
Defining Executable Modeling
Languages with fUML

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der Sozial- und Wirtschaftswissenschaften

eingereicht von

Tanja Mayerhofer
Matrikelnummer 0625154

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel

Diese Dissertation haben begutachtet:

(O.Univ.Prof. Dipl.-Ing. Mag.
Dr.techn. Gerti Kappel)

(Ed Seidewitz)

Wien, 17.11.2014
(Tanja Mayerhofer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Defining Executable Modeling
Languages with fUML

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der Sozial- und Wirtschaftswissenschaften

by

Tanja Mayerhofer
Registration Number 0625154

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel

The dissertation has been reviewed by:

(O.Univ.Prof. Dipl.-Ing. Mag.
Dr.techn. Gerti Kappel)

(Ed Seidewitz)

Wien, 17.11.2014
(Tanja Mayerhofer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Tanja Mayerhofer
Richtergasse 1a/5, 1070 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgments

Many people have contributed to the successful completion of my dissertation. At this point, I
want to say thank you to everyone who has supported me on my way. In particular, I want to
thank the following people for their encouragement and advice.

Thank you Gerti for giving me the opportunity to do my dissertation in your research group and
supporting me in any organizational, strategical, and research-related matter.

Thank you Ed for providing me with many insights into the modeling languages we both like so
much and your valuable feedback on my research.

Thank you Daniel and Peter from LieberLieber Software GmbH for partly funding my research.

Thank you Philip for taking care of me the last three years and encouraging me to carry on with
my research. Without you I would not have written this thesis.

Thank you Manuel for bringing me to this research group in the first place and spending many
hours with me to discuss my research.

Thank you Alex, Christian, Dieter, Javier, Katja, Konrad, Luca, Manuel, Martin, Patrick, Philip,
and Stefan for contributing to the nice working environment I enjoyed during the last three
years.

Thank you Mama, Papa, Conny, Carina, and Johannes for your love and support.

iii

Abstract

Model-driven engineering (MDE) is a software development paradigm aiming to cope with the
growing complexity of software systems by raising the level of abstraction. In this paradigm, a
system’s structure and behavior are defined by means of models using modeling languages that
enable developers to abstract away from implementation and platform details. From the defined
models, complete software system implementations may be (semi-)automatically generated by
utilizing model transformation and code generation techniques.

As MDE puts models into the center of software development, adequate methods and tech-
niques for creating, analyzing, and utilizing models constitute a crucial prerequisite for the suc-
cessful adoption of MDE. Due to the large body of modeling languages used in MDE including
general purpose and domain specific languages, means for efficiently developing adequate tool
support for modeling languages are needed. To address this need, the automation techniques pro-
vided by MDE may also be applied to automate the development of tool support for modeling
languages. This is current practice for developing syntax-based tools, such as modeling editors.
Thereby, syntax-based tools are generated from the definition of a modeling language’s syntax
specified by means of standardized metamodeling languages. In contrast, the automated devel-
opment of semantics-based tools, such as model debuggers, has not reached the same level of
maturity yet. Partly, this is due to the lack of a standardized language for defining the semantics
of modeling languages.

The goal of this thesis is to fill this gap and provide a solution for automating the develop-
ment of semantics-based tools for executable modeling languages based on behavioral semantics
specifications. The first contribution of this thesis comprises a language and methodology for de-
veloping behavioral semantics specifications based on the standardized language fUML. fUML
is an executable subset of UML providing a formal semantics and execution environment. The
second contribution of this thesis comprises extensions of fUML’s execution environment with
means for execution control, runtime observation, and runtime analysis building the basis for
developing semantics-based tools. Based on these extensions, the third contribution of this the-
sis provides a generic model execution environment for modeling languages whose behavioral
semantics is defined with fUML. The fourth contribution consists in a generic semantic model
differencing framework, which builds upon the first three contributions and takes—in contrast
to existing model differencing approaches—the behavioral semantics of models into account for
reasoning about differences among models. With these contributions, we aim at providing a
stimulus towards the establishment of a common behavioral semantics specification language in
MDE, as well as laying the basis for future innovations regarding the automated development of
semantics-based tools for executable modeling languages.

v

Kurzfassung

Model-Driven Engineering (MDE) ist ein Paradigma in der Softwareentwicklung, das die Ver-
wendung von Softwaremodellen vorsieht, um ein höheres Abstraktionsniveau im Entwicklungs-
prozess zu erreichen und dadurch die Entwicklung komplexer Softwaresysteme zu erleichtern.
Dazu werden Softwaremodelle mithilfe von Modellierungssprachen erstellt, die es erlauben, die
Struktur und das Verhalten des zu entwickelnden Softwaresystems auf einer geeigneten Ab-
straktionsebene zu definieren. Die lauffähige Software wird aus den Softwaremodellen mittels
Modelltransformationstechniken (teil-)automatisiert abgeleitet.

In MDE stellen Softwaremodelle die zentralen Entwicklungsartefakte dar, wodurch Techni-
ken zur Erstellung, Analyse und Weiterverarbeitung von Softwaremodellen eine entscheidende
Rolle im Entwicklungsprozess zukommt. Aufgrund der Vielzahl an eingesetzten Modellierungs-
sprachen bedarf es auch effizienter Methoden zur Entwicklung entsprechender Modellierungs-
werkzeuge. Zu diesem Zweck können die Techniken, die in MDE verwendet werden, um Soft-
waresysteme effizient zu entwickeln, auch zur effizienten Entwicklung von Modellierungswerk-
zeugen eingesetzt werden. Das ist gängige Praxis in der Entwicklung syntax-basierter Werk-
zeuge, wie etwa Editoren. Diese werden aus der Syntaxdefinition einer Modellierungssprache
automatisiert abgeleitet, wobei die Syntax mittels standardisierten Sprachen spezifiziert wird.
Im Gegensatz dazu ist die automatisierte Entwicklung semantik-basierter Werkzeuge, wie Si-
mulationsumgebungen, bisher nicht im gleichen Maß möglich. Ein Grund dafür ist das Fehlen
einer standardisierten Sprache zur Definition der Semantik von Modellierungssprachen.

Das Ziel dieser Arbeit ist, diese Lücke zu füllen und einen Lösungsansatz für die auto-
matisierte Entwicklung von semantik-basierten Modellierungswerkzeugen bereitzustellen. Da-
zu wird in dieser Arbeit eine Sprache zur Definition der Semantik von Modellierungssprachen
vorgestellt, die auf der standardisierten Sprache fUML aufbaut. Der Sprachumfang von fUML
umfasst einen Teil der weitverbreiteten Modellierungssprache UML. fUML verfügt über eine
formale Semantikdefinition sowie eine Ausführungsumgebung. Um die Basis für die Entwick-
lung semantik-basierter Modellierungswerkzeuge zu schaffen, wird in dieser Arbeit die Ausfüh-
rungsumgebung von fUML um Kontroll-, Überwachungs- und Analysemechanismen erweitert.
Basierend auf diesen Erweiterungen wird eine generische Ausführungsumgebung vorgestellt,
die für jede Modellierungssprache verwendet werden kann, deren Semantik mit fUML definiert
ist. Diese generische Ausführungsumgebung bildet u.a. die Grundlage für den semantischen
Vergleich von Modellen. Die vorliegende Dissertation ist impulsgebend für das Schaffen ei-
ner gemeinsamen Sprache zur Definition der Semantik von Modellierungssprachen, und damit
Basis für zukünftige Innovationen in der automatisierten Entwicklung von semantik-basierten
Modellierungswerkzeugen.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 5
1.4 Methodological Approach . 8
1.5 Structure of the Work . 10

2 State of the Art 13
2.1 Executable Modeling Languages and Their Applications 13
2.2 Defining Modeling Languages . 20
2.3 Executable UML . 28

3 Foundational UML 35
3.1 Introduction . 35
3.2 fUML Subset . 37
3.3 fUML Virtual Machine . 41

4 Extensions of the fUML Execution Environment 55
4.1 Design Rationale . 55
4.2 Event Mechanism . 57
4.3 Command Interface . 67
4.4 Trace Model . 74
4.5 Summary . 84
4.6 Related Work . 86

5 Semantics Specification with fUML 89
5.1 Design Rationale . 89
5.2 Semantics Specification Language . 91
5.3 Semantics Specification Methodology . 98
5.4 Model Execution Environment . 106
5.5 Semantics-based Tool Development . 109
5.6 Summary . 118
5.7 Related Work . 119

ix

6 Semantic Model Differencing 127
6.1 Design Rationale . 127
6.2 Overview of the Semantic Model Differencing Framework 130
6.3 Semantic Differencing for fUML-based Semantics Specifications 132
6.4 Semantic Differencing for Operationally Defined Semantics Specifications . . . 140
6.5 Input Generation for fUML-based Semantics Specifications 148
6.6 Summary . 157
6.7 Related Work . 158

7 Evaluation 163
7.1 Extensions of the fUML Execution Environment 163
7.2 Semantics Specification with fUML . 177
7.3 Semantic Model Differencing . 188

8 Conclusion and Future Work 195
8.1 Conclusion . 195
8.2 Future Work . 197

A fUML Action Language 201

B Implementations 211

List of Figures 214

List of Tables 216

Listings 217

Bibliography 219

Curriculum Vitae 235

x

CHAPTER 1
Introduction

1.1 Motivation

Since the early days of software engineering, abstraction is a key enabler for coping with the
growing complexity of the software systems that have to be built. Abstraction is the process of
focusing on certain details about an object, which are relevant for a specific purpose, and hiding
details, which are not relevant for this specific purpose. Thereby, abstraction enables the reduc-
tion of complexity and, hence, the design and implementation of complex software systems. For
instance, the language abstraction [57,137] achieved by the transition from assembly languages
to third-generation programming languages, which started in the late 1950s, enables program-
mers to develop software independently of the underlying used machine, as compilers and in-
terpreters take care of machine-dependent concerns. Likewise, platform abstractions [57, 137]
provided by reusable software libraries and software frameworks, such as JEE or .NET, allow
developers abstracting away from platform technology details.

Language abstractions and platform abstractions achieved so far in software engineering
provide abstractions for the solution space, i.e., they provide abstractions for the underlying
computing technologies. Model-driven engineering (MDE) seeks to go one step further and
raise the level of abstraction beyond programming languages and platforms. Instead of speci-
fying the solution for a problem using low-level programming language concepts and specific
platform concepts, domain concepts closer to the problem space are used to express the system
design [16, 57, 137, 139, 158]. Therefore, modeling languages are used to define the require-
ments, the structure, and the behavior of the software system to be built formally1 in terms of
models, which can be further processed by computers to automatically generate software system
implementations for multiple platforms. For this automation, transformation engines and code
generators are used, which act as platform-specific compilers for the models and synthesize vari-
ous types of software artifacts, such as source code, database schemata, and deployment scripts.

1In this thesis, the term “formal” is used interchangeably with the term “computer processable” if not explicitly
stated otherwise. This definition should not be confused with the usage of the term “formal” in mathematics or logics.

1

Hence, the models constitute the design, implementation, and documentation of the software
system at the same time. Due to the achieved automation, MDE supports not only handling the
complexity of the software systems to be built, but also enables increasing the productivity of
software development.

The application of MDE induces a shift from code-centric software development to model-
centric software development. Thus, models constitute the central artifacts in software devel-
opment and serve as the single specification of the system to be built. As a consequence, the
success of MDE depends significantly on the availability of adequate tool-supported methods
and techniques for creating, manipulating, exploring, analyzing, and utilizing models. In partic-
ular, methods and techniques supporting the development of high-quality models, such as model
debugging, model testing, and dynamic model analysis are crucial in MDE. Tools implementing
such methods and techniques are specific to the modeling language in use. While on the one
hand, general purpose modeling languages, such as UML, are used in MDE, MDE also pro-
motes the development and usage of domain specific modeling languages. They are designed
specifically for a certain domain to ease the development of models capturing the problem do-
main of the system to be built. Hence, methods, techniques, and tools for processing models
defined with a variety of distinct modeling languages are a crucial prerequisite for the successful
adoption of MDE.

1.2 Problem Statement

Developing distinct tools for each modeling language in use manually and from scratch is im-
practical. This is an apparent issue, especially if we take into account that a large body of distinct
modeling languages is available and that similar tool capabilities, such as model editing, model
execution, model debugging, and model testing, are required for all these modeling languages.
Fortunately, the techniques available in MDE to automate the development of software systems
can be applied to also automate the development of tool support for modeling languages [20].
To accomplish this, modeling languages have to be defined formally, meaning that their syntax
as well as their semantics have to be defined in a computer processable way. Such a formal
definition of a modeling language can be processed using MDE techniques to provide specific
tool support for a modeling language.

The syntax of a modeling language defines the modeling language’s concepts and the rela-
tions between these concepts. Thus, it defines the structure of models which can be constructed
with the modeling language. The computer internal representation of the syntax of a model-
ing language is also referred to as abstract syntax. For formally defining the abstract syntax of a
modeling language, metamodels constitute the standard means. The MOF standard [121], devel-
oped by the Object Management Group (OMG), constitutes a standardized and well established
metamodeling language for this purpose. Furthermore, MOF laid the ground for automating
the development of a variety tools that build upon the abstract syntax definition of a modeling
language. In particular, it led to the availability of techniques for (semi-)automatically deriving
modeling editors from a metamodel and generic components for model serialization, compari-
son, and transformation.

2

The semantics of a modeling language defines the meaning of each concept provided by the
language and, hence, defines how models conforming to the language’s abstract syntax defini-
tion have to be interpreted [63]. A formal definition of a modeling language’s semantics is not
only needed for precisely and unambiguously defining the meaning of conforming models, but
also to establish the basis for an efficient development of tools building upon the semantics of a
modeling language, such as model execution engines, model debuggers, and model testing envi-
ronments. Having the semantics of a modeling language explicitly and formally defined enables
the automation of the development of such tools. Unfortunately, no standard way for formally
defining the semantics of a modeling language has been established yet. In fact, the semantics
of many modeling languages, including widely adopted languages, such as UML2 [113], are
only informally defined in natural language. The lack of a standardized language for formally
defining the semantics of modeling languages impedes the efficient or even automated develop-
ment of semantics-based tools. Thus, formalizing the semantics of modeling languages remains
a core challenge in MDE [20]. Having a standardized and well established semantics speci-
fication language in MDE may provide similar benefits as MOF granted for developing tools
building upon a modeling language’s abstract syntax. In particular, it may enable the emergence
of (semi-)automatic derivation techniques and reusable generic components for developing tools
which build upon a modeling language’s semantics.

This thesis is concerned with the challenge of formally and explicitly defining the semantics
of modeling languages and efficiently developing semantics-based tools on top of the definition
of a modeling language’s semantics. In particular, we focus on executable modeling languages
that allow the definition and analysis of dynamic aspects of systems by means of executable mod-
els. Executable models enable the analysis of software systems starting from the early phases
of the development process. Therefore dedicated analysis tools may be used that implement
analysis methods and techniques supporting understanding, exploring, validating, and verify-
ing models. Examples of such analysis methods are debugging, testing, and dynamic analysis
methods. However, to develop analysis tools for executable modeling languages in an efficient
manner, their semantics has to be formally defined comprising the formal definition of the ex-
ecution behavior of conforming models. This kind of semantics is referred to as behavioral
semantics.

As pointed out above, no standard way for formally defining the semantics of modeling lan-
guages exists. This is also true for behavioral semantics. As will be discussed in Section 2.2.2,
several approaches for defining the semantics of modeling languages exist. However, none of
these approaches are widely adopted, especially compared to the wide adoption of metamodel-
ing languages, such as MOF. Furthermore, only a few existing approaches address the challenge
of automating the development of semantics-based tools, and these approaches provide only
partial solutions for this issue [20].

Due to these deficiencies, the behavioral semantics of many modeling languages is only
informally defined in natural language. This may lead to several problems, such as ambiguities

2The semantics of a subset of UML, called the foundational UML (fUML) subset, has been formally defined
and standardized by the OMG in 2011 [114]. As this thesis builds heavily upon fUML, it will be described in detail
in Section 3. However, the semantics of the concepts of UML, which are not included in the fUML subset, is only
described in English prose in the UML standard [113].

3

Model
Interpreter A

Model
Interpreter B

Metamodel

Code
Generator A

Behavioral
Semantics

Behavioral
Semantics

Code
Generator B

Behavioral
Semantics

Behavioral
Semantics

…
Behavioral
Semantics

Modeling
Editor

Model
Validation

Metamodel

Metamodel Behavioral
Semantics
Behavioral
Semantics

Model
Interpreter A

Model
Interpreter B

Code
Generator B

Code
Generator A

Modeling
Editor

Model
Validation

…

Hand-written
Artifact

Generic or
Generated Artifact

dependency

Implicit Specification Explicit Specification

Figure 1.1: Comparison of implicit and explicit specification of behavioral semantics

in the semantics of the languages’ concepts. Furthermore, the behavior of models cannot be
formally analyzed and the models cannot be executed. Moreover, the development of tools,
such as model debuggers and model testing environments, is problematic if the used language’s
behavioral semantics is only defined in natural language.

A commonly used approach to make models executable is to develop code generators or
model interpreters with general purpose programming languages (cf. left-hand side of Fig-
ure 1.1). However, code generators or model interpreters constitute only implementations of
the behavioral semantics rather than explicit specifications. In this approach the behavioral se-
mantics is encoded in the manually constructed code generation templates or model interpreter
implementations and, hence, is only defined implicitly. Furthermore, the behavioral semantics
might be redundantly defined, e.g., in distinct code generators for distinct target platforms, and
it might be only partially defined, as, e.g., specific code generators might only consider certain
selected concepts of a modeling language. Thus, it is difficult to analyze, extend, and reuse the
implemented semantics, as well as to verify whether the implementations are actually consistent
with each other regarding the intended semantics, making it costly to create and maintain such
implementations.

To overcome these limitations, a standardized way for formally and explicitly specifying
the behavioral semantics of modeling languages is needed (cf. right-hand side of Figure 1.1).
Moreover, a model-based specification of the behavioral semantics would be beneficial because
it enables staying in the technical space of MDE and, hence, immediately applying MDE tech-
niques for processing such specifications. In particular, a formal, explicit, and model-based
behavioral semantics specification could be processed utilizing MDE techniques for automating
the development of semantics-based tools, such as generating model execution facilities from
behavioral semantics specifications or developing generic model execution facilities operating
on behavioral semantics specifications.

4

1.3 Aim of the Work

This thesis aims at addressing the challenge of formally and explicitly specifying the behav-
ioral semantics of executable modeling languages and enabling an efficient development of
semantics-based tools for modeling languages on top of their semantics specifications. In par-
ticular, we investigate how the standardized UML 2 compliant action language of foundational
UML (fUML) [114] can be used as a semantics specification language in MDE and how seman-
tics specifications developed with this language can be used to efficiently develop semantics-
based tools for modeling languages.

The fUML standard published by OMG formally defines the behavioral semantics of a subset
of UML, which is called the foundational UML subset. The behavioral semantics of the fUML
subset is defined in terms of a virtual machine, which enables the execution of models compliant
to this subset. The fUML subset consists of UML modeling concepts for defining the structure
of a system with UML classes and the behavior of UML classes with UML activities making
use of UML’s action language. Because UML classes and MOF metaclasses differ only in their
intended usage, that is modeling of systems and modeling of languages, respectively, fUML’s
action language might be well suited not only for specifying the behavior of UML classes, but
also for specifying the behavior of MOF metaclasses. This would enable the formal definition
of the behavioral semantics of modeling languages in terms of UML activities. As fUML is an
object-oriented and imperative action language, well known in the MDE community as it is a
subset of UML, and like MOF standardized by OMG, fUML may be considered as a promising
candidate for becoming a standardized semantics specification language in MDE.

Although OMG considers fUML as being sufficient for specifying the semantics of the re-
mainder of UML [114, p. 19] and, hence, enable the execution of any UML conform model
using the fUML virtual machine, it is, however, an open question how fUML can be employed
for this purpose. Moreover, it has not been investigated so far how fUML can be integrated
with state of the art metamodeling languages, metamodeling methodologies, and metamodeling
environments for providing the means to specify the semantics of other modeling languages in
a way that enables the direct execution of models and the development of semantics-based tools
relying on this model execution capability. In particular, the following research questions have
been addressed by this thesis.

(i) How can fUML be integrated with existing metamodeling languages, methodologies, and
environments to be usable for specifying the behavioral semantics of modeling languages
in a systematic and efficient manner?

(ii) How can fUML’s execution environment be utilized for executing models based on a mod-
eling language’s behavioral semantics specification defined with fUML?

(iii) How can semantics-based tools be efficiently developed based on a modeling language’s
behavioral semantics specification defined with fUML?

These research questions have been addressed by this thesis resulting in four contributions,
which are depicted in Figure 1.2. Figure 1.2 depicts three basic phases of an MDE process.
In the language design phase, the modeling language to be used in the software development

5

Language Design Modeling Model Utilization

Metamodeling Language

Metamodel

Semantics
Specification

Semantics
Specification Language C1

Foundations Artifacts Tasks CX Contributions

Model

Execution Environment

Foundations

Artifacts Tasks

CX Contributions

Editing Support C2

Execution Debugging

Differencing

…

C3

C4

Figure 1.2: Contributions of this thesis

process is defined, which comprises the specification of the modeling language’s abstract syn-
tax by means of a metamodel, as well as the specification of its semantics. Contribution 1 of
this thesis is concerned with the specification of the behavioral semantics of a modeling lan-
guage based on fUML. In the modeling phase, models conforming to the developed modeling
language are created using available editing support. The model utilization phase constitutes
the phase of using the models for specific purposes by employing dedicated tools. This thesis
focuses on utilizing the behavior of models, which is defined by the used modeling language’s
behavioral semantics. The contributions 2, 3, and 4 of this thesis are concerned with utilizing
the executability of models, in particular for model execution, model debugging, and semantic
model differencing. The contributions are described in further detail in the following.

Contribution 1: Semantics specification with fUML. To make fUML usable as a semantics
specification language and, hence, enable the definition of the behavioral semantics of model-
ing languages with fUML, fUML has to be integrated with existing metamodeling languages,
metamodeling methodologies, and metamodeling environments. The first contribution of this
thesis comprises a strategy for integrating the standardized action language of fUML with ex-
isting metamodeling languages. The language resulting from this integration constitutes an ex-
ecutable metamodeling language that enables not only to define the abstract syntax of a mod-
eling language, but also to define a modeling language’s behavioral semantics. Furthermore,
this contribution comprises a methodology for systematically and efficiently developing behav-
ioral semantics specifications with this executable metamodeling language. This methodology
seamlessly integrates with existing metamodeling methodologies and metamodeling environ-
ments. We have instantiated this strategy and methodology for the Eclipse Modeling Framework
(EMF) [150]. In particular, we have integrated fUML’s action language with EMF’s metamod-
eling language Ecore and implemented prototypical tool support for developing behavioral se-
mantics specifications according to the elaborated methodology. This contribution addresses the
research question (i).

6

Contribution 2: Extensions of the fUML execution environment. The fUML virtual ma-
chine enables the execution of UML models, which conform to the UML subset considered by
fUML. To execute a UML model, one has to provide the UML activity that shall be executed
as well as input parameter values for this activity to the fUML virtual machine. The output of
the execution comprises the output parameter values obtained by the execution. This output can
be used for further processing the execution result of the executed UML activity. For instance,
using this output, it can be asserted whether the output parameter values correspond to the ex-
pected values for a defined input. However, the fUML virtual machine lacks in providing means
for execution control, runtime observation, and runtime analysis. This hinders the development
of tools which build upon these capabilities of a virtual machine. For instance, model debug-
gers rely on the capability to control the execution, i.e., to suspend an ongoing execution and
to resume the execution stepwise, as well as on the capability to observe the execution, i.e., to
retrieve the current state of the execution comprising the next model element to be executed, as
well as the currently existing values. Furthermore, for analyzing the execution of a UML activity
a posteriori after the execution finished, e.g., for verifying the functional correctness of the UML
activity through testing, an execution trace is required, which captures the runtime behavior of
the executed UML activity. To overcome these limitations of the fUML virtual machine, the sec-
ond contribution of this thesis consists in extensions of the fUML virtual machine comprising
a command interface for enabling execution control, an event mechanism for enabling runtime
observation, and a trace model for enabling runtime analysis. This contribution addresses the
research question (ii).

Contribution 3: Semantics-based tool development. Using fUML as a semantics specifica-
tion language enables the utilization of fUML’s execution environment, i.e., the fUML virtual
machine, as a generic model execution environment for any modeling language whose behav-
ioral semantics is specified with fUML. This generic model execution environment takes as input
a model to be executed as well as the fUML-based semantics specification of the modeling lan-
guage the model conforms to, and executes the model according to the semantics specification
by leveraging the fUML virtual machine. Therefore, the model to be executed is provided as
input to the fUML virtual machine, which executes the fUML-based semantics specification for
this input. On top of this generic model execution environment, semantics-based tools can be de-
veloped, which implement methods and techniques enabling the utilization of models. We have
shown how this is possible by developing prototypical implementations of dedicated semantics-
based tools. In particular, we have developed a model execution tool, which provides the output
of a model execution to the user via annotations of the executed model, as well as a model de-
bugger, which enables the stepwise execution of a model and the inspection of the current state
of the execution again via annotations of the executed model. This contribution addresses the
research question (iii).

Contribution 4: Semantic model differencing. The fourth contribution of this thesis consti-
tutes an approach for differencing models based on their semantics, i.e., based on their behavior.
The majority of existing model differencing approaches compare models only based on their
abstract syntax representation, but do not take their semantics into account. Hence, we consider

7

our semantic model differencing approach as a contribution on its own. The identification of dif-
ferences among independently developed or consecutive versions of models is not only a crucial
prerequisite for several important development and change management tasks, such as model
merging and incremental testing, but also for enabling developers to efficiently comprehend a
model’s evolution. The majority of existing model differencing approaches use a syntactic dif-
ferencing approach, which applies a fine-grained comparison of models based on their abstract
syntax representation. Although syntactic differences constitute valuable and efficiently pro-
cessable information sufficient for several application domains, they are only an approximation
of the semantic differences among models with respect to their meaning. In fact, a few syntactic
differences among models may induce considerable semantic differences, whereas syntactically
different models may still induce the same semantics. We have developed a generic semantic
model differencing framework that can be instantiated to realize semantic differencing operators
for specific modeling languages. This generic semantic model differencing framework utilizes
the specification of the behavioral semantics of a modeling language to support the semantic dif-
ferencing of models. In particular, it exploits the executability of models, which is provided by
the behavioral semantics specification of the used modeling language, to obtain execution traces
for the models to be compared. These execution traces constitute semantic interpretations of
the models and, thus, act as input to the semantic comparison. The actual comparison logic can
be specified in terms of dedicated match rules defining which syntactic differences among these
interpretations constitute semantic differences among the models. This contribution addresses
the research question (iii).

Implementations. The artifacts developed in the course of this thesis have been realized as
research prototypes. These prototypes are integrated with EMF and published under the Eclipse
Public License Version 1.03. Appendix B provides further information about the prototypes.

1.4 Methodological Approach

For carrying out this thesis, the design science paradigm has been applied as the methodological
approach. Design science is a constructive methodological approach where knowledge is created
by building and evaluating innovative artifacts. Hevner et al. [67, 68] introduced a conceptual
framework as well as seven guidelines for applying design science in information systems re-
search. These seven guidelines have been applied in this thesis as described in the following.

1. Design as an artifact. The aim of this thesis is to design an approach for formally spec-
ifying the behavioral semantics of modeling languages with fUML and to enable the efficient
development of semantics-based tools. More precisely, the artifacts described in the following
have been built in the course of this thesis.

1. A strategy for integrating fUML with existing metamodeling languages to enable its usage
as a semantics specification language and an instantiation of this strategy for the metamod-
eling language Ecore.

3http://www.eclipse.org/legal/epl-v10.html, accessed 11.09.2014

8

http://www.eclipse.org/legal/epl-v10.html

2. A methodology for systematically and efficiently developing executable semantics speci-
fications with the elaborated fUML-based semantics specification language and an instan-
tiation of this methodology in the form of tool support for EMF.

3. Extensions of fUML’s execution environment providing means for execution control, run-
time observation, and runtime analysis.

4. A generic model execution environment based on the extended fUML execution environ-
ment enabling the execution of models, which conform to any modeling language whose
behavioral semantics is specified with the fUML-based semantics specification language.

5. Implementations of semantics-based tool prototypes based on the generic model execution
environment, in particular, a model execution tool as well as a model debugger.

6. A semantic model differencing framework and an instantiation of this framework for
fUML-based behavioral semantics specifications, which is based on the generic model
execution environment.

2. Problem relevance. Formalizing the behavioral semantics of modeling languages and
leveraging this formalization for efficiently developing semantics-based tools is an open chal-
lenge in MDE [20]. Despite the fact that several approaches for formally and explicitly speci-
fying the behavioral semantics of modeling languages exist, none of these approaches is widely
adopted when compared to the adoption of metamodeling languages. Moreover, the challenge
of efficiently developing tools for modeling languages based on their semantics specifications
is only addressed by a few approaches which provide only partial solutions [20]. This thesis
addresses these challenges by providing a language for specifying the behavioral semantics of
modeling languages as well as a generic model execution environment enabling the efficient de-
velopment of semantics-based tools, which are both based on the standardized action language
of fUML.

3. Design evaluation. The artifacts developed in the course of this thesis have been evalu-
ated by applying them to selected modeling languages in well defined case study setups. In
particular, the developed semantics specification language as well as the tool support for the
elaborated semantics specification methodology have been applied to develop the behavioral se-
mantics specifications of dedicated modeling languages. For the same modeling languages, the
developed semantics-based tool prototypes have been applied. To evaluate the extensions of the
fUML execution environment, tools that depend heavily on these extensions have been devel-
oped. In particular, we have developed a debugger, a testing framework, as well as a tool for
performing non-functional property analysis for fUML models. Furthermore, we have evaluated
the overhead caused by these extensions regarding execution time and memory consumption.
The conducted case studies have been used to draw conclusions about the general applicability
of the developed artifacts and they have provided feedback for further refining these artifacts.

9

4. Research contributions. The presented artifacts and the conclusions drawn from their eval-
uation constitute the contributions of this thesis to the knowledge base of the MDE community.
For specifying the behavioral semantics of modeling languages, various approaches have been
proposed in the past, which are, however, not widely adopted. With the approach of specifying
the behavioral semantics of modeling languages using the standardized action language of fUML
we aim to provide a stimulus towards the establishment of a common behavioral semantics spec-
ification language in MDE. Furthermore, the need for efficiently developing semantics-based
tools has gotten more attention recently in the research community [20]. This thesis contributes
an approach for developing semantics-based tools on top of a generic model execution environ-
ment, which is itself based on the fUML virtual machine. This contribution aims to lay the basis
for future innovations regarding the automated development of semantics-based tools for mod-
eling languages. Furthermore, we have developed an approach for semantic model differencing
to contribute a solution to the MDE research area concerned with model evolution. Moreover,
the extensions of the fUML execution environment regarding execution control, runtime obser-
vation, and runtime analysis contribute to the capabilities of the standardized fUML execution
environment and might provide an input for further enhancing the fUML standard.

5. Research rigor. Existing work in the area of specifying the behavioral semantics of mod-
eling languages as well as automating the development of semantics-based tools has been taken
into account during building and evaluating the research artifacts of this thesis. Therefore, in-
tensive literature studies have been carried out prior to designing the artifacts and existing ap-
proaches and tools have been reviewed. Furthermore, evaluation methods applied by existing
related work have been investigated for their applicability in evaluating the artifacts of this thesis.
Moreover, the artifacts built in the course of this thesis have been also contrasted and compared
with the artifacts built in related work.

6. Design as a search process. The artifacts developed in this thesis have been iteratively built
and evaluated. These iterations have been example-driven. This means that the artifacts have
been first designed and built to support simple exemplary modeling languages, and they have
been evaluated by conducting case studies applying the artifacts to such modeling languages.
By doing so, design alternatives for the artifacts have been explored, the problem domain has
become better understood, and experience has been gained. Hence, more complex modeling
languages have been considered subsequently and the artifacts have been further refined.

7. Communication of research. The contributions of this thesis have been communicated
through well known and peer reviewed publication venues in the MDE community as well as in
the broader software engineering community.

1.5 Structure of the Work

This thesis is structured according to the elaborated contributions. In the following, an overview
of this thesis is provided by briefly describing the contents of each chapter. Some of the contri-
butions of this thesis have already been published in peer reviewed workshops and conferences.

10

Hence, the contents of these publications overlap with the contents of this thesis. The following
chapter overview provides also information about which contents have already been published.

Chapter 2: State of the Art. In this chapter, we first provide an overview of methods and
techniques utilizing the executability of modeling languages for supporting the comprehension,
exploration, validation, and verification of models. Thereafter, we provide an introduction into
how modeling languages are defined focusing on metamodeling and semantics specification.
Furthermore, we briefly introduce executable UML and in particular the fUML standard.

Chapter 3: Foundational UML. In this chapter, we provide a thorough description of the
fUML standard. In particular, we introduce the UML modeling concepts addressed by the fUML
standard as well as the fUML virtual machine enabling the execution of fUML conform models.

Chapter 4: Extensions of the fUML Execution Environment. This chapter deals with con-
tribution 2. We discuss current limitations of the fUML virtual machine as defined by the fUML
standard concerning execution control, runtime observation, and runtime analysis. Thereafter,
we present the extensions of the fUML virtual machine, which have been developed in order
to overcome these limitations comprising an event mechanism, command interface, and trace
model. The extensions of the fUML virtual machine have been published in [97].

Chapter 5: Semantics Specification with fUML. This chapter deals with the contributions 1
and 3. It is concerned with the integration of fUML with existing metamodeling languages,
methodologies, and environments enabling the formal definition of the behavioral semantics
of modeling languages based on fUML. Furthermore, we present the generic model execution
environment built on top of the extended fUML execution environment that provides means
for executing models according to fUML-based behavioral semantics specifications as well as
the basis for efficiently developing semantics-based tools. The content of this chapter has been
published in [98–100].

Chapter 6: Semantic Model Differencing. This chapter deals with contribution 4. We present
our generic semantic model differencing framework, which utilizes the behavioral semantics
specification of a modeling language to identify semantic differences among models. In par-
ticular, this approach makes use of the possibility to execute the models to be compared based
on the behavioral semantics specification of the used modeling language. This semantic model
differencing framework has been published in [85, 86].

Chapter 7: Evaluation. In this chapter, the evaluation of the developed artifacts as well as the
results of this evaluation are presented. The extensions of the fUML execution environment, the
semantics specification approach based on fUML, as well as the semantic model differencing
approach have been evaluated separately in dedicated case studies. Parts of these case studies
have been published in [10, 49, 86, 97, 100, 104, 105].

11

Chapter 8: Conclusion and Future Work. In this chapter, the contributions of this thesis are
summarized, overall conclusions are discussed, and limitations to be addressed in future work
are pointed out.

12

CHAPTER 2
State of the Art

2.1 Executable Modeling Languages and Their Applications

With the application of MDE, software development is centered around models constituting the
single specification of the software systems to be built. Therefore, modeling languages are used,
which enable the specification of the structure and the behavior of software systems formally
and completely on a higher level of abstraction and closer to the problem space than possi-
ble with existing programming languages. Thereby, the goal of applying MDE is on the one
hand to cope with the growing complexity of the software systems to be built and on the other
hand to improve the productivity and quality of software development [16, 57, 137, 139, 158].
To achieve this, high-level and abstract models are created and refined manually or automated
through model transformations, until models detailed enough to automatically generate com-
plete software system implementations are obtained. This automation step is achieved by code
generators, which act as platform-specific compilers transforming the models into executable
software artifacts, in particular into source code executable on the intended target platform.

For this purpose, executable modeling languages may be used. Executable modeling lan-
guages are modeling languages that enable not only the specification of the static aspects of a
system, but also the dynamic aspects, i.e., the behavior of the system, by means of executable
models [17]. Thereby, a model is executable, if “it is possible to write an engine program
that executes (or runs) the model” [73, p. 7]. The main advantage of executable modeling lan-
guages is that they can be used to formally specify a software system. This implies that the
meaning of an executable model is precisely defined, and hence, executable models can be pro-
cessed by computers. On the one hand, executable models can be transformed into executable
software system implementations in the code generation step of an MDE development process.
This enables the automation of software development leading to increased productivity. On
the other hand, executable models can be analyzed starting from the early phases of the MDE
development process [62]. The analysis facilitates the early validation and verification of the ex-
ecutable models leading to increased quality of the final software system implementation. This
is not only of great value in an MDE development process, but also in model-based develop-

13

ment (MBD), where models are extensively used in the development process, but a complete
automation through code generation might not be intended [16, p. 9].

In early phases of the development process, the analysis of executable models aids in an early
evaluation of the quality of the software design. Thus, early in the development process, defects
in the design can be detected and corrected, which is important as correcting a defect in a system
becomes more expensive the later it is detected. Detecting and correcting defects on the model
level is especially important in MDE, since the final software system implementation is directly
and automatically generated from the models. Besides detecting defects early, executable mod-
els enable the evaluation of different design alternatives by evaluating non-functional properties
of these alternatives, such as performance and reliability.

Also in the later maintenance phase of the development process, there are important appli-
cations of analyzing executable models. In case of required improvements or modifications of
the software system due to changed requirements, newly incorporated or modified functional-
ity can be analyzed to evaluate its quality. This new or modified functionality is reflected in
the executable models of the software system and, hence, their analysis again aids in the detec-
tion of design defects and the evaluation of design alternatives. If an existing system has to be
optimized, for instance to handle more client requests concurrently, analyses of the executable
models can support identifying optimization potentials of the system, such as performance bot-
tlenecks. Furthermore, alternative optimizations can be evaluated. In case of software migration
or software modernization endeavors, analysis aids in detecting parts of a system that are af-
fected and have to be replaced or modified.

Testing, formal analysis, dynamic analysis, debugging, and non-functional property analysis
are methods for analyzing executable models. In the following, we discuss these methods to
highlight their potential for increasing the quality of software development. For each method,
we provide a brief definition, discuss possible applications for executable models, and provide
examples of existing approaches applying the respective method on executable models.

2.1.1 Testing

The aim of testing is to validate whether a software system meets its functional requirements,
as well as to detect defects in the software system [148]. The former is referred to as validation
testing, the latter as defect testing. Therefore, test cases targeted at the expected use of the soft-
ware system or at exposing defects are defined. A test case defines input data to the system under
test and assertions on the expected output of executing the system on this input. Testing cannot
be used to prove that a system is valid and free of defects, rather it is a mean for establishing
confidence that the system is sound enough for operational use. Thereby, testing can be applied
before each release of the software system, i.e., before it is going into operational use the first
time and each time before an updated version is going into operational use. In the latter case,
besides testing new or modified functionality of the software system, regression testing is an
important testing technique. It is concerned with the selective re-testing of the software system
to uncover newly introduced defects in previously correctly working functionality.

Testing can be applied to executable models in two ways. Firstly, executable models can be
tested themselves. This means that the models are executed on test input data and it is evaluated
whether their output corresponds to the expected output. Secondly, executable models can be

14

used to test the software system implementation, i.e., its source code. In this case, test cases for
the implementation are automatically generated from the executable models according to test
selection criteria, which ensure the fulfillment of defined test objectives. The obtained test cases
are then manually or automatically executed on the software system implementation under test.
The executable models used for test case generation might be either the same models as used for
code generation, extracted from the software system implementation, or manually created for
testing purposes. This is referred to as model-based testing [160].

One example for the former case and targeted at executable UML models is the approach
proposed by Pilskalns et al. [128]. It is concerned with testing UML design models to detect
defects in designs early in the development process. Therefore, the design models are first
executed symbolically to determine test input data. Using the obtained test input data, the models
are then executed and execution traces are recorded, which capture the evolution of the models’
states during execution. These execution traces are analyzed to evaluate the assertions on the
design models. Based on this testing approach, selective re-testing strategies for regression
testing have been proposed [129]. They are concerned with selecting existing test cases, which
have to be re-executed for identifying newly introduced defects, and generating additionally
needed test cases. Further examples of testing approaches for executable UML models are the
testing approaches integrated with the USE tool developed by Gogolla et al. at the University of
Bremen [55, 56, 59] and the testing approach proposed by Dinh-Trong et al. [37–39].

One example of a model-based testing tool operating on executable UML models is the
Conformiq Automated Test Design Tools suite1. In this tool suite, the external behavior of the
system under test is defined by UML state machines. Using symbolic state space exploration
algorithms, the UML state machines are symbolically executed and test cases are generated
consisting of test input data and test output data. Thereby, different test selection criteria, such
as use case coverage, requirements coverage, statement coverage, and all-paths coverage, can
be employed for the test case generation. For the generated test cases, executable test scripts
for different programming languages, such as Java and C#, can be obtained. Besides UML
state machines, also other behavioral diagrams of UML, such as sequence diagrams and activity
diagrams, have been employed by existing model-based testing approaches. For surveys on
model-based testing approaches and techniques we refer to [36, 69, 160].

2.1.2 Formal Analysis

Formal analysis of software systems aims at proving in a mathematically sound way that a sys-
tem fulfills certain properties [148]. Therefore, mathematical models representing the behavior
of a software system are built using formal specification languages, such as Z, VDM, B, CSP,
finite state machines, process calculi, and Petri nets. These mathematical models are then an-
alyzed using formal methods, such as model checking, theorem proving, and SMT solving.
Formal analysis is applicable to the validation as well as verification of software systems and
especially useful in early stages of the software development process. Unlike testing, formal
analysis can prove that a system is valid and free of defects, which constitutes the main advan-

1http://www.conformiq.com/solutions, accessed 02.06.2014

15

http://www.conformiq.com/solutions

tage of formal methods over testing. However, formal analysis techniques are more prone to
scalability and cost-effectiveness problems than testing approaches.

In the context of MDE, formal analysis can be used to analyze the consistency and correct-
ness of models eventually used for generating the software system implementation, as well as
to check certain properties of the models, such as liveness and safety. If models serve as system
specification in an MBD process, formal analysis can be used to verify that theses models and,
hence, the system specification, are consistent and correct. Furthermore, they can be employed
for analyzing whether the manually developed source code of the software system implementa-
tion is consistent with its specification defined in terms of models.

In MDE and MBD, formal specification languages and formal methods are usually not di-
rectly applied. Instead, the models used in the software development process, such as UML
models, are automatically transformed into a mathematical model conforming to a formal spec-
ification language. Hence, the developer is not concerned with formal specification languages at
all. Furthermore, the formal method is applied automatically and the result is translated back to
the original model in order to provide understandable and useful feedback.

Due to the widespread use of UML, several approaches for applying formal analysis to exe-
cutable UML models exist. One example is the vUML tool developed by Lilius and Paltor [89].
It is a model checking tool for UML models consisting of class diagrams, collaboration dia-
grams, and state machines. In this tool, the UML models are automatically transformed into
PROMELA, which is the input language of the model checker SPIN. SPIN is then used to check
dynamic properties of the UML model, such as the absence of deadlocks, livelocks, and reach-
able invalid state. In case a property is not fulfilled, the counter example generated by SPIN is
translated to UML sequence diagrams and provided as result of the analysis. Another example
of a formal analysis approach for UML is the work of Eshuis [43]. In this approach, UML mod-
els consisting of activity diagrams and class diagrams are transformed into finite state machines
in order to check data integrity constraints using the NuSMV model checker.

2.1.3 Dynamic Analysis

Dynamic analysis is concerned with analyzing properties of running programs [6]. Therefore,
data about a running program is collected during its execution and analyzed either during or
after the execution. The collected data is typically captured in the form of execution traces,
which provide an abstract representation of the behavior of the executed program. For this
purpose, various execution trace formats have been proposed for object-oriented and procedural
programming languages [60, 61].

Dynamic analysis can serve different purposes. One of its main purposes is program com-
prehension, that is to support humans in understanding a program’s structure and behavior [30].
As pointed out by Lange and Nakamura [84], dynamic analysis is needed for comprehending
programs developed with object-oriented languages, because static analysis techniques cannot
sufficiently deal with polymorphism and dynamic binding. Therefore, trace visualization and
exploration techniques have been developed, which aim at enabling humans to comprehend the
large amount of data captured in execution traces [60]. Based on traces, different kinds of metrics
can be computed for comprehension purposes. For instance, in the frequency spectrum analysis
developed by Ball [6], it is computed how often a program’s entities (e.g., operations) have been

16

executed. Using this information, a program can be decomposed into slices of related compu-
tations and its behavior can be related to input and output characteristics. Closely related to
comprehension is debugging, which is another application purpose of dynamic analysis. In this
application, defects in a program are detected by exploring execution traces recored for incorrect
executions of a program. Another application of dynamic analysis is testing. Unlike traditional
testing approaches, which enable the assertion of input/output relations only (cf. Section 2.1.1),
dynamic analysis provide the means to also assert expected execution traces. Furthermore, it
provides the ability to analyze the test coverage of test suites in order to measure the degree to
which the program is tested and identify areas of the program that require more testing. Also
evolution can be supported by dynamic analysis, as it enables the acquisition of a comprehen-
sive understanding of a program, which is needed for evolving it, as well as of applied evolutions
and their impact on the program’s behavior. The latter can be supported by the comparison of
execution traces captured for different versions of the same program, which makes the effect of
the applied evolution explicit on a higher level of abstraction than the differences observable on
the source code level. The last application domain we want to mention is profiling, which is
concerned with measuring the performance of a program.

Executable modeling languages play a crucial role in dynamic analysis, as they are used for
visualizing the behavioral aspects captured by execution traces and enable the exploration and
analysis of the behavior of a program on a higher level of abstraction. Among these executable
languages are, for instance, finite state machines and UML interaction diagrams [30, 60]. The
visualization techniques aim at representing the runtime behavior of a system at an appropriate
abstraction level, such that humans are able to comprehend and reason about it. In the con-
text of MDE, it is preferable to capture execution traces on the same level of abstractions as
the models developed during the system design. Therefore, Maoz [93] proposes the usage of
so-called model-based traces, which capture the runtime behavior of a system at the same ab-
straction level as the design models. For instance, in case UML state machines are used during
the design, state-based traces can be used, which capture occurred events, performed guard eval-
uations, and entered and exited states during the program execution [92]. The main advantage
of model-based traces is that they filter out irrelevant information about the program execution,
such as code statement execution, and add model-specific information not explicitly captured
in traditional execution traces and not explicitly visible in the source code, such as the entering
and exiting of states. Based on model-based traces, a system’s behavior can be analyzed on the
same abstraction level as the design models. For instance, coverage metrics can be calculated
that are targeted at model elements, such as in the example of state-based traces the number of
unique states visited during the execution of the system. Model-based traces have been proposed
in the context of models@run.time, a research area within MDE, which is concerned with the
development of self-adaptation mechanism of systems based on runtime models [14]. Thereby,
runtime models capture the state of a running system and are used to reason about adaptations
and apply adaptations during runtime.

When dynamic analysis methods are applied for analyzing programs, their usage is restricted
to the later phases of the software development process, where the implementation of the soft-
ware system is already available. However, dynamic analysis methods can also be applied for
analyzing executable models, which enables using them already in early stages of the devel-

17

opment process for comprehension, debugging, testing, profiling, and evolution purposes. An
example of such an application scenario of dynamic analysis methods is performance analysis
utilizing simulation techniques, which will be discussed in Section 2.1.5.

2.1.4 Debugging

If defects in the software system have been detected, for instance during the validation and
verification process by applying testing, formal analysis, or dynamic analysis methods, these
defects have to be located and corrected. For this purpose, debugging is employed [148]. To
be able to locate and correct a defect, thorough knowledge about the software system as well
as of the defect is necessary. On the one hand, already discussed methods can be used for this
purpose. For instance, from the existing test suite, knowledge about the functionality of the
system as well as of the defect resulting in a failing test case can be gained. Similarly, a counter
example provided by a model checker or an invalid trace revealed by a trace exploration tool can
provide the knowledge required to locate and correct the respective defect. On the other hand,
specialized methods for debugging exist, which can be utilized for locating defects in a software
system.

In code-centric development, debuggers provided by the integrated development environ-
ment (IDE) used for implementing the software system constitute the most prominent means
for debugging. They offer the possibility to control the execution of the system, for instance
to execute the system in a stepwise manner, i.e., code statement per code statement, pause and
resume the execution, set breakpoints for pausing the execution at a specific code statement, and
set watchpoints for pausing the execution at accessing a specific variable. Furthermore, debug-
gers enable the observation of the current state of the system by examining the value of existing
variables, evaluating expressions on variables, and tracking the current position of the execu-
tion. More advanced debugging methods include, for instance, delta debugging and reverse
debugging [166].

Besides locating defects in a software system, debuggers can also be used for testing pur-
poses and aid in system comprehension. For instance, a newly introduced or modified operation
can be debugged in order to verify whether it behaves as intended. Similarly, the debugger can
be used to explore the behavior of the system by stepwise executing it and observing its state.
Thereby, the debugger aids in experiencing and comprehending the system’s behavior as well as
in experimenting with modifications.

Debugging methods known from code-centric development have also been applied to model-
centric development. They are targeted at executable modeling languages and aid in locating
defects in models, rapidly testing models, and comprehending the behavior of models already
in early stages of the development process. Examples of UML tools providing debuggers for
executable UML models are IBM’s Rational Software Architect2 and Rational Rhapsody Devel-
oper3, Sparx Systems’ Enterprise Architect4, NoMagic’s Cameo Simulation Toolkit5 for Magic-

2http://www-03.ibm.com/software/products/en/ratisoftarch, accessed 10.06.2014
3http://www-03.ibm.com/software/products/en/ratirhap, accessed 10.06.2014
4http://www.sparxsystems.com/products/ea, accesses 10.06.2014
5http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.

html, accessed 10.06.2014

18

http://www-03.ibm.com/software/products/en/ratisoftarch
http://www-03.ibm.com/software/products/en/ratirhap
http://www.sparxsystems.com/products/ea
http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html
http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html

Draw, and the open source tool Pópulo developed by Fuentes et al. [51]. These tools provide the
capability to control and observe the execution of UML models. For instance, state machines
and activities can be executed stepwise, meaning that the execution pauses after the running
state machine has processed one event and after one action of a running activity was executed,
respectively. Furthermore, breakpoints for model elements, such as states and actions, can be
set, such that the execution pauses when these model elements are reached. For enabling the
observation of the model execution, the diagrams visualizing the executing models are animated
and the values of existing variables are displayed.

2.1.5 Non-Functional Property Analysis

Besides functional requirements, software systems also have to fulfill non-functional require-
ments. Non-functional requirements are not directly concerned with the concrete behavior of
the system, but deal with emergent properties of the system, such as performance, reliability,
availability, maintainability, and safety [148]. Considering non-functional properties of a sys-
tem early in the design process is crucial in order to ensure that the system will meet its non-
functional requirements. Thereby, different design alternatives can be analyzed with regard to
their impact on the non-functional properties of the overall system in order to identify the best
design solution. In this way, costly rework of the software system implementation required due
to unfulfilled non-functional requirements can be prevented. This is important, as correcting
severe violations of non-functional requirements can require considerable changes in the de-
sign, which are more expensive the later they have to be implemented. However, the analysis
of non-functional properties may be continued throughout the whole development process of a
software system including the maintenance phase, for instance to assess alternative solutions for
introducing new components into the system as well as to identify optimization potentials and
assess alternative optimizations.

Non-functional properties constitute runtime attributes of a system. Hence, descriptions of
a system’s runtime behavior are required in order to predict the system’s non-functional prop-
erties. For this purpose, executable models are employed. As surveyed by Balsamo et al. [7],
in the realm of performance prediction, the most used executable modeling languages are queu-
ing networks, stochastic Petri nets, stochastic process algebras, and simulation models. These
models are analyzed using either analytical methods or simulation techniques in order to obtain
performance indices, such as response time, utilization, and throughput. For analyzing the de-
pendability of a software system, consisting of reliability, availability, maintainability, integrity,
and safety, executable modeling languages, such as fault trees, Markov chains, and Petri nets are
employed [11]. Again through the application of analytical methods or simulation techniques,
dependability indices, such as mean time to failure, failure rate, mean time to repair, steady state
availability, and the safety integrity level are computed.

Because UML is today the most adopted modeling language for designing software systems,
considerable efforts have been undertaken to integrate existing techniques for analyzing non-
functional properties with UML [7, 11]. An important contribution in this direction was made
by the standardization of the UML profile MARTE [115], which enables the extension of UML
models with information required for performance and schedulability analysis. For instance,
information about resources, scenarios, and workloads can be added to UML models using

19

MARTE. Based on a UML model defining the structure and the behavior of a software system
and extended with additional information about factors influencing the non-functional properties
of the software system, the non-functional properties can be quantitatively analyzed. Therefore,
two different approaches are used. In the first approach, the UML model is transformed into the
modeling language used by the respective analysis technique, such as queuing networks or Petri
nets. In the second approach, the analysis technique is directly implemented for UML.

In performance engineering, dedicated interchange formats have been elaborated to reduce
the effort needed for transforming UML models into performance analysis models. The Core
Scenario Model (CSM) proposed by Petriu and Woodside [127] constitutes such an interchange
format. The PUMA framework of Woodside et al. [164] proposes an architecture of a perfor-
mance analysis tool chain, where software design models are first transformed into CSM models,
which are then again transformed into models suitable for different kinds of performance anal-
ysis. Woodside et al. also introduce algorithms for transforming UML models extended with
applications of the UML Profile for Schedulability, Performance, and Time (SPT) [110] (the
predecessor of MARTE) to CSM models, as well as algorithms for transforming CSM models
into queuing networks, layered queuing networks, and Petri nets. The obtained models serve as
input to performance analysis tools to compute performance indices predicting the performance
of the modeled software system. Another interchange format for performance analysis is the
Performance Model Interchange Format (PMIF) developed by Smith et al. [144].

Balsamo et al. [7] surveyed approaches for integrating model-based performance predic-
tion into the software development process. Thereby, out of 15 investigated methodologies for
performance analysis, nine are based on UML models. In the area of dependability analysis,
Bernardi et al. [11] surveyed approaches for modeling and analyzing dependability properties of
software systems. Thereby, the survey deliberately investigates approaches explicitly targeted at
UML models. Both approaches based on the transformation of UML models into analysis mod-
els as well as approaches directly analyzing UML models have been identified and investigated
by this survey.

Methods and techniques for performing non-functional property analysis are important for
increasing the quality of software systems. By integrating these methods and techniques with
executable modeling languages used in MDE, the fulfillment of non-functional requirements
may be verified from the early phases of the development process on.

2.2 Defining Modeling Languages

In the previous section, we emphasized the potential of analysis methods targeted at executable
models for increasing the quality of the final software system. However, in order to enable
the utilization of models—being it for code generation or analysis purposes—the used model-
ing languages have to be formally defined, such that conforming models can be processed by
computers. The formal definition of modeling languages is the subject of this section.

As depicted in Figure 2.1, the definition of a modeling language consists of the definition
of the language’s concepts and notations referred to as abstract syntax and concrete syntax,
respectively, as well as the definition of the language’s meaning referred to as semantics [5, 16,
75, 156, 162].

20

Concrete Syntax

activity

action
CreateObject

result :
classifier init

e1
activity 0..1

node *

activity 0..1

edge *
source outgoing

*

target incoming
ActivityEdge

RedefinableElement

ActivityNode
1

RedefinableElement

* 1

Abstract Syntax

Semantics
12.3.4 Activity
Semantics
The semantics of activities is based on token flow. By flow, we
mean that the execution of one node affects, and is affected
by, the execution of other nodes, and such dependencies are
represented by edges in the activity diagram. A token contains
an object, datum, or locus of control, and is present in the
activity diagram at a particular node. Each token is distinct from
…

Defines
representations

Activity
Behavior

+ isReadOnly : Boolean

Figure 2.1: Components of a modeling language definition (adopted from [16])

The abstract syntax of a modeling language defines the modeling concepts that can be used to
construct models for describing a real world phenomena on a suitable level of abstraction. Each
modeling concept consists of attributes and relations to other modeling concepts. Therewith,
the abstract syntax defines the structure of models that can be constructed with the respective
modeling language. The standard means for formally defining the abstract syntax of a modeling
language are metamodels. Figure 2.1 depicts a very small excerpt of UML’s metamodel, which
defines the modeling concepts Activity, ActivityNode, and ActivityEdge, as well as the relations
between these modeling concepts. In Section 2.2.1, we discuss the technique of metamodeling
for defining the abstract syntax of a modeling language in more detail.

The concrete syntax of a modeling language defines the representation of models conform-
ing to this modeling language. It constitutes the interface of a modeling language that is usually
used by modelers to construct models. Multiple concrete syntaxes can be defined for a modeling
language. Generally, it can be distinguished between textual and graphical concrete syntaxes,
defining textual and graphical representations for the modeling concepts provided by the mod-
eling language, respectively. In the case of graphical concrete syntaxes, a model is usually
represented by a set of diagrams, each representing a certain part of the model or a certain view
on the model. Figure 2.1 depicts the graphical concrete syntax of UML for representing the
modeling concepts Activity, ActivityNode, and ActivityEdge in activity diagrams.

The semantics of a modeling language defines the meaning of models constructed with this
modeling language [63]. Therefore, the abstract syntax of the modeling language is mapped
to a semantic domain via a semantic mapping. The semantic domain is a well defined and well
understood domain suitable to express the meaning of models conforming to a specific modeling
language. The semantic mapping maps the syntactic elements of the modeling language, i.e., the
provided modeling concepts, to elements of the semantic domain. Ideally, the semantic domain

21

and the semantic mapping are defined formally, such that an automated semantic manipulation
and analysis of models is possible. However, they can be defined in various degrees of formality,
from descriptions in natural language to rigorous mathematical definitions. For instance, the
semantic domain of UML is informally defined in English prose. Figure 2.1 depicts an excerpt
of the description of the semantics of the UML modeling concept Activity. For defining the
semantics of modeling language formally no standard means have been established yet. In
Section 2.2.2, we discuss ways of formally defining the semantics of a modeling language,
which are proposed by existing work.

2.2.1 Metamodeling

Metamodels constitute the standard means for formally defining the abstract syntax of modeling
languages. Thereby, the metamodel of a modeling language defines the language’s modeling
concepts, which can be used to construct conforming models. For defining metamodels, meta-
modeling languages are used, which are themselves defined by meta-metamodels. The depen-
dencies between models, metamodels, and meta-metamodels result in a three-layered language
definition hierarchy referred to as metamodeling stack [16, 81]. This metamodeling stack is
conceptually depicted in Figure 2.2. A model represents some real world phenomena as part
of a system and is located on the layer M1 of the metamodeling stack. It is expressed using
the modeling concepts provided by a modeling language, which are defined by the metamodel
of the modeling language located on layer M2. Therewith, it is common to regard the model
as an instance of the metamodel defining the used modeling language. The metamodel of a
modeling language is itself expressed using a metamodeling language, which is defined by a
meta-metamodel located on layer M3. Thus, just as the model may be regarded as an instance
of a metamodel, a metamodel may be regarded as an instance of a meta-metamodel. However,
please note that strictly speaking a model located on one layer MX is not an instance of a model
located on the next higher layer MX+1 in the sense of object-class instantiation relationships
known from object-oriented programming, but instead the model on MX has to conform to the
model on MX+1 [12,138]. Thus, the instance of relationship between models located on different
layers of the metamodeling stack is also referred to as conforms to relationship. It may not be
confused with the instance of relationship known from object-oriented programming to denote
the relationships between objects and classes.

In the following, we explain the metamodeling stack in detail starting with the layer M3. In
this explanation, we make use of the exemplary instantiation of the metamodeling stack depicted
in Figure 2.3, which employs the metamodeling language Ecore for defining selected modeling
concepts of UML that may be used to model a system.

M3 meta-metamodel. A meta-metamodel defines a metamodeling language, which is used to
define metamodels (cf. Figure 2.2). Therefore, a meta-metamodel defines a set of metamodeling
concepts that can be instantiated for constructing metamodels. Meta-metamodels are defined
reflexively, meaning that a meta-metamodel can be defined using the very same meta-metamodel
and, hence, can be regarded as an instance of itself.

22

Meta-
Metamodel

Metamodel

«instanceOf»

Model

«instanceOf»

M3

M2

M1

Metamodeling
Language

Modeling
Language

System

defines ►

represents ►

defines ►

«instanceOf»

Figure 2.2: Metamodeling stack (adopted from [16, 81])

EClassifier

EClass

abstract : EBoolean

ENamedElement

name : EString

EStructuralFeature

ETypedElement

lowerBound : EInt
upperBound : EInt

eType

0..1

eStructuralFeatures

*

M3

M2

M1

«instanceOf»

EAttribute

EReference

containment : EBoolean

Activity : EClass

name = "Activity"
abstract = false

ActivityNode : EClass

name = "ActivityNode"
abstract = true

edge : EReference

name = "edge"
containment = true
lowerBound = 0
upperBound = -1

source : EReference

name = "source"
containment = false
lowerBound = 1
upperBound = 1

target : EReference

name = "target"
containment = false
lowerBound = 1
upperBound = 1

eType
eStructural

Features

eType

eStructuralFeatures

eType eType

eStructuralFeatures

eStructuralFeatures

node : EReference

name = "node"
containment = true
lowerBound = 0
upperBound = -1

ActivityEdge : EClass

name = "ActivityEdge"
abstract = true

activity : Activity e1 : ControlFlow

node

node

source

target

edge

action : CreateObjectAction

init : InitialNode

Figure 2.3: Metamodeling stack example: Ecore

23

In 1997, OMG adopted the meta-metamodel of the metamodeling language MOF [121] to
ensure the interoperability of metamodels and modeling environments [13]. The metamodels
of all modeling languages standardized by OMG, such as UML, SPEM, and CWM, are defined
using MOF. MOF is defined reflexively, meaning that it is defined in itself. Since version 2.0 of
the MOF standard, the meta-metamodel of MOF is a subset of the metamodel of UML, which
comprises UML modeling concepts for defining classes consisting mainly of attributes and asso-
ciations to other classes. This relation between MOF and UML clearly shows the possibility to
reflexively define MOF with MOF itself, as well as to reflexively define UML with UML itself.

Another prominent metamodeling language is Ecore, which is the metamodeling language of
the open source modeling environment EMF [150]. EMF is built on top of the Eclipse platform
and provides tool support for MDE, which is widely used in academia and practice. Based on
the definition of a metamodel with Ecore, EMF provides facilities for persisting conforming
models, generators for tree-based modeling editors and APIs for programmatically accessing
and manipulating models, as well as an reflection API. Around EMF, a whole ecosystem of tools
supporting MDE emerged comprising tools for abstract syntax development, concrete syntax
development, model development, model transformation, and code generation6.

Figure 2.3 shows an excerpt of Ecore’s meta-metamodel defining the metamodeling con-
cepts EClass, EAttribute, and EReference. The metamodeling concept EClass can be used to
define the concepts of a modeling language in a metamodel referred to as metaclasses. Thereby,
the definition of a metaclass consists of a name (attribute name inherited from ENamedElement),
the information whether the metaclass can be directly instantiated in a model or not (attribute
abstract), and of a set of structural features (reference eStructuralFeatures). A structural feature is
either an attribute (metamodeling concept EAttribute) or a reference to another metaclass (meta-
modeling concept EReference). Structural features have a name (attribute name inherited from
ENamedElement), a multiplicity (attributes lowerBound and upperBound inherited from ETyped-
Element), as well as a type (reference eType inherited from ETypedElement). Attributes can be
of one of the primitive data types predefined by Ecore, such as EString, EBoolean, and EInteger
for representing String, Boolean, or Integer attributes. References refer to metaclasses as type
and either constitute cross references or containment references (attribute containment).

M2 metamodel. A metamodel is an instance of a meta-metamodel and defines a modeling
language (cf. Figure 2.2). More precisely, a metamodel defines the abstract syntax of a modeling
language consisting of the modeling concepts that can be used to construct models with this
language. Thereby, each element of a metamodel is an instance of an element of the used meta-
metamodel.

Figure 2.3 shows an excerpt of the UML metamodel, which defines the modeling concepts
Activity, ActivityNode, and ActivityEdge as well as the relations between them. Therefore, the
metamodel consists of three instances of Ecore’s metamodeling concept EClass with the names
“Activity”, “ActivityNode”, and “ActivityEdge”. Furthermore, it contains four instances of
EReference named “nodes”, “edges”, “source”, and “target”. The former two references de-
fine that an activity contains arbitrarily many activity nodes as well as arbitrarily many activity
edges. The latter two references define that an activity edge refers to exactly one source activity

6http://www.eclipse.org/modeling, accessed 23.06.2014

24

http://www.eclipse.org/modeling

node and to exactly one target activity node. Please note that Figure 2.3 depicts the UML meta-
model excerpt in object diagram notation to explicitly show the instanceOf relations between
the elements located on the layers M2 and M3.

M1 model. Finally, a model is an instance of a metamodel representing some real world phe-
nomena as part of a system (cf. Figure 2.2). Thus, each element of a model constitutes an
instance of an element of the metamodel of the used modeling language.

Figure 2.3 depicts an excerpt of a UML model consisting of an activity containing two activ-
ity nodes and one activity edge connection them. Therefore, the model consists of one instance
of the metaclass Activity, two instance of the metaclass ActivityNode (in fact of two subclasses of
ActivityNode, namely InitialNode and CreateObjectAction), one instance of the metaclass Activity-
Edge (in fact of the subclass ControlFlow), as well as references between these instances. Again
we use the object diagram notation for representing the model.

The common acceptance of metamodels for defining the abstract syntax of modeling languages,
as well as the standardization of the metamodeling language MOF, paved the way for the emer-
gence of a variety of techniques for automating the development of tools supporting the syntactic
manipulation and analysis of models. In particular, it provided the basis for developing generic
techniques for processing models independent of the used modeling language. These techniques
process models based on the metamodel they conform to by leveraging only knowledge about
the underlying metamodeling language, but not about the specific metamodel itself. For in-
stance, model transformation and code generation engines are capable of processing any kind
of model as long as it conforms to a metamodel defined with a known metamodeling language.
Furthermore, generative techniques for automating the tool development have been elaborated.
Examples are techniques for automatically generating modeling editors from metamodels.

2.2.2 Semantics Specification

In the field of programming language design, efforts targeted at providing means for formally
defining semantics have a long history starting in the late 1960s. Thereby, it is distinguished
between three general approaches, namely denotational semantics, operational semantics, and
axiomatic semantics [108]. In the denotational semantics approach, a program’s meaning is
defined abstractly as a mathematical object representing the effect of executing the program. In
contrast, in the operational semantics approach, a program’s meaning is defined in terms of the
steps of computation performed to execute the program. In the third general approach, that is
the axiomatic semantics approach, a program’s meaning is defined as a set of axioms and rules
satisfied by the program’s execution.

In MDE, two distinct approaches for formally defining the semantics of modeling languages
have been applied, namely the translational semantics approach and the operational semantics
approach [28,77]. While these two approaches have commonalities with the denotational seman-
tics approach and the operational semantics approach known in the field of programming lan-
guage design, most of the existing translational and operational semantics approaches in MDE
do not rest upon an equally rigorous mathematical fundament. Instead, existing translational

25

and operational semantics approaches propose the implementation of compilers and interpreters
for modeling languages, respectively, as known from the implementation of programming lan-
guages.

In the following, we provide a general description of the translational and operational se-
mantics approach applied in MDE, present concrete examples of these approaches, and discuss
their advantages and disadvantages.

Translational semantics. In the translational semantics approach, the semantics of a model-
ing language is defined by a translation from the modeling language to another language whose
semantics is already formally defined. The modeling language whose semantics is to be defined
is referred to as source language and the language to which the source language is translated is
referred to as target language. In the translation, the concepts provided by the source language
are translated into concepts provided by the target language. Thereby, the translation of one
instance of a concept provided by the source language may result in several instances of distinct
concepts provided by the target language. For realizing this translation, model transformation
techniques may be employed. In the translational semantics approach, the target language con-
stitutes the semantic domain of the (source) modeling language’s semantics definition. The
translation from the source language to the target language constitutes the semantic mapping of
the semantics definition.

An example of the application of the translational semantics approach is the definition of
the semantics of UML activities developed by Störrle [151–155]. In this work, the semantics of
UML activities is formally defined by a translation to Petri nets. In this translation the modeling
concepts provided by UML for defining activities are translated into transitions, places, and arcs
of Petri nets. For instance, an action is translated into a transition, a decision nodes is translated
into a place, and an activity edge is translated into a place with one incoming and one outgoing
arc [154].

One special kind of translational semantics approach is the approach proposed by Chen et al.
called semantic anchoring [23]. In this approach, the semantics of a (source) modeling language
is defined by a translation from the modeling language to a so-called semantic unit, which is de-
fined with another (target) language whose semantics is formally defined. Thereby, the definition
of a semantic unit comprises the definition of the syntax as well as the semantics of the semantic
unit. The semantics of the semantic unit is usually defined using the operational semantics ap-
proach discussed later in this section. Through the translation between the modeling language
and the semantic unit, the semantics of the modeling language is anchored to the semantic do-
main of the semantic unit. Chen et al. developed an infrastructure enabling the application of
the semantic anchoring approach, which makes use of the abstract state machine language as
target language to define semantic units. Using this infrastructure, they defined the semantics of
several modeling languages, such as finite state machines.

The advantage of the translational semantics approach is that tools available for the used
target language can be reused for the source language. Thus, tools supporting the analysis of
models conforming to the target language may be used for analyzing models conforming to the
source language. The drawback of this approach, however, is that the semantics of a modeling
language is defined by the translation to the target language leading to an additional level of

26

indirection. This additional level of indirection affects the utility provided by the reused tools
available for the used target language, as results obtained from these tools are only available
in the target language. For making actual use of them, they have to be translated back from
the target language to the source language. Defining both kinds of translations—the translation
from the source language to the target language as well as translations of results from the target
language to the source language—is a complex task due to the deep knowledge required not
only about the source language but also about the target language.

Operational semantics. In the operational semantics approach, the semantics of a modeling
language is defined by specifying the steps of computation required for executing a model con-
forming to the modeling language. Thus, the operational semantics defines an interpreter for
the modeling language, which can be regarded as state transition system defining how an ex-
ecuting model progresses from state to state. Therefore, the operational semantics defines on
the one hand runtime concepts needed for capturing the state of an executing model constituting
the semantic domain of the semantics definition and on the other hand the steps of computation
involved in performing transitions of the executing model from one state to another state consti-
tuting the semantic mapping of the semantics definition. While the runtime concepts needed for
defining the state of an executing model can be defined by applying metamodeling techniques,
the steps of computation progressing the executing model to a new state has to be defined with
an executable language. Executable languages usable for defining operational semantics include
programming languages, action languages, and model transformation languages.

One example of a programming language usable for defining operational semantics is Java
in combination with the Java API of EMF [150], which allows the access to and manipulation of
models conforming to a modeling language defined with Ecore. While programming languages
provide much expressive power, their usage for defining operational semantics has the following
drawbacks. It requires language designers to have high programming skills, forces the language
designer to leave the metamodeling environment, compromises the platform independence of
the modeling language, and impedes the analysis of operational semantics. Due to these draw-
backs, action languages and model transformation languages are preferable over programming
languages.

An action language usable for defining operational semantics has to be integrated with meta-
modeling languages, such that it enables the access to and manipulation of models. One exam-
ple of an action language proposed to define operational semantics is Kermeta [72, 107]. It is
an imperative, object-oriented, and aspect-oriented action language integrated with Ecore. With
Kermeta, the operational semantics of a modeling language is defined by weaving aspects into
the modeling language’s metamodel, which extend the defined metaclasses with additional at-
tributes, references, as well as operations and which can also introduce new metaclasses into
the metamodel. By extending existing metaclasses with additional attributes and referenced as
well as by introducing additional metaclasses, runtime concepts for capturing the state of an
executing model are defined. Introduced operations define the steps of computation involved in
the execution of a model. For defining these steps of computations, Kermeta provides on the one
hand usual imperative statements, such as block statements, loop statements, conditional state-
ments, and assignment statements, and on the other hand OCL-like expressions. Other action

27

languages proposed to be used for defining operational semantics include XOCL [24], which
extends OCL with actions enabling to express manipulations of models, and the action language
developed by Scheidgen and Fischer [136], which is based on UML activities and OCL.

The third alternative type of languages usable for defining operational semantics are model
transformation languages. As an example, we want to briefly introduce the approach proposed
by Engels et al. called dynamic meta modeling (DMM) [41, 64, 145], which makes use of graph
transformations to define operational semantics. In DMM, the runtime concepts defining the
state of an executing model are defined by means of an own metamodel called runtime meta-
model. Transitions of an executing model between states are defined by means of operational
graph transformation rules using DMM’s own graph transformation language. The abstract syn-
tax of this graph transformation language is defined by means of a metamodel and its concrete
syntax is inspired by UML communication diagrams allowing the definition of graph transforma-
tion rules in a graphical way. The semantics of this language is defined in terms of a translation
to the graph transformation tool set GROOVE [132]. Thereby, the runtime metamodel defined
for a modeling language is translated into a type graph and the operational DMM graph trans-
formation rules are translated into GROOVE graph transformation rules. For executing a model,
it is translated into a GROOVE host graph being an instance of the obtained GROOVE type
graph and the obtained GROOVE graph transformation rules are applied to this graph. Other
operational semantics approaches relying on model transformation languages are the approaches
by Kastenberg et al. [74] proposing the direct use of GROOVE graph transformation rules for
operationally defining the semantics of object-oriented and imperative languages, Rivera and
Vallecillo [134] using Maude rewriting rules [26], Rivera et al. [133] using ATOM3 graph trans-
formation rules [34], and Sadilek and Wachsmuth [135, 163] using QVT Relations [112].

The advantage of the operational semantics approach compared to the translation semantics
approach is, that the semantics is defined directly for the considered modeling language instead
of indirectly through the translation to another language. However, the drawback of this ap-
proach is that semantics-based tools, such as tools supporting the analysis of models, have to be
newly developed for each modeling language.

Although several languages and techniques have been developed and applied for formally defin-
ing the semantics of modeling languages, none of them is commonly accepted in the MDE
community. This results on the one hand in modeling languages having no formally defined
semantics and on the other hand in the need for manually implementing semantics-based tools
supporting, for instance, in the analysis of models. We believe that a standardized, well estab-
lished, and widely accepted semantics specification language constitutes a crucial prerequisite
for establishing formal semantics definitions as integral part of modeling languages and paves
the way for the emergence of methods and techniques automating the development of semantics-
based tools.

2.3 Executable UML

In the previous section, we discussed the need for formally defining modeling languages in order
to enable the automated processing of conforming models. Thereby, we particularly highlighted

28

the potential of automating the development of tool support for modeling languages based on
their formal definition. The formal definition of a modeling language’s abstract syntax in terms
of metamodels enables the automation of the development of syntax-based tools, such as mod-
eling editors. However, the lack of a commonly accepted way for formally defining the se-
mantics of a modeling language impedes the automated development of semantics-based tools,
such as model debuggers, model testing environments, and dynamic model analysis tools. For-
mally defining the semantics of a modeling language—being it in a translational or operational
way—requires a language serving as the semantic domain, whose semantics is already formally
defined. In this thesis, the usage of a subset of UML for formally defining the behavioral seman-
tics of executable modeling languages is investigated. The semantics of the investigated subset
was formally defined and standardized by OMG in the fUML standard [114]. This standard was
only adopted in 2008, eleven years after the adoption of the UML standard itself in 1997. In
this section, we provide a summary of fUML’s history, present an overview of other existing
formalizations of UML’s semantics, and give a brief introduction to fUML.

In 1995, the history of UML began, when Grady Booch and James Rumbaugh published
the Unified Method Version 0.8 being a unification of their object-oriented development meth-
ods called the Booch-Method and the Object Modeling Technique (OMT). One year later, Ivar
Jacobsen, who proposed the Object-Oriented Software Engineering approach (OOSE), joined
the effort to provide a Unified Modeling Language (UML) for object-oriented development. The
original intent of the standardization of UML was primarily the unification of the various exist-
ing graphical modeling languages supporting object-oriented analysis. Another important aim
of the standardization was to enable the syntactic interchange of models between different mod-
eling tools. In 1997, UML 1.1 was officially adopted by OMG and quickly became the de facto
standard for visualizing, specifying, constructing, and documenting the artifacts of software sys-
tems.

Until version 1.5 of UML adopted in 2002, UML was not executable because it provided
only a very limited set of actions for expressing the behavior of a software system [101]. With
UML 1.5, however, the action semantics was integrated with UML. The aim of the action se-
mantics was to evolve UML to a computationally complete language and therewith support
model-based simulation and verification of system specifications, as well as full code gener-
ation [102, 109]. Therefore, a set of primitive actions was defined enabling the precise and
complete specification of computations to be carried out by a software system in a software-
platform-independent way.

One of the main advocates of the action semantics was Stephen Mellor, well known for
the Shlaer-Mellor method [143] at this time. Based on the action semantics, he proposed the
executable UML development method xUML aiming at providing the means for defining the
behavior of software systems with executable models detailed enough to compile them into
source code [101]. For expressing the behavior with xUML, UML state machines and the UML
actions defined by the action semantics were used. For the latter, Mellor et al. defined their own
action language providing a textual syntax.

Despite the introduction of the action semantics in UML 1.5 and its persistence in the 2.x
versions of UML, the specification of the semantics of actions and of UML in general remained
imprecise and incomplete. In the UML specification, the semantics of the provided modeling

29

concepts is defined informally in English prose. Moreover, up to and including versions 2.4.x
of UML, this informal definition is scattered throughout the specification. This leads to several
problems, as pointed out repeatedly (cf. for instance [18, 50, 66]). One of these problems is that
it is difficult to gain a global understanding of UML’s semantics because the semantics definition
is much dispersed in the specification. As a result of this, there are logical inconsistencies and
omissions in the semantics definition. However, with the latest version of UML, that is version
2.5 [118], the specification of UML has been substantially simplified and improved in order
to eliminate redundancies and inconsistencies, as well as to aid in understanding the semantics
of the modeling concepts provided by UML. Nevertheless, having the semantics of UML only
informally defined may lead to ambiguities and different interpretations of UML. This can lead
to serious problems in the software development process, to difficulties in learning and using
UML, as well as to incompatibilities of UML tools. As a result of this criticism, much research
effort has been devoted to formalizing the semantics of UML. These efforts have resulted in
various formalizations of the semantics of subsets of UML. We will provide an overview of
these endeavors in Section 2.3.1.

However, the emerged formalizations of UML’s semantics are targeted at different versions
and different subsets of UML. Furthermore, distinct semantics specification approaches and
semantic domains are used. In response to the need for a standardization of a precise semantics
of UML, OMG issued the request for proposal for the Semantics of a Foundational Subset for
Executable UML Models in April 2005. Three years later, in 2008, the resulting foundational
UML (fUML) standard was adopted by OMG, and finally published in February 2011 [114].
The fUML standard provides a formal specification of the semantics of the foundational core of
UML comprising a subset of UML’s class modeling concepts, activity modeling concepts, and
action language. In Section 2.3.2, we provide a brief introduction to fUML.

2.3.1 Formalization of UML’s Semantics

A huge body of work concerned with the formalization of UML’s semantics exists in the liter-
ature. Thereby, the individual formalizations address specific subsets of UML, utilize specific
semantic domains, and target specific application purposes.

In his thesis, Hausmann [64, pp. 23–28] surveys 25 distinct formalizations of UML’s se-
mantics. The surveyed formalizations address specific subsets of UML, which include modeling
concepts of class diagrams, use case diagrams, activity diagrams, interaction diagrams, and state
machines. Furthermore, specific semantic domains are utilized for the formalization, such as
the process specification language, abstract state machines, symbolic transition systems, CSP,
and Petri nets. The purposes of the formalizations include the provision of a formal seman-
tic specification, consistency checking, and verification. A similar survey was undertaken by
O’Keefe [124], who discusses several formalizations of UML class diagrams, state machines,
interaction diagrams, and OCL utilizing different semantic domains, such as symbolic transition
systems, CSP, Z, graph transformations, and higher order logic.

Crane and Dingle [31] categorized and compared 26 different formalizations of UML state
machines. They point out that these formalizations vary widely regarding the coverage of UML
modeling concepts for defining state machines. The identified semantic domains utilized by the
surveyed formalizations include abstract state machines, transition systems, Petri nets, rewrit-

30

Formalization UML
version

Actions Approach Semantic
domain

Application

Börger et al.
[15]

1.3 No Translational Abstract state
machines

Formalization

Crane and
Dingel [32,33]

2.1 Yes Translational System model
(mathematical
model)

Formalization,
dynamic analysis

Engels et al.
[42]

2.0 No Operational Graph transfor-
mations

Formalization,
formal analysis

Eshuis and
Wieringa
[43–45]

2.0 No Translational Transition sys-
tems

Formalization,
formal analysis

Grönniger et al.
[58]

2.2 No Translational System model
(mathematical
model)

Formalization

Störrle et al.
[151–155]

2.0 Partly
(commu-
nication)

Translational Petri nets Formalization,
dynamic analysis,
formal analysis

Table 2.1: Overview of formalizations of the semantics of UML activities

ing systems, model checking languages, and other formal specification languages. Similarly,
Micskei and Waeselynck [103] surveyed 13 formalizations of UML sequence diagrams for in-
vestigating the addressed UML modeling concepts, utilized semantic domains, and differences
in the defined semantics.

Because this thesis is concerned with utilizing fUML and in particular its modeling concepts
for defining activities, we provide a brief overview of work concerned with the formalization
of the semantics of UML activities. Table 2.1 provides a summary of six distinct formaliza-
tions of the semantics of UML activities including information about which version of UML
is considered, whether the semantics of UML’s action language is formalized, which seman-
tics specification approach is applied, which semantic domain is utilized for the formalization,
as well as which application purpose of the formalization is discussed in the respective work.
While all formalizations except one consider version 2 of UML, only the formalization provided
by Crane and Dingel [32, 33] takes a considerable subset of the actions provided by UML into
account [32, p. 684]. Five of the formalizations apply a translational approach utilizing abstract
state machines, the mathematical model called system model, Petri nets, and transition systems.
An operational approach is applied by Engels et al. [42] utilizing graph transformations. Regard-
ing the purpose of the formalization some approaches only aim at providing a formal semantics
of UML activities, while others show the applicability of the respective formalization for the
purpose of dynamic analysis and formal analysis. Due to the consideration of UML’s action
language, the work of Crane and Dingel [32,33] can be considered as formalization most related
to the fUML standard.

31

This overview of existing formalizations of UML’s semantics should make clear that there is
a high demand for a standardized semantics of UML in the MDE community and, thus, should
emphasize the importance of the fUML standard.

2.3.2 Foundational UML (fUML)

The fUML standard [114] selects a foundational core of UML, the so-called foundational UML
subset or fUML in short, and provides a precise specification of its behavioral semantics. The
fUML subset is a strict subset of UML 2.3 [111] meaning that it does not modify the abstract
syntax of the selected subset. However, the fUML standard defines additional well-formedness
rules for this strict subset in terms of OCL constraints [120]. For modeling static aspects of
a system, i.e., a system’s structure, the fUML subset contains modeling concepts for defining
UML classes. For modeling dynamic aspects of a system, i.e., a system’s behavior, the fUML
subset contains modeling concepts for defining UML activities. The modeling concepts for
defining UML activities comprise a subset of UML’s action language consisting of predefined
actions for expressing object manipulations and communications between activities. Besides
actions, control nodes for expressing control flows and object nodes for expressing data flows are
included in fUML. As stated before, version 1.0 of fUML was published in February 2011 [114]
and selects a subset of UML 2.3 [111]. However, the current version of fUML at the time of
writing this thesis is version 1.1 [119], which selects a subset of UML 2.4.1 [113]. In version 1.1
minor defects in the fUML standard have been corrected and the primitive data type Real, as well
as the flow final node, which is a control node, have been added to the fUML subset.

The behavioral semantics of the fUML subset is specified precisely by the fUML execution
model in an operational way. Therefore, an even smaller subset of fUML, called the base UML
(bUML) subset, is used to define a virtual machine for executing fUML models. In the fUML
standard, Java is used as a surface notation for defining the fUML execution model. The se-
mantics of bUML is in turn defined with the first-order logic formalism Process Specification
Language (PSL) [71] following a translational semantics approach.

The fUML subset is considered as the foundation of the UML modeling language on which
the remainder of the language resides. Hence, fUML is intended as being sufficient for spec-
ifying the semantics of the entire UML modeling language, i.e., not only the UML modeling
concepts contained by the fUML subset, but also all not contained UML modeling concepts.
This is due to the fact, that it is possible to translate these modeling concepts to the fUML sub-
set [114, p. 19]. However, such a translation is not standardized yet and out of scope of the
fUML standard.

In this respect, efforts to standardize the semantics of UML composite structures are cur-
rently undertaken by OMG. The corresponding standard is called Precise Semantics of UML
Composite Structures (PSCS) and has at the time of writing the status of an OMG adopted beta
specification [122], meaning that it is adopted by OMG and currently in the finalization phase.
UML composite structures are classifiers that have an internal structure, meaning that they con-
sist of parts. Structured classifiers are connect with each other and with their internal parts via
ports and connectors. The semantics of UML composite structures comprises on the one hand
the runtime manifestation of parts, ports, and connectors during model execution, and on the
other hand the life-cycle of composite objects and their parts as well as the behavior of flows

32

through ports and connectors. For specifying this semantics, an approach different from the
translational approach foreseen in the fUML standard and mentioned earlier was chosen. In-
stead of translating the additional UML modeling concepts for defining composite structures to
fUML, the fUML subset as well as the fUML execution model have been extended.

Another standard complementary to the fUML standard is the Action Language for Founda-
tional UML (Alf) standard [117] adopted in 2010 and finalized in 2012. While the UML standard
provides a graphical concrete syntax for its modeling concepts, which is adopted by the fUML
standard for representing the UML modeling concepts contained by the fUML subset, the Alf
standard provides a textual concrete syntax for the fUML subset. Using Alf, both structure com-
prising classes and behavior comprising activities can be defined completely textually. However,
as explicitly stated by the Alf standard [117, p. 1] it is also possible to combine the graphical
and textual notation, for instance, by only defining activities textually. The semantics of Alf is
defined in the standard by a mapping to fUML. However, tool vendors can alternatively choose
to directly interpret Alf code or translate it to some other executable form.

In Chapter 3, we provide a thorough overview of the fUML standard comprising a descrip-
tion of the UML modeling concepts contained by the fUML subset, as well as the fUML execu-
tion model defining the fUML virtual machine capable of executing fUML models.

33

CHAPTER 3
Foundational UML

3.1 Introduction

As introduced in Section 2.3.2, the aim of the fUML standard [114] is to identify the foun-
dational core of UML and to provide a precise and complete specification of the behavioral
semantics of this foundational core. Thereby, the foundational core of UML is considered as the
fundament of the UML modeling language and its behavioral semantics constitutes the founda-
tion for eventually defining the behavioral semantics of the remainder of UML. Before we dive
into the details, we provide an overview of fUML’s language definition. Figure 3.1 depicts the
components of fUML’s language definition and points to the associated standard.

Abstract syntax. The fUML standard selects a foundational core of UML comprising mod-
eling concepts for defining the structure of a system with classes and the behavior of a system
with activities. This foundational core is referred to as fUML subset. Therefore, a strict sub-
set of UML’s metamodel defined in the UML standard [113] is selected, which constitutes the
abstract syntax definition of fUML. Furthermore, the fUML standard defines additional well-
formedness rules for certain modeling concepts using OCL, which are necessary to precisely
define the semantics of the respective modeling concept.

Concrete syntax. For representing fUML models, three alternatives are available. The first
alternative is to use the graphical notation defined by the UML standard [113] for the modeling
concepts contained by the fUML subset, that is the class diagram notation as well as the activity
diagram notation. Alternatively, fUML models can be represented in the textual concrete syntax
defined by the Alf standard [117]. As third alternative, a mixture of the graphical representa-
tion and the textual representation can be used. For instance, classes could be defined using the
graphical class diagram representation, whereas activities defining the behavior of class opera-
tions could be represented textually in Alf syntax.

In this thesis, the graphical notation of class diagrams and activity diagrams defined by the
UML standard is used.

35

Concrete Syntax (textual)

Concrete Syntax (graphical)

activity

e1

Abstract Syntax

Semantics

Defines
representation

CommonBehaviors
Classes

Activities
Actions

Class

- attribute1 : Type

 + operation1(Type) : void
- operation2() : Type

class Class {
 private attribute1: Type;
 public operation1(in param1: Type) {
 param1.op();
 }
 private operation2(): Type {
 return type;
 }
}

UML

Alf

UML + fUML

Executor

Locus ExecutionFactory

public class Executor {
 public ParameterValueList
 execute(Behavior behav
 Execution execution = this.locus.fa
 …
 execution.execute();
 …

fUML

init result :
classifier

action
CreateObject

Figure 3.1: Components of fUML’s language definition

Semantics. The semantics of fUML is defined in an operational way by the fUML execution
model. The fUML execution model is defined using bUML—a subset of fUML—and specifies
a virtual machine capable of interpreting fUML models. In the fUML standard, the behavior
of this virtual machine is represented using Java as a surface notation and a translation of Java
into bUML is provided. The semantics of bUML is defined in a translational way using the first-
order logic formalism PSL [71]. This is omitted in Figure 3.1. A reference implementation of the
fUML virtual machine was implemented by Model Driven Solutions on behalf of the Lockheed
Martin Corporation [91], both of whom are submitters of the fUML standard. The reference
implementation is developed with Java and available under the Academic Free License version
3.0. The objective of this reference implementation is to encourage tool vendors to implement
the fUML standard in their tools and to provide a reference that can assist in evaluating the
conformance of vendor implementations with the fUML standard.

In the following sections, we provide a thorough description of the abstract syntax and the be-
havioral semantics of fUML. Firstly, we present the metamodel of the fUML subset. Secondly,
we discuss the fUML execution model and explain how the standardized virtual machine works.

36

3.2 fUML Subset

The fUML subset comprises the structural kernel of UML (UML package Classes), the behav-
ioral kernel of UML (UML package CommonBehaviors), a major subset of UML’s activities sub-
language (UML package Activities), as well as a major subset of UML’s action language (UML
package Actions). Hence, to define the structure of a system, fUML provides class modeling
concepts, and to define the behavior of a system, fUML provides activity modeling concepts.
Furthermore, fUML provides its own library called Foundational Model Library, which pro-
vides primitive data types and primitive behaviors operating on these primitive data types. In the
following, we provide a brief overview of the modeling concepts included in fUML.

3.2.1 Structure

fUML includes a subset of the class modeling concepts provided by UML for defining the struc-
ture of a system. Figure 3.2 shows an excerpt of fUML’s metamodel comprising the core class
modeling concepts. Classes (metaclass Class) can own attributes (metaclass Property), which
define a type (generalization relation to TypedElement) and a multiplicity (generalization rela-
tion to MultiplicityElement). Associations (metaclass Association) define possible links between
class instances. The types of the instances, which can be linked via an association, are de-
fined by the association’s member ends (reference memberEnd). Furthermore, structured data
types (metaclass DataType) can be defined, which can own attributes. Primitive types (metaclass
PrimitiveType) are a specialization of data types. fUML provides four predefined primitive types,
namely Boolean, Integer, String, and UnlimitedNatural in the Foundational Model Library. An-
other specialization of data types are enumerations (metaclass Enumeration), which define a set
of literals (metaclass EnumerationLiteral).

3.2.2 Behavior

To enable modeling the behavior of a system, fUML includes a subset of the activity modeling
concepts provided by UML. As shown in the excerpt of fUML’s metamodel depicted in Fig-
ure 3.3, classes are behaviored classifiers (generalization relation to BehavioredClassifier) and
can, thus, own behaviors (reference ownedBehavior). Behaviors (metaclass Behavior) can be ei-
ther associated with operations of classes (metaclass Operation) or defined as classifier behaviors
of classes. Behaviors associated with operations (reference method inherited by generalization
relation to BehavioralFeature) provide an implementation of those operations and must own pa-
rameters (metaclass Parameter) matching the parameters owned by the respective operation. The
classifier behavior of a class (reference classifierBehavior inherited by generalization relation to
BehavioredClassifier) defines a behavior which is called when an instance of the class is created.

Figure 3.4 shows an excerpt of fUML’s metamodel comprising the basic concepts for mod-
eling activities, which are the only kind of behavior included in fUML that can be used to model
the behavior of a system. Activities (metaclass Activity) consist of activity nodes (metaclass
ActivityNode) and activity edges (metaclass ActivityEdge). There are three types of nodes avail-
able in fUML, namely actions (metaclass Action), control nodes (metaclass ControlNode), and
object nodes (metaclass ObjectNode).

37

Actions constitute the fundamental unit of executable behavior and their execution represents
some processing in the modeled system. fUML contains 27 types of actions, which are prede-
fined by UML’s action language. They can be divided into object actions for handling instances
of classes (i.e., objects), structural feature actions for handling attribute values of objects, link
actions for handling links between objects, and communication actions for invoking activities
synchronously or asynchronously. Furthermore, fUML provides structured activity nodes, which
are special actions for grouping activity nodes and activity edges (metaclass StructuredActivity-
Node), expressing alternatives (metaclass ConditionalNode), and expressing loops (metaclasses
LoopNode and ExpansionRegion).

Control nodes can be used to define the start and the end of an activity, as well as alternative
and concurrent branches of an activity.

Object nodes are used to define the input and output of activities and actions. For defining
the input and output of activities, activity parameter nodes (metaclass ActivityParameterNode)
are used, which are associated with the respective activity parameters (reference parameter).
The input and output of actions are defined with input pins (metaclass InputPin) and output pins
(metaclass OutputPin), respectively. Expansion regions are used for iterating over collections of
elements provided as input and computing collections of elements as output. Thereby, the input
collections and output collections are defined with expansion nodes (metaclass ExpansionNode).

Activity edges are used to connect activity nodes with each other. Control flow edges (meta-
class ControlFlow) define the flow of control among activity nodes, whereas object flow edges
(metaclass ObjectFlow) denote the flow of data among activity nodes.

A detailed description of the actions and control nodes included in fUML is provided in
Appendix A.

3.2.3 Foundational Model Library

fUML provides its own model library consisting of model elements that can be reused in fUML
models. The library defines four primitive data types, namely Boolean, Integer, String, and
UnlimitedNatural. For these primitive data types, the library provides primitive behaviors also
called functions. The provided Boolean functions include Boolean operators, such as AND,
OR, XOR, Integer functions include Integer operators, such as addition, subtraction, and multi-
plication, String functions include String operators, such as string concatenation and substring
extraction, and UnlimitedNatural functions include comparison functions and conversion func-
tions to String and Integer. Furthermore, functions on lists are provided by the library, namely
for determining the size of a list and retrieving list item at specific indexes. However, no prim-
itive data type has been introduced for lists, because actions can receive multiple input values
through input pins with a defined multiplicity greater than one, which constitute a list of values.
Besides these primitive data types and primitive behaviors, the Foundational Model Library also
provides model elements defining input and output channels, which can be used for receiving
input and sending output from an executing fUML model, respectively.

38

Class Property Association

Feature

MultiplicityElement
TypedElement

StructuralFeature

Element
Generalization

Namespace
Type

Classifier

BehavioredClassifier

class

0..1

ownedAttribute

* owningAssociation

0..1

ownedEnd

*

association

0..1

memberEnd

2..*

generalization

*

general

1

specific

1

generalization

*

DataType

PrimitiveType Enumeration
InstanceSpecification
EnumerationLiteral

datatype

0..1

ownedAttribute *

enumeration

0..1

ownedLiteral

*

Figure 3.2: Excerpt of the fUML metamodel for modeling the structure of a system

Class

Classifier
BehavioredClassifier Behavior

Feature
BehavioralFeature

Operation

MultiplicityElement
TypedElement
Parameter behavioredClassifier

0..1

classifierBehavior

0..1

behavioredClassifier

0..1

ownedBehavior

*

specification 0..1

method *

class

0..1

ownedOperation

*

behavior

0..1

ownedParameter

*

Class

operation

0..1

ownedParameter *

Figure 3.3: Excerpt of the fUML metamodel for modeling the connections between the structure
and the behavior of a system

39

Class
Behavior

TypedElement
ObjectNode ControlNode ExecutableNode ObjectFlow

RedefinableElement
ActivityEdge

ControlFlow

InputPin StructuredActivityNode

activity 0..1

edge *

activity 0..1

node *

activityParameterNode

1

parameter 1

behavior

0..1

ownedParameter

*

source

1

outgoing

*
target

1

incoming

*

action

0..1

/output

*

action
0..1

/input

*
0..1

edge *

0..1

node

*

output
Element

input
Element

1..*

RedefinableElement
ActivityNode

OutputPin

MultiplicityElement
TypedElement

Parameter

ConditionalNode LoopNode ExpansionRegion

Action Pin ActivityParameterNode ExpansionNode

Activity

*

Figure 3.4: Excerpt of the fUML metamodel for modeling the behavior of a system

40

3.3 fUML Virtual Machine

The behavioral semantics of the fUML subset is defined by the fUML execution model, which
specifies a virtual machine for executing fUML models. Thereby, the fUML execution model
is defined with bUML, which is a subset of fUML whose semantics is formally defined in a
translational way. In this thesis, we focus on the fUML virtual machine defined by the fUML
execution model and described in the following.

To define the behavioral semantics of each modeling concept included in fUML, the visi-
tor pattern is used. This means that for each metaclass defined in the metamodel of fUML a
so-called semantic visitor class exists, which defines the execution behavior of the respective
modeling concept. Thereby, it is distinguished between three types of semantic visitor classes.
Evaluation visitor classes define how value specifications are evaluated, i.e., they define how
values are created from a value specification. For instance, the evaluation visitor class Literal-
BooleanEvaluation defines how the specification of a boolean value (metaclass LiteralBoolean) is
evaluated to a boolean value (semantic visitor class BooleanValue). Activation visitor classes de-
fine the semantics of activity nodes, i.e., they define how instances of the metaclass ActivityNode
are executed. For instance, the activation visitor class CreateObjectActionActivation defines the
semantics of the create object action (metaclass CreateObjectAction). Execution visitor classes
define the semantics of behaviors, i.e., they define how instances of the metaclass Behavior are
executed. For instance, the execution visitor class ActivityExecution defines the semantics of
activities (metaclass Activity).

Besides the semantic visitor classes, the fUML virtual machine also defines an execution
environment. This execution environment is responsible for handling the execution of fUML
models. This includes the instantiation of the semantic visitor classes for executing fUML mod-
els, the provision of primitive data types and primitive behaviors as defined in the Foundational
Model Library, the handling of semantic variation points, and the management of objects created
during the model execution.

In the following, we provide an overview of the semantic visitor classes and the execution
environment of the fUML virtual machine, and explain the process of executing an fUML model
carried out by the fUML virtual machine based on an example. We will refer to the classes
defined by the fUML virtual machine as semantic visitor classes and to the classes defined by
the fUML metamodel as metaclasses.

3.3.1 Evaluation Visitors

To specify values in an fUML model, value specifications (metaclass ValueSpecification) are
used. According to the primitive data types provided by fUML, value specifications exist for
specifying Boolean values (metaclass LiteralBoolean), Integer values (metaclass LiteralInteger),
String values (metaclass LiteralString), and UnlimitedNatural values (metaclass LiteralUnlimited-
Natural), as well as Null values (metaclass LiteralNull). Furthermore, instances of enumerations,
data types, and classes can be specified (metaclasses InstanceValue and InstanceSpecification).

The evaluation visitor classes define how values are created from such value specifica-
tions. For each type of value specification, a dedicated evaluation visitor class exists, as de-
picted in Figure 3.5. For evaluating Boolean, Integer, String, UnlimitedNatural, and Null val-

41

ues, the evaluation visitor classes LiteralBooleanEvaluation, LiteralIntegerEvaluation, LiteralString-
Evaluation, LiteralUnlimitedNaturalEvaluation, and LiteralNullEvaluation are used, respectively. The
evaluation visitor class InstanceValueEvaluation evaluates the specification of enumeration, data
type, and class instances.

The evaluation of a value specification is done by the operation evaluate() and results in a
value. Values are defined by the semantic visitor class Value, whose subtypes are depicted in Fig-
ure 3.6. Boolean, Integer, String, and UnlimitedNatural values are represented by instances of
the semantic visitor classes BooleanValue, IntegerValue, StringValue, and UnlimitedNaturalValue,
respectively. Enumeration values are instances of the semantic visitor class EnumerationValue
and refer to the enumeration literal they carry. Instances of data types, classes, and associations
are represented by instances of the semantic visitor classes DataValue, Object, and Link, respec-
tively. They own feature values (semantic visitor class FeatureValue), which define the values
assigned to the structural features of their respective type, i.e., the structural features defined by
the respective data type, class, or association. The values assigned to those structural features
are owned by the respective feature value. Objects are always carried by references (semantic
visitor class Reference).

Evaluations

TypedElement
ValueSpecification

SemanticVisitor
Evaluation

 evaluate() : Value [0..1]

InstanceValueEvaluation LiteralEvaluation

LiteralNullEvaluation

LiteralIntegerEvaluation LiteralUnlimitedNaturalEvaluation

LiteralBooleanEvaluation LiteralStringEvaluation

*

specification

1
+

Metaclass Semantic visitor class

Figure 3.5: Evaluation visitor classes of the fUML virtual machine

42

Values

Object

ExtensionalValue

CompoundValue

SemanticVisitor
Value

PrimitiveValue

InstanceSpecification
EnumerationLiteral

Reference

DataType
Enumeration

FeatureValue

+ position : Integer [0..1]

Feature
MultiplicityElement

TypedElement
StructuralFeature

DataValue
Classifier

DataType

BehavioredClassifier
Class

Link

BooleanValue

+ value : Boolean

StringValue

+ value : String

Classifier
Association

IntegerValue

+ value : Integer

UnlimitedNaturalValue

+ value : UnlimitedNatural

DataType
PrimitiveType

*

types

*

*

type

1

*

type

0..1

1

featureValues *

*

type 1

0..1

values

*

*

type 1

*
literal 1

*
feature 1

*

referent 1

Metaclass Semantic visitor class

StructuredValue EnumerationValue

Figure 3.6: Semantic visitor classes of the fUML virtual machine for representing values

43

3.3.2 Activation Visitors

The activation visitor classes of the fUML virtual machine define the behavior of activity nodes.
The activation visitor class ActivityNodeActivation shown in Figure 3.7 constitutes the superclass
of all activation visitor classes defined by the fUML virtual machine. For each type of activity
node, a subclass of ActivityNodeActivation exists, which defines how an activity node of this type
is executed. Besides defining how an activity node is executed, the activation visitor classes
also define when an activity node is executed. This definition is based on the definition of token
flow semantics similar to the token flow semantics of Petri nets. Informally speaking, an activity
node is executed, when all required control tokens are available through incoming control flow
edges and all required object tokens are available through incoming object flow edges. After
the execution of an activity node, control tokens and object tokens are offered to the successor
nodes via outgoing control flow edges and outgoing object flow edges, respectively.

The semantic visitor class Token and its subclasses ControlToken and ObjectToken depicted in
Figure 3.7 define the behavior of tokens as well as how tokens are represented during execution.
Tokens are always owned by the activity node activation offering the tokens via activity edges to
successor nodes. How tokens are offered through activity edges is defined by the semantic vis-
itor class ActivityEdgeInstance. ActivityNodeActivation instances are connected via ActivityEdge-
Instances according to the connection of the respective activity nodes via activity edges defined
in the executed fUML model. The structure and behavior of token offers themselves are defined
by the semantic visitor class Offer.

The activation visitor class ObjectNodeActivation defines how tokens are handled by object
nodes. Activity parameter nodes, whose behavior is defined by ActivityParameterNodeActivation,
are responsible for providing input values to the activity execution and receiving output values
from the activity execution. The behavior of input pins and output pins is defined by the acti-
vation visitor classes InputPinActivation and OutputPinActivation. While input pins receive values
from incoming object flow edges and pass them to the associated actions, output pins receive
values from the associated actions and pass them to outgoing object flow edges.

How actions are executed is defined by the activation visitor class ActionActivation and its
subclasses. They are responsible for executing some kind of behavior, which is defined by the
operation doAction(), and for providing object tokens to their output pins.

Control nodes basically route incoming tokens according to some rules to outgoing activity
edges. These routing rules are defined by the subclasses of the activation visitor class Control-
NodeActivation through the implementation of the operation fire() .

44

SemanticVisitor
ActivityNodeActivation

+ running : Boolean

+ run() : void
+ receiveOffer() : void
+ takeOfferedTokens() : Token [*]
+ fire(Token [*]) : void
+ sendOffers(Token [*]) : void
+ terminate() : void
+ isReady() : Boolean
+ isRunning() : Boolean
+ isSourceFor(ActivityEdgeInstance) : Boolean
+ addToken(Token) : void
+ addTokens(Token [*]) : void
+ removeToken(Token) : Integer
+ takeTokens() : Token [*]
+ clearTokens() : void
+ getTokens() : Token [*]

RedefinableElement
ActivityNode

ControlNodeActivation ObjectNodeActivation

+ offeredTokenCount : Integer

+ countOfferedValues() : Integer
+ sendUnofferedTokens() : void
+ countUnofferedTokens() : Integer
+ getUnofferedTokens() : Token [*]
+ takeUnofferedTokens() : Token [*]

ActivityEdgeInstance

+ sendOffer(Token [*]) : void
+ countOfferedValues() : Integer
+ takeOfferedTokens() : Token [*]
+ takeOfferedTokens(Integer) : Token [*]
+ getOfferedTokens() : Token [*]
+ hasOffer() : Boolean

RedefinableElement
ActivityEdge

Offer

+ countOfferedValues() : Integer
+ getOfferedTokens() : Token [*]
+ removeOfferedValues(Integer) : void
+ removeWithdrawnTokens() : void
+ hasTokens() : Boolean

Token

+ transfer(ActivityNodeActivation) : Token
+ withdraw() : void
+ equals(Token) : Boolean
+ copy() : Token
+ isWithdrawn() : Boolean
+ isControl() : Boolean
+ getValue() : Value [0..1]

ControlToken ObjectToken

ActionActivation

+ firing : Boolean

+ isFiring() : Boolean
+ doAction() : void
+ sendOffers() : void
+ getPinActivation (Pin) : PinActivation
+ putToken(OutputPin, Value) : void
+ putTokens(OutputPin, Value [*]) : void
+ getTokens(InputPin) : Value [*]
+ takeTokens(InputPin) : Value [*]

SemanticVisitor
Value

*

node 0..1

holder

0..1

heldTokens

*

*

edge 0..1

source

1

target

1

0..1
offers *

0..1
offeredTokens *

1

value 0..1

Metaclass Semantic visitor class

*

outgoingEdges

*

incomingEdges

PinActivation

InputPinActivation OutputPinActivation

ActivityParameterNode
Activation

actionActivation 0..1 pinActivations *

Figure 3.7: Activation visitor classes of the fUML virtual machine

45

3.3.3 Execution Visitors

The execution visitor classes of the fUML virtual machine depicted in Figure 3.8 define how
behaviors—in particular activities—are executed. This definition is given by the implementa-
tions of the operation execute() specified by the most basic execution visitor class Execution. For
executing a behavior, the execution is provided with input parameter values. After executing a
behavior, the execution may provide output parameter values. Both, input parameter values and
output parameter values are defined by the semantic visitor class ParameterValue.

The execution visitor class ActivityExecution defines how activities are executed. When the
execution of an activity starts, it first creates an instance of the semantic visitor class ActivityNode-
ActivationGroup, which in turn instantiates the activation visitor classes for the nodes owned by
the activity and the ActivityEdgeInstance class for the edges owned by the activity. In case the
activity contains structured activity nodes, the activation visitor class StructuredActivityNode-
Activation is instantiated for each of these structured activity nodes. The StructuredActivityNode-
Activation instances subsequently also create an instance of the semantic visitor class Activity-
NodeActivationGroup, which is responsible for instantiating the activation visitor classes for the
nodes and edges owned be the respective structured activity node. The purpose of the semantic
visitor class ActivityNodeActivationGroup is to group activity node activations for nodes owned by
the activity and for nodes owned by structured activity nodes of activities. After the instantiation
of the activation visitor classes, tokens are provided to the initially enabled nodes of the activity,
which are initial nodes, input activity parameter nodes, and actions without incoming control
flow edges and without input pins. Subsequently, these nodes start executing, leading to succes-
sor nodes being enabled and executed. The activity execution terminates, when no activity node
is enabled anymore or when an activity final node has been executed. After the termination,
the activity execution collects the object tokens residing on output activity parameter nodes and
provides them as output.

The execution visitor class OpaqueBehaviorExecution defines how opaque behaviors are exe-
cuted, which are used to define the primitive behaviors provided by the Foundational Model Li-
brary. For defining how a primitive behavior is executed, the operation doBody() is implemented
by concrete subclasses of OpaqueBehaviorExecution. It takes as input the values provided for the
input parameters of the primitive behavior, as well as an initialized set of parameter values for
the output parameters of the primitive behavior. To provide the output of the primitive behav-
ior, the initialized output parameter values are modified by the respective implementation. For
instance, the execution visitor class BooleanAndFunctionBehaviorExecution takes as input two
Boolean values, and returns the result of applying the Boolean AND operator.

46

Executions

Object
Execution

+ execute() : void
+ terminate() : void
+ getOutputParameterValues() : ParameterValue [*]
+ setParameterValue(ParameterValue) : void
+ getParameterValue(Parameter) : ParameterValue
+ getBehavior() : Behavior

SemanticVisitor
ActivityNodeActivation

ParameterValue

+ copy() : ParameterValue

MultiplicityElement
TypedElement

Parameter

ActivityExecution

ActivityNodeActivationGroup

+ run(ActivityNodeActivation [*]) : void
+ runNodes(ActivityNode [*]) : void
+ activate(ActivityNode [*], ActivityEdge [*]) : void
+ terminateAll() : void
+ createNodeActivations(ActivityNode [*]) : void
+ getNodeActivation() : ActivityNodeActivation [0..1]
+ createEdgeInstances(ActivityEdge [*]) : void

ActivityEdgeInstance

SemanticVisitor
Value

Object

group 1

nodeActivations *

1

parameterValue

*

activityExecution 0..1

activationGroup 1

group 1

edgeInstances *

*

parameter 1

0..1

values *

*

context

1

Metaclass Semantic visitor class

OpaqueBehaviorExecution

+ doBody(ParameterValue [*], ParameterValue [*]) : void

ExtensionalValue

Figure 3.8: Execution visitor classes of the fUML virtual machine

47

3.3.4 Execution Environment

The execution environment of the fUML virtual machine depicted in Figure 3.9 is responsible
for managing the execution of an fUML model. The class Executor serves as interface of the
fUML virtual machine, which can be used to execute fUML models. Therefore, it provides the
following three operations. The operation execute() can be used for synchronously starting the
execution of a behavior defined in the fUML model. Thereby input parameter values can be pro-
vided to the execution of the behavior and a context object can be defined, which is accessible
by the behavior during execution. This operation returns output parameter values resulting from
the behavior execution. The operation start() asynchronously starts the execution of a behavior.
Again, input parameter values can be provided for the execution. This operation returns a ref-
erence to the instance of the executing behavior (i.e., an instance of the execution visitor class
Execution), which can be used to obtain output parameter values of the behavior execution after
its termination. The operation evaluate() can be used to evaluate a value specification and obtain
the resulting value.

Every execution takes place at a locus (environment class Locus), which represents the place
where an fUML model is executed. All extensional values, i.e., objects and links, created during
the execution of an fUML models are persisted at the locus. The locus may contain extensional
values created by prior executions or by the environment itself.

The locus also provides a factory (environment class ExecutionFactory), which enables the
executor at the locus to instantiate semantic visitor classes for the execution of an fUML model,
which are in the end responsible for the execution. This factory also provides the available
primitive data types and primitive behaviors as defined in the Foundational Model Library. For
the provided primitive behaviors, the factory maintains corresponding execution instances (i.e.,
instances of the execution visitor class OpaqueBehaviorExecution) serving as prototypes, which
are looked-up when primitive behaviors are called via call behavior actions, copied, and exe-
cuted. Furthermore, the factory maintains implementations of semantic variation points defined
by fUML, which are the dispatching of events caused by send signal actions, the dispatching
of polymorphic operation calls caused by call operation actions, and choosing between alter-
native paths during execution leading to nondeterminism caused for instance by add structural
feature value actions when values are added to an object for a multi-valued structural feature
without specifying the position at which the value should be inserted. Implementations for these
semantic variation points can be provided by implementing the abstract strategy classes GetNext-
EventStrategy, DispatchStrategy, and ChoiceStrategy, and adding them to the execution factory.

48

Execution Environment

Locus

+ setExecutor(Executor) : void
+ setFactory(ExecutionFactory) : void
+ getExtent(Classifier) : ExtensionalValue [*]
+ add(ExtensionalValue) : void
+ remove(ExtensionalValue) : void
+ instantiate(Class) : Object
+ conforms(Classifier, Classifier) : Boolean

Executor

+ execute(Behavior, Object [0..1], ParameterValue [*]) : ParameterValue [*]
+ start(Class, ParameterValue[*]) : Reference
+ evaluate(ValueSpecification) : Value

ExecutionFactory

+ createExecution(Behavior, Object [0..1]) : Execution
+ createEvaluation(ValueSpecification) : Evaluation
+ instantiateVisitor(Element) : SemanticVisitor
+ instantiateOpaqueBehaviorExecution(OpaqueBehavior) :

 OpaqueBehaviorExecution
+ addPrimitiveBehaviorPrototype(OpaqueBehaviorExecution) : void
+ addBuiltInType(PrimitiveType) : void
+ getBuiltInType(String) : PrimitiveType [0..1]
+ setStrategy(SemanticStrategy) : void
+ getStrategy(String) : SemanticStrategy [0..1]
+ getStrategyIndex(String) : Integer

SemanticStrategy

+ getName() : String

DataType
PrimitiveType

Execution
OpaqueBehaviorExecution

ChoiceStrategy

+ choose(Integer) : Integer

DispatchStrategy

+ dispatch(Object, Operation) : Execution
+ getMethod(Object, Operation) : Behavior

locus

0..1

extensionalValues

*

locus 0..1

executor 0..1

locus 0..1

factory 0..1 *

builtInTypes *

*

primitiveBehavior
Prototypes

*

1

strategies

*

CompoundValue
ExtensionalValue

Metaclass Semantic visitor class

GetNextEventStrategy

+ getNextEvent(ObjectActivation) : SignalInstance

Figure 3.9: Execution environment classes of the fUML virtual machine

49

3.3.5 Example

To illustrate the functionality of the fUML virtual machine, we consider the execution of the
activity depicted in Figure 3.10. This activity consists of an initial node, which constitutes the
starting point of the activity, and a subsequent create object action, which instantiates a classifier
and provides the resulting object to the output activity parameter node.

How the execution of this activity is carried out by the fUML virtual machine is depicted in
Figure 3.11, which shows the operation calls among the execution model elements instantiated
for executing the activity. Figure 3.12 shows the execution model in greater detail as well as its
evolution during the execution.

As shown in Figure 3.11, to start the execution of the activity, the operation execute() of
the executor e is called providing the activity as input to the operation call. As can be seen
in Figure 3.12, the executor e resides at the locus l, which provides the execution factory ef.
This execution factory is used by the executor to create an activity execution activity_exe

by calling the operation createExecution().
After the creation of the activity execution, the executor calls its operation execute(). As a re-

sult of this operation call, the activity execution creates an activity node activation group group
and calls its operation activate(). Consequently, the activity node activation group instantiates
the activation visitor classes for the activity nodes contained by the executing activity by calling
the operation createNodeActivations() and the activity edge instance class for the activity edges
by calling the operation createEdgeInstances(). As can also be seen in Figure 3.12, after the
operation createEdgeInstances() has been executed (time t1), the locus l contains the activity ex-
ecution activity_exe as extensional value, which contains the activity node activation group
group consisting of four activity node activations, namely the initial node activation init_exe,
the create object action activation action_exe, the output pin activation result_exe, and the
activity parameter node activation out_exe, as well as two activity edge instances e1_exe and
e2_exe. They are linked to each other according to the references defined between the activity
nodes and activity edges of the executing activity and refer to the respective model element, i.e.,
to the respective activity node or activity edge.

After the creation of the activity node activations and activity edge instances, the activity
node activation group executes the operation run(), which starts the execution of the initial node
by invoking the operation receiveOffer() of the initial node activation init_exe. Please note
that no actual token is provided to init_exe. The call of the operation receiveOffer() causes
the initial node activation to call the operation fire(), which creates a control token. This control
token is sent to the subsequent node by calling the operation sendOffers(), which in turn calls the
operation sendOffer() of the outgoing activity edge instance e1_exe. The operation sendOffer()
creates a token offer for the target activity node activation, which is the create object action
activation action_exe. At this point of the execution (time t2), the initial node activation
init_exe holds one control token t1, and the activity edge instance e1_exe provides one
token offer o1 offering this control token as depicted in Figure 3.12.

To start the execution of the create object action, the operation receiveOffer() of the create
object activation action_exe is called. This causes the call of the operation fire(), which in
turn calls the operation doAction(). In the doAction() operation, the classifier specified by the
create object action is instantiated resulting in the object obj1 having this classifier set as its

50

Example - Activity

activity

out : classifier
action

CreateObject

result : classifier
init

e1 e2

Figure 3.10: fUML virtual machine example: Activity

type. Furthermore, the reference r1 referring to this object is created. Both the object and the
reference to this object are depicted in Figure 3.12 (time t3).

After the instantiation of the classifier, an object token is created for passing the created
reference r1 to the succeeding activity parameter node. To send this object token to the activity
parameter node, the operation sendOffers() of the create object action activation action_exe

is called. This operation calls the operation sendUnofferedTokens() of the output pin activation
result_exe, which in turns calls the operation sendOffers() resulting in the call of the operation
sendOffer() of the outgoing activity edge instance e2_exe. The last operation call causes the
creation of a token offer for the previously created object token. As can be seen in Figure 3.12,
at this point of the activity execution (time t4), the output pin activation result_exe holds the
object token t2, which carries the reference r1, which refers to the object obj1. Furthermore,
the activity edge instance e2_exe provides the offer o2 offering this object token.

The offer of the object token t2 is received by the operation receiveOffer() of the activity
parameter node activation out_exe. Subsequently, the operation fire() of the activity parame-
ter node activation is called. This operation adds a new object token to the activity parameter
node activation carrying the reference r1 transported by the received object token t2. This
constitutes the termination of the activity execution, because no more tokens can be sent and,
consequently, no activity node can be executed anymore. As last step done by the activity execu-
tion activity_exe, it calls the operation getTokens() of the activity parameter node activation
for retrieving the newly added object token and creates an output parameter value holding the
reference r1. As depicted in Figure 3.12, at this point of the execution (time t5), the activity pa-
rameter node activation out_exe holds the new created object token t3 carrying the reference
r1 and the activity execution activity_exe contains the created parameter value pv1 for this
reference.

Finally, the executor e retrieves the parameter value pv1 from the activity execution activ-
ity_exe by calling the operation getOutputParameterValues(). This parameter value constitutes
the final output of the activity execution and is provided as return value of the operation exe-
cute() of the executor. Before the output is provided, the activity execution is destroyed by the
executor, resulting in the destruction of activity node activation group, as well as the activity
node activations, activity edge instances, and the remaining token t3. Please note that the token
t1 and the offer o1 as well as the token t2 and the offer o2 have been destroyed in the course of
executing the create object action and the activity parameter node, respectively. After the exe-
cution finished, only the created object obj1 remains at the locus and is available to subsequent
executions.

51

Example – Calls

execute()
createExecution()

execute()

activate()
createNodeActivations()

createEdgeInstances()

run()

receiveOffer()

fire()

sendOffers()

sendOffer()
receiveOffer()

fire()

doAction()

sendOffers()

sendUnofferedTokens()

sendOffers()

sendOffer()
receiveOffer()

fire()

outputValues=
getOutputParameterValues()

outputValues

e :
Executor

ef :
ExecutionFactory

activity_exe :
ActivityExecution

group :
ActivityNodeActivationGroup

action_exe :
CreateObjectActionActivation

init_exe :
InitialNodeActivation

result_exe :
OutputPinActivation out_exe :

ActivityParameterNodeActivation

e1_exe :
ActivityEdgeInstance e2_exe :

ActivityEdgeInstance

t1

t2

t4 t5

t3

getTokens()

Figure 3.11: fUML virtual machine example: Calls among execution model elements

52

Example – Objects

activity : Activity

init : InitialNode

action :
CreateObjectAction

out :
ActivityParameterNode

e1 : ControlFlow

e2 : ObjectFlow result : OutputPin

l : Locus e : Executor

ef :
ExecutionFactory types

activityExecution

activationGroup

group

nodeActivations

group

edgeInstances

source outgoingEdges

target incomingEdges

source outgoingEdges

target incomingEdges

actionActivation

pinActivations

edge

edge

node

node

node

node

executor

factory extensionalValues

Model element Execution model element

holder

heldTokens offers

offeredTokens

offeredTokens value

offers
holder

heldTokens

referent

parameterValues

holder
heldTokens

value

values

parameter

t1 t2 t4 t5 t3

pv1 :
ParameterValue out : Parameter

obj1 : Object

activity_exe :
ActivityExecution

group :
ActivityNodeActivationGroup

init_exe :
InitialNodeActivation

t1 : ControlToken

action_exe :
CreateObjectActionActivation

result_exe :
OutputPinActivation

t2 : ObjectToken
r1 : Reference

out_exe :
ActivityParameterNodeActivation

t3 : ObjectToken

o2 : Offer

e2_exe :
ActivityEdgeInstance

o1 : Offer

e1_exe :
ActivityEdgeInstance

Figure 3.12: fUML virtual machine example: Execution model

53

CHAPTER 4
Extensions of the fUML Execution

Environment

4.1 Design Rationale

The fUML standard precisely defines the behavioral semantics of a selected subset of UML.
The behavioral semantics is defined in terms of a virtual machine capable of executing UML
models, which conform to the selected subset of UML. As described in Chapter 3 and depicted
on the left-hand side of Figure 4.1, the fUML virtual machine takes as input an fUML model, a
reference to the activity that shall be executed, as well as input parameter values and a context
object for this activity. After the execution, it provides as output the end result of the execution
comprising the output parameter values obtained for the executed activity.

With the introduction of fUML, UML evolves to an executable modeling language possess-
ing a standardized behavioral semantics specifications. This constitutes a major step towards the
utilization of executable UML models. As discussed in Section 2.1, one of the main advantages
of executable models is that they can be analyzed for validation, verification, and comprehen-
sion purposes starting from the early phases of the software development process. Therewith, the
quality of software systems developed based on executable models can be increased. Methods
proposed for this purpose comprise testing, formal analysis, dynamic analysis, debugging, and
non-functional property analysis. The need for implementations of these analysis methods for
fUML becomes even more evident, if we bear in mind that fUML can be used as a programming
language for completely building executable systems [140], meaning that fUML models could
replace source code and be directly deployed in a production environment. In such an application
scenario, it is apparent that rich IDE support for fUML comprising for instance debuggers and
testing environments—as known from current IDEs for source code development—are required.
However, the full potential of fUML models cannot be exploited yet, because the standardized
fUML execution environment comprising the fUML virtual machine does not provide the means
for implementing these analysis methods. In particular, it does not exhibit the required charac-
teristics observability, controllability, and analyzability, discussed in the following.

55

fUML execution environment

fUML
Virtual

Machine

fUML Model

Input
context
parameter
values

Output
parameter
values

fUML
Virtual

Machine

fUML Model

Input
context
parameter
values

Output
parameter
values

Trace

Events
i i i

i
i

Commands
> execute

> next step
> resume

Tools

Debugger

Testing
Environment

Analyzer

…

Component Artifact Input/Output Relation

Standard fUML Execution Environment Extended fUML Execution Environment

Figure 4.1: Overview of fUML execution environment extensions

Observability. An important characteristic of a virtual machine is observability, that is the
ability to monitor the state of an execution being carried out by the virtual machine. Observabil-
ity is a prerequisite for implementing important analysis methods based on execution capabil-
ities, including, for instance, debugging, non-functional property analysis through simulation,
profiling, and monitoring. However, the fUML virtual machine does not enable the observa-
tion of the execution of a model during runtime. Thus, it is not possible to retrieve the current
position of the execution and the current state of existing objects.

Controllability. Complementary to observability is controllability, that is the ability to control
executions being carried out by a virtual machine. Controllability constitutes a crucial basis for
implementing methods and techniques again for debugging and non-functional property analysis
through simulation, as well as similar methods utilizing the executability of models. The fUML
virtual machine, however, does not provide any support for controlling the execution of an fUML
model, such as support for suspending and resuming ongoing executions at a particular position.

Analyzability. The characteristic of analyzability—more specifically dynamic analyzability—
is the ability to analyze ongoing or completed executions based on captured runtime information.
As discussed in Section 2.1.3, dynamic analysis is particularly useful for programs developed
with object-oriented languages—as fUML is. Applications of dynamic analysis include compre-
hension, analysis of non-functional properties (e.g., performance analysis), testing (e.g., anal-
ysis of test coverage), and evolution (e.g., version differencing). However, the fUML virtual
machine does not provide runtime information about a model execution other than output pa-
rameter values. Missing runtime information includes, for instance, information about which
part of a model has been executed and which objects have been created or manipulated during
the execution.

To overcome these limitations, and, hence, build the basis for implementing methods and tech-

56

niques for analyzing executable UML models, we extended the fUML execution environment [97].
An overview of the extensions is depicted on the right-hand side of Figure 4.1. The developed
extensions comprise an event mechanism, which issues events notifying about state changes of
an ongoing model execution and, hence, enables the observation of ongoing executions. Further-
more, we integrated a command interface into the fUML execution environment, which enables
the issuance of commands for controlling the execution of a model, in particular, to suspend and
resume the execution, as well as to step through the execution model element per model element.
To provide the ability to dynamically analyze a partially or completely performed execution of
a model, we elaborated a trace model tailored to UML activities for capturing execution traces,
and we extended the fUML execution environment to record a trace during the execution of a
model.

Standard conformance. One important overall objective during the development of the ex-
tensions of the fUML execution environment was to ensure the conformance with the fUML
standard. In particular, this means that the behavior of the fUML virtual machine should not be
modified by incorporating the extensions and the behavioral semantics of UML defined in the
fUML standard should be retained. Hence, we decided against building our own virtual machine
and instead incorporated our extensions into the reference implementation of the fUML virtual
machine [91]. Furthermore, we decided not to modify the source code of the reference imple-
mentation directly, but instead to use the aspect-oriented programming language AspectJ [27]
to weave our extensions into the reference implementation. A resulting advantage of this ap-
proach is that we can directly adopt bug fixes applied to the reference implementation, as well
as modifications due to releases of newer versions of the fUML standard1.

4.2 Event Mechanism

To equip the fUML virtual machine with the characteristic of observability, we introduced an
event mechanism into the fUML virtual machine. The event mechanism is responsible for de-
tecting state changes of an execution currently being executed by the fUML virtual machine and
notifying about these state changes by issuing corresponding events. In particular, the following
types of state changes are detected by the event mechanism and reported through the issuing of
events.

• Position of execution. Dedicated events inform about the current position of an ongo-
ing execution. Thereby, the current position of an ongoing execution constitutes the last
executed model element, i.e., the model element, which has been executed in the last
execution step.

• State of values. Dedicated events inform about modifications of extensional values resid-
ing at the locus of an ongoing execution. As described in Section 3.3.4, every execution
carried out by the fUML virtual machine takes place at a locus. Extensional values, i.e.,

1This thesis builds upon version 1.0 of the fUML standard [114]. Version 1.1 [119] is the most current version
of the fUML standard at the time of writing (cf. Section 2.3.2).

57

objects and links, created by an execution are persisted at the respective locus and are
accessible by executions being carried out at the same locus. Hence, modifications of
extensional values residing at a specific locus are relevant to each execution being carried
out at this locus.

These state changes are reported by the event mechanism with different types of events. The cur-
rent position of an ongoing execution is reported with trace events. Modifications of extensional
values residing at the locus of the execution are reported with extensional value events.

To detect state changes, we implemented dedicated aspects for these two types of state
changes using AspectJ. These aspects define pointcuts for the fUML virtual machine, which
determine join points during the execution of an fUML model that constitute state changes of
the execution. The advices associated with these pointcuts are responsible for creating respective
events and issuing them.

Trace events. Trace events enable the observation of the progress of the execution of an fUML
model by reporting on the current position of the execution. The position of an execution is
determined by the activities being currently executed, as well as by the executed activity nodes
contained by these activities. The different types of trace events are depicted in Figure 4.2. We
distinguish between activity events, activity node events, and suspension events.

Activity events (event class ActivityEvent) report on the progress of executing activities. Ac-
tivity entry events (event class ActivityEntryEvent) indicate the start of executing an activity, while
activity exit events (event class ActivityExitEvent) indicate the completion of executing an activity.

Activity node events (event class ActivityNodeEvents) report on the progress of executing
activity nodes contained by executing activities. The start of executing an activity node is in-
dicated by an activity node entry event (event class ActivityNodeEntryEvent). The completion of
executing an activity node is indicated by an activity node exit event (event class ActivityNode-
ExitEvent). Thereby, activity node events are triggered for reporting on the progress of executing
actions and control nodes. For the execution of object nodes, no activity node events are issued,
because they are always executed in the course of executing the associated action or activity. In
particular, when starting the execution of an action, first all input pins of the action are executed.
Likewise, before completing the execution of an action, all output pins of the action are exe-
cuted. The same is true for expansion nodes of expansion regions. Expansion nodes taking input
for the expansion region are executed first when starting the execution of the expansion region.
Expansion nodes providing output of the expansion region are executed before the execution of
the expansion region finishes. Furthermore, the execution of input activity parameter nodes and
output activity parameter nodes of an activity is always associated with starting and finishing the
execution of the activity, respectively.

Suspension events (event class SuspendEvent) report on the suspension of an execution. An
execution is suspended in the following two cases. Firstly, if the model is executed stepwise
and an execution step was completed, the execution is suspended and a suspend event (event
class SuspendEvent) is issued. An execution step comprises either the start of executing an
activity, or the completion of executing an action or a control node. Secondly, if the model is
executed and a breakpoint is hit, the execution is also suspended and a breakpoint event (event

58

Trace events

ActivityEvent

ActivityExitEvent

BreakpointEvent

SuspendEvent ActivityNodeEvent

ActivityNodeExitEvent

ActivityNodeEntryEvent Breakpoint

Activity ActivityNode

Element

parent

0..1

location

1

activity 1 newEnabledNodes * node

node

1

breakpoint

*

fUML class Event class

Event

- timestamp : long

getTimestamp() : long +

TraceEvent

- activityExecutionID : int

1 getActivityExecutionID() : int +

ActivityEntryEvent

Figure 4.2: Trace events

class BreakpointEvent) referring to the hit breakpoint (reference breakpoint) is issued. Thereby,
breakpoints denote that the execution should suspend if a specific action or control node can be
executed in the next execution step. Suspension events indicate the location of the suspension
(reference location), which is determined by the last executed model element. This is either the
executing activity if the execution was suspended after the execution of the activity started but
before any action or control node was executed, or an action or control node if the execution was
suspended after the execution of the respective action or control node. Furthermore, suspension
events indicate which actions and control nodes were enabled due to the last execution step, and,
hence, can be executed in the next execution step (reference newEnabledNodes).

To indicate which trace events are associated with a specific activity execution, they provide
a unique identifier of this specific activity execution (attribute activityExecutionID). This is im-
portant, because the same activity might be executed multiple times during the execution of an
fUML model. Furthermore, the relationship between trace events is explicitly captured (refer-
ence parent). In particular, exit events refer to the corresponding entry event. For instance, the
activity exit event denoting the completion of an activity execution refers to the activity entry
event denoting the start of this activity execution. Moreover, activity node entry events always
refer to the activity entry event indicating the start of the activity execution that triggered the
execution of the respective activity node. Similarly, suspension events refer to the activity en-
try event indicating the start of the activity execution which triggered the execution of the last
executed model element, i.e., the location of the suspension. For activity entry events, we can

59

distinguish between two cases. If the respective activity execution resulted from the execution
of a call action, the activity entry event refers to the activity node entry event indicating the start
of executing this call action. Otherwise, if the activity execution constitutes the execution of
the starting point activity of the fUML model provided as input to the execute() operation of the
fUML executor, no parent is set for the activity entry event.

Extensional value events. Extensional value events enable the observation of modifications of
extensional values residing at the locus of the execution of an fUML model. These extensional
values comprise objects and links created during model executions carried out at this locus and
they are accessible by all model executions being carried out at this locus. For instance, read
extent actions can be used to retrieve all instances of a specific classifier, which are residing
at the locus of the execution. The different types of extensional value events are depicted in
Figure 4.3. We distinguish between extensional value events and feature value events.

Extensional value events (event class ExtensionalValueEvent) report on the construction and
destruction of extensional values, as well as on the modification of the type of an extensional
value. An extensional value event provides the information about which extensional value was
affected (reference value), and which kind of modification was conducted (attribute type). In
particular, the creation of an extensional value, for instance caused by the execution of a cre-
ate object action or create link action, is reported by an extensional value event of the type
CREATION. The destruction of an extensional value, for instance caused by the execution of
a destroy object action or destroy link action, is reported by an extensional value event of the
type DESTRUCTION. The modification of an extensional value’s type, which can be caused by
the execution of a reclassify object action, is reported by an extensional value event of the type
TYPE_ADDED in case a type was added to the extensional value or of the type TYPE_REMOVED
in case a type was removed from the extensional value.

Feature value events (event class FeatureValueEvent) report on the construction, destruction,
and modification of feature values of extensional values. In the case of objects, feature val-
ues constitute the attribute values of the objects. For each attribute owned or inherited by the
class constituting the type of an object, the object owns one feature value, which refers to the
respective attribute and contains the values assigned to this attribute. In the case of links, fea-
ture values constitute references to the linked objects. For each member end of the association
constituting the type of the link, the link owns one feature value, which refers to the respective
member end and contains a reference to the linked object. Feature value events refer to the af-
fected feature value (reference featureValue) as well as the structural feature of the feature value
(reference feature), i.e., the attribute or member end. If a feature value is created for an exten-
sional value or if a feature value of an extensional value is destroyed, a feature value event of the
type VALUE_CREATION or VALUE_DESTRUCTION is issued, respectively. This might happen
in the course of executing a reclassify object action. If a value is added to or removed from the
feature value of an extensional value, for instance caused by the execution of an add structural
feature value action or remove structural feature value action, a feature value event of the type
VALUE_ADDED or VALUE_REMOVED is issued, respectively. The respective feature value event
refers also to the affected values of the feature value (reference values), as well as the position
of the affected values (attribute position).

60

Extensional Value Events

«enumeration»
ExtensionalValueEventType

 CREATION
 DESTRUCTION
 TYPE_ADDED
 TYPE_REMOVED
 VALUE_CREATION
 VALUE_DESTRUCTION
 VALUE_ADDED
 VALUE_REMOVED

FeatureValue

StructuralFeature

Value

ExtensionalValue

values

*

extensionalValue

1

featureValue

1
feature

1

fUML class Event class

Event
ExtensionalValueEvent

- type : ExtensionalValueEventType

+ getType() : ExtensionalValueEventType

FeatureValueEvent

- position : int
+ getPosition() : int

Figure 4.3: Extensional value events

Implementation. To detect state changes of a model execution being carried out by the fUML
virtual machine and issue corresponding events, we implemented aspects for the fUML virtual
machine using AspectJ. These aspects define pointcuts, which select events in the control flow of
the fUML virtual machine that cause relevant state changes of the model execution. The advices
associated with these pointcuts are responsible for creating and issuing respective events. A
subset of the defined pointcuts and advices is shown in Listing 4.1.

The pointcut activityExecution() shown in Listing 4.1 in line 1 is used to detect the start and
the end of an activity execution. The execution of an activity starts when the operation execute()
of an activity execution (i.e., an instance of the execution visitor class ActivityExecution) starts
executing. Likewise, the execution of an activity is finished when the execution of the same
operation finishes. In the first case, an activity entry event is created and issued (cf. before
advice shown in line 5 of Listing 4.1). In the second case, an activity exit event is created and
issued (cf. after advice shown in line 9 of Listing 4.1).

Keeping track of the execution of actions works similar to keeping track of the execution of
activities. Therefore, the pointcut actionExecution() shown in Listing 4.1 in line 13 is used. It
detects the start and the end of the execution of actions, which are denoted by the start and the end
of executing the operation fire() of an action activation (i.e., an instance of the activation visitor
class ActionActivation), respectively. Thus, before and after the execution of the operation fire(),
an activity node entry event and an activity node exit event are created and issued, respectively
(cf. before and after advices shown in line 17 and 21 of Listing 4.1).

The last pointcut extensionalValueAddedToLocus() shown in Listing 4.1 in line 25 detects
the creation of an extensional value at the locus of an ongoing execution. It constitutes a call
pointcut for the operation add() of the fUML environment class Locus, which is responsible for
adding a newly created extensional value to a specific locus. After each call of this operation,
an extensional value event of the type CREATION is created and issued (cf. after advice shown
in line 29 of Listing 4.1).

We defined similar additional pointcuts and advices for the fUML virtual machine to com-

61

1 pointcut activityExecution(ActivityExecution execution) :
2 execution (void Execution.execute()) &&
3 target (execution) ;
4

5 before (ActivityExecution execution) : activityExecution(execution) {
6 // create and issue activity entry event
7 }
8

9 after (ActivityExecution execution) : activityExecution(execution) {
10 // create and issue activity exit event
11 }
12

13 pointcut actionExecution(ActionActivation activation) :
14 execution (void ActionActivation.fire(TokenList)) &&
15 target (activation) ;
16

17 before (ActionActivation activation) : actionExecution(activation) {
18 // create and issue activity node entry event
19 }
20

21 after (ActionActivation activation) : actionExecution(activation) {
22 // create and issue activity node exit event
23 }
24

25 pointcut extensionalValueAddedToLocus(ExtensionalValue value) :
26 cal l (void Locus.add(ExtensionalValue)) &&
27 args (value) ;
28

29 after (ExtensionalValue value) : extensionalValueAddedToLocus(value) {
30 // create and issue extensional value event of type CREATION
31 }

Listing 4.1: Exemplary pointcuts and advices for observing the fUML virtual machine

pletely observe the state of carried out model executions. These pointcuts and advices enable the
issuance of the discussed types of events, and, thus, enable the observation of model executions
being carried out by the fUML virtual machine.

Example. To illustrate the events issued during the execution of an fUML model, we make
use of the example model shown in Figure 4.4. This model defines the two classes University
and Student, which own the attributes name and matriculationNumber, respectively, and are
associated with each other through the association enrollment. The class University defines
the two operations addNewStudent() and createNewStudent(), whose behaviors are defined by
the depicted activities. The operation addNewStudent() first calls the operation createStudent(),
which creates a new Student object and initializes its matriculationNumber attribute, and second
adds the created student to the collection of students enrolled at the university. As the operations
are defined for the class University, the respective activities are always executed for a University
object serving as context object of the execution. On the left-hand side of Figure 4.5, such
a University object o1 is shown, whose name attribute is set to the String value “TU Wien”.
Furthermore, the operations require as input a String value defining the matriculation number to

62

be assigned to the newly created Student object. On the right-hand side of Figure 4.5, a valid
input parameter value pv1 is depicted, which provides the String value “0625154”.

Figure 4.6 and Figure 4.7 show the events issued by the event mechanism during the exe-
cution of the activity addNewStudent for the defined context object and input parameter value.
The very first event issued is the activity entry event e1, which notifies about the start of the
execution of the activity addNewStudent. The following four events report on the execution of
the action read self and the subsequent execution of the fork node fork university. In particular,
the start and the completion of the execution of these activity nodes are indicated by the issued
activity node entry events and activity node exit events e2 and e3 as well as e4 and e5. After the
execution of the fork node fork university, the execution of the call operation action call create-
Student() starts, which is indicated by the activity node entry event e6. The execution of this call
operation action leads to the execution of the activity createStudent causing the issuing of the
activity entry event e7. Next, the action create student contained by the activity createStudent
is executed. Again the start and the end of executing this action are reported by a corresponding
activity node entry event e8 and activity node exit event e10. The execution of this create object
action leads to the creation of a new Student object at the locus of the execution. This is reported
by the extensional value event e9, which is created and issued before the activity node exit event
e10. The next issued event is the activity node entry event e11, which indicates the start of
executing the action set matriculationNumber. The initialization of the matriculationNumber
attribute of the created Student object by this action is reported by the feature value event e12.
Subsequently, the activity node exit event e13 indicates the completion of the execution of this
action. At this point, the execution of the activity createStudent is completed and therewith also
the execution of the call operation action call createStudent() is completed. As a consequence,
the activity exit event e14 and the activity node exit event e15 are issued by the event mecha-
nism. In the last execution step, the action add student is executed. The start of executing this
action is denoted by the activity node entry event e16, the creation of a link between the created
Student object and the provided University object is indicated by the extensional value event
e17, and the completion of executing this action is denoted by the activity node exit event e18.
This constitutes the completion of the activity addNewStudent, which results in the issuing of
the activity exit event e19.

63

Model

University

- name : String

 + addNewStudent(String) : void
- createStudent(String) : Student

Student

- matriculationNumber : String

students

*

University::createStudent

student :
Student

matriculationNumber :
String

result :
Student set matriculationNumber

AddStructuralFeatureValue

result :
Student

object :
Student

matriculationNumber :
String

University::addNewStudent

matriculationNumber :
String

call createStudent()
target :
University

matriculationNumber :
String

student :
Student

read self
ReadSelf

result :
University

add student

AddStructuralFeatureValue

value :
Student

object :
University result :

University
CallOperation

university

1 enrollment

CreateObject
create student

fork university

Figure 4.4: fUML execution environment extensions example: Model

Input

o1 : Object

values

parameter types

feature

values featureValues

ownedAttribute

Context object Input parameter value

: StringValue

- value = "0625154"

: Parameter

- name = "matriculationNumber"

: FeatureValue

c1 : Class

- name = "University"

: StringValue

- value = "TU Wien"

: Property

- name = "name"
pv1 : ParameterValue

Model element Runtime element

Figure 4.5: fUML execution environment extensions example: Input

64

e7 : ActivityEntryEvent

- timestamp = 1400069754551
- activityExecutionID = 1136789221

e8 : ActivityNodeEntryEvent

- timestamp = 1400069754551
- activityExecutionID = 1136789221

e9 : ExtensionalValueEvent

- timestamp = 1400069754561
- type = CREATION

e10 : ActivityNodeExitEvent

- timestamp = 1400069754561
- activityExecutionID = 1136789221

types

parent

node

parent

activity

value

node
parent

(5) Execution start of activity createStudent (6) Execution of action create student

e6 : ActivityNodeEntryEvent

a2 : Activity

- name = "createStudent"

o2 : Object

n5 : CreateObjectAction

- name = "create student"

e7 : ActivityEntryEvent

e4 : ActivityNodeEntryEvent

- timestamp = 1400069754531
- activityExecutionID = 1219699750

e5 : ActivityNodeExitEvent

- timestamp = 1400069754531
- activityExecutionID = 1219699750

e6 : ActivityNodeEntryEvent

- timestamp = 1400069754541
- activityExecutionID = 1219699750

parent

node

parent

parent
node

node

(3) Execution of fork node fork university (4) Execution start of action call createStudent()

n2 : ForkNode

- name = “fork university"
n3 : CallOperationAction

- name = "call createStudent()"

e1 : ActivityEntryEvent e1 : ActivityEntryEvent

e1 : ActivityEntryEvent

- timestamp = 1400069730478
- activityExecutionID = 1219699750

e2 : ActivityNodeEntryEvent

- timestamp = 1400069754419
- activityExecutionID = 1219699750

e3 : ActivityNodeExitEvent

- timestamp = 1400069754419
- activityExecutionID = 1219699750

parent

node

node

activity

parent

(1) Execution start of activity addNewStudent (2) Execution of action read self

a1 : Activity

- name = "addNewStudent"

n1 : ReadSelfAction

- name = "read self"

e1 : ActivityEntryEvent

e11 : ActivityNodeEntryEvent

- timestamp = 1400069754561
- activityExecutionID = 1136789221

e13 : ActivityNodeExitEvent

- timestamp = 1400069754561
- activityExecutionID = 1136789221

e12 : FeatureValueEvent

- timestamp = 1400069754561
- type = VALUE_ADDED
- position = 0

: FeatureValue

: Property

- name = "matriculationNumber"

c2 : Class

- name = "Student"

parent

node

values

feature

values

feature

featureValue
value

types

ownedAttribute

node parent

featureValues
o2 : Object

n6 : AddStructuralFeatureValueAction

- name = "set matriculationNumber"

e7 : ActivityEntryEvent

: StringValue

- value = "0625154"

(7) Execution of action set matriculationNumber

Model element Runtime element

c2 : Class

- name = "Student"

Figure 4.6: fUML execution environment extensions example: Events e1-13

65

(8) Execution end of activity createStudent (9) Execution end of action call createStudent()

e14 : ActivityExitEvent

- timestamp = 1400069754571
- activityExecutionID = 1136789221

parent

activity

e7 : ActivityEntryEvent

a2 : Activity

- name = "createStudent"

e15 : ActivityNodeExitEvent

- timestamp = 1400069754571
- activityExecutionID = 1219699750

e6 : ActivityNodeEntryEvent
parent

node

n3 : CallOperationAction

- name = "call createStudent()"

(10) Execution of action add student

e16 : ActivityNodeEntryEvent

- timestamp = 1400069754571
- activityExecutionID = 1219699750

e18 : ActivityNodeExitEvent

- timestamp = 1400069754581
- activityExecutionID = 1219699750

e17 : ExtensionalValueEvent

- timestamp = 1400069754581
- type = CREATION

: Association

- name = "enrollment"

c1 : Class

- name = "University"

r1 : Reference

r2 : Reference : FeatureValue

: FeatureValue

: Property

- name = "university"

c2 : Class

- name = "Student"
parent

node

parent

values

feature

values referent

referent

types

memberEnd

memberEnd

featureValues

featureValues

type

value

feature

types

node
: Property

- name = "students"

l1 : Link

n4 : AddStructuralFeatureValueAction

- name = "add student"

e1 : ActivityEntryEvent

o2 : Object

o1 : Object

(11) Execution end of activity addNewStudent

e19 : ActivityExitEvent

- timestamp = 1400069730478
- activityExecutionID = 1219699750

parent

activity

e1 : ActivityEntryEvent

a1 : Activity

- name = "addNewStudent"

Model element Runtime element

Figure 4.7: fUML execution environment extensions example: Events e14-19

66

4.3 Command Interface

To add controllability to the fUML virtual machine, we developed a command interface consti-
tuting the interface for utilizing the fUML virtual machine together with our developed exten-
sions. This command interface provides the following capabilities.

• Control of execution. The command interface enables the control of the execution of a
model being carried out by the fUML virtual machine. This includes the stepwise exe-
cution of a model, the suspension of a model execution at a particular position, and the
resuming of a suspended model execution at a specific position.

• Access to execution environment. Furthermore, the command interface provides access
to the execution environment of the fUML virtual machine. In particular, it enables the
access to the locus of an ongoing model execution.

• Observation of execution. The command interface constitutes also the interface for ob-
serving the state of a model execution. Therefore, it provides the means to register and
unregister for being notified about state changes through events issued by the introduced
event mechanism.

• Management of execution state. The command interface records the state of model
executions being carried out by the fUML virtual machine. This is required for suspending
and resuming model executions at specific positions. While the recorded states are not
directly exposed to users of the command interface, they are used for creating execution
traces, which can be retrieved from the command interface.

Our implementation of the command interface consists of an API that provides the introduced
execution control capabilities as well as an API for recording the state of ongoing model ex-
ecutions. To actually control model executions and record their state, we again implemented
aspects for the fUML virtual machine using AspectJ. These aspects define pointcuts and advices
that interrupt the fUML virtual machine after the completion of execution steps and record the
current state of the model executions after each of these execution steps.

Control of execution. The main capability provided by the command interface is the ability
to control the fUML virtual machine and to thereby control the execution of fUML models. The
interface for making use of this capability is provided by the singleton class ExecutionContext
depicted in Figure 4.8. It offers the following means for controlling model executions.

• Start execution. To start the execution of a model, the operations execute() and execute-
Stepwise() are provided. In both cases, the behavior to be executed as well as the context
object and input parameter values for the execution have to be passed as parameter values.
If the operation execute() is used, the behavior is executed either until a breakpoint is hit
during the execution or until the execution is completed. In case the operation execute-
Stepwise() is used, the execution is suspended after the completion of each execution step.
An execution step comprises either the start of the execution of a behavior, or the comple-
tion of the execution of an action or a control node contained by an executing behavior.

67

Command interface

«singleton»
ExecutionContext

- instance : ExecutionContext

ExecutionContext() : void
+ getInstance() : ExecutionContext
+ execute(Behavior, Object [0..1], ParameterValue [*]) : void
+ executeStepwise(Behavior, Object [0..1], ParameterValue [*]) : void
+ nextStep(int) : void
+ nextStep(int, ActivityNode) : void
+ getEnabledNodes(int) : ActivityNode [*]
+ resume(int) : void
+
+
+
+
+ getActivityOutput(int) : ParameterValue [*]
+
+
+
+

breakpoints

*

locus

1

fUML class Command interface class

terminate(int) : void

addBreakpoint(Breakpoint) : void
removeBreakpoint(Breakpoint) : void
getBreakpoint(ActivityNode) : Breakpoint [0..1]

+

getLocus() : Locus
addEventListener(ExecutionEventListener) : void
removeEventListener(ExecutionEventListener) : void
getTrace(int) : Trace
reset() : void

listeners

*

Locus

Breakpoint

«interface»
ExecutionEventListener

+ notify(Event) : void

Figure 4.8: Command interface

• Resume execution. To resume a suspended execution, the operations nextStep() and re-
sume() can be used. In both cases, the unique identifier of the execution to be resumed
has to be passed as parameter values. This identifier is provided by the trace events issued
for the respective execution. The operation nextStep() causes the execution of the next
enabled action or control node of the executing activity. As multiple activity nodes can be
enabled at the same time, it is possible to define a specific node to be executed in the next
step. If the node is not specified, one of the enabled nodes is chosen based on a customiz-
able node selection strategy. The enabled nodes, which can be executed in the next step,
are provided by the suspension event issued after the suspension of the execution. Fur-
thermore, the operation getEnabledNodes() can be used to retrieve the currently enabled
nodes. The operation resume() continues a suspended execution until either a breakpoint
is hit or the execution terminates.

• Set breakpoints. To add, remove, or retrieve breakpoints, the operations addBreakpoint(),
removeBreakpoint(), and getBreakpoint() are provided by the command interface. Break-
points specify that an execution should be suspended if a specific action or control node
became enabled in the last step, i.e., if it can be executed in the next execution step. To
remove all breakpoints, also the operation reset() can be used.

• Terminate execution. To terminate a suspended execution, the operation terminate() of
the command interface can be used. The unique identifier of the execution to be terminated
has to be provided.

• Retrieve output. For retrieving the output of a completed execution, the operation get-

68

ActivityOutput() is provided by the command interface. Again, the unique identifier of the
execution whose output shall be retrieved has to be provided as parameter value to this
operation.

Access to execution environment. The command interface also serves as interface to the ex-
ecution environment of the fUML virtual machine. As explained in Section 3.3.4, the execution
environment consists of a locus, which provides an executor as well as an execution factory.
The execution factory in turn provides the primitive data types and primitive behaviors defined
in the fUML Foundational Model Library, as well as implementations of strategies for semantic
variation points.

The command interface provides a default configuration of the execution environment, which
is used to execute models. In this default configuration, the primitive data types Boolean, Inte-
ger, String, and UnlimitedNatural, as well as all primitive behaviors for these primitive data
types defined in the Foundational Model Library are available. As semantic strategies, the
FIFOGetNextEventStrategy, InheritanceBasedDispatchStrategy, and FirstChoiceStrategy are con-
figured. While the FIFOGetNextEventStrategy and the FirstChoiceStrategy constitute the default
strategies for event dispatching and nondeterministic decisions defined by the fUML standard,
we chose to define and use for operation dispatching our own strategy InheritanceBasedDispatch-
Strategy. Unlike the default dispatch strategy defined by the fUML standard, our strategy dis-
patches operations based on the inheritance relationships between classes, instead of based on
explicitly defined redefinition relationships.

To enable the access to the execution environment, the command interface class Execution-
Context provides the operation getLocus() (cf. Figure 4.8). The primary use of this operation is to
retrieve the extensional values residing at the locus of an execution or to add extensional values
to the locus prior to starting an execution. Furthermore, it might be useful to add additional
primitive behaviors to the execution factory of the locus. To reset the execution environment to
the initial configuration, the operation reset() can be used.

Observation of execution. As explained in Section 4.2, the event mechanism introduced into
the fUML virtual machine is responsible for detecting state changes of model executions and no-
tifying about these state changes by issuing corresponding events. To register for and unregister
from being notified about state changes, the command interface class ExecutionContext provides
the operations addEventListener() and removeEventListener(), respectively (cf. Figure 4.8). To un-
register all event listeners, the operation reset() can be used. Event listeners have to implement
the interface ExecutionEventListener depicted in Figure 4.8. This interface defines the operation
notify(), which is called by the event mechanism in order to issue events to the registered listeners.

Management of execution state. To enable the suspension and resumption of executions at
specific positions, the command interface has to keep track of the state of the executions. Besides
the information about the current position of the execution, which can be observed using the
event mechanism, more detailed state information is required by the command interface. This
additional required information is depicted in Figure 4.9.

69

Execution status

ActivityNodeActivation Token

ActivityExecution

executingActivityNodeExecutionStatus
*

activityExecutionStatus *

activityNodeActivation 1 waitingTokens *

enabledActivityNodeExecutionStatus

*

activityExecution

1

calledActivityExecution *

callerNodeExecutionStatus 0..1

activityExecutionStatus

1 activityNodeExecutionStatus

*

fUML class Command interface class

CallActionExecutionStatus

executionStatus

1 ExecutionContext
«singleton»

ExecutionStatus

ActivityExecutionStatus

- executionID : int
- inResumeMode : boolean

ActivityNodeExecutionStatus

Figure 4.9: Execution state

For each ongoing activity execution, that is each activity execution started but not finished
yet, the current state of the execution is captured (state class ActivityExecutionStatus), which con-
sists of the associated activity execution (reference activityExecution), the unique identifier of
the activity execution (attribute executionID), the information whether the activity execution is
in resume mode or stepwise execution mode (attribute inResumeMode), the state of the call ac-
tion execution which called the activity execution (reference callerNodeExecutionStatus), as well
as the state of activity node executions belonging to the activity execution (reference activity-
NodeExecutionStatus). Furthermore, it is captured, which activity nodes are currently enabled
for being executed in the next execution step (reference enabledActivityNodeExecutionStatus)
and which activity nodes are currently being executed (reference executingActivityNodeExecution-
Status). For each activity node being executed in the course of an activity execution, the captured
state information (state class ActivityNodeExecutionStatus) comprises the associated activity node
activation (reference activityNodeActivation) and the information on which tokens have been re-
ceived by the node and still have to be processed (reference waitingTokens).

Using this state information, the command interface is able to resume a suspended activ-
ity execution. In particular, the information about which activity nodes can be executed in
the next execution step (reference enabledActivityNodeExecutionStatus of ActivityExecutionStatus)
and which tokens have to be processed by these activity nodes (reference waitingTokens of
ActivityNodeExecutionStatus), the execution can be resumed by selecting one of these enabled
activity nodes and calling the operation fire() of the associated activity node activation (reference
activityNodeActivation of ActivityNodeExecutionStatus) which causes the execution of this node. In
case the execution of an activity terminated, i.e., no nodes of the activity are enabled after the last
execution step, the information about which call action called the terminated activity execution
(reference callerNodeExecutionStatus of ActivityExecutionStatus) is used to resume the activity
execution to which the caller action belongs. In a similar way, the execution of called activities
can be resumed based on the captured information about which activity executions resulted from

70

the execution of call actions (reference calledActivityExecution of CallActionExecutionStatus).
Besides this information, further information about token flows between executed activity

nodes is captured, which is omitted in Figure 4.9. In particular, this includes information about
tokens sent and received by activity nodes, values transported through the tokens constituting
the outputs and inputs of activity nodes, and activity edges traversed by the tokens.

The state information as presented here is not directly accessible by users of the command
interface, but used by the command interface itself to suspend and resume activity executions
being carried out by the fUML virtual machine. Furthermore, the state information is used for
creating execution traces as will be described in Section 4.4. The execution trace recorded for
an execution can be obtained from the command interface using the operation getTrace() of the
command interface class ExecutionContext (cf. Figure 4.8). Therefore, the unique identifier of
the execution whose trace should be obtained has to be provided as parameter value.

Implementation. In order to suspend an activity execution, the command interface has to in-
terrupt the fUML virtual machine at certain points of carrying out the execution. In particular,
it has to interrupt the execution after each performed execution step, that is the completion of
executing an action or control node including the sending of tokens by the executed node and the
receiving of these tokens by subsequently enabled activity nodes. Hence, the fUML virtual ma-
chine has to be interrupted before the next enabled activity node is executed. This interruption
of the fUML virtual machine is again realized by aspects implemented with AspectJ. Further-
more, we implemented aspects that are responsible for capturing the required state information
of ongoing executions.

As an example of what these aspects look like, Listing 4.2 shows the pointcut activityNode-
BecomesEnabled(), which detects calls of the operation fire() of activity node activations. As
discussed in Section 3.3.2, the operation fire() is responsible for executing an activity node.
Using the around advice associated with this pointcut, the start of the execution of the activity
node is prevented and the activity node is instead added to the execution state of the command
interface as an enabled node.

To resume a suspended activity execution, one of the currently enabled nodes of this activity
execution has to be executed. Listing 4.3 shows how this is done by the operation nextStep()
of the command interface class ExecutionContext. First, the state of the activity execution that
shall be resumed is retrieved and used to obtain the state of the enabled activity node that shall
be executed in the next execution step. The state of this enabled activity node comprises the
associated activity node activation and the tokens to be processed by the activity node execution.
Using this information, the node can be executed by calling the operation fire() of the respective
activity node activation passing the tokens to be processed.

Example. Figure 4.10 illustrates the usage of the command interface for executing the example
model depicted in Figure 4.4 for the input depicted in Figure 4.5 and controlling this execution.
The instance context of the class ExecutionContext represents the command interface, which is
responsible for executing the fUML model as well as for providing the means for observing and
controlling it. The instance listener of the interface ExecutionEventListener uses the command
interface to execute the fUML model and observe as well as control the execution.

71

1 pointcut activityNodeBecomesEnabled(ActivityNodeActivation activation, TokenList tokens) :
2 cal l (void ActivityNodeActivation.fire(TokenList)) &&
3 withincode (void ActivityNodeActivation.receiveOffer()) &&
4 target (activation) &&
5 args (tokens) ;
6

7 void around(ActivityNodeActivation activation, TokenList tokens) :
8 activityNodeBecomesEnabled(activation, tokens) {
9 i f (activation instanceof ObjectNodeActivation) {
10 proceed(activation, tokens) ;
11 } else {
12 ActivityExecution currentExecution = activation.getActivityExecution() ;
13 ActivityExecutionStatus exestatus = ExecutionContext.getInstance() .executionStatus.

↪→getActivityExecutionStatus(currentExecution) ;
14 exestatus.addEnabledActivityNodeExecutionStatus(activation, tokens) ;
15 }
16 }

Listing 4.2: Exemplary pointcut and advice for controlling the fUML virtual machine

1 void nextStep(int executionID, ActivityNode node) {
2 ActivityExecutionStatus activityExecutionStatus = executionStatus.getActivityExecutionStatus(

↪→executionID) ;
3 ActivityNodeExecutionStatus nodeExecutionStatus = activityExecutionStatus.

↪→getEnabledActivityNodeExecutionStatus(node) ;
4 activityExecutionStatus.addExecutingActivityNodeExecutionStatus(nodeExecutionStatus) ;
5 ActivityNodeActivation activation = nodeExecutionStatus.getActivation() ;
6 TokenList tokens = nodeExecutionStatus.getTokens() ;
7 activation.fire(tokens) ;
8 }

Listing 4.3: Exemplary command interface operation for controlling the fUML virtual machine

For observing the execution, i.e., for being notified about state changes of the execution
through events, the object listener first registers itself at the command interface as event lis-
tener by calling the operation addEventListener(). Thereafter, it starts the execution of the activity
addNewStudent by calling the command interface operation executeStepwise(). Consequently,
the command interface starts the execution of the activity by passing the activity to the fUML
virtual machine and notifies the listener about this by issuing the activity entry event e1 (cf. Fig-
ure 4.6) using the operation notify(). After the fUML virtual machine has started the execution
of the activity and determined the initially enabled nodes, the command interface suspends the
execution by interrupting the fUML virtual machine and issues the suspend event se1 informing
about the suspension. In addition, the suspend event carries the information that the execution
was suspended after starting the activity addNewStudent and that the action read self is enabled
and can be executed in the next execution step. To resume the execution, the listener object
calls the command interface operation nextStep() passing the unique identifier of the execution,

72

Commands, SuspendEvents

listener :
ExecutionEventListener

context :
ExecutionContext

addEventListener(listener)

executeStepwise(a1 : Activity, o1 : Object,
pv1 : ParameterValue)

notify(e1 : ActivityEntryEvent)

notify(se1 : SuspendEvent)

nextStep(1219699750)

notify(e2 : ActivityNodeEntryEvent)

notify(e3 : ActivityNodeExitEvent)

notify(se2 : SuspendEvent)

nextStep(1219699750)

notify(e4 : ActivityNodeEntryEvent)

notify(e5 : ActivityNodeExitEvent)

notify(se3 : SuspendEvent)

nextStep(1219699750)

notify(e6 : ActivityNodeEntryEvent)

notify(e7 : ActivityEntryEvent)

notify(se4 : SuspendEvent)

resume(1219699750)

notify(e8 : ActivityNodeEntryEvent)

notify(e19 : ActivityExitEvent)

se1 : SuspendEvent
- timestamp = 1400069730500
- activityExecutionID = 1219699750

a1 : Activity

- name = "addNewStudent"

se2 : SuspendEvent
- timestamp = 1400069754500
- activityExecutionID = 1219699750

se3 : SuspendEvent
- timestamp = 1400069754539
- activityExecutionID = 1219699750

n3 : CallOperationAction

- name = "call createStudent()"

se4 : SuspendEvent
- timestamp = 1400069754551
- activityExecutionID = 1136789221

a2 : Activity

- name = "createStudent"

n5 : CreateObjectAction

- name = "create student"

location

newEnabledNodes

location

newEnabledNodes

newEnabledNodes

location

newEnabledNodes

n1 : ReadSelfAction

- name = "read self"

location
n2 : ForkNode

- name = "fork university"

Model element Runtime element

issuance of
events e9 to e18

Figure 4.10: fUML execution environment extensions example: Commands

which was transfered to the listener by the previously received trace events. The call of the
operation nextStep() causes the execution of the action read self and the issuing of the activity
node entry event e2 and the activity node exit event e3 (cf. Figure 4.6). After finishing the
execution of this action, the whole execution is again suspended and the suspend event se2 is
issued. By calling the operation nextStep(), the execution is resumed resulting in the execution
of the fork node fork university, which became enabled in the last execution step. Again, an
activity node entry event e4 and an activity node exit event e5 (cf. Figure 4.6), as well as a
suspend event se3 are issued. In the following execution step, the action call createStudent()
starts executing which results in the start of the execution of the activity createStudent. As a
consequence, the activity node entry event e6 and the activity entry event e7 (cf. Figure 4.6),
as well as a suspend event se4 are issued to the listener object. As a last command, the
listener resumes the execution using the command interface operation resume(). This leads
to the execution of the actions create student, set matriculationNumber, and add student, as well
as to the issuance of the events e9 to e18 as depicted in Figure 4.6 and Figure 4.7. The activity

73

exit event e19 constitutes the last event issued for the execution of the activity addNewStudent
and informs about the completion of this execution.

4.4 Trace Model

Our third extension of the fUML execution environment is concerned with analyzability, in par-
ticular dynamic analyzability. As described in Section 2.1.3, dynamic analyzability is the ability
to analyze properties of a running program—in our case properties of a running fUML model.
It is typically done by analyzing execution traces providing an abstract representation of the
runtime behavior of the executed program. Various execution trace formats have been proposed
for object-oriented and procedural programming languages [60, 61]. However, those formats
focus on traditional programming languages and, hence, provide runtime concepts tailored to
these languages, such as routine calls, which are not directly transferable to runtime concepts
of fUML models. Moreover, essential runtime concepts of fUML models, such as token flows,
cannot be represented with existing trace formats.

To capture execution traces of fUML models adequately and precisely and, hence, provide
the basis for performing dynamic analyses of fUML models, we developed a dedicated execution
trace format in the form of a metamodel. Using this metamodel, trace models can be created
constituting execution traces, which capture the runtime behavior of fUML models. In particular,
the following runtime information about the execution of fUML models is captured in those trace
models.

• Executions. Trace models of fUML model executions contain information about which
model elements, in particular which activities, actions, and control nodes, have been exe-
cuted. Additionally the chronological execution order of model elements is captured.

• Inputs and outputs. Another important information captured by trace models is the input
processed by model elements as well as the output produced by them.

• Token flows. Besides the input and output of model elements, also token flows between
the model elements through activity edges for passing either values or control is captured
by trace models. This enables reasoning about input/output relations between model ele-
ments.

The trace model of an fUML model execution is instantiated as soon as the execution starts and
it is continuously updated after each execution step. Thus, the trace model is available also for
partially executed models and captures the runtime behavior of the model until the respective
point of execution. Therefore, the event mechanism and the command interface are used to keep
track of the execution progress and to retrieve the runtime information to be captured in the trace
model, respectively.

Executions. To perform a fine-grained analysis of the runtime behavior of an fUML model,
knowledge about which parts of the model have been executed is required. Figure 4.11 shows
the excerpt of the trace metamodel, which enables capturing this knowledge.

74

Activities, Activity Nodes, Call Hierarchy

ActivityExecution

activityExecutionID : Integer

ActivityNodeExecution

underExecution : Boolean
executed : Boolean

Trace

Activity ActivityNode

ActionExecution

activityExecution

1 nodeExecutions

*

activityExecutions *

trace 1
chronologicalSuccessor
0..1

chronologicalPredecessor
0..1

node

1

activity

1

caller

0..1

callee 0..1

fUML class Trace class

StructuredActivityNodeExecution

nestedNodeExecutions *

CallActionExecution

Figure 4.11: Excerpt of trace metamodel for capturing executions

A trace model of an fUML model (metaclass Trace) captures the information about which
activities and activity nodes have been executed, the chronological execution order of activities
and activity nodes, the call hierarchy among executed activities, as well as the nesting of activity
node executions.

• Activity executions. The trace model of an fUML model captures information about the
execution of activities (metaclass ActivityExecution) carried out during the execution of
the model. This includes the activity constituting the starting point of the model execu-
tion, that is the activity provided to the command interface operation execute() or execute-
Stepwise(), as well as all activities called in the course of executing this starting point
activity through the execution of call actions.

• Activity node executions. For each executed activity, it is recorded which activity nodes
have been executed (metaclass ActivityNodeExecution). In particular, it is recorded which
actions and control nodes have been executed. Again, like for the events issued for the
execution of activity nodes, the execution of object nodes is not recorded explicitly in the
trace, because they are always executed in the course of executing the associated action or
activity (cf. Section 4.2).

As mentioned before, the trace model of an fUML model is updated during the execution
of the model such that the trace model always captures the runtime behavior of model
until the current execution position. Besides the capturing of already executed activity
nodes, the trace also captures which activity nodes are currently being executed, as well
as which activity nodes are currently enabled for being executed in the next execution
step. The Boolean attributes underExecution and executed enable the determination of

75

the state of an activity node execution. Completed activity node executions have these
attributes set to the values underExecution = false, executed = true, ongoing activity node
executions to underExecution = true, executed = false, and enabled activity node executions
to underExecution = false, executed = false.

Please note that if the same activity node is executed multiple times in the course of the
same activity execution, multiple activity node executions are captured for this activity
node. The same is true for the execution of activities. If the same activity is executed mul-
tiple times in the course of the execution of an fUML model, multiple activity executions
for this activity are recorded in the trace model.

• Chronological execution order. For all executed activity nodes, the chronological order
in which they have been executed is captured (references chronologicalPredecessor and
chronologicalSuccessor of ActivityNodeExecution). This chronological order is global for
the execution of the model, instead of local to the respective activity execution. Through
the chronological ordering of call action executions captured in the trace (metaclass Call-
ActionExecution), and the associations of these call action executions with the triggered
activity execution (reference callee), also the chronological order and interleaving of ac-
tivity executions is captured.

• Call hierarchy among activity executions. Activity executions can cause the execution
of other activities through the execution of call actions. The resulting call hierarchy among
activity executions is explicitly captured in the trace model (reference caller of Activity-
Execution). This information can be used to analyze interactions between activities as
well as interactions between objects, as activities are executed for dedicated objects if
they define the behavior of class operations.

• Nesting of activity node executions. For the execution of structured activity nodes (meta-
class StructuredActivityNodeExecution), it is recorded which activity nodes grouped by the
structured activity node have been executed (reference nestedNodeExecutions). This infor-
mation is required to associate activity node executions to structured activity node execu-
tions, as the same activity nodes and structured activity nodes might be executed multiple
times.

Inputs and outputs. To enable the dynamic analysis of the relations between the inputs, out-
puts, and behavior of a model, the inputs processed as well as outputs produced by executed
activities and activity nodes are captured in the trace model. Figure 4.12 shows the excerpt of
the trace metamodel capturing information about inputs and outputs.

• Values. As in any object-oriented language, also in fUML the behavior of a system is
defined in terms of object manipulations, which are expressed using dedicated actions for
creating and destroying objects, modifying attribute values of objects, as well as creating
and destroying links between objects. Object manipulations performed during the exe-
cution of an fUML model are captured in the trace model. Therefore, each manipulated
value is captured (metaclass ValueInstance). In particular, objects and links existing at

76

Values, Inputs, Outputs

Input

Output

InputParameterSetting

ValueInstance Trace ValueSnapshot

InputParameterValue

OutputParameterValue

ParameterSetting

InputValue

Parameter

InputPin

OutputPin

snapshots

*

activityOutputs

*

outputs

*

original

0..1

valueInstances

*

activityInputs

*

outputValues

*

valueSnapshot

1

valueSnapshot 1

parameterValues

*

parameterValues

*

initialLocusValueInstances

*

runtimeValue 1

value

1

parameter

1

outputPin

0..1

inputs

* inputValues

*

inputPin

0..1

ParameterValue

OutputParameterSetting

fUML class Trace class

ActivityNodeExecution

Value

destroyer

0..1

creator

0..1

StructureActivityNodeExecution
ExpansionRegionExecution ExpansionInput

ExpansionNode

ControlNodeExecution
DecisionNodeExecution

expansionInputs

*
expansionNode

0..1

expansionInputValues
0..1

decisionInputValue

*

InputOutputValue

OutputValue

1

valueInstance

ActionExecution

contextValueSnapshot

0..1

ActivityExecution

Figure 4.12: Excerpt of trace metamodel for capturing inputs and outputs

the locus prior to the model execution are captured (reference initialLocusValueInstances
of Trace), as well as values created during the model execution. Each manipulation of
a value is recorded by capturing a snapshot of the manipulated value (metaclass Value-
Snapshot), which constitutes a deep copy of the respective value after the manipulation
took place (reference value). For values created or destroyed during the model execution,
the action execution causing this creation or destruction is captured (references creator
and destroyer of ValueInstance). Therewith, the state of all objects at any point in time of
a model execution is captured by the trace model.

77

• Activity inputs and outputs. For activity executions, the trace model captures the pro-
cessed input values as well as the provided output values (metaclasses InputParameter-
Setting and InputParameterValue, as well as OutputParameterSetting and OutputParameter-
Value). In particular, it captures which snapshots of values were received as input and
provided as output (reference valueSnapshot of ParameterValue) by an activity execution
through which input and output parameter, respectively (reference parameter of Parameter-
Setting).

Besides input and output values of activity executions, the trace model also captures the
context object of the execution, in particular, the snapshot of the context object at the time
when the execution started (reference contextValueSnapshot of ActivityExecution).

• Action inputs and outputs. The inputs and outputs of action executions are captured in a
similar way as the inputs and outputs of activity executions (metaclasses Input and Input-
Value respectively Output and OutputValue). In particular, it is captured which snapshots
of values were received as input and provided as output (reference valueSnapshot of Input-
OutputValue) by an action execution through which input pin and output pin, respectively
(references inputPin of Input and outputPin of Output).

• Expansion region inputs. Expansion regions are a special type of action, which can
be used to process collections of values. The collections of values to be processed are
received by an expansion region through expansion nodes, which are like input pins a
special type of object node. In the trace model, the collection of values received by an
expansion region execution as input is captured separately from values received through
input pins (metaclass ExpansionInput).

• Decision node inputs. Control nodes can be used to route values between actions and
do not process and produce values on their own. However, decision nodes constitute an
exception, as they process values provided through decision input flow edges in order
to evaluate the guard conditions of outgoing edges. Hence, these processed values are
captured in the trace (reference decisionInputValue of DecisionNodeExecution).

Token flows. In order reason about dependencies between activity nodes, data dependencies
resulting from object flows and control dependencies resulting from control flows have to be
analyzed. Figure 4.13 shows the part of the trace metamodel, which is used to capture object
flows and control flows among executed activity nodes.

All tokens flowing through an activity during execution are captured in the trace model
(metaclass TokenInstance) together with the information about which edges have been traversed
by the respective token (reference traversedEdges). Thereby, it is distinguished between object
tokens representing object flows (metaclass ObjectTokenInstance) and control tokens represent-
ing control flows (metaclass ControlTokenInstance).

• Object flows. During the execution of an activity, object tokens (metaclass ObjectToken-
Instance) are transferred between activity nodes via activity edges in order to pass values
between the activity nodes (reference transportedValue). Object tokens are created for

78

Tokens

fUML class Trace class

ActivityNodeExecution

TokenInstance

ValueInstance

ControlTokenInstance ObjectTokenInstance InitialNodeExecution

ActivityEdge

/logicalPredecessor
*

/logicalSuccessor
*

parameterOutputObjectToken

1

outgoingControl

* incomingControl *

transportedValue 1

inputObjectToken

1

parameterInputObjectToken

1

outputObjectToken

1

traversedEdges

*

routedTokens

1..*

outgoingControl

0..1

OutputValue

InputValue

ParameterValue
OutputParameterValue

ParameterValue
InputParameterValue

ControlNodeExecution

ActionExecution

Figure 4.13: Excerpt of trace metamodel for capturing token flows

each input parameter value of the activity (reference parameterInputObjectToken of Input-
ParameterValue) as well as for each output value of executed actions (reference output-
ObjectToken of OutputValue). Created object tokens can be passed to output activity
parameter nodes for transporting the output parameter values of the activity (reference
parameterOutputObjectToken of OutputParameterValue), to input pins of actions, expan-
sion nodes of expansion regions, or decision nodes for transporting input values (reference
inputObjectToken of InputValue), or to control nodes for further routing the transported val-
ues through the activity (reference routedTokens of ControlNodeExecution).

• Control flows. The trace model also captures the flow of control tokens between activity
nodes (metaclass ControlTokenInstance), which cause control dependencies among activity
nodes. Thereby, control tokens are created either by the execution of initial nodes or by
the execution of actions (references outgoingControl of InitialNodeExecution and Action-
Execution). Created control tokens are either passed to control nodes, which route the
tokens further through the activity (reference routedTokens of ControlNodeExecution), or
to actions (reference incomingControl of ActionExecution).

• Dependencies. From the token flow information captured in the trace model, the depen-
dencies between executed activity nodes can be derived. In particular, the logical prede-
cessors and successors of an activity node can be derived. An executed activity node A

is the logical predecessor of another executed activity node B, if A provided object tokens
or control tokens to B (reference logicalPredecessor of ActivityNodeExecution). Inversely,
an executed activity node B is the logical successor of another executed activity node A, if

79

B received object tokens or control tokens from A (reference logicalSuccessor of Activity-
NodeExecution).

Implementation. For creating trace models of fUML model executions, the state of the exe-
cutions captured by the command interface as described in Section 4.3 (cf. Figure 4.9) is used.
The captured execution state provides all necessary information required about the runtime be-
havior of executed models to produce trace models according to the format defined by the trace
metamodel. The trace is created as soon as the execution of the first activity contained by an exe-
cuted fUML model starts and it is updated on each state change of the execution. To observe the
state changes of model executions, the event mechanism introduced in Section 4.2 is used. The
created trace models are updated according to the issued events as described in the following.

• Activity entry event. When an activity execution is started, it is added to the respective
trace model and its caller action execution, context object, and input parameter values are
accordingly assigned.

• Suspend event. When an execution is suspended, the nodes, which became enabled in the
last execution step, are added to the trace model. Furthermore, the inputs of the enabled
nodes as well as tokens received by them are accordingly assigned.

• Activity node entry event. When the execution of an activity node starts, the respective
execution captured in the trace model is marked as being under execution and the refer-
ence to its chronological predecessor is accordingly assigned. Furthermore, if the started
activity node execution is an action execution or decision node execution, its input values
are updated according to the latest captured value snapshots.

• Activity node exit event. When the execution of an activity node ends, the respective
execution captured in the trace model is marked as being executed and sent tokens are
accordingly assigned. Furthermore, if the ended activity node execution is an action exe-
cution, its output values are recorded.

• Activity exit event. When the execution of an activity ends, its output parameter values
are recorded in the trace model.

• Extensional value event. When a new value is created, which is indicated by an exten-
sional value event of the type CREATION, a new value instance is recorded for this value,
a first value snapshot is produced for this value and added to the newly recorded value
instance, and the creator of the value instance is accordingly set. When an existing value
is destroyed, which is indicated by an extensional value event of the type DESTRUCTION,
the destroyer of the respective value instance is accordingly set. When an existing value
is modified, which is indicated by an extensional value event of a type other than CRE-
ATION or DESTRUCTION, a new value snapshot is produced for this value and added to
the respective value instance.

80

Because the trace model is continuously updated during the execution of an fUML model, using
the command interface operation getTrace() (cf. Figure 4.8), an up to date trace can be obtained
at any point in time of the execution.

Example. Figure 4.14, Figure 4.15, and Figure 4.16 depict excerpts of the trace model cap-
tured for the execution of our example fUML model (cf. Figure 4.4 and Figure 4.5).

The trace model excerpt depicted in Figure 4.14 shows which parts of the fUML model
have been executed, namely the activities addNewStudent (a1exe) and createStudent (a2exe),
as well as their contained activity nodes in the following chronological order: read self (n1exe),
fork university (n2exe), call createStudent() (n3exe), create student (n5exe), set matriculation-
Number (n6exe), and add student (n4exe). Furthermore, it is shown that the execution of the
call operation action call createStudent() belonging to the execution of the activity addNew-
Student caused the execution of the activity createStudent (references caller and callee between
n3exe and a2exe).

In Figure 4.15, the excerpt of the trace model is depicted, which captures the inputs and
outputs of the execution of the activity createStudent (a2exe) as well as the inputs of outputs
of its contained executed actions (n5exe and n6exe). The input of the activity execution was
the String value “0625154” v1 captured by the value snapshot vs1 of the value instance vi1

(cf. input parameter setting ips1 and input parameter value ipv1 of the activity execution
a2exe). The output of the activity execution was the object v3 of type Student with the attribute
matriculationNumber set to the String value “0625154” captured by the value snapshot vs3
of the value instance vi2 (cf. output parameter setting ops1 and the output parameter value
opv1 of the activity execution a2exe). The execution of the action create student (n5exe)
provided as output the new instantiated Student object v2 captured by the value snapshot vs2
of the value instance vi2 (cf. output o1 and output value ov1 of the action execution n5exe).
The inputs provided to the execution of the action set matriculationNumber (n6exe) were this
new instantiated Student object v2 and the String value v1 captured by the already mentioned
value snapshots vs2 and vs1 (cf. inputs i1 and i2 as well as input values iv1 and iv2). The
produced output was the Student object v3 with set matriculationNumber attribute captured by
the snapshot vs3 (cf. output o2 and output value ov2). Please note that the two Student objects
v2 and v3 constitute two distinct snapshots (vs2 and vs3) of the same runtime object. The first
snapshot captures the state of this object after its instantiation and the second snapshot after the
initialization of the matriculationNumber attribute.

Figure 4.16 shows the excerpt of the trace model, which captures the token flow between the
actions create student (n5exe) and set matriculationNumber (n6exe). Between these actions
one object token t1 was exchanged, which transported the Student object represented by the
value instance vi2 (cf. Figure 4.15). Hence, the execution of the action create student is the
logical predecessor of the execution of the action set matriculationNumber (references logical-
Predecessor and logicalSuccessor between n5exe and n6exe).

81

Trace, Executions

t : Trace

a1exe : ActivityExecution

- activityExecutionID = 1219699750 a1 : Activity

- name = "addNewStudent"

a2exe : ActivityExecution

- activityExecutionID = 1136789221

n5exe : ActionExecution

- underExecution = false
- executed = true

n6exe : ActionExecution

- underExecution = false
- executed = true

n5 : CreateObjectAction

- name = "create student"

n6 : AddStructuralFeatureValueAction

- name = "set matriculationNumber"

a2 : Activity

- name = "createStudent"

n3exe : CallActionExecution

- underExecution = false
- executed = true

n3 : CallOperationAction

- name = "call createStudent()"

n1 : ReadSelfAction

- name = "read self"

n2 : ForkNode

- name = "fork university"

n1exe : ActionExecution

- underExecution = false
- executed = true

n2exe : ControlNodeExecution

- underExecution = false
- executed = true

n4exe : ActionExecution

- underExecution = false
- executed = true

n4 : AddStructuralFeatureValueAction

- name = "add student"

activity

activityExecutions

activity

nodeExecutions

chronologicalPredecessor
chronologicalSuccessor

node

node

node

node

node

callee

node

chronologicalPredecessor
chronologicalSuccessor

chronologicalPredecessor
chronologicalSuccessor

chronologicalPredecessor

chronologicalPredecessor

chronologicalSuccessor

nodeExecutions

Model element Runtime element

activityExecutions

trace trace

activityExecution

caller

activityExecution

Figure 4.14: fUML execution environment extensions example: Trace model excerpt
capturing executions

82

Trace, Values

t : Trace

a2exe : ActivityExecution

- activityExecutionID = 1136789221

ips1 :
InputParameterSetting

opv1 :
OutputParameterValue

n5exe : ActionExecution

- underExecution = false
- executed = true

n6exe : ActionExecution

- underExecution = false
- executed = true

o1 : Output : OutputPin

- name = "result"

: InputPin

- name = "object"

: InputPin

- name = "matriculationNumber"

: OutputPin

- name = "result"

i1 : Input

i2 : Input

o2 : Output

v1 : StringValue

- value = "0625154"

v3 : Object

: FeatureValue

: Property

- name = "matriculationNumber"

: StringValue

- value = "0625154"

v2 : Object c2 : Class

- name = "Student"

vs1 :
ValueSnapshot

ov1 : OutputValue

vs2 :
ValueSnapshot

iv1: InputValue

iv2 : InputValue

ov2 : OutputValue

ops1 :
OutputParameterSetting

vs3 :
ValueSnapshot

vi2 : ValueInstance

vi1 : ValueInstance

snapshots

featureValues
feature

values

types

original

snapshots

original

outputValues

value

valueSnapshot

value

activityOutputs

parameterValues

parameter

value

snapshots

activityExecutions

activityInputs
parameter

parameterValues

nodeExecutions

inputs

outputs

outputs
outputPin

outputValues

inputs
inputPin

inputValues

inputPin

inputValues

outputPin

valueSnapshot

valueInstances

valueSnapshot

ipv1 :
InputParameterValue

: Parameter

- name = "matriculationNumber”

: Parameter

- name = "student"

Model element Runtime element

trace

activityExecution

Figure 4.15: fUML execution environment extensions example: Trace model excerpt
capturing inputs and outputs

83

Trace, Token Flows

n5exe : ActionExecution

- underExecution = false
- executed = true

n6exe : ActionExecution

- underExecution = false
- executed = true

: Output : OutputPin

- name = "result"

: InputPin

- name = "object"
: Input

: OutputValue

: InputValue

vi2 : ValueInstance

t1 :
ObjectTokenInstance

: ObjectFlow

source

target

transportedValue

outputObjectToken

inputObjectToken

/logicalPredecessor

/logicalSuccessor

traversedEdges

inputs
inputPin

inputValues

outputs
outputPin

outputValues

Model element Runtime element

Figure 4.16: fUML execution environment extensions example: Trace model excerpt
capturing token flows

4.5 Summary

We introduced the characteristics observability, controllability, and analyzability into the fUML
virtual machine in order to enable the development of analysis methods for fUML. Therefore,
we extended the execution environment of fUML with an event mechanism enabling runtime ob-
servation, a command interface enabling execution control, and a trace model enabling runtime
analysis. These extensions are summarized in the following.

Event mechanism. The event mechanism enables the runtime observation of model execu-
tions being carried out by the fUML virtual machine. Therefore, it detects state changes of
ongoing model executions and notifies about these state changes by issuing events. In partic-
ular, events reporting on the current position of the execution, as well as on modifications of
extensional values residing at the locus of the execution are issued.

Command interface. The command interface provides execution control over model execu-
tions being carried out by the fUML virtual machine. In particular, it enables the stepwise
execution of models, the suspension of the execution of a model at a particular position, and the
resumption of the execution after suspension. Furthermore, the command interface constitutes
the interface for utilizing the fUML virtual machine as well as the extensions. Thus, it provides
the means for starting the execution of a model (interface to fUML virtual machine), access-
ing the execution environment of fUML (interface to fUML execution environment), registering
and unregistering for being notified about state changes of executions through events (interface
to event mechanism), and retrieving execution traces (interface to trace model).

Trace model. To enable the conduct of dynamic analyses of fUML models, trace models are
recorded for model executions carried out by the fUML virtual machine. Therefore, we de-
veloped a trace metamodel, which is designed specifically to capture the runtime behavior of

84

UML activities. In particular, a trace model provides information about executed model ele-
ments and their chronological execution order, inputs and outputs of executed model elements,
as well as token flows and input/output relations between executed model elements. Thereby,
the trace model of a model execution is continuously updated during execution, such that the
runtime behavior of the model until the respective point of the execution is reflected and can be
analyzed.

The introduced extensions enable the development of important analysis methods for fUML
based on the fUML virtual machine for supporting the validation, verification, and comprehen-
sion of fUML models. We evaluated this potential of our extensions of the fUML execution
environment by implementing dedicated analysis tools based on these proposed extensions. In
particular, we developed a debugger, a testing framework, as well as a performance analysis tool
for fUML. We will report on these developed analysis tools in Section 7.1.2.

Table 4.1 summarizes which extension constitutes the main basis for the development of
which analysis methods. While the event mechanism as well as the command interface constitute
the main prerequisite for developing debugging methods, the trace model builds the crucial
basis for developing testing, dynamic analysis, and non-functional property analysis methods.
However, please note that the extensions also provide important utilities for developing analysis
methods other than the ones indicated in Table 4.1. As an example, the information captured in
the trace model can be leveraged for implementing debuggers to display, for instance, the call
hierarchy leading to the last executed model element and the evolution of the context object of
the currently executing activity. Similarly, the command interface can be used by non-functional
property analysis tools to control the execution order of activity nodes.

As formal analysis is not considered by this thesis, it is omitted in Table 4.1. However,
as pointed out by Romero et al. [52], the semantics specification of bUML with the first-order
logic formalism PSL could be utilized to perform formal analysis through theorem proving.
Furthermore, a translational semantics approach mapping fUML to a semantic domain suitable
for formal analysis could be applied. In Section 2.3.1, we gave an overview of existing work
applying this approach to different versions and subsets of UML activities. The work of Abdel-
halim et al. [1,2] is an example of applying this approach to fUML by translating fUML models

Event Command Trace
mechanism interface model

Testing X

Dynamic analysis X

Debugging X X

Non-functional prop-
erty analysis X

Table 4.1: Possible applications of fUML execution environment extensions for implementing
model analysis methods

85

into CSP for verifying model consistency and deadlock freeness through model checking.
Besides evaluating the adequacy of our developed extensions for the development of analysis

methods for fUML, we also evaluated the performance overhead caused by the extensions. The
evaluation of the extensions is discussed in Section 7.1.

4.6 Related Work

We are aware of four extensions of fUML’s execution environment, which are related to our
work. An overview of these extensions is provided in Table 4.2

Laurent et al. [88] developed extensions of fUML regarding execution control and runtime
observation for enabling the debugging of fUML models. Their extensions are very similar
to our command interface and event mechanism and might have been developed in parallel to
our extensions as they have been presented only five months after our work. They introduce a
dedicated controller into the execution model of fUML, which enables starting, stopping, paus-
ing, and resuming the execution of an fUML model, as well as setting breakpoints, conditional
breakpoints, and watchpoints. Furthermore, an ongoing execution can be observed by listening
to events issued by the controller concerning the entry and exit of activities and activity nodes,
the modification of extensional values, and the sending of signals. Like our implementation, the
implementation of Laurent et al. introduces the proposed extensions into the reference imple-
mentation of the fUML virtual machine using aspect-oriented programming. Furthermore, they
developed an fUML debugger integrated with Eclipse based on the obtained extended fUML
virtual machine.

Tatibouet et al. [157] propose an extension of fUML enabling the control of the execution
order of activity nodes during the execution of an fUML model. The aim of their extension is
to provide a simulation framework based on fUML, which supports arbitrary models of compu-
tation defining the execution order of activity nodes, as well as non-functional aspects, such as
time. Therefore, they propose to define a model of computation by means of an fUML model and

Extension Extension subject Extension method Extension purpose
Laurent et al.
[88]

Control and observa-
tion of executions

Extension of fUML
execution model

Debugging

Tatibouet et al.
[157]

Control of activity
node execution order

fUML model
library

Analysis through simula-
tion

Benyahia et al.
[9]

Control of activity
node execution order

Extension of fUML
execution model

Analysis of real time em-
bedded systems through
simulation

Model Driven
Solutions [106]

Execution of SysML
models: Streaming,
time, structured mod-
els

Extension of fUML
execution model

Analysis through simula-
tion in systems engineer-
ing

Table 4.2: Overview of work related to fUML execution environment extensions

86

to delegate the execution control from an fUML model created for simulation purposes to this
model. In the same way, non-functional aspects can be defined using fUML models. Therewith,
a simulation library defining models of computation and non-functional aspects can be built.
Thus, unlike our approach, the fUML virtual machine is not extended. However, the fUML
model defining a system for simulation purposes has to be extended with calls to the simulation
library, which is not required when using our command interface for execution control.

Benyahia et al. [9] also propose an extension of fUML supporting the control of the execu-
tion order of activity nodes. Similar to Tatibouet et al., the aim of the authors is to enable the
analysis of real time embedded systems through simulation based on fUML. For this purpose,
they extend the fUML execution model with an explicit scheduler that controls the execution
order of activity nodes. For defining the execution order, an additional semantic strategy class
SelectNextActionStrategy is introduced into fUML’s execution environment. As pointed out by
Benyahia et al., another important extension of the fUML execution model for enabling the
analysis of real time embedded systems concerns time, as fUML does not define the semantics
of time but allows the introduction of arbitrary time models. However, the authors leave this
extension to future work.

The work of Tatibouet et al. [157] and the work of Benyahia et al. [9] should be understood
as first steps towards providing the facilities for analyzing fUML models. They show that their
extensions of fUML are technically feasible, but at the same time point out that more evidence
is needed to also show their practical applicability.

In the course of the Executable UML/SysML Semantics project [106] carried out by Model
Driven Solutions on behalf of the Lockheed Martin Corporation not only the reference imple-
mentation of the fUML virtual machine [91] has been developed, but also extensions of fUML
for supporting systems engineering, in particular the execution of SysML models [116], have
been elaborated. Particularly, the behavioral semantics of streaming inputs and outputs, time,
and structured models has been considered and appropriate extensions of the fUML execution
model have been proposed. Thereby, the behavioral semantics of time is related to our com-
mand interface incorporated into fUML’s execution environment. For defining the behavioral
semantics of time, it is proposed to extend the fUML execution model with an explicit threading
model. A thread is a flow of execution, which may be suspended for a defined time duration
and resumed after that duration. However, as reported by Model Driven Solutions [106], the
implicit threading model of the fUML execution model as defined in the fUML standard [114]
hinders the implementation of this explicit threading model. In particular, it is not possible to
suspend an activity execution in case all threads of this activity execution are suspended and to
resume it after a given time duration, because due to the implicit threading model, the activity
execution terminates when all of its threads are suspended. This is because there is no explicit
model of all threads of an activity execution defined in the fUML execution model. However, we
believe, that our command interface would provide a solution for this problem as it maintains the
state of ongoing activity executions and, thus, enables the suspension and resumption of activity
executions.

87

CHAPTER 5
Semantics Specification with fUML

5.1 Design Rationale

The two key components of a modeling language’s definition are the definition of the language’s
abstract syntax and the definition of the language’s semantics (cf. Section 2.2). Formal defi-
nitions of these two components are required, in order to enable the automated processing of
conforming models by means of computers.

For formally defining a modeling language’s abstract syntax, metamodels are the standard
means. MOF [121] constitutes a standardized, well established, and widely accepted metamod-
eling language enabling the definition of metamodels. The standardization of MOF fostered
the emergence of techniques for efficiently developing tools operating on the syntax of models,
such as techniques for automatically deriving modeling editors from metamodels, and generic
components, such as components for model serialization, comparison, and transformation.

Unfortunately, no comparable standard means exist for formally defining a modeling lan-
guage’s behavioral semantics. This hampers the emergence of potential techniques for efficiently
developing tools operating on the semantics of models, such as tools for model debugging, test-
ing, and dynamic analysis [20]. However, having a standardized, well established, and widely
accepted language for formally defining the semantics of modeling languages may—similarly
to MOF—foster the emergence of such techniques.

We propose fUML to become this standardized, well established, and widely accepted se-
mantics specification language. The following characteristics of fUML are in favor for the usage
of fUML as semantics specification language in MDE. First of all, fUML, UML, and MOF are
all standardized by OMG, and both fUML and MOF are based on UML. In particular, fUML
and MOF both comprise UML class modeling concepts for defining structural aspects of systems
and modeling languages, respectively. Thus, we argue that UML’s activity modeling concepts
and action language contained by fUML are likely to be suitable not only for defining behavioral
aspects of systems, but also behavioral aspects of modeling languages. Furthermore, as fUML
constitutes a subset of UML, and UML is the most adopted modeling language for MDE [70],
the modeling concepts contained by fUML can be considered as being well known in the MDE

89

community. Another point in favor of fUML is its formally defined and standardized semantics
in terms of a virtual machine that enables the execution of fUML conform models. Thus, when
using fUML as a semantics specification language, models may be executed using the fUML
virtual machine by executing the fUML activities defining the semantics of the used modeling
language. Moreover, fUML is an imperative and object-oriented programming language, which
constitute the predominant programming paradigms these days.

To enable the usage of fUML as semantics specification language for MDE, fUML has to
be integrated with state of the art metamodeling languages, metamodeling methodologies, and
metamodeling environments. Therefore, a language integration strategy for integrating fUML
with existing metamodeling languages as well as a semantics specification methodology for
systematically and efficiently developing executable semantics specifications with fUML are
required. Furthermore, a model execution environment that enables the execution of models
according to the used modeling language’s fUML-based semantics specification and facilitates
an efficient development of semantics-based tools has to be provided.

Integration with metamodeling languages. Existing metamodeling languages, such as MOF
and Ecore, enable the formal definition of the abstract syntax of modeling languages, but do not
provide any metamodeling concepts that enable the formal definition of the behavioral semantics
of modeling languages. Furthermore, they do not provide an extension mechanism, such that
additional metamodeling concepts could be introduced for this purpose. Thus, a strategy for
integrating fUML with existing metamodeling languages is required enabling the definition of
the behavioral semantics of modeling languages whose abstract syntax is defined in terms of
metamodels conforming to the respective metamodeling language. This strategy has to take the
modeling infrastructure provided by metamodeling languages into account, that is, in particular,
the three-layered language definition hierarchy as introduced in Section 2.2.1.

Integration with metamodeling methodologies and environments. To foster a systematic
and efficient development of behavioral semantics specifications, a methodology for developing
behavioral semantics specifications with fUML is needed. This methodology should integrate
seamlessly with existing methodologies and environments for developing modeling languages
and only extend them concerning the specification of the behavioral semantics of modeling lan-
guages. Thus, the use of existing metamodeling techniques and tools, as well as any other
techniques and tools for deriving modeling facilities or for processing models based on meta-
models, shall not be affected. Further, the methodology shall enable a clear separation of the
abstract syntax definition of a modeling language from its behavioral semantics definition and,
thereby, enable a clear distinction between modeling concepts of the modeling language and
runtime concepts that are solely needed for expressing the modeling language’s behavioral se-
mantics. Finally, the methodology shall enable the definition of the behavioral semantics of a
modeling language with fUML in a way that enables the execution of conforming models by
means of fUML’s execution environment.

Support for model execution. To utilize the executability introduced into a modeling lan-
guage by the definition of its behavioral semantics, a model execution environment is required.

90

In particular, based on the language definition of a modeling language, comprising the abstract
syntax definition specified with an existing metamodeling language and the behavioral seman-
tics definition specified with fUML, it shall be possible to execute conforming models. There-
fore, the model execution environment shall leverage the standardized execution environment of
fUML.

Facilitation of semantics-based tool development. As discussed beforehand, the model exe-
cution environment shall provide the means for executing models according to an fUML-based
semantics specification of the respectively used modeling language. Furthermore, it shall pro-
vide means that facilitate the development of semantics-based tools building upon the executabil-
ity of modeling languages. In particular, the implementation of model analysis methods and
techniques for executable modeling languages, such as methods and techniques for model test-
ing, dynamic analysis, debugging, and non-functional property analysis, shall be facilitated.
Therefore, the extensions integrated with the fUML execution environment as discussed in
Chapter 4 shall be made accessible in a way that enables the utilization of the provided event
mechanism, command interface, and trace model in order to implement semantics-based tools.
It has to be shown how these extensions of the fUML execution environment can be applied for
developing semantics-based tools based on the elaborated model execution environment.

We investigated several strategies for integrating fUML with existing metamodeling languages
resulting in the proposal of applying an integration-based operational approach leading to an
executable metamodeling language that enables the definition of the abstract syntax and the be-
havioral semantics of modeling languages [98]. For this language, we elaborated a methodology
comprising a set of processes, techniques and supporting tools that facilitates the development
of semantics specifications and integrate seamlessly with existing metamodeling methodolo-
gies and metamodeling environments [99, 100]. We applied the proposed language integration
strategy for integrating fUML with EMF’s metamodeling language Ecore and implemented tool
prototypes for EMF supporting the development of semantics specifications according to the
elaborated methodology. Furthermore, we developed a model execution environment on top of
the extended fUML execution environment that on the one hand supports the execution of mod-
els according to the used modeling language’s fUML-based semantics specification and on the
other hand provides the basis for efficiently developing semantics-based tools. For showing the
latter, we implemented a model execution tool as well as a model debugger integrated with EMF
on top of this model execution environment.

5.2 Semantics Specification Language

To facilitate the usage of fUML as a semantics specification language and, thereby, enable the
definition of a modeling language’s behavioral semantics using the modeling concepts provided
by fUML, fUML has to be integrated with existing metamodeling languages. Therefore, distinct
integration strategies can be applied, which we will discuss in Section 5.2.1. We assessed these
distinct integration strategies concerning their suitability for defining the behavioral semantics
of modeling languages as well as the possibility to integrate them with existing metamodeling

91

methodologies and metamodeling environments. Based on this assessment, we propose the
application of the integration-based operational approach, which integrates fUML directly with
an existing metamodeling language resulting in an executable metamodeling language. This
language enables the specification of the behavioral semantics of modeling languages in an
operational way as will be discussed in detail in Section 5.2.2.

5.2.1 Alternative Strategies for Integrating fUML with Metamodeling
Languages

Translational vs. Operational Approach

To use fUML for formally defining the behavioral semantics of modeling languages, we may
apply the translational semantics approach or the operational semantics approach as introduced
in Section 2.2.2. In the following, we discuss in detail how these approaches can be applied to
fUML as well as the advantages and disadvantages of these approaches.

Translational approach. In the translational approach, the behavioral semantics of a model-
ing language is defined through a translation of the modeling concepts provided by the consid-
ered modeling language to the modeling concepts provided by fUML. This translation between
modeling languages and fUML can be implemented using model transformation languages. The
fUML models resulting from the translation may be executed using the fUML virtual machine.
However, when developing modeling languages having a semantics diverging from fUML’s se-
mantics, this approach has the disadvantage of potentially complex translations, which are diffi-
cult to specify due to the fact that three languages are involved, namely the modeling language,
the transformation language, and fUML. An additional challenge arises with this approach when
the results of executing the fUML models have to be traced back to the original models, which
requires the translation of the execution results from fUML to the originally used modeling
language.

In the fUML standard, the use of the translational approach for defining the behavioral se-
mantics of the UML modeling concepts not contained by fUML is promoted [114, Subclause 7.1,
p. 19]. In particular, it is suggested to use fUML as a translational intermediary between a sur-
face subset of UML and target implementation languages.

Operational approach. Because of the drawbacks of the translational approach—the addi-
tional level of indirection introduced by the translation to fUML and the potentially high com-
plexity of this translation—we advocate the operational approach. In this approach, fUML is
used to define an interpreter for models conforming to the considered modeling language. This
can be done either by directly introducing the definition of the interpreter into the modeling
language’s metamodel or by defining an interpreter separately from the modeling language’s
metamodel. The former case is achieved by adding operations to the metaclasses of the mod-
eling language’s metamodel and defining their behavior using fUML activities that specify the
behavioral semantics of the respective modeling concept. In the latter case, a separate fUML
model is created defining the structure and behavior of an interpreter, which takes as input a
model to be executed and defines how this model is interpreted. In both cases, fUML is used as

92

action language for defining an interpreter of a modeling language. Having the behavioral se-
mantics of a modeling language specified in terms of fUML activities, the fUML virtual machine
can be used to execute models conforming to the considered modeling language.

The operational approach was applied for defining the behavioral semantics of fUML (cf. Sec-
tion 3.3). In particular, in the fUML standard an execution model is specified using bUML—a
subset of fUML—which defines an interpreter for fUML models. The execution model con-
tains for each modeling concept of fUML a semantic visitor class that defines the behavioral
semantics of the respective modeling concept. Thereby, the semantic visitor class of a modeling
concept contains properties and associations for defining runtime concepts, as well as opera-
tions and activities defining how an instance of the respective modeling concept is executed. As
pointed out before, the fUML standard suggests the application of the translational approach for
defining the behavioral semantics of modeling concepts not contained by fUML. However, in the
PSCS standard [122], the semantics of UML composite structures is defined by extending the
fUML subset as well as the fUML execution model. This means, that the operational approach
has been applied for defining the behavioral semantics of UML composite structures.

Transformation-based vs. Integration-based Operational Approach

As stated above, we advocate the operational approach for defining the behavioral semantics of
modeling languages with fUML. For realizing this approach, we identified two distinct strate-
gies that can be applied, namely a transformation-based approach and an integration-based
approach. For discussing these alternative approaches in detail, we illustrate their application
on the example of MOF in the following. However, please note that the following discussion
applies not only to MOF but any metamodeling language, as they all provide metamodeling
concepts similar to MOF’s metamodeling concepts.

Before fUML can be used to define the behavioral semantics of modeling languages, whose
abstract syntax is defined by MOF compliant metamodels, the gap between both modeling stan-
dards has to be bridged. Therefore, let us recap how fUML is composed and how it relates to
MOF. For modeling structural aspects of a system, fUML contains a subset of the UML pack-
age Classes::Kernel. For modeling behavioral aspects of a system, fUML contains a subset of
the UML packages CommonBehaviors, Activities, and Actions. As fUML uses the UML package
Classes::Kernel and the same package is also merged into MOF, fUML’s metamodel overlaps
with MOF. Although fUML and MOF use the same elements for structural modeling on a con-
ceptual level, they are on a technical level two distinct languages. This is shown in Figure 5.1 by
depicting the language definition’s of fUML and any MOF-based modeling language in terms
of the metamodeling stack. While fUML models (afUML Model) are situated on the layer M1,
the metamodel of a modeling language (aML MM) is located on the layer M2. However, an
operational semantics specification of a modeling language—in our case the specification of an
fUML model—has to reside on the same layer as the metamodel of the modeling language itself,
as it has to define the behavioral semantics of the modeling concepts defined in the metamodel.
To overcome the gap between MOF and fUML enabling the usage of fUML for specifying the
behavioral semantics of modeling languages in an operational way, we identified the following
two strategies.

93

MOF

fUML

«instanceOf»

afUML
Model

aML MM

«instanceOf» «instanceOf»

«instanceOf»

aML
Model

M3

M2

M1

ML … Modeling Language MM … Metamodel

Figure 5.1: Language definitions of fUML and MOF-based modeling languages

MOF

fUML aML MM

«instanceOf» «instanceOf»

aML OS
(afUML Activity Model)

aML MM
(afUML Class Model)

aML Model
(fUML Extensional Values)

aML Model

«ontological instanceOf»

«extends»

«instanceOf» «instanceOf» «instanceOf» «instanceOf»

xMOF
MOF fUML

«instanceOf»

aML OS
(afUML Model)

«instanceOf»

aML MM
«extends»

«instanceOf»

aML Model

Integration of fUML with MOF

«extends» M3

M2

M1

Transformation between MOF and fUML

ML … Modeling Language MM … Metamodel OS … Operational Semantics

Figure 5.2: Strategies for using fUML as operational semantics specification language

Transformation-based approach. The first strategy is a transformation-based approach, de-
picted on the left-hand side of Figure 5.2. In this approach, the MOF-based metamodel of the
modeling language (aML MM on M2) is transformed into an fUML model (aML MM (afUML
Class Model) on M1) by mapping the elements of the MOF-based metamodel to elements of
the fUML model, such that for each MOF metaclass a corresponding fUML class is created. As
fUML contains the UML package Classes::Kernel to enable the definition of structural aspects of
systems and this UML package is also merged into MOF for enabling the definition of metamod-
els, this transformation works straightforward. However, please note that the fUML standard ex-
cludes a few features of the package Classes::Kernel, which has to be taken into account by the
transformation (cf. Subclause 7.2.2.1 and the paragraph “Conventions on Derivation and Re-
definition” in Subclause 8.1 of the fUML standard [114]). The fUML classes resulting from the
transformation can be extended for defining the behavioral semantics of the respective modeling

94

concept in terms of fUML activities (aML OS (afUML Activity Model) on M1). For executing a
model conforming to the modeling language (aML Model on M1), it has to be transformed into
fUML extensional values (aML Model (fUML Extensional Values) on M1) consisting of objects
representing ontological instances [81] of the fUML classes that correspond to the modeling lan-
guage’s metaclasses and have been obtained by the transformation of the modeling language’s
metamodel. In case no metamodel is available in the first place, one may start on the layer M1
by purely using fUML for defining the abstract syntax and behavioral semantics of a modeling
language and then generate a metamodel of the modeling language on the layer M2 afterwards.

One advantage of the transformation-based approach is that model transformations for meta-
models and models are all that is needed to enable the operational definition of a modeling lan-
guage’s behavioral semantics and to enable the execution of models according to this definition.
However, one major drawback is that both metamodeling environments and UML environments
have to be used in parallel. A metamodeling environment has to be employed for defining the
abstract syntax of a modeling language as well as conforming models, and a UML environ-
ment has to be used for defining the behavioral semantics of a modeling language as well as
for executing models. Consequently, users have to switch between different environments and
constantly apply transformations to metamodels and models to obtain equivalent fUML class
diagrams and fUML object diagrams, respectively.

Integration-based approach. Because of the aforementioned drawbacks of the transformation-
based approach, we advocate a second integration-based approach depicted on the right-hand
side of Figure 5.2. In this approach, fUML is integrated with MOF by extending MOF with the
behavioral part of fUML, i.e., its modeling concepts for defining activities as well as its action
language, to obtain a new and executable metamodeling on layer M3 that we call eXecutable
MOF (xMOF). By extending MOF with certain parts of fUML, these parts are pulled up from
the layer M2 to the layer M3 enabling the definition of the abstract syntax as well as of the
behavioral semantics of a modeling language with one language that is composed of two stan-
dardized languages MOF and fUML. As a result, the abstract syntax can be specified in terms of
a metamodel (aML MM on M2) using the modeling concepts provided by MOF, and the behav-
ioral semantics (aML OS on M2) can be specified using fUML activities. A model conforming
to the modeling language (aML Model on M1) can then be executed by employing the fUML
virtual machine.

5.2.2 Executable Metamodeling Language xMOF

As discussed in Section 5.2.1, the operational approach for using fUML as semantics speci-
fication language has the following advantages over the translational approach. It requires no
translation between the modeling concepts of a modeling language and the modeling concepts of
fUML for specifying the behavioral semantics of the modeling language. Instead, using fUML
an interpreter for the modeling language is defined, which defines how a conforming model is
executed. Thus, no additional level of indirection is introduced in the semantics specification
process and complex translation of metamodels and models to fUML as well as of execution
results back to the modeling language can be avoided. For realizing the operational approach,

95

two distinct strategies can be applied. Thereby, the integration-based approach has the advantage
over the transformation-based approach, that the definition of the modeling language’s abstract
syntax and behavioral semantics, the creation of models, as well as the execution of models
can be performed in the used metamodeling environment instead of requiring to switch be-
tween metamodeling environment and UML environment. In the following, we show how the
integration-based operational approach can be realized for integrating fUML with metamodel-
ing languages. For doing so, we demonstrate the application of this integration strategy on the
metamodeling language Ecore.

The integration-based operational approach for using fUML as a behavioral semantics spec-
ification language requires the integration of fUML’s modeling concepts for defining behavioral
aspects with the metamodeling language used for defining the abstract syntax of modeling lan-
guages. In particular, UML’s activity modeling concepts as well as UML’s action language
contained by fUML have to be integrated with the metamodeling language. These modeling
concepts have to be directly integrated with the meta-metamodel of the metamodeling language.
Thereby, we aim at extending the meta-metamodel without having to actually modify it in order
to not compromise any facilities relying on the meta-metamodel. For achieving this, we exploit
the reflexive definition of metamodeling languages, meaning that the meta-metamodel of a meta-
modeling language is defined with the very same meta-metamodel and is, thus, an instance of
itself. If we consider Ecore, its metamodel is defined using Ecore itself. For example, the meta-
modeling concept EClass is itself an instance of the metamodeling concept EClass. The same
is also true for MOF. The metamodeling concept Class is merged into MOF’s meta-metamodel
from the UML metamodel, where it is defined as an instance of Class. A second characteristic
of metamodeling languages that we exploit for the integration of fUML is their support of inher-
itance. In Ecore this is defined as a self-reference of the meta-metamodel element EClass. Thus,
an instance of EClass defined in a metamodel may inherit features from arbitrary many other
instances of EClass. In MOF, inheritance relationships are defined by the metamodeling concept
Generalization, which can be used to define that a metaclass inherits features from arbitrary many
other metaclasses.

Using these characteristics of metamodeling languages—their reflexive definition and sup-
port of inheritance—it is possible to integrate additional metamodeling concepts into a meta-
modeling language, without having to modify its meta-metamodel. Therefore, a new metamodel
is created conforming to the respective metamodeling language, which defines the additionally
required metamodeling concepts in terms of metaclasses, i.e., instances of the metamodeling
concept provided by the respective metamodeling language for defining modeling concepts, such
as EClass of Ecore and Class of MOF. For these metaclasses, inheritance relations are defined
to elements of the metamodeling language’s meta-metamodel for extending the respective meta-
modeling concept with additional features, such as properties, references, and operations.

By applying this technique, a metamodeling language can be extended with additional meta-
modeling concepts, in our case with concepts provided by fUML. The integration of fUML with
a metamodeling language leads to a new language on the layer M3 being an executable meta-
modeling language, meaning that it enables the definition of the abstract syntax as well as the
behavioral semantics of modeling languages. We refer to this resulting integrated language as
eXecutable MOF (xMOF).

96

Ecore classes
(excerpt)

Integration
classes

fUML classes
(excerpt)

EClass EOperation

BehavioredEOperation

Behavior

EClassifier

Activity
ActivityNode

ActivityEdge

ownedBehavior

*

eOperations

*

node

*

specification 0..1

method

*

edge
*

BehavioredEClassifier

BehavioredEClass

Ecore

xMOF

Figure 5.3: Excerpt of xMOF metamodel integrating fUML with Ecore

Figure 5.3 depicts how the integration of fUML with Ecore is realized using the discussed
integration strategy. Please note that a corresponding extension can be applied also to MOF
itself, instead of Ecore. For the integration of fUML with Ecore, we defined our own Ecore-
based metamodel depicted as package labeled “xMOF”. In this metamodel, we defined the
metaclasses BehavioredEClassifier, BehavioredEClass, and BehavioredEOperation labeled “Inte-
gration classes” that enable the integration of fUML with Ecore. These metaclasses are in-
stances of the metamodeling concept EClass but have at the same time inheritance relationships
to classes contained by Ecore’s meta-metamodel, namely EClassifier, EClass, and EOperation,
respectively. Therewith, they extend Ecore with additional metamodeling concepts. The meta-
classes BehavioredEClassifier, BehavioredEClass, and BehavioredEOperation are defined accord-
ing to the definition of the metaclasses BehavioredClassifier, Class, and Operation in fUML’s
metamodel. BehavioredEClassifier inherits from EClassifier and owns a containment reference to
the metaclass Behavior being the supertype of the metaclass Activity. Thereby, the metaclasses
Behavior and Activity are defined according to fUML’s metamodel. Also all modeling concepts
of fUML, which are required for defining activities, are added to the metamodel of xMOF and
defined according to the metamodel of fUML. In particular, this applies to metaclasses defin-
ing different kinds of activity nodes and activity edges, but also to metaclasses defining value
specifications as they are required by certain action types. Figure 5.3 depicts only an excerpt
of the fUML metaclasses (labeled “fUML classes”) that are added to the metamodel of xMOF
and therewith integrated into Ecore. Please note that any association defined in fUML’s meta-
model between the integrated metaclasses and the metaclasses contained by the fUML pack-
age Classes::Kernel have to be adapted, such that they refer to corresponding meta-metaclasses
of Ecore or the integration classes BehavioredEClassifier, BehavioredEClass, and Behaviored-

97

EOperation defined by the metamodel of xMOF. For instance, the association between the fUML
metaclasses CreateObjectAction and Classifier used for defining the classifier to be instantiated by
the action is turned into a reference between the metaclass CreateObjectAction added to the meta-
model of xMOF and the Ecore meta-metaclass EClassifier. Similarly, the association between the
fUML metaclasses Behavior and BehavioredClassifier used for defining the context of a behavior
is turned into a reference between the metaclass Behavior added to the metamodel of xMOF and
the integration class BehavioredEClassifier defined in the metamodel of xMOF. Besides the meta-
class BehavioredEClassifier, we defined the metaclass BehavioredEClass in xMOF’s metamodel
as a concrete subtype of EClass and BehavioredEClassifier. Thus, BehavioredEClass inherits all
attributes and references of EClass and BehavioredEClass, in particular the containment refer-
ences to EOperation and Behavior. The metaclass BehavioredEOperation enables the specification
of the behavioral semantics of metaclasses by defining the behavior of metaclass operations.
Therefore, an inheritance relationship is defined to Ecore’s metaclass EOperation as well as a
reference to the metaclass Behavior.

With xMOF it is now possible to use fUML activities (metaclass Activity) to specify the
behavior of operations (metaclass BehavioredEOperation) owned by metaclasses (metaclass Be-
havioredEClass) in the metamodel of a modeling language. Hence, it is possible to specify the
behavioral semantics of modeling languages in an operational way.

5.3 Semantics Specification Methodology

With xMOF, as introduced in the previous section, the abstract syntax as well as the behavioral
semantics of modeling languages can be defined. To foster a systematic and efficient develop-
ment of behavioral semantics specifications with xMOF, as well as to maximize the reuse and the
compatibility with existing metamodeling methodologies and metamodeling environments, we
propose a dedicated methodology, which is orthogonal to existing metamodeling methodologies
(e.g., [75, 77, 149, 150, 156]).

The proposed methodology consists of the executable metamodeling language xMOF and
a set of processes, techniques, and supporting tools for specifying the behavioral semantics of
modeling languages as well as for executing models based on the behavioral semantics specifi-
cations. The processes of the methodology are depicted in Figure 5.4 showing which artifacts
are produced and consumed by the individual process steps, as well as information about which
process steps are automated and which are manually performed. The methodology consists of
the following four processes.

• Language design. In the language design process, the modeling language is developed by
defining the language’s abstract syntax by means of a metamodel conforming to an exist-
ing metamodeling language, such as Ecore, as well as the language’s behavioral semantics
by means of xMOF. Thereby, the metamodel builds the basis for specifying the behavioral
semantics of a modeling language, which is defined in a separate artifact referred to as an
xMOF-based configuration.

98

Metamodel
Define

Abstract
Syntax

Generate
xMOF-based
Configuration

xMOF-based
Configuration

[initial]

Conf
Classes

Define
Semantics

Create
Model

Model Instantiate
xMOF Conf

Classes

Instantiate
xMOF Init
Classes

xMOF-based
Model [initial]
Conf

Model
Init

Model

Language Design

Modeling Executable Model Preparation

xMOF-based
Configuration

[complete]

Conf
Classes

Init
Classes

Ecore-based
Metamodel xMOF-based

Configuration
[complete]

Conf
Classes

Init
Classes

Artifact Input/Output Relation Manual Task Automated Task

Execute
Model

Model Execution

xMOF-based
Model [initial]
Conf

Model
Init

Model

xMOF-based
Model [final]
Conf

Model
Init

Model

Figure 5.4: xMOF semantics specification methodology

• Modeling. In the modeling process, a model of the beforehand developed modeling lan-
guage is created. Therefore, modeling facilities available for the respective modeling
language may be used.

• Executable model preparation. As with xMOF the behavioral semantics of the modeling
language is formally defined with fUML activities, models conforming to the modeling
language may be executed by utilizing the fUML virtual machine. Therefore, the model
to be executed must be first transformed into an executable form referred to as an xMOF-
based model, that is an instance of the xMOF-based configuration defining the behavioral
semantics. Furthermore, additional input may be required for executing the model, which
is specified manually in the xMOF-based model. This is done in the executable model
preparation process.

• Model execution. In the model execution process, the model is finally executed according
to the xMOF-based semantics specification. From the model execution, the final runtime
state of the executed model, that is the state of the xMOF-based model after its execu-
tion finished, can be obtained and provided as feedback to the modeler as well as further
processed, for instance, for analysis purposes.

The four processes of our methodology for defining executable modeling languages based on

99

fUML are in the following described in more detail. Therefore, we make use of the Petri net
language as running example and show how its behavioral semantics can be formally defined
using xMOF as well as how conforming models can be executed according to this behavioral
semantics specification.

Language design. In the language design process, the language designer first defines the ab-
stract syntax of the modeling language by means of a metamodel. Therefore, an existing meta-
modeling language, such as Ecore, is used.

The behavioral semantics of the modeling language is then defined using xMOF in the so-
called xMOF-based configuration. Therefore, an xMOF-based configuration is automatically
initialized from the metamodel. In particular, for each concrete metaclass in the metamodel, one
BehavioredEClass instance is generated referred to as a configuration class. Each of these gen-
erated configuration classes is defined as subclass of the respective metaclass and is extended by
the language designer to define the behavioral semantics of this metaclass. Therefore, additional
attributes, references, and configuration classes may be added for defining runtime concepts re-
quired for capturing the state of an executing model. For expressing the actual behavior of the
modeling language’s concepts, operations (xMOF metaclass BehavioredEOperation) and their
implementations in terms of activities (xMOF metaclass Activity) are added to the configura-
tion classes. Thereby, one main operation has to be defined, which—like, for instance, in Java
programs—serves as entry point for executing a model according to the semantics specification.

Furthermore, supplementary data required as additional input for the execution of a model
may be defined in the xMOF-based configuration. Therefore, additional instances of the xMOF
class BehavioredEClass may be defined referred to as initialization classes.

The xMOF-based configuration consisting of configuration classes, initialization classes,
and their respective behavior specifications completely define the behavioral semantics of a
modeling language.

Example. The metamodel of the Petri net language is depicted in Figure 5.5. A Petri net
(metaclass Net) consists of a set of uniquely named places (metaclass Place) and transitions
(metaclass Transition), where transitions reference their input and output places (references input
and output).

The xMOF-based configuration defining the behavioral semantics of the Petri net language
consist of four configuration classes and one initialization class as shown in Figure 5.6. The
configuration classes NetConfiguration, TransitionConfiguration, and PlaceConfiguration were au-
tomatically initialized for the metaclasses Net, Transition, and Place, respectively. The config-
uration class Token was additionally defined for representing tokens residing at places during
the execution of Petri net models (references heldTokens and holdingPlace). The class Token-
Distribution constitutes an initialization class allowing the definition of a set of tokens (reference
initialTokens) serving as initial token distribution of a Petri net. This set of tokens constitutes the
input required for executing a Petri net model.

For defining the behavioral semantics of the modeling concepts offered by the Petri net
language, operations were introduced into the configuration classes NetConfiguration, Transition-
Configuration, and PlaceConfiguration. Their behavior is defined by the activities shown in Fig-

100

Net

Place

name : EString

Transition

name : EString

input

*
output

*

transitions * places *

Ecore-based Metamodel

TokenDistribution Token

heldTokens *
initialTokens

*

Transition

TransitionConfiguration

fire() : void
isEnabled() : EBoolean

Place

PlaceConfiguration

addToken() : void
removeToken() : void

1 Net

NetConfiguration

main(Token[*]) : void
initializeMarking(Token[*]) : void
run() : void

holdingPlace

xMOF-based Configuration

Metaclass Configuration class

Figure 5.5: Semantics specification example: Ecore-based metamodel

Net

Place

name : EString

Transition

name : EString

input

*
output

*

transitions * places *

Ecore-based Metamodel

TokenDistribution Token

heldTokens *
initialTokens

*

Transition

TransitionConfiguration

fire() : void
isEnabled() : EBoolean

Place

PlaceConfiguration

addToken() : void
removeToken() : void

1 Net

NetConfiguration

main(Token[*]) : void
initializeMarking(Token[*]) : void
run() : void

holdingPlace

xMOF-based Configuration

Metaclass Configuration class

Figure 5.6: Semantics specification example: xMOF-based configuration (classes)

ure 5.7. The main() operation of NetConfiguration serves as entry point for executing a Petri net
model. It first calls the operation initializeMarking(), which initializes the heldTokens reference of
the Place instances according to the set of tokens provided as input, before the operation run()
is invoked. The operation run() collects in a loop the set of enabled transitions by invoking the
operation isEnabled() for each transition of the net. A transition is enabled when all input places
of the transition hold at least one token. Therefore, the operation isEnabled() collects all input
places of a transition holding no token and returns false if at least one such place holding no
token was collected and true if no such place was collected. The operation run() then selects
the first enabled transition and invokes the operation fire() for this transition. Subsequently, the
operation fire() calls for each output place of the transition the operation addToken() to create
a new token residing at the respective output place and removeToken() for each input place to
destroy one token residing at the respective input place.

101

initialTokens :
Token[0..*]

read self
ReadSelf

result

call run()
target

NetConfiguration::initializeMarking

initialTokens :
Token[0..*]

initialize tokens

read holdingPlace
ReadStructuralFeature

object result

add heldTokens

AddStructuralFeatureValue

object

value

call initializeMarking()

CallOperation

target

tokens

CallOperation

NetConfiguration::main

result

NetConfiguration::run

read self
ReadSelf

result object
result

call isEnabled()

target

result

list

index result

result

select enabled transitions

call fire()
target

decisionInputFlow

[true]

CallOperation

CallOperation
call ListGet

CallBehavior

TransitionConfiguration::isEnabled

read self
ReadSelf

result object
result

read heldTokens
ReadStructuralFeature

object result

call ListSize

list

result

> specify false
ValueSpecification result

result

specify 0
ValueSpecification

result

select input places with
zero tokens

call ListSize

result list

decisionInputFlow

decisionInputFlow
[0]

[true]

[false] enabled :
EBoolean specify true

ValueSpecification

CallBehavior

CallBehavior

read input
ReadStructuralFeature

TransitionConfiguration::fire

read self
ReadSelf

result
read input

ReadStructuralFeature

object result

read output
ReadStructuralFeature

object result

call removeToken()
target

call addToken()
target

CallOperation

CallOperation

PlaceConfiguration::addToken

read self
ReadSelf

result
add heldTokens

AddStructuralFeatureValue

value

object

result

create Token
CreateObject

result object

value
result

PlaceConfiguration::removeToken

read self
ReadSelf

result object
result

specify 1
ValueSpecification

result

index

list

result

destroy token
DestroyObject

target

read transitions
ReadStructuralFeature

set holdingPlace

AddStructuralFeatureValue

read heldTokens
ReadStructuralFeature

call ListGet

CallBehavior

specify 1
ValueSpecification

enabled

Figure 5.7: Semantics specification example: xMOF-based configuration (activities)

102

Modeling. Using existing modeling facilities, a user may create models conforming to the de-
fined modeling language by instantiating the metamodel defined in the language design process.
Thus, the creation of models is not affected by our methodology at all and any modeling editor
may be used to conveniently create models in a graphical or textual notation. In the EMF meta-
modeling environment, such editors might be developed, for instance, with GMF1, Graphiti2, or
Xtext3.

Example. On the top left-hand side of Figure 5.8, an example of a Petri net model is depicted
in graphical notation. It consists of two places p1 and p2 and one transition t. Thereby the place
p1 constitutes the input place of the transition t and the place p2 its output place.

Executable model preparation. As with xMOF the behavioral semantics of a modeling lan-
guage is defined by fUML activities, conforming models can be executed by leveraging the
fUML virtual machine. Therefore, the model to be executed has to be first represented in an
executable form, that is in terms of an instance of the xMOF-based configuration defining the
behavioral semantics of the respective modeling language. This instance is referred to as an
xMOF-based model. Therefore, for each element in the model, the configuration class defining
the behavioral semantics of the respective modeling concept is instantiated and initialized auto-
matically. The initialization includes the setting of attribute values as well as references of the
configuration class instances according to the attribute values and references of the model ele-
ments. The obtained model is referred to as a configuration model. In addition, the initialization
classes have to be instantiated by the modeler in an initialization model to define the additional
input required for executing the model. Together with this initialization model, the configuration
model is ready for being executed.

Example. On the bottom left-hand side of Figure 5.8, the xMOF-based model instantiated for
the Petri net model created in the beforehand discussed modeling process is depicted. For the
net n, the transition t, and the two places p1 and p2, the respective configuration classes Net-
Configuration, TransitionConfiguration, and PlaceConfiguration were instantiated and the resulting
instances were initialized according to the model elements (cf. top left-hand side of Figure 5.8).
As input to the model execution, the initialization class TokenDistribution was manually instan-
tiated leading to the TokenDistribution instance td and one Token instance t1 residing at place p1
was added constituting the initial token distribution of the net.

Model execution. Having obtained an xMOF-based representation of the model to be exe-
cuted, we may perform the execution by leveraging the fUML virtual machine. A detailed
description of how the model execution is achieved is provided in Section 5.4. The result of
the execution is the final runtime state of the xMOF-based model, which has been manipulated
during the model execution according to the xMOF-based behavioral semantics specification

1http://www.eclipse.org/modeling/gmp, accessed 24.07.2014
2https://www.eclipse.org/graphiti, accessed 28.07.2014
3http://www.eclipse.org/Xtext, accessed 24.07.2014

103

http://www.eclipse.org/modeling/gmp
https://www.eclipse.org/graphiti
http://www.eclipse.org/Xtext

Model, xMOF-based Model

t : TransitionConfiguration

name = "t"

p1 : PlaceConfiguration

name = "p1"

p2 : PlaceConfiguration

name = "p2"

n : NetConfiguration td : TokenDistribution

places places output input

transitions

xMOF-based Model [initial] (before execution)

t1 : Token

initialTokens

holdingPlace t2 : Token

heldTokens
holdingPlace

t : TransitionConfiguration

name = "t"

p1 : PlaceConfiguration

name = "p1"

p2 : PlaceConfiguration

name = "p2"

n : NetConfiguration

places places output input

transitions

xMOF-based Model [final] (after execution)

td : TokenDistribution
p1 p2 t

Model

Figure 5.8: Semantics specification example: Model and xMOF-based model

defined for the used modeling language. This final xMOF-based model can be presented to the
user as execution result and further processed for analysis purposes.

Example. The final xMOF-based model resulting from executing the example Petri net model
is depicted on the right-hand side of Figure 5.8. During the execution, the token t1, which
resided at place p1 in the initial token distribution td (cf. bottom left-hand side of Figure 5.8)
was destroyed as a result of the firing of transition t, and a new token t2 was added to the place
p2.

Tool Support. We provide an implementation of the presented methodology for EMF con-
sisting of a set of Eclipse plugins that support language designers in defining the behavioral
semantics of modeling languages with xMOF as well as modelers in executing models accord-
ing to xMOF-based semantics specifications. For the language design process, we provide tool
support for generating xMOF-based configurations from Ecore-based metamodels as well as
editing support for extending generated xMOF-based configurations with configuration classes,
initialization classes, and activities for specifying the behavioral semantics of modeling lan-
guages. For the executable model preparation process, we provide tool support for instantiating
initialization classes as well as defining input required for executing models. The tool support
provided for the model execution process will be discussed in Section 5.4. The mentioned tools
are briefly discussed in the following.

• xMOF-based configuration generation. For creating xMOF-based configurations, we
provide a wizard allowing to conveniently initialize an xMOF-based configuration for an
Ecore-based metamodel. Therefore, the user has to provide the following input. The
Ecore-based metamodel, the metaclass that should own the main operation of the be-

104

havioral semantics specification, as well as the file system location of the xMOF-based
configuration to be created.

• Semantics specification with xMOF. The behavioral semantics of a modeling language
is specified by extending the automatically initialized xMOF-based configuration with
additional configuration classes, initialization classes, attributes, references, operations,
and activities. Therefore, we provide an editor allowing the definition of classes in a tree-
based notation and activities in a graphical notation adopting the standardized graphical
activity diagram notation of UML. A screenshot of this editor is depicted in Figure 5.9.
On the upper left-hand side, the tree-based editor for defining classes in xMOF-based
configurations is shown. It depicts the configuration classes and initialization classes as
well as their attributes, references, operations, and activities. The activities themselves
can be edited in a graphical editor as shown at the bottom of Figure 5.9. Properties of
elements can be modified as usual in the properties view depicted on the upper right-hand
side.

• Initialization class instantiation. For instantiating initialization classes contained by
an xMOF-based configurations we provide a wizard. In this wizard the user selects the
xMOF-based configuration, the initialization class to be instantiated, as well as the file
system location of the initialization model to be created. The created initialization model
can then be extending using a tree-based editor to define the input for the execution of a
model.

• Input definition. For defining the input parameter values to be provided to the main
operation of the xMOF-based configuration when executing a model, we again provide a
wizard. The user selects the xMOF-based configuration, the main operation, as well as
the file system location of the parameter value definition file to be created. In this file, the
user defines references to elements of the initialization model for defining the values to be
provided to the model execution.

The proposed methodology may be used orthogonally to existing methodologies for developing
modeling languages. The usual steps for developing the abstract syntax and concrete syntax of a
modeling language, as well as for creating models are not affected. Consequently, the facilities
provided by existing metamodeling environments that operate on the syntax of a modeling lan-
guage, such as editors for creating metamodels, generators for modeling editors, model transfor-
mation and code generation engines, remain unaffected by the methodology and can be applied
as usual. We extended the metamodeling environment EMF with appropriate tool support for
the elaborated methodology enabling the application of its provided processes and techniques
for specifying the behavioral semantics of modeling languages and executing models based on
fUML in any project that makes use of Ecore-based metamodels.

With the proposed methodology, the definition of the abstract syntax and the definition of the
behavioral semantics of a modeling language are clearly separated from each other in distinct
artifacts. Thus, the metamodel does not incorporate any semantics-specific aspects and solely
defines the abstract syntax of the modeling language. Semantics-specific aspects are defined
in the xMOF-based configuration consisting of configuration classes, initialization classes, and

105

Figure 5.9: Screenshot of xMOF semantics specification editor

activities. This separation also allows the definition of multiple behavioral semantics for the
same metamodel by defining multiple xMOF-based configurations. The xMOF-based configu-
ration of a modeling language constitutes on the one hand the formal definition of the language’s
behavioral semantics, but on the other hand also acts as representation for the runtime state of
executed models consisting of runtime variables, such as the tokens residing at places in the
defined Petri net language. Moreover, the xMOF-based configuration allows the separate defini-
tion of additional and potentially complex input parameter values that are needed for executing
models, such as the initial token distribution in the Petri net language. By leveraging the fUML
virtual machine, models can be directly executed. Only the behavioral semantics, the model to
be executed, and the input parameter values have to be provided for executing a model.

5.4 Model Execution Environment

When applying the semantics specification methodology for xMOF as discussed in the previous
section, the abstract syntax of a modeling language is defined in terms of a metamodel conform-
ing to an existing metamodeling language and the behavioral semantics of a modeling language
is defined in terms of an xMOF-based configuration conforming to xMOF. Thereby, the xMOF-

106

Execute
Model

fUML
Extensional

Values

Model Execution

Convert to
xMOF-based

Model

xMOF-based
Model [final]
Conf

Model
Init

Model xMOF-based
Model [initial]
Conf

Model
Init

Model

xMOF-based
Configuration

[complete]

Conf
Classes

Init
Classes

Artifact Input/Output Relation Automated Task

fUML
Extensional

Values

fUML Model

Convert to
fUML Exten-
sional Values

Convert to
fUML Model

Figure 5.10: Model execution process performed by generic model execution environment

based configuration of a modeling language defines the behavioral semantics of the provided
modeling concepts in terms of fUML conform activities. This enables the utilization of fUML’s
execution environment for executing models according to the used modeling language’s behav-
ioral semantics as defined in its xMOF-based configuration. Therefore, the model to be executed
has to be first transformed into a configuration model, which is an instance of the xMOF-based
configuration—in particular of its configuration classes—and constitutes the initial runtime state
of the model. Furthermore, the user may create an initialization model by instantiating initializa-
tion classes defined in the xMOF-based configuration for defining additional input for the model
to be executed. The xMOF-based model, comprising the configuration model and the initializa-
tion model, constitutes an executable representation of the model to be executed providing all
information necessary for performing the model execution.

The model execution is performed by the generic model execution environment, which we
developed based on the extended fUML execution environment presented in Chapter 4. Fig-
ure 5.10 details the model execution process of our semantics specification methodology for
xMOF (cf. Figure 5.4). The shown process steps are carried out by the developed model execu-
tion environment. To utilize the extended fUML execution environment for executing models,
the xMOF-based configuration defining the behavioral semantics to be applied for the model
execution as well as the xMOF-based model constituting the executable representation of the
model to be executed first have to be converted to fUML. The xMOF-based configuration has to
be converted into an fUML model and the xMOF-based model has to be converted into fUML
extensional values. For that purpose, we provide an xMOF-to-fUML converter performing this
conversion automatically. The fUML model obtained from the conversion of the xMOF-based
configuration is then executed by means of the extended fUML execution environment whereat
the fUML extensional values obtained from the conversion of the xMOF-based model serve as
input to the execution. During the execution, the fUML extensional values representing the exe-
cuting model are manipulated by the fUML virtual machine according to the semantics specifica-
tion represented by the executing fUML model. Thus, after the execution of the fUML model is
completed, the fUML extensional values represent the final runtime state of the executed model.
These fUML extensional values are converted back to xMOF by an fUML-to-xMOF converter

107

resulting in an xMOF-based model capturing the final runtime state of the executed model. The
steps of the model execution process are in the following described in more detail.

xMOF to fUML conversion. In the conversion of the xMOF-based configuration to an fUML
model, each configuration class and initialization class contained by the xMOF-based config-
uration is converted into a corresponding fUML class including attributes, references, and op-
erations. Furthermore, the activities contained by the xMOF-based configuration defining the
behavior of the classes’ operations are converted into corresponding fUML activities. The con-
version of activities from xMOF to fUML is a straightforward one-to-one transformation, as
the language concepts provided by xMOF for defining activities are adopted from fUML with-
out modifications and are, hence, identical to the metaclasses defined by fUML’s metamodel.
For defining configuration classes and initialization classes as well as their operations, xMOF
extends the metamodeling concepts for defining metaclasses and operations provided by the re-
spectively used metamodeling language in order to enable the definition of their behavior using
fUML conform activities (cf. Section 5.2.2). In the case of Ecore, the metamodeling concepts
EClass and EOperation are extended by xMOF through the introduced subtypes Behaviored-
EClass and BehavioredEOperation. Thus, configuration and initialization classes are instances of
BehavioredEClass and their operations are instances of BehavioredEOperation. For defining at-
tributes and references of configuration classes and initialization classes the metamodeling con-
cepts provided by the used metamodeling language are retained by xMOF. Hence, in the case
of Ecore, they are defined using the metamodeling concepts EAttribute and EReference. Due
to the inheritance relationships defined between configuration classes contained by the xMOF-
based configuration and metaclasses contained by the metamodel of the modeling language, also
the metaclasses and their attributes, references, and operations being instances of EClass, EAt-
tribute, EReference, and EOperation are converted to fUML. In the conversion of an xMOF-based
configuration and the extended metamodel, instances of EClass and BehavioredEClass, EOpera-
tion and BehavioredEOperation, EAttribute, as well as EReference are converted into instances of
fUML’s metaclasses Class, Operation, Property, and Association, respectively. This conversion
is straightforward to implement as there are no conceptual differences between metamodeling
concepts and UML class modeling concepts.

In the conversion of an xMOF-based model to fUML extensional values, the model elements
contained by the xMOF-based model are converted into fUML objects, the model elements’
attribute values are converted into fUML feature values, and the references between the model
elements are converted into fUML links. Thereby, the objects, feature values, and links are
instances of the classes, properties, and associations contained by the fUML model obtained
from the conversion of the xMOF-based configuration.

Model execution by fUML execution environment. Using the command interface of the
extended fUML execution environment, the fUML extensional values obtained from the conver-
sion of the xMOF-based model are first added to the locus of the fUML execution environment
before the execution of the fUML model obtained from the conversion of the xMOF-based
configuration is started. Thereby, the execution is started at the activity defined for the main
operation of the xMOF-based configuration. The xMOF-based model element being an instance

108

of the configuration class owning the main operation is provided as context object for executing
this activity, and the fUML extensional values created during the conversion of the initialization
model are provided as input to this activity.

fUML to xMOF conversion. During the execution of the fUML model obtained from the
conversion of the xMOF based configuration, the fUML virtual machine interprets the fUML
activities defining the behavioral semantics of the modeling language and manipulates the fUML
extensional values representing the model to be executed accordingly. The result of the execu-
tion consists in the runtime state of these fUML extensional values after the execution finished
constituting the final runtime state of the executed model. The fUML extensional values may
be converted back to an xMOF-based model by converting each fUML object to an instance of
the respective configuration class and each fUML link between two fUML objects to references
between these configuration class instances. Thus, the user may be provided with the final run-
time state of the executed model in terms of an xMOF-based model and this runtime state may
be further processed for analysis purposes.

5.5 Semantics-based Tool Development

The model execution environment presented in the previous section enables the execution of
models conforming to any modeling language whose behavioral semantics is defined with xMOF.
Therefore, as depicted in Figure 5.11, the definition of the modeling language comprising the
definition of the language’s abstract syntax in terms of a metamodel as well as the definition of
the language’s behavioral semantics in terms of an xMOF-based configuration is converted into
an fUML model. Similarly, the model to be executed as well as additional input to the model
both contained by an xMOF-based model are converted into fUML extensional values. The
obtained fUML model is then executed for the obtained fUML extensional values by means of
fUML’s execution environment. Besides the final runtime state of the executed model, further
runtime information can be obtained from the model execution. As depicted in Figure 5.11,

Model and Input Definition

fUML
Virtual

Machine

fUML Model Output
locus
values

Trace

Events
i i i

i
i

Commands
> execute

> next step
> resume

Tools

Debugger

Testing
Environment

Analyzer

…

xMOF2fUML
Converter

Instance
Converter

Model

Modeling Language
Definition (xMOF)

Semantics
(fUML)

Syntax
(Ecore)

Input

context
parameter
values

Input locus
values

Component Artifact Input/Output Relation

Figure 5.11: Model execution environment for xMOF

109

the event mechanism, command interface, and trace model introduced into the fUML execu-
tion environment can be utilized to observe, control, and analyze model executions. Based on
these capabilities, semantics-based tools, such as debuggers, testing environments, and dynamic
model analysis tools can be implemented on top of the developed generic model execution en-
vironment.

By utilizing the generic model execution environment for xMOF in this way, we developed a
model execution tool as well as a model debugger. The model execution tool uses the model ex-
ecution environment for executing models and annotates the executed model with the execution
result, that is the final runtime state of the model obtained from the model execution. The debug-
ger makes use of the command interface and event mechanism provided by the model execution
environment to enable the stepwise execution of models. Thereby, after the completion of each
execution step, the current runtime state of the debugged model is again annotated on the model.
In the following, we present the implementations of these two developed semantics-based tools
in further detail.

5.5.1 Model Execution

The model execution tool is implemented as an Eclipse plugin on top of the model execution
environment for xMOF presented in Section 5.4. It provides tool support for executing models
based on the used modeling language’s xMOF-based semantics specification. Therefore, it pro-
vides a launch configuration enabling the user to start the execution of a model by selecting the
model to be executed, the xMOF-based configuration to be used for the model execution, as well
as additional input to the model execution. Furthermore, the model execution tool enables users
to inspect the result of a performed model execution in a comprehensible way by annotating the
executed model with the execution result. Therefore, it makes use of the Eclipse plugin EMF
Profiles [87]. EMF Profiles constitutes an adaptation of the UML profile mechanism for EMF
and, therewith, a lightweight extension mechanism for modeling languages defined with Ecore.
In particular, it allows the definition of profiles consisting of stereotypes that can be applied to
model elements for annotating additional information on models. Applied profiles can be loaded
into the modeling editor of the used modeling language for visualizing the information provided
by stereotype applications. Thereby, EMF Profiles supports loading profile applications into
tree-based editors created with EMF as well as graphical editors implemented with GMF and
Graphiti. In order to utilize EMF Profiles for annotating the result of a model execution on the
executed model, the model execution tool generates from the used modeling language’s defini-
tion a profile conforming to EMF Profiles. After a model execution is completed, an application
of this profile is generated from the execution result and loaded on the executed model to pro-
vide the execution result to the user in a comprehensible way. These two steps referred to as
runtime profile generation and runtime profile application are depicted in Figure 5.12 and in the
following discussed in further detail.

Runtime profile generation. The output of a performed model execution consists in the final
runtime state of the executed model, that is the final runtime state of the elements contained
by the executed model. With xMOF, the runtime state of a model element is composed of the

110

Runtime Profile Generation

Modeling Language
Definition (xMOF)

Semantics
(fUML)

Syntax
(Ecore)

Runtime Profile
Generator

Runtime
Profile

« »

Component Artifact Input/Output Relation

Runtime
Profile

Application
« »
« »

« » « »

Output
locus
values

Runtime
Profile

« »

Runtime Profile
Application
Generator

Runtime Profile Application

Figure 5.12: Model execution tool

element’s attribute values as well as the element’s references to other model elements. Only
attributes and references defined by the configuration class of the respective modeling concept
are of interest, as only their values are manipulated during the execution of a model, whereas
values of attributes and references defined by the respective metaclass are constant. Thus, for
annotating the runtime state of a model, we need a way to capture the model elements’ values
for attributes and references defined by configuration classes. For this purpose we generate from
the configuration classes defined by a modeling language’s xMOF-based configuration a so-
called runtime profile conforming to EMF Profiles. In particular, for each configuration class we
generate a dedicated stereotype comprising tagged values and references corresponding to the
attributes and references of the respective configuration class. This enables us to annotate values
for these attributes and references on a model and, thus, to annotate the final runtime state of the
model. The generation of the runtime profile from an xMOF-based configuration is performed
automatically. For starting the generation process, we provide a wizard integrated with Eclipse
that requires the user only to select the xMOF-based configuration of the modeling language.

Example. The runtime profile generated for the xMOF-based configuration of the Petri net
language is depicted in Figure 5.13. It consists of the stereotypes NetConfigurationStereotype,
TransitionConfigurationStereotype, and PlaceConfigurationStereotype. These stereotypes are ap-
plicable to model elements being instances of the metaclasses Net, Transition, and Place, re-
spectively. The attributes and references defined for the configuration classes are accordingly
introduced into the stereotypes as tagged values and references, respectively. In particular, the
containment reference heldTokens owned by the configuration class PlaceConfiguration and re-
ferring to the configuration class Token (cf. Figure 5.6) is introduced into the stereotype Place-
ConfigurationStereotype. By applying the stereotype PlaceConfigurationStereotype to places con-
tained by a Petri net model and adding Token instances to these stereotype applications, it is
possible to annotate the token distribution of the Petri net directly on the respective Petri net
model.

Runtime profile application. Being equipped with the runtime profile of an xMOF-based
configuration, it is possible to annotate the final runtime state of an executed model directly on

111

«stereotype»
NetConfigurationStereotype

Token

heldTokens *

«stereotype»
PlaceConfigurationStereotype

«profile» petrinetConfigurationProfile

 «stereotype»
TransitionConfigurationStereotype

Transition
«metaclass»

Net
«metaclass»

Place
«metaclass» holdingPlace

1

Runtime Profile

Metaclass «metaclass» Configuration class Stereotype «stereotype»

Figure 5.13: Model execution example: Runtime profile

this model. Therefore, an application of the runtime profile on the executed model is generated
from the output of the model execution, that consists in the fUML extensional values residing
at the locus of the execution performed by the fUML virtual machine, which represent the final
runtime state of the model. This profile application is referred to as a runtime profile application.
Thereby, on each model element the stereotype defined for the element’s metaclass is applied
and the resulting stereotype application’s tagged values and references are set according to the
feature values and links of the fUML object representing the final runtime state of the respective
model element. Alternatively, the runtime profile application could be generated from the final
xMOF-based model obtained from the model execution instead of directly from the fUML ex-
tensional values. The generated profile application may be loaded into the modeling editor for
inspecting the final runtime state of the executed model.

Example. Figure 5.14 shows the runtime profile application generated for the example Petri net
model (cf. Figure 5.8). The stereotype NetConfigurationStereotype was applied to the net n, the
stereotype TransitionConfigurationStereotype was applied to the transition t, and the stereotype
PlaceConfigurationStereotype was applied to the places p1 and p2. Furthermore, the token t2
was added to the stereotype application of the place p2. Thus, the generated runtime profile
application captures the final runtime state of the executed model, that is the token distribution
of the modeled Petri net consisting of one token residing at place p2.

Figure 5.15 depicts a screenshot of the implemented model execution tool showing how gen-
erated runtime profile applications are visualized by EMF Profiles. On the top left-hand side the
GMF-based editor of the Petri net language can be seen. It shows the executed Petri net model
in graphical concrete syntax. The place p2 is highlighted by a green border and an overlayed
icon depicting a token, which indicates that the stereotype PlaceConfigurationStereotype is ap-
plied to this place and that this stereotype application contains at least one Token instance. On
the top right-hand side the EMF Profile applications view is depicted, which is responsible for
displaying the stereotypes applied to the model opened in the currently active editor. It shows the
stereotypes applied to currently selected model elements. As the place p2 is selected in the Petri
net editor, the EMF Profile applications view shows its application of the PlaceConfiguration-

112

«stereotype»
NetConfigurationStereotype

Token

heldTokens *

«stereotype»
PlaceConfigurationStereotype

«profile» petrinetConfigurationProfile

 «stereotype»
TransitionConfigurationStereotype

Transition
«metaclass»

Net
«metaclass»

Place
«metaclass» holdingPlace

1

Runtime Profile

Metaclass «metaclass» Configuration class Stereotype «stereotype»

t2 : Token

heldTokens
holdingPlace

t : Transition
name = "t"

p1 : Place

name = "p1"

p2 : Place

name = "p2"

n : Net

places places output input

transitions

«NetConfigurationStereotype»

«TransitionConfigurationStereotype»

«PlaceConfigurationStereotype» «PlaceConfigurationStereotype»

Figure 5.14: Model execution example: Runtime profile application

«stereotype»
NetConfigurationStereotype

Token

heldTokens *

«stereotype»
PlaceConfigurationStereotype

«profile» petrinetConfigurationProfile

 «stereotype»
TransitionConfigurationStereotype

Transition
«metaclass»

Net
«metaclass»

Place
«metaclass» holdingPlace

1

Runtime Profile

Metaclass «metaclass» Configuration class Stereotype «stereotype»

Figure 5.15: Screenshot of model execution tool

Stereotype as well as the Token instance contained by this stereotype application. The properties
view shown at the bottom displays the values of this Token instance, which is the value of the
reference holdingPlace referring to the place p2.

5.5.2 Model Debugging

As the presented model execution tool, also the model debugger is implemented as an Eclipse
plugin. In particular, the model debugger is integrated with the Eclipse Debug Framework4,
which provides language independent facilities and mechanism for debugging, such as program
launching, event notifications, and debug user interface components.

4http://www.eclipse.org/eclipse/debug, accessed 10.07.2014

113

http://www.eclipse.org/eclipse/debug

The model debugger enables the stepwise execution of models by utilizing the model ex-
ecution environment presented in Section 5.4. In particular, it employs the model execution
capability as well as the event mechanism and command interface offered by the model exe-
cution environment for performing model executions, suspending model executions after the
completion of one execution step, as well as resuming suspended executions. The extent of one
execution step is configurable for the respective modeling language. After the completion of
each execution step, i.e., when a model execution is suspended, the runtime state of the model is
presented to the user. Therefore, like the presented model execution tool, also the model debug-
ger generates a runtime profile application for the debugged model and loads it into the modeling
editor displaying the model.

Execution step configuration. The model execution environment for xMOF enables the ex-
ecution of models by executing the xMOF-based configuration of the used modeling language
for the model by means of the extended fUML execution environment presented in Chapter 4.
Thereby, it provides access to the extended fUML execution environment for utilizing its event
mechanism, command interface, and trace model. By using the event mechanism and command
interface, it is possible to observe the runtime state of an xMOF-based configuration being exe-
cuted by the fUML virtual machine and suspend it either after the completion of each execution
step or at a set breakpoint. Therewith, it is possible to suspend the execution of a model at any
point in time of the execution. This possibility is leveraged by the model debugger for stepwise
executing models. Thereby, one execution step of a model comprises usually the execution of
several execution steps of the xMOF-based configuration by the fUML virtual machine. For
defining the extent of one execution step, the model debugger provides a simple configuration
mechanism in terms of a debugger configuration metamodel, which is shown in Figure 5.16. A
debugger configuration (metaclass DebuggerConfiguration) is defined for one xMOF-based con-
figuration (reference configurationPackage) and consists of a set of step definitions (metaclass
StepDefinition) defining at which location of the execution of this xMOF-based configuration
the execution of a model shall be suspended. Currently, the debugger configuration metamodel
allows the definition of this location in terms of activity nodes contained by the xMOF-based
configuration (metaclass ActivityNodeStepDefinition) denoting that the execution of a model shall
be suspend when the defined activity node is reached. However, more complex definitions of
steps could be easily supported, such as OCL expressions on the state of the executing model
or the underlying executing xMOF-based configuration. Besides step definitions, the debug-
ger configuration also allows the definition of the editor that shall be used for displaying the
debugged model as well as its runtime state at suspension (attribute editorID).

Example. The debugger configuration of the Petri net language consists of one activity node
step definition referring to the initial node of the activity defining the behavior of the fire()
operation of the configuration class TransitionConfiguration (cf. Figure 5.7). Thus, it defines that
the execution of a Petri net model shall be suspended for the first time after the initial token
distribution has been initialized but before the first transition is fired and then again before each
firing of a transition.

114

DebuggerConfiguration

editorID : EString

StepDefinition

ActivityNodeStepDefinition ActivityNode EPackage
activityNode

1

configurationPackage 1

stepDefinitions

*

xMOF metaclass Debugger configuration metaclass

Figure 5.16: Debugger configuration metamodel

Stepwise execution. To achieve the stepwise execution of a model, the model debugger reads
in the debugger configuration of the respective modeling language and adds for each activity
node referenced by an activity node step definition a breakpoint using the command interface
provided by the model execution environment. Thereafter, the execution of the model, i.e., the
execution of the modeling language’s xMOF-based configuration for the model, is started. Due
to the set breakpoints, the model execution is suspended whenever an activity nodes referenced
by an activity node step definitions is reached during the underlying execution of the xMOF-
based configuration. At suspension, the debugger generates just as the model execution tool
a runtime profile application, which captures the current runtime state of the debugged model
(cf. Section 5.5.1). The generated runtime profile application is then loaded into the modeling
editor displaying the debugged model, enabling the user to inspect the current runtime state of
the model. Furthermore, the current location of the suspended model, that is the current location
of the suspended underlying executing xMOF-based configuration, is displayed by the model
debugger. This information about the current location of the suspended execution can be easily
retrieved from the trace model captured by the model execution environment for the executing
xMOF-based configuration. For resuming or terminating the model execution, the user can
make use of debug commands provided by the Eclipse debug framework and implemented by
our model debugger.

Example. Figure 5.17 shows a screenshot of the model debugger for stepwise executing the
example Petri net model (cf. Figure 5.8). Thereby, the first execution step of the Petri net model,
i.e., the initialization of the initial token distribution, has been completed and the execution has
been suspended. The debug view depicted on the top left-hand side shows the suspension lo-
cation of the Petri net model, that is the initial node contained by the activity defined for the
operation fire() of the configuration class TransitionConfiguration. The operation fire() has been
called by the operation run() of the configuration class NetConfiguration that in turn has been
called by the operation main() of the same configuration class. As shown in the variables view
depicted on the top right-hand side, the operation fire() is currently being executed for the tran-
sition t. The model is displayed by the graphical editor of the Petri net language depicted on the
middle left-hand side and the generated runtime profile application capturing the current runtime
state of the model is loaded into the editor. As can be seen in the EMF Profile applications view
on the middle right-hand side, one token resides currently at place p1.

115

Debugging

Figure 5.17: Screenshot of model debugger

5.5.3 Discussion on Semantics-based Tool Development

We have shown how the model execution environment for xMOF can be utilized to efficiently
develop semantics-based tools for executable modeling languages defined with fUML. In partic-
ular, we have shown how the runtime state of a model can be obtained from the model execution
environment during or after the execution, as well as how the execution of a model can be ob-
served, controlled, and analyzed. Therefore, we implemented a model execution tool as well as
a model debugger on top of the model execution environment that provide model execution and
model debugging capabilities, respectively, based on the event mechanism, command interface,
and trace model offered by the extended fUML execution environment underlying the model
execution environment for xMOF.

Table 5.1 shows which extensions of the fUML execution environment have been applied
for implementing the respective tool. Both tools make use of the execution environment access
provided by the command interface for retrieving the runtime state of a model after or during its
execution. By observing the trace events issued by the event mechanism during the execution
of a model as well as by utilizing the execution control capabilities offered by the command in-
terface, the implemented model debugger is enabled to stepwise execute a model. Furthermore,
the issued trace events as well as the trace model capturing the executed parts of the model and
their inputs and outputs enable the model debugger to retrieve the location of a suspended model
execution in terms of operations being currently executed as well as their context objects.

116

Event Command Trace
mechanism interface model

Model execution
Retrieval of final runtime state - Execution environ-

ment access
-

Model debugging
Stepwise execution Trace events Execution control -
Retrieval of execution location
and context objects

Trace events - Executions
Inputs and outputs

Retrieval of runtime state - Execution environ-
ment access

-

Semantic model differencing
Construction of trace for differ-
encing

Trace events
Extensional value
events

- -

Table 5.1: Applications of fUML execution environment extensions for developing semantics-
based tools

In Chapter 6, we will present another analysis tool built on top of the model execution en-
vironment, namely a generic framework for realizing semantic model differencing operators.
This framework enables comparing two models semantically, i.e., based on their behavior, by
comparing their trace models capturing the detailed runtime behavior of the two models. For fa-
cilitating the comparison of trace models, a simplified trace is constructed for the two compared
models by utilizing the trace events and extensional value events issued by the event mechanism
provided by the model execution environment (cf. Table 5.1).

By leveraging the event mechanism, command interface, and trace model provided by the
model execution environment for xMOF, further analysis tools building upon the executability
and, thereby, on the behavioral semantics of a modeling language can be implemented, such
as testing environments and dynamic model analysis tools. Thereby, such tools operate on the
behavioral semantics specification of a modeling language to provide analysis capabilities for
models created with the modeling language. By observing, controlling, and analyzing the execu-
tion of the xMOF-based configuration of the used modeling language, the execution of a model
can be observed, controlled, and analyzed. This capability builds the basis for implementing
analysis method and techniques for executable modeling languages defined with fUML.

117

5.6 Summary

Due to the lack of a commonly accepted or even standardized language for formally defining
the behavioral semantics of modeling languages, tools for executing models and analyzing the
models’ execution behavior for comprehension, exploration, validation, or verification purposes
have to be implemented manually for the respective modeling language. To overcome this is-
sue, we propose to apply fUML as a semantics specification language in MDE for defining
executable modeling languages. Therefore, we presented a strategy for integrating fUML—in
particular its activity modeling concepts and action language—with existing metamodeling lan-
guages. Furthermore, we elaborated a methodology for developing semantics specifications with
fUML that integrates seamlessly with existing metamodeling methodologies and metamodeling
environments. By leveraging fUML’s execution environment, models conforming to a modeling
language whose behavioral semantics is defined with fUML can be executed. Required pre- and
post-processing steps are performed by the generic model execution environment that we built
on top of fUML’s execution environment. Thanks to our extensions incorporated into fUML’s
execution environment comprising an event mechanism, command interface, and trace model,
it is possible to observe, control, and analyze model executions. Thus, by leveraging these
extensions, semantics-based tools, such as model debuggers, model testing environments, and
dynamic model analysis tools, can be implemented in a more efficient way. With the integration
of fUML into existing metamodeling languages, metamodeling methodologies, and metamod-
eling environments, we aimed at providing a stimulus towards the establishment of fUML as
common semantics specification language in MDE, as well as towards the automation of the
development of semantics-based tools. In the following, we provide a brief summary of the
contributions presented in this chapter.

Semantics specification language. By investigating distinct strategies for using fUML as a
semantics specification language, we selected the integration-based operational strategy due to
the more direct way of specifying the behavioral semantics as well as the better integration
with existing metamodeling methodologies and metamodeling environments. For realizing this
strategy, the reflexive definition of metamodeling languages as well as their support of inheri-
tance can be exploited, which allows the integration of fUML into the respective metamodeling
language without having to modify its meta-metamodel. This has been demonstrated on the
metamodeling language Ecore. The resulting language is an executable metamodeling language
enabling to define not only the abstract syntax of a modeling language but also the behavioral
semantics of a modeling language in an operational way using fUML.

Semantics specification methodology. To enable a systematic and efficient development of
behavioral semantics specifications with fUML, we elaborated a methodology comprising a set
of processes, techniques, and supporting tools. The defined processes are orthogonal to ex-
isting metamodeling methodologies and only extend them concerning the specification of the
behavioral semantics of modeling languages. The provided techniques and supporting tools
can be integrated into existing metamodeling environments for supporting the development of
behavioral semantics specifications as well as the execution of models based on these specifica-

118

tions. This seamless integration with existing metamodeling methodologies and metamodeling
environments is achieved by a clear separation of the modeling language’s behavioral seman-
tics definition from its abstract syntax definition. We provide tool support for the elaborated
methodology for the metamodeling environment EMF.

Model execution environment. To enable the execution of models, we developed a model
execution environment on top of fUML’s execution environment. This model execution envi-
ronment takes as input the model to be executed as well as the fUML-based behavioral seman-
tics specification of the respectively used modeling language. These two artifacts are converted
to fUML and provided as input to the fUML virtual machine, which carries out the execution.
In particular, the behavioral semantics specification is converted into an fUML model and the
model to be executed is converted into fUML extensional values. The obtained fUML model is
then executed for the obtained fUML extensional values by means of the fUML virtual machine.
Thereby, the model execution environment provides access to the runtime state of the executing
model as well as to the event mechanism, command interface, and trace model incorporated into
fUML’s execution environment.

Semantics-based tool development. The model execution environment provides the basis for
developing semantics-based tools that build upon the executability of a modeling language in an
efficient way, as it provides on the one hand the capability to directly execute models based on
the fUML-based behavioral semantics specification of the used modeling language, and on the
other hand means for observing the state of the execution, controlling the execution, and ana-
lyzing the execution. Therefore, semantics-based tools utilize the event mechanism, command
interface, and trace model incorporated into fUML’s execution environment and made accessible
by the model execution environment. We have shown how this is possible by presenting the im-
plementation of a model execution tool and a model debugger realized on top of the developed
model execution environment.

We evaluated the adequacy of fUML and our semantics specification methodology for devel-
oping executable modeling languages by conducting case studies in which we applied them
to selected modeling languages. The case studies and evaluation results are presented in Sec-
tion 7.2.

5.7 Related Work

In Section 2.2.2, we provided an overview of existing approaches for formally defining the be-
havioral semantics of modeling languages. Thereby we distinguished between translational se-
mantics approaches and operational semantics approaches. In the following, we discuss two ex-
isting semantics specification approaches in more detail, namely Kermeta [72,107] and DMM [41,
64, 145]. These two approaches are highly related to our fUML-based semantics specification
approach, as they are like our approach operational semantics approaches. Furthermore, we
regard them as being among the most advanced and active semantics specification approaches
developed and applied in MDE. In the discussion of these approaches, we provide insights into

119

how semantics specifications are developed using the respective approach, how models are ex-
ecuted based on developed semantics specifications, as well as which facilities are provided for
developing semantics-based tools on top of semantics specifications.

Besides Kermeta and DMM, we also briefly discuss work done by Lai and Carpenter [82,
83], who also propose to use fUML as semantics specification language, but focus on static
verification of semantics specifications developed with fUML.

Kermeta

Kermeta [72, 107] is a metamodeling language that provides metamodeling concepts for defin-
ing not only the abstract syntax but also the behavioral semantics of modeling languages. The
metamodeling concepts provided by Kermeta for defining the abstract syntax of modeling lan-
guages are compliant with EMOF—a subset of MOF—as well as Ecore. For defining the be-
havioral semantics of modeling languages, Kermeta provides an imperative and object-oriented
action language. One key characteristic of Kermeta is that it is an aspect-orientated language
implementing the open-class mechanism that enables the extension of existing metaclasses with
additional attributes, references, and operations. Using this aspect weaving capabilities, Ker-
meta enables the extension of the metamodel of a modeling language with the definition of the
modeling language’s behavioral semantics. Besides defining modeling languages, Kermeta can
also be used to develop any kind of tool for processing models, as it enables loading, modify-
ing, and saving models. Kermeta is integrated with EMF and provides a set of Eclipse plugins
that support in using Kermeta for defining modeling languages and developing modeling lan-
guage tool support. These plugins include a textual editor for creating Kermeta programs, a run
configuration for executing Kermeta programs, and a converter between Kermeta programs and
Ecore-based metamodels.

Semantics specification. Kermeta enables the definition of the behavioral semantics of mod-
eling languages in an operational way. Therefore, aspects are defined for weaving the definition
of the behavioral semantics into a modeling language’s metamodel. The definition of the behav-
ioral semantics consists of the definition of runtime concepts enabling the capture of the runtime
state of an executing model, as well as the definition of the computational steps that are involved
in executing a model and change an executing model’s state.

For defining the runtime concepts capturing a model’s runtime state, aspects are defined that
introduce additional attributes, references, and metaclasses into a modeling language’s meta-
model. Introduced attributes, references, and metaclasses correspond to the structural informa-
tion captured in xMOF-based configurations.

For defining the computational steps of executing a model, aspects are defined that intro-
duced operations into existing metaclasses. While in xMOF, the behavior of operations is defined
using fUML conform activities, Kermeta defines its own imperative action language, which pro-
vides block statements, conditional statements, loop statements, local variable declarations, call
expressions, assignment expressions, literal expressions, lambda expressions, exception han-
dling, as well as OCL-like expressions, such as the collection operations each, forAll, and select.
Furthermore, it is possible do define and check class invariants as well as operation preconditions
and postconditions.

120

1 aspect class Transition
2 {
3 operation fire() i s do
4 se l f .output.each{ o | o .addToken() }
5 se l f .input.each{ i | i .removeToken() }
6 end
7

8 operation isEnabled() : Boolean i s do
9 resul t := input.select{ i | i .heldTokens.size == 0}.isEmpty()
10 end
11 }
12

13 aspect class Place
14 {
15 attribute heldTokens : Set<Token>
16

17 operation addToken() i s do
18 var newToken : Token in i t Token.new
19 newToken.holdingPlace := se l f
20 se l f .heldTokens.add(newToken)
21 end
22

23 operation removeToken() i s do
24 var removedToken : Token in i t se l f .heldTokens.iterator() .next()
25 removedToken.holdingPlace := void
26 se l f .heldTokens.remove(removedToken)
27 end
28 }

Listing 5.1: Semantics specification of Petri nets with Kermeta (excerpt)

Listing 5.1 shows an excerpt of the semantics specification of our Petri net language de-
fined with Kermeta 1.4.1, which is equivalent to the semantics specification defined with xMOF
(cf. Section 5.3). The shown aspects Transition and Place correspond to our configuration classes
TransitionConfiguration and PlaceConfiguration, respectively. Hence, they define the operations
fire(), isEnabled(), addToken(), and removeToken(), as well as the reference heldTokens. For in-
stance, the operation fire() defined in line 3, calls the operation addToken() for each output place
of the transition as well as the operation removeToken() for each input place of the transition.
Therefore, the OCL-like collection operation each provided by Kermeta is used.

Model execution. For enabling the execution of models with Kermeta, an additional so-called
interpreter class has to be introduced into the semantics specification of the modeling language.
This interpreter class has to define the main operation of the semantics specification, which is
responsible for loading the model to be executing and starting the execution process by calling
operations introduced into the metaclasses of the modeling language defining their behavioral
semantics. Thereby, the main operation can take String values as input, for instance to receive
the file path of the model to be executed. In version 1 Kermeta programs are executed by a
Java-based interpreter. In version 2, Kermeta programs are compiled into Scala programs for
execution.

121

Semantics-based tool development. Kermeta can not only be used to define modeling lan-
guages, but it can also be used as a programming language for implementing any kind of tool
for processing models. In particular, semantics-based tools can be developed that build upon the
behavioral semantics specification of a modeling language defined with Kermeta. However, this
usually requires the extension of the behavioral semantics specification with certain function-
ality required for implementing the respective tool. Therefore, again the aspect weaving capa-
bilities provided by Kermeta can be utilized. For instance, to capture execution traces required
for implementing dynamic analysis techniques, one could implement aspects that override cer-
tain operations defined as part of the behavioral semantics specification of a modeling language
for additionally capturing trace information. Our approach differs in this respect, as semantics-
based tools are developed by utilizing the event mechanism, command interface, and trace model
provided by the extended fUML execution environment. Hence, the behavioral semantics spec-
ification itself neither has to be extended nor modified for implementing semantics-based tools
with our approach.

Kermeta is currently undergoing a major evolution step in the course of its integration with the
K3 model-based language workbench [35]5. The new action language of K3 usable for defining
the behavioral semantics of a modeling language is called K3AL, which is built on top of the
programming language Xtend6. As Kermeta 1 and Kermeta 2, K3AL supports aspect-oriented
programming, which enables the extension of existing metaclasses with attributes, references,
and operations. For defining the behavior of operations using K3AL, Xbase [40] is used.

Dynamic Meta Modeling (DMM)

DMM [41, 64, 145] is an approach for defining the behavioral semantics of modeling languages
in an operational way using graph transformation rules. Therefore, DMM provides its own graph
transformation language that enables the expression of manipulations of models in a declarative
way. Advanced features provided by this graph transformation language are negative applica-
tion conditions, universal quantified structures, and rule invocations. The concrete syntax of
DMM graph transformation rules is inspired by the graphical notation of UML communication
diagrams and merges the left-hand side and right-hand side graph of a graph transformation
rule into a single graph. Due to the mathematical foundations of graph transformations under-
lying DMM, behavioral semantics specifications defined with DMM can be formally analyzed
for proving properties of the semantics specification of a modeling language itself or of models
conforming to the respective modeling language. DMM is integrated with Ecore and, hence,
enables the definition of the behavioral semantics of modeling languages whose abstract syntax
is defined by means of Ecore-based metamodels.

Semantics specification. A semantics specification developed with DMM consists of three
parts. The first part is the so-called runtime metamodel, which is an Ecore-based metamodel
defining the runtime concepts needed for expressing the state of executing models. The second

5http://github.com/diverse-project/k3/wiki, accessed 14.08.2014
6http://www.eclipse.org/xtend, accessed 14.08.2014

122

http://github.com/diverse-project/k3/wiki
http://www.eclipse.org/xtend

Transition Place

Token
heldTokens

holdingPlace

input output
Place

Token
heldTokens

holdingPlace

∃

∀
holdingPlace

>0

∃

∀

in in

holdingPlace

holdingPlace holdingPlace

:Place :Transition

:Token :Token

input output

heldTokens heldTokens

:Place

Figure 5.18: Semantics specification of Petri nets with DMM (excerpt)

part of a DMM semantics specification is the runtime transformation, which transforms models
to be executed into runtime models being instances of the runtime metamodel. The third part of
a DMM semantics specification is the DMM rule set, which defines the actual behavioral seman-
tics of the modeling language, i.e., the computational steps involved in executing a model, using
graph transformation rules that operate on the runtime metamodel. The runtime transformation,
as well as the DMM rule set are defined using DMM’s graph transformation language.

While a DMM runtime metamodel corresponds to the structural part of an xMOF-based con-
figuration, i.e., configuration classes as well as their attributes and references, the DMM rule set
corresponds to operations introduced into configuration classes as well as their behavior defini-
tions in terms of fUML conform activities. Both DMM and xMOF require for the execution of a
model, that this model is first transformed, namely into an instance of the runtime metamodel in
the case of DMM and into an instance of the xMOF-based configuration in the case of xMOF. In
xMOF, this transformation is generic due to the convention that an xMOF-based configuration
contains one configuration class for each metaclass. In contrast, no such convention is defined
by DMM resulting in the need for explicitly defining a transformation of models into runtime
metamodel instances. However, DMM provides a technique for automatically generating an
initial runtime transformation that can be adapted by the language designer.

Figure 5.18 shows the DMM rule defining the behavioral semantics of our Petri net language.
This rule is applied to a Petri net if all input places of a contained transition hold at least one
token. On the application of this rule, one token is removed from each input place (indicated
by the red color of the left Token node), and one token is added to each output place of the
transition (indicated by the green color of the right Token node). For expressing this, the rule
makes use of universal quantified structures. In particular, the Place nodes are quantified with
1..* (indicated by the multi-object notation, where the top rectangle has solid borders) and the
Token nodes are quantified as nested (indicated by the dashed borders) meaning that they are
matched in conjunction with the Place node they are connected to.

Model execution. For executing models according to a semantics specification defined with
DMM, the model to be executed as well as the runtime metamodel and the DMM rule set of
the semantics specification are translated into a GROOVE grammar [132]. In particular, the
runtime metamodel is translated into a type graph, the DMM rule set is translated into a set of

123

GROOVE graph transformation rules, and the runtime model obtained by applying the runtime
transformation to the model to be executed is translated into a host graph. The GROOVE tool
set7 is then utilized for performing the model execution by applying the obtained GROOVE
graph transformation rules to the obtained host graph. The result of the execution is a labeled
transition system capturing each possible state of the executed models as well as transitions
between them caused by rule applications. This labeled transition system can then be used to
perform formal analyses of the executed model. For this purpose the GROOVE tool set provides
a model checker that enables the checking of properties expressed in temporal logic.

Semantics-based tool development. For developing semantics-based tools on top of seman-
tics specification created with DMM, the GROOVE tool set can be utilized, which acts as un-
derlying execution environment of DMM. In particular, the GROOVE tool set can be utilized
for generating the state space of models, i.e., labeled transition systems, in a controlled way, as
well as for checking properties on generated state spaces expressed in temporal logic formulas.
By doing so, semantics-based tools have been implemented on top of DMM that work gener-
ically for any modeling language whose behavioral semantics if formally defined with DMM
graph transformation rules. In particular, researchers and students associated with the research
group developing DMM have implemented a testing environment for testing DMM semantics
specifications based on the execution of example models [146], a formal analysis tool for ver-
ifying functional requirements on executable models [147], a non-functional analysis tool for
evaluating performance properties of executable models [145, pp. 195–209], as well as a model
debugger [8].

Developing semantics-based tools on top of DMM-based semantics specifications of model-
ing languages requires utilizing the GROOVE tool set as the underlying model execution infras-
tructure, handling GROOVE grammars representing the definition of a modeling language and
conforming models, as well as handling and analyzing labeled transition systems. In contrast,
with our fUML-based semantics specification approach, semantics-based tools can be imple-
mented by utilizing the extended fUML execution environment that enables the observation,
control, and analysis of the runtime behavior of executing models directly. Hence, with our ap-
proach, tool developers do not need to cope with an additional language or framework, but only
with fUML and its execution environment.

Static Verification of fUML-based Semantics Specifications

We presented our proposal of using fUML as semantics specification language at the Domain-
Specific Modeling (DSM) workshop held in October 2012 [98]. Only three months earlier, in
July 2012, Lai and Carpenter presented the very same proposal at the workshop on Behavioural
Modelling Foundations and Application (BM-FA) [82]. While both proposals suggest the usage
of fUML for defining the behavioral semantics of modeling languages in an operational way,
they differ in the proposed integration of fUML with existing metamodeling languages.

As discussed in Section 5.2.1, there are two alternatives for realizing the operational seman-
tics approach for fUML. We chose the integration-based approach that integrates the behavioral

7http://groove.cs.utwente.nl, accessed 14.08.2014

124

http://groove.cs.utwente.nl

part of fUML, i.e., fUML’s activity modeling concepts as well as action language, with existing
metamodeling languages resulting in executable metamodeling languages (cf. Section 5.2.2). In
contrast, Lai and Carpenter chose the transformation-based approach [82,83]. In their approach,
the abstract syntax as well as the behavioral semantics of a modeling language is defined in
terms of an fUML model. Thereby, the abstract syntax is defined with fUML classes, and the
behavioral semantics is defined with operations introduced in these fUML classes. The behavior
of these introduced operations is defined in terms of fUML activities, which are expressed either
using fUML directly or using Alf. From the defined fUML classes, an Ecore-based metamodel is
automatically generated that can be used to create models conforming to the modeling language.

Lai and Carpenter focus on the static verification of modeling language definitions created
with fUML and Alf to identify structural defects, such as syntax errors and inconsistencies.
For detecting runtime defects, the authors propose a testing approach. However, they do not
utilize the standardized fUML execution environment for executing models and testing modeling
language definitions, but propose to generate Java code from fUML-based modeling language
definitions and apply testing techniques available for Java [83]. In contrast, the aim of our
work is to establish the fUML execution environment as foundation for efficiently developing
semantics-based tools that build upon the executability of models provided by a formal definition
of the used modeling language’s behavioral semantics with fUML.

125

CHAPTER 6
Semantic Model Differencing

6.1 Design Rationale

As models constitute the main software artifacts in MDE, managing their evolution constitutes
a key concern in MDE. One important technique in this realm is model differencing, which is
concerned with identifying differences among independently developed or consecutive versions
of models.

Significant advances in model differencing have been made in the past years by the proposal
of a variety of model differencing approaches. The majority of these existing model differenc-
ing approaches compare models based on their abstract syntax representation. The differencing
algorithm first identifies corresponding model elements among the two models to be compared
and then performs a fine-grained comparison of all corresponding model elements. This results
in a set of syntactic differences among the models, such as model elements that only exist in one
of the two compared models and modifications of the attribute values of corresponding model
elements that exist in both models. The identified syntactic differences among the compared
models are usually represented in terms of edit operations, such as add, delete, and update op-
erations. As shown by Alanen and Porres [3] and later by Lin et al. [90], syntactic differencing
algorithms can be designed in a generic manner by incorporating the modeling language’s meta-
model into the algorithm for reasoning about the structure of the models to be compared. This
means, that syntactic differencing algorithms can be applied to models conforming to any mod-
eling language as they operate on the used modeling language’s abstract syntax definition for
identifying syntactic differences among models.

Syntactic differences among models constitute valuable and efficiently processable infor-
mation sufficient for several application domains. However, they can only approximate seman-
tic differences among models with respect to the models’ meaning [63]. As pointed out by
Maoz et al. [94], a few syntactic differences among models may induce very different seman-
tics and syntactically different models may still induce the same semantics. Semantic model
differencing enables several additional analyses compared to syntactic differencing, such as the
verification of the semantic preservation of changes like refactorings and the identification of se-

127

mantic conflicts among concurrent changes. Moreover, the identification of semantic differences
among models provides the basis for comprehending the evolution of models, as it enables rea-
soning about the meaning of a change, that is the impact a syntactic change of a model has on the
model’s semantics. Hence, being able to reveal semantic differences among models constitutes
a crucial basis for supporting collaborative work on models as well as for carrying out model
management activities, such as model versioning and refactoring, which can be supported by au-
tomated analyses of revealed semantic differences for identifying semantic conflicting changes
and causes of semantic differences.

Significant advances towards semantic model differencing have been recently achieved by
Maoz et al. [94]. They propose an approach for defining enumerative semantic differencing op-
erators yielding so-called diff witnesses, which constitute semantic interpretations over a model
that are valid for only one of two compared models. In this approach, two models to be compared
are translated into an adequate semantic domain whereupon dedicated algorithms are applied to
calculate semantic differences in terms of diff witnesses. Defining a semantic differencing op-
erator for a modeling language following this approach requires the implementation of a trans-
lation of models into an adequate semantic domain, a dedicated analysis algorithm within this
semantic domain for computing semantic differences, and a translation of the obtained analysis
result back to the originally used modeling language in the form of diff witnesses. Following
this procedure, Maoz et al. defined dedicated semantic differencing operators for UML activity
diagrams and UML class diagrams called ADDiff [95] and CDDiff [96], respectively. Devel-
oping semantic differencing operators for a specific modeling language in this way, however,
still remains a major challenge, as one has to develop often non-trivial transformations encoding
the semantics of the modeling language into a semantic domain, perform analyses dedicated to
semantic differencing in this semantic domain, and translate the results into diff witnesses and
into the originally used modeling language. Notably, this challenging process has to be repeated
for every modeling language.

However, given that the behavioral semantics of a modeling language is defined explicitly
and formally, the idea of generic syntactic model differencing [3, 90] based on a modeling lan-
guage’s abstract syntax definition can be transferred to realize generic semantic model differenc-
ing based on a modeling language’s behavioral semantics definition. Moreover, if an operational
semantics approach is applied for defining the behavioral semantics of a modeling language as
advocated in Chapter 5, it is possible to reason about semantic differences among models di-
rectly in the used modeling language, i.e., without the involvement of a different language like
in the approach proposed by Maoz et al. Realizing such a generic semantic model differencing
approach requires techniques to extract semantic interpretations of the models to be compared
from the behavioral semantics specification of the used modeling language and to compare these
semantic interpretations for identifying semantic differences among the models.

Following this idea, we proposed a generic framework that enables the realization of seman-
tic model differencing operators for specific modeling languages [85,86]. According to the idea
of generic syntactic model differencing, we propose to utilize the behavioral semantics specifi-
cation of a modeling language for supporting semantic model differencing. Thereby, semantic
interpretations of the models to be compared, which are required for performing semantic differ-
encing, are extracted from the behavioral semantics specification by leveraging the executability

128

of the models provided by the behavioral semantics specification. In particular, the behavioral
semantics specification is utilized to execute the models to be compared and obtain execution
traces constituting semantic interpretations of the models. By comparing these execution traces,
semantic differences among the models can be identified. For comparing execution traces, syn-
tactic model differencing approaches may be employed, in particular, by defining dedicated
match rules that indicate which syntactic differences among the execution traces constitute se-
mantic differences among the models. Thereby, execution traces leading to the identification
of semantic differences constitute diff witnesses, that are manifestations of semantic differences
among the models. They enable modelers to reason about a model’s evolution and can be further
processed for carrying out model management activities, such as model versioning.

For modeling languages whose behavioral semantics is specified using fUML as proposed in
Chapter 5, it is possible to obtain execution traces in terms of trace models by executing models
using the extended fUML execution environment as presented in Section 5.4. While these trace
models are tailored to fUML-based behavioral semantics specifications, it is in general possible
to obtain execution traces from operationally defined behavioral semantics specifications. Thus,
generic semantic model differencing can be realized based on operationally defined behavioral
semantics specifications in general.

As the semantic model differencing is performed based on concrete execution traces of two
compared models, semantic differences identified by analyzing them depend on the concrete
inputs processed by the models during their execution. Thus, concrete inputs relevant to the
semantic model differencing have to be provided as input to the semantic model differencing.
To fully automated semantic model differencing, these inputs have to be automatically gener-
ated. This is possible by analyzing the behavioral semantics specification of the used modeling
language for the models to be compared.

The characteristics of our semantic model differencing framework are summarized in the
following.

Generic with respect to modeling language. Our semantic model differencing framework
enables the realization of semantic model differencing operators for any executable modeling
language whose behavioral semantics is explicitly and formally defined.

Generic with respect to semantics specification approach. The semantic model differencing
framework can be instantiated for any operational semantics approach that enables executing
models and obtaining execution traces based on which the semantic differencing is performed.

Configurable with respect to semantic equivalence criteria. The semantic model differenc-
ing is performed by syntactically comparing execution traces of models according to match
rules. These match rules may be tailored to the semantic equivalence criterion relevant to the
usage scenario of the respective modeling language.

Automatable with respect to relevant inputs. Inputs for compared models relevant to the
semantic model differencing may be either defined manually or generated from behavioral se-
mantics specifications.

129

In this chapter, we present our generic semantic model differencing framework as described in
the following. In Section 6.2, we present an overview of our generic semantic model differencing
framework. Subsequently, we show how the framework can be instantiated for fUML-based
semantics specifications and how it can be instantiated for operational semantics approaches
in general in Section 6.3 and Section 6.4, respectively. In Section 6.5, we discuss how inputs
required for fully automating semantic model differencing can be generated from fUML-based
behavioral semantics specifications.

6.2 Overview of the Semantic Model Differencing Framework

We propose a generic semantic model differencing framework that can be instantiated to re-
alize semantic model differencing operators for specific modeling languages. The framework
utilizes the behavioral semantics specification of a modeling language, which can be defined
using existing semantics specification approaches, such as xMOF introduced in Chapter 5, Ker-
meta [72, 107], or DMM [41, 64, 145]. Behavioral semantics specifications can be used for
various application domains including, for instance, model simulation, verification, and valida-
tion. We use behavioral semantics specifications also for identifying semantic differences among
models. For doing so, we exploit the fact that behavioral semantics specifications enable the ex-
ecution of models and that the identification of semantic differences among models is possible
based on execution traces, as they reflect the models’ behavior and, hence, constitute semantic
interpretations of the models. Our framework is applicable irrespective of how the examined
models are executed—e.g., through an interpreter, code generation, or the translation to another
language—but only requires that execution traces reflecting the models’ behavior and, therewith,
their semantics are captured during the execution of the models.

Figure 6.1 depicts an overview of our semantic model differencing framework. For iden-
tifying semantic differences among two models M1 and M2, three steps are performed by the
framework, namely syntactic matching, model execution, and semantic matching. These steps
are described in more detail in the following.

1. Syntactic matching. In the syntactic matching step, syntactically corresponding elements
of the two compared models M1 and M2 are identified based on defined syntactic match rules
MatchRulesSyn. Thereby, syntactic correspondences Csyn

M1,M2
between the two models are

established. This step is realized using existing syntactic model differencing approaches.

2. Model execution. In the model execution step, the models M1 and M2 are executed for
inputs IM1 and IM2 relevant to the semantic model differencing based on the behavioral seman-
tics specification of the modeling language the models conform to. During the model execution,
the execution traces TM1 and TM2 are captured, which constitute semantic interpretations of the
executed models. The execution of the models as well as the capturing of execution traces is re-
alized by utilizing the execution environment provided by the respectively employed semantics
specification approach.

130

M1

M2

Syntactic
Matching

Match
Rules
Syn

CM1,M2
syn

Model
Execution

M1

M2

IM1 IM2

TM2

TM1

Match
Rules
Sem

Semantic
Matching CM1,M2

sem

CM1,M2
syn

TM2

TM1

C … Correspondence I … Input M … Model T … Trace

1. Syntactic Matching 2. Model Execution 3. Semantic Matching

Figure 6.1: Overview of semantic model differencing framework

Our framework is based on the following two assumptions. First, it is assumed that the
model execution is deterministic, meaning that the execution of a model yields for a given input
always the same execution trace. Second, it is assumed that execution traces are of finite size.

3. Semantic matching. In the semantic matching step, the captured execution traces TM1

and TM2 are compared based on semantic match rules MatchRulesSem to establish semantic
correspondences Csem

M1,M2
between the models. The semantic match rules define the semantic

equivalence criterion to be applied for the semantic differencing. This means, that they define
which syntactic differences among the execution traces TM1 and TM2 constitute semantic differ-
ences among the two compared models. Thereby, two models are semantically equivalent, if the
traces match according to the semantic match rules. Traces, which do not match constitute diff
witnesses that are manifestations of semantic differences among the compared models. In the
semantic matching, also the syntactic correspondences between the compared models Csyn

M1,M2

may be taken into account. Also this step is realized by applying existing syntactic model dif-
ferencing approaches for comparing execution traces.

Our semantic model differencing framework is generic, because it enables the implementation
of semantic differencing operators for any modeling languages whose behavioral semantics is
defined using any operational semantics approach that enables executing models and obtaining
execution traces. Thereby, it follows the spirit of generic syntactic differencing—that is utilizing
metamodels for obtaining the information on the syntactic structure of models required for per-
forming syntactic differencing—by utilizing behavioral semantics specifications for obtaining
the information on the semantics of models for performing the semantic differencing. From all
artifacts involved in the semantic differencing, only the semantic match rules are specific to the
realization of a semantic differencing operator for a modeling language. Thereby, the frame-
work is configurable regarding the semantic equivalence criterion to be applied, as it allows the
realization of distinct semantic differencing operators for the same modeling language by defin-
ing distinct semantic match rules realizing the respective semantic equivalence criterion. Both

131

of these characteristics differentiate our semantic model differencing approach from currently
existing semantic model differencing approaches.

While this section gave an overview of our semantic model differencing framework, we will
discuss more insights in the following two sections. In Section 6.3, we show how the framework
can be instantiated for realizing semantic model differencing operators for modeling languages
whose behavioral semantics is defined using fUML as presented in Chapter 5. Thereafter, in
Section 6.4, we show that an instantiation of the framework is possible for any operational
semantics approach that provides the possibility to execute models and obtain execution traces
for performed model executions.

6.3 Semantic Differencing for fUML-based Semantics
Specifications

In Chapter 5, we have presented an operational semantics approach based on fUML that enables
the definition of the behavioral semantics of modeling languages in an explicit, formal, and
model-based way. In this approach, the behavioral semantics of a modeling language is defined
by specifying fUML conforming activities that define an interpreter for models conforming to
the modeling language. Behavioral semantics specifications defined using this approach enable
the execution of models conforming to the respective modeling languages by utilizing fUML’s
execution environment. Therefore, we provide a generic model execution environment that is
built on top of fUML’s execution environment as well as on our extensions of this execution
environment presented in Chapter 4. One of these extensions is concerned with providing the
means for dynamically analyzing models. In particular, this extension captures trace models
for model executions carried out by means of fUML’s execution environment, which constitute
execution traces that represent the runtime behavior of executed models. As captured trace
models represent the behavior of executed models, they constitute semantic interpretations of
these models. Hence, trace models captured by the extended fUML execution environment can
be directly used for performing semantic model differencing. In particular, by syntactically
comparing the trace models captured for two models, semantic differences among these models
can be identified. The syntactic comparison of trace models can be realized by applying generic
syntactic model differencing approaches that allow the definition of comparison algorithms for
models conforming to arbitrary modeling languages.

In the following, we discuss the instantiation of our semantic model differencing framework
for fUML-based semantics specifications in more detail. Therefore, we make again use of our
Petri net language, whose abstract syntax and behavioral semantics is defined in Section 5.3.

Example. For Petri nets, different equivalence criteria exist, such as marking equivalence,
trace equivalence, and bisimulation equivalence [46]. Using our semantic model differencing
framework, we will develop a semantic model differencing operator that compares two Petri
net models according to the equivalence criterion final marking equivalence, which we defined
for illustration purposes. Two Petri net models with the same set of places are final marking
equivalent, if for the same initial markings the same final markings are reached, that is if for the
same initial token distribution both Petri nets reach the same final token distribution at the end of

132

M1

t1 p1 p2

p3

p4 t2

M2

t1 p1 p2 p3 t2 t3 p4

T : M1,1 I = {} MF = {} M1,1
T : M1,2 I = {p1=1} MF = {p4=1} M1,2
T : M1,3 I = {p2=1} MF = {p2=1} M1,3
T : M1,4 I = {p3=1} MF = {p3=1} M1,4
T : M1,5 I = {p1=1,p2=1} MF = {p2=1,p4=1} M1,5
T : M1,6 I = {p1=1,p3=1} MF = {p3=1,p4=1} M1,6
T : M1,7 I = {p2=1,p3=1} MF = {p4=1} M1,7
T : M1,8 I = {p1=1,p2=1,p3=1} MF = {p4=2} M1,8

T : M2,1 I = {} MF = {} M2,1
T : M2,2 I = {p1=1} MF = {p4=1} M2,2
T : M2,3 I = {p2=1} MF = {p4=1} diff witness

M2,3

T : M2,4 I = {p3=1} MF = {p4=1} diff witness M2,4
T : M2,5 I = {p1=1,p2=1} MF = {p4=2} diff witness

M2,5

T : M2,6 I = {p1=1,p3=1} MF = {p4=2} diff witness

M2,6
T : M2,7 I = {p2=1,p3=1} MF = {p4=2} diff witness M2,7
T : M2,8 I = {p1=1,p2=1,p3=1} MF = {p4=3} diff witness M2,8

Figure 6.2: Semantic model differencing example: Models and inputs

their execution terminates. Please note that we restrict ourselves in this example to terminating
Petri nets.

Figure 6.2 depicts two example Petri net models M1 and M2, which have the same set of
places {p1, p2, p3, p4} but comprise different transitions. Below the models, the final markings
MF of the Petri nets for given inputs IM1 and IM2 defining the initial markings of the Petri nets
are shown. For the first input IM1,1 and IM2,1 consisting of no tokens, both Petri nets reach a
final marking consisting also of no tokens. For the second input IM1,2 and IM2,2 defining an
initial marking comprising one token residing at place p1, both Petri nets reach the same final
marking comprising one token residing at place p4. For all other given inputs, the two Petri nets
reach different final markings. Thus, the two Petri net models are not final marking equivalent
and the execution traces, which we obtain by executing the models on the inputs IM1,3 to IM1,8

and IM2,3 to IM2,8 constitute diff witnesses.

1. Syntactic matching. In the syntactic matching, syntactically corresponding elements of
two compared models are identified based on syntactic match rules. Therefore, existing generic
syntactic model differencing approaches can be applied that allow the definition of syntactic
match rules for models conforming to arbitrary modeling languages. These syntactic match
rules define comparison algorithms that operate on the metamodel of the respective modeling
language and specify how models conforming to this modeling language are compared to iden-
tify syntactically corresponding model elements.

For defining syntactic match rules, the implementation of our semantic model differencing
framework uses the model comparison language ECL [78,79]. ECL enables the specification of
model comparison algorithms with declarative match rules that identify pairs of corresponding
elements between models. These rules can be executed for comparing two models resulting
in a match trace. A match trace consists of a number of matches that reference the model
elements that have been compared and indicate whether these two model elements do match,
i.e., correspond to each other, or do not match according to an applied match rule.

133

1 rule MatchNet
2 match left : Left!Net with right : Right!Net {
3 compare : left.places.matches(right.places) and left.transitions.matches(right.transitions)
4 }
5

6 rule MatchPlace
7 match left : Left!Place with right : Right!Place {
8 compare : left.name = right.name
9 }
10

11 rule MatchTransition
12 match left : Left!Transition with right : Right!Transition {
13 compare : left.name = right.name
14 }

Listing 6.1: Semantic model differencing example: Syntactic match rules for Petri nets

Example. For the Petri net language we defined three syntactic match rules with ECL, which
are shown in Listing 6.1. The match rule MatchNet defines that two Net instances contained by
two compared Petri net models match if both their places and transitions match. For matching
places and transition, the match rules MatchPlace and MatchTransition are invoked that define that
two Place instances and two Transition instances match if they have the same name.

The execution of these match rules on our example Petri net models depicted in Figure 6.2
leads to the identification of six matches, namely between the four same named places p1, p2,
p3, and p4 as well as between the two same named transitions t1 and t2.

2. Model execution. In the model execution, the two compared models are executed for
given inputs. Therefore, the generic model execution environment built on top of the ex-
tended fUML execution environment is utilized (cf. Section 5.4). For performing a model
execution, the generic model execution environment executes the fUML-based behavioral se-
mantics specification—in particular, the fUML activities contained by the behavioral semantics
specifications—for the model and a given input using the extended fUML execution environ-
ment. During the model execution, the extended fUML execution environment captures a trace
model representing the runtime behavior of the fUML-based behavioral semantics specification
for the model and the given input. In particular, as described in Section 4.4, the trace model
captures information about which parts of the fUML-based behavioral semantics specification
have been executed for the model and the given input, the inputs and outputs of these executed
parts, as well as token flows between them. Thus, captured trace models represent the runtime
behavior of executed models for a given input and, hence, constitute semantic interpretations of
the models.

For enabling the semantic differencing of two models, both models are executed for given
inputs and the captured trace models are handed over to the semantic matching where they are
syntactically compared for identifying semantic differences among the models.

Example. In the execution of Petri net models, first their markings are initialized according
to a given input defining the initial token distribution of the Petri nets. Thereafter, enabled
transitions are fired sequentially leading to new markings of the Petri nets. In Figure 6.2, eight

134

distinct initial markings of our example Petri nets defined by the inputs IM1 and IM2 as well as
the resulting final markings MF are shown.

To realize a semantic model differencing operator that applies the final marking equivalence
criterion on Petri net models, we have to compare the final markings resulting from the execution
of the Petri net models. This information is held by the trace models captured by the extended
fUML execution environment for executed Petri net models. In particular, a trace model captures
each manipulation of the model’s runtime state performed during the execution in terms of value
snapshots. Thus, for an executed Petri net it holds—besides other information—the information
about the creation and destruction of tokens at places of the Petri net caused by the firing of
enabled transitions. Using this information, we can obtain the final markings of two compared
Petri net models and perform the semantic matching applying the final marking equivalence
criterion.

3. Semantic matching. In the semantic matching, the trace models captured during the exe-
cution of the models to be compared are used for identifying semantic differences among these
models. In particular, the trace models are syntactically compared by applying semantic match
rules. These semantic match rules define which syntactic differences among the trace models
constitute semantic differences among the compared models. Therefore, the semantic match
rules specify a comparison algorithm that establishes correspondences between the elements
contained by the trace models of two compared models. Two models are semantically equiva-
lent, if a correspondence between the two trace models, i.e., between the single Trace instance
contained by each trace model, can be established. Otherwise, i.e., if this correspondence can
not be established, elements contained by the trace models, which have been compared through
the application of a semantic match rule but do not correspond to each other, constitute seman-
tic differences among the compared models. Consequently, these trace models constitute diff
witnesses, testifying the existence of semantic differences among the compared models.

The semantic match rules are specific to the considered modeling language as well as to the
semantic equivalence criterion to be applied. Thereby, our approach is flexible with regard to the
applied semantic equivalence criterion, as semantic match rules can be expressed for different
semantic equivalence criteria of the same modeling language. Depending on the usage scenario
of a modeling language, different semantic equivalence criteria for models may apply. For Petri
nets, for instance, we already mentioned three distinct semantic equivalence criteria, namely
marking equivalence, trace equivalence, and bisimulation equivalence [46]. If Petri nets are,
for example, used to define production processes, where the tokens residing at places represent
production resources, the marking equivalence criterion might be the most suitable semantic
equivalence criterion. However, if Petri nets are used to define, for example, business processes,
the trace equivalence criterion might be more adequate.

Like for defining syntactic match rules, the implementation of our semantic model differ-
encing framework makes use of ECL for defining semantic match rules.

Example. The semantic match rules for determining whether two Petri net models are final
marking equivalent are shown in Listing 6.2. The rule MatchTrace is responsible for matching
the trace models captured during the execution of two compared Petri net models for a given

135

initial token distribution. If the Petri nets are final marking equivalent for the given initial token
distribution, this rule has to return true, otherwise false. Therefore, the final markings of both
Petri net models are obtained from the trace models, which is represented by the set of links
between tokens existing at the end of the execution and the places they reside at. If these sets of
links match, the two compared Petri net models are final marking equivalent for the given initial
token distribution. In the following, we discuss the semantic match rules for comparing Petri net
models according to the final marking equivalence criterion depicted in Listing 6.2 in detail.

In the match rule MatchTrace, first the final markings of the compared Petri net models are
obtained from the trace models. In particular, the links, which exist in the end of the execution
between the places of the Petri nets and tokens created during their execution for the associa-
tion named “holdingPlace” are retrieved by invoking the operation getFinalHoldingPlaceLinks().
These links represent the information which tokens resided at which places in the end of the
execution of the respective Petri net and, hence, the final marking of the Petri net. For retrieving
them, the operation getFinalHoldingPlaceLinks() first selects all value instances captured by the
trace models, which have not been destroyed during the execution and which capture the state
of links, second selects those value instances that capture the state of links being instances of
the association “holdingPlace”, third collects the respective last value snapshots of the selected
value instances, and fourth collects the actual snapshot values, i.e., links.

Figure 6.3 illustrates this selection of links between places and tokens by depicting excerpts
of the trace models TM1,7 and TM2,7 captured for the execution of the two example Petri net
models for the inputs IM1,7 and IM2,7 comprising one token residing at Place p2 and one token
residing at Place p3 (cf. Figure 6.2). These trace model excerpts show the value instances cap-
tured for the links we are interested in, namely the links representing the existence of tokens at
places during the model execution. The respective first two value instances are captured for the
initial tokens residing at p2 and p3 represented by the links l1 and l2 in the trace model TM1,7

and l4 and l5 in the trace model TM2,7. As for both Petri nets this initial marking leads to the
firing of transitions, both value instances are destroyed during the execution, which is indicated
by the existing destroyer references. In the first Petri net M1, the transition t2 is fired leading to a
token residing at place p4 constituting the final marking. This is represented by the third shown
value instance for the link l3. Hence, the operation getFinalHoldingPlaceLinks() selects this link
l3. In the second Petri net M2, both transitions t2 and t3 are enabled due to the initial marking.
The firing of t2 leads to the destruction of the first value instance for the link l4 representing that
a token resides at p2 and to the creation of the third value instance for the link l6 representing
that a token resides at p3. At this point in time of the execution, two tokens reside at place p3.
Hence, the transition t3 is fired two times leading to the destruction of these two tokens and the
links l5 and l6 and to the creation of two tokens residing at place p4 represented by the links
l7 and l8. As these two tokens represent the final marking of the Petri net M2, the links l7 and
l8 are selected by the operation getFinalHoldingPlaceLinks().

In the match rule MatchTrace, the retrieved links finalHoldingPlaceLinksLeft and finalHolding-
PlaceLinksRight representing the final markings of the executed Petri nets are matched with each
other. If for each link in finalHoldingPlaceLinksLeft a corresponding link exists in finalHolding-
PlaceLinksRight and vice versa, both Petri nets reach the same final marking and are, hence, final
marking equivalent. Thus, in this case, the value true is returned by the match rule.

136

The matching of links between places and tokens is performed by applying the rule Match-
Link. Therefore, the places being linked by the two compared links are determined using the
operation getLinkedObject(). They denote the places a token contained by the final markings
of the Petri nets resided at. If the determined places match, both compared links represent the
existence of a token at the same place and the rule returns true indicating that the links match.

The places being linked are matched by the rule MatchPlace. For understanding this rule
we have to bear in mind that for the execution of Petri net models, they are translated into
fUML extensional values by the generic model execution environment. Furthermore, the Petri
net models have already been syntactically compared in the syntactic matching step leading to
the establishment of correspondences between places and transitions contained by the compared
Petri nets. Hence, first the original places placeLeft and placeRight contained by the Petri net
models are obtained from the conversion result held by the generic model execution environment
by calling the operation getInputObject(). Thereafter, it is checked whether a correspondence
between these places has been established during the syntactic matching. If this is the case, the
match rule returns true indicating that the two compared places being linked with a token match.

As shown in Figure 6.3, the semantic match rule MatchPlace establishes a match between the
objects representing place p4 of the two compared Petri net models M1 and M2. Furthermore,
the semantic match rule MatchLink establishes a match between the links l3 and l7 representing
that a token resides at place p4 at the end of the execution of the two compared Petri net models.
However, no match was established for the link l8 representing that a second token resides at
place p4 at the end of the execution of the Petri net model M2. Hence, the semantic match rule
MatchTrace returns false, indicating that the two compared trace models TM1,7 and TM2,7 do not
match. Thus, the Petri net models M1 and M2 are not final marking equivalent and the trace
models TM1,7 and TM2,7, consequently, constitute diff witnesses.

In this section, we have presented the instantiation of our generic semantic model differencing
framework for fUML-based behavioral semantics specifications and illustrated how semantic
model differencing operators can be realized using this instantiation.

For fUML-based behavioral semantics specifications, semantic model differencing can be
realized by utilizing the extended fUML execution environment for executing the models to
be compared for given inputs and syntactic model differencing techniques for comparing the
trace models captured for the performed model executions according to a semantic equivalence
criterion suitable to the respective modeling language and its usage scenario. The only artifact
that has to be implemented for realizing a specific semantic model differencing operator is the
comparison algorithm for trace models implementing the semantic equivalence criterion to be
applied in the semantic model differencing. We have shown how such comparison algorithms
can be defined using declarative match rules. For applying a semantic differencing operator to
two models, the models are executed for the same set of inputs leading to a set of trace models. If
the trace models captured for the execution of the two compared models for the same input match
according to the semantic match rules, the models are semantically equivalent with respect to
the applied semantic equivalence criterion. Otherwise, if the trace models captured for at least
one input do not match, the models are not semantically equivalent and the trace models that do
not match constitute diff witnesses.

137

1 rule MatchTrace
2 match left : Left!Trace with right : Right!Trace {
3 compare {
4 var finalHoldingPlaceLinksLeft : Set = left.getFinalHoldingPlaceLinks() ;
5 var finalHoldingPlaceLinksRight : Set = right.getFinalHoldingPlaceLinks() ;
6 return finalHoldingPlaceLinksLeft.matches(finalHoldingPlaceLinksRight) and
7 finalHoldingPlaceLinksRight.matches(finalHoldingPlaceLinksLeft) ;
8 }
9 }
10

11 operation Trace getFinalHoldingPlaceLinks() : Set {
12 return se l f .valueInstances
13 .select(vi | vi.destroyer = null and vi.runtimeValue.isTypeOf(Link))
14 / / se lect value instances of a l l l inks exis t ing at termination
15 .select(vi | vi.runtimeValue.type.name = "holdingPlace")
16 / / se lect value instances of l inks being instances of association "holdingPlace"
17 .collect(vi | vi.snapshots.get(vi.snapshots.size() − 1))
18 / / col lec t las t snapshots of value instances
19 .collect(s | s .value) ;
20 / / col lec t values of snapshots (Link instances)
21 }
22

23 @lazy
24 rule MatchLink
25 match left : Left!Link with right : Right!Link {
26 compare {
27 var placeLeft : Object = left.getLinkedObject("holdingPlace") ;
28 var placeRight : Object = right.getLinkedObject("holdingPlace") ;
29 return placeLeft.matches(placeRight) ;
30 }
31 }
32

33 operation Link getLinkedObject(endName : String) : Object {
34 var end : Property = se l f .type.memberEnd.select(me | me.name = endName) ;
35 var objectReference : Reference = se l f .getFeatureValue(end) .values.get(0) ;
36 return objectReference.referent;
37 }
38

39 @lazy
40 rule MatchPlace
41 match left : Left!Object with right : Right!Object {
42 guard : left.isPlaceObject() and right.isPlaceObject()
43 compare {
44 var placeLeft : Place = conversionResult.getInputObject(left) ;
45 var placeRight : Place = conversionResult.getInputObject(right) ;
46 return placeLeft.matches(placeRight) ; / / correspondences established in syntactic matching
47 }
48 }
49

50 operation Object isPlaceObject() : Boolean {
51 return se l f .types.select(t | t .name = "PlaceConfiguration") .size() <> 0;
52 }

Listing 6.2: Semantic model differencing example: Semantic match rules based on fUML trace
model for Petri nets (final marking equivalence)

138

: Class

- name = "PlaceConfiguration"

: FeatureValue : Reference

: FeatureValue : Reference

: FeatureValue : Reference

: ValueInstance

: ValueInstance

: ValueInstance

: ValueSnapshot

: ValueSnapshot

: ValueSnapshot

: ActivityNodeExecution

type memberEnd feature

featureValues values referent

types

featureValues values referent

featureValues values

value

value

value

snapshots

snapshots

snapshots

valueInstances

destroyer

destroyer

l4 : Link

l5 : Link

p2 : Object

p3 : Object

: Association

- name = "holdingPlace"

: Property

- name = "holdingPlace"

type

: FeatureValue : Reference : ValueSnapshot

: ActivityNodeExecution

featureValues values value snapshots

destroyer

l6 : Link

: Reference : ValueInstance : ValueSnapshot
featureValues values

referent

value

snapshots
: FeatureValue

final “holdingPlace” links

: FeatureValue : Reference

: FeatureValue : Reference

: FeatureValue : Reference

: ValueInstance

: ValueInstance

: ValueInstance

: ValueSnapshot

: ValueSnapshot

: ValueSnapshot

type memberEnd feature

featureValues values referent

types

featureValues values referent

featureValues values referent

value

value

value

snapshots

snapshots

snapshots

valueInstances

destroyer

destroyer

l1 : Link

l2 : Link

p2 : Object

p3 : Object

: Association

- name = "holdingPlace"

: Property

- name = "holdingPlace"

type

final “holdingPlace” links

: Class

- name = "PlaceConfiguration"

T M1,7

T M2,7

: ActivityNodeExecution

: ActivityNodeExecution

p4 : Object

l7 : Link

: ValueInstance

Matching element Element with missing match fUML model element Trace model element

: Trace

: Trace
: ActivityNodeExecution

l3 : Link

l8 : Link

p4 : Object

Figure 6.3: Semantic model differencing example: Excerpts of fUML trace models

139

6.4 Semantic Differencing for Operationally Defined Semantics
Specifications

In the previous section, we have introduced the instantiation of our semantic model differencing
framework for fUML-based behavioral semantics specifications. Using this instantiation it is
possible to apply semantic differencing to models conforming to a modeling language whose
behavioral semantics is defined using fUML. Thereby, the semantic model differencing is real-
ized as comparison of trace models obtained from the execution of two compared models. These
trace models can be retrieved from the extended fUML execution environment and adhere to an
execution trace format specific to fUML-based behavioral semantics specifications.

However, retrieving execution traces required for realizing semantic model differencing fol-
lowing our approach is not only possible for fUML-based behavioral semantics specifications
but for operationally defined behavioral semantics specifications in general. Therefore, either
the execution environment provided by the respective operational semantics approach can be
utilized, or the behavioral semantics specification itself can be manually or automatically ex-
tended for capturing execution traces.

To achieve genericity of our semantic model differencing framework with respect to the
concretely applied semantics specification approach, we defined a generic execution trace for-
mat. This generic execution trace format serves as interface to our semantic model differencing
framework. In particular, the semantic model differencing is realized as comparison of execu-
tion traces conforming to this format. Hence, through the introduction of the generic execution
trace format, our semantic model differencing framework does not depend on a specific se-
mantics specification approach or execution environment, but only operates on execution traces
conforming to this format.

In the following, we present the generic execution trace format, discuss how execution traces
adhering to this format can be retrieved from behavioral semantics specifications defined with
different operational semantics approaches, and describe how semantic model differencing is
realized based on execution traces conforming to the generic format in more detail.

6.4.1 Generic Execution Trace Format

The generic execution trace format used for realizing semantic model differencing based on be-
havioral semantics specifications defined using any operational semantics approach is defined
by the metamodel depicted in Figure 6.4. A trace (metaclass Trace) consists of a set of states
(metaclass State), which capture the runtime state of a model at a specific point in time of its
execution. Therefore, a state consists of snapshots of each model element’s state (reference
objects). In an operational semantics approach, the state of model elements is captured by in-
stances of the runtime concepts defined in the semantics specification (cf. Section 2.2.2). If
EMF is used as metamodeling environment for defining runtime concepts, these instances are
instantiations of Ecore’s metaclass EObject. Transitions between consecutive states of an exe-
cuted model (metaclass Transition) are labeled with the event (metaclass Event) that caused the
respective state change leading from one state to another state (references source and target).

Execution traces conforming to this generic format represent the runtime behavior of models

140

Trace

State

Transition
Event

qualifiedName : EString

EObject
states *

transitions * event 1

source 1

outgoing 0..1

target 1

incoming 0..1

objects *

Figure 6.4: Generic execution trace format for semantic model differencing

in terms of sequences of the models’ runtime states during their execution. Thus, they constitute
traces through the state transition systems defined by the used modeling languages’ operationally
defined behavioral semantics specifications. By analyzing such execution traces, it is possible to
determine each runtime state of an executed model, transitions between these runtime states, as
well as events causing state transitions.

6.4.2 Capturing Execution Traces

For capturing execution traces adhering to the generic execution trace format introduced in the
previous section, means for accessing the runtime state of an executing model are required. This
means might either be provided by the execution environment of the respectively employed op-
erational semantics approach or introduced into the behavioral semantics specification itself.
The utilization of the execution environment for capturing execution traces clearly is to be pre-
ferred over the extension of the behavioral semantics specification. In the following, we discuss
for three distinct operational semantics approaches, namely fUML, Kermeta, and DMM, how
execution traces complying to the defined format can be captured.

Capturing Execution Traces with fUML

As the execution environment for fUML-based behavioral semantics specifications is built upon
the extended fUML execution environment, it provides means for observing the runtime state
of a model during its execution as well as means for dynamically analyzing the runtime states
of a model after its execution finished. For the former, the event mechanism of the extended
fUML execution environment can be utilized, for the latter, a trace model can be retrieved from
the extended fUML execution environment. Both enable the construction of execution traces
adhering to the defined generic execution trace format.

For our implementation, we chose the former approach, namely the utilization of the event
mechanism provided by the extended fUML execution environment for capturing execution
traces. The event mechanism issues an extensional value event whenever the runtime state of
an executing model changes due to the execution of fUML actions, such as create object ac-
tions, destroy object actions, and add structural feature value actions. Thus, when receiving
an extensional value event, our implementation creates a new state and adds it to the execution
trace, copies the current runtime state of the model, and adds this copy to the newly created

141

state. Furthermore, a transition from the last state already contained by the execution trace to
this newly created state is added to the execution trace and an event is created for this transition.
Thereby, the event of the transition is labeled with the full qualified name of the action whose
execution caused the current runtime state change, i.e., whose execution led to the issuing of
the received extensional value event. This action can again be determined by utilizing the event
mechanism. In particular, the very last event issued by the event mechanism before the issuing
of an extensional value event is an action entry event indicating the start of the execution of the
action causing the respective change of the model’s runtime state.

Alternatively, execution traces adhering to the defined generic format could be constructed
from the trace models provided by the extended fUML execution environment for performed
model executions. In particular, from the value snapshots captured by a trace model, all runtime
states of the executed models as well as the information which action execution led to the re-
spective runtime state can be retrieved. Thus, based on the value snapshots and action executions
captured in a trace model, states, transitions, and events can be accordingly derived and captured
in an execution trace.

Capturing Execution Traces with Kermeta

To capture execution traces for model executions performed based on behavioral semantics spec-
ifications defined with Kermeta, two alternative approaches may be applied.

The first alternative is to extend the behavioral semantics specifications of modeling lan-
guages, such that execution traces are captured during the execution of conforming models.
Therefore, Kermeta’s aspect weaving capabilities as well as action language may be used. In
particular, operations have to be introduced into the behavioral semantics specification of a mod-
eling language, which are responsible for retrieving the current runtime state of an executing
model and adding a new state to the execution trace. Furthermore, the operations defined as part
of the behavioral semantics specification themselves have to be extended, such that after each
statement, which changes the runtime state of an executing model, the operations responsible
for updating the execution trace are called. These required extensions of behavioral semantics
specifications may either be performed manually or achieved in an automated way. Automat-
ing the required extensions is possible due to fact that Kermeta programs are models themselves
conforming to an Ecore-based metamodel. Thus, by statically analyzing a Kermeta-based behav-
ioral semantics specification, statements which change the runtime state of an executing model
may be determined and additional statements may be introduced, which cause the update of an
execution trace. Thereby, the update of an execution trace may be implemented generically in its
own class, which is then reused for any behavioral semantics specification defined with Kermeta.

The second alternative for capturing execution traces is to leverage Kermeta’s integration
with EMF. In particular, by utilizing EMF’s notification and adapter framework, it is possible
to receive notifications about each change applied to a model. Thus, by adding an adapter to the
model being executed, each update of the model’s runtime state may be observed. This enables
the construction of execution traces adhering to our generic format.

142

Capturing Execution Traces with DMM

When DMM is used for defining the behavioral semantics of modeling languages, execution
traces adhering to our generic execution trace format may be constructed by utilizing DMM’s
execution environment, namely the GROOVE tool set. Therefore, we may apply two alternative
approaches discussed in the following.

In the first approach, we may utilize the GROOVE tool set for applying the graph transfor-
mation rules defining the behavioral semantics of the respective modeling language in a stepwise
manner leading to a stepwise execution of a model. When doing so, the host graph represent-
ing the current runtime state of the executing model is stepwise updated. Thus, after each rule
application, the current state of the host graph may be retrieved, translated back to the runtime
metamodel defined as part of the semantics specification, and added to a newly created state in
the execution trace. Thereby, transitions between states may be labeled with the name of the
graph transformation rule applied in the last execution step.

Alternatively, an execution trace complying to our generic execution trace format may be
constructed from the labeled transition system generated by the GROOVE tool set for a per-
formed model execution. This labeled transition system represents each possible runtime state
of an executed model in terms of host graphs as well as transitions between these states, which
are labeled with the name of the applied graph transformation rule leading to the respective state
transition. Thus, for each trace through the generated labeled transition system, one execution
trace adhering to our generic format may be derived. In particular, for each state in the labeled
transition system, one state is added to the execution trace. Thereby, the host graph of the re-
spective state in the labeled transition system is translated back to the runtime metamodel and
the resulting representation of the model’s runtime state is added to the newly created state in
the execution trace. Furthermore, for the new state a transition as well as an event for this tran-
sition are added to the execution trace. Thereby, the event is labeled with the name of the graph
transformation rule leading to the respective state transition, which can be easily retrieved from
the labeled transition system.

6.4.3 Semantic Model Differencing Based on Generic Execution Traces

In the previous section, we have shown that it is in general possible to retrieve execution traces
adhering to our generic execution trace format from operationally defined behavioral semantics
specifications. As will be described in the following, execution traces complying to this for-
mat enable the realization of semantic model differencing in a generic manner. By relying only
on this generic execution trace format, our semantic model differencing framework becomes
generally applicable irrespective of the operational semantics approach used for defining the
behavioral semantics of a modeling language. For instantiating the framework for a specific
operational semantics approach, it is only required that this semantics specification approach
provides means for constructing execution traces complying to the generic execution trace for-
mat. In the following, we recap the three steps involved in the semantic model differencing and
detail the semantic matching step performed on execution traces adhering to our generic format.

143

1. Syntactic matching. In the syntactic matching step, two models M1 and M2 are syntacti-
cally compared by utilizing existing generic model differencing techniques. As this step is only
concerned with the abstract syntax of the compared models, it remains unaffected by the intro-
duction of the generic execution trace format. Our implementation of the syntactic matching
step is based on ECL.

2. Model execution. In the model execution step, the two models M1 and M2 are executed for
inputs IM1 and IM2 . Thereby, the execution is performed based on the used modeling language’s
behavioral semantics specification by utilizing the model execution environment provided by the
respectively used semantics specification approach, such as the execution environment of fUML
in the case of fUML-based behavioral semantics specification, the execution environment of Java
in the case of Kermeta-based behavioral semantics specifications, and the execution environment
of the GROOVE tool set in the case of DMM-based behavioral semantics specifications. During
the model execution, execution traces TM1 and TM2 adhering to our generic execution trace
format are captured, which are handed over to the semantic matching after the completion of the
execution.

3. Semantic matching. In the semantic matching step, the execution traces TM1 and TM2 ob-
tained from the model execution step are compared by the application of semantic match rules.
If multiple inputs are considered in the semantic differencing, the execution traces are pairwise
compared. This means that the execution traces obtained from executing the two compared
models on the same input are compared with each other by applying the semantic match rules.
The semantic match rules compare the elements contained by the execution traces and establish
correspondences between matching execution trace elements. As the execution traces adhere
to our generic execution trace format, the runtime states of the executed models as well as the
state transitions captured by the execution traces are compared by the semantic match rules. If
a correspondence between the two execution traces can be established, the two compared mod-
els behave equivalently for the respective input and are, hence, semantically equivalent for this
input. Thus, if correspondences between all pairs of execution traces obtained for all consid-
ered inputs can be established, the compared models are semantically equivalent. Otherwise,
execution traces for which no correspondences could be established constitute diff witnesses.

Compared to the semantic matching of trace models for fUML-based behavioral semantics
specifications discussed in Section 6.3, only the match rules themselves are affected by the
introduction of the generic execution trace format. In particular, the semantic matching is now
performed on the runtime state of an executing model, which does not have to be extracted
from the fUML-specific trace model but is directly captured by the execution traces. As will be
illustrated in the following example, this eases the implementation of semantic match rules. Our
implementation relies on ECL for defining and applying semantic match rules.

Example. In the following, we discuss based on our Petri net example the definition of se-
mantic match rules for execution traces complying to our generic execution trace format. In
this example, we consider two different semantic equivalence criteria for Petri nets, namely final
marking equivalence, which we already considered in Section 6.3, and marking equivalence,

144

which we adopted from the literature [46]. Two Petri net models with the same set of places are
final marking equivalent if they reach for the same initial marking the same final marking. They
are marking equivalent, if they reach for the same initial marking the same set of markings.

Listing 6.3 shows the semantic match rules expressed in ECL for determining whether two
Petri net models are final marking equivalent. These semantic match rules are equivalent to
those defined in Listing 6.2 but instead of matching fUML-specific trace models, they match
execution traces adhering to our generic execution trace format for performing the semantic
model differencing. The rule MatchTrace matches execution traces captured for the execution of
two compared Petri net models for a given initial token distribution. Therefore, the final runtime
states of both Petri net models are obtained from the execution traces using the operation get-
MarkingStates(). If these final runtime states markingStatesLeft and markingStatesRight match,
the Petri net models are final marking equivalent for the given initial token distribution, and,
consequently, the rule MatchTrace returns true. The matching of the retrieved states is done by
the rule MatchState. This rule retrieves the runtime states of all places represented by Place-
Configuration instances captured by the two matched states, by calling the operation getPlace-
Configurations(). If they match, the rule MatchState returns true and a correspondence between
the two compared states is established. The runtime state of the PlaceConfiguration instances are
matched by the rule MatchPlaceConfiguration. It defines that two PlaceConfiguration instances
match, if they hold the same amount of tokens. Thus, in summary, the rule MatchTrace returns
true, if in the last runtime state of the Petri net models all places hold the same amount of tokens,
i.e., if the two compared Petri net models have the same markings in the end of the execution.

For realizing the marking equivalence criterion, only the operation getMarkingStates() has to
be adapted as shown in Listing 6.4. It retrieves the runtime state of the executed Petri net model
after the activity NetConfiguration::initializeMarking has been executed and after each execution
of the activity TransitionConfiguration::fire. Therefore, the utility operation getStatesAfterEvent()
provided by our implementation of the generic execution trace format is used. It retrieves the
states caused by an event corresponding to the provided qualified name. Thus, the operation
getMarkingStates() returns the runtime state of a Petri net model after its marking has been ini-
tialized, as well as after each transition firing, i.e., each state after reaching a new marking. These
sets of states markingStatesLeft and markingStatesRight are matched by the rule MatchTrace (cf.
Listing 6.3). If each state in markingStatesLeft has a corresponding state in markingStatesRight
and vice versa, that is, if each marking reachable in M1 is also reachable in M2 and vice versa, a
correspondence is established between the two execution traces and, hence, the considered Petri
net models are marking equivalent.

Figure 6.5 depicts excerpts of the execution traces TM1,7 and TM2,7 obtained from the ex-
ecution of the Petri net models M1 and M2 on the initial token distribution IM1,7 and IM2,7

(cf. Figure 6.2). The respective last states s8 and s15 of the execution traces represent the fi-
nal runtime states of the executed models. These states are compared in case the final marking
equivalence criterion is applied. Because in s8 one token resides at place p4 and in s15 two to-
kens reside at place p4, these two states do not match and a correspondence is neither established
for these states nor for the execution traces. Thus, the compared execution traces constitute diff
witnesses.

145

1 rule MatchTrace
2 match left : Left!Trace with right : Right!Trace {
3 compare {
4 var markingStatesLeft : Set = left.getMarkingStates() ;
5 var markingStatesRight : Set = right.getMarkingStates() ;
6 return markingStatesLeft.matches(markingStatesRight) and
7 markingStatesRight.matches(markingStatesLeft) ;
8 }
9 }
10

11 operation Trace getMarkingStates() : Set {
12 return se l f .states.at(se l f .states.size() − 1) .asSet() ;
13 }
14

15 @lazy
16 rule MatchState
17 match left : Left!State with right : Right!State {
18 compare {
19 var placeConfsLeft : Set = left.getPlaceConfigurations() ;
20 var placeConfsRight : Set = right.getPlaceConfigurations() ;
21 return placeConfsLeft.matches(placeConfsRight) ;
22 }
23 }
24

25 operation State getPlaceConfigurations() : Set {
26 var placeConfs : Set = new Set () ;
27 for (object : Any in se l f .objects)
28 i f (object.isKindOf(PlaceConfiguration))
29 placeConfs.add(object) ;
30 return placeConfs;
31 }
32

33 @lazy
34 rule MatchPlaceConfiguration
35 match left : Left!PlaceConfiguration with right : Right!PlaceConfiguration
36 extends MatchPlace {
37 compare : left.heldTokens.size() = right.heldTokens.size()
38 }

Listing 6.3: Semantic model differencing example: Semantic match rules based on generic
execution trace format for Petri nets (final marking equivalence)

1 operation Trace getMarkingStates() : Set {
2 var markingStates : Set = new Set () ;
3 markingStates.addAll(se l f .getStatesAfterEvent("NetConfiguration : : initializeMarking ")) ;
4 markingStates.addAll(se l f .getStatesAfterEvent("TransitionConfiguration : : f i r e ")) ;
5 return markingStates;
6 }

Listing 6.4: Semantic model differencing example: Adaptation of semantic match rules based
on generic execution trace format for Petri nets (marking equivalence)

146

states

: Token

: Token

objects

objects

heldTokens

heldTokens

: Trace

: PlaceConfiguration

name = “p3"

: Token

: Token

objects

heldTokens

heldTokens

: PlaceConfiguration

name = “p4"

: Token

: Token

objects

heldTokens

heldTokens

: PlaceConfiguration

name = "p4"

: PlaceConfiguration

name = "p3"
: Token

: Token

objects

objects

heldTokens

heldTokens

: PlaceConfiguration

name = "p4"

: Token

: Token

: Token

states

objects

objects

objects

heldTokens

heldTokens

heldTokens

: Trace

final marking state

final marking state

T M1,7

T M2,7

Execution trace element Matching element Element with missing match

marking states

marking states
: PlaceConfiguration

name = "p2"

: PlaceConfiguration

name = "p3"

s3 : State

s3 : State

: PlaceConfiguration

name = "p2"

: PlaceConfiguration

name = "p3"

s8 : State

s7 : State

s11 : State

s15 : State

Figure 6.5: Semantic model differencing example: Excerpts of generic execution traces

When the marking equivalence criterion is applied, not only the final runtime states of the
compared Petri net models but all runtime states after reaching a new marking are matched.
Figure 6.5 depicts these runtime states to be matched for the example models. The states s3
and s8 of TM1,7 are matched by the semantic match rules with the states s3, s7, s11, and
s15 of TM2,7. Because only the states s3 of TM1,7 and s3 of TM2,7 match, no correspondence
between the execution traces can be established, and, hence, the Petri net models are not marking
equivalent, which is witnessed by these execution traces.

147

6.5 Input Generation for fUML-based Semantics Specifications

Semantic model differencing operators realized with our generic framework rely on concrete
execution traces obtained by executing the models to be compared for concrete inputs. In the
semantic differencing, the execution traces obtained by executing the models for the same in-
puts are compared by applying semantic match rules. If for all compared execution traces a
correspondence can be established, the models are semantically equivalent. Otherwise, non-
corresponding execution traces constitute diff witnesses being manifestations of the semantic
differences among the models.

In the previous sections, we have illustrated our semantic model differencing framework
based on the example of the Petri net language. A Petri net takes as input an initial token distri-
bution that can contain arbitrary many tokens residing at places of the Petri net. The execution
trace obtained from executing a Petri net on a specific initial token distribution captures infor-
mation about each marking reached during the execution due to the firing of transitions. In the
semantic differencing, two Petri nets are compared based on this information captured in the ob-
tained execution traces. However, as the number of possible initial token distributions is infinite,
it is not possible to execute the compared Petri nets for all possible inputs, obtain all resulting
execution traces, and use these execution traces for semantically differencing the models.

Enumerating all possible inputs and performing the semantic differencing for all execution
traces resulting from these inputs is not feasible for several scenarios, as the number of possible
inputs may quickly become large or even infinite. However, we may restrict the inputs consid-
ered for the semantic model differencing to those inputs that cause distinct execution traces as
only distinct execution traces may lead to the identification of semantic differences among mod-
els. Having obtained such inputs, the models to be compared can be executed for these inputs
and the semantic match rules can be applied to the captured execution traces for semantically
differencing the models.

For automatically generating such relevant inputs and, hence, automating the semantic model
differencing, the behavioral semantics specification of the considered modeling languages may
be analyzed. This section is concerned with generating inputs from fUML-based behavioral
semantics specifications. In particular, we propose to apply an adaptation of symbolic execu-
tion [22] to fUML.

6.5.1 Symbolic Execution for fUML

The basic idea behind symbolic execution, as introduced by Clarke [25], is to execute a program—
in our case an fUML model—with symbolic values in place of concrete values. For each condi-
tional statement that is evaluated over symbolic values along an execution path, a path condition
is recorded in terms of a quantifier-free first-order formula. Thereby, for each symbolic value,
a symbolic state is maintained during the symbolic execution, which maps symbolic values to
symbolic expressions. After executing a path symbolically, we obtain a sequence of path condi-
tions, which can be conjuncted and solved by a constraint solver to obtain concrete inputs. An
execution with these inputs will consequently exercise the path that has been recorded symbol-
ically. If a conjunction of path conditions is unsatisfiable, the execution path can never occur.
Using backtracking and negations of path conditions, we may obtain all feasible paths. These

148

paths may be represented as an execution tree, which is a binary tree consisting of nodes denot-
ing path conditions and edges denoting Boolean values.

More recently, several extensions and flavors of traditional symbolic execution have been
proposed as surveyed by Cadar and Sen [22]. For symbolically executing fUML-based behav-
ioral semantics specifications we propose to apply a combination of concolic execution [141]
and generalized symbolic execution [76]. Concolic execution significantly decreases the num-
ber of path conditions by distinguishing between concrete values and symbolic values. The
program is essentially executed as normal and only statements that depend on symbolic values
instead of concrete values are handled differently. In our fUML-based semantics specification
approach, we execute the semantics specification for a concrete model and a concrete input.
Thus, applying concolic execution, we may consider only the input as symbolic and statements
that interact with the executed model itself are executed as normal. One of the key ideas behind
generalized symbolic execution, which we also propose to apply, is to use lazy initialization of
symbolic values. Thus, we execute the model as normal and initialize empty objects for sym-
bolic values only when the execution accesses the objects for the first time. Similarly, attribute
values of objects are only initialized on their first access during the execution with dedicated
values to induce a certain path during the execution.

In the following, we discuss based on our Petri net example how fUML-based behavioral
semantics specifications can be symbolically executed for concrete models in order to obtain
concrete inputs for these models that can be used in the semantic model differencing.

Example. To derive concrete inputs for a Petri net model that cause all distinct execution
traces, we symbolically execute the fUML-based behavioral semantics specification of the Petri
net language (cf. Figure 5.6 and Figure 5.7) for this model. The input of the execution, that is the
initial token distribution provided through the input parameter initialTokens of type EList<Token>
of the activity main, is defined as a symbolic value.

Figure 6.6 shows an excerpt of the resulting execution tree for the Petri net model M1 (cf.
Figure 6.2). Please note that we bound the symbolic execution to at most one initial token
per place in this example. We depict path conditions as diamonds and the symbolic states of
symbolic values in boxes. Symbolic values are prefixed with a $ symbol.

The uppermost box shows the symbolic states after executing the operation initializeMarking().
This operation assigns the initial tokens to places of the Petri net by accordingly initializing
the places’ values for the heldTokens reference. As this is done based on the symbolic in-
put initialTokens, also the values assigned for this reference are handled symbolically. The
initial symbolic values for this reference are mapped to the symbolic expression $initial-

Tokens->select(t | t.holdingPlace = pX). In Figure 6.6, this expression is abbrevi-
ated with $pXTokens.

After the marking is initialized, the operation run() is called. This operation iterates over the
transitions of the Petri net and checks whether they are enabled. Therefore, in the first iteration,
isEnabled() is called on transition t1, which in turn iterates over all of its incoming places (p1
in our example) and checks whether there is an incoming place without tokens. Therefore,
the symbolic value p1.heldTokens is accessed and the condition p1.heldTokens.size()

== 0 is evaluated. We do not interfere with the concrete execution, except for the access of

149

the symbolic value and the evaluation of the condition in order to record the path condition,
update the execution tree, and solve the condition to compute concrete values for the involved
symbolic values inducing the true branch and the false branch. After that, we continue with
the concrete execution for one of the branches. Depending on which branch is taken (i.e., t1
is enabled or not), t1 is added to the output expansion node enabled of the expansion region
named “select enabled transitions” in the activity run. In the symbolic execution of activities,
we handle expansion nodes as list variables. As the addition of t1 to the expansion node depends
on symbolic values, we also consider the list variable, denoted with $enabled, as symbolic.

In the next iteration of run, the same procedure is applied to transition t2 and its input places
p2 and p3, and the execution tree is updated accordingly.

Next, the execution checks whether the list of enabled transitions contains at least one el-
ement with the condition $enabled.size() > 0. As this condition accesses $enabled,
which is considered as symbolic value, we record it in the execution tree and try to produce
values for the true and false branch. For the first three paths, the constraint solver cannot
find a solution for the false branch, denoted with ⊥, because in these paths $enabled will
always contain at least one transition according to the path conditions and symbolic states. Thus,
in three of the six branches contained by these three paths, fire() is called for the first transition
in the list $enabled causing changes of the heldTokens reference values of its incoming and
outgoing places. As the heldTokens reference values are considered as symbolic, we update their
symbolic states. Finally, the execution proceeds with iterating through transitions again and fir-
ing them, if they are enabled. As we bound the symbolic execution to at most one initial token
per place, all branches either terminate eventually or lead to an unsatisfiable state (e.g., violating
the bound constraint). In the fourth path not discussed so far, the condition $enabled.size()
> 0 can only be satisfied for the false branch, which leads to the termination of the execution.

The final execution tree contains four satisfiable execution paths. The path condition of these
paths represent symbolically all relevant initial token distributions for this Petri net inducing
all distinct execution traces. Using a constraint solver, we can generate Token objects with
corresponding links to the places in the Petri net, such that the we obtain the following initial
markings: {p1 = 1}, {p2 = 1, p3 = 1}, {p1 = 1, p2 = 3, p3 = 1}, and {} (no tokens at
all). When repeating the symbolic execution for the Petri net M2 (cf. Figure 6.2), we obtain
four additional inputs: {p2 = 1}, {p3 = 1}, {p1 = 1, p2 = 1}, and {p1 = 1, p3 = 1}. With
this total of eight inputs, we invoke the semantic differencing in which the Petri net models are
executed for these inputs and compared by applying the semantic match rules to the captured
execution traces (cf. Section 6.3 and Section 6.4). As shown in Figure 6.2, six of the generate
inputs lead to the identification of diff witnesses when applying the final marking equivalence
criterion.

150

����������	
������������	
����������������������
����
����	
���������	
����������������	
�����
�
����� ���������!"���
�����
�#��
����	
������#��	
����������������	
�����
�
����� ���������!"���
���#�
�$��
����	
������$��	
����������������	
�����
�
����� ���������!"���
���$�
�%��
����	
������%��	
����������������	
�����
�
����� ���������!"���
���%�

����
����	
�����&
����'

�
����
������������

(���

�
����
����������

�)�

�#��
����	
�����&
����'
�)��$��
����	
�����&
����'

�#��
����	
�����&
����'
�)��$��
����	
�����&
����'

�
����
�����������*��#�

(���

�
����
������������

�)�

�
����
����&
�����' �
����
����&
�����'

(���

������(�)
�
����
����	
���������	
���)
��+
,��'�

�#��
����	
������#��	
���������	
���
-�
�$��
����	
������$��	
���������	
���
-�

�)�

����#�(�)
�
�#��
����	
������#��	
���������	
���
-��)
��+
,��'�
�$��
����	
������$��	
���������	
���
-��)
��+
,��'�

�%��
����	
������%��	
���������	
���
-�

(���

������(�)
�
����
����	
���������	
���)
��+
,��'�

�#��
����	
������#��	
���������	
���
-�
�$��
����	
������$��	
���������	
���
-�

�)�

����#�(�)
�
�#��
����	
������#��	
���������	
���
-��)
��+
,��'�
�$��
����	
������$��	
���������	
���
-��)
��+
,��'�

�%��
����	
������%��	
���������	
���
-�

����#�(�)
�
�#��
����	
������#��	
���������	
���
-��)
��+
,��'��)
��+
,��'�
�$��
����	
������$��	
���������	
���
-��)
��+
,��'��)
��+
,��'�

�%��
����	
������%��	
���������	
���
-��������	
���
-�

�
)��������

�
)��������

�
����
����������#�

(���

�
����
����������

�)�

�
����
����&
�����' �
����
����&
�����'

(���

����#�(�)
�
�#��
����	
������#��	
���)
��+
,��'�
�$��
����	
������$��	
���)
��+
,��'�

�%��
����	
������%��	
���������	
���
-�

�)�

�
)��������

�
)��������

(���
 �)�

t1.isEnabled()

net.initializeMarking()

t2.isEnabled()

net.run()

tX.fire()

⊥⊥ ⊥ ⊥

Figure 6.6: Symbolic execution example: Execution tree

151

In this section, we have discussed how symbolic execution can be applied to fUML-based behav-
ioral semantics specifications to obtain execution trees allowing the generation of input values
leading to the execution of all possible paths through the semantics specification for a given
model. The input values generated for two models to be compared are provided as input to
the semantic model differencing framework, which executes the models to be compared for all
generated inputs and compares the obtained execution traces by applying semantic match rules.
However, please note that the execution trees obtained from the symbolic execution already cap-
ture all information required for performing the semantic model differencing, as they capture all
possible paths through the semantics specification as well as all possible states of the models to
be compared. Thus, the execution of the models to be compared on the concrete inputs generated
from the obtained execution trees may be omitted and instead, the semantic model differencing
may be performed based on the execution trees. This possibility is related to the technique dif-
ferential symbolic execution proposed by Person et al. [126] and constitutes a future research
direction that has to be further investigated.

6.5.2 Implementation of Symbolic Execution for fUML

Realizing the proposed approach for generating inputs from fUML-based behavioral semantics
specifications requires the implementation of an environment enabling the symbolic execution
of fUML-based behavioral semantics specification as well as the implementation of a constraint
solver for generating inputs satisfying the path conditions computed by the symbolic execu-
tion. Thereby, the symbolic execution of an fUML-based behavioral semantics specification is
performed on a concrete model yielding path conditions that represent all possible execution
paths through the semantics specification for this model. The constraint solver takes as input the
obtained path conditions being quantifier-free first-order formulas, solves them by computing
satisfying Boolean variable assignments, and generates inputs from these Boolean variable as-
signments. In the following, we discuss three alternative approaches for implementing symbolic
execution for fUML-based behavioral semantics specifications as well as a concrete implemen-
tation for generating inputs from path conditions through constraint solving.

Symbolic Execution

We investigated three alternative approaches for implementing the introduced symbolic execu-
tion for fUML-based behavioral semantics specifications. In the first approach, a specialized
symbolic execution environment for fUML is implemented that allows the symbolic execution
of fUML-based behavioral semantics specifications. In the second approach, an existing sym-
bolic execution environment that allows the symbolic execution of Java programs is utilized for
symbolically executing the Java-based fUML virtual machine whose execution underlies the
execution of fUML-based behavioral semantics specifications. In the third approach, a code
generator is implemented that allows generating symbolically executable programs, i.e., pro-
grams that can be symbolically executed by an existing symbolic execution environment, from
fUML-based behavioral semantics specifications. In the following, we describe each of these
alternatives in more detail and discuss their advantages and disadvantages.

152

Symbolic execution environment for fUML. A symbolic execution environment needs to
(i) distinguish concrete and symbolic values, (ii) maintain the symbolic state of symbolic values
by evaluating expressions over symbolic values, (iii) record path conditions, and (iv) backtrack
executions to cover all possible execution paths. For fUML such a symbolic execution environ-
ment may be implemented based on fUML’s execution environment as well as the introduced
event mechanism and command interface as described in the following.

Before the symbolic execution of an fUML model is started, the data structure for main-
taining the symbolic state of symbolic values as well as the data structure for maintaining the
execution tree capturing the explored execution paths are initialized. Thereafter, the execution
of the model is started in the stepwise execution mode using the command interface.

After the completion of each execution step, which is communicated via a suspend event
issued by the event mechanism, it is determined whether the next execution step constitutes
a conditional step. A conditional step is a step depending on a symbolic value, such as the
execution of a decision node that receives a symbolic value as decision input value. In case
a conditional step is identified, a path condition is added to the current execution path in the
execution tree. For resuming the symbolic execution, one branch for the added path condition
is chosen according to some exploration strategy, i.e., either the true branch or the false branch
is chosen for the added condition. Using a constraint solver, a concrete value for the symbolic
value is computed from the conjunction of all path conditions leading to the selected branch.
This symbolic value is then inserted into the execution model and the execution is resumed.

Besides checking for conditional steps, also writing actions performed in the last execution
step are further investigated. In particular, it is investigated whether a symbolic value was in-
volved in the update performed by the writing action. If the writing action assigned a symbolic
value to some variable, such as an attribute value, which is not yet declared as symbolic, it is
declared as being symbolic from this time in the execution on and its state is accordingly initial-
ized with a symbolic expression. If the writing action assigns a value to a symbolic value, the
state of this symbolic value is accordingly updated.

If the symbolic execution reaches either an unsatisfiable path or the execution terminates, the
execution is backtracked for further exploring heretofore unexplored paths. For the backtracking
we may apply two distinct approaches. In the first approach, concrete values are computed for
symbolic values existing in the selected path by solving the respective path conditions. Then the
execution is started from the beginning and stepwise resumed using the command interface until
the last considered conditional step is reached. While this approach can be easily implemented
based on the event mechanism and command interface, it is in general expensive. The second
much more efficient way to achieve backtracking is to restore the execution state at reaching the
last conditional step of the selected execution path to be explored. However, this requires the
implementation of an efficient mechanism for storing the execution state of an fUML model.

The advantage of this approach for realizing symbolic execution of fUML models is that the
symbolic execution is by construction completely conform to the fUML standard as the concrete
execution is performed by the standardized execution environment of fUML. The symbolic exe-
cution only inserts values, namely concrete values for symbolic values, into the execution model
on which the fUML virtual machine operates. However, the major drawback of this approach
is the required high implementation effort originating not only from the implementation of the

153

basic symbolic execution functionalities for fUML, such as backtracking and constraint solv-
ing techniques, but also from the required optimizations of both the fUML virtual machine as
well as the symbolic execution for fUML required for coping with scalability issues and state
explosion problems inherent to symbolic execution. Due to these issues, we have for now aban-
doned the implementation of an own symbolic execution environment for fUML. However, a
promising approach for mitigating these issues was recently proposed by Bucur et al. [21]. They
present a tool called CHEF that enables the building of symbolic execution engines for inter-
preted languages directly from their interpreters. The goal of CHEF is on the one hand to reduce
the implementation effort of building a symbolic execution engine for an interpreted language
and on the other hand to enable the construction of symbolic execution engines that are more
efficient than directly executing the language’s interpreter symbolically (which is the implemen-
tation alternative discussed next).

Symbolic execution of fUML virtual machine. As a second alternative for realizing symbolic
execution of fUML-based behavioral semantics specification, we may apply symbolic execution
to the fUML virtual machine itself. For understanding how this may be achieved, let us recap
how fUML-based behavioral semantics specifications are executed on a model. To perform
the execution, the semantics specification—which is defined using an executable metamodeling
language integrating fUML, such as xMOF—is converted into an fUML model and the model to
be executed as well as the input to the model are converted into fUML extensional values being
instances of classes contained by the fUML model. The fUML extensional values obtained from
the conversion of the model and the input are added to the locus of the fUML virtual machine.
Thereafter, the actual model execution is started by calling the operation execute() of the single
Executor instance of the fUML virtual machine. The fUML extensional values representing the
input to the model are provided as parameters values. For symbolically executing the fUML
virtual machine with the aim of generating inputs, we may define all values involved in the
execution as concrete values, except the fUML extensional values that represent the input and
are provided as parameter values to the operation Executor.execute(). Thus, the fUML model
representing the fUML-based behavioral semantics specification, the fUML extensional values
representing the model, the fUML execution environment objects (e.g., the Executor instance),
and all semantic visitor objects instantiated by the fUML virtual machine are treated as concrete
values. Thus, every statement of the fUML virtual machine that operate on those values only are
executed as normal. Only the parameter values representing the input to the model are treated
as symbolic values requiring symbolic state maintenance and execution path recording.

For performing this symbolic execution, we may utilize an existing symbolic execution en-
vironment for Java that supports concolic execution, i.e., that supports distinguishing between
concrete and symbolic values and executes all program statements operating exclusively on con-
crete values as normal and only treats statements operating on symbolic values as symbolic.
Two examples of such symbolic execution environments are Java Pathfinder1 [76, 161] devel-
oped at the NASA Ames Research Center and jCUTE2 [141,142] developed at the University of
Illinois. We have performed several experiments with Java Pathfinder to symbolically execute

1http://babelfish.arc.nasa.gov/trac/jpf, accessed 03.09.2014
2http://osl.cs.illinois.edu/software/jcute, accessed 03.09.2014

154

http://babelfish.arc.nasa.gov/trac/jpf
http://osl.cs.illinois.edu/software/jcute

fUML models by symbolically executing the fUML virtual machine. These experiments led us
to the identification of several technical hurdles that have to be overcome in order to generate in-
puts through the symbolic execution of the fUML virtual machine. For example, Java Pathfinder
provides only limited support for String values and no support for lists of variable size. Fur-
thermore, the Java program to be symbolically executed has to be monolithic. As our current
execution environment for fUML-based behavioral semantics specifications is realized as a set
of Eclipse plugins that depend on other Eclipse plugins, adaptations of our implementation are
required for enabling the utilization of Java Pathfinder. In particular, it requires the generation
of Java code that constructs the fUML model and fUML extensional values representing the
fUML-based behavioral semantics specification and the model, respectively, initializes the input
and declares it as symbolic, and starts the execution of the fUML model by calling the fUML
virtual machine.

The advantage of this approach is that existing symbolic execution environments may be
reused, which are already highly optimized for symbolically executing programs written in a
certain programming language. Symbolic execution environments exist also for programming
languages other than Java [22], such as C, C++, and .NET languages. Thus, if an fUML virtual
machine written in another language than Java is used, symbolic execution of fUML-based be-
havioral semantics specifications may still be performed. Also symbolic model checkers, such as
SPIN and NuSMV, could be used to realize this approach. However, it requires the specification
of fUML’s behavioral semantics with the language supported by the respective model checker,
such as PROMELA and SMV. The disadvantage of this approach is that instead of exploring
all possible paths through the fUML-based behavioral semantics specification for a given model
all possible paths through the fUML virtual machine for the fUML-based behavioral semantics
specification are explored. Thus, applying this implementation alternative potentially leads to
a much higher number of explored paths and generated path conditions, thus, resulting in the
generation of a higher number of inputs to be considered in the semantic model differencing
than in the first implementation alternative described beforehand.

Generation of a symbolically executable program. As a third alternative approach for im-
plementing the input generation through symbolic execution, we may implement a code gener-
ator that takes as input an fUML-based behavioral semantics specification as well as a model
and produces a program that can be symbolically executed by utilizing existing symbolic execu-
tion environments. In particular, the generated code comprises three parts, namely classes and
operations that correspond to the fUML-based behavioral semantics specification, code that in-
stantiates the generated classes such that the resulting objects correspond to the model for which
inputs shall be generated, and code that declares the input to the model as symbolic and starts
the model execution.

We have experimented with the generation of suitable Java code as well as the symbolic
execution of this code with Java Pathfinder. In particular, we have manually implemented Java
code corresponding to the fUML-based behavioral semantics specification of our example Petri
net language as well as Java code that instantiates Java objects corresponding to our example
Petri net models and that starts the execution of the model. The symbolic execution of the
resulting program with Java Pathfinder leads to the generation of the expected path conditions.

155

The advantage of this approach is that it is on the one hand implementable with reasonable
effort compared to the first discussed implementation alternative because instead of implement-
ing a complete symbolic execution environment from scratch, only a code generator for fUML
to, for instance, Java has to be implemented. On the other hand, through a suitable code genera-
tion it is possible to generate path conditions through the generated program that correspond to
the actual path conditions through the fUML-based behavioral semantics specification. Thus, in
general less inputs may be generated and used in the semantic model differencing when applying
this approach compared to the second discussed implementation alternative. However, the major
drawback of this implementation approach is that the behavioral semantics of fUML has to be
redefined by means of a code generator, Thereby, care has to be taken in the implementation of
the code generator as it has to be ensured that the produced code conforms to the standardized
behavioral semantics of fUML.

Constraint Solving

The result of the symbolic execution of an fUML-based behavioral semantics specification is
an execution tree, which consists of path conditions representing all possible execution paths
through the semantics specification for a given model. The path conditions are quantifier-free
first-order formulas over symbolic values that represent the inputs leading to the execution of
the respective path. Thus, each path through the execution tree, that is the conjunction of all
path conditions lying on that execution tree path, defines the characteristics of inputs that cause
the execution of the respective path of the fUML-based behavioral semantics specification when
executing the model on this input. For generating concrete inputs, each of these conjunctions
of path conditions has to be solved resulting in an assignment of concrete values to symbolic
values. Furthermore, from these computed value assignments, a valid input in terms of objects
conforming to the respective modeling language has to be generated.

Solving path conditions constitutes a Boolean satisfiability problem (SAT). Thus, existing
SAT solvers may be utilized for solving path conditions. However, making use of them for
generating inputs requires the transformation of the fUML-based semantics specification—in
particular, of the initialization classes defining the structure of inputs—as well as of path condi-
tions into Boolean variables and Boolean expressions as well as the transformation of satisfying
Boolean variable assignments calculated by the SAT solver into objects being instances of the
initialization classes. For achieving both, we implemented an integration of fUML with the
model validator plugin for USE developed by Kuhlmann et al. [80].

USE [56] is a UML environment supporting several types of UML diagrams as well as the
validation of OCL constraints. The model validator plugin [80] adds the capability to generate
UML object diagram being valid instances of a given UML class diagram and fulfilling a given
set of OCL constraints. For utilizing the model validator plugin for generating inputs out of path
conditions, we implemented several transformations, namely a transformation of Ecore-based
metamodels and fUML-based behavioral semantics specifications into UML class diagrams, a
transformation of models into UML object diagrams, as well as transformation of path con-
ditions into OCL constraints. The obtained UML class diagrams, UML object diagrams, and
OCL invariants are then provided to the model validator plugin of USE. The model validator
plugin internally translates the UML diagrams and OCL invariants into the relational logics of

156

Kodkod [159] to apply an efficient SAT-based search to a UML object diagram that satisfies the
UML class diagrams as well as the OCL constraints. The obtained UML object diagram is then
translated into a valid instance of the considered modeling language thanks to an additionally
implemented model transformation. The obtained instance constitutes an input leading to the
execution path represented by the solved path conditions.

6.6 Summary

Managing the evolution of models requires techniques for identifying differences among inde-
pendently developed or consecutive versions of models. Unlike syntactic model differencing,
semantic model differencing does not only consider syntactic differences among two models,
such as deletions, additions, and modifications of model elements, but also takes the semantics
of the compared models into account. Therewith, semantic model differencing enables further
analyses of differences among models, such as analyses of the semantic preservation of changes,
and provides the basis for reasoning about the semantics of a change.

In this chapter, we presented a generic semantic model differencing framework that, in con-
trast to existing semantic model differencing approaches, makes use of the behavioral semantics
specifications of modeling languages for supporting the semantic differencing of conforming
models. Therewith, our approach follows the spirit of generic syntactic model differencing,
which utilized metamodels to obtain the necessary information on the syntactic structure of the
models to be compared. By utilizing the behavioral semantics of a modeling language, non-
trivial transformations into a semantic domain specifically for enabling semantic differencing
can be avoided. Instead, the behavioral semantics specifications of a modeling language, which
may also be employed for model simulation, verification, and validation, is utilized to enable
semantic model differencing.

Our generic framework performs semantic model differencing by extracting semantic in-
terpretations of the models to be compared from the behavioral semantics specification of the
employed modeling language. Therefore, the models to be compared are executed based on the
behavioral semantics specification and execution traces are obtained from the execution. The
obtained execution traces constitute semantic interpretations over the compared models and can,
hence, be used to identify semantics differences among the models. Therefore, the execution
traces are syntactically compared by applying match rules that define, based on a suitable se-
mantic equivalence criterion, which differences among the execution traces constitute semantic
differences among the models. If such semantic differences are identified, the respective execu-
tion trace constitutes a diff witnesses being a piece of evidence about the semantic differences.

In this chapter, we have first shown an instantiation of our semantic model differencing
framework for fUML-based behavioral semantics specifications and subsequently discussed how
the framework can be generalized to operationally defined behavioral semantics specifications
through the introduction of a generic execution trace format. Because our framework performs
semantic model differencing on concrete execution traces, inputs for executing the models rele-
vant to the semantic differencing have to be provided as input to the framework. To automate the
selection of relevant inputs, we have proposed an approach for generating inputs from fUML-
based behavioral semantics specification by applying the idea of symbolic execution.

157

Semantic differencing for fUML-based semantics specifications. Instantiating our seman-
tic model differencing framework for a concrete semantics specification approach requires that
the respective approach provides means for executing models as well as for capturing execution
traces reflecting the models’ semantics. Our fUML-based behavioral semantics specification
approach introduced in Chapter 5 is accompanied with a model execution environment built
on top of fUML’s execution environment as well as our extensions of this environment. Thus,
it enables executing models according to fUML-based behavioral semantics specifications and
capturing execution traces in terms of trace models. Thus, our generic semantic model differenc-
ing framework can be directly instantiated for fUML-based behavioral semantics specifications.
In this instantiation, the semantic model differencing is realized as comparison of trace models
obtained from executing the models to be compared.

Semantic differencing for operationally defined semantics specifications. To enable the
instantiation of our generic semantic model differencing framework for arbitrary operational se-
mantics approaches, we defined a generic execution trace format. This generic execution trace
format constitutes the interface to our framework, which realizes the semantic model differenc-
ing as comparison of execution traces adhering to this generic format. Thus, instantiating the
framework for a concrete operational semantics approach requires that execution traces con-
forming to this trace format are captured during the execution of models. We have shown for
three distinct operational semantics approaches, how this is possible either through the utiliza-
tion of the execution environment provided by the respective approach or through the direct
introduction of trace capturing functionality into behavioral semantics specifications.

Input generation for fUML-based semantics specifications. Considering all possible inputs
to models in the semantic model differencing is infeasible as the number of possible inputs is
in general infinite. For automating the selection of inputs relevant to semantic model differ-
encing, we proposed the application of symbolic execution for fUML. Using a combination of
symbolic and concrete execution, it is possible to derive all inputs leading to distinct execution
traces. These generated inputs may then be used to perform the semantic model differencing.
For realizing symbolic execution for fUML, we have presented three distinct implementation
alternatives.

We evaluated the expressive power provided by our semantic model differencing framework
for defining dedicated semantic differencing operators for modeling languages by implement-
ing existing operators with our framework. Furthermore, we evaluated the performance of the
developed semantic model differencing operators. This evaluation is discussed in Section 7.3.

6.7 Related Work

Most of the existing model differencing approaches compare two models based on their abstract
syntax representation. Thereby, a match between two models is computed yielding correspon-
dences between their model elements, before a fine-grained comparison of all corresponding

158

model elements is performed. The result of this syntactic differencing is the set of model ele-
ments present in only one model and a description of differences among model elements present
in both models and corresponding to each other. Thereby, the syntactic differences among two
models are usually expressed in terms of edit operations, such as add, delete, and update opera-
tions.

One of the earliest works on model differencing was done by Alanen and Porres [3], who
presented a metamodel-independent algorithm for differencing UML models based on unique
identifiers of model elements. Similar approaches also relying on unique identifiers were pro-
posed by Oliveira et al. [125] and Ohst et al. [123]. To accommodate scenarios where no unique
identifiers are available for finding corresponding model elements, UMLDiff [165] proposes
the use of similarity metrics based on the model elements’ names and structure for syntactic
matching, before the fine-grained differences are computed. Whereas these approaches are ex-
plicitly targeted at differencing UML models, other approaches are not restricted to a particular
language, such as DSMDiff [90] and EMF Compare [19]. These approaches enable the process-
ing of models conforming to any modeling language by incorporating the modeling language’s
metamodel into the differencing algorithm to reason about the structure of the models to be
compared.

However, to determine whether two syntactically different models also differ in their mean-
ing [63], the semantics of the modeling language they conform to has to be taken into account.
Few semantic model differencing approaches have been proposed in the past. Generally, we
can distinguish enumerative and non-enumerative semantic model differencing approaches [48].
Enumerative approaches calculate semantic interpretations of two compared models called diff
witnesses, which are only valid for one of the two models and, hence, provide evidence about the
existence of semantic differences among the models. Non-enumerative approaches do not cal-
culate and enumerate diff witnesses directly, but instead compute an aggregated description of
the semantic difference among the compared models. The advantage of enumerative approaches
is that they directly provide a set of diff witnesses being manifestations of semantic differences
among two models. However, because this set might be infinite, enumerative approaches are not
complete. In contrast, the advantage of non-enumerative approaches is that they are complete
and usually more efficient. However, computing diff witnesses from aggregated difference de-
scriptions computed by non-enumerative approaches is as complex as enumerative approaches.

Maoz et al. propose an approach for developing enumerative semantic model differencing
operators [94]. In this approach, a semantic model differencing operator is defined through a
translation of models into a semantic domain suitable for expressing the semantics of the mod-
els as well as for calculating diff witnesses. Diff witnesses obtained in the semantic domain are
then translated back to the modeling language. Maoz et al. applied this approach for developing
the semantic model differencing operators CDDiff [96] and ADDiff [95] for UML class dia-
grams and UML activity diagrams, respectively. CDDiff translates two UML class diagrams to
be compared into one joint Alloy module, which defines predicates representing the semantics
of the two UML class diagrams. Furthermore, one additional so-called diff predicate is added to
the Alloy module, which specifies that all predicates representing the first UML class diagram
have to hold and that at least one of the predicates representing the second UML class diagram
must not hold. Using the Alloy Analyzer, instances of this diff predicate are calculated, which

159

constitute diff witnesses as they represent UML object diagrams being instances of the first UML
class diagram but not of the second UML class diagram. The obtained instances are then trans-
lated back to actual UML object diagrams. ADDiff translates two UML activity diagrams to be
compared into SMV modules representing the semantics of the two UML activity diagrams. By
applying algorithms traversing the state spaces of the UML activity diagrams, execution traces
are identified, which are possible only in one of the two UML activity diagrams and, hence,
constitute diff witnesses. The obtained execution traces are then translated back to execution
traces of the compared UML activity diagrams.

Unlike Maoz et al., Fahrenberg et al. [48] propose an approach for defining non-enumerative
semantic model differencing operators. Therefore, the models to be compared are mapped into
a semantic domain having an algebraic structure that enables the definition of the semantic dif-
ference among two models in the form of an operator on that algebraic structure. The semantic
difference among two models is captured in terms of a model conforming to the same modeling
language as the two compared models. Fahrenberg et al. applied this approach for defining se-
mantic model differencing operators for feature models as well as automata specifications [48],
and later also for UML class diagrams [47]. The used semantic domains for realizing these
differencing operators are Boolean logics, behavioral component algebras, and set theory, re-
spectively. For UML class diagrams, the semantic domain of set theory is used and the semantic
model differencing operator is defined as adjoint to the conjunctive merge. Thereby, the seman-
tic difference among two class diagrams is again a class diagram.

While the approaches of Maoz et al. and Fahrenberg et al. are generally applicable for
developing semantic model differencing operators for any modeling language, they have to be
regarded as general recipes of how to develop these operators. Following these recipes requires
the definition of a modeling language’s semantics through the implementation of a translation
into a semantic domain in which then specific semantic comparison algorithms and operators
have to be defined that perform the semantic differencing. In contrast, our approach is generic
in the sense that semantic model differencing is performed by utilizing the behavioral semantics
specification of the used modeling language. Therefore, we provide a generic framework that
can be instantiated for any operational semantics approach that provides the capability to execute
models and capture execution traces adhering to a generic execution trace format. Defining a
semantic model differencing operator for a specific modeling language requires only to define
match rules comparing execution traces according to a suitable semantic equivalence criterion.

Gerth et al. [54] developed an approach concerned with determining whether two busi-
ness process models are semantically equivalent in respect of trace equivalence. Unlike the
approaches discussed so far, Gerth et al. do not translate business process models into a seman-
tic domain in which then the semantic comparison is performed, but instead transform them into
normalized process model terms. Thereby, two syntactically different but semantically equiva-
lent business process models are always transformed into the same normalized process model
terms. Thus, by syntactically comparing two normalized process model terms obtained from
the transformation of two business process models, it can be determined whether these busi-
ness process models are semantically equivalent. Gerth et al. use this approach for detecting
semantically equivalent fragments of business process models in order to enhance the detection
of conflicting change operations applied to the models [53].

160

A similar idea underlies the approach proposed by Reiter et al. [131] for detecting semantic
conflicts among change operations applied to models. In their approach, two compared models
are transformed into so-called semantic views using model transformation techniques. Thereby,
the semantic view of a model filters out any information about the model not relevant to conflict
detection. Based on syntactic model differencing techniques applied to the semantic views of
two models, semantic conflicts are detected. The underlying assumption of this approach is, that
a semantic view enabling the detection of semantic differences among models through syntactic
comparison exists and that this semantic view can be generated from a model through a model
transformation.

While the approach by Gerth et al. is targeted at business process models only also the ap-
proach by Reiter et al. is restricted concerning its applicability to modeling languages in general.
Furthermore, both approaches focus on enhancing conflict detection through the identification
of semantic equivalent fragments of models in order to avoid false-positive conflicts.

161

CHAPTER 7
Evaluation

7.1 Extensions of the fUML Execution Environment

7.1.1 Research Questions

The aim of extending fUML’s execution environment was to enable the implementation of meth-
ods and techniques for analyzing executable UML models based on the fUML virtual machine.
Therefore, we developed an event mechanism, command interface, and trace model, which we
integrated with the fUML virtual machine to support in particular the implementation of testing,
dynamic analysis, debugging, and non-functional property analysis methods (cf. Chapter 4).

We evaluated the developed extensions of the fUML execution environment concerning ad-
equacy and performance. In particular, we aimed at answering the following research questions.

Research question 1: Adequacy. Are the developed extensions of the fUML execution envi-
ronment adequate for implementing testing, dynamic analysis, debugging, and non-functional
property analysis methods?
This research question is divided into the following subquestions.

(a) Event mechanism. Are the events issued by the event mechanism and the information they
carry adequate for thoroughly observing state changes of fUML model executions?

(b) Command interface. Are the commands provided by the command interface adequate for
flexibly controlling fUML model executions?

(c) Trace model. Are trace models an adequate basis for reasoning about the runtime behavior
of fUML model executions?

Research question 2: Performance. How much performance overhead is caused by the de-
veloped extensions of the fUML execution environment?
This research question is divided into the following subquestions.

163

(a) Execution time. How much does the execution time of an fUML model increase due to
issuing events, managing execution state information, and recording trace models?

(b) Memory consumption. How much does the memory consumption increase due to the
issued events, captured execution state, and created trace model?

In order to answer these research questions, we evaluated the developed extensions of the fUML
execution environment by carrying out case studies.

To evaluate whether the extensions are adequate for implementing analysis methods, we im-
plemented based on them dedicated analysis tool prototypes, namely a debugger, testing frame-
work, and performance analysis tool. In Section 7.1.2, we briefly present these prototypes, point
out which extensions have been employed for developing the prototypes, and discuss the ade-
quacy of the extensions for implementing the prototypes.

Because the extensions have been integrated with the reference implementation of the fUML
virtual machine [91], we evaluated the performance overhead caused by the extensions by com-
paring the performance of the reference implementation as is (i.e., without extensions) and of
the extended reference implementation (i.e., with integrated extensions). We report on this eval-
uation in Section 7.1.3.

7.1.2 Adequacy

By utilizing our extensions of the fUML execution environment, we prototypically implemented
a debugger, testing framework, and performance analysis tool for fUML. These tool prototypes
depend heavily on the developed event mechanism, command interface, and trace model as they
need to observe, control, and analyze model executions carried out by the fUML virtual machine.
Hence, the development of these prototypes served as case studies for qualitatively evaluating
the adequacy of our extensions of the fUML execution environment with respect to the imple-
mentation of dedicated analysis methods and techniques for executable UML models based on
fUML. In the following, we briefly present the capabilities of the tool prototypes and discuss
how the extensions of the fUML execution environment have been applied for implementing
them.

Case Studies

Debugger. Debugging is a method that requires not only a powerful mechanism for controlling
the execution of a program, but also depends heavily on event notifications about state changes
of the execution during runtime, and demands for very precise runtime information about the
execution. Hence, implementing a debugger for fUML models relies on the ability to control
ongoing model executions, as well as on the ability to observe and analyze model executions.
Therewith, all three developed extensions of the fUML execution environment have to be applied
in order to implement a debugger for fUML models on top of the fUML virtual machine. We
implemented such a debugger for fUML models [97] based on the extended fUML execution
environment, which provides the capabilities to control the execution of a model by offering
debug commands, such as step into and resume, and the possibility to set breakpoints; as well
as to observe the state of the execution consisting of the current position of the execution and

164

values of existing variables. The debugger is integrated with the Eclipse Debug Framework and
allows debugging activities created with the Papyrus UML editor1.

Regarding the control of executions, a debugger should empower users to stepwise resume
a suspended execution using the commands step into, step over, step return, and resume. In
the context of fUML, step into and step over should cause the execution of a selected currently
enabled activity node. However, if this node is a call action calling an activity, step into should
cause the execution to suspend directly before the first node of the called activity is executed,
whereas step over should execute the entire called activity and suspend after the call action itself
has been executed. Accordingly, step return should execute the entire currently executing activ-
ity. This can be realized easily using the developed command interface and event mechanism.
Therefore, we call the operation nextStep() of the command interface class ExecutionContext re-
peatedly until a certain event is issued by the event mechanism. For instance, in the case of
step return, nextStep() is called until an activity exit event for the currently executing activity
is received informing about the completion of this activity execution. Thereafter, the execution
suspends, which is reported by a suspend event. The command resume as well as the handling
of breakpoints are directly supported by the command interface.

To enable the observation of the current state of an execution, a debugger usually depicts
the state of the program being debugged in terms of threads, stack frames, and variables. A
thread is a sequence of actions that may execute in parallel with other threads. In the context
of fUML, multiple activity nodes may be enabled at the same time, for instance, if the control
flow of an activity exhibits fork nodes. As a result, the concurrently enabled activity nodes can
be executed separately without affecting the execution of the other enabled nodes. Hence, we
consider each concurrently enabled node to run in an own thread. For deriving the currently
running threads, we may obtain the enabled nodes of a suspended activity execution easily from
the trace model, as it captures for each enabled node an ActivityNodeExecution instance having
both attributes underExecution and executed set to false. Alternatively, the enabled nodes could
be retrieved from the command interface class ExecutionContext using the operation getEnabled-
Nodes() or from the last received suspension event issued by the event mechanism. However,
a new enabled node does not always constitute a new thread, because the node activation may
result from resuming an already existing thread. To obtain this information, the trace model can
be used, which contains for each enabled node the information about logical predecessors. If
an existing thread concerns the logical predecessor of a new enabled node, this thread may be
updated to the new enabled node. If it has several predecessors for which threads exist, one of
them may be updated and the others are terminated. If we do not find a corresponding thread or
all corresponding threads have been assigned to other new enabled nodes already, we create a
new thread. A stack frame represents the runtime context of a suspended thread, which is in our
context the enabled activity node assigned to the respective thread. A stack frame may have child
stack frames that represent call actions that called the activity where the assigned node resides in.
Thus, for deriving the stack frame hierarchy, we have to be able to find out whether an activity
node resides in an activity that itself has been invoked by a call action. Therefore, we again
make use of the trace model by navigating from the ActivityNodeExecution instance representing
the execution of the activity node upwards to its containing ActivityExecution instance and check

1http://www.eclipse.org/papyrus, accessed 10.07.2014

165

http://www.eclipse.org/papyrus

whether it refers to a CallActionExecution as caller. If this is the case, we add a child stack frame
for this call action. This procedure can be repeated until the upper most ActivityExecution instance
captured by the trace model is reached. A variable denotes a data value that is in the scope of
the current stack frame. As stack frames are associated with activity nodes, variables refer to
their inputs. Hence, obtaining the variables is easily possible by looking up the ActivityNode-
Execution instance in the trace model representing the execution of the activity node associated
with the respective stack frame and retrieving the captured ValueSnapshot instances constituting
its inputs. Furthermore, all extensional values residing at the locus of the current execution are
in the scope of each stack frame. Consequently, they are associated with each existing stack
frame as variable. Therefore, the trace model can be utilized, as it captures state information
about all extensional values residing at the locus of execution. Hence, we retrieve all objects and
links captured by the trace in terms of ValueInstance instances for whom no destroyer exists yet,
and obtain their most current ValueSnapshot. The state of all threads, stack frames, and variables
has to be updated when the activity execution suspends, which is indicated by suspension events
issued by the event mechanism.

Further debugging capabilities could be easily implemented thanks to the extensions of the
fUML execution environment. For instance, watchpoints causing the suspension of an ongoing
model execution in case a certain extensional value was modified could be realized similar to
the debug commands step into, step over, and step return by calling the command interface
operation nextStep() until an extensional value event reporting on the modification of this certain
extensional value is issued by the event mechanism. Likewise, state modifications in terms of
altering the values of variables in the scope of a current stack frame could be supported, as the
command interface provides access to the execution environment of the fUML virtual machine
and therewith to the locus of the execution and all existing extensional values. The very same
command interface functionality could also be utilized for implementing hot code replacement
enabling the modification of a model currently being executed. Furthermore, reverse debugging
could be realized based on the detailed runtime information provided by the trace model and the
ability to access and modify the locus of the execution provided by the command interface.

Testing framework. A commonly applied approach for testing a system is to define test cases
that assert whether the system yields expected outputs for defined inputs. Based on asserting
input/output relations in this way, it can be validated whether the system fulfills its functional
requirements as well as verified whether it contains defects. Testing fUML models by asserting
input/output relations is already supported by the fUML virtual machine as is. Therefore, input
data for executing an activity to be tested can be provided to the fUML virtual machine and
the output of the execution can be retrieved from the fUML virtual machine and compared with
the expected output. Hence, developing testing frameworks supporting input/output relation as-
sertions of fUML models is possible based on the fUML virtual machine without the need for
any extensions. However, performing a more fine grained analysis of the behavior of an fUML
model for testing purposes requires thorough and precise runtime information about its execu-
tion and, therewith, requires dynamic analysis capabilities. For achieving this, the trace model
developed as fUML execution environment extension can be applied. By applying the trace
model, we implemented a testing framework [104, 105] integrated with EMF that not only en-

166

ables the assertion of input/output relations of activities, but also the runtime state of the model
during execution as well as the execution order of model elements. Our testing framework con-
sists of a test specification language and a test interpreter. Using the test specification language
the modeler can specify test cases comprising test input data and assertions on the behavior of
activities contained by the fUML model under test. The test interpreter executes the activities
under test for the defined input data using the extended fUML execution environment and eval-
uates the defined assertions based on the obtained trace models. The testing framework supports
two types of assertions, namely execution order assertions and state assertions.

Execution order assertions can be used to verify whether the nodes contained by tested ac-
tivities are executed in the correct chronological order. Therefore, execution order assertions are
defined by specifying the nodes in the order in which they should be executed. It is also possible
to specify the relative order of nodes and omit nodes, whose execution order is irrelevant for the
test case. Evaluating execution order assertions is easily possible based on obtained trace mod-
els. Therefore, we simply investigate the ActivityNodeExecution instances contained by a trace
model, which represent the executed activity nodes, as well as their chronological execution
order, which is captured by the references chronologicalPredecessor and chronologicalSuccessor.
To evaluate order assertions in case the activities under test contain concurrent branches of activ-
ity nodes, the captured logical dependencies between the executed activity nodes represented by
the references logicalPredecessor and logicalSuccessor can be investigated to identify all possible
sequential orders in which activity nodes contained by concurrent branches can be executed.

State assertions can be used to verify whether the runtime state of a tested models evolves as
expected during its execution and, thus, enables the assertion of the correct behavior of models.
Thereby, the runtime state of a model at a certain point in time of the execution consists of all
values existing at this exact point in time and their state at this point in time. For instance, the
state of an object comprises all its feature values and links to other objects. In a state assertion,
the runtime states to be checked are specified using temporal expressions. An example of a tem-
poral expression is always after actionX selecting each runtime state of the model after actionX
has been executed. The actual assertion of the selected runtime states is defined using OCL
expressions. For evaluating state assertions, the possibility to retrieve the runtime state of the
tested model at any point in time of the execution is required. This possibility is provided by the
trace model, as it captures all modifications of values including their creation and destruction by
ValueInstance and ValueSnapshot instances. As the trace model captures for each ValueSnapshot
instance the information about which action execution, represented as ActionExecution instance,
led to the respective value modification, as well as the information about the chronological ex-
ecution order of actions, it can be determined which values existed at a certain point in time of
the execution as well as their states at this point in time. Thus, it is possible to derive the runtime
state of the model at any point in time of the execution and, hence, evaluate temporal expressions
of state assertions. The evaluation of OCL expressions on these runtime states, i.e., on the values
existing in the respective state, is then achieved using the Dresden OCL framework [65].

Based on our trace model, further testing capabilities could be implemented on top of the
fUML virtual machine. For instance, test coverage metrics could be easily calculated based on
the captured information about executed activities and activity nodes. Furthermore, by utiliz-
ing the information about logical dependencies between executed activity nodes the location

167

of defects leading to failing assertions could be determined and corrective feedback could be
calculated supporting the modeler in correcting defects.

Non-functional property analysis tool. To perform model-based analyses of non-functional
system properties, models defining the structure and the behavior of the system as well as fac-
tors influencing the respective non-functional property are analyzed. Therefore, either analytical
methods or simulation techniques are employed. Applying simulation techniques requires de-
tailed runtime information about the execution of the model used for the analysis. We proposed
to employ the trace model developed as fUML execution environment extension to implement
simulation techniques for analyzing non-functional properties based on fUML models [10]. Do-
ing so enabled us to implement two performance analysis tools for fUML models. The first
one can be used to calculate the end-to-end execution time of component-based software sys-
tems [10]. The second one also allows the computation of additional performance indices, such
as response time, throughput, and utilization, by taking the contention of resources into ac-
count [49].

To analyze the end-to-end execution time of a component-based software system, an fUML
model defining the software architecture and the hardware platform of the system, as well as
performance-related information is processed. The definition of the software architecture com-
prises the definition of the system’s components in terms of classes as well as the definition of
the components’ behavior in terms of operations and associated activities. The hardware plat-
form is defined in terms of classes specifying the execution hosts of the system. The software
architecture and the hardware platform are connected with each other through dedicated associa-
tions defining the deployment of software components on execution hosts. Performance-related
information required for analyzing the system’s performance is defined by applying stereotypes
of the UML profile MARTE [115] to the model. MARTE is a UML profile primarily targeted
at supporting the modeling and analysis of real time and embedded systems. However, it pro-
vides stereotypes for annotating UML models with information required for performance and
schedulability analysis, which are also useful for the analysis of systems other than real time
and embedded system. We use several of these stereotypes to specify the characteristics of the
execution hosts defined in an fUML model of a component-based software system, such as used
hardware resources like CPU, memory, and network connection. Furthermore, the resource
usage of the software components for executing a certain behavior is defined by applying the
MARTE stereotype ResourceUsage to the activity defining the respective behavior. Lastly, a
scenario, whose end-to-end execution time shall be analyzed, has to be defined in terms of an
activity invoking software component operations. This scenario can be simulated by executing
the defined activity using the fUML virtual machine. For computing the required end-to-end
execution time, the information about which activities have been executed and how often they
have been executed is required. This can be easily retrieved from the trace model, as each ac-
tivity execution is represented by an ActivityExecution instance. By combining this information
and the information about the resource usage of the executed activities defined via stereotype
applications, the end-to-end execution time can be calculated.

For analyzing the performance of a system taking resource contention into account, addi-
tional information has to be specified in the fUML model defining the system to be analyzed.

168

In particular, workloads have to be specified defining how often a certain scenario has to be
processed by the system in a given time frame, i.e., how often a job requiring the execution of
this scenario arrives at the system. Therefore, the MARTE stereotype GaScenario is applied
to each activity defining a scenario and job arrival patterns are defined. For calculating waiting
times of jobs caused by resource contention, information about which components are involved
in processing the jobs is required. Therefore, the activity defining the scenario that has to be
executed for processing a job can be executed using the fUML virtual machine. The captured
trace model provides the information about which activities have been executed and, therewith,
the information about which components are involved in processing the respective job. Based on
this information and the calculation of the execution time needed by each involved component
for processing a job as described beforehand, it is possible to compute the waiting times of jobs
in the system. In further consequence, the performance indices response time, throughput, and
utilization can be calculated.

By combining the detailed information about the runtime behavior of an fUML model cap-
tured by trace models, as well as information about factors influencing non-functional system
properties defined in the fUML model itself or via stereotype applications, it is possible to im-
plement various kinds of further non-functional property analysis methods.

Results

Table 7.1 summarizes the applications of the developed extensions of the fUML execution envi-
ronment for implementing the presented debugger, testing framework, and performance analysis
tools.

The trace events issued by the event mechanism as well as the execution control provided
by the command interface enabled us to implement the traditional debug commands step into,
step over, step return, and resume, as well as breakpoint support for debugging fUML models.
Based on the runtime information provided by the trace model about the execution of activities
and actions, their inputs and outputs, as well as their logical dependencies through the sending
and receiving of tokens, we could implement support for observing the state of executions as
usually provided by IDEs in terms of threads, stack frames, and variables. Through suspension
events, the debugger implementation detects the suspension of executions and, therewith, the
need for updating the provided state information. As the trace model is continuously updated
during the model execution, up to date runtime information about running threads and their
associated stack frames and variables can be provided to users.

The runtime information about executed activities and activity nodes, as well as about logical
dependencies between them, which is captured by the trace model, allowed us evaluate execution
order assertions. They provide users with the means for testing the correct execution order of
activities and activity nodes. The runtime information about executed actions as well as their
inputs and outputs is sufficient for reconstructing each runtime state of a carried out model
execution comprising the state of all existing values at a certain point in time of the execution.
This enabled us to evaluate state assertions providing users with the means to test the correct
behavior of fUML models.

For implementing performance analysis methods, which are based on simulation techniques,
we needed to combine information about the executed parts of a simulated model with perfor-

169

Event Command Trace
mechanism interface model

Debugger
Control via debug commands
and breakpoints

Trace events Execution control -

Observation of position and vari-
able values

Trace events - Executions
Inputs and outputs
Token flows

Testing framework
Execution order assertions - - Executions

Token flows
State assertions - - Executions

Inputs and outputs

Performance analyzer
Execution time analysis - - Executions
Resource contention analysis - - Executions

Table 7.1: Applications of fUML execution environment extensions in case studies

mance characteristics of the modeled system. While the latter information is usually captured by
the application of MARTE stereotypes, the former information has to be retrieved from the sim-
ulation environment—in our case the fUML execution environment. The runtime information
provided by the trace model proved to provide sufficient information for this purpose.

Besides the debugging, testing, and performance analysis capabilities implemented in the
course of the reported case studies, we also identified further capabilities that could be imple-
mented based on the developed extensions of the fUML execution environment, such as watch-
points for debugging and defect location for testing.

From developing the presented tool prototypes, we conclude that our extensions of the fUML
execution environment are adequate for implementing debugging, testing, dynamic analysis,
and non-functional property analysis tools. In particular, we argue that the event mechanism is
adequate for observing state changes of model executions during runtime on a fine granularity
level, such as required for debugging. In combination with trace models captured for model
executions, it is possible to perform detailed dynamic analyses of the runtime behavior of models
either during their execution or a posteriori, for instance for testing or performance analysis
purposes. Furthermore, the command interface allows the flexible control of the execution of
models as for example needed for debugging.

By developing the presented tool prototypes, we also identified potential for improving our
extensions of the fUML execution environment discussed in the following.

One potential for improvement concerns the developed event mechanism, namely its in-
formation content in terms of the completeness of the runtime information observable through
events. Currently, two types of events are issued by the event mechanism, namely trace events
for determining the current position of an ongoing execution (i.e, the activity started in the last
execution step, or the action or control node executed in the last execution step) and extensional

170

value events for determining modifications of extensional values. However, the events do not
carry information about inputs and outputs of executing activities, actions, and control nodes, in-
formation about token flows, as well as information about logical dependencies between actions
and control nodes. This information can currently be only retrieved from recorded trace mod-
els. Thus, the implemented debugger prototype has to utilize the trace model for obtaining the
runtime information required for displaying the current state of the executing model, instead of
relying on the event mechanism and command interface alone. Extending the event mechanism
with additional event types carrying this runtime information would enable relying on the event
mechanism only for observing the state of an executing model. Furthermore, it would enable
the replacement of the current mechanism for recording the execution state, which is part of the
command interface, with an execution event listener and the decoupling of the trace model cap-
turing from the execution state by realizing the trace capturing component also as an execution
event listener.

The command interface allows the execution of a model in a stepwise manner. Thereby, an
execution step comprises the start of executing an activity, the completion of executing an action,
or the completion of executing a control node. However, it does not consider the consuming of
tokens as well as the sending of token offers through activity edges as an execution step, which
might be of interest for debugging an fUML model on a more detailed level.

Concerning the trace model, we experienced that one runtime information that is often re-
quired is the runtime state of the model at a certain point in time of the execution consisting of
all values existing at this point in time and their state at this point in time. This is required by
the developed testing framework for evaluating state assertions and would be also beneficial for
the developed debugger for displaying the current state of an executing model. However, this
information is already captured by trace models and could be easily represented in a more direct
way requiring only minor adaptations of the trace metamodel.

One limitation of all extensions concerns the completeness of the support of fUML. In par-
ticular, signals and active classes are currently not supported including the action types send
signal action, accept event action, start classifier behavior action, and start object behavior ac-
tion. Furthermore, we currently do not support the definition of activities as reducer behavior
of reduce actions and as decision input behavior of decision nodes. However, the former can be
replaced by the usage of expansion regions and call behavior actions, and the latter by the usage
of call behavior actions and subsequent decision nodes without decision input behavior.

7.1.3 Performance

The extensions of the fUML execution environment have been integrated with the reference
implementation of the fUML virtual machine [91]. For detecting state changes of model execu-
tions being carried out by fUML virtual machine, interrupting model executions, and capturing
state information of model executions, which is required for the realization of the event mech-
anism, command interface, and trace model, respectively, we implemented dedicated aspects
using AspectJ and wove these aspects into the reference implementation. For quantitatively
evaluating the performance overhead caused by the developed extensions, we carried out a case
study in which we compared the performance of the extended fUML execution environment
with the standard fUML execution environment, i.e., with the reference implementation of the

171

fUML virtual machine. In the following, we present the performed case study and discuss the
evaluation results.

Case Study

For comparing the performance of the extended fUML execution environment and the standard
fUML execution environment, we developed an fUML model, which defines the structure and
the behavior of an online store and serves as case study example.

Figure 7.1 depicts the classes defining the structure of the online store. At the top of this
figure, the classes defining the entities managed by the online store are shown. At the bottom of
this figure, the classes defining the services provided by the online store are shown. The online
store manages registered customers (class Customer), a catalog of products (classes Product
and Item), shopping carts of customers (classes Cart and CartItem), as well as orders placed by
customers (classes Order and OrderLine). Services are offered by the ApplicationController of
the online store, which is responsible for handling user interactions. Therefore, it uses three other
software services, namely CustomerService, CatalogService, and OrderService, that manage the
customers, products, and orders of the online store, respectively. These services, in turn, have
access to an EntityManager that provides operations to persist, retrieve, and delete entity objects.

Figure 7.2 shows three usage scenarios of the online store. In the login scenario, a user logs
on to the online store by calling the operation login() of the ApplicationController and providing
login credentials. The login is handled by the CustomerService who retrieves the Customer
object corresponding to the login credentials from the EntityManager. In the find item scenario,
a user retrieves an item from the product catalog of the online store. Therefore, the operation
findItem() of the ApplicationController is called and the name of the item to be retrieved is
provided as input to this operation. For retrieving the respective item, the ApplicationController
calls the operation findItem() of the CatalogService, which in turn calls the operation findAll-
Items() of the EntityManager and iterates over the obtained items for retrieving the item with
the provided name. In the buy scenario, the user first logs on to the online store as defined by
the login scenario, retrieves then an item from the product catalog as defined by the find item
scenario, adds the retrieved item to the cart, and finally orders the item. For adding the retrieved
item to the cart, the operation addItemToCart() of the ApplicationController is called, which
forwards the request to the OrderService for adding the provided item to the cart and persisting
the updated cart using the EntityManager. For ordering the item, the operation confirmOrder()
of the ApplicationController is responsible. It calls the operation confirmOrder() of the Order-
Service, which creates a new order and persists the order as well as deletes the cart by using the
EntityManager. Each usage scenario is modeled as a UML activity, which calls the respective
operations of the service class ApplicationController. Beforehand, two Customer objects, three
Item objects, and one object of each service class are created and appropriately initialized.

Setup

The performance comparison was done by executing the activities defining the three usage sce-
narios login scenario, find item scenario, and buy scenario of the online store. Thereby, each
activity was executed by means of the the standard fUML execution environment as well as

172

Customer

- login : String
- password : String
- firstname : String
- lastname : String
- email : String

Item

- name : String
- description : String
- unitCost : Integer

Order

- orderDate : String

OrderLine

- quantity : Integer

CartItem

- quantity : Integer

Cart

Product

- name : String
- description : String

product 1
items *

orderLine

*

item

1

cartItem

*

item

1

cart

1

cartItems

*

cart

0..1

customer

1

order

*

customer

1

order

1

orderLines

*

CustomerService

+ login(String, String) : Customer

CatalogService

+ findItem(String) : Item
+ findAllItems() : Item[*]
+ findAllProducts() : Product[*]

OrderService

+ addItemToCart(Customer, Item) : void
+ removeItemFromCart(Customer, Item) : void
+ confirmOrder(Customer) : Order
- getCart(Customer) : Cart
- getCartItem(Cart, Item) : CartItem
- createOrderLine(Item, Integer) : OrderLine
- createOrderLine(CartItem) : OrderLine

EntityManager

+ findCustomer(String, String) : Customer
+ findAllItems() : Item[*]
+ findAllProducts() : Product[*]
+ persist(Object) : void
+ delete(Object) : void
- checkCredentials(Customer, String, String) : Boolean

ApplicationController

+ login(String, String) : Integer
+ findItem(String) : Item
+ addItemToCart(Integer, Item) : void
+ removeItemFromCart(Item, Integer) : void
+ confirmOrder(Integer) : Order
- createSession(Customer) : Integer
- createSessionId() : Integer
- getCustomer(Integer) : Customer

Session

- sessionId : Integer

session 0..1

customer 1

applicationController

1 sessions

*

applicationController 1

orderService 1

orderService

1 entityManager

1

applicationController 1

customerService 1

applicationController 1

catalogService 1

catalogService 1

entityManager 1

customerService 1

entityManager 1

Entities

Services

Figure 7.1: Online store case study: Classes

the extended fUML execution environment. For each activity, we measured the execution time
needed by the respective fUML execution environment for executing it, as well as the respective
memory consumption.

The execution time was measured by taking timestamps right before the model execution
was started and right after the model execution was finished. For the standard fUML execution
environment, timestamps were taken right before calling the operation execute() of the execution
environment class Executor responsible for synchronously starting the execution of an activity,
and right after this operation finished execution. For the extended fUML execution environment,
timestamps were taken right before calling the operation executeStepwise() of the command
interface class ExecutionContext responsible for stepwise executing an activity, and right after
the last execution step finished. This enabled us to compute the additionally needed execution

173

: ApplicationController : CustomerService : CatalogService : OrderService : EntityManager

login(login, password)
login(login, password)

findCustomer(login, password)

customer= findCustomer(login, password) customer= login(login,
password)

sessionId= login(login,
password)

findItem(name)
findItem(name)

findAllItems()

allItems= findAllItems()
item= findItem(name)

item= findItem(name)

addItemToCart(sessionId, item)
addItemToCart(customer, item)

persist(cart)

confirmOrder(sessionId) confirmOrder(customer)
persist(order)

delete(cart) order = confirmOrder(customer) order =
confirmOrder(sessionId)

find item
scenario

login
scenario

buy scenario

Figure 7.2: Online store case study: Scenarios

time induced by the event mechanism, command interface, and trace model recording.
The memory consumption was measured by recording the objects allocated on the heap

during executing the respective activity using JProfiler2. This enabled us to measure the number
and size of objects allocated on the heap, which are relevant to the evaluation, that are instances
being model elements, execution model elements, events, execution state objects, or trace model
elements. Thus, we could calculate the additional memory consumption caused by the events
issued by the event mechanism, execution state information kept by the command interface, and
recorded trace models.

In the following, we explicate the hardware and software environment used for carrying out
the performance evaluation.

• Hardware: Intel Dual Core i5-2520M CPU 2.5 GHz, 8 GB RAM

• Operating system: Windows 7 Professional, Service Pack 1

• Eclipse: Kepler, Service Release 1, Build 20130919-0819

• JProfiler: Version 8.0.7, Build 8077

• Java: Version 7, Update 3, Build 1.7.0_03-b05

2http://www.ej-technologies.com, accessed 16.07.2014

174

http://www.ej-technologies.com

Results

Execution time. Figure 7.3 shows the execution times measured for the standard fUML ex-
ecution environment as well as the extended fUML execution environment. We executed each
usage scenario 20 times using both environments, measured the execution times, and calculated
their arithmetic mean (AM) as well as standard deviation (STD) (cf. table at the bottom of Fig-
ure 7.3). For the login scenario, the extended fUML execution environment was slower by a
factor of 3, for the find item scenario and the buy item scenario by a factor of 4. From these
results, we conclude that our extensions of the fUML execution environment seriously compro-
mise the performance of the fUML virtual machine.

To find the cause for these performance results, we further analyzed the execution times
required for executing the individual operations comprising our extensions based on our case
study example using the Eclipse plugin JVM Monitor3. The execution time required for execut-
ing operations associated with recording trace models accounts for around 40% of the overall
execution time concerning the extensions. The execution of operations associated with query-
ing and updating execution state information captured by the command interface accounts for
around 20%. The execution control operations provided by the command interface account for
around 34%. The remaining 6% are concerned with creating and issuing events by the event
mechanism. From this analysis, we conclude that there are two main sources of the performance
overhead introduced by our extensions of the fUML execution environment: (i) Because we did
not modify the fUML execution environment directly but used aspect-oriented programming
techniques, we had to collect much execution state information using dedicated aspects in order
to realize the execution control and trace capturing capability provided by the command interface
and trace model, respectively. (ii) Because the runtime information captured by trace models
are very detailed in order to provide high precession, recording trace models during ongoing
model executions is expensive. To mitigate the performance overhead introduced by our exten-
sions, we recommend to redesign the fUML execution environment considering the integration
of means for observability, controllability, and dynamic analyzability as proposed by our event
mechanism, command interface, and trace model. Furthermore, we expect that providing means
for configuring the level of detail of runtime information captured by trace models would result
in performance improvements in cases were only parts of the runtime information are required.

Memory consumption. Figure 7.4 shows the results of the memory consumption measure-
ments. It depicts the size of the objects allocated on the heap for executing the three usage
scenarios of our online store case study. It is distinguished between model elements, execution
model elements, events issued by the event mechanism, execution state objects kept by the com-
mand interface, and trace model elements. The objects of the latter three types constitute the
overhead of the extensions incorporated into the fUML execution environment in terms of mem-
ory consumption. It amounts to 57 kB, 36 kB, and 116 kB compared to 5,454 kB, 5,403 kB, and
5,614 kB allocated for the model and the execution model. Thus, the measured memory con-
sumption overhead lies between 0.66 % and 2.03%. We measured a similar overhead in terms
of number of objects. From these results, we conclude that our extensions of the fUML execu-

3http://www.jvmmonitor.org, accessed 17.07.2014

175

http://www.jvmmonitor.org

tion environment cause only a marginal memory overhead. This can be justified by the fact that
the objects instantiated by the extensions act mainly as references to model elements but do not
carry much data. For instance, trace events issued by the event mechanism refer to activities and
activity nodes, whose execution started and finished, but do not carry any information except
for a time stamp of the data type Long and an identifier of the type Integer. Nevertheless, the
number of issued events and the size of captured trace models grow linear with the number of
executed model elements and the number of performed value modifications.

AM STD AM STD

login scenario 29 ms 21 ms 97 ms 46 ms

find item scenario 30 ms 25 ms 129 ms 77 ms

buy scenario 34 ms 24 ms 136 ms 78 ms

Scenario
Standard fUML

execution environment
Extended fUML

execution environment

0
20
40
60
80

100
120
140
160

login scenario find item scenario buy scenario

Ex
ec

ut
io

n
tim

e
(m

s)

Scenario

Execution time

Standard fUML execution environment Extended fUML execution environment

Figure 7.3: Execution time measurements for online store case study

Scenario Model Execution model Events Execution state Trace model

login scenario 5,452,440 (96.62%) 132,328 (02.34%) 16,152 (00.29%) 5,168 (00.09%) 37,112 (00.66%)

find item scenario 5,452,440 (97.89%) 80,520 (01.45%) 10,136 (00.18%) 3,360 (00.06%) 23,384 (00.42%)

buy scenario 5,452,440 (92.93%) 296,024 (05.05%) 29,976 (00.51%) 10,944 (00.19%) 78,120 (01.33%)

5,200,000

5,300,000

5,400,000

5,500,000

5,600,000

5,700,000

5,800,000

5,900,000

login scenario find item scenario buy scenario

Si
ze

 (b
yt

es
)

Scenario

Memory consumption

Trace model

Execution state

Events

Execution model

Model

Figure 7.4: Memory consumption measurements for online store case study

176

7.2 Semantics Specification with fUML

7.2.1 Research Questions

With the integration of fUML into existing metamodeling languages, metamodeling method-
ologies, and metamodeling environments, we aimed at providing the means for defining exe-
cutable modeling languages with the standardized UML 2 compliant action language of fUML.
Therefore, we elaborated a language integration strategy for integrating fUML with existing
metamodeling languages resulting in the executable metamodeling language xMOF, as well as a
methodology for developing executable semantics specifications with this language. We aimed
at constructing the language integration strategy and semantics specification methodology in a
non-invasive way, meaning that existing metamodeling languages and techniques, as well as
tools provided by existing metamodeling environments for defining modeling languages and
processing models should remain unaffected. This includes also, that an existing definition of a
modeling language in terms of a metamodel should not have to be modified in order to define the
language’s behavioral semantics. Instead, the definition of the behavioral semantics of modeling
concepts should build upon a modeling language’s metamodel but be clearly separated from it.

To investigate the fulfillment of these requirements we evaluated the adequacy of fUML
and the elaborated semantics specification methodology for developing executable modeling
languages, as well as the non-invasiveness of the developed language integration strategy and
semantics specification methodology. In particular, the evaluation investigated the following
research questions.

Research question 1: Adequacy of fUML as a semantics specification language. Is fUML
adequate for formally defining the behavioral semantics of executable modeling languages?
This research question is divided into the following subquestions.

(a) Expressiveness. Is fUML expressive enough to formally define the behavioral semantics of
modeling languages such that conforming models can be executed?

(b) Suitability. Is fUML suitable as semantics specification language?

Research question 2: Adequacy of the semantics specification methodology. Is the seman-
tics specification methodology adequate for developing behavioral semantics specifications with
fUML?
This research question is divided into the following subquestions.

(a) Adequacy for semantics specification development. Does the semantics specification
methodology allow the systematic and efficient development of behavioral semantics speci-
fications with fUML?

(b) Adequacy for model execution. Does the semantics specification methodology allow the
direct execution of models based on developed behavioral semantics specifications?

177

(c) Adequacy for analysis of semantics specifications. Does the semantics specification method-
ology allow the utilization of runtime information obtained from performing model execu-
tions to analyze developed behavioral semantics specifications?

Research question 3: Non-invasiveness of fUML integration. Is the integration of fUML
with metamodeling languages, metamodeling methodologies, and metamodeling environments
non-invasive?
This research question is divided into the following subquestions.

(a) Non-invasiveness of language integration. Is the language integration strategy non-invasive
in the sense that the definition of metamodeling languages by meta-metamodels as well as
any techniques and tools based on meta-metamodels remain unaffected by the integration?

(b) Non-invasiveness of semantics specification methodology. Is the semantics specification
methodology non-invasive in the sense that metamodeling methodologies and metamodeling
environments remain unaffected such that their processes, techniques, and supporting tools
remain applicable as before?

(c) Non-invasiveness of semantics specification. Is the definition of a modeling language’s
behavioral semantics developed with fUML and the elaborated methodology non-invasive
in the sense that both the metamodel of the modeling language and any existing tool support
for the modeling language remain unaffected?

We instantiated the elaborated language integration strategy and semantics specification method-
ology for EMF by accordingly integrating fUML with Ecore as well as implementing cor-
responding tool support for EMF. Using these implementations of xMOF and our semantics
specification methodology, we carried out five case studies, in which we developed the behav-
ioral semantics of five distinct modeling languages of different complexities and characteris-
tics [86, 100]. By drawing conclusions from these case studies we answered the posed research
questions.

7.2.2 Case Studies

For answering the above stated research questions, we developed the behavioral semantics spec-
ifications of five distinct modeling languages. Therefore, we used our implementation of xMOF
for Ecore and followed the semantics specification methodology accompanying xMOF by uti-
lizing the tool support implemented for EMF. The considered modeling languages are (i) Petri
nets, (ii) a modeling language for imperatively defining computations, (iii) finite state automata,
(iv) UML activity diagrams, and (v) UML class diagrams. The criteria applied for select-
ing these modeling languages are the diversity of semantic paradigms underlying the modeling
languages as well as their complexity in terms of the complexity of the modeling languages’
metamodels. In the following, we discuss the modeling concepts provided by the considered
modeling languages as well as their behavioral semantics specifications developed in the course
of the case studies. Thereafter, we summarized the characteristics of these modeling languages
and provide insights into the complexity of the developed behavioral semantics specifications.

178

Modeling Language Definitions

Petri nets (PN). The first considered modeling language is the Petri net language, which
served as running example in Chapter 5. A Petri net consists of places and transitions, which
are connected for expressing input and output dependencies between transitions (cf. Figure 5.5
depicting the metamodel of the Petri net language).

The behavioral semantics of the Petri net language is specified in terms of tokens flowing
through a Petri net (cf. Figure 5.6 and Figure 5.7). The initial marking of a Petri net, that is
the initial distribution of tokens in the Petri net, is defined as input to the execution of the Petri
net and new markings are induced by firing enabled transitions. Transitions are fired sequen-
tially, the set of enabled transitions is recomputed after each firing, and enabled transitions are
deterministically chosen for being fired.

Imperative modeling language (IML). The imperative modeling language allows the speci-
fication of computations with Integers. As defined by its metamodel depicted on the left-hand
side of Figure 7.5, it provides modeling concepts for defining Integer variables possessing a
name and an initial value (metaclass Variable), assignments through mathematical expressions
over variables (metaclasses Assignment and Expression), and conditional goto statements (meta-
classes Goto, Mark, and Condition).

The behavioral semantics of IML defines that the statements of an IML model are processed
in their sequential order top to bottom and under the consideration of goto statements. Therefore,
as can be seen on the right-hand side of Figure 7.5, we introduced a program counter into the
xMOF-based configuration of IML holding the index of the next statement to be processed (at-
tribute statementPointer of ModelConfiguration). The operation main() of the configuration class

IML

Model

Statement

Assignment Goto

Variable

name : EString
value : EInt

Expression

calc : EString

Mark

name : EString

Condition

comp : EString

ModelConfiguration

statementPointer : EInt
main() : void

AssignmentConfiguration

executeAssignment() : void

MarkConfiguration

GotoConfiguration

getStatementIndex() : EInt

ConditionConfiguration

evaluateCondition() : EBoolean

VariableConfiguration

currentValue : EInt

ExpressionConfiguration

Model

Variable Goto Assignment

Expression Condition Mark

writeTo

1

x 1 y 1

par1

1

gotoMark 1 cond 1 mark 0..1

assignment 1

exp 1

variables * statements *

model 1

par2

1

Metaclass Configuration class

Ecore-based metamodel xMOF-based configuration

{ordered}

Figure 7.5: Imperative modeling language case study

179

ModelConfiguration is responsible for updating the program counter and triggering the execution
of the next statement. The behavior of executing assignment statements and goto statements
is defined by operations introduced into the configuration classes of the respective metaclass.
The operation executeAssignment() of the configuration class AssignmentConfiguration defines
how assignment statements are executed including the evaluation of expressions. The operation
evaluateCondition() of the configuration class ConditionConfiguration defines how goto conditions
are evaluated, and the operation getStatementIndex() of the configuration class GotoConfiguration
defines how the target statement index of a goto statement is retrieved. For capturing the run-
time values of variables, we introduced the attribute currentValue into the configuration class
VariableConfiguration.

Finite state automata (FSA). The metamodel of the developed finite state automata language
is depicted at the top of Figure 7.6. A finite state automata consists of a set of named states,
where one state serves as initial state and several states may serve as accepting states (metaclass
State). Transitions lead from one state to another state and are labeled with processable events
(metaclass Transition).

The behavioral semantics of finite state automata is defined by the xMOF-based configura-
tion depicted at the bottom of Figure 7.6 as described in the following. A finite state automata
evaluates whether a sequence of input events is valid, i.e., if the sequential processing of the
input events leads from the initial state to an accepting state. For processing one input event it
is checked whether exactly one outgoing transition of the current state is labeled with the event.
If this is the case, the current state is updated to the target state of this transition. Otherwise, the
provided sequence of input events is invalid. The main() operation introduced into the configura-
tion class FSAConfiguration takes as input the sequence of events to be processed (initialization

FSA

FSA

State

name : EString
accepting : EBoolean

Transition

event : EString

FSAConfiguration

nextEvent : EInt
inputAccepted : EBoolean

main(Event[*] {ordered}) : void
evaluateInput(Event[*] {ordered}) : EBoolean
getNextEvent(Event[*] {ordered}) : Event

StateConfiguration

getProcessingTransition(Event) : TransitionConfiguration

TransitionConfiguration

process() : StateConfiguration
canProcess(Event) : EBoolean

InputEvents
Event

event : EString

events

*

transitions *

incomingTransitions

*

toState

1

outgoingTransitions

*

fromState

1

initialState 1 states *

currentState

1

Metaclass Configuration class

Ecore-based metamodel

xMOF-based configuration

{ordered}

Figure 7.6: Finite state automata case study

180

classes InputEvents and Event). This sequence of events is evaluated by the operation evaluate-
Input(), which calls the operation getNextEvent() for retrieving the next event to be processed. For
evaluating one event in the current state, first the transition labeled with this event is retrieved us-
ing the operation getProcessingTransition() of the configuration class StateConfiguration, which in
turn uses the operation canProcess() of the configuration class TransitionConfiguration for deter-
mining whether a transition is labeled with this event. If such a transition is retrieved, the current
state of the finite state automata is accordingly updated by calling the operation process() of the
configuration class TransitionConfiguration. During the execution, the current state of a finite state
automata, the next input event to be processed, as well as the final result of the execution are
captured by the configuration class FSAConfiguration via the reference currentState, as well as
the attributes nextEvent and inputAccepted.

UML activity diagrams (AD). The UML activity diagram case study is concerned with a
variant of UML activity diagrams defined by Maoz et al. [95]. The metamodel, which we created
for this case study depicted on the left-hand side of Figure 7.7, is based on the UML metamodel
of the Eclipse UML 2 plugin and introduces additional modeling concepts that were considered
by Maoz et al. In particular, the metamodel contains the following UML 2 standard conforming
modeling concepts: activities, initial nodes, activity final nodes, fork nodes, join nodes, decision
nodes, merge nodes, control flow edges, and opaque actions. Because Maoz et al. introduced

AD

Action

NamedElement
ActivityEdge

NamedElement
ActivityNode

NamedElementConfiguration
ActivityEdgeConfiguration

sendOffer(Token[*]) : void
takeOfferedTokens() : Token[*]
hasOffer() : EBoolean

Token

transfer(ActivityNode) : Token
withdraw() : void
isWithdrawn() : EBoolean

NamedElementConfiguration
ActivityNodeConfiguration

running : EBoolean

run() : void
isReady() : EBoolean
takeOfferedTokens() : Token[*]
fire(Token[*]) : void
sendOffers(Token[*]) : void
addTokens(Token[*]) : void
removeToken(Token) : void
hasOffers() : EBoolean
isRunning() : EBoolean

NamedElementConfiguration
ActivityConfiguration

main(InputValue[*]) : void
initialize(InputValue[*]) : void
run() : void
runNodes() : void
getEnabledNodes() : ActivityNode[*]
fireNode(ActivityNode) : void

OpaqueAction

NamedElement
Variable

ExpressionConfiguration

execute() : void
ExecutableNodeConfiguration

ActionConfiguration

doAction() : void
sendOffers() : void

NamedElement
Activity

NamedElement
ActivityNode

NamedElement
ActivityEdge

ExecutableNode
Action

Expression

NamedElement
ActivityNode

source 1

outgoing *

heldTokens *

expressions *

inputs * locals *

nodes

*

edges

*

target 1

incoming *

holder

1

Metaclass Configuration class

Ecore-based metamodel xMOF-based configuration

Value
NamedElementConfiguration

VariableConfiguration

InputValue
NamedElement

Variable

currentValue

1

value 1

variable

1

Value

IntegerVariable

BooleanVariable

BooleanValue

value : EBoolean

IntegerValue

value : EInt

initialValue 0..1

ExecutableNode

ControlNode

NamedElement
Activity

guard 0..1

ControlFlow

{ordered}

BooleanExpression

IntegerExpression

Expression

Figure 7.7: Activity diagram case study (excerpt)

181

local and input variables and allow the definition of expressions over these variables in actions
as well as for guard conditions of control flow edges, we likewise introduced the following
additional modeling concepts into our UML activity diagram metamodel: variables (metaclass
Variable), values (metaclass Value), and expressions (metaclass Expression).

The behavioral semantics defined for the UML 2 compliant modeling concepts is based on
the semantics defined by the fUML standard as depicted on the right-hand side of Figure 7.7.
For instance, the operations doAction() and sendOffers() introduced into the configuration class
ActionConfiguration correspond to the same named operations defined by the activation visitor
class ActionActivation of the fUML execution model (cf. Figure 3.7). For executing expressions,
we introduced the operation execute() into the configuration class ExpressionConfiguration and
defined the behavior of this operation with activities contained by the concrete subclasses of
ExpressionConfiguration. The runtime values of variables are captured by the containment ref-
erence currentValue of the configuration class VariableConfiguration. To enable the provision of
input values for input variables of an activity (reference inputs of metaclass Activity), we added
the initialization class InputValue to the xMOF-based configuration. The main() operation of the
semantics specification owned by the configuration class ActivityConfiguration takes as input a set
of InputValue instances.

UML class diagrams (CD). The last case study is concerned with UML class diagrams. For
this case study, we extracted a subset of the UML metamodel of the Eclipse UML 2 plugin
comprising modeling concepts for defining packages, classes, properties, associations, enumer-
ations, and primitive types. An excerpt of the metamodel is depicted at the top of Figure 7.8.

An excerpt of the xMOF-based configuration, which we created for defining the behavioral
semantics of UML class diagrams, is shown at the bottom of Figure 7.8. It consists of two
parts. The first part is concerned with the representation of values, i.e., the runtime manifes-
tation of instances of classifiers defined by a UML class diagram, such as instances of defined
classes, associations, enumerations, and primitive types. Therefore, we introduced configu-
ration classes into the xMOF-based configuration of UML class diagrams, which correspond
to the semantic visitor classes defined by the fUML execution model for representing values

CD

Class Property Association

ClassConfiguration

validate(Object) : EBoolean

validateStructuralFeatureValues(Object) : EBoolean
validateLinks(Object) : EBoolean

PropertyConfiguration

validate(Object) : EBoolean
hasExactlyOneFeatureValue(Object) : EBoolean
validateUniqueness(FeatureValue) : EBoolean
validateMultiplicity(FeatureValue) : EBoolean

AssociationConfiguration

ownedAttribute

*

ownedEnd

*

owningAssociation

0..1

isConcrete (Object) : EBoolean

class

0..1

validate(Value) : EBoolean

validate(Object, Property, Property) : EBoolean
validateOtherEnd(Object, Property, Property) : EBoolean
validateObjectEnd(Object, Property, Property) : EBoolean
validateEnd(Object, Property, Property) : EBoolean
validateUniqueness(Object, Property, Property) : EBoolean
validateMultiplicity(Object, Property, Property) : EBoolean

validate(Object, Property) : EBoolean

validateValues(FeatureValue) : EBoolean

validate(Object, Property, Property) : EBoolean
validateEnd(Object, Property, Property) : EBoolean
validateUniqueness(Object, Property, Property) : EBoolean
validateMultiplicity(Object, Property, Property) : EBoolean

Metaclass Configuration class

ClassifierConfiguration StructuralFeatureConfiguration ClassifierConfiguration

Ecore-based metamodel

xMOF-based configuration

Classifier StructuralFeature Classifier

Figure 7.8: Class diagram case study (excerpt)

182

(cf. Figure 3.6). As an example, the configuration class Object defines the representation of class
instances consisting of feature values holding an object’s attribute values. Because the config-
uration classes for representing values are defined analogously to the semantic visitor classes
defined by the fUML execution model for representing values, they are omitted in Figure 7.8.
The second part of the xMOF-based configuration is concerned with evaluating whether a given
object diagram is a valid instance of a defined class diagram. Therefore, we introduced vali-
dation operations into the configuration classes of the metaclasses Class, Property, Association,
MultiplicityElement, PrimitiveType, Enumeration, and Type and defined their behavior with activ-
ities. Figure 7.8 shows the configuration classes ClassConfiguration, PropertyConfiguration, and
AssociationConfiguration defining the behavioral semantics of the metaclasses Class, Property,
and Association. For instance, the configuration class ClassConfiguration evaluates whether an
object is a valid instance of the respective class by checking whether the class is a concrete class
instead of an abstract class (operation isConcrete()) and whether the object’s links and feature
values comply with the associations and attributes of the class (operations validateLinks() and
validateStructuralFeatureValues()). In the evaluation of object diagrams we considered concrete
and abstract classes, inheritance relationships, class attributes of different types (primitive types,
enumerations, classes), associations, and multiplicities as well as uniqueness constraints of class
attributes and association ends.

Modeling Language Characteristics

The modeling languages considered in the case studies follow different semantic paradigms,
namely (i) token flow semantics, (ii) state-based semantics, (iii) imperative programming, and
(iv) declarative programming. The Petri net language and the considered variant of UML ac-
tivity diagrams follow the semantic paradigm of token flows. Finite state automata have a state-
based semantics as underlying semantics paradigm. The imperative modeling language and the
modeling concepts for defining expressions provided by the considered UML activity diagram
variant follow the imperative programming paradigm. Class diagrams constitute declarative def-
initions of valid classifier instantiations and, thus, follow the declarative programming paradigm.

The considered modeling languages also differ in their complexity. Table 7.2 shows size met-
ric values of the Ecore-based metamodels as well as xMOF-based configurations of the modeling
languages. Concerning the design size of the modeling language’s metamodels measured by the
number of contained metaclasses, the Petri net language, imperative modeling language, and fi-
nite state automata language are with three to eight metaclasses of rather small size. The design
size of UML activity diagrams and UML class diagrams is with 31 and 37 metaclasses consider-
ably larger. This difference in the complexity of the considered modeling language’s metamodels
is reflected by the developed behavioral semantics specifications. While the xMOF-based con-
figurations of the Petri net language, imperative modeling language, and finite state automata
language consist of five to seven classes, the xMOF-based configurations of UML activity dia-
grams and UML class diagrams comprise 38 and 56 classes, respectively. Also the complexity
of the actual behavior definitions in terms of the number of activities defined in the xMOF-based
configurations is higher for the UML activity diagram and UML class diagram case studies.
They comprise 60 and 119 activities, respectively, compared to four to seven activities defined
for the Petri net language, imperative modeling language, and finite state automata language.

183

Ecore-based metamodel PN IML FSA AD CD
Metaclass (3) (8) (3) (31) (37)

Non-abstract metaclass 3 7 3 19 25
Abstract metaclass 0 1 0 12 12

Attribute 2 5 3 8 35
Reference (4) (13) (7) (20) (58)

Non-containment reference 2 13 6 14 55
Containment reference 2 0 1 6 3

Enumeration 0 0 0 4 3
Inheritance relationship 0 2 0 28 35

xMOF-based configuration PN IML FSA AD CD
Class (5) (7) (5) (38) (56)

Non-abstract class 5 7 5 37 50
Abstract class 0 0 0 1 6

Attribute 0 2 4 3 7
Reference (3) (0) (3) (11) (14)

Non-containment reference 1 0 2 5 11
Containment reference 2 0 1 6 3

Inheritance relationship 3 7 3 33 52
Operation 7 4 6 43 88
Activity 7 4 6 60 119
Action (38) (54) (54) (312) (742)

Add structural feature value action 3 5 8 22 2
Call behavior action 4 9 6 26 72
Call operation action 6 3 5 72 158
Clear structural feature action 0 0 0 1 0
Create object action 1 0 0 12 26
Destroy object action 1 0 0 1 0
Expansion region 5 1 2 18 58
Read extent action 0 0 0 0 1
Read is classified object action 0 1 0 1 30
Read self action 6 7 8 70 115
Read structural feature action 7 22 12 57 118
Remove structural feature value action 0 0 0 1 2
Structured activity node 0 0 0 2 0
Test identity action 0 2 4 4 58
Value specification action 5 4 9 25 102

Control node (14) (25) (21) (68) (261)
Decision node 3 5 5 24 117
Fork node 8 16 13 34 132
Initial node 2 0 1 0 0
Merge node 1 4 2 10 12

Edge (59) (113) (99) (452) (1,567)
Control flow 10 24 16 67 285
Object flow 49 89 83 385 1,282

Table 7.2: Size metric values of semantics specification case studies

184

7.2.3 Results

In the following, we discuss the conclusions drawn from performing the presented case studies
with regard to answering the posed research questions.

Research Question 1: Adequacy of fUML

Expressiveness. The action language provided by fUML was expressive enough to completely
define the behavioral semantics of the five considered executable modeling languages, such that
we were able to successfully execute conforming models by means of fUML’s execution en-
vironment. We only identified minor shortcomings of the foundational model library, which
provides primitive behaviors for the primitive data types supported by fUML. For instance, we
missed the list function indexOf, which we needed, e.g., to retrieve the index of the target state-
ment of goto jumps in IML. However, it is easily possible to make additional primitive behaviors
available at the fUML execution environment by providing and registering Java implementations
of these primitive behaviors.

As can be seen in Table 7.2, we made use of 15 action types provided by fUML for defining
the behavioral semantics of the considered modeling languages. From these 15 action types, call
operation action, read structural feature action, read self action, value specification action, and
call behavior action are the most often used ones accounting for 77% of actions contained by the
developed semantics specifications. The action types clear structural feature action, read extent
action, destroy object action, structured activity node, and remove structural feature value action
were scarcely used. The remaining twelve action types provided by fUML were not required
to define the behavioral semantics of the considered modeling languages. This includes action
types related with active classes and asynchronous communication, link actions, and special
types of structured activity nodes.

The high number of read structural feature actions led us to the observation that functions for
navigating and querying models more concisely may ease the development of behavioral seman-
tics specifications with fUML. Simple navigations over multiple associations require one action
for each navigated association, which leads to long chains of reading actions. For collecting
objects that fulfill certain conditions, even more complex combinations of reading actions, deci-
sion nodes, and merge nodes are required. Thus, the size and complexity of the fUML activities
developed in our case studies could be reduced significantly, if a support for similar collection
operations as provided by OCL, such as select and reject, would be provided.

The non-use of several action types can be explained by the fact that fUML contains mod-
eling concepts that can be alternatively used for expressing the same behavior. For instance,
a conditional node can be used alternatively to a set of decision nodes. Similarly, expansion
regions and loop nodes can both be used to iterate over a set of values. For accessing and
modifying associations, either structural feature actions or link actions can be used.

Suitability. fUML provides a computationally complete action language comprising actions
for querying and manipulating objects, primitive behaviors for performing computations, as
well as control structures for expressing complex control flows. Therewith, it is possible to
define the behavior of UML classes in an object-oriented and imperative way. As UML classes

185

constitute the basis for MOF and metamodeling languages in general, we experienced fUML and
particularly its action language as being directly adoptable for formally defining the behavioral
semantics of executable modeling languages.

Concerning the standardized graphical UML activity diagram notation, which we used in
the case studies to define the behavioral semantics of the considered modeling languages, we
conclude that a combination with the textual concrete syntax defined by the Alf standard [117]
might be more suitable than relying solely on the graphical notation. This is due to the observa-
tion, that activity diagrams easily become very large because it is required to model on a very
detailed level. For instance, to increment an Integer attribute value of an object, at least five
actions and four activity edges connecting them are required4. To mitigate readability issues, we
aimed to keep the size of activities in terms of the number of contained activity nodes as small as
possible in the behavioral semantics specifications developed in the course of the case studies.
Nevertheless, for expressing computations, we find a textual notation to be more suitable. Thus,
we conclude that while it might be useful to have a graphical view of activities that are not very
detailed, i.e., which mainly call other activities, a textual representation might be more suitable
for detailed activities implementing algorithms and computations. Therefore, we propose the
combination of the graphical UML activity diagram notation and the textual concrete syntax
defined by the Alf standard for defining the behavioral semantics of modeling languages with
fUML.

Research Question 2: Adequacy of Methodology

Development of semantics specifications. In our case studies, we experienced that the pro-
cesses, techniques, and supporting tools provided by the elaborated semantics specification
methodology enable a systematic and efficient development of behavioral semantics specifi-
cations as they guided us through the semantics specification development.

The starting point for defining a modeling language’s behavioral semantics is the model-
ing language’s abstract syntax definition in the form of a metamodel. From the metamodel,
an xMOF-based configuration is automatically initialized, which contains for each metaclass
a configuration class that is subsequently augmented with the definition of the metaclasses’s
behavioral semantics. The behavioral semantics of the metaclasses is defined by introducing
operations into the respective configuration classes and defining their behavior with fUML con-
forming activities in an object-oriented and imperative style. Due to the inheritance relationships
between configuration classes and metaclasses, static information about the structure of a model
element can be easily queried in the activities using reading actions provided by fUML.

Any runtime concept required for defining the behavioral semantics can be defined in the
xMOF-based configuration by introducing attributes and references into the automatically ini-
tialized configuration classes or defining new configuration classes. For instance, in the Petri net
language we defined a specific configuration class Token for capturing the markings of a Petri
net. As the xMOF-based configuration is defined in its own artifact clearly separated from the

4One action each for (i) retrieving the object, (ii) retrieving the object’s current attribute value, (iii) specifying
the value one, (iv) calling the primitive behavior plus, (v) and updating the object’s attribute value.

186

modeling language’s metamodel, no modifications of the metamodel are required for defining
additional runtime concepts.

Similar to runtime concepts, inputs required for executing a model can be defined in the
xMOF-based configuration of a modeling language by introducing additional classes called ini-
tialization classes. Therewith, it is possible to define complex inputs consisting of arbitrarily
many classes and references between them. In four of the five modeling languages developed in
the case studies we defined such complex input parameters. The most complex input definition
specified in the case studies is the input definition of the UML class diagram case study. It con-
sists of 16 initialization classes, which enable the definition of complete object diagrams. The
tool support of the semantics specification methodology developed for EMF enables these input
definitions to be easily instantiated for defining concrete inputs for the execution of models.

Execution of models. The behavioral semantics specifications developed in the course of the
case studies enabled us to directly execute models conforming to the considered modeling lan-
guages. Therefore, the semantics specification methodology defines its own processes and tech-
niques, which are accordingly implemented by the supporting tools integrated with EMF. The
execution of a model by means of the fUML execution environment requires the conversion of
the model into an xMOF-based model being an instance of the defined xMOF-based configura-
tion, a conversion of the xMOF-based configuration into an fUML model, and the conversion of
the xMOF-based model into fUML extensional values. All these required steps are performed
automatically and transparent to the user. The provided tool support requires the user only to
define the xMOF-based configuration, the model to be executed, and the input definition.

Analysis of semantics specifications. The result of performing a model execution consists in
the final runtime state of the executed model, which allows reasoning about the result of the
model execution carried out. For instance, in the Petri net language, the final runtime state of
an executed Petri net comprises the final distribution of tokens among the Petri net’s places and
enables reasoning about the Petri net’s final marking. To more thoroughly analyze a performed
model execution, the event mechanism, command interface, and trace model introduced into
the fUML execution environment can be utilized. We observed that the runtime information
provided by trace models is adequate for verifying the correctness of semantics specifications
developed with xMOF. The trace models captured during performing model executions enabled
us to thoroughly test the behavioral semantics specifications developed in the course of the case
studies. For instance, for the UML class diagram case study, we created 41 JUnit tests for
verifying whether the behavioral semantics specification is correct, that is, whether example ob-
ject diagrams are correctly evaluated by the execution of a UML class diagram. Because the
model execution environment provided for xMOF builds directly on top of the extended fUML
execution environment, any analysis method and technique implemented for fUML on top of
the extended fUML execution environment, can be straightforwardly integrated with xMOF to
provide the same analysis methods and techniques for analyzing behavioral semantics speci-
fications with xMOF. Thus, the debugger and testing framework for fUML developed on top
of the extended fUML execution environment as presented in Section 7.1.2 could be easily in-

187

tegrated with xMOF to provide a debugger and testing framework for xMOF-based semantics
specifications.

Research Question 3: Non-Invasiveness of fUML Integration

Language integration. From applying the proposed language integration strategy for integrat-
ing fUML with Ecore, we conclude that this strategy is non-invasive. The integration did not
require any modifications of Ecore’s meta-metamodel and, consequently, any techniques and
tools built upon Ecore’s meta-metamodel remained unaffected by the integration.

Semantics specification methodology. The developed semantics specification methodology
considers the metamodel of a modeling language as being the starting point for defining the
modeling language’s behavioral semantics. Thus, it does not interfere with any existing meta-
modeling methodologies or metamodeling environments but only provides concrete processes,
techniques, and supporting tools for defining a modeling language’s behavioral semantics with
fUML.

Semantics specification. When applying the proposed semantics specification methodology,
the definition of a modeling language’s behavioral semantics is clearly separated from the mod-
eling language’s abstract syntax definition in its own artifact. Thereby, the behavioral semantics
definition extends the abstract syntax definition of the modeling language. Technically speaking,
this is achieved by the introduction of inheritance relationships between metaclasses defining the
abstract syntax of modeling concepts and configuration classes defining the behavioral seman-
tics of modeling concepts. Due to this clear separation, the metamodel of a modeling language
is not affected by the semantics specification. As a consequence, any tools support derived from
or built upon the metamodel of a modeling language, such as editors, model transformations,
and code generators, are not affected by the behavioral semantics specification.

7.3 Semantic Model Differencing

7.3.1 Research Questions

In contrast to existing semantic model differencing approaches, our approach follows the spirit
of generic syntactic model differencing by utilizing the behavioral semantics specification of a
modeling language to perform semantic model differencing. Therefore, we proposed a generic
semantic model differencing framework that performs semantic differencing by executing the
models to be compared for relevant inputs, capturing execution traces adhering to a generic
execution trace format, and syntactically comparing the captured execution traces for identifying
semantic differences among the models. Our approach is generally applicable for realizing
semantic model differencing operators for any modeling language whose behavioral semantics
is defined using an operational semantics approach allowing the execution of models and capture
of execution traces complying to our format. Furthermore, it is configurable with respect to
the semantic equivalence criterion to be applied in semantic model differencing through the
definition of suitable semantic match rules.

188

We evaluated our generic semantic model differencing framework concerning its expressive
power provided for defining realistic semantic model differencing operators as well as concern-
ing the performance of semantic model differencing operators developed with our framework.
In particular, we aimed at answering the following research questions.

Research question 1: Expressive power of generic semantic model differencing. Is our
generic semantic model differencing framework expressive enough to develop non-trivial se-
mantic model differencing operators?

Research question 2: Performance of generic semantic model differencing. How perfor-
mant are semantic model differencing operators developed with our generic semantic model
differencing framework?

We instantiated our generic semantic model differencing framework for the fUML-based behav-
ioral semantics specification approach presented in Chapter 5. Therefore, we implemented an
Eclipse plugin responsible for carrying out the generic functionalities of our framework, namely
syntactic matching of models based on syntactic match rules defined with ECL, invoking the
model execution environment for obtaining execution traces, and semantic matching of models
based on semantic match rules defined with ECL, captured execution traces, and established
syntactic model correspondences. Furthermore, we implemented on top of our model execution
environment for fUML-based behavioral semantics specification an Eclipse plugin responsible
for capturing execution traces adhering to our generic execution trace format. Therefore, we
utilized the event mechanism provided by our extended fUML execution environment presented
in Chapter 4.

Using this instantiation of our framework, we carried out two case studies in which we devel-
oped semantic model differencing operators for distinct modeling languages and applied them
to example models [86]. By drawing conclusions from the development of the semantic model
differencing operators we answered the first research question regarding the expressive power of
our generic semantic model differencing framework. By applying the developed semantic model
differencing operators to example models and measuring the execution time needed for perform-
ing the semantic differencing, we answered the research question regarding the performance of
semantic model differencing operators developed with our framework.

7.3.2 Case Studies

To evaluate whether our generic semantic model differencing framework provides the expressive
power necessary to define non-trivial semantic model differencing operators, we carried out two
case studies, in which we implemented semantic model differencing operators for UML activity
diagrams and UML class diagrams. To ensure that the semantic model differencing operators
developed in the course of the case studies are realistic and, thus, non-trivial, we implemented
them according to the semantic model differencing operators ADDiff [95] and CDDiff [96] de-
veloped by Maoz et al. This allowed us to evaluate whether our generic framework is powerful
enough to develop semantic model differencing operators comparable to already existing differ-

189

encing operators specifically design for a particular modeling language. Therefore, we defined
the behavioral semantics of UML activity diagrams and UML class diagrams according to the
definitions provided by Maoz et al. using our fUML-based behavioral semantics specification
approach. We already presented these behavioral semantics specifications of UML activity dia-
grams and UML class diagrams in Section 7.2. In the following, we briefly recap our definitions
of the abstract syntax and behavioral semantics of UML activity diagrams and UML class di-
agrams, and discuss the semantic equivalence criteria implemented by the developed semantic
model differencing operators.

UML activity diagrams. The UML activity diagram variant considered in this case study is
defined in accordance with the definitions of Maoz et al. [95]. It provides the following modeling
concepts: activities, control nodes, opaque actions, control flow edges, local and input variables,
as well as expressions. The behavioral semantics is based on the fUML standard and corresponds
to the semantics defined by Maoz et al.

ADDiff applies the semantic equivalence criterion trace equivalence for UML activity dia-
grams. Two activities diagrams are semantically equivalent if all sequences of action executions
possible in one activity diagram are also possible in the other activity diagram. Sequences of
action executions that are only possible in one of two activity diagrams constitute diff witnesses.
We defined semantic match rules corresponding to this semantic equivalence criterion.

UML class diagrams. The UML class diagram variant considered in this case study provides
according to the definitions of Maoz et al. [96] the following class modeling concepts: packages,
classes, properties, associations, enumerations, and primitive types.

Similarly to the UML activity diagram case study, we aimed at adopting the semantics def-
inition of UML class diagrams provided by Maoz et al. Maoz et al. defined the semantics of
UML class diagrams using a translational approach. A class diagram is translated into an Alloy
module consisting of predicates that specify the semantics of the class diagram. By utilizing the
Alloy Analyzer and, in particular, the embedded SAT solver SAT4J, object diagrams conform-
ing to these predicates and, hence, conforming to the class diagram are generated. However,
as implementing our own efficient SAT solving algorithms with fUML was out of scope of this
evaluation, we decided to define a different semantics for UML class diagrams, which, neverthe-
less, implements the same semantics of classifier instantiation considered by Maoz et al. Instead
of generating objects diagrams conforming to a given class diagram, we defined the behavioral
semantics of UML class diagrams in terms of evaluating whether a given object diagram con-
forms to the class diagram. Thereby, we considered concrete and abstract classes, inheritance
relationships, class attributes of different types (primitive types, enumerations, classes), asso-
ciations, as well as multiplicities and uniqueness constraints of class attributes and association
ends.

In the semantic model differencing of two UML class diagrams, CDDiff tries—again using
the Alloy Analyzer—to generate object diagrams that conform to one class diagram but not to
the other one and, hence, constitute diff witnesses. Due to the decision to define for this case
study a different semantics for UML class diagrams than applied by CDDiff, we also had to
adapt the semantic equivalence criterion applied for semantic model differencing. Our semantic

190

model differencing operator does not generate object diagrams conforming to only one of two
compared class diagram, but instead determines whether a set of given input object diagrams
contains object diagrams which conform to only one of two compared class diagrams. Therefore,
our semantic match rules retrieve the evaluation results obtained from the execution of both
class diagrams for the same object diagram and determines whether they are equal. If this is the
case, the object diagram either conforms to both class diagrams or to none and, hence, the class
diagrams are semantically equivalent for this object diagram. Otherwise, if the evaluation results
of the compared class diagrams for the same object diagram are not equal, the object diagram
conforms to only one the two compared class diagram and, hence, the class diagrams are not
semantically equivalent.

7.3.3 Setup

For verifying the correctness of the semantic model differencing operators developed in the case
studies as well as for evaluating their performance, we applied them to the same example models
Maoz et al. used for evaluating ADDiff and CDDiff5.

The inputs to be considered in the semantic model differencing of the example models had
to be provided manually because an implementation of symbolic model execution for generating
the inputs is not yet integrated with our prototype. Thus, in the UML activity diagram case study,
we had to manually define input values for global variables defined by the example activity
diagrams. In the UML class diagram case study, more complex inputs were required, namely
complete object diagrams.

To verify the correctness of our developed semantic model differencing operators, we ap-
plied them to the example models with inputs for which both compared model versions behave
the same with respect to the applied semantic equivalence criterion as well as with inputs for
which they behave differently.

The performance evaluation was done by measuring the execution time needed for perform-
ing the semantic model differencing of selected example models. We measured the execution
time needed for performing the syntactic matching of the compared models, executing the com-
pared models for a given set of inputs, and performing the semantic matching based on the
execution traces obtained from the model execution. The execution time was measured by tak-
ing timestamps right before the start and right after the completion of each of these three steps.
Additionally, we measured the execution time needed for performing each single model exe-
cution, i.e., for executing each model on one input, by taking timestamps right before the start
and right after the completion of each model execution. In the same manner, we measured the
execution time needed for performing each single semantic matching, i.e., the application of the
semantic match rules on two execution traces. This performance evaluation was performed on
the following hardware and software environment.

• Hardware: Intel Dual Core i5-2520M CPU 2.5 GHz, 8 GB RAM

• Operating system: Windows 7 Professional, Service Pack 1

5http://www.se-rwth.de/materials/semdiff, accessed 05.09.2014

191

http://www.se-rwth.de/materials/semdiff

• Eclipse: Kepler, Service Release 1, Build 20130919-0819

• Java: Version 7, Update 3, Build 1.7.0_03-b05

7.3.4 Results

In the following, we discuss our conclusions drawn from the case studies with regard to answer-
ing the posed research questions.

Research Question 1: Expressive Power of Generic Semantic Model Differencing

Our semantic model differencing operators developed for UML activity diagrams and UML
class diagrams detected the same diff witnesses among the used example models as ADDiff and
CDDiff. In the case of UML activity diagrams, both our semantic model differencing operator
as well as ADDiff reported the same sequences of action executions as diff witnesses. In the case
of UML class diagrams, our semantic model differencing operator correctly reported semantic
differences for object diagrams which where generated by CDDiff as diff witnesses.

Due to these results, our overall conclusion drawn from performing the case studies is, that
our generic semantic model differencing framework provides sufficient expressive power for
defining non-trivial semantic model differencing operators. Additionally to this overall conclu-
sion, we made the following observations about the development of semantic model differencing
operators with our generic framework.

Developing semantic model differencing operation is a language engineering task. For de-
veloping a semantic model differencing operator with our generic framework, semantic match
rules have to be implemented that compare execution traces according to a suitable semantic
equivalence criterion. Implementing these semantic match rules requires besides knowledge
about model comparison languages, such as ECL, thorough knowledge about the behavioral se-
mantics specification of the considered modeling language. In particular, knowledge about the
structure of a model’s runtime state, which is captured in the execution traces to be compared,
is needed, as well as knowledge about how the model’s runtime state is manipulated during its
execution. Both is defined by the behavioral semantics specification of the considered model-
ing language. Thus, we regard the development of semantic model differencing operators as a
language engineering task.

Runtime concepts build the basis for semantic model differencing. Our generic semantic
model differencing framework realizes semantic model differencing as syntactic comparison of
execution traces. Thus, all information about a model’s runtime behavior that is required for
performing semantic differencing has to be captured by execution traces. For example, in the
UML activity diagram case study, information about the execution of actions is required for
realizing a semantic model differencing operator applying the trace equivalence criterion.

Our generic execution trace format captures the runtime behavior of a model in terms of
sequences of the model’s runtime states during its execution. The runtime state of a model is ex-
pressed using the runtime concepts defined by the behavioral semantics specification of the used

192

modeling language. Thus, any runtime information needed in the semantic model differencing
has to be defined in terms of runtime concepts by the modeling language’s behavioral semantics
specification.

Research Question 2: Performance of Generic Semantic Model Differencing

We measured the performance of the developed semantic model differencing operators for UML
activity diagrams and UML class diagrams in terms of the execution time needed for semanti-
cally differencing selected example models.

Table 7.3 shows the measured execution times distinguishing between syntactic matching
(SynMatching), model execution (Execution), semantic matching (SemMatching), and total
time needed (Total). Besides the measured execution times, also some size metrics about the
example models are shown, which influence the measured values. For the UML activity dia-
gram examples, the number of contained activity nodes (#Nodes) is shown, which influences
the performance of the model execution step. Furthermore, the number of defined input vari-
ables (#Variables) is shown, which influences the number of inputs (#Inputs) to be considered
in the semantic model differencing and, therewith, the performance of the model execution step
as well as the semantic matching step. For the UML class diagram examples, the number of
objects (#Objects) and the number of links (#Links) contained by the input object diagrams are
shown, which both influence the performance of the model execution step. For comparing two
class diagrams, only one input object diagram (#Inputs) was used in this evaluation.

The performance results indicate that the model execution is the most expensive step in the
semantic model differencing as it takes around 95% of the overall execution time. Thus, the
main reason for the weaker performance of our semantic model differencing operators com-
pared to ADDiff and CDDiff is the performance of the model execution carried out using the
extended fUML execution environment, which is based on the fUML virtual machine. How-
ever, as discussed in the performance evaluation of the extended fUML execution environment
presented in Section 7.1.3, the capturing of execution traces compromises the performance of
the fUML virtual machine significantly. We expect that a more efficient implementation of the
trace capturing capability will lead to a significant improvement of the performance of semantic

UML activity diagram
Example #Nodes #Variables #Inputs SynMatching Execution SemMatching Total
Anon V1/V2 15/15 2/2 4 51 ms 7905 ms 341 ms 8297 ms
Anon V2/V3 15/19 2/3 8 72 ms 7374 ms 246 ms 7692 ms
hire V1/V2 14/15 1/1 2 47 ms 5259 ms 283 ms 5589 ms
hire V2/V3 15/15 1/1 2 47 ms 5745 ms 304 ms 6096 ms
hire V3/V4 15/15 1/1 2 48 ms 2011 ms 95 ms 2154 ms
IBM2557 V1/V2 18/16 1/1 6 85 ms 25889 ms 1159 ms 27133 ms

UML class diagram
Example #Objects #Links #Inputs SynMatching Execution SemMatching Total
EMT V1/V2 2 1 1 17 ms 1203 ms 119 ms 1339 ms
EMT V1/V2 4 3 1 16 ms 6790 ms 275 ms 7081 ms
EMT V1/V2 6 5 1 15 ms 26438 ms 543 ms 26996 ms

Table 7.3: Execution time measurements for semantic model differencing case studies

193

model differencing operators developed with our generic semantic model differencing frame-
work. Furthermore, with an implementation of symbolic execution for fUML as introduced in
Section 6.5, the model execution step might become obsolete, as it might be possible to perform
semantic model differencing based on execution trees and symbolic states computed through the
symbolic execution of the models to be compared.

194

CHAPTER 8
Conclusion and Future Work

8.1 Conclusion

In this thesis, we presented contributions towards automating the development of semantics-
based tools for executable modeling languages by providing a language for formally defining
the behavioral semantics of modeling languages and a generic model execution environment
building the common basis for a variety of semantics-based tools. In the following, we summa-
rize the contributions elaborated in the course of this thesis as well as conclusions drawn from
their evaluation.

Contribution 1: Semantics specification with fUML. The lack of a widely accepted or even
standardized language for formally defining the behavioral semantics of modeling languages
hampers the emergence of techniques for automating the development of semantics-based tools,
such as tools for model debugging, model testing, and dynamic model analysis. In this thesis, we
proposed fUML to become this behavioral semantics specification language, because it is like
the metamodeling language MOF standardized by the OMG and based on UML, its behavioral
semantics is formally defined, and an execution environment for fUML models is available. We
elaborated a language integration strategy for integrating fUML into existing metamodeling lan-
guages and applied this strategy for integrating fUML with Ecore. The integration results in an
executable metamodeling language that enables the formal definition of the behavioral seman-
tics of modeling languages using fUML’s activity modeling concepts. Moreover, we proposed
a semantics specification methodology, including dedicated tool support for EMF, for devel-
oping executable modeling languages with fUML fostering a clear separation of concerns and
enabling the execution of models using fUML’s execution environment. Based on case studies,
we conclude that fUML is a very promising candidate for being established as a standardized
language for defining the behavioral semantics of modeling languages. With this contribution we
aim at providing a stimulus towards the adoption of fUML as common semantics specification
language in MDE.

195

Contribution 2: Extensions of the fUML execution environment. Semantics-based tools
relying on the capability to execute models, such as tools for model debugging, model testing,
and dynamic model analysis, depend heavily on an execution environment providing means
for runtime observation, execution control, and runtime analysis. To enable the development of
semantics-based tools for fUML models, we consequently incorporated such means into fUML’s
execution environment. In particular, we developed an event mechanism that enables the obser-
vation of the state of model executions during runtime, a command interface that provides con-
trol over model executions enabling their suspension and resumption, as well as a trace model
that captures runtime information about carried out model executions sufficient for conduct-
ing runtime analyses. We incorporated these extensions into the reference implementation of
fUML’s execution environment. Based on the resulting extended fUML execution environment,
we were able to develop a debugger, a testing framework, as well as a non-functional property
analysis tool for fUML models. The development of these tools led us to the conclusion that
our extensions of the fUML execution environment are adequate for implementing debugging,
testing, dynamic analysis, and non-functional property analysis tools.

Contribution 3: Semantics-based tool development. Based on fUML’s execution environ-
ment and our extensions of this environment, we developed a generic model execution envi-
ronment for executable modeling languages defined with fUML. This generic model execution
environment enables the execution of models based on the formal definition of the used model-
ing language’s behavioral semantics specified with fUML. Furthermore, it provides means for
runtime observation, execution control, and runtime analysis. Therewith, the generic model exe-
cution environment builds a common basis for developing semantics-based tools for executable
modeling languages. This includes in particular tools for model testing, model debugging, and
dynamic model analysis. We have shown how this is possible by developing a model execu-
tion tool as well as a model debugger on top of the generic model execution environment. Like
the generic model execution environment itself, also these tools are implemented in a generic
manner and, hence, can be directly utilized for executing and debugging models that conform to
any executable modeling language defined with fUML. With the generic model execution envi-
ronment for executable modeling languages defined with fUML, we aim at laying the basis for
future innovations regarding the automated development of semantics-based tools.

Contribution 4: Semantic model differencing. Existing semantic model differencing ap-
proaches suggest the translation of models into a semantic domain suitable for expressing the
models’ semantics and calculating semantic differences, as well as the implementation of anal-
ysis algorithms dedicated to semantic differencing in this semantic domain. In contrast, we
developed a generic semantic model differencing framework that enables the development se-
mantic differencing operators based on the behavioral semantics specifications of modeling lan-
guages. The generic framework extracts semantic interpretations of models in terms of execution
traces from the behavioral semantics specification by executing the models using the execution
environment provided by the employed semantics specification approach. By comparing the
extracted semantic interpretations syntactically, semantic differences among the models with
respect to a suitable semantic equivalence criterion may be identified. Thus, non-trivial transfor-

196

mations into a semantic domain specifically for enabling semantic differencing can be avoided.
We developed an instantiation of this framework for our fUML-based semantics specification
approach presented as contribution 1, which utilizes the generic model execution environment
developed as part of contribution 3 and relying on contribution 2 for capturing execution traces.
Using this instantiation, we evaluated our generic model differencing approach resulting in the
conclusion that it provides sufficient expressive power to define non-trivial semantic model dif-
ferencing operators.

8.2 Future Work

In the following, we discuss interesting directions for future work building upon the research
conducted in the course of this thesis. These future research directions originate from our ex-
periences gained during the implementation of prototypes as well as from the evaluation results
obtained by applying the prototypes in case studies. They concern on the one hand identified
limitations of solutions proposed in this thesis and on the other hand research topics contin-
uing our efforts towards automating the development of semantics-based tools for executable
modeling languages.

Performance improvements of fUML execution environment. Our approach for automat-
ing the development of semantics-based tools consists in the provision of a generic model execu-
tion environment that operates on fUML-based behavioral semantics specifications and provides
means for runtime observation, execution control, and runtime analysis. As a consequence, the
performance of the generic model execution environment substantially influences the perfor-
mance of any semantics-based tool built on top of it. Thereby, the performance of the generic
model execution environment itself basically equates to the performance of fUML’s execution
environment as well as our introduced extensions.

The performance evaluation of our extensions of the fUML execution environment resulted
into the observation that the way these extensions are implemented—that is, using aspect-
orientated programming—seriously compromises the performance of fUML’s execution envi-
ronment. Furthermore, during the conduct of our evaluations, we also experienced scalability
issues of fUML’s execution environment itself especially in terms of memory consumption.
However, it has to be noted that our implementation relies on the reference implementation of
fUML’s execution environment, whose primarily purpose is to serve as reference for tool ven-
dors, not to provide a high-performance implementation.

To mitigate these performance issues, we recommend the design and implementation of an
execution environment for fUML that on the one hand directly integrates means for runtime
observation, execution control, and runtime analysis as proposed by our event mechanism, com-
mand interface, and trace model, and on the other hand aims at high performance and scalability.

Integrated development environment for fUML-based behavioral semantics specifications.
Semantics-based tools developed using our approach operate on fUML-based behavioral se-
mantics specifications. Thus, ensuring the correctness of fUML-based behavioral semantics
specifications is crucial in order to ensure the correctness and usefulness of semantics-based

197

tools building upon them. Therefore, methods and techniques supporting the development of
high-quality behavioral semantics specifications with fUML are required.

We envision an integrated development environment for fUML-based behavioral semantics
specifications that support language designers in constructing high-quality semantics specifi-
cations with fUML. Functionalities provided by such an integrated development environment
include on the one hand efficient editing support, such as editors with high usability and refac-
toring support, and on the other hand tools for performing analyses, such as debugging, testing,
dynamic analysis, and formal analysis. Some of these methods and techniques have been already
developed for fUML. For instance, in this thesis, we have introduced a debugger and a testing
framework for fUML models that may be easily adopted for fUML-based behavioral seman-
tics specifications. Other examples are the debugging techniques for fUML elaborated by Lau-
rent et al. [88] and the lightweight verification methods for Alf developed by Planas et al. [130].

Reuse, specialization, and integration of behavioral semantics specifications. Another in-
teresting line of future work is concerned with providing means for reusing, specializing, and
integrating behavioral semantics specifications. The need for such means may be illustrated
on the example of UML. Several of our case studies are concerned with dedicated members of
the UML language family, in particular, with UML class diagrams and UML activity diagrams.
If we consider the remainder of UML, we can clearly identify the need for reusing, specializ-
ing, and integrating behavioral semantics specifications. For instance, UML includes several
modeling concepts having the same or similar behavioral semantics. An example are accept
event actions to be used in UML activity diagrams and transitions to be used in UML state
machines both having the behavior of receiving events. Besides such reuse potentials, UML
comprises a plethora of semantic variation points allowing the specialization of the behavioral
semantics of dedicated UML modeling concepts. Furthermore, the various kinds of behaviors
in UML, namely, activities, state machines, and interactions, may be connected with each other
requiring to also connect their behavioral semantics specifications in general. The illustrated
need for reusing, specializing, and integrating behavioral semantics specification is, however,
not specific to UML. For instance, the behavioral semantics of the diverse types of workflow
modeling languages, such as UML activity diagrams, BPMN, and Petri nets, are based on token
flow semantics. Thus, dedicated means for reusing behavioral semantics specifications might
increase the efficiency of developing behavioral semantics specifications. Furthermore, current
research efforts are directed towards providing support for integrating heterogeneous modeling
languages in order to enable their coordinated use in the development of software systems re-
quiring knowledge from diverse domains [4, 29]. In this context, the integration of behavioral
semantics specifications is an important research topic.

Automated development of semantics-based tools. With our approach of formally defining
the behavioral semantics of executable modeling languages with fUML, we aim at laying the
basis for the emergence of techniques enabling the automated development of semantics-based
tools. In the course of this thesis, we developed a generic model execution environment for exe-
cutable modeling languages defined with fUML. This generic model execution environment can
be used to efficiently develop semantics-based tools relying on the capability to observe, control,

198

and analyze model executions. Based on the examples of a model execution tool, a model debug-
ger, and a semantic model differencing framework, we showed how semantics-based tools can
be developed in a generic manner based on the generic model execution environment. However,
the development of further generic semantics-based tools operating on fUML-based behavioral
semantics specifications, such as tools implementing testing techniques and dynamic analysis
techniques, is left for future work. Furthermore, we have not considered the automated develop-
ment of tools implementing formal analysis methods in this thesis.

Symbolic execution for fUML. Symbolic execution is a technique for exploring all possible
execution paths through a program and generating inputs that lead to the execution of these
explored paths. We have proposed to apply symbolic execution to fUML in order to generate
inputs for models that lead to the execution of all possible paths of the used modeling language’s
fUML-based behavioral semantics specification. These inputs induce all possible distinct execu-
tion traces of a model and may, hence, be used to perform semantic model differencing following
our approach. Besides this application domain, symbolic execution for fUML may be also ap-
plied to generate test inputs for fUML models as well as for fUML-based behavioral semantics
specifications. These test inputs might not only be used for generating tests suites providing high
test coverage, but also for debugging, as inputs may be generated that lead to the execution of
a particular statement or that lead to a particular system state. We regard symbolic execution as
a potential technique for developing high-quality fUML models and high-quality fUML-based
behavioral semantics specifications. Thus, developing a symbolic execution environment for
fUML is definitely an interesting topic for future research.

Development of further executable modeling languages with fUML. In the course of this
thesis, we have developed several behavioral semantics specifications for executable modeling
languages using our fUML-based semantics specification approach. However, in future work
we would like to use our approach for defining the behavioral semantics of further executable
modeling languages in order to demonstrate its usefulness and gather additional requirements on
development methods for behavioral semantics specifications. It would be particularly interest-
ing to develop executable modeling languages having diverse application domains and diverse
behavioral semantics including, for instance, model query languages, model transformation lan-
guages, and further sub-languages of UML. The latter would also constitute an additional con-
tribution itself towards providing a complete and formal definition of the behavioral semantics
of UML.

199

APPENDIX A
fUML Action Language

In Chapter 3, we provided a thorough introduction to the fUML standard giving an overview of
the UML subset considered by fUML, as well as the fUML virtual machine capable of executing
fUML models. The main modeling concept for describing the behavior of a system with fUML
is the modeling concept Activity. An activity consists of activity nodes connected through activ-
ity edges (cf. Figure 3.4). We distinguish between three kinds of activity nodes, namely object
nodes, control nodes, and actions. Object nodes can be further divided into input and output pins
of actions, as well as activity parameter nodes of activities. Control nodes available in fUML are
initial node, activity final node, fork node, join node, decision node, and merge node. Further-
more, the fUML subset contains 27 types of actions defined by UML’s action language, which
can be categorized into object actions, structural feature actions, link actions, communication
actions, and structured activity nodes.

In the following tables, we provide a detailed description of the action types (Tables A.1, A.2,
A.3, A.4, A.5, A.6) as well as control node types (Table A.7) contained by the fUML subset.
Each table consists of three columns showing (i) the action or control node in graphical concrete
syntax (optional elements are shown in gray color), (ii) important attributes and references that
have to be set, and (iii) a short textual description of the behavior of the action or control node.

Further details on the modeling concepts contained by the fUML subset can be found in the
fUML standard [114] as well as in the UML standard [111].

201

Action Structural features Description

result : type

resultN : type

action
CreateObject

result : classifier

action
ReadSelf

result :type

action
ReadIsClassifiedObject

object result : Boolean

action
ReclassifyObject

object

action
DestroyObject

target

action
ReadExtent

result : classifier [*]

action object : type

StartClassifierBehavior

object : type

argument1 : type

argumentN : type

action

StartObjectBehavior

classifier : Classifier Creates an instance of the defined classifier.

result : type

resultN : type

action
CreateObject

result :classifier

action
ReadSelf

result :type

action
ReadIsClassifiedObject

object result : Boolean

action
ReclassifyObject

object

action
DestroyObject

target

action
ReadExtent

result : classifier [*]

action object : type

StartClassifierBehavior

object : type

argument1 : type

argumentN : type

action

StartObjectBehavior

isDestroyLinks : Boolean
isDestroyOwnedObjects : Boolean

Destroys the provided object.
isDestroyLinks = true : links of the provided ob-
ject are destroyed
isDestroyOwnedObjects = true : objects owned
by the provided object are destroyed

result : type

resultN : type

action
CreateObject

result :classifier

action
ReadSelf

result : type

action
ReadIsClassifiedObject

object result : Boolean

action
ReclassifyObject

object

action
DestroyObject

target

action
ReadExtent

result : classifier [*]

action object : type

StartClassifierBehavior

object : type

argument1 : type

argumentN : type

action

StartObjectBehavior

- Provides the context object of the activity execu-
tion. In case the activity defines the behavior of
an operation, the object for which the operation
was called is provided. Otherwise, the activity
execution itself is provided.

result : type

resultN : type

action
CreateObject

result :classifier

action
ReadSelf

result :type

action
ReadIsClassifiedObject

object result : Boolean

action
ReclassifyObject

object

action
DestroyObject

target

action
ReadExtent

result : classifier [*]

action object : type

StartClassifierBehavior

object : type

argument1 : type

argumentN : type

action

StartObjectBehavior

classifier : Classifier
isDirect : Boolean

Determines whether the provided object is an in-
stance of the defined classifier.
isDirect = true : direct instantiation is determined

result : type

resultN : type

action
CreateObject

result :classifier

action
ReadSelf

result :type

action
ReadIsClassifiedObject

object result : Boolean

action
ReclassifyObject

object

action
DestroyObject

target

action
ReadExtent

result : classifier [*]

action object : type

StartClassifierBehavior

object : type

argument1 : type

argumentN : type

action

StartObjectBehavior

oldClassifier : Classifier [*]
newClassifier : Classifier [*]
isReplaceAll : Boolean

Removes the defined old classifiers from the pro-
vided object’s types and adds the defined new
classifiers as types.
isReplaceAll = true : all classifiers not defined as
new classifiers are removed

result : type

resultN : type

action
CreateObject

result :classifier

action
ReadSelf

result :type

action
ReadIsClassifiedObject

object result : Boolean

action
ReclassifyObject

object

action
DestroyObject

target

action
ReadExtent

result : classifier [*]

action object : type

StartClassifierBehavior

object : type

argument1 : type

argumentN : type

action

StartObjectBehavior

classifier : Classifier Retrieves all instances of the defined classifier
currently existing at the locus of the execution.

202

Action Structural features Description

result : type

resultN : type

action
CreateObject

result : classifier

action
ReadSelf

result : type

action
ReadIsClassifiedObject

object result : Boolean

action
ReclassifyObject

object

action
DestroyObject

target

action
ReadExtent

result : classifier [*]

action object : type

StartClassifierBehavior

object : type

argument1 : type

argumentN : type

action

StartObjectBehavior

Object actions

- Starts the behavior of the provided object. If the
provided object is an instance of a behavior, this
behavior is executed. Otherwise, the classifier
behavior of the provided object’s type is started.

result : type

resultN : type

action
CreateObject

result :classifier

action
ReadSelf

result :type

action
ReadIsClassifiedObject

object result : Boolean

action
ReclassifyObject

object

action
DestroyObject

target

action
ReadExtent

result : classifier [*]

action object : type

StartClassifierBehavior

object : type

argument1 : type

argumentN : type

action

StartObjectBehavior

- Starts the classifier behavior of the provided ob-
ject.

Table A.1: fUML object actions

Action Structural features Description

Structural feature actions

action

AddStructuralFeatureValue

value : type

insertAt :
UnlimitedNatural

result : type
object : type

action
ReadStructuralFeature

result : type object : type

action
ClearStructuralFeature

object : type result : type

action

RemoveStructuralFeatureValue

object : type
result : type

removeAt :
UnlimitedNatural

value : type

structuralFeature : StructuralFeature
isReplaceAll : Boolean

Adds the provided value to the provided ob-
ject for the defined structural feature at the
provided position.
isReplaceAll = true : existing values for the
defined structural feature of the provided ob-
ject are removed before the provided value is
added

Structural feature actions

action

AddStructuralFeatureValue

value : type

insertAt :
UnlimitedNatural

result : type
object : type

action
ReadStructuralFeature

result : type object : type

action
ClearStructuralFeature

object : type result : type

action

RemoveStructuralFeatureValue

object : type
result : type

removeAt :
UnlimitedNatural

value : type

structuralFeature : StructuralFeature
isRemoveDuplicates : Boolean

Removes the provided value for the defined
structural feature from the provided object.
isRemoveDuplicates = true : duplicates of the
provided value for the defined structural fea-
ture are removed from the provided object

203

Action Structural features Description

Structural feature actions

action

AddStructuralFeatureValue

value : type

insertAt :
UnlimitedNatural

result : type
object : type

action
ReadStructuralFeature

result : type object : type

action
ClearStructuralFeature

object : type result : type

action

RemoveStructuralFeatureValue

object : type
result : type

removeAt :
UnlimitedNatural

value : type

structuralFeature : StructuralFeature Removes all values for the defined structural
feature from the provided object.

Structural feature actions

action

AddStructuralFeatureValue

value : type

insertAt :
UnlimitedNatural

result : type
object : type

action
ReadStructuralFeature

result : type object : type

action
ClearStructuralFeature

object : type result : type

action

RemoveStructuralFeatureValue

object : type
result : type

removeAt :
UnlimitedNatural

value : type

structuralFeature : StructuralFeature Reads the values for the defined structural fea-
ture of the provided object.

Table A.2: fUML structural feature actions

Action Structural features Description

Link actions

action

CreateLink

inputValue1 : type

inputValueN : type

action

DestroyLink

inputValue1 : type

inputValueN : type

action

ReadLink

result : type
inputValue1 : type

inputValueN : type

action
ClearAssociation

object : type

endData : LinkEndCreationData [2..*] Creates a link between the provided input
objects according to the defined end data.

Link actions

action

CreateLink

inputValue1 : type

inputValueN : type

action

DestroyLink

inputValue1 : type

inputValueN : type

action

ReadLink

result : type
inputValue1 : type

inputValueN : type

action
ClearAssociation

object : type

endData : LinkEndDestructionData [2..*] Destroys the links existing between the
provided input objects according to the de-
fined end data.

Link actions

action

CreateLink

inputValue1 : type

inputValueN : type

action

DestroyLink

inputValue1 : type

inputValueN : type

action

ReadLink

result : type
inputValue1 : type

inputValueN : type

action
ClearAssociation

object : type

endData : LinkEndData [2..*] Reads the objects linked with the provided
objects according to the defined end data
by navigating the respective association
towards one end.

Link actions

action

CreateLink

inputValue1 : type

inputValueN : type

action

DestroyLink

inputValue1 : type

inputValueN : type

action

ReadLink

result : type
inputValue1 : type

inputValueN : type

action
ClearAssociation

object : type

association : Association Destroys all links of the provided object
for the defined association.

Table A.3: fUML link actions

204

Action Structural features Description

Communication actions

action result1 : type

resultN : type argumentN : type

argument1 : type

CallBehavior

action

target : type

result1 : type

resultN : type

argument1 : type

argumentN : type

CallOperation

action

target : type

argument1 : type

argumentN : type

SendSignal

action result1 : type

resultN : type

AcceptEvent

behavior : Behavior Invokes the defined behavior syn-
chronously.

Communication actions

action result1 : type

resultN : type argumentN : type

argument1 : type

CallBehavior

action

target : type

result1 : type

resultN : type

argument1 : type

argumentN : type

CallOperation

action

target : type

argument1 : type

argumentN : type

SendSignal

action result1 : type

resultN : type

AcceptEvent

operation : Operation Invokes the defined operation on the pro-
vided target object synchronously.

Communication actions

action result1 : type

resultN : type argumentN : type

argument1 : type

CallBehavior

action

target : type

result1 : type

resultN : type

argument1 : type

argumentN : type

CallOperation

action

target : type

argument1 : type

argumentN : type

SendSignal

action result1 : type

resultN : type

AcceptEvent

signal : Signal Sends a signal according to the defined
signal type to the provided target object
asynchronously.

Communication actions

action result1 : type

resultN : type argumentN : type

argument1 : type

CallBehavior

action

target : type

result1 : type

resultN : type

argument1 : type

argumentN : type

CallOperation

action

target : type

argument1 : type

argumentN : type

SendSignal

action result1 : type

resultN : type

AcceptEvent trigger : Trigger [1..*] Accepts a signal event occurrence accord-
ing to the defined trigger.

Table A.4: fUML communication actions

205

Action Structural features Description

Other actions

action
ValueSpecification

result : type

action

TestIdentity

first
result : Boolean

second

result : type
action

Reduce

collection :
type [*]

- Tests whether two values are identical.

Other actions

action
ValueSpecification

result : type

action

TestIdentity

first
result : Boolean

second

result : type
action

Reduce

collection :
type [*]

value : ValueSpecification Provides a value according to the defined specifica-
tion.

Other actions

action
ValueSpecification

result : type

action

TestIdentity

first
result : Boolean

second

result : type
action

Reduce

collection :
type [*]

reducer : Behavior
isOrdered : Boolean

Reduces the provided collection of values to a single
value by applying the defined reducer behavior.
isOrdered = true : the provided values are processed
by the reducer behavior in the order defined by the
collection

Table A.5: fUML other actions

Action Structural
features

Description
Structured activity nodes

input1 : type output1 : type

inputN : type outputN : type

Expansion Region

input1 : type

inputN : type

inputElement1 :
type

inputElementN :
type

outputElement1 :
type

outputElementN :
type

StructuredActivityNode

input1 : type result1 : type

inputN : type resultN : type

ConditionalNode
clause1

decider

body

test

clauseN

body
test

input1 : type result1 : type

inputN : type resultN : type

LoopNode

decider

body

test

loopVariable

- Executes the contained activity nodes.

206

Action Structural
features

Description

Structured activity nodes

input1 : type output1 : type

inputN : type outputN : type

Expansion Region

input1 : type

inputN : type

inputElement1 :
type

inputElementN :
type

outputElement1 :
type

outputElementN :
type

Structured Activity Node

input1 : type result1 : type

inputN : type resultN : type

ConditionalNode
clause1

decider

body

test

clauseN

body
test

input1 : type result1 : type

inputN : type resultN : type

LoopNode

decider

body

test

loopVariable

- Executes the body section of exactly one clause
whose test section evaluates to true.

Structured activity nodes

input1 : type output1 : type

inputN : type outputN : type

Expansion Region

input1 : type

inputN : type

inputElement1 :
type

inputElementN :
type

outputElement1 :
type

outputElementN :
type

Structured Activity Node

input1 : type result1 : type

inputN : type resultN : type

ConditionalNode
clause1

decider

body

test

clauseN

body
test

input1 : type result1 : type

inputN : type resultN : type

LoopNode

decider

body

test

loopVariable

isTestFirst :
Boolean

Executes the body section as long as the test sec-
tion evaluates to true.
isTestFirst = true : test section is executed always
before the body section is executed

207

Action Structural
features

Description

Structured activity nodes

input1 : type output1 : type

inputN : type outputN : type

ExpansionRegion

input1 : type

inputN : type

inputElement1 :
type

inputElementN :
type

outputElement1 :
type

outputElementN :
type

StructuredActivityNode

input1 : type result1 : type

inputN : type resultN : type

ConditionalNode
clause1

decider

body

test

clauseN

body
test

input1 : type result1 : type

inputN : type resultN : type

LoopNode

decider

body

test

loopVariable

mode : Ex-
pansionKind

Executes the contained activity nodes for each
collection element provided through the input el-
ement expansion nodes.
mode = iterative : collection elements are pro-
cessed iteratively
mode = parallel : collection elements are pro-
cessed in parallel

Table A.6: fUML structured activity nodes

Control node Structural features Description
Control nodes

initial node

merge node

join node

fork node

activity final node

decision node

decisionInputFlow

[guard1]

[guard2]

- Starts the control flow of an activity.

Control nodes

initial node

merge node

join node

fork node

activity final node

decision node

decisionInputFlow

[guard1]

[guard2]

- Stops all flows of an activity.

Control nodes

initial node

merge node

join node

fork node

activity final node

decision node

decisionInputFlow

[guard1]

[guard2]

- Splits a flow into multiple concurrent flows.

208

Control node Structural features Description

Control nodes

initial node

merge node

join node

fork node

activity final node

decision node

decisionInputFlow

[guard1]

[guard2]

- Synchronizes multiple concurrent flows.

Control nodes

initial node

merge node

join node

fork node

activity final node

decision node

decisionInputFlow

[guard1]

[guard2]

decisionInput : Behavior [0..1] Decides between multiple alternative flows by calculating a deci-
sion value and comparing it with the guard specifications defined
for the outgoing activity edges. Decision value calculation:
(i) decisionInputFlow = null and decisionInput = null : decision
value is equal to the value provided via the incoming object flow
(ii) decisionInputFlow != null and decisionInput = null : decision
value is equal to the value provided via the decision input flow
(iii) decisionInputFlow != null and decisionInput != null : de-
cision value is calculated by executing the defined decision input
behavior on the value provided via the decision input flow and the
value provided by the incoming object flow, if any

Control nodes

initial node

merge node

join node

fork node

activity final node

decision node

decisionInputFlow

[guard1]

[guard2]

- Merges multiple alternative flows.

Table A.7: fUML control nodes

209

APPENDIX B
Implementations

The languages, concepts, methods, techniques, and tools elaborated in the course of this thesis
have been implemented as research prototypes. The prototypes are openly available under the
Eclipse Public License Version 1.01 and can be found in our public source code repository2.
Table B.1 provides an overview of the implemented prototypes including information about the
source code projects realizing the prototypes as well as references to the sections of this thesis
discussing the prototypes. If not stated otherwise, the source code projects are available in the
“default” repository3. Further information about the prototypes may also be found at our project
website4.

1http://www.eclipse.org/legal/epl-v10.html, accessed 11.09.2014
2http://code.google.com/a/eclipselabs.org/p/moliz, accessed 11.09.2014
3http://code.google.com/a/eclipselabs.org/p/moliz/source/checkout?repo=

default, accessed 11.09.2014
4http://www.modelexecution.org, accesses 11.09.2014

211

http://www.eclipse.org/legal/epl-v10.html
http://code.google.com/a/eclipselabs.org/p/moliz
http://code.google.com/a/eclipselabs.org/p/moliz/source/checkout?repo=default
http://code.google.com/a/eclipselabs.org/p/moliz/source/checkout?repo=default
http://www.modelexecution.org

Prototype Component Project Reference
fUML execution
environment extensions

Extensions (event mechanism,
command interface, trace model)

org.modelexecution.fumldebug.core 4.2, 4.3,
4.4org.modelexecution.fumldebug.core.aspect

Extended execution environment org.modelexecution.fumldebug 4
Performance evaluation org.modelexecution.fumldebug.eval 7.1.3

org.modelexecution.fumldebug.eval.extensions
org.modelexecution.fumldebug.eval.noextensions

Debugger org.modelexecution.fuml.convert.uml2 7.1.2
org.modelexecution.fumldebug.debugger
org.modelexecution.fumldebug.debugger.papyrus
org.modelexecution.fumldebug.debugger.ui
org.modelexecution.fumldebug.standardlibrary

Testing framework Available in “testing” repository5

Non-functional property analysis tool Available in “nfr” repository6

Semantics specification
language

Language xMOF (fUML integrated
with Ecore)

org.modelexecution.xmof 5.2.2

Primitive behavior library org.modelexecution.xmof.standardlibrary 3.2.3
Evaluation org.modelexecution.xmof.examples 7.2.2

Semantics specification
methodology

Wizard for initializing xMOF-based
configurations

org.modelexecution.xmof.configuration 5.3

Editor for xMOF-based configurations org.modelexecution.xmof.diagram
org.modelexecution.xmof.edit
org.modelexecution.xmof.editor

Wizards for instantiating initialization
classes and defining inputs

org.modelexecution.xmof.ui

Generic model execution
environment

Model execution environment org.modelexecution.xmof.vm 5.4
xMOF to fUML converter org.modelexecution.fuml.convert.xmof

5http://code.google.com/a/eclipselabs.org/p/moliz/source/checkout?repo=testing, accessed 11.09.2014
6http://code.google.com/a/eclipselabs.org/p/moliz/source/checkout?repo=nfr, accessed 11.09.2014

212

http://code.google.com/a/eclipselabs.org/p/moliz/source/checkout?repo=testing
http://code.google.com/a/eclipselabs.org/p/moliz/source/checkout?repo=nfr

Prototype Component Project Reference
Generic model execution
tool and debugger

Runtime profile and runtime profile ap-
plication generator7

org.modelexecution.xmof.configuration.profile 5.5.1

Launch configuration for model
execution and debugging

org.modelexecution.xmof.debug 5.5.1,
5.5.2org.modelexecution.xmof.debug.ui

Debugger configuration org.modelexecution.xmof.modeldebugger 5.5.2
org.modelexecution.xmof.modeldebugger.edit
org.modelexecution.xmof.modeldebugger.editor

Semantic model
differencing

Generic semantic model differencing
framework

org.modelexecution.xmof.diff 6.2, 6.3,
6.4

Generic execution trace format and ex-
ecution trace capturing for fUML

org.modelexecution.xmof.states 6.4.1,
6.4.2

Evaluation org.modelexecution.xmof.diff.test 7.3

Table B.1: Overview of research prototypes implemented in the course of this thesis

7For defining runtime profiles and runtime profile applications, we make use of EMF Profiles available at http://code.google.com/a/eclipselabs.
org/p/emf-profiles.

213

http://code.google.com/a/eclipselabs.org/p/emf-profiles
http://code.google.com/a/eclipselabs.org/p/emf-profiles

List of Figures

1.1 Comparison of implicit and explicit specification of behavioral semantics 4
1.2 Contributions of this thesis . 6

2.1 Components of a modeling language definition 21
2.2 Metamodeling stack . 23
2.3 Metamodeling stack example: Ecore . 23

3.1 Components of fUML’s language definition . 36
3.2 Excerpt of the fUML metamodel for modeling the structure of a system 39
3.3 Excerpt of the fUML metamodel for modeling the connections between the structure

and the behavior of a system . 39
3.4 Excerpt of the fUML metamodel for modeling the behavior of a system 40
3.5 Evaluation visitor classes of the fUML virtual machine 42
3.6 Semantic visitor classes of the fUML virtual machine for representing values . . . 43
3.7 Activation visitor classes of the fUML virtual machine 45
3.8 Execution visitor classes of the fUML virtual machine 47
3.9 Execution environment classes of the fUML virtual machine 49
3.10 fUML virtual machine example: Activity . 51
3.11 fUML virtual machine example: Calls among execution model elements 52
3.12 fUML virtual machine example: Execution model 53

4.1 Overview of fUML execution environment extensions 56
4.2 Trace events . 59
4.3 Extensional value events . 61
4.4 fUML execution environment extensions example: Model 64
4.5 fUML execution environment extensions example: Input 64
4.6 fUML execution environment extensions example: Events e1-13 65
4.7 fUML execution environment extensions example: Events e14-19 66
4.8 Command interface . 68
4.9 Execution state . 70
4.10 fUML execution environment extensions example: Commands 73
4.11 Excerpt of trace metamodel for capturing executions 75
4.12 Excerpt of trace metamodel for capturing inputs and outputs 77
4.13 Excerpt of trace metamodel for capturing token flows 79

214

4.14 fUML execution environment extensions example: Trace model excerpt
capturing executions . 82

4.15 fUML execution environment extensions example: Trace model excerpt
capturing inputs and outputs . 83

4.16 fUML execution environment extensions example: Trace model excerpt
capturing token flows . 84

5.1 Language definitions of fUML and MOF-based modeling languages 94
5.2 Strategies for using fUML as operational semantics specification language 94
5.3 Excerpt of xMOF metamodel integrating fUML with Ecore 97
5.4 xMOF semantics specification methodology . 99
5.5 Semantics specification example: Ecore-based metamodel 101
5.6 Semantics specification example: xMOF-based configuration (classes) 101
5.7 Semantics specification example: xMOF-based configuration (activities) 102
5.8 Semantics specification example: Model and xMOF-based model 104
5.9 Screenshot of xMOF semantics specification editor 106
5.10 Model execution process performed by generic model execution environment . . . 107
5.11 Model execution environment for xMOF . 109
5.12 Model execution tool . 111
5.13 Model execution example: Runtime profile . 112
5.14 Model execution example: Runtime profile application 113
5.15 Screenshot of model execution tool . 113
5.16 Debugger configuration metamodel . 115
5.17 Screenshot of model debugger . 116
5.18 Semantics specification of Petri nets with DMM (excerpt) 123

6.1 Overview of semantic model differencing framework 131
6.2 Semantic model differencing example: Models and inputs 133
6.3 Semantic model differencing example: Excerpts of fUML trace models 139
6.4 Generic execution trace format for semantic model differencing 141
6.5 Semantic model differencing example: Excerpts of generic execution traces 147
6.6 Symbolic execution example: Execution tree . 151

7.1 Online store case study: Classes . 173
7.2 Online store case study: Scenarios . 174
7.3 Execution time measurements for online store case study 176
7.4 Memory consumption measurements for online store case study 176
7.5 Imperative modeling language case study . 179
7.6 Finite state automata case study . 180
7.7 Activity diagram case study (excerpt) . 181
7.8 Class diagram case study (excerpt) . 182

215

List of Tables

2.1 Overview of formalizations of the semantics of UML activities 31

4.1 Possible applications of fUML execution environment extensions for implementing
model analysis methods . 85

4.2 Overview of work related to fUML execution environment extensions 86

5.1 Applications of fUML execution environment extensions for developing semantics-
based tools . 117

7.1 Applications of fUML execution environment extensions in case studies 170
7.2 Size metric values of semantics specification case studies 184
7.3 Execution time measurements for semantic model differencing case studies 193

A.1 fUML object actions . 203
A.2 fUML structural feature actions . 204
A.3 fUML link actions . 204
A.4 fUML communication actions . 205
A.5 fUML other actions . 206
A.6 fUML structured activity nodes . 208
A.7 fUML control nodes . 209

B.1 Overview of research prototypes implemented in the course of this thesis 213

216

Listings

4.1 Exemplary pointcuts and advices for observing the fUML virtual machine . . . 62
4.2 Exemplary pointcut and advice for controlling the fUML virtual machine . . . 72
4.3 Exemplary command interface operation for controlling the fUML virtual machine 72
5.1 Semantics specification of Petri nets with Kermeta (excerpt) 121
6.1 Semantic model differencing example: Syntactic match rules for Petri nets . . . 134
6.2 Semantic model differencing example: Semantic match rules based on fUML

trace model for Petri nets (final marking equivalence) 138
6.3 Semantic model differencing example: Semantic match rules based on generic

execution trace format for Petri nets (final marking equivalence) 146
6.4 Semantic model differencing example: Adaptation of semantic match rules based

on generic execution trace format for Petri nets (marking equivalence) 146

217

Bibliography

[1] Islam Abdelhalim, Steve Schneider, and Helen Treharne. Towards a Practical Approach
to Check UML/fUML Models Consistency Using CSP. In Proceedings of the 13th
International Conference on Formal Engineering Methods and Software Engineering
(ICFEM’11), volume 6991 of Lecture Notes in Computer Science, pages 33–48. Springer,
2011.

[2] Islam Abdelhalim, Steve Schneider, and Helen Treharne. An integrated framework for
checking the behaviour of fUML models using CSP. International Journal on Software
Tools for Technology Transfer, 15(4):375–396, 2013.

[3] Marcus Alanen and Ivan Porres. Difference and Union of Models. In Proceedings of the
6th International Conference on the Unified Modeling Language: Modeling Languages
and Applications (UML’03), volume 2863 of Lecture Notes in Computer Science, pages
2–17. Springer, 2003.

[4] Vasco Amaral, Cécile Hardebolle, Hans Vangheluwe, László Lengyel, and Peter Bunus.
Summary of the Workshop on Multi-Paradigm Modelling: Concepts and Tools. In Models
in Software Engineering: Workshops and Symposia at MODELS 2011, Reports and Re-
vised Selected Papers, volume 7167 of Lecture Notes in Computer Science, pages 83–88.
Springer, 2012.

[5] Colin Atkinson and Thomas Kühne. Model-Driven Development: A Metamodeling
Foundation. IEEE Software, 20(5):36–41, 2003.

[6] Thomas Ball. The Concept of Dynamic Analysis. SIGSOFT Software Engineering Notes,
24(6):216–234, 1999.

[7] Simonetta Balsamo, Antinisca di Marco, Paola Inverardi, and Marta Simeoni. Model-
Based Performance Prediction in Software Development: A Survey. IEEE Transactions
on Software Engineering, 30(5):295–310, 2004.

[8] Nils Bandener, Christian Soltenborn, and Gregor Engels. Extending DMM Behavior
Specifications for Visual Execution and Debugging. In Proceedings of the 3rd Interna-
tional Conference on Software Language Engineering (SLE’10), volume 6563 of Lecture
Notes in Computer Science, pages 357–376. Springer, 2011.

219

[9] Abderraouf Benyahia, Arnaud Cuccuru, Safouan Taha, François Terrier, Frédéric
Boulanger, and Sébastien Gérard. Extending the Standard Execution Model of UML
for Real-Time Systems. In Proceedings of the 7th IFIP TC 10 Working Conference on
Distributed and Parallel Embedded Systems (DIPES’10) and the 3rd IFIP TC 10 Interna-
tional Conference on Biologically Inspired Collaborative Computing (BICC’10), volume
329 of IFIP Advances in Information and Communication Technology. Springer, 2010.

[10] Luca Berardinelli, Philip Langer, and Tanja Mayerhofer. Combining fUML and Pro-
files for Non-functional Analysis Based on Model Execution Traces. In Proceedings of
the 9th International ACM SIGSOFT Conference on Quality of Software Architectures
(QoSA’13), pages 79–88. ACM, 2013.

[11] Simona Bernardi, José Merseguer, and Dorina C. Petriu. Dependability Modeling and
Analysis of Software Systems Specified with UML. ACM Computing Surveys, 45(1):2:1–
2:48, 2012.

[12] Jean Bézivin. On the unification power of models. Software & Systems Modeling,
4(2):171–188, 2005.

[13] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the OMG/MDA Frame-
work. In Proceedings of the 16th IEEE International Conference on Automated Software
Engineering (ASE’01), pages 273–280. IEEE, 2001.

[14] Gordon Blair, Nelly Bencomo, and Robert B. France. Models@run.time. IEEE Com-
puter, 42(10):22–27, 2009.

[15] Egon Börger, Alessandra Cavarra, and Elvinia Riccobene. An ASM Semantics for UML
Activity Diagrams. In Proceedings of the 8th International Conference on Algebraic
Methodology and Software Technology (AMAST’00), volume 1816 of Lecture Notes in
Computer Science, pages 293–308. Springer, 2000.

[16] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineer-
ing in Practice. Synthesis Lectures on Software Engineering. Morgan & Claypool Pub-
lishers, 2012.

[17] Erwan Breton and Jean Bézivin. Towards an Understanding of Model Executability. In
Proceedings of the International Conference on Formal Ontology in Information Systems
(FOIS’01), pages 70–80. ACM, 2001.

[18] Manfred Broy and María Victoria Cengarle. UML formal semantics: lessons learned.
Software & Systems Modeling, 10(4):441–446, 2011.

[19] Cédric Brun and Alfonso Pierantonio. Model Differences in the Eclipse Modeling Frame-
work. UPGRADE, The European Journal for the Informatics Professional, 9(2):29–34,
2008.

220

[20] Barrett R. Bryant, Jeff Gray, Marjan Mernik, Peter J. Clarke, Robert B. France, and Gabor
Karsai. Challenges and Directions in Formalizing the Semantics of Modeling Languages.
Computer Science and Information Systems, 8(2):225–253, 2011.

[21] Stefan Bucur, Johannes Kinder, and George Candea. Prototyping Symbolic Execution
Engines for Interpreted Languages. In Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS’14), pages 239–254. ACM, 2014.

[22] Cristian Cadar and Koushik Sen. Symbolic Execution for Software Testing: Three
Decades Later. Communications of the ACM, 56(2):82–90, 2013.

[23] Kai Chen, Janos Sztipanovits, Sherif Abdelwalhed, and Ethan Jackson. Semantic An-
choring with Model Transformations. In Proceedings of the 1st European Conference
on Model Driven Architecture - Foundations and Applications (ECMDA-FA’05), volume
3748 of Lecture Notes in Computer Science, pages 115–129. Springer, 2005.

[24] Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling: A Foundation for
Language Driven Development. Ceteva, 2nd edition, 2008.

[25] Lori A. Clarke. A Program Testing System. In Proceedings of the 1976 Annual Confer-
ence (ACM’76), pages 488–491. ACM, 1976.

[26] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Jose F. Quesada. Maude: specification and programming in rewriting
logic. Theoretical Computer Science, 285(2):187–243, 2002.

[27] Adrian Colyer, Andy Clement, George Harley, and Mathew Webster. Eclipse AspectJ:
Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ Development Tools.
Addison-Wesley, 2005.

[28] Benoît Combemale, Xavier Crégut, Pierre-Loïc Garoche, and Xavier Thirioux. Essay
on Semantics Definition in MDE - An Instrumented Approach for Model Verification.
Journal of Software, 4(9):943–958, 2009.

[29] Benoît Combemale, Julien DeAntoni, Benoit Baudry, Robert B. France, Jean-Marc
Jézéquel, and Jeff Gray. Globalizing Modeling Languages. IEEE Computer, 47(6):68–71,
2014.

[30] Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen, and Rainer Koschke.
A Systematic Survey of Program Comprehension through Dynamic Analysis. IEEE
Transactions on Software Engineering, 35(5):684–702, 2009.

[31] Michelle L. Crane and Jürgen Dingel. On the Semantics of UML State Machines:
Categorization and Comparison, 2005. Technical Report 2005-501. School of Com-
puting, Queen’s University. http://ftp.qucis.queensu.ca/TechReports/
Reports/2005-501.pdf.

221

http://ftp.qucis.queensu.ca/TechReports/Reports/2005-501.pdf
http://ftp.qucis.queensu.ca/TechReports/Reports/2005-501.pdf

[32] Michelle L. Crane and Jürgen Dingel. Towards a Formal Account of a Foundational
Subset for Executable UML Models. In Proceedings of the 11th International Conference
on Model Driven Engineering Languages and Systems (MODELS’08), volume 5301 of
Lecture Notes in Computer Science, pages 675–689. Springer, 2008.

[33] Michelle L. Crane and Jürgen Dingel. Towards a UML Virtual Machine: Implementing
an Interpreter for UML 2 Actions and Activities. In Proceedings of the 2008 Confer-
ence of the Center for Advanced Studies on Collaborative Research: Meeting of Minds
(CASCON’08), pages 8:96–8:110. ACM, 2008.

[34] Juan de Lara and Hans Vangheluwe. Using AToM3 as a Meta-Case Tool. In Proceed-
ings of the 4th International Conference on Enterprise Information Systems (ICEIS’02),
pages 642–649, 2002. http://www.cs.mcgill.ca/~hv/publications/02.
ICEIS.MCASE.pdf.

[35] Thomas Degueule, Olivier Barais, Arnaud Blouin, and Benoît Combemale. The K3
Model-Based Language Workbench, 2014. Technical Report hal-01025283, Version
1. L’Institut National de Recherche en Informatique et e n Automatique (INRIA), Uni-
versité de Rennes, Institut National des Sciences Appliquées (INSA). http://hal.
archives-ouvertes.fr/hal-01025283.

[36] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H. Travassos.
A Survey on Model-based Testing Approaches: A Systematic Review. In Proceedings of
the 1st ACM International Workshop on Empirical Assessment of Software Engineering
Languages and Technologies (WEASELTech) co-loaced with the 22nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE’07), pages 31–36. ACM,
2007.

[37] Trung T. Dinh-Trong, Sudipto Ghosh, and Robert B. France. A Systematic Approach
to Generate Inputs to Test UML Design Models. In Proceedings of the 17th Interna-
tional Symposium on Software Reliability Engineering (ISSRE’06), pages 95–104. IEEE
Computer Society, 2006.

[38] Trung T. Dinh-Trong, Sudipto Ghosh, Robert B. France, Michael Hamilton, and Brent
Wilkins. UMLAnT: An Eclipse Plugin for Animating and Testing UML Designs. In Pro-
ceedings of the 2005 Workshop on Eclipse Technology eXchange (ETX) co-located with
the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’05), pages 120–124. ACM, 2005.

[39] Trung T. Dinh-Trong, Nilesh Kawane, Sudipto Ghosh, Robert B. France, and Anneliese
Andrews. A Tool-Supported Approach to Testing UML Design Models. In Proceed-
ings of the 10th International Conference on Engineering of Complex Computer Systems
(ICECCS’05), pages 519–528. IEEE Computer Society, 2005.

[40] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian Zarnekow, Robert von Mas-
sow, Wilhelm Hasselbring, and Michael Hanus. Xbase: Implementing Domain-specific

222

http://www.cs.mcgill.ca/~hv/publications/02.ICEIS.MCASE.pdf
http://www.cs.mcgill.ca/~hv/publications/02.ICEIS.MCASE.pdf
http://hal.archives-ouvertes.fr/hal-01025283
http://hal.archives-ouvertes.fr/hal-01025283

Languages for Java. In Proceedings of the 11th International Conference on Generative
Programming and Component Engineering (GPCE’12), pages 112–121. ACM, 2012.

[41] Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, and Stefan Sauer. Dynamic Meta
Modeling: A Graphical Approach to the Operational Semantics of Behavioral Diagrams
in UML. In Proceedings of the 3rd International Conference on The Unified Modeling
Language: Advancing the Standard (UML’00), volume 1939 of Lecture Notes in Com-
puter Science, pages 323–337. Springer, 2000.

[42] Gregor Engels, Christian Soltenborn, and Heike Wehrheim. Analysis of UML Activ-
ities Using Dynamic Meta Modeling. In Proceedings of the 9th IFIP WG 6.1 Inter-
national Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’07), volume 4468 of Lecture Notes in Computer Science, pages 76–90.
Springer, 2007.

[43] Rik Eshuis. Symbolic Model Checking of UML Activity Diagrams. ACM Transactions
on Software Engineering and Methodology, 15(1):1–38, 2006.

[44] Rik Eshuis and Roel Wieringa. A Real-Time Execution Semantics for UML Activity Di-
agrams. In Proceedings of the 4th International Conference on Fundamental Approaches
to Software Engineering (FASE’01), volume 2029 of Lecture Notes in Computer Science,
pages 76–90. Springer, 2001.

[45] Rik Eshuis and Roel Wieringa. Tool Support for Verifying UML Activity Diagrams. IEEE
Transactions on Software Engineering, 30(7):437–447, 2004.

[46] Javier Esparza and Mogens Nielsen. Decidability Issues for Petri Nets, 1994. Technical
Report BRICS RS-94-8, BRICS Report Series. Department of Computer Science, Uni-
versity of Aarhus. http://www.brics.dk.

[47] Uli Fahrenberg, Mathieu Acher, Axel Legay, and Andrzej Wasowski. Sound Merging and
Differencing for Class Diagrams. In Proceedings of the 17th International Conference on
Fundamental Approaches to Software Engineering (FASE’14), volume 8411 of Lecture
Notes in Computer Science, pages 63–78. Springer, 2014.

[48] Uli Fahrenberg, Axel Legay, and Andrzej Wasowski. Vision Paper: Make a Difference!
(Semantically). In Proceedings of the 14th International Conference on Model Driven
Engineering Languages and Systems (MODELS’11), volume 6981 of Lecture Notes in
Computer Science, pages 490–500. Springer, 2011.

[49] Martin Fleck, Luca Berardinelli, Philip Langer, Tanja Mayerhofer, and Vittorio Cortel-
lessa. Resource Contention Analysis of Service-Based Systems through fUML-Driven
Model Execution. In Proceedings of the 5th International Workshop on Non-functional
Properties in Modeling: Analysis, Languages and Processes (NiM-ALP) co-located with
the 16th International Conference on Model Driven Engineering Languages and Systems
(MODELS’13), volume 1074, pages 6–15. CEUR, 2013.

223

http://www.brics.dk

[50] Robert B. France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The UML as a Formal
Modeling Notation. Computer Standards & Interfaces, 19(7):325–334, 1998.

[51] Lidia Fuentes, Jorge Manrique, and Pablo Sánchez. Execution and Simulation of (Pro-
filed) UML Models using Pópulo. In Proceedings of the International Workshop on Mod-
eling in Software Engineering (MiSE) co-located with the 30th International Conference
on Software Engineering (ICSE’08), pages 75–81, 2008.

[52] Alessandro Gerlinger Romero, Klaus Schneider, and Maurício Gonçalves Vieira Ferreira.
Using the Base Semantics given by fUML for Verification. In Proceedings of the 2nd In-
ternational Conference on Model-Driven Engineering and Software Development (MOD-
ELSWARD’14), pages 5–16. SCITEPRESS Digital Library, 2014.

[53] Christian Gerth, Jochen M. Küster, Markus Luckey, and Gregor Engels. Precise De-
tection of Conflicting Change Operations Using Process Model Terms. In Proceedings
of the 13th International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS’10), volume 6395 of Lecture Notes in Computer Science, pages 93–107.
Springer, 2010.

[54] Christian Gerth, Markus Luckey, Jochen M. Küster, and Gregor Engels. Detection
of Semantically Equivalent Fragments for Business Process Model Change Manage-
ment. In Proceedings of the 2010 IEEE International Conference on Services Computing
(SCC’10), pages 57–64. IEEE, 2010.

[55] Martin Gogolla, Jörn Bohling, and Mark Richters. Validating UML and OCL models in
USE by automatic snapshot generation. Software & Systems Modeling, 4(4):386–398,
2005.

[56] Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-based specification
environment for validating UML and OCL. Science of Computer Programming, 69(1-
3):27–34, 2007.

[57] Jack Greenfield and Keith Short. Software Factories: Assembling Applications with Pat-
terns, Models, Frameworks and Tools. In Companion of the 18th Annual ACM SIG-
PLAN Conference on Object-oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA’03), pages 16–27. ACM, 2003.

[58] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of Activity
Diagrams with Semantic Variation Points. In Proceedings of the 13th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS’10), volume
6394 of Lecture Notes in Computer Science, pages 331–345. Springer, 2010.

[59] Lars Hamann, Oliver Hofrichter, and Martin Gogolla. On Integrating Structure and Be-
havior Modeling with OCL. In Proceedings of the the 15th International Conference
on Model Driven Engineering Languages and Systems (MODELS’12), volume 7590 of
Lecture Notes in Computer Science, pages 235–251. Springer, 2012.

224

[60] Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge. A Survey of Trace Exploration
Tools and Techniques. In Proceedings of the 2004 Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON’04), pages 42–55. IBM Press, 2004.

[61] Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge. A metamodel for the compact
but lossless exchange of execution traces. Software & Systems Modeling, 11(1):77–98,
2012.

[62] David Harel. Biting the Silver Bullet - Toward a Brighter Future for System Development.
IEEE Computer, 25(1):8–20, 1992.

[63] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of “Se-
mantics”? IEEE Computer, 37(10):64–72, 2004.

[64] Jan Hendrik Hausmann. Dynamic Meta Modeling: A Semantics Description Technique
for Visual Modeling Languages. PhD thesis, Faculty of Computer Science, Electrical
Engineering, and Mathematics, University of Paderborn, 2005. http://digital.
ub.uni-paderborn.de/hs/id/3928.

[65] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, Michael Thiele, Chris-
tian Wende, and Claas Wilke. Integrating OCL and Textual Modelling Languages. In
Models in Software Engineering: Workshops and Symposia at MODELS 2010, Reports
and Revised Selected Papers, volume 6627 of Lecture Notes in Computer Science, pages
349–363. Springer, 2011.

[66] Brian Henderson-Sellers. UML - the Good, the Bad or the Ugly? Perspectives from a
panel of experts. Software & Systems Modeling, 4(1):4–13, 2005.

[67] Alan R. Hevner. The Three Cycle View of Design Science. Scandinavian Journal of
Information Systems, 19(2):87–92, 2007.

[68] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science in
Information Systems Research. MIS Quarterly, 28(1):75–105, 2004.

[69] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Der-
rick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause, Ger-
ald Lüttgen, Anthony J. H. Simons, Sergiy Vilkomir, Martin R. Woodward, and Hus-
sein Zedan. Using Formal Specifications to Support Testing. ACM Computing Surveys,
41(2):9:1–9:76, 2009.

[70] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. Empirical
Assessment of MDE in Industry. In Proceedings of the 33rd International Conference on
Software Engineering (ICSE’11), pages 471–480. ACM, 2011.

[71] International Standards Organization. ISO 18629, Process Specification Language, 2004.
http://www.nist.gov/psl.

225

http://digital.ub.uni-paderborn.de/hs/id/3928
http://digital.ub.uni-paderborn.de/hs/id/3928
http://www.nist.gov/psl

[72] Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. Model Driven Language En-
gineering with Kermeta. In Generative and Transformational Techniques in Software
Engineering III, volume 6491 of Lecture Notes in Computer Science, pages 201–221.
Springer, 2011.

[73] Paul C. Jorgensen. Modeling Software Behavior: A Craftsman’s Approach. Auerbach
Publications, 2009.

[74] Harmen Kastenberg, Anneke Kleppe, and Arend Rensink. Defining Object-Oriented Ex-
ecution Semantics Using Graph Transformations. In Proceedings of the 8th IFIP WG 6.1
International Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’06), volume 4037 of Lecture Notes in Computer Science, pages 186–201.
Springer, 2006.

[75] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code
Generation. Wiley-IEEE Computer Society, 2008.

[76] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. Generalized Symbolic Execu-
tion for Model Checking and Testing. In Proceedings of the 9th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’03), vol-
ume 2619 of Lecture Notes in Computer Science, pages 553–568. Springer, 2003.

[77] Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley, 2008.

[78] Dimitrios Kolovos. Establishing Correspondences between Models with the Epsilon
Comparison Language. In Proceedings of the 5th European Conference on Model Driven
Architecture - Foundations and Applications (ECMDA-FA’09), volume 5562 of Lecture
Notes in Computer Science, pages 146–157. Springer, 2009.

[79] Dimitris Kolovos, Louis Rose, Antonio García-Domínguez, and Richard Paige. The Ep-
silon Book. March 2014. https://www.eclipse.org/epsilon/doc/book.

[80] Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. Extensive Validation of OCL Mod-
els by Integrating SAT Solving into USE. In Proceedings of the 49th International Con-
ference on Objects, Models, Components, Patterns (TOOLS’11), volume 6705 of Lecture
Notes in Computer Science, pages 290–306. Springer, 2011.

[81] Thomas Kühne. Matters of (Meta-) Modeling. Software & Systems Modeling, 5(4):369–
385, 2006.

[82] Qinan Lai and Andy Carpenter. Defining and Verifying Behaviour of Domain Specific
Language with fUML. In Proceedings of the 4th Workshop on Behaviour Modelling -
Foundations and Applications (BM-FA) co-located with the 8th European Conference on
Modelling Foundations and Applications (ECMFA’12), pages 1:1–1:7. ACM, 2012.

226

https://www.eclipse.org/epsilon/doc/book

[83] Qinan Lai and Andy Carpenter. Static Analysis and Testing of Executable DSL Specifi-
cation. In Proceedings of the 1st International Conference on Model-Driven Engineering
and Software Development (MODELSWARD’13), pages 157–162. SCITEPRESS Digital
Library, 2013.

[84] Danny B. Lange and Yuichi Nakamura. Object-Oriented Program Tracing and Visualiza-
tion. IEEE Computer, 30(5):63–70, 1997.

[85] Philip Langer, Tanja Mayerhofer, and Gerti Kappel. A Generic Framework for Real-
izing Semantic Model Differencing Operators. In Joint Proceedings of MODELS 2014
Poster Session and the ACM Student Research Competition (SRC) co-located with the
17th International Conference on Model Driven Engineering Languages and Systems
(MODELS’14), volume 1258, pages 16–20. CEUR, 2014.

[86] Philip Langer, Tanja Mayerhofer, and Gerti Kappel. Semantic Model Differencing Utiliz-
ing Behavioral Semantics Specifications. In Proceedings of the 17th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS’14), volume
8767 of Lecture Notes in Computer Science, pages 116–132. Springer, 2014.

[87] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot. EMF Profiles:
A Lightweight Extension Approach for EMF Models. Journal of Object Technology,
11(1):1–29, 2012.

[88] Yoann Laurent, Reda Bendraou, and Marie-Pierre Gervais. Executing and Debugging
UML Models: an fUML extension. In Proceedings of the 28th Annual ACM Symposium
on Applied Computing (SAC’13), pages 1095–1102. ACM, 2013.

[89] Johan Lilius and Iván Porres Paltor. Formalising UML State Machines for Model Check-
ing. In Proceedings of the 2nd International Conference on the Unified Modeling Lan-
guage: Beyond the Standard (UML’99), volume 1723 of Lecture Notes in Computer Sci-
ence, pages 430–444. Springer, 1999.

[90] Yuehua Lin, Jeff Gray, and Frédéric Jouault. DSMDiff: A Differentiation Tool for
Domain-Specific Models. European Journal of Information Systems, 16(4):349–361,
2007.

[91] Lockheed Martin Corporation, Model Driven Solutions. Foundational UML
Reference Implementation. http://portal.modeldriven.org/content/
fuml-reference-implementation-download.

[92] Shahar Maoz. Model-Based Traces. In Models in Software Engineering: Workshops
and Symposia at MODELS 2012, Reports and Revised Selected Papers, volume 5421 of
Lecture Notes in Computer Science, pages 109–119. Springer, 2009.

[93] Shahar Maoz. Using Model-Based Traces as Runtime Models. IEEE Computer,
42(10):28–36, 2009.

227

http://portal.modeldriven.org/content/fuml-reference-implementation-download
http://portal.modeldriven.org/content/fuml-reference-implementation-download

[94] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for Semantic Model
Differencing. In Models in Software Engineering: Workshops and Symposia at MODELS
2010, Reports and Revised Selected Papers, volume 6627 of Lecture Notes in Computer
Science, pages 194–203. Springer, 2011.

[95] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic Differenc-
ing for Activity Diagrams. In Proceedings of the 13th European Software Engineering
Conference and the 19th ACM SIGSOFT Symposium on the Foundations of Software En-
gineering (ESEC/FSE’11), pages 179–189. ACM, 2011.

[96] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CDDiff: Semantic Differencing
for Class Diagrams. In Proceedings of the 25th European Conference on Object-Oriented
Programming (ECOOP’11), volume 6813 of Lecture Notes in Computer Science, pages
230–254. Springer, 2011.

[97] Tanja Mayerhofer, Philip Langer, and Gerti Kappel. A Runtime Model for fUML. In
Proceedings of the 7th Workshop on Models@run.time (MRT) co-located with the 15th
International Conference on Model Driven Engineering Languages and Systems (MOD-
ELS’12), pages 53–58. ACM, 2012.

[98] Tanja Mayerhofer, Philip Langer, and Manuel Wimmer. Towards xMOF: Executable
DSMLs Based on fUML. In Proceedings of the 12th Workshop on Domain-Specific Mod-
eling (DSM) co-located with the 3rd Conference on Systems, Programming, Languages
and Applications: Software for Humanity (SPLASH’12), pages 1–6. ACM, 2012.

[99] Tanja Mayerhofer, Philip Langer, and Manuel Wimmer. xMOF: A Semantics Specifica-
tion Language for Metamodeling. In Joint Proceedings of Invited Talks, Demonstration
Session, Poster Session, and ACM Student Research Competition co-located with the 16th
International Conference on Model Driven Engineering Languages and Systems (MOD-
ELS’13), volume 1115, pages 46–50. CEUR, 2013.

[100] Tanja Mayerhofer, Philip Langer, Manuel Wimmer, and Gerti Kappel. xMOF: Executable
DSMLs Based on fUML. In Proceedings of the 6th International Conference on Software
Language Engineering (SLE’13), volume 8225 of Lecture Notes in Computer Science,
pages 56–75. Springer, 2013.

[101] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for Model-Driven
Architecture. Addison-Wesley Professional, 2002.

[102] Stephen J. Mellor, Stephen Tockey, Rodolphe Arthaud, and Philippe Leblanc. An Action
Language for UML: Proposal for a Precise Execution Semantics. In Proceedings of the
1st International Workshop on the Unified Modeling Language: Beyond the Notation
(UML’98), volume 1618 of Lecture Notes in Computer Science, pages 307–318. Springer,
1999.

[103] Zoltán Micskei and Hélène Waeselynck. The many meanings of UML 2 Sequence Dia-
grams: a survey. Software & Systems Modeling, 10(4):489–514, 2011.

228

[104] Stefan Mijatov, Philip Langer, Tanja Mayerhofer, and Gerti Kappel. A Framework for
Testing UML Activities Based on fUML. In Proceedings of the 10th International Work-
shop on Model Driven Engineering, Verification and Validation (MoDeVVa) co-located
with the 16th International Conference on Model Driven Engineering Languages and
Systems (MODELS’13), volume 1069, pages 1–10. CEUR, 2013.

[105] Stefan Mijatov and Tanja Mayerhofer. Challenges of Testing Business Process Models
in Intra- and Inter-Organizational Context. In Joint Proceedings of the 1st International
Workshop on Modeling Inter-Organizational Processes (MinoPro) and 1st International
Workshop on Event Modeling and Processing in Business Process Management (EMoV)
co-located with Modellierung 2014, volume 1185, pages 73–85. CEUR, 2014.

[106] Model Driven Solutions. Executable UML/SysML Semantics Project Report (Fi-
nal), November 2008. http://lib.modeldriven.org/MDLibrary/
trunk/Applications/fUML-Reference-Implementation/trunk/
doc/xUML-SysML-Project-Report.pdf.

[107] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving Executability into
Object-Oriented Meta-Languages. In Proceedings of the 8th International Conference
on Model Driven Engineering Languages and Systems (MODELS’05), volume 3713 of
Lecture Notes in Computer Science, pages 264–278. Springer, 2005.

[108] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A Formal
Introduction. John Wiley & Sons, Inc., 1992.

[109] Object Management Group. Action Semantics for the UML, Request For Proposal,
September 1999. http://www.omg.org/cgi-bin/doc?ad/98-11-01.pdf.

[110] Object Management Group. UML Profile for Schedulability, Performance, and Time
Specification, Version 1.1, January 2005. http://www.omg.org/spec/SPTP/1.
1.

[111] Object Management Group. OMG Unified Modeling Language (OMG UML), Super-
structure, Version 2.3, May 2010. http://www.omg.org/spec/UML/2.3.

[112] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Version 1.1, January 2011. http://www.omg.org/spec/QVT/1.1.

[113] Object Management Group. OMG Unified Modeling Language (OMG UML), Super-
structure, Version 2.4.1, August 2011. http://www.omg.org/spec/UML/2.4.1.

[114] Object Management Group. Semantics of a Foundational Subset for Executable UML
Models (fUML), Version 1.0, February 2011. http://www.omg.org/spec/FUML/
1.0.

[115] Object Management Group. UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems, Version 1.1, June 2011. http://www.omg.org/spec/
MARTE/1.1.

229

http://lib.modeldriven.org/MDLibrary/trunk/Applications/fUML-Reference-Implementation/trunk/doc/xUML-SysML-Project-Report.pdf
http://lib.modeldriven.org/MDLibrary/trunk/Applications/fUML-Reference-Implementation/trunk/doc/xUML-SysML-Project-Report.pdf
http://lib.modeldriven.org/MDLibrary/trunk/Applications/fUML-Reference-Implementation/trunk/doc/xUML-SysML-Project-Report.pdf
http://www.omg.org/cgi-bin/doc?ad/98-11-01.pdf
http://www.omg.org/spec/SPTP/1.1
http://www.omg.org/spec/SPTP/1.1
http://www.omg.org/spec/UML/2.3
http://www.omg.org/spec/QVT/1.1
http://www.omg.org/spec/UML/2.4.1
http://www.omg.org/spec/FUML/1.0
http://www.omg.org/spec/FUML/1.0
http://www.omg.org/spec/MARTE/1.1
http://www.omg.org/spec/MARTE/1.1

[116] Object Management Group. OMG Systems Modeling Language (OMG SysML), Version
1.3, June 2012. http://www.omg.org/spec/SysML/1.3.

[117] Object Management Group. Action Language for Foundational UML (Alf), Version 1.0.1,
October 2013. http://www.omg.org/spec/ALF/1.0.1.

[118] Object Management Group. OMG Unified Modeling Language (OMG UML), Version
2.5, September 2013. http://www.omg.org/spec/UML/2.5/Beta2.

[119] Object Management Group. Semantics of a Foundational Subset for Executable UML
Models (fUML), Version 1.1, August 2013. http://www.omg.org/spec/FUML/
1.1.

[120] Object Management Group. Object Constraint Language, Version 2.4, February 2014.
http://www.omg.org/spec/OCL/2.4.

[121] Object Management Group. OMG Meta Object Facility (MOF) Core Specification, Ver-
sion 2.4.2, April 2014. http://www.omg.org/spec/MOF/2.4.2.

[122] Object Management Group. Precise Semantics of UML Composite Structures (PSCS),
Version Beta 1, June 2014. http://www.omg.org/spec/PSCS/1.0/Beta1.

[123] Dirk Ohst, Michael Welle, and Udo Kelter. Differences Between Versions of UML Dia-
grams. SIGSOFT Software Engineering Notes, 28(5):227–236, 2003.

[124] Greg O’Keefe. Improving the Definition of UML. In Proceedings of the 9th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS’06),
volume 4199 of Lecture Notes in Computer Science, pages 42–56. Springer, 2006.

[125] Hamilton Oliveira, Leonardo Murta, and Cláudia Werner. Odyssey-VCS: A Flexible Ver-
sion Control System for UML Model Elements. In Proceedings of the 12th International
Workshop on Software Configuration Management (SCM) co-located with the Joint 10th
European Software Engineering Conference and 13th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE’05), pages 1–16. ACM, 2005.

[126] Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Păsăreanu. Differ-
ential Symbolic Execution. In Proceedings of the 16th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE’08), pages 226–237. ACM, 2008.

[127] Dorin B. Petriu and Murray Woodside. An intermediate metamodel with scenarios and
resources for generating performance models from UML designs. Software & Systems
Modeling, 6(2):163–184, 2007.

[128] Orest Pilskalns, Anneliese Andrews, Andrew Knight, Sudipto Ghosh, and Robert B.
France. Testing UML designs. Information & Software Technology, 49(8):892–912,
2007.

230

http://www.omg.org/spec/SysML/1.3
http://www.omg.org/spec/ALF/1.0.1
http://www.omg.org/spec/UML/2.5/Beta2
http://www.omg.org/spec/FUML/1.1
http://www.omg.org/spec/FUML/1.1
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/MOF/2.4.2
http://www.omg.org/spec/PSCS/1.0/Beta1

[129] Orest Pilskalns, Gunay Uyan, and Anneliese Andrews. Regression Testing UML Designs.
In Proceedings of the 22nd IEEE International Conference on Software Maintenance
(ICSM’06), pages 254–264, 2006.

[130] Elena Planas, Jordi Cabot, and Cristina Gómez. Lightweight Verification of Executable
Models. In Proceedings of the 30th International Conference Conceptual Modeling
(ER’11), volume 6998 of Lecture Notes in Computer Science, pages 467–475. Springer,
2011.

[131] Thomas Reiter, Kerstin Altmanninger, Alexander Bergmayr, Wieland Schwinger, and
Gabriele Kotsis. Models in Conflict - Detection of Semantic Conflicts in Model-based
Development. In Proceedings of the 3rd International Workshop on Model-Driven Enter-
prise Information Systems (MDEIS) co-located with the 9th International Conference on
Enterprise Information Systems (ICEIS’07), pages 29–40, 2007.

[132] Arend Rensink. The GROOVE Simulator: A Tool for State Space Generation. In Pro-
ceedings of the 2nd International Workshop on Applications of Graph Transformations
with Industrial Relevance (AGTIVE’03), volume 3062 of Lecture Notes in Computer Sci-
ence, pages 479–485. Springer, 2004.

[133] José Eduardo Rivera, Esther Guerra, Juan de Lara, and Antonio Vallecillo. Analyz-
ing Rule-Based Behavioral Semantics of Visual Modeling Languages with Maude. In
Proceedings of the 1st International Conference on Software Language Engineering
(SLE’08), volume 5452 of Lecture Notes in Computer Science, pages 54–73. Springer,
2009.

[134] José Eduardo Rivera and Antonio Vallecillo. Adding Behavioral Semantics to Models.
In Proceedings of the 11th IEEE International Enterprise Distributed Object Computing
Conference (EDOC’07), pages 169–180. IEEE Computer Society, 2007.

[135] Daniel A. Sadilek and Guido Wachsmuth. Prototyping Visual Interpreters and Debuggers
for Domain-Specific Modelling Languages. In Proceedings of the 4th European Con-
ference on Model Driven Architecture - Foundations and Applications (ECMDA-FA’08),
volume 5095 of Lecture Notes in Computer Science, pages 63–78. Springer, 2008.

[136] Markus Scheidgen and Joachim Fischer. Human Comprehensible and Machine Process-
able Specifications of Operational Semantics. In Proceedings of the 3rd European Con-
ference on Model Driven Architecture - Foundations and Applications (ECMDA-FA’07),
volume 4530 of Lecture Notes in Computer Science, pages 157–171. Springer, 2007.

[137] Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.

[138] Ed Seidewitz. What Models Mean. IEEE Software, 20(5):26–32, 2003.

[139] Bran Selic. The Pragmatics of Model-Driven Development. IEEE Software, 20(5):19–25,
2003.

231

[140] Bran Selic. The Less Well Known UML. In Formal Methods for MDE, volume 7320 of
Lecture Notes in Computer Science, pages 1–20. Springer, 2012.

[141] Koushik Sen. Concolic Testing. In Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE’07), pages 571–572. ACM, 2007.

[142] Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic Unit Testing and Explicit Path
Model-Checking Tools. In Proceedings of the 18th International Conference on Com-
puter Aided Verification (CAV’06), volume 4144 of Lecture Notes in Computer Science,
pages 419–423. Springer, 2006.

[143] Sally Shlaer and Stephen J. Mellor. Object-Oriented Systems Analysis: Modeling the
World in Data. Prentice Hall, 1988.

[144] Connie U. Smith, Catalina M. Lladó, and Ramon Puigjaner. Performance Model In-
terchange Format (PMIF 2): A comprehensive approach to Queueing Network Model
interoperability. Performance Evaluation, 67(7):548–568, 2010.

[145] Christian Soltenborn. Quality Assurance with Dynamic Meta Modeling. PhD thesis,
Faculty of Computer Science, Electrical Engineering, and Mathematics, University of
Paderborn, 2013. http://digital.ub.uni-paderborn.de/hs/id/887158.

[146] Christian Soltenborn and Gregor Engels. Towards Test-Driven Semantics Specification.
In Proceedings of the 12th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’09), volume 5795 of Lecture Notes in Computer Science,
pages 378–392. Springer, 2009.

[147] Christian Soltenborn and Gregor Engels. Towards Generalizing Visual Process Pat-
terns. In Proceedings of the Workshop on Visual Formalisms for Patterns co-located
with the 2009 IEEE Symposium on Visual Languages and Human Centric Com-
puting (VL/HCC’09), 2010. http://journal.ub.tu-berlin.de/eceasst/
article/view/345/332.

[148] Ian Sommerville. Software Engineering. Pearson Education, 8th edition, Addison-
Wesley.

[149] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. Metamod-
elling - State of the Art and Research Challenges. In Revised Selected Papers of the
International Dagstuhl Workshop on Model-Based Engineering of Embedded Real-Time
Systems, volume 6100 of Lecture Notes in Computer Science, pages 57–76. Springer,
2007.

[150] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley Professional, 2nd edition, 2008.

[151] Harald Störrle. Semantics of Control-Flow in UML 2.0 Activities. In Proceedings
of the 2004 IEEE Symposium on Visual Languages and Human Centric Computing
(VL/HCC’04), pages 235–242. IEEE, 2004.

232

http://digital.ub.uni-paderborn.de/hs/id/887158
http://journal.ub.tu-berlin.de/eceasst/article/view/345/332
http://journal.ub.tu-berlin.de/eceasst/article/view/345/332

[152] Harald Störrle. Semantics of Exceptions in UML 2.0 Activities, 2004. Technical Re-
port. Ludwig-Maximilians-Universität München. http://www.pst.informatik.
uni-muenchen.de/personen/stoerrle/V/AD3-Exceptions-TR.pdf.

[153] Harald Störrle. Semantics of Structured Nodes in UML 2.0 Activities. In Proceed-
ings of the 2nd Nordic Workshop on UML, Modeling, Methods and Tools (NWUML’04),
2004. http://www.pst.informatik.uni-muenchen.de/~stoerrle/V/
AD4-Expansion.pdf.

[154] Harald Störrle. Semantics and Verification of Data Flow in UML 2.0 Activities. Electronic
Notes in Theoretical Computer Science, 127(4):35–52, 2005.

[155] Harald Störrle and Jan Hendrik Hausmann. Towards a Formal Semantics of UML 2.0
Activities. In Proceedings of Software Engineering, volume 64 of Lecture Notes in Infor-
matics, pages 117–128. GI, 2005.

[156] Mark Strembeck and Uwe Zdun. An approach for the systematic development of domain-
specific languages. Software Practice and Experience, 39(15):1253–1292, 2009.

[157] Jérémie Tatibouet, Arnaud Cuccuru, Sébastien Gérard, and François Terrier. Principles
for the Realization of an Open Simulation Framework Based on fUML (WIP). In Pro-
ceedings of the Symposium on Theory of Modeling & Simulation - DEVS Integrative M&S
Symposium (DEVS’13), pages 4:1–4:6. Society for Computer Simulation International,
2013.

[158] Juha-Pekka Tolvanen, Matti Rossi, and Jeff Gray. Guest editorial to the theme issue
on domain-specific modeling in theory and applications. Software & Systems Modeling,
13(1):5–7, 2014.

[159] Emina Torlak and Daniel Jackson. Kodkod: A Relational Model Finder. In Proceedings
of the 13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’07), volume 4424 of Lecture Notes in Computer Science,
pages 632–647. Springer, 2007.

[160] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based
testing approaches. Software Testing, Verification and Reliability, 22(5):297–312, 2012.

[161] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio Lerda.
Model Checking Programs. Automated Software Engineering, 10(2):203–232, 2003.

[162] Markus Voelter. DSL Engineering: Designing, Implementing and Using Domain-Specific
Languages. dslbook.org, 2013.

[163] Guido Wachsmuth. Modelling the Operational Semantics of Domain-Specific Modelling
Languages. In Generative and Transformational Techniques in Software Engineering II,
volume 5235 of Lecture Notes in Computer Science, pages 506–520. Springer, 2008.

233

http://www.pst.informatik.uni-muenchen.de/personen/stoerrle/V/AD3-Exceptions-TR.pdf
http://www.pst.informatik.uni-muenchen.de/personen/stoerrle/V/AD3-Exceptions-TR.pdf
http://www.pst.informatik.uni-muenchen.de/~stoerrle/V/AD4-Expansion.pdf
http://www.pst.informatik.uni-muenchen.de/~stoerrle/V/AD4-Expansion.pdf

[164] Murray Woodside, Dorina C. Petriu, Dorin B. Petriu, Hui Shen, Toqeer Israr, and Jose
Merseguer. Performance by Unified Model Analysis (PUMA). In Proceedings of the 5th
International Workshop on Software and Performance (WOSP’05), pages 1–12. ACM,
2005.

[165] Zhenchang Xing and Eleni Stroulia. UMLDiff: An Algorithm for Object-Oriented De-
sign Differencing. In Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE’05), pages 54–65. ACM, 2005.

[166] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Elsevier, 3rd
edition, 2006.

234

Curriculum Vitae

Dipl.-Ing. Tanja Mayerhofer, BSc

Richtergasse 1a/5
1070 Wien
Austria

Email: mayerhofer@big.tuwien.ac.at
Web: http://www.big.tuwien.ac.at/staff/tmayerhofer
Date of Birth: 19-Aug-1987
Nationality: Austria

Education

2011 - 2014 PhD Studies Business Informatics
Vienna University of Technology, Austria
Supervision:
o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

2009 - 2011 Master Studies Business Informatics
Vienna University of Technology, Austria
Emphasis on Project and Quality Management

2006 - 2009 Bachelor Studies Business Informatics
Vienna University of Technology, Austria
Emphasis on Practical Software Engineering

235

Work Experience (Excerpt)

07/2011 - present Researcher
Business Informatics Group, Vienna University of Technology, Austria
Research Interests: Model Driven Engineering
Teaching: Model Engineering, Advanced Model Engineering,
Web Engineering, Practicals, Bachelor’s Theses, Master’s Theses

03/2011 - 07/2011 Tutor
Business Informatics Group, Vienna University of Technology, Austria
Teaching: Web Engineering

11/2010 - 02/2011 Teaching Assistant
Business Informatics Group, Vienna University of Technology, Austria
Teaching: Evaluation and Implementation of the E-Learning System for the
Course on Object-Oriented Modeling

09/2010 - 01/2011 Tutor
SBA Research
Teaching: Internet Security

Awards
2013 Third Place, ACM Student Research Competition, Graduate Category

16th International Conference on Model Driven Engineering Languages and Systems
(MODELS’13)
Submission Title: Using fUML as Semantics Specification Language in Model Driven
Engineering

2011 Diploma Thesis Award of the City Vienna
Thesis Title: Breathing New Life into Models: An Interpreter-Based Approach for
Executing UML Models

Publications

Peer Reviewed Conference Papers

Philip Langer, Tanja Mayerhofer, Gerti Kappel. Semantic Model Differencing Utilizing Be-
havioral Semantics Specifications. In Proceedings of the 17th International Conference on
Model Driven Engineering Languages and Systems (MODELS’14), volume 8767 of Lecture
Notes in Computer Science, pages 116-132, Springer, 2014.

Philip Langer, Tanja Mayerhofer, Manuel Wimmer, Gerti Kappel. On the Usage of UML:
Initial Results of Analyzing Open UML Models. In Proceedings of Modellierung 2014, vol-

236

ume 225 of Lecture Notes in Informatics, pages 289-304, GI, 2014.

Tanja Mayerhofer, Philip Langer, Manuel Wimmer, Gerti Kappel. xMOF: Executable DSMLs
based on fUML. In Proceedings of the 6th International Conference on Software Language En-
gineering (SLE’13), volume 8225 of Lecture Notes in Computer Science, pages 56-75, Springer,
2013.

Luca Berardinelli, Philip Langer, Tanja Mayerhofer. Combining fUML and Profiles for Non-
Functional Analysis Based on Model Execution Traces. In Proceedings of the 9th Interna-
tional ACM SIGSOFT Conference on the Quality of Software Architectures (QoSA’13), pages
79-88, ACM, 2013.

Peer Reviewed Workshop Papers, Demonstrations, and Poster Presentations

Philip Langer, Tanja Mayerhofer, Gerti Kappel. A Generic Framework for Realizing Seman-
tic Model Differencing Operators. In Joint Proceedings of MODELS 2014 Poster Session and
the ACM Student Research Competition (SRC) co-located with the 17th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS’14), volume 1258, pages
16-20, CEUR, 2014.

Patrick Neubauer, Tanja Mayerhofer, Gerti Kappel. Towards Integrating Modeling and Pro-
gramming Languages: The Case of UML and Java. In Proceedings of the 2nd International
Workshop on The Globalization of Modeling Languages (GEMOC) co-located with the 17th In-
ternational Conference on Model Driven Engineering Languages and Systems (MODELS’14),
volume 1236, pages 23-32, CEUR, 2014.

Stefan Mijatov, Tanja Mayerhofer. Challenges of Testing Business Process Models in Intra-
and Inter-Organizational Context. In Joint Proceedings of the 1st International Workshop on
Modeling Inter-Organizational Processes (MinoPro) and 1st International Workshop on Event
Modeling and Processing in Business Process Management (EMoV) co-located with Model-
lierung 2014, volume 1185, pages 73-85, CEUR, 2014.

Tanja Mayerhofer. Using fUML as Semantics Specification Language in Model Driven En-
gineering. In Joint Proceedings of Invited Talks, Demonstration Session, Poster Session, and
ACM Student Research Competition co-located with the 16th International Conference on Model
Driven Engineering Languages and Systems (MODELS’13), volume 1115, pages 87-93, CEUR,
2013.

Tanja Mayerhofer, Philip Langer, Manuel Wimmer. xMOF: A Semantics Specification Lan-
guage for Metamodeling. In Joint Proceedings of Invited Talks, Demonstration Session, Poster
Session, and ACM Student Research Competition co-located with the 16th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS’13), volume 1115, pages
46-50, CEUR, 2013.

237

Stefan Mijatov, Philip Langer, Tanja Mayerhofer, Gerti Kappel. A Framework for Testing
UML Activities Based on fUML. In Proceedings of the 10th International Workshop on Model
Driven Engineering, Verification and Validation (MoDeVVa) co-located with the 16th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS’13), vol-
ume 1069, pages 1-10, CEUR, 2013.

Martin Fleck, Luca Berardinelli, Philip Langer, Tanja Mayerhofer, Vittorio Cortellessa. Re-
source Contention Analysis of Service-Based Systems through fUML-Driven Model Execu-
tion. In Proceedings of the 5th International Workshop Non-functional Properties in Modeling:
Analysis, Languages and Processes (NIM-ALP) co-located with the 16th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS’13), volume 1074, pages
6-15, CEUR, 2013.

Tanja Mayerhofer, Philip Langer, Gerti Kappel. A Runtime Model for fUML. In Proceedings
of the 7th International Workshop on Models@run.time (MRT) co-located with the 15th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS’12), pages
53-58, ACM, 2012.

Tanja Mayerhofer, Philip Langer, Manuel Wimmer. Towards xMOF: Executable DSMLs
Based on fUML. In Proceedings of the 12th Workshop on Domain-Specific Modeling (DSM)
co-located with the 3rd Conference on Systems, Programming, Languages and Applications:
Software for Humanity (SPLASH’12), pages 1-6, ACM, 2012.

Tanja Mayerhofer, Philip Langer. Moliz: A Model Execution Framework for UML Models.
In Proceedings of the 2nd International Master Class on Model-Driven Engineering co-located
with the 15th International Conference on Model Driven Engineering Languages and Systems
(MODELS’12), pages 3:1-3:2, ACM, 2012.

Tanja Mayerhofer. Testing and Debugging UML Models Based on fUML. In Proceedings
of the 34th International Conference on Software Engineering (ICSE’12), Doctoral Symposium,
pages 1579-1582, IEEE, 2012.

Marion Brandsteidl, Tanja Mayerhofer, Martina Seidl, Christian Huemer. Replacing Tradi-
tional Classroom Lectures with Lecture Videos - An Experience Report. In Proceedings of
the 8th Educators’ Symposium: Software Modeling in Education (EduSymp) co-located with the
15th International Conference on Model Driven Engineering Languages and Systems (MOD-
ELS’12), pages 21-27, ACM, 2012.

238

	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	State of the Art
	Executable Modeling Languages and Their Applications
	Defining Modeling Languages
	Executable UML

	Foundational UML
	Introduction
	fUML Subset
	fUML Virtual Machine

	Extensions of the fUML Execution Environment
	Design Rationale
	Event Mechanism
	Command Interface
	Trace Model
	Summary
	Related Work

	Semantics Specification with fUML
	Design Rationale
	Semantics Specification Language
	Semantics Specification Methodology
	Model Execution Environment
	Semantics-based Tool Development
	Summary
	Related Work

	Semantic Model Differencing
	Design Rationale
	Overview of the Semantic Model Differencing Framework
	Semantic Differencing for fUML-based Semantics Specifications
	Semantic Differencing for Operationally Defined Semantics Specifications
	Input Generation for fUML-based Semantics Specifications
	Summary
	Related Work

	Evaluation
	Extensions of the fUML Execution Environment
	Semantics Specification with fUML
	Semantic Model Differencing

	Conclusion and Future Work
	Conclusion
	Future Work

	fUML Action Language
	Implementations
	List of Figures
	List of Tables
	Listings
	Bibliography
	Curriculum Vitae

