
An Integration Framework for
Knowledge-Supported Project
Management in IT Consortia

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Andreas Grünwald
Matrikelnummer 0827532

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Mitwirkung: Dipl.-Ing. Dietmar Winkler

Wien, TT.MM.JJJJ
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

An Integration Framework for
Knowledge-Supported Project
Management in IT Consortia

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Andreas Grünwald
Registration Number 0827532

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Assistance: Dipl.-Ing. Dietmar Winkler

Vienna, TT.MM.JJJJ
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Andreas Grünwald
Sechshauserstraße 24/14, 1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

I want to thank Dr. Stefan Biffl and Dipl. Ing. Dietmar Winkler for guiding me through the
master-thesis, and supporting me with valuable feedback. Likewise, I want to thank the whole
CDL-Flex crew for providing me with feedback and support throughout my work.

A big thanks goes out to my family (Mum, Dad, Herbert, Seppi, Rosi), especially to my parents,
who always supported me throughout my education, and backed me up in Altenmarkt.

I want to thank all my friends, for distracting me from work, and for understanding, if I needed
to lock up in my room on Friday nights.

I must also mention the scholarship office here, because of their extraordinary service and sup-
port throughout the past five years. Thank you!

I also would like to thank everybody who was involved at my semester abroad in Portugal,
including the International Office, and all the fantastic professors and friends in Lisbon. Addi-
tionally, I want to thank the organizers of the I2C Innovation Curriculum at the TU.

Finally, I want to thank Susanna, for not giving up on inviting me for dinner.

iii

Abstract

The application of an all-embracing project management software system (PMS) within a multi-
organizational context is challenging: First, superior “all-in-one solutions” (PM suites) are dif-
ficult to assess, costly, and often infeasible for temporary project organizations. Second, the
project partners have different local PMSs and expert tools in place, pursuing ambivalent objec-
tives. Forcing them to switch to another system is likely to cause resistance, and disagreement.
Third, some PM data, respectively knowledge, are residing at the local organizations and hence
are difficult to identify / access by the project manager (a time and trust issue).

Available data integration solutions that (a) address the synchronization of data between lo-
cal tools, and (b) into a centralized PM view, focus on data integration for large-scale enter-
prises, and are not appropriate for temporary project organizations. Ad-hoc solutions (e.g, Web-
Dashboards) do not provide means to integrate data in a systematic, and traceable way.

This work proposes a systematic integration framework for knowledge-supported project man-
agement in IT consortia. The solution addresses integration issues at different organizational
levels, is based on design-science, and leverages Model-Driven Software Engineering (MDSE),
Semantic Web Technologies, and the OpenEngSb integration framework. The main research
outcomes are (a) a Consortium Negotiation and Integration Process (CNP) to efficiently en-
force the project manager’s integration requirements, (b) the ITPM Dashboard that leverages
the project manager to efficiently configure, visualize and monitor aggregated PM data in a cen-
tralized view, and (c) the Semantic Model Editor as the missing link between the negotiation of
common data models at the management level, and the technical integration.

The systematic integration framework is applied to an industrial-oriented ITPM consortium use-
case (UC), in which four companies develop a joint software product. The configuration results
in a set of UML-based data models, work-flows, and SPARQL queries that illustrate the seman-
tic dashboard integration.

The evaluation results indicate a reduction between 25% and 80% of the project manager’s
manual integration efforts (depending on the project size and the number of available connec-
tors), and a reduction of 65% for the development of new OpenEngSb connectors. The research
outcome is useful for IT project consortia, but also for researchers / knowledge engineers, who
experiment with semantic technologies. For the later, the literature review revealed a strong need
for efficient data integration and visualization tools.

v

Kurzfassung

Die Anwendung einer allumfassenden, organizationsübergreifenden Projektmanagement Soft-
warelösung (PMS) stellt sich als schwierig und herausfordernd heraus: “All-in-One Lösungen”
(z.B. von Marktführern) sind schwierig zu evaluieren, meist kospielig und daher für temporäre
Projekte unpassend. Zusätzlich verwenden die Projektpartner unterschiedliche lokale PMSs und
Expertentools, und verfolgen ambivalente Ziele mit diesen. Diesen Partnern eine Lösung vor-
zuschreiben, kann auf starke Ablehnung und Widerstand stoßen. Schließlich befindet sich PM
Daten und Wissen innerhalb von Organizationsgrenzen, und es ist nicht gewiss, ob, und wie der
Projektmanager dieses Wissen erkennt, und darauf zugreifen kann (Zeit- und Vertrauensfrage).

Existierende Frameworks, welche sowohl die Datensynchronisation zwischen lokalen Tools,
als auch die Darstellung von PM-Daten in einer zentralen Benutzeroberfläche unterstützen, fo-
kussieren sich auf die großflächige Integration von unternehmensweiten Daten, und sind daher
unpassend für temporäre Projektorganisationen. Ebenso wenig eignen sich Ad-Hoc Lösungen
(z.B., Web-Dashboards), welchen es an an einer systematischen Integrationslösung, für nach-
vollziehbaren Datenaustausch, mangelt.

Diese Arbeit stellt ein systematisches Integrationsframework für wissensgestütztes Projekt Ma-
nagement in IT Konsorten vor. Die Lösung adressiert Datenintegration auf verschiedenen Orga-
nizationsebenen, basiert auf Design-Science, und setzt auf modelgetriebenene Softwareentwick-
lung (MDSE), Semantic Web Technologien, und das OpenEngSb Integrationsframework. Die
wichtigsten Forschungsergebnisse sind: (a) der Verhandlungs- und Integrationsprozess für Kon-
sortium (CNP), welcher den Projektmanager bei der effizienten Erreichung seiner Integrations-
anforderungen unterstützt. (b) das ITPM Dashboard, welches dem Projekt Manager die effekti-
ve Konfiguration, Visualisierung, und Überwachung von aggregierten Projektdaten ermöglicht.
Schließlich stellt (c), der Semantic Model Editor das Bindeglied zwischen der Verhandlung von
gemeinsamen Datenkonzepten auf der Managementebene, und der Integration ebendieser auf
technischer Ebene dar.

Das systematische Integrationsframework wird anhand eines industrieorientierten ITPM Kon-
sortium - Anwendungsfalls (UC) durchgespielt und evaluiert. Der UC umfasst die Entwicklung
eines gemeinsamen Softwareprodukts mit vier unterschiedlichen Firmenpartnern. Die Konfigu-
ration resultiert in UML-basierten Datemodellen, Work-Flows, und SPARQL Abfragen, welche
die semantische Datenintegration anhand des ITPM Dashboards verdeutlichen.

vii

Die Evaluierung des UC zeigt, dass sich der manuelle Konfigurationsaufwand für den Projekt-
manager zwischen 25 und 80% reduziert (in Abhängigkeit der Projektgröße und der verfüg-
baren Konnektoren). Der Entwicklungsaufwand für die Neuimplementierung von OpenEngSb
Konnektoren reduziert sich um 65%. Die Forschungsergebnisse dieser Arbeit sind sowohl für
IT Projekt Konsortien, als auch für Forscher / Wissensingeneure, die mit semantischen Techno-
logien experimentieren, relevant. Für die Letzeren zeigt zeigte die Literaturrecherche, dass ein
starker Bedarf in Datenintegrations und Visualisierungslösungen besteht.

Contents

1 Introduction 1

2 Related Work 11
2.1 Project Management in IT Consortia . 12
2.2 PM Systems, Data and Knowledge . 19
2.3 PM Data Integration . 26
2.4 Model-Driven Software Engineering with Semantic Technologies 42
2.5 Concluding Remarks . 45

3 Research Issues 47

4 Research Approach 51
4.1 The Design-Science based IS Research Framework 51
4.2 Application of the IS Research Framework Guidelines 53

5 Use Case: ITPM in a Consortium 59
5.1 Consortium Project Structure . 59
5.2 Project Communication Plan . 62
5.3 Shared PM Concepts . 65

6 Solution Approach 67
6.1 The Consortium Negotiation and Integration Process 68
6.2 Semantic PM Data Integration based on the ITPM Dashboard 75
6.3 The Semantic Model Editor and Derived Artifacts 80
6.4 A Repository for Semantic ITPM Models . 87
6.5 Concluding Remarks . 96

7 Results and Evaluation 99
7.1 Dashboard Configuration . 100
7.2 Cost-Benefit Analysis . 120
7.3 Comparison of Development Efforts for PM Connectors 125

8 Discussion and Limitations 131

ix

9 Conclusion and Future Work 139

Bibliography 143

A Additional Design Outcomes 153
A.1 Technical Integration Processes . 153
A.2 Complete Mapping between UML, OWL, Code, and UI Elements 156
A.3 Software Architecture of the ITPM Dashboard 159

B ITPM Dashboard UI 161

C Local PM Tools and Demo Data 171

D Data Models 181
D.1 ITPM Core Ontologies . 181
D.2 Local Tool Models . 187
D.3 Models for Maintaining Configurations . 191

x

CHAPTER 1
Introduction

The application of an all-embracing Project Management (PM) software system within a multi-
organizational context is both, costly and time intensive. Superior industry-solutions are typi-
cally difficult to assess, and imply high costs for tailoring, training, and maintenance. In addition,
these systems are infeasible for temporary project organizations, such as consortia or research
projects, in which local partners want to retain their specific PM systems and tools. During the
conduction of the thesis, a software-framework for the efficient configuration and integration of
heterogeneous PM data sources is developed, and applied to an industry-oriented ITPM consor-
tium use-case. The hypothesis is that such a framework can significantly improve the efficiency
of PM data integration, including data visualization, for heterogeneous project partners with am-
bivalent objectives, by retaining and utilizing semantic aspects of the underlying data models.

In recent times, IT projects are more and more considered as innovation boosters that help com-
panies to remain competitive [108]. However, it is no secret that projects frequently result in
large budget overruns, time delays, and a huge waste of development resources [38]. The inherit
complexity of interrelations between heterogeneous stakeholders, project teams, and technology
cause IT projects to have a high level of uncertainty, and make them difficult to manage. For in-
stance, business requirements are often ill-defined, and the underlying complexity of IT artefacts
(software, hardware, networks) is difficult to assess.

The CHAOS report states a project success rate of only 32% in 2009 [71]. [38] report that
one out of six IT projects has a budget overrun of averagely 200%, and a schedule overrun of
almost 70%. That is, although a ratio of 25% of the worldwide Gross Product (GP), are spent
on projects each year [103, p.3]. Poor communication is a major reasons for IT project failures
[49] [97], and appears in various guises, such as unfounded estimation values, or ambiguous
communication across teams with different cultural backgrounds, technical jargon, or expert
viewpoints. PM software stimulates communication effectiveness by unifying and integrating
project data and PM knowledge [98, p.18ff]. However, the utilization of a tailor-made PM
software solution is challenging, because the PM software market is very in-transparent, and
comprehensive solutions are costly.

1

Two extreme scenarios are stated to visualize the solution space for software-supported PM
in a traditional, hierarchically organized company. In the first scenario, an enterprise-wide PM
product is in place (figure 1.1 a). This solution forces the project manager and her teams to
adapt to the central software product, with all its benefits and shortcomings. The manager and
the project teams are somewhat restricted in using their preferred management and reporting
tools, but the data is integrated tightly, and reporting is conducted very efficiently. In the second
scenario, the project manager applies a simple spreadsheet solution (e.g., MS Excel) for all plan-
ning and management activities1). The spreadsheets allow her to reuse proved PM techniques
and data, such as pre-formatted responsibility matrices, cost formulas, or a set of wage rates.
The degree of freedom is high. However, most PM data must be integrated and reported manu-
ally between the teams, the project manager, and the top-management. Hence inconsistent data
emerge, and controlling and monitoring provisions are of little efficiency (figure 1.1 b).

Figure 1.1: Comparison of a tight PM data integration system (a), and chaotic integration (b).

The focus of this work is on IT consortium projects. In a consortium, autonomous, hetero-
geneous organizations bundle their competencies, and form a (temporal) alliance to deal with an
innovative, and challenging project. Examples are the development of a new open data standard,
or the implementation of a regional ticketing system [86, p.195ff]. Information Technology (IT)
projects involve using hardware, software, and/or networks to create an innovative product, ser-
vice, or result [103, p.2]. PM is the application of knowledge, skills, tools, and techniques to
guide the project team towards the successful implementation of customer requirements within
the boundaries of scope, time, costs, and quality [94].

1Workshop and expert discussions revealed that spreadsheets are a wide-spread tool for project management (cf.
also [103, p.32]

2

In the context of this work, PM-related data, abbreviated PM data, is defined as any computer-
processable data, i.e., observations or facts out of context [128], which contributes to the achieve-
ment of PM goals either in its raw form, or via interpretation, aggregation, or in combination
with other data. The meaningful accumulation with other data leads to the emergence of knowl-
edge [128]. Examples for PM-related data/knowledge sources (abbreviated PM data) are

• PM software systems (e.g., Jira)

• PM tools (e.g. a simple earned-value calculator)

• structured or unstructured data sources (e.g., team data in spreadsheet format, or require-
ments in textual representation)

• knowledge sources, such as wage rates assigned to specific team roles

• domain-specific tools or systems that contain PM-related data, such as test management
tool that provides test results for a specific software component.

If the scenarios introduced in figure 1.1 are relocated into a consortium environment, then
neither of the approaches is efficient. The first approach (a) is infeasible, because each organiza-
tion brings in its individual, predefined landscape of tools, PM-related processes and competen-
cies. Resistance from one or several consortium members against the acquisition of a specific
all-in-one PM product, is likely. The acquisition of a (temporary) but costly all-in-one PM solu-
tion with high training costs, and unknown user acceptance is fraught with risk. For the second
approach (b), the numerous, repetitive and manual collection, integration and reporting tasks
between various consortium members and sub-contractors, are time-intense and tedious for the
project manager. In addition, these synchronization overhead detracts her from more important
planning, management, and controlling routines.

The two scenarios motivate the need for an efficient and transparent integration framework
for heterogeneous, autonomous project partners. Such a candidate solution would be describ-
able as a transparent hood (consecutively referred to as ITPM consortium hood) that is put over
the entire project consortium; automating tedious manual synchronization tasks between various
tools and partners under the hood, and providing customizable reporting and controlling features
for the management, over the hood. This solution should be applicable with low set-up costs,
and should reinforce the re-utilization of integration artifacts for both, management and techni-
cian audiences.

The Open Engineering Service Bus (OpenEngSb) is an open source representative for a sys-
tematic tool Integration Framework (IF) [15]. It is actively developed at the Christian Doppler
Laboratory for Software Engineering Integration and Flexible Automation Systems (CDL-Flex)
(Vienna University of Technology (TUV)), and has been applied to various industrial fields,
including mechanical engineering, automation, power engineering, and software development
(not PM though). The OpenEngSb supports the integration of engineering and development
tools based on tool domains, i.e., hierarchical coherent structures that encapsulate connectors

3

based on their functional belonging [93, p.81]. An event-based work-flow engine enables trace-
ability and automation features based on configurable business rules. The individual, local tools
of engineers are connected with the bus in order to exchange data within and in-between dif-
ferent tool domains. Thereto, the local data representations, i.e. the local concepts, are trans-
formed into abstract representations, i.e., common concepts, and aback. The semantic map-
ping, i.e., the preservation of the local concepts’ meaning, is facilitated via the OpenEngSb-
specific Engineering Data Base (EDB) and Engineering Knowledge Base (EKB) storage tech-
nologies [14] [87] [115] [114]. A typical Use Case (UC) for the OpenEngSb is the integration
of two different Source Code Management (SCM) tools (Git and Subversion[SVN]). A work-
flow can be defined so that changes in either repository are propagated to the other repository,
and a meaningful notification (email) is forwarded to the responsible team leader, including an
assigned message priority, derived from the number of committed Lines of Code (LOC). The
example includes technical and semantic integration challenges. Technically, tool connectors
and business rules must be implemented. From a semantic viewpoint, the mapping between
the technical jargon of the local tools, and the common concepts, needs to be performed. E.g.,
the concept of a ”commit” in Git and SVN has different meanings. Analogously, the message
priorities of the mailing programs have different ranges and meanings.

On the foundation of the beforehand introduced ITPM consortium hood and the OpenEngSb
framework, PM integration challenges that appear on (a) the managerial, and (b) the technical
level, are outlined. Figure 1.2 vividly illustrates (a) and (b), including the horizontal and vertical
data flows. Horizontal integration addresses the data exchange between local PM systems and
tools. Vertical integration relates to the meaningful representation of data and knowledge, within
a centralized PM view.

Commitment for PM Data Integration (Figure 1.2 - 1) Lack of top-management support is
a major reason for the failure of integration projects [77]. In a consortium project, the project
manager must convince the executives that (a) a feasible and systematic integration approach is
available, (b) the integration solution significantly contributes to the attainment of the project
objectives, rather than distracting from essential project activities, and (c) the benefits of the in-
tegration approach compensate additional implementation costs. Benefits of PM data integration
include more efficient reporting, the automation of manual synchronization tasks, the resolution
of miscommunication between sub-organizations, and the effective utilization of local data, PM
knowledge, and processes [86].

Analogously, relieving team members from tedious, repetitive reporting/synchronization ac-
tivities is likely to increase the teams’ motivation and commitment. Automated reporting pro-
visions improve the accuracy and timeliness of figures, such as project forecasts (e.g., effort
estimations), and the project status. Training and change management efforts appear, if sub-
organizations (e.g., local software development teams) are forced to replace their preferred tools
against a common Project Management System (PMS). (People) change management addresses
management activities to dismantle cultural resistances of individuals, teams, and organizations,
against a technological or cultural shift [62]. The challenge for the project manager is to mini-
mize training and change management efforts, while maximizing automated report provisions.

4

Figure 1.2: The semi-transparent ITPM consortium hood and its fibres, which visualize the
capability to define work-flows and queries on aggregated information.

Identification of Data Sources, Models and Automation Scenarios (Figure 1.2 - 2) At the
initiation of a consortium project (with new partners), the project manager is unaware of the
consortium members’ local tools, respectively PM-related data sources. Even if basic informa-
tion about the main PMSs is exchangeable, there is a high probability that important PM data
will remain undisclosed. One reason is that the consortium members do not exactly know what
data is relevant and valuable to the project manager, and vice versa. Another reason is that local
organizations can have incentives to hold back relevant PM data (e.g., administrative reasons,
sensitive business knowledge, competitive advantages).

The challenges for the project manager are: (a) Convince the local organizations to ac-
tively disclose and share their data (e.g., convince them of the resulting benefits for them). (b)
Identify potential automation and data integration scenarios, e.g., for the creation of automated
work-flows. If the data sources and their accessible data structures are unknown, the manager

5

cannot assess the costs and the benefits of their integration. (c) Once the available and rele-
vant data sources have been identified, the related data instances should be easy to integrate
(low manual effort), and accessible quickly. (d) Models abstract data structures and processes,
help to condense relevant aspects (from the modeller’s viewpoint), and accelerate communica-
tion [22, p.1ff]. The challenge is to provide a framework that lets managers and technicians
efficiently share and reuse information about data sources and underlying models.

Derivation, Reuse, and Visualization of Knowledge (Figure 1.2 - 3) The derivation of
knowledge based on integrated data must be simple. For instance, if a project manager repet-
itively needs to browse through various sources, and needs to talk to several technical experts
of different sub-organizations to gather all relevant figures, which she has to manually combine
into an aggregated table, or a formula to create a reporting figure or an estimation, then either
(a) the reporting figure will be outdated, or less accurate, soon, or (b) the project manager needs
to stage or cancel other relevant PM activities.

Existing knowledge, for instance the project manager’s experience from past projects, or
PM experience from consortium members, should be reusable and easy to integrate [32]. Anal-
ogously, automated work-flows, models, and rules for the derivation of knowledge should be
transferable between projects, and other managers. Similarly, the representation of information
should be persuasive and ideally reusable for reporting activities to the top management, and
other stakeholders. Visualizations should support the project manager in monitoring and con-
trolling activities, efficiently. For instance, the centralized visualization of escalations (e.g., the
number of open features exceeds a certain threshold, based on an upcoming delivery date) let
the project manager quickly explore project deviations that are difficult to detect, manually. The
project manager should be in possession to perform basic data value modifications, or tweak
reporting figures, efficiently.

The main technical challenges address (a) the efficient technical integration, and (b) the preser-
vation of semantics throughout the synchronization process, including the maintenance of con-
sistent models, accessible and understandable for the project manager and for technicians.

Horizontal and Vertical Integration of PM Data (Figure 1.2 - 4) Local PM data must be
be integrated between the individual software systems of the local teams, ideally close to real-
time (horizontal flow). In other words, the distributed (engineering) teams should be able to
edit and access PM data in their preferred local PM systems and tools. The main challenges are
(a) the integration between PM data of the same types (e.g., the synchronization of features or
work-packages between two systems), and (b) the exchange and derivation of data for different
data types based on work-flows (e.g., for each requirement in IBM Doors2 an issue should be
derived into Jira Issue3). (a) includes several semantic integration challenges such as the map-
ping between local concepts’ attributes and id’s , and the specification of machine-interpretable,
reusable models [114].

2IBM Doors: www.ibm.com/software/products/en/ratidoor
3Jira Issue: https://www.atlassian.com/software/jira

6

Based on the local representations, a common view needs to be derived, as the foundation for
the visualization of reporting data (Key Performance Indicator (KPI)s, diagrams, tables, graphs)
and project monitoring (vertical knowledge flow). The common view should be configurable
by the project manager, and/or a knowledge engineer. The data instances based on the common
concepts must be browsable and query-able. Additionally, work-flows between the different
types of common concepts should be definable.

The OpenEngSb approach to classify engineering tools into (functional) domains is not di-
rectly applicable to the integration of PM-software, because PM data has various cross-functional
characteristics which are typically combined within a single PMS. In order to efficiently inte-
grate PM data sources, a classification of PM software types and PM knowledge is required, and
the appropriateness of the OpenEngSb must be verified.

Shareable Models / Support of Semantic Web Standards (Figure 1.2 - 5) The seman-
tics of the local and common models should be well-defined so that these models are reusable
and sharable across (a) project managers and engineers, and (b) PM and knowledge engineer-
ing communities. Ontology Web Language (OWL) ontologies are well-defined and machine-
interpretable, but they lack of elaborate graphical model-editor support that represent models
compactly, and understandably to laymen. In addition, PM models typically include several
hundreds of classes and hence need to be designed and organized transparently [6].

The OpenEngSb facilitates semantic technologies based on the EDB and the EKB, but (a)
the models and the data are separated, and (b) maintained in an internal format. Hence, the mod-
els cannot be shared, visualized, queried or reused, based on industrial standards (e.g., OWL,
SPARQL).

Efficient Development of Connectors (Figure 1.2 - 6) The implementation of tool connec-
tors in the OpenEngSb environment, as carried out by the CDL-Flex in cooperation with industry
partners, involves several roles, such as a knowledge engineer for the modelling of the domain
data models (UML, OWL), and a developer who is in charge to implement these models and
their processing in Java. Additionally, managers provide the requirements for new connectors,
and approve the delivered functionality. The challenges include (a) the efficient execution of
the development process, e.g., automate the transformation of UML class diagrams into OWL
and Java, (b) the consistent alignment of models and code, and (c) the maximization of re-
usability/maintainability of the models and connectors [28, 90ff.].

The thesis is based on a design-science approach, which is appropriate for complex research
areas with practical relevance and incomplete requirements (cf. chapter 4). The central de-
sign artifact is the ITPM Dashboard for project managers, based on Model Driven Software
Engineering (MDSE). The main requirements for the prototype are to let project managers (a)
efficiently configure and integrate PM data sources, (b) monitor the synchronization process and
the project state, (c) query and visualize data, and (d) automate the synchronization between lo-
cal data sources so that local development teams can continue to work with their preferred tools.
For instance, if organization A is applying Jira Issue, and organization B is utilizing Redmine

7

Project Management4, then these organizations can retain their software systems while work-
ing on a joint project. The data instances (e.g., features or work-packages) are automatically
synchronized in the background. The Web-based ITPM Dashboard User Interface (UI) enables
flexible data source configuration, monitoring, and reporting features for the project manager.
MDSE in this context means that (data) models are not discarded, but reused for the derivation
of additional software artifacts, such as code or UI elements (cf. chapter 2).

The central meta-artifacts of the research are reusable, extensible PM data models, and (a)
related negotiation and integration process(es) for the implementation of these models. The
research work examines the required properties of such models and processes to make the in-
tegration of PM data in project consortia more efficient. More precisely, it is investigated how
models can be used and integrated to (a) collect and unify PM vocabulary, (b) formulate and per-
sist PM-specific structures and knowledge, (c) share and reuse information between managers,
technicians, and organizations, and (d) (semi-)automate the implementation of PM connectors,
including the querying, visualization, and modification of related PM data.

Based on the initial CDL-Flex requirements, conducted expert workshops, and the available
test data, the UC ITPM in a Consortium is constructed. The UC describes a typical consortium
setting, in which organizations are locally distributed, and have heterogeneous key competen-
cies. The UC is settled in the Software Engineering (SE) domain.

The outcome of the research design process (software prototypes, processes, semantic mod-
els) is applied to the UC, and used for the configuration of the integrated ITPM dashboard. As a
result, automation scenarios and data models are identified, for which semantic mappings, work-
flows, and SPARQL queries are implemented. The scenarios include the following automation
cases:

1. The synchronization between similar PM systems (e.g. Jira, Redmine).

2. The automation of integration scenarios, based on work-flows, between different PMS
types (e.g. requirements are automatically pushed into Jira and Redmine).

3. The derivation of KPIs, and other status and progress information, based on constructed
SPARQL queries.

To evaluate the UC configuration, a test environment, including all PM-related software systems
and data sources, is set-up. The evaluation is performed within the prepared test environment,
on two different levels:

Cost-Benefit Analysis at the Management Level The evaluation at the management level takes
place in form of a cost-benefit analysis. I.e., the time efforts that are saved by automat-
ing integration tasks are compared against the additional integration (configuration) effort.
Technical development efforts (the development of new connectors) are excluded from the
evaluation (it is assumed that all connectors are available at hand). The anticipated result
is that the manual integration effort should be reduced by at least 15-20%.

4Redmine: http://www.redmine.org

8

Comparison of Development Efforts at the Technical Level The costs for the development
of two PM-related connectors is compared against the current OpenEngSb approach.
Three connectors (retrieval and storage of collaborator, team, and project data, based
on a customer’s provided spreadsheets) have been implemented throughout an industrial
use-case, in 2012. The development included a basic user interface for data visualization
and modification. Because the working efforts have been recorded for the industrial UC,
the efforts are accurately comparable against the proposed MDSE-based approach. In this
case, the anticipated evaluation result is that the manual development effort can be reduced
by at least 30-40%.

The remainder of the work is structured as follows. Chapter 2 summarizes related work,
including (a) background knowledge regarding project management (frameworks, PMS, PM
knowledge), (b) an overview and comparison on enterprise data integration solutions, and (c)
MDSE based on Semantic Web technologies. Chapter 3 introduces the main research questions.
Chapter 4 details the design-science research method. In particular, Hevner’s Information Sys-
tems Research Framework (ISRF) is introduced, and the application of the framework for the
thesis is outlined, including the evaluation concept. Chapter 5 describes the consortium use-case
in detail. Chapter 6 presents the Systematic PM Integration Framework (SIFPM) as the main
outcome of the design-science research. It is useful to keep the UC of chapter 5 in mind, al-
though the solution approach is not tied to it. In chapter 7, the SIFPM is applied to the industrial
UC. The ITPM dashboard, which is part of the SIFPM, is configured. The output of the config-
uration serves as the input for the subsequent evaluation. Chapter 8 discusses the benefits and
limitations of the work, including threads to validity. Finally, chapter 9 concludes with the main
research results, and summarizes future work.

9

CHAPTER 2
Related Work

In this chapter the theoretical background of the research is presented. Section 2.1 lays out the
foundations of project management, by introducing the Project Management Body of Knowl-
edge (PMBOK) as “the” standard framework for project management, and by visualizing typical
communication issues in IT consortium projects. Section 2.2 provides a categorization of the
various types and definitions of PM software, data, and knowledge. The aim is to (a) enable the
discussion of related integration issues, (b) narrow down the research issues, and (c) facilitate
the unambiguous referencing of terms throughout the remainder of this work.

Figure 2.1: Visualization of the Central Research Areas and Related Topics.

Section 2.3 presents different (PM) data integration approaches, and discusses congruities,
shortcomings, and complements. The most relevant research items in this section are model-
based PM approaches, and Semantic Web technologies. Section 2.4 summarizes the potential of

11

MDSE, and code generation, to make data integration in IT, respectively SE project consortia,
more efficient. Figure 2.1 provides a conceptual overview of the related work structure. The
figure illustrates the four main sub-chapters, and emphasizes the central role of PM data models
for the research.

2.1 Project Management in IT Consortia

The aim of this section is to provide the reader with a common view on PM terminology, and
to exemplify typical issues of multi-organizational IT projects. On that score the PMBOK as
a general PM framework is introduced, and typical consortia formations and related challenges
are outlined.

2.1.1 Project Management Foundations

A project is a temporary endeavor undertaken to create a unique product, service or result
[94]. Projects often initiate the development of new products or improvement of existing ones,
and hence promote innovation and change. Additionally, projects tend to improve employee
motivation, and ease managerial control. In contrast, operations, such as a manufacturing or a
logistics process, are ongoing, repetitive activities, which focus on efficiency [103] [108].

Project management (PM) addresses the settlement of heterogeneous requirements to sat-
isfy customers needs. It is the application of knowledge, skills, tools, and techniques to project
activities to meet the project requirements [94]. A project manager is responsible to guide an (of-
ten heterogeneous) team towards project success, which is achieved if the boundaries of scope,
time, costs and quality are not exceeded (the PM Literature recurrently refers to these traditional
success measures as the iron triangle [11]), and the stakeholders’ needs and expectations are
met. The stakeholders are the people involved in or affected by the project activities, including
customers, the project manager, and development teams [103, p.40].

IT project management (Information Technology Project Management (ITPM)) is a subset
of PM, and addresses the management of projects which involve hardware, software and/or
networks to create a product, service, or any other particular result. Analogously, an SE project
is an IT project that applies (and constructs) only software products.

A Systems Development Life-cycle (SDLC) divides a project into phases in order to make
it manageable. The phases are executed sequentially, sometimes iteratively, but once at a time.
For instance, the PMBOK divides projects into (1) initiation, (2) planning, (3) execution, (4)
monitoring and controlling, and (5) closing. The two main types of SDLC are (a) predictive life
cycles, and (b) adaptive life cycles. Predictive life cycles are appropriate for projects, in which
the key performance indicators (KPI), associated to the “iron triangle” (scope, schedule, time,
quality), are accurately predictable [103]. This class embraces traditional life cycle models,
such as the waterfall life cycle, and the V-Model. In contrast, adaptive life cycles assume that
the project scope can be determined only very limited, and incomplete, throughout early project
phases. As a consequence, as soon as the development teams and the customer gain more insight
about the project, they want to change and adapt the requirements. Hence adaptive life cycles,
in software development often equated with agile development, foresee a flexible adaptation

12

of the Project Life Cycle (PLC) after each development iteration. The aim is to maximize the
business value for customers during each period. Representatives of agile development methods
are SCRUM and Extreme Programming (XP) [36].

PM frameworks, respectively de-facto standards, such as the PMBOK or PRojects IN Con-
trolled Environments 2 (PRINCE2), are industry recommendations, which describe what should
be considered by project managers and organizations when performing projects in general envi-
ronments [88] [94]. In contrast, a methodology, such as the SE-related methodology SCRUM,
describes how a specific standard or best-practice suggestion should be applied to a particular
business environment. The PMBOK is applied by 41% of all organizations, and by 11% of IT
organizations worldwide, and hence by far the most applied standard [97] [79].

2.1.2 The PMBoK as “the” Industry Standard

The PMBOK 1 is described as a point of entry, and a framework, which is used for the later
discussion of PM-related processes, PM knowledge, and PM data models. The framework is
especially useful to summarize the most relevant PM competencies.

The PMBOK contains an exclusive subset of general industry PM knowledge. General
means that the knowledge, respectively tools an techniques, are (a) commonly accepted, and
(b) can be applied to any kind of project [94, p.3]. For instance, a critical path analysis, or
a work breakdown structure is relevant for civil engineering, bio-medicine, and IT projects.
This general knowledge is categorized into nine knowledge areas, and five project management
process groups (initiation, planning, execution, monitoring and control, closing). In total, a
number of 42 sub-processes is constituted (summarized in figure 2.2).

Figure 2.2: Overview of the PMBOK process groups and knowledge areas (adapted from [94])

.

1The fourth edition will be referred consistently, because version 5 was not available due to spring 2013. In
PMBOK5, a tenth knowledge area for the management of “stakeholders” has been added.

13

Figure 2.3 exemplifies the process for collecting requirements, which is part of the scope
management knowledge area. As any other PMBOK process, the “Collect Requirements” pro-
cess involves inputs (from preceding processes), tools and techniques, and outputs, which serve
as the inputs for succeeding processes. For the specific process, the proposed inputs include a
project charter, and a stakeholder register. The proposed tools and techniques comprise inter-
views, focus groups, or facilitated workshops (not stated in the diagram). The process outputs
include a requirements documentation, and a traceability matrix.

The PMBOK guide is complemented by several companions and secondary literature. Stack-
pole’s “A Project Manager’s Book of Forms” is of particular relevance for this work, because
it provides a set of applicable reporting forms, which visualize the implicit data models that
underlay the PMBOK [111]. For instance, the book includes

• a stakeholder register, including the names and descriptions of the columns / attributes
(name, position, role, requirements, influence, etc.),

• a requirements traceability matrix (id, name of requirement, priority, Manifests in WBS
deliverable, verification, etc.), and

• a change request form for the exchange of issues,

• a risk register,

in both, electronic (MS Word templates) and copy-able paper format.

Figure 2.3: Example of one of the 42 PMBOK (sub-) processes (here: collection of require-
ments, including inputs and outputs between related processes) [94]

14

The PMBOK is a functional framework that can help to establish efficient project manage-
ment and communication in consortia, but lacks of domain-specific methodologies and concepts.
More precisely, the PMBOK offers a concise summary of general PM knowledge, and is a good
framework to ensure the covering of the relevant project management knowledge areas, such as
quality management, risk management, or Human Resource Management (HRM). In addition,
the unified PM terminology can support the heterogeneous PM consortium partners to commu-
nicate “in one tongue”. However, as the PMBOK only specifies general PM knowledge, i.e.,
methods and techniques that are applicable industry-independent, the vocabulary, and the tools
and techniques, are quite limited.

2.1.3 IT Consortia Environments

A consortium is a a group of people, companies, etc., that agree to work together.2 In other
words, independent organizations bundle their resources to accomplish a joint project, which
could only be realized very difficulty, or not at all, by a single party. A consortium typically in-
cludes a consortium agreement3 which sets the terms and conditions for the exchange of knowl-
edge, technology, resources and competencies. Examples of consortia with different scale and
purpose are provided hereinafter.

• Between 1967 and 1973 a consortium of leading European aviation companies partnered
to develop the Airbus A300, the first twin-engined widebody jet airliner. While the Airbus
Division was responsible for assembling the airbus, France manufactured the cockpit.
Hawker Siddeley provided the wings, Germany most of the fuselage, the Netherlands
flaps and spoilers, Spain the horizontal tailplane, and Rolls-Royce delivered the engines.4

• The World Wide Web Consortium (W3C) was founded in 1994 by Tim Berners Lee with
the goal to lead the World Wide Web to its full potential by developing protocols and
guidelines that ensure the long-term growth of the Web..5 It includes 387 members such
as Adobe, Dell, Facebook, Google and Microsoft.6

• The CDL-Flex cooperates with different industrial partners to develop complex automa-
tion systems like power plants or production plants. The building of a new system requires
the bundling of engineering knowledge from several disciplines and organizations. For in-
stance, mechanical, electrical, software, and civil engineers cooperate in a consortium-like
setting, to implement a specific technology for a hydroelectric power station. [115]

• The Open Cities Consortium (OCC) is composed by 12 Core partners encompassing 4
European member states and 4 major cities: Berlin, Amsterdam, Paris and Barcelona.
The OCC builds on significant expertise on Open Innovation, Living Labs and Smart

2Consortium Definition: http://www.merriam-webster.com/dictionary/consortium
3EU FP6 Consortium Agreement Checklist: http://ec.europa.eu/research/fp6/

model-contract/pdf/checklist_en.pdf
4Airbus Narrative: http://www.airbus.com/company/history/the-narrative/
5W3C: http://www.w3.org/Consortium/
6W3C membership status in January 2014

15

Cities and existing platforms on Crowdsourcing, Open Data, Sensor Networks and Fiber
to the Home networks. The OCC aims to build on both strands of expertise combining
an interesting blend of socioeconomic and technological research with real-life pilots in
major European Cities 7.

• The Austrian Research Fund (FFG) stimulates the cooperation of startups and research in-
stitutions with grants in the range of 10.000 and 12.500 Euros.8 This is an opportunity for
startups to partner up with one or more research or development institutions in a consor-
tium. In a fictional case the startup is responsible for the development of the user front-end
and marketing activities, while the research institutions (CDL-Flex, etc.) provide the high-
tec components. All partners take advantage from the consortium: The startup receives
technology and research results, while the research institutions gain industrial data and
reusable prototypes.

2.1.4 Project Management Issues in IT Consortium Projects

The high failure rate of IT projects correlates to a large part with communication issues. IBM and
PWC report that poor communication, either by the top-management, within the project team,
or with external stakeholders, is a major cause of project failure [49] [97]. The Bull Report,
carried out across the French computer manufacturer and system integrator industry in 1998,
ranks bad communication between the relevant parties with 57% as the number one cause of
project failure [29]. Flyvbjerg et al. report that 67% of IT project managers face major conflicts
between project and line organizations [38].

Build Commitment for PM Data Integration

Moncrief emphasizes that communication issues are intensified in IT project consortia. Matters
of trust, power, and commitment are omnipresent and often lead to a divergence of interests
throughout the project. As he argues, it is important to ensure top-management support, estab-
lish win-win conditions, and address internal barriers [86].

Varian illustrates that consortia are often not cosy birthplaces of ideas and innovation, but rather
constitute rough negotiation processes between self-centric agents with hidden intends. For in-
stance, powerful market players, sometimes even competitors (e.g., Apple, Samsung9), team up
to resolve inter-dependencies, or to cope with threats from other competitors (cf. [75] for more
on classical negotiation theory) [120].

The works of Moncrief and Varian both suggest that an initial “integration effort” is required
to (a) build a web of trust between the partners, and to (b) overcome internal barriers, including
the integration of PM-related data, which are typically scattered across various local PM sys-
tems. (a) focuses primarily on the management activities that are required to build stakeholder

7Open Cities Factsheet (p.3): http://slideshare.net (last visit Feb. 2014)
8FFG Innovation Check: https://www.ffg.at/innovationsscheck10000
9Apple and Samsung Beginnings: http://01787.blogspot.co.at/

16

and team commitment in early project stages. (b) addresses the efficient, systematic integra-
tion of a central, consortium-widely accepted PM (information) system to ensure productivity
and transparent communication across team members and organizations. (a) is discussed con-
secutively. As (b) involves difficult decision-tasks, such as the selection of an appropriate PM
software, or the installation of a generic data integration framework, it will be detailed in the
sections 2.2 and 2.3) [105].

Hiat and Creasey motivate (people) change management to gain the acceptance of individu-
als, teams, and enterprises in order to establish organizational, cultural, or technological shifts.
Changes can either be performed incrementally, or radically, but the ultimate aim of change
management is to get individuals out of their ‘comfort zones”, and to transform them into ac-
tive “supporters” of a project rather than deniers or obstructionists. Change management in this
respect must not be confused with the tracking of requirement updates throughout a project [62].

Boehm et al. introduce Theory W, and the collaborative WinWin negotiation approach. The
WinWin approach is based on a spiral model process to negotiate the requirements of a project
in a way that turns all key stakeholders into winners (customers, developers, managers). For
instance, a useless customer requirement is likely to result in a sloppy implementation and a de-
motivated project team. If the requirement can be renegotiated, so that the customer recognizes
the low business value of the requirement, then a win-win situation is achieved, leaving everyone
better off (the customer saves money) [21] [18] [20].

Both approaches help to build commitment between project participants in order to succeed
a project. People change management is particularly important in a consortium, because indi-
viduals from various organizations, with probably very heterogeneous competencies and cultural
backgrounds, need to collaborate with each other. Likewise, the stakeholders need to agree on
common PM methodologies, software systems, and data integration, which are critically for the
PM to successfully direct a project. However, change management is a framework rather than a
methodology. It is not explicitly addressed by the PMBOK, and there are no specific guidelines
or proposals for its implementation within consortia projects. In addition, change management
is associated with costs and effort. Hence it needs to be conducted by the PM very efficiently.
The WinWin approach is much more precise about the implementation of a methodology for the
negotiating of requirements. The authors even introduce a collaborative, software-based proto-
type (Easy Win Win (EWW), cf. [20], which is however not publicly available. Nevertheless, the
the central question that arises from the study of the presented work is: Is it possible to leverage
the WinWin approach as a methodology to facilitate change management activities in a IT con-
sortia project, e.g. to negotiate a common PM system, and to initially convince the consortium
members to willingly disclosure and integrate PM-related information?

Standardized Communication

Inefficient communication channels as well as differences and ambiguities in language, profes-
sional competences, and cultures, tempt to lose sight of the relevant project management tasks in
order to achieve the joint consortium goals. Mc Connell argues that conflicting interests between

17

stakeholders take place at both, inter-organizational (i.e., the consortium), and organization-
internal level (team-internal). As he states, unequally distributed power across organizational
levels, frequently lead to poor project forecasts. Mc Connell claims that 40% of all software
errors in SE projects are caused by stress. For instance, customers put pressure on functional
managers, who force project managers to accept unfounded deadlines. The game continues on
lower hierarchical levels: Project managers persuade developers to accept unrealistic schedules,
while at the same time developers averagely underestimate their implementation efforts by 30%.

One strategy to homogenize communication is the rigor application of PM standards. The
PMBOK provides a list of communication dimensions (e.g., internal and external, formal and
informal; written or oral), and suggests techniques to actively manage project communication,
e.g., via the creation of a communication plan. The communication plan addresses the formal
communications between project members, but also the technological components and report-
ing artifacts that are used (e.g., PM software, document repositories; weekly status reports via
email). In addition, the PMBOK provides a concise vocabulary, processes, and best-practices
that help to resolve and unify ambiguities between organizational cultures [94] [103]. However,
the frequent criticism about the PMBOK denounces that it only specifies general PM knowledge,
and hence many domain-specific concepts are not addressed (e.g., the PMBOK does not address
what a user story, a sprint, or a backlog item is). Moreover, discussions with experts revealed
that the PMBOK (at least in Austria) is often disliked, because if forces organizations to adapt
to the terminology of a new standard (additional effort), rather than vice-versa. In addition, the
PMBOK provides only a scaffold rather than a precise methodology [94] [88].

PM systems are the second tool that help to unify and improve communication via a common
platform. According to Shang and Seddon, Information System (IS) (a superclass of PMS),
increase productivity and decision-making activities, make communication more efficient, and
help to close cultural gaps between organizations and teams. However, they also conclude that
IS can be expensive and that a Return of Investment (ROI) can take years [105]. Kannenberg
and Saiedian state that traceability makes project management easier by simplifying project es-
timates, because it enables a PM to browse through related artifacts, and to gain more insights
about risks, costs, and progress state. However, the authors mourn the poor tool support [74].
Heindl and Biffl provide a good example of “traditional” requirements tracing, i.e., the tracing
between requirements, test cases, and code [56]. However, their work is a good state-of-the
art representative to demonstrate, that most traceability approaches focus on the tracing of re-
quirements from a Quality Management (QM) perspective, rather than a PM perspective (thus
reinforcing Kannenberg and Saiedian’s proposition about limited tool support) [80] [10].

2.1.5 Concluding Remarks / Approaching IT Consortium Issues

Based on the identified communication issues, two higher-level goals of a PM in a consortium
are derived:

1. Build initial commitment to achieve the common project goals, and ensure that all con-
sortium members share their PM-related data. More precisely, none of the partners should

18

withhold (uncritical) data only because of self-interests, e.g., to avoid administrative ef-
forts. People change management and the WinWin approach are identified as possible
approaches to address this goal.

2. Eliminate communication issues and cultural conflicts that occur due to heterogeneous,
(multi-)organizational structures. Related work suggests (a) the rigor application of PM
standards and best-practices to provide a common language (e.g., PMBOK). (b) The
application of PM software to increase the efficiency of communication by providing (au-
tomated) best-practice tools, methods, and a unified and integrated view on project data.

The lack of domain-specific knowledge in the PMBOK is criticized by several authors (e.g.,
Morris [88], Huijbers et al. [67], and Gasik [40]), and has been found to be shared by practition-
ers. The criticism of Gasik and Morris addresses the issue that the PMBOK tries to approach
any industry domain (e.g., construction engineering as well as bio-medicine, and IT) and hence
fails in addressing a specific domain (e.g., IT), properly. From the viewpoint of the author, this
criticism is justified. However, from a theoretical PM perspective the PMBOK is still very valu-
able, because it abstracts many domain-specific details away, which are, at the end of the day,
irrelevant for the core PM activities. So what practitioners actually denounce is, strictly speak-
ing, not a shortcoming of the PMBOK per se, but the lack of mappings between domain-specific
concepts (e.g., SCRUM: backlog item, sprint, scrum-master) and the generic PMBOK concepts
(e.g., work package, project phase, project manager), implying the unacceptably high imple-
mentation effort for such mappings. The criticism of Gasik addresses the lack of, what he calls
off-procedural knowledge, e.g., wage rates, price lists, or skills registers that can be provided
either industry-wide, or organization-internal. While this criticism is justified, PM integration
solutions can help to integrate such knowledge from secondary sources, or historical data.

Related work shows that PM software is essential for efficient and productive project man-
agement. However, the selection of an appropriate PM software product is complex. Among the
reasons are the in-transparent software market, the high costs of sophisticated solutions, and the
fitness of a product to a specific type of project [105]. Details regarding PMS types and tools are
discussed in section 2.2.

A consortium project typically does not require the integration of a single PMS, but rather a
heterogeneous set of (already established) PMSs. Hence a meta-integration approach, i.e., the
“integration of already integrated systems” is necessary. The temporary nature of consortia im-
plies that such a framework must be applicable very efficiently. Potential integration approaches
for heterogeneous organizations are outlined in section 2.3.

2.2 PM Systems, Data and Knowledge

The PM software market is vast and in-transparent. Standard literature is not very concise about
the definition of PM software systems. Hence, a categorization of PM software is provided, and
challenges in selecting and integrating PM software are identified (section 2.2.1). To provide
a generic integration approach for PM software, and to establish a link to the PMBOK and

19

Semantic Web technologies, the discussion is continued at the underlying level of PM data,
formats, and PM knowledge (section 2.2.2).

Figure 2.4: The “Umbrella” of PMS Terminology (extracted from literature).

Figure 2.4 visualizes a subset of the scatty PM terminology that frequently appears in liter-
ature and vendor-descriptions, under the “umbrella” of PM software.

2.2.1 PM Software

PM software, applied appropriately, boosts productiveness and improves communication effec-
tiveness [98] [105]. However, selecting “the” appropriate PM software product has become a
difficult task during the past decades. The nature of PM software has evolved; from single-user
planning tools to complex, distributed, multi-functional enterprise systems [5].

PM Software Types

The PMBOK defines a Project Management Systems (PMS) as the aggregation of processes,
tools, techniques, methodologies, resources, and procedures to manage a project [94]. In con-
trast, a tool is defined as something tangible, such as a template or software program, used in
performing an activity to produce a product or result [94].

Kerzner identifies three level of PM software. Level I PMS provide basic planning capabili-
ties for single projects, but require manual rescheduling of the plans after deviations (e.g., MS
Project 2007). Level II PMS include additional features for semi-automated controlling, tracking
and reporting (e.g. Redmine10). Level III PMS enable planning, monitoring and controlling for

10Redmine: http://www.redmine.org

20

multiple projects, including sophisticated cross-project mechanisms. Typical features of level
II and level III software are Gantt charts, report generators, Work Breakdown Structure (WBS)
visualization, cost control and resource allocation (e.g., MS Project Enterprise) [76].

Schwalbe defines three categories of PMS, which broadly correspond with Kerzner’s levels.
However, Schwalbe’s categorization is based on the license costs of PMS per user: Low-end
tools cost less than $200 (e.g., the minimum version of “Basecamp”11 or add-in features and
templates for MS Excel). Midrange Tools range between $200 and $600 (e.g. MS Project
2007). High-end Tools are those exceeding the $600 limit (e.g., MS Project Enterprise) [103].

Ahlemann and Backhaus identify five categories of PMS, based on the review of 34 indus-
trial PM software products. Single-Project Management Systems (S-PMS) comprise single-
desktop solutions. Multi-Project Management Systems (M-PMS) correspond with Kerzner’s
definition of level III software. Enterprise Project Management Systems (E-PMS) are adaptable,
and configurable for institutional enterprise standards. They include Workflow-Management
(WFM), e.g. for implementing specific SDLCs. Performance-Oriented Project Management
Systems (PO-PMS) extend the functionality of E-PMS, but provide advanced Business Intel-
ligence (BI) and reporting features (e.g., KPIs). Knowledge-Oriented Project Management
Systems (KO-PMS) facilitate the reuse of knowledge, experiences and lessons learned. Op-
posed to Kerzner and Schwalbe, Ahlemann uses the term Project Management Software Sys-
tems (PMSS), respectively Project Management Information Systems (PMIS), accenting the
enterprise-context in which PMSS operate, comprising organizational and technological com-
ponents [5] [6].

Ahlemann reports that the functional focus of PMS is still on the traditional features of project
planning and controlling, but that the trend is towards collaborative, team-oriented features, and
workflow-based mechanisms. The presented PMS classification frameworks do neither reflect
these trends, nor do they explicitly focus on the users’ needs. Hence, a fourth, user-oriented
perspective is presented, which bases on standard literature, the CDL-Flex’s expert power, and
Web resources (cf. figure 2.5)12,13 [4] [42] [101] [58].

The user-oriented perspective comprises four different viewpoints. The management-centric
view (1) represents the perspective of the project manager, who is mainly interested in applying
the software for planning the project, and controlling / reporting to the project sponsors, respec-
tively executives. UI features, availability (e.g. Desktop-based, Web-Client, Cloud-based) and
the level of technological integration (e.g., automated data transfer) are of main interest [76].
The organization-centric view (2) addresses the needs of the top-management. Not the particular
application features are of capital importance, but how the software system is embedded within
the context of the organization. The objective is to leverage an efficient, central PMS, which can
be reused by all project managers. A main requirement are powerful reporting and controlling

11Basecamp: http://www.basecamphq.com
12PMSdEMO: http://pmsdemo.com/types-of-project-management-software
13SQA: http://www.sqa.org.uk/e-learning/ProjMan01CD/page_34.htm

21

Figure 2.5: Summary of the Studied PMS Categorization Frameworks

capabilities, to aid the Project Management Office (PMO), a portfolio management team, the
top management, or other key stakeholders (this view is not focused in the thesis).
While the first two classes address the management level, the team-centric view (3) dwells
on software that supports project team activities. Project team members typically obtain the
Getting-things-done perspective, but also require collaboration and tracking features. For in-
stance, in major business projects between 25% and 30% of total project man-days are spent for
collaboration [58] [101]. Collaborative agile tools (e.g. boards for SCRUM and/or KANBAN)
become more and more important and fit into this category [78] [30] [42].
Finally, the domain-centric view (4) stresses that PM software often requires additional features
that are only relevant for a specific industry, or an organization. For instance, companies which
operate in the domains of mechanical engineering, power engineering, or automated engineer-
ing need to be in possession of additional operating schedules, e.g., to regulate a test plant, or
to trigger the shut-down of a critical system. Analogously, in SE projects, software tracking
systems, such as Jira14, do not only provide task management features for the ongoing develop-
ment, but tightly integrate SCM, and code documentation features. The corresponding user role
of the domain-centric view is the domain-expert, but the domain-specific features are typically
relevant for all participating roles, in particularly for the team [89].

Both, Schwalbe and Ahlemann independently report the predominant role of MS Project [103]
[4]. Gartner reports a market share of 45% for MS Project (desktop version) for 201015 [113].
Additionally, suites, i.e., all-in-one-solutions that bundle coherent software products from a sin-

14Jira Issues: http://www.atlassian.com/software/jira
15additionaly, MS Enterprise Project had a market share of 12%

22

gle vendor, are often utilized for enterprise-wide PM [113]. There is a large gap between expen-
sive high-end products and free or open-source solutions. High-quality open-source solutions,
such as Redmine, are rare. Schwalbe notes that these tools are (mainly) developed, managed,
and maintained by volunteers. They often run on limited platforms and may not be well sup-
ported [103].

Challenges regarding PM Software

The identified challenges regarding ITPM software address the application of PMS to optimally
support the project manager and (virtual) project teams. Heterogeneous tools, organization-
specific requirements, and related limitations must be considered. A wide range of commercial
off-the-shelf PM software is available on the market. However, the selection of the “best” tool
remains challenging.

Selection of PM Software The PM software market is vast and non-transparent. Hence the
selection of the “best” PMS requires expertise and proper knowledge of the organizational en-
vironment, strategic goals, and a diligent assessment of the intended use. Market studies and
vendor’s product description are typically biased [5]. High initiation costs (consulting, installa-
tion, migration, training), and long roll-outs complicate the application of a central PMS, and
make all-in-one solutions infeasible for temporary IT consortium projects [54] [5]. In addition,
commercial software vendors (e.g. Microsoft, HP, Atlassian) sell PMS bundles, which increase
the probability of lock-in, i.e., the costs from switching from one product to another, exceed the
expected benefits of the new product [7] [120].

Escape the Project Manager Lock-In Lock-in effects also emerge at the site of the project
manager, i.e., if a manager is forced to use a predefined, enterprise-specific product. Ineffi-
ciencies result either if the project manager is not familiar with the software, or even worse,
if she dislikes it. Additionally, project managers who commonly work in heterogeneous, or
inter-organizational contexts, have to jump between different tools [103].

Integration of PM Software and Knowledge Even if large enterprises strive for a fully inte-
grated E-PMS solution, it is very unlikely that a single, coherent PMS, can tightly integrate all
PM-related tools from several teams. In a consortium, the partner organizations will not give up
their preferred localPMS, easily. Even if a central PMS is accepted, the communication across
teams with different fields of scope (and their preferred expert tools) remains limited and cannot
take place seamlessly (eg., [15]).
Comprehensible PM suites focus on the centralized management of a project, based on sophisti-
cated UIs. However, these systems’ API capabilities are limited. The systematic integration for
a larger number of external sources is not sufficiently supported into both directions (typically
the integration into the vendor’s UI is focused; but the back-stream to other PMS is uncared-for,
or rudimentary implemented [4].
Wicks investigated the tool landscape of a telecommunication provider in Scotland, and discov-
ered integration islands across the SDLC. More precisely, he found that two SDLC phases, viz.,

23

defect tracking and change control, and configuration management were well-supported by soft-
ware, while the other five phases (PM, requirements management, analysis and design, imple-
mentation, testing) were rarely considered. The same “island” phenomena has been observed for
the companies of some interviewed project managers (two Austrian IT-companies in the banking
sector, and the CDL-Flex). The ‘ìslands” of the CDL-Flex look similar than those of the Scot-
tish telco provider, but additionally the CDL-Flex utilizes a Continuous Integration (CI) server
for testing updates in the central code repository. The resolution of the integration networks to-
wards a more balanced approach across the overall SDLC is an important step to improve project
communication, and to keep redundant PM artifacts up to date [124].

2.2.2 PM Data, Formats, and Knowledge

A complete definition of PM-related data, respectively PM data has already been provided in
chapter 1. Zack defines data as observations or facts out of context, and therefore not directly
meaningful. Information is the result from placing data within some meaningful context, often
in the form of a message [128].

PM Data

PM data, in accordance with the PMBOK, either relates to one of the nine PMBOK knowledge
areas, or is domain-specific, but contributes to PM in some kind. The related work about PM
software (section 2.2.1) already suggested some types of PM data, such as data about resources,
work packages, project members, stakeholders, risks, or requirements.

PM data (in digital form) resides within specific PMS, or tools (e.g., files), and can be ac-
cessed via a UI, or an Application Programming Interface (API)s. The UI can include detailed
data views (e.g., an overview of all available requirements), and aggregated views (e.g., sum-
maries about the requirement types, and information about the stakeholders how created them;
diagrams; graphs). In addition, some PMS track historical data about changes.

PM Data Formats

Data can either be structured (relational database, table format), semi-structured (e.g., XML),
or unstructured (textual representations) [65]. Ahlemann reports that the majority of enterprise
application integration is undertaken using database interfaces (ODBC or JDBC), or flat file
import/export. As he states, only a few systems offer a documented API [4]. However, Web-
accessible Representational State Transfer Protocol (REST) APIs that provide semi-structured
data, either in JSON or XML format, increased over the last years. Additionally, some PMS have
been found to implement programmatic access via a Simple Object Access Protocol (SOAP)
interface (e.g., Jira). Schwalbe states that spreadsheets (structured data) are a widespread tool
for PM. Indeed, there is an own market for MS Excel PM plugins and templates [103].

24

Knowledge

According to Zack, Knowledge emerges based on meaningfully organized accumulation of in-
formation (messages) through experience, communication or inference [128]. Knowledge, anal-
ogously to data, appears either structured, unstructured, semi-structured, or human-based [64].
It also can be general, domain-specific, enterprise-specific, or even individualistic [94] [88].
Human knowledge addresses the expertise of the project manager, the team members, and the
other stakeholders, and is not directly accessible. There are several types of unstructured PM
knowledge sources available. For instance, PM books, best-practices, success (or failure) sto-
ries, PM patterns and anti-patterns, are types of general and domain-specific PM knowledge that
help project managers to avoid common pitfalls (cf. [67] [88] [38] [26]). In addition, enterprise-
specific (project knowledge), e.g., obtained from past projects, may be available, either in un-
structured, or structured form.

Gasik addresses PM knowledge in the context of the PMBOK. He distinguishes between pro-
cessual, and off-processual knowledge. Processual knowledge relates to the general knowl-
edge that is defined by the processes of the PMBOK. Off-processual addresses generally-valid
facts, such as wage rates, skill registers, quality metrics, or reusable report templates, but also
enterprise-specific knowledge, such as human-resource registers, or a product database. Gasik
terms Knowledge-Oriented Project Management (KOPM), which focuses on the utilization of
the entire knowledge of PM collected by the PM or organization [40] [40]. In a second paper,
Gasik also defines task-specific micro-knowledge, and emerging macro-knowledge. The later is
processed by a single entity, but transferred/accumulated across organizational levels. In this re-
gard, Gasik distinguishes between the individual level, the project team level, the organizational
level, and the global (PM) community level [41].

Zack classification into procedural knowledge and declarative knowledge takes a more theo-
retical perspective [128]. In PM, the procedural knowledge is visible in form of processes, such
as work-flows, methodologies, or UI-based action sequences, but also in form of templates that
stimulate a process [128]. Declarative knowledge is typically available in form of rules, or on-
tologies [64]. An ontology is an explicit and formal specification of a conceptualization [44].
In the context of the Web, ontologies provide a shared understanding of a domain [9]. An
ontology consists of a finite list of terms and the relationships between these domains anto-
niou2004semantic. Hence, a model, i.e., a purposeful abstraction of the reality, with clearly
defined semantics, is also declarative knowledge. Finally, the difference between knowledge
and facts is, that a fact is a rule without a body [64], which equals a tautology. In the context
of this work, a fact is defined to be a possibly abstracted, specific, communicable figure that is
assumed to be true. For instance, wage rates, or the average project execution time of a specific
type of enterprise-project, represent facts.

Challenges regarding PM Data and Knowledge Integration

Reuse of (Historical) Knowledge Dippelreiter states that most project managers do not reuse
historical data, either because (a) the closure-phase of projects is not conducted properly, or (b)

25

because the data are neglected throughout the init-phase of the new project [32]. Mc Connell
notes that ignoring existing knowledge, such as available historical data or lessons learned from
past projects, result in negative project outcomes. However, he finds that unfounded estima-
tions, e.g., based on solely personal memories, are used for about 60 to 85% of all estimations,
although the application of documented facts is negatively correlated with project overruns [83].
The reuse of knowledge implies that the knowledge must be transferable, and reusable, e.g.,
based on rules or models.

Derivation of Knowledge (Access to Data) Data is often available in text documents, spread-
sheets, or within tools, but cannot be reused automatically, because of a lack of integration. As
Ahlemann and Backhaus report, knowledge-based features, such as elaborate document repos-
itories, or the documentation of lessons learned, are only available for very costly Knowledge-
Oriented PMS (KO-PMS) [5]. The integration of data and knowledge should imply that knowl-
edge easily accessible, and adequately pre-processed/represented for each project member, for
instance in the local tool of the developer, or vividly aggregated as a KPI, in the central view of
the project manager.

As this thesis aims to improve the integration of heterogeneous PM software components and
data, it is important to be aware of the essential types of PM software, and the underlying
data/knowledge structures. The research findings in section 2.2 support (a) the identification
and isolation of a realistic project setting, (b) the effective inquiry of practitioners, based on a
common language, and (c) the design a solution which is applicable / suitable for other software
types, analogously.

2.3 PM Data Integration

Analogously to IT project management, data integration comprises a complex set of technical,
organizational, and business components, which make it a hard problem. Main data integra-
tion issues include (a) the efficient integration of a larger set of heterogeneous, autonomously
organized data sources16, (b) the mapping between heterogeneous data (formats) in order to ex-
change data consistently, and (c) the access and useful visualization of the integrated data [52].

The aim of this section is to study related work for the efficient integration of PM data within
temporary project structures, considering semantic aspects of the data. For this purpose, holis-
tic, reusable, ideally lean approaches that enable the (centralized) synchronization, querying,
and data visualization, are examined. Related work that addresses reusable models, ontologies
and/or Semantic Web technologies, is of particular interest.

2.3.1 Data Integration

Data integration is the problem of combining data residing at different sources, and providing
the user with a unified view of these data [81]. From a theoretical viewpoint, data integration is

16already between 2 and 5 data sources can be inherently complex to integrate.

26

a set of mappings (i.e., queries) between a global (virtual) schema G, and a set of local source
schemes S [81].

Doan et al. provide four main reasons that make data integration a hard problem [34]:

1. The data of disparate data sources must be queryable (and modifiable), ideally in real-time.

2. The number of sources complicate the integration. The integration challenges exacerbate
as soon as the number of sources grows (already two sources can be challenging).

3. The accessed data sources and platforms are heterogeneous. Different file formats and
API technologies need to be integrated. In addition, the semantics, i.e., the meaning of the
sources’ schemata and data are ambiguous and must be resolved.

4. The integrated sources are autonomous, which means that they are possessed and admin-
istrated by different organizations. The sources can change their data formats and access
patterns at any time.

Sunindyo et al. classify related work into technical and semantic integration. Technical
integration focuses on architectural aspects of the framework, including the systematic and effi-
cient integration of disparate data sources. For instance, Sunindyo et al. apply the OpenEngSb
(introduced in chapter 1) as a distributed integration framework for automated monitoring and
tracing activities of SE-related build processes. As they state, the event-based architecture of
the bus facilitates a proper separation of the integration logic (program code) and the business
logic (work-flows) [114]. Semantic integration addresses the matching of disparate, local data
schemes, the detection (and prevention) of data inconsistencies (such as duplicate records), and
the modeling and mapping of complex relations in, and between vocabularies of heterogeneous
data sources [114]. Semantic mappings help to prevent the meaning of data, when exchanged
across different data sources and views.

In addition to Sunindyo et al., Halevy distinguishes between schema heterogeneity and data
heterogeneity. Schema heterogeneity addresses ambiguities on the scheme-, respectively model-
level. For instance, the same attribute may exist in two different schemes, but with a different
name. Another example is the accomplishment of a mapping between two different ordinal data
scales (e.g., priorities). Data heterogeneity addresses mismatches that a model can reflect only
very difficulty. For instance, two data sources contain names of the same users, but the stored
names vary slightly (e.g., “Andreas Gruenwald”, “Andreas Grünwald”, “A. Gruenwald”) and
hence cannot be mapped unambiguously [50].

2.3.2 Semantic Web Technologies

Semantic Web Technologies are a set of W3C standards and recommendations that aim to re-
solve semantic integration issues on the foundation of machine-interpretable and shareable on-
tologies [9]. OWL ontologies, and SPARQL queries are the most relevant semantic artifacts for
this work.

27

OWL Ontologies

The Ontology Web Language (OWL) enables the formalization of knowledge within ontologies.
More precisely, classes, properties, and advanced logical relationships between these concepts
can be modeled and persisted (e.g., hierarchies, domain restrictions, functional relationships). In
addition, OWL ontologies can be populated with individuals, i.e., instances, that represent case-
specific facts. Antoniou summarize the main benefits of OWL ontologies. First, OWL bases on
a stack of W3C markup languages (e.g., Resource Description Framework (RDF), and XML),
which makes the ontologies serializable, sharable, and (machine)-interpretable. Second, OWL
rests on well-understood formal semantics (declarative knowledge), which enables reasoners to
infer conclusions from the given knowledge, automatically. In addition, Noy et al. report that
the design of ontologies supports people (but also software agents) in explicitly building, orga-
nizing, and sharing a common understanding of domain knowledge [9] [91].

There are several shortcomings of the OWL and ontologies. First, there is a trade-off between
a reasoner’s runtime complexity, and the expressiveness of the OWL dialect (the thesis does
not focus on these aspects; OWL2 DL is consistently referred throughout the remainder). Sec-
ond, the capabilities of the non-commercial reasoners are very limited. Third, rules in OWL
are monotonic, which means that no new individuals/entities can be derived based on reason-
ing (some vendors address this issue by providing vendor-specific extensions; cf. StarDog17).
Fourth, the storage technologies are still in their infancy. More precisely, the capabilities of the
available Open Source (OS) solutions (e.g. Jena18, OWLAPI19) are very limited, with respect
to performance, stability and documentation. Fifth, the available ontology editor support is lim-
ited. For instance, it is very difficult to model / visualize an ontology compactly, e.g., such as
engineers are used to express data models in compact UML class diagrams. In addition, expert
know-how must be acquired to operate the complex UIs, and to design consistent ontologies.
Bizer, Heath, and Berners-Lee identify the weak ontology editor support as a main research
challenge of Semantic Web [17]. For the remainder of the work, Protégé20 as a state-of-the-art
ontology editor is referred [64] [65].

SPARQL and Linked Data

Linked Data is an excrescence of the ongoing Semantic Web research, and has emerged from the
necessity to access, combine, and query ontologies from different sources. The main relevant
difference between Semantic Web technologies, and Linked Data is that the latter is based on
RDF and SPARQL, rather than on OWL (OWL builds on top of RDF though). The SPARQL
is the query language for RDF data and is based on graph patterns and sub-graph matching.
Contrary to SQL, a SPARQL query is constructed of basic graph patterns which are composed
of triple patterns containing query variables at the subject, predicate, and object position [55]. In
addition, SPARQL is designed to also query the model elements (the terminology, respectively

17Stardog: http://www.stardog.com
18Jena: http://jena.apache.org
19OWLAPI: http://owlapi.sourceforge.net
20Protege: http://protege.stanford.edu

28

T-Box) rather than only the data instances (the assertions, called A-Box). For instance, a query
could ask for all sub-classes of a particular ontology class. SPARQL closes the gap of a powerful,
missing query language for OWL [17] [95] [17] [64].

Semantic Storage Technologies: OWLAPI and Jena

The parallel evolution of OWL-centered technologies and Linked Data makes the selection of
an appropriate technology a difficult task. OWL provides better tool-support, has a more ex-
pressive syntax RDF, and is appropriate for reasoning. Several reasoners OWL (e.g., Pellet [92],
and HermIt [107]) are available. SPARQL has powerful capabilities to load and query data from
distributed sources, overcomes the monotonic nature of OWL rules (e.g., SWRL), but Linked
Data lacks of powerful reasoning mechanisms. As Polleres argues, SPARQL is an efficient rule
language by itself [95].

The differences between OWL and RDF-centric approaches are reflected at the level of the
specific data storage solutions, including their APIs. The main shortcoming of the OWLAPI is
that the data is persisted in serialized files. DB-mapping approaches, such as the OWLDB, intro-
duced by Henss et al. [59], or by Redmond [100], have been found incompatible with the latest
version of the OWLAPI [3.4]. Additionally, the OWLAPI does not support SPARQL natively.
There are working plugin solutions available, though (cf. Sirin et al. for [109]).

Jena, on the other hand, is RDF-centric, and provides only limited OWL-support. The main
advantages of Jena are that data can be stored in scaleable data stores (Jena TDB or SDB), and
extensive SPARQL support is available. The disadvantage is that there are no UI tools to browse,
visualize, or administrate the persisted data [66] [69].

2.3.3 PM Data Integration Approaches

Currently no research solution addresses the all-embracing integration of PM data and knowl-
edge for temporary project organizations, respectively IT project consortia, sufficiently. Nev-
ertheless, several options to deal with the synchronization of heterogeneous data between local
organizations exist; ranging from primitive, manual synchronization, till the reuse of compre-
hensible, large-scale enterprise integration frameworks. Related work is summarized in figure
2.1, and detailed subsequently.

Research Item Relevance
Traditional PM Approach: No Integration Low
All-In-One PM Software Low
Dashboard-Based Ad-Hoc Integration Some
SE Tool Integration Frameworks Medium
Data Warehousing Management Processes Some
Model-Based PM Integration High
Semantic PM Approaches High

Table 2.1: Main research items for PM data integration, and their research relevance.

29

Traditional PM Approach: No Integration

The traditional PM approach does not address the automation of data integration (trivial case).
The project manager works with her preferred (and available) tools, and must manually com-
municate instructions and status updates (e.g., via e-mail, or by adding updates to the teams’
local PMS). Likewise, reporting data, such as status reports and time-sheets, are communicated
manually between (possibly several) hierarchical levels.

This solution can provide the PM and the teams with a high level of freedom. For instance,
the PM can apply MS Project, MS Excel, or any available PMS, or community template21, to
create and maintain PM artifacts (e.g., a project plan). Analogously, the local teams are allowed
to stick with their familiar PMS, such as project trackers, or agile PM software. However, the PM
can be also restricted, for instance if the organization denies the provision of demanded licenses.
The disadvantage of this approach are the high manual synchronization and coordination efforts
that distract the project members from their assignments. At the same time, the communica-
tion is inefficient, because the heterogeneous PMS imply ambiguous vocabulary and processes.
Moreover, there is no systematic way to ensure that the PM and the teams reapply (available)
organizational standards and knowledge, and that the learned experiences “flow back” into the
organization, facilitating its reuse for future projects. At the end of the project, the planning
artifacts are typically out of date. Additionally, as Dippelreiter states, there is little time left to
collect and pass the learned lessons, in a reusable form [32] [103] [88].

All-In-One PM Software

The application of an all-in-one PM solution means that a central PMS is in place, which is ac-
cessed by the PM and all project team members (e.g., engineers). Instructions, progress states,
insights, and other PM data, are exchanged via a central UI, respectively system.

The complexity of all-embracing PM solutions has already been addressed in section 2.2. The
main problems are the high selection and rollout costs (e.g., selection, migration, training, con-
figuration, licencing), lock-in hazards, and the uncertainty how to systematically integrate in-
evitable systems and tools of local consortium partners.

This thesis does not evaluate commercial software products because, as already said, the bi-
ased product descriptions and the nontransparent market, prevent well-founded scientific state-
ments. Instead, the discussion of related issues bases on two (lightweight) PMS solutions, viz.,
Redmine and Jira Issue. As Redmine is an OS solution, a free demo version was available for
detailed studying. Jira Issue is applied by the CDL-Flex for industrial projects, so extensive
expert knowledge about the product was available.

Redmine Redmine is a high-quality OS-PMS. Its main features are project planning (e.g.,
Gantt Chart), issue tracking, and document management (e.g., Wiki), including a user manage-
ment system. In addition, Redmine supports the integration of third-party tools via plugins (e.g.,

21OpenPM: http://www.openpm.info

30

integration of SCMs, messengers, or agile methods22). While Redmine aims to provide useful
features for efficient project management, and is based on a intuitive, Web-UI, there is no sys-
tematic approach to integrate other PMS. More precisely, the UI-centric integration approach
only works well as long as the number of integrated tools is small (e.g., 2, 3), and the integration
only addresses the visualization of data within the Redmine UI. If the number of tool increases,
and complex cross-domain workflows are required, then Redmine does not scale [82].

Jira Issue Jira Issue is a popular commercial PMS for planning and tracking projects in
teams23. Jira provides similar features as Redmine. It allows the creation of embeddable plug-
ins, and provides accessible APIs (e.g., REST, SOAP). Analogously to Redmine, this approach
is sufficient for a small set of point-to-point communications, but as soon as the number of in-
tegration sources increases, the approach does not scale. The flexible pricing model of Jira is
noteworthy. The cloud-based PMS is free for single-users, but the license costs increase with the
number of added users, and installed plugins. The application of Jira as a central PMS implies
two problems: First, learning efforts appear due to the change of all members to a single plat-
form. Second, the implementation of missing plugins (those not available within Jira’s central
plugin repository) can be costly.

Jira very visually exemplifies the hazards of lock-in: As the numbers of users and plugins
grow, more and more data is pushed to Atlassian, and, due to the multiplicity of plugins, is
scattered across various places. As Jira also provides a tightly integrated source code repository
(Bitbucket24), and a Requirements Management (RM) platform (Confluence 25), the more plu-
gins and data are added to the system, the more difficult it will become to migrate to another
system [120].

Dashboard-Based Ad-Hoc Integration

Another integration approach is to take the existing PMS environment for granted, but initiate
data integration activities on demand, e.g., when manual synchronization effort become unbear-
able, or when monitoring or reporting efforts are very inefficient.

Several innovative and lean integration approaches, mainly based on Web-Technology, are avail-
able. One key technology in this regard are HTTP-based protocols, particularly the REST pro-
tocol. Currently, various PMS and tools implement a REST API. These interfaces enable the
efficient retrieval of data in semi-structured format (e.g., XML or JSON), and the triggering of
basic, tool-internal actions, such as the creation of a new users or work items.

The integration of two or more tools based on REST requires a central application, such as a
dashboard. The dashboard is used either to integrate the data within a central view, or to trigger
the execution between heterogeneous tools. The central application is necessary, because two

22Redmine Backlogs Plugin:http://www.redminebacklogs.net
23Jira Issue: www.atlassian.com/jira
24Bitbucket: http://bitbucket.org
25Confluence: http://www.atlassian.com/confluence

31

(or more) tools cannot exchange data without a mediator.

There are several innovative dashboard-approaches available that ease the visualization of data
based on prepackaged, customizable templates. Twitter Bootstrap Dashboard Themes26 provide
prepackaged visualizations, including elements for the visualization of project progress, such as
KPIs, tables, graphs, diagrams, and notification items. The templates are based on CSS and are
typically available for less than $30.

Programmableweb27 collects numerous of API implementations and mashups, i.e., dashboards
that integrate and combine different HTTP-accessible data sources (either web-services or web-
sites). These mashups provide higher-level views for managers and other roles. A typical
mashup example would be the integration of social network streams (e.g., Twitter, Facebook)
and Google Analytics KPIs, to represent a Website’s, or a marketing product’s regional popular-
ity based on a central map. There are few mashups available for project management though.

Yahoo Pipes allows the mixing of popular data feeds to create data mashups via a visual ed-
itor. A pipe is a data processing pipeline (hence the name “pipe”), which consists of one or
more data sources (e.g. RSS/Atom feeds or XML sources) and a set of interconnecting oper-
ators, each of which performing a specific task. There are operators for manipulating data
feeds (e.g. sorting or filtering) and operators for features like looping, regular expressions, or
counting. More advanced features such as location extraction (e.g. geo coordinates identified
and converted from location information found in text fragments) or term extraction (e.g. key-
words) are also supported. The goal of Yahoo Pipes is to enable users to design data processing
pipelines that filter, transform, enrich, and combine data feeds and are again exposed as XML
streams [127] [96].

One approach that tangents PM is provided by Biffl et al. The authors utilize semantic tech-
nologies to extract PM-related data from OS Web communities, and summarize the aggregated
data in a centralized cockpit. While the visualization results are convincing, this approach, as
many others, does only consider the extraction of data, but not the modification, i.e., data back-
flows. In addition the cockpit is not flexibly configurable [16].

While dashboards and mashups are very efficient for data visualization, they are mainly “one-
way” integration solutions. In other words, they are good for visualization, but are not ap-
propriate for complex synchronization activities. These systems neither provide a systematic
integration approach for larger amounts of data sources, nor do they provide stable mechanisms
to “control” the access and the data flow of sensitive data sources. In addition, it is very difficult
for the PM to gain access to a local data base, administrated by a different organization or sub-
entity. Moreover, it is very unlikely that an administrator will grant write permission to access
a central PMS. The reason is that adhoc-integration jeopardizes the mix-up of entire databases
in a non-reconstructible way. More precisely, no journal is maintained that summarizes which

26Bootstrap Dashboard Themes: https://wrapbootstrap.com/tag/dashboard
27ProgrammableWeb: http://programmableweb.com

32

events where executed by whom.

Enterprise Information Integration (EII) is a trend that relates to mashups and Web-dashboards.
EII provides uniform access to multiple enterprise data sources without having to loading them
into a data warehouse [27]. According to that definition, EII represents the missing link between
the centralized management dashboard, and the flexible integration of a number of decentralized
data sources. However, EII addresses the overall entire enterprise context, and has not been ap-
plied for more small-scale (temporary) PM organizations so far. Moreover, EII has been found
to be a paradigm, rather than a ready-to-go solution [27] [70] [52].

EII based on Linked Data is probably one of the most promising and tangible approaches:
Linked Data facilitates the querying of distributed data sources based on RDF and SPARQL.
More precisely, the data sources are wrapped into autonomous Semantic Web services that pro-
vide access to the underlying ontologies. A central SPARQL query can then be leveraged to
access, load, and query the distributed sources based on RDF and the http-protocol. The dis-
advantage of the Linked-Data approach is that there are no endeavors to integrate large sets of
(PM) data in a systematic, traceable way. In addition, the configuration of a set of autonomous
(Semantic) Web services takes effort [70] [72] [51].

SE Tool Integration Frameworks

Tool integration frameworks focus on the systematic cross-linkage of larger, heterogeneous sets
of (engineering) tools. They represent complex middleware systems, consisting of sophisticated
messaging, mediating, and event handling components.

The historical impact of SE is observable within nowadays’ tool integration solutions. Most
frameworks address a set of similar issues, such as the integration between RM, QM, and (soft-
ware) engineering tools, and the traceability of related artifacts. This work does not inves-
tigate the wide-ranging integration approaches from various industrial domains (cf. [57] [10]
[123] [125] on more details). Instead, the OpenEngSb is used as a representative state-of-the-art
framework for the SE domain [14] [16].

The OpenEngSb The high-level architecture of the OpenEngSb is explained based on a typi-
cal bus configuration in a SE project setting (cf. figure 2.6).

The service bus component (1) enables the dynamic deployment of any type of connectors,
and the systematic message passing between these. For instance, security provisions are consid-
ered. The EDB is an integral part of the service bus, which is leveraged to persist any kind of
user (access) data, tracing information, or common concepts that are exchanged between tools
(for instance data about software bugs). The EKB (2) is leveraged to store specific semantics
(i.e., metadata) about common concepts. The work-flow engine (3) enables the configuration of
complex work-flows to exchange data between different tools (based on Drools28). Finally, the
event engine (4) processes and schedules events that are thrown by any registered tool connector,
or component.

28Drools: http://www.jboss.org/drools

33

Figure 2.6: High-Level View on Tool Connections with the OpenEngSb [114]

To integrate a new tool (e.g., a bug tracker) a new connector must be implemented. Tool do-
mains enable the generic access to similar types of tools. Each connector belongs to a specific
tool domain (e.g., PM, SE, team communication). The tool domains abstract the implementation
details of specific tools, and enable the generic access to similar types of software (e.g., Mantis
and Bugzilla are both issue tracking programs). Work-flows are used to exchange data across
different tools and domains, based on triggered events.

The main strength of the OpenEngSb is the systematic integration, based on structured tool
domains and work-flows. The event-based approach ensures that all registered actions become
traceable. Traceability is a main advantage compared with ad-hoc integration solutions, and
particularly important for safety-critical applications [74].

Figure 2.7: Chaotic vs. Systematic Tool Integration (adapted from Kovair [2])

The resolution of a chaotic tool integration based on the application of a systematic integra-

34

tion approach, based on tool domains, is visualized in figure 2.7. The figure is adapted from
Kovair’s Omnibus integration platform, but complies with the approach of the OpenEngSb [2].

The current shortcomings of the OpenEngSb are that the platform requires significant instal-
lation and configuration efforts, and high training costs for newcomers. While the framework is
well-suited for system-critical applications and mature enterprise applications, the development
of innovative prototypes is not very efficient. Among the reasons are: (a) The implementa-
tion and execution of (Java) unit tests is very time-consuming. (b) Although the OpenEngSb
provides a systematic UI integration approach (based on Wicket), the UI must be implemented
manually. There is no possibility for managers to customize their view, e.g., via arranging items
in a dashboard. In addition, each single UI update requires a restart of the related OpenEngSb
component, which is ineffective and unfeasible for the development of JavaScript-intense ap-
plications. (c) The OpenEngSb has not been applied for PM so far. Hence the fitness of the
tool-domain concept, and the implementation of new PMS connectors, must be verified. (d) The
bus currently provides no permanent synchronization mechanism. I.e., there is no mediation ap-
proach for the ongoing, permanent data exchange between the local tools. (d) The OpenEngSb
does not implement Semantic Web standards, such as OWL or SPARQL. As a result, (external)
knowledge engineers cannot query (and analyze) stored data models, and instances.

PM Integration Tools In addition to the OpenEngSb, two (simple) industry tools for the inte-
gration of PM data are identified. The first one is Task Adapter29 and provides a set of synchro-
nization mechanisms (e.g., between Basecamp, Jira, MS Project, Redmine). A demo version of
the product is downloadable. The synchronization is based on very basic UI mappings between
fields of different PM artifacts. For instance, MS Project tasks (summary, description, start date)
can be transferred into Redmine or Jira. The tool provides no automation mechanisms and must
be triggered manually. The Connector30 provides data integration between Jira and MS Project.
The tool is similar to Task Adapter, but much more limited.

Data Warehousing Management Processes

Data warehousing (DWH) is a comprehensible, heavyweight solution for the integration and
analysis of large amounts of enterprise data. DWH is not appropriate for PM per se. However,
it addresses management issues that analogously appear in heterogeneous project environments.
As a consequence, some Data Warehouse (DWH) approaches help to inspire the development of
innovative PM integration solutions, including relevant management aspects.

Integration Management Process Projects with heterogeneous, autonomous partners, have
to deal with similar integration issues than DWH projects, especially in case of consortium
projects (cf. section 2.1). McFadden describes a typical high-level management process for a
DWH data integration [84]:

29Task Adapter: http://www.taskadapter.com/
30The Connector: http://www.the-connector.com

35

1. Requirements Analysis. Members of the executive teams must be brought together to de-
termine the main goals and requirements of the integration process. The step includes the
identification of the most important (distributed) data sources, data entities, and attributes.

2. Data Model Design. The data model of the central data store is designed. Entity Relation-
ship (ER) or UML class diagrams are suitable.

3. Data Mapping. The local data sources and the global scheme must be mapped.

4. Data Management. The revised collection, distribution and synchronization of data must
be established.

5. User Interface (Customization). A user (management)-centric UI must be provided to
guarantee the usefulness of the central data store, including predefined information visu-
alizations, ad-hoc query tools, and support for the analysis of aggregated data and trends.
Han et al. name some additional requirements for the UI: high flexibility, end-user auton-
omy, and the visualization of data on different levels of granularity (associated with drill
down and roll-up in DWH) [53].

ETL Process The Extraction Transformation Loading (ETL) process is the standard process
for the integration of data into warehouses. It comprises (a) the extraction of data from the
local sources, (b) the transformation of the data into the central format, including data cleansing
(resolve inconsistencies, deduplication, etc.), and (c) the loading into the central warehouse
(aggregation of data, etc.). Setting up a transformation process for a DWH is a time-consuming
task. However, there are also small-scale solutions available that enable ad-hoc integration.
RapidMiner31 provides extensive integration, transformation, and analysis features based on an
intuitive graphical UI.
ETL processes are not further considered for several reasons. First, most ETL processes provide
only “one-way” synchronization. I.e., the data flows from the local data sources into a central
warehouse, but not vice-versa. Hence, real-time synchronization across multiple tools is not
considered. Second, a ETL does not fit into the architecture of the OpenEngSb. Third, ETL is a
very process-oriented approach, while ontologies aim a more model-based perspective [52].

Model-Based PM Integration

Reference models are reusable and communicable items that help to accelerate the development
of IS. These models typically do not directly contribute to the resolution of a business problem.
In other words, they are not executable software applications. However, (reference) models ef-
fectively communicate innovative ideas and best practices [6] and therefore serve as the starting
point for the implementation of IT systems [6].

31RapidMiner: http://rapidminer.com/

36

RefModPM The reference information model (RefModPM) is a collection of UML diagrams
that simplify the implementation of new E-PMS, based on industrial PMS standards (devel-
oped by Ahlemann). The model (consecutively referred to as RefModPM) has been derived by
reverse-engineering 28 commercial PMIS products. It consists of of 18 UML class diagrams,
and 10 activity diagrams. Ahlemann applied a conceptual architecture called M-Model, to struc-
ture the processes and data models into different hierarchical levels and project phases. Hence,
although the RefModPM covers all PMBOK knowledge areas, it is not structured accordingly.
The RefModPM is a very vivid approach, because the UML diagrams are compact and can
be communicated very effectively. Practitioners can reuse the models and adapt them to their
needs, i.e., by adding or removing diagram details. However, as UML diagrams are difficult to
exchange in electronic format (cf. [48]), and must be manually remodeled and implemented [6].

PROMONT Abels et al. introduce PROMONT, which is a PM ontology that builds upon the
RefModPM. More precisely, the authors transform a subset of the RefModPM into OWL, to
improve the models’ reusablility, and to make them machine-interpretable [3]. The evaluation
of PROMONT is based on a virtual PM scenario, in which three project partners jointly de-
velop a UI-based software system. The authors demonstrate the information exchange across
the local systems, based on a common ontology. The structure of this ontology (PROMONT)
must be implemented by the partner’s PMS. Abels et al. demonstrate the exchange of events,
such as milestones, or the completion of a development activity, across project partners. In ad-
dition, they suggest machine-interpretable rules to automate the verification of constraints. For
instance, overlapping project phases can be detected via reasoning. PROMONT is discussed on
a conceptual level. The authors remark that a prototype must still be implemented [3].

Mohammadi and Khalili propose a Semantic Web service architecture that rests on PROMONT
and the Web Service Modeling Ontology (WSMO). However, the authors do not specifically
address aspects of PROMONT. Instead, they mainly refer to PMBOK for structuring the Web
services, and the flow of the business logic. The decision-making component is the core of the
framework. The component tries to dynamically discover solution scenarios, based on received
events, such as an information that the planned project costs have been exceeded. As the authors
state, the architecture is designed for open, unregulated, and often chaotic [PM] environments .
The authors do neither provide an evaluation of their framework, nor do they provide evidence
of the existence of a prototype implementation. In addition, their framework does not address
UI visualization aspects [85].

The normative approach of the RefModPM is helpful for the integration of new PMS, because
the application of reference models prevents practitioners from common pitfalls. However, the
normative approach forces organizations to adapt to the model, rather than vice versa. The Ref-
ModPM is a “best-of” collection of existing industry standards, and has been found suitable for
for technological-oriented audiences, and the development of new products. However, it is less
appropriate for project managers, because the used vocabulary is unconventional (e.g., “Initia-
tives” as the central concept for any type of action), and forces managers to adapt to another
standard.

37

In addition, the UML diagrams of RefModPM and the PROMONT OWL ontologies coex-
ist, which makes them difficult to maintain. The UML diagrams are compact and suitable for
project managers, while the ontologies are only appropriate for knowledge engineers. Another
issue, not answered by Abels et al., is the negotiation of a common data model between project
partners. As Ahlemann states, the RefModPM must be adapted before it is suitable for a spe-
cific system. If several partners simultaneously adapt the reference models to their needs, then
a conflicting mismatch results, i.e., the models are not adapted to synchronization. Finally, the
implementation of RefModPM (either based on UML or OWL) implies several (redundant) im-
plementation efforts, which could be improved via the re-utilization of the model artifacts (cf.
section 2.4).

PMBOK Ontology by Szwed Szwed modeled a comprehensive PMBOK-based ontology32,
including 340 total classes. The ontology is very concise. However, Szwed’s ontology focuses
on a process-oriented view of the PMBOK and does not include class attributes, respectively
data properties. The central ontology class is the pmbok.Process, which has inputs (hasInput),
outputs (hasOutput), as well as tools and techniques (hasToolsAndTechniques). The rest of the
ontology is divided into five main classes:

• ProjectFramework (contains the two main classes ProcessGroups and KnowlegeAreas)

• Processes (the 42 PMBOK processes)

• Artifacts (objects that are produced and consumed by PM processes)

• Tools & Techniques (e.g. SWOTAnalysis, EarnedValueManagement, QualityAudits)

• Roles (classify project members and teams according to their functions)

Szwed applies the PMBOK ontology for the mapping between a traditional PM methodol-
ogy (waterfall) and an agile methodology (SCRUM). He describes a formal approach for the
mapping of the SCRUM vocabulary to the vocabulary of the PMBOK ontology. For instance,
the companion piece of the PMBOK Project Initiation phase is the Sprint Planning phase of
SCRUM. Analogously, the PMBOK Closing phase relates to the concept of a Sprint review.
Szwed concludes that mappings between different methodological concepts are especially use-
ful for IT enterprises running projects in heterogeneous environments, because they help to
achieve a suitable level of alignment between different methodologies [117] [118].

The comparison of Szwed’s PMBOK ontology with PROMONT leads to three conclusions.
First, the utilization of PMBOK vocabulary without auxiliary concepts increases the readability
for project managers very much. Second, the design of an ontology depends very much on the
viewpoint of the modeler. Because Szwed focuses on the process aspects of the PMBOK and
does not include any attributes, the ontology cannot be reused for this work. Third, the PMBOK
ontology has been found available, while PROMONT is not.

32PMBOK Ontology: http://pszwed.ia.agh.edu.pl/ontologies/pmbok-ref/

38

OSLC Open Services for Lifecycle Collaboration (OSLC) is an open project with the aim to
develop an integration framework for software development and Application Life Cycle Man-
agement (ALM), respectively Product Lifecycle Management (PLM) tools. In contrast to PM,
ALM addresses the entire life-cycle of a specific application, and hence focuses on release plan-
ning, and QM aspects. OSLC is based on Linked Data (RDF, SPARQL). The current version
includes ontologies for the traditional SE domains RM, QM, and change management (in this
context: modifications in a product’s requirements). However, the current version of OSLC has
been found to be very incomplete. For instance, the QM and change management ontologies are
almost empty. The RM ontology is the most complete one. However, this ontology contains a
large number of technical attributes that are conceptually irrelevant (e.g., createdAt, lastUpdate-
dAt, createdBy, updatedBy). These attributes decrease the readability of the model [126].

Semantic PM Applications

Finally, PM research prototypes with UI provisions, to access/execute semantic features, are
presented. Applications that focus on the improvement of semantic search features (e.g., via
keywords and/or tagging) are not discussed.

Historically, there exists a set of knowledge-based approaches with a strong background in Arti-
ficial Intelligence (AI). These approaches typically focus on traditional aspects of project plan-
ning, and try to improve specific scenarios via (semi-)automated support. Muñoz-Avila et al.
provide a simple UI for the semi-automated decomposition of work packages in the aerospace
industry. The project manager is guided through the decision process, by answering a set of
yes/no questions. Based on previous decisions, or training data, a heuristic is applied that ap-
plies the most adequate case based on a similarity measure [90]. LaSSIE is a knowledge-based
system with the goal to improve the visibility of software artifacts in large systems. The system
provides a UI to give programmers direct access to a set of semantically-based views. A devel-
oper can enter a query based on natural language processing, to explore software dependencies,
and knowledge about specific software components (e.g., a software library) [31].

More current approaches focus on the querying and derivation of explicit PM knowledge based
on OWL and related rule languages.

Dong et al. utilize Protégé and SPARQL to design queries for the retrieval of PM team data.
The main result of their work are four SPARQL queries, which are applied for the retrieval
of very simple (real-world) PM data (project-related employees, hierarchical relations, and as-
signed criteria) [35].

Ruiz-Bertol et al. design a simple PM ontology for the detection and querying of management is-
sues (e.g., the absence of a staff member). They utilize Semantic Web Rule Language (SWRL)33

to define (a) two query rules, and (b) three reasoning rules. SWRL rules consist of a header,
and a body, and enable the inference of explicit knowledge from existing OWL ontologies.

33SWRL: http://www.w3.org/Submission/SWRL

39

Query rules consist of a “pseudo” rule-body. I.e., the rule-body does not add new knowl-
edge to the ontology, but specifies a user view for the temporary displaying of records (e.g.,
org:ProjectTeamMember(?p) => sqwrl:select(?p)). The work is based on Pro-
tégé and the Jess reasoning engine [102].

Settas and Stamelos provide a conceptual framework for the design of a PM antipattern ontol-
ogy based on Bayesian Networks (BNs). Antipatterns describe a commonly occurring solution to
a problem that generates decidedly negative consequences [25]. Gold Plating is an example of
a frequently occurring antipattern. It addresses the adding of (irrelevant) feature specifications
(either by a committee, or by developers) based on proprietary interests. For instance, devel-
opers are often playful and add irrelevant features, or committees demand unrealistic require-
ments [25]. BNs are probabilistic networks that help to model relationships between different
types of antipatterns. They are suitable to depict PM antipatterns and can be used by project
managers to illustrate the effects of of uncertainty on a PM antipattern [104].

Settas and Stamelos express antipatterns as OWL ontology rules. Project managers can
query the knowledge base via a graphical UI, to retrieve information about specific (anti-)patterns.
A utility value is assigned to each query to assess the usefulness of the result, and the collection
of feedback is facilitated. For each antipattern, at least one BN is associated with. The BN
expresses the relationships of different antipatterns, based on probabilities. These probabilities
are either collected manually, or obtained by using text classification programs [104].

Dippelreiter utilizes DotProject34, which is a Web-based OS PM software product , and en-
riches it with semantic features, to improve project management. Her work is based on three
main user scenarios, which she derived from interviews with Austrian project managers. In the
first scenario, a project member asks the project manager to take vacations at short notice. Dip-
pelreiter argues that based on the project (resource) plan and assigned work packages, semantic
technologies can be leveraged to determine whether the absence of a team member critically
delays the project. The second scenario addresses the linkage of lessons from past projects,
during the creation of a new project. The project manager can search for similar tasks, artifacts
(software modules, documentation), or lessons so that they become reusable. The third scenario
addresses the composition of the “optimal project team”, based on the available team members
and their competencies. Dippelreiter designed a PM ontology, and implemented several Dot-
Project plugins as a prerequisite to evaluate the scenarios. The evaluation consists of a set of
resulting SPARQL queries, and a prototype evalution with six test persons. Dippelreiter con-
cludes that the test persons found the project very useful, but that the scenarios only addresses a
very small area of PM, and that the approach lacks of a real-world scenario.

The first scenario is evaluated very detailed, but the other, more meaningful scenarios (espe-
cially scenario 2), are discussed very cursorily. The approach of enhancing existing PMS with
semantic technologies is an interesting, efficient approach. However, the DotProject integration
is only suitable for basic research and of little use for real-word projects. Moreover, the project is
of no reuse for this thesis, because it does not address integration issues, and is based on simple
PHP plugins [32] [33].

34DotProject: http://www.dotproject.net

40

Related work reveals a lack of comprehensive, reusable semantic PM solutions for several rea-
sons. First, there is definitely a lack of suitable UIs that enable the communication and valida-
tion of research results to/by practitioners. Most approaches rest on Protégé, OWL, and utilize
SPARQL for the evaluation. Second, OWL ontologies (e.g., represented in Protégé) are not ap-
propriate for the communication of research results. Most researchers invest additional effort
to translate their ontologies into UML class diagrams. UML diagrams are simple, widely ac-
cepted, and compact. Third, Semantic Web research focuses on very small, artificially-designed
scenarios without real-world data. As a consequence, most research is centered around PM team
data, which is (a) easily accessible, constructible, and communicable, and (b) well-supported by
the graph-structure of ontologies. An efficient framework for data integration can significantly
contribute to the design and evaluation of realistic, more comprehensive research scenarios.

Research Item / PM Inte-
gration Approach

Description

Traditional PM Approach:
No Integration

High manual synchronization and coordination efforts. Low reuse of
organizational knowledge. High user-freedom (?)

All-In-One PM Software
(Commercial Suites)

Tight integration and sophisticated UIs. High installation, maintenance
and training costs with lock-in hazards. Long roll-out durations. Lim-
ited integration capabilities for third-party tools. Teams need to adapt
to a single solution.

Dashboard-Based Ad-Hoc
Integration (REST)

Quick and dirty solution. Good visualization results. Low scalability.
No synchronization mechanisms.

SE Tool Integration Frame-
works (OpenEngSb)

Systematic/scalable integration in the enterprise context. Not optimized
for PM. OpenEngSb: no support OWL, SPARQL). No PM connectors
available. Limited synchronization mechanism. Not appropriate for
lean development. Limited UI integration.

Data Warehousing Manage-
ment Processes

Mature and Well-Documented. Address data integration and visualiza-
tion of aggregated, manager-centric data. Focus is on large-scale inte-
gration projects.

Model-Based PM Integra-
tion (RefModPM, PM On-
tologies)

Efficient reuse and communication, but not executable per se. Large
parts of the integration must be performed manually. RefModPM: Com-
municable to managers (UML diagrams). normative; not machine-
interpretable; addresses the roll-out of new E-PMS. Ontology Ap-
proaches: machine-interpretable, but not communicable to the PM.

Semantic PM Approaches
(SemProM)

Few, immature, solutions. Machine-interpretable. Optimized for spe-
cific scenarios. Lack of integration and real-world data.

Table 2.2: Existing (Project Management) Integration Approaches

Table 2.2 summarizes the related work of section 2.3. The central statement is that powerful
integration approaches are existing, but scattered across various fields of applications. Most re-
lated work focuses on large-scale enterprise integration, while lean, Web-based solutions lack of
systematic data integration.Model-Based approaches are very efficient for (human) communica-
tion. However, the integration of models into an executable IT environment requires significant
programming efforts.

41

2.4 Model-Driven Software Engineering with Semantic
Technologies

The previous chapter motivated the need for technologies that leverage the efficient re-utilization
of existing (data) models. This chapter introduces Model-Driven Software Engineering (MDSE),
and enumerates the issues and solutions regarding the efficient application of semantic technolo-
gies for MDSE.

2.4.1 Overview

Models are commonly regarded as efficient and easy-to-communicate design artifacts in SE
projects. However, data models, such as UML class diagrams, are rarely leveraged for the
automated derivation of software artifacts. One major reason is the poor data exchange stan-
dard of UML (cf. [47]). OWL ontologies provide a precisely specified format, are machine-
interpretable, and make several traditional implementation tasks, such as the explicit creation
of a database scheme, obsolete. However, the application of ontologies introduces a set of new
problems. First, the design of ontologies requires profound expert know-how, which practition-
ers do not have. Second, the specific storage technologies and their APIs (e.g. Jena, OWLAPI)
are often incompatible, and difficult to use.

2.4.2 MDSE and Tool-Support

MDSE is a methodology for applying the advantages of modeling to software engineering [22].
Models are purposeful abstractions of reality, enabling the cost-efficient sharing of mental rep-
resentations. In SE, models are widely regarded because they efficiently communicate ideas,
drafts, architectural decisions, processes, data schemes, or UI sketches.

Figure 2.8: A typical MDSE-based software development process (adopted from [22])

In MDSE, everything is considered as a model, i.e., diagrams, specifications, but also soft-
ware artifacts. Models become reusable by (a) transforming certain aspects into other model
representations (for instance UML to OWL), or (b) by deriving functional artifacts (code, tests,
documentation). The first type of transformation is called (Model-to-Model (M2M), while the
later is referred to as Model-to-Text (M2T). A usual MDSE-based development process is illus-
trated in figure 2.8.

42

EMF The Eclipse Modeling Framework (EMF)35 consists of a set of MDSE tools and plugins.
It is the predominant OS modeling framework. ECore is EMF’s central data format for main-
taining models and resembles a simplified version of UML class diagrams. Based on ECore,
Eclipse provides a set of tools for (a) the specification of domain specific syntax and languages
(Xtext36), (b) the transformation between models (e.g., ATL37), and (c) code generation (e.g.,
xtend238). Based on the Model-Driven Architecture (MDA), a conceptual Object Management
Group (OMG) framework for applying MDSE in industry, the EMF also provides basic features
for OCL39, which is a language for verifying constraints based on a meta-model, during run-
time. The EMF is a very powerful, but restrictive framework: (1) The various tools (ECore,
ATL) work hand in hand, as long as the developer is working inside Eclipse. However, the
integration of external tools (e.g., vendor-specific UML editors) is error-prone. (2) The EMF
is a heavyweight solution, unsuitable for sharing results with managers, interactively. (3) The
EMF and the OWL have several areas of tension, which complicate the integration of OWL into
EMF (not discussed here; cf. [47] and [129] for details). As a result, only the code generation
approach (xtend), which can also be executed outside the EMF, is considered for this work [22].

umlTUowl UML class diagrams, compared to the ontology visualization of state-of-the-art
editors (e.g., Protégé-based, TopBraid Composer40, represent models more compact. In addi-
tion, practitioners are familiar with the notation of UML class diagrams. umlTUowl facilitates
the creation of OWL ontologies based on the automated transformation of UML class diagrams.
Practitioners use their preferred vendor-specific UML editors to model class diagrams, and can
semi-automatically derive an OWL ontology at the end of the modeling session. umlTUowl
is a simple, compact tool, which has been developed by Grünwald and Moser in 2011 uml-
TUowl [47]. Since its release, the tool has been downloaded more than 600 times, and received
more than 40 positive responses by researchers41. Several of these responses included requests
for extensions, because umlTUowl currently supports only three UML editors (MS Visio, Visual
Paradigm, ArgoUML), and needs to be started from command line umlTUowl [47]. The change
requests mainly asked for the integration of additional UML editors, or the provision of a cen-
tral, UML-like ontology editor, for the creation of OWL ontologies, but also other artifacts (e.g.,
code).

2.4.3 Code Generation

Leveraging MDSE for the generation of software artifacts is beneficial for both, development
and maintenance activities. First, the design artifacts remain synchronized with the code ar-
tifacts, and hence serve as a high-level documentation of the code. Second, the data access
implementation effort can be cut significantly, because beans, DAOs, unit tests, and even simple

35Eclipse EMF: http://www.eclipse.org/modeling/emf
36Xtext: http://www.eclipse.org/Xtext
37Eclipse ATL: https://www.eclipse.org/atl
38Xtend: https://www.eclipse.org/xtend
39OCL: http://www.eclipse.org/modeling/mdt/?project=ocl
40TopBraid Composer:http://www.topquadrant.com/composer
41umlTUowl: http://sourceforge.net/projects/uml2owl/

43

UI elements, can be generated on-the-fly. According to Albert et al., the Create / Read / Update
/ Delete (CRUD) operation accounts for staggering 80% of the overall software functionality in
typically data-intensive applications [8] [22, p.27].

The application of a semantic data store requires significant expert know-how to (a) select the
appropriate storage technology, and (b) to implement the programmatic access to store and re-
trieve data instances, properly. For instance, the available semantic APIs (e.g., OWLAPI, Jena)
address the persistence, modification, querying, and reasoning of semantic data very heteroge-
neously. A powerful code generator can reduce the costs for the implementation of a semantic
data store significantly. First, a large part of the data access code is generated automatically.
Second, the specific low-level APIs are abstracted, ensuring unified data access. Third, the risk
of selecting the wrong storage technology in initial project phases, is reduced. Finally, errors in
the generated code feedback and increase the stability of the model [46].

Semantic Code Generators The range of existing semantic code generators is very limited.

Jastor Jastor42 is a OS generator for Java and Jena. It is based on a paper of Kalyanpur et
al. [73]. Jastor generates interfaces, implementations, factories, and listeners, based on an on-
tologies’ properties and class hierarchies. The listeners are used to verify ontological restrictions,
such as min/max cardinalities of data properties, or functional object properties. For instance,
if a property is defined as functional, then there must be not two elements that link to the same
entity (e.g., the same person cannot have two distinct social security numbers). Jastor is not
maintained any more, and the sources are difficult to adapt.

RDFReactor RDFReactor is a code generator for Jena and Sesame43, which already has been
applied for several semantic-based research projects (e.g., SemWiki, SemVersion). The main
features of the RDFReactor are the creation of Java classes, Data Access Object (DAO)s, and
their access via http (jREST). Two main components of the RDFReactor are RDF2Go and
a Velocity44-based template engine. RDF2Go is an abstraction layer that provides unified,
implementation-independent access to the underlying semantic data stores. The template en-
gine enables the formatting of the Java output. The RDFReactor does not support the OWLAPI.
In addition, OWL is only supported partially and experimentally [122] [121].

Semantic Web Builder The Semantic Web Builder (SWB) facilitates the generation of a data
access layer, based on predefined ontologies. By populating the ontology scaffold with instances
and transformation rules, structural and behavioral elements can be injected into the generated
code. Compared to Jastor and the RDFReactor, the SWB enables the management of behavior,
and the partial creation of graphical UI elements. This however trades off in additional configu-
ration effort (the code is not generated from the ontology structure itself, but from the instances
of the ontology). In addition, the SWB is not available for further evaluation [112] [46].

42Jastor: http://jastor.sourceforge.net
43Sesame: http://www.openrdf.org
44Velocity: https://velocity.apache.org

44

2.4.4 Ontological Engineering Methodologies

The application of semantic technologies for MDSE facilitates the reuse of proved design method-
ologies. Ontological Engineering Methodologies (OEM) enable the efficient the design of so-
phisticated data models and ontologies, in knowledge-intense projects. The available OEM pro-
pose design processes that depend on the problem context, the application area of the ontology,
and the availability of reusable ontologies. They address different scopes, and levels of granular-
ity. Some popular OEMs are the METHONTOLOGY (begins with the creation of a glossary, and
a taxonomy; ends with the population of the ontology), the KACTUS methodology (start with
identifying motivating scenarios; ends with the specification of completeness theorems), and the
Ontology 101 [37] [91].

Ontology 101 The Ontology 101 is chosen as a representative of OEM, which is analogously
applicable for the creation of UML-based ontologies. The Ontology 101 consists of seven well-
documented steps, which Noy and Guiness exemplify with the support of Protégé [91]:

1. Determine the domain and scope of the ontology.

2. Consider reusing existing ontologies.

3. Enumerate important terms in the ontology.

4. Define the classes and the class hierarchy.

5. Define the properties of classes—slots (define and assign data and object properties).

6. Define the facets of the slots (define the cardinalities, data types for data properties /
attributes, and the domains/ranges for object properties / associations)

7. Create instances (populate the ontology).

Applied to UML-based data modelling, in step (4), the UML classes and their generalizations
would be defined. In step (5), the most important attributes and associations are added to the
classes. Finally, in step (6) the data types of the attributes, and the cardinalities of the associa-
tions, are refined. Step (7) is obsolete.

2.5 Concluding Remarks

Both, PM as well as data integration involve complex systems, including technical, social, and
organizational factors. Related work about PM software shows that sophisticated all-in-one PM
software products exist, but the selection of an appropriate solution is linked with high costs.
Data integration solutions, such as DWH or EII solutions enable the integration of multiple PM
software instances, but focus on the enterprise-context, and have not been considered for tem-
porary project organizations (or consortia) so far. One key to more efficient PM data integration
is the consideration of knowledge, which is implicitly available in distributed data sources and
PMS, and also addressed by the PMBOK. MDSE can increase the visibility of such knowledge,
and helps to improve the efficiency of software engineering processes, via reusable models.

45

CHAPTER 3
Research Issues

Based on related work, the main research issues are identified, and refined. The central research
question is: How can project managers be aided in integrating, synchronizing, and monitoring
project data effectively and efficiently, especially if the project organization is temporary and
heterogeneous?
The discussions performed with PM experts and researchers (workshops, etc.) show that project-
related data is often available, but is not reused efficiently. The main reasons are (a) the lack of an
efficient integration process for (temporary) project organizations, (b) the heterogeneity and the
distributed nature of the available data, and (c) the believe that manual data integration activities
are pointless, because they are costly, and error-prone one-time activities (missing automation
alternatives). The hypothesis is that the provision of (user interface supported) software compo-
nents for the configuration, semi-automated integration, and visualization of project (manage-
ment) data, leads (a) to a higher degree of integrated project knowledge, (b) makes monitoring
and reporting activities more efficient, and (c) fosters autonomous organizational units to report
more efficiently. In this respect, the potential of Semantic Web technologies and model-driven
software engineering, are researched.

RI-1 Efficient Integration of PM Software and (Abstract) Data Concepts in Temporary
IT Project (Management View) A framework for the efficient identification of PM software
and knowledge sources, the negotiation and agreement on (abstract) common data concepts, and
the technical integration of those across project (sub-)organizations, needs to be examined and
elaborated. The integration of PM software and data, based on (knowledge) models, must be
considered at various organizational levels.

RI-1.1 Negotiation and Integration of PM Data at the Management Level The requirements
for data integration at the top-management level are mainly to explore and discover po-
tential integration scenarios and solutions, to develop and negotiate a common set of PM-
related models, and to identify costly manual integration tasks with optimization potential.

47

A related issue that has been stressed by practitioners during the conducted expert discus-
sions, is a lack of the project (sub-)organizations’ commitment and end-user acceptance,
for the introduction of a new PMS or data integration solution.

RI-1.2 PM Data Integration / Mapping Between Local PM Systems To reduce the manual
synchronization activities for both, project managers and teams, the automated data ex-
change between local PMSs, tools, and data needs to be examined. The main problems
that must be addressed are that (a) data needs to be integrated and frequently synchro-
nized between tools of the same domain, (b) data between the local systems must be
exchanged/mapped unambiguously, and semantically correct (mapping between different
concepts, attributes, data types, etc.) (c) the level of the data integration completeness
should be expandable, so that project teams can retain their local tools without loosing
important features, (d) the project manager should be in control of the synchronization
process, and (e) configurable work-flows should enable the exchange of PM-data across
different tool domains for specific projects. In addition, the manual configuration effort
should be kept minimal.

RI-1.3 An Integrated PM View to Improve Monitoring and Reporting Activities This issue
addresses the reduction of manual synchronization and reporting activities of the PM,
based on the development of a prototype (ITPM dashboard). The project manager should
be in possession to browse across distributed data in a central view, and to navigate to
the linked local representations and tools, on demand. In addition, the manager needs to
be capable (in collaboration with a knowledge engineer) to derive aggregated knowledge
from distributed PM data, such as KPIs, graphs, or notification tables. The feasibility of
aggregated queries across multiple domains, the dynamic configuration of PM visualiza-
tions, and the identification of an appropriate (semantic) integration model needs to be
conducted. “Appropriate” in this respect means (a) easy to configure, (b) traceable, (c)
flexible, and (d) enabling near real-time synchronization.

RI-2 Efficient Utilization of Data Models for PM Data Integration (Implementation View)
This issue addresses the efficient reuse and communication of models (a) across different orga-
nizational levels and projects, and (b) the derivation of software artifacts based on these models.

RI-2.1 Efficient Technical Implementation of PM Data Integration Scenarios Based on the
requirements of the top-management, a development team needs to implement the code for
the integration of the identified PM software. This research issue focuses on the efficient
reuse of negotiated data models, (a) across various organizational levels, and (b) for the
derivation of additional code artifacts (the potential and commonalities of UML class
diagrams, umlTUowl, OWL, and MDSE are investigated in this respect). For instance,
at the CDL-Flex, the common models and the description of related tools, are currently
passed textually, or via UML class diagrams to the developers, who manually need to
transform them into OWL ontologies and code.

RI-2.2 UML Class Diagrams for Efficient Communication and Integration The efficient re-
utilization of UML class diagrams and Semantic Web Technologies (OWL, SPARQL),

48

for the communication of PM models and knowledge, and the automated derivation of
software artifacts, are investigated. UML class diagrams are widely accepted by tech-
nicians and managers in IT projects, compactly communicable, but lack of re-usability
(no vendor-independent exchange language). In contrOWL ontologies are machine - in-
terpretable, but require expertise in the field of knowledge engineering, and have only
limited editor support. umlTUowl tries to overcome some of these gaps, but (a) is tied to a
small set of vendor-specific editors, and (b) does not facilitate the collaborative develop-
ment and the further reuse of models.

RI-2.3 Maintaining Shareable and Adaptable ITPM Reference Models Based on the exist-
ing PM frameworks and reference models, a framework for designing, maintaining, or-
ganizing, and sharing semantically enriched PM models, (a) across organizations, and
(b) across the ITPM community, needs to be developed. This issue picks up the prac-
titioners’ criticism (mainly feedback from Austrian project managers) that best-practice
frameworks, such as the PMBOK, or the existing reference models (e.g., RefModPM,
PROMONT), force an organization to adapt to a normative, possibly unsuitable approach,
rather than vice versa. In addition, the existing reference models have been found to be
(a) not available in digital, machine - interpretable, and human-friendly format, and (b)
depend very much on the modeler’s viewpoint, and the application purpose.

49

CHAPTER 4
Research Approach

The Information Systems Research Framework (ISRF) is applied for the scientific design and
evaluation of a Systematic Integration Framework for Project Management (SIFPM). The main
design artifact is the central ITPM Dashboard, which facilitates the efficient integration, visual-
ization, and synchronization of organization-specific PM systems, semantic models, and data.

Hevner’s ISRF is design-science oriented, and especially useful for research problems which
are characterized by unstable requirements, complex interactions among sub-components, and a
critical dependence upon human cognitive and social abilities [61, p.80f].

Section 4.1 outlines the IS research framework (ISRF). Section 4.1.1 introduces the Three Cycle
View of Design Science Research (3CV) as an extension of the ISRF. Section 4.1.2 summarizes
the seven guidelines as the foundation of the ISRF. In section 4.2, the 3CV, and the design-
science research guidelines are applied to describe the thesis’ research method [60].

4.1 The Design-Science based IS Research Framework

Unlike in natural science, in information science, the outcome of a conducted research project,
is initially often unclear; requirements and constraints are unstable, and the environmental prob-
lem context is ill-defined. Complex interactions among sub-components of the problem and its
solution, and a critical dependency upon human and IT, restrict the application of behavioral
research methods. In design science, the built (designed) artifacts take the center. A research
outcome in design-science is profound, if the developed artifacts are innovative, applicable, and
relevant. In this way, the researcher is prevented from performing excellent, but impractical aca-
demic work.

Figure 4.1 visualizes the concept of the ISRF. The framework takes a middle ground between de-
sign science (left hand side), and behavioral science (right hand side). Behavioral-science seeks

51

to develop and justify theories that explain or predict organizational and human phenomena, and
is mainly descriptive (theories and proofs) [61]. In contrast, design-science is fundamentally a
problem-solving paradigm [61]. Its focus is on the discovery, and the utility of new artifacts.

Figure 4.1: The Information Systems Research Framework (ISRF) [61].

Figure 4.1 visualizes the impact of the specific business environment for the relevance of
developed artifacts (design science related). Although the ISRF is design-driven, researchers
must ensure the rigor application of scientific foundations and methods. The center of figure
4.1 illustrates the relevance of the scientific knowledge base, for (a) the design, and (b) the
evaluation of new artifacts.

4.1.1 The Three Cycle View of Design Science Research

Based on an extension of the ISRF framework, Hevner describes three research cycles, which
must be simultaneously and continuously executed, to ensure the relevance of design-science
based research [60] (called the 3CV).

Throughout the design cycle new artifacts are built and designed. The design process of an
innovative artifact requires the identification of business requirements, and the periodical eval-
uation of its utility in the problem domain (relevance cycle). Nevertheless, the development of
the artifact must obey the theoretical foundations, and best practices in order to assess its sci-
entific validity. The feeding-in of the scientific grounding from the common knowledge base
is represented by the rigor cycle. Interactions take place between all three cycles; for instance,
the design of new parts of the artifact requires additional acquisition of knowledge. Likewise,
design decisions may occur, which require feedback from the business environment, such as

52

additional information about a technical system, or empirical data regarding the organization.
Both, the environment and the knowledge base, are implicated into the evaluation of the artefact
throughout the design cycle. The results of the design cycle will feed back into the two other
cycles; in form of emerged knowledge (rigor cycle), or superior technologies and/or business
recommendations (relevance cycle), which again, trigger the synthesis of new technologies in
future projects.

4.1.2 The Seven Guidelines for Design Science in IS Research

The seven Guidelines for Design Science in IS Research represent the foundation for the applica-
tion of the ISRF, and are summarized in table 4.1. The guidelines support the rigor application of
all elements of the 3CV, and ensure the practical and scientific relevance of the research results.

Guideline Description
Guideline 1: Design as an Artifact Design-science research must produce a viable artifact in

the form of a construct, a model, a method, or an instan-
tiation.

Guideline 2: Problem Relevance The objective of design-science research is to develop
technology-based solutions to important and relevant
business problems.

Guideline 3: Design Evaluation The utility, quality, and efficacy of a design artifact must
be rigorously demonstrated via well-executed evaluation
methods.

Guideline 4: Research Contributions Effective design-science research must provide clear and
verifiable contributions in the areas of the design artifact,
design foundations, and/or design methodologies.

Guideline 5: Research Rigor Design-science research relies upon the application of
rigorous methods in both the construction and evaluation
of the design artifact.

Guideline 6: Design as a Search Process The search for an effective artifact requires utilizing
available means to reach desired ends while satisfying
laws in the problem environment.

Guideline 7 : Communication of Research Design-science research must be presented effectively
both to technology-oriented as well as management-
oriented audiences.

Table 4.1: Design-Science Research Guidelines of the ISRF [61].

4.2 Application of the IS Research Framework Guidelines

Consequently, the seven design-science guidelines are applied to elaborate the research method
for the thesis. Figure 4.2 visualizes the application of the seven guidelines on top of the 3CV,
and provides an overview of the design search process (design artifacts, environmental factors
and scientific knowledge are stated exemplary).

53

Figure 4.2: Application of the Three Cycle View (3CV) for the thesis (exemplary; adopted
from [60]).

Subsequently, the seven design-science guidelines are applied for the design of the research
method. The conduction of the research, including the prototype implementation, emerged in
new, partly unanticipated, research results and feedback. Hence, the research method needed to
be successively re-evaluated and refined. As a consequence, the application of the guidelines is
discussed in retrospective.

Problem Relevance The high industrial relevance of IT projects, and the trend towards IT
project cultures due to innovativeness and competitiveness, are motivated in the chapters 1 and
2. The low performance of IT projects, and integration challenges in consortia, such as power
struggles, commitment, and ambiguous organizational cultures, were discussed (chapter 2.1).
In addition, the disadvantages of enterprise-wide PM software, and all-in-one suites have made
clear (high costs, lock-in, PMS / tool silos, incompleteness of integration features; restricted in-
tegration autonomy for project managers). The complexity of data integration is another reason
to investigate PM integration scenarios (semantic mappings, workflows, etc.), at various hierar-
chical levels.

Semantic integration solutions, respectively Linked Data, are increasingly gaining enterprises’
attention. However, there is still a relatively little body of acquired knowledge regarding the
efficient application of those technologies in industrial projects. In addition, research about se-
mantic technologies or knowledge-based research results, when applied to PM, often address a
very limited, artificially confined problem space (cf. chapter 2.3).

Another relevant issue is the modeling of semantic structures. More precisely, the semantic
community demands efficient, user-friendly ontology editors (defined as a research challenge by

54

Bizer, Heath, and Berners-Lee [17]). For instance, there exists is no appropriate, community-
based UI editor for the Jena API.

Design as a Search Process Initially, the main design requirements were collected, and a
rough research plan, for the design of a semantic ITPM dashboard was created. The knowledge
transfer took place in form of meetings with developers, researchers, and CDL-Flex-related in-
dustry partners (PM experts). Considerable effort was dedicated to study and understand the
OpenEngSb development environment, and to acquire knowledge about the fields of research.

Several UI sketches for the implementation of a Web-Based ITPM Dashboard, and a UML-
based ITPM reference model were created. The results were communicated to PM experts (e.g.,
via a specifically created Website1), and discussed in workshops.

The outcomes were presented at the Software Quality Days 2013 (SWQD2013): In a workshop-
like setting, project managers provided information about their organizations’ PM systems, and
described their organizational integration needs and shortcomings. The main outcomes were
two industrial case-studies, including detailed communication plans, and a list of applied PMS
and tools.

Based on the case-studies, the prototype was designed. The main steps included (a) literature
researches, (b) the design of an architecture on top of the OpenEngSb, (c) the setup of a test
environment, and (d) the integration of existing MDSE, and semantic technologies (OWLAPI,
Jena, umlTUowl). As no test data were available for the industrial case-studies, the studies were
(a) merged into a single, essential UC, and (b) transferred into the CDL-Flex environment, in
which the usefulness of the approach was assessable efficiently (based on existing data).

Considerable effort was investigated into the implementation of a reusable prototype, includ-
ing the integration of the OpenEngSb framework, and the design of a configurable UI. The
quality of the prototype was successively improved, by integration research results and expert
feedback, e.g., after each live demonstration of the prototype.

The search process revealed demand in several additional meta-artifacts, e.g., based on expert
requests, or gaps in related work, which were originally not considered. For instance, a con-
sortium negotiation and integration process, and a UML-based editor, for the efficient modeling
and reuse of UML-based data models, emerged.

Design as an Artifact The central viable artifact is the ITPM Dashboard prototype, which in-
tegrates all developed software and user interface modules. Other important design outcomes are
(a) a reusable IT data integration and negotiation process for IT project consortia, (b) a technical
solution for the modeling and sharing of common project knowledge across the ITPM commu-
nity (Semantic Model Editor), (c) an integrated and extensible, model-based code-generation ap-
proach for semantic technologies (OWLAPI, Jena), and (d) several architectural extensions and

1ITPM Project Website: http://www.it-project-management.net

55

contributions to the OpenEngSb, and the umlTUowl open source projects. The application of the
prototype for the use-case leads to further results: a set of work-flows and semantic data map-
pings that describe the automation of manual synchronization scenarios; a set of cross-domain
SPARQL queries; ITPM demo data, and reusable ITPM connectors (e.g., for the integration of
requirements, issues, quality metrics, and other PM data), are the most important representa-
tives. To indicate the comprehensiveness of the design artifacts, the entire prototype comprises
~350.000 Java LOCs, and more than 3000 unit and integration tests.

Research Contributions The main research contributions are: (a) A generic negotiation pro-
cess for the integration of PM data in project consortia (Consortium Negotiation and Integration
Process (CNIP)). (b) The provision of an ITPM dashboard for more efficient configuration and
monitoring of distributed project data. (c) A MDSE code generation approach for the access
and retrieval of semantic data. The main contribution in this regard are, the Semantic Model
Editor for knowledge engineers, and the mapping between UML class diagram elements, OWL
ontologies, UI elements, and Java code. (d) A proposal for the structuring, organization, and
persisting of reusable ITPM models.

In addition, the UC-based results include semantic PM data mappings between PMS and PMBOK
knowledge areas (common concepts), work-flow implementations, a set of SPARQL queries,
and visualizations.

Research Rigor The construction of the main design artifacts relied upon a rigor application
of scientific knowledge, and expert power. Scientific knowledge includes related work in the ar-
eas of PM, data integration, Semantic Web, and MDSE (cf. chapter 2). Expert power addresses
the application of industry knowledge, derived from (a) a number of expert discussions (e.g., 32
face-to-face discussions with PM and QM experts), (b) active networking (e.g., linkedin.com,
Xing, Webinars), (c) the frequent communication of intermediate results, and expert feedback
(e.g., initiated PM website; 20 responses regarding the UI sketches, and feature requests), (e)
PM case studies and survey results, and (f) PM software product evaluations.

The foundation for the consortium negotiation and integration process (CNIP) are Boehm’s Win-
Win approach, DWH management processes, and ontology engineering methods.

The interface of the ITPM dashboard was iteratively designed, after feedback regarding UI
sketches, ITPM reference models, the UC, and interactive demo presentations, was received.
The software architecture is designed and evaluated based on attribute-driven design [13, p.171
f.], and on other common architectural design practices, such as architectural views (module
view, component view, deployment view), and tactics [13] [28] [24]. The relevant quality at-
tributes are testability, maintainability, usability and stability, and were iteratively evaluated.

The mapping between model elements (UML class diagrams, OWL ontologies, Java code, UI
elements) builds upon existing semantic approaches (umlTUowl, Semantic Web Builder, RDF-
Reactor, RefModPM). In addition, the research incorporated feedback from specialized knowl-

56

edge researchers at the CDL-Flex, and insights from active participation in various semantic
Web platforms and mailing lists (e.g. Apache Jena mailing list).

The design of a sharable ITPM model repository is based on the PMBOK knowledge areas,
the consideration of data quality attributes (Information Quality Evaluation Framework [99],
ISO 25010 standard [12], and ISO 25012 standard [12]), and existing PM modeling approaches
(e.g, RefModPM, PROMONT, Szwed’s PMBOK ontologies [117] [118], OSLC). Criticism re-
garding the PMBOK (e.g., [40]) flew into the construction of the ITPM Dashboard, and the
design of the semantic ITPM model repository.

The evaluation of the solution approach is based on the configuration of a UC, and the derivation
of (SPARQL) queries, including visualization results. This evaluation method has been found to
be commonly applied in semantic research (cf. related work about the construction of semantic
PM applications in chapter 2.3.3). The application of a cost-benefit analysis for the tracing of
requirements is successfully demonstrated by Heindl and Biffl [56]. Gable describes the utiliza-
tion of (cost-benefit) analysis for pilot studies, which serve as an efficient and controlled starting
point for the successful evaluation of prototypes in larger contexts (multiple case studies) [39].

Design Evaluation The evaluation of the design artifacts takes place at two levels. At the
management level, the utility of the approach is evaluated. For that reason, the ITPM dashboard
is configured for the presented use-case, and a cost-benefit analysis is performed. The analysis
aims to demonstrate that the application of the integrated ITPM dashboard (a) enables the syn-
chronization of data between local PMS, (b) reduces the manual efforts of the PM significantly,
and (c) makes monitoring and reporting activities more accurate and insightful. The main steps
of the evaluation are: (a) the identification of a set of use-case scenarios. (b) the implementation
of these scenarios based on the ITPM dashboard approach (semantic mappings based on UML
class diagrams, implementation of work-flows and SPARQL queries), (c) the comparison of the
configuration costs against the saved manual synchronization efforts.

At the technical level, the model-based approach for the development of PM software connec-
tors, is compared against the current OpenEngSb integration approach. In detail, the process
steps and the time efforts from the perspective of a developer are evaluated. For that purpose,
historical data from an industrial project is applied.

Communication of Research The communication in the form of insightful research results,
and applicable technological artifacts, was an important concern throughout the execution of the
research project. Intermediate research results were communicated at the SWQD2013 (hand-
outs, poster), and in form of conference paper submissions ([45] [46]). A website2 has been cre-
ated to stimulate community building, and to present the project progress. The site includes the
case study descriptions, UI sketches, and the possibility to leave feedback. The final prototype is

2ITPM Project Website: http://www.it-project-management.net/

57

functional, and freely available on the Web3. Additional effort has been spent to ensure that the
prototype is easy to set-up so that project managers or knowledge engineers are actually willing
to test it. All source code and documentation has been handed over to the CDL-Flex develop-
ment team and flows into industrial projects, research, and open source projects (OpenEngSb,
umlTUowl).

Chapter 4 summarized the research approach of the thesis, based on the design-science based IS
Research Framework (ISRF). The ISRF accounts for unstable requirements, and (initially) hid-
den IS complexities. In the context of the thesis, the ISRF helps to balance the research efforts
(collection of literature results, gathering of expert know-how, prototype design), and ensures
the relevance and research rigor of the designed prototype.

3ITPM Prototype: https://bitbucket.org/agruenwald/custom-itpm-builds/downloads

58

CHAPTER 5
Use Case: ITPM in a Consortium

The use case (UC) for the joint development of a software product in a consortium project is
presented. Section 5.1 introduces the participating organizations, and the main project roles.
Additionally, the project phases and the core PM activities are outlined. Section 5.2 investigates
the project manager’s main integration tasks, based on the consortium’s communication plan.
Specific process steps are extracted, to illustrate the manual synchronization overheads. The
chapter concludes with the summary of PM-relevant data sources, tools, and concepts, in section
5.3.

5.1 Consortium Project Structure

The UC includes four organizations, which join a consortium, to implement a novel high-tech
software. In addition to the provided consortium definition in chapter 2.1.3), the following as-
sumptions are taken: First, there is no dominant partner, which means that no single partner
dictates the requirements which the other members must agree on. Second, one member is
the champion. The champion is responsible for the management and the execution of the IT
project [86, p.195].

The name of the project is: Prototype Implementation of an ITPM Dashboard based on Model-
Driven Technologies. Attentive readers may realize that the definition is self-reflexive. Indeed,
the project refers to the prototype implementation conducted during the master thesis. The ad-
vantages of this approach are:

1. The reader gains awareness of the product functionality and its complexity (cf. chapter 7).

2. The development of the prototype resulted in IT and PM artifacts which directly flow back
into the use case evaluation.

3. The size of the project is convenient for the use case evaluation (small set of traceable
requirements, limited resources for the evaluation).

59

Figure 5.1: Overview of IT Consortium project partners.

4. The quality of the prototype is improved by including additional PM and QM measures,
and evaluation feedback.

5.1.1 Organizational Structure

Four organizations form a consortium in order to realize the software product (cf. figure 5.1):

Organization A is the champion of the consortium and thus the main driver of the project. The
organization provides three teams:

1. A team of independently working researchers. The main goal of the researchers is
to determine the requirements from marketing studies and research surveys up-front.
The mission of the researchers throughout the project is mainly to consult the project
manager in difficult questions and to adapt / extend the requirements if necessary.

2. The steering team consists of a small team of top managers, and involves partici-
pants from the other organizations. During the ramp of the project, the management
communicates the main requirements to the researchers, and keeps them on track.
Throughout the project the purpose of the steering team is to control the management
of the project.

3. A team of developers. The development team consists of employees and of external
developers who deliver work on base of working contracts.

Organization B An experienced, independent project manager has been chosen to manage the
project.The duty of the project manager starts with the unification and analysis of the
identified requirements and ends with the handover of the project to the management
team.

60

Figure 5.2: The SDLC of the IT consortium project (waterfall and agile).

Organization C A small development team which already conducted several projects for orga-
nization A. While organization A is located in Vienna the team is located in Linz / Upper
Austria. Thus the communication with the project manager mainly takes place virtually
(Skype Meetings).

Organization D is an independent department of quality engineers at the Technical University
of Vienna. Although it is has relationships with organization A, D is an independent legal
entity. The task of organization D is to provide high quality test cases for the developed
software components and to report test results and code metrics to the project manager.

All organizations intend to reuse the final product or distribute it to their customers.

5.1.2 Software Development Life Cycle

The project is based on a traditional waterfall life cycle model, enriched with agile methods
(cf. [116], [63], [110]). The SDLC is illustrated in figure 5.2. The requirements specification (1)
and the architectural design (2) are conducted by the research team of organization A. The main
outcomes of these phases are, (a) a list of technician-oriented requirements, and (b) the specifi-
cation of the overall software architecture, including development guidelines. The requirements
are specified developer-oriented, so that can be passed directly to the development teams. The
central product is built and tested in (3) and (4). These two phases are managed agile (SCRUM)
and are chunked into two-week sprints. Due to the agile project nature, change requests and
design updates are anticipated. The waterfall model is not executed in a strict sequential order,
but embraces back flows from the phases 2 and 3. The project closure includes the handover of
the final product, the documentation, and the source code, to each of the consortium members.

61

Figure 5.3: Project communication plan for the IT consortium project.

5.2 Project Communication Plan

The consortium members have distinct organizational cultures, and are used to predefined PMS,
tools, methodologies and processes. Figure 5.3 visualizes the flow of the most relevant PM com-
munication artifacts and the different PM systems that are utilized by the consortium members.
The order of the encircled numbers (1-4; C1-C2) indicates the relation between the communi-
cation flow, and the sequential order of their execution throughout the SDLC in figure 5.2. The
data integration steps with the most significant manual efforts are summarized below.

Collection and Transfer of Requirements The PM collects the identified requirements from
the research team (organization A), during the requirement specification phase. The require-
ments are already preprocessed and provided within a single spreadsheet (MS Excel). The re-
searchers email the document to the project manager or put it on a shared drive (e.g. Dropbox)

62

(1a). The project manager reviews the requirements and adds minor improvements. Through-
out the project, a number of change requests appears. New requirements are identified by the
researchers and the pool of requirements is updated (1b). Changes are emailed to the project
manager. The reason why the requirements cannot be updated directly in the central spreadsheet
is that the project manager needs to be aware of updates. In addition, the management of orga-
nization A requested access to the list of requirements. Because the steering team wants to save
time, they insisted that the requirements are provided on their central Google Drive, in Google
Spreadsheet format (1b). The PM can copy the requirements from the Excel sheet to the Google
sheet, but must perform minor format changes (different columns; transformation of internal
stakeholder abbreviations of organization A). Because the management adds or updates require-
ments from time to time (C1), the synchronization between the versions of the management, and
the research team (organization A) is difficult.

Creation of a Product Backlog based on Sub-Requirements The PM translates the require-
ments into a product backlog (2a). The product backlog consists of a list of issues, which are
assigned to the specific developers (2b, 2c). In the presented use case, two different software
products, viz., Jira Issues and Redmine, are utilized by the organizations A and C. Both PMS are
project tracking tools with similar capabilities. The central planning artifact are issues, which
must be resolved / implemented by the local teams. An issue is a very generic concept. They
are defined by their issue type, such as feature or bug. The type list is extensible, to support
additional PM functionality, such as the application of agile management methods (e.g. types
use case, epic).

The transformation between requirements and issues takes place as follows: All requirements at
the under-most level (requirements can be defined hierarchically), are added to the issue track-
ing program by the PM. None of the field content (e.g., title, description, priority) is changed.
Each issue is of the type feature. For each issue, the due date needs to be assigned manually,
according to the project plan of the manager. Accordingly, each issue is assigned to a developer,
or to a team leader, depending on the priority and the sprint iteration throughout the project.
If requirements are added or updated, then the PM needs to manually synchronize the related
issues in the backlog. Note that the project manager needs to request access for any local PM
system. In the presented UC, all organizations are willing to grant administrative permissions to
the (external)manager.

Tracking of the Development Status Assigned issues are implemented by a responsible de-
veloper. The project manager receives feedback in form of status updates, which are visualized
in the local issue tracking tools. The presence of two different project tracking systems requires
additional synchronization effort by the project manager: First, she has to resolve dependencies
which occur between the isolated systems (e.g., a software component may depend on another
software component, which is developed by the second team, and thus unknown within one of
the local systems). Second, the application of different systems results in additional learning ef-
forts. Third, the reporting is more complicated because the status information of the two systems
has to be combined.

63

Communication and Reporting of Test Results The software quality team (QM team) en-
sures that all modules are covered by test cases (3a). Jenkins is utilized as a build server1. The
function of a build server is to compile and execute code and automated tests periodically, and
to inform the QM team about failures. Jenkins enables the installation of additional plugins,
e.g., for the retrieval of code metrics. However, the test results and software metrics of Jenkins
are not suitable to be directly reported to the project manager, or executives. Thus, the quality
team has to summarize and report the results manually (e.g. in a text document or presentation)
(3b). Bugs and test failures, which are reported by the QM team, must be resolved. Because
the QM team of organization D does not have access to the systems of organization A and B,
identified change requests and bugs are forwarded to the project manager via email. The man-
ager must then add issues (typically bugs) in the specific PM tracking system of the responsible
organization (development team one or two) (2b, 2c).

Reporting / Project Controlling The project manager must periodically report to the top
management, i.e., at the end of each week (C2). The creation of the status report requires the
extraction of tracking information from the local PMS (Jira, Redmine). The information must
be linked with the developed software modules, test results, and requirements, in order to derive
meaningful controlling figures.

All project team members track their efforts in template-based spreadsheets. The time-sheets
are forwarded to the project manager at the end of each week (C3). The manager must extract the
work logs for each sheet, and accumulate the time efforts for team members, software modules
and teams. The derived efforts are essential to control the project costs, trigger re-planning
activities, and report to the top management. Feedback from the top-management flows back
into planning process for the next sprints (C4).

Typical questions that need to be addressed by the status report are:

1. How is the test distribution/coverage across all requirements?

2. How many tests have been implemented per module and what is their state?

3. How many lines of code / function points have been produced so far?

4. How many features / bugs are currently open?

5. Are there any open features that have not been implemented closely before the end of the
current sprint?

6. Are the working efforts of the team members balanced?

7. What is the total effort that team members worked last week?

In addition to the management reporting, the PM permanently needs to be in control of the
project progress. For instance, the PM checks at the end of each day:

1Jenkins: http://jenkins-ci.org

64

1. How many lines of codes / function points exist or have been added, since the last time I
checked?

2. How many test failures are there currently?

3. Were critical updates in any of the available PM artifacts performed (requirements, issue
systems, test reports)?

4. What are the current activities of my team members?

5. Which software modules have been implemented/tested so far (overview)?

5.3 Shared PM Concepts

Table 5.1 summarizes the most important PM concepts of the UC, and their origin tools. The
project plan (which has not been mentioned so far) is created by the PM. It contains a list of the
main project phases, including start and end dates. The last column of table 5.1 contains the role
names that can directly access the tools, respectively files.

Concept Tools Roles

Requirement
MS Excel,
Google Spreadsheet

Researchers, MGMT, PM

Issue Jira Issues, Redmine PM, Dev (Org. A), Dev (Org. C)
Test Results Jenkins QM
Code Metrics Jenkins QM
Software Modules Jenkins QM
Team Members MS Excel PM
Project Plan
(Phases and Dates)

MS Excel PM

Time Sheet Google Drive PM, each team member has access
to his/her personal time sheet

Team Data MS Excel PM, Dev (Org. A), Dev (Org. C),
QM (Org. D)

Table 5.1: Summary of the concepts and tools in place.

65

CHAPTER 6
Solution Approach

In this chapter the Systematic Integration Framework for Project Management (SIFPM) is pre-
sented. The SIFPM is designed to overcome PM data integration issues for temporary, hetero-
geneous project organizations, i.e., consortia. The main design artifact is the ITPM dashboard,
which leverages the central configuration, control and visualization of PM data (sources). Se-
mantic data models represent the central meta-artifact. They enable the efficient communication
of PM integration requirements across various organizational levels, and facilitate the efficient
technical integration.

The main components of the SIFPM are summarized in figure 6.1 and correspond with the
structure of the chapter:

1. The consortium negotiation and integration process (CNIP) provides means for the effi-
cient integration of PM data at the management level (section 6.1).

2. The ITPM Dashboard aids managers and technicians, in jointly executing the CNIP. In
section 6.2 the most important components of the ITPM Dashboard are introduced, and
the process steps of the CNIP are mapped onto the prototype components and related data
(and code) artifacts. The configuration of the dashboard to aid project managers is left out
for chapter 7.

3. Section 6.3 provides a mapping of the derived artifacts, based on MDSE, and the Se-
mantic Model Editor. A mapping between UML class diagram elements, OWL ontology
concepts, generated Java code, and UI forms is presented.

4. Section 6.4 introduces the PM Model Repository, for the organization of small-scaled,
reusable, PM models. The aim is make common models, tool connectors, and PM knowl-
edge available for further projects. The efficient development of PMS connectors, based
on MDSE, respectively code-generation, and the OpenEngSb architecture, is outlined.

67

Figure 6.1: Overview of the solution approach (cf. ITPM consortium hood in chapter 1).

6.1 The Consortium Negotiation and Integration Process

To integrate PM software, tools and data sources efficiently, the Consortium Negotiation and In-
tegration Process (CNIP) is proposed. Opposed to heavyweight enterprise integration solution,
the CNIP focuses on temporary project organizations with heterogeneous, autonomous partners.
The aim is to provide a systematic off-the-shelf framework, to (a) shorten roll-out duration and
costs (compared with EII approaches), (b) enable the local teams to continue using their pre-
ferred, PM systems and tools, and (c) ensure efficient, guided integration, based on reusable
design outcomes (data models).

The CNIP is inspired by Boehm’s Theory W [18] [19], and the WinWin approach [21]. The
WinWin approach uses a spiral model process to negotiate the requirements between the most
important project stakeholders such as customers, developers, and users. The best alternatives
are compared to resolve conflicting interests, and to establish Win-Win conditions between stake-
holders. The outcome is refined gradually.

The technical foundation of the CNIP are the OpenEngSb framework, and the ITPM Dash-
board. The OpenEngSb enables the integration of tools and data based on the implementation

68

of tool domains and connectors. The ITPM dashboard builds upon the OpenEngSb. It provides
tool-support to increase the efficiency of the CNIP. For the CNIP, the OpenEngSb can be re-
placed by any state-of-the-art integration framework. The application of the ITPM dashboard is
recommended, but optional, and hence not detailed before section 6.2.

6.1.1 Process Goals

The proposed negotiation process of the CNIP is similar to the WinWin approach. However,
instead of requirements, the (optimal) integration of heterogeneous PMS, data sources, and the
degree of the integration are negotiated. The degree of the integration addresses the completeness
of concepts, attributes, work-flows and queries.

The main goals of the CNIP are:

1. Inform the participating consortium members about the intended use of PM software and
artifacts.

2. Agree on a common language / vocabulary. Clarify ambiguous terms and refine defini-
tions.

3. Increase awareness of the pursued PM integration process (cf. [86]).

4. Negotiate the tools and sources to be integrated. Agree on the concepts (and attributes)
that will be exchanged.

5. Provide a framework for the transformation of business management requirements into
semantic models and technical integration artifacts.

6.1.2 Involved Roles

The process comprises the following roles:

Project Manager The project manager is the driving force, which starts and terminates the
process, and is in control of the negotiated artifacts.

Meeting Participants A key representative of each consortium member with basic knowledge
about the PM process, a key representative of each PM domain area (e.g., a quality en-
gineer), and a knowledge engineer or developer, with skills as described next, should be
present in the meeting. To communicate sponsorship of the project, the participation of
executives is crucial (they are likely to be the key representatives of the consortium mem-
bers anyway).

Developer or Knowledge Engineer The engineer should be familiar with the ITPM Dash-
board environment, and needs to be experienced with UML class diagram annotation,
and Java. In addition, the engineer should have basic knowledge about business rules
(Drools) and SPARQL.

69

6.1.3 Process Description

The main steps of the CNIP are summarized in figure 6.2. The Business Process Management
(BPM) notation is used to model the processes.

Figure 6.2: Overview of the Consortium Negotiation and Integration Process (CNIP).

Prepare Meeting (Figure 6.2 - S1) The project manager convenes a meeting, and asks the
invitees to prepare. Each consortium partner should create a list including the following items:
requirements regarding PM software and tools, an overview of the current PM tool landscape
within their organization, a description of the most relevant data exchange and integration pro-

70

cesses (either manual or automated processes), concepts, and the roles involved in the PM pro-
cess.

Identify Required PM Systems (Figure 6.2 - S2) Based on the information collected upfront,
the consortium members disclose their PM landscapes and requirements during the meeting.
Misunderstandings are resolved, synergies explored, and a common language is elaborated, e.g.
in form of a glossary. Some of the questions that should be answered for each PMS, respectively
data source, are:

1. Of which type is the software product (e.g. planning, collaboration, testing)?

2. How many instances of the software product are available? Where are they located (e.g.
URL)?

3. How many licenses are available for each software instance? Are there any privacy re-
strictions or can anybody access the tool?

4. What is the domain type of the software? I.e., what are the common concepts on which
the software type focuses (e.g. issue; backlog item; test record; project phase)?

5. How can the project manager, respectively the teams, access the data source? Share the
access data and assign administrative permissions to the project manager if possible.

In addition, the following questions should be asked.

1. How do the tools relate / integrate with each other? Sketch a communication plan for the
consortium project.

2. Is there any auxiliary PM knowledge available that is accessible and easy to integrate?
Stimulate creative thinking. Do not only think about PMS, but include expert tools, files,
and Web resources, to reveal useful historical PM knowledge. Examples include the reuse
of wage rates (either from historical files, or public Web sites1), function point calculation
tables, risk registers, etc.

Prioritize and Group Data Sources (Figure 6.2 - S3) Based on the initial discussion, and
the identification of PMS, and data sources, the list is grouped and prioritized. This step ensures
that all members agree on a common list. Based on the length of the list, some tools may turn
out to be irrelevant; likewise, some elements may turn out to be missing. The items have to be
grouped, based on the (main) domain type (e.g. PM tracking system; QM software).

1Payscale provides accurate wage rates for various countries and professions: http://www.payscale.com

71

Negotiate Best Integration Alternative per Tool (Figure 6.2 - S4) This process step facili-
tates the actual bargaining process, in which the meeting members try shall find an agreement,
how the integration of each PM tool instance will be pursued.
There are several scenarios that can apply. In the ideal case, the PM tool, and also all tools of
the same domain group, are already supported by the ITPM Dashboard, respectively the inte-
gration framework in place. In that case, the configuration and integration can be performed
by the project manager (or a technician), immediately. No implementation effort results. In the
second case, the tool (or a tool of the same group) is not known yet. In that case, the attendant
developer (or knowledge engineer) and the rest of the meeting participants should undertake a
brief analysis of the tool and its programming interfaces: Are there already implementations for
tools of the same domain type available? Is it possible to reuse parts of the implementations?
Of which concepts and interfaces does the tool/domain consist of, and which are relevant for the
consortium project? Is there an API accessible so that the integration can actually be conducted?

Top - Management / Executives Project Manager
• Does the solution improve the reporting process

/ results?

• Are the cost savings of the reduced synchro-
nization effort (PM) higher than the adaptation /
configuration costs?

• Do I save manual synchronization effort?

• Does the solution increase the team motivation?

• Does the PM data consistency increase signifi-
cantly?

• Can the results be reused in other/future
projects?

• (-) Does the implementation of the integration
delay the project or increase the project costs?

• Do I save manual synchronization or configura-
tion effort?

• Will information be synchronized/distributed
quicker and/or more accurate to me and/or the
project teams?

• Will the solution increase the motivation of my
project teams?

• Does the solution reduce annoying polling ac-
tivities on multiple PM software instances?

• Is it possible to integrate data from different do-
mains so that I can improve my reporting effi-
ciency/effectiveness?

• Does the solution include reusable PM knowl-
edge?

• Can I reuse connectors in other projects?

• (-) If a connector is missing: Are my develop-
ers distracted from important development ac-
tivities?

• (-) If a connector is missing: Do the available
developers have the knowledge to implement a
new connector?

• (-) Is ensured that no important data will be
overwritten or lost?

Developer
• Will I be able to reuse my preferred PM soft-

ware (e.g. issue tracking)?

• Will manual reporting activities be reduced (e.g.
writing a weekly progress report or reporting
vacations)?

• (-) Do we need to implement connectors by our-
selves?

• (-) Will features be cut due to limited integration
capabilities?

Table 6.1: Win conditions for different project roles (analogously to Boehm et al. [18])

The implementation of a specific solution has different outcomes and implications for the
participating project roles and consortium members. Table 6.1 illustrates, how conflict areas

72

arise from the ambivalent interests of different project roles. For instance, a project manager
will typically stand up for the integration of a new PMS, unless it does not reduce her project
budget or delay the project. The project owner, or in case of a consortium, the top management,
will appreciate the integration only, if the integration effort is beneficial for the project outcome
and/or future projects. Finally, developers will welcome any integration solution that cuts man-
ual reporting efforts, and provides them with more freedom to use their individual PMS and
tools. However, they may reject the integration, if the solution (e.g., development of a connec-
tor) must be implemented by themselves, and requires high training and testing efforts. In any
case, an optimal win-win solution within the restricted solution space has to be pursuit. In other
words, the best alternative, which contributes to the achievement of the project objectives, and
is acceptable by all participants, should be chosen.

Among the action alternatives, not only the data integration via the applied data integration
framework (e.g., the ITPM dashboard) should be considered. Table 6.2 exemplifies that it is also
possible to adapt the PM process, or to install a unified software instance, which all team mem-
bers can access. The appropriate solution depends on the costs of the integration alternatives. If
the negotiators cannot agree on a specific solution, then games, such as the Planning Poker (not
be discussed here; cf. [43]) help to determine a joint solution.

The negotiation process includes a joint modeling session, which is supported by the Seman-
tic Model Editor. The mapping between the CNIP and the implemented prototype modules is
discussed after the introduction of the ITPM Dashboard (cf. chapter 6.2).

Define Additional Workflows (Figure 6.2 - S5) The integration between tools of different
domains should already be kept in mind, during the process steps (S1 - S4). In any case, after
the agreement on a common set of PM tools to be integrated, work-flows between different
tool domains must be explicitly specified (e.g., textual, or via BPMN, or UML activity diagram
annotation). Work-flows enable the automation of manually conducted data synchronization
activities, which require several steps of human mapping, transformation, and analysis. Step
(S5) also involves the identification of advanced analytic queries, which the project manager
or the top management require, to ease controlling and reporting activities (e.g., an aggregated
view on the project state).

Technical Integration (Figure 6.2 - S6) After the meeting, an assigned developer or knowl-
edge engineer needs to implement the negotiated extensions (if there are any). In particular,
modifications performed on common concepts (tool domains) and connectors must be coded.
The sketched work-flows must be translated into executable rules. Additional requirements of
the project manager, such as the retrieval, aggregation, and visualization of distributed data also
must be satisfied, e.g., via the implementation of queries.

Discuss Unresolved Development Issues (Figure 6.2 - S7) The project manager discusses
the implementation progress with the developer. If non-resolvable issues appear during the

2Costs arise only for one specific member. Additional risk of installation delays.

73

Resolution Example Cost Range
Reuse
Connector An available Jira Issue connector is reused for the project. -

Extend
Connector The available Jira connector does not support the exchange of the

due date. Either the connector and/or the tool domain must be ex-
tended.

e

Add new
Connector Redmine has to be integrated, but no connector exists. However, as

Redmine belongs to the PM issue tracking domain, and a similar Jira
connector is already available, the common concepts are reusable,
and the Jira connector serves as a reference implementation.

e - ee

New PM
Tool
Domain

A Kanban tool is integrated for which neither a connector nor a do-
main exists. The common concepts are modelled and the connector
needs to be implemented and integrated in order to tie the new soft-
ware to the integrated tools.

ee - eeee

Switch
PM Tool Consortium member X wants to integrate their own PM solution. It

turns out that the development of an integration tool is too costly.
The representative of another consortium member Y proposes X to
use the same software they apply (product ABC), which they are
very satisfied, and for which a connector already exists. X relin-
quishes to integrate their own tool. Instead, they are curious to give
product ABC a try.

e - ee 2

Unify
Software
Instances

Consortium A uses a premium issue tracking solution. Consortium
B uses a naïve freeware solution, for which no connector is avail-
able. A offers B free access to their premium solution.

e

Change
Process The PM wants to integrate the internal time tracking solution of con-

sortium member X. No connector is available yet. As it turns out, all
consortium partners use the same issue tracking solution. The other
partners track their efforts directly within the issue tracking system.
X was not aware of this solution, and after some explanation and
clarification, X agrees that this approach results in virtually no addi-
tional effort for the team members. The project manager agrees that
this solution is sufficient.

0 - eeeee

Table 6.2: Action alternatives for the resolution of PM integration issues.

development of a connector, then the manager and the developer try to resolve the issue jointly.
In case that the resolution requires severe changes in commonly negotiated concepts, or demands
additional knowledge, then the consortium partners need to be informed. The partners may
acknowledge the change after a quick communication (e.g. via email), or a new negotiation
process, possibly a new meeting, must be set up.

74

6.2 Semantic PM Data Integration based on the ITPM Dashboard

Consecutively, the implemented ITPM Dashboard prototype is presented. The essential user
interface functions and the related software modules are enumerated in section 6.2.1. Section
6.2.2 describes the support of the CNIP by the dashboard.

6.2.1 The Central ITPM Dashboard

The main function of the dashboard is to support the project manager in integrating and visu-
alizing distributed and heterogeneous PM data. Additionally, the MDSE-approach eases the
collaborative negotiation of common models, and serves as the starting point for the technical
integration. Subsequently, the implemented software modules of the ITPM dashboard prototype
are summarized.

Figure 6.3: Visualization of the central ITPM dashboard. The numbers serve as a reference for
the latter process implementation of the CNIP (figure 6.4).

75

Synchronization Cockpit facilitates the registration and monitoring of distributed PM software
instances and their data sources. The UI enables the project manager to activate/deactivate
specific sources, select the type of streaming (upstream, downstream), and keep track
of the latest synchronization activities, including info messages. The synchronization
procedure can be started on demand, or is permanently executed in background. Upstream
means that the local data sources are pushed into the central data store. Downstream
relates to the back-flow of changes performed in other tools, to a specific local tool.

Semantic Model Editor Aids managers, knowledge engineers and developers in documenting,
refining, and sharing knowledge about specific tools (connectors), and ITPM domains
(e.g., parts of PMBOK knowledge areas), based on UML class diagram notation and
OWL.

Model-Driven Code Generator aids technicians to fluently refine and translate models into
reusable code, to store entities in semantic data stores (OWLAPI, Jena). By automating
the generation of Java beans, DAOs, and unit tests, the programmatic integration effort is
minimized. Additional features, based on the Semantic Model Editor, smooth the integra-
tion into the OpenEngSb environment.

Semantic Query Editor Manages a set of semantic rules and queries, which are used to aggre-
gate PM knowledge across multiple domains. Supports syntax highlighting to simplify the
design of SPARQL queries, auto-completion (integrated with the Semantic Meta-Model
Editor) and the visualization of information (tables, graphs, diagrams, KPIs). The reuse
of queries and rules is facilitated by organizing the rules based on the PMBOK knowledge
areas.

PM Connectors and Synchronization Logic Several PM domains and connectors were stud-
ied and implemented to demonstrate the integration of PM data across, and within PM
domains (results are presented in chapter 7). A (naive) synchronization algorithm has
been developed to enable the data integration of local sources, close to real-time (e.g.,
scan for local changes each 2 minutes).

ITPM Dashboard combines the above mentioned modules within a single Web-Based UI. In
addition, browsing, data modification, and visualization features are provided. The con-
figurable home page visualizes the most relevant PM data based on the defined rules and
queries. The dashboard is pictured in figure 6.3. The numbers in figure 6.3 are used to
provide back-links for the upcoming mapping between the CNIP and the software com-
ponents, data, and artifacts through runtime.

6.2.2 Process Implementation: CNIP Support based on the ITPM Dashboard

The CNIP is backed by several UI features of the ITPM Dashboard. The MDSE approach eases
the collaborative negotiation of common models, and reduces the gap between management in-
tegration requirements and technical integration.

76

Figure 6.4 visualizes the facilitation of the CNIP by the ITPM dashboard, and depicts the flow
of the most relevant data artifacts (e.g., code, queries, models, data instances).

Figure 6.4: Relation between the CNIP, and the ITPM dashboard components and artifacts
(extension of figure 6.2). Relevant data flows are visualized.

Subsequently, the CNIP is revised, to establish a link between (a) the process steps, (b) the
ITPM dashboard components, and (c) the project roles. Note that the numbers in figure 6.4
correspond with the UI elements of figure 6.3 (visualization of the central ITPM dashboard).

77

Prepare meeting (Figure 6.4 - S1) Although the project manager or a developer can prepare
several models and configurations in the ITPM dashboard (e.g., via the Semantic Model Editor),
and share the link with the meeting participants, the current prototype version does not actively
support this step. Relevant members are manually identified, and invited via email.

Identification and Grouping of PM Data Sources (Figure 6.4 - S2, S3) The synchronizer
cockpit (1) supports the project participants to collect, group, refine, and maintain information
about the available data sources (e.g., type of tool, main concepts, access data). Whether the
adding of the identified data sources to the ITPM dashboard starts at process step S1, S2, or S3
is up to the project manager. In any case, after the execution of S3, all relevant data sources must
have been added to the cockpit.

Negotiate Best Integration Alternative per Tool / Common Concepts (Figure 6.4 - S4) The
Semantic Model Editor (2) facilitates the collaborative design and negotiation of common con-
cepts, based on UML class diagram annotation. The meeting participants negotiate and docu-
ment their integration needs in form of accessible, reusable PM data models. The models are
refined, and technically integrated into connectors, by developers.

If the meeting participants agree to utilize the available data integration middle-ware (ITPM
dashboard, OpenEngSb) for integration of a specific PM tool, then four scenarios appear (cf.
figure 6.2).

1. Reuse Connector: In the simplest case, a connector is already available. The concepts are
documented in the Semantic Model Editor, and available for review.

2. Extend Connector: If the review reveals that the connector does not support parts of the
business requirements (for instance, the project manager cannot perform a specific re-
porting query, because of a missing data attribute), then the connector model has to be
updated. The change requirements are documented within the connector model. The
specific implementation, based on the available functionality of the underlying API, is
typically left to the responsible developer. Severe modifications require the redesign of
related common concepts, and tool domains. In that case, the meeting participants should
review the affected models, to ensure that data changes of local PM tools are appropriately
propagated.

3. Add New Connector: Like the extension of existing connectors, the creation of a new
connector is mostly developer-driven. The meeting participants (managers) document the
main concepts of the PM data source within a (new) ITPM data model. The model is
then refined with the support of the present developer(s) (review model updates, research
connector API, refine model). Depending on the scope of the integration, and the extend
of the connector, the latter activity either takes place during the meeting, or afterwards.

4. New PM Tool Domain: In the worst case, the management realizes that an entire tool
domain needs to be added, respectively that an integral part of the central ITPM model
is missing, or not usable. In that case a systematic joint modeling session is required.

78

The suggested solution approach follows a slightly adapted Ontology 101 process [91]:
First, the scope of the common concepts is defined, by identifying the most important
concepts (classes) . Second, the models for other tool domains are reviewed, to determine
reusable parts and patterns for the new concepts. Third, the common concepts are refined,
by adding attributes, hierarchical relations, and associations between classes. Finally con-
straints, rules/queries, and comments (i.e., annotations), which serve as the input for the
MDSE approach, and for the technical implementation, must be documented. The docu-
mentation of the model, and the definition of basic (data) constraints is directly supported
by the Semantic Model Editor’s UI. In addition, the systematic adding of sophisticated,
machine-interpretable expert rules, on top of the ITPM models (i.e., OWL ontologies) is
facilitated.

The outcome of a modeling session are shareable models, respectively OWL ontologies (2a).
These models serve as the input for the code generator (4). The Semantic Model Editor provides
the interface between the management, and the technical integration. The generator automates
and simplifies the code implementation, and provides an additional step to verify the quality
of the ITPM models. The generated artifacts include generic UI elements (tables, forms) (4a),
beans (4b), data access objects (DAOs) (4c), and unit tests (4d). The DAOs enable the abstracted
access to semantic data stores (OWLAPI, Jena). In addition, the DAOs provide default data
validation mechanisms, and patterns to inject additional data constraints (in conformance with
OWL facets).

Define Additional Work-flows (Figure 6.4 - S5) The (graphical) description of work-flows
is not supported by the current version of the prototype. Thus a textual description or activity
diagrams (7) need to be created and handed over to the developer who is in charge implement
the work-flow integration.

Technical Integration (Figure 6.4 - S6) The technical integration is based on the results of
the modeling session (2a), and the code generation (4). The developer needs to identify and
implement the demanded connectors and extensions. The generated artifacts simplify the inte-
gration and validation cycle of external PM concepts. In addition to the basic data integration,
rules (6a) based on work-flow descriptions (5a), and ITPM queries need to be implemented.

ITPM queries are demanded by the project manager, to aggregate and visualize PM data of
various knowledge areas. The queries simplify monitoring and reporting activities, and help to
acquire additional project knowledge. The ITPM Query Editor enables the efficient design of
ontology queries and rules, to create aggregated data visualization for the dashboard (3a, 3b).
The project manager can choose, to display important query results within the central ITPM
dashboard (home page; 3b). All queries are organized within in an internal ontology, according
to the PMBOK knowledge areas.

Discuss Unresolved Development Issues (Figure 6.4 - S7) The Semantic Model Editor uti-
lizes the communication of implementation issues between the developer and the project man-
ager, based on model annotations and comments. Analogously, the Semantic Query Editor

79

enables the communication of query results an data visualizations, based on ITPM dashboard
visualizations (3a, 3b). The code generator supports the developer in translating model updates
automatically into code. Based on the MDSE approach, the implementation effort is reduced,
and manual modifications (programmatic validations, ontology extensions) are retained.

The underlying technical processes, including the integration of connectors, the definition of
cross-domain work-flows, and the implementation of data visualizations based on SPARQL, are
detailed in appendix A.1. The relation between the components’ artifacts (models, ontologies,
code, UI elements), and their efficient re-utilization, based on MDSE, is outlined next.

6.3 The Semantic Model Editor and Derived Artifacts

The Semantic Model Editor is a Web-based UML class diagram editor, enriched with documen-
tation features, code generation capabilities for semantic data stores, and tools that facilitate the
efficient integration of PM systems, based on the OpenEngSb framework. The structure of the
models is based on the suggested knowledge by the PMBOK. These knowledge areas were ex-
tended, to cover additional requirements for specific industrial PM tools.

Subsequently, the MDSE capabilities of the Semantic Model Editor are outlined. First, the
relation between the various types of models, artifacts, is described at the level of the UI. Next,
the existing umlTUowl is extended for MDSE.

6.3.1 UI Support for Model-Driven Software Engineering (MDSE)

Figure 6.5 presents the Semantic Model Editor as an integral part of the ITPM Dashboard. The
relations between the central ITPM models, and the derived software artefacts (ontologies, code,
UI elements) are visualized.

1. The Semantic Model Editor UI is the central element of the MDSE approach. The visible
outcome of the editor are a set of UML class diagrams.

2. Based on the UML class diagram notion, shareable and machine-interpretable OWL 2
ontologies are derived. For that reason, the existing umlTUowl approach is extended.

3. The created models are utilized to support users in formulating semantic queries. Based
on the available concepts, the Semantic Query Editor provides auto-completion features
for the implementation of SPARQL queries. The models serve as a dictionary, which
can be looked-up by the project manager, or the knowledge engineer, and simplify the
formulation of complex integration queries.

4. The umlTUowl meta-model is utilized to derive Java code (beans, DAOs, unit tests) for the
access of semantic data stores. The prototype includes code generators for the OWLAPI
and Jena (SDB and TDB).

80

Figure 6.5: The Semantic Model Editor and derived artifacts (ontologies, user interface ele-
ments, code

.

5. The ontologies are leveraged to derive UI elements, such as tables, forms, and navigation
items. The resulting UIs aid managers and engineers, to centrally search and modify
data instances. By adjusting the PM models appropriately, the layout of the forms can be
tweaked. For instance, the visualization of help texts, and the layout of input fields (text
field, text area, checkbox, etc.) are supported.

6.3.2 Extending umlTUowl: Mapping between UML, OWL, Code, and UI

The supported UML class diagram elements, and the mapping between UML and OWL con-
cepts, based on umlTUowl, are well-documented [48]. The proposed solution extends umlTUowl
in two ways: First, the scope of the mapped UML and OWL concepts is extended. Second,

81

umlTUowl is leveraged to derive and generate complementary software artifacts (code and UI
elements).

Extending the Scope of the UML to OWL Mappings

The umlTUowl approach is extended to support a larger subset of UML to OWL mappings.
Table 6.3 presents an updated version of the table presented by Grünwald and Moser [48]. The
highlighted elements on the right-hand side represent the UML class diagram elements that are
supported by the extended version of umlTUowl, and the Semantic Model Editor. “Multiplic-
ity of attribute value” means that a class attribute can have several values (e.g. a pet can have
several nicknames), rather than a single value. Data constraints for attributes are defined via an-
notations in the Semantic Model editor. These are saved either as OWL Facets4, or as comments
in the OWL ontology. The implementation of OWL facets for the expression of data constraints
in form of regular expressions resulted in problems with the Pellet reasoner5, i.e., the reasoner
hang up. Hence the data constraints are stored as comments rather than as OWL facets, by
default. “Redefinition of derived attributes” addresses the issue that a data type of an attribute
can be overridden, if a subclass defines the same attribute with a different data type. Support for
“attribute uniqueness” is implemented via the hasKey axiom6 in OWL. The modeling of enumer-
ations is integrated into the Semantic Model Editor, because (a) enumerations showed to keep
the graphical models more compact, (b) enumerations frequently appeared while implementing
PMS connectors (e.g. issue types, priorities, work item states). The mapping of enumerations
into OWL and Java code was of minor concern. Thus, UML enumerations are translated into
associations (object properties), and the enumeration values are represented as specifications of
the abstract class. For the implementation of the prototype, this turned out to be an effective
solution, with low implementation effort.

Mapping between UML, OWL, Code, and UI Elements

Based on a MDSE approach, umlTUowl is extended for the derivation of additional artifacts
(cf. figure 6.5). A compatible set of relevant mappings is identified. The main objective is not
to provide a complete set of mappings, but to show that OWL ontologies leverage the effective
mapping between various software artifacts, are intuitively, and contribute to the reduction of
redundant development work.

Table 6.4 outlines the mappings between the main four types of derived software artifacts (UML
class diagram notation, OWL, Java code, UI elements), based on the high-level concepts of
UML, and the umlTUowl-internal meta-model. The mapping between UML and OWL is al-
ready outlined in figure 6.3.2, and not discussed further. Subsequently, the mappings between
UML, OWL, and Java code, and the derivation of UI elements, are outlined. A comprehensive
overview on the mapping is provided in appendix A.2.

4W3C Recommendation for OWL2: http://www.w3.org/TR/owl2-syntax/
5Pellet Reasoner: clarkparsia.com/pellet
6W3C Specification of OWL 2 Keys: http://www.w3.org/TR/owl2-syntax/#Keys
7Uniqueness partially implemented implicitly (only for single elements)

82

Supported UML Class Diagram
Elements

Previously Unsupported Elements /
Newly Supported Elements

• classes
• abstract classes
• interfaces
• generalization
• multiple packages (diagrams)
• attributes
• visibility of attributes (partly)
• attrs. with primitive data types
• attrs. with XML data types
• associations
• navigable associations
• multiplicity of associations
• aggregations
• compositions
• labelled endpoints (MS Visio)
• comments / note elements

• multiplicity of attribute value
• attribute values except primitives
• package elem. inside a diagram
• data constraints
• class operations
• association classes
• n-ary associations
• overlapping/disjoint classes
• roles
• XOR annotation
• redefinition of derived attributes
• subset annotation
• ordering + uniqueness attr. annotation.7

• datatype meta annotation
• enumerations
• stereotypes

Table 6.3: Supported vs. not supported UML class diagram elements. The highlighted items
are those elements that are supported by the extended version of umlTUowl.

Mapping between UML, OWL, and Java Code Each UML model (class diagram) consists
of a set of sub-packages. The Semantic Model Editor enables the specification of a name-space,
and an optional OpenEngSb module type, for each model (ITPM default model, connector, tool
domain). Based on the namespace and the OpenEngSb module type, the path for the code gen-
eration within the developer’s code repository is derived.

Classes are distinguished into interfaces, abstract classes, enum classes, and concrete classes
(classes that can be instantiated). For each class, a Java bean is created. The bean consists
of private variables that correspond to the model attributes (OWL data properties), and asso-
ciations (OWL object properties). The main supported primitive data-types are string, integer,
double, float, boolean, and date respectively datetime. For primitive attributes with multiplicity,
an ArrayList is created. Depending on an association’s cardinally, either a single variable, or
an ArrayList is created (for multiplicities > 1). For both, attributes and associations, getters
and setters are created. The variable names for associations are derived as follows: if the user
specified a name, then this name is used. Otherwise, the allocation of the name follows a simple,
configurable pattern (e.g., for compositions, the name is typically derived from the names of the
linked classes, such as “hasRequirement”). Nested hierarchies (generalizations) are supported
for any type of class. For instance, if class A is a child of concrete super-class B, and two inter-
faces C and D, then the code A extends B, implements C, D is derived.

DAOs and unit tests are only generated for concrete classes. Each DAO provides basic CRUD
methods, and a set of additional methods to perform different types of full-text search (e.g.,
search for the content of specific fields). While accessing the semantic data stores, the developer

83

can specify whether to retrieve the instances at the first level (e.g., a list of requirements), or to
also read instances at deeper levels (e.g., also retrieve the entire data for the linked stakeholders).

For each DAO, basic data validation is included. By default, each string must contain at least one
character, and each numeric field must be greater than zero. The validation mechanism can be
relaxed, by extending the specific DAO, and reformulating the validation for the specific fields.
When the derived code artifacts are re-generated, these manual extensions remain. The Seman-
tic Model editor supports the formulation of more complicated data constraints, based on OWL
Facets. The OWL facets are translated into Java constraints and are verified during the persis-
tence of data instances. A typical constraint would include the validation of email addresses,
based on a regular expression.

For each DAO, a set of JUnit tests is created. The tests verify the DAOs against a set of thresh-
olds. For instance, if an association has cardinality 1-5 assigned, then tests for zero, one, five,
and six linked entities are generated (the first and the last test represent negative tests). An-
other example is the verification of bidirectional associations: If a stakeholder is assigned to a
requirement, and the requirement is persisted, then it must be ensured that the requirement is
also back-linked from the stakeholder.

The OpenEngSb specific annotations (table 6.4) enable the efficient interplay of the MDSE and
the OpenEngSb. The most relevant annotations will be detailed in section 6.4.4.

Derivation of UI Elements For all ITPM models, except tool-specific connector models, a
menu tab is created within the ITPM dashboard (sub page: PM Data). For each (concrete) class,
a search page is derived. This page consists of a search form, a table with pagination, and control
elements for the deletion, adding, and modification of records. The content of the table is com-
puted based on a simple heuristic, to avoid exceeding the maximum page width. For instance,
if the table becomes too broad, then columns with a high rate of empty cells are removed from
the view. Similarly, columns with a high diversity of content are favored to columns with a very
low variety.

For each (concrete) class, a new item in the navigation bar is created. Compositions are not
shown in the menu, because those can only exist in conjunction with another instance, and
hence they are linked as sub-entries within the record form of the main entry. The navigation
item links to the search table. Within the search table, records can be removed, edited, or added.
For each record, basic meta information, viz., the origin of the record (e.g., “ Jira Instance of
Organization A”), the version of the record, its creation date and the last date of modification,
are maintained and visualized. Generated forms enable the modification of records based on the
central dashboard. Forms consist of input fields for (meta) attributes, and sub-forms that enable
the user to modify and browse the content of classes that are linked via meta associations. The
main field types are summarized below.

Fields based on Attributes By default, a text field is created for each model attribute. Based on
the data type, some of the fields are optimized. For instance, a check-box is rendered for

84

UML Class
Diagram (Sem.
Model Editor)

OWL Concept Generated Code Derived UI Elements

Model OWL Ontology None (but used to derive
code location).

New tab in main menu

Package reflects in harmonized
and merged OWL ont.

Java package -

Class OWL Class Java bean; DAO; Unit
test class

Navigation item linking to a ta-
ble search, and a form

Attribute Data property with OWL
restriction (cardinality)
and data range (XML
or OWL data types);
rdfs:subClassOf axiom
links to class.

Private field incl. getter
and setter

Input field (text field, checkbox,
select menu)

Association Object property with
range and domain;
rdfs:subClassOf axiom
that links to the OWL
class(es). owl:inverseOf
axiom in case of unidi-
rectional associations.

Max. cardinality > 1:
A getter method that en-
ables the access to list el-
ements. Cardinality <=
1: Getter and setter for
modifying a private vari-
able.

A dynamic select field that en-
ables the user to add, remove,
or modify linked instances via
a sub-form that can be fold-out
within the main form.

Generalization rdfs:subClassOf Java Inheritance (class A
extends class B; class A
implements interface B)

A meta association points to a
nested class hierarchy: the fold-
out sub-form includes an addi-
tional dynamic field for the se-
lection of the specific class type
(only active when adding new
instances).

Comment
Annotation rdfs:comment Java comments and ad-

ditional data constraints
(regular expressions)

Help texts at form and field-
level (collapsed popovers).

OpenEngSb Spe-
cific Annotation

rdfs:comment The location for the
source code (e.g., for
connectors, domains),
and the generated arti-
facts (beans, DAOs) are
controlled.

For tool-specific connector
models no UI elements are
derived.

Table 6.4: Overview of the main meta elements and their mappings.

boolean values. If a meta attribute defines a data constraint, and that constraint explicitly
states that the number of characters exceeds a specified length (e.g., 100 characters), then
instead of an input field, a longer HTML text area is rendered. Analogously, although
not implemented yet, the input of a date can be supported by a date picker, the input of
numeric values could be restricted further, and so on.

85

Fields that link to an Enumeration Linking to an enumeration means that the value is part of
a known solution space. In that case, a dynamic auto-completion field 9 supports the user
and verifies the input.

Fields / Sub Forms based on Associations Data instances are linked to each other based on
associations (OWL object properties). There are three main challenges regarding the rep-
resentation of linked instances. First, linked data instances need to be displayed transpar-
ently. Because most associations permit multiple data instances to be linked, it must be
ensured that (a) the instances are clearly identifiable, (b) each record is linked only once,
and (c) only the relevant instances are available for selection.

Second, there must be a way to add non-existing records, and link them with the main
record fluently. In other words, the user does not want to switch between forms, in order
to create and link data records with each other. Additionally, in some cases (e.g., recursive
self-references, compositions) this is neither possible.

Third, existing links need to be removable. This includes the physical removal of links,
inverse links (i.e., semantic properties), and the removal of the linked data instance itself,
in case of compositions.

The above-mentioned challenges are approached as follows. For each association, a dy-
namic select field (select2) is created. Based on the defined model cardinality, the selection
of entries is restricted. For each selected data record, a tag with the name of the record
is displayed. The naming of the tag is based on a heuristic; attributes whose name equals
“name” are assumed to contain the name of the instance. If no such attribute exists, then
the first attribute that contains “name” is selected. Otherwise, the first attribute of type
string, or the id, is used. The creation of the name can be overwritten programmatically.

The user selects the specific tag, and clicks on a displayed “edit” icon, in order to modify
any nested data instance. A (recursive) sub form, including all attribute fields of the sub-
entity, is displayed. The user can edit the record in place. After the modifications are
performed, the sub form is collapsed again.

Additionally, the user can add new records, or remove links to existing records, by remov-
ing the tag from the select form. The behavior for adding a new record is similar to the
procedure of editing a record. The main difference is that an additional select menu is
displayed, which lets the user select the specific sub-type of the new instance, based on
the modeled class hierarchy. The record is not added physically, until the changes in the
main record are submitted.

All forms and fields support the placement of help texts. In other words, all comments that
are added to the semantic model do not only increase the re-usability across modelers, but they
are also reused as help texts within the generated forms.

9Select2 UI Component: http://ivaynberg.github.io/select2/

86

6.4 A Repository for Semantic ITPM Models

The previous section described the technological aspects for the persistence of semantic models,
respectively ontologies. The efficient reuse of models, for the derivation of code, and UI ele-
ments, has been made clear. However, the structure of the designed project management models,
and the efficient population of the resulting PM ontologies, has been left out so far. This section
describes the integration of PM models and data, based on the Semantic ITPM Model Reposi-
tory, and MDSE.

The diversity of PM systems, tools, and standards, results in complex and elusive data integration
models. The omnipresent necessity to utilize domain- and enterprise-specific PM processes and
data, implies that the prescription of an optimal, universally applicable ITPM model, such as the
RefModPM, is not expedient. Hence, the solution approach does not focus on the specification
of a complete ITPM model, but suggests a framework, to enable the community-based exchange
of small-scaled PM (sub-) models that are understandable, reusable, adaptable, extensible, and
easy to integrate.

The remainder of this section is structured as follows. First, the implemented quality attributes
for the semantic ITPM model repository are summarized (section 6.4.1). The goal is to make PM
models shareable, reusable, and efficiently applicable. Afterwards, the structure / framework of
the model repository, as implemented for the ITPM dashboard prototype, is described (section
6.4.2). This part includes a description of the ontology structure, the organization of central
ITPM models based on the PMBOK knowledge areas, and the types of data (configurations,
rules, ITPM models, connector models), the degree of their reusability, and their application.
Next, the efficient integration of local data into the central semantic ITPM data store, based on
the designed models, and MDSE is described (section 6.4.3). Finally, the support of the Seman-
tic Model Editor, for the efficient integration of local data, based on MDSE, and the OpenEngSb,
is exemplified in section 6.4.4.

6.4.1 Model Repository Quality Attributes

Subsequently, the most relevant quality attributes that are addressed in the design of the ITPM
model repository, are summarized. The used software and data quality attributes refer to the
ISO 25010 and ISO 25012 quality standards [12] [68], and the Information Quality Evaluation
Framework of Rafique et al. [99].

Comprehensibility All models are representable and extensible, based on the common UML
class diagram notion of the Semantic Model Editor. The representation of ontologies
via UML syntax, enables the compact and efficient design of PM models. Based on the
experience of the CDL-Flex with industrial partners (IT domain), UML class diagrams
are well-accepted by practitioners, and promote the communication between management
and technicians.

Reusability / Portability All models are shareable across organizations, divisions, and com-
munities (PM, knowledge engineering), based on the semantics of the underlying OWL

87

ontologies. The persistence of the class diagrams as OWL files solves the problem of
pre-existing solutions in which either (a) the models are provided in UML class diagram
notion, but cannot be reused electronically because of the lack of a common interpretable
syntax (XML Metadata Interchange (XMI), cf. [48]) [6], or (b) the models are provided
as pure OWL ontologies, but difficult to understand / maintain by practitioners (lack of
industrial knowledge; no compact representation of concepts) [3] [117]. The ITPM repos-
itory stimulates the collection and elaboration of ITPM knowledge, in form of reusable
models. Once a model is available (e.g., for a specific PMS connector, such as Jira), the
model becomes explorable and reusable, by any organization or partner.

Transparency The models enable the communication of available PM software interface con-
cepts to the management. API concepts, usually only subject to technicians, become
transparently available in form of vivid graphical diagrams.

Technical Reusability Also technical modules are reusable by other organizations. For in-
stance, some implemented PM software connectors are provided to the OpenEngSb project
10. The designed PM models serve as the documentation for the implemented software.
Similarly, the models are reusable for the derivation of code and artifacts, such as generic
DAOs or UI elements, as presented in section 6.3. Finally, SPARQL queries and rules, al-
though demanding minor modifications, can be reused across organizations, to implement
escalation mechanisms, anti-patterns, or on-the-fly visualizations.

Scalability / Representational Adequacy Literature and industrial experiences show that ITPM
models tend to get out of hand and result in very large, unmanageable diagrams. The
Semantic Model Editor is optimized to efficiently support the modeling of consistent,
small-scale models. In addition, a template-based strategy for the structuring of the model
repository, based on the PMBOK knowledge areas, is provided. The procedure is elabo-
rated in section 6.4.2.

Adaptability All models and common concepts are tailor-able to the organization’s needs and
environment. Either the original model can be modified, or a copy can be created and
adapted.

Accessibility Unlike other modeling approaches, such as the EMF11, the approach requires no
setup of resource-intensive development environments and plugins that are only usable
by developers. The prototype is installable in a few minutes, or can be hosted on a cen-
tral server, so that related project roles can access a shared Web-based instance without
additional installation effort.

Consistency A problem related to the lack of a commonly accepted UML exchange format
(XMI) is that the consistency of diagrams is difficult to ensure. As a consequence, UML
class diagrams are often considered as graphical representations, rather than reusable, se-
mantic models. The application of OWL ontologies for the persistence of models ensures

10OpenEngSb Website: http://www.openengsb.org
11Eclipse Modeling Framwork: www.eclipse.org/emf/

88

the consistency of models in several ways. First, the application of a reasoner ensures
the consistency of a model. Second, the application of the MDSE-based code generator,
provides an additional verification step for the consistency of a model. For instance, if no
data type is specified for a class attribute, then the code generation will result in a compiler
error, or test failures. Third, ontologies enable knowledge engineers to specify additional
constraints. For instance, the knowledge engineer could create a rule, which states that
a team member can only work 24 hours per day. If the condition is violated, then the
reasoner will report the inconsistency.

6.4.2 Structure of the Model Repository

The model repository comprises four types of ontologies:

1. The data source configuration ontology contains the records for the integrated PM soft-
ware instances, and maintains the access and the mapping between local data stores and
the central semantic store.

2. The rule storage ontology preserves defined queries over integrated PM data, and stores
information about the visualization within the dashboard (e.g. table format, graph format,
diagram).

3. The ITPM core model represents the central model. This ontology maintains all common
concepts, including properties and links between the various concepts. The ITPM model
is the foundation for the rest of the ontologies and the ITPM dashboard.

4. The connector and tool-domain specific models represent the fourth artifact. These models
document accessible PM software products based on their APIs.

While the structure of (1) and (2) is fixed, (3) and (4) represent the extensible model repository,
which includes the adaptable PM concepts for the deducting and visualization of aggregated PM
data, and the specific connector models for the integration of versatile PM software products and
PM knowledge.

Table 6.5 summarizes the main ontologies, including their core structures, the degree of reusabil-
ity, and their application. The structure of the data source configuration ontology, and the rule
storage ontology are fixed. These ontologies only need to be filled with instances to operate the
ITPM dashboard. Data source configuration records are either project- or enterprise specific,
while rules/queries are reusable by the project manager across inter-organizational projects.
Based on the rule-based system, a project manager is able to build a personal repository / set
of rules and queries that can be reused and successively improved throughout the execution of
projects. In order to collect and structure queries, by default each rules needs to be assigned to
one of the PMBOK knowledge areas. This categorization is extensible. For instance, domain-
specific areas can be added.

The ITPM core model is the most comprehensive model. It is split into sub-packages, each
representing one PMBOK knowledge area. To keep the ITPM model scalable, identified com-
mon concepts must be modeled as UML classes within the adequate knowledge area, including

89

Model Structure Context / Reusabil-
ity

Need
to
Adapt

Application / Usage

Data
Source
Config-
uration
Ontology

Single ontology Project or enterprise-
wide.

No
need

Add data instances in ITPM
Dashboard and monitor the inte-
gration based on the synchroniza-
tion cockpit. Configure the map-
ping of multi-models.

Rule Stor-
age Ontol-
ogy

Single ontology;
rules are struc-
tured according
to the PMBOK
knowledge areas

Typically each
PM maintains a
set of rules; these
can be exchanged
with other PMs or
organizations.

No
need

Add queries based on the Seman-
tic Query Editor. KPIs, tables,
graphs, etc. can be visualized in
the PM Data sub-page, or inte-
grated into the central ITPM dash-
board.

ITPM
Core
Model

One model; Var-
ious packages
(PMBoK knowl-
edge areas plus
industry-specific
extensions)

Community-wide. Low-
med.

Adapt/extend the models accord-
ing to specific needs. Map the
connector-specific models to the
related concepts of the ITPM
Core models.

PM Con-
nector
Models

One package per
model

Connector models
are typically de-
termined by their
available APIs and
hence can be reused
and gradually re-
fined across the
community.

Very
low

Support for the implementation of
a connector based on API and
business requirements. The mod-
els can be reused to generate code
to smooth the transformation be-
tween the tool API and the com-
mon concepts.

Tool-
Domain
Specific
Models

One package per
model

Application specific
(OpenEngSb). Al-
ternative/extension to
the ITPM Core On-
tology.

Low-
med.

Same as ITPM Core model, but
the specific tool-domains are iso-
lated and are not linked with con-
cepts of other domains.

Table 6.5: Structure of the ITPM Model Repository.

all relevant attributes and associations. To keep the model representations compact, a defined
class can be reused in any other sub-package, to express associations between classes that be-
long to different knowledge areas. For instance, requirement and artifact are defined in the scope
management area. An artifact is assigned to one or several requirements, and consists of an id, a
name, and a description. A test case belongs to the quality management area. Because test cases
relate to an artifact as well, the artifact class needs to be modeled twice. However, because the
artifact class belongs to scope management, and the related attributes (id, name, description) are
already defined within this knowledge area, it is sufficient to re-create the artifact class without
attributes in the quality management diagram. umlTUowl extensions automatically resolve the

90

relations and the class associations, while deriving OWL ontologies and the code artifacts. The
proposed approach helps to avoid redundant definitions, and provides a clear categorization of
classes into knowledge areas.

Although almost any class can be mapped to one of the PMBOK knowledge areas, the PMBOK
structure has been found do not always be adequate for the representation of organization-
specific or PMS-related data structure patterns. Hence, additional sub-packages can be added
to model specifics. For instance, according to the PMBOK, issue management belongs to com-
munication management. However, based on the investigated software products, it has been
found that the ITPM model is more comprehensible, if the enclosed issue management concepts
are modeled in a separate package. By doing so, the representational adequacy of the model is
improved, and the mappings between the issue management concepts (respectively tool domain
concepts) become more traceable.

For each tool-connector, a separate model is created. These models are shareable between oper-
ators of the same PM software product. Because PM tools often have a fixed API, the identifica-
tion and refinement of models is typically converging, and hence can be improved successively
by various project managers, knowledge engineers, developers, or any other PM-related role.

6.4.3 Integration of ITPM Data based on Model-Driven Software Engineering

The ITPM core models represent abstract, virtual concepts. These concepts are derived from
specific PM software tools, with the objective to provide the project manager with an abstracted,
understandable view on relevant PM data. This view enables the project manager to:

• access unified, commonly understandable PM models and vocabulary. Irrelevant details
of local PM systems are abstracted away.

• derive aggregated knowledge, such as reporting figures, or monitoring information (e.g.,
based on SPARQL queries or SWRL rules).

• synchronize / share data between local tools.

• create work-flows to automate manual synchronization scenarios.

The specific PM data instances reside within the local PMS, but are periodically synchro-
nized (a) between tools of the same type (e.g., PM tracking software), (b) across heterogeneous
tools, based on work-flows, (c) with the central PM data store.

To enable data exchange, mappings between the local and the common concepts must be imple-
mented. The concepts of the core ITPM model (common concepts) must be designed thought-
fully. A trade-off between a very fine-granular model, which enables the accurate synchroniza-
tion of concepts across local PM systems, but is expensive to implement, and a very coarse
grained model, which lacks of specific data exchange, and possibly reporting features, but is
cheap to implement, needs the taken.

91

The design of models, based on the CNIP, and the Ontology 101 engineering methodology,
has already been described in section 6.2.2. This description is extended to pave the way for
the implementation of PM-related models, and the integration of local PM data, based on the
PMBOK knowledge areas, and the ITPM model repository.

Based on related work, and the studied use-case (chapter 5), the following modeling methodol-
ogy is suggested.

1. The high-level PM data concepts in place need to be studied and identified (e.g., require-
ments, issues). The high-level concepts (classes) are refined step-wise, by adding at-
tributes, and associations. For the modeling of the common concepts, PM literature, and
organization-internal standards, should be used. For instance, for the common concepts
of the ITPM dashboard prototype, “A Project Manager’s Book of Forms. A Companion to
the PMBOK Guide.” was utilized. The PM book of forms is a great entry point for the im-
plementation of a set of PMBOK-related data models. It contains a set of applicable PM
forms that are directly transferable into UML class diagram notation (classes, attributes,
associations). Hence, the application of industry standards, and the minimization of mod-
eling overhead, is ensured [111].

2. The data concepts of the specific PM software sources are identified and modeled, each
within a single connector model. The common model is compared with the local models,
based on the Semantic Model Editor (dual-view feature).

3. All attributes and associations that are available in the local concept, but not present in the
core ITPM model, are reviewed. Missing, but important concepts (attributes, associations)
are added to the common model, if necessary.

4. At the end of the modeling process, the common and local models are homogenized. The
mappings are either indicated by the names of the model concepts (classes, attributes,
associations), or described via comments. For this purpose, the Semantic Model Editor
supports the annotation of model elements at different levels of granularity.

5. A developer is charged to implement the designed models, based on the creation / exten-
sion of an OpenEngSb tool connector. The main tasks are:

a) Generate the source code (beans, DAOs, tests), based on the Semantic Model Editor.

b) Implement / supplement the mappings between the tool API, and the generated con-
nector model (classes, attributes, associations, data values / enumerations). Depend-
ing on the tool API’s data format, parts of the mappings can be automatized (e.g.,
JSON/XML: automated mapping between JSON and Java is possible). Based on
the project manager’s requirements, the mapping needs to be either bidirectional, or
unidirectional (the latter implies lower implementation effort).

c) Implement the mapping between the connector model and the PMBOK knowledge
areas, respectively OpenEngSb tool domains.

92

d) Test the implementation and deploy the changes (ITPM dashboard update).

e) Refine the provided models on demand, and repeat the steps a - d.

Figure 6.6: Mapping between PMS Models and the ITPM Model (Model-Based View).

Figure 6.6 visualizes the mapping between (local) software tools and the ITPM core model
(common concepts), and takes a model-based perspective. The approached integration solution
can be interpreted as a set of Model to Model (M2M) transformations. To detail the effectiveness
of the MDSE - based integration approach, the four identified model types in figure 6.6 are
summarized, subsequently.

Tool-Internal Model The tool-internal model represents the data structure on which a specific
PM software product (in the figure the product is called “PM Software A”), or a PM knowledge
source, builds upon. This model is typically neither accessible, nor disclosed. For instance, Jira
issue utilizes a relational data storage, but the exact data tables and interrelations are hidden.
Laymen may reason about the internal data model, based on UI elements, API access, or other
documentation artifacts.

Retrieved API Models Most tools provide APIs to retrieve and/or modify (parts of) the in-
ternal data model. Some APIs are very comprehensive, other provide only basic read access.
Some products provide a single API (e.g., REST), others provide complementary APIs of var-
ious technologies (e.g., Jira: management of project core data and users via SOAP; access to
issues via REST API). To access specific API models, various function calls with different pa-
rameter values must be performed. Each distinct call results in a subset of the totally accessible
data model. Some calls may provide overlapping results, others may lack of eligible data. Based
on the API documentation, and experimenting with the API, the technician will reconstruct the
tool-internal data model.

93

Reconstructed Connector Model (Local Concepts) The physical implementation of the re-
constructed tool-internal model, although desirable (at least partly), is unreasonable for most
tools: The implementation costs outweigh the improve in quality (maintainability, stability).
Hence, the developer typically just needs to ensure that the concepts of the “reconstructed con-
nector” are appropriately mapped with the retrieved API models, to ensure that the requirements
for the mapping with the ITPM core model (common concepts) are satisfied.

However, there are also several cases in which the employment of an intermediate, tool-internal-
like model is quite simple. If the API provides access to well-structured models, e.g., in XML
or JSON format, such as REST APIs do, then based on the data structure, these models become
automatically processable by JSON/XML to Java converters (e.g. FlexJson12). The requirement
for the JSON/XML to Java conversion is the availability of appropriate Java beans. These beans
are automatically generated via the MDSE approach. Once the Java artifacts are in place, the lo-
cal concepts, based on the tool API can be transformed directly into the reconstructed connector
model, including additional validation steps, based on the derived connector model code. Thus,
the transformation becomes essentially a model-to-model (M2M) approach, in which the local
connector model concepts are mapped to the concepts of the ITPM core model, and vice versa
(in the prototype: Java to Java mapping).

ITPM Core Model The data instances of the ITPM Core model are those, accessible via the
UI of the ITPM dashboard. The mappings between the local concepts of a connector, and the
ITPM core model focus on a specific knowledge area, respectively sub-package. For instance,
Jira issues belong to the issue management package13. However, a tool connector typically
accesses also other knowledge areas. For instance, issues in Jira may belong to a certain compo-
nent. The attributes of the local concept component is mapped to the common concept artefact
which relates to scope management.

A main benefit of the solution approach is the maintenance of cross links (CL) between knowl-
edge areas within the ontology (cf. figure 6.6). CL are maintained as object properties in the
central OWL data store. This is an essential difference to the OpenEngSb tool-domain concept.
Based on tool domains, all concepts of a connector are mapped to exactly one knowledge area,
respectively tool domain. Hence, if various concepts need to be mapped between the local and
the central representation, the tool domain needs to include redundant information about related
concepts of other tool domains. For instance, in Jira, an issue (main concept) would either
need to contain all data about the issue reporter (additional attributes), or an attribute with a
key, to identify the related collaborator within a different domain. The retrieval of aggregated
data based on tool domains is less efficient, because (a) the OWL object property (CL) cannot be
queried directly, (b) the keys between the two different tool domains must be stored redundantly,
and (c) matched manually (more complex, inconsistent SPARQL queries).

12FlexJson: http://flexjson.sourceforge.net/
13Strictly speaking, issues belong to the PMBOK’s communication management knowledge area. An additional

UML package was added to keep the model understandable, though.

94

Based on the suggested M2M approach, the integration can be automated to a large part, and
the stability, testability, and maintainability of the implementation are improved. Especially the
stability of the synchronization process is improved, because the validation mechanisms detect
errors earlier, and help to trace error sources more accurately. Note that the mapping of the entire
local model is neither feasible, nor sensible. The main reasons are that (a) not for all local models
an equivalent common model exists. (b) the implementation efforts to reach data completeness
are very high. (c) the synchronization of the entire local data model results in bloated interfaces,
and inefficient workload of technical resources (performance). Hence it is sufficient to identify
a main concept, for which the mapping of required attributes and associations is implemented.
Auxiliary concepts can be added on demand.

To provide an example, in Jira, the main concept is an issue. The mapping between the
local issue concept and the central one has been implemented for the ITPM prototype very
completely. Auxiliary concepts are project, user, or component. These concepts are required in
order to maintain issues. Hence the mapping of the required sub-concepts has been implemented
too, but the integration focuses on the relevant attributes and associations.

6.4.4 Semantic Model Editor UI-Support for OpenEngSb Integration

The discussion in section 6.4.3 shows that the implementation of a M2M approach, based on an
intermediate connector model, should be aspired, if feasible. Besides code generation capabil-
ities, the Semantic Model Editor provides additional features to smooth the implementation of
new connectors, based on the tool API they bind to. Subsequently, the main features, based on
the UI-based annotation of model elements, are summarized.

Figure 6.7: Annotations of Model Concepts for the Generation of Code

Annotation of Models As already outlined in section 6.3, the annotation types connector,
and tool domain can be assigned to a model in order to control the location of the generated
code. The annotated models are marked with a specific icon within the Semantic Model Editor
repository.

Annotation of Packages, Classes, and Attributes For each package, class, and attribute a
scope can be assigned. The related concepts are colorized within the editors UI (cf. 6.7). Addi-
tionally, and an internal annotation is added. The scope defines, how the code generator proceeds
with the specific concepts, and provides background information for collaborative modeling:

Tool-Internal The modeled concept is part of a PMS / tool (cf. figure 6.6; tool-internal model,
retrieved API models). The concept is either not accessible, or it is yet unclear whether,

95

and how, the concept should be integrated. In addition, this annotation is used to inform
about an inherent concept, which for any reason is not used within the tool connector
implementation. No code is generated for tool-internal concepts.

Example: The Jenkins build server provides a REST API. However, because the interface
is complex and not intuitive, it cannot be directly transformed into a connector. Hence, a
model is created for the REST API (information purpose), but the mapping between the
retrieved API models, and the local connector models is conducted manually.

Local (Tool-Specific) The code for the local connector concepts is generated, so that they can
be leveraged to automatically transform API models into a (local) connector model. The
utilization of the DAOs validation procedures is optional.

Example: By creating the connector models purposefully, the transformation between
several models of Jira’s REST API (JSON), and the generated Java beans are automatized.
The generated Java-bean are automatically populated with data content from JSON. The
generated DAO is used to verify that the integration is complete.

Local and Available Same as “local (tool-specific)”, but the local connector model is persisted
entirely in the central data store, based on the local DAOs. This state has not been used
throughout the use-case evaluation. The intend is to maximize the data completeness
of the integration for ITPM projects that need to integrate various instances of the same
software product.

Example: A specific project requires the integration of several parallel Jira instances,
administered by different, autonomous project organizations.

Suggested Class This state does not directly relate to the models, as described in section 6.4.3.
The state is used to suggest concepts that are not yet accessible.

Example: The project manager requests a new attribute, which is not implemented yet.
For instance, a “due date” for the common issue concept should be added.

Global Available The default state for common concepts. Means that either the concept is
available for querying within the ITPM core model (the content can be visualized within
the ITPM dashboard), or that the scope has not been defined explicitly (for connector
models).

6.5 Concluding Remarks

This chapter introduced the SIFPM for the systematic integration of PM data at various organi-
zational levels. The main (design-science) outcomes are

• the CNIP, for the negotiation and integration of PM integration at the management level,

• the ITPM Dashboard, for the central management of PM data visualization, and integra-
tion, the visualization and monitoring of PM

96

• the Semantic Model Editor, for the maintenance of models, and the derivation of additional
code and data artifacts,

• the Semantic Model Repository for ITPM models, which addresses (a) sharing and reusing
PM models across projects and managers, (b) the efficient integration of local PM data,
based on a MDSE approach, and the OpenEngSb.

The solution outcome is generally applicable for complex IT projects with heterogeneous
project partners, but is especially useful for IT project management in consortia. More pre-
cisely, the focus is on new consortia, with a limited lifespan, respectively project duration (e.g.,
0.25 - 2 years).

The visualization and configuration capabilities for the project manager has not been addressed
so far. The configuration of the dashboard, including the specific description of model-mappings,
work-flows, and SPARQL queries, based will be elaborated in chapter 7.

Due to the limited space of the work, the entire capabilities of the dashboard (and its sub-
modules) cannot be demonstrated. Additional screenshots of the UI are however provided in
appendix B. Likewise, an overview of the architectural software layers (module view), technical
integration processes, MDSE mappings, and reference models is provided in appendix A and
appendix D.

97

CHAPTER 7
Results and Evaluation

The systematic PM integration framework (SIFPM) is applied to the consortium UC, (introduced
in chapter 5), to demonstrate its usefulness. The results of the application are evaluated.

The evaluation focuses on the demonstration of the net benefits for the project manager, based on
the configuration of the ITPM dashboard. In addition, the efficiency for the integration of new
PMS connectors is evaluated from a technical perspective (comparison of development efforts).

Figure 7.1: Overview on the evaluation steps and the addressed organizational levels.

99

Figure 7.1 summarizes the main steps of the evaluation and the involved organizational lev-
els. Section 7.1 demonstrates the automation and visualization capabilities of the ITPM Dash-
board. For that purpose, the communication plan of the consortium, introduced in chapter 5,
is revised, and potential automation scenarios are identified and addressed. The fitness of the
ITPM dashboard is demonstrated via its configuration for the consortium UC. The outcome
of the dashboard configuration serves as the input for the cost-benefit analysis in chapter 7.2.
Within the analysis, the installation and configuration costs of the ITPM dashboard are com-
pared against the time-savings for the project manager. The assumption is that no technical
implementation efforts are necessary. In other words, all PMS connectors are already avail-
able in the official OpenEngSb repository 1. Section 7.3 evaluates the integration framework on
the technical level. On that score, the implementation effort for the conventional OpenEngSb
connector development process is compared against the proposed MDSE approach.

7.1 Dashboard Configuration

The configuration of the ITPM dashboard mainly involves (a) the adding of available/data
sources to the synchronization cockpit, (b) the implementation of cross-domain work-flows,
and (c) the construction of SPARQL queries to derive and visualize knowledge from integrated
data sources (cf. figure 7.1).

The capabilities of the ITPM Dashboard are evaluated for the use-case, which has been pre-
sented in chapter 5. The following basic assumptions are made in order to make the evaluation
of the dashboard configuration more compact:

1. The CNIP meeting2 has already been performed by the managers of the consortium. A
manager (respectively team leader), and a technician from each organization participated.
Also, a functional manager (top-management) of organization A was present. In total, the
meeting comprised eight participants.

2. The meeting participants discussed the main integration issues in a three-hour session.
They followed the CNIP.

3. The project partners identified the most relevant PMS and tools of each organization. They
added all relevant sources in the ITPM synchronization cockpit, including the access data
for the tools’ APIs. While the meeting, the the present technicians ensured that all APIs
were accessible for the project manager in read and write mode, so that they are usable
throughout the project.

4. Based the joint creation of a communication plan, the meeting participants identified seven
problem areas with integration/automation potential (cf. figure 7.2). These seven areas
imply the creation of work-flows and queries. The requirements for the technical integra-
tion of the work-flows and queries have been sketched, but the implementation of these
artifacts has not been performed yet.

1OpenEngSb: http://www.openengsb.org
2Consortium Negotiation and Integration Meeting, cf. chapter 6.1

100

5. The meeting concluded as follows: The technicians confirmed that there is no need for
the creation of new connectors, or the extension of existing connectors. The management
agreed that the configuration expenses for the automation of the seven identified problem
areas are justified, and potentially beneficial for further projects. The ITPM dashboard has
been installed and configured on the project manager’s laptop. In a next step, the project
manager and a technician/knowledge engineer will meet to finalize the configuration, by
implementing the missing work-flows and queries.

Subsequently, the configuration of the ITPM dashboard is evaluated, from the viewpoint of
a project manager and a knowledge engineer, who follow-up the CNIP meeting in a joint ses-
sion. The main input for the modeling session is the revised communication plan of the project
consortium, and the pre-configured ITPM dashboard on the project manager’s local computer.
The revised communication plan is visualized in figure 7.2. The difference between the origi-
nal version (figure 5.3) and the revised version are that the seven identified problem areas are
highlighted in the latter. These problems are grouped into two groups: The first group addresses
synchronization and integration scenarios on the horizontal level, i.e., the synchronization be-
tween different local representations, based on common concepts. The second group addresses
the vertical integration of data, viz., the derivation of PM knowledge, based on the centrally
integrated data, SPARQL queries, and ITPM dashboard visualizations.

7.1.1 Horizontal Integration and Synchronization

Synchronization of Requirements (Figure 7.2 - 1) The first scenario addresses the synchro-
nization between the MS Excel requirements of the researchers, and the management require-
ments (Google Drive spreadsheets).

The mapping of the multi-model data sources entirely takes place by specifying the format and
appearance of each column, based on the data source configuration ontology: no additional con-
nector implementation effort results. The project manager and the knowledge engineer add the
mappings for each of the two local requirement formats (cf. bottom left corner of figure 7.3),
and the common concepts (top left corner). The configuration is performed via the automatically
derived ITPM dashboard UI forms (1,2). The mappings are interpreted by the MDD Connector
during runtime (cf. 6.4.2).

As figure 7.3 shows, the data formats of the spreadsheet files are similar, so they can be effi-
ciently linked to the related common concepts of the PMBOK scope management knowledge
area (cf. [111]):

1. Each spreadsheet row corresponds to a single requirement.

2. The primitive fields (e.g., id, name, description) are mapped to the corresponding at-
tributes of the common Requirement.

3. The optional field parentId corresponds with the inverse association of Requirement. sub-
Requirement (the association subRequirement of the common class Requirement).

101

Figure 7.2: Communication plan with identified scenarios for optimization (scenarios 1-5: hor-
izontal integration. scenarios 5-7: vertical integration (5 includes both).

4. The fields interrelatedReqIds contain multiple ids, separated via semicolon. For each of
those id’s, a self-referencing association Requirement.depends_on is created.

5. The field artifactId contains a cross-reference to Artifact. The id contains the name of the
related work-package, which in the UC corresponds with the name of the software module
(e.g., itpm-dashboard). For each new id, a new instance of Artifact, and a bidirectional
reference (produceArtifact) to the related requirement, are created.

There are two main differences between the local requirement representations. First, the
order of the fields in the local spreadsheets are different. For instance, the management is more
concerned about the priorities and the stakeholders and hence wants to have these fields first.
The order of the fields is already addressed during the mapping of the fields to the common con-
cepts. The second difference is that researchers capture the internal acronyms for requirement

102

Figure 7.3: Mapping between the local requirement spreadsheet formats, and the common con-
cepts (simplified version).

stakeholders (e.g., “agr” for “Andreas Grünwald”), while the management requires the complete
stakeholder names (they do not understand the meaning of the acronyms) (cf. red exclamation
mark in figure 7.3). This mismatch cannot be resolved without having additional information.
Luckily, as indicated in the communication plan (figure 7.2, each consortium partner also pro-
vides an Excel-list with all project participants, including stakeholders, involved (consecutively
referred to as team data). The team data includes hierarchical information and the internal
acronyms for each contact, and can be integrated into the ITPM dashboard (3). The structure of
the local team data format is summarized in the right-bottom corner of figure 7.3. The relation
between stakeholders and collaborators is indicated in figure 7.3 (4). To resolve the mismatch
within the data source configuration, the knowledge engineer (or the manager) maps the field
stakeholderIds to Stakeholder.id (top-left corner), and marks that the field can contain multiple
entries. Likewise, the field stakeholderNames is mapped to Stakeholder.name. Based on the col-
laborator records, which are loaded into the central semantic ITPM store, the id’s are associated
with the existing stakeholders.

103

As soon as the configuration records are activated in the synchronizer cockpit, the local spread-
sheet sources are polled, frequently. A spreadsheet is up-streamed/down-streamed as soon as the
modification date of the file exceeds the date of the last poll request.

Derivation of Issues from Requirements (Figure 7.2 - 2) The second scenario addresses the
high manual effort for the creation of issues (features) in the local software tracking systems
of the two development teams (organization A and C). The project manager and the knowledge
engineer elaborate three work-flows, which are visualized subsequently. The current prototype
supports the runtime configuration of work-flows based on Drools.

Figure 7.4: Work-flow for the automated creation/update of issues based on requirements.

The first work-flow (figure 7.4) is triggered by the OpenEngSb work-flow engine, whenever
a requirement is inserted or updated. For each new requirement a corresponding issue is created
in the central ITPM data store. If a correlated issue already exists, then the relevant charges
are merged. The name, priority, and the description of the requirement are reused for the cre-
ation/modification of related issues. The work-flow also supports the automated creation and
assignments of stakeholders and artifacts. The first stakeholder is assigned as the reporter of
an issue. For each provided artifact (id), a new product is created in the central store. A prod-
uct equals a deliverable, with a unique name (the id), and an optional description and version
number.

Whenever a requirement is deleted, the corresponding issue must be removed as well (figure
7.5). As it is unlikely that requirements are removed after the requirements-specification phase,
there is no need to verify the state of the issue before removal.

The third work-flow addresses the back-propagation of issue changes to the corresponding
requirement (figure 7.6). It is reasonable to synchronize the priority and the description of the

104

Figure 7.5: Work-flow for the propagation of requirement deletions.

Figure 7.6: Work-flow for the automated creation/update of issues based on requirements.

original requirement, to keep the artifacts inline. In addition, the work-flow enables the project
manager, to edit requirements, based on the UI of a more powerful PMS (e.g., editing in Jira or
Redmine).

The execution of the work-flows takes place on the level of the common concepts. The project
manager does not need to care, how many and which specific PM tracking systems are in place.
The implemented synchronization mechanism takes care of the distribution into the local PMS.
As the design of the work-flows indicates, not only issues are synchronized, but also related con-
cepts, such as artifacts, and stakeholders/collaborators. The synchronization mechanism even
configures default projects and user permissions, on-the-fly.

Synchronization between PM Trackers / Project Configuration (Figure 7.2 - 3) The third
identified optimization scenario addresses to the synchronization between Jira Issue and Red-
mine. There are two extreme cases, on how to manage the simultaneous development of soft-
ware artifacts for two distributed teams: (1) The two development teams are managed completely
isolated. This approach works as long as there are no overlapping features, and no integration
takes place. (2) The two teams are managed as a single, virtual team. The advantage of this
approach is that idle states and imbalanced workloads are reduced. In addition, the features are
developed much more integrated, and the coordination effort of the project manager is reduced
significantly. However, the virtual team approach requires an accurate synchronization of the
development teams’ state, i.e., a single “virtual” PM platform.

By automating the synchronization between Jira and Redmine a single, virtual platform can
be simulated. Because sophisticated connectors for Jira and Redmine are available, no addi-
tional effort results for the project manager: As soon as the access data is configured within the

105

ITPM dashboard, the synchronization takes place, either continuously, or manually controlled,
from time to time (e.g., every day at 6 pm).

Besides the automated exchange of central tracking concepts (issues, artifacts, comments), the
provided issue connectors relief the project manager from the tedious configuration of the local
projects. In particular, the synchronization mechanism automatically creates a default project
during the first synchronization, assigns the project manager as the administrator, and copies
user data on demand.

Figure 7.7: The Default Configuration Process is triggered during the downstream of issues
(part of the solution approach; no manual implementation effort necessary).

Figure 7.7 summarizes the intrinsic project configuration work-flow of the synchronization
mechanism.

Figure 7.8 summarizes the mappings between the local and the common concepts of the avail-
able tool connectors (simplified version). The encircled numbers (1-4) indicate the mapping
between classes. The numbers 5-7 indicate the resolution of mappings on the attribute level.

1. IssueType: All three views (the local view and the common view) contain the types bug
and feature, so the mapping is straight-forward. Jira provides additional issue types for
agile PM (e.g., user story or epic). All views support the creation of additional issue types.

2. Priority: The priorities of Jira are mapped to a scale between one and five (1: blocker; 5:
trivial). Redmine knows only four priorities, so “Prio4” and “Prio5” are both mapped to
the Redmine priority “Low”.

3. State: The common view maintains a simplified version of the issue state, which is eas-
ier to query, and sufficient for the project manager: An issue that is neither active nor
completed corresponds to the value “New” in Redmine (the related class is called Tracker

106

Figure 7.8: Mapping between the local and common PMS concepts (simplified version).

in Redmine). The status “active, but not completed” corresponds with Redmine’s “In
Progress”. If an issue is completed, but not active any more, then it is “Closed”.

The mapping between the common concepts and Jira is more complicated, because Jira
maintains the status in two fields, viz., “Resolution”, and “Status”. The status of a Jira
issue is updated by applying a “transition”. Transitions base on simple work-flows and
describe, which successor states are reachable from a current state. For instance, if an
issue is in progress, it cannot be set to “open” anymore. The field “resolution” can only
be set if a issue is closed or resolved.

The state “active, but not-completed” of the common concept is mapped to the Jira state
“In Progress’. The state “not active, not completed” is mapped to “Open”. “Active,

107

not completed” is mapped to “resolved”, and “not active, completed” is mapped to “Re-
solved”. The resolution is set to “Fixed” on default.

Reporting of Bugs by the QM (Figure 7.2 - 4) The fourth inefficiency appears because the
project manager must synchronize (create and assign) the identified bugs of the QM team (orga-
nization D) with the local PMS of the development teams.

The QM team receives the basic test instructions from the project manager. They can access
the central source code repository (e.g., Bitbucket3) to monitor code updates, and to add unit
and integration tests4. However, the QM has not access to the two different PMS of the organi-
zations A and C, and they are not confident, to which team a identified bug should be assigned.
As a result, the bug descriptions are forwarded to the project manager, who adds the issues (of
type “bug”) to one of the local issue trackers. The team leader can then assign the bug to a
developer, or a available programmer self-assigns the bug.

The manual back-propagation of status updates to the QM team is tedious and inefficient as
well. First, the project manager must frequently screen the PMS, and must forward forward bug
updates to the QM. It is probable that the manager overlooks already resolved bugs, which can
result in idle times and delays of the QM team. Second, some bugs can be blockers, i.e., the
QM requests their resolution immediately. In that case it is likely that the QM managers poll
the project manager oftentimes, because they want to know if the specific bug already has been
resolved.

The central issue for the automation of scenario 4 has already been solved by entirely syn-
chronizing the local PMS (figure 7.2 - 2). Because the project state is tracked in one virtual
system, bugs can be added to any of the two tracking systems, and are automatically distributed
to the responsible team/developer. In order to add and track bugs directly, the QM team needs
access to one of the issue trackers. Fortunately organization C grants the QM team access to
their Redmine instance. The administrator of organization C adds the user accounts manually,
and the project manager provides the QM team members with the access data.

Because organization C cannot tell whether their project team is complete, or if there will
join one or two additional QM engineers on short-notice, the project manager decides to create
a simple work-flow for the creation of user accounts and default passwords, based on the team
data of organization D (already integrated in scenario 1). The related work-flow is visualized in
figure 7.9.

Note that figure 7.9 refers to the sub-process “Manage User Account”, which is part of the
default project configuration process (figure 7.7). The creation of a dummy issue is required,
because the synchronization mechanism of the ITPM dashboard only down-streams instances,

3Bitbucket: http://www.bitbucket.com
4The repository is not included in the communication plan (figure 7.2), because it contains technical artifacts

rather than directly PM-related data.

108

which are linked to the main concept of a connector (the main concept of PM/issue trackers is
“issue”).

Figure 7.9: Work-flow for the creation of user accounts for the QM team (based on team data).

As a side-effect, the automated derivation of issues based on requirements (figure 7.6) im-
proves the traceability between requirements, issues, software artifacts, and test results, which
is beneficial for the QM team.

Automated Derivation of Test Reports (Figure 7.2 - 5) The implementation of automated
test reporting requires two steps. First, the relevant QM data (test results, product quality met-
rics) must be extracted from the Jenkins build server API, and translated into concepts that are
interpretable by the project manager. Second, based on the integrated data, queries and dash-
board elements for the aggregated visualization of QM data can be created.

The mappings between the local and common QM concepts are summarized in figure 7.10.
As the bottom half of figure 7.10 shows, the concepts of Jenkins are technically-oriented, and at
a first glance, to not show a direct relation with the software artifacts and tests of the common
model. Before describing the mapping in detail, a brief overview on the structure of the local
and common concepts, is provided:

1. Local Jenkins Structure: For each main artifact in the source code repository, a Jenkins
build job must be created by the QM team. The quality engineer links the job with the
source code repository, and schedules the build process (e.g., execute the job whenever a
new update appears in Git; execute the job every 2 hours). Once a job is started (either
manually, or automatically), then the source code of the main module, and all sub-modules
are compiled, and all linked tests are executed (e.g., based on a build automation tool such
as Maven5). Each build results in a number of test reports, on the test suite level, and
on the test-case level. Each report includes the number of succeeded, failed, and ignored
tests. For each sub-module, a test report is created as well.

2. Common Concepts Structure: The common concepts capture the class structure more
vividly. The design relates to the approach of the OSLC framework, and the structure
of the JUnit test framework 6. The main entry point is the test Scenario, which can be
decomposed into suites and test cases. A test scenario can relate to a unit test scenario,
and integration test scenario, etc. Opposed to the structure of Jenkins, the test reports,

5Maven: http://maven.apache.org
6JUnit: http://junit.org

109

i.e., test results, are available on all three levels. Thus, accumulated test results on the
highertest-scenario level are available for the project manager.

Figure 7.10: Mapping between the Concepts of the Jenkins Build Server and the Common
Concepts of the QM and Scope MGMT areas (simplified version).

The mappings between the test outcomes (figure 7.10 - 1,2,3,4) of the local and the com-
mon levels are straightforward. The only difference is that the test results for the test-scenario
level must be derived during the upstream procedure of the ITPM dashboard synchronization
mechanism. More precisely, the test results of the test suites must be accumulated. A critical
issue is, how the test results of Jenkins can be linked to meaningful artifacts that are known by
the central ITPM data store. The answer is, that the mapping is based on the artifact id, which
is linked within the requirement specifications. More precisely, the name of the build job must
contain the artifact id in some way, to establish the connection between artifacts and software
modules. Analogously, sub-modules can be linked to artifacts, if their name (typically derived
from the package namespace in Java, or from Maven metadata) contains the artifact id. If more
than a single artifact match, then the more accurate matching is selected, respectively a match

110

based on a build job is preferred over a match on the level of the sub-module (figure 7.10 - 5).

The classes SlocCountFile, SlocTextLine, and Metric (figure 7.10 - 6) have been left out so
far. SLOCCount is a Jenkins plugins that summarizes the total lines of code for specific sub-
modules and packages7. For each build job a sequential SlocCountFile is created. The file
consists of text lines (SlocTextLine) that contain the module name, the type of analyzed code
(e.g., Java or XML), and the associated lines (separated by tab stops). The file information is
mapped to the common SoftwareModule concept. A SoftwareModule can have various metrics.
The name of the metric specifies its type (in this case the name is LOC).

For the UC, the assumption is that the QM connector is already available off-the-shelf. Thus,
the project manager and the knowledge engineer only need to check, if the access data for the
Jenkins API has been correctly added to the synchronizer while the management meeting, and
then can start immediately to stream the QM results.

Note that the connector only provides one-way synchronization (upstream), because from a
project manager’s point of view, there are no QM artifacts to downstream into Jenkins. Part 2 of
the UC-based QM data integration is continued in section 7.1.2.

7.1.2 Vertical Data Integration and Visualization

The second part of the dashboard configuration addresses the derivation of project insights,
based on SPARQL queries and predefined, customizable ITPM dashboard visualizations. As all
distributed PMS and tools have been configured in section 7.1.1, the data is readily available in
the central ITPM data store, and can be queried.

Figure 7.11: The configured Synchronization Cockpit (1), and the Semantic Query Editor (2).

Figure 7.11 - 1 shows the Synchronization Cockpit that enables the project manager to mon-
itor and control the ongoing data synchronization process. The configured cockpit contains

7SLOCCount: https://wiki.jenkins-ci.org/display/JENKINS/SLOCCount+Plugin

111

representatives for all data sources, discussed in section 7.1.1 (the last three rows link to collab-
orator timesheet’s and are explained throughout the remainder of this section).

Figure 7.11 - 2 visualizes the main elements of the Semantic Query Editor, which is used for the
design and visualization of queries within the ITPM dashboard. The project manager, with the
help of a knowledge engineer, can utilize the Semantic Model Editor to look for the available
data models, and leverage the Query Editor to auto-complete the query. The knowledge engineer
utilizes the query editor, to validate and preview the designed query, and to specify the format
(table, diagram, nested graph, KPI), and the location of the output within the ITPM dashboard.

Subsequently, a subset of the overall developed SPARQL queries, which provide a mid-ground
of (a) presentability, and (b) usefulness, are evaluated in detail, based on the left scenarios (5, 6,
7) of the communication plan (figure 7.2).

Automated Derivation of Test Reports (Figure 7.2 - 5, part 2) As the local Jenkins instal-
lation of organization D is not accessible for the project manager, the QM team-leader must
periodically report the main test results and metrics to the project manager (e.g., once a week).
The creation of the test reports is a tedious manual activity: A QM engineer must collect the
scattered information on the Jenkins server, and aggregate the data into diagrams, based on Ex-
cel, or Power Point. The project manager needs to distribute relevant results and states, to the
top-management, and the local teams. Time pressure results, if the QM reports are tardily de-
livered. In addition, rework becomes necessary, if the reports are too detailed, lack of relevant
information, or are not appropriately formatted.
To improve the reporting of QM data, the project manager and the knowledge engineer jointly
implement a set of SPARQL queries for the integration of basic QM data and software metrics.
Subsequently, two representative SPARQL queries are exemplified.

Figure 7.12: SPARQL query and ITPM dashboard visualization for the representation of the
Lines of Code (LOC) per main software module.

112

Query 1: Lines of Code per Software Module The first query configuration renders the
total LOC per main software artifact in a one-dimensional bar-chart (figure 7.12). The ITPM
dashboard derives the appropriate chart format, based on the the available columns (id, im), and
their data formats (text, numeric). The SPARQL query consists of three triples, which establish
the link between class concepts and data values, via properties. In row 2, all entities within
an existing artifactId (data property) are selected. As a result, ?x provides a reference
to instances of the type Artifact. Row 3 restricts the solution set to those instances that
own a codeMetric object property, i.e., they link to an instance of the type Metric. Row 4
references the data property metricValue so that it is available in the solution set. Finally,
row 5 sorts the result in ascending order of the id.

Query 2: Test Results Grouped by Software Module and Test Outcome The second
query aggregates the test results in a two-dimensional bar-chart (figure 7.13). The number of
passed, failed, and ignored test runs is derived on the scenario-level, and linked with the core
software modules of the project. The precise number of test failures can be obtained by (a)
hovering the bar charts of the diagram within the ITPM dashboard, or by (b) changing the output
type of the query to “table”.

Figure 7.13: Visualization of test results, grouped by software module name and result type.

LOC are a popular and efficient measure to perform and communicate basic inferences about
a project’s size, its complexity, progress, and performance. Mc Connell provides several meth-
ods to derive accurate estimations for upcoming project activities (e.g., the efforts for construc-
tion or testing), based on LOC, respectively Function Points (FP)8. In addition, FP and LOC
can be utilized for the estimation of defects. For instance, the implementation of a piece of code
results in an average rate of 1.75 defects per FP (cf. [83, p.242]).

The visualization of test results provide quality insights regarding the stability of the software,
8LOC can be transformed into FP via conversion tables; e.g. one FP equals 55 Java LOC [83, p.202]

113

and its high-level test coverage. For instance, the diagram in figure 7.13 indicates that the model-
driven modules (CDLFlex-MDD, Custom-itpm-generated) of the project are tested very inten-
sively, while the stability of the UI (Custom-itpm-standalone), and the OpenEngSb integration,
including the synchronization mechanism, and all connectors (custom-itpm), still can be im-
proved.

Integration of Time Efforts (Figure 7.2 - 6) The monitoring of time exposures, and the ef-
ficient allocation of human resources is a crucial management task. A wide-spread method
track efforts is the utilization of personal spreadsheets. These spreadsheets are forwarded to the
team leaders, or the project manager, which review, accumulate, and analyze the efficiency of
the resource allocation. Because the collection is a time-consuming, repetitive task, the project
manager decides to automate the collection and analysis of the collaborators’ time efforts.

Query 3: Visualization of Team Hierarchy The manager utilizes the existing team data
spreadsheets and the ITPM dashboard, to derive a graphical representation of the team hierarchy.
The hierarchy allows the manager to visibly allocate collaborators to teams and organizations,
and to systematically integrate the personal time-sheets of the team members.

Figure 7.14: Graphical representation of the team hierarchy within the ITPM dashboard.

The derivation of the team hierarchy is visualized in figure 7.14. The example demonstrates
the efficiency of SPARQL to query graph hierarchies. Line 12 establishes the link between

114

collaborators (?x) and their superiors (?y). The optional statements (line 15, line 20, line 25)
collect information about the team membership, and the roles of the collaborator within the orga-
nization and the team. The lines 2-7 format the output and map it to the predefined ITPM graph
structure. More precisely, the field names ?title, ?text, ?icon, and ?status are key-
words that enable the knowledge engineer, to format the appearance of the graph (icons, color,
shapes, labels), based on common practices of the Twitter Bootstrap framework (cf. chapter
2.3).

Query 4: Time Exposures per Day and Collaborator for the Past Week For each team
member (or sub-team), a data source configuration is added to the ITPM dashboard (Synchro-
nizer Cockpit). For the UC, all team members track their expenses on a provided spreadsheet
template (as the case at the CDL-Flex). The spreadsheet template consists of the following
columns (the format of the CDL-Flex-internal time-sheets is applied): week of year, month, op-
tional issue number, optional artifact ID, optional UC name, task description, effort in hours.

Because all collaborators utilize the same spreadsheet format, the mapping between the spread-
sheet columns and the common concepts only needs to be performed once. For the remainder,
the configuration can be copied; only the source location must be modified. It is up to the col-
laborators, to track their efforts in MS Excel, or online (Google spreadsheets). The integration
of both formats is supported.

Figure 7.15: SPARQL for the aggregation of time exposures per day and collaborator (for the
past seven days).

Figure 7.15 demonstrates the utilization of SPARQL, to retrieve the grouped time efforts, for
each collaborator, throughout the past seven days. The core ITPM ontology maintains links be-
tween collaborators, time-sheets, and contained time entries, which SPARQL exploits to extract
the dates and working hours from the time entries, and to link them to the related collaborators.
The result is grouped by collaborators and dates (line 18). The lines 14 and 15 restrict the result
set to time entries of the past seven days. Both, time sheets and time entries are optional (a time-
sheet might not be available for every collaborator), which must be considered in the SPARQL

115

query (lines 8 and 11).

The automated collection of time exposures does not only relieve the project manager from
tremendous time-tracking efforts, but also improves (a) monitoring activities and (b) traceabil-
ity. For (a), the project manager immediately detects, if a team member does not provide ac-
curate tracking information, or the workload across collaborators is imbalanced. Regarding (b),
the project manager can perform additional queries to link between issues/requirements and/or
tests, for instance to derive, (1) how many time has been spent for the development of a soft-
ware artifact in total, or (2) how many time has been spent by specific collaborators on an
issue/requirement/artifact.

The integrated time efforts provide the basis for additional analysis and reporting activities.
For instance, wage rates can be efficiently integrated and linked to project roles and collabora-
tors. The wage rates can be either project-specific, or industry-based (cf., Payscale9).

Data Visualizations for Reporting and Controlling (Figure 7.2 - 7) The management of
organization A demands accurate status reporting, every two weeks. Hence the project manager
must derive a high-level summary of the project state, and send it to the executives.

To reduce the reporting effort, the project manager utilizes the ITPM dashboard for the
creation of accurate reporting figures, such as KPIs, and high-level diagrams. These figures can
easily be copied into a status report (e.g., MS Word), or are directly accessible by executives,
via the ITPM dashboard’s URL. Subsequently, a subset of queries is provided, which (a) help to
reduce manual reporting efforts, and (b) aid the project manager herself in executing the project.

Figure 7.16: SPARQL query to visualize the number of requirements per stakeholder (diagram
provides only a subset of the solution).

Query 5: Number of Requirements per Stakeholder The first reporting query addresses
the problem that the formats of the local requirement spreadsheets, makes the inference of the
number of requirements per stakeholder difficult. The problem is that the assigned stakeholder
ids for each requirement are concatenated (e.g., “agr, dwi”). While this issue may seem trivial
to the reader, it is in fact not easy to resolve for laymen, with limited technical background. In

9Payscale.com: http://www.payscale.com

116

addition, the problem is complicated, if non-structured requirement specifications are provided
(e.g., MS Word, or Jira Confluence10).

Figure 7.16 states the SPARQL query for grouping the total number of defined requirements
per stakeholder. The resulting diagram is appropriate for reporting to the executives, but also
provides feedback about the stakeholders’ influence and impact.

Query 6: Test Distribution across Requirements The second reporting query demon-
strates, how requirement specifications can be traced to test results, which are located at the
Jenkins build server (figure 7.17). The query returns the requirement id (line 2), the requirement
name, including a link to the auto-generated form within the ITPM dashboard UI (line 3), the id
of the related artifact (line 5), and the number of test cases (line 6).

Figure 7.17: SPARQL query to determine the test coverage of requirements. The right-hand
side visualizes the result, plus the distribution of tests.

The requirements are linked to the software modules via the artifactId (lines 12, 16). The
information about the main software modules and their sub-modules is derived from Jenkins.
Because the names of the modules in Jenkins mainly reside from Java package names, the arti-
fact id must be normalized. For instance, all IDs are converted into lower-case (lines 13, 17), the
prefix “itpm” is cleared, and all minuses are removed from the artifactId (line 23). In addition,
two modules are considered to be the same, if the end with the same artifactId (lines 22, 23).
Line 15 traverses the nested software module hierarchy, returning all sub-modules. For instance,
the software module cdlflex-mdd consists of the packages cdlflex-mdd, umltuowl, sembase, and
so on. The ids of all modules and sub-modules are mapped with the existing test scenarios (lines
14, 15). The test result is obtained at the level of the scenario (lines 20, 21).

10Jira Confluence: http://www.atlassian.com/Confluence

117

Based on the number of test cases per requirement, the distribution is derived. The distribu-
tion is visualized in the table of figure 7.17, but is excluded from the presented SPARQL query,
to keep the query compact. The traceability between requirements and tests aids the manage-
ment in detecting business needs that are not properly tested. The table in figure 7.17 reveals
that some requirements have the same number of test cases assigned. The reason is that these
requirements link to software artifacts that are part of the same sub-module hierarchy.

Query 7: Anti-Pattern Detection Another effective reporting method is the provision of
summary tables or KPIs, which aggregate specific states or progresses within a single, meaning-
ful figure.

Figure 7.18: Anti-Pattern Detection: Adding (unnecessary) features closely before a deadline.

Figure 7.18 demonstrates the implementation of an anti-pattern to avoid gold-plating. The
SPARQL query accumulates all new features that have been created in a time-frame of 14 days
from now. Unwanted, (not critical) business features that are added by local developers, close
before the deadline, are detected. The result is visualized in a KPI. The color of the KPI auto-
matically changes from red to green, if the anti-pattern is not violated.

The presented anti-pattern can either be activated/deactivated manually, by the project man-
ager, or it is extensible as follows. The creation date is compared against the milestones of the
project (attribute “end date” in the project plan). The anti-pattern is automatically activated x
days before a milestone (e.g., x=14).

Query 8: Monitoring of PM Artifact Updates Finally, figure 7.19 summarizes the up-
dates of artifacts in any local system. The results are grouped by the main class of artifact (e.g.,
requirement, unit test, issue) into ten-minute slots (cf. figure 7.20). The resulting table provides
a link to directly access the artifact in the local PMS instance. For instance, if an issue has been
created in Jira, then the link directly forwards the manager to the specific issue URL in Jira. If
no link to the local tool is available, then the user is forwarded to the auto-generated tables of
the ITPM dashboard. The table relieves the project manager from tremendous data collection
activities.

118

Figure 7.19: SPARQL query for the visualization of the last updates of any integrated artifact.

Figure 7.20: Result for the SPARQL query in figure 7.19 (excerpt).

7.1.3 Remarks on the Dashboard Configuration

Section 7.1 demonstrates the powerfulness of the ITPM dashboard for (a) the synchronization
of data across local tools, based on data models and work-flows, (b) the integration of data into
a central view, (c) the centralized visualization of data, based on SPARQL queries, and (d) the
efficient configuration of distributed PM data sources, and dashboard visualizations (diagrams,
graphs, tables, KPIs).

A major part of section 7.1.1 is dedicated to the description of mappings, between local PM
tools, and common concepts. The mappings address semantic integration issues, and visualize
that, even for a small number of tools, data integration tends to become complex, quickly.

119

All presented UML class diagrams are modeled with the Semantic Model Editor. The work-
flows are implemented as Drools rules. Both are reusable and included in the available prototype.

In total, a set of 25 queries/rules has been created for the UC, based on the ITPM dashboard
(only a subset of the queries has been presented). Most of the queries belong to scope man-
agement, QM, time management, or integration management (PMBOK knowledge areas). The
combination of several rules (e.g., combining open issues with the team management view)
leverages the automation of sophisticated escalation mechanisms. For instance, if an issue has
been assigned for longer than two weeks, but is still unresolved, then the superior of the de-
veloper can be identified based on SPARQL, and reported. However, sophisticated SPARQL
queries have been found to embrace between 25 and 50 lines, and hence are not discussed here.
Nevertheless, some of the visualization results are provided in appendix B.

Section 7.1 indicates that the configuration effort for the ITPM dashboard is manageable, and
significantly reduces the coordination effort for the project manager. The dashboard configu-
ration, and the time efforts, spent by the related project members, serve as the input for the
cost-benefit analysis, and the comparison of the technical integration processes, in sections 7.2
and 7.3.

7.2 Cost-Benefit Analysis

The results of the dashboard configuration are analyzed numerically, to expose the usefulness of
the integration framework in quantitative numbers.

In a first step, the manual integration efforts are determined without any automated data integra-
tion (neither the CNIP is performed, nor the ITPM dashboard is in place). For this purpose, the
automatable scenarios, identified in section 7.1, were played through, and analyzed, thoroughly.
In a second step, the configuration and setup costs of the ITPM dashboard, are summarized. The
result is compared against the costs of the purely manual integration effort. The gap between the
dashboard configuration costs and the manual integration efforts correspond with the net benefits
for the project manager, when applying the systematic PM integration framework (SIFPM).

A small subset of 30 requirements, with similar structure as those of industrial CDL-Flex projects,
is chosen, to observe and measure the UC integration scenarios in an appropriate and manage-
able way. Measurements that were not be obtainable directly, such as the number of reported
(requirement) change requests and software bugs, were derived and interpolated thoroughly,
based on the CDL-Flex’s expert know-how, and the correlation of these artifacts with the project
complexity (e.g., project size, number of requirements, number of collaborators). In addition,
best-practice estimation techniques, as suggested by McConnell, were applied [83].

120

7.2.1 Analyzing the Manual Integration Approach

For the manual integration approach, the consortium project members do not consider, how local
data is integrated, or accessed. The project manager is faced with (synchronization) conflicts the
first time they appear, and handles data synchronization and permission issues in a reactive way.

Modular PM Actions PM Effort / Minutes
Best
Case

Worst
Case Average

0.1 Navigate to Data Source 1 10 5.5
0.2 Copy / Transform Requirement 2 15 8.5
0.3 Read Email and/or Extract Information 5 20 12.5
0.4 Locate Item within Data Source 1 10 5.5
0.5 Resolve Sync. Conflict (Top-MGMT) 20 100 60
0.6 Find all items of a specific type/status 5 10 7.5
0.7 Update Status of Feature 1 5 3
0.8 Create Report for Specific PM item 10 30 20
0.9 Resolve Sync. Conflict (Local Teams) 10 20 15
0.10 Request Report 5 20 12.5
0.11 Proofread/Forward Report 5 60 32.5

Table 7.1: Modular building blocks for the analysis of manual PM actions.

Table 7.1 outlines the modular PM activities that have been decomposed from the UC-
scenarios in section 7.1. These activities are recurringly performed by the project manager, to
access and exchange PM data between local systems, and consortium members. The presented
time efforts rest on (a) recordings throughout the evaluation of the prototype, and (b) empirical
values from industrial CDL-Flex projects.

The activities in table 7.1 represent the building blocks for higher-level activities, which are
used to recompose the manual integration activities of the UC scenarios, and to ensure that all
manual integration activities are covered. Table 7.2 visualizes a sub-part of the comprehensive
composition structure, to demonstrate, how the manual integration efforts are accumulated.

For instance, “Transform requirements for MGMT” (activity 1.1) consists of the modular tasks
“Navigate to Data Source” (activity 0.1) (executed once), and “Copy/Transform Requirement”
(0.2) (executed n = 30 times, because the UC has been evaluated with 30 requirements). The
transformation of requirements into Google, based on activity 1.1 is executed once throughout
the entire project (cf. table 7.2, column “Appearances”). Hence the effort per appearance in
hours is (1∗5.5+30∗8.5)/60 = 4.3 (the numbers 5.5 and 8.5 relate to the effort of the modular
PM activities, in minutes; cf. table 7.1). The effort for the total project (last column of table
7.2), is calculated by multiplying the effort (per appearance) with the number of appearances
throughout the project. Activity 1.1 appears only, viz., during the requirements specification
phase (cf. first column of table 7.2).

121

P Management Activity / Sub-Activity
Appear-

ances
(App.)

Effort
per

App.
(Hours)

Effort
Total

Project
(Hours)

R
eq

ui
re

m
en

tS
pe

c.

1.1 Transf. Requirements for MGMT 1 4.3 4.3
0.1 Navigate to Data Source
0.2 Copy / Transform Requirement (n=30 items)

1.2 Change Single Requirement n/3=10 0.5 5.1
0.3 Read Email and/or Extract Information
0.1 Navigate to Data Source
0.4 Locate Item within Data Source
0.2 Copy / Transform Requirement

1.3 Resolve Sync. Conflict with Top-MGMT 5 1 5.3
0.5 Resolve Sync. Conflict (Top-MGMT)

D
es

ig
n

&
Im

pl
em

en
ta

tio
n

2.1 Transform Requirements into Features 1 11.1 11.1
0.1 Navigate to Data Source (2 times; Jira, Redmine)
2.1.1 Configure Project Core Data (2 times; Jira, Redmine)
2.1.2 Transform Requirement into Feature (n items)
2.1.3 Create Missing User Account (for Devs; 12 in total)
2.1.4 Create Missing Software Module (12 in total)

2.2 Create/Update (Req. Change) n/5=6 0.85 5.1
1.2 Change Single Requirement
0.1 Navigate to Data Source
0.4 Locate Item within Data Source
2.2.1 Create Feature
2.1.3 Create Missing User Account (for QM; 6 in total)
2.1.4 Create Missing Software Module (for QM; 6 in total)

Te
st

4.1 Propagate Bugs from QM to DEV Teams n*3/4=23 0.43 9.6
0.3 Read Email and/or Extract Information
0.1 Navigate to Data Source
2.2.1 Create Feature

Table 7.2: (De-)composition of manual PM integration activities (example).

The change of a single requirement (activity 1.2) is less efficient than the creation/update
of all requirements at once, because the item / change needs to be extracted (e.g., based on
an email, or via a face-to-face discussion with a researcher) (activity 0.3), and the specific re-
quirement must be located within the requirements document (activity 0.4). In addition, the
documents must be looked up on the local file systems every single time, while for activity 1.1
the search process for all 30 requirements takes place only once. One of the findings throughout
the prototype evaluation was that user interactions resulted in higher efforts than expected. For
instance, in the UC, the requirement documents were located within a complex file structure and
difficult to locate. The access to Google spreadsheets involved the seeking of the access data
(e.g., email inbox), and the provision of user permissions by the corresponding administrator.

The number of requirement changes, features and bugs is derived from the overall number of

122

requirements. For instance, the number of requirement change requests throughout the initial
project phases (requirement specification, design of the software architecture) has been assumed
with n/3. The number of features is defined with n∗3 (for each requirement, three finer-grained
backlog-items are created by the development team, on the average). The number of bug reports
(activity 4.1) derives from the number of features, and is n ∗ 3/4 (for each fourth feature a bug,
or serveral bugs at once, are reported by the QM team).

Changes in later phases are more expensive. If a requirement is changed during the design or
implementation phase (activity 2.2), then the requirement sources must be synchronized (1.2),
and the related features in the PMS of the development teams must be updated. The number
of requirement change requests throughout the implementation phase has been assumed with
n/5 (changes in later project phases are less likely than in the initial phases). The creation (or
update) of a feature requires the administration of user accounts, and software modules, from
time to time (activities 2.1.3, 2.1.4). Without a systematic integration process, the administrator
of the PMS needs to be contacted, if a required user turns out to be missing.

The manual integration efforts of the entire composition have been accumulated, and are as-
sociated to the seven integration scenarios of the UC. The final result is presented in section
7.2.3.

7.2.2 Subsuming Costs of the Systematic ITPM Integration Framework

The evaluation of the dashboard configuration in section 7.1 already outlined the main manual
efforts for the integration of data sources, work-flows, and data visualizations. In addition,
installation costs, and the execution of the CNIP meeting must be taken into consideration.

Role
Hourly Rate
Estimations

(Cheapest=1)

Normalized
Hourly Rate

(PM=1)
Developer (DEV) / Quality Engineer (QE) 1.00 0.67
Knowledge Engineer (KE) 1.00 0.67
Researcher (RES) 1.50 1.00
Project Manager (PM) 1.50 1.00
Executive (MGT) 2.00 1.33

Table 7.3: Hourly rate conversion table for project roles.

Table 7.3 weights the hourly rates for the heterogeneous project roles, which are involved in
the use-case. The used conversion rates are in accordance with industrial rates, used for project
cost estimations (obtained from Payscale, and rounded). For instance, the wage rate of a project
manager (PM) is 1.5 times the rate of a developer (DEV). The normalized rate is calculated as
1/1.5 = 0.67 (the wage rate of a DEV is 0.67 times the rate of a PM). The mapping is required
to (a) accumulate the time efforts of the different collaborators that participate in the systematic
integration approach, and (b) to compare the outcome with the non-integrated manual approach.

123

ITPM Consortium Integration Activities
and Involved Roles

Duration
of Activity

(Hours)

People
Involved

People
Involved
Weighted

Total
Hours

Weighted
Preparation of CNIP Meeting (PM) 2.0 1 1 2.0
CNIP Meeting (3 MGT, 3 DEV, PM, KE) 3.0 8 7.67 23.0
Setup of the ITPM Dashboard (PM, KE) 2.5 2 1.67 4.2
Data Source Configuration (PM, KE) 10.0 2 1.67 16.7
Workflow-Configuration (PM, KE) 25.0 2 1.67 41.7
Dashboard Config. Visualizations (PM, KE) 5.0 2 1.67 8.3
Additional Efforts (PM) 2.5 1 1.00 2.7
Integration without Connector Implementation 98.5

Table 7.4: Manual configuration effort for the systematic dashboard integration (weighted).

Table 7.4 outlines the accumulated efforts for the most relevant systematic integration activ-
ities. The CNIP management meeting takes three hours, and involves eight participants (three
executives, three developers, the project manager, and a knowledge engineer). The value of each
participant is weighted, based on table 7.3. For instance, the weighted value for the meeting is
3 ∗ 1.33 + 3 ∗ 0.67 + 1 ∗ 1 + 1 ∗ 0.67 = 7.67. The total effort for each activity results from
the multiplication of the activity’s duration with the weighted number of involved people (e.g.
3.0 ∗ 7.67 = 23.0).

For all configuration activities a knowledge engineer is scheduled to assist the project man-
ager. The reason is that the manager is most probably not familiar with SPARQL and several
other technical aspects. The project manager discusses the visualization needs and requirements
with the engineer, who implements and fine-tunes SPARQL queries, work-flows, and possibly
simple integration tests. Although a pre-built ITPM dashboard prototype is downloadedable
and can be installed within a few minutes, an additional buffer is incorporated, to account for
the case that the knowledge engineer prefers to build the prototype from the source code. The
position “Additional Efforts” addresses the project manager’s effort for regularly accessing the
ITPM Dashboard and its sub-features. This effort is scheduled, to compensate the calculated
navigation costs of the non-integrated approach.

7.2.3 Results of the Analysis

The setup and configuration costs of the ITPM dashboard-based approach, respectively the
SIFPM, are compared against the benefits of reducing inevitable manual PM integration efforts.
For this purpose, the determined efforts for both approaches are mapped to the structure of the
UC.

The final result is visualized in table 7.5. The comparison shows that the configuration costs
for the systematic integration framework clearly trade-off, resulting in a reduction of 45% of
a project manager’s costs, for the particular UC. In addition, the integrated approach results
in higher data quality (i.e., accuracy, accessibility, traceability, portability) and increases the
reporting and tracking activities of the incorporated (development) teams [99].

124

Activity / UC Scenario
Dashboard
Integration

Effort

Manual
Integration

Effort
CNIP Management Meeting 25.0 -
Installation of the ITPM Dashboard 4.2 -
Synchronization of Requirements (RES / MGT) (1) 6.5 14.8
Derivation of Issues from Requirements (2) 38.3 44.8
Synchronization between PM Trackers / Project Configuration (3) 1.5 7.0
Reporting of Bugs by the QM (4) 3.3 27.8
Automated Derivation of Test Reports (5) 2.1 12.9
Integration of Time Efforts (6) 10.1 31.8
Creation of Data Visualizations for Reporting and Controlling (7) 4.7 39.7
Additional Efforts (UI Access & Navigation) 2.7 -
Total Efforts (no Connector Implementation) 98.5 178.7

55% 100%

Table 7.5: Effort comparison for the ITPM dashboard-based approach and the manual approach.

7.3 Comparison of Development Efforts for PM Connectors

Section 7.2.3 evaluated the UC under the assumption that all connectors are available at first
hand. This is not unrealistic, as the CDL-Flex is eager to develop and provide further, com-
monly used PM connectors, for the OpenEngSb project. In addition, related projects, such as
Taskadapter, provide reusable PM connectors that reduce the integration effort for the OpenEngSb
environment (e.g., Redmine Connector). Finally, the UC-evaluation showed that a considerable
part of the data sources rests on reusable, highly flexible spreadsheet connectors that require no
implementation effort.

Type of Connector
Implementation

Duration
of Activity

(Hours)

First
Domain

Connector ?

Involved
Developers

(DEVs)

Involved
DEVs.

Weighted

Total
Hours

Weighted
Jira Issue 35 yes 1 0,67 23.3
Redmine (PM/Issue Tracking) 20 1 0.67 13.3
Jenkins QM 20 yes 1 0.67 13.3
Excel (Multi-Model) 60 yes 1 0.67 40.0
Google Spreadsheet (Multi-M.) 20 1 0.67 13.3
Scrumwise (not part of UC) 8 1 0.67 5.3
Average Impl. Effort 27.17 1 0.67 18.1
OpenEngSb Training Effort 40 1 0.67 26.5

Table 7.6: Implementation efforts for OpenEngSb connectors for the prototype implementation.

Table 7.6 summarizes the implementation efforts for connectors, that were implemented
throughout the research, and while working on industrial CDL-Flex projects. The table reveals
that the implementation for the first connector within a new domain is significantly higher than
for the remaining connectors. Indeed, several artifacts (models, unit and integration tests) are
reusable for the implementation of further connectors, and learning effects appear.

125

The main implication of table 7.6 is that the average implementation of an OpenEngSb PM
connector, based on the MDSE approach, takes 27 hours. This value is biased, because the im-
plementation efforts depend on the skills of the developer, her experience with the OpenEngSb,
and the type and application of the connector. Nevertheless, it is a sound reference value is for
further analysis and estimation.

7.3.1 Evaluation Results for Different Numbers of Connectors and
Requirements

To ensure the stability of the UC evaluation, the designed activity analysis model, described in
section 7.2.1, is utilized, to perform a basic simulation of a project manager’s net benefits, de-
pending on the number of available connectors, and the number of missing connectors, which
must be implemented by the consortium project team.

The design of the decomposable cost-benefit analysis model enables basic simulation of manual
integration costs, based on a number of input parameters. The available input parameters, and
their configuration for the UC evaluation in section 7.2.1, are: number of requirements (30),
project complexity factor (1), number of collaborators (22), project duration (20 weeks), dura-
tion of the analysis phases (8 weeks), duration of the implementation/testing phases (10 weeks),
(sub-) issues per requirement (3).

Figure 7.21: Net benefits resulting from the application of the ITPM dashboard.

Figure 7.21 summarizes the simulation results. The number of requirements, and the avail-
able connectors are adjusted, while all other input parameters of the model remain the same. The
figure illustrates that, even if one or two connectors are missing, the application of the systematic

126

integration framework still is beneficial for the project manager. In the worst-case scenario, in
which none of the five OpenEngSb connectors is available, the application of the ITPM dash-
board is not advisable (-22.5% of additional costs). However, it is very likely that the investment
in the systematic integration approach trades off for projects with more than 45 requirements.

The simulation outcome clearly visualizes the advantages of the SIFPM, already for a very small
number of requirements. The net benefit for the project manager increases with the number of
requirements and PM artifacts. Although the simulation results are simplified, because several
environmental factors, such as increasing project complexity, and longer project duration are not
considered, the simulation model is stable, because these factors tend to increase the benefits of
an integrated approach even more [83].

7.3.2 Process-Based Effort Comparison for the Development of Connectors

So far, the analysis of the net benefits focused on the viewpoint of the project manager. This
section compares the MDSE-based solution approach against the (conventional) OpenEngSb
connector implementation and integration approach, based on the time records of an industrial
project.

The findings of the process comparison are summarized in figure 7.22. The process P1
resembles the traditional process. The process P2 depicts the efficient MDSE-based integration
approach, based on the Semantic Model Editor, and the code-generation.

Conventional OpenEngSb Tool Integration Process

Process P1 has been extracted from the historical records of an industrial project. The main
objective of the project was to (a) research and define three new project tool domains (projects,
collaborators, team data), (b) to develop three related spreadsheet connectors for the integration
of a customer’s demo data, and (c) implement basic UI elements for the visualization and mod-
ification of the underlying data. The development has been conducted by an external developer
(contract on work base), and comprised 191.8 hours.

P1 started with the analysis of the customers (and the CDL-Flex’s project manager’s) re-
quirements by the (external) developer (1). Step 2 comprised a domain research, which involved
the identification and verification of existing solution approaches (ontologies). In step 3 the on-
tology was developed. To facilitate the discussion between the involved project collaborators
(the project manager, a researcher, two experienced CDL-Flex developers, the external devel-
oper), several representations of the ontology needed to be created, and maintained. The re-
sulting models (UML, OWL) were discussed and updated several times, based on discussions
with the project manager, and feedback from the researchers. For instance, first the ontology
needed to be modeled in UML (3.1). A screenshot of the resulting class diagram was taken and
forwarded to the project manager, who analyzed the result, and discussed it with the researcher,
and the developers (3.2). When the model seemed to be mature enough, an OWL ontology was
derived (3.3). This ontology again, was refined successively, to match with the degree of gran-
ularity of pre-existing ontologies at the CDL-Flex (3.4). To communicate the progress to the
project manager, the corresponding UML class diagrams were updated several times (3.5).

127

Figure 7.22: Comparison of the traditional (P1) and the MDSE-based (2) integration process.

The implementation of the connectors (4) required the translation of the modeled ontology
into corresponding Java classes/beans (4.1). The beans were extended with (Java) annotations
to map the semantic meaning of specific fields to the internal format of the EDB, in which the
OpenEngSb instances reside. For instance, a bean’s id is annotated explicitly (4.2). After the
beans were created, the corresponding domain interfaces and OpenEngSb connectors have been
created (4.3). The connectors included basic CRUD methods, to modify and retrieve data from
Excel spreadsheets, and to persist them into the EDB (4.4). Finally, a dozens of unit tests for the
Excel connectors, and the DAOs were created.

128

In the UI Integration phase (5), the connectors were integrated into the pre-existing OpenEngSb
framework, based on Wicket. The main implementation steps involved the creation of simple
tables, including fulltext search (5.1), the implementation of forms to modify the integrated data
instances (5.2), and the graphical representation of the team hierarchy based on a Java Script
tree (5.3). The functionality of the UI integration was ensured by executing a handful of jUnit
integration tests. Finally, the deviations between the implemented Java beans, and the model ar-
tifacts (UML classes, OWL ontology) needed to be reverse-engineered and passed to the project
manager (phase 6).

MDSE-Based Tool Integration Process

The MDSE-based counterpart of process P1 is visualized on the right-hand side of figure 7.22
(process P2). Compared to P1, the main process steps remain the same. However, a number of
(sub-)activities become obsolete; only the sub-activities (3.1, 3.2, 4.3, 4.5) remain. The main
time savings of the MDSE result from the collaborative modeling approach (3.1, 3.2), and the ef-
ficient re-utilization of the central design models for the derivation of code and UI elements (4.3,
5). In addition, the ITPM dashboard enables the configuration of elaborate tables, diagrams, and
graphs (break-down structures). Subsequently, the main activities of P2 are summarized, step
by step.

The effort in process step (3) is halved, because the Semantic Model Editor facilitates the col-
laborative development of OWL ontologies based on UML class diagram representation. As a
result, (a) the inefficient communication of expert feedback via email or face-to-face discussions
is avoided (3.2), (b) the tedious manual synchronization between UML diagrams and OWL on-
tologies disappears, and (c) the model quality (granularity, credibility, accuracy, consistency)
increases.

A big part of the routine work in step (4) becomes obsolete, because (a) Java beans, (b) DAOs,
and (c) numerous unit tests for the verification of the existing models and DAOs, are generated
(4.3, 4.5). The MDDConnector, which is part of the ITPM dashboard prototype, enables the
configuration and mapping of spreadsheet formats via OWL, or the dashboard’s UI. Hence, the
integration effort for spreadsheets is minimal (4.3.a).

To compare the processes objectively, case (4.3.b) is considered as the counterpart of (4.3.a),
in which no automated configuration is possible. Instead, in (4.3.b) all connectors must be
implemented from scratch. The efforts of (4.3.a) and (4.3.b) are averaged for the process com-
parison.

The MDSE-based approach also reduces the time effort for the integration of new connectors
significantly: The Semantic Model Editor facilitates the analysis, and modeling of tool APIs,
and facilitates the generation of code artifacts for local tool connectors (cf., chapter 6.4.4). For
instance, if the data structure of a REST API is modeled accurate in every detail, then the gen-
erated bean instances become mappable with the content of the local data models (e.g., JSON),
automatically. The generated DAOs provide interfaces to validate these beans, and allow their

129

further processing.

The flexibly configurable ITPM dashboard makes the implementation of UI elements obsolete.
All required browsings (5.1) and forms (5.2) can be automatically derived from the maintained
models within the Semantic Model Editor. In addition, sophisticated visualization mechanisms
enable the representation and formatting of data in work-breakdown structures. Hence the costly
implementation of (5.3) becomes obsolete, and is replaced by a simple SPARQL query configu-
ration. On a side node, the outcome of the configured break-down structure was of higher quality
than the manually developed ad-hoc visualization.

Finally, the reverse-engineering from code into models (step 6) is not required any more, be-
cause in the MDSE-based approach all code artifacts are synchronized with the central ITPM
models/ontologies.

The comparison of the total efforts reveals that the MDSE-based approach accelerates the de-
velopment process for the specific industrial project, by almost 125 hours. In other words, the
total effort is cut by 65%. Interestingly, all the UI requirements were completely covered by the
ITPM dashboard (e.g., creation of work-breakdown structure), and the quality of the interface
elements was even higher, than for the conventional approach.

130

CHAPTER 8
Discussion and Limitations

The outcomes of the design-science based research approach, including the UC results, are
critically reflected, based on the designed artifacts.

RI-1 Efficient Integration of PM Software and
(Abstract) Data Concepts in Temporary IT
Project (Management View)

RI-2 Efficient Utilization of Data Models for
PM Data Integration (Implementation View)

RI-1.1 Negotiation and Integration of PM Data at
the Management Level

RI-2.1 Efficient Technical Implementation of PM
Data Integration Scenarios

RI-1.2 PM Data Integration / Mapping Between
Local PM Systems

RI-2.2 UML Class Diagrams for Efficient Com-
munication and Integration

RI-1.3 An Integrated PM View to Improve Moni-
toring and Reporting Activities

RI-2.3 Maintaining Shareable and Adaptable
ITPM Reference Models

Table 8.1: Research Issues and Sub-Issues

Table 8.1 summarizes the research issues defined in chapter 3. Throughout the discussion,
the sub-issues are associated to the corresponding design artifacts. Threats to validity, and the
limitations of the research are stressed throughout the discussion, and complemented at the end
of the chapter.

The Consortium Negotiation and Integration Process (CNIP) The CNIP addresses the ne-
gotiation and integration of local PMSs and data sources at the management level (R1.1, R1.2).
The process incorporates proven methods and process elements that stem from Boehm’s Win-
Win process, DWH integration, change management, and the PMBOK (e.g., the creation of a
communication plan).

Boehm et al. apply the Win-Win approach for the effective negotiation of optimal stakeholder
(project) requirements. In contrast, in the CNIP not PM requirements, but the identification,
access and integration of valuable PM data across various partners, is negotiated. However, be-
cause the Win-Win approach is theoretically funded, it is analogously applicable for the efficient

131

negotiation of integration requirements.

The features that are incorporated in large DWH integration projects, are packed into an off-
the-shelf applicable, smaller-scale process, to enable a cost-efficient execution of the process for
temporary project organizations. The output of the process are typically UML class diagrams
(RI-2.2) that serve as the input for the technical implementation (2.1), and document the agreed
integration model. However, the CNIP also addresses the resolution of inefficient integration
scenarios, based on a set of alternative solutions, such as the homogenization of the project
members’ internal project processes, or the utilization of a joint PMS. Such solutions can be
more efficient than the exchange of data via the intermediate ITPM Dashboard, and might be
right under the project managers nose.

Two issues of the CNIP are not explicitly addressed throughout the description of the process.
The first issue relates to the case, in which a new consortium partner joins a running project. In
the second case, a consortium already exists, and a new project, including one (or more) addi-
tional consortium partner(s), is initiated. The first issue is not discussed further, because of the
commonly known rule-of-thumb that adding manpower to a late software project makes it even
later [23]. For the second issue, it is recommended to re-execute the CNIP. The project manager,
who is in charge to setup the CNIP meeting, should decide, based on the consortium environ-
ment, whether to (a) invite all consortium members again, (b) only include critical consortium
members and/or representatives, or (c) to negotiate only with the new consortium member(s).

The mapping between the components and the UI of the ITPM Dashboard is discussed in detail.
The CNIP is theoretically funded. For instance, the modeling of a common data model (e.g., in
UML) is also a common practice for the design of DWH. Moreover, the modeling of (knowl-
edge) models is supported by the Ontology 101 engineering methodology. The CNIP rests on
industrial experiences of the CDL-Flex. The process is elaborated at the conceptual level, and
exemplified exemplified during the configuration of the UC environment (cf. 7).

ITPM Dashboard and Sub-Modules The ITPM Dashboard is the main outcome of the re-
search process, and facilitates the centralized integration, configuration and monitoring of local
data sources, and aggregated data visualizations.

Semantic Model Editor The Semantic Model Editor is a valuable by-product that emerged
throughout the design process, and provides a simple graphical ontology editor, based on UML
class diagram notation (RI-2.2). The main benefits of the editor, compared with state-of-the-art
editors, such as Protégé, are (a) the compact and simple representation of OWL concepts via
UML class diagrams, (b) the facilitation of collaborative modelling via a Web-Based UI, (c)
the automated derivation of high-quality UI elements (tables, forms), (d) the tight incorporation
of (customizable) code generation capabilities for Java, and (e) the effective creation of con-
figurable data visualization, in conjunction with the Semantic Query Editor. In addition, the
Semantic Model Editor tightly integrates code generation features for the OpenEngSb, both to-
gether forming a valuable OS community contribution (RI-2.1).

132

The graphical interface of the Semantic Model Editor only supports a limited set of OWL, which
results from the trade-off between simplicity and completeness. However the auto-created OWL
ontologies are designed, so that knowledge engineers can extend ontologies (e.g., add expert
rules, additional restrictions) via other editors. These rules enable the leveraging of additional
reasoning capabilities (not discussed here), and are maintained isolated, so that they remain after
model updates.

Model-Driven Code Generator (MDDCodeGen) The MDDCodeGen is incorporated
within the Semantic Model Editor, and facilitates the generation of beans, DAOs, and unit tests,
for the abstracted CRUD access of semantic data stores (OWLAPI, Jena) (R-2.1, R-2.2). For this
end, the existing umlTUowl meta-model has been utilized and extended (chapter 6.3). The code
generation approach is similar to RDFReactor, which is the state-of-the-art code generator for
semantic technologies. The main advantages of the MDDCodeGen, compared with the RDFRe-
actor, are that (a) MDDCodeGen is optimized for the integration within the OpenEngSb envi-
ronment (e.g., the beans are semantically annotated), (b) MDDCodeGen supports the OWLAPI,
which the RDFReactor does not, and (c) the created unit tests provide an additional process
step for verifying the stability of the data models, and related DAOs. While the RDFReactor
is based on Velocity templates, the MDDCodeGen utilizes Xtend for the effective extension and
debugging of code templates in Eclipse (cf. [45] [46] on more details about the code generation
approach).

Semantic Query Editor / Central ITPM Dashboard The Semantic Query Editor fa-
cilitates the creation of aggregated queries and rules, for the visualization of aggregated PM
data within the Central ITPM dashboard (R-1.3). The current prototype has been tested with
SPARQL queries, but the support for additional languages, such as OWL DL, is incorporated
into the architecture. The Semantic Query Editor, in conjunction with the Semantic Model Ed-
itor, is a valuable research outcome, for several reasons. First, there is a demand in ontology
and query editors. For instance, Jena does not provide a SPARQL editor at all. For Protégé,
only a very simple SPARQL plugin exists. The plugin does not support syntax highlighting or
auto-completion, which the Semantic Query Editor does. Second, the query outcomes can be
visualized, and are flexibly configurable, so that the results become permanently observable.
The visualizations (graphs, diagrams, tables, work-breakdown structures, etc.) can be organized
and edited on-the-fly, and are extensible, based on the Twitter Bootstrap CSS framework.

With regard to PM, the Semantic Query Editor enables project managers to define queries and/or
rules, that are structured, based on the knowledge areas of the PMBOK. Chapter 7.1.2 demon-
strates the application of the query editor for the creation of SPARQL rules, and the aggregation
and visualization of related data. The definition of rules/queries via SPARQL enables the project
manager to efficiently detect escalations, or anti-patterns, such as unresolved issues closely be-
fore a deadline. One extension in this regard, is to enable the shipping of notifications (e.g.,
via email) to the project manager, for instance if specific deviations appear. The organization
of rules, based on knowledge areas, supports the project manager in creating a query reposi-

133

tory, which she can fill with “her, personal PM knowledge”. These knowledge queries/rules are
reusable for future projects, and shareable with other managers.

Central ITPM Dashboard and Data Access The central ITPM dashboard enables the
visualization and monitoring of aggregated data (R-1.3). Its main features for PM monitoring
and reporting have already been summarized above. The main strength of the dashboard is the
dynamic configurable layout, which enables the modification and experimentation with simple
data aggregations, and visualizations, on-the-fly. Compared with the current visualization ca-
pabilities of the OpenEngSb, for which, for each new tool domain, a UI must be implemented,
the ITPM dashboard represents an essential relief from manual implementation efforts, demon-
strated in chapter 7.3.

An additional feature of the (overall) ITPM Dashboard is the PM Data view (cf. 6.3), which
facilitates the central browsing and modification of integrated data, based on auto-generated UI
elements. Because the UC test data (e.g., requirements, issues) frequently exceeded the visu-
alization boundaries, a simple algorithm has been implemented that reduces the data columns,
based on a set of simple heuristics (first remove all empty columns, then remove all columns
with more than 90% of empty cells, afterwards remove boolean attributes, and so on). Through-
out the evaluation of the UC, these heuristics led to compact, meaningful representations of the
integrated data. The auto-generated tables improve the traceability of PM data, because for each
record the origin, the dates for creation and modification, and the origin of the record are per-
sisted. Based on the table-view, the project manager is directly forwarded to the local PMS,
and (if supported by that PMS) to the specific sub-page of the linked record (for instance, for
Jira and Redmine, the specific issue page is visualized directly). Based on these functionalities,
the project manager can either (a) edit integrated data based on the common representations,
directly within the auto-derived and powerful dashboard UI, or (b) leverage the full capabilities
of a (preferred) local PMS (e.g., modify local attributes, or utilize features that are not included
in the ITPM dashboard).

The auto-derived UI forms, whose mapping with corresponding elements is elaborated exten-
sively in chapter 6.3, resulted in (for the author) surprisingly good outcomes: The structures of
OWL ontologies naturally map with the concepts of UI forms, and enable the user-oriented vi-
sualization of attributes, and nested associations. The models of the Semantic Model Editor are
leveraged to (a) derive the appearance of the fields (e.g., text fields, check-boxes, multi-choice
auto-completion menus), (b) provide help-text support based on deposited model comments, (c)
perform basic validations (e.g., check the cardinalities of attributes and associations), and (d) to
create, link and edit associated data instances, based on embedded sub-forms. The meta-data
within the model is also effectively utilized to deal with compositional associations: Because
in UML, a composition implies that the linked element cannot exist without its parent element,
the related data instances are automatically deleted when they are unlinked. These features have
been evaluated prototypically (manual UI tests). One limitation of the current editor is that the

134

visualization of nested entries is only supported for one level. For instance, a stakeholder of a
requirement is editable directly within the form, but the associated project data (of the require-
ment of the stakeholder) cannot be modified in the same view (the user has to switch to the
stakeholder view). The reasons for this limitation are (a) the data visualization is mixed-up for
a larger number of nested forms, and (b) the resolution of nested self-references (e.g., a require-
ment links to a stakeholder, which links back to the same requirement) would require additional
implementation effort.

Synchronization Cockpit Based on the Synchronization Cockpit, the project manager is
in possession to monitor, and actively control the entire synchronization process, including the
synchronization of specific sources (upstream, downstream, activate/deactivate sources).

One important feature of the cockpit and the underlying algorithm, is the reporting of syn-
chronization failures (e.g., missing or offline data sources, unresolvable data dependencies).
In addition, interdependencies between sources are automatically resolved, as far as possible.
For instance, during the UC evaluation, team data was upstreamed from two different sources.
Spreadsheet A contained a link to a (superior) team member of record B. While synchronizing,
the dependency was detected, and resolved, as soon as the data of spreadsheet B was available
in the central semantic data store (the link between the two records was then explicitly retained
in the central store).

The Synchronization Cockpit facilitates the project manager to either run the synchronization
process permanently in background, or once in a while (e.g., once a day), depending on the
resource-intensity of the local data access. Depending on the type of data, changes are either
detected on file-level (e.g., Excel), or on record-level (e.g., Redmine). Nevertheless, the syn-
chronization always takes place on record-level. E.g., provisions are in place that detect whether
the local representation of a record and its central representation vary, and whether a synchro-
nization is necessary or not.

The synchronization process itself was not focus of the research, but has been implemented
as a means to an end, to demonstrate the implementation of the mappings between the local and
the common data concepts. However, because the OpenEngSb currently includes no algorithm
for the synchronization of data (a) within same, and across different data domains, based on
work-flows, (b) for the synchronization of data of the same tool instance (e.g., two instances
of Jira Issue), the process has been contributed to the OpenEngSb, so that it can be developed
further. In its current state, the main shortcomings of the process are: (a) The process does not
incorporate the synchronization of local time systems (e.g. the time at Google Drive, and a local
system are not synchronized). Second, concurrent access by multiple (local) team members is
addressed only limited. For instance, if one team (member) updates a feature in local PMS A,
but simultaneously a collaborator of another team commits the deletion of the replicated feature
via the local PMS B, then the resolution of the conflict is not clearly addressed. However, there
are provisions to resolve simultaneous data modifications, based on the timestamp of the last
update. Nevertheless, these synchronization issues requires additional investigation.

135

Model Integration and Re-utilization The integration and re-utilization of models is
demonstrated in several ways. First, the models are the central artifact of the CNIP (1.1). Second,
a mapping between UML class diagram elements and additional model annotations, based on
the Semantic Model Editor is provided (2.2). To the best knowledge of the author, and related
work [48], literature does not provide such a comprehensive, consistent mapping between (a)
UML class diagrams, (b) ontologies, (c) object-oriented (Java) code, and (d) UI elements. How-
ever, related work addresses mappings between partial artifacts: For the mapping between (a)
and (b), umlTUowl is extended. For instance, the support for enumerations, attribute multiplic-
ity, and simple data constraints (mapped to OWL Facets) are added. Useful, not-implemented
features include the annotation for attribute uniqueness, and ordering (in the solution approach,
the first attribute, or attributes named “id” are assumed to be unique identifiers). The mapping
between (b) and (c) incorporates the approaches of the OpenEngSb, Jastor, and RDFReactor.
The mapping between (a) and (d), respectively (a), (b), (c), and (d), is designed with the inten-
tion to simplify the re-usability of the Semantic Model Editor’s outcomes for project managers.
The SWB approach could not be reused in this respect, because the specific mapping solutions,
were not available. UI generation approaches that solely rest on UML class diagrams (or rela-
tional database schemes) were excluded from the research process.

Third, the gap between the integration of tool-internal models, and local as well as common
concepts, is reduced (RI-2.1). This issue is discussed, based on the OpenEngSb architecture.
Chapter 6.4.3 outlines that the utilization of data models reduces the manual integration ef-
fort for developers, and simplifies the mapping between different representations of the same,
conceptual model (tool-internal view, local model, common model, association with PMBOK
knowledge areas and tool domains). The main benefits of models in this respect are (a) the
automation of data integration (e.g., automated JSON/XML) transformations, (b) the role of
data models for the documentation and communication of APIs, local concepts, etc., (c) the re-
usability of models and their extensibility/adaptablity, and (d) the utilization of the models for
code generation.

Repository for Semantic ITPM Models The main idea of the semantic repository is to effi-
ciently reuse and share formalized PM knowledge (models, queries/rules, data source configu-
rations) and implementations (PM connectors) (RI-2.3). The solution approach briefly evaluates
the feasibility of a shared repository, and the reusability of specific artifacts. The main research
contribution in this respect are, (a) the structured organization of (abstract) ITPM models and
specific PMS models, in an extensible and reusable fashion, (b) the representation of models in
both, compact UML class diagram notation, and machine-interpretable, OWL, and (c) the con-
ceptual discussion, on how to reuse/share ITPM models, rules, (d) and PM connectors.

Specific attention has been paid to address the criticism of practitioners regarding the appli-
cation of normative, best-practice models. Nevertheless, the solution approach also supports
normative models, such as the RefModPM, and the related PROMONT ontology. Currently,
the exchange of models is limited to data models (i.e., UML class diagrams). The exchange of
work-flows is not supported, which is a limitation, compared to RefModPM and PROMONT.

136

In its current state, the ontological artifacts of the repository (models, rules, queries, config-
urations) are efficiently reusable by a single project manager, and/or a set of familiar project
managers, who work in similar organization contexts, and all apply the ITPM dashboard. As
the results are all persisted in OWL, the ontologies potentially also can be shared across the
community. However, as the queries are tied to the organization-specific application of tools and
system, the exchange of these artifacts will most likely require their redesign; an issue that is not
addressed throughout this thesis.

Reflection of UC Results The UC configuration exemplifies the application of the MDSE ap-
proach based on, (a) a set of mappings between local and common data models (UML class
diagram notation), (b) a set of work-flows for the automation of manual synchronization activi-
ties across various PMSs, knowledge areas, and tool domains, and (c) a set of SPARQL queries
for the automated derivation of aggregated PM knowledge, and the visualization of escalations
and anti-patterns (RI-1.1).

The specific mappings between local and common concepts include the following (semantic)
mapping issues: (a) mapping between different representations of the same entities, and their
IDs (e.g. internal stakeholder acronym vs. full stakeholder name), (b) mapping between same
concepts with different designations (e.g., Jira: “feature type”; Redmine: “tracker”), (c) map-
ping of same attributes with different data ranges (e.g. priority), (d) mapping between a bunch
of attributes/concepts (e.g. the representation of a status in Jira and within the core ITPM data
model). One result of the UC configuration is that some semantic mappings cannot be resolved
in an objective way, unambiguously. For instance, the mapping of different priority scales (e.g.,
Jira: five categories; Redmine: four categories) will always remain subjective.

The mappings between the tools are effectively implemented in Java. The evaluation and ap-
plication of an efficient mapping language between models is not addressed within the thesis,
an is left for further research. Two possible candiates are ATL, and the OpenEngSb-internal
transformation editor, for the graphical representation of model mappings.

The implementation of SPARQL queries based on the Semantic Query Editor is convenient;
sophisticated data visualizations (e.g., the representation of a work-breakdown structure) are
efficiently configurable and adaptable, even by the project manager. However, the design of
SPARQL also reveals that more complex, nested queries (e.g., represent all team members in a
hierarchy. Highlight all superiors, who manage a team member with one or more open issues)
become very comprehensive (> 30 lines), and are difficult to interpret and maintain. In this re-
spect, the upcoming SPARQL 1.2 version will provide simplifications, including more powerful
path expressions1).

One criticism taken-up regarding the UC, was that the synchronization of data between “spread-
sheets” seems not to be challenging. Expert experience at the CDL-Flex show that the complex-

1SPARQL Extensions: http://www.w3.org/wiki/SPARQL/Extensions

137

ity of data integration problems is often underestimated by practitioners; a fallacy which has
been also experience throughout the conduction of this thesis. Related work and expert discus-
sions show that spreadsheets are a widely used by project managers. The main challenge that
is addressed within the thesis is not the “trivial” synchronizing between a set of files, but the
mapping and resolution of semantic ambiguities on the record-level. In this regard, the structure
of the spreadsheets (e.g., for requirements specification, time sheets) is similar to the structure of
state-of-the-art PM software, so the UC can be seamlessly transformed into an environment with
more sophisticated software products (e.g., IBM Doors, Harvest Time Tracking2, MS Project).

Additional Limitations and Threats to Validity The current prototype only addresses the
management of a single, isolated project, and only for the role of the project manager. A related
limitation is that the generated DAOs are not optimized to efficiently retrieve data instances that
are bound to a specific project.

The Semantic Model Editor currently utilizes an internal meta-model for the transformation be-
tween UML class diagrams and OWL ontologies. This meta-model origins from umlTUowl and
facilitates the efficient transformation between Java, JSON, and the Web interface (via AJAX).
Although conceptually complete, the reverse-engineering of OWL ontologies for the represen-
tation within the Semantic Model Editor still must be implemented.

The limitation of the mapping between local and common concepts, based on Java, has already
been discussed. Although the Drools-based work-flows can be configured during run-time, they
lack of a graphical representation, and hence are difficult to interpret by project managers. An-
other limitation is that the design of SPARQL queries is difficult to perform by project managers,
and requires the support of a knowledge engineer.

Finally, the evaluation of the solution approach is framed to the presented UC. Although several
measures have been taken to ensure the stability of the cost-benefit analysis (e.g., the efforts for
manual integration have been assigned scarcely; the benefits for the local teams have been ne-
glected; the time efforts have not been raised for a higher number of requirements, based on an
increased complexity factor [83]), the outcome can still vary, for instance based on the APIs of
the applied tools, the number of executed CNIP meetings, and the skills of the project manager.
To provide an example, some PMSs implement basic import features, based on spreadsheets. Al-
though the capabilities of these features are limited, and the import must be manually performed
over and over again, a skilled project manager may leverage these functionality to reduce the
manual effort.

2Harvest: http://www.getharvest.com

138

CHAPTER 9
Conclusion and Future Work

In multi-organizational environments, such as project consortia, conflicts and integration chal-
lenges appear at various organizational levels, and complicate the efficient integration of data.
The data integration challenges are intensified, if the involved project organizations are very
heterogeneous, thus having ambivalent objectives.

This work proposes a systematic integration framework for knowledge-supported project man-
agement in IT consortia. The solution approach, based on design-science, addresses integration
issues at different organizational levels, which are rarely addressed in PM and integration liter-
ature, in the context of IT consortia:

• The Consortium Negotiation and Integration Process provides an off-the-shelf, easy-to-
setup process for the negotiation of a common view on data integration, at the management
level. This process addresses issues such as (a) building commitment and awareness for
data integration, (b) identifying relevant data sources for integration and identify/generate
solutions, and (c) enforcing the implementation of the data integration.

• The ITPM Dashboard is a downloadable, Web-based prototype1 that facilitates the CNIP
based on a number of sub-modules. The main features for project managers are (a) a
central, configurable view on PM data, including monitoring, navigation, and reporting
features (e.g., the detection of project anti-patterns), and (b) the central configuration and
control of the synchronization of local PM data and knowledge. One main advantage of
the ITPM Dashboard, opposed to PM suites, is that it does not not approach to be an all-
in-one solution: All project teams sill work with their preferred local PM systems. The
dashboard centralizes all configured data sources, and accelerates the access and query of
local data sources. Nevertheless, it can be completely operated in background, enabling
the project manager to use her preferred local PMS.

1ITPM Dashboard: https://bitbucket.org/agruenwald/custom-itpm-builds

139

• At the technical level, the data integration is based on the OpenEngSb, which is actively
developed at the CDL-Flex.

• Data models represent the link between the various levels of integration. For this purpose,
MDSE and Semantic Web technologies (OWL, SPARQL) are leveraged to (a) create,
document, and pass negotiated data models between the management level, and the de-
velopment, (b) utilize data models for the creation of code and UI artifacts to make the
technical integration more efficient, and (c) enrich models with semantic technologies in
order to make them reusable and shareable.

The main design artifact regarding models is the Semantic Model Editor, which facili-
tates the creation, organization, and utilization of OWL ontologies based on UML class
diagram notation. The editor facilitates features for code generation, collaborative mod-
elling, and is integrated with the Semantic Query Editor, which enables the creation of
data visualizations (tables, diagrams, KPIs, work-breakdown graphs), based on SPARQL.
The Semantic Model Editor represents an innovative semantic modeling tool that actu-
ally could be used as a standalone knowledge-engineering tool (several usage requests by
researchers already have been received).

The prototype and the systematic integration framework are applied to a consortium UC for the
development of an innovative software product. The configuration of the prototype for the UC
showed that the approach is efficiently usable to identify the project members’ data sources, to
model the data structures, and to map and integrate ambivalent semantics, based on a common
view.

The systematic integration framework closes the gap between heavy-weight DWH integration
solutions, and lean, but unsystematic ad-hoc integration. The evaluation results, based on the
UC, indicate that the manual integration efforts of the project manager are significantly reduced:
If all connectors are available, then the effort is reduced by 45%, for 30 requirements. Even if
all PMS connectors must be implemented from scratch, the integration effort for a project with
65 requirements, is reduced by almost 25%.

The comparison of the MDSE-based process for implementing a new OpenEngSb with the con-
ventional approach shows that the effort is reduced by 65%, based on the available results of
an industrial project. The main savings results from (a) the reduced communication and trans-
formation effort of ontologies, (b) the reduced implementation effort based on the derivation of
code, tests, and UI elements, (c) the configurable UI dashboard, which makes the manual imple-
mentation of prototypical UI visualizations, obsolete.

The main conclusion is that the systematic integration framework is a comprehensive PM in-
tegration framework that addresses several aspects of IT consortia projects that are currently not
addressed in literature.

The framework is backed by a sophisticated Web-based ITPM dashboard, and evaluation results

140

from a UC that has been carefully constructed based on workshop-results and expert feedback.
In addition, related work (e.g., PMS, knowledge-based PM, DWH, EII, Semantic Project Man-
agement, MDSE, Agile Web Dashboards) has been researched to identify and incorporate PM
data integration analogies.

The research outcome is valuable for managers in IT project consortia, but also for researchers
/ knowledge engineers who experiment with semantic technologies. For the later, the literature
review revealed a strong need in efficient data integration and visualization tools (related work
often relies on very basic PM data, because the setup of a data base, respectively the integration
of semantic data causes a big effort).

Future Work Four main fields are suggested, to be addressed in future work.

Experimenting with Additional Data / Use-Cases This work invested plenty of effort in the
identification of requirements for PM data integration, and the development of related design ar-
tifacts. However, the evaluation of the framework is based on a single UC. The first proposal for
future work hence addresses the evaluation of the framework for further use-cases, respectively
real-world scenarios. For instance, three consortia could be identified, for which the framework
can be applied and refined in a pilot study (to provide a reference, Boehm et. al evaluated their
WinWin Spiral model for 15 teams [19]).

Visualization and Configuration of Data A current shortcoming of the approach is that the
configuration of the dashboard requires the support of a knowledge engineer. Future research
should address the application of UI elements that simplify the configuration and derivation of
data/knowledge visualizations for project managers. One suggestion would be to investigate
the reuse of technologies used in DWH, such as Online Analytical Processing (OLAP). For in-
stance, in data warehousing, data cubes are commonly used to facilitate the visualization of data
on different abstraction levels. Managers can combine different data attributes, and drill-down,
or roll up, the resulting cubes. These techniques could be reused for the ITPM dashboard, e.g.,
to show trends, or the number of issues per day/week/month/quarter.

Another visualization issue that addresses the configuration of work-flows and mappings. Cur-
rently, work-flows must be implemented based on Drools, which is unsuitable for project man-
agers. Currently, a related master-thesis at the CDL-Flex is in progress, which examines the
visualization of work-flows based on Activiti2. The result of this thesis could be incorporated
into the ITPM dashboard. Additionally, the visualization / Web-based configuration of transfor-
mations between models should be researched.

Model Versioning Model versioning addresses the evolution of the data models, and the trace-
ability of changes over time for both, models and data. The incorporation of model versioning is

2Activiti: http://activiti.org

141

relevant, because it could help (a) to automatically trail PM rules/queries based on changes in the
related models, and (b) to ensure data consistency, if models change over time (e.g., throughout
the project).

A related issue is the capturing of historical data in a space-efficient way (space-complexitity).
Capturing not only the current project state, but retaining historical data, can help the project
manager to derive additional information about the project progress (e.g., how many issues were
open two weeks ago, how many issues have been solved meanwhile).

Extending of the Scope of the PM Dashboard The scope of the ITPM dashboard can be
extended in several ways. First, knowledge areas that were not addressed in the UC can be
researched (e.g., risk management is an interesting candidate). Second, the integration of ad-
ditional PMS should be forced, to extend the repository of available PM connectors within the
OpenEngSb repository. Third, the ITPM dashboard can be extended to provide multiple (cus-
tomized) views for different project roles. For instance, one master thesis at the CDL-Flex
currently evaluates/extends the ITPM dashboard for the construction of a QM-centric view.

142

Bibliography

[1] Proceedings of the 24rd International Conference on Software Engineering & Knowledge
Engineering (SEKE’2012), San Francisco Bay, USA, July 1-3, 2012. Knowledge Systems
Institute Graduate School, 2012.

[2] Kovair omnibus for integrated alm. an overview. Technical report, Kovair, 2014.

[3] Sven Abels, Frederik Ahlemann, Axel Hahn, Kevin Hausmann, and Jan Strickmann.
Promont–a project management ontology as a reference for virtual project organizations.
In On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, pages 813–
823. Springer, 2006.

[4] F Ahlemann. Project management systems: Typology, state-of-the-art and forecast. In
SOVNET, Russian Project Management Association (ed.): Proceedings of the 17th World
Congress on Project Management. Moscow. Citeseer, 2003.

[5] F. Ahlemann and K. Backhaus. Project Management Software Systems: Requirements,
Selection Process and Products ; a Study by the Research Center for Information Systems
in Project and Innovation Networks ; [unbiased Comparison of 34 Products, Concise
Assessments, Independent Decision Support]. Oxygon-Verlag, 2006.

[6] Frederik Ahlemann. Towards a conceptual reference model for project management in-
formation systems. International Journal of Project Management, 27(1):19–30, 2009.

[7] Adel M Aladwani. Change management strategies for successful erp implementation.
Business Process management journal, 7(3):266–275, 2001.

[8] Manoli Albert, Jordi Cabot, Cristina Gómez, and Vicente Pelechano. Automatic genera-
tion of basic behavior schemas from uml class diagrams. Software & Systems Modeling,
9(1):47–67, 2010.

[9] Grigoris Antoniou and Frank Van Harmelen. A semantic web primer. MIT press, 2004.

[10] Eric Armengaud, Matthias Biehl, Quentin Bourrouilh, Michael Breunig, Stefan Far-
feleder, Christian Hein, Markus Oertel, Alfred Wallner, and Markus Zoier. Integrated tool
chain for improving traceability during the development of automotive systems. ERTS2

2012–EMBEDDED REAL TIME SOFTWARE AND SYSTEMS, 2012.

143

[11] Roger Atkinson. Project management: cost, time and quality, two best guesses and a
phenomenon, its time to accept other success criteria. International journal of project
management, 17(6):337–342, 1999.

[12] Motoei Azuma. Iso/iec cd 25010: Software engineering – software product quality re-
quirements and evaluation (square) – software and quality in use models. Technical report,
International Organization for Standardization, 2008.

[13] L. Bass, P. Clements, and R. Kazman. Software architecture in practice. Addison-Wesley
Longman Publishing Co., Inc., 2003.

[14] S. Biffl, R. Mordinyi, and T. Moser. Automated derivation of configurations for the in-
tegration of software (+) engineering environments. In 1st International Workshop on
Automated Configuration and Tailoring of Applications, ACoTA, 2010.

[15] S. Biffl and A. Schatten. A platform for service-oriented integration of software engi-
neering environments. In Proceeding of the 2009 conference on New Trends in Software
Methodologies, Tools and Techniques: Proceedings of the Eighth SoMeT_09, pages 75–
92. IOS Press, 2009.

[16] Stefan Biffl, Wikan Danar Sunindyo, and Thomas Moser. A project monitoring cockpit
based on integrating data sources in open source software development. In SEKE, pages
620–627, 2010.

[17] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far. Interna-
tional journal on semantic web and information systems, 5(3):1–22, 2009.

[18] Barry Boehm, Prasanta Bose, Ellis Horowitz, and M-J Lee. Software requirements as
negotiated win conditions. In Requirements Engineering, 1994., Proceedings of the First
International Conference on, pages 74–83. IEEE, 1994.

[19] Barry Boehm, Alexander Egyed, Julie Kwan, Daniel Port, Archita Shah, and Ray
Madachy. Using the winwin spiral model: a case study. Computer, 31(7):33–44, 1998.

[20] Barry Boehm, Paul Grunbacher, and Robert O Briggs. Developing groupware for require-
ments negotiation: lessons learned. Software, IEEE, 18(3):46–55, 2001.

[21] Barry Boehm and Hasan Kitapci. The winwin approach: using a requirements negotiation
tool for rationale capture and use. In Rationale management in software engineering,
pages 173–190. Springer, 2006.

[22] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engineering
in practice. Synthesis Lectures on Software Engineering, 1(1):1–182, 2012.

[23] Frederick P Brooks Jr. The Mythical Man-Month, Anniversary Edition: Essays on Soft-
ware Engineering. Pearson Education, 1995.

[24] A. Brown and G. Wilson. The architecture of open source applications. Lulu. com, 2011.

144

[25] William J Brown, Raphael C Malveau, Hays W McCormick III, and Thomas J Mowbray.
Refactoring software, architectures, and projects in crisis, 1998.

[26] William J Brown, Hays W McCormick, and Scott W Thomas. Anti-Patterns Project
Management. John Wiley & Sons, Inc., 2000.

[27] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Ric-
cardo Rosati. Description logic framework for information integration. In KR, pages
2–13, 1998.

[28] P. Clements, F. Bachmann, L. Bass, D. Garlan, P. Merson, J. Ivers, R. Little, R. Nord, and
J. Stafford. Documenting software architectures: views and beyond. Addison-Wesley
Professional, 2010.

[29] Spikes Cavell Research Company. Bull report, 1998.

[30] T De Marco and T Lister. Peopleware: Productive projects and teams, dorset house,
publishing co. Inc. New York, NY, USA, 1987.

[31] Prem Devanbu, Ron Brachman, and Peter G Selfridge. Lassie: a knowledge-based soft-
ware information system. Communications of the ACM, 34(5):34–49, 1991.

[32] B. Dippelreiter. Semprom - semantic based project management. dissertation., 2012.

[33] Birgit Dippelreiter and Michael Püttler. Scenarios for evaluating a semantic project man-
agement approach. Scientific Journal of Riga Technical University. Computer Sciences,
43(1):65–71, 2011.

[34] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of data integration. Elsevier,
2012.

[35] Hai Dong, Farookh Khadeer Hussain, and Elizabeth Chang. Application of protégé and
sparql in the field of project knowledge management. In Systems and Networks Commu-
nications, 2007. ICSNC 2007. Second International Conference on, pages 74–74. IEEE,
2007.

[36] John Favaro. Value based management and agile methods. In Extreme Programming and
Agile Processes in Software Engineering, pages 16–25. Springer, 2003.

[37] Mariano Fernández-López and Asunción Gómez-Pérez. Overview and analysis of
methodologies for building ontologies. The Knowledge Engineering Review, 17(02):129–
156, 2002.

[38] Bent Flyvbjerg and Alexander Budzier. Why your it project may be riskier than you think.
Harv Bus Rev, 89(9):23–25, 2011.

[39] Guy G Gable. Integrating case study and survey research methods: an example in infor-
mation systems. European Journal of Information Systems, 3(2):112–126, 1994.

145

[40] Stanislaw Gasik. Knowledge oriented project management. 21st IPMA World Congress,
2007.

[41] Stanislaw Gasik. A model of project knowledge management. Project Management
Journal, 42(3):23–44, 2011.

[42] I Gorton, I Hawryszkiewycz, and K Ragoonaden. Collaborative tools and processes to
support software engineering shift work. BT technology journal, 15(3):189–198, 1997.

[43] James Grenning. Planning poker or how to avoid analysis paralysis while release plan-
ning. Hawthorn Woods: Renaissance Software Consulting, 3, 2002.

[44] Thomas R Gruber et al. Toward principles for the design of ontologies used for knowledge
sharing. International journal of human computer studies, 43(5):907–928, 1995.

[45] Andreas Gruenwald, Dietmar Winkler, Estefania Serral, and Stefan Biffl. Semantic
technologies for more-efficient model-driven development. Technical report, Christian
Doppler Laboratory for Software Engineering Integration and Flexible Automation Sys-
tems, 2013.

[46] Andreas Gruenwald, Dietmar Winkler, Estefania Serral, and Stefan Biffl. Semantic tech-
nologies to accelerate model-driven development. 2013.

[47] A. Grünwald and T. Moser. umltuowl - a both generic and vendor-specific approach for
uml to owl transformation. In SEKE [1], pages 730 – 736.

[48] Andreas Grünwald and Thomas Moser. umltuowl - a both generic and vendor-specific
approach for uml to owl transformation. In Proc. of SEKE. Knowledge Systems Institute
Graduate School, 2012.

[49] Joseph Gulla. Seven reasons it projects fail. IBM Systems Magazine, 2012.

[50] Alon Halevy. Why your data won’t mix. Queue, 3(8):50–58, 2005.

[51] Alon Halevy, Anand Rajaraman, and Joann Ordille. Data integration: the teenage years.
In Proceedings of the 32nd international conference on Very large data bases, pages 9–16.
VLDB Endowment, 2006.

[52] Alon Y Halevy, Naveen Ashish, Dina Bitton, Michael Carey, Denise Draper, Jeff Pol-
lock, Arnon Rosenthal, and Vishal Sikka. Enterprise information integration: successes,
challenges and controversies. In Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 778–787. ACM, 2005.

[53] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and techniques.
Morgan kaufmann, 2006.

[54] Paul Harris. Selecting project management software. 2003.

146

[55] Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing sparql queries
over the web of linked data. In The Semantic Web-ISWC 2009, pages 293–309. Springer,
2009.

[56] Matthias Heindl and Stefan Biffl. A case study on value-based requirements tracing. In
Proceedings of the 10th European software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of software engineering, pages
60–69. ACM, 2005.

[57] S Heinonen, Jukka Kääriäinen, and Juha Takalo. Challenges in collaboration: tool chain
enables transparency beyond partner borders. In Enterprise Interoperability II, pages
529–540. Springer, 2007.

[58] Brian Helbrough. Computer assisted collaboration—the fourth dimension of project man-
agement? International Journal of Project Management, 13(5):329–333, 1995.

[59] Jörg Henss, Joachim Kleb, Stephan Grimm, and IITB Fraunhofer. A protégé 4 back-
end for native owl persistence. In 2009 International Protégé Conference, Amsterdam,
Netherlands, 2009.

[60] Alan R Hevner. The three cycle view of design science research. Scandinavian journal
of information systems, 19(2):87, 2007.

[61] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design science in
information systems research. MIS quarterly, 28(1):75–105, 2004.

[62] Jeff Hiatt and Timothy J. Creasey. Change Management: The People Side of Change.
Prosci Learning Center, 2003.

[63] Linz Hines, Scott Baldwin, Mark Giles, and Juan Peralta. Implementing agile develop-
ment in a waterfall project. Technical report, 2009.

[64] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F Patel-Schneider, and Sebastian
Rudolph. Owl 2 web ontology language primer. W3C, 27, 2009.

[65] Pascal Hitzler, Markus Krotzsch, and Sebastian Rudolph. Foundations of semantic web
technologies. CRC Press, 2011.

[66] Matthew Horridge and Sean Bechhofer. The owl api: A java api for owl ontologies.
Semantic Web, 2(1):11–21, 2011.

[67] Rico Huijbers, Funs Lemmens, Bram Senders, Sjoerd Simons, Bert Spaan, Paul van
Tilburg, and Koen Vossen. Software project management: methodologies & techniques.
Department of Mathematics & Computer Science, page p20, 2004.

[68] ISO/IEC. Iso/iec 25012. software engineering — software product quality requirements
and evaluation (square) — data quality model. Technical report, International Organiza-
tion for Standardization, 2008.

147

[69] Joseki Jena and Pellet Fuseki. Semantic web frameworks, 2004.

[70] Anant Jhingran. Enterprise information mashups: integrating information, simply. In
Proceedings of the 32nd international conference on Very large data bases, pages 3–4.
VLDB Endowment, 2006.

[71] J. Johnson. Chaos summary. The Standish Group Report, 2009.

[72] Claudio Jossen and Klaus R Dittrich. The process of metadata modeling in industrial data
warehouse environments. In BTW Workshops, pages 16–27. Citeseer, 2007.

[73] Aditya Kalyanpur, Daniel Jiménez Pastor, Steve Battle, and Julian A Padget. Automatic
mapping of owl ontologies into java. In SEKE, volume 4, pages 98–103. Citeseer, 2004.

[74] Andrew Kannenberg and H Saiedian. Why software requirements traceability remains a
challenge. CrossTalk The Journal of Defense Software Engineering, 2009.

[75] Gregory E Kersten. NEGOTIATIONS AND E-NEGOTIATIONS. People, Models, and
Systems. Springer, 2010.

[76] Harold Kerzner. Project management: a systems approach to planning, scheduling, and
controlling. Wiley, 2013.

[77] Ralph Kimball. The data warehouse lifecycle toolkit: expert methods for designing, de-
veloping, and deploying data warehouses. John Wiley & Sons, 1998.

[78] Henrik Kniberg. Kanban and Scrum-making the most of both. Lulu. com, 2010.

[79] KPMG. Global it project management survey, 2005.

[80] Ingolf H Kruger, Diwaker Gupta, Reena Mathew, Praveen Moorthy, Walter Phillips,
Sabine Rittmann, and Jaswinder Ahluwalia. Towards a process and tool-chain for service-
oriented automotive software engineering. 2004.

[81] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems, pages 233–246. ACM, 2002.

[82] Andriy Lesyuk. Mastering Redmine. Packt Publishing Ltd, 2013.

[83] Steve McConnell. Software Estimation: Demystifying the Black Art: Demystifying the
Black Art. Microsoft press, 2009.

[84] Fred R McFadden. Data warehouse for eis: some issues and impacts. In System Sciences,
1996., Proceedings of the Twenty-Ninth Hawaii International Conference on,, volume 2,
pages 120–129. IEEE, 1996.

[85] Shahriar Mohammadi and Ali Khalili. A semantic web service-oriented model for project
management. In Computer and Information Technology Workshops, 2008. CIT Work-
shops 2008. IEEE 8th International Conference on, pages 667–672. IEEE, 2008.

148

[86] Philip Moncrief. Project Management. The Secrets of Success. Xlibris, 2004.

[87] R. Mordinyi, T. Moser, and S. Biffl. Test-case generation for the validation of integrated
automation systems engineering environments.

[88] Peter W.G. Morris. Reconstructing Project Management. Wiley-Blackwell.

[89] Thomas Moser and Stefan Biffl. Semantic tool interoperability for engineering manufac-
turing systems. In Emerging Technologies and Factory Automation (ETFA), 2010 IEEE
Conference on, pages 1–8. IEEE, 2010.

[90] Héctor Muñoz-Avila, Kalyan Gupta, David W Aha, and Dana S Nau. Knowledge based
project planning. Knowledge management and organizational memories, page 125, 2002.

[91] N Noy and Deborah L McGuinness. Ontology development 101. Knowledge Systems
Laboratory, Stanford University, 2001.

[92] Bijan Parsia and Evren Sirin. Pellet: An owl dl reasoner. In Third International Semantic
Web Conference-Poster, volume 18, 2004.

[93] Andreas Pieber. Flexible engineering environment integration for (software+) develop-
ment teams. Master’s thesis, Vienna Technical University, 2010.

[94] PMI. A Guide to the Project Management Body of Knowledge. (PMBOK Guide). Project
Management Institute, fourth edition, 2008.

[95] Axel Polleres. From sparql to rules (and back). In Proceedings of the 16th international
conference on World Wide Web, pages 787–796. ACM, 2007.

[96] Mark Pruett. Yahoo! pipes. O’Reilly, 2007.

[97] PWC. Insights and trends: Current portfolio, programme, and project management prac-
tices, 2012.

[98] PWC. Insights and trends: Current programme and project management practices, 2012.

[99] Irfan Rafique, Philip Lew, Maissom Qanber Abbasi, and Zhang Li. Information qual-
ity evaluation framework: Extending iso 25012 data quality model. In Proceedings of
World Academy of Science, Engineering and Technology, number 65. World Academy of
Science, Engineering and Technology, 2012.

[100] Timothy Redmond. An open source database backend for the owl api and protege 4. In
OWLED, volume 614, 2010.

[101] Nicholas C Romano Jr, Fang Chen, and Jay F Nunamaker Jr. Collaborative project man-
agement software. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual
Hawaii International Conference on, pages 233–242. IEEE, 2002.

149

[102] Fran J Ruiz-Bertol, Daniel Rodríguez, and Javier Dolado. Applying rules to an ontology
for project management. In Proceedings of the 16th Spanish conference on software
engineering and databases (JISBD 2011), A Coruña, Galicia, Spain, September, pages
5–7, 2011.

[103] K. Schwalbe. Information technology project management. Course Technology Ptr, 2010.

[104] Dimitrios Settas and Ioannis Stamelos. Using ontologies to represent software project
management antipatterns. In SEKE, pages 604–609. Citeseer, 2007.

[105] Shari Shang and Peter B Seddon. Assessing and managing the benefits of enterprise
systems: the business manager’s perspective. Information Systems Journal, 12(4):271–
299, 2002.

[106] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1):3–55, 2001.

[107] Rob Shearer, Boris Motik, and Ian Horrocks. Hermit: A highly-efficient owl reasoner. In
OWLED, volume 432, 2008.

[108] Aaron Shenhar and Dov Dvir. Reinventing project management: the diamond approach
to successful growth and innovation. Harvard Business Press, 2007.

[109] Evren Sirin and Bijan Parsia. Sparql-dl: Sparql query for owl-dl. In OWLED, volume
258, 2007.

[110] Michele Sliger. Agile projects in the waterfall enterprise. Better Software, 2006.

[111] Cynthia Snyder Stackpole. A Project Manager’s Book of Forms. A Companion to the
PMBOK Guide - Fourth Edition. John Wiley and Sons, 2009.

[112] Javier Solis, Hasdai Pacheo, Karen Najera, and Hugo Estrada. A mde framework for
semi-automatic development of web applications. In Proc on MDE and SE, pages 241–
246. SciTePress, 2013.

[113] Daniel B. Stang. Magic quadrant for it project and portfolio management, 2010.

[114] Wikan Danar Sunindyo, Thomas Moser, Dietmar Winkler, and Stefan Biffl. Foundations
for event-based process analysis in heterogeneous software engineering environments.
In Software Engineering and Advanced Applications (SEAA), 2010 36th EUROMICRO
Conference on, pages 313–322. IEEE, 2010.

[115] Wikan Danar Sunindyo, Thomas Moser, Dietmar Winkler, Richard Mordinyi, and Stefan
Biffl. Workflow validation framework in distributed engineering environments. In On the
Move to Meaningful Internet Systems: OTM 2011 Workshops, pages 236–245. Springer,
2011.

[116] Kalpana Sureshchandra and Jagadish Shrinivasavadhani. Moving from waterfall to agile.
AGILE Conference, 0:97–101, 2008.

150

[117] Piotr Szwed, Jan Werewka, and Grzegorz Rogus. Integration of classical and agile project
management methodologies based on ontological models. Production engineering in
making, 2010.

[118] Piotr Szwed, Jan Werewka, and Grzegorz Rogus. Ontology based alignment of classic
and agile project managment for an it enterprise. 2010.

[119] Henri Theil. Economics and information theory, volume 7. North-Holland Amsterdam,
1967.

[120] Hal R Varian and Joseph V Farrell. The economics of information technology: An intro-
duction. Cambridge University Press, 2004.

[121] Max Voelkel. Writing the semantic web with java. In CDH Seminar’05 Galway, Ireland,
2005.

[122] Max Völkel and York Sure. Rdfreactor-from ontologies to programmatic data access. In
Poster Proceedings of the Fourth International Semantic Web Conference, page 55, 2005.

[123] M.N. Wicks. Tool integration in software engineering environments, 2004.

[124] MN Wicks. Tool integration in software engineering environments. Technical report,
Citeseer, 2005.

[125] MN Wicks. Tool integration within software engineering environments: An annotated
bibliography. Heriot-Watt University, Tech. Rep, 2006.

[126] OSLC Core Specification Workgroup. Oslc core specification version 2.0. Open Services
for Lifecycle Collaboration, Tech. Rep, 2010.

[127] Jin Yu, Boualem Benatallah, Fabio Casati, and Florian Daniel. Understanding mashup
development. Internet Computing, IEEE, 12(5):44–52, 2008.

[128] Michael H Zack. Managing codified knowledge. Sloan management review, 40(4):45–58,
1999.

[129] Yuxiao Zhao, Uwe Assmann, and Kristian Sandahl. Owl and ocl for semantic integration.
2004.

151

APPENDIX A
Additional Design Outcomes

A.1 Technical Integration Processes

A.1.1 Workflow Implementation Process

Figure A.1: Implementation of work-flows based on the OpenEngSb integration framework.

153

A.1.2 Query Definition Process

Figure A.2: Creation of dashboard visualizations based on SPARQL queries.

154

A.1.3 Model-Driven ITPM Data Integration Process

Figure A.3: Conduction of the data integration process for a single PM tool. The process is
based on the OpenEngSb framework (connectors, tool domains, domain concepts).

155

A.2 Complete Mapping between UML, OWL, Code, and UI
Elements

Table A.1: Complete Mapping of model concepts and derived artifacts, based on
MDSE.

UML Class Dia-
gram (Sem. Model
Editor)

OWL Concept Generated Code Derived UI Elements

Meta Class
Abstract Class OWL Class;

rdfs:comment
Abstract Java Class -

Interface OWL Class;
rdfs:comment

Java Interface -

Concrete Class OWL Class Java Class (serializable; Ope-
nEngSb @Model annotation)

Menu item; table-based search;
form

Enum Class OWL Class; for each
enum value a subclass
is created. Object
property between
class that uses enum
attribute (domain), and
OWL enum superclass
(range)

One abstract Java Class (enu-
meration class name); for each
enumeration constant a sub-
class; to pass a value to the
class that uses the enumeration
as an attribute, an instance of
the subclass with default con-
structor needs to be passed (set-
ter). The DAO facilitates the
management of the value.

a dynamic single-select autocom-
pletion menu which enables the
user to select one of the enum val-
ues.

Meta Attribute
Primitive attribute
without data type

Data Property;
type=any

compiler error runtime exception

Numeric (double,
int) and string
attributes

Data Property with
OWL restriction (ex-
actly 1) and data range
(XML;OWL)

private field; getter and setter text field

Attribute of type
Boolean

Data Property with
OWL restriction and
data range Boolean

private field; getter and setter checkbox

Attribute of type
DateTime

Data Property with
OWL restriction and
data range DateTime

private field of type Date; getter
and setter

text field (extension: date/time
picker)

First Attribute, or
attributes named Id

OWL hasKey axiom same as other attributes plus
@OpenEngSbModelId Anno-
tation

input field is disabled for updates

Primitive data type
with multiplicity

Data Property with op-
tional OWL (has max)
restriction and data
range (XML;OWL)

private final field (generic list);
getter to access the elements of
that list;

not implemented

Meta Association
Continued on next page

156

Table A.1 – Continued from previous page
UML Class Dia-
gram (Sem. Model
Editor)

OWL Concept Generated Code Derived UI Elements

Unidirectional
association

object property with
range and domain;
subClassOf property
that links to the OWL
Class.

private final field (generic list);
depending on multiplicity ei-
ther getter to access the ele-
ments of that list; or if cardinal-
ity <= 1: setter and getter to ac-
cess element directly

A dynamic select menu (select2) to
edit the linked instances; A sub-
form within the main form to add
or edit concrete classes.

Bidirectional asso-
ciation

two object properties
with range and domain,
linked to the related
class via a subClassOf
property. The two ob-
ject properties are con-
nected via an OWL in-
verseOf property.

same as unidirectional asso-
ciation; but setters/getters are
available in both classes.

same as unidirectional association

Aggregation same as association, ex-
cept that a comment
is added. Addition-
ally, if the association
is unnamed, the naming
is different (typically:
hasClassAOfClassB)

same as unidirectional associ-
ation; naming of getter might
be different by default (analo-
geously to OWL object prop-
erty)

same as association

Unidirectional ag-
gregation

analogeous to aggrega-
tion and unidirectional
association (object
property + subClassOf
property + comment)

same as bidirectional associa-
tion; naming of getter might
be different by default (analo-
geously to OWL object prop-
erty)

same as association

Composition same as aggregation same as aggregation same as aggregation; however
classes that are parts of a compo-
sition are not shown in the main
navigation menu; they are directly
maintained within sub-forms; when
a link is removed, also the data in-
stance will be deleted.

Unidirectional
composition

same as unidirectional
aggregation

same as unidirectional aggrega-
tion

same as composition

Association with
max . multiplicity
<= 1

additional constraint in
the domain range (min,
max, or exactly)

private field with getter and set-
ter

Same as association; but only one
item can be selected in the dynamic
field.

Association with
max. multiplicity
> 1

optional constraint in
the domain range (min;
max)

private field (list) and a getter
to access and manipulate the list
elements.

Same as association; the dynamic
select field allows the user to link
a maximum of x records.

Meta Comment /
Annotation
Comment on class rdfs:comment Java comment at class level help text at the beginning of the

form
Comment on At-
tribute

rdfs:comment Java comment at getter/setter help text next to the field (popover)

Continued on next page

157

Table A.1 – Continued from previous page
UML Class Dia-
gram (Sem. Model
Editor)

OWL Concept Generated Code Derived UI Elements

Comment on Asso-
ciation

rdfs:comment Java comment at getter/setter help text next to the field (popover)

Internal Annotation rdfs:comment - -
Attribute with a
constraint stat-
ing that the size
can be >= 200
characters (regex:
pattern[.{0,200}])

Data Property with
OWL restriction and
data range String.
Depending on reasoner
capabilities whether
rdfs:comment, or OWL
Facet (pattern)

Additional condition in the val-
idation method of the related
Java DAO.

text area

OpenEngSb
Extensions
Connector Annota-
tion

rdfs:comment Processing as any model, but
the generated code will be
moved to the specific dev. Lo-
cation within the OpenEngSb
connector.

will be ignored because tool-
specific.

Domain Annota-
tion

rdfs:comment Processing as any model, but
the generated code will be
moved to the specific dev. Lo-
cation within the OpenEngSb
tool domain.

A tab in the navigation menu of
the ITPM Dashboard (sub-page PM
Data) will be created.

Concept “sug-
gested as available”

rdfs:comment no code is generated no UI elements are derived

Concept “globally
available”

- concept is processed as usual
(default state)

UI elements are created as usual

Concept “local
(tool-specific)”

rdfs:comment only Java beans and DAOs (for
validation) are created.

no UI elements are derived

Concept local and
available.

rdfs:comment Java beans, DAOs, and tests are
generated for a specific connec-
tor;

no UI elements are (currently) de-
rived.

Concept “tool-
internal” (info
purpose)

rdfs:comment no code is generated no UI elements are derived

158

A.3 Software Architecture of the ITPM Dashboard

A.3.1 Module View

The architecture consists of six layers (cf. figure A.4). The lower layers (1, 2, 3) include the
generic code generation and data access for semantic technologies based on the model-driven
approach. These layers allow the generic exchange of the underlying semantic technology, and
do not relate to any PM - specific domain knowledge. The upper layers (3, 4, 5, 6) build upon the
model-driven code generation approach. These layers access the underlying semantic data stores
via the generated code (layer 3), and contain code and logic to process, integrate, and visualize
IT project management data. The solution has been tighly integrated with the OpenEngSb.

Figure A.4: The Architectural Software Layers

159

A.3.2 Component View

Figure A.5 summarizes the configuration structure for the UC and the OpenEngSb environment.
The figure demonstrates the systematic integration approach of the local PMS and data sources,
and the main (work-flow) configuration and synchronization components.

Figure A.5: The architectural component view of the ITPM Dashboard / OpenEngSb for the
use-case.

160

APPENDIX B
ITPM Dashboard UI

Figure B.1: Synchronizer Cockpit while active synchronization.

161

Figure B.2: The Semantic Query Editor. The editor supports syntax-highlighting and auto-
completion for the provided ITPM Models.

162

Figure B.3: The Semantic Model Editor. UML-alike modelling of ontologies, and on-the-fly
source code generation.

163

Figure B.4: Excerpt of the Central ITPM Dashboard Configuration: On the top-left corner the
lines of code for the main software modules are visualized. Below, the last synchronization
activities and stati are summarized. On the right-hand side, the open issues that are close (or
exceed) the deadline, are enumerated. The responsible assignee is visualized (the picture is in-
tegrated from Gravatar.com). In the center of the right side, the last synchronization updates
are summarized, grouped by their type based on ten-minute sequences. On the right bottom,
for the project manager’s convenience, the team members, their roles, and the number of direct
inferiors are summarized. A click on any image will forward the project manager to the auto-
matically generated overview of all collaborators, including their detailed contact information
(e.g., emails). All of the dashboard elements are based on configurable SPARQL queries.

164

Figure B.5: Overview on Integrated Requirements Data. The view is automatically derived
based on the ITPM models, and the MDSE-approach.

165

Figure B.6: All ITPM model instances can be edited on-the-fly. The forms are derived based on
the ITPM models, and the MDSE-approach. The linkage of nested entities is supported (in that
case: sub-requirements, stakeholders, and artifacts).

166

Figure B.7: Visualization of the Project Phases (extracted from Excel) based on a simple
SPARQL Query and the ITPM Dashboard’s Graph Representation Capabilities.

167

Figure B.8: The main software packages and their submodules, extracted from the build server,
are visualized based on a SPARQL query and the ITPM Dashboards’s graph visualization capa-
bilities.

168

Figure B.9: The Team Hierarchy, extracted from several external spreadsheets, visualized as a
graph, based on the ITPM Dashboard’s visualization capabilities. The different colors denote
the team memberships.

169

APPENDIX C
Local PM Tools and Demo Data

171

Figure C.1: Excerpt of requirements test data, based on Microsoft Excel.

172

Figure C.2: Excerpt of requirements test data in Google Spreadsheet. The requirements are the
same as in figure C.1, but the format and the structure is adapted to meet the requirements of the
management.

173

Figure C.3: Excerpt of project team data and hierarchy (MS Excel).174

Figure C.4: Excerpt of a contract partner’s team structure (MS Excel). Note that figure C.3
references a manager of the contract partner (sqlab-bergsmann). The ITPM data integration
framework is capable to resolve this dependency.

175

Figure C.5: Redmine Project Management overview. Note that the issues correspond with the
requirements of the figures C.1 and C.2 (they have been derived based on a work-flow).

176

Figure C.6: Jira Issues Overview. Note that the issues correspond with Redmine (figure C.5),
and the requirements in Excel and Google Drive (figures C.1 and C.2).

177

Figure C.7: Build results in Jenkins.

178

Figure C.8: Test results in Jenkins. The UI is simple, and the origin of the test, based on a
requirement (traceability) is diffcult to determine for the project manager.

179

Figure C.9: Timesheet for a single collaborator, according to the CDL-Flex format.

180

APPENDIX D
Data Models

The appendix D includes sub-models (packages) of the core ITPM ontology,and three local tool
model representatives. These ontologies have been modeled with the Semantic Model Editor. In
addition, the models for maintaining data source configurations, and queries/rules are provided.
The full versions of the ontologies are provided within the downloadable prototype1.

D.1 ITPM Core Ontologies

1ITPM Prototype: https://bitbucket.org/agruenwald/custom-itpm-builds/downloads

181

Figure D.1: The main part of the common issue concepts, which are part of the core ITPM
ontology.

182

Figure D.2: The main part of the common QM concepts, which are part of the core ITPM
ontology.

183

Figure D.3: Excerpt of the main elements of the Communication Management Knowledge Area
of the core ITPM ontology as used for the prototype.184

Figure D.4: Scope Management Knowledge Area of the core ITPM ontology (customized for
the prototype).

185

Figure D.5: Time Management Knowledge Area of the core ITPM ontology as used for the
prototype.

186

D.2 Local Tool Models

187

Figure D.6: Local Redmine Data Model. The dark-grey classes indicate that the model is
marked as “information-only”. For this classes no Java code is generated, because the available
Taskadapter Redmine API for Java already covers the related classes.

188

Figure D.7: Local Jira Issue data model. The dark-grey attributes are marked as “information-
only” hence they are ignored by the code generator.

189

Figure D.8: The data model of the Jenkins Built Server API. The attribute “Status.Regression”
(yellow) exemplifies a suggestion that is not implemented yet.

190

D.3 Models for Maintaining Configurations

191

Figure D.9: Data Source Configuration Ontology, which is used to configure the synchroniza-
tion of local PMS and spreadsheets formats.

192

Figure D.10: The Rule Storage Ontology maintains the rules and queries that are displayed in
the central ITPM dashboard.

193

	Introduction
	Related Work
	Project Management in IT Consortia
	PM Systems, Data and Knowledge
	PM Data Integration
	Model-Driven Software Engineering with Semantic Technologies
	Concluding Remarks

	Research Issues
	Research Approach
	The Design-Science based IS Research Framework
	Application of the IS Research Framework Guidelines

	Use Case: ITPM in a Consortium
	Consortium Project Structure
	Project Communication Plan
	Shared PM Concepts

	Solution Approach
	The Consortium Negotiation and Integration Process
	Semantic PM Data Integration based on the ITPM Dashboard
	The Semantic Model Editor and Derived Artifacts
	A Repository for Semantic ITPM Models
	Concluding Remarks

	Results and Evaluation
	Dashboard Configuration
	Cost-Benefit Analysis
	Comparison of Development Efforts for PM Connectors

	Discussion and Limitations
	Conclusion and Future Work
	Bibliography
	Additional Design Outcomes
	Technical Integration Processes
	Complete Mapping between UML, OWL, Code, and UI Elements
	Software Architecture of the ITPM Dashboard

	ITPM Dashboard UI
	Local PM Tools and Demo Data
	Data Models
	ITPM Core Ontologies
	Local Tool Models
	Models for Maintaining Configurations

