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Abstract

Depth Image Based Rendering (DIBR) has become an important tool in the field of free-
viewpoint video and three-dimensional television as this technique allows to generate virtual
views of a scene from a single view and its associated depth map. However, a common issue in
DIBR are disocclusions, i.e. areas that are uncovered in the newly synthesized perspectives. This
thesis addresses the problem of filling disocclusions in the context of stereoscopic images and
three-dimensional videos. To synthesize visually plausible content in the disoccluded regions
of the novel views, a texture-oriented inpainting method is presented based on the randomized
correspondence algorithm PatchMatch of Barnes et al. As missing time-consistency results in
disturbing flicker artifacts, our proposed inpainting approach exploits temporal information by
propagating both patch correspondences and color information to subsequent frames. Moreover,
the depth information available in the field of stereoscopic imaging is incorporated to avoid the
interference of foreground color in the restored image background regions. To further account
for artifacts caused by the image warping process as well as inaccuracies in the underlying depth
map, several enhancements are introduced including unilateral dilation, adaptive patch sizes and
a matching threshold. An extensive evaluation using objective quality assessment metrics and a
subjective user study shows that the spatial and temporal enhancements of the proposed image
and video completion framework clearly outperform existing inpainting tools such as “content-
aware fill” from the professional graphics editing program Adobe Photoshop.
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Kurzfassung

“Depth Image Based Rendering” ist zu einem wichtigen Werkzeug im Bereich der sogenannten
“Free-Viewpoint”-Videos und des dreidimensionalen Fernsehens geworden, da dieses Verfah-
ren, ausgehend von einem einzelnen Blickwinkel und der dazugehörigen Tiefenkarte, die Erzeu-
gung virtueller Ansichten einer Szene ermöglicht. Eine häufig auftretende Problematik hierbei
stellen jedoch Aufdeckungen dar, also jene Bereiche, die in den neu erzeugten Perspektiven frei-
gelegt werden. Die vorliegende Diplomarbeit befasst sich mit dem Auffüllen dieser in stereosko-
pischen Bildern und dreidimensionalen Videos entstandenen Lücken. Um adäquate Bildinforma-
tion in den freigelegten Bereichen der neuen Ansichten zu generieren, wird eine texturbasierte
Inpainting-Methode präsentiert, unter der Verwendung des randomisierten Korrespondenzalgo-
rithmus PatchMatch. Da zeitlich inkonsistente Inpainting-Resultate von aufeinanderfolgenden
Bildern zu störenden Flacker-Artefakten führen, wird in dem vorgestellen Bildvervollständi-
gungsansatz temporale Information eingesetzt, wobei sowohl Patchkorrespondenzen, als auch
Farbinformationen in nachfolgende Bilder propagiert werden. Des Weiteren wird die im Be-
reich der Stereoskopie vorhandene Tiefeninformationen einbezogen, um die Einmengung von
Farbanteilen des Vordergrundes in die Inpainting-Ergebnisse zu unterdrücken. Um zusätzlich
den Einfluss von Artefakten aufgrund von Ungenauigkeiten in den Tiefenkarten zu reduzieren,
werden verschiedene Verbesserungen, wie unilaterale Dilatation, adpative Patchgrößen und ein
Übereinstimmungsschwellwert, vorgestellt. Eine umfangreiche Evaluierung mittels objektiver
Qualitätsmetriken und einer subjektiven Benutzerstudie zeigt, dass die mit Hilfe der räumli-
chen und zeitlichen Erweiterungen erhaltenen Ergebnisse des vorgestellten Bild- und Video-
vervollständigunsansatzes jene bestehender Inpainting-Werkzeuge, wie das im professionellen
Bildbearbeitungsprogramm Adobe Photoshop vorhandene “Inhaltssensitive Füllen”, an Qualität
übertreffen.
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CHAPTER 1
Introduction

1.1 Motivation

Recently, the broad acceptance and the commercial success of movies like “Avatar” have paved
the way for Three-Dimensional (3D) visual technologies – and consequently for 3D devices
including LCD/LED displays, cameras, laptops, tablets, mobile phones and portable game con-
soles – to the consumer market. Moreover, Three-Dimensional TeleVision (3DTV) has become
a highly active area of research in the computer vision community over the last years, as it
is believed to be the future of television broadcasting that brings a more life-like and visually
immersive home entertainment experience to the user [CLL11; SA12].

According to the binocular human visual system, traditional stereoscopic frameworks deliver
distinct image contents to each eye of the observer with the assistance of e.g. anaglyph, shutter or
polarized glasses. Particularly, the individual images seen by the left and right eye are combined
by the brain to form a single 3D percept, where the difference in image location of an object
between the left and the right view, named as parallax or disparity, is utilized to extract depth
information from the Two-Dimensional (2D) images. However, in general these systems only
provide a single perspective onto the scene. Thus, especially Free-viewpoint TeleVision (FTV)
and Free-Viewpoint Video (FVV), which allow users to interactively navigate through a scene
in order to choose a different perspective as well as autostereoscopic displays that provide 3D
perception from distinct viewpoints to multiple observers without the need for special glasses,
have increasingly attracted interest [DP10; AK12].

However, capturing and broadcasting arbitrary viewpoints for e.g. FTV would require an
unrealistic number of cameras, extremely complex coding, and expensive processors, since each
individual perspective in a stereoscopic video requires two input streams according to the left
and right camera view [SA12]. Hence, a common approach based on a standard two-camera
stereo setup is to synthesize virtual viewpoints using Depth Image Based Rendering (DIBR).
Particularly, starting from a single reference view and its corresponding depth or disparity map
– named as 2D-plus-depth or video-plus-depth representation – additional perspectives are ren-
dered through 3D image warping and intermediate angles are interpolated afterwards. This
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enables the synthesis of a flexible number of views, which allows to account for advances in 3D
display technologies.

Additionally, the conversion of available 2D content for rerelease in 3D is a highly important
topic for content providers and for the success of 3D videos in general. It naturally completely
relies on virtual view synthesis of a second view given the original 2D video [SKK+11]. Several
formats of 3D video data representations like Layered Depth Video (LDV) [MSD+08] and Mul-
tiview Video-plus-Depth (MVD) [SMD+08] have been proposed that provide one full central
view and residual texture and depth information to generate additional side perspectives by view
synthesis. Consequently, this leads to only a limited bandwidth increase for the transmission of
3D videos compared to 2D content.

A simple approach to calculate the new viewpoints without requiring 3D rendering or 3D
representation is the so-called disparity morphing as proposed by Alessandrini et al. [ABP09].
As can be seen in Figure 1.1, if the images are aligned to be coplanar, corresponding pixels lie
on the same scanline in both images. Hence, assuming that, due to image rectification based on
epipolar constraints, solely horizontal parallax information is used to create the 3D impression,
the aim is to shift the initial horizontal pixel position p0 proportionally to its disparity (or inverse
depth value1):

ps = p0 + s(dp0 − δ) , (1.1)

Figure 1.1: Epipolar geometry of a rectified image pair I and I’, where C and C’ represent the
centers of projection of the two cameras and x and x’ are the projections of the object point X

onto the image planes. Since all epipolar lines are horizontal and parallel, corresponding points
lie on the same scanline [B11].

1Note that disparity and depth are inversely proportional.

2



where dp0 is the disparity of the pixel p0, s a control parameter corresponding to the distance
between virtual camera positions and δ the convergence point control parameter, which deter-
mines the amount of the disparity offset. As stated in [ABP09], this produces the following
stereoscopic effects:

1. d > δ : Point appears behind the screen plane

2. d = δ : Point appears on the screen plane

3. d < δ : Point appears in front of the screen plane

The color value at position ps in the novel view is equivalent to the color value at the corre-
sponding position p0 in the original view.

1.2 Problem description

Two related problems that arise when generating virtual views are occlusions and disocclusions.
Occlusions occur when different pixel positions p0, . . . , pn in the reference view are projected
onto the same position ps in the virtual view. On the other hand, disocclusions denote areas that
are uncovered in the newly synthesized perspective as schematically illustrated in Figure 1.2.
As can be seen, in a standard two-camera stereo setup, disocclusions appear particularly at the
synthesis of extrapolated viewpoints, since missing information in intermediate views, i.e. along

Figure 1.2: Uncovered areas (disocclusions) due to extrapolated virtual camera views [KWD+12].
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the baseline axis between the left and right camera, can be interpolated by fusing available
information from both camera images according to depth reliability maps [LLL+12].
Hence, while occlusions can be simply resolved by comparing the disparity values of overlap-
ping pixels2 – as pixels of foreground objects occlude those of the background – disocclusions
pose a crucial problem in the wake of virtual view synthesis. In particular, there are two main
reasons for the appearance of disocclusions:

1. Areas that are occluded in the original view and have become visible in the virtual view
(“depth holes”)

2. Areas that become visible in the altered field of view of the virtual camera
(“border holes”)

Figure 1.3 shows the occurrence of border and depth holes in an example image. As can be seen
by the gap along the boundary of the character, disocclusions primarily occur at sharp depth dis-
continuities between foreground and background, since the virtual view allows to “look behind”
the foreground object to see information in the background that is occluded in the original view.
Besides disocclusions, which typically induce larger uncovered areas relative to the length of the
baseline, inaccuracies in the depth estimation process as well as pixel position quantization after
the warping step lead to additional cracks and small holes in the rendered images (“warping
artifacts”) [SMD+08].

1.3 Aim of the work

To avoid the appearance of disocclusions – and consequently that of holes – in virtual view syn-
thesis, one common approach is to preprocess the depth maps. In particular, prior to the warping
stage, a low-pass filter is applied to smooth depth data across the edges and thus lowering the
depth gradients in the virtual view [ZT05; VTS06]. However, smooth transitions in the depth
map introduce distortion in the scene geometry and diminish the depth resolution contained in
the rendered stereoscopic view, which results in an impairment of the overall 3D impression.

An alternative approach is to fill in the newly exposed areas in the synthesized views using
digital inpainting techniques. In general, image inpainting, also known as image completion,
is the recovery of missing or corrupted parts of an image in a given target region Ω, so that
the reconstructed frame looks natural. It has become a standard tool in digital photography for
image retouching and intensive research is under way to convert digital inpainting into a key tool
for video and 3D cinema post-production [C11]. Additionally, as displays with 50 views and
more are expected in a few years which require larger baseline rendering, digital inpainting has
turned out to be a promising approach to remedy the disocclusion problem [NKD+11].

In this thesis, the problem of filling disocclusions in the field of stereoscopic images and 3D
videos is addressed. To synthesize visually plausible content in the disoccluded regions of the
virtual views, the usage of PatchMatch [BSF+09; BSG+10] in a DIBR framework is investi-
gated, which depicts a randomized algorithm for quickly finding approximate nearest-neighbor

2The effect of this process is comparable to a Z-buffer in the field of computer graphics that keeps the pixels of
smallest depth (or greatest disparity) when an occlusion appears [ABP09].
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(a) Original view

(b) Virtual view

Figure 1.3: Pseudo-3D representation of a sample image showing the occurrence of depth
(marked in red) and border holes (marked in blue) as the viewpoint changes.
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correspondences between image patches. Based on a standard 2D-plus-depth setup, i.e. a sin-
gle view and its associated disparity map3, an exemplar-based inpainting approach is proposed,
which incorporates the supplementary depth information that is available in a stereoscopic en-
vironment. Besides the usage of spatial information, also the temporal component of videos is
considered to avoid flickering artifacts by providing consistent inpainting results.

1.4 Structure of the work

The rest of this thesis is organized as follows:

• Chapter 2 provides a comprehensive literature survey on digital image and video comple-
tion approaches including different techniques for the determination of nearest-neighbor
correspondences, which denotes the core element of every exemplar-based inpainting
method. Additionally, the related works considering the problem of filling disocclusions
in a DIBR framework are reviewed.

• Chapter 3 introduces the proposed hole filling approach. Starting from the original Patch-
Match algorithm of Barnes et al., which constitutes the foundation of the proposed frame-
work, the drawbacks of their patch matching method are analyzed and several enhance-
ments are presented. These enhancements comprise additional preprocessing steps, adap-
tive patch sizes, a matching threshold, as well as depth-based and temporal extensions.
The two inpainting approaches used for evaluation – Adobe R©’s content-aware fill and
horizontal background replication – are elucidated in addition.

• Chapter 4 presents the evaluation results. After the chosen dataset and the implemen-
tation details are discussed, the different enhancement stages of the proposed inpainting
framework are compared to the aforementioned image completion approaches. To eval-
uate both the depth-based and the temporal extensions of the presented framework, the
inpainting methods are applied to still images and video sequences. Moreover, the evalu-
ation of the inpainting techniques is conducted with objective quality metrics as well as a
subjective user study.

• Chapter 5 concludes this thesis and provides an outlook on future work.

3In this thesis, the disparity maps are calculated by an adapted version of the stereo correspondence algorithm
proposed in [BG08].
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CHAPTER 2
State of the Art

In the field of computer vision, inpainting – also referred to as infilling or completion – is the
process of filling missing data into a designated region of a still or video image, in such a manner
that an observer cannot detect the restored parts [BBS01]. This chapter presents an overview of
significant scientific papers in the area of image and video completion. Furthermore, the related
works considering the problem of filling disocclusion in a DIBR framework are addressed,
together with the nearest-neighbor correspondence search, which denotes an essential part of
exemplar-based infilling approaches.

2.1 Image inpainting

Most inpainting methods found in the literature can be classified into two groups: geometry-
and texture-oriented methods [AFC+11]. Geometrical – also named as structural – inpainting
reconstructs using prior assumptions about the smoothness of structures in missing regions and
boundary conditions, while textural – also referred to as exemplar-based – inpainting considers
only available data from texture exemplars or other templates in non-missing regions [DP10].
Several notable works of these two categories are subsequently discussed.

2.1.1 Structural approaches

In 2000, Bertalmio et al. [BSC+00] first coined the terminology image inpainting in the context
of digital image processing. Attempting to imitate the basic techniques used by professional
paintings conservators, the main idea behind their algorithm is to continue the lines and struc-
tures that surround the vacant region into the hole. In particular, both the geometric (gradient
direction) and the photometric (gray values) information is propagated inside the target region
along the direction of the isophotes, which correspond to lines of equal gray values as illustrated
in Figure 2.1. For an image I , this is achieved by numerically solving the following high-order
Partial Differential Equation (PDE) (t is an artificial time marching parameter):
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Figure 2.1: Example of a possible connection of isophotes at the restored region [KK03].

∂I

∂t
= ∇(∆I) · ∇⊥ , (2.1)

where ∇,∆, and ∇⊥ denote the gradient, Laplacian and orthogonal-gradient (isophote direc-
tion)1, respectively. At steady state ∂I

∂t
= 0, ∆I is constant along the direction ∇⊥ of the

isophotes, thereby achieving a smooth continuation of the Laplacian inside the region to be
inpainted [BVS+03]. In [BBS01], the relationship of the above equation with classical fluid
dynamics is shown and a different flow according to the Navier-Stokes equation is presented to
achieve the steady state.

Inspired by the work of Bertalmio et al., Chan and Shen [CS00] proposed the Total Varia-
tional (TV) model using an Euler-Lagrange equation coupled with anisotropic diffusion [PM90]
to maintain the isophotes direction. The major drawback of the TV inpainting model is that it
does not connect broken edges when the disconnected remaining parts are separated far apart by
the inpainting domain. Thus, to allow inpainting to proceed over larger regions, Chan and Shen
[CS01] extended the TV model to Curvature Driven Diffusion (CDD), which takes the geomet-
ric information of isophotes into account when defining the strength of the diffusion process.

However, all of the above mentioned inpainting algorithms are very time consuming and fast
numerical implementations are difficult to achieve [CS01]. A notable improvement of PDE-
based infilling approaches was introduced by Telea [T04], who uses the Fast Marching Method
(FMM) [S95] to propagate the image information. Moreover, Oliveira et al. [OBM+01] pro-
posed a fast convolution-based inpainting algorithm according to isotropic diffusion, where the
regions to be filled are repetitively convolved with a predefined kernel. This method is em-
ployed as an additional processing step in the proposed image completion framework and will
be discussed in detail in Section 3.4.2.

1Note that the isophote direction ∇
⊥ indicates the direction of the smallest change.
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(a) Input image (b) Inpainting result

Figure 2.2: Restoration of an old photograph using the structural inpainting approach
of Bertalmio et al. [BSC+00].

Since structural inpainting approaches are mainly designed for applications such as image
denoising and restoration to e.g. remove overlaid text or cracks of damaged photographs, as
shown in Figure 2.2, these methods are suitable for completing small, non-textured target re-
gions. Thus, another drawback of these PDE-based algorithms is that they produce heavily
blurred inpainting results caused by the diffusion process as the gaps become larger or are situ-
ated in highly textured areas, where the restoration of linear structures fails.

2.1.2 Exemplar-based approaches

Geometry-oriented methods are local in the sense that the associated PDEs only involve inter-
actions between neighboring pixels on the image grid. An implication of this is that among
all the data available in the image, they only use that around the boundary of the inpainting
domain [AFC+11]. In contrast, texture-oriented inpainting approaches synthesize the visual in-
formation in the missing regions using the best matching windows – also named as patches,
exemplars or fragments – from the remaining known portions of the entire image. The similarity
of these patches is measured by certain patch distance metrics.

In the pioneer work of Efros and Leung [EL99], texture is modeled as a Markov Random
Field (MRF) assuming that the probability distribution of brightness values for a pixel given the
brightness values of its spatial neighborhood is independent of the rest of the image. The neigh-
borhood is defined as a squared window around that patch, and corresponding samples of the
desired texture are directly employed to perform the synthesis. However, a major deficit of their
method is its computational cost as the texture synthesis is done pixel-by-pixel. An overview
of Efros and Leung’s algorithm is given in Figure 2.3. Although their method was initially in-
tended for texture synthesis, it has laid the foundation of several exemplar-based approaches by
exploiting the self-similarity characteristic of natural images and has proven most effective for
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Figure 2.3: Algorithm overview of Efros and Leung. Given a sample texture image (left), a new
image is being synthesized one pixel at a time (right). To synthesize a pixel, the algorithm first
finds all neighborhoods in the sample image (boxes on the left) that are similar to the pixel’s
neighborhood (box on the right) and then randomly chooses one neighborhood and takes its
center to be the newly synthesized pixel [EL99].

the inpainting problem [C11].
For instance, Jia and Tang [JT03] segmented an image into several regions based on its color

texture features and then inpainted each region individually. Given a neighborhood window of
size n×n centered at a pixel p, this patch is transformed into a stick tensor by producing a feature
vector of dimension N = n · n + 1 in lexicographical ordering. The matching between corre-
sponding feature vectors is translated into tensor voting for a straight line2 in the N -dimensional
space to account for color consistency. Drori et al. [DCY03] proposed a fragment-based im-
age inpainting algorithm that iteratively adds details to the target region by composing adaptive
fragments. A confidence map is used for comparing and selecting pairs of circular fragments,
which determines how much confidence to place in image information at each pixel as new in-
formation is generated during the course of the algorithm. However, the computation time for
these algorithms is impracticable, e.g. for the latter approach it takes more than two hours for a
384× 256 image on a 2.4 GHz processor to accomplish the completion process [DCY03].

Exemplar-based methods provide impressive results in recovering textures and repetitive
structures when enough samples are provided to synthesize the desired image, but their ability to
recreate the geometry is limited [AFC+11]. Hence, Criminisi et al. [CPT03] presented a novel
algorithm that builds on the work of Bertalmio et al. [BVS+03] by combining the strengths
of both PDE-based image inpainting and non-parametric texture synthesis. Moreover, they
demonstrated that the quality of the inpainting result is highly influenced by the order in which
the completion is processed. In contrast to the default favorite “onion peel” method where
the target region is synthesized in concentric layers from the outside inward, Criminisi et al.
formulated the priority P (p) of a patch Ψp centered at a point p, where p is located at the hole
boundary δΩ, as the product of two terms:

2This line defines a family of hyperplanes which are voted for by N -dimensional tensor voting.
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P (p) = C(p) ·D(p) . (2.2)

C(p) is called the confidence term that indicates the reliability of the current patch, and D(p)
denotes the data term that gives special priority to the isophote direction. These are defined as
follows:

C(p) =
1

|Ψp|
∑

q∈Ψp∩Φ

C(q) , D(p) =

〈

∇I⊥
p
,np

〉

α
, (2.3)

where |Ψp| is the area of Ψp (i.e. the number of pixels), α is a normalization factor (e.g. α = 255
for a typical gray-level image), np is a unit vector orthogonal to the boundary δΩ in the point p
and∇⊥ = (−∂y, ∂x) is the direction of the isophote. During initialization, the confidence C(q)
of valid pixels q ∈ Φ is set to 1. Once all priorities on the hole boundary have been computed
and the patch Ψp̂ with the highest priority is found, the exemplar in the source region which is
most similar to Ψp̂ under a given patch distance metric is determined. The corresponding source
patch is then copied into the position occupied by Ψp̂ and the confidence C(p) in this area is
updated.

Figure 2.4 illustrates these algorithmic steps, which are repeated until the hole is completely
filled. Since entire patches are copied instead of single pixels, this method attained a consid-
erable speed-up compared to previous exemplar-based approaches, but the exhaustive search to
determine the best candidate exemplars is still computationally expensive. Another drawback
is the need to manually select the patch size, which is an important aspect that contributes to
the overall quality of the inpainting result. The patch size must be chosen carefully to reflect
the underlying characteristic of the image [M10], as too small patches are not able to capture

(a) (b) (c) (d)

Figure 2.4: Structure propagation by exemplar-based texture synthesis. (a) Original image, with
the target region Ω, its contour δΩ and the source region Φ clearly marked. (b) We want to
synthesize the area delimited by the patch Ψp centered on the point p ∈ δΩ, np is the normal to
δΩ and∇I⊥

p
is the isophote. (c) The most likely candidate matches for Ψp lie along the boundary

between the two textures in the source region, e.g. Ψq
′ and Ψq

′′ . The best matching patch in the
candidates set has been copied into the position occupied by Ψp, thus achieving partial filling of
Ω. The target region Ω has now shrunk and its boundary has assumed a different shape [CPT03].
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the texture, whereas to large fragments may exhibit redundant information. Moreover, Criminisi
et al. noted that their algorithm encounters some difficulties in reconstructing curved structures.

Comprehensive surveys of digital image inpainting techniques are given in [F08; SSB11;
JJ12; MV12; RPM+13].

2.2 Nearest-neighbor search

The core element of every exemplar-based inpainting approach – as well as the most time con-
suming processing step – is the search for correspondences of patches in the target region and
their most similar exemplars in the remaining image portions, known as the Nearest-Neighbor
Search (NNS). Since the number of patches in an image is in the millions, so-called Approximate
Nearest-Neighbor (ANN) algorithms are developed that exhibit only a minor loss in accuracy.
To further increase the efficiency of NNS algorithms, various methods have been proposed us-
ing tree-based data structures, such as kd-trees [B75] and Tree Structured Vector Quantization
(TSVQ) [WL00], which are often coupled with dimensionality reduction methods like Principal
Component Analysis (PCA). Although these approaches have the advantage to reduce the num-
ber of search candidates due to their tree-structured organization of the information, they may
not be appropriate for large-scale data, since the construction of such data structures typically
takes significant time and requires large memory space [KR02; HHA12].

A different strategy was pursued by Ashikhmin [A01], who introduced a local propagation
technique based on the coherent structure of images. In his texture synthesis process, the search
space for a patch was limited to the source locations of its neighbors in the exemplar texture.
This method was extended to k-coherence search in [TZL02] by caching the k nearest-neighbors
of each patch as a preprocessing step. Although this accelerates the search phase, k-coherence
still requires a full NNS for all pixels in the input, and has only been demonstrated in the context
of texture synthesis [BSF+09]. Inspired by these works, Barnes et al. [BSF+09] proposed a novel
approach, termed PatchMatch, that outperformed predominant tree-structured approaches by at
least one order of magnitude, establishing image editing applications to run at interactive rates.
Their algorithm and its generalized version [BSG+10] exploit the natural structure of images by
propagating good matches to nearby patches. Additionally, a subsequent random search step is
employed to prevent the algorithm from being trapped in local minima. PatchMatch constitutes
the basis of the proposed image completion framework and is discussed in detail in Section 3.1.

It is worth noting that recently several adaptations of the PatchMatch algorithm have been
presented. In [RB12], a low-dimensional version thereof was introduced that reduces the dimen-
sions of an image patch to a set of low-level features. Korman and Avidan proposed Coherency
Sensitive Hashing (CSH) [KA11], where the random search step of PatchMatch was replaced
by a hashing scheme based on the same principle as Locality Sensitive Hashing (LSH) [IM98].
Olonetsky and Avidan [OA12] combined the PatchMatch approach with kd-trees and decreased
the computational cost in the propagation stage by exploiting the overlap of adjacent patches
using integral images [VJ01].
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2.3 Video inpainting

A straightforward extension of digital image inpainting to the field of video inpainting is to treat
the underlying video data as a set of distinct frames and apply the existing image inpainting
algorithms to them individually [M10]. For instance, Bertalmio et al. [BBS01] performed their
PDE-based inpainting approach on a frame-wise basis by continuously propagating isophote
lines from the hole boundaries, as elucidated in Section 2.1.1.

However, this strategy of employing image inpainting algorithms directly to video data does
not take full advantage of the high temporal correlation that exists in video sequences. Conse-
quently, this will cause undesirable artifacts in the inpainting result as only the spatial consisten-
cies within a frame are considered. Since video inpainting approaches typically need to cover
a considerably greater number of pixels and also the search space for finding patch correspon-
dences in exemplar-based approaches is substantially larger, video inpainting is often considered
as a much more challenging problem compared to image inpainting. Although the amount of
work proposed in video completion is comparatively smaller than that of image inpainting, sev-
eral notable methods have been presented in the recent years [M10; APS12].

Patwardhan et al. [PSB05] adapted the priority-driven image inpainting technique of Cri-
minisi et al. to video sequences. After segmenting the input sequence into moving foreground
objects and static background using optical flow, holes in the background layer are completed
by directly copying available temporal information in the unimpaired frames. The remaining
vacant regions of the background are then filled in by finding the highest priority location and
propagating the best matching patch to all frames in order to maintain a consistent background
throughout the sequence. Moreover, missing information of the foreground object is completed
by copying only the moving part of the corresponding patch according to a priority based ap-
proach. As stated in [M10], while being effective in completing weakly-structured regions, this
method, like its image inpainting counterpart, is susceptible to providing inconsistent infilling
results already at a small number of incorrect patch correspondences. Additionally, their solution
is not suitable for arbitrary camera motion.

In [GS11], Ghanbari and Soryani presented a contour-based video inpainting approach. Sim-
ilar to Patwardhan et al. [PSB05], the moving foreground and the stationary background are first
separated, but in this method via background subtraction according to a Gaussian Mixture Model
(GMM) [WAD+97]. To complete the moving foreground, bounding boxes of the non-occluded
foreground object are determined in all frames, which are then aligned to acquire a mosaic im-
age, as shown in Figure 2.5. To select the most suitable patch, which is considered to be large
enough to enclose an object entirely, the absolute difference between the contours of all com-
plete patches and the object right before the hole is calculated. Finally, the inpainting is done
using the exemplar-based approach of Criminisi et al. However, this video inpainting method
assumes a static background and periodic motion of the foreground object without any changes
in scale.

Wexler et al. [WSI07] proposed a prominent video completion algorithm that applies a global
optimization strategy. In their work, 3-dimensional spatio-temporal patches are sampled from
different parts of the video sequence to complete the missing video portions. In particular, global
consistency is obtained by enforcing an objective function which demands that all overlapping
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(a)

(b)

Figure 2.5: Mosaic image of (a) non-occluded foreground objects and (b) corresponding con-
tours [GS11].

patches in the vicinity of a space-time point agree on its color value, as illustrated in Figure 2.6.
Though both spatial and temporal information are handled simultaneously, the multi-scale nature
of the solution may lead to blurry results [APS12; AD13]. As their approach has also been
partially included in the content-aware fill of the commercial image editing program Adobe R©

Photoshop R©, which is used for evaluation in this thesis, the non-temporal aspects of this method
will be discussed in detail in Section 3.10.2.

Besides patch-based methods, the second type of digital video inpainting algorithms is de-
noted as object-based approaches. For instance, Jia et al. [JTW06] employ a user-assisted video

(a) (b) (c)

Figure 2.6: Local and global space-time consistency. (a) Enforcement of the global objective
function of Equation 3.12 requires coherence of all space-time patches encompassing the point
p. (b) Such coherence leads to a globally correct solution. The true trajectory of the moving
object is marked in red and is correctly recovered. When only local constraints are used and
no global consistency is enforced, the resulting completion leads to inconsistencies (c). The
background figure is wrongly recovered twice with wrong motion trajectories [WSI07].
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segmentation that decomposes a target video into color and illumination layers. The periodicity
of structured moving objects – so-called movels – is sampled and aligned with partially damaged
movels to complete missing foreground regions. Here, a 3-dimensional tensor voting technique
is used to maintain the consistency in both the spatio-temporal and the illumination domain.
However, this approach is limited to objects that exhibit cyclic motions and requires an impor-
tant amount of user interaction, as the user has to manually draw the boundaries of the different
depth layers of the sequence. Cheung et al. [CZV06] use object templates extracted at other time
instances as candidates for interpolating the missing foreground information. To ensure contin-
uous motion of these foreground objects, a cost function based on the dissimilarity between
successive templates and actual objects is minimized. However, the results are unsatisfactory if
the number of postures is insufficient. To account for this problem, Ling et al. [LLL+11] utilize
a posture synthesis process that combines the constituent parts of different available poses to
enrich the contents of a posture database. A graphical model is constructed that predicts the
motion tendency by projecting all postures onto a feature space according to a shape context
descriptor. Based on this model, suitable poses are obtained to replace damaged or missing pos-
tures by finding an approximate path that links data points in this low-dimensional manifold.
Finally, a MRF model is applied to compute an overall best solution, and the potential trajectory
with the maximum total probability is taken as the final result. However, as in all object based
algorithms, if the object segmentation is not done accurately it will lead to visually unpleasant
artifacts.

Surveys of digital video inpainting techniques are presented in [APS12; AD13].

2.4 Disocclusion filling

This thesis addresses the problem of disocclusions in the field of DIBR that occurs when regions
covered by foreground objects in the original view are disclosed in the synthesized virtual views.
Since the filling of disocclusions can be viewed as a particular area of image and video com-
pletion [TLD07], various well-established inpainting approaches have been adopted to provide
realistic content in the disoccluded regions. The most prominent example in this regard is the
method of Criminisi et al., which was extended in several works by taking the available depth
information into account. Daribo and Pesquet-Popescu [DP10] first introduced an additional
depth term D(p) in the priority calculation (cf. Equation 2.2):

P (p) = C(p) ·D(p) · L(p) , (2.4)

where L(p) is the level regularity term, which favors the inpainting of background pixels over
foreground ones. L(p) is defined as the inverse variance of the depth patch Zp:

L(p) =
|Zp|

|Zp|+
∑

q∈Zp∩Φ

(

Zp(q)− Zp

)2 , (2.5)

where |Zp| is the area (i.e. the number of pixels) of the depth patch Zp centered at p, Zp(q) is
the depth value at the pixel location q in the source region Φ under Zp and Zp the mean value

15



of pixels in Zp. Similar approaches including data terms based on structure tensors and CCD
have been presented in [CLL11; AK12; CLH12; MOS13].

Furthermore, Vázquez et al. [VTS06] proposed a set of fast and simple techniques for dis-
occlusion inpainting. For instance, constant color filling denotes a method to complete a hole
with a unique and constant color by averaging the color values at the hole boundary according to
a 4-connected neighborhood. Another approach is mentioned that horizontally interpolates the
information of the hole boundary, thus foreground and background objects are fused together to
fill the gaps caused by depth discontinuities. In contrast, horizontal extrapolation takes the depth
information into account to avoid foreground information in the filling process of the holes. Par-
ticularly, the values of pixels on the boundary that belong to objects of the local background are
extrapolated to synthesize the missing information. A similar approach is revisited in [ESG12],
but instead of using a single color value at each scanline, the vacant areas are completed by repli-
cating small portions of the adjacent background regions. This method is used for evaluation in
this thesis and will be elucidated in detail in Section 3.10.1.

Moreover, several video inpainting approaches have been presented in the field of stereo
vision. In [KND+10] and [KWD+12], the problem of disocclusion is tackled by continuously
updating a so-called background sprite, which stores the background information of previous
frames and by image registration of subsequent frames to compensate global background motion
between temporally neighboring frames, respectively. Schmeing and Jiang [SJ10] used back-
ground subtraction to segment each frame into background and foreground assuming a static
camera setup. In order to minimize spatial and stereo discrepancies, Raimbault et al. [RPK12]
reconstructed motion and inter-frame disparity vectors as guides for finding appropriate example
source patches from different portions of the video sequence. However, like the majority of con-
ventional video inpainting techniques, also stereo-vision-related methods mainly use common
image completion approaches to fill the remaining holes.

Recently, stereoscopic image inpainting approaches which utilize PatchMatch-based corre-
spondences search have been presented in [MHC+12] and [HBG11]. Morse et al. [MHC+12]
extended their patch distance metric to encourage stereo consistency by penalizing patches that
exhibit visual dissimilarity at the relevant disparity. In addition, they explicitly allow the match-
ing of patches across stereo image pairs to provide a richer set of source patches. However,
this kind of information does not exist in a 2D-plus-depth setup as considered in this thesis,
where only a single image frame and its corresponding depth map are provided as input. A
method according to the proposed framework has been presented by He et al. [HBG11], where
the PatchMatch algorithm is adapted to include the additional depth information for the purpose
of object removal. However, the authors use the original disparity values (before object removal)
as depth constraints, which are not available in a free-viewpoint environment, as discussed in
Section 3.7.
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CHAPTER 3
Algorithm and Implementation

This chapter gives a step-by-step overview of the developed digital inpainting approach. Starting
from the initial PatchMatch algorithm of Barnes et al. [BSF+09], which constitutes the founda-
tion of the proposed framework, the drawbacks of their patch matching method are analyzed
and several adaptations and refinements thereof are presented. These adaptations comprise ad-
ditional preprocessing steps, adaptive patch sizes, a matching threshold, as well as depth-based
and temporal extensions. Further algorithmic refinements covering the patch distance metric,
the choice of the color space and the actual pixel color synthesis are discussed in addition. Fi-
nally, the two additional inpainting approaches used for evaluation, Adobe R©’s content-aware
fill” available since Photoshop R© CS5 and a horizontal background replication, are elucidated.

3.1 PatchMatch

Figure 3.1:
Nearest-neighbor
field [BSF+09].

In 2009, Barnes et al. [BSF+09] proposed an efficient method to address
the problem of finding correspondences between disjoint image regions,
named PatchMatch. In their approach, for every l × l squared window
– also referred to as a patch or a fragment – in the target image A, the
task is to find the approximate nearest neighbor patch in the reference
image B under a specific patch distance metric. This mapping is called
a Nearest-Neighbor Field (NNF), which is schematically illustrated in
Figure 3.1.

In their work, a NNF is a function f : A 7−→ R
2 of offsets, defined

over all possible patch coordinates (locations of patch centers) in image
A, for some distance function D between two patches. Given patch co-
ordinate a = (xa, ya) in image A and its corresponding Nearest Neigh-
bor (NN) b = (xb, yb) in image B, f(a) is simply b − a. In contrast
to this formulation of function f using relative coordinates (offsets), the
mapping can likewise be specified in an absolute manner (cf. [BSG+10]).
In this case, the output of f(a) reduces to b.
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(a) Initialization (b) Propagation (c) Search

Figure 3.2: Phases of the randomized NN algorithm: (a) patches initially have random assign-
ments; (b) the blue patch checks above (green) and left (red) neighbors to see if they will improve
the blue mapping, propagating good matches; (c) the patch searches randomly for improvements
in a concentric neighborhood [BSF+09].

Since approaching the problem of determining a NNF with a naïve brute force search is
computationally expensive, i.e.O(mM2) for image regions and patches of size M and m pixels,
the randomized algorithm of Barnes et al. performs an iterative process of improving the NNF
f until convergence. The key insights that motivated their approach for finding these so-called
Approximate Nearest-Neighbor Fields (ANNF) are that adjacent offsets search cooperatively
and that even a random offset is likely to be a good guess for many patches over a large image.
Figure 3.2 summarizes the three main components of their algorithm:

• Initialization

• Propagation

• Search

Initially, the ANNF is either filled with random coordinates uniformly sampled across im-
age B or by using prior information. After initialization, the algorithm works by iteratively
improving the ANNF, where each iteration proceeds as follows: Offsets are examined in scan
order (from left to right, top to bottom) and each offset undergoes propagation followed by
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random search. These operations are interleaved at the patch level: if Pj and Sj denote, re-
spectively, propagation and random search at patch j, then the processing order is given by:
P1, S1, P2, S2, . . . Pn, Sn.

The propagation step attempts to improve the offset f(a) of a NN using the known offset of
adjacent neighbors above or to the left (see Figure 3.2(b)). Hence, the new possible candidates
for f(a) are f(a − v), where v denotes a field vector taking on the values of (1, 0) and (0, 1),
respectively. In particular, let D(v) denote the patch distance (error) between the patch at (x, y)
in A and patch (x, y) + v in B. The new value for f(x, y) is obtained as the arg min of
{D(f(x, y)), D(f(x− 1, y)), D(f(x, y − 1))}. The effect is that if (x, y) has a correct mapping
and is in a coherent region R, then all of R below and to the right of (x, y) will be filled with
the correct mapping. Moreover, on even iterations propagation is done in reverse scan order, and
candidates below and to the right are examined, so information propagates up and left.

Propagation converges very quickly, but if it is used alone it might end up in a local mini-
mum. Therefore, the second step of each iteration utilizes random search by testing a sequence
of candidate offsets at an exponentially decreasing distance. Let v0 = f(x, y), the candidate
offset ui is defined as follows:

ui = v0 + wαiRi , (3.1)

where Ri is a uniform random value in [−1, 1]×[−1, 1], w is a large maximum search radius, and
α is a fixed ratio between search window sizes. The index i is increased from i = 0, 1, 2, . . . , n
until the search radius wαi is below 1 pixel. Barnes et al. [BSF+09] set w to the maximum
image dimension, and α = 1

2 .

3.2 Hole filling using initial PatchMatch

Figure 3.3: Source and target regions in the inpainting process: Ω denotes the target region
(“hole”) to be filled and δΩ its boundary. The source region is indicated by Φ, which provides
samples used in the inpainting process. For every pixel location p (shown as small squares in
blue and orange) in the hole region, the associated target patch Ψp (square with solid lines) is
mapped to a source patch Ψq (square with dashed lines), which contains valid visual information.
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Now, using the work of Barnes et al. as the instrument for finding patch correspondences, the
initially proposed PatchMatch algorithm is applied to the area of image inpainting. For the sake
of comprehensibility, the formalism of the inpainting problem as briefly discussed in Section 2
is recapped, where the notation similar to that used in the inpainting literature is adopted for
the ease of comparison: Let I be an input image and Ω ⊆ I a “hole” to be filled, called the
target region. That is, Ω denotes all the missing pixels within I . Additionally, the source region
Φ, which remains fixed throughout the algorithm, provides samples used in the filling process.
Typically, Φ = I \ Ω, so the remaining image portions outside the hole are used to fill in the
blank regions. Note that this means that the target image and the reference image coincide. The
goal is now to complete the missing region Ω with some new data so that the resulting images
will be visually coherent. In Figure 3.3, source and target regions as well as source and target
patches are schematically illustrated.

Figure 3.4: Workflow of PatchMatch-based image completion using onetime inpainting.

Figure 3.4 visualizes the overall workflow of the proposed image completion system: After
the pixels in the hole areas are initialized with random NN locations, several iterations com-
prising propagation and random search are employed to improve these patch correspondences.
Here, the Sum of Squared Differences (SSD) is employed as the patch distance metric:

D(Ψp,Ψq) =
∑

(x,y)

‖Ψp(x, y)−Ψq(x, y)‖22 , (3.2)

where (x, y) denotes every pixel location within the target patch Ψp and the source patch Ψq,
respectively. Finally, the target regions of the image are actually filled by averaging the color
values of overlapping patches at each pixel position. In the proposed framework the inpainting
step is only performed once at the end of the image completion chain. In other words, the ANNF
is solely built on already present visual information of the source region, which is equivalent to
putting no confidence into newly synthesized image data. The advantages of this approach are
twofold: since the actual inpainting stage is conducted only one time, the overall computation
time is reduced. Additionally, the risk of leading the inpainting process in an inauspicious
direction due to poorly initialized patch correspondences is avoided. However, once an empty
pixel is filled up there is no chance to modify the color even when obvious conflicts among
neighboring pixels appear later.
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(a) Input color image (b) Disocclusion mask

Figure 3.5: System input comprising color image and corresponding disocclusion mask. Here,
black image borders are added to visualize the delimitation of the figures (see margin on the
left).

The proposed inpainting system takes a 4-channel ARGB color image as input, where the
alpha channel A indicates the existing holes in the scene. In Figure 3.5, three suchlike example
input images are shown in conjunction with their corresponding disocclusion masks.

3.3 Non-occupied target patches (“Blanks”)

The resulting image completion outcomes using different patch sizes are presented in Fig-
ure 3.6(a) and Figure 3.7(a). As can be seen especially at the left edge of the images, there
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(a) Completion results (b) Holes and blanks

Figure 3.6: Image completion examples using initial PatchMatch with fixed patch size of 21 pix-
els: (a) random inpainting results in the area of blank patches (note left margin of the image); (b)
gray scale version of input image including holes, totally non-occupied patches are additionally
marked in red.

exist a large amount of inconsistencies. These inconsistencies come from image regions where
no visual information is available for the computation of the cost function, which is based on the
color similarities of matching patches. In particular, when the patch size l is smaller than the size
of Ω, there must be some totally blank patches containing no valid pixels. In Figure 3.6(b) and
Figure 3.7(b), these image regions are marked in red and are subsequently termed as “blanks”.

By comparing these two figures, it can be seen that as the patch size increases the number
of blanks reduces, which produces a coherently improved visual impression. However, since

22



(a) Completion results (b) Holes and blanks

Figure 3.7: Image completion examples using initial PatchMatch with fixed patch size of 51
pixel: (a) the amount of non-occupied patches and consequently randomness are reduced, but
blurrier inpainting results due to bigger patch sizes; (b) gray scale version of input image includ-
ing holes, totally non-occupied patches are additionally marked in red.

the range of influence increases for larger patches, each patch contributes to a higher number of
pixels in its vicinity. Consequently, the inpainting result becomes much blurrier, if overlapping
patches do not agree on the color value of an individual pixel.

Now, let us take a closer look at the scenarios that arise when considering the different filling
degrees of source and target patches, as listed in Table 3.1. Since target patches are placed at
hole regions where missing information is supposed to be filled in, they can obviously not be
completely filled. Likewise, source patches provide valid samples in the course of the inpainting
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Target

Source

Full Partial Empty

Patches

Information
levels

Table 3.1: Potential levels of information for source and target patches

process, therefore these kinds of patches cannot be vacant. Additionally, as mentioned before,
target patches may be completely empty (blanks) or – as in most cases – partially occupied.
Accordingly, source patches are entirely filled in the best case or only filled in parts.

With these scenarios in mind, the requirements for a workable image completion pipeline
can be stated as follows:

1. Matching requires a minimum number of valid corresponding pixels.

2. Inpainting requires valid pixels from source patches.

Furthermore, as the binary masks indicating valid pixels of a target and source patch are com-
bined using the logical AND operator, different overlapping scenarios of corresponding patches
occur in the matching step. As seen in the areas marked in red in Figure 3.6 and Figure 3.7, if
totally blank patches are present in the target region then no reasonable patch correspondences
can be calculated due to zero overlap. Moreover, there may arise situations where the combi-
nation of partial target as well as partial source patches also violates the first requirement (see
Figure 3.8). Hence, the only case where the combined mask is guaranteed not to be empty, is
when all entries in the source patch are valid.

To recap, whilst blanks entail a crucial drawback when considering the first requirement,
partial source patches cause problems especially in the context of the second one. Additionally,
it should be noted that the sets of pixels used for matching and inpainting are disjoint. In other
words, the set of valid pixels in a sample is composed of the matching and the infilling portion.
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Figure 3.8: Example of empty overlapping set caused by a partial source patch. Valid pixels are
marked in light gray and invalid ones are colored in dark gray. When the patches are combined to
calculate their similarity during the matching step, no information is left due to non-overlapping
positions of valid pixels.

3.4 Additional preprocessing steps

When we investigate the inpainting results in Figure 3.6 and Figure 3.7 more precisely, two other
types of problems are perceived that degrade the overall performance of the image completion
process: warping artifacts and “small” holes. These issues will be elucidated in detail in the
following subsections.

3.4.1 Single-sided mask dilation

The example images shown in Figure 3.5 are generated by warping the left image onto the posi-
tion of the right one. Consequently, artifacts caused by inaccuracies in the underlying disparity
maps are present especially at the right side of a hole region. An example of these warping arti-
facts are illustrated in Figure 3.9. As can be seen, parts of the foreground object are torn apart at
the hole periphery, here in particular the right ear of the character.

Since the determination of the ANNF is based on the color difference of corresponding
patches, these artifacts significantly impair the quality of the matching and inpainting results.
Hence, as an additional preprocessing step, several iterations1 of morphological dilation are

1Note that in this case the dilation can also be employed only one time by using a respective large mask.
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applied to the binary disocclusion mask using the following structure element E. In our system,
the number of iterations was empirically set to 7.

E =





0 0 0
1 1 0
0 0 0



 E =





0 0 0
0 1 1
0 0 0





if warped to the left if warped to the right

Figure 3.9(b) shows that after the usage of unilateral morphological dilation the aforemen-
tioned artifacts have nearly vanished. However on the downside, valid visual information gets
lost as well. Moreover, due to the growth of the hole regions, the number of pixels to be filled in-

(a) Input image snippet

(b) After dilation

Figure 3.9: Single-sided mask dilation as preprocessing step to reduce warping artifacts, where
parts of the foreground object (here: right ear) are torn apart at the hole periphery due to inaccu-
racies in the underlying disparity map.
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creases, which implies additional computation cost. Clearly, the amount of totally blank patches
rises as well.

3.4.2 Diffusion-based infilling of “small” holes

The quality of a resultant novel view crucially depends on the pixel accuracy of the underlying
disparity map, which constitutes a fundamental component during the warping stage. Thus,
minor inaccuracies in the disparity map may cause image regions to be spuriously labeled as
disocclusion, although these pixels together with their immediate neighbors are located on the
same depth level in the original view. Typically, these regions contain only a small number of
pixels compared to the full image resolution. The problem of filling such “small” holes is now
addressed as a second preprocessing step.

Since these spurious disoccluded regions are of small sizes, simpler models can be used to
locally approximate the inpainting results produced by more sophisticated ones. Consequently,
the diffusion-based algorithm of Oliveira et al. [OBM+01] is applied which is designed on the
observation that the human visual system can tolerate some amount of blurring in areas not
associated to high contrast edges [K79]. In particular, let Ω be a small area to be inpainted
and let δΩ be its boundary. Since Ω is small, the inpainting procedure can be approximated by
an isotropic diffusion process that propagates information from δΩ into Ω. It should be noted
that convolving an image with a Gaussian kernel (i.e. computing weighted averages of pixels
neighborhoods) is equivalent to isotropic diffusion characterized by the linear heat equation.
The simplest version of the algorithm consists of initializing Ω by clearing its color information
and repeatedly convolving the region to be inpainted with a diffusion kernel. Table 3.2 shows
two such kernels that only consider contribution from the neighbor pixels, i.e. it has a zero
weight at the center of the kernel [OBM+01].

a b a c c c
b 0 b c 0 c
a b a c c c

Table 3.2: Two diffusion kernels for isotropic inpainting.
a = 0.073235, b = 0.176765, c = 0.125.

In Figure 3.10(a), a section is outlined where disparity map inaccuracies occur with high
frequency. In our approach, the resulting holes are filled in the color image as well as the
corresponding disocclusion mask (see Figure 3.10(b,c)). This implies that the synthesized vi-
sual information introduced at the preprocessing stage becomes valid throughout the subsequent
matching and inpainting steps. The advantage of filling these little gaps as early as possible
in the image completion workflow are twofold: since at every matching iteration valid image
data are omitted in the construction of an ANNF, the overall processing time is reduced. Addi-
tionally, as the patch size increases, the ratio between matching and inpainting pixels becomes
imbalanced, which leads to erroneous infilling results. As can be seen in Figure 3.10(e), these
corrupted regions are avoided in contrast to Figure 3.10(d), where the PatchMatch algorithm is
applied using a patch size of 51 pixels. In this thesis, a hole is defined to be “small”, if its area
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(a) Input color image with marked magnification area

(b) Input disocclusion mask (c) After small hole filling

(d) Inpainting result using PatchMatch (e) Inpainting result using isotropic diffusion

Figure 3.10: Inpainting of small holes using isotropic diffusion.
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occupies less than 0.5 per mill of the image resolution. Individual hole areas are determined by
connected component labeling [RP66].

3.5 Adaptive patch sizes

In most of the existing exemplar-based inpainting algorithms, the patch size is fixed as a default
number or specified by the user [ZZ10]. However, the patch size has an important influence on
the image completion quality because it affects how well the filled patch captures the local char-
acteristics of the source image. In this thesis, adaptive patch sizes are introduced to additionally
address the problem of blanks as can be seen in Figure 3.11.

For that purpose, a threshold is specified to ensure a minimal amount of valid pixels in
each target patch, which allows to calculate the respective similarity between source and target
fragments. The corresponding patch size for each target pixel is determined by constantly incre-
menting the patch dimensions until the percentage of source pixels exceeds a predefined value.
Hence, patches become smaller near the hole border and are continuously growing towards the
hole’s centroid. This approach also helps to gently propagate information from target border
regions, since the overlap of neighboring patches close to the hole boundary is reduced and
consequently fewer patches are involved in the calculation of the color value of an individual
pixel. This strategy is additionally justified by the fact that for patches situated at the periphery
of a hole, the valid visual information is located closer to the patch center, which represents the
actual pixel being inpainted. In contrast, for patches that are centered at the interior of the hole,
the valid pixels lie on the exterior of the patch (see Figure 3.11). Therefore, since the source
pixels are located more remotely compared to the boundary patches, the information of a greater
number of overlapping patches is used to calculate the color value of an internal hole pixel.

Depending on the input data, adaptive patch sizes may also reduce the overall computation
time, since the number of individual pixel comparisons decreases for smaller patches, which de-
notes the most time consuming processing step in the image completion pipeline. Additionally,
note that the patch dimensions have to be clamped to the image bounds when determining the
ratio of valid pixels. For example, a squared patch located at the top-left corner of an image has
solely an effective size of one quarter of the original size. Thus, the patch magnitudes have to

Figure 3.11: Adaptive patch sizes are used to address the problem of blanks.
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be adapted simultaneously as the fragments grow to facilitate the convergence of the patch size
determination.

In this work, the threshold of valid pixels in a target patch is defined to be 10 percent of
the particular patch size. The minimal and maximal patch size values are set to 5 and 161,
respectively. This upper bound is introduced to prevent the fragment size from becoming too
large, if the specified percentage of valid pixels cannot be achieved. Although a patch size of
161×161 already appears to be enormous, such extents mainly occur at the image borders, where
the dimensions get cropped anyway as mentioned before. Moreover, integral images [VJ01] are
used for faster computation of the patch sizes.

3.6 Valid matching pixel threshold

By introducing adaptive patch sizes it is guaranteed that the majority of the target fragments
contain a certain percentage of valid pixels which are utilized in the matching step. However, as
mentioned in section 3.3 and schematically illustrated in Figure 3.8, there may arise situations
where the combination of target and source patches becomes impractically. Such an example is
presented in Figure 3.12 and subsequently discussed in detail.

Figure 3.12(a) shows a sample frame where the inpainted regions (holes) are outlined in
red. One can clearly see the visual disturbances on the left side of the image. Let us take a
closer look at one target patch (marked by a cyan rectangle, see also Figure 3.12(b)) and its
corresponding source patch (marked by an orange rectangle, see also Figure 3.12(d)) in this area
before the inpainting process has taken place. Note that the initial squared target patch – and as
a consequence also the source fragment – is cropped at the left image border. Their appertaining
masks are shown in Figure 3.12(c) and (d). These binary masks indicate the amount of valid
(i.e. non-hole) pixels which are used during the matching and inpainting phase. Since the target
patch is located at a hole region on the left edge of the image, source pixels are appended on
the right side of the patch as the fragment size has grown. On the other hand, the corresponding
source patch is situated in an area where a hole appears on the right side of the patch.

Since a pixelwise cost function can only be determined if a pixel is valid in the same posi-
tion in both target and source patch, the mask of both fragments have to be logically combined
to calculate the similarity between the two patches. Figure 3.12(f) and (g) show the remaining
portion of matching pixels in the target and source patch, respectively. In particular, only a 1×5
pixel strip is left where the color values coincide in both fragments. Thus, the respective differ-
ence between these patches is small, which is equivalent to a high rated similarity. Finally, the
remaining (valid) part of the source patch (see Figure 3.12(h)) is used to fill in the vacant pixels
in the target patch which are indicated by the inverse target mask. Since the target fragment
protrudes an object edge, different color values are present in the left and right half of the patch,
which results in the deficient inpainting outcome.

Apparently, the imbalance between matching and inpainting pixels constitutes the primary
cause of the unsatisfactory image completion performance. In particular, in the presented exam-
ple only 0.3% of the valid pixels are matched whereas 99, 7% are used for inpainting. Hence, a
threshold is specified to ensure a minimal amount of valid pixels in the matching step. In other
words, since a target patch contains only a small number (e.g. 10%) of valid pixels, the aim
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(a) Sample frame including target (cyan) and source (orange) patch. Holes are marked in red.

(b) Target patch (c) Target patch mask (d) Source patch (e) Source patch mask

(f) Target patch for
matching

(g) Source patch for
matching

(h) Source patch for
inpainting

(i) Target patch after
inpainting

Figure 3.12: Visual disturbance caused by an imbalanced ratio of matching and inpainting pixels.
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(a) Inpainting result without matching threshold

(b) Inpainting result with matching threshold

Figure 3.13: Image completion results showing the significance of a matching threshold.

is to maintain the majority of these pixels in the matching process by preferring corresponding
source patches to be completely filled instead of just partially. In Figure 3.13 the image com-
pletion results with and without a valid matching pixel threshold are demonstrated, where in the
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former a substantial reduction of infilling artifacts at the left image border is noticeable. As for
adaptive patch sizes, the threshold is set to 10% in this work. However, recall that a source patch
consists of two disjoint sets of pixels: those used for matching and those used for infilling, or
briefly worded: “what you see is not what you get”! This demonstrates a significant drawback
of the proposed approach of putting no confidence into newly synthesized image data, as stated
in Section 3.2.

3.7 Depth extension

In Figure 3.13 another inpainting problem becomes apparent: ghost shadowing artifacts. When
we take a closer look at the regions filled in next to the left arm of the character, one can see
some kind of “shadow”. Since one reason for holes induced by disocclusions are sharp depth
transitions at object boundaries, a target patch may comprise pixels that belong to foreground
objects as well as pixels that are part of the background. As these pixels are then employed
in the matching step to find a corresponding source patch, the NNS is led to an unfavorable
direction. Consequently, these shadowing artifacts – hereinafter also referred to as foreground
blur – are caused by color interference of foreground objects as source patches are preferred
that have color values similar to pixels in the foreground which are afterwards utilized in the
inpainting stage. Figure 3.14(a) shows a magnified version of the aforementioned area together
with two additional examples.

However, since disocclusions indicate areas in an image that are covered by foreground ob-
jects in the original scene but have become visible in the newly synthesized view as the (virtual)
camera had moved, it is reasonable to fill these resultant vacant regions with data obtained from
the background. For this purpose, the PatchMatch algorithm is extended to incorporate depth in-
formation in the matching stage to find appropriate patch correspondences. In Figure 3.14(b) the
improved results of this depth-based inpainting approach are presented, which will be precisely
elucidated in the following section.

Beside the color image, the proposed image completion system now takes the disparity map
as an additional input. However, to apply depth information to pixels in the target regions, holes
in the disparity map have to be filled primarily. He et al. [HBG11] proposed to determine the
disparity di,j for each disoccluded pixel pi,j from its eight connected neighbors, where (i, j)
denotes the pixel position. Since the missing disparity is assumed to be propagated from the
adjacent background, the value of pi,j is selected as the min {di,j} of its eight candidate dis-
parities.2 The depth information in the target region is then used as a hard constraint in the
exemplar filtering to reduce the candidate scope. In particular, since the disparity dp of a blank
pixel should be coherent with the disparities of its surrounding background, He et al. defined the
valid disparity set

{

dΨp

}

of a target patch Ψp as
{

dΨp

}

= {dk ≤ dp | k ∈ Ψp ∩ k ∈ Φ} . (3.3)

If
{

dΨp

}

6= ∅, their second depth constraint is formulated as

min
{

dΨp

}

≤ ds ≤ max
{

dΨp

}

, (3.4)

2Note that the greater the disparity, the closer the object is located to the camera.
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(a) Ghost shadowing artifacts

(b) Reduction of artifacts by depth extension of PatchMatch

Figure 3.14: Ghost shadowing artifacts caused by color interference of foreground objects.
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where s of disparity ds denotes one candidate exemplar in the source region Φ. In other words,
the depth range of potential source pixels is determined by the disparity of the respective tar-
get pixel as well as the minimum and maximum disparities of the corresponding target patch.
However, this approach is not applicable to the field of disocclusion inpainting due to several
reasons.

Since the method of He et al. was initially proposed for foreground object removal, the value
of dp referred to the original disparity at a pixel p before the object was removed. Thus, this a
priori depth information is used to ensure that foreground pixels are neglected, if a target patch
overlaps both foreground and background areas. As this depth information is not available in
the target regions when considering disocclusions, the disparities in the holes have to be syn-
thesized as well. Now, since these synthesized disparities are first selected as the minimum of
their vicinity and possible candidates are additionally constrained to be smaller than or equal to
these values, the valid depth range is reduced to a small number of depth layers. Moreover, as
disparities are propagated in all directions (8-connected neighborhood), the minimum value that
borders a target region is filled into the entire hole, which finally restricts the valid exemplars
to a single depth layer. This can be seen in the disparity map shown in Figure 3.15(b), where
each target region (outlined in red) is filled with a single low (i.e. dark) value. Figure 3.15(c,d)

(a) Inpainting result (b) Disparity map

(c) Valid sample pixels (d) Corresponding mask

Figure 3.15: Depth-based image completion result according to He et al. [HBG11]: (a) Imperfect
output due to strict depth constraints; (b) disparity map including synthesized values in the target
regions (marked in red); (c) valid source pixels for one hole (marked in red), where excluded
areas are grayed out and (d) corresponding binary mask of valid source pixels.
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presents the valid source pixels for the hole marked in red. Due to the small number of valid
candidate exemplars, patch sizes grow disproportionally to exceed both the thresholds for adap-
tive patch sizes, which ensures a minimal amount of valid pixels in each target patch, and the
matching pixel threshold, which guarantees a minimal number of valid pixels in the matching
step. Consequently, a considerable number of inconsistencies is present in the image completion
result as can be seen in Figure 3.15(a).

Now, as the usage of an 8-connected neighborhood for disparity propagation would be only
applicable to holes that comprise just a small amount of pixels (e.g. less than 0.5 per mil of
the image resolution as defined earlier), the approach of He et al. is adapted to the needs of
disocclusion infilling, where large vacant areas are present. For this purpose, depth information

(a) Input disparity map (b) Scanline-based hole filling

Figure 3.16: Scanline-based infilling of disocclusions in disparity maps. Warping artifacts are
shown in the magnified areas and the red rectangle indicates erroneous disparities caused by the
stereo matching process in untextured regions (see text for detailed description).
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is restricted to be propagated solely in horizontal direction. In Figure 3.16, three examples are
shown where holes are filled in a scanline-based manner by disparities of their surrounding back-
ground. Moreover, an essential problem becomes obvious: inaccuracies of the disparity maps.
Many results of stereoscopic inpainting methods [VTS06; WJY+08; HBG11; MHC+12] are
evaluated on ground truth data of the Middlebury dataset [SP07], which provides high-accuracy
stereo depth maps obtained through a structured light technique [SS03]. However, such a tech-
nique is not applicable in the field of 3DTV and at the same time its precision and quality is not
yet achieved by existing stereo matching algorithms [SS02].

As can be seen in Figure 3.16, the area marked by a red rectangle comprises erroneous
depth information because the matching process for calculating stereo correspondences fails
due to untextured background regions. Here, the smoothness assumption, which states that a
disparity map typically consists of regions of constant or very similar disparity, is additionally
violated. Consequently, to provide a reasonable number of valid candidate exemplars in the
matching stage and to cope with slanted surfaces, the depth constraints of Equation 3.3 and 3.4
are alleviated. Instead of determining restrictions on the patch level, depth limits are specified
for an entire hole. Thus, for every holeH of the target region Ω the valid disparity set {dΩH

} is
defined as

{dΩH
} = {dp | p ∈ H ∧H ⊂ Ω} (3.5)

and the depth constraint is formulated as

0 ≤ ds ≤ max {dΩH
} . (3.6)

In other words, for each coherent target region, the maximum of the newly synthesized minimal
disparity values is selected as an upper bound in the NNS whilst a lower bound is completely
neglected.

However, warping artifacts (cf. Section 3.4.1) represent another problem as shown in the
magnified areas in Figure 3.16. Since parts of the foreground object are torn apart at the hole
periphery, erroneous high-valued foreground disparities are present in the background, which
negatively affects the depth constraints when selecting the maximum disparity previously. Thus,
a procedure is specified to exclude maximum disparity values that deviate significantly from the
disparity distribution of the respective hole, as listed subsequently:

Listing Max-per-hole outlier removal

1: for allH ∈ Ω do

2: H∗ ← H
3: dmaxH∗ ← max

{

dΩH∗

}

4: while µ
({

dΩH∗

})

+ α · σ
({

dΩH∗

})

< dmaxH∗ − ǫ do

5: H∗ ← H∗ \ dmaxH∗

6: dmaxH∗ ← max
{

dΩH∗

}

7: end while

8: end for

Here, dmaxH∗ denotes the resulting maximum disparity value of hole H, α is a constant scaling
factor, ǫ declares a fixed confidence term, and µ(x) and σ(x) denote the mean value and the
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standard deviation of the disparity distribution in H. In this thesis, α is set to 1.5 and ǫ is
selected as 5 percent of the available depth levels in the entire image.

The enhanced image completion result according to the proposed scanline-based approach
including disparity maximum selection is shown in Figure 3.17(a). In contrast to Figure 3.15(b),
this maximum selection manifests itself in the higher (i.e. brighter) values in Figure 3.17(b),
which are filled in the target regions outlined in red.3 Additionally, note the different amount
of valid source pixels for the hole marked in Figure 3.17(c,d) and Figure 3.15(c,d). Now, only
pixels of the foreground object are excluded, whereas large areas of the background remain.

Furthermore, recall the two main reasons for disocclusions that cause blank areas in a newly
synthesized view:

1. Areas that are occluded by a foreground object in the original view (depth holes)

2. Areas that are outside the visible field of the original view (border holes)

(a) Inpaiting result (b) Disparity map

(c) Valid sample pixels (d) Corresponding mask

Figure 3.17: Depth-based image completion result using proposed constraints: (a) Enhanced
inpainting outcome comprising a significant reduction of artifacts; (b) disparity map including
synthesized values in the target regions (marked in red) based on scanline infilling and maximum
selection; (c) valid source pixels for one hole (marked in red), where excluded areas are grayed
out and (d) corresponding binary mask of valid source pixels.

3Note that the disparities in the target regions only indicate upper bounds for the subsequent NNS and do not
express actual depth information of the corresponding synthesized pixels in the resulting image.
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The proposed depth constraints account for the first cause by restricting the candidate search
space to background regions. However, since holes at the image border indicate completely
new areas that have become visible in the altered field of view of the (virtual) camera, it is
impracticable to predict feasible depth information. On the one hand, the problem of ghost
shadowing artifacts plays a minor part in areas near the image boundaries. Additionally, these
border holes typically comprise large vacant regions which extend over the entire image height
and cover a wide range of depth levels in the worst case. Hence, as a hard depth constraint entails
a reduction of the available source pixels which results in larger target patches and consequently
in a higher computation time as the number of pixelwise comparisons increases, no depth-related
restrictions are used for border holes to provide a reasonable amount of candidate exemplars.
This can be seen as the bright strip at the left image border in 3.17(b) which represents the
highest possible depth level in the input image.

3.8 Temporal extension

The proposed image completion approach is now extended to video sequences. A naïve strategy
to process video data would be to treat a video as a collection of images and perform the same
computational steps on each frame independently. However, there are two main disadvantages
of this approach. Due to the temporal correlation among the frames, a matching patch is also
likely to be found in temporally adjacent frames, especially if a portion of the region to be filled
in one frame is present in some other neighboring frame. The other disadvantage is that even if
every filled frame is spatially coherent, temporal coherence is not ensured, which might result
in visible artifacts in the video [KBB+05].

Consequently, a video processing algorithm that only works framewise and neglects the
inter-frame relations is always in danger to produce inconsistencies that can be annoying when
watching the video [SJ11]. These inconsistencies, also termed as flickering, correspond to rapid
changes in color or brightness of pixels in successive frames.

Based on the assumption that the content of two consecutive frames will typically not differ
significantly, Herling and Broll [HB10] proposed to use information of the previous frame as
initialization for the subsequent one. In particular, once the image completion algorithm suc-
cessfully finished the computation for the first frame, the approximated patch correspondences
are used as initialization for the next frame instead of initializing the ANNF randomly. This
workflow is schematically illustrated in Figure 3.18.

However, as their method was initially employed for object removal in a real-time dimin-
ished reality environment, results have shown that the benefit in the field of disocclusion filling
is limited. Particularly, though the frame-to-frame propagation saves computation time as the
convergence of the matching process is accelerated, the reduction of patch flickering is negli-
gible. First, especially in dynamic scenes, where the position of the foreground objects – and
accordingly the position of the disoccluded regions – alters significantly between consecutive
frames, a great number of initial patch correspondences have to be discarded due to invalid im-
age coordinates or violated depth constraints. Moreover, the scope of the NNS is still restricted
to the actual frame itself.
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Figure 3.18: ‘ANNF propagation’ workflow.

When the inpainting of disocclusions is considered, also the influence of warping artifacts
has to be taken into account. Since the edges of objects in an image are usually some pixels thick,
they rather consist of a transition of color values than of sharp color changes due to aliasing
effects [SJ11]. Now, as disparity maps define a yes-or-no decision whether a pixel belongs to
the foreground or to the background, some pixels at the periphery of an object that partially
feature foreground color are regarded as background. After the warping step has taken place,
these erroneous pixels are present in the vicinity of the hole boundary (cf. Figure 3.9) where the
matching pixels of a target patch are located. Thus, even slight errors in the disparity maps may

Figure 3.19: ‘Previous frame as reference’ workflow.
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cause flickering artifacts as the edge of an object might be cut at varying positions in consecutive
frames, which leads to different colors to be matched and inpainted in the target regions.

To account for the aforementioned problem, a second temporal approach is investigated.
Here, the image completion result of the previous frame is taken as the reference image for
the subsequent frame. This workflow is summarized in Figure 3.19. Hence, as patch corre-
spondences are established between target patches of the actual frame and source patches of the
previous one, color values of the former filled image are inherited in the inpainting process of
the next frame. This entails a reduction of flickering artifacts as rapid color changes of consec-
utive frames are suppressed. Furthermore, since a completely filled reference image is used, the
problems linked to partial source patches are omitted (cf. Section 3.3).

However, as inaccuracies of disparity maps already play a critical role when the patch cor-
respondence search is restricted to the frame itself, depth constraints are only considered at key
frames in this thesis. This procedure is based on the assumption that visual disturbances caused
by foreground blur are prevented at the very beginning and sound image completion results are
then propagated to subsequent frames. In this context, a key frame denotes the first image of a

(a) No temporal consideration

(b) ANNF propagation

(c) Previous frame as reference

Figure 3.20: Reduction of flickering artifacts. Each row shows the same three consecutive
frames, where in (a) no temporal consideration has been given, (b) covers the ANNF propaga-
tion approach and in (c) the previous frame is used as the reference image. Note the amount of
flickering artifacts, especially in the magnified areas, are significantly reduced in (c) compared
to (a).
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shot or after a scenecut.
In Figure 3.20, the influence of the different temporal approaches is shown on three consec-

utive example frames. Note the flickering artifacts caused by the dark spot at the left margin
and the bright areas near the head of the character in the middle frame of Figure 3.20(a), which
are absent in the first and third frame. Whereas the results of ANNF propagation presented in
Figure 3.20(b) show little improvement in the reduction of artifacts, these inconsistencies have
almost vanished using the method shown in Figure 3.20(c). Additionally, note that a combina-
tion of the two temporal methods can be used to benefit from both computational speedup and
quality improvement.

3.9 Additional algorithmic adaptations

In this section, different algorithmic aspects are outlined concerning the employed patch distance
metric, the chosen color space and the synthesis of the inpainted pixel color.

3.9.1 Patch distance metric

At the core of every exemplar-based image completion approach lies the search for correspon-
dences between patches of the target region and their best fitting NNs. Formally, for a target
patch Ψp centered at a pixel p, its corresponding NN Ψq is defined as:

Ψq = arg min
Ψ∈Φ

D(Ψp,Ψ) , (3.7)

where Φ denotes the source region covering all potential candidate exemplars and D(· , ·) refers
to a specific patch distance metric. In this thesis, according to its prevalent use in the field of
patch matching algorithms [RB12; SN12; HS12], the SSD (as defined in Equation 3.2) is used
as the cost function to measure patch similarities. In contrast to the Sum of Absolute Differences
(SAD), the SSD strongly discriminates large patch differences which results in an enhanced
sensitivity to outliers.

However, contrary to existing depth-aided image completion approaches [DP10; MHC+12;
AK12], no additional depth-related data term is introduced in the formalism of the cost function.
As elucidated in Section 3.7, the depth constraint in the proposed inpainting approach is applied
as a strict binary decision boundary, which determines whether a pixel is considered in the
matching and inpainting stage or not. Since this constraint already has to be attenuated due to
inaccuracies in the underlying disparity maps, an additional consideration in the cost function
would entail a preference for certain depth levels. However, this would again lead to a more
stringent restriction of valid candidate exemplars, resulting in insufficient inpainting outcomes.
Additionally, note that the prevention of foreground blur is not feasible when depth information
is only used in the cost function, compared to a strict exclusion of foreground regions as proposed
in this thesis.

Similar to a supplementary depth term, also the usage of a spatial extension is omitted.
In several works [HB10; HBG11; AK12] this spatial term is applied to encourage candidate
exemplars being selected from nearby regions. However, the example shown in Figure 3.21
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(a) Inpaiting result

(b) Corresponding ANNF

Figure 3.21: Inessentiality of spatial constraints: (a) image completion result including one
sample NN pair, where inpainted regions are outlined in red; (b) corresponding ANNF encoded
in HSV color space (color wheel included for guidance), where hue refers to the angle and
saturation to the inverse distance. White pixels denote patch distances that exceed more than
half of the image width (see also text for detailed description).
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demonstrates the negligibility of such a spatial constraint. In particular, the frame presented
in Figure 3.21(a) exhibits a roughly recurrent background of similar flowers of different sizes.
When we take a closer look at the corresponding ANNF after the matching process has finished
(see Figure 3.21(b)), one can notice the predominant white areas at the left image border. For the
purpose of visualization, the ANNF is encoded in HSV color space where the angle between
corresponding patches is illustrated as the hue and the inverse distance represents the saturation.
Now, these white pixels indicate NN distances that exceed more than half of the image width.
Hence, the large amount of such greater distances refutes the assumption that for disocclusions
especially at image borders, which denote newly added areas in the altered field of view of the
(virtual) camera, nearby patches should be used to pursue the adjacent boundary regions into the
holes. In Figure 3.21(a), one example NN pair is illustrated comprising the target patch (colored
in cyan) and the respective source patch (colored in orange).

Consequently, the patch similarity is solely based on color difference in this thesis.

3.9.2 Color space

In the proposed image completion approach, the CIELAB, also referred to as CIE L*a*b*, is
used as the underlying color space for matching patches. Derived from the CIE XYZ color
space, CIELAB is constructed as a perceptual uniform color space defined for the purpose
of measuring color differences [KP92]. In contrast to the RGB color space, this perceptual
uniformity ensures that the Euclidian distance separating two similar colors is proportional to
their visual difference. CIELAB consists of one lightness dimension (L*) and two chrominance
dimensions (a*, b*) based on the color opponent process between red - green and yellow - blue.
Moreover, this color space is device independent covering all perceivable colors. A lossless
transformation to the CIELAB color space via the CIE XYZ tristimulus values is given as
follows:

L∗ = 116 · f
(

Y

Yn

)

− 16

a∗ = 500 ·
[

f

(

X

Xn

)

− f

(

Y

Yn

)]

b∗ = 200 ·
[

f

(

Y

Yn

)

− f

(

Z

Zn

)]

(3.8)

where

f(t) =

{

3
√
t if t > ( 6

29)
3

1
3 · (296 )2 · t+ 4

29 otherwise .

Here, Xn, Yn and Zn denote the CIE XYZ tristimulus values of the reference white point.
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3.9.3 Pixel color synthesis

The final step of the proposed image completion pipeline comprises the inpainting of vacant
target regions. In this thesis, various approaches have been assessed concerning the actual syn-
thesis of pixel colors. In Figure 3.22, the inpainting results of different synthesis methods are
presented in terms of image snippets including the left image border of the sample frame shown
in Figure 3.21(a).

A computational fast approach is to simply transfer the color value from the source patch
to the correspondent target patch. In particular, for every NN pair solely the central pixel of
the source patch is copied to the location of the associated target pixel. However, this pixel-
wise synthesis approach disregards the coherence characteristic of images, since every pixel is
considered individually. Additionally, recall that the central pixel of a target patch is never taken
into account in the matching step as it always constitutes an invalid (i.e. hole) pixel. As can
be seen in Figure 3.22(a), these reasons lead to a tremendous number of inconsistencies in the
inpainted regions.

Hence, to account for the natural structure of images, the information of adjacent patches
is incorporated in the calculation of the final pixel color, since the output of patch-sampling
synthesis algorithms typically contains large chunks of data from the input [A01]. Particularly,
a target pixel in a hole region is not only covered by its respective target patch, but also by
the matching windows in its vicinity. He et al. [HBG11] proposed to take the median of these
overlapping color values at each target location in order to avoid the presence of noise and to
prevent high frequencies in the inpainted region. Evidently, the result shown in Figure 3.22(b)
exhibits less visual artifacts compared to the pixelwise synthesis method as outliers are filtered
out. However, there is a distinct seam discernible at the transition between the inpainted target
region and remaining valid parts of the image.

Since the median calculation additionally depicts a computational expensive operation that
strongly influences the overall runtime of the image completion system, an alternative approach
is to substitute the median by the mean value. However, this leads to a blurrier inpainting result
as can be seen in Figure 3.22(c). The blurriness is a consequence that not all overlapping patches
agree on the color value of a pixel at one specific location, which causes the final color value
to be a mixture of different color shades. Consequently, instead of giving the same influence
to pixels that are located, e.g., at the center or at the periphery of a patch, pixel weights are
introduced to react to this imbalance.

Hence, the assigned color C of a pixel p at the end of the image completion process is defined
as:

C(p) =

n
∑

i=1
wi · C(ip)

n
∑

i=1
wi

, (3.9)

where n is the number of all source patches Ψi containing p, C(ip) is the color of the cor-
responding pixel in each of the n associated patches Ψi and wi are the respective weights.
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(a) Pixelwise (b) Median overlap (c) Average overlap (d) Gaussian overlap

Figure 3.22: Image completion results using different approaches for pixel color synthesis. Note
the seam (indicated by the arrows) at the transition between the inpainted target region and the
remaining part of the image, which is significantly reduced using (d) Gaussian patch weighting.
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In this thesis, to account for adaptive patch sizes and to mitigate the influence of large matching
windows on distant target regions, wi corresponds to Gaussian weights Gi, which are calculated
for an m×m patch by:

Gi = α · e−
(

i−(m−1)
2

)2

(2·σ)2 , (3.10)

where i = 0 . . .m−1, α is the scale factor chosen so that
∑

iGi = 1 and the Gaussian standard
deviation is given as σ = 3

10 ·
[

(m− 1) · 12 − 1
]

+ 4
5 . The inpainting result of this Gaussian-

weighted pixel synthesis method is presented in Figure 3.22(d). As can be seen, the blurriness
as well as the seam at the hole boundary are significantly reduced.

3.10 Compared methods

In the final section of this chapter, two image completion approaches are introduced – horizontal
background replication and Adobe R©’s content-aware fill – which are used for comparison in the
subsequent evaluation.

3.10.1 Horizontal background replication

Horizontal background replication – also referred to as copy background [ESG12] – denotes a
simple inpainting method, where visual information in the vicinity of the target region is used to
fill in the holes. In particular, the holes are completed by replicating the adjacent image regions
into the vacant areas. However, to avoid portions of foreground objects being copied to image
gaps caused by disocclusions, depth information is incorporated in the selection of potential
source regions.

For an image I the depth constraint of a holeH ∈ Ω is formulated as:

I(x, y) =

{

I(x−∆x, y) if dl > dr

I(x+∆x, y) if dl ≤ dr
∀(x, y) ∈ H , (3.11)

where ∆x denotes the size (i.e. the number of pixels) of the respective hole in scanline x and
dl and dr represent the disparity of the first pixel located at the left and right side of the hole
boundary δH according to x.

However, for large target regions, especially at the margin of an image, there may arise the
situation where the remaining part of the image will not suffice to fill in the hole completely.
Another problem that emerges when considering the infilling of wide gaps is that visual infor-
mation of additional foreground objects, which are partially or entirely located in the area to be
copied, might be taken into account in the completion process.

Thus, not only the depth information at the hole boundary has to be considered, but also the
disparity values of the pixels being copied. Eisenbarth et al. [ESG12] proposed to abort the copy
procedure if the difference of the disparities between the boundary pixel (i.e dl or dr) and the
currently copied pixel exceeds a predefined threshold. The remaining part of the hole is then
completed by repetitive infilling of already used valid image portions. The image completion
results of three sample frames are shown in Figure 3.25(a).
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3.10.2 Adobe Photoshop: content-aware fill

Compared to horizontal background replication, Adobe R©’s content-aware fill depicts a more so-
phisticated inpainting technique. As stated in [AR10], this image completion approach, which
is available since Photoshop R© CS5, is based on the PatchMatch algorithm of Barnes et al.
[BSF+09] and the hole filling method proposed by Wexler et al. [WSI07]. Since the Patch-
Match algorithm has been discussed in detail in Section 3.1, now the deviations of Wexler et
al.’s method to the proposed inpainting approach are addressed subsequently.

Since Photoshop R© is a commercial graphics editing program, there exists no literature that
describes the exact functional principles of their hole filling method. Consequently, as the work
in [WSI07] was originally proposed for the completion of missing information in video se-
quences using 3-dimensional space-time patches, but on the other hand, Photoshop R© is mainly
designed for processing 2-dimensional content, the temporal aspects of Wexler et al.’s approach
are omitted in the following discussion.

In [WSI07], the image completion process is formulated as a global optimization problem
to ensure visual coherence between the synthesized data Ω∗ in the target region Ω and the pre-
existing image portions in the source region Φ. Hence, the aim is to determine visual data Ω∗

which maximizes the following objective function:

Coherence (Ω∗|Φ) =
∏

p∈Ω∗

max
q∈Φ

sim (Ψp,Ψq) , (3.12)

where p and q run over all pixel positions in their respective (target or source) region. The local
similarity measure sim(· , ·) between two patches Ψp and Ψq is defined as:

sim (Ψp,Ψq) = e
−

D(Ψp,Ψq)
2σ2 , (3.13)

where the distance metric D(· , ·) is specified as the SSD of RGB values and σ, which controls
the smoothness of the induced error surface, is set to be the 75-percentile of all distances in the
current search in all locations.

Wexler et al. stated that Equation 3.12 will be satisfied if the following two conditions are
met at every target pixel p:

1. All target patches Ψp1 . . .Ψpk containing p appear in the source region Φ:

∃Ψi ∈ Φ,Ψpi = Ψi

2. All these corresponding source patches Ψ1 . . .Ψk agree on the color value C at location p:

C(p) = Ψi(p) = Ψj(p)

Now, the main difference between the work in [WSI07] to the proposed inpainting framework
is that Wexler et al. gradually put confidence into newly synthesized image data. Compared
to the proposed onetime infilling approach illustrated in Figure 3.4, this leads to a repetitive
inpainting step where color values in the target regions are updated at every iteration. Figure 3.23
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Figure 3.23: Workflow of PatchMatch-based image completion using iterative inpainting.

visualizes the overall workflow. Here, the color values are likewise calculated as defined in
Equation 3.9. However, instead of using Gaussian weights, Wexler et al. choose the similarity
measure specified in Equation 3.13 as their weights, which measures the degree of reliability of
target patches according to Condition 1. Thus, the most likely color C at location p minimizes
the variance of the colors C1 . . . Ck proposed by Ψ1 . . .Ψk to satisfy Condition 2. In particular,
the weights are defined as wip = αp · sim(Ψpi ,Ψ

i), where αp denotes an additional confidence
term at each pixel, where known points in the source region have a fixed high confidence and

Figure 3.24: Multiscale approach. The algorithm starts by shrinking the input image. The
completions starts at the coarsest level, iterating each level several times and propagating the
result upward [WSI07].
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the confidence of target pixels is attenuated according to their distance to the hole boundary.
Additionally, the Mean-Shift algorithm [CM02] is used to reduce the sensitivity to outliers.

Since in this repetitive inpainting approach initialization depicts a crucial step as the newly
synthesized data impact the subsequent NNS, Wexler et al. perform the iterative process in
multiple scales using image pyramids as can be seen in Figure 3.24, where each pyramid level
contains half the resolution. The optimization starts at the coarsest octave and the solution is
propagated to finer levels for further refinement. After propagation of source patch locations
onto the finer level, instead of plain interpolation, only those patches that still overlap the target
pixel are used for the pixel color synthesis to avoid unnecessary blur. Additionally, this pyramid
approach speeds up convergence and accounts for blanks (see Section 3.3) caused by fixed patch
sizes as the number of hole pixels (but also that of source pixels) is reduced at every octave.
The image completion results of three sample frames using content-aware fill are shown in
Figure 3.25(b).

Note that in the proposed image completion framework global coherence is encouraged by
the propagation step of the PatchMatch algorithm and the influence of outliers on the inpainted
color values is attenuated by using Gaussian patch weights.
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(a) Horizontal background replication (b) Content-aware fill

Figure 3.25: Image completion examples using compared inpainting approaches. Note the im-
pact of warping artifacts and foreground blur on the visual impression of the infilling results. A
distinct seam (indicated by the arrows) can be seen at the boundary of the inpainted region on
the left margin of the image when horizontal background replication is applied. In the proposed
inpainting approach these artifacts are eliminated using single-sided mask dilation and depth
constraints (see Section 3.4.1 and 3.7).
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CHAPTER 4
Evaluation and Results

In the following chapter, the results of the evaluation are presented and discussed in detail.
Regarding the quality of the completed images, the different enhancement stages of the pro-
posed inpainting approach are compared to “horizontal background replication” and the image
completion function content-aware fill in Adobe R©’s Photoshop R© CS5. To evaluate both the
depth-based and the temporal extensions of the presented framework, the inpainting methods
are applied to still images as well as video sequences. Moreover, the evaluation of the inpainting
results is conducted with objective quality metrics as well as a subjective user study (cf. Ap-
pendix A). The used dataset and the implementation details are presented in addition.

4.1 Database

All inpainting methods are evaluated on footage selected from the 2009 movie Avatar, which is
the most popular and highest-grossing 3D motion pictures in the world1. The test frames are
obtained by warping the left camera image onto the position of the right one. Consequently, this
experimental setup allows to use the original right camera frame as the underlying Ground Truth
(GT) data, whose existence is a necessary precondition for the calculation of objective quality
metrics.

In particular, five still images as well as five video sequences – termed as Bird, Flower,
Edge, Arm (image) / Couple (video) and Crowd – have been chosen as illustrated in Figure 4.1
and Figure 4.2, respectively. Moreover, both the selected still images and the chosen video se-
quences cover different image characteristics including varying densities of background texture
and diverse amounts of target pixels, as summarized in Figure 4.1(f) and Table 4.1. Each frame
features a Full High Definition (Full HD) resolution of 1920× 1080 pixels. Hence, the span of
the number of target pixels to be filled in, which ranges from 29790 to 57711, corresponds to a
percentage of 1.4 and 2.7 of the total amount of image pixels. Note that this number increases

1http://www.boxofficemojo.com/alltime/world/, accessed: 2013-11-15
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(a) Bird (b) Flower

(c) Edge (d) Arm

(e) Crowd

NAME # TARGET PIXEL

Bird 29790 (1.4%)
Flower 50483 (2.4%)
Edge 51173 (2.5%)
Arm 54050 (2.6%)
Crowd 57711 (2.7%)

(f) Number of target pixels

Figure 4.1: Input frames for evaluation on still images. Black image borders are added to high-
light the delimitation of the frames (note the gaps at the left side).

by about 0.5% (10368 pixels) for the proposed inpainting approaches that employ the additional
single-sided dilation preprocessing step.

The evaluated methods in conjunction with their used abbreviations are summarized in Ta-
ble 4.2. Besides the initial PatchMatch algorithm (PM), its presented adaptations (APM) and
its proposed depth (DPM) and temporal (AP, PF) extensions, also the computationally efficient
horizontal background replication (HBR) and the image completion function content-aware fill
(CAF) of Adobe R©’s Photoshop R© CS5, which is the prevalent image editing application used by
over 90% of graphics professionals2, are compared.

2http://www.adobe.com/se/company/fast-facts.html, accessed: 2013-11-6.
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(a) Bird

(b) Flower

(c) Edge

(d) Couple

(e) Crowd

Figure 4.2: Input sample frames of the video sequences used for evaluation.

NAME # FRAMES # TARGET PIXEL CHARACTERISTIC

Bird 112 (4′′) 51728 (2.5%) increased camera motion
Flower 60 (2′′) 46829 (2.2%) clear repetitive background
Edge 159 (6′′) 34004 (1.6%) highly textured background
Couple 127 (5′′) 33515 (1.6%) moderate textured background
Crowd 136 (5′′) 51841 (2.5%) cluttered repetitive background

Table 4.1: Specification of video sequences including the number of frames, the runtime in
seconds (′′), a brief description of the footage’s characteristic and the average number of target
pixels per video.
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NAME DESCRIPTION SECTION

PM
Initial PatchMatch using fixed patch sizes (51 pixels), uniform-
weighted pixel synthesis and RGB color space

3.1-3.2

APM
Adapted PM including additional preprocessing steps, adaptive
patch sizes, matching pixel threshold, Gaussian-weighted pixel syn-
thesis and CIELAB

3.4-3.6,3.9

DPM APM plus depth extension 3.7
CAF Content-aware fill 3.10.2
HBR Horizontal background replication 3.10.1

NT No temporal consideration (plain DPM) —
AP ANNF propagation

3.8
PF Previous frame as reference

GT Ground truth (original right view) —

Table 4.2: Description of the used abbreviations for the evaluated inpainting methods.

All experiments are executed on an Intel R©Xeon R© W3520 2.66 GHz processor including
12 GB RAM. The proposed algorithms are implemented in C++ using OpenCV 2.4 library
functions [B00].

4.2 Objective metrics

To evaluate the performance of the presented image completion approaches in the inpainted
regions, three error measures are selected that are widely used in the field of computer vision.
The Root Mean Square Error (RMSE) represents the radical of the cumulative squared error
between the inpainted image Iip and the original image Igt of the same size:

RMSE =

√

∑

(Igt − Iip)
2

w · h · 3 , (4.1)

where w and h are the width and height of the images, respectively.
The term Peak Signal-to-Noise Ratio (PSNR) is an expression for the ratio between the

maximum possible power (value) of a signal and the power of corrupting noise that affects the
fidelity of its representation. In this case, the signal represents the original image and the noise
is the error introduced by inpainting. Since many signals have a wide dynamic range, PSNR is
typically defined in terms of the logarithmic decibel (dB) scale [AN12] as:

PSNR = 20 · log10
(

MAX

RMSE

)

, (4.2)

where MAX corresponds to the maximum fluctuation according to the image data type (e.g.
MAX = 255 in case of an 8-bit representation per color channel). PSNR takes values from 0
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to infinity, where a higher score typically indicates a better inpainting result. Average values in
the field of image completion are between 20 dB and 30 dB, but highly depend on the utilized
content [SLW+03; SC05; XS10].

Since RMSE and PSNR do not reflect the behavior of the human visual system, Wang et al.
[WBS+04] attempt to estimate the perceptual quality of an image as the perceived change in
structural information. The so-called Structural SIMilarity (SSIM) index is formulated as a full
reference image quality metric that measures the quality of a candidate patch Ψip with respect
to the original image patch Ψgt of the same size:

SSIM (Ψgt ,Ψip) =

(

2µΨgtµΨip
+ C1

)

·
(

2σΨgtΨip
+ C2

)

(

µ2
Ψgt

+ µ2
Ψip

+ C1

)

·
(

σ2
Ψgt

+ σ2
Ψip

+ C2

) , (4.3)

where µΨgt ,µΨip
and σ2

Ψgt
,σ2

Ψip
are the mean and the variance of the patches Ψgt and Ψip,

respectively. σΨgtΨip
denotes the covariance between Ψgt and Ψip. C1 = (k1L) and C2 =

(k2L) are used to stabilize the division by weak denominators, where L indicates the range of
pixel values (usually 2#bitsperpixel − 1) and k1, k2 are set to 0.01, 0.03 by default.

To compute the overall image quality, the mean of the SSIM (MSSIM) index is used:

MSSIM (Igt , Iip) =
1

N

N
∑

i=1

SSIM (Ψgti ,Ψipi) , (4.4)

where N is the total number of patches and Ψgti and Ψipi are the i-th patches of images Igt
and Iip, respectively. The resultant MSSIM value3 takes values between −1 and 1, where 1
indicates the case of two identical images.

Note that the final scores for all error measures previously mentioned are averaged over all
RGB color channels. Alternatively, the quality metrics can be compute only on the luminance
channel by converting the color images to a different color space (e.g. YCbCr) to account for
the sensitivity of the human eye to intensity information [AN12]. However, experiments have
shown that the beneficial effect is negligible.

4.2.1 Still images

In Figure 4.3, the evaluation results of the selected images are shown according to presented
quality metrics. It can be seen that the average RMSE of image Edge exceeds those of Bird and
Arm by more than 19 units. This is directly related to the fact that Edge exhibits a considerably
higher amount of texture details. Moreover, both PatchMatch-based inpainting approaches PM
and CAF attain approximately similar RMSEs of 25.66 and 26.50. The proposed PatchMatch
adaptations APM and DPM, nevertheless, eventuate in the smallest errors of 22.64 and 23.13,
respectively. Additionally, HBR yields the highest RMSE because it preserves fine structures
of the texture as image portions are simply copied, which is contrary to e.g. PM that produces
blurrier inpainting results caused by uniform-weighted pixel synthesis (cf. Figure 3.25). Con-
sequently, this puts into question the reliability of such objective metrics in the field of image
quality assessment.

3Note that in the subsequent discussion the MSSIM scores are scaled by the factor 100.
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Figure 4.3: Objective image quality assessment: per image (left) and per method (right).
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When the outcomes of Figure 4.3(a) and Figure 4.3(b) are compared, the correlation between
RMSE and PSNR becomes apparent. Clearly, a high RMSE results in a low PSNR and vice
versa, but the scores are located more closely due to the underlying logarithmic scale. Moreover,
note that the inpainting approach with the highest rating varies per image between APM (Bird,
Edge) and DPM (Flower, Arm) where the latter reaches the absolute maximum value at a PSNR
of 24.97. This may indicate that the additional use of depth information depends on the partic-
ular image content. However, as mentioned before, the validity of these error measurements is
limited in this regard.

As can be seen in Figure 4.3(c), the MSSIM index also reflects the leading position of the
proposed inpainting approaches DPM (75.90) and APM (76.01), solely their ranking for Flower
and Crowd has swapped. The large variation of the results between the individual images, e.g.
58.39 (Edge) and 94.04 (Arm) for DPM, shows the dependence to the underlying image con-
tent. Moreover, the stronger weighting of structure in the MSSIM index compared to PSNR is
discernible by the lower score for Crowd and the higher value for Flower. However, the differ-
ence between the scores of the compared methods using objective quality metrics are small and
erroneously suggest minor differences in the quality of the inpainting results.

4.2.2 Video sequences

Since temporal inconsistencies in the inpainted regions tend to be more disturbing to an observer
than varying filling accuracy regarding spatial information, another quality measure – besides
the aforementioned objective image metrics – is introduced to quantify the amount of flicker in
a video sequence. For that purpose, the metric of Schmeing and Jiang [SJ11] has been adapted
which determines the quantity of flicker at a fixed pixel position p by counting the cracks in its
sequence of color values. However, Schmeing and Jiang performed their assessment only on
synthetic videos, where both appearance and location remain constant throughout the sequence,
but disocclusions mainly occur near the boundaries of foreground objects that typically change
their position and shape over time (e.g. a walking person).

Hence, to account for real world videos in this thesis, the Relative Frame Differential Flicker
(RFDF) is defined as the average κ(t) value over all frames T :

RFDF =
1

T

T
∑

t=1

(κ(t)) , (4.5)

where κ(t) is specified as the difference of subsequent reconstructed frames Iip in relation to
the difference of their corresponding original frames Igt at time t and t− 1:

κ(t) =
1

N

N
∑

p=1

(

∣

∣Iip
t(p)− Iip

t−1(p)
∣

∣

|Igtt(p)− Igtt−1(p)|

)

, (4.6)

where N is the total number of pixels in the current target region.
In Figure 4.4, the average RMSE, PSNR and MSSIM values over all frames per video

sequence are shown in conjunction with their respective standard deviation. As can be seen from
comparison with Figure 4.3, the average RMSE of sequence Edge is about 9.40 units smaller
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Figure 4.4: Objective video quality assessment: per sequence (left) and per method (right).
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Figure 4.5: RFDF scores: per sequence (left) and per method (right).

compared to its still image counterpart. This is caused by strong camera motion and movement
of the foreground object coupled with highly textured background areas, which is additionally
indicated by the highest standard deviation of 7.94 among all sequences. Furthermore, AP
solely provides a similar score as the non-temporal approach NT. This is a result of the motion
occurring in the sequences that cause correspondences of the propagated ANNF to be skipped
during the NNS of the subsequent frame due to invalid pixel locations or depth ranges. The
proposed temporal inpainting technique PF with an average error of 22.13 outperforms NT by
2.16, showing its merits especially in highly textured sequences (Edge,Crowd), whereas CAF
and HBR deliver similar results of 26.78 and 30.24 related to their still image RMSEs. The
findings regarding RMSE applies also to PSNR and MSSIM.

In Figure 4.5, the respective RFDF scores are illustrated. As was to be expected, the meth-
ods that do not use any temporal consideration perform poorly. In particular, CAF yields the
highest average RFDF value of 2.58. Its large deviation of 0.63 may reflect the random- and
approximation-based nature of the PatchMatch algorithm as the consistency of the image com-
pletion results can vary significantly from frame to frame. This randomness is reduced in the
inpainting results of NT (2.43) which incorporates the depth-related restriction of the NN search
space. The lowest score of 1.66 is achieved by PF that – as stated before – demonstrates its
strength most notably in the highly textured sequences Edge and Crowd. However, compared to
AP (2.14), HBR has a higher RFDF of 2.28 even though HBR suppresses flickering by copy-
ing nearby image parts to fill the holes. This once again reveals the drawback of such pixelwise
error metrics in the field of image and video quality assessment.

4.3 Subjective user study

The lack of adequate objective image and video quality assessment metrics – including the
field of stereo vision – has been addressed in several scientific papers [HWD+08; WYY+09;
WBB+13]. Experimental results have shown that the outputs of these objective measures de-
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Figure 4.6: Subjective user study.

pend significantly on the underlying content and correlate poorly with the human perception of
quality. Consequently, a supplementary subjective user study has been conducted to verify the
previously calculated objective results.

According to the recommendation BT.2021 of the International Telecommunication Union
(ITU) proposed in [ITU+12], the Pair Comparison (PC) method has been chosen to quantify
the subjective ratings. In the PC method, the set of inpainting algorithms is compared in pairs
(i.e. two at the time) for each still image and video sequence. The viewers are asked to make a
judgment which element in a pair is preferred in the context of the test scenario using a ternary
scale (i.e. A is preferred, B is preferred or equally preferred). Particularly, for each precedence
of an inpainting method, its respective counter is increased by 1 or 0.5 in case of an equal
valuation. The accumulated value is then divided by the number of comparisons per method and
by the total number of participants4. Hence, the final score shows the percentage of comparisons
“won”, e.g. a value of 100 indicates that this method has always been preferred over any other
approach.

The inpainting methods under tests are arranged in all possible n·(n−1)
2 combinations, where

each pair is presented successively on the same display in random order. Since the user can
switch interactively between the two elements in a pair, only one of the two possible orders is
displayed (i.e. AB or BA), thus the number of required judgments is halved. In this thesis, using
6 inpainting approaches and 5 still images and video sequences, results in a total number of
6·(6−1)

2 · 5 · 2 = 150 comparisons corresponding to an average test duration of 40 minutes. The
experiment starts with a short training stage to familiarize the participants with the upcoming
visual disturbances. Additionally, each trail is initiated by the presentation of a mid-gray field

4Note that in the subsequent discussion the PC scores are scaled by the factor 100.
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containing the trail number at zero disparity.
The test sequences are displayed on a 23.6′′ Acer GD245HQ monitor featuring a 1920 ×

1080 HD pixel grid at a refresh rate of 120 Hertz (Hz), a brightness of 300 candela per square
meter (cd/m2), a contrast ratio of 80000:1 and a response time of 2 milliseconds (ms). The
three-dimensional representation is accomplished by the NVIDIA R© 3D Vision

TM
Kit comprising

wireless shutter glasses and a USB infrared emitter. To provide an ideal test setup, the room was
darkened to avoid external visual disturbances and the viewing distance was set to one and a half
times the screen size.

Seventeen non-expert observers (six female and eleven male observers aged between 17 and
49) that had prior experience with three-dimensional content volunteered to participate in the
experiment. All participants have been tested on visual acuity (Snellen chart), color perception
(Ishihara test) as well as fine and dynamic stereopsis (chart VT-04 and VT-07 in [ITU+12]).

4.3.1 Still images

In Figure 4.7, the PC scores of the selected still images are presented. As can be seen, the GT
data has clearly been identified by the observers and is preferred in 85.89% of all comparisons.
This is mainly caused by the occurrence of warping artifacts that lead to a diminished quality
of the overall visual impression. More precisely, these warping artifacts not only degenerate the
performance of the image completion algorithms but also provoke visual interferences outside
the target regions, e.g. note the slight deformations in the vines at the edges of the scene shown
in Figure 4.8. Moreover, GT yields a maximum PC score of 95.89 for the image Arm as the
disturbance near the thumb of the character shown in Figure 4.9 is located almost at the center
of the image and thus in the main focus of the observer’s attention.

Similar to the objective quality metrics, both PatchMatch-based inpainting approaches PM
and CAF attain approximately equal PC scores of 29.41 and 28.35, respectively. However,
contrary to the objective assessment, HBR achieves a significantly better result (43.65) than
CAF and even surpasses APM for images Edge and Crowd. The reason therefore may lie in the
fact that in the used test images the inconsistencies caused by HBR inpainting become primarily
noticeable at highly textured background regions near the image margin, whereas observers pay
more attention to the central area covered by the foreground object. This once more shows that
for the assessment of visual quality of images or videos various aspects have to be taken into
consideration.

Furthermore, compared to the ranking of e.g. MSSIM index, here the superior performance
of the DPM approach towards the results of APM distinctly becomes apparent. In this regard,
the study participants remarked a clearer delineation of the foreground objects, which results
from the reduction of artifacts caused by foreground blur that are mainly perceived as unnatural
shadows of the objects. Striking, however, is the lower score of DPM (47.65) for the image
Flower compared to APM (64.71) and HBR (56.48). As can be seen in Figure 4.10, a possible
explanation for the poor rating may be the bright spot located next to the head of the character
as differences in lightness are found particularly disturbing. This visual interference is caused
by inaccuracies of the corresponding depth map, since parts of the background have been er-
roneously considered as foreground and thus are not taken into account in the matching step
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(a) PC scores: per sequence (left) and per method (right).
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(c) PC scores discarding Bird and GT.

Figure 4.7: Pair comparison scores for still images.
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(a) DPM

(b) PM

Figure 4.8: Comparison of inpainting results for image Crowd: DPM versus PM.
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(a) DPM

(b) HBR

Figure 4.9: Comparison of inpainting results for image Arm: DPM versus HBR.
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(a) DPM

(b) APM

Figure 4.10: Comparison of inpainting results for image Flower: DPM versus APM.
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(a) DPM

(b) CAF

Figure 4.11: Comparison of inpainting results for image Edge: DPM versus CAF.
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according to the predefined depth constraints. However, these kinds of inpainting artifacts can
be avoided by adjusting the scaling factor α in the depth-based outlier removal (see Section 3.7).

Another interesting finding is the relatively uniform distribution of PC scores for the image
Bird, and thus the lowest value of GT (77.65). By taking a closer look at the corresponding
box plot shown in Figure 4.7(b) for Bird, one can see the large fluctuation of PC scores for the
individual inpainting approaches. Moreover, the scores of GT also shows the largest deviation
for this image (see right box plot in Figure 4.7(b)). The observers declared that they found it
hard to detect any differences, which might be due to the fact that Bird exhibits the least number
of target pixels, and those are additionally located in primarily low textured areas. Hence, the
less significant PC scores of Bird are discarded in Figure 4.7(c). As can be seen, when only the
different inpainting approaches are considered (i.e. without GT values), the proposed methods
DPM and APM perform best, yielding a score of 75.55 and 60.29, respectively. Additionally,
a detailed comparison of the individual approaches is given in Figure A.1 listed in Appendix A.
As can be seen, the proposed depth-based method DPM outperforms CAF at every sequence
and even reaches a PC score of 100 for image Arm in comparison to HBR.

4.3.2 Video sequences

In Figure 4.12, the PC scores of the chosen videos sequences are illustrated. Obviously, com-
pared to still images, the GT data have been identified even more clearly by the observers. Thus,
GT reaches a preference ratio of 94.47%, since the influence of warping artifacts comes more
into effect for moving pictures. Moreover, as stated before, AP (41.76) only provides a negli-
gible improvement over NT (40.00) due to the rejection of invalid NN correspondences caused
by both camera motion and foreground movement.

Similar to the PC scores of still images, HBR also achieves a significantly higher subjec-
tive rating compared to the objective quality metrics. In particular, although both inpainting
approaches fill in the missing information frame by frame, HBR clearly outperforms CAF. This
becomes apparent especially in the highly textured sequences Edge and Crowd, where HBR
yields PC scores of 58.82 and 52.94 as opposed to 5.29 and 7.06, respectively, since flickering
artifacts are entirely omitted by the replication of nearby image portions. Nevertheless, the pro-
posed temporal method PF achieves the best ranking among all inpainting approaches, where
the maximum scores are received for the video sequences Flower (67.65) and Edge (63.53).

Furthermore, a significant drop in the rating of GT can be recognized again at the sequence
Bird. As shown in the box plots in Figure 4.12(b), the median values of all inpainting approaches
range from 30 to at most 50, which indicates a great amount of equal valuations (i.e. no spec-
ified preference). Additionally, Bird exhibits the largest deviation in PC scores for GT among
all input sequences. The study participants noted that the assessment of videos is much more
difficult in principle, since the user cannot focus on a specific part of the frame and compare the
differences by interactively switching between the two input videos, as it is possible for still im-
ages. Moreover, as the Bird sequence additionally features a lot of movement of the foreground
objects as well as increased camera motion, the observers solely identified any adverse differ-
ences at the beak of the “Bird” . However, as shown in Figure 4.13, these visual interferences
are caused by warping artifacts that are already present in the input data of the image comple-
tion systems. Hence, as for still images, Figure 4.12 illustrates the PC scores discarding the less
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(c) PC scores discarding Bird and GT.

Figure 4.12: Pair comparison scores for video sequences.
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(a) Input image (b) Corresponding depth map

(c) PF (d) GT

Figure 4.13: Sample frame of Bird sequence showing visual disturbances due to warping arti-
facts.

significant results of sequence Bird. It can be seen that the proposed approach PF performs best,
yielding an average rate of 73.53. Additionally, a comprehensive comparison of the individual
video inpainting approaches can be found in Figure A.2 listed in Appendix A.

4.4 Runtime analysis

Finally, the runtime results of the different image and video completion approaches are briefly
addressed. As can be seen in Figure 4.14, the simple inpainting method HBR achieves over-real-
time performance of 10 milliseconds per frame at a moderate PC score. Moreover, compared to
the professional hole filling approach CAF, the proposed algorithms are up to four magnitudes
of order slower but yield significantly better comparison results. However, it should be noted
that in the proposed completion framework hardly any runtime optimization has been done yet,
since the focus was placed primarily on the enhancement of the inpainting quality. So, there is
plenty of room left for further improvements which will be of special interest in future work.

Another interesting finding is that the initial PatchMatch-based approach PM and the pro-
posed adaptation thereof APM have almost identical runtimes but vary significantly in their
obtained PC scores. Furthermore, by taking a closer look at Figure 4.15, one can see that the
runtime distribution of the individual stages in the image completion pipeline differs distinctly.
Although the initial runtime of APM increases due to the additional preprocessing step, the
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Figure 4.14: Pair comparison score versus runtime of image and video inpainting approaches.

computational expense is reduced in the matching stage by the use of adaptive patch sizes. Par-
ticularly, a single matching pass of APM according to an average patch size of 45.8 pixels takes
4.04 seconds (sec) in contrast to 6.98 sec using fixed window sizes of 51 pixels in PM. Thus, the
matching stage corresponds to 52.73% and 91.07% of the total runtime of APM and PM, re-
spectively. On the other hand, since the number of valid candidate exemplars decreases in DPM
due to the predefined depth constraints, the patch sizes increase to ensure a minimal amount of
valid pixels in each target patch according to the specified threshold. Hence, since the calcula-
tion of the patch distance metric denotes the most time consuming part in the image completion
workflow, DPM has the longest runtime (9.22 sec per matching pass) due to an average patch
size of 65.8 pixels.

Furthermore, it is noteworthy that the video inpainting approach AP is 1.19 sec faster than
NT on average, since 0.72% fewer correspondence updates are performed in consequence of
ANNF propagation. Additionally, the lowest runtime of PF results from the selective use of
depth information.
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Preprocessing Matching Inpainting

Figure 4.15: Runtime distribution of proposed image inpainting approaches.
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CHAPTER 5
Conclusion and Future Work

In this thesis, the problem of filling disocclusions in the field of stereoscopic images and 3D
videos has been addressed. Disocclusion denotes a common challenge in Depth Image Based
Rendering (DIBR) where areas that are occluded in the original view become visible in the
newly rendered virtual view. To synthesize visually plausible content in the disoccluded regions,
a texture-oriented inpainting approach was presented based on the nearest-neighbor search al-
gorithm PatchMatch of Barnes et al. [BSF+09].

To overcome problems induced by poor initialization, a so-called onetime inpainting ap-
proach was proposed that uses only valid (i.e. already present) image information in the com-
pletion process as opposed to newly synthesized data. We have demonstrated that the initial
PatchMatch algorithm produces insufficient inpainting results in regions where the fixed patch
sizes are smaller than the hole to be filled, since in those cases no visual information is avail-
able for the calculation of the patch distance metric. To account for these non-occupied target
patches, adaptive patch sizes in conjunction with a valid matching pixel threshold were intro-
duced to ensure a minimal amount of valid pixels for the determination of patch similarities.
This approach also helps to gently propagate information from the target boundary into the hole,
as the overlap of neighboring patches close to the hole margin is reduced and, consequently,
fewer patches are involved in the calculation of the color value of an individual pixel.

Furthermore, since inaccuracies in the depth estimation process as well as pixel position
quantization after the warping step may strongly affect the quality of the resultant novel view,
two additional preprocessing steps were introduced. In particular, unilateral morphological di-
lation of the disocclusion mask was used to decrease the amount of pixels at the edge of a
foreground object that are erroneously labeled as background. Additionally, diffusion-based
infilling of minor holes was employed to reduce the overall computation time.

Since disocclusions primarily result from the displacement of objects in the foreground, a
reasonable approach is to fill the vacant regions with texture obtained from the background.
For that purpose, the PatchMatch algorithm was extended to incorporate the available depth
information in the matching and inpainting stage to provide appropriate patch correspondences.
However, depth maps computed by existing stereo matching techniques exhibit inaccuracies,
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e.g. due to untextured regions, which require an attenuation of the depth constraints. Thus,
instead of imposing restrictions on the patch level, in the presented approach, depth limits were
specified for each individual target region based on an outlier detection. Experimental outcomes
have shown that this strategy helps to prevent ghost shadowing artifacts in the inpainting results
caused by color interference of foreground objects.

The proposed image completion approach was also extended to video sequences. Since
a video processing algorithm that only works framewise and thus neglects the inter-frame rela-
tions may produce inconsistencies (“flickering”), two temporal extensions were presented. First,
based on the assumption that the content of two consecutive frames will typically not differ sig-
nificantly, the approximated patch correspondences of the current frame were used to initialize
the ANNF of the subsequent one. Although this frame-to-frame propagation saves computation
time as the convergence of the matching process is accelerated, the reduction of patch flickering
is not satisfying, especially in dynamic scenes where the position of the disoccluded regions
alters considerably. Hence, a second approach was investigated where color information of the
previously filled image is used in the inpainting process of the following frame. This entails a
reduction of flickering as rapid color changes of consecutive frames are suppressed and addi-
tionally diminishes the influence of warping artifacts.

Regarding the quality of the completed still images and video sequences, the various en-
hancement stages of the proposed inpainting approach were compared to Horizontal Background
Replication (HBR) and Adobe R©’s professional image completion function Content-Aware Fill
(CAF), which is also a PatchMatch-based inpainting technique. The evaluation results obtained
from objective quality metrics, including RMSE, PSNR, MSSIM and Relative Frame Differ-
ential Flicker (RFDF), showed a lack of adequate image and video quality assessment mea-
surements that are able to reflect the behavior of the human visual system. The relatively large
variation of the results between the individual test sequences indicates the dependence of these
pixelwise error metrics on the underlying image content. Therefore, a supplementary subjective
user study was carried out. The evaluation results of the pair comparison test demonstrated the
continuous improvement of the proposed inpainting framework and indicated the superior per-
formance of the presented depth-based and temporal extension compared to CAF and the initial
PatchMatch algorithm.

However, there is substantial room for further improvements, especially concerning the
runtime performance. To achieve acceptable runtime results similar to CAF, the search for
patch correspondences has to be accelerated. For that purpose, recent adaptations of the Patch-
Match algorithm like Coherency Sensitive Hashing [KA11] and TreeCANN [OA12] have shown
promising results. Additionally, the application of image pyramids coupled with a selective use
of color information, e.g. only at the finest resolution and grayscales for the remaining pyramid
layers, could lead to a further speedup due to the use of smaller patch sizes and, consequently,
to reduced computational costs in the pixelwise calculation of patch similarities.

Furthermore, although Gaussian-weighted pixel synthesis produces appealing inpainting re-
sults, it would be interesting to investigate alternative approaches to reduce the blurriness of
the completion outcomes and to enhance the preservation of image structures by the use of e.g.
gradient information.

74



APPENDIX A
Listings of Evaluation Results

This chapter provides the numerical evaluation results of the objective image/video quality as-
sessment and the subjective user study as presented in Chapter 4. Additionally, the pair compar-
ison results between the individual image and video inpainting approaches are shown.
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A.1 Objective metrics

PM APM DPM CAF HBR

Bird 17.73 | 23.16 | 80.88 17.28 | 23.38 | 83.88 18.87 | 22.62 | 82.52 20.34 | 21.96 | 75.89 17.32 | 23.36 | 80.92
Flower 24.70 | 20.28 | 81.98 19.54 | 22.31 | 85.27 18.62 | 22.73 | 85.11 25.56 | 19.98 | 77.36 24.39 | 20.39 | 80.99
Edge 35.66 | 17.09 | 57.50 31.90 | 18.05 | 58.82 36.82 | 16.81 | 58.39 49.57 | 14.23 | 46.92 40.13 | 16.06 | 51.47
Arm 19.90 | 22.15 | 90.38 17.59 | 23.23 | 93.18 14.39 | 24.97 | 94.04 21.98 | 21.29 | 89.33 21.20 | 21.60 | 90.47
Crowd 30.31 | 18.50 | 54.02 26.87 | 19.55 | 58.89 26.95 | 19.52 | 59.45 35.28 | 17.18 | 49.61 29.44 | 18.75 | 57.89

Average 25.66 | 20.24 | 72.95 22.64 | 21.30 | 76.01 23.13 | 21.33 | 75.90 26.50 | 20.03 | 72.35 30.54 | 18.93 | 67.82

Table A.1: Objective metric scores of still images (cf. Figure 4.3). The columns represent RSME, PSNR and MSSIM, respectively.

NT AP PF CAF HBR

Bird
16.99 | 23.88 16.97 | 23.90 16.22 | 24.29 18.77 | 22.95 21.01 | 21.94
83.37 | 1.907 83.45 | 1.889 84.59 | 1.774 80.92 | 1.990 76.05 | 2.098

Flower
24.02 | 20.65 23.21 | 20.96 26.41 | 19.83 24.94 | 20.38 29.72 | 18.77
82.40 | 2.512 82.86 | 2.153 81.70 | 1.751 80.91 | 2.500 75.57 | 1.994

Edge
28.72 | 19.19 28.44 | 19.29 23.44 | 21.11 31.37 | 18.50 35.19 | 17.42
61.10 | 2.421 61.51 | 2.100 66.55 | 1.524 56.26 | 2.696 51.72 | 2.432

Couple
19.92 | 22.33 19.69 | 22.44 20.34 | 22.10 25.21 | 20.27 24.56 | 20.45
74.39 | 2.345 74.57 | 2.144 74.41 | 1.662 67.46 | 2.863 65.24 | 2.218

Crowd
31.84 | 18.08 31.01 | 18.34 24.24 | 20.66 33.60 | 17.64 40.74 | 15.96
54.53 | 2.969 55.60 | 2.431 64.48 | 1.590 52.22 | 2.837 43.74 | 2.671

Average
24.30 | 20.83 23.87 | 20.99 22.13 | 21.60 26.78 | 19.95 30.24 | 18.91
71.16 | 2.431 71.60 | 2.143 74.35 | 1.660 67.55 | 2.577 62.46 | 2.282

Table A.2: Objective metric scores of video sequences (cf. Figure 4.4). The values represent RSME, PSNR, MSSIM and RFDF.
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A.2 Subjective user study

PM APM DPM GT CAF HBR

Bird 35.88 58.82 42.94 77.65 41.76 42.94
Flower 22.94 64.71 47.65 82.35 25.88 56.47
Edge 30.00 51.76 67.65 81.76 10.59 58.24
Arm 36.47 57.65 75.88 95.88 24.71 9.412
Crowd 21.76 30.59 65.88 91.76 38.82 51.18

Average 29.41 52.71 60.00 85.88 28.35 43.65

Table A.3: Pair comparison scores of still images (cf. Figure 4.7(a)).

NT AP PF GT CAF HBR

Bird 48.82 45.29 41.18 88.82 34.71 41.18
Flower 25.88 36.47 67.65 97.06 37.06 35.88
Edge 44.12 44.12 52.35 95.29 5.294 58.82
Couple 45.88 38.82 54.12 94.12 32.35 34.71
Crowd 35.29 44.12 63.53 97.06 7.059 52.94

Average 40.00 41.76 55.76 94.47 23.29 44.71

Table A.4: Pair comparison scores of video sequences (cf. Figure 4.12(a)).
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PM APM DPM CAF HBR

Flower 25.74 76.47 53.68 30.88 63.24
Edge 33.09 60.29 76.47 13.24 66.91
Arm 45.59 69.12 92.65 30.88 11.76
Crowd 22.79 35.29 79.41 48.53 63.97

Average 31.80 60.29 75.55 30.88 51.47

Table A.5: Pair comparison scores of still images discarding GT and Bird (cf. Figure 4.7(c)).

NT AP PF CAF HBR

Flower 31.62 44.85 84.56 46.32 42.65
Edge 54.41 52.94 65.44 6.618 70.59
Couple 57.35 44.85 64.71 39.71 43.38
Crowd 44.12 53.68 79.41 8.824 63.97

Average 46.88 49.08 73.53 25.37 55.15

Table A.6: Pair comparison scores of videos sequences discarding GT and Bird (cf. Figure 4.12(c)).
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Figure A.1: Pairwise comparison of image inpainting approaches.
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Figure A.2: Pairwise comparison of video inpainting approaches.
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