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Abstract

Interference is the source of the most serious performamgairment in today’s wireless communica-
tion networks. Recent research results have highlightedniiportance of interference coordination in such
networks. There are several schemes that effectively neatieginterference assuming that the state of the
channel is known at the transmitters. However, having acteperfect channel state information (CSI) at
the transmitters is not a realistic assumption. The aim &f dissertation is to study and develop methods
enabling interference coordination in a wireless netwohilevhaving imperfect channel state information at
the transmitters.

In the first part of this thesis, advanced channel state septations are employed in order to cope with
the problem of interference when the transmit signals asiggded based on imperfect CSI available at the
transmitter. Efficient quantization of the CSl is investaghto reduce the requirement for information exchange
over the network and in particular feedback to the trangmsitt Different scenarios are considered where
availability of CSI at the transmitter is crucial to achidvigh throughput.

In the second part of this thesis, a particular type of CSlarfgztion is considered where the available
CSIl at the transmitter is completely outdated with respethé current state of the channel. A simple method
is proposed to exploit the outdated CSI in a multiple-inpuftiple-output (MIMO) two-user Gaussian inter-
ference channel (IC). The proposed scheme is shown to &ctlievoptimal degrees of freedom (DoF) of this
channel.

In the third part of this thesis, it is assumed that the tratters have access to local CSl and the process
of designing the transmit signal is distributed over themoek. A message-passing framework is proposed
to effectively model the information exchange over the mekwvhen the goal is to obtain an interference
alignment (IA) solution in a distributed manner.

In the last part of this thesis, the uncertainty about thenohks at the transmitters is modeled as an inde-
pendent additive Gaussian error. This simplifies the parémrce analysis and allows for the optimization of
the transmit signal to ensure robustness against chanoettainty and obtain solutions that are adaptive to the
channel condition. Two different approaches are proposedinimize the impact of the residual interference
caused by the channel uncertainty.






Kurzfassung

Interferenz ist die Quelle der meisten ernsthaften Effizéémbul3en in heutigen drahtlosen Kommunika-
tionsnetzen. Erst kirzlich veréffentlichte Ergebnissedmdie Wichtigkeit von Interferenz-Koordination in
solchen Netzen gezeigt. Hierbei gibt es mehrere Methodéheréie Interferenz managen unter der Annahme,
dass der Zustand des drahtlosen Kanals (CSI) beim Sendanriiekt. Doch leider ist diese Annahme nicht
realistisch in der Praxis. Daher ist das Ziel dieser Dissiert die Entwicklung und Analyse von Methoden fiir
die Interferenz-Koordination in Drahtlosnetzen unter &anahme dass der Sender nur Uber unvollstandiges
Wissen Uber den Kanalzustand verfiigt.

Im ersten Teil dieser Arbeit werden fortgeschrittene Kamstandsmodelle herangezogen um das Inter-
ferenzproblem zu I6sen wenn das Sendesignal aufgrundlstéraliger CSI generiert wird. Darlber hinaus
werden effiziente Quantisierungsmethoden von der CSl suntht um den bendétigten Informationsaustausch
im Netzwerk, insbesondere die Informationsruckfihrunm Zender, zu reduzieren. Auf3erdem werden ver-
schiedene Szenarien nédher betrachtet, bei denen die Warkait von CSl am Sender wichtig fiir das Erreichen
von hohen Durchsétzen ist.

Im zweiten Teil wird eine spezielle Art der unvollstandigé&| naher betrachtet. Hierbei wird angenom-
men, dass das verfligbare CSI Wissen Uberholt im Bezug zumelbtt Zustand ist. Eine einfache Methode
wird vorgestellt, welche dennoch das veraltete WissenriaraiMultiple Input Multiple Output (MIMO) Sys-
tem mit zwei Benutzern und Gauf3schen Kanal ausnutzt. Sendtich wird gezeigt, dass die vorgeschlagene
Methode die optimalen Freiheitsgrade (DoF) des Kanalsidgzsn

Der dritte Teil befasst sich mit einem Szenario bei dem ded&e Zugriff auf lokales CSI hat und der
Generierungsprozess des Sendesignals im Netzwerk vevbadl Hierfuer wird ein Message-Passing Algo-
rithmus vorgestellt welcher das Interferenzausrichtpngsiem verteilt im Drahtlosnetzwerk effizient 16st.

Zuletzt wird die Unsicherheit des Wissens Uber den Kanaladbhangiger additiver Gau3scher Fehler
modelliert. Dieser Ansatz vereinfacht die Leistungsasmlynd ermdglicht eine Optimierung des Sendesignals
um eine Robustheit gegeniiber Kanalunsicherheiten sigietien und um Losungen zu bekommen, welche
adaptiv gegenuber des Kanalzustands ist. Schlussendictiew zwei verschiedene Methoden welche den
Einfluss der restlichen Interferenz verursacht durch dieakinsicherheit prasentiert.
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Notation

var(-) The variance of its argument

log Logarithm in base 2

N(r,0?) | The real Gaussian distributions with meaand variancer>

CN (r,o?) | The complex circularly symmetric Gaussian distributioritwneanr and variancer?
a(n) Thenth element ok

A(m,n) The (m, n)th entry ofA

Ex{} Average of its argument

()T Transpose of its argument

()" Conjugate of its argument

()" Hermitian transpose of its argument

tr(-) Trace of its argument matrix

span(-) Span of its argument matrix

diag(+) Diagonal matrix with the elements of the argument as itsatiagelements
Bdiag(-) Block diagonal matrix with the elements of the argument &blibcks
rank(-) rank of its argument matrix

II]l Determinant/absolute value of its argument

II| 7 Frobenious norm of its argument matrix

Iy N x N Identity matrix

® Kronecker product

A>-B A-B is positive semi-definite

Vap the complex Stiefel manifold

Gnp the complex Grassmann manifold

~i the set{1,...,i —1,i+ 1,... K} whereK is the number of users
N(a) the set of neighbors of a noden a graph

C() the column space of its argument matrix

R(-) the row space of its argument matrix

Amax(*) The largest eigenvalue of its argument matrix

Vmin (*) a truncated unitary matrix spanning the space associatédive

d weakest eigenvalues of the argument matrix




Introduction

1.1 Importance of Interference Management

Wireless communication has developed significantly in thet geveral years alongside with the growth in the
amount of information exchange as a result increasing ddrfarmobile connectivity, new wireless services,
and smart phones. New wireless technologies facilitatatloess to various services efficiently with minimal
consumption of time and resources. The quality of infororatransfer in a wireless link is determined by sev-
eral factors including the propagation conditions, irdeghce levels and properties of the underlying frequency
spectrum.

Interference management plays a crucial role in futurelessesystems as the number of users sharing the
same communication medium is growing rapidly. In fact, thant of interference in the system scales with
the number of users. This interference may cause a severaddgign in the system’s performance. With the
rapid increase in the usage of wireless systems, contiriexediopment of wireless systems becomes inevitable
to keep up with new expectations with minimum cost.

The general approaches to achieve higher system capaditipecaategorized as improving the spectral
efficiency or increasing the bandwidth. One can also redoeghysical distance of the interfering devices,
e.g., in cellular systems, it amounts to deploying more [satons. However, the cost associated to each
approach needs to be considered. Higher spectral efficarhg physical layer necessitates the use of multiple
antenna techniques or spectrally efficient transmissiovefeams which increases the cost of the devices.
Increasing the bandwidth also increases the cost of the@eshile facing the bandwidth scarcity problem. In
cellular systems, increasing the density of base statialts for decreasing the reuse factor which increases
the interference among the reusing radio links. Therefoi@e complex techniques are required for handling
interference. Finally, in the design of future networks tasks related to network deployment, optimization
and interference management need to be adaptive. From ¥isicahlayer point of view, dynamic methods
that facilitate avoiding, mitigating, and coordinatingdrference are crucial.
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Shannon’s work on the two-way channel in [1] was the starthef $tudy of interaction between non-
cooperative users sharing the same channel. The capachg tio-user interference channel became a fun-
damental problem regarding interaction between intereusers. In this channel, two transmitters (TX) com-
municate independent information to their correspondeweivers (RX) in a shared channel. For more than 30
years, the characterization of the channel’s capacityoregas been an open problem. Meanwhile significant
progress is achieved in the area and approximate chawatteris are available now [2], [3]. For some special
cases such as the strong and very strong interference doa@muoka class of deterministic interference channels
the exact capacity region has been characterized [5, 6,13%.existence of different achievable schemes for
those cases suggests that finding a universal achievatdensdor this problem is not likely.

By introduction of MIMO technology an interesting direaiifor expanding the capacity of wireless links
was created. The devices could achieve rates beyond theityaibeat was achievable by single-antenna sys-
tems. Similar to the limitation on transmit power and bardttvi there are also many limitations that prevent the
devices to arbitrarily increase the capacity by using aitrarly number of antennas. For example, to achieve
the potential gain of MIMO systems, the antennas need todmegdlsufficiently far apart to avoid deficiency in
the equivalent channels. Therefore devices with a sizadiinh cannot support more than a few antennas.

Despite the capacity improvement due to MIMO systems, withiticreasing density of wireless devices,
interference still remains the main problem and is morelehging in MIMO systems as it appears at multiple
antennas. The relevant model for a network consisting ofdwmore interferers which are equipped with
multiple antennas is the{-user) MIMO IC. In this model the transmitters encode th@&nsymbols without
cooperating with each other and similarly the receiver©dedheir intended signal without any exchange of
information with each other. Cooperation is defined as slyaany information about the transmitted symbols.
Other types of coordination such as sharing the channé istiatrmation are allowed and in reality this type of
information sharing requires little overhead comparediticcboperation. Similar to the single antenna systems
where the symbols are assigned to different time/frequsnbychannels, in the space domain, the symbols can
also be allocated to different spatial directions. In otwerds, at any time/frequency sub channel, multiple
symbols can be multiplexed in several spatial directionsedding on the number of antennas. This task is
usually performed by applying an appropriate precoder eéadtita symbols before sending the signal over the
antennas. If the data symbols of each user are placed in moolactor, the precoder will be a matrix whose
columns are the spatial directions corresponding to eaciibsly

Any matrix with proper rank and dimensions that satisfiesptwer constraint can act as the precoding
matrix. A very interesting problem is to find the best precadatrices for transmitters that optimizes a perfor-
mance metric such as the total communication rate achieatar of the network. The problem is challenging
as it involves several precoding matrices that need to hienatd jointly. A precoding matrix at one trans-
mitter also affects the performance of other users sincéfdtta the amount of interference seen by other
receivers. The fact that the optimization variables ardioonus valued matrices also adds to the complexity
of the problem.

Another aspect of precoder optimization is the fact thabhtémization determines the precoders that need
to be employed at the transmitter side. This requires tieaéltessary information for the optimization problem
to be gathered at the transmitters. This amounts to feedifackannel state information from the receivers
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to the transmitters. In other words, every transmitter agechave access to the global information about the
channels in order to compute its own precoder. With suchditoins any method that can avoid or reduce the
CSl feedback requirement will be of great interest. On theiohand, distributed schemes that rely on local
information and are superior to classical approaches aieede Since such an optimization problem is usually
intractable and requires global CSl, any simplificatiort tten lead to tractable sub problems exploiting local
CSI would be another line of investigation. Interferencigrahent is a new method that provides a simple
solution to the problem which is optimal at high SNR. Thisusion can be utilized and improved to reach
better solutions at different SNR regimes.

In the past, interference management has been performdimeff It has required exhaustive network
planning effort and has been a centralized procedure byeatiis approach is a robust and reliable approach.
On the other hand, it is not flexible and is not efficient in terof spectrum usage and the overall cost of the
network. In the future, interference management will beeanore dynamic, decentralized and autonomous.
The aim is that future wireless systems achieve high capaait at the same time, the deployment, operation,
and maintenance of the network would become cheaper andesimp

1.2 Contributions

The focus of this dissertation is on multi-user transmissechniques that exploit CSl at the transmitter side.
We consider different types of CSI imperfection at the traitier and devise appropriate schemes to deal with
interference. When quantized CSl is assumed to be avaidlhiie transmitter, a limited feedback scheme is
proposed to reduce the feedback requirement for interderatignment. The proposed strategy is proven to be
also effective in CSl sharing problem when the transmitercpiire their local CSI by reciprocity. Additionally,
employing IA, distributed computation of the precodersigdssed using message passing arguments. For a
two-user IC, a general scheme based on retrospective 1Admped to achieve the DoF region using outdated
CSIT. Furthermore, considering the effect of imperfect @Slan additive noise, methods are proposed to
increase the throughput in thi§-user MIMO IC. The preliminary concepts are introduced irater 2 and
the main contributions of this dissertation are outlinecChmapters 3 to 6. The thesis is concluded in Chapter
7 following by an outlook for possible future continuatiohtbis work. Detailed proofs and derivations are
provided in the Appendices. In the following, a descriptanmportant contributions in each chapter is given.

Chapter 3

While CSI at the receiver is often assumed to be perfect, plo#xhe CSI at the transmitter, the CSl is
usually quantized and fed back to the transmitters. Coimogmulti-user systems, the question of the scaling
of the size of the codebook used for CSl feedback with iningasignal-to-noise ratio (SNR) has been explored
in a number of recent works. Generally speaking, using ifepgelCSI at the transmitter (CSIT) to compute
the transmit precoders in a multi-user system causes énggrfe at the receiver side. Since the power of this
interference scales with the transmit power, it is necgsgacompensate any increase in transmit power by
decreasing the quantization error affecting the CSIT, éfititerference at the receiver is to remain bounded.
This has led several authors to study how the codebook saddscale with the SNR in order to preserve
the degrees of freedom achievable with perfect CSl, forrag¢¥eedback schemes. In the first part of this
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chapter we analyze this problem for theuser MIMO IC when the CSl is fed back from the receivers to the
transmitters. This scenario arises in frequency divisioplex (FDD) systems where feedback is necessary to
provide the CSI to the transmitters.

A similar quantization problem arises in time division dewp(TDD) systems. For TDD systems, every base
station can estimate its downlink channels from the uplmkgmission phase thanks to reciprocity. In such
systems, the interference channel is adopted very ofteariicplar due to data sharing limitations of network
MIMO. In the second part of this chapter we investigate the €fring problem between the transmitters.
Similar to the FDD case, we provide scaling laws to presemeelioF that can be achieved with perfect CSI
sharing.

In Chapter 3 we present a new CSI quantization scheme for &k the K-user constant MIMO IC. The
salient points of our contribution are:

» The proposed feedback scheme exploits the invariancdgitAt equations to reduce the dimension of
the quantization space, without requiring the heavy ikeggirocessing of e.g. [7].

» We characterize the scaling (with SNR) of the codebook simker which the proposed feedback scheme
achieves the same DoF as with perfect CSIT. This scalingoasho be better (slower) than the scaling
obtained using the schemes from [8] or [7] for all system disi@ns where IA is feasible.

» At non-asymptotic SNR and for a fixed codebook size, the gsed scheme is shown by simulation to
achieve better sum-rate performance than the methods 8pan [7].

» As a by-product of our analysis, we introduce a statisticatiel that faithfully captures the properties of
the quantization error of RVQ on the Grassmann manifolddogd codebooks; we use it to generate ro-
tations that closely approximate the true quantizatioaresf RVQ. This tool enables numerical analysis
of general Grassmannian RVQ schemes for large codeboak sitbout requiring the generation of the
codebook nor the exhaustive search normally associatédtigtquantizer.

» A similar quantization scheme is proposed for CSI sharm@DD systems which reduces the sharing
requirement.

 For the CSI sharing problem, we characterize the scalirith @NR) of the codebook size under which
the proposed CSI sharing scheme achieves the same DoF gsevfiht CSIT.

» Global optimization problems, i.e., sum rate maximiza@md mean square error minimization problems
are considered and then decoupled into local optimizatioblpms using the proposed IA filters.

» Methods are proposed to exploit the accuracy of the locala€#dividual transmitters and also incor-
porating the effect of direct channels.

Chapter 4

In this chapter, we focus on a scenario where the availabletiBe transmitter is outdated. This assump-
tion is valid for many practical settings where the coheeetime of the channel is too short compared to the
time required for the arrival of feedback. We consider a twwer MIMO IC where each transmitter has access
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to the channel matrices with a delay such that the instaoten€SI| becomes uncorrelated with the available
CSI. Interestingly it has been shown that the existence @i sutdated CSI at the transmitter can still increase
the DoF of the network [9] compared to the case with no CSI. DbE region with outdated CSI has been
characterized for MIMO BC in [10] and MIMO IC in [11] where tlaehievable schemes are based on feedback
and retransmission of the overheard interference at trevess. We try to unify the achievable schemes and
provide a compact representation for various configuratafrantennas in MIMO IC. The contributions of this
chapter can be summarized as follows :

* We introduce a model to apply retrospective interferenigmiaent for MIMO IC with outdated CSIT.
» We propose a unified DoF-achieving scheme for the MIMO IGwititdated CSIT.
» The achievable DoF is verified analytically.

» We provide insights about extending our scheme to cogelahannels.

Chapter 5

In this chapter, we introduce an iterative solution to thabpem of interference alignment (1A) over MIMO
channels based on a message-passing formulation. We prap@sameterization of the messages that enables
the computation of IA precoders. Our scheme is particulartgresting in networks with a large number
of users since centralized approaches are not feasibleodihe increasing amount of information exchange
and the growing computational complexity. The proposednfdation can also be applied to more general
performance metrics and is not restricted to IA.

The contributions of this chapter are as follows:

* We introduce a min-sum algorithm capable of computing theihecoders in a distributed manner, by
associating a suitably chosen graph to the |IA problem.

* We propose a parameterization of the messages that eribblese of this algorithm over continuous
variable spaces — under this parameterization, suitalgaimations of the messages can be computed
in closed-form.

» We show that the iterative leakage minimization algoritbthlGomadam et al. [12] is a special case of
our message-passing algorithm, obtained for a particaladle.

» We evaluate numerically the performance of the proposdtiodeand compare it to the classical iterative
leakage minimization.

» We discuss a distributed implementation.

Chapter 6

In this chapter, an additive Gaussian model is assumed éourtlaertainty associated to each channel co-
efficient. For simplicity the uncertainty is assumed to b#ejpendent over different antennas. Two different
criteria are considered in this chapter to analyze and daptitine performance in MIMO IC. We aim to max-
imize an expectation of the throughput while satisfying teodeonstraints. In the first contribution, we focus
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on discrete AMCP and aim to find the best transmission paemné& adapt the precoders determined by IA

to the channel when the precoders are designed based orfectgesl. In this part, we assume a sum power

constraint over the users and enforce a maximum BER conistren the second contribution, we maximize

the expected throughput directly without restricting thegoders to be designed by IA. In this part, individual

power constraints are assumed for the users. The contnibatieach part can be summarized as follows:
Link adaptation through discrete AMCP:

* We analyze the statistics of the imperfect CSI for MIMO IGHRA.
* We design an adaptive transmission scheme based on ttedbéwamnperfect CSI.

« In particular, we maximize a weighted sum of the averagesrptovided that a certain set of bit-error-rate
and power constraints are satisfied by dynamically adajgtioijng, modulation and power settings.

» We provide simulations to show the accuracy of the apprations and the effectiveness of the proposed
scheme.

Covariance matrix optimization:

* We propose a new method to determine precoding matricésadhgeve local maxima of the expected
sum rate in MIMO IC with imperfect CSIT. In particular, thepected sum rate of the K-user MIMO
IC is approximated by a deterministic equivalent to whiclitarative gradient scheme is applied to find
local maxima of the approximated sum rate. The method isdbasea random matrix analysis of the
capacity of large dimensional Ricean channels.

» The method is shown to be superior to the conventional nadstsach as unknown error model or Gaus-
sian error model (with known variance) via simulations.



Preliminaries

2.1 Wireless Communications

Wireless communications is one of the important areas icdmemunications field nowadays and it has been
under investigation for more than 100 years. Developmenewf devices with higher computation capabilities
and the growing interest for wireless data transfer in ciffie applications have sparked a lot of research activ-
ities to deal with the long standing problems such as ther@dtiransmission strategy in different channels.

Increasing the reliability and efficiency of wireless sysseis possible through different means. How-
ever these improvements are usually limited by two majobleros: fading and interference. Fading which
represents a variable channel strength, is resulted foparpasition of signals coming from multiple paths
with different channel conditions. The other problem whigfses in multi-user communications is interfer-
ence which is created when a receiver listening to its tratsmalso receives unwanted signals from other
transmitters operating simultaneously on the same frexyuleand.

Improving the spectral efficiency and maintaining a rekabbmmunication calls for careful design of
wireless systems considering the effects of fading andfarence. A common approach is to model their
effects as simple impairments (e.g., to consider intenfezeas additive noise). Such approaches usually lead
to robust solutions while being sub-optimal. Recent dguslents suggest that one can exploit fading and
interference to reduce their harmful effect. For exampbesgime codes exploit channel fading to improve the
reliability [13] and interference is harnessed in methagshsas interference alignment to improve the spectral
efficiency [14].

A cellular network is an important example of a wireless raw A cellular network is a multi-user
communication environment which exhibits interaction agnaodes under fading and interference conditions.
A cellular network is composed of a number of cells where eadlis identified by a base station (BS) and a set
of mobile users with good communication coverage from the B cells are usually modeled as hexagonal
regions with the BS at the center of the cell. In reality theation of the BSs are irregular and the users are
assigned to each BS according to the strength of their chémward a BS. Therefore the cell boundaries will

7
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also have irregular shapes. The BSs are connected to canitalvia wired networks. The information sent
from different users to the BSs arrive at the central unit$ subsequently dispatched to their destinations via
other BSs. As each BS communicates with several users, il capable of performing tasks such as
multiplexing different signals destined for different vs€in downlink) or separating the signals coming from
different users (in uplink).

Other type of networks with some similarities to the dowklof cellular networks are the broadcasting
systems such as TV and radio. However they operate on différequency bands and have different data
rates. Wireless local area network (LAN) is another typeatfuorks designed to connect the devices in a local
area with a high data rate. These networks have a centralwbitdt serves the other nodes of the network
(similar to the role of a BS in cellular networks). On the athand, a different type of local area networks is
the ad hoc network in which all the nodes participate in nétvaoganization in a decentralized manner.

2.1.1 Channel Capacity

The communication rate can be increased by increasing dnertrission bandwidth or increasing the trans-
mission power. However bandwidth resources are scarcelendedvices have limited transmission power.
Therefore the task of efficient exploitation of such researis of great interest for researchers. The notion of
channel capacity was first introduced by Shannon. It is a areasf the maximum rate that can be commu-
nicated reliably over a channel [15, 16]. Considering alshiagtenna fading channel with the following input
output relationship

Y=aX+W, (2.1)

where X, Y andW are the transmitted signal, the received signal and noseeotively andx is the time-
varying channel fade parameter, the capacity is
C = Blog(1 + g—ffo). (2.2)

In (2.2), B is a total bandwidth)Vy is noise power spectral density, aRds transmit power. As the capacity
depends on the channel fade, it will be a random variablereFtie ergodic (or mean) capacity [16], is often
adopted as a performance metric for the fading channel |]Axftich is the expectation of the capacity over
different time instances. If the channel fadecan be modeled as a stationary and ergodic stochastic proces
over time, the ergodic capacity can be computed by takingxpectation of the capacity over the distribution
of the channel fade.

2.1.2 Degrees of Freedom

In many channels including the interference channel, whraet characterization of the capacity is not avail-
able, approximate capacity characterizations are usatblgze the performance of the channel. In many cases
the computation of approximate characterizations isatadetand they become exact in asymptotic cases. One
of the useful metrics that is used as a proxy for capacityashltiplexing gain or degrees of freedom (DoF).
DoF is the pre-log factor in the capacity expression at hiyRR$egime, i.e.,
C(SNR)

DoF = T
T SNRoeo log SNR

(2.3)
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The DoF is a measure of the number of independent paralleingttes embedded in a network at high SNR
that can be utilized to transmit information. For many clesmnwvith unknown capacity regions, DoF regions
have been characterized and subsequently used as a mefabharperformance which allows us to design the
transmit signal that is optimal at high SNR.

2.2 Multiple Antenna Communications

From (2.2) itis clear that the capacity in a single antenriatgo point link is limited by bandwidth and power
resources. It has been shown that employing multiple anteahthe transceivers can lead to a capacity growth
without requiring extra bandwidth or power [20], [21]. In MD systems the created paths between every pair
of antennas are exploited to communicate with higher dé¢s & to increase the reliability. In general, MIMO
systems can provide two types of advantages: diversity graghspatial multiplexing gain [22]. Diversity is
traditionally exploited to combat the fading and improvéatglity in wireless systems. Sending multiple
replicas of the information signal through independenirfadinks is the simplest example of diversity, where
the probability that at least one or more of these links erpees a fade increases. Therefore, more reliable
communication can be achieved by increasing the numberdefpiendent links. Assuming a MIMO point
to point link with A/ transmit andN receive antennas, the maximum achievable diversity gaagigl to
N M if the fading corresponding to different antenna pairs adependent. Space-time coding [13,23,24] is a
coding/modulation scheme to maximize the diversity ganontanother point of view, fading can be beneficial
by increasing the degrees of freedom [20, 25]. The use ofiplallantennas at both sides creates multiple
parallel data pipes within the same frequency band. By tnitting independent information through these
spatial directions, the data rate can be increased. Thiegsads called spatial multiplexing which increases the
spectral efficiency in MIMO systems without extra power aongtion and is therefore very attractive. In [20]
and [21], it has been shown that at high SNR, the ergodic dgpac a MIMO channel withM transmit, N
receive antennas, and independent and identically disddb(i.i.d.) Rayleigh fading between antenna pairs is
given by

C' = min(M, N)log(SNR) + O(SNR ™) (bps/Hz), (2.4)

which implies that the use of multiple antennas at both side®ases the capacity at high SNR linearly with
min(M, N). Itis a significant improvement over the single-antennadesys This linear capacity scaling of
MIMO systems requires perfect channel knowledge at thewecand a scattering environment such that the
channel matrix has full rank. Clearly the DoF for this chdngenin(M, N). In recent years, several schemes
have been proposed to exploit the spatial multiplexing gaMIMO systems (see, for example, [25]).

The channel state information is not required at the trattemio achieve the DoF of a point to point
MIMO system. However, it has been shown that in multi-usenacios, the CSI needs to be exploited at the
transmitter side in order to achieve the optimal DoF. Thidus to the effect of inter-user interference which is
an impairment when several users operate on a shared figghand.

Spatial degrees of freedom have been characterized foratemeltiuser communication scenarios with
multiple antenna nodes. T&/, N) point to point MIMO channel hasiin (M, N) degrees of freedom [20,21],
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the (M7, Ms, N) multiple access channel hasin(M; + Ms, N) degrees of freedom [26], th@//, N1, N»)
broadcast channel (BC) hasin()M, N1 + N») degrees of freedom [27-29], and th®/;, My, N1, N») inter-
ference channel hasin(M; + My, N1 + No, max(Mj, No), max(Ms,, N1)) degrees of freedom [30], where
M; (or M when only one transmitter is present) aiNg (or V. when only one receiver is present) indicate
the number of antennas at titl transmitter and receiver, respectively. For fieuser MIMO IC, the DoF
region for the general antenna configuration setting is le@trc For symmetric antenna settings, under certain
conditions, the total DoF is characterized in [45].

2.3 Interference in Wireless Networks

Interference plays an important role in wireless commuigoawhen multiple uncoordinated links share a
common communication medium. In wireless systems, intenfee is usually treated in one of two ways:

« orthogonalize the communication links in time or frequerso that they do not interfere with each other
at all.

« allow the communication links to be active simultaneousigd treat each other’s interference as an
additive noise.

Clearly both approaches can be sub-optimal. The first apprioses the chance of transmission in both links,
regardless of the strength and the shape of the potentefenénce. The second approach treats interference
as pure noise while it can be a structured signal that campallg be exploited or manipulated to mitigate its
effect. A basic information theoretic model to study thearahtransmission scheme is the two-user Gaussian
interference channel, where two point-to-point links watiiditive white Gaussian noise interfere with each
other (Figure 2.1).

2.3.1 Interference Management

Interference created by non-intended transmitters is ewitable phenomenon in wireless multi-user systems.
Devices operating on a common frequency band, if not deglaysufficiently distant geographical positions,
will suffer from interference. Classical scheduling aggmlees such as multiplexing in time, frequency, etc, are
known to provide robustness against interference whilggrao be sub-optimal in terms of spectral efficiency.
The rapid growth of demand for high rate data transfer aloitly wcreasing number of users calls for optimal
resource management methods. Therefore the general tastedérence management becomes more and
more important in the design of future wireless systems. @lgo calls for adaptive design of the system as the
interference management strategies depend on the netwantk |
First we discuss briefly two dominant types of interferencwireless networks:

Multiple Access Interference

Multi-user communication systems employing multiplexmgthods are liable to multiple access interference
(MAI). This MAI is due to non-orthogonality associated to ltipplexing methods. A simple example is the use
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Figure 2.1 Interference Channel

of non-orthogonal spreading codes in code division mdtgtcess (CDMA) systems. The systems that are
designed to have orthogonal multiplexing in time or fregryeare also subject to MAI due to synchronization
errors or multi path effects.

In MIMO multi-user systems where information for differamters is multiplexed in the spatial domain,
the transmission parameters are designed based on theetbtaia information. In these systems MAI occurs
when the parameters are designed based on inaccurate @3frahBmission parameters can be optimized to
minimize the impact of the resulting MAI. Several multi-u$¢IMO techniques are provided in [31].

Cochannel Interference

Cochannel interference (CClI), also known as inter-ceéirierence in the context of cellular networks, arises
when users in different cells transmit/receive informat@multaneously on the same frequency band. The
impact of CCl on the performance of the system depends onistende between the nodes operating on the
same frequency band. In cellular systems the frequency isatidided into a set of orthogonal subbands. The

number of cells which cannot use the same frequency sublmatiek inetwork is called the frequency reuse

factor. Figure 2.2 illustrates cellular frequency reusthweuse factor equal to 3. High reuse factor places the
interferers far away which reduces the CCI with the cost oféasing the bandwidth requirement.

The cellular deployments are often designed to toleratetaindevel of CCI for the users. However in ex-
treme cases such as cell-edge users where the interfeearoser to the non-intended users, CCl significantly
impacts the performance. Several resource managemenmhastean be employed to protect the cell-edge
users. The recent trend is to develop networks with reugerfaf 1 [32, 33]. Such systems are generally
interference-limited and it necessitates the use of pawarferference management schemes.



Chapter 2. Preliminaries 12

Figure 2.2 Cellular network with frequency reuse factor equal to 3.

Development of Interference Management

The processing capability of wireless devices has increesggdly in recent years which facilitates implemen-
tation of complex interference management schemes. Aéspdhksibility of installing multiple antennas at the
BSs has opened the way of introducing multi-user MIMO traissian techniques. The use of multi-carrier
systems such as OFDM based systems has resulted in a reliablefficient communication in multi path
environments.

Various advances such as MIMO, OFDM, and CDMA have conteithuid the improvement of the commu-
nication systems by providing different advantages. Withrapid growth in computational power and reduced
size of the devices, schemes that employ a combination sétheethods are becoming more popular. Along
with these approaches, scheduling and power allocatiohadsthave been able to adapt the designed schemes
to the dynamic nature of the networks.

The most recent development in interference managememe isew technique of interference alignment
[14]. In the interference alignment method, the transminhlsgls are precoded over a number of dimensions
(time, frequency, space, ...) constructing a subspacehwhkichaped to confine the resulting interference
in a low dimensional subspace at each receiver. In spiteefjtbat theoretical advances in this area since
its introduction, practicality of the method is limited tertain conditions and further understanding of the
practical implications is necessary. The extent of theiagpbns of the method has made it a hot topic and a
promising method which might be a part of interference manant technologies in future wireless systems.

2.3.2 Gaussian Interference Channel

The Gaussian interference channel (GIC) is the informatieoretic model for a network consisting of two
transmitter/receiver pairs operating over the same congation medium with additive Gaussian noise at the
receivers. Cooperation is not allowed between the tratsribr receivers meaning that the nodes cannot share
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their transmitted or received information. The capacigioa of the GIC is the set of rate paifR;, Rs) that
are simultaneously achievable for the two communicatioksli

Characterization of the capacity region for the GIC has lmenpen problem for more than 30 years. A
general solution to the problem is not known. However, sehettempts have been made such as approximate
characterizations or exact solutions in particular cagel as strong interference regime [2,34]. The scheme of
Han and Kobayashi [2] provides the best achievable schereeaivhthe information of each user is composed
of a common and a private part. The common information is taldeoded at both receivers which then
facilitates the decoding of the private part by removingittierference associated to the common part. There
are three main outer bounds available for the capacity megfithe GIC [35], [36], [3].

2.3.3 MIMO Gaussian Interference Channel

In MIMO GIC the nodes are equipped with multiple antennasthia channel the capacity characterization
is more complex than GIC. However the DoF region for this dehns characterized in [30]. When the
transmitters hav@/; and M, antennas respectively and the the receivers Bgvand N, antennas respectively,
assuming that perfect CSl is available at all nodes, thé Baig of the channel is

min(M1 + MQ, Ny + NQ, HlaX(Ml, Ng), min(Mg, Nl)) (25)

When more than two (multi-antenna) users share the same cgoitation channel, the model is called
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K-user MIMO GIC (Figure 2.3). In thé{-user MIMO GIC the DoF region for symmetric antenna cases is
characterized using interference alignment. An intemggtesult is that the total DoF increases with the number
of users. However the achievable schemes usually depenssamations that are hardly satisfied in practice.
In this dissertation, we usually focus on theuser MIMO GIC. The input/output relationship in this chahn

reads
K

yi = H;i Vix; + Z H;;V;x; + n; (2.6)
j=1,5#i
in whichH;; € CV*M s the channel matrix between transmitfeaind receive, V; € CM*4 andx; € C4
are the precoding matrix and the data vector of transmjtterspectively. Furthermora, is the additive noise
at receiveri whose entries are independent and distributed accordifig/1®, 1).

2.3.4 Interference Alignment

Moving from the two-user case to a larger number of usersafierging. Indeed, fokK -user IC(K > 2), the
Han-Kobayashi approach is not capable of managing thefenggrce. Interference alignment is an effective
method to deal with thé&-user IC. Interference alignment was first introduced ifj {8f7ere it was shown to be
capable of achieving the full DoF for certain classes of vwger X channels. Using this method, Cadambe and
Jafar [14] showed that, A -user Gaussian interference channel with varying charaiesgan achieve a total
DoF of % Interference alignment provides a solution which ford¢esihterference observed at each receiver
to be confined in a low dimensional space. This is done byrigrtie transmitters to create interference in
overlapping subspaces.

The method is pictured in Figure 2.4 wherein a 3-user MIMOd€ansidered and every node has 2 anten-
nas while every transmitter wants to communicate one daidaely Every transmitter uses a two dimensional
vector to precode its data symbol. Without alignment (Fegai#, (b)), only two transmitters can be active since
the received space is two dimensional and the receivertdistinguish between more than two independent
vectors. When interference alignment is achieved (Figude (3)), clearly all the three transmitters can send
their messages since the two interfering vectors at eadivercare aligned in one dimension. This alignment
is done by a careful choice of the transmit precoders alt@gathich necessitates the availability of global CSI
at all the transmitters and additionally the knowledge efshbspace at the receiver.

In the case of spatial interference alignment which willtbefocus of this dissertation, infd-user MIMO
IC with the channel matri#;; € CV*M petween transmittef and receivet, a solution to the IA problem
exists (see [38] and more recently [39, 40] for feasibilititaria — here we will assume that the dimensions
are such that the problem is feasible almost surely (a#.if)are exist full rank precoding matricég;, j =

1,..., K and projection matrice¥l; € CN*?¢ ;j =1,..., K such that
UMH,;;V; =0 Vi, je{l,...,K}, j#4, and (2.7)
rank (UI'H; V) = d. (2.8)

With this we effectively align the interference at each re@einto a N — d dimensional space, in order to
achieved interference-free dimensions per user. With the assumptiat the channel matrices are generic
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Figure 2.4. lllustration of transmit and receive vectors (a) with abylWithout interference alignment

(i.e., the channel entries are drawn independently aaegridi a continuous distribution), the second condition
is satisfied almost surely, hence we usually focus on thectrsdition. Clearly all the channel matrices (except
the direct channel®l;;, : = 1... K ) are required to design the precod&gi=1... K.



Interference Management with

Quantized CSIT

Interference alignment is known to achieve the optimal Dofhie interference channel. This implies that
at high SNR regime, IA improves the system throughput coeghén the conventional orthogonal medium-
sharing methods. However, implementation of IA in existhygtems faces a lot of challenges. The necessity
of CSI at the transmitters is one of the major issues whiclotgractical in many situations. Moreover, the
accuracy of the CSIT should increase as the SNR increasegén i guarantee the DoF gains promised by
IA [41]. While CSI at the receiver is often assumed to be mdrfo exploit the CSI at the transmitter, it is
usually quantized and fed back to the transmitters.

In this chapter, quantization schemes are provided whidhathe amount of information exchange in the
network. The proposed methods simplify the analysis of #réopmance degradation resulting from transmis-
sion based on imperfect CSI.

16
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3.1 Background

For practical SNR values, the effect of imperfect CSI on thaual information of the interference alignment
scheme is analyzed in [42], [43], [44]. Tools from random nixetheory are employed in [44] in order to find
an approximate expression for signal to interference phisenratio (SINR) of each stream when using IA
with imperfect CSI. This expression helps to have an es@méperformance measures like sum rate and bit
error rate (BER) for IA. In Chapter 6, a statistical analyisisonducted to approximate the sum rate under
BER constraints for IA with imperfect CSI. The approximataamn rate is optimized considering adaptive
modulation, coding and power while satisfying the BER craist.

Concerning multi-user systems, the question of the scalirige size of the codebook used for CSl feed-
back with increasing SNR has been explored in a number ohteaarks. Generally speaking, using imperfect
CSIT to compute the transmit precoders in a multi-user systauses interference at the receiver side. Since
the power of this interference scales with the transmit ppités necessary to compensate any increase in
transmit power by decreasing the quantization error affgahe CSIT, if the interference at the receiver is to
remain bounded. This has led several authors to study howdthebook size should scale with the SNR in
order to preserve the degrees of freedom achievable witbqeCSl, for several feedback schemes. The case
of the broadcast channel was considered first; assumingfaaiag precoding and single-antenna receivers, it
has been determined in [8] that scaling the amount of feddbiéswith (M — 1) log P (whereM is the number
of antennas at the transmitter aRdhe transmit power) at each receiver is sufficient to achieN®oF. For the
K-user IC (Figure (3.1, a)), most results on CSI quantizaiaas on transmission schemes based on IA, since
IAis instrumental in achieving the channel DoF [14,45]. Sfieally, in that context, the CSl feedback problem
is considered foL-tap frequency selective single-antenna links in [46], sehitis shown that the channel DoF
is achievable if the number of bits used to encode the CSésaesith K (L — 1) log P. This result was further
extended to th&v x M MIMO frequency-selective IC in [47], whenain{M, N}2K(RL — 1) log P bits (with
R = L%D are shown to be required to achieve the perfect-CSI DoF.edew both [46] and [47] rely
on the same analysis, which is not applicable to the flanfadaseé.

In [7], the authors introduce two quantization schemes lier MIMO flat-fading K -user IC. The first
one is based on guantization on the composite Grassmanriofdafinspired by [47]). The second method
improves the quantization accuracy by introducing a virteaeive filter at each receiver which leaves the
IA equations invariant; the quantization error can be reduby optimizing this virtual filter, however the
process is computationally complex and must be repeatedaftin codeword and each channel realization.
No asymptotic (high SNR) analysis is provided in [7]; it issgdo figure out that the first considered method
requires a scaling of K — 1)(M N — 1)log P to achieve the channel DoF, however the scaling required for
the second method to achieve full DoF is not clear.

In the first part of this chapter (Section 3.3) we present a@8Nguantization and feedback scheme for IA
over theK -user constant MIMO IC. The proposed feedback scheme éspita invariances in the IA equations

it is noted in [46] that the result does not hold for low valugsL, however the minimuni for which it holds can not be
conclusively ascertained from the article. We note thaginipular, for the flat-fading casd.(= 1) of interest in this chapter, both [46]
for the single-antenna case and [47] for the MIMO square ¢a6e= N) yield a scaling independent afg P, which is unrealistic.
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Figure 3.1 (a) CSI feedback over the air, (b) CSI sharing over the baakh

to reduce the dimension of the quantization space.

Another scenario where quantization of CSI might be necgssgppens when each transmitter has access
to some local CSI and the transmitters share their local GBuinite capacity links (Figure (3.1, b)). This
scenario arises in TDD systems where the transmitters @@nradnformation about their downlink channels
in the uplink phase by reciprocity. These type of systemsraree desirable for implementation of IA. This is
due to the fact that the transmission systems which are asthited feedback from the RXs (such as FDD
systems) become very inefficient since the potential gaihsappear at high powers.

For TDD systems, network MIMO provides significant gains paned to transmission schemes based on
the interference channel. However, the interference aasnadopted very often in particular due to data
sharing limitations of network MIMO. These limitations atae to backhaul links which have finite capacity
and also introduce delay. In interference channels, evargtihdata is not exchanged between the transmitters,
the global CSl needs to be shared in order to attain the degfdéeedom (DoF) of the channel. This highlights
the necessity of reducing the amount of CSI exchange.

Considering CSI sharing (that is not perfect in reality),i$¥ot optimal and the rate saturates due to the
leakage introduced by channel mismatch which increasebheatransmit power of the interferers increase.
Simple time-sharing outperforms IA at high SNR with limit€&| sharing. However middle-range SNR might
be of practical interest for implementation of IA if CSI shmay is efficiently designed to be sufficiently accu-
rate. Another limitation is that even with perfect CSI, avIBNR, this scheme is highly suboptimal since the
precoders are designed only based on the interfering clsaané the direct channels are ignored.

In the medium SNR range, methods based on performance mbkdcsum-rate optimization or mean-
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squared-error (MSE) minimization are more desirable stheg exploit and balance the effect of both in-
terfering channels and direct channels in a meaningful wW&y-$0]. In such methods the drawback is the
requirement of all channel states (also the direct chapaglall the transmitters to compute an identical so-
lution similar to a centralized processing. More liable istibuted implementation are the iterative schemes
proposed in [51], [52]. These papers consider downlink gutec design where the transmitters can acquire
information about their outgoing channels (denoted byll@Sl) from the uplink transmission phase by reci-
procity. However their proposed schemes still require steadback from the receivers at each iteration. With
this local CSI assumption, authors in [53] propose an dlgariwhich improves the sum-rate performance
compared to IA in a single-stream setting. However theiesuh also requires feedback from the receivers at
every iteration.

In the second part of this chapter (Section 3.4), we focusherstenario where the BSs have perfect but
local CSI, and must share it to achieve IA. A CSIT sharing sehés proposed which reduces the amount
of information exchange required for interference aligntria such a system. The scaling (with the transmit
power) of the number of bits to be transferred which is sugfitito preserve the multiplexing gain that can
be achieved using perfect CSl is derived. In the second pamte general performance criteria like sum rate
maximization and MSE minimization are considered. Thesblpms are decoupled into distributed optimiza-
tion problems using the proposed quantization scheme. &beupled problems can be tackled at individual
transmitters using only local CSI.

3.2 General Definitions

3.2.1 System Model

An interference channel is considered in whi€hbase stations (BS) and users (one user in each cell) are
considered as transmitters and receivers, respectivehythe sake of simplicity of the exposition, we focus on
the symmetric case, and assume that each BS/hamtennas while each user is equipped witrantennas.
These results trivially generalize to non-homogeneousrard numbers and per-user DoF as long as IA is
feasible for the chosen problem dimensions. Each BS empidyear precodeV,; € CM*4 to transmitd
data streams; € C< to its user. The input/output relationship is describedbg), Assuminge [xjx?] =

I;, j=1,...,K,the covariance matrix of the signal transmitted by ysergiven asQ; = VjVJH in which

the transmit power for useris tr (Q;) = P;. We further assume that the elements of the data symboi.ake i.
Gaussian random variables. The channels are modeled as

H;; = /7;H; (3.1)

Whereflij € CV*M has i.i.d. elements frorA (0, 1) and~;; denotes the slow-varying shadowing and path
loss attenuation. The channels are assumed to be gendggim[particular, this includes channels with entries
drawn independently from a continuous distribution.

For reference, let us first consider the case where the charateécesH,;, V j # i themselves are known
perfectly at the transmitter. The precod&rs, ¢ = 1... K must be designed to align the interference at
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each receiver into & — d dimensional space according to (2.7), (2.8) in order toea@h interference-free
dimensions per user.

At this point, some remarks are in order. As pointed out in,[4% difficulty in finding an 1A solution
typically lies in solving eq. (2.7), while (2.8) is fulfilled.s. under the prevailing channel assumptions for any
choice of full-column ranlJ;, V; matrices. We also remark that despite the symmetry of ef) \{@th respect
to transposition, only the precoders are required to be knatthe transmitters; for a given set of precoders
Vi,..., Vg, the mere knowledge of thexistenceof full-column rank matricedJ, ..., Ug fulfilling (2.7) is
sufficient to conclude that the precoders are interferatigging. These considerations lead us to introduce
the following definition:

Definition 1 (IA precoders) The full-column rank precoder¥,..., Vg are interference-aligning for the
considered MIMO IC iff there exist full-column rank matsdd., . . . , U fulfilling (2.7).

3.2.2 Grassmann Manifold

In this chapter we exploit the symmetry and invariance pritge of the underlying quantization variables in
the proposed schemes to minimize the required informatimhange between the users and to improve the
efficiency of the quantization process. The consideredtigation variables represent channel subspace infor-
mation. Subspace information can be efficiently represeusing the Grassmann manifold. The Grassmann
manifold has been employed in several areas of wireless emications, including codebook design for lim-
ited feedback as well as interference alignment [47, 55, §dce-time code design [57, 58] and many other
applications. Therefore, here we briefly discuss the badittee Grassmann manifold.

Definition of the Grassmann Manifold

The Grassmann manifold, also known as the Grassman@ianx with n < m is the set of alh-dimensional
subspaces in thex-dimensional vector spadé™, for example withK = C. In this dissertation, the vector
spaceK underlying the considered Grassmannian is the Euclidearespt complex numbers; for simplicity it

is written asGm n = Gmn,c. A point X € G, ,, on the Grassmann manifold can be represented by any matrix
X € C™*™ whose columns span the subspace defineX pye., X = span(X). To unify this representation,
orthonormal bases (truncated unitary matrices) are eraglégroughput this thesis to identify points on the
Grassmannian

X €Gu, = XIX=1, (3.2)

Distance Measures on the Grassmann Manifold

To determine the distance between points on the Grassmanifiofda several distance measures have been
defined in the literature. In limited feedback MIMO wirelegssnmmunications, three distance measures between
two subspaces represented by truncated unitary mafKcasd Y that are usually employed in the literature
are the chordal distance, the projection two-norm and th@n$tudy distance [55]. In this dissertation we
use the chordal distance which is defined as
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de(X,Y) = % [xx" —vyYH||, (3.3)

3.2.3 Feedback Dimension Analysis

In order to make comparisons to the proposed schemes, wigleptise following CSI representations:

* Full channel matrix (FCM): for a given receivei, the K — 1 channel matrice$l;;, j # ¢ appearing
in (2.7) taken together have real dimensi¥acy = 2(K — 1)M N. In this case the exact channels are
gquantized to be used in |A equations.

« Individually normalized channel matrices (INM): in [7], itis proposed to independently vectorize and
normalize the matrices representing the channels from ieéefferer. At each receiver this technique
yields K — 1 unit-norm vectorsz;; = %] # 1, which are subsequently quantized jointly on
the composite Grassmann manif@@]‘\%l. The real dimension of this manifold v = 2(K —
1)(MN — 1) [47]. Tlhe fact that the strength of the channel matricesred@vant for computation of
IA precoders is exploited in this method to eliminate unsseey information from the channel matrices
and quantize them more efficiently. Furthermore, usingniéshod, the effect of the quantization error

on the performance can be quantified using bounds on ther@aassmanifold.

« Jointly normalized channel matrices (JNMY: noting that (3.4) can be rewritten as
(VHE, @ Ul) vec(H;) = 0, this approach consists in quantizing:(H;) /||vec(H;)||2 on Gk — 1) 1-
The real dimension of the fed back variable for this cas€jisy = 2((K —1)M N —1). This approach
is clearly a weaker version of the INM method as it eliminates channel strength from the total
concatenated channel and therefore is not efficient.

3.3 Quantized CSIT Feedback over the Air for FDD Systems

Let us consider the interference alignment problem of [&bl] assume that the CSl is fed back from the
receivers to the transmittérsSpecifically, assume that thith receiver has perfect knowledge of the channel
matricesH,;;, V j # i and feeds back the corresponding information to the trattersiso that every transmitter

is capable of solving the alignment problem. In this sectim consider perfect CSI feedback in order to
highlight the intuition behind the dimensionality redactiassociated with the proposed feedback scheme. We
will further assume thatK — 1)M > N, which represents the cases of interest where interferencdd
occupy all dimensions of the receive subspace in the absd#radighment.

2This approach was proposed by an anonymous reviewer of amer glapers.
3The underlying assumption here is that&ltransmitters can exchange CSI instantaneously and “fer’fAdternatively, one can

consider a central node (to which all the CSI would be forwdjdvhere the precoders are computed and subsequentijputistt to
the transmitters; this distinction is immaterial, and tesults presented here apply to both cases. Variations ea #ssumptions are

considered in [59].
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3.3.1 Grassmannian Feedback Scheme for IA
Feedback Scheme for Perfect CSI

In order to introduce our proposed scheme, let us note th@f ¢an be rewritten from the point of view of
receiveri in the form

UH,V_;=0 Vie{l,...,K}, (3.4)
in whichV_; = Bdiag(V1,...,Vi_1,Viy1,..., Vg) € CE-DMx(K-1)d s the block-diagonal concatena-
tion of the precoders arll; = [H;1, ..., H;j_1, Hiip1, ..., H; ] € CN*(E-DM s the concatenation of the

channel matrices of all interfering links ending at receiyeexcluding the direct link. The proposed feedback
scheme consists for each receiv@r feeding back only the row space Hf;. Our first result consists in stating
that this information is sufficient to perform IA:

Lemma 1. In order for the IA computation unit to compute interfereradigning precodersvy,..., Vg, it
is sufficient that each receiveére {1,..., K} feeds back a point on the Grassmann manif@lg ), v
representing the row space Hf;.

Proof. Let us consider perfect feedback of the row spacklgfVi € {1,..., K'}. Practically, since a linear
subspace can be represented by any matrix whose columnshgpaame space, the Grassmannian feedback
considered here can be considered to take the form of thiakiigy at the 1A computation unit of a matrix
F; of dimensiong K — 1)M x N whose columns span the same subspace as the colurki$ @fie assume
that H!! has full column rank, which is a.s. the case for generic chbooefficients). We now show that the
IA transmit precoders computed by assumiflg as channel coefficients are interference-aligning for the t
channel as well.

Let us consider an IA solution based BY, i.e. assume that there exist truncated unitary matiigeand
V; such that the following equation (similar to (3.4)),

UIFivV_, =0, (3.5)

is fulfilled for all i € {1,..., K}. Note that sincél; andF}! have the same dimensions, the feasibility (a.s.)
of 1A according to (3.4) and (3.5) is identical. Furthermasice the columns dfil! andF; span the same
N-dimensional subspace, there exists an invertible N matrix C; such thalH? = F,C,;. Clearly,

(3.5 < Ulc/HClFiv_ =0 (3.6)
1 H ~
o (C; UZ-) H,V_;, =0. (3.7)
Comparing to (2.7), eqg. (3.7) shows that the rmk}atricesci‘lfji, i € {1,..., K} cancel the interference

at all receivers, i.e. the transmit precoddfs, ...V forming the block-diagonal oW _; are interference-
aligning over the true channels. O

As already noted, the CSI feedback scheme considered Beagalogous to feeding back a point on the
Grassmann manifoldx 1), v for each one of thes users. Using the fact that the real dimensiogf; is
2d(n — d) for anyd < n [60], the real dimension of the feedback outlined in Lemma Vg = 2N ((K —
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1)M — N). For comparison, let us consider the alternative CSI reprtasions outlined in Section 3.2.3. Itis
straightforward to establish thafiny < Nynm < Npowm for all meaningful casesi{ > 2). In the particular
case of a square system/(= V), we have the following result:

Lemma 2. In a square system, if 1A is feasible, th&, < Niny, i.e. the proposed scheme always requires
strictly less real dimensions than FCM, INM or JNM.

Proof. A necessary condition for IA to be feasible is [38]

<M+N

. 3.8
- K+1 (3:8)

Together with the assumption thaf = N and using the fact that > 1, (3.8) yields
Kg%—1<2N. (3.9

Another necessary condition for 1A feasibility 6 > 2d, thereforeN > 1 and consequentlgN < N2 + 1.
Combining with (3.9), we obtai < N? + 1, which is equivalent tdVg < Ny O

Note that the feedback scheme outlined here for the MIMO i@ fact directly applicable to many other
channel models where IA has been proposed, such as intgrimultiple-access channels [61, 62], interfering
broadcast channels [63, 64], as well as partially conndatedference networks [65, 66].

3.3.2 Quantized CSI Feedback

In this section we introduce a transmission scheme wheraligpment equations are solved based on the
(error-free) feedback of a quantized version of the CSlebtam the Grassmannian representation from Sec-
tion 3.3.1. For that scheme, we show how inter-user intenfeg is related to the CSI codebook size, and
characterize the required scaling of the codebook forfertence to remain bounded at high SNR. For compar-
ison, we also provide a similar analysis for the INM techeiqu

Grassmannian Quantized CSI

Let us assume that receiveknows perfectly the state of its channels from all interfgriransmitters, i.e. the
coefficients ofH,;, and performs the economy-size QR decomposﬁih: F,C;, whereF;isa(K —1)M x

N truncated unitary matrix, an@; is N x N and a.s. invertible, under the prevailing channel assumgti
The use of the QR decomposition is a particular case of thendpasition used in the proof of Lemma 1:
it ensures thaH}!' and F; have the same column space, and adds the requirement thedltimens of F;

are orthonormal, which will simplify the subsequent analysAccording to the proposed scheme, receiver
i quantizes the subspace spanned by the columig oking B bits and feeds the index of the quantized
codeword back to the unit in charge of computing ¥Mds. We further assume that the receivers and the
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computation unit share a predefined codeflok= {Si,...,S,s. } which is composed ot?< truncated
unitary matrices of sizéK' —1) M x N and is designed via Grassmannian subspace packing [67huEmized
codeword at receiveris the point inS closest taF;, i.e.

F; = in d.(S,F; 3.10
argmin d.(S, F;) (3.10)

Let us consider the scheme where the interference alignprebtem is solved at the IA computation unit
based on the quantized CAI''} X, yielding truncated unitary matricé§V,;}<,, {U, }< ) fulfilling

UIRIV_, =0, Vie{l,...,K}. (3.11)

At receiveri, inspired by the perfect feedback situation, we considerdeeive filterG; = C7'FIF,U; °.
Also the transmittei employs the precodév ; = (%)%\7]-. Lety’ denote the received signal at receivefter
processing byG;:

v, = Gily; = GI'H;;Vix; + e; + Gi'n;, (3.12)

where the term

GHH..V
€ = § i Hij vV jX;j
1<G<K
J#i

(3.13)
is the interference leakage due to the imperfect CSI.

Generally speaking, the aim of our analysis is to providdigaht conditions on the CSI quantization
accuracy to ensure thai(x;;y;) grows withdlog P; G; andy/ are merely intermediate variables used to
establish information-theoretic inequalities. In a picatsystem, we expect the equalizg; to be computed
through classical channel estimation and equalizatiomigaes — we omit these details here.

In the remainder of this section, we will focus on establighbounds on the interference powey =
tr (Ex(eie?)); these results will be instrumental in proving our DoF resWle first establish in Lemma 3 and
Corollary 1 the growth rate of the number of feedback bithwilite SNR which guarantees thit remains
bounded by a constant regardlessoivhen P — oc.

Lemma 3. The interference leakage power (due to imperfect CSl) aiveci can be bounded as

Li<— (1 +o0 (2‘53» (3.14)

(c2Bc)Ne

“For notational simplicity we omit the dependencysbn i, however the proposed analysis generalizes trivially sesavheres
andBg are different across the receivers, as will be seen in Se8ti®2.

*We note that if the quantization error is null, id%(Fi, F;) =0, thenFI'F; is a unitary matrix corresponding to the uncertainty
between the CSI encoder (at the receiver) and decoder (& ttemputation unit) in the matrix representation of the spdice being
fed back.
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whereNg = 2N ((K —1)M — N) is the real dimension & x _), v introduced before, andis the coefficient
of the ball volume in the Grassmann manifold,

a 1 [T, (K — )M i)

c 3.15

(N(K-=1)M = N))! T, (N —i)! (519

Proof. See appendix A.1. O
Corollary 1. Quantizing CSI with

Bg=N((K—-1)M —N)log P (3.16)

bits is sufficient to keep the interference leakégdounded by a constant for arbitrarily large.

_Bg 2Bg
Proof. From (3.14), since | 2 Nc | — 0 for large P, it is obvious thatZ; is bounded by a constant2f¥c

scales at least linearly witR; in particular this holds for
Ng
Bg = 5 logP = N((K —1)M — N)log P. (3.17)
O

Comparison to Naive Quantization

For comparison, let us now consider quantization for the INMthod chosen as a baseline in [7].
recall that in that case, at receivethe matrices representing the channels from the intedfeasr vector-

ized and normalized independently, yieldidg — 1 unit-norm vectorsz;; = HVV:CC(H” e J A i =
(Zits- s Ziie1, Ziits - ZiK] € gMNl is subsequently quantized according to
Z; = arg min De(T, Z;), (3.18)

whereD (T, Z;) = \/tr (Ix_1 — THZ,) is the chordal distance defined for the composite Grassmami m
fold. Let Byny denote the number of feedback bits, i|&| = 2Pm™v, At the transmitter side, the columns
of Z; = [Zi1, -y 2ii-1,2ii+1,- - -, ZiK] @re used to reconstruct the quantized CSI: the channeloaaﬁ]iij
used for the computation of the precoders are suchvthaﬂij) = 2;j, Vi # j. The interference alignment
problem is then solved based Bh; to find ({V,;}/<,, {U;}X,) fulfilling

UMV, =0, Vi,je{l,...,K}, j#i. (3.19)

We now show that the leakage obtained by emplojng= (£):V; andU;, L, = £||UHH;; V|2
(using the true channel matrices) can remain bounded fatramily large transmit power” under certain
conditions. This is the object of Lemma 4, where we estaltlistscaling ofByny with P required to achieve
bounded interference leakage under this scheme.

The authors of [7] attribute this method to [47]. Althougagtization bounds for the composite Grassmann manifolgrasented
in [47], we note that the (frequency-selective) channel ehauthat paper is different from the flat-fading model caolesed here and
in [7], and therefore the results are not immediately cormipiar



Chapter 3. Interference Management with Quantized CSIT 26

Lemma 4. Using the INM quantization scheme, quantizihgwith Biny = %NINMlogP =(K—-1)(MN —
1)log P bits is sufficient to keep; bounded for arbitrarily largeP.

Proof. See appendix A.2. O

Comparing the above result with the scaling obtained in Lol for the proposed scheme indicates that
at high SNR,B¢ < Binu (i-e. the proposed method outperforms INM)NE < Niyw. As already analyzed
in Lemma 2, this condition is fulfilled for many case of praatiinterest.

Rate-Loss due to CSI Quantization

In the previous section, we have used interference lealag@xy to evaluate how the quality of the available
CSl influences alignment. Note however that having a bouimtedference leakage is not sufficient in itself
to ensure that the full DoF is achieved for asymptoticallgdal — in fact, the power of the signal of interest
remaining after processing by the receive filter (eq. (3.t2uld remain bounded too, or its rank could be
reduced. We now show that this is not the case, and that tippged CSI quantization scheme achieves the
same DoF as IA under the perfect CSIl assumption, providddhbaroper scaling aBq with P is respected:

Theorem 1. If IA with d DoF is feasible, the proposed CSI quantization scheme aekieDoF for almost all
channel realizations B¢ is scaled according t¢3.16).

Remark 1:Theorem 1 is not restricted to a particular distributionhaf thannel coefficients. The restriction
to “almost all” channel realizations is due to the fact thadler the assumptions of Section 3.2, there can exist
a vanishing set of channel realizations for which (2.8) isfatfilled; this is also the case when perfect CSl is
considered [45], and is unrelated to the proposed quaittizatheme.

Remark 2: The transmission scheme considered here is based on &dngaitary precoder§fj, and
therefore the transmitted signal is spatially white indlded-dimensional subspace defined by the precoder.
Clearly, this is suboptimal for finite values of the SNR, apdt&l waterfilling in addition to 1A would bring
in performance improvement far > 1. However, we remark that the performance gains of watediianish
at asymptotically high SNR, provided that the channel ismaok deficient [68]. Therefore, the asymptotic
analysis of this section holds regardless of whether dpatiterfilling is used in addition to |IA or not.

Theorem 1 states thiimp_, 10’% = d a.s.; in order to show this, we require a few intermediataltes
Let us define the following valuesR; = Z(x;;y;), R, £ I(x;y;) and R} £ log|GJ'G; + Qf| where
Qg = G?HiiViViHHgGi is the covariance of the signal of interest. From the datagesing inequality and
the definition ofy}, we have immediately thd@t; > R. In what follows, we will successively show th&f — R/
remains bounded from above B¢ is scaled according to (3.16) (Lemma 5), and thaip_. ., % =d
(Lemma 6). Let us start with the first result. Since all siggrad noise terms are Gaussian circularly symmetric,
we have

R} =10g|G'G; + (Q§ + Q)| — log |G]'G; + Qf (3.20)
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in which Qi = GIH,V_, V! HI'G, is the covariance of the residual interference.

Lemma 5. Under the quantization scheme of Sect®8.2 the difference betweeR, and R/ can be bounded
as

1"l —1,12 8P _ﬁ_G
R} — R; <dlog | ||C; |+ ——F |1+0(2 "& . (3.21)
(c2Bc)Na

Proof. See Appendix A.3. O

Lemma 6. Under the proposed CSI quantization scheme, there existies0f codebooks of increasing size
following (3.16)for P — oo S.t.limp_, % =da.s.

Proof. See Appendix A.4. O

We are now in the position to prove Theorem 1:

2B
Proof. SubstitutingP = 2N—c? in the result of Lemma 5 yields
R, > R! —dlog [ ||C;!|3 + ® (140(27™ (3.22)
. = I og i 127 5/Ng 0 . .
As P — oo and with Bg following (3.16), the argument of the logarithm remains haded by a constant,
therefore s R
i > i _ s. :
Ph—r>noo log P — Plgnoo log P d as (3.23)
using the result from Lemma 6. O

Average Rate-Loss under RVQ

Note that the results established so far hold for any codebbtained by sphere-packing. Let us now briefly
depart from this assumption, and consider RVQ instead. dhdhse, the previous results do not apply: the
random choice of the codebook can lead to arbitrarily batbpmance regardless @b, and bounding the
performance loss uniformly over all codebooks is impossil more relevant performance metric for RVQ is
the average sum rate over all possible codebooks. We ha¥ellthweing result:

Theorem 2. Provided that the codeboaR is generated from independent realizations of a random gssc
uniformly distributed oveg i1y, v, the expectation ovef of R; is lower bounded as

(-2
Es(R;) > R/ — dlog ||C;1||%+2P% : (3.24)
%(C2BG)TG

whereI'(-) denotes the Gamma function.
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Proof. See Appendix A.5. O

Per-User DoF for Asymmetric Feedback

An interesting consequence of the rate-loss analysis @y@dypreviously can be observed when each receiver
uses its own scaling of the CSI quantization codebook si#e i Formally, letB% denote the number of bits
used by receiver to quantizeF,.

Corollary 2. If B, scales with” such that

Bg

o 2 I}Enmm (3.25)
exists and is finite, then the DoF achievable by uder
d! > dP min (o, 1), (3.26)
whered? is the achievable DoF of this user with perfect CSI.
Proof. The proof follows simply from (3.21) by taking the limit oféHower bound whe® — co. O

Practically, this means that the DoF achieved by a givenigsadependent of the quality of the feedback
provided by the other users. This observation, obtained fwrlA precoding, is consistent with the scaling
obtained in [69] for centralized schemes using differeetpding schemes such as zero-forcing.

3.3.3 Performance Investigation

This section presents simulations that numerically védidiae results hitherto established. Note that construct-
ing good Grassmannian packings for arbitrary dimensiordifficult [70]; therefore, in our simulations for
relatively small codebook sizes (up 26°) we resort to random codebooks in place of sphere-packidg-co
books. Note that the performance expected from RVQ codeboofstitutes a lower bound to the performance
of sphere-packing codebooks; however as we shall see, isimutations, RVQ codebooks attain the perfor-
mance predicted for the sphere-packing codebooks.

For larger codebooksH; > 15), even RVQ is not tractable due to the complexity of the exhae
search througl$ in (3.10). Due to the lack of structured codebooks allowingaatable implementation of
the quantizer, the performance obtained for larger codeb@extrapolated by using a perturbation method
based on the analytical characterization of the distriloutf the quantization error, the details of which being
presented in Appendix A.6.
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Figure 3.2 AverageRs,., for various quantization methods, for theuser MIMO IC,N = M = 2.

Performance Results Using RVQ

In this section, we evaluate the performance of the quaigizacheme of Section 3.3.2 with RVQ codebooks.
The performance metric is the sum rate evaluated throught@éAGarlo simulations. The sum rate achievable
over the MIMO IC using interference alignment precodersaurtie assumption that the input signals are
Gaussian can be written as

K K K K
Rgum = Y _log |Iy + g > H;V;VIHE = “log Iy + S > H,;V;VIHE. (3.27)
i=1 j=1 i=1 j=1,j%#i
A 3-user IC withM = N = 2 antennas per node amd= 1 data stream for each transmitter is considered.
Entries of the channel matrices are generated accordiGg/t@, 1) and the performance results are averaged
over the channel realizations. The method proposed in @edti3.2 is compared to the INM quantization
method from Section 3.2.3.

For the proposed method, the codebook entries are indepieffde- 1) M/ x N random truncated unitary
matrices generated from the Haar distribution. For the INkthnod, random unit norm vectors are used in
the codebook construction. Figure 3.2 shows the achievabterate versus transmit SNR f&; = 5 and
10 feedback bits when the precoders are designed based quah&zed feedback. Clearly the proposed
scheme outperforms INM quantization for the same numbee@edifack bits. It can be also seen that for a
fixed number of feedback bits, the sum-rate saturates at$iR, while it grows unbounded (with the slope
equal to the DoF) for the perfect CSI case.

The sum rate in (3.27) is achievable when optimum receiveos ificluding the projection filter&!!)
are used at the receivers. Since the achievable schemetior588.2 is using the projection filteG!, we
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Figure 3.3 Sume-rate according to (3.28) of the proposed method féergint number of bits, for th@-user
MIMOIC, N = M = 2.

evaluated the performance achieved by this scheme, defined a

K
Rl = Y _log |GI'G; +
=1

Wi

K K K
P
H HyrH H H HygH
Y GI'H,;V,VIH[G,|-) log |G] Gi+— > GI'H;V,VIH]G,|.
j=1 i=1 Jj=1,j7#i
(3.28)

Results are provided in Figure 3.3. The slope of the curveghtSNR gives an indication of the achieved DoF.
Itis clear from Figure 3.3 that the slope of the sum-rate ewrith quantized feedback matches that of perfect
CSlwhen the number of feedback bits is scaled according 16)8here we have usde; = [0, 7, 13, 20, 26]

2B
bits and the corresponding powdpPs= 2T§). Conversely, when the codebook size is fixed, the perfocman

always saturates at high SNR, with the achieved performdepending on the codebook size. Simulations
were performed only up t80 dB SNR due to the complexity associated to the growth of the lnodle size
with P.

Perturbations on the Grassmann Manifold

In order to validate the DoF results of Section 3.3.2, anuat@n of the achieved sum-rate at high SNR is
required. In order to deal with exponentially large coddtspave propose to replace the quantization process
with a perturbation which approximates the quantizatiomrer In other words, we propose to replabe
by a matrix that can be computed directly by an appropriattugsation of F;. This approach provides a
good approximation of the achievable performance, whitgiag the complexity associated with the codebook
generation and the quantization in RVQ. The perturbatiothotkappears in Appendix A.6.

Simulations were performed in order to validate experiragnthe perturbation method proposed above.
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Figure 3.4 Comparison of the perturbation scheme from Appendix Adlidyto the real quantizer (3.10)
(dashed), for thg-user MIMO IC,N = M = 2.
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Figure 3.5. Sum rate performance using the perturbation method cadpgamperfect CSI and the lower bound
derived in (3.24), for th&-user MIMO IC,N = M = 2.
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The sum-rate performance achieved by |IA for the CSI obtafrard the perturbation method is plotted against
the performance obtained for the actual quantization seharfigure 3.4. It is clear that the proposed pertur-
bation method accurately approximates the Grassmannamtigation process, even for small codebooks.

Validation of the DoF Results

We now use the perturbation technique introduced in theiguesection to analyze the CSl feedback scheme
from Section 3.3.2 in the high SNR regime. Figure 3.5 depiissum rate performance using the perturbation
method compared to perfect CSI and to the lower bound denvé8l.24). The slope of the sum rate at high
SNR regime obtained for the quantizer willy = % log P bits is identical to that of perfect CSI, as is the
case for the lower bound derived in (3.24).

3.4 Quantized CSIT Sharing over the Backhaul for TDD Systems

In this section we assume equal transmit power for all BEsR; = P, Vj. Letus consider TDD transmission.
Specifically, we assume that thth BS estimates the channel matridds;, : = 1,..., K, 7 # j (denoted by
local CS)) from the uplink phase, via reciprocity. We first assume thaal CSl is known perfectly at BS
j. However, global CSI (excluding the direct channHSg) is required in order to design IA precoders. In
this section we consider CSI exchange in the network, and woder the assumption that perfect local CSI
is conveyed from each BS to a processing node which complitpeeaoders and provides them to the BSs
(Figure 3.1, (b)).

3.4.1 Efficient CSI Sharing for IA with Grassmannian Representation

Here we assume a feasible IA setting [45], i.e. there exitquting matriced/;, j = 1,..., K and projection
matricesU; € CV*¢ j =1, ..., K that satisfy (2.7) and (2.8). Condition (2.7) can be reemitas

ULH;V; =0 Vje{l,.. K} (3.29)

in whichU_; = Bdiag(Uy,...,U;1,Uj1,...,Uk) andH; = [HY;, .. HL  HL, o Hg JHisa
(K — 1)N x M matrix.

We will further assume thdtx' — 1) N > M, which represents the cases where transmitter-side pecig
is not sufficient to eliminate all interference, and thereftA is required. The following lemma highlights the
intuition behind our CSI sharing scheme.

Lemma 7. In order to design IA precoders, it is sufficient that each B&nds a point on the Grassmann
manifoldG k1), as representing the column spaceldf; to the IA processing node.

Proof. Let F; denote a K — 1)N x M matrix containing an orthonormal basis of the column spddd g
i.e. H; = F;C; for someM x M matrix C; (invertible almost surely for generic channels). Accogdia our
assumption that only the column spacd®bfis known at the central unit, we can assume that the cential un
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has only access to a rotated versior¥of i.e., F;O; for some unknown\/ x M unitary matrixO;. We now
show that alignment can be achieved based on the knowledge®f rather than oftI;. Let us assume that
the processing node designs a(idﬁj}le, {Vj}le) of 1A transmit precoders and receive projection filters
for the channel§F;O;}/ | using (3.29). Thery;

UY,(F,0,)V; =0 = UL F,C;C;'0;V,; =0 (3.30)
= U"H,;C;'0,V; =0. (3.31)

This indicates that IA is achieved over the actual channeliging Cj‘lojVj as precoder andlJ; as the
projection filter at usej. Assuming thalV ; is transmitted from the processing node back tojB&nd thatO;
is known at BSj since the reconstruction codebook of the processing nddwisn, the BS is in a position to
compute the precodeE; 'O,V ;. O

Note that the feedback &f ; from the processing node to BSalso takes the form of a point @y, 4, and
will be analyzed in further detail in the sequel.

Analogy to the CSI Feedback Problem

Clearly the Grassmannian representation outlined in @e&ti4.1 is very similar to the analysis conducted for
the FDD systems in Section 3.3.1. For FDD systems the quaiatiz variable is the subspace corresponding
to the concatenation of the incoming channels toward a geeaiver while in the TDD systems the outgoing
channels from a given transmitter are concatenated. Biffeiopologies arise in the TDD case as we have a
CSil sharing scheme rather than a feedback scheme. For examabf the transmitters can play the role of the
central node. In the designed transmission scheme for igedrfeedback in FDD case, the IA precoders are
modified while in the TDD case the IA projection filters need®transformed. As will be seen later, unlike
the FDD systems, this modification of the receive filters im TiDD case changes the covariance of the noise
which has to be taken into consideration.

3.4.2 Quantized CSI Sharing over Finite-Capacity Links

In this section, using the Grassmannian representatiomedtin the previous section, we explore several
scenarios where CSl is quantized and exchanged betweewndes over finite capacity links. Three different
scenarios regarding the CSIT sharing problem can be coeside

I. The IA processing node is a separate central node that w@s@and distributes the IA precoders to the
K BSs,

Il. One BS also acts as the IA processing node,

Ill. Each BS receives all the required CSI and independestimputes the IA precoders.

In scenario | (Fig. 3.6(a)), the CSI (in the form Bf) is quantized, yieIding?‘j, and sent to the central
node. The central node computes the precoders and provisigsvh a quantized versioﬁ’j of \7]-. Here we
assume that each BS usis bits to quantizeF ; and the central node us@é. bits to quantizeV ;. Therefore,
the total number of bits exchanged over the network for seem#s equal toK (N, + N, ). Scenario Il can be
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Figure 3.6. CSIT sharing, (a) with and (b) without central node.

considered as a special case of scenario | where one (lotidinal) BS-central node link is saved; the number
of bits to be transferred in the network(i& — 1)(N, + N.). In scenario Ill (Fig. 3.6(b)), the IA solution is
computed independently at each BS, requiring global CHelt ef them. Therefore each BS needs to quantize
and send its local CSl to all othét — 1 BSs. The precoders are subsequently computed at the BSand n
further information exchange is required. In this scenaaitotal of K (K — 1) N, bits must be exchanged to
distribute the CSI. For simplicity of the exposition, we @i@gcon scenario | and characterize the scalingvpf
and N, with P, noting that a generalization of the analysis to scenatiasd Il is straightforward.

Precoder Design with Efficient Information Exchange

Let us first consider the feedback from a BS to the central nB&j performs the QR decompositidid; =
F;C; and quantizes the subspace spanned by the columRs aking IV, bits and sends the index of the
guantized codeword to the central node. We further assuatétd BSs and the central node share a predefined
codebookS = {Sy, ..., S,~, } which is composed df™¥> truncated unitary matrices of siz& — 1) N x M and

is designed using Grassmannian subspace packing. Foigtypét us assume that alt' codebooks have the
same size and the powers of the transmitted signals andieecwiise are symmetric across the network. The
guantized codeword is the closest pointSinv.r.t. the chordal distance, i.e.,

A~

F, = in d.(S,F;). 3.32
j = argmin de(S, F;) (3.32)

The interference alignment problem is then solved at théralenode based oﬁiFj}]K:l to find truncated

unitary matriceg{ U}, {V;}X ) fuffilling

Ut ¥V, =0, Vje{l,. K} (3.33)
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We now consider the feedback fifj from the central node to BS. Using another codebooll’ =
{T4,..., Tyn. } of truncated unitary matrices representing point§jn,, the central node quantizes the align-
ment precodeﬁ/'j for each BS o1y, 4 according to

Vj = arg %161%1_ dc(T,Vj), (3.34)

and sends the corresponding index to B&t BS j, by analogy to the perfect CSI case (Lemma 7), we define

the total precoder as

P12
“1pHE X

\ (q-j) C;'FIF,V;, (3.35)

in which ¢; = tr(C;'FI'F,; V,VIFIF;C; ™) is introduced to satisfy the power constraing; is nonzero

with probability 1 and is upperbounded by a constant regasdbfP as shown below

g = ||C; FIF; V|7 (3.36)
< IG5 R IFHZF51F] V517 (3.37)
< |IC;l[p- (3.38)

Using the precoder¥ ; and after applying the receive filt€F, to (6.43), the interference leakage (due to the
guantizations (3.32) and (3.34)) at usés defined as

e, = Z fj?HUVij.

52k (3.39)
J#i
We denote the leakage power at usby L;
L; = tr(E(ee})) = tr(Q}), (3.40)
where
Q;= > U'H,;V,VIH]U, (3.41)
j=1,j#i

We now consider the sum over all users of the leakage powers:

K K
L:Ztr< > fJ?HijVjVEHgfji>
=L ELA (3.42)

K ~
>0 H V.
j=1

SubstitutingV; = (£)!/2C; 'F}'F;V; andH; = F,C; gives
5 P .
IO H; V| = IO FE, V. (3.43)
From (3.33) we hav®'LF;V; VIV, = 0, therefore by some manipulations, from (3.42), (3.43) we ge

K K
L= 2y xz < L0 + X e)? (3.44)
q] J ]F—lj ]F ]F .
=1 j=

<
Il
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where
b _ o (p.FH _ . pHVR.V.
X =UZ(F,;F; — F;F;)F;V; and (3.45)
X$ = UL F;(V;VE - v,;vihv;.

Using the fact that all the matrices involvedX? andX? are truncated unitary, it can be shown that

IX2[lp < V2dde(F;,F;), (3.46)
XS lr < V2dde(V;, V). (3.47)

Using bounds on the quantization error for codebooks dedidpy sphere packing, it can be shown [71] that
in (3.44) is upper bounded by a constagindependent of’ when

Ny = %logp and N, = %logP, (3.48)

in whichGy, = 2M((K — 1)N — M) andG. = 2d(M — d) are the real dimension & x _1)n 3 andGasq
respectively. Under the conditions (3.48), it is clear thatleakage power at every receiver would be bounded
by a constant sincé; < L.

Analysis of the Achievable Rate and DoF

In order to establish the DoF achievable using the propo&idjGantization scheme, we provide a lower bound
for the achievable rate. First consider the following lemma

Lemma 8. For NV, and N, according to(3.48)we have,

log |Id + Q’S‘
e =Sl _y 3.49
P—oo  logP ’ (3-49)
with Q% = UMH,; v, VIH!T;, almost surely.
Proof. We have

in which Wi = UMH,,C'FHEF, V, VIFIF,C "HIU,. Note that the limit in (3.49) involves codebooks
of increasing size sincd}, and N, increase withP. W?S does not necessarily admit a limit whéh— oo due

to the fact thal; andV; are functions of the codebooks. We tackle this problem byrtieg) to an argument
based on the compactness of the solution space, and shothehaexists a series of codebooks of increasing
size for WhiChWé admits a limit and is full rank a.s. The full proof is similay the proof of Lemma 6 in
Section 3.3.2 and is omitted here. O

We are now in the position of proving that the proposed metudeves the full 1A DoF:

Theorem 3. The proposed quantization scheme, withand N, according to(3.48), achieves the same DoF
as IA under perfect CSI.
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Proof. Recall that (3.48) ensures that is upper bounded by a nonzero constantTherefore \ax (Q}) <
tr (Q}) = L; < co, which yields

log [T + Qf| < dlog (1 + Amax (QF)) < dlog(1 + o). (3.51)

Hence, the achievable rate using the designed precoderseeeide filters denoted bRé for useri can be
lower-bounded as follows,

R, = log|l;+ Q% + Qf| — log |1, + Qf| (3.52)
> log |1+ Q§| — log |14 + Qi (3.53)
> log |1+ Q§| — dlog(1 + c), (3.54)

where (3.53) follows from the fact th&! is positive semi-definite and the second inequality folldvesn
(3.51). Combining (3.54) with Lemma 8 brings us to the cosidn that

7

. N '
F}E)noo logP — ¢ (3.55)
i.e. the same DoF as in the case of perfect CSl is achieved. O

Performance Evaluation

In this section, the performance of the proposed schemeaisiaed through numerical simulations. The
performance metric is the sum-rate evaluated through MGatdo simulations using the precoders designed
with the quantization scheme.

A three-user IC is considered where each BS is equipped Mith: 5 antennas while every receiver has
N = 3 antennas and = 2 data streams for each user is considered. Entries of thenehamatrices are
generated according @\ (0, 1) and the performance results are averaged over the charmligations. In
Fig. 3.7, the quantized CSI sharing method of Section 3deBdted by “Proposed”) is compared (for scenario
I) to the naive method where the interfering channel madritem the BSs are independently vectorized,
normalized and quantized usidg, bits based on the idea of composite Grassmann manifold Rty finally
the indices of the quantized vectors are sent to the centidd (denoted by Normalized Channel Composite
Grassmann Quantization, NC-CGQ). At the central node himproposed method, the precoders are quantized
onGy,q While for the NC-CGQ method, each precoder is vectorizednatized and quantized @, ; using
N, bits, and sent to the corresponding BS. Figure 3.7 shows dhievable sum-rate versus transmit SNR
(P) for (Ny, N.) = (5,6) and (N, N.) = (10, 12) bits. A random codebook is used with codebook entries
chosen as independent truncated unitary matrices geddrata the Haar distribution. For the independent
guantization method, random unit norm vectors are usederttidebook construction. Clearly the proposed
scheme outperforms the independent quantization methiadddsame number of bits.

The use of random codebooks for large valuesVpfand V.. is not tractable, due to the exponential re-
guirements in terms of storage and of computation of (3.88) (8.34). In order to benchmark the sum-rate
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Figure 3.7. Sum-rate comparison of quantization methods, for3tuser MIMO IC,M =5, N = 3,d = 2,
based on optimal decoding 9f.

achievable under the proposed scheme for the high powenr@girgeN, andN.) we replace the quantization
process with the perturbation scheme from Appendix A.6. Alklve seen, this approach provides a good
approximation of the effect of quantization on the congdesystem.

This replacement of the quantization error is performed®¢ Bs well as the central node. The sum-rate
performancezfi 1 Rfl obtained using the perturbation method is plotted agaifg® ®r various codebook
sizes in Fig. 3.8. For the considered antenna configuratiorgrding to (3.48), the scaling that is sufficient to
achieve the perfect DoF i§, = 5log P andN. = 6 log P. In the simulations, the codebook sizes are chosen as
Ny, = 54 and N, = 6A for integer values of, and the corresponding SNR is computed according te 24.

The results are also compared to perfect CSIT sharing. liesr ¢hat this perturbation method effectively
approximates the quantization process when the desiréarpemnce metric is the sum-rate, allowing us to rely
on the curves resulting from this method to confirm the Dokltex Theorem 3.

3.5 Distributed Precoding

In this section we discuss possible methods to design peesdlistributedly at the transmitters. By reciprocity
of the channels, thgth BS estimates the channel matridds;, ¢« = 1,..., K, i # j from the uplink phase.
Here, we again assume thHY;, ¢ = 1,..., K, ¢ # j are known perfectly at B§. We assume that each BS
shares a quantized version of its channels with other BSfiniia capacity links. Therefore all the quantized
CSl is available at all BSs (assuming error-free links). Wasider the following objective for any given
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Figure 3.8 Sum rate comparison between perturbation method (dashddjuantization (solid), for tieuser
MIMO IC, M =5, N = 3 andd = 2, based on (3.52).

channel realization:

K
max T, (3.56)
(Vi te(Vivih=P

in which Z? is a performance measure corresponding todiffier example the achievable rate of lirk

3.5.1 Assumptions and Methods for Distributed Precoding

For measures such as rate or MSE, (3.56) is a non-convexepnodhd the known solutions are sub-optimal
and mostly based on iterative algorithms. Moreover, to tadistributed implementation, (3.56) has to be
solved independently at each transmitter which necessiglbbal CSI (or other types of global information)
which has to be identical at all the nodes. Since most of thisédo optimal) solutions are based on iterative
algorithms, slightly different CSI at different nodes mighsult in different convergence trajectories, yielding
a totally different set of precoders. Even in special casesra closed form solutions exist (like doing IA in
3-user IC), designing the precoders based on different @8lity would result in a poor performance [72].
In a practical scenario where CSl is quantized and exchahgiteen the BSs (as the scheme presented in
Section 3.3.2), one viable option is that all the BSs dedignprecoders based on the common knowledge of
the whole quantized channels. Under this assumption, tleesB&uld not use their own accurate CSI because
the others only have a quantized version of that CSI. Baseth@mrommon CSI, every BS will be able to
compute its precoder based on a previously agreed methaainayy that the quantized CSl is the true CSI.
Different performance metrics can be employed similar égaérfect CSl scenario. Most of the known methods
require all the channel matrices between any pair of nodesefample iterative sum-rate maximization or
MSE minimization algorithms). On the other hand, interfee alignment does not require the direct channel
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matrices. Even though IA has poor performance at low SNReéds less CSI exchange between the BSs
which allows for a more accurate quantization given a badkhiak with a certain capacity. Moreover, we
have shown in Section 3.3.2 that one can further reduce G@hglrequirements when using IA. This prompts
us to use IA as a starting point and look for further improvetady taking advantage of the accurate local CSI
at each BS in a second step.

Assuming that precoders are designed based on the shametelge at the BSs, the main issue is that if
one BS modifies its own precoder to improve its performanceidigg its local CSl, the others do not have
access to the new precoder of that BS and therefore canrfotmpetheir own optimization. One option is to
have a fixed interference space at each receiver [73] andh&irain the transmitters to create interference only
in those spaces. However, this reduces the DoF that can levedtover the network. Here we use the 1A
projection filters (designed by using quantized CSI) to fix ititerference space at the receivers. After fixing
the receive interference space we can look for improvingprdormance using the local accurate CSI. For
example if we employ a rate maximization after fixing the ifdeence spaces, we can ensure the achievability
of DoF that could be achieved by the quantized CSI and addillip have an improvement in the sum-rate.
Note that our scheme relies only on the CSl that is exchangah@ the transmitters and there is no interaction
between the TX side and the RX side. (Clearly such iteratif@rmation exchange between the TX side and
the RX side can improve the performance). Again, we assuateBfij will quantize F; over the Grassmann
manifold and send the quantized versionkgf(denoted b)Fj) to the other BSs as shown in Fig. 3.6(b). We
start by solving IA for the quantized Cfﬁlj (assuming a feasible IA setting), i.e., finding truncatedaun
precoding matrice&/}*, j = 1, ..., K and projection matrice&l}* € CV*¢, i =1, ..., K such that

Vit € span(C;'FiF,;V)), (3.57)
U € span(U;), (3.58)
whereU; andV; are computed from (3.33).
Fixing the receive filters decouples the problem (3.56).eAfiard, it remains to design precoders locally

assuming fixed receive filte’g!* for the users, using the locally available CSI. We now presea possible
solutions:

3.5.2 MSE Minimization

Let us first consider the following MMSE problem

K
min E ZAZXZ - UIAH 3 2 3.59
S ; (Il Myil) (3.59)
whereA; = U}AHHZ-Z-WA andy; is a constant. The considered metric is based on approahitite mean-
square error sense); A;x;, which is a scaled version of the signal of interest obtaimb@én using the 1A
precoders and projection filters computed from the estich@$l. By taking the Lagrangian of the objective
function in (3.59), it can be shown that the set of precodeataptimize (3.59) have the forM; = 1; V; with

K
Vi = (> HIH;; +wly) "HIA, (3.60)
=1
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whereH,; = U%AHHij,Vi,j are the equivalent channel matrices after projection whighlA receive filters.

w; is the Lagrangian multiplier associated with the power trram;ttr(VjV?) = P;. The optimal values for
wj, 15, V4 do not have a closed form solution for individual power comists. Moreover, finding the optimal
values requires global CSI. Here we pick those values h@aaily as follows

1 | B
= C_ , V5. 3.61
“i= P M w(VIVE J (3.61)

Note that with this particular choice of;, the power constraints are satisfied. At low SNR, the idgmntiaitrix
in (3.60) is dominant which results in an egoistic transioissAt high SNR, the interference created for other
receivers becomes significant and the altruistic preco@irigch is obtained as; — 0) becomes preferable.
Note however that this scheme is not expected to be optintalva®NR since onlyl modes are used while at
low SNR the optimal transmission scheme uses all availabides

To summarize, we solve IA at all BSs based on the quantizeda@sliable globally and afterwards, every
BS fixes the receive filters with the receive filters computgdA and finds its MSE minimizing precoder
V; = u; V; according to (3.60), (3.61), approximately solving (3.59)

3.5.3 Approximate Sum-Rate Maximization

DefiningQ £ H;;Q,;H!!, we have

Qs = H;Q,Hj] (3.62)
K ..
Q= > Q7 (3.63)
j=1,j#i
which are the covariance matrices of the desired signalr@ediérence after projecting by the 1A receive filter

respectively.
After projection with the IA receive filters, the sum-ratendae written as

K

Rom = Y _ [log|Tg+ Qs + Q| — log |1, + Q7. (3.64)
i=1

We consider the following objective function

max Reum

Qi Qi (3.65)
s.t. tr(Q) =P Vij=1,..,K.

The first term in (6.45) can be approximated as

log |Ty + QL + QJ,'( ~ log (Id n Qg\ (3.66)

where the approximation comes from the fact that by interfee alignment (even though it is imperfect since
based on quantized CSI), the interference power insidedtieati signal space is reduced significantly, Qg.,
is negligible compared tQ’. Therefore

K

Rsum ~ Z |:10g ‘Id + QH — log |Id + QH:| = Rsum- (367)
1=1
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Using the concavity of thivg function, Jensen’s inequality gives

log | T, + Q4| > Z log ‘Id + (K —1)QY|. (3.68)
J 1j#i
Therefore we get
K
<> Ry, (3.69)
j=1

where
log (Id + (K —1)QY

— (3.70)

Rj = log ‘Id + QJS‘ —
i=1,i#j]
Clearly eachRj is only a function ofQ; and the outgoing channels from BS Therefore the optimization
problem in (3.65) can be approximately decoupled into tHewviang K distributed optimization problems :
max R; Vi=1,...K
Qi (3.71)
s.t. tI‘(Qj) =P

Clearly we are optimizing an approximate upper bound of the sate which is suboptimal. Here, we propose
to use a gradient ascent method to determine a local maxirriulgt}: @s summarized in Algorithm 1. The
gradient ascent algorithm consists in starting from antryi initial unnormalized precodeV j = V(.O),
calculating the gradient matrix and moving in the gradieréaion with some step size, which gives a new
precodefV!. The algorithm unfolds similarly as in the initial step umtnvergence.

Algorithm 1 Iterative optimization at B$

Find the 1A solution{ U4, VIA}K | 'based o F; }/
Calculate the equivalent channel§;; = U%AHHU,W.
Initialization: m = 0 and V" arbitrary.

Repeat

« Evaluate the gradient w.rV;, V;R;
. Let V§m+1) = V;m) + BV, R; (for some step-sizg)
e m<+m-+1

until convergence.

We now derive the expression of the gradient w.r.t. the glec HavingQ, = V-VH such thatV; =

t(VPiVH)V]' the optimization f|nd§/' such that the corresponding; maximizes the objective function at
BS j and therefore the transmit power constraint is alwaysfsadisThe gradient oRj w.r.t. Vj is calculated

as
ViR = (9 — a;Iy)V; (3.72)
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tr(Q;V;VH)

Q; = Hj;(Li+Qy)~'Hy; — > Hj(la+ (K - 1)Q7) "Hy. &73)
i=1,i#]

Considering single stream |A, instead of running Algorithmone can obtain a closed-form solution to
V,R; = 0 as follows:

(1, + QL) T,V
K y - ] (3.74)
= | ajln + Z H%(Id‘F(K—l) le)_lHij V;
i=1,i#j
therefore
-1
' K . _
Vj = OéjIM + Z Hg(ld + (K - 1)QZ[J)_1Hij (3 75)

i=1,i#j
CHS (I + Q%) TH, V.
For that case the algorithm consists in initializing thecpd}aer (which is a vector in this case), updating
1, QY and iteratively finding new precoders according to (3.75).

3.5.4 Performance Comparison

In this section, the performance of the proposed distribstdemes is evaluated through numerical simulations.
The performance metric is again the sum rate evaluatedghrionte-Carlo simulations using the precoders
designed in Sections 3.5.2 and 3.5.3.

Athree-user IC is considered. Entries of the channel mestéce generated according’ty (0, v;;) (where
7i; Is the path-loss coefficient for the channel betweery BB8d user) and the performance results are averaged
over the channel realizations. In all simulations, thedilimks are assumed to have no path-loss, 4g.=
1, Vi. Our proposed methods ("Approx-MSR and Min-MSE") are coragdo the following schemes:

* |AQ: IA with quantized CSI according to Section 3.4.2. Thisheme requires quantized CSI of the
interfering links to be available at the transmitters (@& tentral node).

* IAP: 1A with perfect CSI. This scheme is a hypothetic casdolhis presented to see how the other
schemes perform relative to the scenario that alignmerdrie thased on the true CSI.

» EW: The eigen water filling method. In this method the BSs imiéze their rate selfishly using only
the knowledge of their direct channel and treating interiee as noise. Assuming that the interference
is white, the power of interference at the receiver is calmd and added to the noise power to find
the equivalent noise power. Then the BSs perform waterdilbmer the eigen modes of their direct
channels with the equivalent noise power. Clearly in thisegte the transmitters need to know their
direct channels as well as the path loss values for the anedf links.
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Figure 3.9. Comparison of sum-rate fak =3, M = N =2,d = 1, N, = 12 and~;; = —10dB for i # j

» TS: Time sharing method. In this case, the transmissior tgrivided among the links and at a given
time instant, only one transmitter is active and the totalgois allocated to the active transmitter. The
transmission strategy for the active link is water fillingeothe eigen modes of the direct channel. Clearly
in this case, only the direct channel information is regliméeach transmitter.

* MSRG: Maximum sum rate algorithm using Gradient method {4iéh quantized CSI. In this method,
the channel matrices (including the direct channels) acvieed, normalized and quantized using ran-
dom unit norm vectors. The quantized vectors are then fekl toeihe transmitters and an optimization
problem is solved based on this quantized information atyetransmitter. The optimization problem
determines a local maximum for the problem of sum rate magdtion using the quantized channels.
The power constraint associated to the precoders is altbortoethe cost function and a Gradient ascent
algorithm is used over the equivalent cost function to fireltltally optimum precoders. In this method,
all the channel matrices need to be quantized and fed bable tmansmitters.

Figures 3.9, 3.10, 3.11 show the achievable sum rate varusnit SNR when each BS is allowed to shajie
bits with the other BSs for different antenna configuratiand different number of bits. For the quantization
phase in the proposed scheme (and also in 1AQ), instead oiptial subspace packing codebook, a random
codebook is used where the codebook entries are indeperateddm truncated unitary matrices generated
from the Haar distribution. In this method, in order to siifypthe quantization, we assume that the norm of
the vectors are known at all the BSs perfectly.

Clearly the Approx-MSR and Min-MSE schemes outperformsatier methods for the same number of
bits in a wide range of practical SNRs.



Chapter 3. Interference Management with Quantized CSIT

80
—*— Approx-MSR (section VI.B)
70F | —*— Min—-MSE (section VI.A) >
—v—IAQ (section 1V) Rt
60F |- - —IAP e i
——EW s
5oL |~ TS A7
2 MSRG
©
@
1S
=]
n
1 1 1

0 5 10 15 20 25 30 35 40
SNR
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Interference Management with

Outdated CSIT

CSIT may be neither perfect, due to the limited capacity efféedback link, nor instantaneous, due to the
delays involved in the channel estimation and feedback. fifsteproblem of having imperfect CSIT is con-
sidered in Chapter 1 and Chapter 6. The second problem afidnavily delayed CSIT, a setting that is highly
relevant in mobile environments with short channel cohegdmmes, is discussed in this chapter. The delayed
CSl is known to bring improvement in terms of DoF compareddwitg no CSIl in BC and IC. We consider
the two-user MIMO IC where the transmitters are providedhwliglayed CSI. The DoF region for this channel
is characterized in [11]. We aim to devise an intuitive achide scheme which is relatively simple compared
to [11] and has a unified structure for different antenna goméitions. Furthermore, our simple scheme allows
for extensions to more general settings (like correlateathnbls) through slight modifications which can be
justified intuitively.

46
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4.1 Background and State of the Art

The study of DoF with delayed CSIT was initiated by the worltM#ddah-Ali and Tse [9]. They proved that
over the multiple-input single-output (MISO) BC with i.ifdst fading, delayed (i.e., outdated) CSIT can lead
to a DoF gain compared to the case with no CSIT. The DoF gamsealized via an interference alignment
scheme. That scheme is based on the idea that the intedesera at each of the receivers at the previous
time slots (which is a linear combination of the data symioaisnded for the other users), can be reconstructed
by the transmitter at the current time instant using delay8tl, and subsequently forwarded to the receivers.
The receivers can exploit this interference to decode their signal. As an example consider a two-user
broadcast channel in which the transmitter has two antemm@&ach user has one antenna. It has been shown
that with delayed CSI this channel has 4/3 DoF [9]. Usingéttmame slots two symbols can be transmitted to
each user. In the first time slot, two symbalg y; of the first user are transmitted and in the second time slot
the symbolses, 32 intended for the second user are transmitted. In these ma4glots every userwill have

a linear combination of its own symbols;(x;,y;) and also a linear combination of the interfering symbols
Li(xj,y;). In the third time slot, the transmitter sends a linear coratibn of the interference terms observed
atthe two users, i.el;x(z1,y1) andL; (z2, y2) (Which are assumed to be available at the transmitter byeleéla
CSl assumption). Clearly the first user can subtiadtz, y2) from the received signal in the third time slot
and the remaining part provides another linear combinaifdts own signal. Similar argument holds for the
second user. Therefore every user will have two linear coatliins of its own symbols which is enough to
decode the information.

This interference alignment scheme achieves DoF gainssaadm-DoF optimal for the class of MISO
BCs, wherein the transmitter has at leaStantennas wheré& is the number of users. This work was then
extended to the case of the MIMO BC in [10] and also for Hiauser case an outer bound to the DoF region
was derived.

Moving from BC to interference channel and X channel, thdangt of [74] have shown that using ideas
similar to that of [9], higher DoF can be achieved comparethéono CSIT case. The results of [74] were
improved in [75, 76]. The DoF region of the two-user MIMO IC sMally characterized in [11] for different
possible antenna configurations. Their proposed achievatiieme is based on transmitting on a stream per
antenna basis which makes the scheme complicated and idifidmplement. In this chapter, we propose a
unified DoF-achievable scheme for the two user MIMO IC withdatied CSIT based on linear matrix precod-
ing which covers all possible antenna configurations anétlavihe many case distinctions required by other
methods.

4.2 Perfect Outdated CSIT

Consider a MIMO interference channel. We assume that afliterls are equipped with multiple antennas.
The channel between transmitieand receivei at time slott is HS) e CN*Mj for 4,7 = 1,2. The received
signal at time instant at receiver = j reads
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v =HYVIx + HOVYx; 40l fort=1,-..,T (4.1)

7 )

wherex; is the symbol of transmittej which has to be transmitted ovértime slots andv‘y) is the precoder
(t)

of transmitter; at time slott. n;  is the additive Gaussian noise vector at time skttreceiver; whose entries
have zero mean and unit variance.

The CSl is provided to the TXs by delay and is completely aetdiaThe transmitters wish to convey their
symbols to their respective receivers exploiting the aitdl&€S1. DoF-achievable schemes are presented in [11]

for different configuration of antennas.

4.2.1 The DoF Region of the Two-User MIMO IC with Outdated CSIT
Fori € {1,2} andj € {1, 2} with j # i, the following inequality is called condition

N; — M,

Mi>N1+N2—Mj>Ni>Nj>Mj>NjW-
o My

(4.2)

Clearly, the two conditions are symmetric in user indicelse Two conditions cannot hold simultaneously,
and Conditiori cannot hold ifN; > N;.

The DoF region is characterized in [11] and the region isdifit for any particular configuration of anten-
nas. Depending on the configuration, a set of the followingpids will determine the DoF region:

Lol :0 < d1 < min(Ml,Nl), L02 :0 < d2 < min(Mg,Ng) (43)
dq do min(Ng, My + My)
Ly: < 4.4
U (N, + Noy M) min(Ne, My) © min(No, M) (4.4)
dq dsy min(Ny, My + My)
Ly : < 4.5
2 min(Ny, Ms) + min(Ny + No, My) = min(Ny, My) (4.5)
Lsy:dy+dy < IHiIl(Ml + Mo, N1 4+ No, maX(Ml, Ng), maX(MQ, Nl)) (46)
Ny + 2Ny — M-
if condition 1 holds : Ly : dy + dy - N2 2 <N+ N, 4.7)
2
No+2N| — M
if condition 2 holds : L : dy + d 2+ Nl ! < Nj + Ns. (4.8)
1

For the case of instantaneous CSIT, the DoF region is desthbbL,, L., andLz [30].

4.2.2 General Achievable Scheme for Different Antenna Configurations

We try to provide a general achievable scheme which encasepadl possible antenna configurations. The
scheme is composed of two phases (successive in time) whehepbase is composed Bftime slots. The
channel outputs (concatenated o¥&time slots) can be written as

y1=HiVixi + Hi2Vaoxs +ny (4.9)

y2 = Ho1Vix; + HooVoxo + no (4.10)
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V§_1) yZQ) nl(;)
whereH;; = Bdiag(HS.), . HZ(.jT)) andV; = | ... |. Alsowe havey; = | --- | andn; = :
V§T) yZg:r) n@(;r)

The proposed scheme is based on transmitting with randooogees in the first phase and transmiting
with a designed precoder in the second phase. We assuméadtthiration of phase 1 for TXis 7' — ¢; with
J # i € {1,2}. Therefore TX; uses the lasj; time slots to facilitate the decoding at both RXs using a priyp
designed precoder in this phase and exploiting the CSIespanding to phase 1. We defiidg = 7'd; and
d5 = Tds.

Let us now consider the received signal space (signal asdenénce) at each RX:

RX1:

(D (1 D r(1) 7
WV mve
e
Ry = [H;1 Vi HipVy| = = Hlf]fQVﬁ’hz H[1)1212V123h2 (4.11)
T)x (T T)x (T
H{PVD H VD
RX2:
(D (1 Dr(1)
WOV HV
VY HEVP | [EEVET Hp v
Ry = [H»Vy Hy V4] = = HS;QVQPM HS?V?M (4.12)
T)x (T T)x (T
v V)

where HY!' = Bdiag(H{},....H{ %)) and HY!* = Bdiag(H, “*" _ H{). Also we have

i 0t Ty i i
v v (T—ai+1)
J J
V(‘T_Qi) V(T)
J J

Here we present our simple achievable scheme which is basestrospective interference alignment.

Proposition 1. The following scheme (almost surely) achieves all the eguots (d;, d2) of the DoF region
for all antenna configurations for which delayed CSIT is Wi compared to no CSIT.
Suppose that, j € {1,2} andj # i. The precoder of TX is designed as follows :

* if dy + dy < N; then a precodeiV; ¢ CTMxdj jg randomly generated (i.i.d. Gaussian entries) and
fixed during the whole transmission.

phl
e if di +dy > Nj, choosingg; = dﬁ thenV; = [V%m] in which V?hl e cT—a)M;xd} is chosen
j
randomly (i.i.d. Gaussian entries) and fixed. Also we MaJE* = VPI2VPL2 where VP € Cailixtis
is again generated randomly (i.i.d. Gaussian entries) aAf> € C'v*% has full row rank ofl; =
min(q;:Mj, (T — ¢;)N;) and is chosen such thaf?,> € R(HE' VP"') whereR () is the row space of
its argument matrix.
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Name in [11] Condition
Go Al3 My, My > Ny > N,
A.ll.2 My > Ny > My > No
B.l N1 > My > Ny > Mo
a B.Il.1 My > N1 > Ny > My andMy < m
B.1l.2 My > Ny > Ny > My andMs > m andM; = M'q
B.llIl.1 My > M'y > Ny > Ny > My >mandM; > Ny + Ny —m
B.lIIl.2 My > M'y > Ny > Ny > My >mandM; < Ny + Ny —m

Table 4.1 Antenna configurations with larger DoF for delayed CSIT paned to no CSITin = N, %,1:%;

andM’; = min(M;, N1 + Ny — M>) with the assumption alV; > No.

In the rest of this chapter we prove the achievability of atlresne.
Without loss of generality assume thslf > Ns. According to [11] we have listed the configurations for
which delayed CSIT DoF region is strictly larger than the rRiTcase in Table 4.1.

Remark 1. For the case A.l.3 we hawg + dy > N; and for all other cases we havg; < di + dy < Nj.
This can be easily shown from the achievable points and ttenaa relations for each case.

Interference alignment is needed when the rank of the redeipace is smaller than the total number of
streams. The consequence of Remark 1 is that in order tovadiie DoF region for case A.l.3 we need to align
interference at both receivers while for the other casessufficient to align interference only at one RX (RX
2 in our setting). Therefore we divide all the cases into tiking two groups and prove the achievability
for each group separately:

» GroupGi: This group includes the cases A.l1l.2, B.I, B.Il.1, B.IIR|11.1,B.11l.2 (which satisfy Ny <
di +dy < Ny)

» GroupGs: This group includes only the case A.l.3 (which satisfies dy > Ny).

Transmission Scheme for Group G,

Theorem 4. The precoders defined in Proposition 1 achieve all the copeénts (d;, d3) of the DoF region
for group G.

Proof. To see the dimensions, we use the following notations fol kR X spaces defined earlier.

g1l 12
[Vlfhl} ) Str—gmixd; Tr-gnixa;
V) = (T—q) My xdj R, = (4.13)
[Vlfhﬂ 11 712
qMixdj Sqn, xa LN xdy
[Vghl] T%%—q)Ng xd
B (T—q) M xds B
Vy = [me] v Rz = STy, xa; (4.14)
2 JqMyxd; 21

qN2xd7y
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where the precoders are chosen according to Propositiod tvamaveS'! = HYM vPh Sl — grh2yrh?

I'2 = HOY'VOR 12 — HPP2 VP2 and S22 — Hy, Vy, T2 = HEM VPR 121 — HEM?VPM2 | Since we align
interference only at RX 2, we sgt= ¢y = Jdv—i;. Clearly the precoder of TX 2 is generated randomly over
the wholeT" time slots. However we have also split the precoder of TX 2va phases (with the samg for
simplicity of analysis.

Theorem 5. The following set of conditions hold for group, :
Cl:d; < IIllIl(MZ,NZ), i=1,2andNy < dy +dy < N3
CII: T(d; +dz2) < (T — q)N; + qMz + min(qNy, qMy, (T — q)N2)

CIII: Tdy < (T — q)M;

Proof. See Appendix B.1. O
Lemma 9. If C.I holds then the scheme in Proposition 1 givesk(Rz) = T'N, for group G .

Proof. We haveV}y € R(HB VP ) = R(I2!). This givesV}™ € R(T?!). Sincel?! = H*VE"™ there-
foreI2! € R(I%') which means that the interference of phase 2 is aligned isfhee spanned by interference
in phase 1. Since in grouf; we haved; + do > Ny and Ny < M, therefore we have

rank(T?!) = min((T — ¢)My, (T — q)No,d?) = (T — q)No. (4.15)

which means thal?! has full row rank of( T — q) N,. Sincely; = min(gMy, (T — q)N2), thereforeVﬁ’};2 has
the maximum possible ranky() that ensures the alignment condition, ihf.lf,h2 € R(I?'). Further, the role
of V‘fﬁ2 is to maximize the rank of the product of the channel with pder of phase 2. This is crucial for
decoding the desired signal.

12
From alignment we haverank = (T — q)N,. Also we have rank(S??)
i?l
min(T'Ms, TNy, d3) = d, therefore
121
rank(Rg) = rank + rank(S%?) = (T — q)Na + d5 = T'Ns. (4.16)
i21

This is due to the fact th&?? is full rank and every column &2 involves random entries which are generated
independent of the columns of interference. Thereforeitirabcan be decoded at RX 2. O

Lemma 10. If C.III holds, there is no overlap between the spaSdfand S*.
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Proof. Note that if C.IIT holds thenV®™ will be full column rank and this means th&(S'!) does not
depend orv?™ (it might depend orH}™) and R (I2!) depends o3 (since(T — q)Ny < di). We have
R(S™) € R(VP"?) e R(I2!) therefore the row spaces correspondin@tbandS'! are independent. [

Lemma 11. If C.I, C.II, C.III are satisfied then the scheme in Proposition 1 givesk(R,) > dj + d; for
group G .

Proof. SinceC.III holds, from Lemma 10 we have independence betvéémndS't. Also we know thai'2
andI'? are independent. Therefore we can conclude that

rank(Ry) = rank( [gll 112]) + rank( [gu ‘1'12} ). (4.17)
It is easy to show that
rank([S'" T'%]) = (T — )V (4.18)
rank(S™) = min(¢Ny, ¢My, (T — q)Na) (4.19)
rank(I'?) = ¢Ms (4.20)
rank( {gu 112}) — min(gNy, rank(I'2) 4 rank(S'!)). (4.21)

Using the facts thad; + do < Ny, if rank( [SH '1'12]) = ¢V, we have

T(di + d2) < (T — q)N1 + g1
= rank([S™ I'*]) + rank( [gll ilz})

= rank(Rj).

If rank( [gu 112}) = rank(I'?) + rank(S'"), from C.IT we get

T(dy + d2) < rank( [gll 112]) + rank(I'?) 4 rank(S'!)
= rank([S" I'?]) + rank( [gu ‘1'12})

= rank(Rj).
U
Based on Lemma 11 and Lemma 9 and Theorem 5, we have
rank(Rg) = T'N; (4.22)
rank(R1) > di + d3. (4.23)

Since interference at RX2 is aligned (' — ¢) N, dimensions and interference at RX1 is idjadimensional
space, the desired signal of both users can be decoded.fdnedttee proof of Theorem 4 is complete.
O
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Transmission Scheme for Group G-

Theorem 6. The precoders designed in Proposition 1 achieve all the@opoints(d;, d») of the DoF region

for group Gb.

Proof. In the case A..3 we havé/{;,Ms > N; > N, and the corner point of the region i§ =
in which M’; = min(M;, Ny + Ns). If we
choose the number of time slots equal to the denominator WeaveT = Ny (M'y — No) + M'o(M'y — Ny)
which givesd; = Ny M’y (M'y — Ny) andds = NoM'o(M'y — Ny).

N1M'1(M’'2—N3)
N1(M'3=Na)+M'o(M'1—N1)

anddy =

NoM'o(M’1—N1)

N1(M'3—Na2)+M'o(M’'1—Ny)

Theorem 7. The following conditions hold for grous:

C.I . dl < min(Mi,Ni), 1= 1,2 andd1 + dg > Ny

CII: Td; < (T — ¢:)Mj, i,j =1,2,i +# j.

Proof. See Appendix B.2.

We know that the corner point of the outer bounddis =

NiM'1(M'2—Na)

O

and dy, =

( ) | N1(1v1'2—N2)+MC;2(M'1—N1)
NoM’'o(M'1—N _dy / / _d3 / /
Nl(M’22—N22)+M1’2(1\/11'1—N1) = 5 = M1 (M'y — Np)andge = & = M'5(M'y — N1).
With this choice we aim to align the interference at both RXwre we align the interference from phase 2

. Here we choose;

in the space of interference in phase 1 such that at,RKe whole interference lies in a space of dimension

(T — ¢;)N; = TN; — d which leavesi; dimensions for the desired signal.
Here we show that the scheme presented in Proposition lvashtiee desired DoF. The TX/RX spaces are

shown below.

[ _ [Su1 T12
hl
Vi (T—gq2) M1 xd S(T‘%)NleT L gym xd3
= - - —q2 1Xdy .
V= yPh? Ry (4.24)
! My xd* gll i12
T e q2N1 xdj q1N1xd3
[ _ S22 T21 7
hl
Vi (T—q1)M2xd S(T‘ql)N2Xd3 I(T—q2)N2><d’{
= - - —q1 2Xd3 .
Vs, = yPh? Ro (4.25)
2 Mo xd? §22 i21
i S q1 N2 xd3 qaNaxd}
ph2

where we haveS!! = HMMVPR S — HP?Y

1

T2 = B VR 112

Similar to the previous section we hal® € R(I?') and additionally'? € R(I'?). Note thafl'2 andI?!

ph2

— HYPVEM? and §22 —

are full rank which indicates that the designed precoé@%2 andVs 5 have the maximum possible rank that
ensures the alignment condition. Also similar to the presioase we have used a random precoder in order to
make sure that the ranks of the received signals at the RXaaxamized which facilitates the decoding of the

desired streams.
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In phase 2, TX 1 needs to have accesBtand TX 2 needs to have accesd td. This means that although
the phases are not synchronized and ¢> might be different), the TXs can have access to the necessary
information after transmitting in their corresponding tfipbase.

Lemma 12. If conditionsC.I and C.III hold, the scheme in Proposition 1 ensures that the receipadesR ;
andR are full rank for groupGs.

Proof. We know thatl'N; < df + d5 = g1 N1 + g2 N2 < (q1 + g2) N1 which givesg; + g2 > T. Assume that
i,j € {1,2} andi # j. Using this fact and based on the conditior, the relations between the number of
antennas and the condition on the rank of the precoders, e ge

rank(S") = (T — ¢;)N;, rank(I¥) = (T — ¢;)N; (4.26)
rank(S") = min(g; Ny, (T — ¢;)N;), rank(T?) = min(q; Ni, (T — ¢;)Ny) (4.27)
I
Consider RXi. From alignment condition we geink = (T — ¢;) N;. Therefore using the same
T

argument as in the previous section we have

rank(R;) = rank + rank = (T — ¢;)N; + rank
Sii
FromC.III we have independence betweghandS” which givesrank = rank(S%) 4 rank(S%).
Sii
Therefore we get
rank(R;) = (T — ¢;) N; + rank(S") 4 rank(S%). (4.28)

Substituting forT’, ¢;, ¢;, we have(T' — ¢;)M'; = ¢;N; and sinceMl’; < N; + N;, we have(T — ¢;)N; + (T —
Qj)Nj > (T — Qj)M,i = q;N;. Also we hanT — Qj)Ni + QjNi =TN,; > q;N;. Therefore

(T — ¢;)N; + min(g; N, (T — ¢;)N;) = ¢; N
= rank(S") + rank(S%) > ¢;V;
= rank(R;) > T'N;.
U

Similarly, from Lemma 12 and Theorem 7, it can be inferred tha signal at both receivers can be decoded,
hence the proof of Theorem 6 is complete.
O



Distributed Interference

Alignment

Despite its deceptively simple mathematical formulatith,has no general closed-form solution (although
the solution exists for certain dimensions, see e.g. [7H#j)large networks, or when the network topology
cannot be assumed to be known, distributed implementatiomglesirable due to the increasing amount of
information exchange requirement along with the growingnpatational complexity. An iterative distributed
implementation relying on over-the-air estimation of ifeeence covariance was proposed in [12].

Message-passing algorithms, and in particular the sumegtoalgorithm [78], have been used to solve
decoding problems in communications. In a nutshell, theyige an efficient way to compute functions
involving a large number of variables when the function iesfion can be decomposed (factorized) into terms
that involve only a subset of the variables. Such algorithnesknown to distribute the complexity associated
to the increasing size of the network over the individualewdf the network. In this chapter we aim to model
the procedure of finding the alignment precoders as a megssgég problem. It turns out that our message
passing solution includes the well known minimum leakaged@hm [12] as a special case.

55
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5.1 State of the Art

MP solutions can be formulated for a variety of problems &g computations on a commutative semiring,
i.e. they are not restricted to the computation of probhidlistributions [79]. In fact, depending on the choice
of the semiring (and the associated binary operations, asgdum, product or minimum), MP solutions are
available for Bayesian inference (yielding the beliefgagation approach of ML decoding [80]) as well as
optimization problems (e.g. the min-sum algorithm [81]).

A major motivation for considering MP is that the resultinigaithms are well suited for distributed
implementation. This is because for most practical aptiting, each factor in the function only depends on
local data (in our application, channel state information). MB hlkeady been considered for beamformer
optimization in [82], where the sum-product algorithm ipkgd to a function broadly related to the sum-rate.
In [83], the min-sum algorithm is applied to the sum-ratection. The proposed algorithm is restricted to
discrete precoders.

In this work, we introduce a message-passing techniquehadptimizes the leakage function associated
with interference alignment. We deal with continuous Maleg, i.e. we let the precoders and receive filter
matrices take any value in the Stiefel manifold, in conttasthe results of [82, 83] where the precoders
are chosen from a finite set. This is motivated by the fact thatnumber of IA solutions is in general
finite [84] — therefore, solving the leakage minimizatiorolgem on a discrete subset of the Stiefel man-
ifold will in general not yield an exact IA solution, while Istng it on the (continuous) Stiefel manifold will do.

5.2 Factor Graphs

Factor graphs are a family of graphical models which have lveey useful in signal processing and commu-
nications. Factor graphs subsume many other graphical Imadsignal processing, probability theory and
coding, including Markov random fields [85-87], Bayesiamwurks [88, 89] and Tanner graphs [90, 91]. A
factor graph is a representation for a function of severahites that can be decomposed into a product/sum
of factors each involving a subset of variables. For instghe function

f(wl,xg,xg,x4) = fl(wl,wg,x4) + fg(xg,w4) (51)

is defined for variables:, ..., z4 and has factorgy, fo. In the associated factor graph (Figure 5.1), every
variable is depicted by a circle while every function is eganted by a square. An edge between a function
node f; and a variable node; indicates thaff; is a function ofz;. For example the functioff; is a function of
x1, x9, x4 and therefore the variable nodes 2, x4 are connected to the function node

A particular assignment of a value to each of the variablesfesred to as a configuration of the variables.
The configuration space is the set of all possible configumativhich is the domain of the functigh We are
interested to find the configuration which minimizes the gadtif.
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(%)
o

Figure 5.1 Factor Graph associated to the functjbon

We consider marginal functiong(x;) associated with every functiof{x1, ..., z,,). For each feasible, the
value ofg;(a) is obtained by taking the minimum value 6fz1, ..., z,,) over all configurations of the variables
that haver; = a. This definition of marginal function is a particular choiggich is desirable for our problem
and in general marginal functions can be defined in diffevemys. Instead of indicating the variables being
minimized over, we indicate those variables not involvethie minimization. For example, if; is a function
of three variables, z2, 3, then the summary fat, is denoted by

min f1(z1, 22, x3) = minmin fi(x1, 2, x3) (5.2)
~T2 )
In this notation we have
gi(x;) = Ill:lvn fz1, .. xn) (5.3)

i.e., theith marginal function associated wif{z1, ..., z,,) is the summary fog; of f. When the marginals are
available, a local optimization of the marginal functioreothe corresponding variable leads to a solution for
this variable which is a globally optimal solution (when t@ph is a tree), i.e.,

Igllngl(ajl) = I?BIZHIE:IBEIf(SL'l, ey Tp) = xlr’mgnf(:nl, ey T (5.4)
In our example the computation complexity of (5.3) can baiced by exploiting the distributive law:

min f(x1,...,24) = min | fo(xs, z4) + min f1(x1, 22, 24)]| . (5.5)
~I3 x4 Z1,T2

Comparing the above expression to the factor graph, we wbdkat each minimization corresponds to
replacing each box with a new quantity which is a functionhef summary variable. This quantity is referred
to as a message. After replacing the small box in Figure SH ivsi corresponding message {, _,, (z4)), the
marginal can be rewritten as

T%?f@b e Tg) = min [fo(z3, 24) + mpy s, (4)] (5.6)
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Similarly the replacement for the large box will be a miniation of the functionfa (3, z4) + myf, sz, (24)
overz4. The example describes the message updates procedure wdastart from the leave nodes of the
factor graph and messages are passed along the edges. Hbedupeéssages are propagated to other nodes of
the factor graph.

As a generalization of the above example, the following mgssipdate rules can be derived for the mes-
sage initiating from a variable node to a function node acé versa.

The general form of the variable-to-function updates indbesidered message-passing algorithm can be
computed as [81]

Masp(Ta) = Y MisalTa), (5.7)
ieN(a)\b

whereq is the variable node (and, the corresponding variable),represents the function node, and a)
denotes the set of neighborsof

Updates from function nodeto a variable node € N (b) take the general form

Mp—a(Tq) = )1{11\1n Cp(Xp) + E mj—p(5) (5.8)
b\Ta .
JEN (b)\a

whereC, is the function associated to notland X} is the set of all variables which are argument&pf

5.2.1 Min-Sum Algorithm

The marginal functions can be derived in parallel to avoidhier calculations of intermediate messages. The
specific algorithm that performs this calculations is ahltein-sum algorithm [81]. The algorithm starts at the

leaves of the graph (assuming that the graph is a tree). Tt messages originating from leaves that are
variable nodes is set to 0 and the leaves that are functioessehd the function value to their neighbors. The
message update rules are applied as soon as the necessanatitn is available at the edges to compute the
outgoing messages. The updated messages are then pragagateneighbors. The marginal functigg(xy,)

of a variable nodes,, is obtained as sum of all incoming messages

ge(wr) = > musk(ae). (5.9)

leN (k)
In case that the underlying factor graph has cycles, thesmim-algorithm can be still applied. However,

the obtained marginals from this algorithm do not reprefiemtrue marginals. Consider an example obtained
by slightly modifying the function,

f(x1, ., 24) = fi(z1, 22, 24) + fo(2s, 24) + f3(T2,23). (5.10)

Running min-sum algorithm for this graph results in infinit@pagation of messages in a round. There is no
guarantee that the algorithm converges and if it does, ibere theoretical result to show the optimality of the
convergence point. In many practical applications the guoatuct algorithm which is another message passing
algorithm is seen to provide good performance. For examplP@ codes and turbo codes are represented
by graphs that have many cycles and application of the suddgt algorithm on these graphs has shown
surprisingly good results.



Chapter 5. Distributed Interference Alignment 59

5.3 Distributed Design of the Alignment Precoders

5.3.1 Modeling Interference Alignment as a Message Passing Problem

Consider the IA equations (2.7) for tifé-user interference channel. Our aim is to solve fortheandV,
given the channel matrices. Here we focus on the cases wieedirhensions are such that IA is feasible for
almost all channels with coefficients drawn from continudistributions [92].

We reformulate the above 1A conditions using the interfeecleakage metric:

K
@7 Y SN« (UlfH,V,VIEIU) =0 (5.11)
i=1 j#i
b K K
g S o (UFH,VVIHIU) +) 0 o (VIHIUUMH,; V) =0, (5.12)
i=1 j#i i=L i#j
fi(Us, Vi) 9i(V;,Unj)

In the above(a) follows from the fact thalX = 0 < tr (XX*) = 0 and the sum is zero iff all the (non-
negative) summands are zero; and (b) holds bec@ﬁ_e1 fi(U;, V) = Z]K:lgj(vj,UNj). Using the
notations introduced above, whefgandg; are non-negative real functions, we note that (2.7) adingsame
solution set as the optimization problem

K

K
min > FUL VL) + Y gi(V;, Uy, (5.13)
Uy,..., Uk € VN,dv i=1
Vi,...,Vk € Vir g

J=1

We propose to solve (5.13) via message passing, specificgitg the min-sum algorithm. In order to do that,
we construct a graph witdK variable nodedJ;, i = 1... K andV,, j = 1... K, and2K function nodes
fivi=1...K andg;, 5 = 1... K. A connection in the graph represents dependency of a tmcin the
corresponding variable. An example of such a graph obtdrea 3-user network is shown in Fig. 5.2.

Note that according to the above graph constructfpriepends ofU; and on allV;, j # ¢; this assump-
tion is valid for fully connected networkd;; # 0 V(¢, j)). For partially connected networks (see [93, 94]),
the connectivity of the graph should be adjusted according!. if H;; = 0, the edges betweef) andV, as
well as betweery; andU; should be removed.

Variable-to-Function Messages

For the considered problem, considering for instance theseges originating fromJ; (and the set of its
neighbors\ (U;) = {f;, g~:}), we must particularize (5.7) and distinguish between agss going tgf; and
those going to one of the;, j #

mu;—f; (U;) = Z Mg;—U; (U;) (5.14)
J#i
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Figure 5.2 Graph obtained for IA over the 3-user, fully connectedriigi®nce channel.

while
mu,—g;(Ui) = my,u,(U) + Y mg,u, (U)) (5.15)
k4,5
(note that, by a slight abuse of notation, we use the same famtiee nodes in the graph and the matrices or
functions they represent). By symmetry, we have

i#]
and
mv, o5, (Vi) =mg v, (Vi) + > mp v, (V). (5.17)
ki,j

Function-to-Variable Messages

Here again, considering a function nofijeand its set of neighbotd’(f;) = {U;, V..;}, we particularize (5.8)
depending on whether the message is going/f@r to one of theV;, j # i

mfiﬁUi(Ui) = r\rfun |:fZ(UZ, VNZ‘) + vaj_)fi (V]):| (5.18)
- j#i

my—v,; (V) = min [fz'(UuVNz') o, (U) + Y mv,op, (Vi) (5.19)
o ki,

Note that the optimization domain is implicitly understomdbe Vy 4 (for the U; variables) oV, 4 (for the
V). Again, by symmetry, we have

Mg, -v; (V) = min [4;(V;, Uny) + 3 mu,g, (UD)] (5.20)
~ i#]
mg;—u,(Ui) = min [gj(Vj,Uw') +mv g (Vi) + Y mUk%gj(Uk)]' (5.21)

P k#i,j
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Convergence

When considering tree-like graphs, propagating messages the leaves to the root ensures that an exact
solution is found with a finite number of message exchangdearly, this is not the case here, since the
considered graphs have loops — in that case, the messagestiaieged with random values, and message-
passing is executed until convergence. In that case, theglatéh(the order in which messages are propagated
in the graph) can be arbitrary. Although convergence is tvahys provable (see [95] for some convergence
results applying to the min-sum algorithm), this will notnstitute a problem here, as the proposed algorithm
has been observed to converge reliably, as will be seen io8eéx4.

After convergence, the variables of interest are computeah fthe local beliefs at each variable node,
according to

Ur = arngIaji}l Z ma—u, (Ui), (5.22)
aeN(U;)

V; = argn\lfin Z maﬁvj(Vj). (5.23)
7 aeN (V)

Note that the messages considered here are in fact functiofs 18) for example, the message consists in
the value ofmy,_,y, evaluated at all possibl&;. If U; takes on a finite number of values, it can be practical
to compute the message by solving the minimization probtethe right-hand side for each possible value of
U;. However, this method is clearly impractical for contineaatariables. In the sequel, we turn our attention
to the continuous case.

5.3.2 Continuous Variable Case

In order to have a compact (and computationally manageedypeg¢sentation of continuous functions, we intro-
duce a parameterization of our messages. Let us assume¢maneessage:, ,,(X), whereX is a truncated
unitary matrix, takes the form

Masp(X) = tr (X7 Qe X) (5.24)

for some positive semidefinite matry,_,,. Clearly, under this assumption, the message.; is equivalently
represented by the corresponding ma@x_,,. Using this parameterization, and resorting to approxionat
where necessary, we now show that the message computationsSection 5.3.1 admit closed-form expres-
sions of the form (5.24).

Starting with (5.14), we notice that it can be transformed as
mu, 5 (U) =Y tr (UFQquUi) =tr | UF | Qg v, | Ui | (5.25)
J#i J#

Identifying this expression with (5.24) shows that

JFi
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Using a similar reasoning, (5.15)—(5.17) yield trivially

Quisg, = Qrsu, + Y Qg (5.27)
ketivj
QVj—>gj = Z sz—>VJ (528)
i#]
Qv,—5 = Qgov, + Z Qv (5.29)
ki,

The case of the the function-to-variable messages is mtgeesting, since we now seek the closed-form
expressions of the solutions to the minimization problem$8)—(5.21). Let us first turn our attention to (5.18),
and notice that

[i(Un V) + > mv, o5 (Vy)
i
= [tr (UFH; V,VIHEU) + &0 (VIQv, -1 V)] - (5.30)
J#i
Note that each term in the above sum depends only on a s\ngldhis indicates that the minimization over
V.;in (5.18) is separable, and therefore

my,—u, (Ui) = Zr%m [tr (UﬁHijvijHgUi) +tr (V;IQVjﬂfiVj)}

i
- gnxlfljn tr (V' [HiU;UHy; + Qv, -] V;) - (5.31)
JF

Here, we resort to our first approximation, and assume that
arg min tr (V}H [HgUZ-UZHHZ'j + ij—m-] Vj) A% arg min tr (V}HQVj_mVj) . (5.32)

Note that this approximation becomes exaétfnggUi = 0, i.e. in particular at convergence, when (2.7) is
fulfilled. Letting Vg? = Vmin (Qv,—y,) for all j # i, we have

mp oo, (U) =t (Uff H, VOVOHY Ui) Ftr (V?HQVJ.% ,»I.Vg?) (5.33)
J#i
_ H oy OH ppH 1 oH 0
_tr<Ui {%:Hijvjvj HY +1=tr (VS Qvﬁﬁvj)}Ui)
VED)

This yields the final message computation rule
0y 0H rrH 1 oH 0
Qv = Y Hy VIVITH] + Lt (VI Qv, V). (5.34)
J#i

The case of (5.19) follows a similar derivation:

my,-v, (V;) = phn [U" (Uf{ [ZHikvkfog}Ui) (5.35)
el k#i

+tr (U Qu,»r Ui) + > tr (VIQu,ss, Vi) 1
k#i,j
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1
= _min [tr (UFH,; Vv, VIH]IU,) +tr(Uff [QUﬁfi +3 > Hy ViV H’ﬂ Ui) (5.36)

e ki,
R
1
+ Y tr(v,? [Qvﬁfi + §HZH,€UZ-U{IHZ-4 Vk)].
k#i,j
Sk
Again, we choose to approximate the minimization above byming that
arg min [tr (UFHVVIHIU) + 6 (UFRU) + 3t (VISVy) | (5.37)
Ui Vi k#i,j
~arg min [tr (UFRU,) + Yt (VI skvk)]. (5.38)
no ki,

Note however thaR depends oV .; ; andS;, is a function ofU;, so the resulting minimization problem is
not separable. We resort to alternating minimizationrdfU” RU;) and thetr (V'S V},); starting from an

arbitraryUZ(-O) € V.4, we apply the following update rules at iteratian

n 1 n n H . .
V§c +1):Vmin (ka*)fz + §H1HkU£ )Ug ) HZk)’vk # %7 (539)
Ul +1):Vmin(QUi~>fi vy S H VOV HZHk) (5.40)
ki,j

Clearly, whenn — oo, the objective functionir (U RU;) + >°,.; ;tr (Vi/Sx Vi) converges (it is non-
negative and non-increasing at each iteration). We camuvidge any proof of optimality for this approach;
nonetheless, experimental results obtained via this tgolrhave been satisfactory. Lettibfj, V; denote the
convergence points of the iterations of (5.39)—(5.40), wallfy obtain
my, v, (V) =t (VIREU; U H V) 4+ o (U H Vi v TEE)
k#i,j
+tr (U"Qum U ) + 3 (Vi Quis Vi) (5.41)
ki,

which corresponds to the following rule:

1
Qj, v, = HIUTUTH,; + 13[ 3 tr(U;HHikv,:V,jHHgU;‘)
k#i,j
+r (U Qusp U ) + Y tr(VzHvaﬁVz)} . (5.42)
ki,
Note that the terms proportional to the identity matrix thppear inQy,,u, or Qy,—.v, above only add a
constant (independent of the considered variable) to tfextie function. As such, these terms can be omitted
from the message-passing implementation. The matriceespmnding to the messages in (5.20) and (5.21)

are obtained in a similar manner.
We summarize below the message computation rules usingathenptric form, which form the proposed

message-passing 1A (MPIA) algorithm:

J#i
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Quisg, = Qrou + Y, Quu, (5.44)
k#i,j
QVj*)g]‘ - Z Qf,,%v_‘, (5'45)
i#j
Qv,—5 =Qqov; + Z Qv (5.46)
k#i,j
Qj —-U,; — Z ngVOVOHHga
J#i
where Vg) = Vmin (ijﬂfi) Vj 75 ) (547)
Qy,v, =HIU;U; "H,; (5.48)
Qg v, = ZHHUOUOH ”
i#j
where U} = Ui (Qu, g, ) Vi # Jj (5.49)
Qq, v, =H;; V;V;THY, (5.50)

In (5.48),U7 is computed by iterating (5.39)—(5.40), while in (5. 50’)* is obtained by iterating

Ugﬁ_l)zymin (QUk*)gj + inJV.gn)Vgn) Hg)’ vk ;é Z’j (551)
n 1 n n H
VS +1):Vm1n (QV]‘HQJ' + 5 Z HkHJUEC +1)U§C w ij) (5.52)
k#i,j

after initialization with an arbitrarW§0).

5.3.3 Link with the Iterative Leakage Minimization Algorithm

We now point out some ties between the MPIA algorithm for thietimuous case described in Section 5.3.2 and
the iterative leakage minimization (ILM) algorithm [12, gdrithm 1]; for simplicity, in this section, we will
consider only centralized implementations of both MPIA Hrd. It can be shown that ILM is a particular case
of MPIA, obtained for a certain schedule. To see this, asghateall messages in the MPIA are initialized with
zero matrices, and propagate the messages according wltveirig schedulemy, v, Vj, mv, .y, Vi # j,

my, v, Vi, andmu, 4, Vj # i. The other messages are never updated, and thel@fore, ., Qv, ;.

Qy,—v, andQg, u, remain at their initial valu® throughout the algorithm.

In order to see the correspondence, consider the first catpuif (5.49). SincQu,—,,, = 0, the vy,
operator returns random, isotropically distributed necasiU?, and thereford,. v, is random. (5.46) yields
Qv,—5 = Qg,—v, Vi since all other terms in the sum are zero. Next, consideSnj{, theV? computed
aSvmin (Qv,—,) correspond to the random initialization of the transmitcpaersv'l in [12, Algorithm 1].
From this point on, it is easy to prove by induction that the &gorithms perform the same computations
since (using the notatiorlé’! and Ul’l respectively for the precoders and receive filters from)f12]

M= U . G H
QU = Zj;éi HijV[J]V[J] HZ
(mUiﬂgﬂ') Qu,—y, = Qimu, (5.54)

U9 = v (50, Hiy VUV 1) = U0
(g, =v.) AU,
Qy, v, :Zi;éj H;;UMUM Hy;

(5.53)

(5.55)
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Figure 5.3 Convergence trajectory (leakage vs. iterations) of ILM 8PIA for one random channel realiza-
tion

(mv;~5) Qv,—p = Qqov;- (5.56)

5.4 Performance Investigation

In this section, the proposed algorithm is validated usingerical simulations, and compared to the ILM
algorithm from [12]. All simulations presented here ared@-user IC, witht x 4 MIMO channels andl = 2
streams per user. A regular schedule was used for the MPXitdg), whereby the messages are propagated
in the following order: my; v, Myf,v,, MV, MV;g; Mf—U; Mg;—U;, MU;—g; MU, g, (this
sequence constituting one iteration). For the ILM alganithone iteration consists img,,v;, mv,y,,
mpy,u,, andmuy,,,, as outlined in Section 5.3.3.

We first compare the MPIA algorithm to the ILM in terms of corgence speed. Fig. 5.3 depicts the
interference leakage — the objective function from (5.18&rsus the number of iterations for both algorithms
for a random channel realization (the same channel values wged for both algorithms). Observe that MPIA
converges faster than ILM to zero leakage (i.e. the exaatisal). Note that although the curves in Fig. 5.3 are
related to one particular channel realization, this badragiobserved consistently for other channel values.

In order to evaluate the respective accuracy of MPIA and IlMdra distribution of channels, we compare
in Fig. 5.4 the statistics of the leakage achieved after tations of each algorithm, for channels with coeffi-
cients drawn i.i.d. from a complex circularly symmetric Gsian distribution. The curves depict the empirical
distribution of the leakage obtained by running both alfpons over 2000 channel realizations. These results
show that, for a fixed number of iterations, MPIA achievesveeioleakage than ILM, the bulk of the leakage
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Figure 5.4. Empirical leakage distributions over 2000 Gaussian. idtéannels realizations, after 100 iterations

of MPIA and ILM.

distribution being further left (towards lower values) faPIA compared to ILM. The mean (computed in

log-scale) leakage i$- 1073 for ILM, and 3.8 - 10~ for MPIA.

Arguably, the faster convergence of MPIA should be mitigdig the fact that the complexity per iteration

in ILM and in MPIA are not comparable. However, we argue inriegt section that computational complexity
is not the most relevant metric in the case of a distributgglémentation.

5.5 Distributed Implementation

A distributed implementation of the proposed algorithm barobtained by distributing the computations asso-
ciated with the nodes in the graph (Fig. 5.2) among the physievices in the network. Clearly, this mapping

will influence the amount of data exchanged between the de\ie.g. in wireless systems, exchanging data
between devices is costly in terms of energy and bandwidthihe other hand, it is reasonable to assume that

messages exchanged on the graph between nodes on the sareeddenot incur any communication costs.
In such systems, we expect communication costs to outweigtpuatational complexity).

An obvious mapping of the graph to the devices which presetive symmetry between transmitters and
receivers is obtained by associatiiy and f; to receiveri, while g; andV; are associated to transmitter
J. Inthat case, onlyny, ,v,, mv,y,, mg—u, andmy,-,, need to be transmitted over the air, while the
computation and exchange oy, v, mv,—4;, mys,u, andmuy, ., is confined to a single device.

There is no guarantee however that this mapping is optimahynsense. In fact, a meaningful evaluation
of a distributed implementation should involve an analysisthe amount of data required to faithfully

66
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represent the messages (e.g. by considering the quamtizaitimatrix Q,_,; in (5.24)) and of the costs of
communication between devices in the network (in some ctsgsvould include considering out-of-band
communications over e.g. a backhaul network, and poteopitinizations enabled by the broadcast nature of
the wireless medium). This analysis however is not carrigdrothis dissertation. We envision this as a future
research direction.



Robust Interference Management

with Gaussian CSI Uncertainty

Imperfect CSI at the transmitter is a degraded version ofaitteal CSI due to several effects. The main
sources of degradation are delay, Doppler frequency, qaioin and measurement noise. Due to the variety
of the imperfection sources and the randomness associsatth factor, a Gaussian additive error model with
proper parameters is usually adopted. The Gaussian agditigertainty provides an accurate while simple
approximation to the actual degradation and more impdytahsimplifies the analysis of the performance of
the system. In this chapter we focus on such a model for waingyrtto evaluate and optimize the performance
of the MIMO IC. Two different approaches are employed in ttigpter. In the first contribution, the transmit
spaces are determined by IA and subsequently optimizedhkyaliaptation (to adjust the transmission rate
and power) while the precoders remain in the original spatéhe second contribution, a general throughput
optimization problem is considered without restricting firecoders.

68
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6.1 Background and State of the Art

In the first part of this contribution we focus on multi-usgstems where the spatial precoding at the transmit-
ters is based on IA. If the CSl is not accurate, the performaains disappear quickly and simple time-sharing
methods can be superior [42]. In practice, the accuracyeoC#l is limited by quantization, feedback latency
and Doppler effects.

While many researchers have investigated IA assuming @e@f8IT, there exist a few papers in which the
effect of imperfect CSIT on the performance of IA is exploféda, 44, 49, 96-98]. A closed-form expression
for the SINR of every stream in IA is derived in [44] using rand matrix theory tools. The expression is
then utilized to find an approximation of the performance sneas such as sum rate and bit-error-rate (BER)
for IA. The error performance of IA with one stream per useanglyzed in [98] and adaptive schemes are
proposed to improve the performance. The scaling of thebfaedwith SNR in order to preserve the DoF
which is achievable with perfect CSIT is analyzed for sirgitenna systems in [41, 47] while we explored
this problem for multi-antenna systems in Chapter 3. Thaseiraportant results as they provide insight
about design considerations and practical issues. Honawvémproved IA-based scheme that accounts for the
imperfect CSIT is still missing. Reducing the CSIT requisthof IA was investigated in Chapter 3 and the
results indicate that a significant reduction is very ufike happen in general (specially for the symmetric
antenna settings). This suggests that we need to contaéffdm of residual interference caused by imperfect
CSIT and investigate methods that can deal with this rekidtexrference properly. Link adaptation methods
can be very helpful to deal with residual interference araiting the knowledge about the direct channels.

Link adaptation improves the goodput (amount of data swfakyg decoded per unit of time) of a wireless
link by adjustment of the rate and/or power at the TX basederstimated CSl fed back from the receiver [99].
Extensive research has been done on link adaptation fot-fmpoint links. Discrete rate link adaptation for
practical systems was introduced in [99] by using adaptieglutation (AM) and was extended to adaptive
modulation and coding (AMC) in [100]. In AMC systems, a humbEtransmission modes are set up based on
different pairs of modulation and channel coding scheme$101-105], for a wireless system with adaptive
modulation, transmission rate is chosen such that an awédxiagrror rate constraint is satisfied for the link.

We consider the general additive uncertainty model for tBéi@perfection. As the accuracy of the CSl at
the transmitter side is crucial for interference alignmevd explore the situation where the precoders are de-
signed based on imperfect CSI. We consider a MIMO IC wherdrétresmit and receive spaces are determined
by IA. Assuming perfect CSIT, IA decomposes the interfeeenhannel into a set of parallel point-to-point
channels. Modeling the effect of imperfect CSIT as an aduitioise enables the use of link adaptation meth-
ods used in point-to-point channels. Considering practimadulation schemes, we investigate the problem
of maximizing a weighted sum of the average rates while ltgggisum-power constraint across the users and
ensuring that the BER for every stream in the network remlaéhaw a certain threshold. This is performed by
using adaptive modulation, coding and power (AMCP) for g\wstream in the network. Performing this op-
timization exactly is not tractable. Therefore, we use apipnations where the accuracy of the approximated
functions is validated via simulations.

In the second part of this contribution we focus on optiniarabf the expected sum rate without restricting
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the precoders to satisfy alignment constraints. The suenengtression used in this chapter is used under the
assumption of Gaussian signaling. Optimizing the perforceaor every realization of the channel would be
the ultimate goal. However, this is an exhaustive task. kample, maximizing the rate in a single-user MIMO
system requires the channel matrix to be available at tmstndter perfectly and without delay. Therefore,
optimizing the statistics of the desired metrics have bexpawpular since they only depend on the statistics
of the channel which is not likely to change for a certain petrdf time and this results in a huge reduction
in overhead and of the computational burden. For some siprplelems, closed form expressions are derived
for the statistical parameters. However, it is difficult tadficlosed form expressions for many other problems.
One can think about the optimization of the parameters dérftom Monte-Carlo simulations which is also
computationally inefficient.

Another approach is to approximate the statistics of thaetbsnetric. There are methods which approx-
imate the average mutual information and most of them asshatehe number of antennas goes to infinity
in order to find simplified approximations. For example ingknuser transmissions, this problem is explored
for separately-correlated Rayleigh and uncorrelatedaRidillISO channels in [106] and extended to MIMO
in [107] and [108].

Another method to approximate the average mutual infoonais presented in [109] and developed in
[110], which provides a deterministic equivalent of the eoted rate. This method also assumes that the
number of antennas is large. However, it has been shownttivatks very well even with a few antennas.

We investigate the optimization of the deterministic egléwt expression for maximizing the expected sum
rate over the K-user MIMO IC. In particular, the expected gate is approximated by a deterministic equiva-
lent and optimization is performed on the approximated esgion. Simulation results exhibit the effectiveness
of such an approach.

6.1.1 Link Adaptation

In the context of link adaptation, transmission rate andgrosf the TX is adjusted depending on the instan-
taneous channel condition. There are two different appremdor link adaptation in the literature, namely

continuous and discrete link adaptation. In the first cagpacity achieving codes with vanishing error prob-
ability are employed and it is assumed that the rate can hestadj continuously according to the channel
condition. In this case if we denote the equivalent chanagl,ghe average power of noise (and interference)
and the transmission power by, J., andp respectively, then the spectral efficiency of the link isada

logy (1 4 pseq) (bit/Sec/Hz) (6.1)

wheres,, = " is the equivalent SINR of the link.

Continuous link adaptation is not a practical method, etiengh it is suitable for performance analysis. In
practical systems, a small error probability is allowed Hradtransmission rate is chosen from a set of discrete
rates. In the context of discrete link adaptation, adaptoding is used along with adaptive modulation which
improves the performance significantly. In this methbf;+ 1 transmission modes are considered where every
modem corresponds to a pair of modulation and coding configuraigsociated to a transmission rate denoted
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by R,,. The rates for different modes are sorteddas Ry < Ry < ... < Rj;. ModeO represents the case
where no information is transmitted. In modethe BER is approximated by the following expression [111]:

pe(pserpRm) = Amexp(—Agﬂpseq), Seq = 0 (6.2)

whereA,,, and A/, are constants that are determined by the transmission ribtemodel is based on approx-
imating the BER curve which is realized using Monte Carlowation over a large range of SNR. The process
is repeated for every mode which yields the parameters,, and A/, via curve fitting. In the transmission
modem, the minimum required SINR to ensure a maximum BERBgfis denoted by;z, (m), i.e.,

PSeq = 9By (M) = pe(PSeq, m) < Bo (6.3)
where
A _1 BO . /
9By (m) = A—/ IH(A—), By < min (1/27Am) (64)

In this section we will use adaptive power, modulation andirog to exploit the statistical properties of the
interference created by channel imperfections.

6.1.2 Interference Alignment Solution

Assuming that perfect global CSl is available at every TX, pihecoderdV,;, i = 1... K should be designed
to align the interference at each receiver int®&y,a— d dimensional space, in order to achieveterference-
free dimensions per user. A solution to the IA problem exifftthere exist full rank precoding matrices
V; € CNexd j = 1,..., K and projection matricetJ; € CV*4 i = 1,..., K such that (2.7) and (2.8) are
satisfied.

We focus on (2.7) since (2.8) is satisfied almost surely wherchannel entries are drawn independently
from a continuous distribution.

It is clear that any truncated unitary matrix that has theesaolumn space a¥; also fulfills (2.7) and
the same argument holds for the RX filters. This means thataneassume without loss of generality that the
equivalent direct channels, i.&J'H;;V; fori = 1, ..., K are diagonal.

When the CSIT is not perfect at the TXs, the IA filters desighaged on imperfect CSIT are denoted by
truncated unitary matrice¥; andU; where

UMH, vV, =0 Vije{l,. K}, j#i, (6.5)

where the estimated channels are denoteﬂgy Similar to the perfect CSl scenario, we assume that thedfilte
are such that the direct equivalent channels which we déayot&;;,

Gii = ﬂ?ﬂmvl for ¢ = 1, ...,K, (66)
are diagonal. Using the filters designed according to ingeei€SI, the received signal after projection by the
RX filters can be written as

r; = Ully, = Gyx; + Z Gijx; + Ulln,

1<j<K
i

(6.7)
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whereG;; = UMH,; V; andG; = UMH,; V.

Clearly the second term is due to the interference leakage @ther users which is caused by designing
the filters based on imperfect CSI. Also the equivalent chb8n; for each user is not diagonal anymore which
introduces inter-stream interference. To simplify theation, we denote thegth diagonal elements &;; and
G; by G? andGY respectively, for = 1, ..., d.

6.2 Link Adaptation for IA in Presence of Channel Uncertainty

As mentioned in the previous section, when the CSI is pdyfdeciown at the TXs, IA and link adaptation
methods are very effective. If the CSl is not perfect, ditesd of imperfect CSl instead of the true CSl in these
methods will be sub-optimal and introduces performanceatigion. Based on our assumptions, since the
available CSl at each TX is a degraded version of the true B8IlA and link adaptation methods should be
revisited taking the effect of residual interference intoaunt.

In this section a new scheme is presented where AMCP is pegfibusing imperfect CSIT to improve the
performance of IA. The objective function is a weighted suraverage rates of the users where the weights are
allocated depending on the importance and requirementfefelit links. The problem is investigated given a
maximum average sum-power constraint and a maximum av&&geconstraint.

According to Section 6.3, every TX hdglata streams. For streapof useri, we denote the average power
of interference and noise which affects this streamSibyFurthermore, the instantaneous true SINR and the
estimate of the instantaneous SINR (which is availableatrdmsmitters) are denoted respectively,Byand
44, where

q)2 ~q|2
e (6.9
Note that the SINR values do not include the transmit power @my represent a measure of the quality
of the channel for a given stream. The instantaneous ratgaweér for streamy of useri are denoted by
ki = ®1(4]) andp! = ¥!(47) respectively, fon <i < K andl < ¢ < d. Based on the available CSIT at the
TXs (Hij, Vi, 7), the TXs choose the precodé?g» according to (6.5), while the rate and power are determined
by the mappingsp?(-) and ¥J(-) which should be designed such that the average sum-powemnisst P
and the BER at each RX is less or equal3g while a weighted sum of the average rates is maximized. The
weights for different users are denoteddby ¢ = 1,..., K. With these definitions, the overall optimization

problem can be formulated as

maX ZWZZE { @141}

Vz,q

t
. (6.9)
ZZ AV} < Py (C1)

Esa o {pe (T (3, @ (31))} < Bo, Vi,q. (C2)
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Solving the exact optimization problem in (6.9) is intrdateaespecially since the optimization is performed
using imperfect information about the channels. We divigedptimization into the following three steps:

* In the first step (Section 6.2.2), we analyze the effect gdarfect CSI on the IA solution. In this case
every stream will be affected by interference from all otsteeams;

— The average interference power for every stream is chaizetein terms of the average transmit
powers.
— This leads to an estimation of the SINR for every stream.

— Finally, the statistical properties of the true SINR coiatied on the estimated SINR are derived.

* In the second step (Section 6.2.3), we consider a poipbiot single antenna system. Using the statisti-
cal description of the SINR values derived in the first step:

— A discrete link adaptation method is designed with the agsiom of having imperfect CSI.

— The average rate of this system is approximated by a closed dgpression as a function of the
average transmit power, the average BER and the average &ItiR link.

* In the third step (Section 6.2.4), considering the closmunfexpression derived for a point-to-point

system:

— We find the optimum values for the average powers of all theasts in the original problem. This
is performed by solving an optimization problem which irmed the closed form expressions for

all streams.

— Using the resulting average powers, by solvidg parallel problems similar to the point-to-point
system in the second step and using the statistics of thertu®NR, one can find the optimum

instantaneous rate and power for every stream.

In the following we describe each step in more detalil.

6.2.1 Specific Model of Channel Uncertainty

We assume that the entries of the true chanHglsand the channel estimates available at the TX Hggare
CN(0, A;j). The channel uncertainty is modeled as follows

H,; = poHi; + /1 — R2Ey;, (6.10)

where we have assumed that the entries of the perturbatitnixniia; have the same distribution as the true
channel. With this model the parametgrrepresents the correlation between the true channel eteraed the
estimated ones. Denoting the real and imaginary pari;pby X;; andY;; respectively and that (ﬁlij by
X;; and'Y;; respectively, due to the circular symmetry we have, n

E{Xj(m,n)Xij(m,n)} = E{Y;;(m,n)Y;(m,n)} = %Aijpo (6.11)
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E{Xi;(m,n)Yij(m,n)} = E{Y;(m,n)X;(m,n)} = 0 (6.12)
E{Xyj(m,n)Yij(m,n)} = E{Xi;(m,n)Yj(m,n)} = 0. (6.13)
Using the above expressions and considering the fact thatahables are Gaussian, the probability density
function of X;;(m, n) givenX;;(m, n) can be written as
f (21, 2) ! e { ! (x x )2} (6.14)
% ) = ——————exXpPy{ 75— - . .
Xij(m,m) K (m,m) 2102 (1—p3)mAi; P (1= p3)A; Lo

The pdf of Y;;(m, n) givenYij(m, n) can be written similarly. From (6.14) we have

E{X;(m,n)|Xij(m,n)} = poXyj(m,n) (6.15)
N A .
E{X;(m,n)[X;;(m,n)} = (1 - 00)27] + po X (m,n). (6.16)
Therefore we getm,n
E{H;;(m,n)[Hj;(m,n)} = poHij(m, n) (6.17)
E{[Hij(m, n)*[Hij(m,n)} = (1 = po)* Ay + pog|Hij(m,n)[>. (6.18)

6.2.2 Effect of Imperfect CSI on IA

Here we investigate the properties of the residual interfee affecting the decoding of every stream when
the precoders are designed using IA. For simplicity we defingand; , as thegth column of V; and U,
respectively. Therefore from (6.7) we have

ri(q) = Gixi(q) + Lig + I} , + 0’} (6.19)

whereG! = ﬁ?qui\?i,q is thegth diagonal element d&;, I; ; = > 1<i<d ﬁ?qum,lXi(l) is the interference
’ T?éa ’
from other streams of the same usgr, = > 1<;<x 0 H;;V;x; is the interference from other users and
JFi

n'! = u ;i is the equivalent noise for this stream. If the channels aréeptly known Hw = H;;, Vi,j),
then the termsflvq and; , will be zero due to the alignment equations. In the followiwe derive the statistical

properties ofG{ (given the information abouf??) which can be used to derive the statistics of the true SINR.
Then we derive the power of each interference term deperatinpe level of imperfectness of the channels

controlled bypy.

Statistics of G?

It can be shown tth?F and]é?!z are approximately distributed as exponential random klaga(this holds
exactly in the single-stream case) [112]. Henceforth wekwmder the assumption thed'|? and|C¥fl|2 are
exponentially distributed with parametgﬁ. Note that the value oﬁ? is the estimation of the direct channel
gain at the transmitter and this value is used to have amistaous estimate of the SINR.
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Calculating the Power of Interference Plus Noise

In this part we calculate the power of interference plus enéis every stream at each RX. Clearly, assuming
U,, V,, Hy; Vi, j are given,J; , is a sum ofl — 1 random variables anf , is a sum ofK — 1 random variables.
It can be shown that every two distinct factorsipf, I; , andn’{ are independent. This gives

0f = B{|Liq + L 4 + 0} "}

(6.20)

= E{|1,4/*} + E{|I.*} + E{In'{|*}.

The power of the interference terms can be calculated asifsl{see Appendix C.1):
B{|L;[*} = Au(1 - p5) Bi(l),
7 1; . (6.21)
I#q
E(I Py =0-08) > Ay Y B (6.22)
1<j<K 1<I<d

J#i
Also it is clear that the noise variance will not change git@jection by the receive filters.

Statistics of ~{ Conditioned on 4!

In the considered link adaptation method, transmissiom aat power are designed based on the SINR of the
link. Since onlyy! is available at the TX, in order to do link adaptation, we nteefihd the relationship between
~v# and4{ or, more precisely, the statistics 9f given4{ should be determined. We know that bo@f |> and
\G?P and thereforey! and4; are approximately exponential random variables. Two tated exponential
random variables can be described by the following pdf

1 —p X2 2\/p T —x1
5 = — s Ip ¢ —— - _ 6.23
Fropa(@|z2) il —p)eXp{l—prg} \YT—, F?Fg\/fﬁ P\ TI01 = ) (6.23)

wherel? 2 E{y7} andT'? £ E{47}, p s the correlation coefficient and

Y =19 = Aii )
‘ b0+ E{|L P+ E{| ?}

(6.24)
and it is shown in Appendix C.2 that in our problem= p2.

6.2.3 Transmission in a Point-to-Point Link Using Imperfect CSIT

In Section 6.2.2, it was shown that using IA in the K-user MINIQ there will be Kd parallel channels to
transmit the streams and the statistics of the SINR for elaeara was derived based on the imperfect estimates
of the channels. It is clear that the SINR values are funstmfithe average powers of all other streams. Also

it is clear that the effect of the power of the interfererg@ases as the channels become less accurate (which is
captured byy). This section is composed of two parts: First, for a pompoint link, the AMC mapping®(-)

and ¥ (-) for achieving the maximum average rate are optimized. Tlsgdds based on imperfect CSI and
subject to a maximum average power constraint along with xirmanm average BER constraint (the average
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is over the channel uncertainty). In the second part, themmar average rate is approximated as a closed-
form function of the average power and the SINR of the linkngsturve-fitting. Clearly the coefficients in
the approximated expression are functions of the maximuenage BER. This closed-form approximation
simplifies the optimization problem in (6.9) which is finaflglved as described in Section 6.2.4.

Transmission in a Point-to-Point Link with Average Power and BER Constraints

Denoting the true SINR and the estimated SINRYbgnd4 respectively and’ andT their respective expec-
tations, the conditional distributiof, 5 is according to (6.23). The goal is to design the transmisseheme
using adaptive power and rgte= V(%) andk = ®(%) which are functions of the estimated SINR. The design
parameters are the functiols-) and ®(-) such that the average rate is maximized while the averagempow
and average BER constraints are satisfied as formulatee iimfllowing optimization problem

R E{®(9)}

S.t.

E{¥(5)} < P7o (C")

By 5{pe(¥(9)7,2(9))} < Bo. (C2)

(6.25)

Condition (C"2) is complicated and instead we enforce the same conditioarfgrinstance of the estimated
SINR#, i.e., we requiré, {p.(pv, k)|7} < By, V4. By satisfying this condition(C’2) is always satisfied.

Lemma 13. Defining Ap = max(Ay,--- , Ays), the following condition is sufficient to satisfy the BERdien
tion (C’2):
9By (m) 2
T 4 6.26
@ +Q = (620

whereQ, = pj g and@s = (1 — pg)lIn(52).
Proof. See Appendix C.3. O

Considering the limitation on the transmit power (conditic’1), (6.26) is satisfied with equality, i.e.,
U(4) = 5?3175)2. Clearly whenpy — 1 (more accurate channels), (6.26) becomes similar to (6h®hwas
derived for perfect channels.

Similar to [100], where link adaptation is performed usirgfpct SINR estimates, we divide the range of
4 using thresholds,,, 0 < m < M (andty;+1 = +00), such that whedy € [t,,, t,,+1) then the transmission

rate is chosen to bR,,. Therefore the optimization problem (6.25) can be turnéal fine following problem,

tm+l . .
a3 2 Ry, /t . f5()dy
= (6.27)

tit1 (A
s.t. ZgBO(i) %d@ < pmax,
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Note that we have implicitly included the BER constraint.ohder to find the optimal thresholds, we write the
Lagrangian of the objective function as follows

L-YR [ pas - S [ 204 (6.28)
m=0 " tm ! i=0 ’ t; Qlﬁ/ + Q2 ‘ '

For everyt,, we haveZ£ = )\Ql(gB(()g%;gQB;)gm_l)) > 0 therefore, 2= = 0 gives the minimum of the

Lagrangian. Therefore the optimal thresholds are given by

A (9B, (Ignn);sﬁrif—l)) —Q,

= Q1 /
The Lagrange multiplien is computed such that the power constraint is satisfied vgttakty. We find the
solution for A using a simple bi-section method knowing that the left-haitl® of the power constraint is a
monotonic function of\. For small values of\, the thresholds are small and the SINR will be larger than all
the thresholds which means that the maximum rate is choskith{wequires high power). A3 increases,

0<m< M. (6.29)

the thresholds start to increase which gradually causegiwrer rates to be assigned and thereby a decrease in
the transmission power. Finally, all the thresholds go finity which indicates that zero rate (therefore zero
power) will be chosen. This implies that a solution focan be obtained by using a bi-section root finding
method.

At this point, the function®(-) and¥(-) can be explicitly written as

®(9) = Rm, ¥ € [tm,tm+1) (6.30)
AN gBo(m)
U(9) = 00 1Oy (6.31)

Closed-form approximation for the average rate in a point-to-point link

Inspired by the Gaussian channel, we approximate the aveadgachievable in the link By{k} = L log(1+
L'T P™) whereL and L’ are functions of the transmission modesmaximum error probability3, and the
CSl uncertainty parametgg. We have used a curve-fitting method to find the valued.fandL’. We verified
the accuracy of this approximation compared to the actuzlaae rate via extensive simulations for different
values ofBy. Figure 6.1 shows the comparison between the approximaméssion and the true value of the
rate forBy = 10~°, P™a = 1 and different values qf.

6.2.4 Optimization of the Weighted Sum of the Approximate Average Rates

Using the approximated closed-form expression for theamerate we equivalently look at the following
problem
K

B max Z w; Z Ki(q)

Pi(q). 1Si<K, 1<q<d = 4

s.t. (6.32)

K d
Y>> Pl <R
i=1 g=1
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1.4 ‘

— B - Approximation by curve fitting, p=0.85
—8— Exact, p=0.85

— # — Approximation by curve fitting, p=0.95
—— Exact, p=0.95

1.2r

Spectral Efficiency of the link(bit/sec/Hz)

SNR (db)

Figure 6.1 Comparison of the approximated expression with the trdeevaf the rate forB, = 1077,
pmax =1,

whereK;(q) = Llog(1 + L'T?P;(q)) ~ E{k!}. Note thatl'{ is also a function of the average powers. The
above problem is a non-convex constrained optimizatioblpro. We resort to numerical optimization methods
to find a (locally) optimum solution. The optimization prebi is solved using the active-set method [113].
This method determines which constraints influence the femllt and watches them while searching for the
solution. It performs a line search by updating the Hessiatrimof the Lagrangian. This technique reduces
the complexity of the search. We used the standard MATLABl@mgntation to compute the average powers
to be assigned to different streams of different users.rAifteling the average powers, the instantaneous rates
and powers can be chosen independently for each streanaistmithe point-to-point scenario discussed in
Section 6.2.3.
The overall procedure summarizing the above steps is pegs@nAlgorithm 2.

6.2.5 Performance Investigation

Orthogonal Transmission in the K-User MIMO IC Using AMCP

Due to the imperfectness of the CSI and sub-optimality ofitAs natural to ask whether we are better off
performing IA rather than simply using an orthogonal resetsharing transmission scheme. In orthogonal
transmission we assume that the channel resources (tinuiyixth) are divided equally among different users
in the network. In order to have a fair comparison with thepped scheme, we consider a similar problem
where we look for maximizing a weighted sum of the averagesraf the users while having a total transmission
power constrainf; and a maximum average BER Bf,. Here we haved{ point-to-point MIMO links where

for each linkd’ = min(Vy, N,.) parallel streams are transmitted. Therefore the optinoizairoblem can be
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Algorithm 2 Link adaptation for 1A

« Find the IA filtersV; and U, that fulfill (6.5) and diagonalize the direct channels (gsihe estimated
CSIH,;, Vi, j)

 Derive the closed-form approximation for the average mat point-to-point link using the parameters
L and L' which are calculated based @y, P™**, p,

« Compute the optimal average powers associated to evegnstof each useP,(q), Vi, ¢ from (6.32)

» Compute the thresholds for every stream according to J&&@g the average power associated to that
stream (computed in the previous step).

 Calculate the instantaneous rate and power for everyrstaegording to (6.30) and (6.31) using the
estimated SINR of that streafy

» Transmit using the modulation and coding pair associaidld rate which is allocated to each stream

formulated as

K d’
max w; S E{®I(y)}
@'?(-)w’?(-)é q; e
s.t.
K d

> Y B < R

i=1 g=1
E{pe(W'] (V'] @1 (Vi))} < Bo, Virg

(6.33)

where the instantaneous rate and power for strgafuseri are denoted by'¢ = '¢(y'7) andp'? = ¥'4(y'7)
respectively, forl < i < K and1 < ¢ < d’. We use the truncated unitary precoders and receive filats t
diagonalize the estimated channel matrices, i.e.,

UHMH, V!, = G, = diag(G},...,Gi) for i = 1,..., K. (6.34)
However, due to imperfect CSl, the equivalent channel
G'; = UMH, V] (6.35)

will not be exactly diagonal which indicates the presencsatffinterference from the other streams. Writing
the received signal after projecting with the designediveciters we get

r'i(q) = G'{x/(¢q) + I}, + 0"}, (6.36)
~H . i ~H . .
whereG"} = w’; H;;V}  is theqth diagonal element o&';;, I, = > 1<i<q W; (Hii Vi xi' (1) is the inter-
!

79
ference from other streams of the same usengfjd= u’; n; is the equivalent noise for this stream. Similar to
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the previous section, it can be shown that b6tff|? and|C¥;‘1|2 are exponential random variables with average
and variance equal td;;. Also the power of the interference and noise can be cakulilas

B{|I/,+n"{?} = Au(1—pf) Y Pl()+0

1<i<d’ (6'37)
g
. G912 . ~ G2 i
Also denoting the true SINR by'! = W and the estimated SINR by? = W we will
have the following average SINR values,
P91 gyt — R — (6.38)
Aii(1 = pg) Xr<i<a Pi(1) + 0
I#q
Therefore, the original optimization problem can be regthwith the following problem,
K d’
max Wi K(
P/(q),1<i<K, 1<q<d’ ; ! ; 9
s.t (6.39)

| K d
Y Y Pl<h
7j=1¢q=1

where K/(q) = Ljlog(1 + L5IP/(q)) is the approximated closed-form expression for the averate
E{k'?}. Again this problem is a constrained optimization probléat we solve using the active-set method.
After finding the optimal average powers, the instantangatss and powers can be chosen similar to the
point-to-point scenario.

Simulation Results

To evaluate the performance of the proposed scheme, we e#eMRE modes defined in the IEEE 802.11-a
standard [105]. In this setting there are 8 different modeh @f which is associated to a particular modulation
and coding pair. These modes provide the set of rftes, .75,1,1.5,2,3,4}. The parameters of the BER
estimation according to (6.2) are extracted from [111]. Wsuane that the TXs and the RXs are placed such
that the distance between TXand RXi equalsy/a2 + (i — j)232 and the variance of the channel entries
equalsE{|H;;|?} = A;; = (QQH:’W where¥,, a and are constantsw is the distance between a pair
of TX and RX. We assume that the TXs and the RXs are equippduthhgtsame number of antennas and that
the weights for different users are equaj & 1, V5). Also the noise variance i1 and By = 107°.

In Figure 6.2, the sum rate of the system is plotted for diffémumber of users comparing the proposed
scheme (interfering transmission which is labeled by "lA"the figures) with the orthogonal transmission
(which also uses AMC). The number of antennas increasestithumber of users accordingdg = N, =
[%1. The parameters are set/as- 2, Py = 2 andp = 0.95. As shown in this figure, the sum rate increases
when the number of users grows. This of course presumeshinanount of feedback also increases due to
the increase in the number of antennas. For a fixed feedbalgehuhe performance could be degraded by
increasing the number of users. Clearly the proposed schatperforms the orthogonal scheme as it provides
higher sum-rate.
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In Figure 6.3, assumindd = 3, Ny = N, = 4andd = 2, P, = 1 andf = 2, the sum rate (for
both interfering and orthogonal transmission) is plotteddifferent values op anda (the distance between
every TX and its RX). Clearly, by decreasing the CSI becomes less accurate and it degrades the overall
performance. It is evident that for smallthe orthogonal scheme is superior.

Figure 6.4 shows the sum rate comparison for a fixed value ef 3 and different values fop and p.
The other parameters are the same as in Figure 6.3. Clearlddptive IA scheme outperforms orthogonal
transmission. Note that the performance of the orthogociaérse is independent ¢f as the gain of the
interfering links does not affect the performance of ortiroa transmission.

Figure 6.5 shows the performance comparison when the Vanesameter isx (which affects the SNR).
Here we have considerdd = 5, N; = N, = 3andd = 1, P, = 2 andp = 0.95. The curves are plotted for
two different values of3. From both figures 6.3, 6.5, it is clear that for smaller valoécx, the improvement
of the proposed scheme compared to the orthogonal schemeaigig Also it can be seen that higher values of
B increases the performance gain of the proposed schemectasasponds to lower interference power).

8 T
—~ —=—|A, o=3
T 7| - & -Orthogonal, a=3 |
é * |A, o=7
2 g}~ * ~Orthogonal, a=7 |
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Figure 6.2 Sum rate comparison for different number of usé¥s.= N, = [%1, d=1,6=2,p=0.95,
Py=2.
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Figure 6.3 Rate comparison for different values of correlation cogdffit anda. K = 3, N; = N, = 4,
d=2,8=2,Py=1.
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Figure 6.4 Rate comparison for different values of correlation coggdfit andg. K = 3, Ny = N, = 4,
d=2,a=3 PR =1
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Figure 6.5. Sum rate comparison for different values of distanced =5, N; = N, = 3,d = 1, p = 0.95,
Py=2.

6.3 Throughput Maximization Using Tools from Random Matrix Theory

Consider the following expression

1
VY =log |1y + ;HQHH (6.40)

whereQ € CN*V is a positive semi-definite matri¥l ¢ CM*¥ is random and>?> > 0. The following
theorems provide useful information about the meaw of different situations.
We start with the following Lemma

Lemma 14. LetH € CM*V and positive seimi-definite matric€s C € CV*V be deterministic matrices and
0% > 0. DefineG () = (IN + 5Q%(~3Q%> and

1

~ ~ _ 1 1 —1
9(Q,5,8) = ~—tr ﬁu+ﬁﬂM+quyaQﬂﬁ) ,

=

1 — = 1\ —1
_ < 1 11 ~1 , Q2H"HQ>
,0,0) = —t 2CQz | o2(G(8)) L4 =—— =~ ,
#(Q.0.9) Nr<Q Q<a<<>> " ))
then the system of equations

5 = 5,0
- -?(Q? 7~)7 (641)
5 - g(Q7575)7

has a unique solutio¥*, §*) € (0, c0)2. Moreoverd* andé* can be numerically computed via Algorittsn

Proof. A sketch of the proof is given in Appendix C.5. O



Chapter 6. Robust Interference Management with GaussidtJ@&rtainty 84

Algorithm 3 Fixed point solution
Initialization: m = 0 ands©, 5 > 0o
Repeat

o S(m+l) — 9(5(m)75(m))
o §(m+1) — g(5(m)75(m))
e m<+m-+1

until convergence.
Output: (6%, 6%) = (5™, §(m)),

Theorem 8. Let H = H + E, in whichH ¢ CM*V is deterministic with bounded spectral norm, and

E = V—%Wfﬁ with W € CM*N having i.i.d. elements froliA/(0,1) and C diagonal nonnegative with

bounded spectral norm. Let al€d € CV*V be deterministic Hermitian nonnegative with bounded spéct
norm. Then, as/, N — oo with M/N — ¢ > 0,

R-—R—0
whereR = E [log Iy + 5HQH!Y|],
R=log |(1+ 5Ty + %ﬁQ%G(é)Q%f{H ~log |G(8)] — No245,

andé andJ are the unique positive solution ¢6.41)

Proof. The proof follows directly from [110, Theorem 2], where ofiynctional uniqueness @, § (seen as
functions ofo2) was obtained. Lemma 14 completes [110] by adding poinewisiqueness of, 6 for each
a? > 0. O

The expression given bi is called the deterministic equivalent Bfbecause it does not involve an expec-
tation. An interesting property df is that its partial derivative with respectdands vanishes afo*, 5*),

OR
00

_oR
(5*75*) 85

= 0. (6.42)
(6*.3%)

6.3.1 Approximating the Expected Sum Rate

Consider an interference channel in whightransmitters communicate with their respective receivera
shared medium. Transmittgrand receiver; are equipped withV; and M; antennas, respectively. Data
symbols are spatially precoded at the transmitters. Thebeurof data streams sent by transmitterquals
d’. The vector at receiverreads

vi = Hiu v A Vix; + Z Hij\/ /\jVij + n; (643)
1<<K
2z
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inwhichH,; € CMi*N is the channel matrix between transmitfend receivet, V; € CNi*# andx; e C%
are the precoding matrix and the data vector of transmjttegspectively. Furthermore,; ~ CN(0,0%1,y,) is
the additive noise at receiver AssumingE [xixiH] =1I;, i =1,..., K, the covariance matrix of the signal
transmitted by useyj is given byQ; = AjVjV? in which \; = tr(‘fﬁ?) The transmit power for useris
tr(Q;) = Fj.

In order to simplify the analysis for imperfect CSIT, we coles the following uncertainty model for the
channel matrices which is equivalent to (6.10) with propanmalization.

H;; = H;; + Eyj,

inwhichE;; is the estimation error, whose entries are modeled as indep¢ and identically distributed (i.i.d.)
Gaussian random variables with zero mean and variaf}.ceBoth H;; andafj are provided to a central node
through feedback. We define the feedback qualityHgy as

tI‘(IjIZ]IjIg)

m (6.44)

Nij =
The objective function is the achievable expected sum ridteedVIIMO IC under the assumption that the input
signals are circularly symmetric Gaussian. Considerieg#teived signal in (6.43), this reads

K K K K
Roym = BE ;log Ty, + %;H,—ijHg - ;log Ty, + %j:%#HiijHg (6.45)
where the expectation is w.r.iE;;, 1 < i,5 < K. E;; = 0;jW;; and W;; with i.i.d. CN(0,1) entries.
Therefore, it is sufficient to optimize jointly the covar@matrice®, ..., Qx. Here we aim to reformulate
our problem in a way such that the theorems defined earliebearsed to approximate our objective function.
Defining N' = 3=/ | NV, (6.45) can be rewritten as

K K
Reum = E [Z log —> log

i=1 =1

1 1
I, + ?HiQH? Ing + gHiQ—inH

] : (6.46)

whereg? = "—]\? the equivalent channels of sizé; x N are defined aBl; = \/Lﬁ [H;p,..., Hig]fori=1, ..., K,

Q = Bdiag (Qg, ..., Qx) andQ_; is equal toQ except that théth block is replaced by th&; x IN; zero matrix.
Therefore

H;, = H; + E;, (6.47)
_ _ _ ~ 1 ~
with H; = \/Lﬁ [Hih ceey HzK] , E; = \/_1NWZCZ2 , W; = [Wila ceey WiK] and C; =

Bdiag (041, .., 0% In, ). With these definitionsW; hasCA/ (0, 1) elements and; is diagonal nonnega-
tive. Therefore we are within the conditions of applicat@mheorem 8.
Defining R, andR; as

1
Ly, + - H;Q_H}'
g

1
RS =E {log Iy, + —H,QH}'
(o2

R =E {log

|\
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where the expectation is ovE);, the expected sum rate is

K

Ram =Y _ (RF —R;).

1=1

Using Theorem 8, we approximaté;r andR; by deterministic equivalents. In particular, we have

RT — RF

. —0

(6.8)

7

asN;, M; — oo with N; /M; — ¢; > 0 for all j, where

Rf = f:(Q,5;,41)

177

~ 1 _ _
=log |(1 + 6/ )Iu, + 5 H,Q2G;(5) Q2 HI!
g

—log |G4(6;")| — N&26; 6+ (6.48)

in which G, () = (Iy +2Q2C;Qz2)~!, ands;* andd;™* are the unique positive solutions to

0t = ¢;(Q,6F, 6
N:_ ?(Q? 1—"_7 NZJ’_)’ (6,49)
7 = gl(Qaéz 751' )a
where
- 1 - _ N
9:(Q.67.57) = v (721 + )Ly, + HiQEGi(57)QPHY) (6.50)
1 P QIENE,QE\
Gi Tty == 3C;Q2 | 2(G(6)) =t , _
3:(Q.67.51) = wtr | Q2CiQ> (a (G + = ) (6.51)
Similarly we defineR;” = fi(Q_;,d; ,d; ) and(5;*,4;*) the unique nonnegative solution to
4, = 7 —’ia(s'_7 N‘_ 9
0 = 6Qdn0) (6.5
51' = gi(Q—ivéi s Yy )

Defining Reum = S5, | R} - R; , with K finite, we have from Theorem 8 that, for
(5?*75;%*) (5:*757*)
all Q; with bounded spectral norm,
sup Rsum(Q) - sup Rsum(Q) — 07 (653)
Q? Q7
[|QJ| bounded ||QJ| bounded

as N;, M; grow large withM;/N; — ¢; > 0. Thus, optimizingRg,, over Q, for any family of bounded
precoders, is equivalent, in the asymptotic regime, tawipthg R, overQ.

6.3.2 Optimizing the Approximation of the Expected Sum Rate

Rqum does not involve expectations. Hence we propose to use &gtascent method to determine a local
maximum as summarized in Algorithm 4. At each step of theigrachlgorithm,5;™, 6.*, 6%, 6, * are eval-
uated using Algorithm 3, allowing an evaluation of the geadifrom which a new set of precoders is derived.
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Algorithm 4 lterative optimization
Initialization: m = 0 andQ(® arbitrary.
Repeat

« Computey;™, 6;7*,6:%,6,%,i = 1,..., K, using Algorithm 3

« Evaluate the gradier¥ Ry, W.It. V = [V, ..., VT

LetV =V 4 BV Ry (for some step-sizg)

1) . VlVH VKV
Let Q(t1) = Bdiag (HW PKW)

*m<+m-+1

until convergence.

The remainder of this section is dedicated to deriving ekpéxpressions for the gradients required in
Algorithm 4.

We know from (6.42) that the partial derivative 8" w.r.t. 5,6 fori = 1,..., K is zero at(5;™*,5,™)
(the same applies t&; w.r.t. §; ,52 at(d; ”, 5 *)). This fact simplifies the calculation of the gradient when

using the differentiation chain rule.
In order to differentiateR,,, we rewrite R;” as

R =log (1 + 6, ), + ]Q2zzJ (&) 2HH ZlogmJ (6:)| — N&*5; o (6.54)

o2

||Mx

in which Z;(z) = (Ly, + z07;Q;) ", and

j=1

-1
K
1 _ ~ _ 1 1_
o = 5t (02(1 + 6, ), + Y Hy;Q? z,-j(aj)Q;Hg.) :

It is shown in Appendix C.4 that the gradient with respecVtpis given by

- tr (27, V,V}))
f_Qfvy, -\ in n"n)
where
1 - -
2 = 2,0(6) (35 PR (PU(67) B an(67) + 3 21, ). (6.5

_ _ K _
The same procedure holds fBf with Q_; instead 0fQ, and therefore we hav€, Rsym = > (Vanr —

V,.R;). DefiningV = [Vl,...,VK]T, the gradient with respect 8 is V Rum = [V1Rsum, --., VK Roum] -
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I
—a— Perfect CSI
40 [{ —— Deterministic equivalent 1
—e— AWGN assumption (ii)
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Figure 6.6. Performance comparison of precoder optimization metHod8-user MIMO IC,N; = 4, M; = 4,
Nij = 3.

6.3.3 Performance Investigation

In this section, the performance of the proposed schemeaisiaged through numerical simulations. The
performance metric is the expected sum rate (6.45) evaluhteugh Monte-Carlo simulations employing the
covariance matrices designed with Algorithm 4. The whotecpss is repeated and averaged over realizations
of H;;, with entriesCA/ (0, 1).

Figure 6.6 shows the expected sum rate versus transmit SNRHoee-user IC with four antennas per node
and two data streams for each transmitter, using diffenesdquler optimization schemes. We assuiye= 0.5
andn;; = 3fori,j = 1,..., K. We compare the performance of the precoders provided bgrithgn 4 to
two alternative approaches: (i) precoders are designectinmize the sum rate under the assumption Higt
is the true channel (i.e. the transmitter assunf(;s: 0), (ii) the signal resulting from the channel estimation
error is modeled as an additive white Gaussian noise tertmalbcase, the last two terms in

K
yi = Hiv/\iVix; + Z H;;j\/\;jV;x; +n,

j=1,5#i
K
+EiVAVx + Y Eij /A Vx;
=15

are considered as noise and therefore the covariance rottie equivalent noise vector ég' 1y, with o? =

K
M; Y- PjNjo}; + 0. In this case the precoders are designed as in (i) exceptédatifferent noise variance.
j=1

We also provide as a reference the performance of precogémiped with perfect CSI.
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The results clearly show that our deterministic equivabgmtroach is superior to (i) and (ii). This sug-
gests that, even though the system dimensions are smalkiexhmple, and therefore we operate far from
the asymptotic regimeV;, M; — oo, the approximation through deterministic equivalentspetforms the
classical simplifying assumptions (i) and (ii).



Conclusions and Outlook

Finally, we summarize the important contributions and fewsome insights for future development and ex-
tension of our results. In this thesis, we devised efficiarmization schemes to reduce the CSI feedback
overhead in & -user MIMO IC. We analyzed the system performance when gquexthCSl is used to design
the transmit signals.

We next considered a scenario where the CSI available atahsmitters is outdated and does not provide
any information about the current state of the channel. Pospective alignment scheme was proposed to
achieve the DoF region of the two-user MIMO IC with outdatesl C

In the third part of this thesis, we focused on distributettuation of the transmit precoders over the
network. A distributed approach to the interference aligntrproblem was proposed using a message-passing
formulation.

Finally, the problem of sum rate maximization was considexssuming a Gaussian additive channel un-
certainty model. Two different methods were proposed ta@pmately maximize the sum rate infé-user
MIMO IC.

90



Chapter 7. Conclusions and Outlook 91

7.1 Conclusions

In the following we draw conclusions based on the resultsgmd in the previous chapters.

Quantized CSI

» A new CSI feedback scheme for interference alignment orkKtiser MIMO interference channel was
proposed consisting in a parsimonious representatiordlaséhe Grassmann manifold.

» We characterized the scaling of the number of feedbackwiitsthe SNR required in order to preserve
the multiplexing gain achievable using perfect CSI. Thialisg is shown to be better (slower) than the
scaling obtained using the schemes from [8] or [7] for altsgsdimensions where IA is feasible.

» Simulations results confirm that our scheme provides &bstim rate performance compared to quan-
tization of the normalized channel matrices for the sameberrof feedback bits. Furthermore, at non-
asymptotic SNR and for a fixed codebook size, the proposeshselis shown by simulation to achieve
better sum-rate performance than the methods from [8] or [7]

» We introduced a model for the chordal distance of the gmatitin error which facilitates the numerical
performance analysis of schemes requiring intractablyel@odebooks; it can be used to generate rota-
tions that closely approximate the true quantization esfdRVQ. This tool enables numerical analysis
of general Grassmannian RVQ schemes for large codeboak sitbout requiring the generation of the
codebook nor the exhaustive search normally associatédtidtquantizer.

« In downlink interference alignment for TDD cellular syste a CSI sharing scenario was considered and
efficient sharing of CSIT among interfering BSs was propasedlar to the feedback method.

» The growth rate of the bits to be transferred with respedh&transmit power was characterized in
order to preserve the total multiplexing gain. This scallghown to be better (slower) than the scaling
obtained by naively sharing the channel matrices.

» Furthermore, methods were proposed to improve the pediaca by exploiting the accurate local CSI
available at each transmitter. Global optimization protdeare considered and then decoupled into local
optimization problems using the proposed IA filters. Thehods start from an IA solution and improve
the precoders exploiting the accurate local CSl availai@daeh transmitter(which also includes the direct
channel at each transmitter). The proposed methods arensimolae superior to classical interference
management technigues via simulations.

Outdated CSI

» We modeled the problem of transmission in a MIMO IC with @il CSIT as a retrospective alignment
scheme. The model is a MIMO generalization of the schemegseabin [74] wherein the procedure of
feeding back and forwarding the overheard interference {8 is done in a systematic way.
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We propose a unified and simple DoF-achievable scheme éokiiMO IC with outdated CSIT which
encompasses every configuration of antennas and does notrédte complicated transmission scheme
of [11]. Our proposed scheme provides a matrix representdtir the precoders to be employed when
CSIT is outdated.

The achievable DoF of the MIMO IC with outdated CSIT is vexfianalytically.

The proposed scheme is very flexible and insights are pedvid extend the method for more interesting
scenarios like having time correlated channels.

Distributed Interference Alignment

We have introduced an iterative solution to the problemntdrference alignment over MIMO channels
based on message passing applied to a suitable graph. Agteraation of the messages that enables the
use of this algorithm over continuous variable spaces wagdnced, and closed-form approximations
of the messages were derived.

We have shown that the iterative leakage minimizationrittym of Gomadam et al. [12] is a particular
case of our message-passing algorithm obtained for a plartischedule.

The proposed algorithm was shown to outperform ILM in teahsonvergence speed.

As the associated nodes of the graph correspond to TXs/RXsei network, we discussed different
allocation of the nodes of the graph to the transceivers &sulthe distributed implementation of the
proposed technigue.

Robust Interference Management

Link Adaptation for Interference Alignment

Interference alignment based on imperfect CSl was inyatetd. As the accuracy of CSl at the transmitter
side is crucial for interference alignment, we analyzedsthéstics of the imperfect CSlin order to handle
the resulting interference.

We considered a MIMO interference channel where the tréresmd receive spaces are determined by IA.
Considering practical modulation schemes, we looked atmiaing a weighted sum of the average rates
provided that a certain set of bit-error-rate and power ttamgs are satisfied by choosing appropriate
modulation coding and powers.

Since the problem is quite general and intractable, werteddo some approximations and provided
simulations to show the accuracy of the approximationsérégimes of practical interest.

An adaptive rate and power allocation scheme is devisedhharee the performance of interference
alignment.
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Optimization of the Expected Sum Rate

» Optimization of a deterministic equivalent of the expecsem rate for the K-user IC was explored. Our
approach is shown to be beneficial when the original probieocomplicated to analyze and therefore an
approximated problem is liable for investigation.

» The analysis is based on tools from random matrix theonjicgigle to matrices of large dimensions
(representing the channel matrices). The results are gtovae very accurate even for small dimensions.

» The expected sum rate maximization problem was tacklegyusgradient ascent method employing the
properties of the derivative of the deterministic equinéle

» The method is shown to be superior to the conventional nasthim simulations.

7.2 Outlook

Here we present some directions for future research:

Quantized CSI

* We have used Grassmannian representation to quantizbahael matrices in order to perform interfer-
ence alignment. There exist other objective functions #hatinvariant under unitary transformation of
the precoders, hence the quantization scheme might geneet@imore interesting objective functions.

» One of the interesting directions to extend the currentkwerto show whether the scaling of the bits
derived here is the optimal scaling or not. In other words oauld show whether it is possible to
achieve full DoF with 1A with a slower scaling of the feedbduks.

 Since the scheme is based on quantization on the Grassnamifoltt which requires large code books
at high SNR, structured codebooks for Grassmann manif@edlesirable. Approximate but structured
solutions for the codebook design problem will be of gretdriest.

Outdated CSI

 Clearly the extension of the proposed scheme to the casmefcbrrelated channels is very interesting
and promising. The scheme is very flexible and extensionsbeaapplied in a simple and intuitive
manner.

» The current study is solely for the two user IC, while theesulk can be generalized to different channels
like K-user IC or the X channel. As the set of different confegion of antennas gets larger by increasing
the number of users, having a general scheme for every p@ssitenna configuration in the K-user IC
is desirable.
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Distributed Interference Alignment

» One possible direction of future research on this probleno iconsider a reciprocal channel where the
messages are sent over the air from both sides (TXs/RXdidstenario every TX/RX has access to its
local CSI and this information has to be exploited for coraioh of messages at every node. This can
lead to a systematic approach for the well known leakagemimaition algorithm.

» The objective function considered in this chapter is qaitdtrary. Clearly minimizing the leakage is not
optimal at low and medium SNR. Many different objectivestfdifferent factor graphs) can be defined
and analyzed in terms of convergence and performance éeljevable sum rate).

Robust Interference Management

» The results of the link adaptation scheme can be improvedchéking another degree of adaptation,
i.e., having adaptive CSI quantization. The channels caquaatized with an accuracy associated to
the channel quality. This would improve the performance \mjiding bad quality channels to undergo
interference alignment.

» The analysis of the deterministic equivalent deals withakpectation of sum rate while a generalization
can include higher order statistics. For example outagaagpcan be analyzed by considering the
deterministic equivalent of the variance of rate. More otiye functions can be tackled in this way.



A.1 Proof of Lemma 3

The power of the interference leakage at receiveiads

K
Li=tr| Y  GI'H;V,VI'H]G;
j=Lii A1)
= tr (GI'H;V_; VL, H'G,)
= |GI'HV i |f.
SubstitutingG! = (C; 'FIE,U,)H, V; = (£)2V; andH; = CIFH gives
P~ ~
L; = —||U]'F{'F;C; " CIF'V_i[f
d (A.2)

P o~ ~
= E\’U?F?FiF?V—iH%-

Using the alignment equation (3.33) and the fact NAF; = Iy yields UNFIEF,FIV_; = 0, therefore (A.2)
can be rewritten as

P .. o~
Li = Z |G F (FiF; = FiF) Vo[ (A-3)
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Using the facts that X ||p < \/rank(X) ||X]|2, ||X]]2 < [|X||r and||XY |2 < [|X]|2 ||Y]|2, we have

Li = DI OFRI RN — R
< P||OMFI(EFFY - RN V_)3
< P||[OW 3| FH 3 (|(FFE - BED311V_,3
= P||(F;F — F;F)|3
< P||(F;F - F,;FI)|}
= 2Pd?(F;, F)).

(A.4)

The second equality holds becadﬁé‘, F? andV_; are truncated unitary matrices, which implies that their
spectral norm is 1.

From [114, Theorem 5], if a codebook is generated using thersppacking procedure, the maximum
value of the quantization error in terms of the chordal diséacan be upper bounded as

max  d.(F;, F;) < % <1 +o (2_1]32)) . (A.5)

FieGxk—1ym,N (c 9Bg )\ Ng

The constant in (3.15) is obtained from [60, Corollary 1]. Combining (A&nd (A.5) yields (3.14).

A.2 Proof of Lemma 4

Similar to (A.1), the power of the interference leakage aéneeri can be written as

K
L;=tr Z Ul'H,; v, VIR, (A.6)
P K
== > lITH; Vi (A7)
J=Llj#i
P K
=4 Z ||UH Zj_aHZJ)VHF (A.8)
J=1,j#1
_P K 3
<7 > ORI [1(Hi; — o) [1V5][7 (A.9)
Jj=1,j#i
K
<Pd Y |[Hy—oH;lf (A.10)
J=Llj#i
K
=Pd Y |lvec(H;;) — avec(H;j)[|3 (A.11)
j=1,5#i

N 2
Zij

ai
|[vec(Hij)ll2 ||,

K
<Pd > [[vec(Hy)|l3
J=1j#i

(A.12)

Zij —



Appendix A. 97

. . . . ~H .
for an arbitrary scalat. In particular, choosing: = 2;;z;;||[vec(H;;)||2 yields

K

L <Pd Y |lvec(Hy)|[3 [|zi2ijzi; — 22074413 (A.13)

j=1,j#i

K

< Pd Y ||vec(Hij)|[3 |7zl — 20525 [ |lzi15 (A.14)

j=1,j#i

K
=2Pd Y ||vec(Hy)|[3 (1 — |z52:]%) (A.15)
j=1,5#i
K
<2PdBrax Y (1 - |22 (A.16)
j=1,j#i

= 2PdByaxDX(Z:, Z;) (A.17)

whereBy.x = max; ||[vec(H;;)||3.

From [47, theorem I1.1], the distance on the composite Gnass manifold can be bounded for any code-

book obtained via sphere-packingasx, _;rx—1 De(Z;, Z;)) < ——2 2 A whichresults in
Y=YMN,1 (¢2B1NM ) ViNm
= 8PdBax

t~

i < 2PdBpmaxA? < (A.18)

(c2Bmw) N112\1M

where Ny was defined in Section 3.2.3 anads a constant. It is clear from (A.18) that quantizifg with

By = ngM log P bits at receivei guarantees that; remains bounded regardless of the SNR.

A.3 Proof of Lemma 5

Consider the following quantity
R! - R, = log|GI'G; +Qj| - A (A.19)
< log|G'G; + Qfl (A.20)

whereA’ = log |GIG,; + (Q} + Q})| — log |GI'G; + Q}| and A’ > 0 sinceQj is positive semi-definite
Since the argument of the determinant is of rank at nipst

IN

R! - R! dlog (Amax (GI'G; + Q})) (A.21)
dlog (Amax (GI'Gi) + Amax (Q1)) (A.22)

In fact, when the number of feedback bits is scaled accorttin@.16), the bound in (A.20) gets tighter as the SNR in@sas
This can be seen by noticing thitnp_ ... A* = limp_; e log ’Id + Qi (GI'Gi + Qé)fl‘ = limp_, o0 log ‘Id +QiQi !

IN

limp_ o log ‘Id + %Q%Wéfl , which goes to zero siné&}, is full rank almost surely and when feedback scales acogtdi3.16)
we haved||Qi||2 — 0.



Appendix A. 98

< diog (IIGilf3 + [|GFHV_[[;), (A.23)

where the second inequality follows by the fact i@y G; and Qi are Hermitian matrices. Furthermore
1Gilly = [ICT FIFUslla < [IC7H Iz [[FHl2 [|Fill2 [[Uill2 = [|C; 2. From egs. (A.1)~(A.4) we have
IGHH,; V_;||3 < L; < 2Pd?(F;, F;). Using these bounds,

R — R < dlog (||IC7'| +2Pd(F,,Fy)) . (A24)

Combining with (A.5) yields (3.21).

A.4 Proof of Lemma 6

log| GG+ Q|
log P
the proof is complicated by the fact that we need to considantjzation codebooks of increasing sizes when

letting P — oo; let Q% = LW} with Wi = UNFIF,C;"H,, V,VIHI!C'FI'F,U;, whereU;, F; and
V; all depend on the choice of the codebook, it is not clear wareWWg admits a limit for asymptotically
large SNR. Therefore, we resort to compactness arguments to showttikrat exists a series of codebooks of
increasing size for whicW admits a limit.

It suffices to prove thalimp_, = d for almost all channel realizations. Note however that

Let us consider an infinite sequence of SNRs= {P, },,cn such thatim,,_,., P, = oo, as well as an
infinite sequence of quantization codebogl& },,cn, such thatS,,| = P,ﬁv((K_l)M_N), following (3.16). For
each SNR valué®,, we letF;,, = argminges, d.(S,F;)and denotd Vi ,,,..., Vi, Uiy, ..., Ug,) €
G 4 x GK, a set of matrices constituting an IA solution based Bp,. In other words, we
solve (3.10) and (3.33) for each, yielding an infinite series of solutions. Let us dend¥g, =
Frm - Frms Vi Vi Uty oo, U ). gg(_l)M,N x G 4 x G& ; is compact, as a Cartesian
product of compact sets. Therefore, we can extract a coenesybseriesfrom {X,, },.en. We letg(m) € N
denote the index of thew-th element of the convergent subseries, wheisga monotonically increasing func-

tion. We also denote
(BT, F5, Vi Vi U5 O = lim X, (A.25)

Letting Wg" = UL FLF,C7H,V,,, VI HIC'FIF; U, ,,, we can now write the limit
im0 W9 = Wi, whereWs = UHEHF,C;HH, V> VHHEC, 'FUE: U2, Therefore we have
log |GHG; + Fatm yyia(m) Py(m) a7+

G + 2wy  log| P wy)

li =1
ml—I>IIOO log Pg(m) mgnoo log Pg(m)

= rank (Wg’) . (A.26)

2Although it is clear that the subspace spannedbwadmits a limit on the Grassmann manifold whBa — oo, the definition of

U; andV; as one (possibly among several) solution of (3.33) previietextension of the convergence result to those variables.
%In order to obtain the same convergence properties for & poi, ;, and for the corresponding unitary matrix representation

F € C*?, itis useful to make this representation unique, e.g. byirawy that the top squark x b subblock ofF is equal tal;,. For
the sake of notational simplicity, we omit those details.
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SinceF; andF; span the same subspafq*}{Fi is unitary. Therefore, considering the product of matrices
W, we note thalU:"FHF;CH has full row rankd, V* has full column rank, and both are independent
of H;;, from which we conclude thatnk (W§’) = d a.s., which proves the lemma.

A.5 Proof of Theorem 2

Let us first recall thak; > R;, which holds also in expectation:
Es(R;) > Es(R)). (A.27)
Furthermore, from (A.24),

Es(R)) > R} — d Es (log (||C7'3 + 2Pa(F;, F)) )
R (A.28)
> RY —dlog (||C;'|§ + 2PEs (€2(Fi, F.) ) )
where the second inequality follows by application of Jafssénequality to thelog function. The term
Es(d2(F;, F;)) represents the expected value of the distortion while uaimgndom codebook, and can be
further bounded using [114, Theorem 6], which can be sunmedras follows: for asymptotically large code-
book size, when using a random codebook for quantizing axr&tarbitrarily distributed over a manifold, the

k-th moment of the chordal distand®*) = Es p(d*(F, F)) can be bounded as
Tk
(N, + k) (c2Bc)Nm N (¢ 2B ) Nm

, (A.29)

where the codebooks hag2é€c elements andV,, is the real dimension of the corresponding manifold. Using
the upper bound in (A.29) fot = 2 over the Grassmann manifold, combined with (A.27) and (Ar28ults
in (3.24).

A.6 The Perturbation Method

Let us consider a point of, ,, represented by=ax p truncated unitary matri¥. Here, we assume that> 2p
(otherwise it is more efficient to consider the complemsntar- p dimensional subspace). Since the columns
of F are orthonormal, they can be completed to form an orthondpasis of then-dimensional space. In fact,
according to [115], any other point @, , can be represented in the basis constituted by the columite of
unitary matrixW = [F F¢| as

F-W s |, (A.30)
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for someF* in the null space oF and

cosfy --- 0 sinf; --- 0
C= . |, 8= A (A.31)
0 -+ cos b, 0 -+ sind,
wheredy, ..., 0, are real angles. Clearly, féh = ... = 6, = 0, we obtainF = F. More generally, the

squared chordal distance between the two point§,gnrepresented by andF is
_ p
r=d:(F,F) =) sin®0;. (A.32)
=1

Therefore, in order to generate random perturbations aftaineehordal distanc¢/r from F, we propose to
generate random values for the andles . . , 6, such thafy"?_; sin? #; = r, and to pick a random orthonormal
basisF° of the null subspace @'. The perturbed matrix is then computed using (A.30).

The histogram (not shown) of the squared quantization el@(d?, F) obtained from an implementation of
the RVQ quantizer suggests that the Gaussian distribusi@ngood approximation for the probability density
function ofr. The parameters of this distribution can be obtained frotd [Theorem 6] which provides bounds
on thek-th moment of the chordal distand@®) = Es p(d¥(F,F)). Since those bounds are asymptotically
tight when the codebook size increases, we arbitrarily sbdo use the upper bouhds an approximation of
D®) je.

(-2
o T oo (A.33)
Nec (c 2BG)NG
is the mean and 4
TI'(=
2o NN L pw pay (A.34)

N o A
% (c2Bc)~Ng
is the variance. We propose generate the values &mcording ta\V (7, o2) truncated tdR*. This process is
summarized in Algorithm 5.

Algorithm 5 Generating random perturbations arodhd

« Draw a random realization of the squared chordal distarfoem N (7, 02)
» If r < 0, generate a new sample

 Draw independent, ..., s, uniformly from the interval0, 1)

Compute the anglef; = sin™* (%)
=14

* Generate a random orthonormal bdsfsof the null space oF

+ ComputeF according to (A.30).

“Experiments have shown no noticeable performance difterarhen using the lower bound instead.



B.1 Proof of Theorem 5

In order to prove the theorem, the following conditions neele verified :
Cl:d; < min(MZ-,Ni), i1=1,2andNy < dy +dy < Ny

CII:T(di + d2) < (T — q)N1 + g¢Ma + min(qNy,gMi, (T — q)N2)
CIIL: Tdy < (T — q)M;

For simplicity, we verify the conditions for every case obgp GG, separately. The proof is complete if the
above three conditions hold for all cases.

101
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e Case A.ll.Z My > Ny > My > No:

In this case we havé; = W andd,; = W with M’y = min(M;, Ny + N»). We set

T = (M'y — N3) which givesg = ﬁ = (M'y — N7). The first condition is clearly satisfied. The second
condition can be simplified as follows:

T(dy +da) < (T — q)N1 + gMy + min(gNy, (T —q)N3). (B.1)

If ¢N1 < (T — q) N2 then the condition simplifies to

T(dy +da) < TNy + qMo, (B.2)

which holds since in grouf¥; we haved; + do < N;. Therefore we consider the remaining case where
gN1 > (T — q)N. In this case, the condition simplifies to

T(dy +d2) < (T — q)(N1 + Na) + gMo. (B.3)

Here we show that the resulting condition always holds: switieg for 7', d;, d2 and using the fact that
M’y < (N7 + Ns), we have

T(dy+dg) = M'1 (N1 — Na)+qNa < (N1 + Na)(Ny — Na)+qMy = (T —q) (N1 + Na)+qMs. (B.4)
The third condition is also satisfied since we haye= M’, (N, — N3) < M;(Ny — Na) = (T — q) M.

e Case B.t Ny > My > Ny > Mo:

In this case we havé, = %2—1%2)

condition is straightforward.

andds = M,. We choosdl” = N, which givesq = Ms. The first

Substituting forT’, dy, ds, ¢, the second condition simplifies as follows:
Mi(No — M) + MyNy < (Ng — Mo)Ny + M22 + min(M; My, No(No — My)). (B.5)
Here we show that this condition holds: It is easy to see that
(Mz + My — Ni) < My < N, (B.6)
therefore we have
(My + My — N1)(Ny — M) < min(My My, No(Ny — My)). (B.7)
This will simplify to

Ml(Ng — MQ) + MyNy < (N2 — MQ)Nl + M22 + miD(MlMQ,NQ(NQ — Mg)) (88)

Clearly the third condition is satisfied with equality.
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» Case B.ILL M; > Ny > Ny > My and M, < Np372=2t with My = min(M;, Ny + Na — M)

In this case we havé, = Ny — Ms, do = M,. We choosél’ = N, which givesq = M. The first
condition is straightforward. For the second condition w& /> (N, — My + Ms) < (No — My)Ny +
M2 + min(MyNy, (N2 — Ma)Na). If MoNy < (No — M) N, then the inequality is satisfied. We
consider the case whefd, N1 > (N2 — Ms)N,. Therefore with some simplification, we have to verify
the following inequality:

N2 > Ms(Ny + Ny — My).
Proof: We havell, < N2M 1= N1 with M’ = min(My, Ny + Ny — M) therefore

M/l(NQ — Mg) > NQ(Nl — Mg) = MQM/l < NQ(M/l + My — Nl). Now if M/l = N1+ Ny — M,
then the condition is satisfied. M’y = M, then we havell; < N; + Ny — M> which gives

Mi + My < N7+ Ny

= (NQ — Nl)(Ml + MQ) (Ng — Nl)(Nl + Ng)
= NyMj + MyNy — N2 > N\ M + Ny My — N?
Ny — M, S My — N

N1 — My = My — Ny

No — Mo > M, — N
Ny — My = P M; — Ny
= NQ(NQ — Mg) > MQ(Nl — Mg)
= N2> My(Ny + Ny — My).

=

> Mo

= Ny

For the third condition if we havé/’'; = M; thenM; < NQM 1= givesNg(Nl — Ms) < My(Ny —
M) which proves the condition. If we hav&l/’, = N, + N2 — M2 then My, < N, %:1:%; gives
NQ(NQ — Mg) > MQ(Nl — Mg). Therefore

My + My > N1+ N

= (My — N3)(Ny — Ms) > (N1 — Ms)(Ny — Mo)

= Na(Ng — M) + (M1 — No)(Na — Ma) > Ma(Ny — Ma) + (N1 — Mz)(Na — Ma)
= M;(Ny — My) > No(Ny — Ms)

which proves the condition.

» CaseB.I.2 My > Ny > Na > My and M, > Npfi=Rt and My + My < Ny + No:

In this case we havé, = %(Ng — My), d2 = M,y. We choosdl” = N, which givesq = Ms. The first
condition is straightforward. The second condition sitfigdi as follows:

M;(Ny — My) + MyNy < (N — M) Ny + Mj + min(Ny My, (N — My)N) (B.9)
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Here we have two possibilities. I¥; M, < (N2 — Ms) N, then we get

(N2 — MQ)Nl + M22 + min(NlMg, (NQ - MQ)NQ) = N2N1 - M2N1 + M22 + N1M2 = M22 + N1N2 > N1N2.
(B.10)

FromMsy > N, %ij& we getN| Ny > M (Ny — M) + NoMs,. Combining this with (B.10) gives the
desired condition.

If NyMs > (N — Msy) N, then the condition becomes:
M Ny — MMy + MyNy < NyNy — MyNy 4+ M2 + N2 — My Ns.

Here we show that this condition is satisfied. We hafe+ M, < N; + Ny andNy > M, therefore we
have

MQ(N1+N2_M1 — M) < Ng(Nl—l-NQ—Ml — M>) (B.11)
which gives the desired condition.

Clearly the third condition is satisfied by equality.

« CaseB.IIl.1: M; > Ny > Ny > My andMsy > Ny %j:%j andM; + M, > N; + N, and also we have

My > N1+ No — szNvf:%ii

In this we have two points on the corner of the region. First ek at the pointd; =
(N1+N2_%§)(N2_M2) andd, = M,. Here we choos@ = N, which givesq = M,. The first con-
dition is straightforward. From/, > N> %j:%i we haveNy(Ny — M) < My(Ny — My) < MyNy.

Therefore the second condition simplifies to:

(N1 + N2 — M2)(N2 — Mg) + N2M2 < (N2 — MQ)Nl + M22 + NQ(NQ — MQ) (812)

which is always satisfied by equality.

Since we haveV, + Ny — My < M therefore the third condition is satisfied.
The other corner point ig; = N1 — M++§_M2 andd,; = M++§_M2 We choosdl” = Ny + Ny — My

which givesq = N». The first condition is straightforward. The second conditbecomes:
Nl(Nl + N2 — Mg) < (Nl — MQ)Nl + N2M2 + (Nl — MQ)NQ (813)

which is satisfied by equality. To verify the third conditioie have

Ny — My
My > Ny + Ny — No—2o =
12 N1+ Vo 2N, — L,
= (N, — My)M; > Ni{(Ny + Ny — My) — N2

= (T— q)M1 >1Td;.
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» CaseB.II.2: My > Ny > Ny > My and My > Ny 2= andM; + My > Ny + N, and also we have

No—DMs.
My < N1+N2—N2Ni_M§.

MiN1—Na) gnd, — N2 —N) Therefore

In this case also there are two points. The first poial; is- N, N,
we chooseél’ = M7 — Ny which givesqg = My — N;. The first condition is straightforward.

For the second condition we need to verify the following unady:

Ml(Nl — NQ) + Ng(Ml — Nl) < (Nl — NQ)Nl + (M1 — Nl)MQ + (N1 — NQ)NQ. (814)

Here we show that this condition holds. Clearly we have
(N1 — N2)(My 4+ My — N1 — Np) > 0, (B.15)
therefore

NZ — N+ My Ny + MyNy > MayNoy + M Ny
= (N1 + Ny — Mp)(Ny — N2) > (Ny — My)(M; — Ny)

which simplifies to the desired condition.

Clearly the third condition is satisfied by equality.

The second point ig; = % andd; = % Therefore we choos®; + 2N, —
My — M, which givesq = N1 + Ny — M. The first condition is straightforward.

The second condition simplifies to
M (Ny — My) + No(Ny + Ny — My) < (No — Ma)Ny + (N1 + No — M) My + (N2 — M) Ny

which is satisfied by equality.

Clearly the third condition is satisfied by equality.

B.2 Proof of Theorem 7

In order to prove the theorem we need to verify the conditiOrisand C.III for group G, which consists of
the case\.1.3. We first proveC.I :

Here we show that in the cagel.3 we haved; +ds > Ny andd; +ds > N;. Using the fact thab/, > No
andM; > N- and knowing thai\/’; = min(M;, N1 + N3) we have

Nl(Mll — NQ)(MIQ — Ng) >0= MllNlMlg — MllNlNQ — M/2N1N2 > —N1N22
= M N1M'y — M'{N\Ny — M'9N{Noy + M'oM'{Ny > M'oM'| Ny — N1N22
= dj +d5 > TNy = dy +dy > No.
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For the second part, since we ha\l® > NV, this gives

NQ(Mll — Nl)(Mlg — Nl) >0= MllNQMlg — MllNlNQ — M/2N1N2 > —N12N2
= M'{NyM'y — M'{N\Ny — M'9N{No + M'\N1M'y > M'\N\M', — N12N2
=dj+d5 > TNy = dy +dy > Ny.

The proof ofC.III is straightforward :
d;k = NjM,j(M,i - Nz) S Nij(M/i - Nz) = (T — Qi)Mj-



C.1 Calculating the Power of the Interference Terms
Sincey/1 — ngw = Hij — pOI:Iij we have

Lig=\/1- 7§ Z ) BV % (1), (C.1)

1<I<d
l#q

[z(,q =14/ 1-— P% Z IAIiP’IqEZ'jVij. (CZ)

1<<K
J#
Since the entries oE;; are Gaussian i.i.d. random variables, their distribut®mvariant by multiplication
with independent truncated unitary matrices. Thereforeise; = ﬁi},lqEZ-Z—{ri,l ande;q; = ﬁEqujVj in the
expression off; , and IZQ , respectively knowing that their entries have the sameibligion as those oE;;.

This gives the following

E{|Li4’} =1 = p))ES D leiqxi(D)P
1<i<d
l#q

=(1=p8) > EfleialYE{xi(D)*} (C.3)
1<I<d
I#q

=Au(1—p3) > BiD).
1<I<d
l#q
Similarly for I} , we get

B{L Py =0—-p5) > Ay > B (C.4)
1§g¥§K 1<i<d
J7F

107
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C.2 Calculating the Correlation Coefficient p

By definition of correlation we have

_ E{A - BEOOEGT)

var(y)var (1)

_ EB{IGIPIGI?) - BUGIPIE(GI P} (€9
\var(G 2 var (G22)
To computep we need to find{|GY|?|GY|?} which is calculated as follows
B{|GI[|GP} = By, {IG By, 5, {IGIP)- (C.6)
The conditional term can be written as
Nyr N
g, UGTPY = D0 > By, (i (ma ) P g (m) ¥ P9 4 ()
m=1n=1
N, N,
LA . . . (C.7)
= > (1= p3) A + g [His(m, n) )[4 (m) ™[99 (n)
m=1n=1

= (1—pp)Au + ngég\z-
For an exponential-distributed random varialleve haveE{Z?} = E{Z} + (E{Z})?, therefore
E{|G]*IG]1*} = Eg {IG]*(1 — p)Aii + 93| G{ 1"}
= (1 — p3)AF + p3(As + AF) (C.8)
= A%+ ppAii.

Therefore (C.5) simplifies tp = p3.

C.3 Proof of Lemma 13

Letting S, and simplifying conditionC’2) using (6.2) and (6.23) we have

— Am
T U(H)AL (1—pp)T+1

E{p(T(3)7, (3)3} < By © /0 " Apexp {— ALy U3} s (1) < B

_p2,¢y (Cg)

& Spexp {%(1 - Sm)} < By

(1= p)I’
Sinces,,, < A,,, to satisfy the BER condition it is sufficient to have
_ 24 _—1111(—0)
Py Al Am .

Apexps ————=(1—-5,) p < By & — < U(F). (C.10)

{ (1—pR)l PREA + (1= p)TIn(£2)

Since (6.26) implies (C.10), the lemma is proved.
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C.4 Calculating the Gradient of Rate

ExpandingS;r in (6.51) using standard matrix inversion formulas, we mbta

(e

where

L_ e 17 (5
= (INj - QZH(A])'H;Q? j(—,(f )> (C.11)
and «
: = 3 Zij(0) (ten
AT = (1+6)Iy, + Z;HijQ; ]572(3; H;;. (C.12)
J:
1
Using the fact tha¥;;(z) andQ; commute, (6.54) reads
K
RY =log [Fi(67)] = 3 lo |2(657)| - No267 57 (C.13)
in which .
1
Fi(z) = (1+2)Ly, + gz Q,;H. (C.14)

Definingd, X = o d V7, the differential ofR;” w.r.t. v,
dn R = tr (Fi(67)) ' dnFi(6]) = (Zin(57)) " dn(Zin(57)))
1 ] r} —
=54 <H5(Fi<5? )™ Hindy (Zin (67)Q) ) i (Zin(61) " dn(Zin(5))))
= tr (2,40 Qn) (C.15)

where
Qf = Zi () (—12 HL (Fi(6) " HinZin (57) + 5ja§n1Nn> . (C.16)
o

and the last equality is resulted by using the factsdfXtY) = d(X)Y +Xd(Y), d(X!) = -X"1d(X)X !
andtr(AB) = tr(BA).

Considering the normalization factops, note that the power constraint is always satisfied. In other
words the optimization finds the precoding matricés such that the normalized version of the corre-
sponding covariance matric&€y; = )\jVjVJH will maximize the expected sum rate. It can be shown that
Aoy, = —;—itr (V,d, VI, therefore the differential of),, can be evaluated as

2

dnQp = dn (M VR V)) = —%tr (Vad V)V, VI + X, V,d, Vi (C.17)

n
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Inserting (C.17) into (C.15) yields

2
AR =~ ng (Vo VI tr (Vidy V) + Antr (9, Viad, V)

i P,
e | |ary, - EOEVAVL) S Td v* (49
=AM Ve T Ry i) Y| Ve |

C.5 Proof of Lemma 14

From the fact that, foA, B = 0, ~tr (A(Iy +B)™!) < ||A|, we haveg(Q,4,6) < (M/N)o~2(1 +4)~!
andj(Q,d,6) < 02| QC|| £ U. Define nows = % — 1 which is one-to-one witld and therefore we can
equivalently discuss about the solution of the followingteyn of equations obtained by a fixed-point algorithm

similar to Algorithm 3,

(C.19)

5 1.

5 = h(Q,é,S):g(Q,é,%),
0 = h(Q,5,0) 5

= 3(Qo-L)

146
To prove convergence of the fixed-point algorithm to a unipgostive solution, we use a result standard
interference functions

Definition 2 ( [116]). A functionh(x) = (hi(x),..., h,(x)) in Whichh; : R? — R, i =1,..,Kisa
standard interference function if the following assummpgitnold for alli € {1,...,n}:

l. Positivity. h;(x) > 0forall x >0
Il. Monotonicity: if x' > x, thenh;(x’) > h;(x)
[ll. Scalability for o > 1, h;j(ax) < ah;(x).
Also a vectorx is said to be a feasible pointlif(x) < x where the inequality is element-wise.

Theorem 9( [116]). If h is a standard interference function, and there exists ailidax, then the fixed-point
equationh(x) = x has a unique solutiow*, given as the limik* = lim,_,, x*, where, for allt > 0,

xt+1 — h(xt)
andx” > 0 is arbitrary.

In our setting, we defing = (4,4) andh(x) = (k(4,4), h(5,4)). Then, from Theorem 9, we only need
to prove thath is a standard interference function that admits a feasibilet pThis implies the convergence of
Algorithm 3 (considering the one-to-one map betwéemdé at each iteration).

A feasible point can always be found since the functibrend i are bounded for every positiv@, 5).

It is also easy to show that the positivity assumption alwgisls. For monotonicity, we have to show that
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)=

[N

5 > § results inh(¢,8') > h(s,5) andh(d, &) > h(s,5). Ford’ > &, we gettr (5'Q%CQ
tr 6Q%(~3Q%>. Therefore we have

tr(1N+5’Q%CQ%> ztr(INMQ%CQ%). (C.20)
Therefore using this relation
tr(A™' =B >0 & B> A (C.21)
itis clear that
1~ 1\ sl 1\l
(IN+5Q2CQ2> - (IN+5Q20Q2) . (C.22)
Also from &’ > 4, we have
U U
02<1+ A>I >02<1+ A>I . C.23
N 1+o) (€29

Multiplying both sides of (C.22) bﬁQ% and its Hermitian from left and right respectively, addihg result
to (C.23), and using the equivalence in (C.21) resulta(iff, &) > h(4,4) in which from (C.19),h(5,4) is
written as

-1
h(6,0) = %tr <02<1 + ; ZS>IM + I‘{Q%G(é)Q%ﬁH> . (C.24)

Using the same line of arguments, monotonicityflofs then proved. Here we prove the scalability /of
We need to show that forx > 1, h(ad,ad) < «h(6,6) (and similarly forh). Sincea > 1, we have
atr (IN + 5Q%CQ%) > tr(IN + aéQ%CQ%>. Therefore using (C.21) we have

G(ad) = éc(a). (C.25)

Also we can conclude that

2
0'2<1+ v A>1M - U—<1+ v A>1M. (C.26)
14+ ad o 146

Again multiplying both sides of (C.25) bHQ% and its Hermitian from left and right respectively, addihe t
result to (C.26), and using (C.21) resultsiited, ad) < ah(3,9).
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