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Abstract

Interference is the source of the most serious performance impairment in today’s wireless communica-

tion networks. Recent research results have highlighted the importance of interference coordination in such

networks. There are several schemes that effectively manage the interference assuming that the state of the

channel is known at the transmitters. However, having access to perfect channel state information (CSI) at

the transmitters is not a realistic assumption. The aim of this dissertation is to study and develop methods

enabling interference coordination in a wireless network while having imperfect channel state information at

the transmitters.

In the first part of this thesis, advanced channel state representations are employed in order to cope with

the problem of interference when the transmit signals are designed based on imperfect CSI available at the

transmitter. Efficient quantization of the CSI is investigated to reduce the requirement for information exchange

over the network and in particular feedback to the transmitters. Different scenarios are considered where

availability of CSI at the transmitter is crucial to achievehigh throughput.

In the second part of this thesis, a particular type of CSI imperfection is considered where the available

CSI at the transmitter is completely outdated with respect to the current state of the channel. A simple method

is proposed to exploit the outdated CSI in a multiple-input multiple-output (MIMO) two-user Gaussian inter-

ference channel (IC). The proposed scheme is shown to achieve the optimal degrees of freedom (DoF) of this

channel.

In the third part of this thesis, it is assumed that the transmitters have access to local CSI and the process

of designing the transmit signal is distributed over the network. A message-passing framework is proposed

to effectively model the information exchange over the network when the goal is to obtain an interference

alignment (IA) solution in a distributed manner.

In the last part of this thesis, the uncertainty about the channels at the transmitters is modeled as an inde-

pendent additive Gaussian error. This simplifies the performance analysis and allows for the optimization of

the transmit signal to ensure robustness against channel uncertainty and obtain solutions that are adaptive to the

channel condition. Two different approaches are proposed to minimize the impact of the residual interference

caused by the channel uncertainty.
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Kurzfassung

Interferenz ist die Quelle der meisten ernsthaften Effizienzeinbußen in heutigen drahtlosen Kommunika-

tionsnetzen. Erst kürzlich veröffentlichte Ergebnisse haben die Wichtigkeit von Interferenz-Koordination in

solchen Netzen gezeigt. Hierbei gibt es mehrere Methoden welche die Interferenz managen unter der Annahme,

dass der Zustand des drahtlosen Kanals (CSI) beim Sender bekannt ist. Doch leider ist diese Annahme nicht

realistisch in der Praxis. Daher ist das Ziel dieser Dissertation die Entwicklung und Analyse von Methoden für

die Interferenz-Koordination in Drahtlosnetzen unter derAnnahme dass der Sender nur über unvollständiges

Wissen über den Kanalzustand verfügt.

Im ersten Teil dieser Arbeit werden fortgeschrittene Kanalzustandsmodelle herangezogen um das Inter-

ferenzproblem zu lösen wenn das Sendesignal aufgrund unvollständiger CSI generiert wird. Darüber hinaus

werden effiziente Quantisierungsmethoden von der CSI untersucht um den benötigten Informationsaustausch

im Netzwerk, insbesondere die Informationsrückführung zum Sender, zu reduzieren. Außerdem werden ver-

schiedene Szenarien näher betrachtet, bei denen die Verfügbarkeit von CSI am Sender wichtig für das Erreichen

von hohen Durchsätzen ist.

Im zweiten Teil wird eine spezielle Art der unvollständigenCSI näher betrachtet. Hierbei wird angenom-

men, dass das verfügbare CSI Wissen überholt im Bezug zum aktuellen Zustand ist. Eine einfache Methode

wird vorgestellt, welche dennoch das veraltete Wissen in einem Multiple Input Multiple Output (MIMO) Sys-

tem mit zwei Benutzern und Gaußschen Kanal ausnutzt. Schlussendlich wird gezeigt, dass die vorgeschlagene

Methode die optimalen Freiheitsgrade (DoF) des Kanals ausnützt.

Der dritte Teil befasst sich mit einem Szenario bei dem der Sender Zugriff auf lokales CSI hat und der

Generierungsprozess des Sendesignals im Netzwerk verteilt wird. Hierfuer wird ein Message-Passing Algo-

rithmus vorgestellt welcher das Interferenzausrichtungsproblem verteilt im Drahtlosnetzwerk effizient löst.

Zuletzt wird die Unsicherheit des Wissens über den Kanal alsunabhängiger additiver Gaußscher Fehler

modelliert. Dieser Ansatz vereinfacht die Leistungsanalyse und ermöglicht eine Optimierung des Sendesignals

um eine Robustheit gegenüber Kanalunsicherheiten sicherzustellen und um Lösungen zu bekommen, welche

adaptiv gegenüber des Kanalzustands ist. Schlussendlich werden zwei verschiedene Methoden welche den

Einfluss der restlichen Interferenz verursacht durch die Kanalunsicherheit präsentiert.

vii





Acknowledgments

I am very thankful to my supervisors Gerald Matz and Maxime Guillaud for their support and guidance

over the last several years.

It is also my pleasure to express my thanks to Constantinos Papadias who kindly agreed to act as a referee.

I want to thank my colleagues at the institute, especially the people in my research group.

I am particularly grateful to Andreas Winkelbauer, FlorianXaver, Stefan Schwandter, and Valentin Schwarz

for their collaboration and for helpful discussions.

Finally, I would like to thank my parents and my wife. Their patience and encouragement have been a great

support.

ix





Contents

1 Introduction 1
1.1 Importance of Interference Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 7
2.1 Wireless Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Multiple Antenna Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Interference in Wireless Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Interference Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Gaussian Interference Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 MIMO Gaussian Interference Channel . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Interference Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Interference Management with Quantized CSIT 16
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Grassmann Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Feedback Dimension Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Quantized CSIT Feedback over the Air for FDD Systems . . . . . . . . . . . . . . . . . . . 21

3.3.1 Grassmannian Feedback Scheme for IA . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Quantized CSI Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Performance Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Quantized CSIT Sharing over the Backhaul for TDD Systems . . . . . . . . . . . . . . . . 32

3.4.1 Efficient CSI Sharing for IA with Grassmannian Representation . . . . . . . . . . . 32

3.4.2 Quantized CSI Sharing over Finite-Capacity Links . . . . . . . . . . . . . . . . . . 33

3.5 Distributed Precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.1 Assumptions and Methods for Distributed Precoding . . . . . . . . . . . . . . . . . 39

xi



xii

3.5.2 MSE Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.3 Approximate Sum-Rate Maximization . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.4 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Interference Management with Outdated CSIT 46
4.1 Background and State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Perfect Outdated CSIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 The DoF Region of the Two-User MIMO IC with Outdated CSIT . . . . . . . . . . 48

4.2.2 General Achievable Scheme for Different Antenna Configurations . . . . . . . . . . 48

5 Distributed Interference Alignment 55
5.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Factor Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Min-Sum Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Distributed Design of the Alignment Precoders . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Modeling Interference Alignment as a Message Passing Problem . . . . . . . . . . 59

5.3.2 Continuous Variable Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.3 Link with the Iterative Leakage Minimization Algorithm . . . . . . . . . . . . . . . 64

5.4 Performance Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Distributed Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Robust Interference Management with Gaussian CSI Uncer-
tainty 68
6.1 Background and State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Link Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.2 Interference Alignment Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Link Adaptation for IA in Presence of Channel Uncertainty . . . . . . . . . . . . . . . . . . 72

6.2.1 Specific Model of Channel Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.2 Effect of Imperfect CSI on IA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.3 Transmission in a Point-to-Point Link Using Imperfect CSIT . . . . . . . . . . . . 75

6.2.4 Optimization of the Weighted Sum of the Approximate Average Rates . . . . . . . 77

6.2.5 Performance Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Throughput Maximization Using Tools from Random Matrix Theory . . . . . . . . . . . . 83

6.3.1 Approximating the Expected Sum Rate . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.2 Optimizing the Approximation of the Expected Sum Rate . . . . . . . . . . . . . . 86

6.3.3 Performance Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Conclusions and Outlook 90
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93



xiii

Appendix A 95
A.1 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.2 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.3 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.4 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.5 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.6 The Perturbation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix B 101
B.1 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
B.2 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Appendix C 107
C.1 Calculating the Power of the Interference Terms . . . . . . . . . . . . . . . . . . . . . . . . 107
C.2 Calculating the Correlation Coefficient ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
C.3 Proof of Lemma 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
C.4 Calculating the Gradient of Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
C.5 Proof of Lemma 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Bibliography 112



Notation

var(·) The variance of its argument

log Logarithm in base 2

N (r, σ2) The real Gaussian distributions with meanr and varianceσ2
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Introduction

1.1 Importance of Interference Management

Wireless communication has developed significantly in the past several years alongside with the growth in the

amount of information exchange as a result increasing demand for mobile connectivity, new wireless services,

and smart phones. New wireless technologies facilitate theaccess to various services efficiently with minimal

consumption of time and resources. The quality of information transfer in a wireless link is determined by sev-

eral factors including the propagation conditions, interference levels and properties of the underlying frequency

spectrum.

Interference management plays a crucial role in future wireless systems as the number of users sharing the

same communication medium is growing rapidly. In fact, the amount of interference in the system scales with

the number of users. This interference may cause a severe degradation in the system’s performance. With the

rapid increase in the usage of wireless systems, continuousdevelopment of wireless systems becomes inevitable

to keep up with new expectations with minimum cost.

The general approaches to achieve higher system capacity can be categorized as improving the spectral

efficiency or increasing the bandwidth. One can also reduce the physical distance of the interfering devices,

e.g., in cellular systems, it amounts to deploying more basestations. However, the cost associated to each

approach needs to be considered. Higher spectral efficiencyat the physical layer necessitates the use of multiple

antenna techniques or spectrally efficient transmission waveforms which increases the cost of the devices.

Increasing the bandwidth also increases the cost of the device while facing the bandwidth scarcity problem. In

cellular systems, increasing the density of base stations calls for decreasing the reuse factor which increases

the interference among the reusing radio links. Therefore,more complex techniques are required for handling

interference. Finally, in the design of future networks thetasks related to network deployment, optimization

and interference management need to be adaptive. From the physical layer point of view, dynamic methods

that facilitate avoiding, mitigating, and coordinating interference are crucial.

1



Chapter 1. Introduction 2

Shannon’s work on the two-way channel in [1] was the start of the study of interaction between non-

cooperative users sharing the same channel. The capacity ofthe two-user interference channel became a fun-

damental problem regarding interaction between interfering users. In this channel, two transmitters (TX) com-

municate independent information to their corresponding receivers (RX) in a shared channel. For more than 30

years, the characterization of the channel’s capacity region has been an open problem. Meanwhile significant

progress is achieved in the area and approximate characterizations are available now [2], [3]. For some special

cases such as the strong and very strong interference channels and a class of deterministic interference channels

the exact capacity region has been characterized [5, 6, 34].The existence of different achievable schemes for

those cases suggests that finding a universal achievable scheme for this problem is not likely.

By introduction of MIMO technology an interesting direction for expanding the capacity of wireless links

was created. The devices could achieve rates beyond the capacity that was achievable by single-antenna sys-

tems. Similar to the limitation on transmit power and bandwidth, there are also many limitations that prevent the

devices to arbitrarily increase the capacity by using an arbitrary number of antennas. For example, to achieve

the potential gain of MIMO systems, the antennas need to be placed sufficiently far apart to avoid deficiency in

the equivalent channels. Therefore devices with a size limitation cannot support more than a few antennas.

Despite the capacity improvement due to MIMO systems, with the increasing density of wireless devices,

interference still remains the main problem and is more challenging in MIMO systems as it appears at multiple

antennas. The relevant model for a network consisting of twoor more interferers which are equipped with

multiple antennas is the (K-user) MIMO IC. In this model the transmitters encode their own symbols without

cooperating with each other and similarly the receivers decode their intended signal without any exchange of

information with each other. Cooperation is defined as sharing any information about the transmitted symbols.

Other types of coordination such as sharing the channel state information are allowed and in reality this type of

information sharing requires little overhead compared to full cooperation. Similar to the single antenna systems

where the symbols are assigned to different time/frequencysub channels, in the space domain, the symbols can

also be allocated to different spatial directions. In otherwords, at any time/frequency sub channel, multiple

symbols can be multiplexed in several spatial directions depending on the number of antennas. This task is

usually performed by applying an appropriate precoder to the data symbols before sending the signal over the

antennas. If the data symbols of each user are placed in a column vector, the precoder will be a matrix whose

columns are the spatial directions corresponding to each symbol.

Any matrix with proper rank and dimensions that satisfies thepower constraint can act as the precoding

matrix. A very interesting problem is to find the best precoder matrices for transmitters that optimizes a perfor-

mance metric such as the total communication rate achievable over of the network. The problem is challenging

as it involves several precoding matrices that need to be optimized jointly. A precoding matrix at one trans-

mitter also affects the performance of other users since it affects the amount of interference seen by other

receivers. The fact that the optimization variables are continuous valued matrices also adds to the complexity

of the problem.

Another aspect of precoder optimization is the fact that theoptimization determines the precoders that need

to be employed at the transmitter side. This requires that the necessary information for the optimization problem

to be gathered at the transmitters. This amounts to feedbackof channel state information from the receivers
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to the transmitters. In other words, every transmitter needs to have access to the global information about the

channels in order to compute its own precoder. With such limitations any method that can avoid or reduce the

CSI feedback requirement will be of great interest. On the other hand, distributed schemes that rely on local

information and are superior to classical approaches are desired. Since such an optimization problem is usually

intractable and requires global CSI, any simplification that can lead to tractable sub problems exploiting local

CSI would be another line of investigation. Interference alignment is a new method that provides a simple

solution to the problem which is optimal at high SNR. This solution can be utilized and improved to reach

better solutions at different SNR regimes.

In the past, interference management has been performed off-line. It has required exhaustive network

planning effort and has been a centralized procedure by nature. This approach is a robust and reliable approach.

On the other hand, it is not flexible and is not efficient in terms of spectrum usage and the overall cost of the

network. In the future, interference management will become more dynamic, decentralized and autonomous.

The aim is that future wireless systems achieve high capacity, and at the same time, the deployment, operation,

and maintenance of the network would become cheaper and simpler.

1.2 Contributions

The focus of this dissertation is on multi-user transmission techniques that exploit CSI at the transmitter side.

We consider different types of CSI imperfection at the transmitter and devise appropriate schemes to deal with

interference. When quantized CSI is assumed to be availableat the transmitter, a limited feedback scheme is

proposed to reduce the feedback requirement for interference alignment. The proposed strategy is proven to be

also effective in CSI sharing problem when the transmittersacquire their local CSI by reciprocity. Additionally,

employing IA, distributed computation of the precoders is discussed using message passing arguments. For a

two-user IC, a general scheme based on retrospective IA is proposed to achieve the DoF region using outdated

CSIT. Furthermore, considering the effect of imperfect CSIas an additive noise, methods are proposed to

increase the throughput in theK-user MIMO IC. The preliminary concepts are introduced in Chapter 2 and

the main contributions of this dissertation are outlined inChapters 3 to 6. The thesis is concluded in Chapter

7 following by an outlook for possible future continuation of this work. Detailed proofs and derivations are

provided in the Appendices. In the following, a descriptionof important contributions in each chapter is given.

Chapter 3

While CSI at the receiver is often assumed to be perfect, to exploit the CSI at the transmitter, the CSI is

usually quantized and fed back to the transmitters. Concerning multi-user systems, the question of the scaling

of the size of the codebook used for CSI feedback with increasing signal-to-noise ratio (SNR) has been explored

in a number of recent works. Generally speaking, using imperfect CSI at the transmitter (CSIT) to compute

the transmit precoders in a multi-user system causes interference at the receiver side. Since the power of this

interference scales with the transmit power, it is necessary to compensate any increase in transmit power by

decreasing the quantization error affecting the CSIT, if the interference at the receiver is to remain bounded.

This has led several authors to study how the codebook size should scale with the SNR in order to preserve

the degrees of freedom achievable with perfect CSI, for several feedback schemes. In the first part of this
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chapter we analyze this problem for theK-user MIMO IC when the CSI is fed back from the receivers to the

transmitters. This scenario arises in frequency division duplex (FDD) systems where feedback is necessary to

provide the CSI to the transmitters.

A similar quantization problem arises in time division duplex (TDD) systems. For TDD systems, every base

station can estimate its downlink channels from the uplink transmission phase thanks to reciprocity. In such

systems, the interference channel is adopted very often in particular due to data sharing limitations of network

MIMO. In the second part of this chapter we investigate the CSI sharing problem between the transmitters.

Similar to the FDD case, we provide scaling laws to preserve the DoF that can be achieved with perfect CSI

sharing.

In Chapter 3 we present a new CSI quantization scheme for IA over the K-user constant MIMO IC. The

salient points of our contribution are:

• The proposed feedback scheme exploits the invariances in the IA equations to reduce the dimension of

the quantization space, without requiring the heavy iterative processing of e.g. [7].

• We characterize the scaling (with SNR) of the codebook sizeunder which the proposed feedback scheme

achieves the same DoF as with perfect CSIT. This scaling is shown to be better (slower) than the scaling

obtained using the schemes from [8] or [7] for all system dimensions where IA is feasible.

• At non-asymptotic SNR and for a fixed codebook size, the proposed scheme is shown by simulation to

achieve better sum-rate performance than the methods from [8] or [7].

• As a by-product of our analysis, we introduce a statisticalmodel that faithfully captures the properties of

the quantization error of RVQ on the Grassmann manifold for large codebooks; we use it to generate ro-

tations that closely approximate the true quantization error of RVQ. This tool enables numerical analysis

of general Grassmannian RVQ schemes for large codebook sizes, without requiring the generation of the

codebook nor the exhaustive search normally associated with the quantizer.

• A similar quantization scheme is proposed for CSI sharing in TDD systems which reduces the sharing

requirement.

• For the CSI sharing problem, we characterize the scaling (with SNR) of the codebook size under which

the proposed CSI sharing scheme achieves the same DoF as withperfect CSIT.

• Global optimization problems, i.e., sum rate maximization and mean square error minimization problems

are considered and then decoupled into local optimization problems using the proposed IA filters.

• Methods are proposed to exploit the accuracy of the local CSI at individual transmitters and also incor-

porating the effect of direct channels.

Chapter 4

In this chapter, we focus on a scenario where the available CSI at the transmitter is outdated. This assump-

tion is valid for many practical settings where the coherence time of the channel is too short compared to the

time required for the arrival of feedback. We consider a two-user MIMO IC where each transmitter has access
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to the channel matrices with a delay such that the instantaneous CSI becomes uncorrelated with the available

CSI. Interestingly it has been shown that the existence of such outdated CSI at the transmitter can still increase

the DoF of the network [9] compared to the case with no CSI. TheDoF region with outdated CSI has been

characterized for MIMO BC in [10] and MIMO IC in [11] where theachievable schemes are based on feedback

and retransmission of the overheard interference at the receivers. We try to unify the achievable schemes and

provide a compact representation for various configurations of antennas in MIMO IC. The contributions of this

chapter can be summarized as follows :

• We introduce a model to apply retrospective interference alignment for MIMO IC with outdated CSIT.

• We propose a unified DoF-achieving scheme for the MIMO IC with outdated CSIT.

• The achievable DoF is verified analytically.

• We provide insights about extending our scheme to correlated channels.

Chapter 5

In this chapter, we introduce an iterative solution to the problem of interference alignment (IA) over MIMO

channels based on a message-passing formulation. We propose a parameterization of the messages that enables

the computation of IA precoders. Our scheme is particularlyinteresting in networks with a large number

of users since centralized approaches are not feasible due to the increasing amount of information exchange

and the growing computational complexity. The proposed formulation can also be applied to more general

performance metrics and is not restricted to IA.

The contributions of this chapter are as follows:

• We introduce a min-sum algorithm capable of computing the IA precoders in a distributed manner, by

associating a suitably chosen graph to the IA problem.

• We propose a parameterization of the messages that enablesthe use of this algorithm over continuous

variable spaces – under this parameterization, suitable approximations of the messages can be computed

in closed-form.

• We show that the iterative leakage minimization algorithmof Gomadam et al. [12] is a special case of

our message-passing algorithm, obtained for a particular schedule.

• We evaluate numerically the performance of the proposed method, and compare it to the classical iterative

leakage minimization.

• We discuss a distributed implementation.

Chapter 6

In this chapter, an additive Gaussian model is assumed for the uncertainty associated to each channel co-

efficient. For simplicity the uncertainty is assumed to be independent over different antennas. Two different

criteria are considered in this chapter to analyze and optimize the performance in MIMO IC. We aim to max-

imize an expectation of the throughput while satisfying a set of constraints. In the first contribution, we focus
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on discrete AMCP and aim to find the best transmission parameters to adapt the precoders determined by IA

to the channel when the precoders are designed based on imperfect CSI. In this part, we assume a sum power

constraint over the users and enforce a maximum BER constraint. In the second contribution, we maximize

the expected throughput directly without restricting the precoders to be designed by IA. In this part, individual

power constraints are assumed for the users. The contribution of each part can be summarized as follows:

Link adaptation through discrete AMCP:

• We analyze the statistics of the imperfect CSI for MIMO IC with IA.

• We design an adaptive transmission scheme based on the available imperfect CSI.

• In particular, we maximize a weighted sum of the average rates provided that a certain set of bit-error-rate

and power constraints are satisfied by dynamically adaptingcoding, modulation and power settings.

• We provide simulations to show the accuracy of the approximations and the effectiveness of the proposed

scheme.

Covariance matrix optimization:

• We propose a new method to determine precoding matrices that achieve local maxima of the expected

sum rate in MIMO IC with imperfect CSIT. In particular, the expected sum rate of the K-user MIMO

IC is approximated by a deterministic equivalent to which aniterative gradient scheme is applied to find

local maxima of the approximated sum rate. The method is based on a random matrix analysis of the

capacity of large dimensional Ricean channels.

• The method is shown to be superior to the conventional methods such as unknown error model or Gaus-

sian error model (with known variance) via simulations.



2
Preliminaries

2.1 Wireless Communications

Wireless communications is one of the important areas in thecommunications field nowadays and it has been

under investigation for more than 100 years. Development ofnew devices with higher computation capabilities

and the growing interest for wireless data transfer in different applications have sparked a lot of research activ-

ities to deal with the long standing problems such as the optimal transmission strategy in different channels.

Increasing the reliability and efficiency of wireless systems is possible through different means. How-

ever these improvements are usually limited by two major problems: fading and interference. Fading which

represents a variable channel strength, is resulted form superposition of signals coming from multiple paths

with different channel conditions. The other problem whicharises in multi-user communications is interfer-

ence which is created when a receiver listening to its transmitter, also receives unwanted signals from other

transmitters operating simultaneously on the same frequency band.

Improving the spectral efficiency and maintaining a reliable communication calls for careful design of

wireless systems considering the effects of fading and interference. A common approach is to model their

effects as simple impairments (e.g., to consider interference as additive noise). Such approaches usually lead

to robust solutions while being sub-optimal. Recent developments suggest that one can exploit fading and

interference to reduce their harmful effect. For example space-time codes exploit channel fading to improve the

reliability [13] and interference is harnessed in methods such as interference alignment to improve the spectral

efficiency [14].

A cellular network is an important example of a wireless network. A cellular network is a multi-user

communication environment which exhibits interaction among nodes under fading and interference conditions.

A cellular network is composed of a number of cells where eachcell is identified by a base station (BS) and a set

of mobile users with good communication coverage from the BS. The cells are usually modeled as hexagonal

regions with the BS at the center of the cell. In reality the location of the BSs are irregular and the users are

assigned to each BS according to the strength of their channel toward a BS. Therefore the cell boundaries will

7
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also have irregular shapes. The BSs are connected to centralunits via wired networks. The information sent

from different users to the BSs arrive at the central units and subsequently dispatched to their destinations via

other BSs. As each BS communicates with several users, it should be capable of performing tasks such as

multiplexing different signals destined for different users (in downlink) or separating the signals coming from

different users (in uplink).

Other type of networks with some similarities to the downlink of cellular networks are the broadcasting

systems such as TV and radio. However they operate on different frequency bands and have different data

rates. Wireless local area network (LAN) is another type of networks designed to connect the devices in a local

area with a high data rate. These networks have a central nodewhich serves the other nodes of the network

(similar to the role of a BS in cellular networks). On the other hand, a different type of local area networks is

the ad hoc network in which all the nodes participate in network organization in a decentralized manner.

2.1.1 Channel Capacity

The communication rate can be increased by increasing the transmission bandwidth or increasing the trans-

mission power. However bandwidth resources are scarce and the devices have limited transmission power.

Therefore the task of efficient exploitation of such resources is of great interest for researchers. The notion of

channel capacity was first introduced by Shannon. It is a measure of the maximum rate that can be commu-

nicated reliably over a channel [15, 16]. Considering a single-antenna fading channel with the following input

output relationship

Y = αX +W, (2.1)

whereX, Y andW are the transmitted signal, the received signal and noise respectively andα is the time-

varying channel fade parameter, the capacity is

C = B log(1 +
αP

BN0
). (2.2)

In (2.2),B is a total bandwidth,N0 is noise power spectral density, andP is transmit power. As the capacity

depends on the channel fade, it will be a random variable. Therefore ergodic (or mean) capacity [16], is often

adopted as a performance metric for the fading channel [17–19] which is the expectation of the capacity over

different time instances. If the channel fadeα can be modeled as a stationary and ergodic stochastic process

over time, the ergodic capacity can be computed by taking theexpectation of the capacity over the distribution

of the channel fade.

2.1.2 Degrees of Freedom

In many channels including the interference channel, whereexact characterization of the capacity is not avail-

able, approximate capacity characterizations are used to analyze the performance of the channel. In many cases

the computation of approximate characterizations is tractable and they become exact in asymptotic cases. One

of the useful metrics that is used as a proxy for capacity is the multiplexing gain or degrees of freedom (DoF).

DoF is the pre-log factor in the capacity expression at high SNR regime, i.e.,

DoF = lim
SNR→∞

C(SNR)

log SNR
. (2.3)
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The DoF is a measure of the number of independent parallel channels embedded in a network at high SNR

that can be utilized to transmit information. For many channels with unknown capacity regions, DoF regions

have been characterized and subsequently used as a measure of the performance which allows us to design the

transmit signal that is optimal at high SNR.

2.2 Multiple Antenna Communications

From (2.2) it is clear that the capacity in a single antenna point to point link is limited by bandwidth and power

resources. It has been shown that employing multiple antennas at the transceivers can lead to a capacity growth

without requiring extra bandwidth or power [20], [21]. In MIMO systems the created paths between every pair

of antennas are exploited to communicate with higher data rates or to increase the reliability. In general, MIMO

systems can provide two types of advantages: diversity gainand spatial multiplexing gain [22]. Diversity is

traditionally exploited to combat the fading and improve reliability in wireless systems. Sending multiple

replicas of the information signal through independent fading links is the simplest example of diversity, where

the probability that at least one or more of these links experiences a fade increases. Therefore, more reliable

communication can be achieved by increasing the number of independent links. Assuming a MIMO point

to point link with M transmit andN receive antennas, the maximum achievable diversity gain isequal to

NM if the fading corresponding to different antenna pairs are independent. Space-time coding [13,23,24] is a

coding/modulation scheme to maximize the diversity gain. From another point of view, fading can be beneficial

by increasing the degrees of freedom [20, 25]. The use of multiple antennas at both sides creates multiple

parallel data pipes within the same frequency band. By transmitting independent information through these

spatial directions, the data rate can be increased. This process is called spatial multiplexing which increases the

spectral efficiency in MIMO systems without extra power consumption and is therefore very attractive. In [20]

and [21], it has been shown that at high SNR, the ergodic capacity for a MIMO channel withM transmit,N

receive antennas, and independent and identically distributed (i.i.d.) Rayleigh fading between antenna pairs is

given by

C = min(M,N) log(SNR) +O(SNR−1)(bps/Hz), (2.4)

which implies that the use of multiple antennas at both sidesincreases the capacity at high SNR linearly with

min(M,N). It is a significant improvement over the single-antenna system. This linear capacity scaling of

MIMO systems requires perfect channel knowledge at the receiver and a scattering environment such that the

channel matrix has full rank. Clearly the DoF for this channel is min(M,N). In recent years, several schemes

have been proposed to exploit the spatial multiplexing gainof MIMO systems (see, for example, [25]).

The channel state information is not required at the transmitter to achieve the DoF of a point to point

MIMO system. However, it has been shown that in multi-user scenarios, the CSI needs to be exploited at the

transmitter side in order to achieve the optimal DoF. This isdue to the effect of inter-user interference which is

an impairment when several users operate on a shared frequency band.

Spatial degrees of freedom have been characterized for several multiuser communication scenarios with

multiple antenna nodes. The(M,N) point to point MIMO channel hasmin(M,N) degrees of freedom [20,21],
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the (M1,M2, N) multiple access channel hasmin(M1 + M2, N) degrees of freedom [26], the(M,N1, N2)

broadcast channel (BC) hasmin(M,N1 + N2) degrees of freedom [27–29], and the(M1,M2, N1, N2) inter-

ference channel hasmin(M1 +M2, N1 + N2,max(M1, N2),max(M2, N1)) degrees of freedom [30], where

Mi (or M when only one transmitter is present) andNi (or N when only one receiver is present) indicate

the number of antennas at theith transmitter and receiver, respectively. For theK-user MIMO IC, the DoF

region for the general antenna configuration setting is not clear. For symmetric antenna settings, under certain

conditions, the total DoF is characterized in [45].

2.3 Interference in Wireless Networks

Interference plays an important role in wireless communication when multiple uncoordinated links share a

common communication medium. In wireless systems, interference is usually treated in one of two ways:

• orthogonalize the communication links in time or frequency, so that they do not interfere with each other

at all.

• allow the communication links to be active simultaneously, and treat each other’s interference as an

additive noise.

Clearly both approaches can be sub-optimal. The first approach loses the chance of transmission in both links,

regardless of the strength and the shape of the potential interference. The second approach treats interference

as pure noise while it can be a structured signal that can potentially be exploited or manipulated to mitigate its

effect. A basic information theoretic model to study the general transmission scheme is the two-user Gaussian

interference channel, where two point-to-point links withadditive white Gaussian noise interfere with each

other (Figure 2.1).

2.3.1 Interference Management

Interference created by non-intended transmitters is an inevitable phenomenon in wireless multi-user systems.

Devices operating on a common frequency band, if not deployed in sufficiently distant geographical positions,

will suffer from interference. Classical scheduling approaches such as multiplexing in time, frequency, etc, are

known to provide robustness against interference while proven to be sub-optimal in terms of spectral efficiency.

The rapid growth of demand for high rate data transfer along with increasing number of users calls for optimal

resource management methods. Therefore the general task ofinterference management becomes more and

more important in the design of future wireless systems.This also calls for adaptive design of the system as the

interference management strategies depend on the network load.

First we discuss briefly two dominant types of interference in wireless networks:

Multiple Access Interference

Multi-user communication systems employing multiplexingmethods are liable to multiple access interference

(MAI). This MAI is due to non-orthogonality associated to multiplexing methods. A simple example is the use
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Figure 2.1. Interference Channel

of non-orthogonal spreading codes in code division multiple access (CDMA) systems. The systems that are

designed to have orthogonal multiplexing in time or frequency are also subject to MAI due to synchronization

errors or multi path effects.

In MIMO multi-user systems where information for differentusers is multiplexed in the spatial domain,

the transmission parameters are designed based on the channel state information. In these systems MAI occurs

when the parameters are designed based on inaccurate CSI. The transmission parameters can be optimized to

minimize the impact of the resulting MAI. Several multi-user MIMO techniques are provided in [31].

Cochannel Interference

Cochannel interference (CCI), also known as inter-cell interference in the context of cellular networks, arises

when users in different cells transmit/receive information simultaneously on the same frequency band. The

impact of CCI on the performance of the system depends on the distance between the nodes operating on the

same frequency band. In cellular systems the frequency bandis divided into a set of orthogonal subbands. The

number of cells which cannot use the same frequency subband in the network is called the frequency reuse

factor. Figure 2.2 illustrates cellular frequency reuse with reuse factor equal to 3. High reuse factor places the

interferers far away which reduces the CCI with the cost of increasing the bandwidth requirement.

The cellular deployments are often designed to tolerate a certain level of CCI for the users. However in ex-

treme cases such as cell-edge users where the interferers are closer to the non-intended users, CCI significantly

impacts the performance. Several resource management schemes can be employed to protect the cell-edge

users. The recent trend is to develop networks with reuse factor of 1 [32, 33]. Such systems are generally

interference-limited and it necessitates the use of powerful interference management schemes.
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Figure 2.2. Cellular network with frequency reuse factor equal to 3.

Development of Interference Management

The processing capability of wireless devices has increased rapidly in recent years which facilitates implemen-

tation of complex interference management schemes. Also the possibility of installing multiple antennas at the

BSs has opened the way of introducing multi-user MIMO transmission techniques. The use of multi-carrier

systems such as OFDM based systems has resulted in a reliableand efficient communication in multi path

environments.

Various advances such as MIMO, OFDM, and CDMA have contributed to the improvement of the commu-

nication systems by providing different advantages. With the rapid growth in computational power and reduced

size of the devices, schemes that employ a combination of these methods are becoming more popular. Along

with these approaches, scheduling and power allocation methods have been able to adapt the designed schemes

to the dynamic nature of the networks.

The most recent development in interference management is the new technique of interference alignment

[14]. In the interference alignment method, the transmit symbols are precoded over a number of dimensions

(time, frequency, space, ...) constructing a subspace which is shaped to confine the resulting interference

in a low dimensional subspace at each receiver. In spite of the great theoretical advances in this area since

its introduction, practicality of the method is limited to certain conditions and further understanding of the

practical implications is necessary. The extent of the applications of the method has made it a hot topic and a

promising method which might be a part of interference management technologies in future wireless systems.

2.3.2 Gaussian Interference Channel

The Gaussian interference channel (GIC) is the information-theoretic model for a network consisting of two

transmitter/receiver pairs operating over the same communication medium with additive Gaussian noise at the

receivers. Cooperation is not allowed between the transmitters or receivers meaning that the nodes cannot share
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Figure 2.3. K-user MIMO IC

their transmitted or received information. The capacity region of the GIC is the set of rate pairs(R1,R2) that

are simultaneously achievable for the two communication links.

Characterization of the capacity region for the GIC has beenan open problem for more than 30 years. A

general solution to the problem is not known. However, several attempts have been made such as approximate

characterizations or exact solutions in particular cases such as strong interference regime [2,34]. The scheme of

Han and Kobayashi [2] provides the best achievable scheme wherein the information of each user is composed

of a common and a private part. The common information is to bedecoded at both receivers which then

facilitates the decoding of the private part by removing theinterference associated to the common part. There

are three main outer bounds available for the capacity region of the GIC [35], [36], [3].

2.3.3 MIMO Gaussian Interference Channel

In MIMO GIC the nodes are equipped with multiple antennas. Inthis channel the capacity characterization

is more complex than GIC. However the DoF region for this channel is characterized in [30]. When the

transmitters haveM1 andM2 antennas respectively and the the receivers haveN1 andN2 antennas respectively,

assuming that perfect CSI is available at all nodes, the total DoF of the channel is

min(M1 +M2, N2 +N2,max(M1, N2),min(M2, N1)) (2.5)

When more than two (multi-antenna) users share the same communication channel, the model is called
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K-user MIMO GIC (Figure 2.3). In theK-user MIMO GIC the DoF region for symmetric antenna cases is

characterized using interference alignment. An interesting result is that the total DoF increases with the number

of users. However the achievable schemes usually depend on assumptions that are hardly satisfied in practice.

In this dissertation, we usually focus on theK-user MIMO GIC. The input/output relationship in this channel

reads

yi = HiiVixi +
K∑

j=1,j 6=i

HijVjxj + ni (2.6)

in whichHij ∈ C
N×M is the channel matrix between transmitterj and receiveri, Vj ∈ C

M×d andxj ∈ C
d

are the precoding matrix and the data vector of transmitterj, respectively. Furthermore,ni is the additive noise

at receiveri whose entries are independent and distributed according toCN (0, 1).

2.3.4 Interference Alignment

Moving from the two-user case to a larger number of users is challenging. Indeed, forK-user IC(K > 2), the

Han-Kobayashi approach is not capable of managing the interference. Interference alignment is an effective

method to deal with theK-user IC. Interference alignment was first introduced in [37] where it was shown to be

capable of achieving the full DoF for certain classes of two-user X channels. Using this method, Cadambe and

Jafar [14] showed that, aK-user Gaussian interference channel with varying channel gains can achieve a total

DoF of K
2 . Interference alignment provides a solution which forces the interference observed at each receiver

to be confined in a low dimensional space. This is done by forcing the transmitters to create interference in

overlapping subspaces.

The method is pictured in Figure 2.4 wherein a 3-user MIMO IC is considered and every node has 2 anten-

nas while every transmitter wants to communicate one data symbol. Every transmitter uses a two dimensional

vector to precode its data symbol. Without alignment (Figure 2.4, (b)), only two transmitters can be active since

the received space is two dimensional and the receivers cannot distinguish between more than two independent

vectors. When interference alignment is achieved (Figure 2.4, (a)), clearly all the three transmitters can send

their messages since the two interfering vectors at each receiver are aligned in one dimension. This alignment

is done by a careful choice of the transmit precoders altogether which necessitates the availability of global CSI

at all the transmitters and additionally the knowledge of the subspace at the receiver.

In the case of spatial interference alignment which will be the focus of this dissertation, in aK-user MIMO

IC with the channel matrixHij ∈ C
N×M between transmitterj and receiveri, a solution to the IA problem

exists (see [38] and more recently [39, 40] for feasibility criteria – here we will assume that the dimensions

are such that the problem is feasible almost surely (a.s.)) iff there exist full rank precoding matricesVj, j =

1, . . . ,K and projection matricesUi ∈ C
N×d, i = 1, . . . ,K such that

UH
i HijVj = 0 ∀i, j ∈ {1, . . . ,K}, j 6= i, and (2.7)

rank
(
UH

i HiiVi

)
= d. (2.8)

With this we effectively align the interference at each receiver into aN − d dimensional space, in order to

achieved interference-free dimensions per user. With the assumption that the channel matrices are generic



Chapter 2. Preliminaries 15

Figure 2.4. Illustration of transmit and receive vectors (a) with and (b) without interference alignment

(i.e., the channel entries are drawn independently according to a continuous distribution), the second condition

is satisfied almost surely, hence we usually focus on the firstcondition. Clearly all the channel matrices (except

the direct channelsHii, i = 1 . . . K ) are required to design the precodersVi, i = 1 . . . K.



3

Interference Management with

Quantized CSIT

Interference alignment is known to achieve the optimal DoF in the interference channel. This implies that

at high SNR regime, IA improves the system throughput compared to the conventional orthogonal medium-

sharing methods. However, implementation of IA in existingsystems faces a lot of challenges. The necessity

of CSI at the transmitters is one of the major issues which is not practical in many situations. Moreover, the

accuracy of the CSIT should increase as the SNR increases in order to guarantee the DoF gains promised by

IA [41]. While CSI at the receiver is often assumed to be perfect, to exploit the CSI at the transmitter, it is

usually quantized and fed back to the transmitters.

In this chapter, quantization schemes are provided which reduce the amount of information exchange in the

network. The proposed methods simplify the analysis of the performance degradation resulting from transmis-

sion based on imperfect CSI.

16
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3.1 Background

For practical SNR values, the effect of imperfect CSI on the mutual information of the interference alignment

scheme is analyzed in [42], [43], [44]. Tools from random matrix theory are employed in [44] in order to find

an approximate expression for signal to interference plus noise ratio (SINR) of each stream when using IA

with imperfect CSI. This expression helps to have an estimate of performance measures like sum rate and bit

error rate (BER) for IA. In Chapter 6, a statistical analysisis conducted to approximate the sum rate under

BER constraints for IA with imperfect CSI. The approximatedsum rate is optimized considering adaptive

modulation, coding and power while satisfying the BER constraint.

Concerning multi-user systems, the question of the scalingof the size of the codebook used for CSI feed-

back with increasing SNR has been explored in a number of recent works. Generally speaking, using imperfect

CSIT to compute the transmit precoders in a multi-user system causes interference at the receiver side. Since

the power of this interference scales with the transmit power, it is necessary to compensate any increase in

transmit power by decreasing the quantization error affecting the CSIT, if the interference at the receiver is to

remain bounded. This has led several authors to study how thecodebook size should scale with the SNR in

order to preserve the degrees of freedom achievable with perfect CSI, for several feedback schemes. The case

of the broadcast channel was considered first; assuming zero-forcing precoding and single-antenna receivers, it

has been determined in [8] that scaling the amount of feedback bits with(M−1) log P (whereM is the number

of antennas at the transmitter andP the transmit power) at each receiver is sufficient to achievefull DoF. For the

K-user IC (Figure (3.1, a)), most results on CSI quantizationfocus on transmission schemes based on IA, since

IA is instrumental in achieving the channel DoF [14,45]. Specifically, in that context, the CSI feedback problem

is considered forL-tap frequency selective single-antenna links in [46], where it is shown that the channel DoF

is achievable if the number of bits used to encode the CSI scales withK(L− 1) log P . This result was further

extended to theN×M MIMO frequency-selective IC in [47], wheremin{M,N}2K(RL−1) log P bits (with

R = ⌊max{M,N}
min{M,N} ⌋) are shown to be required to achieve the perfect-CSI DoF. However, both [46] and [47] rely

on the same analysis, which is not applicable to the flat-fading case1.

In [7], the authors introduce two quantization schemes for the MIMO flat-fadingK-user IC. The first

one is based on quantization on the composite Grassmann manifold (inspired by [47]). The second method

improves the quantization accuracy by introducing a virtual receive filter at each receiver which leaves the

IA equations invariant; the quantization error can be reduced by optimizing this virtual filter, however the

process is computationally complex and must be repeated foreach codeword and each channel realization.

No asymptotic (high SNR) analysis is provided in [7]; it is easy to figure out that the first considered method

requires a scaling of(K − 1)(MN − 1) log P to achieve the channel DoF, however the scaling required for

the second method to achieve full DoF is not clear.

In the first part of this chapter (Section 3.3) we present a newCSI quantization and feedback scheme for IA

over theK-user constant MIMO IC. The proposed feedback scheme exploits the invariances in the IA equations

1It is noted in [46] that the result does not hold for low valuesof L, however the minimumL for which it holds can not be

conclusively ascertained from the article. We note that in particular, for the flat-fading case (L = 1) of interest in this chapter, both [46]

for the single-antenna case and [47] for the MIMO square case(M = N ) yield a scaling independent oflogP , which is unrealistic.
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Figure 3.1. (a) CSI feedback over the air, (b) CSI sharing over the backhaul

to reduce the dimension of the quantization space.

Another scenario where quantization of CSI might be necessary happens when each transmitter has access

to some local CSI and the transmitters share their local CSI using finite capacity links (Figure (3.1, b)). This

scenario arises in TDD systems where the transmitters can acquire information about their downlink channels

in the uplink phase by reciprocity. These type of systems aremore desirable for implementation of IA. This is

due to the fact that the transmission systems which are basedon limited feedback from the RXs (such as FDD

systems) become very inefficient since the potential gains only appear at high powers.

For TDD systems, network MIMO provides significant gains compared to transmission schemes based on

the interference channel. However, the interference channel is adopted very often in particular due to data

sharing limitations of network MIMO. These limitations aredue to backhaul links which have finite capacity

and also introduce delay. In interference channels, even though data is not exchanged between the transmitters,

the global CSI needs to be shared in order to attain the degrees of freedom (DoF) of the channel. This highlights

the necessity of reducing the amount of CSI exchange.

Considering CSI sharing (that is not perfect in reality), IAis not optimal and the rate saturates due to the

leakage introduced by channel mismatch which increases as the transmit power of the interferers increase.

Simple time-sharing outperforms IA at high SNR with limitedCSI sharing. However middle-range SNR might

be of practical interest for implementation of IA if CSI sharing is efficiently designed to be sufficiently accu-

rate. Another limitation is that even with perfect CSI, at low SNR, this scheme is highly suboptimal since the

precoders are designed only based on the interfering channels and the direct channels are ignored.

In the medium SNR range, methods based on performance metrics like sum-rate optimization or mean-
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squared-error (MSE) minimization are more desirable sincethey exploit and balance the effect of both in-

terfering channels and direct channels in a meaningful way [48–50]. In such methods the drawback is the

requirement of all channel states (also the direct channels) at all the transmitters to compute an identical so-

lution similar to a centralized processing. More liable to distributed implementation are the iterative schemes

proposed in [51], [52]. These papers consider downlink precoder design where the transmitters can acquire

information about their outgoing channels (denoted by local CSI) from the uplink transmission phase by reci-

procity. However their proposed schemes still require somefeedback from the receivers at each iteration. With

this local CSI assumption, authors in [53] propose an algorithm which improves the sum-rate performance

compared to IA in a single-stream setting. However their scheme also requires feedback from the receivers at

every iteration.

In the second part of this chapter (Section 3.4), we focus on the scenario where the BSs have perfect but

local CSI, and must share it to achieve IA. A CSIT sharing scheme is proposed which reduces the amount

of information exchange required for interference alignment in such a system. The scaling (with the transmit

power) of the number of bits to be transferred which is sufficient to preserve the multiplexing gain that can

be achieved using perfect CSI is derived. In the second part,more general performance criteria like sum rate

maximization and MSE minimization are considered. These problems are decoupled into distributed optimiza-

tion problems using the proposed quantization scheme. The decoupled problems can be tackled at individual

transmitters using only local CSI.

3.2 General Definitions

3.2.1 System Model

An interference channel is considered in whichK base stations (BS) andK users (one user in each cell) are

considered as transmitters and receivers, respectively. For the sake of simplicity of the exposition, we focus on

the symmetric case, and assume that each BS hasM antennas while each user is equipped withN antennas.

These results trivially generalize to non-homogeneous antenna numbers and per-user DoF as long as IA is

feasible for the chosen problem dimensions. Each BS employsa linear precoderVj ∈ CM×d to transmitd

data streamsxj ∈ C
d to its user. The input/output relationship is described by (2.6). AssumingE

[

xjx
H
j

]

=

Id, j = 1, . . . ,K, the covariance matrix of the signal transmitted by userj is given asQj = VjV
H
j in which

the transmit power for userj is tr (Qj) = Pj . We further assume that the elements of the data symbol are i.i.d.

Gaussian random variables. The channels are modeled as

Hij =
√
γijH̃ij (3.1)

whereH̃ij ∈ C
N×M has i.i.d. elements fromCN (0, 1) andγij denotes the slow-varying shadowing and path

loss attenuation. The channels are assumed to be generic [54]; in particular, this includes channels with entries

drawn independently from a continuous distribution.

For reference, let us first consider the case where the channel matricesHij, ∀ j 6= i themselves are known

perfectly at the transmitter. The precodersVi, i = 1 . . . K must be designed to align the interference at



Chapter 3. Interference Management with Quantized CSIT 20

each receiver into aN − d dimensional space according to (2.7), (2.8) in order to achieved interference-free

dimensions per user.

At this point, some remarks are in order. As pointed out in [45], the difficulty in finding an IA solution

typically lies in solving eq. (2.7), while (2.8) is fulfilleda.s. under the prevailing channel assumptions for any

choice of full-column rankUi, Vj matrices. We also remark that despite the symmetry of eq. (2.7) with respect

to transposition, only the precoders are required to be known at the transmitters; for a given set of precoders

V1, . . . ,VK , the mere knowledge of theexistenceof full-column rank matricesU1, . . . ,UK fulfilling (2.7) is

sufficient to conclude that the precoders are interference-aligning. These considerations lead us to introduce

the following definition:

Definition 1 (IA precoders). The full-column rank precodersV1, . . . ,VK are interference-aligning for the

considered MIMO IC iff there exist full-column rank matricesU1, . . . ,UK fulfilling (2.7).

3.2.2 Grassmann Manifold

In this chapter we exploit the symmetry and invariance properties of the underlying quantization variables in

the proposed schemes to minimize the required information exchange between the users and to improve the

efficiency of the quantization process. The considered quantization variables represent channel subspace infor-

mation. Subspace information can be efficiently represented using the Grassmann manifold. The Grassmann

manifold has been employed in several areas of wireless communications, including codebook design for lim-

ited feedback as well as interference alignment [47, 55, 56], space-time code design [57, 58] and many other

applications. Therefore, here we briefly discuss the basicsof the Grassmann manifold.

Definition of the Grassmann Manifold

The Grassmann manifold, also known as the Grassmannian,Gm,n,K with n ≤ m is the set of alln-dimensional

subspaces in them-dimensional vector spaceKm, for example withK = C. In this dissertation, the vector

spaceK underlying the considered Grassmannian is the Euclidean space of complex numbers; for simplicity it

is written asGm,n = Gm,n,C. A point X ∈ Gm,n on the Grassmann manifold can be represented by any matrix

X ∈ C
m×n whose columns span the subspace defined byX, i.e.,X = span(X). To unify this representation,

orthonormal bases (truncated unitary matrices) are employed throughput this thesis to identify points on the

Grassmannian

X ∈ Gm,n ⇒ XHX = In (3.2)

Distance Measures on the Grassmann Manifold

To determine the distance between points on the Grassmann manifold, several distance measures have been

defined in the literature. In limited feedback MIMO wirelesscommunications, three distance measures between

two subspaces represented by truncated unitary matricesX andY that are usually employed in the literature

are the chordal distance, the projection two-norm and the Fubini-Study distance [55]. In this dissertation we

use the chordal distance which is defined as
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dc(X,Y) =
1√
2

∣
∣
∣
∣XXH −YYH

∣
∣
∣
∣
F

(3.3)

3.2.3 Feedback Dimension Analysis

In order to make comparisons to the proposed schemes, we consider the following CSI representations:

• Full channel matrix (FCM): for a given receiveri, theK − 1 channel matricesHij, j 6= i appearing

in (2.7) taken together have real dimensionNFCM = 2(K − 1)MN . In this case the exact channels are

quantized to be used in IA equations.

• Individually normalized channel matrices (INM): in [7], it is proposed to independently vectorize and

normalize the matrices representing the channels from eachinterferer. At each receiveri, this technique

yieldsK − 1 unit-norm vectorszij =
vec(Hij )

||vec(Hij )||2 , j 6= i, which are subsequently quantized jointly on

the composite Grassmann manifoldGK−1
MN,1. The real dimension of this manifold isNINM = 2(K −

1)(MN − 1) [47]. TIhe fact that the strength of the channel matrices is irrelevant for computation of

IA precoders is exploited in this method to eliminate unnecessary information from the channel matrices

and quantize them more efficiently. Furthermore, using thismethod, the effect of the quantization error

on the performance can be quantified using bounds on the Grassmann manifold.

• Jointly normalized channel matrices (JNM)2: noting that (3.4) can be rewritten as
(
VH

−i ⊗UH
i

)
vec(Hi) = 0, this approach consists in quantizingvec(Hi)/||vec(Hi)||2 onG(K−1)MN,1.

The real dimension of the fed back variable for this case isNJNM = 2((K − 1)MN − 1). This approach

is clearly a weaker version of the INM method as it eliminatesthe channel strength from the total

concatenated channel and therefore is not efficient.

3.3 Quantized CSIT Feedback over the Air for FDD Systems

Let us consider the interference alignment problem of [45],and assume that the CSI is fed back from the

receivers to the transmitters3. Specifically, assume that theith receiver has perfect knowledge of the channel

matricesHij , ∀ j 6= i and feeds back the corresponding information to the transmitters so that every transmitter

is capable of solving the alignment problem. In this sectionwe consider perfect CSI feedback in order to

highlight the intuition behind the dimensionality reduction associated with the proposed feedback scheme. We

will further assume that(K − 1)M ≥ N , which represents the cases of interest where interferencewould

occupy all dimensions of the receive subspace in the absenceof alignment.

2This approach was proposed by an anonymous reviewer of one ofour papers.
3The underlying assumption here is that allK transmitters can exchange CSI instantaneously and “for free.” Alternatively, one can

consider a central node (to which all the CSI would be forwarded) where the precoders are computed and subsequently distributed to

the transmitters; this distinction is immaterial, and the results presented here apply to both cases. Variations on these assumptions are

considered in [59].
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3.3.1 Grassmannian Feedback Scheme for IA

Feedback Scheme for Perfect CSI

In order to introduce our proposed scheme, let us note that (2.7) can be rewritten from the point of view of

receiveri in the form

UH
i HiV−i = 0 ∀i ∈ {1, . . . ,K}, (3.4)

in whichV−i = Bdiag(V1, . . . ,Vi−1,Vi+1, . . . ,VK) ∈ C
(K−1)M×(K−1)d is the block-diagonal concatena-

tion of the precoders andHi = [Hi 1, . . . ,Hi i−1,Hi i+1, . . . ,HiK ] ∈ C
N×(K−1)M is the concatenation of the

channel matrices of all interfering links ending at receiver i, excluding the direct link. The proposed feedback

scheme consists for each receiveri in feeding back only the row space ofHi. Our first result consists in stating

that this information is sufficient to perform IA:

Lemma 1. In order for the IA computation unit to compute interference-aligning precodersV1, . . . ,VK , it

is sufficient that each receiveri ∈ {1, . . . ,K} feeds back a point on the Grassmann manifoldG(K−1)M,N

representing the row space ofHi.

Proof. Let us consider perfect feedback of the row space ofHi, ∀i ∈ {1, . . . ,K}. Practically, since a linear

subspace can be represented by any matrix whose columns spanthe same space, the Grassmannian feedback

considered here can be considered to take the form of the availability at the IA computation unit of a matrix

Fi of dimensions(K − 1)M ×N whose columns span the same subspace as the columns ofHH
i (we assume

thatHH
i has full column rank, which is a.s. the case for generic channel coefficients). We now show that the

IA transmit precoders computed by assumingFH
i as channel coefficients are interference-aligning for the true

channel as well.

Let us consider an IA solution based onFH
i , i.e. assume that there exist truncated unitary matricesŨi and

Ṽi such that the following equation (similar to (3.4)),

ŨH
i F

H
i Ṽ−i = 0, (3.5)

is fulfilled for all i ∈ {1, . . . ,K}. Note that sinceHi andFH
i have the same dimensions, the feasibility (a.s.)

of IA according to (3.4) and (3.5) is identical. Furthermore, since the columns ofHH
i andFi span the same

N -dimensional subspace, there exists an invertibleN ×N matrixCi such thatHH
i = FiCi. Clearly,

(3.5) ⇔ ŨH
i C

−H
i CH

i F
H
i Ṽ−i = 0 (3.6)

⇔
(

C−1
i Ũi

)H
HiṼ−i = 0. (3.7)

Comparing to (2.7), eq. (3.7) shows that the rank-d matricesC−1
i Ũi, i ∈ {1, . . . ,K} cancel the interference

at all receivers, i.e. the transmit precodersṼ1, . . . ṼK forming the block-diagonal of̃V−i are interference-

aligning over the true channels.

As already noted, the CSI feedback scheme considered here, is analogous to feeding back a point on the

Grassmann manifoldG(K−1)M,N for each one of theK users. Using the fact that the real dimension ofGn,d is

2d(n − d) for anyd ≤ n [60], the real dimension of the feedback outlined in Lemma 1 isNG = 2N((K −
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1)M − N). For comparison, let us consider the alternative CSI representations outlined in Section 3.2.3. It is

straightforward to establish thatNINM ≤ NJNM ≤ NFCM for all meaningful cases (K ≥ 2). In the particular

case of a square system (M = N ), we have the following result:

Lemma 2. In a square system, if IA is feasible, thenNG < NINM, i.e. the proposed scheme always requires

strictly less real dimensions than FCM, INM or JNM.

Proof. A necessary condition for IA to be feasible is [38]

d ≤ M +N

K + 1
. (3.8)

Together with the assumption thatM = N and using the fact thatd ≥ 1, (3.8) yields

K ≤ 2N

d
− 1 < 2N. (3.9)

Another necessary condition for IA feasibility isN ≥ 2d, thereforeN > 1 and consequently2N < N2 + 1.

Combining with (3.9), we obtainK < N2 + 1, which is equivalent toNG < NINM.

Note that the feedback scheme outlined here for the MIMO IC isin fact directly applicable to many other

channel models where IA has been proposed, such as interfering multiple-access channels [61, 62], interfering

broadcast channels [63,64], as well as partially connectedinterference networks [65,66].

3.3.2 Quantized CSI Feedback

In this section we introduce a transmission scheme where thealignment equations are solved based on the

(error-free) feedback of a quantized version of the CSI, based on the Grassmannian representation from Sec-

tion 3.3.1. For that scheme, we show how inter-user interference is related to the CSI codebook size, and

characterize the required scaling of the codebook for interference to remain bounded at high SNR. For compar-

ison, we also provide a similar analysis for the INM technique.

Grassmannian Quantized CSI

Let us assume that receiveri knows perfectly the state of its channels from all interfering transmitters, i.e. the

coefficients ofHi, and performs the economy-size QR decompositionHH
i = FiCi, whereFi is a(K−1)M×

N truncated unitary matrix, andCi is N × N and a.s. invertible, under the prevailing channel assumptions.

The use of the QR decomposition is a particular case of the decomposition used in the proof of Lemma 1:

it ensures thatHH
i andFi have the same column space, and adds the requirement that thecolumns ofFi

are orthonormal, which will simplify the subsequent analysis. According to the proposed scheme, receiver

i quantizes the subspace spanned by the columns ofFi usingBG bits and feeds the index of the quantized

codeword back to the unit in charge of computing theVi’s. We further assume that the receivers and the
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computation unit share a predefined codebook4 S = {S1, . . . ,S2BG } which is composed of2BG truncated

unitary matrices of size(K−1)M×N and is designed via Grassmannian subspace packing [67]. Thequantized

codeword at receiveri is the point inS closest toFi, i.e.

F̂i = argmin
S∈S

dc(S,Fi) (3.10)

Let us consider the scheme where the interference alignmentproblem is solved at the IA computation unit

based on the quantized CSI{F̂H
i }Ki=1, yielding truncated unitary matrices({Ṽi}Ki=1, {Ũi}Ki=1) fulfilling

ŨH
i F̂

H
i Ṽ−i = 0, ∀i ∈ {1, . . . ,K}. (3.11)

At receiveri, inspired by the perfect feedback situation, we consider the receive filterGi = C−1
i FH

i F̂iŨi
5.

Also the transmitteri employs the precoderVj = (Pd )
1
2 Ṽj . Lety′

i denote the received signal at receiveri after

processing byGi:

y′
i = GH

i yi = GH
i HiiVixi + ei +GH

i ni, (3.12)

where the term

ei =
∑

1≤j≤K
j 6=i

GH
i HijVjxj

(3.13)

is the interference leakage due to the imperfect CSI.

Generally speaking, the aim of our analysis is to provide sufficient conditions on the CSI quantization

accuracy to ensure thatI(xi;yi) grows withd log P ; Gi andy′
i are merely intermediate variables used to

establish information-theoretic inequalities. In a practical system, we expect the equalizerGi to be computed

through classical channel estimation and equalization techniques – we omit these details here.

In the remainder of this section, we will focus on establishing bounds on the interference powerLi =

tr
(
Ex(eie

H
i )
)
; these results will be instrumental in proving our DoF result. We first establish in Lemma 3 and

Corollary 1 the growth rate of the number of feedback bits with the SNR which guarantees thatLi remains

bounded by a constant regardless ofP whenP →∞.

Lemma 3. The interference leakage power (due to imperfect CSI) at receiveri can be bounded as

Li ≤
8P

(c 2BG)
2

NG

(

1 + o

(

2
−BG

NG

))

(3.14)

4For notational simplicity we omit the dependency ofS on i, however the proposed analysis generalizes trivially to cases whereS

andBG are different across the receivers, as will be seen in Section 3.3.2.
5We note that if the quantization error is null, i.e.dc(F̂i,Fi) = 0, thenFH

i F̂i is a unitary matrix corresponding to the uncertainty

between the CSI encoder (at the receiver) and decoder (at theIA computation unit) in the matrix representation of the subspace being

fed back.
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whereNG = 2N((K−1)M−N) is the real dimension ofG(K−1)M,N introduced before, andc is the coefficient

of the ball volume in the Grassmann manifold,

c ,
1

(
N((K − 1)M −N)

)
!

∏N
i=1

(
(K − 1)M − i

)
!

∏N
i=1

(
N − i

)
!

. (3.15)

Proof. See appendix A.1.

Corollary 1. Quantizing CSI with

BG = N((K − 1)M −N) log P (3.16)

bits is sufficient to keep the interference leakageLi bounded by a constant for arbitrarily largeP .

Proof. From (3.14), sinceo

(

2
−BG

NG

)

→ 0 for largeP , it is obvious thatLi is bounded by a constant if2
2BG
NG

scales at least linearly withP ; in particular this holds for

BG =
NG

2
logP = N((K − 1)M −N) log P. (3.17)

Comparison to Naive Quantization

For comparison, let us now consider quantization for the INMmethod6 chosen as a baseline in [7]. We

recall that in that case, at receiveri the matrices representing the channels from the interferers are vector-

ized and normalized independently, yieldingK − 1 unit-norm vectorszij =
vec(Hij )

||vec(Hij)||2 , j 6= i. Zi =

[zi1, . . . , zi i−1, zi i+1, . . . , ziK ] ∈ GK−1
MN,1 is subsequently quantized according to

Ẑi = arg min
T∈T

Dc(T,Zi), (3.18)

whereDc(T,Zi) =
√

tr (IK−1 −THZi) is the chordal distance defined for the composite Grassmann mani-

fold. Let BINM denote the number of feedback bits, i.e.|T | = 2BINM . At the transmitter side, the columns

of Ẑi = [ẑi1, . . . , ẑi i−1, ẑi i+1, . . . , ẑiK ] are used to reconstruct the quantized CSI: the channel matricesĤij

used for the computation of the precoders are such thatvec(Ĥij) = ẑij , ∀i 6= j. The interference alignment

problem is then solved based on̂Hij to find ({Ṽi}Ki=1, {Ũi}Ki=1) fulfilling

ŨH
i ĤijṼj = 0, ∀i, j ∈ {1, . . . ,K}, j 6= i. (3.19)

We now show that the leakage obtained by employingVj = (Pd )
1
2 Ṽj and Ũi, L̄i = P

d ||ŨH
i HijVj ||2F

(using the true channel matrices) can remain bounded for arbitrarily large transmit powerP under certain

conditions. This is the object of Lemma 4, where we establishthe scaling ofBINM with P required to achieve

bounded interference leakage under this scheme.

6The authors of [7] attribute this method to [47]. Although quantization bounds for the composite Grassmann manifold arepresented

in [47], we note that the (frequency-selective) channel model in that paper is different from the flat-fading model considered here and

in [7], and therefore the results are not immediately comparable.
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Lemma 4. Using the INM quantization scheme, quantizingZi withBINM = 1
2NINMlogP = (K − 1)(MN −

1)logP bits is sufficient to keep̄Li bounded for arbitrarily largeP .

Proof. See appendix A.2.

Comparing the above result with the scaling obtained in Corollary 1 for the proposed scheme indicates that

at high SNR,BG < BINM (i.e. the proposed method outperforms INM) iffNG < NINM. As already analyzed

in Lemma 2, this condition is fulfilled for many case of practical interest.

Rate-Loss due to CSI Quantization

In the previous section, we have used interference leakage as a proxy to evaluate how the quality of the available

CSI influences alignment. Note however that having a boundedinterference leakage is not sufficient in itself

to ensure that the full DoF is achieved for asymptotically largeP – in fact, the power of the signal of interest

remaining after processing by the receive filter (eq. (3.12)) could remain bounded too, or its rank could be

reduced. We now show that this is not the case, and that the proposed CSI quantization scheme achieves the

same DoF as IA under the perfect CSI assumption, provided that the proper scaling ofBG with P is respected:

Theorem 1. If IA with d DoF is feasible, the proposed CSI quantization scheme achievesd DoF for almost all

channel realizations ifBG is scaled according to(3.16).

Remark 1:Theorem 1 is not restricted to a particular distribution of the channel coefficients. The restriction

to “almost all” channel realizations is due to the fact that under the assumptions of Section 3.2, there can exist

a vanishing set of channel realizations for which (2.8) is not fulfilled; this is also the case when perfect CSI is

considered [45], and is unrelated to the proposed quantization scheme.

Remark 2: The transmission scheme considered here is based on truncated unitary precoders̃Vj, and

therefore the transmitted signal is spatially white insidethe d-dimensional subspace defined by the precoder.

Clearly, this is suboptimal for finite values of the SNR, and spatial waterfilling in addition to IA would bring

in performance improvement ford > 1. However, we remark that the performance gains of waterfilling vanish

at asymptotically high SNR, provided that the channel is notrank deficient [68]. Therefore, the asymptotic

analysis of this section holds regardless of whether spatial waterfilling is used in addition to IA or not.

Theorem 1 states thatlimP→∞
Ri

logP = d a.s.; in order to show this, we require a few intermediate results.

Let us define the following values:Ri , I(xi;yi), R′
i , I(xi;y

′
i) andR′′

i , log
∣
∣GH

i Gi +Qi
S

∣
∣ where

Qi
S = GH

i HiiViV
H
i H

H
iiGi is the covariance of the signal of interest. From the data processing inequality and

the definition ofy′
i, we have immediately thatRi ≥ R′

i. In what follows, we will successively show thatR′′
i−R′

i

remains bounded from above ifBG is scaled according to (3.16) (Lemma 5), and thatlimP→∞
R′′

i

logP = d

(Lemma 6). Let us start with the first result. Since all signaland noise terms are Gaussian circularly symmetric,

we have

R′
i = log

∣
∣GH

i Gi + (Qi
S +Qi

I)
∣
∣− log

∣
∣GH

i Gi +Qi
I

∣
∣ (3.20)
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in whichQi
I = GH

i HiV−iV
H
−iH

H
i Gi is the covariance of the residual interference.

Lemma 5. Under the quantization scheme of Section3.3.2, the difference betweenR′
i andR′′

i can be bounded

as

R′′
i −R′

i ≤ d log

(

||C−1
i ||22 +

8P

(c 2BG)
2

NG

(

1 + o

(

2
−BG

NG

)))

. (3.21)

Proof. See Appendix A.3.

Lemma 6. Under the proposed CSI quantization scheme, there exists a series of codebooks of increasing size

following (3.16)for P →∞ s.t. limP→∞
R′′

i

logP = d a.s.

Proof. See Appendix A.4.

We are now in the position to prove Theorem 1:

Proof. SubstitutingP = 2
2BG
NG in the result of Lemma 5 yields

R′
i ≥ R′′

i − d log

(

||C−1
i ||22 +

8

c2/NG

(

1 + o

(

2
−BG

NG

)))

. (3.22)

As P → ∞ and withBG following (3.16), the argument of the logarithm remains bounded by a constant,

therefore

lim
P→∞

R′
i

log P
≥ lim

P→∞
R′′

i

logP
= d a.s. (3.23)

using the result from Lemma 6.

Average Rate-Loss under RVQ

Note that the results established so far hold for any codebook obtained by sphere-packing. Let us now briefly

depart from this assumption, and consider RVQ instead. In that case, the previous results do not apply: the

random choice of the codebook can lead to arbitrarily bad performance regardless ofBG, and bounding the

performance loss uniformly over all codebooks is impossible. A more relevant performance metric for RVQ is

the average sum rate over all possible codebooks. We have thefollowing result:

Theorem 2. Provided that the codebookS is generated from independent realizations of a random process

uniformly distributed overG(K−1)M,N , the expectation overS ofRi is lower bounded as

ES(Ri) ≥ R′′
i − d log



||C−1
i ||22 + 2P

Γ( 2
NG

)

NG
2 (c 2BG)

2
NG



 , (3.24)

whereΓ(·) denotes the Gamma function.
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Proof. See Appendix A.5.

Per-User DoF for Asymmetric Feedback

An interesting consequence of the rate-loss analysis conducted previously can be observed when each receiver

uses its own scaling of the CSI quantization codebook size withP . Formally, letBi
G denote the number of bits

used by receiveri to quantizeFi.

Corollary 2. If Bi
G scales withP such that

αi , lim
P→∞

Bi
G

NG/2 · logP
(3.25)

exists and is finite, then the DoF achievable by useri is

dqi ≥ dpi min (αi, 1) , (3.26)

wheredpi is the achievable DoF of this user with perfect CSI.

Proof. The proof follows simply from (3.21) by taking the limit of the lower bound whenP →∞.

Practically, this means that the DoF achieved by a given useris independent of the quality of the feedback

provided by the other users. This observation, obtained here for IA precoding, is consistent with the scaling

obtained in [69] for centralized schemes using different precoding schemes such as zero-forcing.

3.3.3 Performance Investigation

This section presents simulations that numerically validate the results hitherto established. Note that construct-

ing good Grassmannian packings for arbitrary dimensions isdifficult [70]; therefore, in our simulations for

relatively small codebook sizes (up to215) we resort to random codebooks in place of sphere-packing code-

books. Note that the performance expected from RVQ codebooks constitutes a lower bound to the performance

of sphere-packing codebooks; however as we shall see, in oursimulations, RVQ codebooks attain the perfor-

mance predicted for the sphere-packing codebooks.

For larger codebooks (BG > 15), even RVQ is not tractable due to the complexity of the exhaustive

search throughS in (3.10). Due to the lack of structured codebooks allowing atractable implementation of

the quantizer, the performance obtained for larger codebooks is extrapolated by using a perturbation method

based on the analytical characterization of the distribution of the quantization error, the details of which being

presented in Appendix A.6.
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Figure 3.2. AverageRsum for various quantization methods, for the3-user MIMO IC,N = M = 2.

Performance Results Using RVQ

In this section, we evaluate the performance of the quantization scheme of Section 3.3.2 with RVQ codebooks.

The performance metric is the sum rate evaluated through Monte-Carlo simulations. The sum rate achievable

over the MIMO IC using interference alignment precoders under the assumption that the input signals are

Gaussian can be written as

Rsum =

K∑

i=1

log

∣
∣
∣
∣
∣
∣

IN +
P

d

K∑

j=1

HijVjV
H
j H

H
ij

∣
∣
∣
∣
∣
∣

−
K∑

i=1

log

∣
∣
∣
∣
∣
∣

IN +
P

d

K∑

j=1,j 6=i

HijVjV
H
j H

H
ij

∣
∣
∣
∣
∣
∣

. (3.27)

A 3-user IC withM = N = 2 antennas per node andd = 1 data stream for each transmitter is considered.

Entries of the channel matrices are generated according toCN (0, 1) and the performance results are averaged

over the channel realizations. The method proposed in Section 3.3.2 is compared to the INM quantization

method from Section 3.2.3.

For the proposed method, the codebook entries are independent (K − 1)M ×N random truncated unitary

matrices generated from the Haar distribution. For the INM method, random unit norm vectors are used in

the codebook construction. Figure 3.2 shows the achievablesum rate versus transmit SNR forBG = 5 and

10 feedback bits when the precoders are designed based on thequantized feedback. Clearly the proposed

scheme outperforms INM quantization for the same number of feedback bits. It can be also seen that for a

fixed number of feedback bits, the sum-rate saturates at highSNR, while it grows unbounded (with the slope

equal to the DoF) for the perfect CSI case.

The sum rate in (3.27) is achievable when optimum receivers (not including the projection filtersGH
i )

are used at the receivers. Since the achievable scheme in Section 3.3.2 is using the projection filtersGH
i , we
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Figure 3.3. Sum-rate according to (3.28) of the proposed method for different number of bits, for the3-user

MIMO IC, N = M = 2.

evaluated the performance achieved by this scheme, defined as

R′
sum =

K∑

i=1

log

∣
∣
∣
∣
∣
∣

GH
i Gi +

P

d
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j H
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∣
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∣
∣

.

(3.28)

Results are provided in Figure 3.3. The slope of the curves athigh SNR gives an indication of the achieved DoF.

It is clear from Figure 3.3 that the slope of the sum-rate curve with quantized feedback matches that of perfect

CSI when the number of feedback bits is scaled according to (3.16) (here we have usedBG = [0, 7, 13, 20, 26]

bits and the corresponding powersP = 2
2BG
NG ). Conversely, when the codebook size is fixed, the performance

always saturates at high SNR, with the achieved performancedepending on the codebook size. Simulations

were performed only up to20 dB SNR due to the complexity associated to the growth of the codebook size

with P .

Perturbations on the Grassmann Manifold

In order to validate the DoF results of Section 3.3.2, an evaluation of the achieved sum-rate at high SNR is

required. In order to deal with exponentially large codebooks, we propose to replace the quantization process

with a perturbation which approximates the quantization error. In other words, we propose to replaceF̂i

by a matrix that can be computed directly by an appropriate perturbation ofFi. This approach provides a

good approximation of the achievable performance, while sparing the complexity associated with the codebook

generation and the quantization in RVQ. The perturbation method appears in Appendix A.6.

Simulations were performed in order to validate experimentally the perturbation method proposed above.
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Chapter 3. Interference Management with Quantized CSIT 32

The sum-rate performance achieved by IA for the CSI obtainedfrom the perturbation method is plotted against

the performance obtained for the actual quantization scheme in Figure 3.4. It is clear that the proposed pertur-

bation method accurately approximates the Grassmannian quantization process, even for small codebooks.

Validation of the DoF Results

We now use the perturbation technique introduced in the previous section to analyze the CSI feedback scheme

from Section 3.3.2 in the high SNR regime. Figure 3.5 depictsthe sum rate performance using the perturbation

method compared to perfect CSI and to the lower bound derivedin (3.24). The slope of the sum rate at high

SNR regime obtained for the quantizer withBG = NG
2 logP bits is identical to that of perfect CSI, as is the

case for the lower bound derived in (3.24).

3.4 Quantized CSIT Sharing over the Backhaul for TDD Systems

In this section we assume equal transmit power for all BSs, i.e.,Pj = P, ∀j. Let us consider TDD transmission.

Specifically, we assume that thejth BS estimates the channel matricesHij, i = 1, . . . ,K, i 6= j (denoted by

local CSI) from the uplink phase, via reciprocity. We first assume thatlocal CSI is known perfectly at BS

j. However, global CSI (excluding the direct channelsHii) is required in order to design IA precoders. In

this section we consider CSI exchange in the network, and work under the assumption that perfect local CSI

is conveyed from each BS to a processing node which computes all precoders and provides them to the BSs

(Figure 3.1, (b)).

3.4.1 Efficient CSI Sharing for IA with Grassmannian Representation

Here we assume a feasible IA setting [45], i.e. there exist precoding matricesVj, j = 1, ...,K and projection

matricesUi ∈ C
N×d, i = 1, ...,K that satisfy (2.7) and (2.8). Condition (2.7) can be rewritten as

UH
−jHjVj = 0 ∀j ∈ {1, ...,K}, (3.29)

in whichU−j = Bdiag(U1, . . . ,Uj−1,Uj+1, . . . ,UK) andHj = [HH
1,j , ...,H

H
j−1,j ,H

H
j+1,j, ...,H

H
K,j ]

H is a

(K − 1)N ×M matrix.

We will further assume that(K−1)N > M , which represents the cases where transmitter-side zero-forcing

is not sufficient to eliminate all interference, and therefore IA is required. The following lemma highlights the

intuition behind our CSI sharing scheme.

Lemma 7. In order to design IA precoders, it is sufficient that each BSj sends a point on the Grassmann

manifoldG(K−1)N,M representing the column space ofHj to the IA processing node.

Proof. Let Fj denote a(K − 1)N ×M matrix containing an orthonormal basis of the column space of Hj,

i.e. Hj = FjCj for someM ×M matrixCj (invertible almost surely for generic channels). According to our

assumption that only the column space ofHi is known at the central unit, we can assume that the central unit
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has only access to a rotated version ofFj , i.e.,FjOj for some unknownM ×M unitary matrixOj. We now

show that alignment can be achieved based on the knowledge ofFjOj rather than ofHj. Let us assume that

the processing node designs a set({Ũj}Kj=1, {Ṽj}Kj=1) of IA transmit precoders and receive projection filters

for the channels{FjOj}Kj=1 using (3.29). Then,∀j

ŨH
−j(FjOj)Ṽj = 0 ⇒ ŨH

−jFjCjC
−1
j OjṼj = 0 (3.30)

⇒ ŨH
−jHjC

−1
j OjṼj = 0. (3.31)

This indicates that IA is achieved over the actual channel byusingC−1
j OjṼj as precoder and̃Uj as the

projection filter at userj. Assuming that̃Vj is transmitted from the processing node back to BSj, and thatOj

is known at BSj since the reconstruction codebook of the processing node isknown, the BS is in a position to

compute the precoderC−1
j OjṼj .

Note that the feedback of̃Vj from the processing node to BSj also takes the form of a point onGM,d, and

will be analyzed in further detail in the sequel.

Analogy to the CSI Feedback Problem

Clearly the Grassmannian representation outlined in Section 3.4.1 is very similar to the analysis conducted for

the FDD systems in Section 3.3.1. For FDD systems the quantization variable is the subspace corresponding

to the concatenation of the incoming channels toward a givenreceiver while in the TDD systems the outgoing

channels from a given transmitter are concatenated. Different topologies arise in the TDD case as we have a

CSI sharing scheme rather than a feedback scheme. For example one of the transmitters can play the role of the

central node. In the designed transmission scheme for quantized feedback in FDD case, the IA precoders are

modified while in the TDD case the IA projection filters need tobe transformed. As will be seen later, unlike

the FDD systems, this modification of the receive filters in the TDD case changes the covariance of the noise

which has to be taken into consideration.

3.4.2 Quantized CSI Sharing over Finite-Capacity Links

In this section, using the Grassmannian representation outlined in the previous section, we explore several

scenarios where CSI is quantized and exchanged between the nodes over finite capacity links. Three different

scenarios regarding the CSIT sharing problem can be considered:

I. The IA processing node is a separate central node that computes and distributes the IA precoders to the

K BSs,

II. One BS also acts as the IA processing node,

III. Each BS receives all the required CSI and independentlycomputes the IA precoders.

In scenario I (Fig. 3.6(a)), the CSI (in the form ofFj) is quantized, yieldinĝFj, and sent to the central

node. The central node computes the precoders and provides BSj with a quantized version̂Vj of Ṽj . Here we

assume that each BS usesNb bits to quantizeFj and the central node usesNc bits to quantizeṼj . Therefore,

the total number of bits exchanged over the network for scenario I is equal toK(Nb +Nc). Scenario II can be
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Figure 3.6. CSIT sharing, (a) with and (b) without central node.

considered as a special case of scenario I where one (bi-directional) BS-central node link is saved; the number

of bits to be transferred in the network is(K − 1)(Nb + Nc). In scenario III (Fig. 3.6(b)), the IA solution is

computed independently at each BS, requiring global CSI at each of them. Therefore each BS needs to quantize

and send its local CSI to all otherK − 1 BSs. The precoders are subsequently computed at the BSs and no

further information exchange is required. In this scenario, a total ofK(K − 1)Nb bits must be exchanged to

distribute the CSI. For simplicity of the exposition, we focus on scenario I and characterize the scaling ofNb

andNc with P , noting that a generalization of the analysis to scenarios II and III is straightforward.

Precoder Design with Efficient Information Exchange

Let us first consider the feedback from a BS to the central node. BS j performs the QR decompositionHj =

FjCj and quantizes the subspace spanned by the columns ofFj usingNb bits and sends the index of the

quantized codeword to the central node. We further assume that the BSs and the central node share a predefined

codebookS = {S1, ...,S2Nb } which is composed of2Nb truncated unitary matrices of size(K−1)N ×M and

is designed using Grassmannian subspace packing. For simplicity, let us assume that allK codebooks have the

same size and the powers of the transmitted signals and receiver noise are symmetric across the network. The

quantized codeword is the closest point inS w.r.t. the chordal distance, i.e.,

F̂j = argmin
S∈S

dc(S,Fj). (3.32)

The interference alignment problem is then solved at the central node based on{F̂j}Kj=1 to find truncated

unitary matrices({Ũj}Kj=1, {Ṽj}Kj=1) fulfilling

ŨH
−jF̂jṼj = 0, ∀j ∈ {1, ...,K}. (3.33)
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We now consider the feedback of̃Vj from the central node to BSj. Using another codebookT =

{T1, ...,T2Nc } of truncated unitary matrices representing points inGM,d, the central node quantizes the align-

ment precoder̃Vj for each BS onGM,d according to

V̂j = arg min
T∈T

dc(T, Ṽj), (3.34)

and sends the corresponding index to BSj. At BS j, by analogy to the perfect CSI case (Lemma 7), we define

the total precoder as

Vj =

(
P

qj

)1/2

C−1
j FH

j F̂jV̂j , (3.35)

in which qj = tr(C−1
j FH

j F̂jV̂jV̂
H
j F̂

H
j FjC

−H
j ) is introduced to satisfy the power constraint.qj is nonzero

with probability 1 and is upperbounded by a constant regardless ofP as shown below

qj = ||C−1
j FH

j F̂jV̂j||2F (3.36)

≤ ||C−1
j ||2F||FH

j ||2F||F̂j ||2F||V̂j ||2F (3.37)

≤ ||Cj ||2F. (3.38)

Using the precodersVj and after applying the receive filter̃Ui to (6.43), the interference leakage (due to the

quantizations (3.32) and (3.34)) at useri is defined as

ei =
∑

1≤j≤K
j 6=i

ŨH
i HijVjxj .

(3.39)

We denote the leakage power at useri by Li

Li = tr(E(eie
H
i )) = tr(Qi

I), (3.40)

where

Qi
I =

K∑

j=1,j 6=i

ŨH
i HijVjV

H
j H

H
ijŨi. (3.41)

We now consider the sum over all users of the leakage powers:

L =
K∑

i=1

tr

( K∑

j=1,j 6=i

ŨH
i HijVjV

H
j H

H
ijŨi

)

=

K∑

j=1

||ŨH
−jHjVj ||2F.

(3.42)

SubstitutingVj = ( Pqj )
1/2C−1

j FH
j F̂jV̂j andHj = FjCj gives

||ŨH
−jHjVj ||2F =

P

qj
||ŨH

−jFjF
H
j F̂jV̂j ||2F. (3.43)

From (3.33) we havẽUH
−jF̂jṼjṼ

H
j V̂j = 0, therefore by some manipulations, from (3.42), (3.43) we get

L =

K∑

j=1

P

qj
||Xb

j +Xc
j||2F ≤

K∑

j=1

P

qj
(||Xb

j ||F + ||Xc
j ||F)2 (3.44)
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where

Xb
j = ŨH

−j(FjF
H
j − F̂jF̂

H
j )F̂jV̂j and

Xc
j = ŨH

−jF̂j(V̂jV̂
H
j − ṼjṼ

H
j )V̂j .

(3.45)

Using the fact that all the matrices involved inXb
j andXc

j are truncated unitary, it can be shown that

||Xb
j ||F ≤

√
2d dc(Fj , F̂j), (3.46)

||Xc
j ||F ≤

√
2d dc(Ṽj , V̂j). (3.47)

Using bounds on the quantization error for codebooks designed by sphere packing, it can be shown [71] thatL

in (3.44) is upper bounded by a constantc0 independent ofP when

Nb =
Gb

2
logP and Nc =

Gc

2
logP, (3.48)

in whichGb = 2M((K − 1)N −M) andGc = 2d(M − d) are the real dimension ofG(K−1)N,M andGM,d

respectively. Under the conditions (3.48), it is clear thatthe leakage power at every receiver would be bounded

by a constant sinceLi ≤ L.

Analysis of the Achievable Rate and DoF

In order to establish the DoF achievable using the proposed CSI quantization scheme, we provide a lower bound

for the achievable rate. First consider the following lemma:

Lemma 8. For Nb andNc according to(3.48)we have,

lim
P→∞

log
∣
∣Id +Qi

S

∣
∣

logP
= d, (3.49)

withQi
S = ŨH

i HiiViV
H
i H

H
iiŨi, almost surely.

Proof. We have

Qi
S =

P

qi
Wi

S (3.50)

in whichWi
S = ŨH

i HiiC
−1
i FH

i F̂iV̂iV̂
H
i F̂

H
i FiC

−H
i HH

iiŨi. Note that the limit in (3.49) involves codebooks

of increasing size sinceNb andNc increase withP . Wi
S does not necessarily admit a limit whenP →∞ due

to the fact that̃Ui andV̂i are functions of the codebooks. We tackle this problem by resorting to an argument

based on the compactness of the solution space, and show thatthere exists a series of codebooks of increasing

size for whichWi
S admits a limit and is full rank a.s. The full proof is similar to the proof of Lemma 6 in

Section 3.3.2 and is omitted here.

We are now in the position of proving that the proposed methodachieves the full IA DoF:

Theorem 3. The proposed quantization scheme, withNb andNc according to(3.48), achieves the same DoF

as IA under perfect CSI.
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Proof. Recall that (3.48) ensures thatLi is upper bounded by a nonzero constantc0. Therefore,λmax

(
Qi

I

)
≤

tr
(
Qi

I

)
= Li ≤ c0, which yields

log
∣
∣Id +Qi

I

∣
∣ ≤ d log

(
1 + λmax

(
Qi

I

))
≤ d log(1 + c0). (3.51)

Hence, the achievable rate using the designed precoders andreceive filters denoted byRi
q for useri can be

lower-bounded as follows,

Ri
q = log

∣
∣Id +Qi

S +Qi
I

∣
∣− log

∣
∣Id +Qi

I

∣
∣ (3.52)

≥ log
∣
∣Id +Qi

S

∣
∣− log

∣
∣Id +Qi

I

∣
∣ (3.53)

≥ log
∣
∣Id +Qi

S

∣
∣− d log(1 + c0), (3.54)

where (3.53) follows from the fact thatQi
I is positive semi-definite and the second inequality followsfrom

(3.51). Combining (3.54) with Lemma 8 brings us to the conclusion that

lim
P→∞

Ri
q

logP
≥ d, (3.55)

i.e. the same DoF as in the case of perfect CSI is achieved.

Performance Evaluation

In this section, the performance of the proposed scheme is evaluated through numerical simulations. The

performance metric is the sum-rate evaluated through Monte-Carlo simulations using the precoders designed

with the quantization scheme.

A three-user IC is considered where each BS is equipped withM = 5 antennas while every receiver has

N = 3 antennas andd = 2 data streams for each user is considered. Entries of the channel matrices are

generated according toCN (0, 1) and the performance results are averaged over the channel realizations. In

Fig. 3.7, the quantized CSI sharing method of Section 3.4.2 (denoted by “Proposed”) is compared (for scenario

I) to the naive method where the interfering channel matrices from the BSs are independently vectorized,

normalized and quantized usingNb bits based on the idea of composite Grassmann manifold [47] and finally

the indices of the quantized vectors are sent to the central node (denoted by Normalized Channel Composite

Grassmann Quantization, NC-CGQ). At the central node, for the proposed method, the precoders are quantized

onGM,d while for the NC-CGQ method, each precoder is vectorized, normalized and quantized onGMd,1 using

Nc bits, and sent to the corresponding BS. Figure 3.7 shows the achievable sum-rate versus transmit SNR

(P ) for (Nb, Nc) = (5, 6) and(Nb, Nc) = (10, 12) bits. A random codebook is used with codebook entries

chosen as independent truncated unitary matrices generated from the Haar distribution. For the independent

quantization method, random unit norm vectors are used in the codebook construction. Clearly the proposed

scheme outperforms the independent quantization method for the same number of bits.

The use of random codebooks for large values ofNb andNc is not tractable, due to the exponential re-

quirements in terms of storage and of computation of (3.32) and (3.34). In order to benchmark the sum-rate
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Figure 3.7. Sum-rate comparison of quantization methods, for the3-user MIMO IC,M = 5, N = 3, d = 2,

based on optimal decoding ofyi.

achievable under the proposed scheme for the high power region (largeNb andNc) we replace the quantization

process with the perturbation scheme from Appendix A.6. As will be seen, this approach provides a good

approximation of the effect of quantization on the considered system.

This replacement of the quantization error is performed at BSs as well as the central node. The sum-rate

performance
∑K

i=1R
i
q obtained using the perturbation method is plotted against SNR for various codebook

sizes in Fig. 3.8. For the considered antenna configuration,according to (3.48), the scaling that is sufficient to

achieve the perfect DoF isNb = 5 log P andNc = 6 log P . In the simulations, the codebook sizes are chosen as

Nb = 5A andNc = 6A for integer values ofA, and the corresponding SNR is computed according toP = 2A.

The results are also compared to perfect CSIT sharing. It is clear that this perturbation method effectively

approximates the quantization process when the desired performance metric is the sum-rate, allowing us to rely

on the curves resulting from this method to confirm the DoF result of Theorem 3.

3.5 Distributed Precoding

In this section we discuss possible methods to design precoders distributedly at the transmitters. By reciprocity

of the channels, thejth BS estimates the channel matricesHij, i = 1, ...,K , i 6= j from the uplink phase.

Here, we again assume thatHij, i = 1, ...,K , i 6= j are known perfectly at BSj. We assume that each BS

shares a quantized version of its channels with other BSs viafinite capacity links. Therefore all the quantized

CSI is available at all BSs (assuming error-free links). We consider the following objective for any given
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MIMO IC, M = 5, N = 3 andd = 2, based on (3.52).

channel realization:

max
{Vi}Ki=1, tr(ViV

H
i )=Pi

K∑

i=1

I i, (3.56)

in whichI i is a performance measure corresponding to linki (for example the achievable rate of linki).

3.5.1 Assumptions and Methods for Distributed Precoding

For measures such as rate or MSE, (3.56) is a non-convex problem and the known solutions are sub-optimal

and mostly based on iterative algorithms. Moreover, to havea distributed implementation, (3.56) has to be

solved independently at each transmitter which necessitates global CSI (or other types of global information)

which has to be identical at all the nodes. Since most of the (close to optimal) solutions are based on iterative

algorithms, slightly different CSI at different nodes might result in different convergence trajectories, yielding

a totally different set of precoders. Even in special cases where closed form solutions exist (like doing IA in

3-user IC), designing the precoders based on different CSI quality would result in a poor performance [72].

In a practical scenario where CSI is quantized and exchangedbetween the BSs (as the scheme presented in

Section 3.3.2), one viable option is that all the BSs design the precoders based on the common knowledge of

the whole quantized channels. Under this assumption, the BSs should not use their own accurate CSI because

the others only have a quantized version of that CSI. Based onthe common CSI, every BS will be able to

compute its precoder based on a previously agreed method, assuming that the quantized CSI is the true CSI.

Different performance metrics can be employed similar to the perfect CSI scenario. Most of the known methods

require all the channel matrices between any pair of nodes (for example iterative sum-rate maximization or

MSE minimization algorithms). On the other hand, interference alignment does not require the direct channel
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matrices. Even though IA has poor performance at low SNR, it needs less CSI exchange between the BSs

which allows for a more accurate quantization given a backhaul link with a certain capacity. Moreover, we

have shown in Section 3.3.2 that one can further reduce CSI sharing requirements when using IA. This prompts

us to use IA as a starting point and look for further improvements by taking advantage of the accurate local CSI

at each BS in a second step.

Assuming that precoders are designed based on the shared knowledge at the BSs, the main issue is that if

one BS modifies its own precoder to improve its performance byusing its local CSI, the others do not have

access to the new precoder of that BS and therefore cannot perform their own optimization. One option is to

have a fixed interference space at each receiver [73] and to constrain the transmitters to create interference only

in those spaces. However, this reduces the DoF that can be achieved over the network. Here we use the IA

projection filters (designed by using quantized CSI) to fix the interference space at the receivers. After fixing

the receive interference space we can look for improving theperformance using the local accurate CSI. For

example if we employ a rate maximization after fixing the interference spaces, we can ensure the achievability

of DoF that could be achieved by the quantized CSI and additionally have an improvement in the sum-rate.

Note that our scheme relies only on the CSI that is exchanged among the transmitters and there is no interaction

between the TX side and the RX side. (Clearly such iterative information exchange between the TX side and

the RX side can improve the performance). Again, we assume that BSj will quantizeFj over the Grassmann

manifold and send the quantized version ofFj (denoted bŷFj) to the other BSs as shown in Fig. 3.6(b). We

start by solving IA for the quantized CSÎFj (assuming a feasible IA setting), i.e., finding truncated unitary

precoding matricesVIA
j , j = 1, ...,K and projection matricesUIA

i ∈ C
N×d, i = 1, ...,K such that

VIA
j ∈ span(C−1

j FH
j F̂jṼj), (3.57)

UIA
i ∈ span(Ũi), (3.58)

whereŨi andṼj are computed from (3.33).

Fixing the receive filters decouples the problem (3.56). Afterward, it remains to design precoders locally

assuming fixed receive filtersUIA
i for the users, using the locally available CSI. We now present two possible

solutions:

3.5.2 MSE Minimization

Let us first consider the following MMSE problem

min
{Vi}Ki=1, tr(ViV

H
i )=Pi

K∑

i=1

E(||µiAixi −UIA
i

H
yi||2F) (3.59)

whereAi = UIA
i

H
HiiV

IA
i andµi is a constant. The considered metric is based on approaching(in the mean-

square error sense)µiAixi, which is a scaled version of the signal of interest obtainedwhen using the IA

precoders and projection filters computed from the estimated CSI. By taking the Lagrangian of the objective

function in (3.59), it can be shown that the set of precoders that optimize (3.59) have the formVj = µjV
⋆
j with

V⋆
j = (

K∑

i=1

H̄H
ijH̄ij + ωjIM )−1H̄H

jjAj (3.60)
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whereH̄ij = UIA
i

H
Hij,∀i, j are the equivalent channel matrices after projection with the IA receive filters.

ωj is the Lagrangian multiplier associated with the power constraint tr(VjV
H
j ) = Pj . The optimal values for

ωj, µj ,∀j do not have a closed form solution for individual power constraints. Moreover, finding the optimal

values requires global CSI. Here we pick those values heuristically as follows

ωj =
1

Pj
, µj =

√

Pj

tr(V⋆
jV

⋆
j
H)

, ∀j. (3.61)

Note that with this particular choice ofµj, the power constraints are satisfied. At low SNR, the identity matrix

in (3.60) is dominant which results in an egoistic transmission. At high SNR, the interference created for other

receivers becomes significant and the altruistic precoding(which is obtained asωj → 0) becomes preferable.

Note however that this scheme is not expected to be optimal atlow SNR since onlyd modes are used while at

low SNR the optimal transmission scheme uses all available modes.

To summarize, we solve IA at all BSs based on the quantized CSIavailable globally and afterwards, every

BS fixes the receive filters with the receive filters computed by IA and finds its MSE minimizing precoder

Vj = µjV
⋆
j according to (3.60), (3.61), approximately solving (3.59).

3.5.3 Approximate Sum-Rate Maximization

DefiningQij
I , H̄ijQjH̄

H
ij, we have

Qi
S = H̄iiQiH̄

H
ii (3.62)

Qi
I =

K∑

j=1,j 6=i

Q
ij
I (3.63)

which are the covariance matrices of the desired signal and interference after projecting by the IA receive filter

respectively.

After projection with the IA receive filters, the sum-rate can be written as

R̄sum =

K∑

i=1

[
log
∣
∣Id +Qi

S +Qi
I

∣
∣− log

∣
∣Id +Qi

I

∣
∣
]
. (3.64)

We consider the following objective function

max
Q1,...,QK

R̄sum

s.t. tr(Qj) = Pj ∀ j = 1, ...,K.
(3.65)

The first term in (6.45) can be approximated as

log
∣
∣
∣Id +Q

j
S +Q

j
I

∣
∣
∣ ≈ log

∣
∣
∣Id +Q

j
S

∣
∣
∣ (3.66)

where the approximation comes from the fact that by interference alignment (even though it is imperfect since

based on quantized CSI), the interference power inside the desired signal space is reduced significantly, i.e.,Qi
I

is negligible compared toQi
S. Therefore

R̄sum ≈
K∑

i=1

[

log
∣
∣Id +Qi

S

∣
∣− log

∣
∣Id +Qi

I

∣
∣

]

= R̃sum. (3.67)
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Using the concavity of thelog function, Jensen’s inequality gives

log
∣
∣Id +Qi

I

∣
∣ ≥ 1

K − 1

K∑

j=1,j 6=i

log
∣
∣
∣Id + (K − 1)Qij

I

∣
∣
∣ . (3.68)

Therefore we get

R̃sum ≤
K∑

j=1

R̃j, (3.69)

where

R̃j = log
∣
∣
∣Id +Q

j
S

∣
∣
∣−

K∑

i=1,i 6=j

log
∣
∣
∣Id + (K − 1)Qij

I

∣
∣
∣

K − 1
. (3.70)

Clearly eachR̃j is only a function ofQj and the outgoing channels from BSj. Therefore the optimization

problem in (3.65) can be approximately decoupled into the following K distributed optimization problems :

max
Qj

R̃j ∀ j = 1, ...,K

s.t. tr(Qj) = Pj .

(3.71)

Clearly we are optimizing an approximate upper bound of the sum rate which is suboptimal. Here, we propose

to use a gradient ascent method to determine a local maximum of R̃j as summarized in Algorithm 1. The

gradient ascent algorithm consists in starting from an arbitrary initial unnormalized precodeṙVj = V̇
(0)
j ,

calculating the gradient matrix and moving in the gradient direction with some step size, which gives a new

precoderV̇1. The algorithm unfolds similarly as in the initial step until convergence.

Algorithm 1 Iterative optimization at BSj

Find the IA solution{UIA
i ,VIA

i }Ki=1, based on{F̂j}Kj=1.

Calculate the equivalent channels,H̄ij = UIA
i

H
Hij,∀i.

Initialization: m = 0 andV̇(0)
j arbitrary.

Repeat

• Evaluate the gradient w.r.t.̇Vj,∇jR̃j

• Let V̇(m+1)
j = V̇

(m)
j + β∇jR̃j (for some step-sizeβ)

• m← m+ 1

until convergence.

We now derive the expression of the gradient w.r.t. the precoders. HavingQj = VjV
H
j such thatVj =

√
Pj

tr(V̇jV̇
H
j )
V̇j, the optimization findṡVj such that the correspondingVj maximizes the objective function at

BS j and therefore the transmit power constraint is always satisfied. The gradient of̃Rj w.r.t. V̇j is calculated

as

∇jR̃j = ηj(Ωj − αjIM )V̇j (3.72)
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whereαj =
tr(ΩjV̇jV̇

H
j )

tr(V̇jV̇
H
j )

, ηj =
Pj

tr(V̇jV̇
H
j )

and

Ωj = H̄H
jj(Id +Q

j
S)

−1H̄jj −
K∑

i=1,i 6=j

H̄H
ij(Id + (K − 1)Qij

I )
−1H̄ij. (3.73)

Considering single stream IA, instead of running Algorithm1, one can obtain a closed-form solution to

∇jR̃j = 0 as follows:

H̄H
jj(Id +Q

j
S)

−1H̄jjV̇j

=



αjIM +

K∑

i=1,i 6=j

H̄H
ij(Id + (K − 1)Qij

I )
−1H̄ij



 V̇j

(3.74)

therefore

V̇j =



αjIM +

K∑

i=1,i 6=j

H̄H
ij(Id + (K − 1)Qij

I )
−1H̄ij





−1

· H̄H
jj(Id +Q

j
S)

−1H̄jjV̇j .

(3.75)

For that case the algorithm consists in initializing the precoderV̇j (which is a vector in this case), updating

Q
j
S,Q

ij
I and iteratively finding new precoders according to (3.75).

3.5.4 Performance Comparison

In this section, the performance of the proposed distributed schemes is evaluated through numerical simulations.

The performance metric is again the sum rate evaluated through Monte-Carlo simulations using the precoders

designed in Sections 3.5.2 and 3.5.3.

A three-user IC is considered. Entries of the channel matrices are generated according toCN (0, γij) (where

γij is the path-loss coefficient for the channel between BSj and useri) and the performance results are averaged

over the channel realizations. In all simulations, the direct links are assumed to have no path-loss, i.e.,γii =

1, ∀i. Our proposed methods ("Approx-MSR and Min-MSE") are compared to the following schemes:

• IAQ: IA with quantized CSI according to Section 3.4.2. Thisscheme requires quantized CSI of the

interfering links to be available at the transmitters (or the central node).

• IAP: IA with perfect CSI. This scheme is a hypothetic case which is presented to see how the other

schemes perform relative to the scenario that alignment is done based on the true CSI.

• EW: The eigen water filling method. In this method the BSs maximize their rate selfishly using only

the knowledge of their direct channel and treating interference as noise. Assuming that the interference

is white, the power of interference at the receiver is calculated and added to the noise power to find

the equivalent noise power. Then the BSs perform water filling over the eigen modes of their direct

channels with the equivalent noise power. Clearly in this scheme the transmitters need to know their

direct channels as well as the path loss values for the interfering links.
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Figure 3.9. Comparison of sum-rate forK = 3,M = N = 2, d = 1, Nb = 12 andγij = −10dB for i 6= j

• TS: Time sharing method. In this case, the transmission time is divided among the links and at a given

time instant, only one transmitter is active and the total power is allocated to the active transmitter. The

transmission strategy for the active link is water filling over the eigen modes of the direct channel. Clearly

in this case, only the direct channel information is required at each transmitter.

• MSRG: Maximum sum rate algorithm using Gradient method [48] with quantized CSI. In this method,

the channel matrices (including the direct channels) are vectorized, normalized and quantized using ran-

dom unit norm vectors. The quantized vectors are then fed back to the transmitters and an optimization

problem is solved based on this quantized information at every transmitter. The optimization problem

determines a local maximum for the problem of sum rate maximization using the quantized channels.

The power constraint associated to the precoders is absorbed into the cost function and a Gradient ascent

algorithm is used over the equivalent cost function to find the locally optimum precoders. In this method,

all the channel matrices need to be quantized and fed back to the transmitters.

Figures 3.9, 3.10, 3.11 show the achievable sum rate versus transmit SNR when each BS is allowed to shareNb

bits with the other BSs for different antenna configurationsand different number of bits. For the quantization

phase in the proposed scheme (and also in IAQ), instead of theoptimal subspace packing codebook, a random

codebook is used where the codebook entries are independentrandom truncated unitary matrices generated

from the Haar distribution. In this method, in order to simplify the quantization, we assume that the norm of

the vectors are known at all the BSs perfectly.

Clearly the Approx-MSR and Min-MSE schemes outperforms theother methods for the same number of

bits in a wide range of practical SNRs.
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Figure 3.10. Comparison of sum-rate forK = 3,M = 5, N = 3, d = 2, Nb = 12 andγij = −3dB for i 6= j
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Figure 3.11. Comparison of sum-rate forK = 3,M = 5, N = 3, d = 2, Nb = 9 andγij = −10dB for i 6= j



4

Interference Management with

Outdated CSIT

CSIT may be neither perfect, due to the limited capacity of the feedback link, nor instantaneous, due to the

delays involved in the channel estimation and feedback. Thefirst problem of having imperfect CSIT is con-

sidered in Chapter 1 and Chapter 6. The second problem of having only delayed CSIT, a setting that is highly

relevant in mobile environments with short channel coherence times, is discussed in this chapter. The delayed

CSI is known to bring improvement in terms of DoF compared to having no CSI in BC and IC. We consider

the two-user MIMO IC where the transmitters are provided with delayed CSI. The DoF region for this channel

is characterized in [11]. We aim to devise an intuitive achievable scheme which is relatively simple compared

to [11] and has a unified structure for different antenna configurations. Furthermore, our simple scheme allows

for extensions to more general settings (like correlated channels) through slight modifications which can be

justified intuitively.

46
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4.1 Background and State of the Art

The study of DoF with delayed CSIT was initiated by the work ofMaddah-Ali and Tse [9]. They proved that

over the multiple-input single-output (MISO) BC with i.i.dfast fading, delayed (i.e., outdated) CSIT can lead

to a DoF gain compared to the case with no CSIT. The DoF gains are realized via an interference alignment

scheme. That scheme is based on the idea that the interference seen at each of the receivers at the previous

time slots (which is a linear combination of the data symbolsintended for the other users), can be reconstructed

by the transmitter at the current time instant using delayedCSIT, and subsequently forwarded to the receivers.

The receivers can exploit this interference to decode theirown signal. As an example consider a two-user

broadcast channel in which the transmitter has two antennasand each user has one antenna. It has been shown

that with delayed CSI this channel has 4/3 DoF [9]. Using three time slots two symbols can be transmitted to

each user. In the first time slot, two symbolsx1, y1 of the first user are transmitted and in the second time slot

the symbolsx2, y2 intended for the second user are transmitted. In these two time slots every useri will have

a linear combination of its own symbolsLi(xi, yi) and also a linear combination of the interfering symbols

Li(xj , yj). In the third time slot, the transmitter sends a linear combination of the interference terms observed

at the two users, i.e.,L2(x1, y1) andL1(x2, y2) (which are assumed to be available at the transmitter by delayed

CSI assumption). Clearly the first user can subtractL1(x2, y2) from the received signal in the third time slot

and the remaining part provides another linear combinationof its own signal. Similar argument holds for the

second user. Therefore every user will have two linear combinations of its own symbols which is enough to

decode the information.

This interference alignment scheme achieves DoF gains and is sum-DoF optimal for the class of MISO

BCs, wherein the transmitter has at leastK antennas whereK is the number of users. This work was then

extended to the case of the MIMO BC in [10] and also for theK-user case an outer bound to the DoF region

was derived.

Moving from BC to interference channel and X channel, the authors of [74] have shown that using ideas

similar to that of [9], higher DoF can be achieved compared tothe no CSIT case. The results of [74] were

improved in [75, 76]. The DoF region of the two-user MIMO IC was fully characterized in [11] for different

possible antenna configurations. Their proposed achievable scheme is based on transmitting on a stream per

antenna basis which makes the scheme complicated and difficult to implement. In this chapter, we propose a

unified DoF-achievable scheme for the two user MIMO IC with outdated CSIT based on linear matrix precod-

ing which covers all possible antenna configurations and avoids the many case distinctions required by other

methods.

4.2 Perfect Outdated CSIT

Consider a MIMO interference channel. We assume that all terminals are equipped with multiple antennas.

The channel between transmitterj and receiveri at time slott is H
(t)
ij ∈ C

Ni×Mj for i, j = 1, 2. The received

signal at time instantt at receiveri 6= j reads
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y
(t)
i = H

(t)
ii V

(t)
i xi +H

(t)
ij V

(t)
j xj + n

(t)
i , for t = 1, · · · , T (4.1)

wherexj is the symbol of transmitterj which has to be transmitted overT time slots andV(t)
j is the precoder

of transmitterj at time slott. n(t)
i is the additive Gaussian noise vector at time slott at receiveri whose entries

have zero mean and unit variance.

The CSI is provided to the TXs by delay and is completely outdated. The transmitters wish to convey their

symbols to their respective receivers exploiting the outdated CSI. DoF-achievable schemes are presented in [11]

for different configuration of antennas.

4.2.1 The DoF Region of the Two-User MIMO IC with Outdated CSIT

For i ∈ {1, 2} andj ∈ {1, 2} with j 6= i, the following inequality is called conditioni:

Mi > N1 +N2 −Mj > Ni > Nj > Mj > Nj
Nj −Mj

Ni −Mj
. (4.2)

Clearly, the two conditions are symmetric in user indices. The two conditions cannot hold simultaneously,

and Conditioni cannot hold ifNj ≥ Ni.

The DoF region is characterized in [11] and the region is different for any particular configuration of anten-

nas. Depending on the configuration, a set of the following bounds will determine the DoF region:

Lo1 : 0 ≤ d1 ≤ min(M1, N1), Lo2 : 0 ≤ d2 ≤ min(M2, N2) (4.3)

L1 :
d1

min(N1 +N2,M1)
+

d2
min(N2,M1)

≤ min(N2,M1 +M2)

min(N2,M1)
(4.4)

L2 :
d1

min(N1,M2)
+

d2
min(N1 +N2,M2)

≤ min(N1,M1 +M2)

min(N1,M2)
(4.5)

L3 : d1 + d2 ≤ min(M1 +M2, N1 +N2,max(M1, N2),max(M2, N1)) (4.6)

if condition 1 holds : L4 : d1 + d2
N1 + 2N2 −M2

N2
≤ N1 +N2 (4.7)

if condition 2 holds : L5 : d2 + d1
N2 + 2N1 −M1

N1
≤ N1 +N2. (4.8)

For the case of instantaneous CSIT, the DoF region is described byLo1, Lo2, andL3 [30].

4.2.2 General Achievable Scheme for Different Antenna Configurations

We try to provide a general achievable scheme which encompasses all possible antenna configurations. The

scheme is composed of two phases (successive in time) where each phase is composed ofT time slots. The

channel outputs (concatenated overT time slots) can be written as

y1 = H11V1x1 +H12V2x2 + n1 (4.9)

y2 = H21V1x1 +H22V2x2 + n2 (4.10)
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whereHij = Bdiag(H
(1)
ij , ...,H

(T )
ij ) andVj =







V
(1)
j

· · ·
V

(T )
j







. Also we haveyi =







y
(1)
i

· · ·
y
(T )
i







andni =







n
(1)
i

· · ·
n
(T )
i







.

The proposed scheme is based on transmitting with random precoders in the first phase and transmiting

with a designed precoder in the second phase. We assume that the duration of phase 1 for TXi is T − qj with

j 6= i ∈ {1, 2}. Therefore TXi uses the lastqj time slots to facilitate the decoding at both RXs using a properly

designed precoder in this phase and exploiting the CSIT corresponding to phase 1. We defined∗1 = Td1 and

d∗2 = Td2.

Let us now consider the received signal space (signal and interference) at each RX:

RX1:

R1 = [H11V1 H12V2] =









H
(1)
11 V

(1)
1 H

(1)
12 V

(1)
2

H
(2)
11 V

(2)
1 H

(2)
12 V

(2)
2

· · · · · ·
H

(T)
11 V

(T)
1 H

(T)
12 V

(T)
2









=

[

H
ph1
11 V

ph1
1 H

ph1
12 V

ph1
2

H
ph2
11 V

ph2
1 H

ph2
12 V

ph2
2

]

(4.11)

RX2:

R2 = [H22V2 H21V1] =









H
(1)
22 V

(1)
2 H

(1)
21 V

(1)
1

H
(2)
22 V

(2)
2 H

(2)
21 V

(2)
1

· · · · · ·
H

(T)
22 V

(T)
2 H

(T)
21 V

(T)
1









=

[

H
ph1
22 V

ph1
2 H

ph1
21 V

ph1
1

H
ph2
22 V

ph2
2 H

ph2
21 V

ph2
1

]

(4.12)

whereH
ph1
ij = Bdiag(H

(1)
ij , ...,H

(T−qi)
ij ) and H

ph2
ij = Bdiag(H

(T−qi+1)
ij , ...,H

(T )
ij ). Also we have

V
ph1
j =







V
(1)
j

· · ·
V

(T−qi)
j







andVph2
j =







V
(T−qi+1)
j

· · ·
V

(T )
j







.

Here we present our simple achievable scheme which is based on retrospective interference alignment.

Proposition 1. The following scheme (almost surely) achieves all the corner points(d1, d2) of the DoF region

for all antenna configurations for which delayed CSIT is beneficial compared to no CSIT.

Suppose thati, j ∈ {1, 2} andj 6= i. The precoder of TXj is designed as follows :

• if d1 + d2 ≤ Ni then a precoderVj ∈ C
TMj×d∗j is randomly generated (i.i.d. Gaussian entries) and

fixed during the whole transmission.

• if d1 + d2 > Ni, choosingqi =
d∗i
Ni

, thenVj =

[

V
ph1
j

V
ph2
j

]

in whichV
ph1
j ∈ C

(T−qi)Mj×d∗j is chosen

randomly (i.i.d. Gaussian entries) and fixed. Also we haveV
ph2
j = V

ph2
j,1 V

ph2
j,2 whereVph2

j,1 ∈ C
qiMj×lij

is again generated randomly (i.i.d. Gaussian entries) andV
ph2
j,2 ∈ C

lij×d∗j has full row rank oflij =

min(qiMj , (T − qi)Ni) and is chosen such thatVph2
j,2 ∈ R(H

ph1
ij V

ph1
j ) whereR(·) is the row space of

its argument matrix.



Chapter 4. Interference Management with Outdated CSIT 50

Name in [11] Condition

G2 A.I.3 M1,M2 ≥ N1 > N2

G1

A.II.2 M1 > N1 > M2 ≥ N2

B.I N1 ≥M1 > N2 > M2

B.II.1 M1 > N1 > N2 > M2 andM2 ≤ m

B.II.2 M1 > N1 > N2 > M2 andM2 > m andM1 = M ′
1

B.III.1 M1 > M ′
1 > N1 > N2 > M2 > m andM1 ≥ N1 +N2 −m

B.III.2 M1 > M ′
1 > N1 > N2 > M2 > m andM1 < N1 +N2 −m

Table 4.1. Antenna configurations with larger DoF for delayed CSIT compared to no CSIT.m = N2
M ′

1−N1
M ′

1−N2

andM ′
1 = min(M1, N1 +N2 −M2) with the assumption ofN1 ≥ N2.

In the rest of this chapter we prove the achievability of our scheme.

Without loss of generality assume thatN1 ≥ N2. According to [11] we have listed the configurations for

which delayed CSIT DoF region is strictly larger than the no CSIT case in Table 4.1.

Remark 1. For the case A.I.3 we haved1 + d2 > N1 and for all other cases we haveN2 < d1 + d2 ≤ N1.

This can be easily shown from the achievable points and the antenna relations for each case.

Interference alignment is needed when the rank of the received space is smaller than the total number of

streams. The consequence of Remark 1 is that in order to achieve the DoF region for case A.I.3 we need to align

interference at both receivers while for the other cases it is sufficient to align interference only at one RX (RX

2 in our setting). Therefore we divide all the cases into the following two groups and prove the achievability

for each group separately:

• GroupG1: This group includes the cases A.II.2, B.I, B.II.1, B.II.2,B.III.1,B.III.2 (which satisfyN2 <

d1 + d2 ≤ N1)

• GroupG2: This group includes only the case A.I.3 (which satisfiesd1 + d2 > N1).

Transmission Scheme for Group G1

Theorem 4. The precoders defined in Proposition 1 achieve all the cornerpoints(d1, d2) of the DoF region

for groupG1.

Proof. To see the dimensions, we use the following notations for theTX/RX spaces defined earlier.

V1 =






[

V
ph1
1

]

(T−q)M1×d∗1[

V
ph2
1

]

qM1×d∗1




 R1 =







S̄11
(T−q)N1×d∗1

Ī12(T−q)N1×d∗2

S̃11
qN1×d∗1

Ĩ12qN1×d∗2







(4.13)

V2 =






[

V
ph1
2

]

(T−q)M2×d∗2[

V
ph2
2

]

qM2×d∗2




 R2 =







Ī21(T−q)N2×d∗1

S22
TN2×d∗2

Ĩ21qN2×d∗1







(4.14)
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where the precoders are chosen according to Proposition 1 and we havēS11 = H
ph1
11 V

ph1
1 , S̃11 = H

ph2
11 V

ph2
1 ,

Ī12 = H
ph1
12 V

ph1
2 , Ĩ12 = H

ph2
12 V

ph2
2 andS22 = H22V2, Ī21 = H

ph1
21 V

ph1
1 , Ĩ21 = H

ph2
21 V

ph2
1 . Since we align

interference only at RX 2, we setq = q2 =
d∗2
N2

. Clearly the precoder of TX 2 is generated randomly over

the wholeT time slots. However we have also split the precoder of TX 2 in two phases (with the sameq) for

simplicity of analysis.

Theorem 5. The following set of conditions hold for groupG1:

C.I : di ≤ min(Mi, Ni), i = 1, 2 andN2 < d1 + d2 ≤ N1

C.II : T (d1 + d2) ≤ (T− q)N1 + qM2 +min(qN1, qM1, (T− q)N2)

C.III : Td1 ≤ (T − q)M1

Proof. See Appendix B.1.

Lemma 9. If C.I holds then the scheme in Proposition 1 givesrank(R2) = TN2 for groupG1.

Proof. We haveVph2
1,2 ∈ R(Hph1

21 V
ph1
1 ) = R(̄I21). This givesVph2

1 ∈ R(̄I21). SincẽI21 = H
ph2
21 V

ph2
1 there-

fore Ĩ21 ∈ R(̄I21) which means that the interference of phase 2 is aligned in thespace spanned by interference

in phase 1. Since in groupG1 we haved1 + d2 > N2 andN2 < M1 therefore we have

rank(̄I21) = min((T − q)M1, (T − q)N2, d
∗
1) = (T − q)N2. (4.15)

which means that̄I21 has full row rank of(T − q)N2. Sincel21 = min(qM1, (T − q)N2), thereforeVph2
1,2 has

the maximum possible rank (l21) that ensures the alignment condition, i.e.,V
ph2
1 ∈ R(̄I21). Further, the role

of Vph2
1,1 is to maximize the rank of the product of the channel with precoder of phase 2. This is crucial for

decoding the desired signal.

From alignment we haverank













Ī21

Ĩ21













= (T − q)N2. Also we have rank(S22) =

min(TM2, TN2, d
∗
2) = d∗2, therefore

rank(R2) = rank













Ī21

Ĩ21













+ rank(S22) = (T − q)N2 + d∗2 = TN2. (4.16)

This is due to the fact thatS22 is full rank and every column ofS22 involves random entries which are generated

independent of the columns of interference. Therefore the signal can be decoded at RX 2.

Lemma 10. If C.III holds, there is no overlap between the span ofS̄11 andS̃11.
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Proof. Note that ifC.III holds thenVph1
1 will be full column rank and this means thatR(S̄11) does not

depend onVph1
1 (it might depend onHph1

11 ) andR(̄I21) depends onHph1
21 (since(T − q)N2 ≤ d∗1). We have

R(S̃11) ∈ R(Vph2
1 ) ∈ R(̄I21) therefore the row spaces corresponding toS̄11 andS̃11 are independent.

Lemma 11. If C.I,C.II,C.III are satisfied then the scheme in Proposition 1 givesrank(R1) ≥ d∗1 + d∗2 for

groupG1.

Proof. SinceC.III holds, from Lemma 10 we have independence betweenS̄11 andS̃11. Also we know that̄I12

andĨ12 are independent. Therefore we can conclude that

rank(R1) = rank(
[
S̄11 Ī12

]
) + rank(

[

S̃11 Ĩ12
]

). (4.17)

It is easy to show that

rank(
[
S̄11 Ī12

]
) = (T − q)N1 (4.18)

rank(S̃11) = min(qN1, qM1, (T − q)N2) (4.19)

rank(̃I12) = qM2 (4.20)

rank(
[

S̃11 Ĩ12
]

) = min(qN1, rank(̃I
12) + rank(S̃11)). (4.21)

Using the facts thatd1 + d2 ≤ N1, if rank(
[

S̃11 Ĩ12
]

) = qN1 we have

T (d1 + d2) ≤ (T − q)N1 + qN1

= rank(
[
S̄11 Ī12

]
) + rank(

[

S̃11 Ĩ12
]

)

= rank(R1).

If rank(
[

S̃11 Ĩ12
]

) = rank(̃I12) + rank(S̃11), fromC.II we get

T (d1 + d2) ≤ rank(
[
S̄11 Ī12

]
) + rank(̃I12) + rank(S̃11)

= rank(
[
S̄11 Ī12

]
) + rank(

[

S̃11 Ĩ12
]

)

= rank(R1).

Based on Lemma 11 and Lemma 9 and Theorem 5, we have

rank(R2) = TN2 (4.22)

rank(R1) ≥ d∗1 + d∗2. (4.23)

Since interference at RX2 is aligned in(T − q)N2 dimensions and interference at RX1 is in ad∗2 dimensional

space, the desired signal of both users can be decoded. Therefore the proof of Theorem 4 is complete.
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Transmission Scheme for Group G2

Theorem 6. The precoders designed in Proposition 1 achieve all the corner points(d1, d2) of the DoF region

for groupG2.

Proof. In the case A.I.3 we haveM1,M2 > N1 > N2 and the corner point of the region isd1 =
N1M ′

1(M ′
2−N2)

N1(M ′
2−N2)+M ′

2(M ′
1−N1)

andd2 = N2M ′
2(M ′

1−N1)
N1(M ′

2−N2)+M ′
2(M ′

1−N1)
in which M ′

i = min(Mi, N1 + N2). If we

choose the number of time slots equal to the denominator we will haveT = N1(M
′
2 −N2) +M ′

2(M
′
1 −N1)

which givesd∗1 = N1M
′
1(M

′
2 −N2) andd∗2 = N2M

′
2(M

′
1 −N1).

Theorem 7. The following conditions hold for groupG2:

C̄.I : di ≤ min(Mi, Ni), i = 1, 2 andd1 + d2 > N1

C̄.III : Tdj ≤ (T − qi)Mj , i, j = 1, 2, i 6= j.

Proof. See Appendix B.2.

We know that the corner point of the outer bound isd1 = N1M ′
1(M ′

2−N2)
N1(M ′

2−N2)+M ′
2(M ′

1−N1)
and d2 =

N2M ′
2(M ′

1−N1)
N1(M ′

2−N2)+M ′
2(M ′

1−N1)
. Here we chooseq1 =

d∗1
N1

= M ′
1(M

′
2 − N2) andq2 =

d∗2
N2

= M ′
2(M

′
1 − N1).

With this choice we aim to align the interference at both RXs where we align the interference from phase 2

in the space of interference in phase 1 such that at RXi, the whole interference lies in a space of dimension

(T − qi)Ni = TNi − d∗i which leavesd∗i dimensions for the desired signal.

Here we show that the scheme presented in Proposition 1 achieves the desired DoF. The TX/RX spaces are

shown below.

V1 =






[

V
ph1
1

]

(T−q2)M1×d∗1[

V
ph2
1

]

q2M1×d∗1




 R1 =







S̄11
(T−q2)N1×d∗1

Ī12(T−q1)N1×d∗2

S̃11
q2N1×d∗1

Ĩ12q1N1×d∗2







(4.24)

V2 =






[

V
ph1
2

]

(T−q1)M2×d∗2[

V
ph2
2

]

q1M2×d∗2




 R2 =







S̄22
(T−q1)N2×d∗2

Ī21(T−q2)N2×d∗1

S̃22
q1N2×d∗2

Ĩ21q2N2×d∗1







(4.25)

where we havēS11 = H
ph1
11 V

ph1
1 , S̃11 = H

ph2
11 V

ph2
1 , Ī12 = H

ph1
12 V

ph1
2 , Ĩ12 = H

ph2
12 V

ph2
2 and S̄22 =

H
ph1
22 V

ph1
2 , S̃22 = H

ph2
22 V

ph2
2 , Ī21 = H

ph1
21 V

ph1
1 , Ĩ21 = H

ph2
21 V

ph2
1 .

Similar to the previous section we haveĨ21 ∈ R(̄I21) and additionallỹI12 ∈ R(̄I12). Note that̄I12 andĪ21

are full rank which indicates that the designed precodersV
ph2
1,2 andVph2

2,2 have the maximum possible rank that

ensures the alignment condition. Also similar to the previous case we have used a random precoder in order to

make sure that the ranks of the received signals at the RXs aremaximized which facilitates the decoding of the

desired streams.



Chapter 4. Interference Management with Outdated CSIT 54

In phase 2, TX 1 needs to have access toĪ21 and TX 2 needs to have access toĪ12. This means that although

the phases are not synchronized (q1 and q2 might be different), the TXs can have access to the necessary

information after transmitting in their corresponding first phase.

Lemma 12. If conditionsC̄.I andC̄.III hold, the scheme in Proposition 1 ensures that the received spacesR1

andR2 are full rank for groupG2.

Proof. We know thatTN1 < d∗1 + d∗2 = q1N1 + q2N2 < (q1 + q2)N1 which givesq1 + q2 > T . Assume that

i, j ∈ {1, 2} andi 6= j. Using this fact and based on the conditionC̄.I, the relations between the number of

antennas and the condition on the rank of the precoders, we get:

rank(S̄ii) = (T − qj)Ni, rank(̄Iij) = (T − qi)Ni (4.26)

rank(S̃ii) = min(qjNi, (T − qj)Nj), rank(̃Iij) = min(qiNi, (T − qi)Ni) (4.27)

Consider RXi. From alignment condition we getrank













Īij

Ĩij













= (T − qi)Ni. Therefore using the same

argument as in the previous section we have

rank(Ri) = rank













Īij

Ĩij













+ rank













S̄ii

S̃ii













= (T − qi)Ni + rank













S̄ii

S̃ii













.

FromC̄.III we have independence betweenS̄ii andS̃ii which givesrank













S̄ii

S̃ii













= rank(S̄ii)+ rank(S̃ii).

Therefore we get

rank(Ri) = (T − qi)Ni + rank(S̄ii) + rank(S̃ii). (4.28)

Substituting forT, qi, qj, we have(T − qj)M
′
i = qiNi and sinceM ′

i ≤ Ni+Nj, we have(T − qj)Ni+(T −
qj)Nj ≥ (T − qj)M

′
i = qiNi. Also we have(T − qj)Ni + qjNi = TNi ≥ qiNi. Therefore

(T − qj)Ni +min(qjNi, (T − qj)Nj) ≥ qiNi

⇒ rank(S̄ii) + rank(S̃ii) ≥ qiNi

⇒ rank(Ri) ≥ TNi.

Similarly, from Lemma 12 and Theorem 7, it can be inferred that the signal at both receivers can be decoded,

hence the proof of Theorem 6 is complete.



5

Distributed Interference

Alignment

Despite its deceptively simple mathematical formulation,IA has no general closed-form solution (although

the solution exists for certain dimensions, see e.g. [77]).In large networks, or when the network topology

cannot be assumed to be known, distributed implementationsare desirable due to the increasing amount of

information exchange requirement along with the growing computational complexity. An iterative distributed

implementation relying on over-the-air estimation of interference covariance was proposed in [12].

Message-passing algorithms, and in particular the sum-product algorithm [78], have been used to solve

decoding problems in communications. In a nutshell, they provide an efficient way to compute functions

involving a large number of variables when the function in question can be decomposed (factorized) into terms

that involve only a subset of the variables. Such algorithmsare known to distribute the complexity associated

to the increasing size of the network over the individual nodes of the network. In this chapter we aim to model

the procedure of finding the alignment precoders as a messagepassing problem. It turns out that our message

passing solution includes the well known minimum leakage algorithm [12] as a special case.

55
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5.1 State of the Art

MP solutions can be formulated for a variety of problems requiring computations on a commutative semiring,

i.e. they are not restricted to the computation of probability distributions [79]. In fact, depending on the choice

of the semiring (and the associated binary operations, suchas sum, product or minimum), MP solutions are

available for Bayesian inference (yielding the belief-propagation approach of ML decoding [80]) as well as

optimization problems (e.g. the min-sum algorithm [81]).

A major motivation for considering MP is that the resulting algorithms are well suited for distributed

implementation. This is because for most practical applications, each factor in the function only depends on

local data (in our application, channel state information). MP has already been considered for beamformer

optimization in [82], where the sum-product algorithm is applied to a function broadly related to the sum-rate.

In [83], the min-sum algorithm is applied to the sum-rate function. The proposed algorithm is restricted to

discrete precoders.

In this work, we introduce a message-passing technique which optimizes the leakage function associated

with interference alignment. We deal with continuous variables, i.e. we let the precoders and receive filter

matrices take any value in the Stiefel manifold, in contrastto the results of [82, 83] where the precoders

are chosen from a finite set. This is motivated by the fact thatthe number of IA solutions is in general

finite [84] – therefore, solving the leakage minimization problem on a discrete subset of the Stiefel man-

ifold will in general not yield an exact IA solution, while solving it on the (continuous) Stiefel manifold will do.

5.2 Factor Graphs

Factor graphs are a family of graphical models which have been very useful in signal processing and commu-

nications. Factor graphs subsume many other graphical models in signal processing, probability theory and

coding, including Markov random fields [85–87], Bayesian networks [88, 89] and Tanner graphs [90, 91]. A

factor graph is a representation for a function of several variables that can be decomposed into a product/sum

of factors each involving a subset of variables. For instance the function

f(x1, x2, x3, x4) = f1(x1, x2, x4) + f2(x3, x4) (5.1)

is defined for variablesx1, ..., x4 and has factorsf1, f2. In the associated factor graph (Figure 5.1), every

variable is depicted by a circle while every function is represented by a square. An edge between a function

nodefi and a variable nodexj indicates thatfi is a function ofxj . For example the functionf1 is a function of

x1, x2, x4 and therefore the variable nodesx1, x2, x4 are connected to the function nodef1.

A particular assignment of a value to each of the variables isreferred to as a configuration of the variables.

The configuration space is the set of all possible configurations which is the domain of the functionf . We are

interested to find the configuration which minimizes the value off .
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Figure 5.1. Factor Graph associated to the functionf

We consider marginal functionsgi(xi) associated with every functionf(x1, ..., xn). For each feasiblea, the

value ofgi(a) is obtained by taking the minimum value off(x1, ..., xn) over all configurations of the variables

that havexi = a. This definition of marginal function is a particular choicewhich is desirable for our problem

and in general marginal functions can be defined in differentways. Instead of indicating the variables being

minimized over, we indicate those variables not involved inthe minimization. For example, iff1 is a function

of three variablesx1, x2, x3, then the summary forx2 is denoted by

min
∼x2

f1(x1, x2, x3) = min
x1

min
x3

f1(x1, x2, x3) (5.2)

In this notation we have

gi(xi) = min
∼xi

f(x1, ..., xn) (5.3)

i.e., theith marginal function associated withf(x1, ..., xn) is the summary forxi of f . When the marginals are

available, a local optimization of the marginal function over the corresponding variable leads to a solution for

this variable which is a globally optimal solution (when thegraph is a tree), i.e.,

min
xi

gi(xi) = min
xi

min
∼xi

f(x1, ..., xn) = min
x1,...,xn

f(x1, ..., xn). (5.4)

In our example the computation complexity of (5.3) can be reduced by exploiting the distributive law:

min
∼x3

f(x1, ..., x4) = min
x4

[

f2(x3, x4) + min
x1,x2

f1(x1, x2, x4)

]

. (5.5)

Comparing the above expression to the factor graph, we observe that each minimization corresponds to

replacing each box with a new quantity which is a function of the summary variable. This quantity is referred

to as a message. After replacing the small box in Figure 5.1 with its corresponding message (mf1→x4(x4)), the

marginal can be rewritten as

min
∼x3

f(x1, ..., x4) = min
x4

[f2(x3, x4) +mf1→x4(x4)] (5.6)
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Similarly the replacement for the large box will be a minimization of the functionf2(x3, x4) + mf1→x4(x4)

overx4. The example describes the message updates procedure wherewe start from the leave nodes of the

factor graph and messages are passed along the edges. The updated messages are propagated to other nodes of

the factor graph.

As a generalization of the above example, the following message update rules can be derived for the mes-

sage initiating from a variable node to a function node and vice versa.

The general form of the variable-to-function updates in theconsidered message-passing algorithm can be

computed as [81]

ma→b(xa) =
∑

i∈N (a)\b
mi→a(xa), (5.7)

wherea is the variable node (andxa the corresponding variable),b represents the function node, andN (a)

denotes the set of neighbors ofa.

Updates from function nodeb to a variable nodea ∈ N (b) take the general form

mb→a(xa) = min
Xb\xa



Cb(Xb) +
∑

j∈N (b)\a
mj→b(xj)



 (5.8)

whereCb is the function associated to nodeb andXb is the set of all variables which are arguments ofCb.

5.2.1 Min-Sum Algorithm

The marginal functions can be derived in parallel to avoid further calculations of intermediate messages. The

specific algorithm that performs this calculations is called min-sum algorithm [81]. The algorithm starts at the

leaves of the graph (assuming that the graph is a tree). The initial messages originating from leaves that are

variable nodes is set to 0 and the leaves that are function nodes send the function value to their neighbors. The

message update rules are applied as soon as the necessary information is available at the edges to compute the

outgoing messages. The updated messages are then propagated to the neighbors. The marginal functiongk(xk)

of a variable nodesxk is obtained as sum of all incoming messages

gk(xk) =
∑

l∈N (k)

ml→k(xk). (5.9)

In case that the underlying factor graph has cycles, the min-sum algorithm can be still applied. However,

the obtained marginals from this algorithm do not representthe true marginals. Consider an example obtained

by slightly modifying the function,

f(x1, ..., x4) = f1(x1, x2, x4) + f2(x3, x4) + f3(x2, x3). (5.10)

Running min-sum algorithm for this graph results in infinitepropagation of messages in a round. There is no

guarantee that the algorithm converges and if it does, thereis no theoretical result to show the optimality of the

convergence point. In many practical applications the sum-product algorithm which is another message passing

algorithm is seen to provide good performance. For example LDPC codes and turbo codes are represented

by graphs that have many cycles and application of the sum-product algorithm on these graphs has shown

surprisingly good results.
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5.3 Distributed Design of the Alignment Precoders

5.3.1 Modeling Interference Alignment as a Message Passing Problem

Consider the IA equations (2.7) for theK-user interference channel. Our aim is to solve for theUi andVj ,

given the channel matrices. Here we focus on the cases where the dimensions are such that IA is feasible for

almost all channels with coefficients drawn from continuousdistributions [92].

We reformulate the above IA conditions using the interference leakage metric:

(2.7)
(a)⇔

K∑

i=1

∑

j 6=i

tr
(
UH

i HijVjV
H
j HH

ijUi

)
= 0 (5.11)

(b)⇔
K∑

i=1

∑

j 6=i

tr
(
UH

i HijVjV
H
j HH

ijUi

)

︸ ︷︷ ︸

fi(Ui,V∼i)

+
K∑

j=1

∑

i 6=j

tr
(
VH

j HH
ijUiU

H
i HijVj

)

︸ ︷︷ ︸

gj(Vj ,U∼j)

= 0. (5.12)

In the above,(a) follows from the fact thatX = 0 ⇔ tr
(
XXH

)
= 0 and the sum is zero iff all the (non-

negative) summands are zero; and (b) holds because
∑K

i=1 fi(Ui,V∼i) =
∑K

j=1 gj(Vj ,U∼j). Using the

notations introduced above, wherefi andgj are non-negative real functions, we note that (2.7) admits the same

solution set as the optimization problem

min
U1, . . . ,UK ∈ VN,d,

V1, . . . ,VK ∈ VM,d

K∑

i=1

fi(Ui,V∼i) +

K∑

j=1

gj(Vj ,U∼j). (5.13)

We propose to solve (5.13) via message passing, specificallyusing the min-sum algorithm. In order to do that,

we construct a graph with2K variable nodesUi, i = 1 . . . K andVj , j = 1 . . . K, and2K function nodes

fi, i = 1 . . . K andgj , j = 1 . . . K. A connection in the graph represents dependency of a function on the

corresponding variable. An example of such a graph obtainedfor a 3-user network is shown in Fig. 5.2.

Note that according to the above graph construction,fi depends onUi and on allVj , j 6= i; this assump-

tion is valid for fully connected networks (Hij 6= 0 ∀(i, j)). For partially connected networks (see [93, 94]),

the connectivity of the graph should be adjusted accordingly, i.e. if Hij = 0, the edges betweenfi andVj , as

well as betweengj andUi should be removed.

Variable-to-Function Messages

For the considered problem, considering for instance the messages originating fromUi (and the set of its

neighborsN (Ui) = {fi, g∼i}), we must particularize (5.7) and distinguish between messages going tofi and

those going to one of thegj , j 6= i:

mUi→fi(Ui) =
∑

j 6=i

mgj→Ui
(Ui) (5.14)
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Figure 5.2. Graph obtained for IA over the 3-user, fully connected interference channel.

while

mUi→gj(Ui) = mfi→Ui
(Ui) +

∑

k 6=i,j

mgk→Ui
(Ui) (5.15)

(note that, by a slight abuse of notation, we use the same namefor the nodes in the graph and the matrices or

functions they represent). By symmetry, we have

mVj→gj(Vj) =
∑

i 6=j

mfi→Vj
(Vj) (5.16)

and

mVj→fi(Vj) = mgj→Vj
(Vj) +

∑

k 6=i,j

mfk→Vj
(Vj). (5.17)

Function-to-Variable Messages

Here again, considering a function nodefi and its set of neighborsN (fi) = {Ui,V∼i}, we particularize (5.8)

depending on whether the message is going toUi or to one of theVj , j 6= i:

mfi→Ui
(Ui) = min

V∼i

[

fi(Ui,V∼i) +
∑

j 6=i

mVj→fi(Vj)
]

(5.18)

mfi→Vj
(Vj) = min

Ui,V∼i,j

[

fi(Ui,V∼i) +mUi→fi(Ui) +
∑

k 6=i,j

mVk→fi(Vk)
]

. (5.19)

Note that the optimization domain is implicitly understoodto beVN,d (for theUi variables) orVM,d (for the

Vj). Again, by symmetry, we have

mgj→Vj
(Vj) = min

U∼j

[

gj(Vj ,U∼j) +
∑

i 6=j

mUi→gj(Ui)
]

(5.20)

mgj→Ui
(Ui) = min

Vj ,U∼i,j

[

gj(Vj ,U∼j) +mVj→gj(Vj) +
∑

k 6=i,j

mUk→gj(Uk)
]

. (5.21)
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Convergence

When considering tree-like graphs, propagating messages from the leaves to the root ensures that an exact

solution is found with a finite number of message exchanges. Clearly, this is not the case here, since the

considered graphs have loops – in that case, the messages areinitialized with random values, and message-

passing is executed until convergence. In that case, the schedule (the order in which messages are propagated

in the graph) can be arbitrary. Although convergence is not always provable (see [95] for some convergence

results applying to the min-sum algorithm), this will not constitute a problem here, as the proposed algorithm

has been observed to converge reliably, as will be seen in Section 5.4.

After convergence, the variables of interest are computed from the local beliefs at each variable node,

according to

U∗
i = argmin

Ui

∑

a∈N (Ui)

ma→Ui
(Ui), (5.22)

V∗
j = argmin

Vj

∑

a∈N (Vj )

ma→Vj
(Vj). (5.23)

Note that the messages considered here are in fact functions: in (5.18) for example, the message consists in

the value ofmfi→Ui
evaluated at all possibleUi. If Ui takes on a finite number of values, it can be practical

to compute the message by solving the minimization problem in the right-hand side for each possible value of

Ui. However, this method is clearly impractical for continuous variables. In the sequel, we turn our attention

to the continuous case.

5.3.2 Continuous Variable Case

In order to have a compact (and computationally manageable)representation of continuous functions, we intro-

duce a parameterization of our messages. Let us assume that every messagema→b(X), whereX is a truncated

unitary matrix, takes the form

ma→b(X) = tr
(
XHQa→bX

)
(5.24)

for some positive semidefinite matrixQa→b. Clearly, under this assumption, the messagema→b is equivalently

represented by the corresponding matrixQa→b. Using this parameterization, and resorting to approximations

where necessary, we now show that the message computations from Section 5.3.1 admit closed-form expres-

sions of the form (5.24).

Starting with (5.14), we notice that it can be transformed as

mUi→fi(Ui) =
∑

j 6=i

tr
(
UH

i Qgj→Ui
Ui

)
= tr



UH
i




∑

j 6=i

Qgj→Ui



Ui



 . (5.25)

Identifying this expression with (5.24) shows that

QUi→fi =
∑

j 6=i

Qgj→Ui
. (5.26)
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Using a similar reasoning, (5.15)–(5.17) yield trivially

QUi→gj = Qfi→Ui
+
∑

k 6=i,j

Qgk→Ui
, (5.27)

QVj→gj =
∑

i 6=j

Qfi→Vj
(5.28)

QVj→fi = Qgj→Vj
+
∑

k 6=i,j

Qfk→Vj
. (5.29)

The case of the the function-to-variable messages is more interesting, since we now seek the closed-form
expressions of the solutions to the minimization problems (5.18)–(5.21). Let us first turn our attention to (5.18),
and notice that

fi(Ui,V∼i) +
∑

j 6=i

mVj→fi(Vj)

=
∑

j 6=i

[
tr
(
UH

i HijVjV
H
j HH

ijUi

)
+ tr

(
VH

j QVj→fiVj

)]
. (5.30)

Note that each term in the above sum depends only on a singleVj . This indicates that the minimization over
V∼i in (5.18) is separable, and therefore

mfi→Ui
(Ui) =

∑

j 6=i

min
Vj

[
tr
(
UH

i HijVjV
H
j HH

ijUi

)
+ tr

(
VH

j QVj→fiVj

)]

=
∑

j 6=i

min
Vj

tr
(
VH

j

[
HH

ijUiU
H
i Hij +QVj→fi

]
Vj

)
. (5.31)

Here, we resort to our first approximation, and assume that

argmin tr
(
VH

j

[
HH

ijUiU
H
i Hij +QVj→fi

]
Vj

)
≈ argmin tr

(
VH

j QVj→fiVj

)
. (5.32)

Note that this approximation becomes exact ifVH
j HH

ijUi = 0, i.e. in particular at convergence, when (2.7) is
fulfilled. LettingV0

j = νmin

(
QVj→fi

)
for all j 6= i, we have

mfi→Ui
(Ui) =

∑

j 6=i

tr
(

UH
i HijV

0
jV

0
j

H
HH

ijUi

)

+ tr
(

V0
j

H
QVj→fiV

0
j

)

(5.33)

= tr

(

UH
i

[∑

j 6=i

HijV
0
jV

0
j

H
HH

ij + I
1

d
tr
(

V0
j

H
QVj→fiV

0
j

) ]

Ui

)

.

This yields the final message computation rule

Qfi→Ui
=
∑

j 6=i

HijV
0
jV

0
j
H
HH

ij + I
1

d
tr
(

V0
j
H
QVj→fiV

0
j

)

. (5.34)

The case of (5.19) follows a similar derivation:

mfi→Vj
(Vj) = min

Ui,V∼i,j

[

tr

(

UH
i

[∑

k 6=i

HikVkV
H
k HH

ik

]

Ui

)

(5.35)

+ tr
(
UH

i QUi→fiUi

)
+
∑

k 6=i,j

tr
(
VH

k QVk→fiVk

)

]
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= min
Ui,V∼i,j

[

tr
(
UH

i HijVjV
H
j HH

ijUi

)
+ tr

(

UH
i

[

QUi→fi +
1

2

∑

k 6=i,j

HikVkV
H
k HH

ik

]

︸ ︷︷ ︸

R

Ui

)

(5.36)

+
∑

k 6=i,j

tr

(

VH
k

[

QVk→fi +
1

2
HH

ikUiU
H
i Hik

]

︸ ︷︷ ︸

Sk

Vk

)]

.

Again, we choose to approximate the minimization above by assuming that

arg min
Ui,V∼i,j

[

tr
(
UH

i HijVjV
H
j HH

ijUi

)
+ tr

(
UH

i RUi

)
+
∑

k 6=i,j

tr
(
VH

k SkVk

) ]

(5.37)

≈ arg min
Ui,V∼i,j

[

tr
(
UH

i RUi

)
+
∑

k 6=i,j

tr
(
VH

k SkVk

) ]

. (5.38)

Note however thatR depends onV∼i,j andSk is a function ofUi, so the resulting minimization problem is
not separable. We resort to alternating minimization oftr

(
UH

i RUi

)
and thetr

(
VH

k SkVk

)
; starting from an

arbitraryU(0)
i ∈ VN,d, we apply the following update rules at iterationn:

V
(n+1)
k =νmin

(

QVk→fi +
1

2
HH

ikU
(n)
i U

(n)
i

H

Hik

)

, ∀k 6= i, j (5.39)

U
(n+1)
i =νmin

(

QUi→fi +
1

2

∑

k 6=i,j

HikV
(n+1)
k V

(n+1)
k

H

HH
ik

)

. (5.40)

Clearly, whenn → ∞, the objective functiontr
(
UH

i RUi

)
+
∑

k 6=i,j tr
(
VH

k SkVk

)
converges (it is non-

negative and non-increasing at each iteration). We cannot provide any proof of optimality for this approach;
nonetheless, experimental results obtained via this technique have been satisfactory. LettingU∗

i ,V
∗
k denote the

convergence points of the iterations of (5.39)–(5.40), we finally obtain

mfi→Vj
(Vj) = tr

(

VH
j HH

ijU
∗
iU

∗
i
H
HijVj

)

+
∑

k 6=i,j

tr
(

U∗
i
H
HikV

∗
kV

∗
k
H
HH

ikU
∗
i

)

+ tr
(

U∗
i
H
QUi→fiU

∗
i

)

+
∑

k 6=i,j

tr
(

V∗
k
H
QVk→fiV

∗
k

)

, (5.41)

which corresponds to the following rule:

Qfi→Vj
= HH

ijU
∗
iU

∗
i
H
Hij + I

1

d

[
∑

k 6=i,j

tr
(

U∗
i
H
HikV

∗
kV

∗
k
H
HH

ikU
∗
i

)

+ tr
(

U∗
i
H
QUi→fiU

∗
i

)

+
∑

k 6=i,j

tr
(

V∗
k
H
QVk→fiV

∗
k

)]

. (5.42)

Note that the terms proportional to the identity matrix thatappear inQfi→Ui
or Qfi→Vj

above only add a

constant (independent of the considered variable) to the objective function. As such, these terms can be omitted

from the message-passing implementation. The matrices corresponding to the messages in (5.20) and (5.21)

are obtained in a similar manner.
We summarize below the message computation rules using the parametric form, which form the proposed

message-passing IA (MPIA) algorithm:

QUi→fi =
∑

j 6=i

Qgj→Ui
(5.43)



Chapter 5. Distributed Interference Alignment 64

QUi→gj =Qfi→Ui
+
∑

k 6=i,j

Qgk→Ui
(5.44)

QVj→gj =
∑

i6=j

Qfi→Vj
(5.45)

QVj→fi =Qgj→Vj
+
∑

k 6=i,j

Qfk→Vj
(5.46)

Qfi→Ui
=
∑

j 6=i

HijV
0
jV

0
j

H
HH

ij ,

where V0
j = νmin

(
QVj→fi

)
∀j 6= i (5.47)

Qfi→Vj
=HH

ijU
∗
iU

∗
i
H
Hij (5.48)

Qgj→Vj
=
∑

i6=j

HH
ijU

0
iU

0
i

H
Hij ,

where U0
i = νmin

(
QUi→gj

)
∀i 6= j (5.49)

Qgj→Ui
=HijV

∗
jV

∗
j
H
HH

ij . (5.50)

In (5.48),U∗
i is computed by iterating (5.39)–(5.40), while in (5.50),V∗

j is obtained by iterating

U
(n+1)
k =νmin

(

QUk→gj +
1

2
HkjV

(n)
j V

(n)
j

H

HH
kj

)

, ∀k 6= i, j (5.51)

V
(n+1)
j =νmin

(

QVj→gj +
1

2

∑

k 6=i,j

HH
kjU

(n+1)
k U

(n+1)
k

H

Hkj

)

(5.52)

after initialization with an arbitraryV(0)
j .

5.3.3 Link with the Iterative Leakage Minimization Algorithm

We now point out some ties between the MPIA algorithm for the continuous case described in Section 5.3.2 and

the iterative leakage minimization (ILM) algorithm [12, Algorithm 1]; for simplicity, in this section, we will

consider only centralized implementations of both MPIA andILM. It can be shown that ILM is a particular case

of MPIA, obtained for a certain schedule. To see this, assumethat all messages in the MPIA are initialized with

zero matrices, and propagate the messages according to the following schedule:mgj→Vj
∀j, mVj→fi ∀i 6= j,

mfi→Ui
∀i, andmUi→gj ∀j 6= i. The other messages are never updated, and thereforeQUi→fi , QVj→gj ,

Qfi→Vj
andQgj→Ui

remain at their initial value0 throughout the algorithm.
In order to see the correspondence, consider the first computation of (5.49). SinceQUi→gj = 0, theνmin

operator returns random, isotropically distributed matricesU0
i , and thereforeQgj→Vj

is random. (5.46) yields
QVj→fi = Qgj→Vj

∀i since all other terms in the sum are zero. Next, considering (5.47), theV0
j computed

asνmin

(
QVj→fi

)
correspond to the random initialization of the transmit precodersV[j] in [12, Algorithm 1].

From this point on, it is easy to prove by induction that the two algorithms perform the same computations
since (using the notationsV[j] andU[i] respectively for the precoders and receive filters from [12]):

(mfi→Ui
)







V0
j = νmin

(
∑

i6=j H
H
ijU

[i]U[i]HHij

)

= V[j]

Qfi→Ui
=
∑

j 6=i HijV
[j]V[j]HHH

ij

(5.53)

(mUi→gj ) QUi→gj = Qfi→Ui
(5.54)

(mgj→Vj
)







U0
i = νmin

(
∑

j 6=i HijV
[j]V[j]HHH

ij

)

= U[i]

Qgj→Vj
=
∑

i6=j H
H
ijU

[i]U[i]HHij

(5.55)
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Figure 5.3. Convergence trajectory (leakage vs. iterations) of ILM and MPIA for one random channel realiza-

tion

(mVj→fi) QVj→fi = Qgj→Vj
. (5.56)

5.4 Performance Investigation

In this section, the proposed algorithm is validated using numerical simulations, and compared to the ILM

algorithm from [12]. All simulations presented here are fora 3-user IC, with4× 4 MIMO channels andd = 2

streams per user. A regular schedule was used for the MPIA algorithm, whereby the messages are propagated

in the following order: mgj→Vj
, mfi→Vj

, mVj→fi , mVj→gj , mfi→Ui
, mgj→Ui

, mUi→gj , mUi→fi (this

sequence constituting one iteration). For the ILM algorithm, one iteration consists inmgj→Vj
, mVj→fi ,

mfi→Ui
, andmUi→gj , as outlined in Section 5.3.3.

We first compare the MPIA algorithm to the ILM in terms of convergence speed. Fig. 5.3 depicts the

interference leakage – the objective function from (5.13) –versus the number of iterations for both algorithms

for a random channel realization (the same channel values were used for both algorithms). Observe that MPIA

converges faster than ILM to zero leakage (i.e. the exact solution). Note that although the curves in Fig. 5.3 are

related to one particular channel realization, this behavior is observed consistently for other channel values.

In order to evaluate the respective accuracy of MPIA and ILM over a distribution of channels, we compare

in Fig. 5.4 the statistics of the leakage achieved after 100 iterations of each algorithm, for channels with coeffi-

cients drawn i.i.d. from a complex circularly symmetric Gaussian distribution. The curves depict the empirical

distribution of the leakage obtained by running both algorithms over 2000 channel realizations. These results

show that, for a fixed number of iterations, MPIA achieves a lower leakage than ILM, the bulk of the leakage
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Figure 5.4. Empirical leakage distributions over 2000 Gaussian i.i.d. channels realizations, after 100 iterations

of MPIA and ILM.

distribution being further left (towards lower values) forMPIA compared to ILM. The mean (computed in

log-scale) leakage is4 · 10−3 for ILM, and 3.8 · 10−4 for MPIA.

Arguably, the faster convergence of MPIA should be mitigated by the fact that the complexity per iteration

in ILM and in MPIA are not comparable. However, we argue in thenext section that computational complexity

is not the most relevant metric in the case of a distributed implementation.

5.5 Distributed Implementation

A distributed implementation of the proposed algorithm canbe obtained by distributing the computations asso-

ciated with the nodes in the graph (Fig. 5.2) among the physical devices in the network. Clearly, this mapping

will influence the amount of data exchanged between the devices (e.g. in wireless systems, exchanging data

between devices is costly in terms of energy and bandwidth; on the other hand, it is reasonable to assume that

messages exchanged on the graph between nodes on the same device do not incur any communication costs.

In such systems, we expect communication costs to outweigh computational complexity).

An obvious mapping of the graph to the devices which preserves the symmetry between transmitters and

receivers is obtained by associatingUi and fi to receiveri, while gj andVj are associated to transmitter

j. In that case, onlymfi→Vj
, mVj→fi , mgj→Ui

andmUi→gj need to be transmitted over the air, while the

computation and exchange ofmgj→Vj
, mVj→gj , mfi→Ui

andmUi→fi is confined to a single device.

There is no guarantee however that this mapping is optimal inany sense. In fact, a meaningful evaluation

of a distributed implementation should involve an analysisof the amount of data required to faithfully
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represent the messages (e.g. by considering the quantization of matrixQa→b in (5.24)) and of the costs of

communication between devices in the network (in some casesthis would include considering out-of-band

communications over e.g. a backhaul network, and potentialoptimizations enabled by the broadcast nature of

the wireless medium). This analysis however is not carried out in this dissertation. We envision this as a future

research direction.



6

Robust Interference Management

with Gaussian CSI Uncertainty

Imperfect CSI at the transmitter is a degraded version of theactual CSI due to several effects. The main

sources of degradation are delay, Doppler frequency, quantization and measurement noise. Due to the variety

of the imperfection sources and the randomness associated to each factor, a Gaussian additive error model with

proper parameters is usually adopted. The Gaussian additive uncertainty provides an accurate while simple

approximation to the actual degradation and more importantly, it simplifies the analysis of the performance of

the system. In this chapter we focus on such a model for uncertainty to evaluate and optimize the performance

of the MIMO IC. Two different approaches are employed in thischapter. In the first contribution, the transmit

spaces are determined by IA and subsequently optimized by link adaptation (to adjust the transmission rate

and power) while the precoders remain in the original space.In the second contribution, a general throughput

optimization problem is considered without restricting the precoders.

68
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6.1 Background and State of the Art

In the first part of this contribution we focus on multi-user systems where the spatial precoding at the transmit-

ters is based on IA. If the CSI is not accurate, the performance gains disappear quickly and simple time-sharing

methods can be superior [42]. In practice, the accuracy of the CSI is limited by quantization, feedback latency

and Doppler effects.

While many researchers have investigated IA assuming perfect CSIT, there exist a few papers in which the

effect of imperfect CSIT on the performance of IA is explored[42, 44, 49, 96–98]. A closed-form expression

for the SINR of every stream in IA is derived in [44] using random matrix theory tools. The expression is

then utilized to find an approximation of the performance measures such as sum rate and bit-error-rate (BER)

for IA. The error performance of IA with one stream per user isanalyzed in [98] and adaptive schemes are

proposed to improve the performance. The scaling of the feedback with SNR in order to preserve the DoF

which is achievable with perfect CSIT is analyzed for single-antenna systems in [41, 47] while we explored

this problem for multi-antenna systems in Chapter 3. Those are important results as they provide insight

about design considerations and practical issues. However, an improved IA-based scheme that accounts for the

imperfect CSIT is still missing. Reducing the CSIT requirement of IA was investigated in Chapter 3 and the

results indicate that a significant reduction is very unlikely to happen in general (specially for the symmetric

antenna settings). This suggests that we need to contain theeffect of residual interference caused by imperfect

CSIT and investigate methods that can deal with this residual interference properly. Link adaptation methods

can be very helpful to deal with residual interference and exploiting the knowledge about the direct channels.

Link adaptation improves the goodput (amount of data successfully decoded per unit of time) of a wireless

link by adjustment of the rate and/or power at the TX based on the estimated CSI fed back from the receiver [99].

Extensive research has been done on link adaptation for point-to-point links. Discrete rate link adaptation for

practical systems was introduced in [99] by using adaptive modulation (AM) and was extended to adaptive

modulation and coding (AMC) in [100]. In AMC systems, a number of transmission modes are set up based on

different pairs of modulation and channel coding schemes. In [101–105], for a wireless system with adaptive

modulation, transmission rate is chosen such that an average bit error rate constraint is satisfied for the link.

We consider the general additive uncertainty model for the CSI imperfection. As the accuracy of the CSI at

the transmitter side is crucial for interference alignment, we explore the situation where the precoders are de-

signed based on imperfect CSI. We consider a MIMO IC where thetransmit and receive spaces are determined

by IA. Assuming perfect CSIT, IA decomposes the interference channel into a set of parallel point-to-point

channels. Modeling the effect of imperfect CSIT as an additive noise enables the use of link adaptation meth-

ods used in point-to-point channels. Considering practical modulation schemes, we investigate the problem

of maximizing a weighted sum of the average rates while having a sum-power constraint across the users and

ensuring that the BER for every stream in the network remainsbelow a certain threshold. This is performed by

using adaptive modulation, coding and power (AMCP) for every stream in the network. Performing this op-

timization exactly is not tractable. Therefore, we use approximations where the accuracy of the approximated

functions is validated via simulations.

In the second part of this contribution we focus on optimization of the expected sum rate without restricting



Chapter 6. Robust Interference Management with Gaussian CSI Uncertainty 70

the precoders to satisfy alignment constraints. The sum rate expression used in this chapter is used under the

assumption of Gaussian signaling. Optimizing the performance for every realization of the channel would be

the ultimate goal. However, this is an exhaustive task. For example, maximizing the rate in a single-user MIMO

system requires the channel matrix to be available at the transmitter perfectly and without delay. Therefore,

optimizing the statistics of the desired metrics have become popular since they only depend on the statistics

of the channel which is not likely to change for a certain period of time and this results in a huge reduction

in overhead and of the computational burden. For some simpleproblems, closed form expressions are derived

for the statistical parameters. However, it is difficult to find closed form expressions for many other problems.

One can think about the optimization of the parameters derived from Monte-Carlo simulations which is also

computationally inefficient.

Another approach is to approximate the statistics of the desired metric. There are methods which approx-

imate the average mutual information and most of them assumethat the number of antennas goes to infinity

in order to find simplified approximations. For example in single user transmissions, this problem is explored

for separately-correlated Rayleigh and uncorrelated Rician MISO channels in [106] and extended to MIMO

in [107] and [108].

Another method to approximate the average mutual information is presented in [109] and developed in

[110], which provides a deterministic equivalent of the expected rate. This method also assumes that the

number of antennas is large. However, it has been shown that it works very well even with a few antennas.

We investigate the optimization of the deterministic equivalent expression for maximizing the expected sum

rate over the K-user MIMO IC. In particular, the expected sumrate is approximated by a deterministic equiva-

lent and optimization is performed on the approximated expression. Simulation results exhibit the effectiveness

of such an approach.

6.1.1 Link Adaptation

In the context of link adaptation, transmission rate and power of the TX is adjusted depending on the instan-

taneous channel condition. There are two different approaches for link adaptation in the literature, namely

continuous and discrete link adaptation. In the first case, capacity achieving codes with vanishing error prob-

ability are employed and it is assumed that the rate can be adjusted continuously according to the channel

condition. In this case if we denote the equivalent channel gain, the average power of noise (and interference)

and the transmission power byheq, δeq andp respectively, then the spectral efficiency of the link is equal to

log2(1 + pseq) (bit/Sec/Hz) (6.1)

whereseq =
|heq|2
δeq

is the equivalent SINR of the link.

Continuous link adaptation is not a practical method, even though it is suitable for performance analysis. In

practical systems, a small error probability is allowed andthe transmission rate is chosen from a set of discrete

rates. In the context of discrete link adaptation, adaptivecoding is used along with adaptive modulation which

improves the performance significantly. In this method,M +1 transmission modes are considered where every

modem corresponds to a pair of modulation and coding configurationassociated to a transmission rate denoted
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by Rm. The rates for different modes are sorted as0 = R0 < R1 < ... < RM . Mode0 represents the case

where no information is transmitted. In modem the BER is approximated by the following expression [111]:

pe(pseq, Rm) = Amexp(−A′
mpseq), seq ≥ 0 (6.2)

whereAm andA′
m are constants that are determined by the transmission mode.This model is based on approx-

imating the BER curve which is realized using Monte Carlo simulation over a large range of SNR. The process

is repeated for every modem which yields the parametersAm andA′
m via curve fitting. In the transmission

modem, the minimum required SINR to ensure a maximum BER ofB0 is denoted bygB0(m), i.e.,

pseq ≥ gB0(m)⇒ pe(pseq,m) ≤ B0 (6.3)

where

gB0(m) ,
−1
A′

m

ln(
B0

Am
), B0 ≤ min (1/2, A′

m). (6.4)

In this section we will use adaptive power, modulation and coding to exploit the statistical properties of the

interference created by channel imperfections.

6.1.2 Interference Alignment Solution

Assuming that perfect global CSI is available at every TX, the precodersVi, i = 1 . . . K should be designed

to align the interference at each receiver into aNr − d dimensional space, in order to achieved interference-

free dimensions per user. A solution to the IA problem existsiff there exist full rank precoding matrices

Vj ∈ C
Nt×d, j = 1, ...,K and projection matricesUi ∈ C

Nr×d, i = 1, ...,K such that (2.7) and (2.8) are

satisfied.

We focus on (2.7) since (2.8) is satisfied almost surely when the channel entries are drawn independently

from a continuous distribution.

It is clear that any truncated unitary matrix that has the same column space asVi also fulfills (2.7) and

the same argument holds for the RX filters. This means that we can assume without loss of generality that the

equivalent direct channels, i.e.,UH
i HiiVi for i = 1, ...,K are diagonal.

When the CSIT is not perfect at the TXs, the IA filters designedbased on imperfect CSIT are denoted by

truncated unitary matriceŝVi andÛi where

ÛH
i ĤijV̂j = 0 ∀i, j ∈ {1, ...,K}, j 6= i, (6.5)

where the estimated channels are denoted byĤij. Similar to the perfect CSI scenario, we assume that the filters

are such that the direct equivalent channels which we denoteby Ĝii,

Ĝii , ÛH
i ĤiiV̂i for i = 1, ...,K, (6.6)

are diagonal. Using the filters designed according to imperfect CSI, the received signal after projection by the

RX filters can be written as

ri = ÛH
i yi = Giixi +

∑

1≤j≤K
j 6=i

Gijxj + ÛH
i ni

(6.7)
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whereGii = ÛH
i HiiV̂i andGij = ÛH

i HijV̂j .

Clearly the second term is due to the interference leakage from other users which is caused by designing

the filters based on imperfect CSI. Also the equivalent channelGii for each user is not diagonal anymore which

introduces inter-stream interference. To simplify the notation, we denote theqth diagonal elements ofGii and

Ĝii by Gq
i andĜq

i respectively, forq = 1, ..., d.

6.2 Link Adaptation for IA in Presence of Channel Uncertainty

As mentioned in the previous section, when the CSI is perfectly known at the TXs, IA and link adaptation

methods are very effective. If the CSI is not perfect, directuse of imperfect CSI instead of the true CSI in these

methods will be sub-optimal and introduces performance degradation. Based on our assumptions, since the

available CSI at each TX is a degraded version of the true CSI,the IA and link adaptation methods should be

revisited taking the effect of residual interference into account.

In this section a new scheme is presented where AMCP is performed using imperfect CSIT to improve the

performance of IA. The objective function is a weighted sum of average rates of the users where the weights are

allocated depending on the importance and requirement of different links. The problem is investigated given a

maximum average sum-power constraint and a maximum averageBER constraint.

According to Section 6.3, every TX hasd data streams. For streamq of useri, we denote the average power

of interference and noise which affects this stream byδqi . Furthermore, the instantaneous true SINR and the

estimate of the instantaneous SINR (which is available at the transmitters) are denoted respectively byγqi and

γ̂qi , where

γqi =
|Gq

i |2
δqi

, γ̂qi =
|Ĝq

i |2
δqi

. (6.8)

Note that the SINR values do not include the transmit power and only represent a measure of the quality

of the channel for a given stream. The instantaneous rate andpower for streamq of useri are denoted by

kqi = Φq
i (γ̂

q
i ) andpqi = Ψq

i (γ̂
q
i ) respectively, for1 ≤ i ≤ K and1 ≤ q ≤ d. Based on the available CSIT at the

TXs (Ĥij, ∀i, j), the TXs choose the precodersV̂j according to (6.5), while the rate and power are determined

by the mappingsΦq
i (·) andΨq

i (·) which should be designed such that the average sum-power is at mostP0

and the BER at each RX is less or equal toB0, while a weighted sum of the average rates is maximized. The

weights for different users are denoted byωi, i = 1, ...,K. With these definitions, the overall optimization

problem can be formulated as

max
Φq

i (·),Ψ
q
i (·), ∀i,q

K∑

i=1

ωi

d∑

q=1

Eγ̂q
i
{Φq

i (γ̂
q
i )}

s.t.

K∑

i=1

d∑

q=1

Eγ̂q
i
{Ψq

i (γ̂
q
i )} ≤ P0 (C1)

Eγ̂q
i ,γ

q
i
{pe(Ψq

i (γ̂
q
i )γ

q
i ,Φ

q
i (γ̂

q
i ))} ≤ B0, ∀i, q. (C2)

(6.9)
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Solving the exact optimization problem in (6.9) is intractable especially since the optimization is performed

using imperfect information about the channels. We divide the optimization into the following three steps:

• In the first step (Section 6.2.2), we analyze the effect of imperfect CSI on the IA solution. In this case

every stream will be affected by interference from all otherstreams;

– The average interference power for every stream is characterized in terms of the average transmit

powers.

– This leads to an estimation of the SINR for every stream.

– Finally, the statistical properties of the true SINR conditioned on the estimated SINR are derived.

• In the second step (Section 6.2.3), we consider a point-to-point single antenna system. Using the statisti-

cal description of the SINR values derived in the first step:

– A discrete link adaptation method is designed with the assumption of having imperfect CSI.

– The average rate of this system is approximated by a closed form expression as a function of the

average transmit power, the average BER and the average SINRof the link.

• In the third step (Section 6.2.4), considering the closed form expression derived for a point-to-point

system:

– We find the optimum values for the average powers of all the streams in the original problem. This

is performed by solving an optimization problem which involves the closed form expressions for

all streams.

– Using the resulting average powers, by solvingKd parallel problems similar to the point-to-point

system in the second step and using the statistics of the current SINR, one can find the optimum

instantaneous rate and power for every stream.

In the following we describe each step in more detail.

6.2.1 Specific Model of Channel Uncertainty

We assume that the entries of the true channelsHij and the channel estimates available at the TX sideĤij are

CN (0,∆ij). The channel uncertainty is modeled as follows

Hij = ρ0Ĥij +
√

1− ρ20Eij, (6.10)

where we have assumed that the entries of the perturbation matrix Eij have the same distribution as the true

channel. With this model the parameterρ0 represents the correlation between the true channel elements and the

estimated ones. Denoting the real and imaginary parts ofHij by Xij andYij respectively and that of̂Hij by

X̂ij andŶij respectively, due to the circular symmetry we have∀m,n

E{Xij(m,n)X̂ij(m,n)} = E{Yij(m,n)Ŷij(m,n)} = 1

2
∆ijρ0 (6.11)
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E{Xij(m,n)Ŷij(m,n)} = E{Yij(m,n)X̂ij(m,n)} = 0 (6.12)

E{Xij(m,n)Yij(m,n)} = E{X̂ij(m,n)Ŷij(m,n)} = 0. (6.13)

Using the above expressions and considering the fact that the variables are Gaussian, the probability density

function ofXij(m,n) givenX̂ij(m,n) can be written as

f
Xij(m,n)|X̂ij(m,n)(x1, x2) =

1
√

(1− ρ20)π∆ij

exp

{

− 1

(1− ρ20)∆ij
(x1 − ρ0x2)

2

}

. (6.14)

The pdf ofYij(m,n) givenŶij(m,n) can be written similarly. From (6.14) we have

E{Xij(m,n)|X̂ij(m,n)} = ρ0X̂ij(m,n) (6.15)

E{X2
ij(m,n)|X̂ij(m,n)} = (1− ρ0)

2∆ij

2
+ ρ20X̂

2
ij(m,n). (6.16)

Therefore we get∀m,n

E{Hij(m,n)|Ĥij(m,n)} = ρ0Ĥij(m,n) (6.17)

E{|Hij(m,n)|2|Ĥij(m,n)} = (1− ρ0)
2∆ij + ρ20|Ĥij(m,n)|2. (6.18)

6.2.2 Effect of Imperfect CSI on IA

Here we investigate the properties of the residual interference affecting the decoding of every stream when

the precoders are designed using IA. For simplicity we definev̂i,q and ûi,q as theqth column ofV̂i andÛi

respectively. Therefore from (6.7) we have

ri(q) = Gq
ixi(q) + Ii,q + I ′i,q + n′q

i (6.19)

whereGq
i = ûH

i,qHiiv̂i,q is theqth diagonal element ofGii, Ii,q =
∑

1≤l≤d
l 6=q

ûH
i,qHiiv̂i,lxi(l) is the interference

from other streams of the same user,I ′i,q =
∑

1≤j≤K
j 6=i

ûH
i,qHijV̂jxj is the interference from other users and

n′q
i = ûH

i,qni is the equivalent noise for this stream. If the channels are perfectly known (̂Hij = Hij, ∀i, j),
then the termsIi,q andI ′i,q will be zero due to the alignment equations. In the following, we derive the statistical

properties ofGq
i (given the information about̂Gq

i ) which can be used to derive the statistics of the true SINR.

Then we derive the power of each interference term dependingon the level of imperfectness of the channels

controlled byρ0.

Statistics of Gq
i

It can be shown that|Gq
i |2 and|Ĝq

i |2 are approximately distributed as exponential random variables (this holds

exactly in the single-stream case) [112]. Henceforth we work under the assumption that|Gq
i |2 and |Ĝq

i |2 are

exponentially distributed with parameter1∆ii
. Note that the value of̂Gq

i is the estimation of the direct channel

gain at the transmitter and this value is used to have an instantaneous estimate of the SINR.
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Calculating the Power of Interference Plus Noise

In this part we calculate the power of interference plus noise for every stream at each RX. Clearly, assuming

Ûi, V̂i, Ĥij ∀i, j are given,Ii,q is a sum ofd−1 random variables andI ′i,q is a sum ofK−1 random variables.

It can be shown that every two distinct factors ofIi,q, I ′i,q andn′q
i are independent. This gives

δqi = E{|Ii,q + I ′i,q + n′q
i |2}

= E{|Ii,q|2}+ E{|I ′i,q|2}+ E{|n′q
i |2}.

(6.20)

The power of the interference terms can be calculated as follows (see Appendix C.1):

E{|Ii,q|2} = ∆ii(1− ρ20)
∑

1≤l≤d
l 6=q

P̄i(l),
(6.21)

E{|I ′i,q|2} = (1− ρ20)
∑

1≤j≤K
j 6=i

∆ij

∑

1≤l≤d

P̄i(l). (6.22)

Also it is clear that the noise variance will not change afterprojection by the receive filters.

Statistics of γqi Conditioned on γ̂qi

In the considered link adaptation method, transmission rate and power are designed based on the SINR of the

link. Since onlyγ̂qi is available at the TX, in order to do link adaptation, we needto find the relationship between

γqi andγ̂qi or, more precisely, the statistics ofγqi given γ̂qi should be determined. We know that both|Gq
i |2 and

|Ĝq
i |2 and thereforeγqi and γ̂qi are approximately exponential random variables. Two correlated exponential

random variables can be described by the following pdf

fγq
i |γ̂

q
i
(x1|x2) =

1

Γq
i (1− ρ)

exp

{

−ρ
1− ρ

x2

Γ̂q
i

}

I0







2
√
ρ

1− ρ

√

x2

Γq
i Γ̂

q
i

√
x1






exp

{ −x1
Γq
i (1− ρ)

}

(6.23)

whereΓq
i , E{γqi } andΓ̂q

i , E{γ̂qi }, ρ is the correlation coefficient and

Γq
i = Γ̂q

i =
∆ii

σ2 + E{|Ii,q|2}+ E{|I ′i,q|2}
. (6.24)

and it is shown in Appendix C.2 that in our problemρ = ρ20.

6.2.3 Transmission in a Point-to-Point Link Using Imperfect CSIT

In Section 6.2.2, it was shown that using IA in the K-user MIMOIC, there will beKd parallel channels to

transmit the streams and the statistics of the SINR for each stream was derived based on the imperfect estimates

of the channels. It is clear that the SINR values are functions of the average powers of all other streams. Also

it is clear that the effect of the power of the interferers increases as the channels become less accurate (which is

captured byρ0). This section is composed of two parts: First, for a point-to-point link, the AMC mappingsΦ(·)
andΨ(·) for achieving the maximum average rate are optimized. The design is based on imperfect CSI and

subject to a maximum average power constraint along with a maximum average BER constraint (the average
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is over the channel uncertainty). In the second part, the maximum average rate is approximated as a closed-

form function of the average power and the SINR of the link using curve-fitting. Clearly the coefficients in

the approximated expression are functions of the maximum average BER. This closed-form approximation

simplifies the optimization problem in (6.9) which is finallysolved as described in Section 6.2.4.

Transmission in a Point-to-Point Link with Average Power and BER Constraints

Denoting the true SINR and the estimated SINR byγ and γ̂ respectively andΓ andΓ̂ their respective expec-

tations, the conditional distributionfγ|γ̂ is according to (6.23). The goal is to design the transmission scheme

using adaptive power and ratep = Ψ(γ̂) andk = Φ(γ̂) which are functions of the estimated SINR. The design

parameters are the functionsΨ(·) andΦ(·) such that the average rate is maximized while the average power

and average BER constraints are satisfied as formulated in the following optimization problem

max
Φ(·),Ψ(·)

E{Φ(γ̂)}

s.t.

E{Ψ(γ̂)} ≤ Pmax (C ′1)

Eγ,γ̂{pe(Ψ(γ̂)γ,Φ(γ̂))} ≤ B0. (C ′2)

(6.25)

Condition(C ′2) is complicated and instead we enforce the same condition forany instance of the estimated

SINR γ̂, i.e., we requireEγ{pe(pγ, k)|γ̂} ≤ B0, ∀γ̂. By satisfying this condition,(C ′2) is always satisfied.

Lemma 13. DefiningA0 = max(A1, · · · , AM ), the following condition is sufficient to satisfy the BER condi-

tion (C ′2):
gB0(m)

Q1γ̂ +Q2
≤ Ψ(γ̂) (6.26)

whereQ1 = ρ20
Γ
Γ̂

andQ2 = (1− ρ20)Γln(
B0
A0

).

Proof. See Appendix C.3.

Considering the limitation on the transmit power (condition C ′1), (6.26) is satisfied with equality, i.e.,

Ψ(γ̂) =
gB0

(m)

Q1γ̂+Q2
. Clearly whenρ0 → 1 (more accurate channels), (6.26) becomes similar to (6.3) which was

derived for perfect channels.

Similar to [100], where link adaptation is performed using perfect SINR estimates, we divide the range of

γ̂ using thresholdstm, 0 ≤ m ≤M (andtM+1 = +∞), such that when̂γ ∈ [tm, tm+1) then the transmission

rate is chosen to beRm. Therefore the optimization problem (6.25) can be turned into the following problem,

max
{tm}Mm=0

M∑

m=0

Rm

∫ tm+1

tm

fγ̂(γ̂)dγ̂

s.t.
M∑

i=0

gB0(i)

∫ ti+1

ti

fγ̂(γ̂)

Q1γ̂ +Q2
dγ̂ ≤ Pmax.

(6.27)
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Note that we have implicitly included the BER constraint. Inorder to find the optimal thresholds, we write the

Lagrangian of the objective function as follows

L =

M∑

m=0

Rm

∫ tm+1

tm

fγ̂(γ̂)dγ̂ − λ

M∑

i=0

gB0(i)

∫ ti+1

ti

fγ̂(γ̂)

Q1γ̂ +Q2
dγ̂. (6.28)

For everytm we have∂2L
∂t2m

= λ
Q1(gB0

(m)−gB0
(m−1))

(Q1γ̂+Q2)2
≥ 0 therefore, ∂L

∂tm
= 0 gives the minimum of the

Lagrangian. Therefore the optimal thresholds are given by

tm =
λ
(gB0

(m)−gB0
(m−1))

Rm−Rm−1
−Q2

Q1
, 0 ≤ m ≤M. (6.29)

The Lagrange multiplierλ is computed such that the power constraint is satisfied with equality. We find the

solution forλ using a simple bi-section method knowing that the left-handside of the power constraint is a

monotonic function ofλ. For small values ofλ, the thresholds are small and the SINR will be larger than all

the thresholds which means that the maximum rate is chosen (which requires high power). Asλ increases,

the thresholds start to increase which gradually causes thelower rates to be assigned and thereby a decrease in

the transmission power. Finally, all the thresholds go to infinity which indicates that zero rate (therefore zero

power) will be chosen. This implies that a solution forλ can be obtained by using a bi-section root finding

method.

At this point, the functionsΦ(·) andΨ(·) can be explicitly written as

Φ(γ̂) = Rm, γ̂ ∈ [tm, tm+1) (6.30)

Ψ(γ̂) =
gB0(m)

Q1γ̂ +Q2
. (6.31)

Closed-form approximation for the average rate in a point-to-point link

Inspired by the Gaussian channel, we approximate the average rate achievable in the link byE{k} = L log(1+

L′ΓPmax) whereL andL′ are functions of the transmission modesm, maximum error probabilityB0 and the

CSI uncertainty parameterρ0. We have used a curve-fitting method to find the values forL andL′. We verified

the accuracy of this approximation compared to the actual average rate via extensive simulations for different

values ofB0. Figure 6.1 shows the comparison between the approximated expression and the true value of the

rate forB0 = 10−5, Pmax = 1 and different values ofρ.

6.2.4 Optimization of the Weighted Sum of the Approximate Average Rates

Using the approximated closed-form expression for the average rate we equivalently look at the following

problem

max
P̄i(q), 1≤i≤K, 1≤q≤d

K∑

i=1

ωi

d∑

q=1

K̄i(q)

s.t.

K∑

i=1

d∑

q=1

P̄i(q) ≤ P0

(6.32)
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Figure 6.1. Comparison of the approximated expression with the true value of the rate forB0 = 10−5,

Pmax = 1.

whereK̄i(q) = L log(1 + L′Γq
i P̄i(q)) ≈ E{kqi }. Note thatΓq

i is also a function of the average powers. The

above problem is a non-convex constrained optimization problem. We resort to numerical optimization methods

to find a (locally) optimum solution. The optimization problem is solved using the active-set method [113].

This method determines which constraints influence the finalresult and watches them while searching for the

solution. It performs a line search by updating the Hessian matrix of the Lagrangian. This technique reduces

the complexity of the search. We used the standard MATLAB implementation to compute the average powers

to be assigned to different streams of different users. After finding the average powers, the instantaneous rates

and powers can be chosen independently for each stream similar to the point-to-point scenario discussed in

Section 6.2.3.

The overall procedure summarizing the above steps is presented in Algorithm 2.

6.2.5 Performance Investigation

Orthogonal Transmission in the K-User MIMO IC Using AMCP

Due to the imperfectness of the CSI and sub-optimality of IA,it is natural to ask whether we are better off

performing IA rather than simply using an orthogonal resource-sharing transmission scheme. In orthogonal

transmission we assume that the channel resources (time/bandwidth) are divided equally among different users

in the network. In order to have a fair comparison with the proposed scheme, we consider a similar problem

where we look for maximizing a weighted sum of the average rates of the users while having a total transmission

power constraintP0 and a maximum average BER ofB0. Here we haveK point-to-point MIMO links where

for each linkd′ = min(Nt, Nr) parallel streams are transmitted. Therefore the optimization problem can be
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Algorithm 2 Link adaptation for IA

• Find the IA filtersV̂i andÛi that fulfill (6.5) and diagonalize the direct channels (using the estimated

CSIĤij , ∀i, j)

• Derive the closed-form approximation for the average ratein a point-to-point link using the parameters

L andL′ which are calculated based onB0, P
max, ρ0

• Compute the optimal average powers associated to every stream of each user̄Pi(q), ∀i, q from (6.32)

• Compute the thresholds for every stream according to (6.29) using the average power associated to that

stream (computed in the previous step).

• Calculate the instantaneous rate and power for every stream according to (6.30) and (6.31) using the

estimated SINR of that stream̂γqi

• Transmit using the modulation and coding pair associated to the rate which is allocated to each stream

formulated as

max
Φ′q

i (·),Ψ′q
i (·)

K∑

i=1

ωi

d′∑

q=1

E{Φ′q
i (γ̂

′q
i )}

s.t.

K∑

i=1

d′∑

q=1

E{Ψ′q
i (γ̂

′q
i )} ≤ P0

E{pe(Ψ′q
i (γ̂

′q
i )γ

′q
i ,Φ

′q
i (γ̂

′q
i ))} ≤ B0, ∀i, q

(6.33)

where the instantaneous rate and power for streamq of useri are denoted byk′qi = Φ′q
i (γ̂

′q
i ) andp′qi = Ψ′q

i (γ̂
′q
i )

respectively, for1 ≤ i ≤ K and1 ≤ q ≤ d′. We use the truncated unitary precoders and receive filters that

diagonalize the estimated channel matrices, i.e.,

Û′H
i ĤiiV̂

′
i = Ĝ′

ii = diag(Ĝ′1
i , ..., Ĝ

′d′
i ) for i = 1, ...,K. (6.34)

However, due to imperfect CSI, the equivalent channel

G′
ii = Û′H

i HiiV̂
′
i (6.35)

will not be exactly diagonal which indicates the presence ofself-interference from the other streams. Writing

the received signal after projecting with the designed receive filters we get

r′i(q) = G′q
ixi

′(q) + I ′′i,q + n′′q
i , (6.36)

whereG′q
i = û′H

i,qHiiv̂
′
i,q is theqth diagonal element ofG′

ii, I ′′i,q =
∑

1≤l≤d′

l 6=q

û′H
i,qHiiv̂

′
i,lxi

′(l) is the inter-

ference from other streams of the same user andn′′q
i = û′H

i,qni is the equivalent noise for this stream. Similar to
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the previous section, it can be shown that both|G′q
i |2 and|Ĝ′q

i |2 are exponential random variables with average

and variance equal to∆ii. Also the power of the interference and noise can be calculated as

E{|I ′′i,q + n′′q
i |2} = ∆ii(1− ρ20)

∑

1≤l≤d′

l 6=q

P̄ ′
i (l) + σ2.

(6.37)

Also denoting the true SINR byγ′qi =
|G′q

i |2
E{|I′′i,q+n′′q

i |2}
and the estimated SINR bŷγ′

q
i =

|Ĝ′q
i |2

E{|I′′i,q+n′′q
i |2}

, we will

have the following average SINR values,

Γ̂′q
i = Γ′q

i = E{γ′qi } =
∆ii

∆ii(1− ρ20)
∑

1≤l≤d′

l 6=q

P̄ ′
i (l) + σ2

. (6.38)

Therefore, the original optimization problem can be replaced with the following problem,

max
P̄ ′

i (q), 1≤i≤K, 1≤q≤d′

K∑

j=1

ωj

d′∑

q=1

K̄ ′
i(q)

s.t.

K∑

j=1

d′∑

q=1

P̄ ′
i (q) ≤ P0

(6.39)

whereK̄ ′
i(q) = L′

1 log(1 + L′
2Γ

′q
i P̄

′
i (q)) is the approximated closed-form expression for the averagerate

E{k′qi }. Again this problem is a constrained optimization problem that we solve using the active-set method.

After finding the optimal average powers, the instantaneousrates and powers can be chosen similar to the

point-to-point scenario.

Simulation Results

To evaluate the performance of the proposed scheme, we use the AMC modes defined in the IEEE 802.11-a

standard [105]. In this setting there are 8 different modes each of which is associated to a particular modulation

and coding pair. These modes provide the set of rates{0, .5, .75, 1, 1.5, 2, 3, 4}. The parameters of the BER

estimation according to (6.2) are extracted from [111]. We assume that the TXs and the RXs are placed such

that the distance between TXj and RX i equals
√

α2 + (i− j)2β2 and the variance of the channel entries

equalsE{|Hij|2} = ∆ij =
Ψ0

(α2+(i−j)2β2)1.5
whereΨ0, α andβ are constants.α is the distance between a pair

of TX and RX. We assume that the TXs and the RXs are equipped with the same number of antennas and that

the weights for different users are equal (ωj = 1, ∀j). Also the noise variance is0.1 andB0 = 10−5.

In Figure 6.2, the sum rate of the system is plotted for different number of users comparing the proposed

scheme (interfering transmission which is labeled by "IA" in the figures) with the orthogonal transmission

(which also uses AMC). The number of antennas increases withthe number of users according toNt = Nr =

⌈K+1
2 ⌉. The parameters are set asβ = 2, P0 = 2 andρ = 0.95. As shown in this figure, the sum rate increases

when the number of users grows. This of course presumes that the amount of feedback also increases due to

the increase in the number of antennas. For a fixed feedback budget, the performance could be degraded by

increasing the number of users. Clearly the proposed schemeoutperforms the orthogonal scheme as it provides

higher sum-rate.
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In Figure 6.3, assumingK = 3, Nt = Nr = 4 and d = 2, P0 = 1 andβ = 2, the sum rate (for

both interfering and orthogonal transmission) is plotted for different values ofρ andα (the distance between

every TX and its RX). Clearly, by decreasingρ, the CSI becomes less accurate and it degrades the overall

performance. It is evident that for smallρ, the orthogonal scheme is superior.

Figure 6.4 shows the sum rate comparison for a fixed value ofα = 3 and different values forβ andρ.

The other parameters are the same as in Figure 6.3. Clearly the adaptive IA scheme outperforms orthogonal

transmission. Note that the performance of the orthogonal scheme is independent ofβ as the gain of the

interfering links does not affect the performance of orthogonal transmission.

Figure 6.5 shows the performance comparison when the variable parameter isα (which affects the SNR).

Here we have consideredK = 5, Nt = Nr = 3 andd = 1, P0 = 2 andρ = 0.95. The curves are plotted for

two different values ofβ. From both figures 6.3, 6.5, it is clear that for smaller values ofα, the improvement

of the proposed scheme compared to the orthogonal scheme is greater. Also it can be seen that higher values of

β increases the performance gain of the proposed scheme (as itcorresponds to lower interference power).

3 4 5 6 7
1

2

3

4

5

6

7

8

Number of Users (K)

S
um

 o
f s

pe
ct

ra
l e

ffi
ci

en
ci

es
 (

bi
t/s

ec
/H

z)

 

 

IA, α=3
Orthogonal, α=3
IA, α=7
Orthogonal, α=7

Figure 6.2. Sum rate comparison for different number of users.Nt = Nr = ⌈K+1
2 ⌉, d = 1, β = 2, ρ = 0.95,

P0 = 2.
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Figure 6.3. Rate comparison for different values of correlation coefficient andα. K = 3, Nt = Nr = 4,

d = 2, β = 2, P0 = 1.
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Figure 6.4. Rate comparison for different values of correlation coefficient andβ. K = 3, Nt = Nr = 4,

d = 2, α = 3, P0 = 1.
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Figure 6.5. Sum rate comparison for different values of distanceα. K = 5, Nt = Nr = 3, d = 1, ρ = 0.95,

P0 = 2.

6.3 Throughput Maximization Using Tools from Random Matrix Theory

Consider the following expression

V = log

∣
∣
∣
∣
IM +

1

σ2
HQHH

∣
∣
∣
∣

(6.40)

whereQ ∈ C
N×N is a positive semi-definite matrix,H ∈ C

M×N is random andσ2 > 0. The following

theorems provide useful information about the mean ofV in different situations.

We start with the following Lemma

Lemma 14. LetH̄ ∈ C
M×N and positive semi-definite matricesQ, C̃ ∈ C

N×N be deterministic matrices and

σ2 > 0. DefineG(δ) =
(

IN + δQ
1
2 C̃Q

1
2

)−1
and

g(Q, δ, δ̃) =
1

N
tr
(

σ2(1 + δ̃)IM + H̄Q
1
2G(δ)Q

1
2 H̄H

)−1
,

g̃(Q, δ, δ̃) =
1

N
tr



Q
1
2 C̃Q

1
2

(

σ2(G(δ))−1 +
Q

1
2 H̄HH̄Q

1
2

1 + δ̃

)−1


 ,

then the system of equations
{

δ = g(Q, δ, δ̃),

δ̃ = g̃(Q, δ, δ̃),
(6.41)

has a unique solution(δ⋆, δ̃⋆) ∈ (0,∞)2. Moreover,δ⋆ and δ̃⋆ can be numerically computed via Algorithm3.

Proof. A sketch of the proof is given in Appendix C.5.
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Algorithm 3 Fixed point solution

Initialization: m = 0 andδ(0), δ̃(0) > 0

Repeat

• δ(m+1) = g(δ(m), δ̃(m))

• δ̃(m+1) = g̃(δ(m), δ̃(m))

• m← m+ 1

until convergence.

Output:(δ⋆, δ̃⋆) = (δ(m), δ̃(m)).

Theorem 8. Let H = H̄ + E, in which H̄ ∈ C
M×N is deterministic with bounded spectral norm, and

E = 1√
N
WC̃

1
2 with W ∈ C

M×N having i.i.d. elements fromCN (0, 1) and C̃ diagonal nonnegative with

bounded spectral norm. Let alsoQ ∈ C
N×N be deterministic Hermitian nonnegative with bounded spectral

norm. Then, asM,N →∞ withM/N → c > 0,

R− R̄→ 0

whereR = E
[
log
∣
∣IM + 1

σ2HQHH
∣
∣
]
,

R̄ = log

∣
∣
∣
∣
(1 + δ̃)IM +

1

σ2
H̄Q

1
2G(δ)Q

1
2 H̄H

∣
∣
∣
∣
− log |G(δ)| −Nσ2δδ̃,

andδ and δ̃ are the unique positive solution of(6.41).

Proof. The proof follows directly from [110, Theorem 2], where onlyfunctional uniqueness ofδ, δ̃ (seen as

functions ofσ2) was obtained. Lemma 14 completes [110] by adding point-wise uniqueness ofδ, δ̃ for each

σ2 > 0.

The expression given bȳR is called the deterministic equivalent ofR because it does not involve an expec-

tation. An interesting property of̄R is that its partial derivative with respect toδ andδ̃ vanishes at(δ⋆, δ̃⋆),

∂R̄

∂δ

∣
∣
∣
∣
(δ⋆,δ̃⋆)

=
∂R̄

∂δ̃

∣
∣
∣
∣
(δ⋆,δ̃⋆)

= 0. (6.42)

6.3.1 Approximating the Expected Sum Rate

Consider an interference channel in whichK transmitters communicate with their respective receiversin a

shared medium. Transmitterj and receiveri are equipped withNj andMi antennas, respectively. Data

symbols are spatially precoded at the transmitters. The number of data streams sent by transmitteri equals

di. The vector at receiveri reads

yi = Hii

√

λiVixi +
∑

1≤j≤K
j 6=i

Hij

√

λjVjxj + ni (6.43)
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in whichHij ∈ C
Mi×Nj is the channel matrix between transmitterj and receiveri, Vj ∈ C

Nj×dj andxj ∈ C
dj

are the precoding matrix and the data vector of transmitterj, respectively. Furthermore,ni ∼ CN (0, σ2IMi
) is

the additive noise at receiveri. AssumingE
[
xix

H
i

]
= Idi , i = 1, . . . ,K, the covariance matrix of the signal

transmitted by userj is given byQj = λjVjV
H
j in which λj =

Pj

tr(VjV
H
j )

. The transmit power for userj is

tr (Qj) = Pj .

In order to simplify the analysis for imperfect CSIT, we consider the following uncertainty model for the

channel matrices which is equivalent to (6.10) with proper normalization.

Hij = H̄ij +Eij,

in whichEij is the estimation error, whose entries are modeled as independent and identically distributed (i.i.d.)

Gaussian random variables with zero mean and varianceσ2
ij. Both H̄ij andσ2

ij are provided to a central node

through feedback. We define the feedback quality forHij as

ηij =
tr(H̄ijH̄

H
ij)

tr(E
[

EijE
H
ij

]

)
. (6.44)

The objective function is the achievable expected sum rate of the MIMO IC under the assumption that the input

signals are circularly symmetric Gaussian. Considering the received signal in (6.43), this reads

Rsum = E





K∑

i=1

log

∣
∣
∣
∣
∣
∣

IMi
+

1

σ2

K∑

j=1

HijQjH
H
ij

∣
∣
∣
∣
∣
∣

−
K∑

i=1

log

∣
∣
∣
∣
∣
∣

IMi
+

1

σ2

K∑

j=1,j 6=i

HijQjH
H
ij

∣
∣
∣
∣
∣
∣



 (6.45)

where the expectation is w.r.t.Eij , 1 ≤ i, j ≤ K. Eij = σijWij andWij with i.i.d. CN (0, 1) entries.

Therefore, it is sufficient to optimize jointly the covariance matricesQ1, . . . ,QK . Here we aim to reformulate

our problem in a way such that the theorems defined earlier canbe used to approximate our objective function.

DefiningN =
∑K

j=1Nj, (6.45) can be rewritten as

Rsum = E

[
K∑

i=1

log

∣
∣
∣
∣
IMi

+
1

σ̄2
HiQHH

i

∣
∣
∣
∣
−

K∑

i=1

log

∣
∣
∣
∣
IMi

+
1

σ̄2
HiQ−iH

H
i

∣
∣
∣
∣

]

, (6.46)

whereσ̄2 = σ2

N , the equivalent channels of sizeMi×N are defined asHi =
1√
N
[Hi1, ...,HiK ] for i = 1, ...,K,

Q = Bdiag (Q1, ...,QK) andQ−i is equal toQ except that theith block is replaced by theNi×Ni zero matrix.

Therefore

Hi = H̄i +Ei, (6.47)

with H̄i = 1√
N

[
H̄i1, ..., H̄iK

]
, Ei = 1√

N
WiC̃

1
2
i , Wi = [Wi1, ...,WiK ] and C̃i =

Bdiag
(
σ2
i1IN1 , ..., σ

2
iKINK

)
. With these definitions,Wi hasCN (0, 1) elements and̃Ci is diagonal nonnega-

tive. Therefore we are within the conditions of applicationof Theorem 8.

DefiningR+
i andR−

i as

R+
i = E

[

log

∣
∣
∣
∣
IMi

+
1

σ̄2
HiQHH

i

∣
∣
∣
∣

]

,

R−
i = E

[

log

∣
∣
∣
∣
IMi

+
1

σ̄2
HiQ−iH

H
i

∣
∣
∣
∣

]

,
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where the expectation is overEi, the expected sum rate is

Rsum =

K∑

i=1

(
R+

i −R−
i

)
.

Using Theorem 8, we approximateR+
i andR−

i by deterministic equivalents. In particular, we have

R+
i − R̄+

i

∣
∣
∣
∣
(δ+⋆

i ,δ̃+⋆
i )

→ 0

asNj ,Mj →∞ with Nj/Mj → cj > 0 for all j, where

R̄+
i = fi(Q, δ+i , δ̃

+
i )

= log

∣
∣
∣
∣
(1 + δ̃+i )IMi

+
1

σ̄2
H̄iQ

1
2Gi(δ

+
i )Q

1
2 H̄H

i

∣
∣
∣
∣
− log

∣
∣Gi(δ

+
i )
∣
∣−Nσ̄2δ+i δ̃

+
i (6.48)

in whichGi(x) = (IN + xQ
1
2 C̃iQ

1
2 )−1, andδ+⋆

i andδ̃+⋆
i are the unique positive solutions to

{

δ+i = gi(Q, δ+i , δ̃
+
i ),

δ̃+i = g̃i(Q, δ+i , δ̃
+
i ),

(6.49)

where

gi(Q, δ+i , δ̃
+
i ) =

1

N
tr
(

σ̄2(1 + δ̃+i )IMi
+ H̄iQ

1
2Gi(δ

+
i )Q

1
2 H̄H

i

)−1
, (6.50)

g̃i(Q, δ+i , δ̃
+
i ) =

1

N
tr



Q
1
2 C̃iQ

1
2

(

σ̄2(Gi(δ
+
i ))

−1 +
Q

1
2 H̄H

i H̄iQ
1
2

1 + δ̃+i

)−1


 . (6.51)

Similarly we defineR̄−
i = fi(Q−i, δ

−
i , δ̃

−
i ) and(δ−⋆

i , δ̃−⋆
i ) the unique nonnegative solution to

{

δ−i = gi(Q−i, δ
−
i , δ̃

−
i ),

δ̃−i = g̃i(Q−i, δ
−
i , δ̃

−
i ).

(6.52)

DefiningR̄sum =
∑K

i=1

(

R̄+
i

∣
∣
∣
∣
(δ+⋆

i ,δ̃+⋆
i )

− R̄−
i

∣
∣
∣
∣
(δ−⋆

i ,δ̃−⋆
i )

)

, with K finite, we have from Theorem 8 that, for

all Qi with bounded spectral norm,

sup
Q,

‖Q‖bounded

Rsum(Q) − sup
Q,

‖Q‖bounded

R̄sum(Q)→ 0, (6.53)

asNi,Mi grow large withMi/Ni → ci > 0. Thus, optimizingRsum overQ, for any family of bounded

precoders, is equivalent, in the asymptotic regime, to optimizing R̄sum overQ.

6.3.2 Optimizing the Approximation of the Expected Sum Rate

R̄sum does not involve expectations. Hence we propose to use a gradient ascent method to determine a local

maximum as summarized in Algorithm 4. At each step of the gradient algorithm,δ+⋆
i , δ−⋆

i , δ̃+⋆
i , δ̃−⋆

i are eval-

uated using Algorithm 3, allowing an evaluation of the gradient from which a new set of precoders is derived.
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Algorithm 4 Iterative optimization

Initialization: m = 0 andQ(0) arbitrary.

Repeat

• Computeδ+⋆
i , δ−⋆

i , δ̃+⋆
i , δ̃−⋆

i , i = 1, ...,K, using Algorithm 3

• Evaluate the gradient∇R̄sum w.r.t. V = [V1, ...,VK ]T

• LetV = V+ β∇R̄sum (for some step-sizeβ)

• LetQ(m+1) = Bdiag
(

P1
V1V

H
1

tr(V1V
H
1 )
, ..., PK

VKVH
K

tr(VKVH
K)

)

• m← m+ 1

until convergence.

The remainder of this section is dedicated to deriving explicit expressions for the gradients required in

Algorithm 4.

We know from (6.42) that the partial derivative ofR̄+
i w.r.t. δ+i , δ̃

+
i for i = 1, ...,K is zero at(δ+⋆

i , δ̃+⋆
i )

(the same applies tōR−
i w.r.t. δ−i , δ̃

−
i at (δ−⋆

i , δ̃−⋆
i )). This fact simplifies the calculation of the gradient when

using the differentiation chain rule.

In order to differentiatēRsum, we rewriteR̄+
i as

R̄+
i = log

∣
∣
∣
∣
∣
∣

(1 + δ̃+i )IMi
+

1

σ̄2

K∑

j=1

H̄ijQ
1
2
j Zij(δ

+
i )Q

1
2
j H̄

H
ij

∣
∣
∣
∣
∣
∣

−
K∑

j=1

log
∣
∣Zij(δ

+
i )
∣
∣−Nσ̄2δ+i δ̃

+
i (6.54)

in whichZij(x) = (INj
+ xσ2

ijQj)
−1, and

δ+i =
1

N
tr



σ̄2(1 + δ̃+i )IMi
+

K∑

j=1

H̄ijQ
1
2
j Zij(δ

+
i )Q

1
2
j H̄

H
ij





−1

.

It is shown in Appendix C.4 that the gradient with respect toVn is given by

∇nR̄
+
i = Ω+

inVn −
tr
(
Ω+

inVnV
H
n

)

tr (VnVH
n )

Vn, (6.55)

where

Ω+
in = Zin(δ

+
i )

(
1

σ̄2
H̄H

in(Fi(δ
+
i ))

−1H̄inZin(δ
+
i ) + δ+i σ

2
inINn

)

. (6.56)

The same procedure holds forR̄−
i with Q−i instead ofQ, and therefore we have∇nR̄sum =

K∑

i=1
(∇nR̄

+
i −

∇nR̄
−
i ). DefiningV =

[
V1, ...,VK

]T
, the gradient with respect toV is∇R̄sum =

[
∇1R̄sum, ...,∇K R̄sum

]
.
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Figure 6.6. Performance comparison of precoder optimization methods, for 3-user MIMO IC,Nj = 4,Mi = 4,

ηij = 3.

6.3.3 Performance Investigation

In this section, the performance of the proposed scheme is evaluated through numerical simulations. The

performance metric is the expected sum rate (6.45) evaluated through Monte-Carlo simulations employing the

covariance matrices designed with Algorithm 4. The whole process is repeated and averaged over realizations

of H̄ij , with entriesCN (0, 1).

Figure 6.6 shows the expected sum rate versus transmit SNR for a three-user IC with four antennas per node

and two data streams for each transmitter, using different precoder optimization schemes. We assumeσij = 0.5

andηij = 3 for i, j = 1, ...,K. We compare the performance of the precoders provided by Algorithm 4 to

two alternative approaches: (i) precoders are designed to maximize the sum rate under the assumption thatH̄ij

is the true channel (i.e. the transmitter assumesσ2
ij = 0), (ii) the signal resulting from the channel estimation

error is modeled as an additive white Gaussian noise term. Inthat case, the last two terms in

yi = H̄ii

√

λiVixi +

K∑

j=1,j 6=i

H̄ij

√

λjVjxj + ni

+Eii

√

λiVixi +

K∑

j=1,j 6=i

Eij

√

λjVjxj

are considered as noise and therefore the covariance matrixof the equivalent noise vector isσ2
i IMi

with σ2
i =

Mi

K∑

j=1
PjNjσ

2
ij + σ2. In this case the precoders are designed as in (i) except for the different noise variance.

We also provide as a reference the performance of precoders optimized with perfect CSI.



Chapter 6. Robust Interference Management with Gaussian CSI Uncertainty 89

The results clearly show that our deterministic equivalentapproach is superior to (i) and (ii). This sug-

gests that, even though the system dimensions are small in this example, and therefore we operate far from

the asymptotic regimeNi,Mj → ∞, the approximation through deterministic equivalents outperforms the

classical simplifying assumptions (i) and (ii).



7

Conclusions and Outlook

Finally, we summarize the important contributions and provide some insights for future development and ex-

tension of our results. In this thesis, we devised efficient quantization schemes to reduce the CSI feedback

overhead in aK-user MIMO IC. We analyzed the system performance when quantized CSI is used to design

the transmit signals.

We next considered a scenario where the CSI available at the transmitters is outdated and does not provide

any information about the current state of the channel. A retrospective alignment scheme was proposed to

achieve the DoF region of the two-user MIMO IC with outdated CSI.

In the third part of this thesis, we focused on distributed calculation of the transmit precoders over the

network. A distributed approach to the interference alignment problem was proposed using a message-passing

formulation.

Finally, the problem of sum rate maximization was considered assuming a Gaussian additive channel un-

certainty model. Two different methods were proposed to approximately maximize the sum rate in aK-user

MIMO IC.

90
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7.1 Conclusions

In the following we draw conclusions based on the results presented in the previous chapters.

Quantized CSI

• A new CSI feedback scheme for interference alignment on theK-user MIMO interference channel was

proposed consisting in a parsimonious representation based on the Grassmann manifold.

• We characterized the scaling of the number of feedback bitswith the SNR required in order to preserve

the multiplexing gain achievable using perfect CSI. This scaling is shown to be better (slower) than the

scaling obtained using the schemes from [8] or [7] for all system dimensions where IA is feasible.

• Simulations results confirm that our scheme provides a better sum rate performance compared to quan-

tization of the normalized channel matrices for the same number of feedback bits. Furthermore, at non-

asymptotic SNR and for a fixed codebook size, the proposed scheme is shown by simulation to achieve

better sum-rate performance than the methods from [8] or [7].

• We introduced a model for the chordal distance of the quantization error which facilitates the numerical

performance analysis of schemes requiring intractably large codebooks; it can be used to generate rota-

tions that closely approximate the true quantization errorof RVQ. This tool enables numerical analysis

of general Grassmannian RVQ schemes for large codebook sizes, without requiring the generation of the

codebook nor the exhaustive search normally associated with the quantizer.

• In downlink interference alignment for TDD cellular systems a CSI sharing scenario was considered and

efficient sharing of CSIT among interfering BSs was proposedsimilar to the feedback method.

• The growth rate of the bits to be transferred with respect tothe transmit power was characterized in

order to preserve the total multiplexing gain. This scalingis shown to be better (slower) than the scaling

obtained by naively sharing the channel matrices.

• Furthermore, methods were proposed to improve the performance by exploiting the accurate local CSI

available at each transmitter. Global optimization problems are considered and then decoupled into local

optimization problems using the proposed IA filters. The methods start from an IA solution and improve

the precoders exploiting the accurate local CSI available at each transmitter(which also includes the direct

channel at each transmitter). The proposed methods are shown to be superior to classical interference

management techniques via simulations.

Outdated CSI

• We modeled the problem of transmission in a MIMO IC with outdated CSIT as a retrospective alignment

scheme. The model is a MIMO generalization of the scheme proposed in [74] wherein the procedure of

feeding back and forwarding the overheard interference as in [9] is done in a systematic way.
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• We propose a unified and simple DoF-achievable scheme for the MIMO IC with outdated CSIT which

encompasses every configuration of antennas and does not require the complicated transmission scheme

of [11]. Our proposed scheme provides a matrix representation for the precoders to be employed when

CSIT is outdated.

• The achievable DoF of the MIMO IC with outdated CSIT is verified analytically.

• The proposed scheme is very flexible and insights are provided to extend the method for more interesting

scenarios like having time correlated channels.

Distributed Interference Alignment

• We have introduced an iterative solution to the problem of interference alignment over MIMO channels

based on message passing applied to a suitable graph. A parameterization of the messages that enables the

use of this algorithm over continuous variable spaces was introduced, and closed-form approximations

of the messages were derived.

• We have shown that the iterative leakage minimization algorithm of Gomadam et al. [12] is a particular

case of our message-passing algorithm obtained for a particular schedule.

• The proposed algorithm was shown to outperform ILM in termsof convergence speed.

• As the associated nodes of the graph correspond to TXs/RXs in the network, we discussed different

allocation of the nodes of the graph to the transceivers and also the distributed implementation of the

proposed technique.

Robust Interference Management

Link Adaptation for Interference Alignment

• Interference alignment based on imperfect CSI was investigated. As the accuracy of CSI at the transmitter

side is crucial for interference alignment, we analyzed thestatistics of the imperfect CSI in order to handle

the resulting interference.

• We considered a MIMO interference channel where the transmit and receive spaces are determined by IA.

Considering practical modulation schemes, we looked at maximizing a weighted sum of the average rates

provided that a certain set of bit-error-rate and power constraints are satisfied by choosing appropriate

modulation coding and powers.

• Since the problem is quite general and intractable, we resorted to some approximations and provided

simulations to show the accuracy of the approximations in the regimes of practical interest.

• An adaptive rate and power allocation scheme is devised to enhance the performance of interference

alignment.
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Optimization of the Expected Sum Rate

• Optimization of a deterministic equivalent of the expected sum rate for the K-user IC was explored. Our

approach is shown to be beneficial when the original problem is complicated to analyze and therefore an

approximated problem is liable for investigation.

• The analysis is based on tools from random matrix theory applicable to matrices of large dimensions

(representing the channel matrices). The results are proved to be very accurate even for small dimensions.

• The expected sum rate maximization problem was tackled using a gradient ascent method employing the

properties of the derivative of the deterministic equivalent.

• The method is shown to be superior to the conventional methods via simulations.

7.2 Outlook

Here we present some directions for future research:

Quantized CSI

• We have used Grassmannian representation to quantize the channel matrices in order to perform interfer-

ence alignment. There exist other objective functions thatare invariant under unitary transformation of

the precoders, hence the quantization scheme might generalize to more interesting objective functions.

• One of the interesting directions to extend the current work is to show whether the scaling of the bits

derived here is the optimal scaling or not. In other words, one could show whether it is possible to

achieve full DoF with IA with a slower scaling of the feedbackbits.

• Since the scheme is based on quantization on the Grassmann manifold which requires large code books

at high SNR, structured codebooks for Grassmann manifold are desirable. Approximate but structured

solutions for the codebook design problem will be of great interest.

Outdated CSI

• Clearly the extension of the proposed scheme to the case of time correlated channels is very interesting

and promising. The scheme is very flexible and extensions canbe applied in a simple and intuitive

manner.

• The current study is solely for the two user IC, while the scheme can be generalized to different channels

like K-user IC or the X channel. As the set of different configuration of antennas gets larger by increasing

the number of users, having a general scheme for every possible antenna configuration in the K-user IC

is desirable.
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Distributed Interference Alignment

• One possible direction of future research on this problem is to consider a reciprocal channel where the

messages are sent over the air from both sides (TXs/RXs). In this scenario every TX/RX has access to its

local CSI and this information has to be exploited for computation of messages at every node. This can

lead to a systematic approach for the well known leakage minimization algorithm.

• The objective function considered in this chapter is quitearbitrary. Clearly minimizing the leakage is not

optimal at low and medium SNR. Many different objectives (with different factor graphs) can be defined

and analyzed in terms of convergence and performance (e.g.,achievable sum rate).

Robust Interference Management

• The results of the link adaptation scheme can be improved bymaking another degree of adaptation,

i.e., having adaptive CSI quantization. The channels can bequantized with an accuracy associated to

the channel quality. This would improve the performance by avoiding bad quality channels to undergo

interference alignment.

• The analysis of the deterministic equivalent deals with the expectation of sum rate while a generalization

can include higher order statistics. For example outage capacity can be analyzed by considering the

deterministic equivalent of the variance of rate. More objective functions can be tackled in this way.
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A.1 Proof of Lemma 3

The power of the interference leakage at receiveri reads
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Using the alignment equation (3.33) and the fact thatF̂H
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Using the facts that||X||F ≤
√

rank(X) ||X||2, ||X||2 ≤ ||X||F and||XY||2 ≤ ||X||2 ||Y||2, we have
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i )Ṽ−i||2F

≤ P ||ŨH
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The second equality holds becauseŨH
i , F̂H

i andṼ−i are truncated unitary matrices, which implies that their

spectral norm is 1.

From [114, Theorem 5], if a codebook is generated using the sphere-packing procedure, the maximum

value of the quantization error in terms of the chordal distance can be upper bounded as

max
Fi∈G(K−1)M,N

dc(F̂i,Fi) ≤
2

(c 2BG)
1
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(
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(

2
−BG
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. (A.5)

The constantc in (3.15) is obtained from [60, Corollary 1]. Combining (A.4) and (A.5) yields (3.14).

A.2 Proof of Lemma 4

Similar to (A.1), the power of the interference leakage at receiveri can be written as
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ijŨi



 (A.6)

=
P

d

K∑

j=1,j 6=i

||ŨH
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≤ Pd

K∑

j=1,j 6=i

||vec(Hij)||22
∣
∣
∣
∣

∣
∣
∣
∣
zij − α
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for an arbitrary scalarα. In particular, choosingα = ẑHijzij ||vec(Hij)||2 yields

L̄i ≤ Pd
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whereBmax = maxj ||vec(Hij)||22.

From [47, theorem II.1], the distance on the composite Grassmann manifold can be bounded for any code-

book obtained via sphere-packing asmax
Zi∈GK−1

MN,1
Dc(Zi, Ẑi) ≤ 2
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1
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(A.18)

whereNINM was defined in Section 3.2.3 andc̄ is a constant. It is clear from (A.18) that quantizingZi with

BINM = NINM
2 logP bits at receiveri guarantees that̄Li remains bounded regardless of the SNR.

A.3 Proof of Lemma 5

Consider the following quantity
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1In fact, when the number of feedback bits is scaled accordingto (3.16), the bound in (A.20) gets tighter as the SNR increases.
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where the second inequality follows by the fact thatGH
i Gi andQi

I are Hermitian matrices. Furthermore
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i ||2. From eqs. (A.1)–(A.4) we have

||GH
i HiV−i||22 ≤ Li ≤ 2Pd2c(F̂i,Fi). Using these bounds,

R′′
i −R′

i ≤ d log
(

||C−1
i ||22 + 2Pd2c(F̂i,Fi)

)

. (A.24)

Combining with (A.5) yields (3.21).

A.4 Proof of Lemma 6

It suffices to prove thatlimP→∞
log|GH

i Gi+Qi
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logP = d for almost all channel realizations. Note however that

the proof is complicated by the fact that we need to consider quantization codebooks of increasing sizes when
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S admits a limit for asymptotically

large SNR2. Therefore, we resort to compactness arguments to show th atthere exists a series of codebooks of

increasing size for whichWi
S admits a limit.

Let us consider an infinite sequence of SNRsP = {Pn}n∈N such thatlimn→∞ Pn = ∞, as well as an

infinite sequence of quantization codebooks{Sn}n∈N, such that|Sn| = P
N((K−1)M−N)
n , following (3.16). For

each SNR valuePn, we letF̂i,n = argminS∈Sn dc(S,Fi) and denote(Ṽ1,n, . . . , ṼK,n, Ũ1,n, . . . , ŨK,n) ∈
GKM,d × GKN,d a set of matrices constituting an IA solution based onF̂i,n. In other words, we
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2Although it is clear that the subspace spanned byF̂i admits a limit on the Grassmann manifold whenBG → ∞, the definition of

Ũi andṼi as one (possibly among several) solution of (3.33) preventsthe extension of the convergence result to those variables.
3In order to obtain the same convergence properties for a point on Ga,b and for the corresponding unitary matrix representation

F ∈ C
a,b, it is useful to make this representation unique, e.g. by requiring that the top squareb × b subblock ofF is equal toIb. For

the sake of notational simplicity, we omit those details.
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SinceF̂⋆
i andFi span the same subspace,F̂⋆H

i Fi is unitary. Therefore, considering the product of matricesin
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A.5 Proof of Theorem 2

Let us first recall thatRi ≥ R′
i, which holds also in expectation:
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Furthermore, from (A.24),
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where the second inequality follows by application of Jensen’s inequality to thelog function. The term

ES(d2c(F̂i,Fi)) represents the expected value of the distortion while usinga random codebook, and can be

further bounded using [114, Theorem 6], which can be summarized as follows: for asymptotically large code-

book size, when using a random codebook for quantizing a matrix F arbitrarily distributed over a manifold, the

k-th moment of the chordal distanceD(k) = ES,F(dkc (F̂,F)) can be bounded as

Nm
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k (c 2BG)
k

Nm

, (A.29)

where the codebooks have2BG elements andNm is the real dimension of the corresponding manifold. Using

the upper bound in (A.29) fork = 2 over the Grassmann manifold, combined with (A.27) and (A.28) results

in (3.24).

A.6 The Perturbation Method

Let us consider a point onGn,p, represented by an×p truncated unitary matrixF. Here, we assume thatn ≥ 2p

(otherwise it is more efficient to consider the complementary n− p dimensional subspace). Since the columns

of F are orthonormal, they can be completed to form an orthonormal basis of then-dimensional space. In fact,

according to [115], any other point onGn,p can be represented in the basis constituted by the columns ofthe

unitary matrixW = [F Fc] as

F̄ = W







C

S

0n−2p






, (A.30)
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for someFc in the null space ofF and

C =
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(A.31)

whereθ1, . . . , θp are real angles. Clearly, forθ1 = . . . = θp = 0, we obtainF̄ = F. More generally, the

squared chordal distance between the two points onGn,p represented byF andF̄ is

r = d2c(F̄,F) =

p
∑

i=1

sin2 θi . (A.32)

Therefore, in order to generate random perturbations of a certain chordal distance
√
r fromF, we propose to

generate random values for the anglesθ1, . . . , θp such that
∑p

i=1 sin
2 θi = r, and to pick a random orthonormal

basisFc of the null subspace ofF. The perturbed matrix is then computed using (A.30).

The histogram (not shown) of the squared quantization errord2c(F̂,F) obtained from an implementation of

the RVQ quantizer suggests that the Gaussian distribution is a good approximation for the probability density

function ofr. The parameters of this distribution can be obtained from [114, Theorem 6] which provides bounds

on thek-th moment of the chordal distanceD(k) = ES,F(dkc (F̂,F)). Since those bounds are asymptotically

tight when the codebook size increases, we arbitrarily choose to use the upper bound4 as an approximation of

D(k), i.e.

r̄ ,
Γ( 2

NG
)

NG
2 (c 2BG)

2
NG

≈ D(2) (A.33)

is the mean and

σ2
r ,

Γ( 4
NG

)

NG
4 (c 2BG)

4
NG

− r̄2 ≈ D(4) − (D(2))2 (A.34)

is the variance. We propose generate the values forr according toN (r̄, σ2
r ) truncated toR+. This process is

summarized in Algorithm 5.

Algorithm 5 Generating random perturbations aroundF

• Draw a random realization of the squared chordal distancer fromN (r̄, σ2
r )

• If r < 0, generate a new sample

• Draw independents1, . . . , sp uniformly from the interval(0, 1)

• Compute the anglesθi = sin−1

(

si
√
r√∑p

i=1 s
2
i

)

• Generate a random orthonormal basisFc of the null space ofF

• ComputeF̄ according to (A.30).

4Experiments have shown no noticeable performance difference when using the lower bound instead.
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B.1 Proof of Theorem 5

In order to prove the theorem, the following conditions needto be verified :

C.I : di ≤ min(Mi, Ni), i = 1, 2 andN2 < d1 + d2 ≤ N1

C.II : T (d1 + d2) ≤ (T − q)N1 + qM2 +min(qN1, qM1, (T − q)N2)

C.III : Td1 ≤ (T − q)M1

For simplicity, we verify the conditions for every case of groupG1 separately. The proof is complete if the

above three conditions hold for all cases.

101



Appendix B. 102

• Case A.II.2: M1 > N1 > M2 ≥ N2:

In this case we haved1 = M ′
1(N1−N2)

(M ′
1−N2)

andd2 = N2(M ′
1−N1)

(M ′
1−N2)

with M ′
1 = min(M1, N1 +N2). We set

T = (M ′
1−N2) which givesq =

d∗2
N2

= (M ′
1−N1). The first condition is clearly satisfied. The second

condition can be simplified as follows:

T (d1 + d2) ≤ (T − q)N1 + qM2 +min(qN1, (T − q)N2). (B.1)

If qN1 < (T − q)N2 then the condition simplifies to

T (d1 + d2) ≤ TN1 + qM2, (B.2)

which holds since in groupG1 we haved1 + d2 ≤ N1. Therefore we consider the remaining case where

qN1 ≥ (T − q)N2. In this case, the condition simplifies to

T (d1 + d2) ≤ (T − q)(N1 +N2) + qM2. (B.3)

Here we show that the resulting condition always holds: Substituting for T, d1, d2 and using the fact that

M ′
1 ≤ (N1 +N2), we have

T (d1+d2) = M ′
1(N1−N2)+qN2 ≤ (N1+N2)(N1−N2)+qM2 = (T−q)(N1+N2)+qM2. (B.4)

The third condition is also satisfied since we haved∗1 = M ′
1(N1−N2) ≤M1(N1−N2) = (T − q)M1.

• Case B.I: N1 ≥M1 > N2 > M2:

In this case we haved1 =
M1(N2−M2)

N2
andd2 = M2. We chooseT = N2 which givesq = M2. The first

condition is straightforward.

Substituting forT, d1, d2, q, the second condition simplifies as follows:

M1(N2 −M2) +M2N2 ≤ (N2 −M2)N1 +M2
2 +min(M1M2, N2(N2 −M2)). (B.5)

Here we show that this condition holds: It is easy to see that

(M2 +M1 −N1) ≤M2 < N2, (B.6)

therefore we have

(M2 +M1 −N1)(N2 −M2) < min(M1M2, N2(N2 −M2)). (B.7)

This will simplify to

M1(N2 −M2) +M2N2 ≤ (N2 −M2)N1 +M2
2 +min(M1M2, N2(N2 −M2)). (B.8)

Clearly the third condition is satisfied with equality.
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• Case B.II.1: M1 > N1 > N2 > M2 andM2 ≤ N2
M ′

1−N1
M ′

1−N2
with M ′

1 = min(M1, N1 +N2 −M2):

In this case we haved1 = N1 −M2, d2 = M2. We chooseT = N2 which givesq = M2. The first

condition is straightforward. For the second condition we get: N2(N1 −M2 +M2) ≤ (N2 −M2)N1 +

M2
2 + min(M2N1, (N2 − M2)N2). If M2N1 ≤ (N2 − M2)N2 then the inequality is satisfied. We

consider the case whereM2N1 > (N2 −M2)N2. Therefore with some simplification, we have to verify

the following inequality:

N2
2 ≥M2(N1 +N2 −M2).

Proof: We haveM2 ≤ N2
M ′

1−N1
M ′

1−N2
with M ′

1 = min(M1, N1 +N2 −M2) therefore

M ′
1(N2−M2) ≥ N2(N1−M2) ⇒ M2M

′
1 ≤ N2(M

′
1 +M2−N1). Now if M ′

1 = N1 +N2−M2

then the condition is satisfied. IfM ′
1 = M1 then we haveM1 ≤ N1 +N2 −M2 which gives

M1 +M2 ≤ N1 +N2

⇒ (N2 −N1)(M1 +M2) ≥ (N2 −N1)(N1 +N2)

⇒ N2M1 +M2N2 −N2
2 ≥ N1M1 +N1M2 −N2

1

⇒ N2 −M2

N1 −M2
≥ M1 −N1

M1 −N2

⇒ N2
N2 −M2

N1 −M2
≥ N2

M1 −N1

M1 −N2
≥M2

⇒ N2(N2 −M2) ≥M2(N1 −M2)

⇒ N2
2 ≥M2(N1 +N2 −M2).

For the third condition if we haveM ′
1 = M1 thenM2 ≤ N2

M ′
1−N1

M ′
1−N2

givesN2(N1 −M2) ≤ M1(N2 −
M2) which proves the condition. If we haveM ′

1 = N1 + N2 − M2 thenM2 ≤ N2
M ′

1−N1
M ′

1−N2
gives

N2(N2 −M2) ≥M2(N1 −M2). Therefore

M1 +M2 ≥ N1 +N2

⇒ (M1 −N2)(N2 −M2) ≥ (N1 −M2)(N2 −M2)

⇒ N2(N2 −M2) + (M1 −N2)(N2 −M2) ≥M2(N1 −M2) + (N1 −M2)(N2 −M2)

⇒ M1(N2 −M2) ≥ N2(N1 −M2)

which proves the condition.

• Case B.II.2: M1 > N1 > N2 > M2 andM2 > N2
M1−N1
M1−N2

andM1 +M2 ≤ N1 +N2:

In this case we haved1 = M1
N2

(N2 −M2), d2 = M2. We chooseT = N2 which givesq = M2. The first

condition is straightforward. The second condition simplifies as follows:

M1(N2 −M2) +M2N2 ≤ (N2 −M2)N1 +M2
2 +min(N1M2, (N2 −M2)N2) (B.9)
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Here we have two possibilities. IfN1M2 < (N2 −M2)N2 then we get

(N2 −M2)N1 +M2
2 +min(N1M2, (N2 −M2)N2) = N2N1 −M2N1 +M2

2 +N1M2 = M2
2 +N1N2 > N1N2.

(B.10)

FromM2 > N2
M1−N1
M1−N2

we getN1N2 > M1(N2 −M2) +N2M2. Combining this with (B.10) gives the

desired condition.

If N1M2 ≥ (N2 −M2)N2 then the condition becomes:

M1N2 −M1M2 +M2N2 ≤ N2N1 −M2N1 +M2
2 +N2

2 −M2N2.

Here we show that this condition is satisfied. We haveM1+M2 ≤ N1 +N2 andN2 > M2 therefore we

have

M2(N1 +N2 −M1 −M2) < N2(N1 +N2 −M1 −M2) (B.11)

which gives the desired condition.

Clearly the third condition is satisfied by equality.

• Case B.III.1: M1 > N1 > N2 > M2 andM2 > N2
N2−M2
N1−M2

andM1 +M2 ≥ N1 +N2 and also we have

M1 ≥ N1 +N2 −N2
N2−M2
N1−M2

:

In this we have two points on the corner of the region. First welook at the pointd1 =
(N1+N2−M2)(N2−M2)

N2
andd2 = M2. Here we chooseT = N2 which givesq = M2. The first con-

dition is straightforward. FromM2 > N2
N2−M2
N1−M2

we haveN2(N2 −M2) < M2(N1 −M2) < M2N1.

Therefore the second condition simplifies to:

(N1 +N2 −M2)(N2 −M2) +N2M2 ≤ (N2 −M2)N1 +M2
2 +N2(N2 −M2) (B.12)

which is always satisfied by equality.

Since we haveN1 +N2 −M2 ≤M1 therefore the third condition is satisfied.

The other corner point isd1 = N1 − N2
2

N1+N2−M2
andd2 =

N2
2

N1+N2−M2
. We chooseT = N1 +N2 −M2

which givesq = N2. The first condition is straightforward. The second condition becomes:

N1(N1 +N2 −M2) ≤ (N1 −M2)N1 +N2M2 + (N1 −M2)N2 (B.13)

which is satisfied by equality. To verify the third conditionwe have

M1 ≥ N1 +N2 −N2
N2 −M2

N1 −M2

⇒ (N1 −M2)M1 ≥ N1(N1 +N2 −M2)−N2
2

⇒ (T − q)M1 ≥ Td1.
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• Case B.III.2: M1 > N1 > N2 > M2 andM2 > N2
N2−M2
N1−M2

andM1 +M2 ≥ N1 +N2 and also we have

M1 < N1 +N2 −N2
N2−M2
N1−M2

:

In this case also there are two points. The first point isd1 =
M1(N1−N2)

M1−N2
andd2 =

N2(M1−N1)
M1−N2

. Therefore

we chooseT = M1 −N2 which givesq = M1 −N1. The first condition is straightforward.

For the second condition we need to verify the following inequality:

M1(N1 −N2) +N2(M1 −N1) ≤ (N1 −N2)N1 + (M1 −N1)M2 + (N1 −N2)N2. (B.14)

Here we show that this condition holds. Clearly we have

(N1 −N2)(M1 +M2 −N1 −N2) ≥ 0, (B.15)

therefore

N2
2 −N2

1 +M1N1 +M2N1 ≥M2N2 +M1N2

⇒ (N1 +N2 −M1)(N1 −N2) ≥ (N2 −M2)(M1 −N1)

which simplifies to the desired condition.

Clearly the third condition is satisfied by equality.

The second point isd1 =
M1(N2−M2)

N1+2N2−M1−M2
andd2 =

N2(N1+N2−M1)
N1+2N2−M1−M2

. Therefore we chooseN1+2N2−
M1 −M2 which givesq = N1 +N2 −M1. The first condition is straightforward.

The second condition simplifies to

M1(N2 −M2) +N2(N1 +N2 −M1) ≤ (N2 −M2)N1 + (N1 +N2 −M1)M2 + (N2 −M2)N2

which is satisfied by equality.

Clearly the third condition is satisfied by equality.

B.2 Proof of Theorem 7

In order to prove the theorem we need to verify the conditionsC̄.I andC̄.III for groupG2 which consists of

the caseA.I.3. We first proveC̄.I :

Here we show that in the caseA.I.3 we haved1+d2 > N2 andd1+d2 > N1. Using the fact thatM2 > N2

andM1 > N2 and knowing thatM ′
i = min(Mi, N1 +N2) we have

N1(M
′
1 −N2)(M

′
2 −N2) > 0⇒M ′

1N1M
′
2 −M ′

1N1N2 −M ′
2N1N2 > −N1N

2
2

⇒M ′
1N1M

′
2 −M ′

1N1N2 −M ′
2N1N2 +M ′

2M
′
1N2 > M ′

2M
′
1N2 −N1N

2
2

⇒ d∗1 + d∗2 > TN2 ⇒ d1 + d2 > N2.
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For the second part, since we haveM2 > N1 this gives

N2(M
′
1 −N1)(M

′
2 −N1) > 0⇒M ′

1N2M
′
2 −M ′

1N1N2 −M ′
2N1N2 > −N2

1N2

⇒M ′
1N2M

′
2 −M ′

1N1N2 −M ′
2N1N2 +M ′

1N1M
′
2 > M ′

1N1M
′
2 −N2

1N2

⇒ d∗1 + d∗2 > TN1 ⇒ d1 + d2 > N1.

The proof ofC̄.III is straightforward :

d∗j = NjM
′
j(M

′
i −Ni) ≤ NjMj(M

′
i −Ni) = (T − qi)Mj .



C

C.1 Calculating the Power of the Interference Terms

Since
√

1− ρ20Eij = Hij − ρ0Ĥij we have

Ii,q =
√

1− ρ20
∑

1≤l≤d
l 6=q

ûH
i,qEiiv̂i,lxi(l), (C.1)

I ′i,q =
√

1− ρ20
∑

1≤j≤K
j 6=i

ûH
i,qEijV̂jxj . (C.2)

Since the entries ofEij are Gaussian i.i.d. random variables, their distribution is invariant by multiplication

with independent truncated unitary matrices. Therefore weuseeiql , ûH
i,qEiiv̂i,l andeiqj , ûH

i,qEijV̂j in the

expression ofIi,q andI ′i,q respectively knowing that their entries have the same distribution as those ofEij.

This gives the following

E{|Ii,q|2} =(1− ρ20)E







∑

1≤l≤d
l 6=q

|eiqlxi(l)|2







=(1− ρ20)
∑

1≤l≤d
l 6=q

E{|eiql|2}E{|xi(l)|2}

=∆ii(1− ρ20)
∑

1≤l≤d
l 6=q

P̄i(l).

(C.3)

Similarly for I ′i,q we get

E{|I ′i,q|2} = (1− ρ20)
∑

1≤j≤K
j 6=i

∆ij

∑

1≤l≤d

P̄i(l). (C.4)
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C.2 Calculating the Correlation Coefficient ρ

By definition of correlation we have

ρ =
E{γqi γ̂

q
i } − E{γqi }E{γ̂

q
i }

√

var(γqi )var(γ̂
q
i )

=
E{|Gq

i |2|Ĝ
q
i |2} − E{|Gq

i |2}E{|Ĝ
q
i |2}

√

var(|Gq
i |2)var(|Ĝ

q
i |2)

.
(C.5)

To computeρ we need to findE{|Gq
i |2|Ĝ

q
i |2} which is calculated as follows

E{|Gq
i |2|Ĝ

q
i |2} = E

Ĥij
{|Ĝq

i |2EHij |Ĥij
{|Gq

i |2}}. (C.6)

The conditional term can be written as

E
Hij |Ĥij

{|Gq
i |2} =

Nr∑

m=1

Nt∑

n=1

E
Hij |Ĥij

{|Hii(m,n)|2}|ûi,q(m)H|2|v̂i,q(n)|2

=

Nr∑

m=1

Nt∑

n=1

((1− ρ20)∆ii + ρ20|Ĥii(m,n)|2)|ûi,q(m)H|2|v̂i,q(n)|2

= (1− ρ20)∆ii + ρ20|Ĝq
i |2.

(C.7)

For an exponential-distributed random variableZ we haveE{Z2} = E{Z}+ (E{Z})2, therefore

E{|Gq
i |2|Ĝ

q
i |2} = E

Ĥij
{|Ĝq

i |2(1− ρ20)∆ii + ρ20|Ĝq
i |4}

= (1− ρ20)∆
2
ii + ρ20(∆ii +∆2

ii)

= ∆2
ii + ρ20∆ii.

(C.8)

Therefore (C.5) simplifies toρ = ρ20.

C.3 Proof of Lemma 13

LettingSm = Am

Ψ(γ̂)A′
m(1−ρ20)Γ+1

and simplifying condition(C ′2) using (6.2) and (6.23) we have

E{pe(Ψ(γ̂)γ,Φ(γ̂))|γ̂} ≤ B0 ⇔
∫ ∞

0
Amexp

{
−A′

mγΨ(γ̂)
}
fγ|γ̂(γ|γ̂)dγ ≤ B0

⇔ Smexp

{

−ρ20γ̂
(1− ρ20)Γ̂

(1− Sm)

}

≤ B0

(C.9)

SinceSm ≤ Am, to satisfy the BER condition it is sufficient to have

Amexp

{

−ρ20γ̂
(1− ρ20)Γ̂

(1− Sm)

}

≤ B0 ⇔
−1
A′

m
ln( B0

Am
)

ρ20
Γ
Γ̂
γ̂ + (1− ρ20)Γln(

B0
Am

)
≤ Ψ(γ̂). (C.10)

Since (6.26) implies (C.10), the lemma is proved.
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C.4 Calculating the Gradient of Rate

Expandingδ̃+i in (6.51) using standard matrix inversion formulas, we obtain

δ̃+i =
1

N

K∑

j=1

tr

(
QjZij(δ

+
i )Ψ

+
i

σ̄2

)

where

Ψ+
i =

(

INj
−Q

1
2
j H̄

H
ij(∆

+
i )

−1
H̄ijQ

1
2
j

Zij(δ
+
i )

σ̄2

)

(C.11)

and

∆+
i = (1 + δ̃+i )IMi

+
K∑

j=1

H̄ijQ
1
2
j

Zij(δ
+
i )

σ̄2
Q

1
2
j H̄

H
ij. (C.12)

Using the fact thatZij(x) andQ
1
2
j commute, (6.54) reads

R̄+
i = log

∣
∣Fi(δ

+
i )
∣
∣−

K∑

j=1

log
∣
∣Zij(δ

+
i )
∣
∣−Nσ̄2δ+i δ̃

+
i (C.13)

in which

Fi(x) = (1 + x̃)IMi
+

1

σ̄2

K∑

j=1

H̄ijZij(x)QjH̄
H
ij . (C.14)

DefiningdnX = ∂X
∂V∗

n
dV∗

n, the differential ofR̄+
i w.r.t. Vn

dnR̄
+
i = tr

(
(Fi(δ

+
i ))

−1dnFi(δ
+
i )− (Zin(δ

+
i ))

−1dn(Zin(δ
+
i ))
)

=
1

σ̄2
tr

(

H̄H
in(Fi(δ

+
i ))

−1H̄indn
(
Zin(δ

+
i )Qn

)
)

− tr
(

(Zin(δ
+
i ))

−1
dn(Zin(δ

+
i ))
)

= tr
(
Ω+

indnQn

)
(C.15)

where

Ω+
in = Zin(δ

+
i )

(
1

σ̄2
H̄H

in(Fi(δ
+
i ))

−1H̄inZin(δ
+
i ) + δ+i σ

2
inINn

)

. (C.16)

and the last equality is resulted by using the facts thatd(XY) = d(X)Y+Xd(Y), d(X−1) = −X−1d(X)X−1

andtr(AB) = tr(BA).

Considering the normalization factorsλj , note that the power constraint is always satisfied. In other

words the optimization finds the precoding matricesVj such that the normalized version of the corre-

sponding covariance matricesQj = λjVjV
H
j will maximize the expected sum rate. It can be shown that

dnλn = − λ2
n

Pn
tr
(
VndnV

H
n

)
, therefore the differential ofQn can be evaluated as

dnQn = dn
(
λnVnV

H
n

)
= −λ2

n

Pn
tr
(
VndnV

H
n

)
VnV

H
n + λnVndnV

H
n . (C.17)



Appendix C. 110

Inserting (C.17) into (C.15) yields

dnR̄
+
i = −λ2

n

Pn
tr
(
Ω+

inVnV
H
n

)
tr
(
VndnV

H
n

)
+ λntr

(
Ω+

inVndnV
H
n

)

= λntr





[

Ω+
inVn −

tr
(
Ω+

inVnV
H
n

)

tr (VnVH
n )

Vn

]T

dnV
∗
n



 .

(C.18)

C.5 Proof of Lemma 14

From the fact that, forA,B � 0, 1
N tr

(
A(IN +B)−1

)
≤ ‖A‖, we haveg(Q, δ, δ̃) ≤ (M/N)σ−2(1 + δ̃)−1

and g̃(Q, δ, δ̃) ≤ σ−2‖QC̃‖ , U . Define nowδ̂ = U
δ̃
− 1 which is one-to-one with̃δ and therefore we can

equivalently discuss about the solution of the following system of equations obtained by a fixed-point algorithm

similar to Algorithm 3,






δ = h(Q, δ, δ̂) = g(Q, δ, U
1+δ̂

),

δ̂ = ĥ(Q, δ, δ̂) = U
g̃(Q,δ, U

1+δ̂
)
− 1.

(C.19)

To prove convergence of the fixed-point algorithm to a uniquepositive solution, we use a result onstandard

interference functions.

Definition 2 ( [116]). A functionh(x) = (h1(x), ..., hn(x)) in which hi : Rn
+ → R+, i = 1, ...,K is a

standard interference function if the following assumptions hold for alli ∈ {1, ..., n}:

I. Positivity: hi(x) > 0 for all x ≥ 0

II. Monotonicity: if x′ ≥ x, thenhi(x′) ≥ hi(x)

III. Scalability: for α > 1, hi(αx) < αhi(x).

Also a vectorx is said to be a feasible point ifh(x) < x where the inequality is element-wise.

Theorem 9( [116]). If h is a standard interference function, and there exists a feasible x, then the fixed-point

equationh(x) = x has a unique solutionx∗, given as the limitx∗ = limt→∞ xt, where, for allt ≥ 0,

xt+1 = h(xt)

andx0 > 0 is arbitrary.

In our setting, we definex = (δ, δ̂) andh(x) = (h(δ, δ̂), ĥ(δ, δ̂)). Then, from Theorem 9, we only need

to prove thath is a standard interference function that admits a feasible point. This implies the convergence of

Algorithm 3 (considering the one-to-one map betweenδ̃ andδ̂ at each iteration).

A feasible point can always be found since the functionsh and ĥ are bounded for every positive(δ, δ̂).

It is also easy to show that the positivity assumption alwaysholds. For monotonicity, we have to show that
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δ′ ≥ δ andδ̂′ ≥ δ̂ results inh(δ′, δ̂′) ≥ h(δ, δ̂) andĥ(δ′, δ̂′) ≥ ĥ(δ, δ̂). Forδ′ ≥ δ, we gettr
(

δ′Q
1
2 C̃Q

1
2

)

≥
tr
(

δQ
1
2 C̃Q

1
2

)

. Therefore we have

tr
(

IN + δ′Q
1
2 C̃Q

1
2

)

≥ tr
(

IN + δQ
1
2 C̃Q

1
2

)

. (C.20)

Therefore using this relation

tr(A−1 −B−1) ≥ 0 ⇔ B � A (C.21)

it is clear that
(

IN + δQ
1
2 C̃Q

1
2

)−1
�
(

IN + δ′Q
1
2 C̃Q

1
2

)−1
. (C.22)

Also from δ̂′ ≥ δ̂, we have

σ2

(

1 +
U

1 + δ̂

)

IM � σ2

(

1 +
U

1 + δ̂′

)

IM . (C.23)

Multiplying both sides of (C.22) bȳHQ
1
2 and its Hermitian from left and right respectively, adding the result

to (C.23), and using the equivalence in (C.21) results inh(δ′, δ̂′) ≥ h(δ, δ̂) in which from (C.19),h(δ, δ̂) is

written as

h(δ, δ̂) =
1

N
tr

(

σ2

(

1 +
U

1 + δ̂

)

IM + H̄Q
1
2G(δ)Q

1
2 H̄H

)−1

. (C.24)

Using the same line of arguments, monotonicity ofĥ is then proved. Here we prove the scalability ofh.

We need to show that forα > 1, h(αδ, αδ̂) < αh(δ, δ̂) (and similarly for ĥ). Sinceα > 1, we have

αtr
(

IN + δQ
1
2 C̃Q

1
2

)

> tr
(

IN + αδQ
1
2 C̃Q

1
2

)

. Therefore using (C.21) we have

G(αδ) ≻ 1

α
G(δ). (C.25)

Also we can conclude that

σ2

(

1 +
U

1 + αδ̂

)

IM ≻
σ2

α

(

1 +
U

1 + δ̂

)

IM . (C.26)

Again multiplying both sides of (C.25) bȳHQ
1
2 and its Hermitian from left and right respectively, adding the

result to (C.26), and using (C.21) results inh(αδ, αδ̂) < αh(δ, δ̂).
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