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Abstract

In the present thesis the constitutive behaviour of unidirectional fibre reinforced poly-

mer composites is investigated. The Finite Element Method (FEM) is ideally suited

for the simulation of structures with such a non-linear material behaviour. It is mostly

used in an implicit formulation. This implicit form has some severe drawbacks in some

applications, as for example convergence problems can occur when highly non-linear

behaviour is to be simulated, possibly involving contact definitions. Another disadvan-

tage is the high amount of working storage needed when big models are to be simulated

and a possibly long calculation time. To circumvent some of these problems, an ex-

isting constitutive law, the elasto-plasto-damage-model (EPD) by Thomas Flatscher

(2010, VDI Verlag, Duesseldorf) is adapted to be used in conjunction with the explicit

FEM in quasi-static simulations. Because the original implementation was done for

the use with Abaqus/Standard, it is obvious to adapt it to Abaqus/Explicit. To this

end an interface is developed which incorporates the given EPD-model from Flatscher

and makes the necessary adjustments arising from the explicit FEM.

The implemented model is verified by comparing its predictions to the original model.

The differences in the predictions are nearly vanishing and can be explained by round

off errors and the changed integration method. To investigate the characteristic in

terms of numerical efficiency, stability and its hardware requirements, some represen-

tative quasi-static simulations are conducted. A three point bending specimen, made

out of two layers of ply, is investigated to show some key features of the EPD-model.

The main part of the applications is subjected to open hole tension tests with vari-

ous layups. These simulations combine the EPD-model to describe the constitutive

response of the plies with cohesive elements to describe the interface between the plies.

With this approach it is possible to model and efficiently simulate every single ply in

the laminate as well as the interfaces. The results of the simulations are compared to

experimentally obtained results from [Fla12] (2012, Composite Science and Technol-

ogy, 72, p. 1090-1095, Elsevier). They are generally in good agreement, although some

inconsistencies exist. Finally an unit cell of a braided composite from the Ph.D.-thesis
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of Jakob Gager (2013, PhD thesis, ILSB, Vienna Univerity of Technology) is simulated

to investigate the performance of the explicit integration scheme. The results could be

reproduced, but no clear advantage of the explicit over the implicit FEM solver could

be found.

Concluding it can be said, the combination of the EDP-model to describe the consti-

tutive response of the plies with cohesive elements to describe the interface between

the plies is very promising. It is possible to investigate every ply on its own including

the interfaces in between. The explicit FEM is, due to its robustness, able to advanta-

geously execute these highly non-linear simulations. The explicit simulations are found

to by numerical efficient, depending on the specimens geometry, and the requirements

on computer hardware are very small.

Kurzfassung

In der vorliegenden Arbeit wurde das Materialverhalten von unidirektional langfaser-

verstärkten Polymer-Verbundwerkstoffen untersucht. Die Methode der Finiten Ele-

mente (FEM) eignet sich hervorragend zur Beschreibung und Simulation solcher Struk-

turen. Die FEM wird meist in einer impliziten Formulierung verwendet. Diese implizite

Formulierung hat jedoch in gewissen Anwendungen den Nachteil, dass Konvergenzprob-

leme bei stark nichtlinearen Problemstellung, welche möglicherweise auch Kontaktbe-

dingungen enthalten, auftreten können. Ein weiterer Nachteil ist die hohe Anforderung

an die Größe des Arbeitsspeichers bei großen Modellen, sowie eine möglicherweise sehr

lange Rechenzeit. Um einige dieser Probleme zu umgehen, wurde ein bestehendes

Materialmodell, das Elasto-Plasto-Schädigungsmodell (EPD) von Thomas Flatscher

(2010, VDI Verlag, Duesseldorf), angepasst, um es in Kombination mit der expliziten

FEM verwenden zu können. Da die ursprüngliche Formulierung zur Verwendung

mit Abaqus/Standard entwickelt wurde, liegt es Nahe diese Formulierung zur Ver-

wendung mit Abaqus/Explicit anzupassen. Zu diesen Zweck wurde eine Subroutine

entwickelt, welches das vorhanden Modell von Thomas Flatscher enthält, und einige
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notwendige Anpassungen vornimmt, welche sich aus den Anforderungen der expliziten

FEM ergeben.

Das implementierte Modell wurde verifiziert, sprich mit dem ursprünglichen Modell

verglichen. Die Abweichungen sind verschwindend und lassen sich auf Rundungs-

fehler sowie die veränderte Integrationsmethode zurückführen. Um die Eigenschaften

bezüglich numerischer Effizienz und Stabilität, sowie der Hardware-Anforderungen

zu untersuchen wurden einige repräsentative Probleme simuliert. Ein Drei-Punkt-

Biegebalken aus zwei Einzellagen wurde untersucht um einige Eigenschaften des EPD-

Modells aufzuzeigen. Im Hauptteil des Anwendungsteils wurden Simulationen zu einer

Lochplattengeometrie mit unterschiedlichem Lagenaufbau durchgeführt. In diesen Sim-

ulationen wurden die Möglichkeiten des EPD-Modells zur Beschreibung des Verhaltens

der Einzellagen mit sogenannten Kohäsiv-Elementen welche das Interface beschreiben,

kombiniert. Dadurch kann jede Einzellage, wie auch jedes Interface, sprich deren

Einzelverhalten im Verbund untersucht werden. Diese Ergebnisse wurden mit exper-

imentellen Ergebnissen aus der Literatur (2012, Composite Science and Technology,

72, p. 1090-1095, Elsevier) verglichen. Die Übereinstimmungen zwischen Simulation

und Experiment ist in weiten Teilen sehr gut, obwohl teilweise Unterschiede feststell-

bar sind. Abschließend wurde eine Einheitszelle aus der Dissertation von Jakob Gager

(2013, PhD thesis, ILSB, Vienna Univerity of Technology) betrachten, um weitere

Vorteile der expliziten Zeitintegration zu ergründen. Die Ergebnisse konnten repro-

duziert werden, jedoch wurden keine gravierenden Vorteile hinsichtlich der Effizienz

und Genauigkeit gefunden.

Abschließend kann angemerkt werden, dass die Kombination des EPD-Modells mit

einer Formulierung für die Beschreibung der Interfaces in Kombination mit der ex-

pliziten FEM einige Vorteile aufweist. Es ist möglich das Laminat mit all seine Einzel-

lagen zu simulieren und auszuwerten, auch Delaminationserscheinungen können erfasst

werden. Die explizite FEM kann ihren Vorteil, ihre Robustheit, in diesen stark nicht-

linearen Simulationen voll ausspielen. Die Rechenzeit ist abhängig von der Geometrie

des Bauteils sehr kurz, und die Anforderungen an den Arbeitsspeicher sind sehr klein.

v



Notations

Abbreviations

FEM Finite Element Method

FRP fiber reinforced polymer

UD unidirectional

Subscripts

x, y, z laminate coordinates

1, 2, 3 ply coordinates

ξ, η, ζ braid coordinates

Superscripts

Superscript on the right side of variables refer to the material state.

(0) refers to the virgin ply material

(el) refers to elastic strains

(pl) refers to plastic strains

(t) refers to tension

(c) refers to compression

(f) refers to fiber

(m) refers to matrix

(i) refers to time increment i

vi



Coordinate systems

For fibre reinforced laminates consisting of a number of stacked plies it is common

to define a local ply coordinate system, 1, 2, 3, for each individual ply. These local

coordinate system define the fibre direction ,1, the in plane transverse direction ,2,

and the out of plane transverse direction ,3. For each ply the fibre orientation is given

by the angle ψ, referring to the laminate coordinate system, x, y, z, see figure 1. The

coordinates (1, 2) and (x, y) denote the in plane directions.

Figure 1: Sketch of a laminate to illustrate the relation of global laminate coordinate system
(x,y,z) and local ply coordinate system (1,2,3) in terms of the fibre orientation angle ψ,

picture taken from [Fla13]
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1 Introduction

The usage of fibre reinforced polymers (FRPs) has been increasing in the last decades.

Originally the usage of FRP’s was restricted to specialised applications in aeronautics

and astronautics. Nowadays, the usage of FRP’s is more wide spread wherever their

weight saving potential can be of advantage, due to their high specific stiffness and

strength. Its applications have reached every day live, for example in automotive and

sports industries and in conspicuous applications like wind turbine blades.

In applications were the load carrying capacity is critical and a failure of structural

parts can have precarious outcome, reliable predictions of the onset of failure are crucial.

But not only the onset of damage, plasticity and/or delamination has to be predicted,

also its propagation is of interest. In typical applications of FRP, the layup consists

of several unidirectional layers stacked in different orientations. Here, the maximum

load carrying capacity of the structure might not be reached if a failure in one of the

layers or between the layers occurs. In some cases the load can be increased signifi-

cantly above the point of first ply failure (FPF) or the first occurrence of de-lamination.

To predict the behaviour of structures beyond FPF and/or de-lamination, and there-

fore to exploit the full potential of FRPs, reliable simulation methods are needed. In

most cases this simulation methods incorporate the use of the Finite Element Method

(FEM), a numerical procedure to approximate solutions of differential equations. Two

major approaches are in use, the implicit and the explicit method. The implicit method

is mostly used for static applications, whereas the explicit FEM is advantageous for

highly dynamic problems.

A constitutive law for the implicit finite element method (FEM) was developed by

Flatscher [Fla10] at the ILSB. This material model for small strain, plane stress appli-

cations incorporates

• stiffness degradation, attributed to microscopic brittle matrix cracking, fibre/-

matrix debonding, as well as progressive fibre failure, modelled via continuum

damage mechanics, and
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• unrecoverable strain accumulation, associated with the formation of microscopic

areas with inelastically deformed matrix material, represented as a multi-surface

plasticity law.

To account for the possibility of onset and propagation of delamination, the above

material modell can, for example, be combined with cohesive elements, able to degrade

and fail. In this combination every ply can be modelled separately with a layer of

cohesive elements in between, joined together with a contact formulation. This means

the non-linear material definition is combined with a contact definition, affecting big

portions of the model. This combination can lead to severe convergence issues, when

simulated with the implicit FEM. Another issue known from the work of Flatscher

can be a long calculation time under certain circumstances, due to convergence issues

within the material model itself. On the other hand the explicit FEM is known to

have advantages when severe non-linearities in combination with contact definitions

occur. Harewood and McHugh [Har06] have compared the implicit and explicit FEM

using crystal plasticity. Their findings confirm that for certain loading conditions the

explicit scheme may encounter less problems with convergence, and in conjunction with

the high parallelization efficiency, can lead to a reduced calculation time compared to

the implicit method. Another benefit can be a saving in required memory.

To exploit these possible benefits, the constitutive law from Flatscher is adapted to

be used in conjunction with the explicit FEM. The existing implementation is an

user subroutine for Abaqus/Standard (Dasault Systemes Simulia Corp., Providence,

RI, USA). This subroutine called Umat was adapted into a Vumat, a subroutine for

Abaqus Explicit. To investigate the advantages of the explicit method, some distinctive

problems were simulated. These include a three point bending tests as well as open hole

tension tests, a common structure for example investigated by Hallett et al. [Hal09].

Another example to investigate the potential concerning numerical stability is an unit

cell from Jakob Gager [Gag13].
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2 Explicit FEM

The Finite element method (FEM) is nowadays in widespread use to simulate the

mechanical behaviour of structures. It’s main advantage is the possibility to simulate

structures for which the analytical methods are not suitable due to the geometry of

these structures. The FEM can be described as a numerical method to solve differential

equations. In its most common form an implicit discretization is used, where the

solution for the later time (i + 1) in figure 2 of the underlying equation is calculated

from state of the system at the later time (i+ 1). This approach enforces the inversion

of the stiffness matrix and an incremental approach for solving non-linear problems.

(i− 1) (i− 1
2
) (i) (i+ 1

2
) (i+ 1)

t

Figure 2: Sketch of a time-line, (i) refers to the current time, (i− 1) and (i− 1
2) refer to

earlier times and (i+ 1) and (i+ 1
2) refer to later times.

The explicit FEM on the other hand calculates the solution for the later time (i + 1
2
)

and (i + 1) of the underlying equation from the state of the system at current time

(i) and at earlier times (i− 1
2
) and (i− 1). This leads to an entirely different solution

method compared to the implicit scheme, as well as a different underlying equation.

The explicit FEM is usually used to simulate highly dynamic problems like impact

and wave propagation problems. It can also be applied to highly non-linear problems,

were for example material non-linearities and contact occur simultaneously, due to its

robust formulation. The underlying equation of the explicit FEM is given in [Bat02]

in a well known form as

Mü + Du̇ + Ku = F̂ , (2.1)

where M is the mass matrix, D is the damping matrix, K is the stiffness matrix and F̂

is the force vector. u is the nodal displacement vector with its derivatives with respect

to time, u̇ and ü.

In the further considerations the damping matrix is assumed to be zero.
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2.1 Algorithm

To describe equation (2.1) in form of a numerical code it is necessary to choose a

discretization method which should enable a stable and computational efficient way of

simulation. In the program Abaqus, which is used in this thesis, the time derivatives

of u are discretized with a central difference scheme. This scheme uses two states from

previous increments to explicitly predict the state of the current increment. The time

at witch the expressions are evaluated is expressed with the superscripts corresponding

to the current time (i), the last timestep (i − 1) the next timestep (i + 1) and two

intermediate times (i± 1
2
). The time increment ∆t is given by ∆t = t(i) − t(i−1). With

the assumption of constant time increments this scheme can be written (after [Aba10])

ü(i) =
1

∆t
[u̇(i+ 1

2
) − u̇(i− 1

2
)] . (2.2)

The second derivative at time (i) is expressed in terms of the first derivatives at time

(i− 1
2
) and (i+ 1

2
), which can be expressed as:

u̇(i+ 1
2
) =

1

∆t
[u(i+1) − u(i)] (2.3)

u̇(i− 1
2
) =

1

∆t
[u(i) − u(i−1)] . (2.4)

This leads to the complete discretization scheme, where the second derivative of u is

described by u itself. This scheme is also known for example in fluid mechanics, where

explicit formulations are in wide spread use.

ü(i) =
1

∆t2
[u(i+1) − 2u(i) + u(i−1)] (2.5)

If this discretization scheme is inserted in equation (2.1) and some of the terms are

rearranged to express the unknown state u(i+1) on the left hand side, it leads to:

(
1

∆t2
M)u(i+1) = F̂ + (

2

∆t2
M−K)u(i) − (

1

∆t2
M)u(i−1) . (2.6)
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The right hand side can be written in a shorter form expressed as F̂, the applied load

vector and Î, the internal force vector, giving rise to

(
1

∆t2
M)u(i+1) = (F̂ + Î) . (2.7)

The algorithm can now be written in the form as being executed in Abaqus/Explicit.

The terms are computed in sequence of the numbers over the equality sign in the

equations (2.8 to 2.10) as stated in [Aba10]. The force vectors F and I are also known.

u(i+1) (3)
= u(i) + ∆tu̇(i+ 1

2
) (2.8)

u̇(i+ 1
2
) (2)

= u̇(i− 1
2
) + ∆tü(i) (2.9)

ü(i) (1)
= M−1 · (F− I)(i) (2.10)

Equation (2.10) originates from equation (2.1), with D = 0 and I = Ku and equations

(2.9) and (2.8) are rearrangements of equations (2.3) and (2.2) respectively. From

this set of equations it can be seen, that only the mass matrix has to be inverted.

Other than that, only simple operations have to be done. The main advantage of the

explicit scheme is that the consistent mass matrix can be approximated by a tridiag-

onal or lumped mass matrix. This approximation is the reason that linear elements

are commonly used. This matrix can now be inverted very effectively using a TDMA

(TriDiagonal Matrix Algorithm) algorithm.

Because of the use of the previous state (u̇(i− 1
2 ) in calculating the next state a special

starting procedure is required. In Abaqus this is done by setting the velocity at the

beginning to zero, unless otherwise specified by the user.

The central difference algorithm is consistent with a truncation error of O(∆t2) as

stated in [Bat02] .
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2.2 Stability

The numerical stability of an algorithm is mostly defined by its behaviour to round

off errors and other inaccuracies, occurring during calculation. These round off errors

limit the accuracy of the solution. If the error in the solution accumulates significantly

the algorithm is normally called numerical unstable. If the error in the solution is ne-

glectable the numerical method is called stable. A detailed discussion of the derivation

of the stability criterion can be found in [Bat02].

The commonly used implicit FEM is usually unconditionally stable, the ’time’ in-

crement is only limited by the accuracy needed. For explicit algorithms one strong

limitation of the time increment ∆t comes from the CFL (Courant Friedrich Lewy)

criterion that has to be satisfied for every element at all times. This criterion can be

approximated by

∆t < ∆tc ≈
Lmin

cd
, (2.11)

where ∆tc is the critical time increment, Lmin is the smallest element dimension in the

mesh and cd is the dilatational wave speed, see [Aba10]: section 6.3. cd can be defined

for isotropic materials as

cd =

√
E

ρ
. (2.12)

For anisotropic materials the dilatational wave speed is not straightforward to calculate,

also the smallest element dimension Lmin is of interest. In most implementations, the

stable time increment is approximated, and a safety factor is introduced. The stability

limit, although it has to be evaluated locally, applies globally. It is depended on the

element dimensions and the material characteristics stiffness and density, as obvious

from equation ( 2.11) and (2.12).
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2.2.1 Mass scaling

The stability limit of the algorithm acts as a global limit, meaning the biggest time

increment to choose for all elements is determined by the one element with the smallest

stable time increment. This means a few very small and stiff elements with low density

can increase the calculation time significantly. To reduce the calculation time it is

possible to raise the density of these few small elements in order to raise the stable

time increment. It can be seen in equation 2.12 that in order to raise the stable time

increment by a factor of f the density is raised by a factor of f 2.

This option should be applied with care, because it alters the solution by adding

artificial mass to the model. Nevertheless, if the added mass is small the dynamic

response is not altered too much and the calculation time can be lowered significantly.

2.3 Accuracy

In the explicit integration scheme used, one suitable way for the user to monitor the

accuracy of the solution, is to monitor the energy balance, meaning the conservation

of energy. If the time increment is sufficiently small, the energy balance is off by a

very small fraction (normally lower O(−3)) compared to other energies, like the strain

energy, due to numerical round off errors. With the time increment getting bigger the

error in the energy balance is getting bigger, suggesting the chosen time increment is

too big. The clue is to find a time increment satisfying the accuracy requirements and

also allowing a decent calculation time.

This condition may vary over the time simulated, so it can be of advantage to set the

time increment dependent on the error in the energy balance. It is possible to use the

built in capability of most FEM programs to automatically adjust the time increment,

if applicable. Otherwise an iterative approach by the user is required, first calculating

a solution with an estimated time increment and then restarting or repeating the anal-

ysis with an adapted time increment, possibly varying over time.

7



2.4 Quasi-static problems

The explicit FEM is most often used to simulate transient problems on very small

time scales, for example ballistic impact and crash analyses. Another advantage is the

possibility to handle severely non-linear behaviour, like non-linear material behaviour

in combination with interface and contact definitions, as carried out in this thesis. The

explicit scheme can be used to simulate quasi static problems by choosing the simulation

time (the loading rate) in a way that the dynamic influences don’t disturb the solution

(mostly named load rate scaling). The choice of this simulation time is tricky, because

a decent calculation time depends strongly on the time simulated. One statement is

available in nearly every literature. It reads, ’the value of the kinetic energy should not

exceed a small fraction of the value of the strain energy’, stated in [Aba10] or [Nas10].

However, its meaning has to be evaluated by performing simulations with different

loading rates. An initial guess can be obtained via the eigen-frequencies of the model

see for example [Par66].

Particular attention needs to be turned to changes in loading speed, for example at

the start of an analysis. To avoid dynamic influences, like vibrations, the load should

be applied as smooth as possible, meaning the time derivatives of u should be kept as

small as possible. The time increment chosen for such analysis is most likely close to

the stability limit, because the high simulation time enforces a high number of time

increments.
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3 Elasto-Plasto-Damage-Constitutive Law

from Flatscher [Fla10]

The present work is based on the work of Flatscher [Fla10], and Schuecker [Sch05]. A

short survey of the constitutive model is given below, for more information the reader

is refereed to the original thesis. Some additional information can be obtained from

[Fla13] and [Fla12].

In the following chapter the constitutive law from Flatscher [Fla10] is reviewed. The

smeared out material model applies to plies that are embedded in a laminate only. As it

applies to thin walled, laminated components, the plane stress assumption is justified.

The material properties as well as the damage and plasticity mechanism are modelled

in an average sense, the implementation is done traversal isotropic.

Distributed brittle damage accounts for the stiffness degradation due to microscopic

brittle matrix cracking and fibre matrix de-bonding. The strains accompanied by this

phenomena are taken to be recoverable after unloading, therefore refereed to as elastic

strains. In this approach no localization is expected, so strain hardening is modelled.

Localized brittle damage, leading to damage and strain localization in structural analy-

ses. Multi-surface plasticity accounts for the accumulation of unrecoverable strains and

is associated with inelastic microscopic matrix deformation. The strains accompanied

are termed plastic strains.

To combine the outlined approaches in one single constitutive law, the elasto-damage

model is enriched by the plasticity model. So for an integrated loading history the

strain decomposition reads

ε = εel + εpl = Cσ + εpl. (3.1)
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The term ε is the vector of mechanical strain components, εel is the vector of the elastic

strain components and εpl is the vector of the accumulated plastic strain components.

C is the current compliance matrix, possibly altered by damage and σ is the vector of

stress components. The compliance matrix C and the vector of plastic strain compo-

nents εpl determine the non-linear behaviour, their evolution is given by incremental

formulations. Some crucial assumptions are based on work of Puck [Puc96] on FPF.

These findings are not reviewed in detail.

3.1 Distributed brittle damage

This section follows [Fla10], were detailed considerations can be found. This part of the

material model is formulated by embedding fictitious inhomogeneities into the undam-

aged but smeared out ply material. In this way it is possible to describe the anisotropic

characteristics of matrix related damage by using only scalar variables. The initiation

of damage is directly related to Pucks failure surface for plane stress [Puc96]. A factor

of matrix exertion f
(m)
E is introduced which depends on the current stress state only. It

reaches the value of one when Puck predicts FPF, and is used to govern the evolution of

damage. The evolution of the damage state is, of course, a function of the ply loading

history, meaning an large number of possibilities exist. Due to the approach of using

fictitious inhomogeneities, a method borrowed from micro-mechanics, the fourth order

elasticity tensor of the damaged ply can be predicted by using only scalar variables.

To account for the different loading cases three populations of inhomogeneities are in-

troduced.

The three fictitious inhomogeneities can each be described via their shape (i), volume

fraction (ii), orientation (iii), and assigned material properties (iv), although these in-

homogeneities are not intended to represent actual cracks.

(i) The shape of the inhomogeneities are oblate spheroids, their axis of rotations is

aligned with the fracture plane normal predicted by Puck [Puc96]. With the choice

of this shape the anisotropic characteristic of the modelled damage is defined. Known
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from experimental results, penny-shaped voids are suitable, the shape remains constant

throughout the analysis

(ii) The volume fraction ξ(m) of the fictitious inhomogeneities is directly related to

the amount of damage. An evolution equation is postulated which assumes that the

amount of damage is related to the factor matrix exertion.

(iii) The orientation of the penny-shaped inhomogeneities is assumed to be directly

related to the fracture angle predicted by Puck. For loading conditions resulting in a

fracture plane angle of ϕ = 0 (see figure 3), the axis of rotation of the inhomogeneities

is defined parallel to the in plane transverse direction of the ply. If a fracture plane

angle of ϕ 6= 0 is predicted, the orientation is tilted by the same angle. In general,

non-radial loading conditions are also considered, as well as unloading conditions, but

are not recapitulated here.

(iv) The voids are modelled with material properties dependent on their current

stress state. This way it is possible to account for differences in tension and compres-

sion as well as frictional effects.

Three populations of inhomogeneities are introduced, their superposition accounts for

general stress states and loading histories. The above mentioned variables are used to

determine the full tri-axial compliance tensor for the damaged ply material, using a

Mori-Tanaka-like method.

3.2 Multi-surface plasticity

This section follows [Fla10], were detailed considerations can be found. For a more

detailed introduction to plasticity mechanisms the reader is refereed to [Dun05].

Laminates exposed to in-plane shear or transverse compression are known to accumu-

late unrecoverable strains. This behaviour is captured by a phenomenological model

assuming that plastic shear strains are driven by tractions acting on planes, called

’shear planes’ in the following, which are similarly oriented as Puck’s fracture planes.

To circumvent some difficulties with the unknown and changing orientation of Puck’s

fracture planes two plasticity mechanisms are incorporated, each of which is driven by
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a characteristic shear component assigned to a shear plane. Both of these mechanisms

can be active at the same time, allowing for a general behaviour.

In-plane shear Under dominant ply shear loads the Puck criterion predicts a frac-

ture plane angle of ϕ = 0 (see figure 3), therefore it is assumed, that plastic shear

strains γ
(pl)
12 accumulate. The main driving force is the shear stress component σ12, but

σ22 also influences the evolution of plastic strain via three interaction parameters.

Transverse compression For load states leading to inclined fracture plane angles

according to Puck, it is assumed that plastic shear strains γ
(pl)
nt are accumulating on

inclined shear planes. These are primarily driven by the stress component σnt, with

influences of σnn and σln. This mechanism is formulated in the ply coordinate system

where the plastic strains ε
(pl)
22 and ε

(pl)
33 accumulate under dominate influence of σ22 also

affected by σ12

Both of the above mechanisms are described by a yield condition, a flow rule and a

hardening law. The needed consistency conditions as well as the loading-unloading

conditions are left out for the sake of brevity. The interaction of the two plasticity

mechanisms is addressed in section 3.4.

Figure 3: Sketch of the ’shear plane’ of the two plasticity mechanisms, ’in-plane shear’ with
an angle of ϕ = 0 (left) and ’transverse compression’ with an angle of ϕ 6= 0 (right), taken

from Flatscher [Fla10].
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3.3 Localized brittle damage

To complete the formulation of the material law, the possibility of softening and lo-

calized failure, the formation of locally disintegrated areas or even discrete cracks in

structures is addressed. To this goal it is not sufficient to focus on matrix dominated

issues, as done in the above sections, but also fibre dominated phenomena are to be

addressed. Localized failure is modelled as local stiffness degradation accompanied by

strain softening behaviour in the sense of brittle continuum damage mechanics. The

outlined model from section 3.1 is picked up and a fourth population of fictitious in-

homogeneities is introduced to capture the progressive fibre failure. These fictitious

inhomogeneities have a constant spheroidal shape, with the axis of rotation aligned

with the fibre direction. The relation of damage and effective stiffness is the same as

in section 3.1, the onset of softening is assumed when the factor of fibre extension f
(f)
E ,

again related to Pucks findings on FPF, reaches a value of one. For matrix dominated

phenomena it is assumed that softening behaviour initiates only after a certain, ma-

terial dependent, amount of matrix damage has accumulated, resulting in f
(m)
E > 1 at

onset of softening.

For the definition of the damage evolution, the multi-axial stress and strain states are

reduced to scalar ones by introducing equivalent stresses and strains. Four different

modes, fibre tension, fibre compression, matrix tension, and matrix compression are

distinguished, where the in plane shear behaviour is captured in the latter two. For

the softening regime, exponential softening is assumed. Localized failure is modelled

in the form of an equivalent stress equivalent strain relation. In this context the use

of the energy dissipated per unit sectional area failing is needed. Its disadvantageous

influences are reduced by the use of a characteristic length, dependent on the local

element size. The amount of damage is linked to the equivalent strain, and the stiffness

matrices are calculated similar as in section 3.1.

For the use in conjunction with an implicit FEM program such as Abaqus/Standard

the use of viscous regularisation can improve convergence significantly. Viscous regu-

larization is defined as a rate equation for the damage variables. This approach does
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not influence the results significantly as long as the viscous parameters are chosen suf-

ficiently small. This can be checked with the energy dissipated due to viscous effects.

If they are small enough, their influences, in particular the slowing down of the rate of

damage and the retardation of localization, are kept to a minimum.

3.4 Implementation

The constitutive law described above has been implemented by Flatscher [Fla10] in

an user subroutine for the FEM package Abaqus/Standard, called Umat, written in

Fortran. Given below is a general outline of the iterative procedure, executed in every

call of the Umat. It is structured in three levels, starting with level zero.

• Level 0: The state of the needed variables are read from the last Call of the Umat,

switches and parameters are set. If necessary, the strain increment is divided into

equal sub-increments: ∆ε =
∑

∆∆ε. For every strain sub-increment ∆∆ε Level

1 is called.

– Level 1: Based on the given strain sub-increment (or the solution from the

last call of level 2), a pre-estimate of the damage state is calculated. With

this damage state Level 2 is called.

∗ Level 2: A Predictor-Corrector algorithm is used in the following way:

First an elastic trail stress is used to pre-estimate the active plasticity

mechanism. Based on this assumption, the stress state of the set of

active plasticity mechanism(s) (one (or two) yield condition(s) and flow

rule(s)) is solved iteratively. The found state is checked whether the

assumption on the active mechanism was correct, and if the internal

hardening variable(s) is (are) non negative. If the above assumption

was not correct, a different set of active mechanisms is assumed and

Level 2 is repeated.

– Level 1: The solution from Level 2, which is converged for the plasticity

model, is checked whether the damage state is expected to change. If so,
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the iteration scheme can be outlined as:

F [ n−1ξ(m)]− nξ(m) = 0, (3.2)

where n denotes the number of iterations and ξ(m) is the damage variable.

With the new damage state Level 2 is called again, until a truncation con-

dition is met.

• Level 0: At the end of the main iteration the state of the non-viscous system

is known. The state of the viscous system is calculated next, if required. Then

the material Jacobian matrix along with other useful quantities, like engineering

elastic constants, factors of exertion, energy densities,etc. , are computed. If

errors occurred, the error massages are written to the *.msg file. The Variables

are updated and a single call of the Umat is closed.

Limitations

A few limitations arise from the implementation, being the restriction to small strains

and the plane stress assumption.

4 Implementation of the EPD model in Abaqus/-

Explicit

The constitutive law from Flatscher [Fla10] was implemented as an user subroutine

for Abaqus/Standard, called Umat. The goal of the written Vumat, a subroutine for

Abaqus/Explicit, is to include the Umat itself as a subroutine. This makes the EDP

model applicable to explicit simulations. Furthermore the input and output of an Umat

and a Vumat differ, thus some variables have to be adapted. Also in the beginning of an

analysis, some modifications have to be made, to account for initial calculations made

by Abaqus/Explicit. In detail the Vumat is called first in single precision (meaning the

subroutine is compiled twice) for the calculation of the initial stable time increment.

Here a set of fictitious strains are given and the corresponding stresses have to be cal-
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culated purely elastic.

There are some differences in the sense of how often the subroutine is called. In

Abaqus/Standard the subroutine is called a couple of times for every material point

and time increment. The Vumat is called just once for every increment, but the num-

ber of increments is by far higher compared to the implicit scheme. Therefore some

modifications concerning the output written to file were made.

4.1 Implementation

The user subroutine Vumat is written in Fortran (see for example [Bau03]), accord-

ing to the Abaqus manuals (see [Aba10] and [Aba11]). The main difference is that

an Umat is often called more than once for each material point, whereas a Vumat is

called for several material points at the same time, allowing for a better performance

in parallel computing. Another difference between Umat and Vumat, is from a pro-

gramming point of view, the ordering of the tensor components and the procedure at

the beginning of the analysis.

The tensors are stored in mathematical vectors containing the tensorial components in

different order. In an Umat the order is [11 22 12], in a Vumat the same tensors are

given as [11 22 33 12], for plane stress applications. Also the strains and strain incre-

ments are given in tensor components in a Vumat and in engineering components in an

Umat. Due to the small strain assumption of the Umat the components just have to

be rearranged and the shear strain component(s) multiplied/divided by 2. Particular

attention should be paid whether the quantities are given at the end or the beginning

of the increment. In an Umat the vector of stress components for example is given

as input at the beginning of the increment and has to be updated to be the vector

of stress components at the end of the increment. In a Vumat two vectors of stress

components are given, one as an ’old’ vector of stress components at the beginning of

the current increment and one as a ’new’ vector of stress components, which has to

be written, containing the values at the end of the increment. Also the time is given

to the subroutines at the beginning or end of the increment for an Umat or a Vumat,

respectively.
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A Vumat should normally be compilable in single and double precision, allowing for

single or double precision analyses. Because the given Umat is hard coded in double

precision, it was decided to allow only double precision analyses. As the calculations

carried out in the Vumat, account for the bulk of the computational time, this has just

minor effects on the computational performance. In an Abaqus user subroutine the

storage of variables is done via solution dependent variables. Since there is no space

accommodated to store the strain components in a Vumat, the number of solution de-

pendent variables (SDV’s) is increased. Finally the internal energy and the dissipated

energy per unit mass at each material point at the end of the increment has to be

calculated from the energies calculated in the Umat and the material density.

So basically, the Vumat acts as directory, rearranging the Input and Output of the

UMAT to fit the expectations. It can be outlined like in section 3.4, with the VUMAT

as level -1:

• Level -1: (Vumat): The input variables of the Vumat are rearranged as described

above and the Umat is called

– Level 0: (Umat): See section 3.4; Some alterations had to be made con-

cerning the error output to the .msg file, much of it is suppressed, and the

calculation of the Jacobian is suppressed, as it is not needed in Abaqus/Ex-

plicit.

• Level -1: (Vumat): The Output of the Umat is again rearranged.

The viscous parameters, introduced in Flatschers material law, have to be adapted to

the changed time scale in explicit simulation. These parameters can be approximated

in terms of loading rate, by scaling them linearly. In implicit simulations the time is

normally set to one and the load is raised linear to the maximal bearable load. In

explicit simulations the load is applied at a much smaller time scale and does not vary

linear with time. Therefore it is advised to take the load rate at the first appearance

of softening for the scaling of the viscous parameters.
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Due to the fact, that not all the input quantities given to the Umat are available in a

Vumat, some error messages and variables are of no meaning in Abaqus/Explicit. This

concerns the numbers of elements, integration points and section points as well as the

number of increments and the number of the current step.

4.2 Verification, single element tests

The solutions are first verified with tests on single linear reduced integrated conven-

tional shell elements, namely S4R elements, with displacement controlled loading in

all three directions (two principal components and one shear components, 11 22 12 in

Abaqus notation), and periodic boundary conditions. A lot of different simulations

with similar input parameters for implicit and explicit FEM are carried out, using the

original Umat and the Vumat containing the Umat. The results in terms of stresses

agree within one percent accuracy. Other variables were monitored too, they match

within the given tolerance but are not described in detail. Other loading scenarios were

also captured in this verification scheme with satisfactory agreement, but are left out

for the sake of brevity.

For this verification scheme, the time increment is chosen in a way that the energy

balance is nicely fulfilled, meaning the deviation in the energy balance is lower than

1.0 e-5. The load is applied in increasing smooth steps (pulsating load). Alternating

loads can only be applied if softening is not active, because in this regime the algorithm

of the Umat is strain based and does not account for alternating loading paths.

An example of a loading path is shown in figure 4, the strains are given and the result-

ing stress-components from Abaqus/Standard and -/Explicit are shown in figure 5. It

can be seen that the results in terms of stresses are nearly coincident.
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Figure 4: Exemplary strain components used as load for the verification of the user
subroutine.
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Figure 5: Stress components as response to the strain components in figure 4 obtaind from
Flatschers Umat (σUij) as well as from the current Vumat (σVij ).
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4.3 Limitations

The limitations of Flatscher’s material model and its implementation (see section 3.4)

are still valid, some known problem of the Vumat are discussed next.

The estimation of the stable time increment in conjunction with the Vumat is not as

accurate as expected. It turns out that the stable time increment is overestimated,

depending on the orientation of the fibres in the ply. This behaviour is especially

unsuited in conjunction with the option mass scaling for quasi-static simulations. A

simple workaround is provided in Appendix A to circumvent problems associated with

this behaviour.

Sometimes a not assignable error (’signal 11’) occurs if jobs are run in parallel. No

workaround has been found, in most cases this error still occurs even if the Vumat

is not used. It is assumed that it is a problem of Abaqus and not of the Vumat in

particular.

The viscous regularisation is not necessary to ensure convergence of the algorithm

in explicit FEM. If simulations are to be compared to the implicit FEM the viscous

parameters are best linearly scaled by the loading rate. The influence of the viscous

regularisation should be examined thoroughly, as it is was introduced in the original

implementation for numerical issues only. The known influences are increases in peak

stresses, the slowing down of the rate of damage accumulation and the retardation of

localisation. This influences can compromise the solution in an explicit FEM program

as dynamic influences can occur. In such an event one has to carefully investigate the

influence of the viscous regularisation, because the propagation of a localization zone

may be influenced.
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5 Applications

After the development and implementation of a constitutive law, one is eager to apply

it to a real structure. To this end three Applications are chosen. The first one is a

simple three point bending specimen. Here some characteristics of Flatscher’s EDP-

model can be shown. The main part of this section is devoted to open hole tension

tests. This application is used to show the capabilities of the current material model

in conjunction with the explicit integration scheme. In the last part of the section a

model of the Ph.D.-thesis of Jakob Gager [Gag13] is used to show the capabilities of

the current implementation.

5.1 General modelling

In this thesis one particular approach is chosen to simulate laminated fibre reinforced

composites. This approach consists of the usage of shell elements to model the individ-

ual plies and cohesive elements to model the interfaces in between. Four-noded shell

elements are used, they are reduced integrated with five section points in the thickness

direction applying the simpson rule integration. The constitutive model used with

these shell elements is, of course, the current EPD-model. The two material system

under consideration are carbon/epoxy systems called Cycom977 and RTM6/HTS40,

the material parameters can be found in [Fla10], see Appendix C, table C.1 to C.7, page

121 to 124 and [Gag13]. The reduced integration requires hourglass control, which is

chosen as the standard option, known to Abaqus users as ’enhanced hourglass control’.

The shell elements in use require the manual definition of the transverse shear stiff-

ness, which is calculated according to the Abaqus Manual [Aba10] section 29.6.4. The

transverse shear components have approximate character and are only evaluated at

the beginning of the analysis. This means for applications where the transverse shear

stiffness is of big influence the usage of the current approach might be questionable,

even though every ply layer is modelled individually.

The interfaces are modelled with cohesive elements, a special purpose element in the

element library of Abaqus, coupled to the shell elements via a Tie constraint. They
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exhibit a stiffness in thickness direction (z according to figure 1) as well as in two trans-

verse shear directions (zx and yz according to figure 1). Their constitutive behaviour

is described by a traction-separation response, the possibility to exhibit damage and

failure. The initiation of damage is described by a quadratic stress criterion. Its evo-

lution is described by the energy dissipated by the damage process, the mode mix is

described by the Benzeggagh-Kenane fracture criterion with an exponent of 2. Damage

stabilization is not required. The stable time increment is not affected by the geomet-

rical thickness of the interfaces as a result of the traction separation response. Their

geometrical thickness can be set very small values of 1/100 of the ply thickness, to

model the zero thickness interface. The thickness direction has to be assigned manu-

ally to ensure a proper behaviour. Elements are removed once the maximum damage is

reached. The properties of the cohesive elements are taken from [Gag13], see Apendix

A, table A.3, page 112.

5.2 Three point bending test

In this section simulations of three point bending specimens are carried out. The set-up

is shown in figure 6. It consists of two supports at a given distance, one punch in the

middle of the specimen and a strip of [0/90] laminate in between. The center punch

is lowered and the response of the specimen is investigated. The problem is modelled

as follows: The supports and the punch is assumed to be rigid and therefore mod-

elled as rigid surfaces. The contact is modelled with a friction coefficient of 0.3. The

specimen, a laminate with two plies (t=0.75 mm) in orientations of zero and ninety

degrees, is modelled with one shell element each in its width, meaning in z-direction an

infinitely wide strip is modelled. The boundary conditions applied assure that no out

of plane displacement and rotations occur. Although the single plies are too thick to be

manufactured as one ply, the current model does not account for ply thickness effects,

so the two (stacked) plies are modelled as one ply each. The material is Cycom977,

the material parameters are given in [Fla10]. Two quasi-static explicit simulations are

carried out, one with the EPD-model adapted for the explicit scheme (called ’Vumat’)
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and one with the built in material model from Abaqus. As the EPD-model is written

in a small strain, plane stress formulation, it can give an idea of the applicability of

the EPD-model when large rotations are evident. For the use of the Abaqus material

*Elastic Type=Lamina (called ’Abaqus material’), the damage initiation law is based

on Hashin’s theory. The evolution of damage is defined in terms of the energy required

for failure (fracture energy) specified as a function of the mode mix by means of the

Benzeggagh-Kenane mixed mode fracture criterion. The same material parameters are

used as in the EPD-model, but not all of them, arguably. The Interface is modelled

with cohesive elements, as described in section 5.1.

Due to the nature of the problem load rate scaling is only applicable to a certain level.

This results in a high number of increments and a high calculation time. The global

behaviour in terms of reaction force acting on the punch versus displacement of the

punch is shown in figure 7 for both models. They roughly coincide until the damage

initiation criterion is met. The reasons for the differences occurring prior to damage

Figure 6: Sketch of the three point bending specimen and its dimensions in mm, the
thickness of the plies is enlarged for better visibility

initiation is probably found in the fact that the EPD-model would only be applicable

to small strain applications. But as large rotations of some elements are evident, the

simulations are run in the non-linear geometry setting. In this setting a rotation of an

element does not lead to strains and stresses in an element and also the rotation of

the transversal isotropic material is accounted for. The strain increments in Abaqus

are given into the EPD-model in a way that the only difference is the value of these

increments due to the higher order terms in the calculation of the strain components.
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But as the individual elements are only subjected to small strains, the error induced

by this is only 0.5% in terms of strain value at damage initiation. The high frequent

oscillations at the beginning are probably due to the contact definition, the manual

refers to this behaviour as contact noise, see [Aba10]. The subsequent small oscillations

are dynamic influences, although the kinetic energy is small compared to for example

the strain energy. Some of the oscillations occur due to the initiation of damage at a

displacement of u ≈ 1.7 mm. In figure 8 the evolution of the damage initiation criterion

for three locations in the 90 degree ply are shown in terms of a damage initiation factor.

The three locations are at x=0, the top of the ply at the interface (y=t), the middle

of the ply (y=t/2) and the bottom of the ply (y=0). The distribution prior to damage

onset is of no meaning, as the initiation factor are not defined the same way. The

displacement as the initiation variables for the material point at y=0 reaches the value

of one, associated with initiation of damage, is roughly the same for both material

models, again due to the finite deformations setting. The evolution of damage differs

for the material models as different evolution laws are used and due to the fact, that in

Flatschers EDP model softening is delayed in matrix dominated damage phenomenon

until the damage variable reaches the value of ξ(m) = 0.015 for this material. Up to

this point distributed brittle damage is assumed. Figure 9 shows the evolution of the

damage variables, clear differences can be observed. This behaviour leads to the higher

bearable load, when the Vumat is used. One can see when comparing figure 8 and 9,

that the unstable damage growth, when the center element of the 90 degree ply gives

way, is directly related to the point where the damage variable of the first material

point, line a1) in figure 9, reaches the value of one. Once the first material point of

the shell element gave way, the damage grows in an unstable manner. In figure 10 the

specimen is shown shortly after the maximal load is reached. The center element of

the 90 degree ply is damaged and some of the cohesive elements have failed, forming a

de-lamination area. The response of the specimen after this breakage is highly dynamic

and is not investigated further.
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Figure 7: Global force per unit width versus global displacement u of the three point bending
specimen, simulated with two material definitions a)the current Vumat and b) the Abaqus

material.
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Figure 8: Damage initiation factors versus global displacement u of the three point bending
specimen for the middle element at the bottom (1), middle (2) and top (3) of the 90 degree

ply, simulated with two material definitions a)the current Vumat and b) the Abaqus material.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.15

Displacement in mm

D
am

ag
e

va
ri

ab
le

s

a1)
a2)
a3)
b1)
b2)
b3)

Figure 9: Damage variables versus global displacement u of the three point bending specimen
for the middle element at the bottom (1), middle (2) and top (3) of the 90 degree ply,

simulated with two material definitions a)the current Vumat and b) the Abaqus material.
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Figure 10: Three point bending specimen shortly after the maximal load, the center element
of the lower ply has failed, as well as some of the cohesive elements, only one half of the

model is shown.

5.3 Open hole tension tests

The following section addresses the application of the above described material model

to open hole tension specimens under uni-axial tension in different layups. This speci-

mens are chosen because they are investigated in various publications and experimental

results are available for example from [Fla12]. Another reason to choose this partic-

ular specimen is the occurrence of the majority of the non linear effects captured in

the current material model as well as the need for a robust solution method, in this

case the explicit FEM scheme. In combination with the usage of cohesive elements de-

lamination effects can be captured as well, giving rise to the interest of this particular

specimen type.

In figure 11 the geometry is shown as well as the laminate and ply coordinate systems.

The nominal dimensions are chosen as shown, resulting in ratios of lf/d ≈ 20 and

w/d ≈ 5, in accordance to the third World Wide Failure Exercise. With the usage of

FEM models the need of discretization is immanent. In the explicit integration scheme

only four-noded shell elements are available, due to the usage of the lumped mass ma-

trix, see section 2.1. The integration method chosen is a reduced integration. As the

majority of the calculation time is spent in the user subroutine (the material model) the

loss in calculation speed is small when a higher number of reduced integrated elements

is used compared to a lower number of fully integrated elements. Another advantage

of the reduced integrated shell elements (S4R) lies in the post processing, because the

color coding can be constant over the elements. The thickness of the elements is set

to the thickness of the individual plies with five section points (integration points over
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Figure 11: Sketch of the open hole tension test specimen with its dimensions in mm and the
laminate coordinate system (top) and the shortened FEM model with indicated boundary

conditions, layers of plies and interfaces (bottom)

the thickness of the shell element), with a simpson type integration method. The size

of the elements varies over the area, with small elements (edge length about 0.03 mm)

at the vicinity of the whole, because high stress gradients have to be resolved. Another

reason for the size of the elements is the behaviour of the material model in the soft-

ening regime. Due to the small specific fracture energies for localized matrix failure,

a fine FEM mesh is required at areas where softening takes place. If the mesh would

be too coarse the stress strain curve would show a snap-back type shape. Due to the

localized softening approach, and although a characteristic element length is used to

reduce mesh size effects, it is good practice to choose the size of the elements affected

by localization approximately equal. This requires an iterative user guided re-meshing

approach to ensure equal mesh size in localization areas, as they are not known a priori.

The individual plies are modelled as individual layers of shell elements with cohesive

elements in between. The behaviour of these cohesive elements is the same as in sec-

tion 5.2, again taken from [Gag13]. Residual stresses from the manufacturing process

are simulated via a cool down from the approximated stress free temperature of 177

degrees Celsius to 20 degrees Celsius room temperature.
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All the above mentioned lead to a very high number of elements, if the hole specimen

with all its layers would be simulated. To reduce the computational time required in

the FEM model symmetries are used, the model is shortened and only two layers are

considered. As the geometry is symmetrical it might be possible to simulate only a

part of the geometry. To do so it is necessary to ensure that the solution will also be

symmetrically. The simulations showed, that this is only true for the symmetry about

the x axis, about the y axis the solution is more or less symmetric, depending on the

layup. One of the plies is constrained in its out of plane displacement, assuming it

to be the ply next to the x-y symmetry plane. The load is applied in a displacement

controlled manner, the left and right edge are displaced equally. As a explicit FEM is

used to simulate quasi-static problems the calculation time is dependent on the load

rate scaling, meaning the load has to be applied in a way that dynamic influences are

kept to a minimum. To shorten the calculation time it is advantageous to shorten the

length of the specimen, because the major dynamic influences result from longitudinal

oscillations. This means that if the length is shortened by a factor of 2 the calculation

time can be cut down by a factor of approximately 4. In all the simulations this

approach was used, the specimen was shortened to a length of 50 mm. The results

are not affected, as the major non-linear effects are restricted to the center of the

specimen. This was verified by simulations without cohesive elements, with the use

of shell elements with layered section definitions. The solutions published in [Fla12]

could be reproduced. The third possibility to reduce calculation time is to simulate

only some of the layers, assuming that the solution is the same for plies with the same

orientation. This has to be postulated, and further investigations would be of great

interest, because with the current approach it should be possible to capture some of

the stacking influences.

For two of the layups under consideration experimental results are available, published

by Flatscher et al, [Fla12]. Their experimental setup consisted of a computer-controlled

servo hydraulic testing machine in laboratory environment and a 3D image correlation

photogrammety system to obtain the strain fields. For further information on the setup

and the used equipment the reader is refereed to [Fla12].
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Results for layup [0/90]S

The first layup under investigation is a [0/90]S laminate. As half of the fibres are

oriented in loading direction, the specimen is very stiff. This enables the use of high

load rate scaling, leading to relatively small computational time of 8.5 hours with a

standard desktop Pc. In figure 12 a detail view of the mesh of the current specimen

is shown. In the vicinity of the hole the mesh is very fine with a element length of

approximately 0.03 mm. This areas extend in loading direction as previous simulations

have shown that the localization zone extends in this direction.

Figure 12: Detail view of the mesh of the [0/90]S open hole tension test specimen

The strain fields from the FEM simulation of the open hole tension test with a [0/90]S

layup can be compared to experimentally determined strain fields due to the optical

measurement published in [Fla12]. In this thesis the same material model (EPD from

[Fla10]) was used in conjunction with the implicit FEM code Abaqus Standard, and

shell elements with layered section definitions. The experimental results in terms of

ply shear strain εxy are shown in figure 13 (top) and the results from the implicit

simulations at a slightly different load level are in the same figure at the bottom.

As already written in the original thesis [Fla12]: ” . . . the correspondence of the strain

distributions is very good, a fact that suggests that important mechanisms are captured

well by the present constitutive model.”. In the current thesis the simulations are

carried out with the explicit FEM code Abaqus/Explicit in conjunction with cohesive

elements, representing the interface. The results in terms of ply shear strains are shown

in figure 14, at the top for the 90 degree ply and on the bottom for the 0 degree ply.

The strain distributions for the two separate plies are nearly equal, only near the top
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Figure 13: Distribution of laminate shear strain εxy for part of the [0/90]S open hole
tension test specimen at a load of F=23.6 kN obtained experimentally (top) and at a load of

F = 20.9 kN obtained by simulation (bottom), picture taken form [Fla12]

Figure 14: Distribution of ply shear strain εxy for the [0/90]S open hole tension test
specimen at a load of F=23.8 kN for the 90 degree ply (top) and the 0 degree ply (bottom)

obtained by simulation
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of the whole (Point A in figure 11) differences occur. These differences are due to two

de-lamination zones, to the left and to the right of point A. It can be said that the

differences in terms of ply or laminate shear strain are small at this level of the load.

If the distribution of laminate strain in loading direction εxx is compared, again between

the experimentally determined and the results from [Fla12] as well as the results from

current thesis, see figure 15 and 16, some differences can be seen. In figure 16 again

at the top there is the 90 degree ply and on the bottom is the 0 degree ply with

their distributions in laminate strain in loading direction εxx. Again at the area of

point A (see figure 11) the distribution is not equal for both plies due to de-lamination

effects. In the 90 degree ply four developing localization zones can be seen. In the

experimental results one could be tempted to see similar zones at the top of the whole,

non-symmetric but visible. But due to the resolution of the photogrammetric image

this can only be speculated.

The figures show results at a load level of 23.6 kN, 20.9 kN and 23.8 kN, respectively.

If the load is increased further, the localisation zones as well as the de-lamination

zone propagate in direction parallel to the loading direction from the vicinity of the

hole towards the clamping area, accompanied by plastic deformation. If the damage

accumulation is observed in more detail, it shows four localization patterns in the 90

degree ply, propagating perpendicular to the loading direction. As in the 0 degree ply

two damage zone evolve and propagate in loading direction, the damage zones in the

90 degree ply also divert in loading direction. The propagation of the damage zone in

loading direction is affected by viscose effects and it cannot be assured that the propa-

gation of this damage zone is not slowed down significantly. In some areas of the fully

developed localization zone the volume specific energy dissipated by viscouse effects

reaches 60 % of the volume specific energy dissipated by damage. In areas where the

damage zone is not fully developed the two energy densities are comparable in value.

At a load level of 36.3 kN, the zone of accumulated matrix damage in terms of the

damage variable ξ2 is shown in figure 17 for the 90 degree ply (top) and the 0 degree

ply (bottom). Again differences between both plies occur at the top of the whole, the

90 degree ply shows four separate initial localization zones, whereas the 0 degree ply

31



Figure 15: Distribution of laminate strain in loading direction εxx for part of the [0/90]S
open hole tension test specimen at a load of F=23.6 kN obtained experimentally (top) and at

a load of F = 20.9 kN obtained by simulation (bottom), picture taken form [Fla12]

Figure 16: Distribution of laminate strain in loading direction εxx for the [0/90]S open hole
tension test specimen at a load of F=23.8 kN for the 90 degree ply (top) and the 0 degree

ply (bottom) obtained by simulation, view of the whole specimen (left), detailed view (rigth)
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only shows two localization zones. Again the differences between both plies suggest de-

lamination effects, and also at areas of massive matrix damage de-lamination occurs,

see figure 18. The damage pattern predicted can be compared to experimental work,

as it was done in [Fla10]. This damage pattern lead to a strongly reduced stress con-

centration at the vicinity of the whole. This behaviour is shown in figure 19. Here the

factor of fibre exertion is shown at x = 0 and y = d/2 . . . 5d/2 (line AB in figure 11) for

the 0 degree ply at load levels of 23.8 kN (blue line) and 36.3 kN (red line). The blue

line is taken at the same load level as figures 16 and 14. This line shows a sharp stress

concentration at point A. The red line at a load of 36.3 kN (corresponding to figures 17

and 18) shows a highly reduced stress concentration due to the damage pattern. Care

should be taken interpreting the relief of this stress concentration, because the factor

of exertion is plotted at the centreline, and two small fibre damage patterns occurred

to the left and right, relieving the section in between (figure 17). The 90 degree ply

behaves in a similar fashion, the stress concentration is reduced by the development

of the damage pattern. At a load level of 36.3 kN nearly the whole 90 degree ply is

subjected to damage with a factor of fibre exertion greater than one.

Further rise of the load results in a localization zone perpendicular to the loading

direction, propagating from the whole outwards, accompanied by de-lamination. The

maximum load is reached at 39,2 kN, where a sharp global snap- back occurs, leading to

severe oscillations in the specimen. The global load displacement curve is almost linear

until shortly before the maximum load is reached. This maximum load is comparable

to [Fla12] (38.4 kN) but overestimates the maximum load reached in the experiments

of 25.2 kN. The behaviour at these load levels, meaning the damage of the fibres, is

severely affected by viscous effects. Therefore it is questionable whether the predicted

peak value is trustworthy. It is possible, that without viscous effects, the localization

zone would propagate in a highly dynamic way.
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Figure 17: Localization zone in terms of the damage variable ξ2 for the [0/90]S open hole
tension test specimen at F=36.3 kN for the 90 degree ply (top) and the 0 degree ply

(bottom), view of the whole specimen (left), detailed view (rigth)

Figure 18: Damage variable of the interface for the [0/90]S open hole tension test specimen
between the 0 degree and the 90 degree ply at F=36.26 kN ,view of the whole specimen (left),

detailed view (rigth)
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Figure 19: Stress concentration along Line A-B (see figure 11) and its relief for the [0/90]S
open hole tension test specimen for the 0 degree ply at tensile loads of 23.8 kN (a) and 36.3

kN (b) in terms of the factor of fibre exertion

Results for layup [−45/+ 45]S

The second layup under consideration is a [−45/ + 45]S laminate. In this layup, no

fibres are oriented in loading direction, the overall stiffness is lower as in the above

[0/90]S laminate. This results in longer calculation times of about 30.5 hours (on a

standard desktop Pc) due to the limits in load rate scaling. As the structural response

is greatly non-linear this also enlarges the calculation time due to the changes in the

structural stiffness. The FEM mesh of the current specimen is shown in figure 20, again

at the vicinity of the whole an element length of 0.03 mm is used, the localization zones

extends in a x-shaped area, where the mesh size is held approximately constant.

Figure 20: Detail view of the mesh of the [+45/− 45]S open hole tension test specimen

The non-linearity prior to damage initiation is mainly due to the accumulation of un-

recoverable strains, namely plastic shear strains γ
(pl)
12 . The first occurrence of plasticity

is observed at a relatively low load level of 1.5 kN at the vicinity of the hole. The
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Figure 21: Localization zone in terms of the damage variable ξ2 for the [−45/+ 45]S open
hole tension test specimen for the +45 degree ply (top) and the -45 degree ply (bottom) at a
load of F=8.6 kN (left) and damage variable of the interface between the -45 degree and the

+45 degree ply at a load of F=8.6 kN (right), obtained by simulation, partial view of the
specimen

area affected by plasticity spreads and covers nearly the whole specimen at a load of

3 kN with peak values near point A, at the top of the hole. Further raise of the load

level leads to further accumulation of plastic shear strains with the initiation of dam-

age at a load of 4.6 kN to the right of point A for the -45 degree ply and the left of

point A for the +45 degree ply, accompanied by first occurrence of interface damage.

The matrix damage patterns extend in radial direction with first signs of damage lo-

calization at a load of 6.7 kN. Some five to ten individual localization zones can be

observed in each ply, again to right of point A for the -45 degree ply and to the left

of point A for the +45 degree ply. As the load is increased more small localization

areas occur, some of them keep growing, accompanied by interface damage. Shown

in figure 21 is the distribution of matrix damage variable ξ2 for both plies (left) and

the corresponding damage variable of the interface (right) at a load of 8.6 kN, . The

maximum value of the scale is set to the point of localization onset. Here one can see

the evolution of localization zones parallel to the fibre direction for both plies. After

Onset of localization, the damage patterns will form the known damage pattern. At

this load level of 8.6 kN, just before the formation of the major localization patterns,

the simulations are compared to the measurements and simulations of [Fla12]. Here it
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Figure 22: Distribution of accumulated plastic matrix shear strain γ12 for the [−45/+ 45]S
open hole tension test specimen for the +45 degree ply (top) and the -45 degree ply (bottom)

predicted by FEM simulation at a load of 8.6 kN, the interface is not shown

has to be mentioned, that in the current simulations the initiation of damage occurs at

lower load levels than in the simulations of Flatscher. The distribution of accumulated

matrix shear strain γ12 is shown in figure 22. The distribution of laminate strain in

loading direction εxx and in transverse direction εyy from the work of Flatscher are

shown in figures 23 and 25 and from the current work in figures 24 and 26. The

results in terms of εxx and εyy do not agree as well with the measured strain fields

as in the original work, because the initiation and evolution of damage is predicted

at lower load levels. This behaviour also leads to smaller maximum loads. At the

peak load of 9 kN the damage pattern of the plies and the interace is shown in figure

27. Clearly visible is the asymmetric development of the ply damage localization zone.

The peak load of 9.0 kN is lower as the measured peak load of 14.1 kN and is also lower

as the peak load of the simulation of Flatscher of 10.7 kN. This underestimation of the

structural strength may be explained by the considerable shear strain which exceed

the small strain assumption. Another reason can be the estimated damage behaviour

of the interface. It can be suggested that important mechanisms are captured well by

the current material model in conjunction with the applied approach of simulating the

plies individually with interfaces in between.
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Figure 23: Distribution of laminate strain in loading direction εxx for the [−45/+ 45]S open
hole tension test specimen at a load of F=10.6 kN obtained experimentally (top) and at a

load of F = 9.8 kN obtained by simulation (bottom), picture taken from [Fla12]

Figure 24: Distribution of laminate strain in loading direction εxx for the [−45/+ 45]S open
hole tension test specimen at a load of F=8.6 kN for the +45 degree ply (top) and the -45

degree ply (bottom), obtained by simulation
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Figure 25: Distribution of laminate strain in transverse direction εyy for the [−45/+ 45]S
open hole tension test specimen at a load of F=10.6 kN obtained experimentally (top) and at

a load of F = 9.8 kN obtained by simulation (bottom), picture taken from [Fla12]

Figure 26: Distribution of laminate strain in transverse direction εyy for the [−45/+ 45]S
open hole tension test specimen at a load of F=8.6 kN for the +45 degree ply (top) and the

-45 degree ply (bottom), obtained by simulation
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Figure 27: Localization zone in terms of the damage variable ξ2 for the [−45/+ 45]S open
hole tension test specimen for the +45 degree ply (top) and the -45 degree ply (bottom) at a
load of F=9.0 kN (left) and Damage variable of the interface between the -45 degree and the

+45 degree ply at F=9.0 kN (right), obtained by simulation, partial view of the specimen

Results for layup [0/− 45/90/+ 45]S

The last open hole specimen under consideration is a layup of [0/ − 45/90/ + 45]S.

This sometimes called quasi-isotropic layup is relatively stiff, leading to a rather short

calculation time of 8.5 hours. In figure 28 the mesh is shown. In this simulation the

mesh is chosen relatively coarse with an element length of approximately 0.05 mm

at the vicinity of the whole. This is done due to the number of plies. In the two

simulations above two plies and one interface have been modelled, whereas here the

four plies and three interfaces modelled lead to a high number of degrees of freedom.

The mesh is chosen the same for all plies and interfaces. For this layup of the open

hole specimen no experimentally measured strain fields are available. Therefore the

results of the simulation is shown on its own. The global load displacement behaviour

is nearly linear, although the simulation shows highly non-linear behaviour of the single

plies and interfaces. The first occurrence of interface damage is at a load of only 2.5

kN, restricted to a very small area at the vicinity of the whole. At a load level of 4.5

kN the damage of the interface has grown insignificantly, first signs of plasticity are

observable for the 0 degree, +45 degree and −45 degree ply. First distributed brittle

damage accumulation starts at a load of 10.8 kN, at the −45 degree and 90 degree ply.
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Figure 28: Detail view of the mesh of the [0/−45/90/+ 45]S open hole tension test specimen

Now signs of plasticity are observable at all plies. At a load level of 17.0 kN the +45

degree and the -45 degree ply are nearly completely affected by plasticity. Damage

localization started not just yet in the -45 degree ply, first signs of fibre damage are

observable in the 0 degree ply. All in all it can be said, that the damage patterns

are similar to the damage patterns evolved in the [0/90]S and [+45/ − 45]S prior to

localization. In figure 29 the distribution of laminate strain in loading direction εxx is

shown for the four plies at a load of 17.0 kN. At the vicinity of the hole the maxima

are shifted to the left and right due to de-lamination. The de-lamination effects are

restricted to a small area around the whole, shown in figure 30. If one looks at the

distribution of laminate shear strain εxy, see figure 31, one can see a similar pattern in

the 0 degree ply as it occurs in the [0/90]S specimen. The distribution differs between

the plies, suggesting that an influence of the stacking sequence is observable.

The pattern of accumulated plastic shear strains in the 0 degree ply is nearly equal

in shape as for the 0 degree ply in the [0/90]S specimen (not shown in this thesis).

Increasing the load leads to damage localization first in the -45 degree ply, followed by

the 90 degree, the +45 degree and the 0 degree ply. The evolution of these damage

patterns leads to the complete failure of the specimen. At the peak load of 32.0 kN the

matrix damage pattern is shown in figure 32. The 0 degree ply exhibits combined ma-

trix and fibre damage in a zone perpendicular to the loading direction. This developing

damage zone limits the load carrying capacity of this specimen. But at this time the

influence of viscous regularization is already big, meaning the volume specific energy
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Figure 29: Distribution of laminate strain in loading direction εxx for part of the
[0/− 45/90/+ 45]S open hole tension test specimen at a load of F=17.0 kN obtained by

simulation, z direction is enlarged for better visibility, plies from bottom to top:
0/-45/90/+45

Figure 30: Distribution of interface damage for part of the [0/− 45/90/+ 45]S open hole
tension test specimen at a load of F=17.0 kN obtained by simulation, z direction is enlarged

for better visibility, interfaces from bottom to top: 0/-45, -45/90, 90/+45
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Figure 31: Distribution of laminate shear strain εxy for part of the [0/− 45/90/+ 45]S open
hole tension test specimen at a load of F=17.0 kN obtained by simulation, z direction is

enlarged for better visibility, plies from bottom to top: 0/-45/90/+45

dissipated through viscous regularization is at half the value of the volume specific en-

ergy dissipated by damage, in most of this localization areas. Therefore it is possible,

that the peak load is overestimated in this simulation. The +45 degree ply behaves

as expected, a localization zone in fibre direction evolves. The interfaces between the

plies are at this load level damaged in wide areas, see figure 33.

Due to this de-lamination areas, the damage behaviour of the individual plies is not

coupled any more allowing for individually evolving localization patterns. The dis-

placement of part of the 90 degree and + 45 degree plies in out of plane direction at

the vicinity of the whole can be explained by these de-laminated areas and dynamic

influences.

The prediction given by this simulation is not compared to any test data, as no such

data was found in the literature. The damage patterns beyond maximum load are not

showed, because the specimen might behave highly dynamic as it is highly influenced

by viscose regularization.
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Figure 32: Localization zone in terms of the damage variable ξ2 for part of the
[0/− 45/90/+ 45]S open hole tension test specimen at F=32.0 kN obtained by simulation, z

direction is enlarged for better visibility, plies from bottom to top: 0/-45/90/+45

Figure 33: Distribution of interface damage for part of the [0/− 45/90/+ 45]S open hole
tension test specimen at a load of F=32.0 kN obtained by simulation, z direction is enlarged

for better visibility, interfaces from bottom to top: 0/-45, -45/90, 90/+45

44



5.4 Unit cell

To investigate the potential concerning the numerical stability, computational efficiency

as well as the low requirements to the computer hardware, a simulation of an unit cell

was carried out. This Unit Cell is a part of Jakob Gager’s Ph.D. [Gag13], which in-

vestigates the mechanical response of braided and woven composites in the framework

of the FEM. His modelling approach is based on homogenization of periodic unit cells.

To this end he has developed an unit cell discretized by shell type Finite Elements.

Some of the simulations were conducted with the EDP constitutive law from Flatscher

[Fla10]. So it is an obvious choice for a comparison between the two implementations

of the EPD-model with Abaqus/Standard and -/Explicit.

A sketch of an Unit Cell can be seen in figure 34, with its coordinate systems, and a

sketch of the tow and matrix geometry in figure 35, taken from [Gag13].

The use of Unit Cells assumes a periodic meso-structure, meaning the Unit Cell can be

Figure 34: Sketch of a 2/2 twill weave ±30 unit cell shown without matrix material and the
coordinate systems ξ − η − ζ and 1− 2− 3 (local tow), after [Gag13]

Figure 35: Sketch of the idealized tow and matrix geometry of a 2/2 twill weave, matrix
indicated in grey, picture taken from [Gag13]
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arranged periodically to make up the macroscopic woven ply material. To assure this

periodicity, special boundary conditions have to be applied. This boundary conditions

have to assure compatible deformations at corresponding edges of the unit cell at all

times. So called master nodes are used to describe the mean deformation of the Unit

Cell with respect to macroscopic stresses and strain, respectively, as done by [Pah03].

This master nodes are located at the corners of the Unit Cell, and, by the way the

boundary conditions are implemented, they can be used to apply appropriate forces

and displacements, respectively. The master nodes are also used to derive the effective

stresses and strains.

Two constitutive laws are applied in the Unit Cells. The EPD model is used for the

tows (the bundles of fibres) and the regions of ’pure’ resign material are described by

an isotropic elastic material behaviour. An attempt was made to use a Drucker-Prager

type plasticity model for the regions of ’pure’ resign material, as typically used for

polymers, in an explicit simulation as this was not possible in the implicit one.

In the current thesis one of the Unit Cells developed and implemented by Jakob Gager

is used to compare the implicit and explicit FEM. The choice falls on a 2/2 Twill weave

with an angle of ±30 degree , which is a strain free skewed, single layered, orthogonal

(±45 degree) Unit Cell with lenticular cross section of the tows. This Unit Cell is

subjected to an uni-axial load in braiding direction, meaning uniaxial tension in ξ di-

rection. The material system in use is RTM6/HTS40, the material parameters can be

found in [Gag13]. The matrix pockets exhibit linear elastic behaviour and all interfaces

are assumed to be perfect. The results of the explicit and implicit FEM simulations

conducted with the original model from Gager and the explicit model based on Gagers

work agree in wide areas. The distribution of accumulated plastic shear strain γ12 in

the tows is shown in figure 36, the matrix material is hidden for better visibility. Both

plots are taken at the same load level before damage localization occurs. At higher

loads damage starts to localize, first at the intersections of the individual tows, fol-

lowed by a localization pattern within the tows. But as periodic boundary conditions

are applied, it is questionable whether the solutions at this load level is trustworthy,
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Figure 36: Distribution of accumulated plastic shear strain γ12 at the top of the ±30 degree
unit cell shown without matrix material, from the implicit simulation of Gager [Gag13]

(left) and the explicit simulation based on Gager’s model (right); the contour limits are the
same for both plots, taken at the same load level

due to the damage localization. Another problem arises at high loads, the elements at

the boundary (the edge elements) start to take too much damage, resulting in heavily

distorted elements. Therefore only the distribution of the damage variable ξ2 at an in-

termediate load level, before the localization pattern within the tows occurs, is plotted

in figure 37, again for the explicit and implicit FEM simulations.

If the material of the matrix pockets is described by an elasto-plasto Drucker-Prager

material model, the explicit solution is not notably affected up to the point of strain

localization. Beyond this load level the edge elements start to distort earlier and the

explicit simulation has to be stopped. The solutions are not shown here, because they

are judged not trustworthy.

Two problems arise in the explicit simulation. The first problem concerns the material

Figure 37: Distribution of the damage variable ξ2 at the top of the ±30 degree unit cell
shown without matrix material, from the implicit simulation of Gager [Gag13] (left) and the
explicit simulation based on Gager’s model (right); the contour limits are the same for both

plots, taken at the same load level
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model itself, in the user subroutine occur convergence problems at Level 2 (see chap-

ter 3.4 Implementation). The predictor-corrector algorithm used to iteratively solve

the combined plasticity and damage state has convergence problems, resulting in the

attempt to reduce the load (time) increment, as it is done in the implicit simulation.

As this is not possible in the framework of Abaqus/Explicit, the simulation should

be stopped. The time increment necessary for the user subroutine to converge is too

small for a decent calculation time and also the user time needed would not be rea-

sonable. A rather bold approach is chosen, meaning the the simulation is continued

even though convergence is not achieved in a few of the elements. This resulted in a

rather short calculation time of only 30 hours on one cpu, compared to 24 hours with

the implicit solver and four cpu’s. The drawback can be seen by the differences in

figure 37, although the global stress strain relation is only approximately 3% off. The

requirements in memory are comparable for both simulations, due to the relatively

low number of elements. The second alteration concerns the warping of the Unit Cell.

The implicit simulation followed the trivial path, whereas in the explicit simulation

the solution showed signs of warping. To avoid this behaviour as it would not occur in

nature due to the stacking of the plies, appropriate boundary conditions have been ap-

plied to the master nodes. These boundary conditions disabled the possibility of multi

processor operations. This disables one major advantage of the explicit integration

scheme. Without multi processor operations one has to compare a calculation time

of 30 hours with the explicit simulation to the inplicit simulation which took only 24

hours to complete.

Finally, one has to say that there is no advantage in using Abaqus/Explicit for this

particular problem, although the solutions could be reproduced. The calculation time

and memory required are comparable for both simulations, but the accuracy is lower

in the explicit one. Also it was not possible to incorporate plasticity in the matrix

pockets, which would give an advantage over the implicit simulation.
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6 Potential extension

The goal specified at the beginning of the thesis, the adaptation of Flatscher’s EDP

model to Abaqus/Explicit, was reached. The mechanical response in the implicit and

explicit FEM agree with within the tolerances needed. The handling of the EDP-

model in conjunction with Abaqus/Explicit differ in some details from the original

implementation, but for an operator familiar with the original implementation and its

constitutive behaviour this will not be of great concern. Nevertheless there are some

topics still in question and possible investigations of interest.

• As the EDP model was incorporated without changes in its behaviour its limita-

tions are still valid. It is applicable for plane stress, small strain problems.

• As the simulations conducted in this thesis are all of quasi-static nature it was

decided to leave the possible influence of the viscous regularisation untouched.

This was done to assure comparability between the implicit and explicit simula-

tions. If dynamic problems are to be simulated, this viscous influences should be

investigated thoroughly.

• As Abaqus/Explicit offers the possibility of element deletion, it would be of in-

terest to incorporate this behaviour for simulations where areas of severe ply

damage occurs, as it may lead to convergence problems. Element deletion would

be quite easy to implement in the user subroutine, the clue is to find a proper

condition to do so.

• In Abaqus it would be possible to combine both Integration methods, the implicit

and the explicit one. It should lead to shortened calculation times if the linear

part of the analysis is conducted with an implicit simulation, and the non-linear

part is then restarted and finished with the explicit integration scheme.

• Furthermore, it would be of great interest to investigate the influence of the stack-

ing sequence. This would be possible with the approach chosen, the combination

of shell elements for the ply and cohesive elements for the interface, but was not

carried out.
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7 Summary

With the increasing use of FRP’s in industries the need of a reliable simulation tech-

nique is immanent. Such reliable simulation methods, for example the FEM, call for

a robust solution method capable of capturing the linear as well as the non-linear me-

chanical behaviour of structures. To this end the Elasto-Plasto-Damage-Constitutive

law from [Fla10] was adapted to be used in conjunction with the explicit FEM pack-

age Abaqus/Explicit. An user subroutine is written to adapt the given EPD-model to

Abaqus/Explicit and it is verified. This EDP-model is capable to describe the com-

bined Elasto-Plasto-Damage behaviour of uni-directional reinforced Laminates. To

go one step further, this EDP-model was combined with so called cohesive elements

to capture the interface behaviour between the plies, possibly influenced by damage.

This lead to the current approach, where the plies are modelled individually with an

interface layer in between. This approach enables the investigation of the individual

plies and interfaces and their damage (and plasticity) behaviour, giving insight in the

specimens. Three types of simulations are carried out. A simulation of a three point

bending specimen, showing the interrelation of distributed brittle matrix damage and

localized brittle matrix damage. Open hole tension tests are simulated to show the

capability to describe the combined plasticity and damage behaviour of the individual

plies, as well as the behaviour of the interfaces. The third application is an unit cell

of a braided composite to investigate the numerical stability as well as the calculation

time required.

Finally one can describe the chosen approach in conjunction with the explicit integra-

tion scheme as very promising. The simulations show a good agreement with experi-

ments, see [Fla12] although in some cases deviations exits. The numerical stability as

well as the numerical efficiency for big systems is a major advantage in comparison to

the implicit FEM.
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A Usage of the Vumat

The usage of the current Vumat differs only by some minor details from the usage of

Flatscher’s Umat. As it is not suggested to use the current Vumat without detailed

knowledge of Flatscher’s Umat, only the differences are described.

Material input

In this thesis two sets of material parameters are used, namely Cycom977 and IRTM6/

HTS40. The complete set of material parameters can be taken from Flatscher [Fla10]

or Gager [Gag13].

If a new material-input has to be created, the reader is refereed to the original thesis

by Flatscher [Fla10]. From the Input of the Umat only a few alterations have to be

made. These alterations are:

• The number of solution dependent variables (SDV) is raised to 350 and is set in

conjunction with the keyword *DEPVAR.

• It is advised to set the switch concerning the Output (PROPS(3)) to zero.

• The viscous parameters (PROPS(45 . . . 48)) have to be scaled according to the

loading rate.

• If initial conditions are used for the SDV’s, ten entries have to be added to account

for their raised number. These entries have to be set to zero.

• The procedure to account for the roughly estimated stable time increment has to

be re-evaluated.

Output

The Output remained unchanged except for SDV(14) and SDV(15), they have no

meaning any more. The Output written to ’file’ (meaning the .msg file) is impractical

in use with Abaqus/Explicit, therefore it was eliminated. The only possibility to check
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the solution if non-severe errors occurred during the simulation is to monitor SDV(4)

and SDV(16) throughout the analysis. If errors occur, they are written to SDV(16)

as integers. In table A1 and A2 these integers are explained, taken directly from the

Fortran code of [Fla10].

Table A1: Non-severe error code for SDV(16), taken from [Fla10]

-1) ERROR:UMAT: FT SOFT WITH TOO COARSE MESH
-2) ERROR:UMAT: FC SOFT WITH TOO COARSE MESH
-3) ERROR:UMAT: MT SOFT WITH TOO COARSE MESH
-4) ERROR:UMAT: MC SOFT WITH TOO COARSE MESH
-5) ERROR:KXFSOF: FIBER SOFTENING PROHIBITED
-6) ERROR:KXMSOF: MATRIX SOFTENING PROHIBITED
-17) ERROR:KPRESO: PIECEWISE NOT IMPLEMENTED
-27) ERROR:KHARD: INCORRECT TABLE
-35) ERROR:UMAT: BAD WEAKENING PARS
-38) ERROR:UMAT: FIBER EXERTION > 1
-39) ERROR:UMAT: MATRIX DAMAGE AMOUNT > XIMC
-40) ERROR:UMAT: MATRIX EXERTION > 1
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Stable time increment

The estimation of the stable time increment ∆t′stable in conjunction with the Vumat

is not as accurate as expected. It turns out that (for the material cycom977) the

stable time increment is overestimated, depending on the fibre orientation angle ψ,

see figure 1. This behaviour is shown in figure A1, in terms of estimated stable time

increment ∆t′stable over the fibre orientation angle ψ for ψ = ±90◦, as it repeats itself.

This may lead to numerical instabilities if no measures are taken. One possibility to

handle this behaviour is to scale the time increment globally, for example with the

option *scale factor. But this may lead to an increase in calculation time by a factor

of maximal 3.2, which is especially unsuited for quasi-static analyses, as for this kind

of analyses it is mostly suitable to use a time increment shortly smaller as the stable

time increment. For quasi-static analyses the use of mass scaling is mostly desired.

As this option depends on the estimated stable time increment, problems arise. The

density of single elements is only risen if the estimated stable time increment is below

a certain value given. Due to the error in estimating the stable time increment this

leads to insufficient distribution of added mass. If areas of similar orientated fibres

can be found the option mass scaling can be used by assigning different values of the

stable time increment desired. If for example the desired stable time increment for a

fibre orientation angle of psi = 45◦ is set to 2 ∗ 3, 2 · 10−8 and for ψ = 0◦ it is set to

2 ∗ 1, 4 · 10−8 the mass added will be approximately the same. This procedure does not

prevent problems with instabilities, but helps to minimize them.
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Figure A1: Example of the estimated stable time increment ∆t′stable as a function of the fibre
orientation angle ψ in degrees for a quadratic shell element (S4R), a) for the built in

Material *Elastic,Type=Lamina, b) for the built in Material *Elastic,Type=Engineering
Constants and c) in use with the user Subroutine
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Table A2: Severe error code for SDV(16), taken from [Fla10]

3) ERROR:KPLFLW: NO CONVERGENCE
4) ERROR:KPLFLW: RETRY ERROR
5) ERROR:KPLFLW: WRONG SOLUTION FOUND -I
6) ERROR:KPLFLW: WRONG SOLUTION FOUND -II
7) ERROR:KCOMO: NO INITIAL STRESS FOUND
8) ERROR:KCOMO: REASON INDETERMINED
9) ERROR:KCOMO: NO STRESS C. IN 1.IT
10) ERROR:KCOMO: NO CONVERGENCE
11) ERROR:KCOMO: NO VISCOUS STRESS FOUND
12) ERROR:KDASTA: VOLUME FRACTION - OLD
13) ERROR:KDASTA: VOLUME FRACTION - NEW
14) ERROR:KDEGRA: VOLUME FRACTION!
15) ERROR:KDEGRA: SYMMETRY NOT SATISFIED
16) ERROR:KDEGRA: SHAPE NOT SATISFIED
18) ERROR:KDIJPS: SYMMETRY NOT SATISFIED
19) ERROR:KDIJPS: SHAPE NOT SATISFIED
20) ERROR:KCIJPS: SYMMETRY NOT SATISFIED
21) ERROR:KCIJPS: COUPLING TERMS
24) ERROR:KTSAIH: NON-REAL FACTOR OF EXERTION
25) ERROR:KTSAIW: NEGATIVE FACTOR OF EXERTION
26) ERROR:KTMTXB: DIJNEW!=DIJOLD
29) ERROR:KTXINV: MATRIX INVERSIN FAILED
30) ERROR:UMAT: DIJ UNSYMM
31) ERROR:UMAT: DIJ ENTRIES
32) ERROR:UMAT: MODEL ERROR
33) ERROR:UMAT: PLASTICITY ERROR
34) ERROR:UMAT: NEGATIVE ENERGY
36) ERROR:UMAT: CF BENEVISTE
37) ERROR:KCOMO: NO VISCOUS CONVERGENCE
41) ERROR:KMBRAK: NO BRACKET FOUND
42) ERROR:KBRENT: MAXIMUM ITERATIONS EXCEED
43) ERROR:UMAT: PLEASE CHECK UMAT INPUT

57


	Introduction
	Explicit FEM
	Algorithm
	Stability
	Accuracy
	Quasi-static problems

	Elasto-Plasto-Damage-Constitutive Law from Flatscher Fla10
	Distributed brittle damage
	Multi-surface plasticity
	Localized brittle damage
	Implementation

	Implementation of the EPD model in Abaqus/Explicit
	Implementation
	Verification, single element tests
	Limitations

	Applications
	General modelling
	Three point bending test
	Open hole tension tests
	Unit cell

	Potential extension
	Summary
	Usage of the Vumat

