitasoft.com/produkte/produktvergleich
18http://de.bonitasoft.com/produkte/bpm-software-und-dokumentation-herunterladen
19Bonita BPM Portal shows task for users and helps installing, deploying and managing process

81

http://de.bonitasoft.com/produkte/bonita-open-solution-open-source-bpm
http://de.bonitasoft.com/produkte/produktvergleich
http://de.bonitasoft.com/produkte/bpm-software-und-dokumentation-herunterladen

Figure 4.22: The example “Issuing Invoice” is shown with Bonita BPM Studio

Figure 4.23: Property view for Service Task “Create Invoice”

the Service Tasks. The reason is that the Bonita BPM connectors were used for linking Service
Tasks with external services.

If the model is created by Bonita BPM, these connectors are linked in the import statement
of the generated XML-representation as XML schema. When importing the business process
“Issuing Invoice” in to Bonita BPM Studio, the Studio recognizes that the Service Tasks are
connected with Web Services, but the import statement of the XML-representation of the busi-
ness process “Issuing Invoice” contains a link to a WSDL file and not an XML schema. That is
why an error is thrown.

82

Figure 4.24: Graphical representation of Service Task “Create Invoice”

For being able to execute the business process “Issuing Invoice”, the Service Tasks need to
add a Web Service connector. Then a click on the Service Task is performed in the Whiteboard,
the Property-view appears below of the individual Service Task. In this view, a category “con-
nectors” is available. Figure 4.25 shows this for the Service Task “Create Invoice”. It shows that
no connector could be found.

Figure 4.25: Property view “connectors” for Service Task “Create Invoice”

For the execution, first a new connector must be created and added to the Service Tasks.
This is made with a Connector Wizard, which has already various predefined connectors defined
(shown in Figure 4.26). Here also a connecter for a Web Service is predefined. This connector
needs some information (e.g., namespace, porttype, parameter, result, operation, etc.). An ad-
vantage of Bonita BPM is that the created Web Service connector can be tested in the wizard
immediately and so one can check the settings and the result for the Web Service. A more de-
tailed description of the different steps and tutorials for creating a connector can be found on the
BonitaSoft homepage. Also many videos are available showing the creation of Service Tasks
with a connector.

An advantage of Bonita BPM is that a custom connector can be easily created in the Bonita
BPM Studio. Also the import of externally created connectors is possible. To create a connector,
first a connector definition must be done. After that, an implementation for the definition can
be created. Separating definition and implementation has the advantage that one can change the
implementation without changing the definition. The implementation is done in a Java class,
which automatically opens when a new implementation for a definition should be created. In
this way, Java can be easily integrated.

83

Figure 4.26: The Connector Wizard

In Bonita BPM, Service Tasks are allowed to get multiple inputs. All inputs are mapped
to a complex object using Assignments in the DataInputAssociation. This complex object is
managed internally and is passed to the linked services of the Service Tasks. This approach only
defines one Data Input for the Service Task and this fact makes the model BPMN 2.0 standard
compliant. So the example “Issuing Invoice” does not need the Script Task as wrapper here.

Listing 4.19 shows a part of the BPMN model of the business process “Issuing Invoice”
created in Bonita BPM Studio. This model has only two Service Tasks (no Script Task) and
these Service Tasks are connected with a created custom connector. As in Listing 4.19, code
line 6 is shown, in the import statement the connector is defined. In Bonita BPM, for each
connector an import statement is required.

Another difference is that the Service Task “Create Invoice” has one Data Input and one Data
Output, but in the graphical model the Service Task has defined two inputs. As mentioned above,
in Bonita BPM Assignments are used to map the inputs to an Item Definition. The structure of
the Item Definition is created from the connector definition and it is a complex object.

The mapping of the inputs is done in the XML representation in the DataInputAssociation
(Listing 4.19, code lines 35 – 48). First the target object for the inputs is defined (code line 37).
Then the two inputs are mapped to a target object. This process (shown in Listing 4.19 between

84

code lines 39 and 46) is made by Assignments in the “from” and “to” attributes. For each input
an assignment is required. After that, the target object is passed to the linked service of the
Service Task by the Data Input. In Bonita BPM, Data Objects are used for Data Inputs and Data
Outputs.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <definitions xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
3 xmlns:bonitaConnector="http://www.bonitasoft.org/studio/

connector/definition/6.0"
4 ...>
5

6 <import importType="http://www.w3.org/2001/XMLSchema"
location="connectorDefs/CreateInvoiceConnector-1.0.0.
defconnectors.xsd" namespace="http://www.bonitasoft.org/
studio/connector/definition/6.0"/>

7 ...
8

9 <itemDefinition id="CreateInvoiceConnectorConnectorInput"
structureRef="bonitaConnector:
CreateInvoiceConnectorInputType"/>

10 <itemDefinition id="CreateInvoiceConnectorConnectorOutput"
structureRef="bonitaConnector:
CreateInvoiceConnectorOutputType"/>

11

12 <message id="CreateInvoiceConnectorConnectorMessageInput"
itemRef="CreateInvoiceConnectorConnectorInput"/>

13 <message id="CreateInvoiceConnectorConnectorMessageOutput"
itemRef="CreateInvoiceConnectorConnectorOutput"/>

14

15 <interface id="
CreateInvoiceConnector_Bonita_Connector_Interface" name="
CreateInvoiceConnector_Bonita_Connector_Interface">

16 <operation id="ExecCreateInvoiceConnector" name="
ExecCreateInvoiceConnector">

17 <inMessageRef>CreateInvoiceConnectorConnectorMessageInput
</inMessageRef>

18 <outMessageRef>
CreateInvoiceConnectorConnectorMessageOutput</
outMessageRef>

19 </operation>
20 </interface>
21

22 <process id="_p3tasJoqEeO7WOWBtN4Sjg" name="Issuing Invoice">

85

23
24 <serviceTask id="_1WOFYJoqEeO7WOWBtN4Sjg" name="Create

Invoice" implementation="BonitaConnector" operationRef="
ExecCreateInvoiceConnector">

25 <ioSpecification id="_GwtiIJoyEeO7WOWBtN4Sjg">
26 <dataInput id="_GwtiIZoyEeO7WOWBtN4Sjg" itemSubjectRef=

"CreateInvoiceConnectorConnectorInput"/>
27 <dataOutput id="_GwtiI5oyEeO7WOWBtN4Sjg" itemSubjectRef

="CreateInvoiceConnectorConnectorOutput"/>
28 <inputSet id="_GwtiIpoyEeO7WOWBtN4Sjg">
29 <dataInputRefs>_GwtiIZoyEeO7WOWBtN4Sjg</dataInputRefs

>
30 </inputSet>
31 <outputSet id="_GwtiJJoyEeO7WOWBtN4Sjg">
32 <dataOutputRefs>_GwtiI5oyEeO7WOWBtN4Sjg</

dataOutputRefs>
33 </outputSet>
34 </ioSpecification>
35 <dataInputAssociation>
36

37 <targetRef>_GwtiIZoyEeO7WOWBtN4Sjg</targetRef>
38

39 <assignment>
40 <from xsi:type="tFormalExpression" id="

_GwtiJZoyEeO7WOWBtN4Sjg" evaluatesToTypeRef="java:
java.lang.String" language="http://www.w3.org
/1999/XPath">address</from>

41 <to id="_GwtiJpoyEeO7WOWBtN4Sjg">getDataInput(’
_GwtiIZoyEeO7WOWBtN4Sjg’)/bonitaConnector:address<
/to>

42 </assignment>
43 <assignment>
44 <from xsi:type="tFormalExpression" id="

_GwtiJ5oyEeO7WOWBtN4Sjg" evaluatesToTypeRef="java:
java.lang.Float" language="http://www.w3.org/1999/
XPath">amount</from>

45 <to id="_GwtiKJoyEeO7WOWBtN4Sjg">getDataInput(’
_GwtiIZoyEeO7WOWBtN4Sjg’)/bonitaConnector:amount</
to>

46 </assignment>
47

48 </dataInputAssociation>
49

86

50 </serviceTask>
51

52 ...
53 </process>
54
55 </definitions>

Listing 4.19: Part of issuing invoice created with Bonita BPM.

This approach is similar to the one proposed above in Section 4.2, where the Script Task is
used as wrapper. However, the creation of a BPMN 2.0 model in Bonita BPM with a connector
is tool-specific and tool-dependent. The created models in Bonita Studio are indeed BPMN 2.0
compliant, because the XML-described connectors are linked in the import statement as XML-
schema. This is allowed according to the BPMN 2.0 standard, because it allows to import all
XML-based structure, but these created models cannot interpret through the process engines of
other tools (which do not support this concept).

4.3.4 Camunda BPM

Camunda BPM is a Java-based Business Process Management platform, which is aimed specif-
ically at Java software developers. It is not a closed suite, but an open source framework. The
platform supports BPMN 2.0 in the modeling, execution and monitoring.20 Also Camunda BPM
provides a commercial edition. The most important components of Camunda BPM are:

• BPMN 2.0 Process Engine

• Flexible framework for developers

• Camunda Cockpit

• Modeler as Eclipse Plugin

The BPMN 2.0 Process Engine is the core of Camunda BPM. It is implemented in Java and
is a lightweight, native process engine. The code of the framework is available for download
and can be edited. Camunda Cockpit is a tool to manage the business process (e.g., to monitor,
cancel, kick back or manipulate business process instances). The modeler can be used in Eclipse
and is responsible for support of the uses for process modeling.21

A comparison between the commercial enterprise edition and the open source edition (free
of charge) can be found on the homepage under 22, and the user guide for Camunda BPM
under 23, where in addition to various examples also the installation of Camunda BPM and the
implementation in Eclipse can be found.

The current version of Camunda BPM is 7.1.0 and can be downloaded under 24. For the
installation of Camunda BPM, the following set of tools must be installed:

20http://camunda.com/
21http://camunda.com/bpm/features/
22http://camunda.com/de/bpm/enterprise/
23http://docs.camunda.org/latest/guides/user-guide/
24http://camunda.org/download/

87

http://camunda.com/
http://camunda.com/bpm/features/
http://camunda.com/de/bpm/enterprise/
http://docs.camunda.org/latest/guides/user-guide/
http://camunda.org/download/

• Java JDK 1.6+

• Apache Maven

• Modern Web browser (Google Chrome or latest Mozilla Firefox or Internet Explore 9+)

• Eclipse (Indigo, Juno, or Kepler)

After the installation of Camunda BPM according of the user guide, Eclipse can be started
and the example business process “Issuing Invoice” can be imported as a BPMN 2.0 project.
After this, the imported example can be opened with the included Camunda Modeler for Eclipse.
In contrast to Activiti, all elements are shown (also Data Inputs and Data Outputs). In contrast
to jBPM, also the Data Input and Data Output can be modeled when a new model is created.

A problem of Camunda Modeler is that a Service Task cannot be linked directly with a Web
Service, but only with Java classes, expressions or delegate expressions. Furthermore, Camunda
Modeler cannot import a Web Service and, therefore, the import and the linking of a Service
Task with a Web Service must be made directly in the XML representation or using another
modeler in Eclipse (e.g., Eclipse Modeler for BPMN2 Project/Diagram).

For generating and starting a process instance in Camunda BPM, a Java class is need. List-
ing 4.20 shows one possibility how such a Main Java class can look like. First, in code line 12
a process engine is created based on the file “camunda.cfg.xml“. In this file the configuration of
the Process Engine is defined. Several examples of how this file may look like, can be found in
the user guide of Camunda.23

When the Process Engine is defined, the next step is (Listing 4.20, code line 17) that the
Camunda Services Repository is created, which provides operations for manipulating and man-
aging deployments and process definitions. It can be used to deploy one or multiple BPMN 2.0
XML files, or other resources. This process is also called deployment. The created files are
uploaded to the Process Engine and there all resources are audited and parsed before they are
stored into a database. If an error occurs, an error message is thrown. If no error message is
thrown then the deployed files or resources are known by the Process Engine and every process
(which was deployed) can be started. The statement in code line 20 shows the deploying of the
BPMN model.23

After that, the Runtime Service is created. It is responsible for the storage and the use of
the process variables. In addition, the Runtime Service can be used for queries on the process
instances and the execution, and it is also used for controlling process instances (e.g., resuming
a waiting process to a wait state). But it is also used to start a process instance. In the statement
in Listing 4.20, code line 30, a process definition with the name “IssuingInvoice“ is searched in
the loaded BPMN model. Furthermore, the variables needed for the business process are passed.
After that, a process instance of the process definition is started. 23

1

2

3 public class Main {
4

5 /**
6 * @param args

88

7 */
8

9 public static void main(String[] args) {
10

11 //create Activiti process engine
12 ProcessEngine processEngine = ProcessEngineConfiguration.

createProcessEngineConfigurationFromInputStream(new
FileInputStream("resources/camunda.cfg.xml")).
buildProcessEngine();

13

14

15 // get Camunda services Repository, Runtime
16 // operations for managing and manipulating deployments and

process definitions
17 RepositoryService repositoryService = processEngine.

getRepositoryService();
18

19 //Deploy the process definition
20 repositoryService.createDeployment().addClasspathResource("

IssuingInvoice.bpmn").addClasspathResource("
IssuingInvoice.png").deploy();

21

22 RuntimeService runtimeService = processEngine.
getRuntimeService();

23

24 Map<String, Object> variableMap = new HashMap<String,
Object>();

25 variableMap.put("name", "Activiti");
26 variableMap.put("amount", 50f);
27 variableMap.put("address", "Linke Wienzeile 22, 1040 Wien")

;
28

29 //Start process instance
30 ProcessInstance processInstance = runtimeService.

startProcessInstanceByKey("IssuingInvoice", variableMap)
;

31 }
32 }

Listing 4.20: Main Java class for starting a business process in Camunda.

Then a process instance of the business process “Issuing Invoice” can be started, but an er-
ror message (org.camunda.bpm.engine.ProcessEngineException) is thrown, because the process
engine cannot import the WSDL file. This a major drawback of Camunda BPM, because the Ser-
vice Task in Camunda BPM can only be connected with Java classes, expressions or delegated

89

expressions. So, if one wants to execute the business process in Camunda BPM, the Service
Tasks have to be connected with Java classes. In these Java classes (each Service Task needs
one Java class), the invoice can be created and then the invoice can be sent. But the integration
at the Service Tasks of Java classes is done via the attribute “class” in Camunda BPM and this
is a tool-specific solution and so it is not BPMN 2.0 standard compliant. Listing A.8 shows the
complete XML-representation of the business process “Issuing Invoice”, where the two Service
Tasks are connected with two Java classes.

In Camunda BPM, four different ways are available to connect a Service Task with Java
Logic:23

• “Specifying a class that implements JavaDelegate or ActivityBehavior

• Evaluating an expression that resolves to a delegation object

• Invoking a method expression

• Evaluating a value expression”23

In Listing A.8, the most commonly used way to integrate a Java class is shown. It is impor-
tant that the Java class has the same name as the value of the attribute “class” in the Service Task.
Listing 4.21 shows an example of a Java class that is integrated into a BPMN model. In addition
to the Java class name, an interface called “org.activiti.engine.delegate.JavaDelegate” is imple-
mented in the used Java class. This interface provides the required operation “execute”, which is
called during the execution from the Process Engine. In this operation, the needed logic for this
Service Task is implemented. The passed Parameter (execution) of type “DelegateExecution” is
used to store or receive the important process instance information.

Listing 4.21 shows that first an invoice object is created in the Java Class with the name
“CreateInvoice”, which is the same used in the example “Issuing Invoice”. After that, the re-
quired input variables (amount and address) are assigned to the invoice object. Subsequently, the
invoice object is stored back to the process instance variable (execution) and the Service Task
is finished. The Process Engine searches for the next BPMN element following the outgoing
Sequence Flows.

1

2 public class CreateInvoice implements JavaDelegate {
3

4 public void execute(DelegateExecution execution) throws
Exception {

5 Invoice invoice = new Invoice();
6

7 InvoiceParameterList parameters = (InvoiceParameterList)
execution.getVariable("hashmap");

8

9 invoice.setAddress((String)parameters.getValue("address"));
10 invoice.setAmount((Float)parameters.getValue("amount"));
11

90

12 execution.setVariable("invoice", invoice);
13 }
14

15 }

Listing 4.21: Java class for the Service Task “Create Invoice”

A more detailed description of all four ways to link a Service Task with Java can be found
in the user guide of Camunda under “Service Task”.25

Another type of executable Task in Camunda BPM is the Script Task. It is used in the
example “Issuing Invoice”. As mentioned in the previous Section 4.2, the Script Task is a spe-
cialization of Task and, therefore, it is similar to the Service Task. The difference between and
the important attribute of the generated XML representation for the Script Task is explained in
Section 4.2. In Camunda BPM, groovy is used as scripting language, which is similar to Java.

The Script Task in the business process “Issuing Invoice” is not needed, since in Camunda
BPM, when linking the Service Task with Java, only one parameter as Object is passed (shown
in Listing 4.21). Thus, the mapping of the Data Inputs to an object (which is made in the Script
Task in example “Issuing Invoice”) is no longer necessary, because all Data Inputs and Data
Outputs are stored in the passed object “DelegateExecution”. Therefore, the Data Inputs and
Data Outputs can be used at each Service Task in the process linked with Java in Camunda
BPM. However, these models (which need more Data Inputs at the Service Task) are not BPMN
2.0 standard compliant.

4.3.5 Sydlee Seed

Sydlee Seed is a BPMS for modeling, documentation, automation, execution and monitoring of
business processes. In contrast to the tools discussed above, Sydlee Seed is used online. This
means that, after the registration, one can directly log in on the provided Website. Also no
further installation of tools is necessary. Sydlee Seed is available in four different editions:

• Community

• On demand

• Private cloud

• On site

Only the Community edition is free of charge. The user guide for the tool Sydlee Seed can
be found under 26.

After registration and logging in, the welcome page of Sydlee Seed is displayed (shown in
Figure 4.27).

There are five different categories:

• Seeds (Create and manage Instance of business process, monitor its activities)

25http://docs.camunda.org/latest/api-references/bpmn20/#tasks-service-task
26http://cloud.sydle.com/seed/cm/help/en/gettingToKnowSeed.html

91

http://docs.camunda.org/latest/api-references/bpmn20/#tasks-service-task
http://cloud.sydle.com/seed/cm/help/en/gettingToKnowSeed.html

Figure 4.27: Welcome page of Sydlee Seed

• Dashboard (monitoring business processes)

• Processes (documentation of the created business processes)

• Modeling (create, execute and manage business processes)

• Users (Create and manage users)

To execute the business process “Issuing Invoice” with Sydlee Seed, its model has to be
imported. The import should be done in the category “Modeling”, but as can be seen in this
category there is no import available for BPMN models. Figure 4.28 shows the “Modeling”
view. The reason is that importing BPMN models is only possible for the edition “on site”.
As a workaround, the business process “Issuing Invoice” can be created in Sydlee Seed again.
Sydlee Seed is a closed suite and so it is not possible to investigate how the tool stores and
executes the created BPMN model. Also the export of created BPMN models is not possible in
the Community edition and so no statement can be made about the portability.

To link the Service Task with an external service, a connector is used in Sydlee Seed (as in
Bonita BPM). First the connector has to be created and then the connector can be linked to a
Service Task. Each Service Tasks needs a connector for the link to an external service. In the
Community edition the connector can only link Service Tasks with Web Services. In the other
editions of Sydlee Seed, it is possible to link Service Tasks with Java through connectors.

Due to the fact that the export function (BPMN 2.0 model or connector) is not available
in the Community edition, the XML-representation of the example “Issuing Invoice” cannot be
investigated (e.g., is the XML-representation BPMN 2.0 standard compliant or how connectors
are integrated in the model). Nevertheless, the concept of connectors is not described in the

92

Figure 4.28: Modeling view of Sydlee Seed

BPMN 2.0 standard, but connectors can be linked in a standard-compliant way by the import
statement that allows any XML-structure. The XML-representation of the business process
models are indeed BPMN 2.0 standard compliant, but the implementation of the connector is
tool-dependent and so this models cannot be interpreted by another process engines.

In Sydlee Seed, the Script Task uses Javascript as script language.

4.3.6 Inubit BPM

Inubit BPM is a BPMS developed by Bosch. It is used for modeling, simulation, execution,
monitoring and reporting. Inubit BPM supports a business process throughout its life cycle.
This allows a good collaboration between business users, developers and system administrators
over the whole process cycle. The Inubit BPM contains the following components:

• Modeling Center

• Process Center

• Solution Center

• Integration Center

The Modeling Center is responsible for modeling, simulation and documentation of the busi-
ness processes. The Solution Center is a Web application and used for the creation of Web-based
solutions. The Integration Center offers a variety of connectors, which can integrate different
services. The Process Center contains the necessary components for modeling, validation and
simulation of business processes. Furthermore, the created business processes can be executed
and monitored with the integrated Process Engine in the Process Center.27

Inubit BPM is a commercial BPMS, but it offers a trail license for 30 days. After obtaining
the trail license and full installation of the Inubit BPM (it is also possible to install the indi-
vidual components mentioned above) one has four icons available on the Desktop (shown in
Figure 4.29). The icon “Process Engine start” has to be executed before one can use the Inubit
BPM. Here the process engine and the application server are started and the required resources

27http://www.bosch-si.com/media/de/bosch_software_innovations/documents/
brochure/inubit_suite/inubit_allgemeine_dokumente_uebergang/inubit_Suite_61_
transition_Dec12_web.pdf

93

http://www.bosch-si.com/media/de/bosch_software_innovations/documents/brochure/inubit_suite/inubit_allgemeine_dokumente_uebergang/inubit_Suite_61_transition_Dec12_web.pdf
http://www.bosch-si.com/media/de/bosch_software_innovations/documents/brochure/inubit_suite/inubit_allgemeine_dokumente_uebergang/inubit_Suite_61_transition_Dec12_web.pdf
http://www.bosch-si.com/media/de/bosch_software_innovations/documents/brochure/inubit_suite/inubit_allgemeine_dokumente_uebergang/inubit_Suite_61_transition_Dec12_web.pdf

are deployed. The icon “Process Engine stop” is used to stop the process engine and to shut
down the application server. It should be executed as soon as Inubit BPM is no longer used. A
reason is that in the full installation the Modeling Center requires at least 8GB Ram. For only
installing the Process Center, Solution Center and Integration Center, just 2GB Ram is indicated
as minimal system requirement. The icon “Enterprise Portal” starts the Web portal (Solution
Center) in a Web browser. There a user can log in and then execute, manipulate and monitor
business processes.

Figure 4.29: Components for Inubit BPM

The icon “Workbench” can be used to start the Inubit BPM. Figure 4.30 shows the welcome
page. Here different types of models (e.g., BPEL-processes, XPDL-model) can be imported,
but BPMN models cannot be imported. Figure 4.31 shows the available types which can be
imported in Inubit BPM.

Figure 4.30: Welcome page for Inubit BPM

The business process “Issuing Invoice” has been modeled again. This was done in the cate-
gory “Business Process Diagrams” (BPD). The available BPMN notation for modeling is shown
in Figure 4.33 on the right side marked in red. The BPMN model should be executable and
so only a part of the BPMN notation is available. The newly created business process “Issuing
Invoice” is shown in Figure 4.32. In this BPMN model, it can be seen that Inubit BPM uses Data
Objects instead of Data Inputs and Data Outputs. For example, in Figure 4.32 Data Objects are

94

Figure 4.31: The available types of model which can be imported into Inubit BPM

used instead of the two Data Inputs (amount and address). Also in Inubit BPMN connectors are
used to link the Service Tasks to an external service. Then the created BPMN 2.0 model has to
be linked with technical workflows, which are responsible for the execution of the created BPD
model.

In Inubit BPM, there are already several predefined connectors. For Inubit BPM connectors,
a custom documentation is given under 28. In this documentation also the creation of custom
and the use of the predefined connectors is explained. The created BPMN 2.0 model is stored
in a proprietary XML-file and so the XML-representation is not BPMN 2.0 standard compliant.
Therefore, the created BPMN 2.0 models through Inubit BPM are tool-dependent and cannot be
imported into other tools and cannot be executed through process engines of the other tools.

All documentations for using and installing Inubit BPM can be found under 29.

The focus of Inubit BPM is in the graphical representation (BPMN 2.0 compliant) and the
generation (or the linking) of created model with technical workflows. The generated XML-
representation of the created models represents the XML-format only for persistence an not
prepared for portability.

28http://www.inubit.com/inubit-Suite/6.1/onlinehelp/pdf/de/
inubitSystemConnectorGuide_DE.pdf

29http://www.inubit.com/inubit-Suite/6.1/onlinehelp/start_de.html

95

http://www.inubit.com/inubit-Suite/6.1/onlinehelp/pdf/de/inubitSystemConnectorGuide_DE.pdf
http://www.inubit.com/inubit-Suite/6.1/onlinehelp/pdf/de/inubitSystemConnectorGuide_DE.pdf
http://www.inubit.com/inubit-Suite/6.1/onlinehelp/start_de.html

Figure 4.32: The created business process “Issuing Invoice” in Inubit BPM

Figure 4.33: The available BPMN notations in Inubit BPM

4.3.7 Tool Comparison

In this subsection, the tools are compared based on the created business process example “Issu-
ing Invoice”. Table 4.3 shows the selected tools, the main criteria and the result of the investiga-

96

tion.

BPMS Import
running
example

Connector
to

link
software

Support
Web

Service

Script
language

Open
source

Adjustments
for execution

Tool-specific
designer

(notation)

Inubit BPM X X Javascript major part
Sydlee Seed X X Javascript major part
jBPM X X Java X minor all
Activiti X X Groovy X minor part
Bonita BPM X X X Javascript X major part
Camunda BPM X Groovy X minor all

Table 4.3: Tool comparsion based on the business process “Issuing Invoice”

In the first column in Table 4.3 (BPMS), the investigated tools are shown.
The second column (Import “Issuing Invoice”) shows which tool was able to import the

created business process “Issuing Invoice”. No import was possible with the tools Inubit BPM
and Sydlee Seed. The reason for Inubit BPM was that it is not able to import BPMN 2.0 models.
The graphical creation of BPMN 2.0 models is possible. In Sydlee Seed, the import and export of
BPMN 2.0 models is only available for the commercial edition “On site”. In Activiti, Camunda
BPM, Bonita BPM and jBPM importing the business process example was possible without
problems.

The third column (Connector to link services) shows which tools use a connector to link a
Service Task with a software (e.g., WSDL, Java, etc.).

Connectors are simple to create and are used to connect external services with BPMN. These
connectors are often built via XML-structures that can be imported into BPMN models using
the import statement of BPMN 2.0. This means that the imported XML-structures are tool-
dependent but the overall BPMN models with the import statement are BPMN 2.0 compliant.
Therefore, the created models cannot be interpreted by another process engine.

The fourth column (Support Web Service) shows that only Camunda BPM currently does
not support links to Web Service, but links only to Java. The other tools support links to Web
Services.

The fifth column (Script language) contains the name of the scripting language used by the
different tools. The tools use different script languages which is a problem for the portability
between the tools.

The sixth column (open source) shows which tools are open source and which are not. Inubit
BPM and Sydlee Seed are closed suites, while the other four tools are open source tools. In the
latter, the execution of BPMN 2.0 models can be traced, while in closed suites this is impossible.

The seventh column (Adjustments for execution) shows which tools required adjustments to
the imported business process “Issuing Invoice” before it could be executed. Here two different
types (minor, major) are possible.

“Minor” means that only a few syntax adjustments had to be made. For example, jBPM
uses Properties for Data Input and Data Output, while Activiti provides the possibility to use
Properties or Item Definitions for Data Input and Data Output. Furthermore, mapping Data
Inputs and Data Outputs at the Tasks is solved in different ways in Activiti and jBPM. However,
these differences are a result of the BPMN 2.0 specification, because both approaches mentioned

97

are allowed. Also in jBPM, Data Input and Data Output need to have the attribute “name” for
the Service Task in the XML-representation. This attribute is defined in the BPMN 2.0 standard
as optional. In jBPM, the value of the attribute “name” has to be “Parameter” for Data Input
and “Result” for Data Output. Otherwise, an exception is thrown. Activiti does not need these
additional attributes. The reason for this is the different implementation of the process engines
of the two tools. A further tool-specific difference between jBPM and Activiti is that the Service
Task in jBPM implements the BPMN 2.0 standard exactly, so only one parameter can be passed
to the Service Task. In Activiti it is possible to pass multiple parameters.

“Major” means that in addition to the adaptation of the XML-representation of the created
example, other resources (like connectors) are needed or that the created business process could
not be imported (in case of the tools Inubit BPM and Sydlee Seed). In Bonita BPM, the created
business process “Issuing Invoice” can be imported, but the Service Task has to be linked with
a connector before the BPMN model can be executed. The connector for the Service Task in
Bonita BPM is linked in the import statement of the XML-representation and the implementation
of this connector is stored in the tool. The XML-representation of the example is actually BPMN
2.0 standard compliant even though using connectors, but the implementation of the connector
is tool-dependent and so the created model cannot be interpreted or executed by another process
engines.

The last column (tool-specific designer) describes the ability of the tool-specific designer
program to show the notation of the business process “Issuing Invoice” graphically. In some
tools, the created business process was directly used or if importing was not possible, the busi-
ness process was created anew with the tool itself. Here two different arguments (all, part) are
possible. The type “all” means that all notations are shown. Only the tools jBPM and Camunda
BPM were able to do this. The argument “part” means that only a part of the notation describing
the business process was shown. For example Activiti, Bonita BPM and Sydlee Seed Designer
could not display Data Inputs, Data Outputs and Data Objects. Inubit BPM could not display
Data Inputs and Data Outputs.

Based on Table 4.3, a statement about portability between the tools can be made. Portability
is high for Activiti, jBPM and Camunda as the comparison in Table 4.3 suggests. Importing the
example model in each of these tools was possible, but minor adaptions had to be done (e.g.,
script language, Camunda does not support Web Service, etc.) before it could be executed.

Also Inubit BPM, Sydlee Seed and Bonita BPM show similarities as indicated in Table 4.3.
They use connectors for links to software, support Web Services, and use the same script lan-
guage. But in contrast to Bonita BPM, in Inubit BPM the created BPMN 2.0 model is stored
in a non-compliant BPMN 2.0 XML-format. This leads to tool-dependent model specifications
and the process engine of Bonita BPM is not able to interpret these. Sydlee Seed does not sup-
port export in the community version, and so the generated XML-representation could not be
analyzed. Therefore, no statements about the portability can be made for Sydlee Seed in this
master’s thesis.

Due to the created business process example “Issuing Invoice”, the following notations of
BPMN 2.0 were tested explicitly in the selected tools with respect to direct execution. Table 4.4
shows that Inubit BPM, jBPM and Camunda BPM support all of the used notations in the busi-
ness process example, while Sydlee Seed, Activiti and Bonita BPM do not support Data Object.

98

Instead of Data Object, Data Input and Data Output can be used here.

BPMS Sequence
Flow

Association Service
Task

Script
Task

Start
Event

End
Event

Data
Object

Data
In-/Output

Inubit BPM X X X X X X X X
Sydlee Seed X X X X X X X
jBPM X X X X X X X X
Activiti X X X X X X X
Bonita BPM X X X X X X X
Camunda BPM X X X X X X X X

Table 4.4: Overview of the tested notation in the business process “Issuing Invoice” which can
be executed directly

99

CHAPTER 5
Conclusion

Since the introduction of BPMN 2.0, this standard provides better support of portability than
previous BPMN versions. The graphical representation of the BPMN notation is specified very
strictly there. However, the description of some aspects in the BPMN 2.0 standard lacks a com-
prehensive specification and should be described in more detail. This leads to slightly different
XML-representations of the same business process depending on the interpretation of the stan-
dard. Additionally, this standard allows specifying business processes in more than one way,
which makes it more difficult for tools to be fully BPMN 2.0 compliant, and they often imple-
ment only a subset of the specification of BPMN 2.0.

In this master’s thesis, the execution of parts of BPMN was investigated. Here different pos-
sibilities for the execution of BPMN models were found. In previous versions of BPMN (1.x),
BPMN models could only be executed, if they had been transformed into another, executable for-
mat (e.g., BPEL). Since the introduction of BPMN 2.0, BPMN models can be executed directly.
For this purpose, a BPMN 2.0 standard conform running example was created. The example was
kept simple but included all aspects necessary for automatic execution. This example showed
that, despite its simplicity, it causes problems with different tools.

The comparison between several BPMN 2.0 compliant tools has been performed with an
emphasis on their ability to directly execute BPMN 2.0 models. The above mentioned example
was used as a reference business model and it was tried to import and execute it with different
tools. Since BPMN 2.0 supposedly supports portability of business process models, it should
be possible to pass models to different tools and execute them with every process engine that
supports BPMN 2.0. Today, there are several tools on the market for creating and executing
BPMN 2.0 models. A subset of the tools was selected for investigation according to specific
criteria (Open Source or trial version available, modeling of BPMN 2.0 and direct execution of
BPMN 2.0 models).

So, the exchange of BPMN 2.0 models is, in principle, possible between tools. However, the
execution of this simple example is not possible without further adjustments, since most tools
only support a subset of the BPMN 2.0 standard. While the graphical representations of BPMN
2.0 models are similar with all tools (with exceptions, for example some tools do not provide the

101

graphical representation of Data Input and Data Output), the XML-representations of BPMN 2.0
models are different. This is an obstacle to the portability of BPMN 2.0 models between tools,
and especially it is not possible to execute them with another process engine without specific
changes to the XML-representation.

During the investigation of the BPMN 2.0 standard, a pitfall was found. This pitfall relates to
the parameters passed to a Service Task and restricts their number to one. Several work-arounds
are possible, but using a wrapper to bypass this constraint proved to be the most flexible way to
achieve BPMN 2.0 compliant models that can deal with multiple parameters.

In summary, the direct execution of BPMN 2.0 models is possible, but for the execution of
the same model in different tools adjustments are needed. To achieve better portability between
tools, the tools have to implement support for the entire standard specification and not only a
subset of it. In addition, the BPMN 2.0 standard has to be more specific in certain aspects (e.g.,
how a Web Service is linked to a Service Task) that are important for automated execution.

102

List of Figures

2.1 a.) atomic Activity (Task), b.) collapsed Sub-Process, c.) expanded Sub-Process . . 9
2.2 Representation of basic types of Events taken from tool Yaoqiang BPMN Editor 2.2 10
2.3 Example with an interrupt intermediate event . 10
2.4 Different basic Events with the letter-symbol taken from tool Yaoqiang BPMN Ed-

itor 2.2 . 11
2.5 A simple example with a Gateway . 12
2.6 A simple Parallel Gateway . 13
2.7 The graphical representations of different Gateways taken from the tool Yaoqiang

BPMN Editor 2.2 . 13
2.8 Branches with and without Gateway taken from the tool Yaoqiang BPMN Editor 2.2 14
2.9 Sequence Flow . 15
2.10 Message Flow . 15
2.11 Association example . 16
2.12 A Pool landscape . 16
2.13 Artifacts . 17
2.14 Different data notations taken from the tool Yaoqiang BPMN Editor 2.2 18
2.15 A simple BPMN Process diagram model (copied from [2, p. 16]) 19
2.16 A simple internal process . 19
2.17 A simple abstract process . 19
2.18 Choreography diagram . 20
2.19 Normal Message-Flow (copied from [6, p. 38]) 21
2.20 Conversation diagram (copied from [6, p. 38]) . 22
2.21 Collaboration diagram (copied from [6, p. 37]) 23

3.1 Graphical Representation of the basic and structured activities (copied from [4, p.
238]) . 27

3.2 Simple general structure of a BPEL process . 29
3.3 Example process in BPMN notation . 30
3.4 Example process from Figure 3.3 in BPMN 2.0 XML-representation is shown . . . 30
3.5 Example process from Figure 3.4 as block-oriented BPEL code 31
3.6 Basic transformation patterns (copied from [11, p. 5]) 32
3.7 Graphical representation of a shopping process with a BPMN-editor (copied from

[15, p. 36]) . 33

103

3.8 Graphical representation of the same shopping process (from Figures 3.7) with a
BPEL-editor after transformation from BPMN to BPEL (copied from [15, p. 167]) 34

3.9 Process Definition Meta-Model . 37

4.1 Process execution with a Business Process Engine (copied from [4, p. 7]) 40
4.2 Modeler Output draw with Elcipse Modeler . 41
4.3 a.) Service Task, b.) Script Task . 43
4.4 Replace (General) Task with Service Task (copied form [7, p. 3]). 44
4.5 Illustration of link between interface operation and WSDL operation 48
4.6 Illustration of link between WSDL, message and item definition 48
4.7 Service Task linked with Java created with the tool Activiti 49
4.8 Adapted BPMN 2.0 model of the Issuing Invoice example process with Service Tasks 50
4.9 Modified BPMN 2.0 model of the Issuing Invoice example process with a wrapper 51
4.10 Modified BPMN 2.0 Model of the Issuing Invoice example process with Script Task

instead of Service Task . 53
4.11 Components . 56
4.12 Business process Issuing Invoice opened with Activiti Designer in Eclipse 58
4.13 All elements provided by the Activiti Designer in Eclipse. The Figure contains two

screenshots with different opened rubric of the Activiti Designer 59
4.14 The XML-representation of Script Task “Prepare Input for Invoice” from the busi-

ness process Issuing Invoice . 60
4.15 Service Task properties in Activiti Designer . 61
4.16 XML representation of the Service Task “Send Invoice” and the link to WSDL . . 62
4.17 jbpm . 67
4.18 All data elements which the jBPM Designer provides in Eclipse 69
4.19 Differences between using Property and Item Definition at the DataAssociation in

Activiti and jBPM . 69
4.20 Difference between the mapping at the DataAssociation in Activiti and jBPM . . . 70
4.21 Link between Java class and BPMN model . 74
4.22 The example “Issuing Invoice” is shown with Bonita BPM Studio 82
4.23 Property view for Service Task “Create Invoice” 82
4.24 Graphical representation of Service Task “Create Invoice” 83
4.25 Property view “connectors” for Service Task “Create Invoice” 83
4.26 The Connector Wizard . 84
4.27 Welcome page of Sydlee Seed . 92
4.28 Modeling view of Sydlee Seed . 93
4.29 Components for Inubit BPM . 94
4.30 Welcome page for Inubit BPM . 94
4.31 The available types of model which can be imported into Inubit BPM 95
4.32 The created business process “Issuing Invoice” in Inubit BPM 96
4.33 The available BPMN notations in Inubit BPM . 96

104

APPENDIX A
Appendix - Tool-specific

XML-representations of the running
example

1

2 <?xml version="1.0" encoding="UTF-8"?>
3 <definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL

"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xmlns:activiti="http://activiti.org/bpmn"
6 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
7 xmlns:omgdc="http://www.omg.org/spec/DD/20100524/DC"
8 xmlns:omgdi="http://www.omg.org/spec/DD/20100524/DI"
9 typeLanguage="http://www.w3.org/2001/XMLSchema"

10 expressionLanguage="http://www.w3.org/1999/XPath"
11 xmlns:tns="http://ict.tuwien.ac.at/proreuse/"
12 targetNamespace="http://ict.tuwien.ac.at/proreuse/"
13 xmlns:invoiceIssuingNS="http://ict.tuwien.ac.at/proreuse/

InvoiceIssuingMultipleParameters"
14 xmlns:typesInvoiceIssuing="http://ict.tuwien.ac.at/proreuse

/InvoiceIssuingMultipleParameters/types">
15

16 <import importType="http://schemas.xmlsoap.org/wsdl/"
17 location="http://localhost:9898/ProReUseWebServices

/services/InvoiceIssuingMultipleParameters?wsdl"
18 namespace="http://ict.tuwien.ac.at/proreuse/

InvoiceIssuingMultipleParameters"/>

105

19

20

21 <message id="createInvoiceRequestMessage" itemRef="tns:
createInvoiceAmountInputSoap"/>

22 <message id="createInvoiceResponseMessage" itemRef="tns:
createInvoiceInvoiceOutputSoap"/>

23 <message id="sendInvoiceRequestMessage" itemRef="tns:
sendInvoiceAmountInputSoap"/>

24 <message id="sendInvoiceResponseMessage" itemRef="tns:
sendInvoiceInvoiceOutputSoap"/>

25

26 <itemDefinition id="createInvoiceAmountInputSoap"
structureRef="invoiceIssuingNS:createInvoiceOperation"/>

27 <itemDefinition id="createInvoiceInvoiceOutputSoap"
structureRef="invoiceIssuingNS:
createInvoiceOperationResponse"/>

28 <itemDefinition id="sendInvoiceAmountInputSoap"
structureRef="invoiceIssuingNS:sendInvoiceOperation"/>

29 <itemDefinition id="sendInvoiceInvoiceOutputSoap"
structureRef="invoiceIssuingNS:
sendInvoiceOperationResponse"/>

30

31 <interface name="Issuing Invoice" implementationRef="
invoiceIssuingNS:InvoiceIssuingMultipleParameters">

32 <operation id="createInvoice" name="Create Invoice"
implementationRef="invoiceIssuingNS:
createInvoiceOperation">

33 <inMessageRef>tns:createInvoiceRequestMessage </
inMessageRef>

34 <outMessageRef>tns:createInvoiceResponseMessage </
outMessageRef>

35 </operation>
36 <operation id="sendInvoice" implementationRef="

invoiceIssuingNS:sendInvoiceOperation" name="Send
Invoice">

37 <inMessageRef>tns:sendInvoiceRequestMessage</
inMessageRef>

38 <outMessageRef>tns:sendInvoiceResponseMessage</
outMessageRef>

39 </operation>
40 </interface>
41

42 <itemDefinition id="amount" structureRef="float"/>

106

43 <itemDefinition id="createInvoiceOperationAmountInput"
structureRef="float"/>

44 <itemDefinition id="address" structureRef="string" />
45 <itemDefinition id="createInvoiceOperationAddressInput"

structureRef="string"/>
46 <itemDefinition id="createInvoiceOperationInvoiceOutput"

structureRef="at.ac.tuwien.ict.proreuse.
InvoiceIssuingMultipleParameters.Invoice"/>

47 <itemDefinition id="invoice" structureRef="at.ac.tuwien.ict
.proreuse.InvoiceIssuingMultipleParameters.Invoice"/>

48 <itemDefinition id="sendInvoiceOperationInvoiceInput"
structureRef="at.ac.tuwien.ict.proreuse.
InvoiceIssuingMultipleParameters.Invoice"/>

49 <itemDefinition id="sendInvoiceOperationOutput"
structureRef="boolean" />

50 <itemDefinition id="sendInvoiceAmount" structureRef="
boolean" />

51

52 <process id="CallInvoiceMutlipleParametersWebService" name="
Call Invoice Complex WebService" isExecutable="true">

53

54 <startEvent id="start" name="Start the Process Issuing
Invoice"></startEvent>

55 <serviceTask id="createInvoice" name="Create Invoice"
implementation="##WebService" operationRef="tns:
createInvoice" >

56 <ioSpecification>
57 <dataInput itemSubjectRef="tns:

createInvoiceAmountInputSoap" id="
dataInputOfCreateInvoiceServiceTask"/>

58 <dataInput itemSubjectRef="tns:
createInvoiceAmountInputSoap" id="
dataInputOfCreateInvoiceServiceTaskAddress"/>

59 <dataOutput itemSubjectRef="tns:
createInvoiceInvoiceOutputSoap" id="
dataOutputOfCreateInvoiceServiceTask"/>

60 <inputSet>
61 <dataInputRefs>dataInputOfCreateInvoiceServiceTask<

/dataInputRefs>
62 <dataInputRefs>

dataInputOfCreateInvoiceServiceTaskAddress</
dataInputRefs>

63 </inputSet>

107

64 <outputSet>
65 <dataOutputRefs>

dataOutputOfCreateInvoiceServiceTask</
dataOutputRefs>

66 </outputSet>
67 </ioSpecification>
68

69 <dataInputAssociation>
70 <sourceRef>amount</sourceRef>
71 <targetRef>createInvoiceOperationAmountInput</

targetRef>
72 </dataInputAssociation>
73 <dataInputAssociation>
74 <sourceRef>address</sourceRef>
75 <targetRef>createInvoiceOperationAddressInput</

targetRef>
76 </dataInputAssociation>
77 <dataOutputAssociation>
78 <sourceRef>createInvoiceOperationInvoiceOutput</

sourceRef>
79 <targetRef>invoice</targetRef>
80 </dataOutputAssociation>
81 </serviceTask>
82

83 <serviceTask id="sendInvoice" name="Send Invoice"
implementation="##WebService" operationRef="tns:
sendInvoice" >

84 <ioSpecification>
85 <dataInput itemSubjectRef="tns:

sendInvoiceAmountInputSoap" id="
dataInputOfSendInvoiceServiceTask"/>

86 <dataOutput itemSubjectRef="tns:
sendInvoiceInvoiceOutputSoap" id="
dataOutputOfSendInvoiceServiceTask"/>

87 <inputSet>
88 <dataInputRefs>dataInputOfSendInvoiceServiceTask</

dataInputRefs>
89 </inputSet>
90 <outputSet>
91 <dataOutputRefs>dataOutputOfSendInvoiceServiceTask<

/dataOutputRefs>
92 </outputSet>
93 </ioSpecification>

108

94

95 <dataInputAssociation>
96 <sourceRef>invoice</sourceRef>
97 <targetRef>sendInvoiceOperationInvoiceInput</

targetRef>
98 </dataInputAssociation>
99 <dataOutputAssociation>

100 <sourceRef>sendInvoiceOperationOutput</sourceRef>
101 <targetRef>sendInvoiceAmount</targetRef>
102 </dataOutputAssociation>
103 </serviceTask>
104

105

106 <endEvent id="end" name="End of Process Issuing Invoice"></
endEvent>

107 <sequenceFlow id="flow1" name="" sourceRef="start"
targetRef="createInvoice"></sequenceFlow>

108 <sequenceFlow id="flow2" name="" sourceRef="createInvoice"
targetRef="sendInvoice"></sequenceFlow>

109 <sequenceFlow id="flow4" name="" sourceRef="sendInvoice"
targetRef="end"></sequenceFlow>

110 </process>
111 <bpmndi:BPMNDiagram id="

BPMNDiagram_CallInvoiceMutlipleParametersWebService">
112 <bpmndi:BPMNPlane bpmnElement="

CallInvoiceMutlipleParametersWebService" id="
BPMNPlane_CallInvoiceMutlipleParametersWebService">

113 <bpmndi:BPMNShape bpmnElement="start" id="BPMNShape_start
">

114 <omgdc:Bounds height="35" width="35" x="100" y="110"></
omgdc:Bounds>

115 </bpmndi:BPMNShape>
116 <bpmndi:BPMNShape bpmnElement="createInvoice" id="

BPMNShape_createInvoice">
117 <omgdc:Bounds height="55" width="105" x="230" y="100"><

/omgdc:Bounds>
118 </bpmndi:BPMNShape>
119 <bpmndi:BPMNShape bpmnElement="sendInvoice" id="

BPMNShape_sendInvoice">
120 <omgdc:Bounds height="55" width="105" x="400" y="100"><

/omgdc:Bounds>
121 </bpmndi:BPMNShape>
122 <bpmndi:BPMNShape bpmnElement="end" id="BPMNShape_end">

109

123 <omgdc:Bounds height="35" width="35" x="720" y="110"></
omgdc:Bounds>

124 </bpmndi:BPMNShape>
125 <bpmndi:BPMNEdge bpmnElement="flow1" id="BPMNEdge_flow1">
126 <omgdi:waypoint x="135" y="127"></omgdi:waypoint>
127 <omgdi:waypoint x="230" y="127"></omgdi:waypoint>
128 </bpmndi:BPMNEdge>
129 <bpmndi:BPMNEdge bpmnElement="flow2" id="BPMNEdge_flow2">
130 <omgdi:waypoint x="335" y="127"></omgdi:waypoint>
131 <omgdi:waypoint x="470" y="127"></omgdi:waypoint>
132 </bpmndi:BPMNEdge>
133 <bpmndi:BPMNEdge bpmnElement="flow4" id="BPMNEdge_flow4">
134 <omgdi:waypoint x="575" y="127"></omgdi:waypoint>
135 <omgdi:waypoint x="720" y="127"></omgdi:waypoint>
136 </bpmndi:BPMNEdge>
137 </bpmndi:BPMNPlane>
138 </bpmndi:BPMNDiagram>
139 </definitions>

Listing A.1: Generated XML of the issuing invoice with Service Task and multiple parameter

1 <?xml version="1.0" encoding="UTF-8"?>
2 <definitions xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
3 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
4 xmlns:activiti="http://activiti.org/bpmn"
5 xmlns:invoiceIssuingns="http://ict.tuwien.ac.at/proreuse

/InvoiceIssuingComplexWithOneParameter"
6 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
7 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
8 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
9 xmlns:tns="http://ict.tuwien.ac.at/proreuse/"

10 targetNamespace="http://ict.tuwien.ac.at/proreuse/"
11 typeLanguage="http://www.w3.org/2001/XMLSchema"
12 expressionLanguage="http://www.w3.org/1999/XPath">
13

14 <import importType="http://schemas.xmlsoap.org/wsdl/"
15 location="http://localhost:9898/ProReUseWebServices/

services/InvocieServiceComplexWithOneParameter?wsdl"
16 namespace="http://ict.tuwien.ac.at/proreuse/

InvoiceIssuingComplexWithOneParameter"/>
17

18

19 <message id="createInvoiceRequestMessage" itemRef="tns:

110

createInvoiceInputSoap"/>
20 <message id="createInvoiceResponseMessage" itemRef="tns:

createInvoiceInvoiceOutputSoap"/>
21 <message id="sendInvoiceRequestMessage" itemRef="tns:

sendInvoiceInputSoap"/>
22 <message id="sendInvoiceResponseMessage" itemRef="tns:

sendInvoiceInvoiceOutputSoap"/>
23

24 <itemDefinition id="createInvoiceInputSoap" structureRef="
invoiceIssuingns:createInvoiceOperation"/>

25 <itemDefinition id="createInvoiceInvoiceOutputSoap"
structureRef="invoiceIssuingns:
createInvoiceOperationResponse"/>

26 <itemDefinition id="sendInvoiceInputSoap" structureRef="
invocieIssuingns:sendInvoiceOperation"/>

27 <itemDefinition id="sendInvoiceInvoiceOutputSoap"
structureRef="invoiceIssuingns:sendInvoiceOperationResponse
"/>

28

29 <interface id="Interface_1" name="Issuing Invoice"
implementationRef="invoiceIssuingns:
InvoiceIssuingComplexWithOneParameter">

30 <operation id="createInvoice" name="Create Invoice"
implementationRef="invoiceIssuingns:createInvoiceOperation
">

31 <inMessageRef>tns:createInvoiceRequestMessage </
inMessageRef>

32 <outMessageRef>tns:createInvoiceResponseMessage </
outMessageRef>

33 </operation>
34 <operation id="sendInvoice" implementationRef="

invoiceIssuingns:sendInvoiceOperation" name="Send Invoice"
>

35 <inMessageRef>tns:sendInvoiceRequestMessage</inMessageRef
>

36 <outMessageRef>tns:sendInvoiceResponseMessage</
outMessageRef>

37 </operation>
38 </interface>
39

40 <itemDefinition id="createInvoiceOperationOutput"
structureRef="at.ac.tuwien.ict.proreuse.
invoiceissuingcomplexwithoneparameter.Invoice"/>

111

41 <itemDefinition id="createInvoiceOperationInvoiceInput"
structureRef="at.ac.tuwien.ict.proreuse.
invoiceissuingcomplexwithoneparameter.InvoiceParameterList
"/>

42 <itemDefinition id="sendInvoiceOperationInvoiceInput"
structureRef="at.ac.tuwien.ict.proreuse.
invoiceissuingcomplexwithoneparameter.Invoice" />

43 <itemDefinition id="sendInvoiceOperationOutput" structureRef=
"Boolean" />

44 <itemDefinition id="inputScriptTaskAmount" structureRef="
Float"/>

45 <itemDefinition id="inputScriptTaskAddress" structureRef="
String"/>

46 <itemDefinition id="outputScriptTask" structureRef="at.ac.
tuwien.ict.proreuse.invoiceissuingcomplexwithoneparameter.
InvoiceParameterList"/>

47 <itemDefinition id="address" structureRef="String"/>
48 <itemDefinition id="amount" structureRef="Float"/>
49 <itemDefinition id="hashmap" structureRef="at.ac.tuwien.ict.

proreuse.invoiceissuingcomplexwithoneparameter.
InvoiceParameterList"/>

50 <itemDefinition id="invoice" structureRef="at.ac.tuwien.ict.
proreuse.invoiceissuingcomplexwithoneparameter.Invoice"/>

51 <itemDefinition id="isInvoicesent" structureRef="Boolean"/>
52

53 <process id="IssuingInvoice" name="Call Issuing Invoice with
WebService" isExecutable="true">

54

55 <!-- Events -->
56 <startEvent id="StartEvent_1">
57 <outgoing>tns:SequenceFlow_1</outgoing>
58 </startEvent>
59 <endEvent id="EndEvent_1">
60 <incoming>tns:SequenceFlow_4</incoming>
61 </endEvent>
62

63 <!-- Script Task -->
64 <scriptTask id="ScriptTask_1" name="Prepare Input for

Create Invoice" scriptFormat="groovy">
65 <ioSpecification id="InputOutputSpecification_5">
66 <dataInput id="dataInputScriptTaskAmount"

itemSubjectRef="inputScriptTaskAmount" name="
Amount"/>

112

67 <dataInput id="dataInputScriptTaskAddress"
itemSubjectRef="inputScriptTaskAddress" name="
Address"/>

68 <dataOutput id="dataOutputScriptTask" itemSubjectRef=
"outputScriptTask" name="Result"/>

69 <inputSet id="InputSet_5">
70 <dataInputRefs>dataInputScriptTaskAmount</

dataInputRefs>
71 </inputSet>
72 <inputSet id="InputSet_9">
73 <dataInputRefs>dataInputScriptTaskAddress</

dataInputRefs>
74 </inputSet>
75 <outputSet id="OutputSet_5">
76 <dataOutputRefs>dataOutputScriptTask</

dataOutputRefs>
77 </outputSet>
78 </ioSpecification>
79 <dataInputAssociation id="DataInputAssociation_8">
80 <sourceRef>amount</sourceRef>
81 <targetRef>amount</targetRef>
82 </dataInputAssociation>
83 <dataInputAssociation id="DataInputAssociation_10">
84 <sourceRef>address</sourceRef>
85 <targetRef>address</targetRef>
86 </dataInputAssociation>
87 <dataOutputAssociation id="DataOutputAssociation_9">
88 <sourceRef>hashmap</sourceRef>
89 <targetRef>hashmap</targetRef>
90 </dataOutputAssociation>
91 <script>
92

93 def hashmap = new at.ac.tuwien.ict.proreuse.
invoiceissuingcomplexwithoneparameter.
InvoiceParameterList();

94 hashmap.addParameter("amount", amount);
95 hashmap.addParameter("address", address);
96 execution.setVariable("hashmap", hashmap);
97

98 </script>
99 </scriptTask>

100

101 <!-- Service Tasks -->

113

102 <serviceTask id="ServiceTask_1" name="Create Invoice"
implementation="##WebService" operationRef="tns:
createInvoice">

103

104 <ioSpecification id="InputOutputSpecification_3">
105 <dataInput id="dataInputOfCreateInvoiceServiceTask"

itemSubjectRef="tns:createInvoiceInputSoap"/>
106 <dataOutput id="dataOutputOfCreateInvoiceServiceTask"

itemSubjectRef="tns:createInvoiceInvoiceOutputSoap"/
>

107 <inputSet id="InputSet_3">
108 <dataInputRefs>dataInputOfCreateInvoiceServiceTask</

dataInputRefs>
109 </inputSet>
110 <outputSet id="OutputSet_3">
111 <dataOutputRefs>dataOutputOfCreateInvoiceServiceTask<

/dataOutputRefs>
112 </outputSet>
113 </ioSpecification>
114 <dataInputAssociation id="DataInputAssociation_1">
115 <sourceRef>hashmap</sourceRef>
116 <targetRef>createInvoiceOperationInvoiceInput</

targetRef>
117 </dataInputAssociation>
118 <dataOutputAssociation id="DataOutputAssociation_3">
119 <sourceRef>createInvoiceOperationOutput</sourceRef>
120 <targetRef>invoice</targetRef>
121 </dataOutputAssociation>
122 </serviceTask>
123

124 <serviceTask id="ServiceTask_2" name="Send Invoice"
implementation="##WebService" operationRef="tns:
sendInvoice">

125 <ioSpecification>
126 <dataInput id="dataInputOfSendInvoiceServiceTask"

itemSubjectRef="tns:sendInvoiceInputSoap"/>
127 <dataOutput id="dataOutputOfSendInvoiceServiceTask"

itemSubjectRef="tns:sendInvoiceInvoiceOutputSoap"/>
128 <inputSet>
129 <dataInputRefs>dataInputOfSendInvoiceServiceTask</

dataInputRefs>
130 </inputSet>
131 <outputSet>

114

132 <dataOutputRefs>dataOutputOfSendInvoiceServiceTask</
dataOutputRefs>

133 </outputSet>
134 </ioSpecification>
135 <dataInputAssociation>
136 <sourceRef>invoice</sourceRef>
137 <targetRef>sendInvoiceOperationInvoiceInput</targetRef>
138 </dataInputAssociation>
139 <dataOutputAssociation>
140 <sourceRef>sendInvoiceOperationOutput</sourceRef>
141 <targetRef>isInvoicesent</targetRef>
142 </dataOutputAssociation>
143 </serviceTask>
144

145 <!-- Sequence Flows -->
146 <sequenceFlow id="SequenceFlow_1" sourceRef="StartEvent_1"

targetRef="ScriptTask_1"/>
147 <sequenceFlow id="SequenceFlow_2" name="" sourceRef="

ScriptTask_1" targetRef="ServiceTask_1"/>
148 <sequenceFlow id="SequenceFlow_3" name="" sourceRef="

ServiceTask_1" targetRef="ServiceTask_2"/>
149 <sequenceFlow id="SequenceFlow_4" name="" sourceRef="

ServiceTask_2" targetRef="EndEvent_1"/>
150 </process>
151

152 </definitions>

Listing A.2: Generated XML of the issuing invoice with Script Task as Wrapper in Activiti

1 <?xml version="1.0" encoding="UTF-8"?>
2 <definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL

"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xmlns:activiti="http://activiti.org/bpmn"
5 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
6 xmlns:omgdc="http://www.omg.org/spec/DD/20100524/DC"
7 xmlns:omgdi="http://www.omg.org/spec/DD/20100524/DI"
8 typeLanguage="http://www.w3.org/2001/XMLSchema"
9 expressionLanguage="http://www.w3.org/1999/XPath"

10 targetNamespace="http://www.activiti.org/test">
11

12 <process id="CallInvoiceMutlipleParametersJava" name="Create
and Send an Invoice" isExecutable="true">

13 <startEvent id="start" name="Start"></startEvent>

115

14

15 <serviceTask id="createInvoice" name="Create Invoice"
activiti:class="CreateInvoice"></serviceTask>

16 <serviceTask id="sendInvoice" name="Send Invoice" activiti:
class="SendInvoice"></serviceTask>

17

18 <receiveTask id="waitState" />
19

20 <sequenceFlow id="flow1" sourceRef="start" targetRef="
createInvoice"></sequenceFlow>

21 <sequenceFlow id="flow2" sourceRef="createInvoice"
targetRef="sendInvoice"></sequenceFlow>

22 <sequenceFlow id="flow4" sourceRef="sendInvoice" targetRef=
"end"></sequenceFlow>

23

24 <endEvent id="end" name="End"></endEvent>
25

26 </process>
27 <bpmndi:BPMNDiagram id="

BPMNDiagram_CallInvoiceMutlipleParametersJava">
28 <bpmndi:BPMNPlane bpmnElement="

CallInvoiceMutlipleParametersJava" id="
BPMNPlane_CallInvoiceMutlipleParametersJava">

29 <bpmndi:BPMNShape bpmnElement="start" id="BPMNShape_start
">

30 <omgdc:Bounds height="35.0" width="35.0" x="130.0" y="
180.0"></omgdc:Bounds>

31 </bpmndi:BPMNShape>
32 <bpmndi:BPMNShape bpmnElement="createInvoice" id="

BPMNShape_createInvoice">
33 <omgdc:Bounds height="55.0" width="105.0" x="210.0" y="

170.0"></omgdc:Bounds>
34 </bpmndi:BPMNShape>
35 <bpmndi:BPMNShape bpmnElement="sendInvoice" id="

BPMNShape_sendInvoice">
36 <omgdc:Bounds height="55.0" width="105.0" x="370.0" y="

170.0"></omgdc:Bounds>
37 </bpmndi:BPMNShape>
38 <bpmndi:BPMNShape bpmnElement="end" id="BPMNShape_end">
39 <omgdc:Bounds height="35.0" width="35.0" x="690.0" y="

180.0"></omgdc:Bounds>
40 </bpmndi:BPMNShape>
41 <bpmndi:BPMNEdge bpmnElement="flow1" id="BPMNEdge_flow1">

116

42 <omgdi:waypoint x="165.0" y="197.0"></omgdi:waypoint>
43 <omgdi:waypoint x="210.0" y="197.0"></omgdi:waypoint>
44 </bpmndi:BPMNEdge>
45 <bpmndi:BPMNEdge bpmnElement="flow2" id="BPMNEdge_flow2">
46 <omgdi:waypoint x="315.0" y="197.0"></omgdi:waypoint>
47 <omgdi:waypoint x="370.0" y="197.0"></omgdi:waypoint>
48 </bpmndi:BPMNEdge>
49 <bpmndi:BPMNEdge bpmnElement="flow4" id="BPMNEdge_flow4">
50 <omgdi:waypoint x="475.0" y="197.0"></omgdi:waypoint>
51 <omgdi:waypoint x="690.0" y="197.0"></omgdi:waypoint>
52 </bpmndi:BPMNEdge>
53 </bpmndi:BPMNPlane>
54 </bpmndi:BPMNDiagram>
55 </definitions>

Listing A.3: Generated XML of the issuing invoice in Activiti with Java integrated

1 <?xml version="1.0" encoding="UTF-8"?>
2 <definitions xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
3 xmlns:invoiceIssuingns="http://ict.tuwien.ac.at/

proreuse/InvoiceIssuingComplexWithOneParameter"
4 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
5 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/

DI"
6 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
7 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
8 xmlns:drools="http://www.jboss.org/drools"
9 xmlns:tns="http://ict.tuwien.ac.at/proreuse/"

10 xmlns:typesInvoiceIssuing="http://ict.tuwien.ac.at/
proreuse/InvoiceIssuingComplexWithOneParameter/types"

11 xsi:schemaLocation="http://www.omg.org/spec/BPMN
/20100524/MODEL BPMN20.xsd http://www.jboss.org/drools
drools.xsd http://www.bpsim.org/schemas/1.0 bpsim.xsd"

12 id="Definitions_1"
13 targetNamespace="http://ict.tuwien.ac.at/proreuse/">
14

15

16 <import importType="http://schemas.xmlsoap.org/wsdl/"
17 location="http://localhost:9898/ProReUseWebServices/

services/InvoiceIssuingComplexWithOneParameter?wsdl"
18 namespace="http://ict.tuwien.ac.at/proreuse/

InvoiceIssuingComplexWithOneParameter"/>
19

117

20 <itemDefinition id="createInvoiceInputSoap" structureRef="
invoiceIssuingns:createInvoiceOperation"/>

21 <itemDefinition id="createInvoiceInvoiceOutputSoap"
structureRef="invoiceIssuingns:
createInvoiceOperationResponse"/>

22 <itemDefinition id="sendInvoiceInputSoap" structureRef="
invoiceIssuingns:sendInvoiceOperation"/>

23 <itemDefinition id="sendInvoiceInvoiceOutputSoap"
structureRef="invoiceIssuingns:
sendInvoiceOperationResponse"/>

24

25 <itemDefinition id="createInvoiceOperationAmountInput"
structureRef="at.ac.tuwien.ict.proreuse.
invoiceissuingcomplexwithoneparameter.InvoiceParameterList
"/>

26 <itemDefinition id="createInvoiceOperationInvoiceOutput"
structureRef="at.ac.tuwien.ict.proreuse.
invoiceissuingcomplexwithoneparameter.Invoice"/>

27 <itemDefinition id="sendInvoiceOperationInvoiceInput"
structureRef="at.ac.tuwien.ict.proreuse.
invoiceissuingcomplexwithoneparameter.Invoice"/>

28 <itemDefinition id="sendInvoiceOperationOutput" structureRef=
"Boolean"/>

29 <itemDefinition id="inputScriptTaskAmount" structureRef="
Float"/>

30 <itemDefinition id="inputScriptTaskAddress" structureRef="
String"/>

31 <itemDefinition id="outputScriptTask" structureRef="at.ac.
tuwien.ict.proreuse.invoiceissuingcomplexwithoneparameter.
InvoiceParameterList"/>

32 <itemDefinition id="address" structureRef="String"/>
33 <itemDefinition id="amount" structureRef="Float"/>
34 <itemDefinition id="invoice" structureRef="at.ac.tuwien.ict.

proreuse.invoiceissuingcomplexwithoneparameter.Invoice"/>
35 <itemDefinition id="sendInvoiceAmount" structureRef="Boolean"

/>
36 <itemDefinition id="parameterList" structureRef="at.ac.tuwien

.ict.proreuse.invoiceissuingcomplexwithoneparameter.
InvoiceParameterList"/>

37

38 <message id="createInvoiceRequestMessage" itemRef="
createInvoiceInputSoap" name="createInvoiceRequestMessage"
/>

118

39 <message id="createInvoiceResponseMessage" itemRef="
createInvoiceInvoiceOutputSoap" name="
createInvoiceResponseMessage"/>

40 <message id="sendInvoiceRequestMessage" itemRef="
sendInvoiceInputSoap" name="sendInvoiceRequestMessage"/>

41 <message id="sendInvoiceResponseMessage" itemRef="
sendInvoiceInvoiceOutputSoap" name="
sendInvoiceResponseMessage"/>

42

43 <interface id="Interface_1" implementationRef="
InvoiceIssuingComplexWithOneParameter" name="Issuing
Invoice">

44 <operation id="createInvoice" implementationRef="
createInvoiceOperation" name="createInvoiceOperation">

45 <inMessageRef>createInvoiceRequestMessage</inMessageRef>
46 <outMessageRef>createInvoiceResponseMessage</

outMessageRef>
47 </operation>
48 <operation id="sendInvoice" implementationRef="

sendInvoiceOperation" name="sendInvoiceOperation">
49 <inMessageRef>sendInvoiceRequestMessage</inMessageRef>
50 <outMessageRef>sendInvoiceResponseMessage</outMessageRef>
51 </operation>
52 </interface>
53

54 <process id="CallInvoiceIssuingWithOneParameter" name="Call
Issuing Invoice" isExecutable="true">

55 <property id="address_pro" itemSubjectRef="address"/>
56 <property id="amount_pro" itemSubjectRef="amount"/>
57 <property id="invoice_pro" itemSubjectRef="invoice"/>
58 <property id="sendInvoiceAmount_pro" itemSubjectRef="

sendInvoiceAmount"/>
59 <property id="parameterList_pro" itemSubjectRef="

parameterList"/>
60

61 <startEvent id="start" name="Start the Process Issuing
Invoice">

62 </startEvent>
63

64 <endEvent id="end" name="End of Process Issuing Invoice">
65 </endEvent>
66

67 <serviceTask id="sendInvoice" name="Send Invoice"

119

implementation="##WebService" operationRef="sendInvoice"
>

68 <ioSpecification id="InputOutputSpecification_2">
69 <dataInput id="dataInputOfSendInvoiceServiceTask"

itemSubjectRef="sendInvoiceInputSoap" name="
Parameter"/>

70 <dataOutput id="dataOutputOfSendInvoiceServiceTask"
itemSubjectRef="sendInvoiceInvoiceOutputSoap" name="
Result"/>

71 <inputSet id="InputSet_2">
72 <dataInputRefs>dataInputOfSendInvoiceServiceTask</

dataInputRefs>
73 </inputSet>
74 <outputSet id="OutputSet_2">
75 <dataOutputRefs>dataOutputOfSendInvoiceServiceTask</

dataOutputRefs>
76 </outputSet>
77 </ioSpecification>
78 <dataInputAssociation id="DataInputAssociation_3">
79 <sourceRef>invoice_pro</sourceRef>
80 <targetRef>dataInputOfSendInvoiceServiceTask</targetRef

>
81 </dataInputAssociation>
82 <dataOutputAssociation id="DataOutputAssociation_2">
83 <sourceRef>dataOutputOfSendInvoiceServiceTask</

sourceRef>
84 <targetRef>sendInvoiceAmount_pro</targetRef>
85 </dataOutputAssociation>
86 </serviceTask>
87

88 <serviceTask id="createInvoice" name="Create Invoice"
implementation="##WebService" operationRef="
createInvoice">

89 <ioSpecification id="InputOutputSpecification_1">
90 <dataInput id="dataInputOfCreateInvoiceServiceTask"

itemSubjectRef="createInvoiceInputSoap" name="
Parameter"/>

91 <dataOutput id="dataOutputOfCreateInvoiceServiceTask"
itemSubjectRef="createInvoiceInvoiceOutputSoap" name
="Result"/>

92 <inputSet id="InputSet_1">
93 <dataInputRefs>dataInputOfCreateInvoiceServiceTask</

dataInputRefs>

120

94 </inputSet>
95 <outputSet id="OutputSet_1">
96 <dataOutputRefs>dataOutputOfCreateInvoiceServiceTask<

/dataOutputRefs>
97 </outputSet>
98 </ioSpecification>
99 <dataInputAssociation id="DataInputAssociation_1">

100 <sourceRef>parameterList_pro</sourceRef>
101 <targetRef>dataInputOfCreateInvoiceServiceTask</

targetRef>
102 </dataInputAssociation>
103 <dataOutputAssociation id="DataOutputAssociation_1">
104 <sourceRef>dataOutputOfCreateInvoiceServiceTask</

sourceRef>
105 <targetRef>invoice_pro</targetRef>
106 </dataOutputAssociation>
107 </serviceTask>
108

109 <scriptTask id="prepareParameters" name="Prepare Parameter
for Service Task" scriptFormat="java">

110 <ioSpecification id="InputOutputSpecification_3">
111 <dataInput id="dataInputScriptTaskAmount"

itemSubjectRef="inputScriptTaskAmount" name="
Amount"/>

112 <dataInput id="dataInputScriptTaskAddress"
itemSubjectRef="inputScriptTaskAddress" name="
Address"/>

113 <dataOutput id="dataOutputScriptTask"
itemSubjectRef="outputScriptTask" name="Result"/
>

114 <inputSet id="InputSet_5">
115 <dataInputRefs>dataInputScriptTaskAmount</

dataInputRefs>
116 </inputSet>
117 <inputSet id="InputSet_6">
118 <dataInputRefs>dataInputScriptTaskAddress</

dataInputRefs>
119 </inputSet>
120 <outputSet id="OutputSet_5">
121 <dataOutputRefs>dataOutputScriptTask</

dataOutputRefs>
122 </outputSet>
123 </ioSpecification>

121

124 <dataInputAssociation id="DataInputAssociation_8">
125 <targetRef>amount_pro</targetRef>
126 </dataInputAssociation>
127 <dataInputAssociation id="DataInputAssociation_10">
128 <targetRef>address_pro</targetRef>
129 </dataInputAssociation>
130 <dataOutputAssociation id="DataOutputAssociation_9">
131 <targetRef>parameterList_pro</targetRef>
132 </dataOutputAssociation>
133 <script>
134 at.ac.tuwien.ict.proreuse.

invoiceissuingcomplexwithoneparameter.
InvoiceParameterList parameters = new at.ac.tuwien
.ict.proreuse.
invoiceissuingcomplexwithoneparameter.
InvoiceParameterList();

135 parameters.addParameter("amount",
amount_pro);

136 parameters.addParameter("address",
address_pro);

137 kcontext.setVariable("parameterList_pro",
parameters);

138

139 </script>
140 </scriptTask>
141

142 <sequenceFlow id="flow1" drools:priority="1" name=""
sourceRef="start" targetRef="prepareParameters"/>

143 <sequenceFlow id="flow4" drools:priority="1" name=""
sourceRef="sendInvoice" targetRef="end"/>

144 <sequenceFlow id="flow2" drools:priority="1" name=""
sourceRef="createInvoice" targetRef="sendInvoice"/>

145 <sequenceFlow id="SequenceFlow_1" drools:priority="1" name=
"" sourceRef="prepareParameters" targetRef="
createInvoice"/>

146

147 </process>
148 <bpmndi:BPMNDiagram id="

BPMNDiagram_CallInvoiceMutlipleParametersWebService">
149 <bpmndi:BPMNPlane id="

BPMNPlane_CallInvoiceMutlipleParametersWebService"
bpmnElement="CallInvoiceMutlipleParametersWebService">

150 <bpmndi:BPMNShape id="BPMNShape_start" bpmnElement="start

122

">
151 <dc:Bounds height="35.0" width="35.0" x="100.0" y="

110.0"/>
152 </bpmndi:BPMNShape>
153 <bpmndi:BPMNShape id="BPMNShape_createInvoice"

bpmnElement="createInvoice">
154 <dc:Bounds height="55.0" width="105.0" x="340.0" y="

100.0"/>
155 </bpmndi:BPMNShape>
156 <bpmndi:BPMNShape id="BPMNShape_sendInvoice" bpmnElement=

"sendInvoice">
157 <dc:Bounds height="55.0" width="105.0" x="530.0" y="

100.0"/>
158 </bpmndi:BPMNShape>
159 <bpmndi:BPMNShape id="BPMNShape_end" bpmnElement="end">
160 <dc:Bounds height="35.0" width="35.0" x="720.0" y="

110.0"/>
161 </bpmndi:BPMNShape>
162 <bpmndi:BPMNEdge id="BPMNEdge_flow1" bpmnElement="flow1"

targetElement="BPMNShape_prepareParameters">
163 <di:waypoint xsi:type="dc:Point" x="135.0" y="127.0"/>
164 <di:waypoint xsi:type="dc:Point" x="190.0" y="128.0"/>
165 </bpmndi:BPMNEdge>
166 <bpmndi:BPMNEdge id="BPMNEdge_flow2" bpmnElement="flow2">
167 <di:waypoint xsi:type="dc:Point" x="445.0" y="127.0"/>
168 <di:waypoint xsi:type="dc:Point" x="530.0" y="127.0"/>
169 </bpmndi:BPMNEdge>
170 <bpmndi:BPMNEdge id="BPMNEdge_flow4" bpmnElement="flow4">
171 <di:waypoint xsi:type="dc:Point" x="635.0" y="127.0"/>
172 <di:waypoint xsi:type="dc:Point" x="720.0" y="127.0"/>
173 </bpmndi:BPMNEdge>
174 <bpmndi:BPMNShape id="BPMNShape_prepareParameters"

bpmnElement="prepareParameters">
175 <dc:Bounds height="50.0" width="110.0" x="190.0" y="

103.0"/>
176 </bpmndi:BPMNShape>
177 <bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_1" bpmnElement

="SequenceFlow_1" sourceElement="
BPMNShape_prepareParameters" targetElement="
BPMNShape_createInvoice">

178 <di:waypoint xsi:type="dc:Point" x="300.0" y="128.0"/>
179 <di:waypoint xsi:type="dc:Point" x="340.0" y="127.0"/>
180 </bpmndi:BPMNEdge>

123

181 </bpmndi:BPMNPlane>
182 </bpmndi:BPMNDiagram>
183 </definitions>

Listing A.4: Generated XML of the issuing invoice in jBPM with Script Task which prepare the
parameters for the Service Task

1 <?xml version="1.0" encoding="UTF-8"?>
2 <definitions xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
3 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
4 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/

DI"
5 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
6 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
7 xmlns:drools="http://www.jboss.org/drools"
8 xsi:schemaLocation="http://www.omg.org/spec/BPMN

/20100524/MODEL BPMN20.xsd http://www.jboss.org/
drools drools.xsd http://www.bpsim.org/schemas/1.0
bpsim.xsd"

9 id="Definitions_1"
10 xmlns:tns="http://ict.tuwien.ac.at/proreuse/"
11 targetNamespace="http://ict.tuwien.ac.at/proreuse/"
12 xmlns:invoiceIssuingNS="http://ict.tuwien.ac.at/

proreuse/InvoiceIssuingMultipleParameters"
13 xmlns:typesInvoiceIssuing="http://ict.tuwien.ac.at/

proreuse/InvoiceIssuingMultipleParameters/types">
14

15

16 <import importType="http://schemas.xmlsoap.org/wsdl/"
17 location="http://localhost:9898/ProReUseWebServices

/services/InvoiceIssuingMultipleParameters?wsdl"
18 namespace="http://ict.tuwien.ac.at/proreuse/

InvoiceIssuingMultipleParameters"/>
19

20 <itemDefinition id="createInvoiceInputSoap" structureRef="
invoiceIssuingNS:createInvoiceOperation"/>

21 <itemDefinition id="createInvoiceInvoiceOutputSoap"
structureRef="invoiceIssuingNS:
createInvoiceOperationResponse"/>

22 <itemDefinition id="sendInvoiceInputSoap" structureRef="
invoiceIssuingNS:sendInvoiceOperation"/>

23 <itemDefinition id="sendInvoiceInvoiceOutputSoap"
structureRef="invoiceIssuingNS:

124

sendInvoiceOperationResponse"/>
24

25

26 <message id="createInvoiceRequestMessage" itemRef="
createInvoiceInputSoap"/>

27 <message id="createInvoiceResponseMessage" itemRef="
createInvoiceInvoiceOutputSoap"/>

28 <message id="sendInvoiceRequestMessage" itemRef="
sendInvoiceInputSoap"/>

29 <message id="sendInvoiceResponseMessage" itemRef="
sendInvoiceInvoiceOutputSoap"/>

30

31

32

33 <interface name="Issuing Invoice" implementationRef="
InvoiceIssuingMultipleParameters">

34 <operation id="createInvoice" name="
createInvoiceOperation" implementationRef="
createInvoiceOperation">

35 <inMessageRef>createInvoiceRequestMessage </inMessageRef>
36 <outMessageRef>createInvoiceResponseMessage </

outMessageRef>
37 </operation>
38 <operation id="sendInvoice" implementationRef="

sendInvoiceOperation" name="sendInvoiceOperation">
39 <inMessageRef>sendInvoiceRequestMessage</inMessageRef>
40 <outMessageRef>sendInvoiceResponseMessage</

outMessageRef>
41 </operation>
42 </interface>
43

44 <!--<itemDefinition id="amount" structureRef="float"/>
45 <itemDefinition id="address" structureRef="string" /> -->
46 <itemDefinition id="createInvoiceOperationAmountInput"

structureRef="float"/>
47 <itemDefinition id="createInvoiceOperationAddressInput"

structureRef="string"/>
48 <itemDefinition id="createInvoiceOperationInvoiceOutput"

structureRef="at.ac.tuwien.ict.proreuse.
invoiceissuingmultipleparameters.Invoice"/>

49 <itemDefinition id="sendInvoiceOperationInvoiceInput"
structureRef="at.ac.tuwien.ict.proreuse.
invoiceissuingmultipleparameters.Invoice"/>

125

50 <itemDefinition id="sendInvoiceOperationOutput" structureRef=
"boolean" />

51

52

53 <process id="CallInvoiceMutlipleParametersWebService" name="
Call Invoice Complex WebService" isExecutable="true">

54

55 <property id="address_pro"/>
56 <property id="amount_pro"/>
57 <property id="invoice_pro"/>
58 <property id="sendInvoiceAmount_pro"/>
59

60

61 <startEvent id="start" name="Start the Process Issuing
Invoice"></startEvent>

62 <serviceTask id="createInvoice" name="Create Invoice"
implementation="##WebService" operationRef="
createInvoice" >

63 <ioSpecification>
64 <dataInput itemSubjectRef="createInvoiceInputSoap" id

="dataInputOfCreateInvoiceServiceTask" name="
Amount"/>

65 <dataInput itemSubjectRef="createInvoiceInputSoap" id="
dataInputOfCreateInvoiceServiceTaskAddress" name="
Address"/>

66 <dataOutput itemSubjectRef="
createInvoiceInvoiceOutputSoap" id="
dataOutputOfCreateInvoiceServiceTask" name="Result"/
>

67 <inputSet>
68 <dataInputRefs>dataInputOfCreateInvoiceServiceTask<

/dataInputRefs>
69 <dataInputRefs>

dataInputOfCreateInvoiceServiceTaskAddress</
dataInputRefs>

70 </inputSet>
71 <outputSet>
72 <dataOutputRefs>

dataOutputOfCreateInvoiceServiceTask</
dataOutputRefs>

73 </outputSet>
74 </ioSpecification>
75

126

76 <dataInputAssociation>
77 <sourceRef>amount_pro</sourceRef>
78 <targetRef>dataInputOfCreateInvoiceServiceTask</

targetRef>
79 </dataInputAssociation>
80 <dataInputAssociation>
81 <sourceRef>address_pro</sourceRef>
82 <targetRef>dataInputOfCreateInvoiceServiceTaskAddress

</targetRef>
83 </dataInputAssociation>
84 <dataOutputAssociation>
85 <sourceRef>dataOutputOfCreateInvoiceServiceTask</

sourceRef>
86 <targetRef>invoice_pro</targetRef>
87 </dataOutputAssociation>
88 </serviceTask>
89

90 <serviceTask id="sendInvoice" name="Send Invoice"
implementation="##WebService" operationRef="sendInvoice"
>

91 <ioSpecification>
92 <dataInput itemSubjectRef="sendInvoiceInputSoap" id="

dataInputOfSendInvoiceServiceTask" name="Invoice"/
>

93 <dataOutput itemSubjectRef="
sendInvoiceInvoiceOutputSoap" id="
dataOutputOfSendInvoiceServiceTask" name="Result"/>

94 <inputSet>
95 <dataInputRefs>dataInputOfSendInvoiceServiceTask</

dataInputRefs>
96 </inputSet>
97 <outputSet>
98 <dataOutputRefs>dataOutputOfSendInvoiceServiceTask<

/dataOutputRefs>
99 </outputSet>

100 </ioSpecification>
101

102 <dataInputAssociation>
103 <sourceRef>invoice_pro</sourceRef>
104 <targetRef>dataInputOfSendInvoiceServiceTask</

targetRef>
105 </dataInputAssociation>
106 <dataOutputAssociation>

127

107 <sourceRef>dataOutputOfSendInvoiceServiceTask</
sourceRef>

108 <targetRef>sendInvoiceAmount_pro</targetRef>
109 </dataOutputAssociation>
110 </serviceTask>
111

112

113 <endEvent id="end" name="End of Process Issuing Invoice"></
endEvent>

114 <sequenceFlow id="flow1" name="" sourceRef="start"
targetRef="createInvoice"></sequenceFlow>

115 <sequenceFlow id="flow2" name="" sourceRef="createInvoice"
targetRef="sendInvoice"></sequenceFlow>

116 <sequenceFlow id="flow4" name="" sourceRef="sendInvoice"
targetRef="end"></sequenceFlow>

117 </process>
118 <bpmndi:BPMNDiagram id="

BPMNDiagram_CallInvoiceMutlipleParametersWebService">
119 <bpmndi:BPMNPlane bpmnElement="

CallInvoiceMutlipleParametersWebService" id="
BPMNPlane_CallInvoiceMutlipleParametersWebService">

120 <bpmndi:BPMNShape bpmnElement="start" id="BPMNShape_start
">

121 <dc:Bounds height="35" width="35" x="100" y="110"></dc:
Bounds>

122 </bpmndi:BPMNShape>
123 <bpmndi:BPMNShape bpmnElement="createInvoice" id="

BPMNShape_createInvoice">
124 <dc:Bounds height="55" width="105" x="230" y="100"></dc

:Bounds>
125 </bpmndi:BPMNShape>
126 <bpmndi:BPMNShape bpmnElement="sendInvoice" id="

BPMNShape_sendInvoice">
127 <dc:Bounds height="55" width="105" x="400" y="100"></dc

:Bounds>
128 </bpmndi:BPMNShape>
129 <bpmndi:BPMNShape bpmnElement="end" id="BPMNShape_end">
130 <dc:Bounds height="35" width="35" x="720" y="110"></dc:

Bounds>
131 </bpmndi:BPMNShape>
132 <bpmndi:BPMNEdge bpmnElement="flow1" id="BPMNEdge_flow1">
133 <di:waypoint x="135" y="127"></di:waypoint>
134 <di:waypoint x="230" y="127"></di:waypoint>

128

135 </bpmndi:BPMNEdge>
136 <bpmndi:BPMNEdge bpmnElement="flow2" id="BPMNEdge_flow2">
137 <di:waypoint x="335" y="127"></di:waypoint>
138 <di:waypoint x="470" y="127"></di:waypoint>
139 </bpmndi:BPMNEdge>
140 <bpmndi:BPMNEdge bpmnElement="flow4" id="BPMNEdge_flow4">
141 <di:waypoint x="575" y="127"></di:waypoint>
142 <di:waypoint x="720" y="127"></di:waypoint>
143 </bpmndi:BPMNEdge>
144 </bpmndi:BPMNPlane>
145 </bpmndi:BPMNDiagram>
146 </definitions>

Listing A.5: Generated XML of the issuing invoice in jBPM with multiple Parameter at Service
Task

1 public void executeWorkItem(WorkItem workItem, final
WorkItemManager manager) {

2 String implementation = (String) workItem.getParameter(
"implementation");

3 if ("##WebService".equalsIgnoreCase(implementation)) {
4 String interfaceRef = (String) workItem.

getParameter("interfaceImplementationRef");
5 String operationRef = (String) workItem.

getParameter("operationImplementationRef");
6 Object parameter = workItem.getParameter("Parameter

");
7 WSMode mode = WSMode.valueOf(workItem.getParameter(

"mode") == null ? "SYNC" : ((String) workItem.
getParameter("mode")).toUpperCase());

8

9 try {
10 Client client = getWSClient(workItem,

interfaceRef);
11 switch (mode) {
12 case SYNC:
13 Object[] result = client.invoke(

operationRef, parameter);
14

15 Map<String, Object> output = new HashMap<
String, Object>();

16

17 if (result == null || result.length == 0) {
18 output.put("Result", null);

129

19 } else {
20 output.put("Result", result[0]);
21 }
22

23 manager.completeWorkItem(workItem.getId(),
output);

24 break;
25 case ASYNC:
26 final ClientCallback callback = new

ClientCallback();
27 final long workItemId = workItem.getId();
28 client.invoke(callback, operationRef,

parameter);
29 new Thread(new Runnable() {
30

31 public void run() {
32

33 try {
34

35 Object[] result = callback.get(
asyncTimeout, TimeUnit.
SECONDS);

36 Map<String, Object> output = new
HashMap<String, Object>();

37 if (callback.isDone()) {
38 if (result == null) {
39 output.put("Result", null)

;
40 } else {
41 output.put("Result",

result[0]);
42 }
43 }
44 ksession.getWorkItemManager().

completeWorkItem(workItemId,
output);

45 } catch (Exception e) {
46 logger.error("Error encountered

while invoking ws operation
asynchronously ", e);

47 }
48

49

130

50 }
51 }).start();
52 break;
53 case ONEWAY:
54 ClientCallback callbackFF = new

ClientCallback();
55

56 client.invoke(callbackFF, operationRef,
parameter);

57 manager.completeWorkItem(workItem.getId(),
new HashMap<String, Object>());

58 break;
59 default:
60 break;
61 }
62

63 } catch (Exception e) {
64 logger.error("Error when executing work item",

e);
65 }
66 } else {
67 executeJavaWorkItem(workItem, manager);
68 }
69

70

71 }

Listing A.6: Methode executeWorkItem of the general Service Task Handler for Web Service

1 public void executeJavaWorkItem(WorkItem workItem,
WorkItemManager manager) {

2 String i = (String) workItem.getParameter("Interface");
3 String operation = (String) workItem.getParameter("

Operation");
4 String parameterType = (String) workItem.getParameter("

ParameterType");
5 // Object parameter = workItem.getParameter("Parameter")

;
6

7 Map<String, Object> parameters = new HashMap<String,
Object>(workItem.getParameters());

8 parameters.remove("Interface");
9 parameters.remove("Operation");

10 parameters.remove("ParameterType");

131

11 parameters.remove("implementation");
12 parameters.remove("operationImplementationRef");
13 parameters.remove("interfaceImplementationRef");
14

15 String [] paramTyp = parameterType.split("-");
16

17 try {
18 Class<?> c = Class.forName(i);
19 Object instance = c.newInstance();
20 Class<?>[] classes = null;
21 Object[] params = null;
22 if (parameterType != null) {
23 classes = new Class<?>[parameters.size()];
24 params = new Object[parameters.size()];
25 int counter =0;
26 for (Object param : parameters.values()) {
27 params[counter] = param;
28 classes[counter] = Class.forName(paramTyp[

counter]);
29 counter++;
30 }
31 }
32 Method method = c.getMethod(operation, classes);
33 Object result = method.invoke(instance, params);
34 Map<String, Object> results = new HashMap<String,

Object>();
35 results.put("Result", result);
36 manager.completeWorkItem(workItem.getId(), results)

;
37 } catch (ClassNotFoundException e) {
38 System.err.println(e);
39 } catch (InstantiationException e) {
40 System.err.println(e);
41 } catch (IllegalAccessException e) {
42 System.err.println(e);
43 } catch (NoSuchMethodException e) {
44 System.err.println(e);
45 } catch (InvocationTargetException e) {
46 System.err.println(e);
47 }
48 }

Listing A.7: Methode executeWorkItem of the general Service Task Handler for automated
application

132

1 <?xml version="1.0" encoding="UTF-8"?>
2 <bpmn2:definitions xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
3 xmlns:activiti="http://activiti.org/bpmn"
4 xmlns:bpmn2="http://www.omg.org/spec/BPMN/20100524/MODEL"
5 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
6 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
7 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
8 xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL

BPMN20.xsd" id="_TFtssJryEeOf74lvtDWE5g" targetNamespace="
http://activiti.org/bpmn">

9

10 < bpmn2:itemDefinition id="inputScriptTaskAmount" structureRef
="Float"/>

11 <bpmn2:itemDefinition id="inputScriptTaskAddress"
structureRef="String"/>

12 <bpmn2:itemDefinition id="outputScriptTask" structureRef="
InvoiceParameterList"/>

13 <bpmn2:itemDefinition id="hashmap" structureRef="
InvoiceParameterList"/>

14 <bpmn2:itemDefinition id="address" structureRef="String"/>
15 <bpmn2:itemDefinition id="amount" structureRef="Float"/>
16 <bpmn2:itemDefinition id="createInvoiceOperationInvoiceInput"

itemKind="Physical" structureRef="InvoiceParameterList"/>
17 <bpmn2:itemDefinition id="createInvoiceOperationOutput"

itemKind="Physical" structureRef="Invoice"/>
18 <bpmn2:itemDefinition id="invoice" structureRef="Invoice" />
19 <bpmn2:itemDefinition id="sendInvocieOperationOutput"

structureRef="Boolean" />
20 <bpmn2:itemDefinition id="isInvoiceSent" itemKind="Physical"

structureRef="Boolean"/>
21 <bpmn2:itemDefinition id="sendInvoiceOperationInvoiceInput"

structureRef="Invoice" />
22

23 <bpmn2:process id="Issuing Invoice" isExecutable="true">
24

25 <bpmn2:startEvent id="StartEvent_1" name="Start Event">
26 <bpmn2:outgoing>SequenceFlow_1</bpmn2:outgoing>
27 </bpmn2:startEvent>
28

29 <bpmn2:scriptTask id="ScriptTask_1" name="Script Task"
scriptFormat="groovy">

30 <bpmn2:ioSpecification id="InputOutputSpecification_5">

133

31 <bpmn2:dataInput id="dataInputScriptTaskAmount"
itemSubjectRef="inputScriptTaskAmount" name="Amount"
/>

32 <bpmn2:dataInput id="dataInputScriptTaskAddress"
itemSubjectRef="inputScriptTaskAddress" name="
Address"/>

33 <bpmn2:dataOutput id="dataOutputScriptTask"
itemSubjectRef="outputScriptTask" name="Result"/>

34 <bpmn2:inputSet id="InputSet_5">
35 <bpmn2:dataInputRefs>dataInputScriptTaskAmount</

bpmn2:dataInputRefs>
36 </bpmn2:inputSet>
37 <bpmn2:inputSet id="InputSet_9">
38 <bpmn2:dataInputRefs>dataInputScriptTaskAddress</

bpmn2:dataInputRefs>
39 </bpmn2:inputSet>
40 <bpmn2:outputSet id="OutputSet_5">
41 <bpmn2:dataOutputRefs>dataOutputScriptTask</bpmn2

:dataOutputRefs>
42 </bpmn2:outputSet>
43 </bpmn2:ioSpecification>
44 <bpmn2:dataInputAssociation id="DataInputAssociation_1">
45 <bpmn2:sourceRef>amount</bpmn2:sourceRef>
46 <bpmn2:targetRef>amount</bpmn2:targetRef>
47 </bpmn2:dataInputAssociation>
48 <bpmn2:dataInputAssociation id="DataInputAssociation_2">
49 <bpmn2:sourceRef>address</bpmn2:sourceRef>
50 <bpmn2:targetRef>address</bpmn2:targetRef>
51 </bpmn2:dataInputAssociation>
52 <bpmn2:dataOutputAssociation id="DataOutputAssociation_1"

>
53 <bpmn2:targetRef>hashmap</bpmn2:targetRef>
54 </bpmn2:dataOutputAssociation>
55 <bpmn2:script>
56 def hashmap = new InvoiceParameterList();
57 hashmap.addParameter("amount", amount);
58 hashmap.addParameter("address", address);;
59 execution.setVariable("hashmap", hashmap);
60 </bpmn2:script>
61 </bpmn2:scriptTask>
62

63 <bpmn2:sequenceFlow id="SequenceFlow_1" name="" sourceRef="
StartEvent_1" targetRef="ScriptTask_1"/>

134

64 <bpmn2:sequenceFlow id="SequenceFlow_2" name="" sourceRef="
ScriptTask_1" targetRef="ServiceTask_1"/>

65

66 <bpmn2:serviceTask id="ServiceTask_1" activiti:class="
CreateInvoice" name="Create Invoice">

67 <bpmn2:ioSpecification id="InputOutputSpecification_3">
68 <bpmn2:dataInput id="dICreateInvoice" itemSubjectRef="

createInvoiceOperationInvoiceInput" name="Parameter"
/>

69 <bpmn2:dataOutput id="dOCreateInvoice" itemSubjectRef="
createInvoiceOperationOutput" name="Result"/>

70 <bpmn2:inputSet id="InputSet_3">
71 <bpmn2:dataInputRefs>dICreateInvoice</bpmn2:

dataInputRefs>
72 </bpmn2:inputSet>
73 <bpmn2:outputSet id="OutputSet_3">
74 <bpmn2:dataOutputRefs>dOCreateInvoice</bpmn2:

dataOutputRefs>
75 </bpmn2:outputSet>
76 </bpmn2:ioSpecification>
77 <bpmn2:dataInputAssociation id="DataInputAssociation_3">
78 <bpmn2:sourceRef>hashmap</bpmn2:sourceRef>
79 <bpmn2:targetRef>createInvoiceOperationInvoiceInput</

bpmn2:targetRef>
80 </bpmn2:dataInputAssociation>
81 <bpmn2:dataOutputAssociation id="DataOutputAssociation_4"

>
82 <bpmn2:sourceRef>createInvoiceOperationOutput</bpmn2:

sourceRef>
83 <bpmn2:targetRef>invoice</bpmn2:targetRef>
84 </bpmn2:dataOutputAssociation>
85 </bpmn2:serviceTask>
86

87 <bpmn2:serviceTask id="ServiceTask_2" activiti:class="
SendInvoice" name="Send Invoice">

88 <bpmn2:ioSpecification>
89 <bpmn2:dataInput id="dISendInvocice" itemSubjectRef="

sendInvoiceOperationInvoiceInput" name="Parameter"/>
90 <bpmn2:dataOutput id="dOSendInvoice" itemSubjectRef="

sendInvocieOperationOutput" name="Result"/>
91 <bpmn2:inputSet>
92 <bpmn2:dataInputRefs>dISendInvocice</bpmn2:

dataInputRefs>

135

93 </bpmn2:inputSet>
94 <bpmn2:outputSet>
95 <bpmn2:dataOutputRefs>dOSendInvoice</bpmn2:

dataOutputRefs>
96 </bpmn2:outputSet>
97 </bpmn2:ioSpecification>
98 <bpmn2:dataInputAssociation>
99 <bpmn2:sourceRef>invoice</bpmn2:sourceRef>

100 <bpmn2:targetRef>sendInvoiceOperationInvoiceInput</bpmn2:
targetRef>

101 </bpmn2:dataInputAssociation>
102 <bpmn2:dataOutputAssociation>
103 <bpmn2:sourceRef>sendInvocieOperationOutput</bpmn2:

sourceRef>
104 <bpmn2:targetRef>isInvoiceSent</bpmn2:targetRef>
105 </bpmn2:dataOutputAssociation>
106 </bpmn2:serviceTask>
107

108 <bpmn2:sequenceFlow id="SequenceFlow_3" name="" sourceRef="
ServiceTask_1" targetRef="ServiceTask_2"/>

109 <bpmn2:endEvent id="EndEvent_1" name="End Event">
110 <bpmn2:incoming>SequenceFlow_4</bpmn2:incoming>
111 </bpmn2:endEvent>
112 <bpmn2:sequenceFlow id="SequenceFlow_4" name="" sourceRef="

ServiceTask_2" targetRef="EndEvent_1"/>
113

114 </bpmn2:process>
115

116 </bpmn2:definitions>

Listing A.8: Generated XML of the issuing invoice in Camunda with Java integrated

136

Bibliography

[1] Business Process Model and Notation (BPMN) Version 2.0. OMG
http://www.omg.org/spec/BPMN/2.0/, 2011. [Online; accessed 15-March-2014].

[2] Thomas Allweyer. BPMN 2.0 - Business Process Model and Notation-Einführung in den
Standard für die Geschäftsmodellierung. Books on Demand GmbH, Norderstedt, 2nd edi-
tion edition, 2009.

[3] Michele Chinosi and Alberto Trombetta. BPMN: An introduction to the standard. Com-
puter Standards & Interfaces, 34(1):124 – 134, 2012.

[4] Jakob Freund, Bernd Rücker, and Thoma Henninger. Praxishandbuch BPMN. Hanser
Verlag München Wien, 2010.

[5] Orlin Genchev and John Galletly. XPDL: bringing business and software together – a
case study. In Proceedings of the International Conference on Computer Systems and
Technologies and Workshop for PhD Students in Computing, CompSysTech ’09, pages
32:1–32:6, New York, NY, USA, 2009. ACM.

[6] Manuel Götz. BPMN 2.0 Tutorial – Kompakte Einführung in die BPMN 2.0. ITransparent
GmbH. http://www.itransparent.de/sites/default/files/BPMN_2_0_Tutorial_Business_
Process_Modeling_Notation_Deutsch.pdf, 2011. [Online; accessed 17-March-2014].

[7] Christian Gutschier, Ralph Hoch, Hermann Kaindl, and Roman Popp. A Pitfall with BPMN
Execution. In The Second International Conference on Building and Exploring Web Based
Environments, WEB ’14 1, 2014.

[8] Matthias Knoll. Modellgetriebene Spezifikation von BPMN und Transformation von
BPMN zu BPEL mit openArchitectureWare. Master’s thesis, Vienna University of Tech-
nology, 2008.

[9] Agnes Koschmider. Ähnlichkeitsbasierte Modellierungsunterstützung für Geschäft-
sprozesse. Universitätsverlag Karlsruhe, 2007.

[10] Chun Ouyang, Marlon Dumas, Wil M. P. Van Der Aalst, Arthur H. M. Ter Hofstede, and
Jan Mendling. From business process models to process-oriented software systems. ACM
Trans. Softw. Eng. Methodol., 19(1):2:1–2:37, August 2009.

1to appear

137

[11] Chun Ouyang, Marlon Dumas, Arthur H. M. ter Hofstede, and Wil M. P. van der Aalst.
From BPMN Process Models to BPEL Web Services. In Proceedings of the IEEE Inter-
national Conference on Web Services, ICWS ’06, pages 285–292, Washington, DC, USA,
2006. IEEE Computer Society.

[12] Tijs Rademakers. Activiti in Action: Executable Business Process in BPMN 2.0. Manning
Publications Company, 2012.

[13] D. Schumm, D. Karastoyanova, F. Leymann, and J. Nitzsche. On Visualizing and Mod-
elling BPEL with BPMN. In Grid and Pervasive Computing Conference, 2009. GPC ’09.
Workshops at the, pages 80–87, 2009.

[14] Thomas Tschach. Übersetzung von graf- und blockorientierten Prozessmodellierungs-
sprachen. Vienna University of Technology.
http://www.cvast.tuwien.ac.at/sites/default/files/StARF_SE_0525381_Tschach_Thomas.pdf,
2012. [Online; accessed 13-March-2014].

[15] Tammo van Lessen, Daniel Lübke, and Jörg Nitzsche. Geschäftsprozesse automatisieren
mit BPEL. dpunkt.verlag, 1st edition, 2011.

138

	Introduction
	Motivation and Research problem
	Approach
	Overview of the master's thesis

	Background on BPMN
	Historic development – BPMN 1.x
	Current status – BPMN 2.0
	Explanation of selected BPMN notation and different diagram types
	Explanation of the different core elements of a BPD
	Flow Objects
	Connecting Objects
	Swimlanes (Pools and Lanes)
	Artifacts
	Data

	Explanation of the different diagram types
	Process diagram
	Choreography diagram
	Collaboration diagram
	Conversation diagram

	Non-direct execution of BPMN 2.0 models
	Execution via Business Process Execution Language (BPEL)
	Execution via XML Process Definition Language (XPDL)

	Direct execution of BPMN 2.0 models
	Defining an executable BPMN 2.0 model
	A Pitfall in BPMN 2.0
	Execution of BPMN 2.0 models with Business Process Management Systems
	Activiti
	jBPM
	Bonita BPM
	Camunda BPM
	Sydlee Seed
	Inubit BPM
	Tool Comparison

	Conclusion
	List of Figures
	Appendix - Tool-specific XML-representations of the running example
	Bibliography

