
Towards an Understanding of the
Practical Use of UML

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Alexander Bohn
Matrikelnummer 0505808

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel
Mitwirkung: Kolleg. Dipl.-Ing. BSc Tanja Mayerhofer

Wien, 28.11.2013
(Unterschrift Alexander Bohn) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Towards an Understanding of the
Practical Use of UML

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Alexander Bohn
Registration Number 0505808

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel
Assistance: Kolleg. Dipl.-Ing. BSc Tanja Mayerhofer

Vienna, 28.11.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Alexander Bohn
Stolberggasse 1-3/31, 1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Alexander Bohn)

i

Abstract

UML is a standardized modeling language that is used in many application domains. Many
companies use UML within their processes, and many UML models exist in different domains.
With UML, a variety of systems can be modeled, for example software systems, business pro-
cesses, and production processes. Since UML is a language that is used for many application
domains, the question arises how UML is used in practice. Currently, there are only a few em-
pirical studies about the practical use of UML. None of these studies has analyzed real world
models. In most cases the usage of UML has been analyzed by surveys or investigating current
UML literature and UML modeling tools.

Therefore, this work is devoted to the research question of how UML is used in practice and
tries to answer this question by analyzing real world models.
In particular, the following questions are answered:
Which UML language units are used?
Which UML language concepts are used?
Which UML diagrams are used?
Which relationships are used between UML concepts of different UML language units?
Which UML profiles are used to provide additional information in UML models?

To answer these questions, 92 UML models, which are publicly accessible on the Web and
created with the Enterprise Architect (EA) modeling tool, were quantitatively analyzed. EA was
chosen as modeling tool because it provides its own API which enables to access the content of
a model with script languages such as JavaScript or Visual Basic.

The results gave an insight into the usage of UML. Particularly, it could be determined which of
the considered UML concepts and UML diagrams were often used and which were rarely used.
Furthermore, the results showed between which UML language units more or less relationships
were modeled. UML profiles were used quite commonly, but only a few different UML profiles
have been used.

Finally, the master thesis revealed that further evaluations concerning the usage of UML are
needed to obtain more reliable data about how UML is used in practice.

iii

Kurzfassung

UML ist eine standardisierte Modellierungssprache, die in vielen Bereichen Anwendung findet.
Viele Unternehmen benutzen UML für ihre Modellierungstätigkeiten und man darf annehmen,
dass zahlreiche UML Modelle in unterschiedlichsten Domänen existieren. Mit UML können ver-
schiedenste Systeme modelliert werden, seien es beispielsweise Softwaresysteme, Geschäftspro-
zesse oder Produktionsprozesse. Da UML eine Sprache ist, die für zahlreiche Einsatzgebiete
verwendet wird, stellt sich die Frage, wie UML in der Praxis Verwendung findet. Derzeit gibt es
nur wenige empirische Studien über die praktische Verwendung von UML. Keine dieser Studien
hat sich dabei mit echten Modellen aus der Praxis beschäftigt. Zum Großteil wurden Daten über
die Verwendung von UML mittels Umfragen oder aus der gängigen UML Literatur und den ver-
wendeten Modellierungswerkzeugen ermittelt.

Diese Arbeit widmet sich daher der Forschungsfrage, wie UML in der Praxis Verwendung fin-
det, und versucht diese durch die Analyse von Modellen aus der Praxis zu beantworten.
Für die Beantwortung dieser Forschungsfrage wurden folgende Detailfragen definiert:
Welche UML Spracheinheiten werden verwendet?
Welche UML Sprachkonzepte werden verwendet?
Welche UML Diagramme werden verwendet?
Welche Beziehungen werden zwischen UML Sprachkonzepten verschiedener UML Sprachein-
heiten verwendet?
Welche UML Profile werden verwendet um zusätzliche Informationen in UML Modellen zu er-
fassen?

Um diese Fragen zu beantworten, wurden 92 UML Modelle, die öffentlich im Web verfügbar
sind und mit dem UML Modellierungstool Enterprise Architect (EA) erstellt wurden, automa-
tisiert quantitativ analysiert. EA wurde gewählt, da dieses Modellierungswerkzeug eine eigene
API zur Verfügung stellt, mit der Modellelemente mit Scriptsprachen wie JavaScript oder Visual
Basic ausgelesen werden können. Die Ergebnisse gaben einen Einblick in die Verwendung von
UML. Insbesondere konnte eruiert werden, welche der in der Analyse beachteten UML Sprach-
konzepte sowie UML Diagramme häufig bzw. weniger häufig verwendet wurden. Des Weiteren
konnte aus den Resultaten festgestellt werden, zwischen welchen UML Spracheinheiten mehr
oder weniger starke Beziehungen modelliert wurden. UML Profile wurden zwar durchgehend
und relativ häufig verwendet, jedoch wurden nur wenige verschiedene UML Profile verwendet.
Weitere Evaluierungen betreffend des UML Sprachgebrauchs sind sicher nötig, um fundiertere
Kenntnisse über die Verwendung von UML in der Praxis zu erhalten.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of this Work . 3
1.4 Methodological Approach . 4
1.5 Structure of this Work . 5

2 Research Methodology 7
2.1 Elaboration of Metrics . 7
2.2 Implementation and Testing of Metrics . 7
2.3 Collection of UML Models . 8
2.4 Analysis of UML Models . 9

3 Technical Implementation 11
3.1 Input: Enterprise Architect Models . 11
3.2 Implementation: Script for Analyzing Enterprise Architect Models 15
3.3 Output: Obtained Model Data . 16

4 Results 25
4.1 Basic Data of the Observed Models . 25
4.2 Usage of UML Language Units . 38
4.3 Usage of UML Diagrams . 48
4.4 Usage of UML Concepts . 58
4.5 Relationships between UML Language Units 83
4.6 Stereotype Usage . 94

5 Related Work 99
5.1 UML Quality Metrics . 99
5.2 UML Usage Metrics . 100

6 Conclusion and Future Work 103

A Appendix 107
A.1 UML Concepts . 107

vii

A.2 UML Diagrams . 125
A.3 Model Sources . 129

Bibliography 135

viii

CHAPTER 1
Introduction

1.1 Motivation

According to the specification of the Unified Modeling Language (UML) [22] by the Object
Management Group (OMG)1 “The Unified Modeling Language (UML) is a graphical language
for visualizing, specifying, constructing, and documenting the artifacts of a software-intensive
system.“ UML combines best practices in software modeling and has become de facto standard
for software modeling. UML was originally developed for the specification of object-oriented
programs, however, it is now used for a wide variety of purposes such as for instance systems
modeling and process modeling. UML is independent from any programming languages, plat-
forms and development tools. It is usable for different domains. Further UML does not support
one specific development process, rather it is suitable for any process model chosen. With UML
static and behavioral parts of a system can be modeled. Furthermore, with UML Profiles it is
possible to extend or restrict parts of UML without changing the UML metamodel [15].

According to Fowler [9], people use UML in three modes: to model sketches, blueprints, or
as programming language. Sketches show some aspects of a system in a less detailed way. Their
aim is to give an understanding of some parts of a system. In project discussions and project
meetings sketches are used in a supportive way to give a general overview about a system or
process. Tools for sketches are usually whiteboards or light-weight modeling tools. On the
other hand blueprints describe a system as complete as possible. For a programmer it should be
possible to construct the whole software according to a blueprint. All needed parts of the final
software are highly detailed modeled. For blueprints more sophisticated tools are used than for
sketches. Sketches and blueprints can be used in a reverse engineering and forward engineer-
ing direction. In case of UML reverse engineering means generating UML models out of code
and forward engineering means generating code out of UML models. In reverse engineering
the UML models represent existing code and in forward engineering the UML models define

1OMG. http://www.omg.org. Accessed: 2013-28-02

1

exactly how the software is structured and how it behaves so that the source code can be auto-
matically generated. In the third mode UML is used as a programming language. UML models
can be compiled directly to running software, so that the UML model is the source code. Model
driven architecture (MDA) is an approach using UML as programming language. The standards
of MDA are defined by the OMG as well [20]. Highly superior tools are used for MDA. Fur-
ther, standardized semantics for an executable subset of UML exists, called Foundational UML
(fUML) defined by the OMG [19]. fUML is another approach of using UML as programming
language. 2

The main criticisms of UML regards mostly the high complexity of the language and its in-
consistent metamodel [16], [8], [13]. Further, the semantics of numerous UML constructs are
vague formulated and not fully specified in the standard. This leads to different ways in their
usage and interpretation in models [9]. Moreover the different UML modeling tools consider
different subsets of UML constructs [24]. The high complexity and unclear semantics of UML
as well as the fact that UML tools are highly diverse regarding their support of UML leads to
diverse ways in which UML is used in practice. UML is used for a wide variety of applications
(e.g., for modeling software systems, industrial plants, business processes) and depending on the
purpose for which UML is used, different subsets of UML are used.

In summary UML has a wide variety of applications and is differently used depending on the
purpose of its usage. How UML is used in practice is a research question which is not well
elaborated yet (cf. Chapter 5). However, practical understanding of the usage of UML can be
valuable for several purposes. It can make the development of UML tools easier. Further, an
understanding of how UML is used in practice can support further investigations of the weak-
nesses and potentials of the language. In addition knowledge about which parts of the language
are commonly used and which not can lead to the development of a simplified version of UML
by reducing its current complexity by focusing on the most used concepts of the language. Such
a version of UML could make life easier for users of UML and for UML tool vendors.

1.2 Problem Statement

UML is a language which is used for numerous purposes. Depending on the purpose different
parts of the UML are used. Currently no meaningful studies about the usage of UML in real
world models exist (cf. Chapter 5). An understanding of how UML is used in practice can help
in reducing the weaknesses of the language and minimizing the criticisms. This work tries to
find out how UML, in particular UML 2.x, is used. In the following, potential findings, which
can be deducted from such a research, are listed:

• UML tools: A better understanding of the practical usage of UML can help in developing
UML tools. It can provide insight into which parts of UML are important and hence have

2http://de.slideshare.net/seidewitz/programming-in-uml-an-introduction-to-fuml-and-alf. Accessed: 2013-02-
06

2

to be supported by the tool and which parts can be neglected. This leads automatically to
a significant cost and time reducing in implementing such tools. Moreover the tools might
be easier to use.

• UML literature: Knowledge about which parts of UML are used in practice would make
life for authors of UML guides easier. They would know on which UML constructs they
should focus their writing.

• Education: An improved understanding about the practical use of UML would enhance
lectures about UML. The lecturers would be able to adapt their teaching on the most used
UML concepts. Also a simplified version of UML for teaching and practising could be
used in universities.

• Simplified UML metamodel: A simplified version of the UML metamodel, besides the
current one, could be another result of studying which parts of UML are used in practice.
This could help OMG in creating such a simplified version by removing unused or less
popular concepts.

• Modifications of the UML metamodel: Studying which parts of UML are used in prac-
tice can also show OMG which UML constructs need further modifications, where the
semantic definitions are not clear enough and need further explanations or where con-
structs need to be extended or even can be combined (for example notes and constraints
could be combined if notes are usually used for expressing constraints).

1.3 Aim of this Work

The aim of this work is to analyze real world UML models in order to answer the following over-
all research question driving this thesis: Which parts of UML are used in practice? This question
is broken down into the following more detailed research questions which are categorized into
five groups.

Usage of UML Language Units

1. Which language units of UML are used?

2. Which language units of UML are frequently used in combination?

Usage of UML Concepts

1. Which modeling concepts of UML are used?

2. Which concepts of UML 1.4, 1.5 and 2.x are used?

3

Usage of UML Diagrams

1. Which diagram types of UML are used?

2. Which UML diagram types are frequently used in combination?

3. Which modeling concepts of UML are visualized in the distinct diagram types?

Relationships Between Different UML Language Units

1. How are the different parts of a model related to each other?

Stereotype Usage

1. Which UML concepts are frequently extended by stereotypes?

2. Which UML profiles are used?

1.4 Methodological Approach

The methodological approach for conducting the research presented in this thesis consists of 4
steps:

1. Elaboration of metrics. First, UML usage metrics were elaborated for answering the
research questions of this thesis listed beforehand.

2. Implementation and testing of the metrics. In the second step, a program for analyzing
UML models and calculating the elaborated metrics was implemented and tested.

3. Collection of analyzable UML models. Models were collected to be analyzed.

4. Analysis of UML models. The collected models were analyzed by the implemented
program which calculated the elaborated metrics. Further, the calculated metrics were
interpreted.

The aim of this thesis was to analyze real world models concerning their usage of UML. We
chose to analyze UML models created with the UML modeling tool Enterprise Architect (EA).
It is currently one of the most widely used UML modeling tools 3. Furthermore a close contact
to Sparx Systems4 exists through the Business Informatics Group of the Faculty of Informatics
of the Vienna University of Technology5 which advised this thesis.

The EA models were collected via Google by searching for accessible Enterprise Architect
Project (EAP) files, which could be analyzed.

3http://model-based-systems-engineering.com/2013/01/07/most-popular-uml-modeling-tools.
Accessed: 2013-02-05.

4Sparx Systems. http://www.sparxsystems.com. Accessed: 2013-28-01
5BIG. http://www.big.tuwien.ac.at. Accessed: 2013-28-01

4

The results of the analysis of the collected UML models were evaluated using Microsoft Ex-
cel. Visual Basic for Applications (VBA) in Excel was used for aggregating the data collected in
the analysis of the models. For calculating data mining metrics the tool WEKA6 was used. Also
the software development environment Eclipse7 with the programming language JAVA was used
for collecting additional data about the analyzed models.

1.5 Structure of this Work

In Chapter 2 the methodology used for carrying out the study about the practical usage of UML
is explained in detail.

Chapter 3 describes how the models were analyzed for answering the research questions of this
work. In the first part the tool Enterprise Architect and how it stores model data is explained.
In the second part the challenges in obtaining model data from EA are discussed. In the third
and last part an example model is illustratively analyzed step by step to explain how the models
were analyzed in order to answer the research questions.

The results of the empirical study are presented and interpreted in Chapter 4. Each sub chapter
deals with one category of research questions as presented in Chapter 1.3. Also limitations and
possible future work for each evaluated research question are discussed.

In Chapter 5 related work is discussed and compared to the carried out study.

Chapter 6 sums up all findings and interpretations from Chapter 4 and also gives an overview of
possible future work.

6WEKA - Data Mining Software. http://www.cs.waikato.ac.nz/ml/weka/index.html. Accessed: 2013-01-02
7Eclipse. http://www.eclipse.org. Accessed: 2013-20-02.

5

CHAPTER 2
Research Methodology

In this Chapter the steps carried out for answering the research questions of this thesis are de-
scribed. All methods and technologies which were used in each step are explained in detail. The
methodological approach consists of 4 steps. Each of the next 4 sections describes one step.

2.1 Elaboration of Metrics

Firstly, an in-depth research about the language concepts of UML was made. For that current
UML literature [15, 25, 26] and the UML specification of OMG [22] were observed. Sub-
sequently the research questions of this study were elaborated. As a last step metrics were
developed for answering the research questions. For an improved understanding how metrics
should look like and which metrics might be accurate, a research on existing object oriented
metrics and UML metrics was made in advance (see Chapter 5).

The first draft of metrics only consisted of counting how often which UML concept is used
in a UML model. For example the number of interfaces, abstract classes, states, etc. used in the
analyzed UML models. In a second iteration aggregated metrics were developed based on the
simple metrics, suitable statistical measurements for data sets were chosen [2,12], and data min-
ing metrics were implemented [14]. In a further step these metrics were categorized according
to the research questions they try to answer.

2.2 Implementation and Testing of Metrics

In this phase it was investigated, how the data necessary to answer the research questions can be
obtained from EA models. The built in scripting environment of EA1 was chosen for accessing
and analyzing EA project files. The EA scripting technology is an easy way of accessing all

1EA Scripter Window. http://www.sparxsystems.com/uml_tool_guide/modeling_tool_features/the_scripter_window.htm.
Accessed: 2013-29-01

7

model data. Furthermore, with the Model Driven Generation (MDG) Technology2 such scripts
can be transferred between different EA environments. EA supports several script languages.
The script language Microsoft JScript was chosen for this study. Further details about how mod-
els are stored in EA and how they can be accessed can be found in Chapter 3.

After a review of all metrics the script for analyzing EA models was implemented. The test-
ing was done during the implementation. For this own test models were created.

The output of the script was persisted in XML. The big advantage of this file type was that
the results of the script could be displayed in Microsoft Excel in any possible way3. There-
fore the output was formatted in a way, that it suited best for further analyses in Excel. The
implementation of the script for analyzing EA models is presented in Chapter 3.2 in more detail.

2.3 Collection of UML Models

To get a good overview how UML is used in practice many UML models from the practice are
needed. The initial plan was to spread over the script to companies. Therefore, it was carefully
paid attention that the script reads out the model data as anonymously as possible. A 1:1 recre-
ation of the analyzed models had to be impossible. The script was exported into a EA readable
MDG format. Hence the possibility was given to import the script easily to other EA projects.
A website was established4, where companies could easily download the script and participate
on a survey. The survey was created to gain additional meta data about the analyzed models and
the companies. With the help of Sparx Systems it was tried to attract some of their customers to
participate in the survey and to download the script, run it on their models, and send the output
back for further analysis. The response from the established website, where the script could be
downloaded, was zero. Neither one model was analyzed by the script nor a survey was filled in
by someone. The reasons for such a low response are not clear. One might be that the companies
did not see any benefit and usage of this research and therefore did no participate. Another rea-
son could be that the companies were still too afraid of providing too much knowledge through
the analysis of their UML models. Also the way how the script was distributed could be one of
the causes why it failed.

Therefore, another source for EA models had to be found. We decided to use Google for getting
analyzable EA models. With Google it is possible to search for special types of files. The script
for analyzing UML models was only implemented for Enterprise Architect Project files, hence
Google was scanned for this file type. The exact search query was “filetype:eap“. The search
request delivered 320 results. Every result was examined for EAP files which are not corrupt

2MDG Technology.
http://www.sparxsystems.com/enterprise_architect_user_guide/9.2/standard_uml_models/mdgtechnologies.html.
Accessed: 2013-28-03

3Excel-XML.
http://office.microsoft.com/en-us/excel-help/overview-of-xml-in-excel-HA010206396.aspx?CTT=1. Accessed:
2013-25-03

4Website of this thesis. http://www.modelexecution.org/?page_id=116. Accessed: 2013-20-03

8

and analyzable by the script. Overall 92 such EAP files were found, mostly from some open
source software projects where EA was used for documenting their systems in a model-based
way. Most of the models are from real world projects (for detailed information about the models
see Chapter 4.1). Table A.14 in the Appendix A provides a list of the website urls where the
analyzed EA models were found.

2.4 Analysis of UML Models

In the final step all the found models were analyzed by the implemented script in EA. Excel and
Excel VBA [27] were used for further analyzing the data obtained by the script. As already
mentioned the XML output of the script was formatted in a way Excel could easily open them.
Additional with the tool WEKA data mining metrics were calculated.

While the results were investigated new interesting research questions arose, which could not
be answered with the data obtained by the implemented script. Therefore, JAVA and the Au-
tomation Interface (AI) of EA5 were used to obtain further data about the analyzed models, for
answering the additional research questions. EA provides own JAVA libraries and uses ActiveX
Com clients6 for connecting easily to development environments. The additional metrics were
implemented using JAVA with the development environment Eclipse.

After all data necessary for answering the research questions of this thesis were obtained, the
data was investigated and interpreted.

5Automation Interface. http://www.sparxsystems.com/uml_tool_guide/sdk_for_enterprise_architect/setup.htm.
Accessed: 2013-29-03

6ActiveX Clients. http://msdn.microsoft.com/en-us/library/windows/desktop/ms221336%28v=vs.85%29.aspx.
Accessed: 2013-29-03

9

CHAPTER 3
Technical Implementation

In this Chapter it is described how the EA models have been analyzed by implementing a Mi-
crosoft JScript program. First the model handling of the EA tool is described, second it is ex-
plained how the script analyzes EA models, third the output generated by the script is explained
using an example.

3.1 Input: Enterprise Architect Models

Enterprise Architect - Object Model

Every EA model is stored as an Enterprise Architect Project (EAP) file with the extension *.eap.
For each EAP file an own database is created for storing the information of the contained model.
EA supports several database management systems (DBMS). The supported DBMS are: Mi-
crosoft Access (all versions), SQL Server, MySQL, Oracle 9i and 10g, PostgreSQL, MSDE and
Adaptive Server Anywhere1.

The EA object model2 defines how a model is stored in the database. For accessing an EA
model the Windows OLE Automation3 has to be used. This technology makes it possible to
access objects from one application in another application.

A common way to access the model currently opend in an EA instance is through the Scripter
Window in EA. It enables with simple script languages to read, write and manipulate data of the
EA model. The following script engines are supported by the Scripter Window4:

1EA supported DBMS. http://www.sparxsystems.com/support/faq/database.html. Accessed: 2013-11-03.
2EA object model. http://www.sparxsystems.com/uml_tool_guide/sdk_for_enterprise_architect/theautomationinterface.htm.

Accessed: 2013-17-03.
3Microsoft OLE Automation. http://msdn.microsoft.com/en-us/library/dt80be78.aspx. Accessed: 2013-29-01.
4EA Scripter Window. http://www.sparxsystems.com/uml_tool_guide/modeling_tool_features/the_scripter_window.htm.

Accessed: 2013-29-01

11

• JavaScript

• Microsoft JScript

• Microsoft VBScript

The Automation Interface (AI) of EA provides an API for accessing the model. The most im-
portant interface of this API is the Repository. The Repository is the root object of a
model and makes it possible to access all elements, connectors, diagrams and packages from
the model. In EA an element is a modeling unit of a model and connectors are the relationships
between the elements. For a clear understanding how EA stores a model, Figure 3.1 shows an
excerpt of the database schema of EA5.

Figure 3.1: EA DB-Schema

In the database an element is saved in the t_object table. An element can be an UML el-
ement like a class, a component or a state. Connectors are saved in the t_connector table.

5EA DB-Schema. http://blog.sparxsystems.de/2010/10/enterprise-architect-db-schema/. Accessed: 2013-29-01

12

A connector is for an example an association, a note link or a control flow. Attributes and op-
erations are related to an element. Typical attributes and operations are class attributes or class
operations but also a state behavior (entry, do, exit) is handled as an operation in EA. Attributes
and operations of an EA project are saved in the tables t_attribute and t_operation.
In diagrams elements, connectors, attributes and operations can be visualized. Diagrams are
saved in the table t_diagram. In this work the terms element, package, diagram, and connec-
tor are used as defined in EA, i.e., the contents of the tables t_object, t_attribute, and
t_operation for element, the contents of the table t_package for package, the contents of
the table t_connector for connector and the contents of the table t_diagram for diagram.
Further, model element will be used as a general term for all these objects from now on.

Enterprise Architect - Project View

Figure 3.2 shows how a model is displayed in EA. Connectors are not shown in this view. They
are only visible in the diagram view. Model elements are always contained in packages. Pack-
ages are used as a structuring method for models in the EA modeling tool. It is obligatory to
create a package to be able to create model elements.

Figure 3.2: EA Project View

13

It is important to clarify that a project node (as shown in Figure 3.2) does not represent a
model in this evaluation. The whole EA project file was considered as one model, regardless
how many projects it had. From the analyzed 92 EA projects only 2 had more than one project
node. In these 2 EA projects the content of the project nodes was seen as content of one single
model.

Figure 3.3: EA Diagram View of an Use Case Diagram

Besides connectors also other model elements are not shown in the EA project browser. Notes
and use case boundaries are examples. These elements can only be seen in the diagram where
they are visualized (see Figure 3.3 for a diagram view in EA). How EA exactly decides which
elements are displayed in the project browser and which not is unclear.

14

3.2 Implementation: Script for Analyzing Enterprise Architect
Models

For this research the Scripter Window with the script language Microsoft JScript was used to
access the model data and to obtain some simple statistics about the EA models. The script uses
mainly the AI API for accessing the model data. In cases the provided AI calls were insufficient
for obtaining the required model data, SQL queries were used to access the model data directly
from the database. The script uses no real object orientation programming style. All queries and
calculations are implemented in functions and data is stored in multiple arrays only at runtime.

The script consist of over 18,000 lines of code. Therefore, it needs considerable time for an-
alyzing a model. For a model with 3,300 elements, 2,000 connectors, 400 diagrams and 300
packages the script needed over 25 minutes. As the evaluated models never exceeded the amount
of 4,000 model elements, this was never the case in this research. Anyway it also depends on
the used hardware and the nesting of elements within an EA project how long the script needs
for analyzing the model.

The main task of the script is to identify the UML language concepts in the analyzed models and
to read out all the information about the model elements, which were needed for calculating the
defined metrics for answering the research questions. One of the big challenges in implementing
the script was to determine the type of a model element, i.e., to identify if a model element is
for instance a UML class, state, or activity. In EA all elements, diagrams, and connectors are
saved as objects in the corresponding tables in the model database (see Chapter 3.1). There
exists no explicit declaration of the type of a model element in the model database. Therefore
several AI requests were needed for each model element to determine if it is an instance of a
UML modeling concept and in a further step which concept exactly.

The determination if a specific model element is of the UML type Interface looks like
depicted in Listing 3.1.

Listing 3.1: Microsoft JScript Code Example 1 - Determination if an Element is a UML Inter-
face

1 if(currentElement.Type == "Interface" && currentElement.MetaType == "
Interface" && currentElement.StereotypeEx == "interface" && (
currentElement.Subtype == 0 || currentElement.Subtype == 8))

2 {
3 conceptType = "Interface:UML";
4 }

Usually that was the way to determine the type of each model element. The type of a model
element in EA is defined by the values of four properties: Type, MetaType, Stereotype,
and Subtype. Only if all values match certain constants, the model element can be categorized
precisely as specific UML concept. Just one difference can lead to a complete other model ele-
ment type or even a non UML element type.

15

However, in some cases those requests were not enough to determine the type of a model el-
ement. For example the query for a state element with regions looks like depicted in Listing 3.2.

Listing 3.2: Microsoft JScript Code Example 2 - Determination if an Element is a UML State
containing Regions

1 if(currentElement.Type == "State" && currentElement.MetaType == "State" && (
currentElement.Subtype == 8 || currentElement.Subtype == 0) &&
currentElement.Stereotype == "")

2 {
3 conceptType = "StateElement:UML";
4
5 //more complex request to check if state has regions
6 //in this case the result hast just one column and one row!
7 var SQLresult = DBGetFieldValueArrayString("Description", "t_xref",

undefined, "Client = ’"+currentElement.ElementGUID+"’ AND Type = ’
element property’ AND Name = ’Partitions’");

8
9 if(SQLresult != "" && SQLresult[0][0].indexOf("@PAR;Name=") > -1)

10 {
11 conceptType += ";State with Regions:UML";
12 }
13 }

First the element type is read out (Line 1) and then a SQL query determines (Line 7) if the
state has regions or not. The function DBGetFieldVaueArrayString processes the SQL
requests. Parts of the SQL syntax are passed within the parameters of the function. In this way
all needed SQL requests were made.

In programming steps the script has several phases for obtaining the needed model data and
calculating the output. In the following just a very abstract description of these steps is given
which should only give a raw overview how the structure of the script looks like.

1. In a first step all elements, connectors, diagrams, and packages are read out recursively
starting from the root package. Elements, diagrams, and connectors are saved into multi-
ple arrays according to the package they reside in.

2. The script goes iteratively through all the previously created arrays. All the necessary
metrics about elements, connectors and diagrams are calculated from these data sets. The
results are saved then in other multiple arrays, which can be easily read out for the final
output.

3. All the generated arrays from the second step are read out and an XML file is created with
the calculated values.

3.3 Output: Obtained Model Data

The script generates an XML file which can be opened with Microsoft Excel or Apache OpenOf-
fice Calc. In this work Excel was used to analyse the obtained model data. If the XML file is

16

opened with Excel, the output generated by the script consists of 3 worksheets. Each sheet
contains aggregated and calculated data about the analyzed model. The worksheets are called
“Model - Content“, “Diagram Metrics“ and “Correlations and Relationships“. In the “Model
- Content“ worksheet all UML concepts used in the model are listed with the number of their
occurrence. The “Diagram Metrics“ worksheet deals with data about the used diagrams and
the diagram contents. All used relationships between elements in the model are captured in the
worksheet “Correlations and Relationships“. In the following each worksheet will be described
in detail on the basis of a sample model (which is depicted in Figure 3.4).

Worksheet: Model - Content

All considered UML concepts, which were found in the analyzed EA models, are listed in this
worksheet with the total amount of their occurrence. Connectors like associations or generaliza-
tions are not considered in this worksheet. Connectors are considered in the worksheet “Corre-
lations and Relationships“, which is explained in one of the next sub sections. The content of
the worksheet “model - content“ is explained with the help of the example model depicted in
Figure 3.4. Table 3.1 and Table 3.2 contain parts of the output generated by the script for this
example model. For an easier comparison the model elements of the model are named accord-
ing to their type. As we see in Table 3.1 this worksheet contains the columns uml language
unit, concept, language, total and in diagrams. The values in the language
unit column give information about to which UML language unit the model element belongs
to. The concept column holds the type of a model element. All the UML concepts, which the
script considers are listed in the Appendix A.1. Another important information is contained by
the column language. If the type of a model element is a UML modeling concept and it is
not extended by a stereotype the value of the language column is “UML“. But if the model
element is extended by stereotypes the language value is “UML Profile“. The value “EA
Profile“ means, that the model element is an element of one of the other languages supported by
EA such as BPMN or SysML. The value “unclassified“ means that the type of the model ele-
ment can not be declared as “UML“, “UML Profile“ or “EA Profile“. Every additional modeling
language supported by EA is implemented as UML Profile. Therefore it cannot be easily distin-
guished between UML Profiles and other modeling languages. Further explanations about the
used categorization method of the model elements into languages can be found in Chapter 4.1.
If a model element is declared as EA Profile or unclassified the value in the column concept
gives additional information about the type of the model element. For model elements declared
as “EA Profile“ the used EA stereotype and EA profile are showed. For “unclassified“ model
elements the MetaType as saved in the EA model database for this object is provided. The
total column provides the information how many model elements of a specific type occurred
in the analyzed model. The in diagrams column provides information about the visualiza-
tion rate of the model element. The visualization rate says how many of the model elements
from this type are visualized in diagrams.

As can be seen in Table 3.1 (5 and 8) the sample model contains 2 classes (cf. Figure 3.4/1)
without stereotypes and 1 class extended by a stereotype (cf. Figure 3.4/1.1). Further, 1 class
attribute (6; cf. Figure 3.4/4) and 3 class operations (9; cf. Figure 3.4/3) are contained in the

17

model. 1 of the class operations had as return type a classifier (11), 2 a primitive type (10). 1
activity was modeled (2; cf. Figure 3.4) and 7 packages were contained (1; in Figure 3.4/EA
Package). They are named “EA Package“ in the output as they are slightly different used in
EA than in UML (see Chapter 3.1 above). The visualization rate of packages is not measured.
Furthermore, we can see a business process element from the language BPMN2.0 (13) and an
unclassified element of the type “Requirement“ (3). The business process is declared as “EA
Profile“ and the requirement as “unclassified“. More specific data about these two non UML
concepts can be found in the concept column. In addition we see elements from the language
unit use case (15, 16, 17), 1 life line (18; cf. Figure 3.4/2), 3 text elements (14) and 1 note
(4). A closer look to Figure 3.4 indicates that some listed concepts (comment, boundary cf.
Figure 3.5) from Table 3.1 are missing in the project browser view of EA. The reason is that the
EA project browser does not visualize all modeled elements, as mentioned in Chapter 3.1.

Figure 3.4: EA Project Browser View of the Sample Model

18

Figure 3.5: EA Diagram View of an Use Case Diagram of the Model in Figure 3.4

19

Table 3.1: Excel Worksheet: Model - Content (1/4). An Illustrative Example of the Output.

Uml Language Unit Concept Language Total In Diagrams

1 EA Package Package UML 7
2 Activity Activity UML 1 1
3 Unclassified Requirement Unclassified 1 0
4 Auxiliary Construct Note UML 1 1
5 Class Class UML Profile 1 1
6 Class Class Attribute UML 1 1
7 Class Class Attribute - Primitive Type UML 1 1
8 Class Class UML 2 2
9 Class Class Operation UML 3 3
10 Class Class Operation - Primitive Type UML 2 2
11 Class Class Operation - Classifier Type UML 1 1
12 Class Interface UML 1 1
13 Unclassified BusinessProcess, EA Profile 1 0

Stereotype=BusinessProcess,
Profile=BPMN2.0

14 Unclassified Text Element EA Note 3 3
15 Use Case Actor UML 1 1
16 Use Case Boundary UML 1 1
17 Use Case Use Case UML 2 2
18 Interaction Life Line UML 1 1

The worksheet consist of further 128 columns. These columns contain information about
the occurrence of a special type of relationship between model elements. In EA it is possible
to create a model element under another model element in the project browser, i.e., an arbitrary
model element can be contained by another arbitrary model element (cf. Figure 3.4/6). In this
work this construct was seen as a relationship between model elements. For example if life
lines are modeled under a use case in the project browser we can assume that the life lines are
somehow related to this use case. Due to the huge amount of possible containment relationships
between model elements the script only considers if model elements are contained by model
elements of the following types: class, activity, action, state machine, state, use case, interaction
and component. An example is shown in Table 3.2, where we can see the distribution of life
lines in use cases.

Table 3.2: Worksheet: Model - Content (2/4). An Illustrative Example of the Output.

Concept In Use Cases Max Min Avg Stdv Med Range Mode

Life Line 1 1 0 0,5 0,5 0,5 1 0,1

20

In the example model one life line is contained by a use case. (see Table 3.2, compare with
Figure 3.4/6). The maximum (max) amount of life lines contained by use cases is 1, minimum
(min) is 0, arithmetic mean (avg) is 0,5 with a standard deviation (stdv) of 0,5. The median
(med) is 0,5, range is 1 and mode values are 0 and 1.

In the sample model a life line is contained by an use case, which would be counted in the
evaluation part as relationship between a life line and an use case and therefore as a relation
between the UML language units interaction and use case.

Worksheet: Diagram Metrics - Model Diagram Metrics

The “Diagram Metrics“ worksheet consist of the parts, “Model Diagram Metrics“ and “Element
Occurrences“.

In Table 3.3 we see the “Model Diagram Metrics“ part. The columns diagram type and
total provide the information how many diagrams of a specific UML diagram type are used
in the analyzed model. All the diagram types, which the script considers are listed in the Ap-
pendix A.2. If a diagram is found in the model, which can not be classified, then the diagram
type column contains detailed EA specific information about this diagram. The next columns
provides information about the content of the diagrams. Not all modeled elements in a dia-
gram are considered. Connectors are skipped completely. The considered elements are some
of the main UML language concepts, namely class, activiy, action, interaction, lifeline, state,
state machine, use case, actors, component, and object. Thereby sufficient data can be obtained
to determine in which diagrams which main UML language concepts and consequently which
UML language units are visualized. Further, there is a distinction made between UML main
concepts with stereotypes and UML main concepts without stereotypes.

Table 3.3: Worksheet: Diagram Metrics - Diagram Content. An Illustrative Example of the
Output.

Diagram Type Total Total Classes Max Min Avg Med Mod Stdev Range

ActivityDiagram 1 0 0 0 0 0 0 0 0
UseCaseDiagram 2 0 0 0 0 0 0 0 0
SequenceDiagram 1 0 0 0 0 0 0 0 0
ClassDiagram 1 2 2 2 2 2 2 0 0
Analysis:BPMN2.0 1 0 0 0 0 0 0 0 0
::Business Process

In Table 3.3 the data obtained for the sample model in the Model Diagram Metrics part of
the Diagram Metrics worksheet is shown. We see that 4 UML diagram types and 1 BPMN 2.0
diagram (compare with Figure 3.4/5) are contained in the sample model. Additionally we see

21

Figure 3.6: EA Diagram View of an Class Diagram of the Model Depicted in Figure 3.4

the occurrence of classes in these diagrams. The same data is obtained for the other considered
UML concepts but skipped in Table 3.3. By comparing Table 3.3 with Figure 3.6 someone
might claim that there should be 3 classes visualized in class diagrams but only 2 classes are
listed in the worksheet output. The reasons is that the third class is extended by a stereotype and
listed under different columns (“classes with profile“) in the worksheet. The interface element
and all connections from Figure 3.6 are not considered in the analysis of the diagram content as
they are not one of the considered UML concepts.

Worksheet: Diagram Metrics - Element Occurrences

In Table 3.4 the element occurrences in diagrams can be seen. In EA an element can be visual-
ized in several diagrams. For example if an class is created in the project browser it is possible
to add this specific element to every diagram in the model. In this part of the worksheet such
elements, which appear in several diagrams in the model, are listed. Only elements which appear
more than once in diagrams are considered.

Table 3.4: Worksheet: Diagram Metrics - Element Occurrences in Diagrams. An Illustrative
Example of the Output.

Uml Language Unit Element Type Exist in Diagrams(>1)

UseCase ActorElement#1 3

As we can see in Table 3.4 an actor in the sample model was visualized in 3 different diagrams.

22

Worksheet: Correlations and Relationships

The last worksheet in the XML output file holds data about all relationships between the ele-
ments in the EA model. In Table 3.5 we can see the relationships obtained by the script for
the excerpt of the sample model depicted in Figure 3.7. The target and source element, the
relationships type and the total occurrences of the relationships are calculated by the script.

Table 3.5: Worksheet: Correlation and Relationships. An Illustrative Example of the Output.

Source Element Target Element Relation Total
Class Class Association 1
Class Interface Realisation 1
Class Class Generalization 1
ClassOperation Activity ClassOperation2Behavior 1
ClassOperation Use Case ClassOperationReturnType2Classifier 1

Figure 3.7: EA Diagram View - Relations in an Class Diagram of the Model Depicted in Figure
3.4

In the sample model 1 association relationshp between classes, 1 realization relationship be-
tween classes and interfaces and 1 generalization relationship between classes are modeled.
Moreover the behavior of 1 class operation is defined by an activity (see “ClassOperation2Behavior“
in Table 3.5) and another class operation has an use case as return type (see “ClassOperationRe-
turnType2Classifier“ in Table 3.5). Table A.12 and Table A.13 in the appendix list all UML
connectors and relationships the script considers.

23

CHAPTER 4
Results

In this Chapter the results of the empirical research of the UML Models will be presented and
evaluated. After listing some general data about the observed models, each research question of
this work will be answered based on the evaluated results about the UML usage in the models.

4.1 Basic Data of the Observed Models

As already mentioned in EA not just UML can be modeled also other modeling languages like
BPMN, ICONIX or UML Profiles like SysML are available. The first important figures about
the models are how much UML is used in the models, evolution of the models, what was the
designated use of the models in which domains and how big are the models.

What is the Model Composition?

EA is a modeling tool supporting several model languages beside UML. Therefore it is impor-
tant to distinguish between elements from UML and from other languages in the analysis of the
models. The EA elements and connectors were categorized into 4 language types: UML, UML
Profile, EA Profile and Unclassified. These categorization was chosen because it
can show best how much UML was used in the 92 models on basis of the EA modeling schema.
Further, it differentiates between extended and not extended UML elements.

All elements under the category UML are pure UML elements. No stereotypes were used for
these elements and they can be found in the list of considered concepts in the appendix A.

Elements under the category UML Profile are only elements which were recognized as UML
elements by the script and were extended by one or more stereotypes. But only stereotypes which
had not a qualified name in their description in the EA database were considered, since this in-
dicates an own modeling language.

25

EA Profile elements are EA specific modeling elements representing notations from all
modeling languages EA supports. EA uses the concept of stereotypes with an annotation of
a qualified name to distinct between the different modeling languages. Some of these elements
have the same basic types as UML elements, like classes, actions and so on. For an exact de-
termination it was therefore important to read out every stereotype and look up for a qualified
name. The qualified names declare to which modeling language the elements belong to. Further
if a UML element with a stereotype had an qualified name it was not seen anymore as an element
from the UML.

Unclassified elements are all elements which could not be declared to UML or EA Profile
elements. Where for EA Profile elements we can at least figure out to which modeling lan-
guage the elements belong to, this is impossible for Unclassified elements.

In Table 4.1 figures about the compositions of the models are listed. The numbers in Ta-
ble 4.1 differentiate between UML, UML Profile, EA Profile and Unclassified
Elements. The “Total Elements“ figure in Table 4.1 considers elements, attributes, oper-
ations and element parameters but no connectors, diagrams and packages from the 92 models.
The same counts for “Total Connectors“, “Total Diagrams“ and “Total EA Packages“, where
all connectors, diagrams and packages of the models were taken separately into account. “Total
Model Elements“ represents the number of all found modeled elements in the 92 sample models.
“Total not visualized Elements“ tells us how many elements from the “Total Elements“ could
not be found in any diagrams in the models. So for these elements no visualization exists. The
Figures 4.1, 4.2, 4.3 and 4.4 visualize the data in Table 4.1. All UML elements, connectors
and diagrams which were taken into account for the following data are listed in the appendix A.

26

Table 4.1: Models Composition

Total UML Elements 18 558
Total UML Profile Elements 7 157
Total EA Profile Elements 259
Total Unclassified Elements 804

Total Elements 26 778 26 778

Total UML Connectors 7 341
Total UML Profile Connectors 1 009
Total EA Profile Connectors 50
Total Unclassified Connectors 27

Total Connectors 8 427 8 427

Total UML Diagrams 977
Total Non UML Diagrams 201

Total Diagrams 1 178 1 178

Total EA Packages 1 060 1 060

Total Model Elements 37 443
Total not visualized Model Elements 2 042

Interpretation. We can see that mostly pure UML elements, UML connectors and UML
diagrams were used. Therefore the models can give a quite good representation about how UML
is used in practice. Figure 4.1 tells us that 96% (69% UML elements + 27% UML profile ele-
ments) of the elements are without doubt from the language UML. The rest of the elements are
a mixture of UML, UML Profile and non UML Elements. In Figure 4.2 we can see that over
99% (87,1% UML connectors + 12% UML profile connectors) of the modeled Connectors are
from the language UML. It seems for connectors no other modeling languages were needed. If
we focus on the ratio between UML and UML Profile Connectors we see that for pure UML
connectors covered most of the designers needs. The same fact can be seen on Figure 4.3.
83% of the diagrams are original UML diagrams. The rest are diagrams form another modeling
language. The diagram category data also underline the data about the element and connector
categories data, that through all the 92 models UML concepts were strongly used. All the ele-
ments, connectors and diagrams found in the models are mostly from the language UML. This
result supports the reliability of this evaluation about UML.

Another interesting fact can be seen on Figure 4.4. About 92 % of all elements are visual-
ized in diagrams. Just 8% of all created elements can not be found in any diagrams. We can see

27

Figure 4.1: Element Types

69%

27%

1%

3%

Total UML Elements

Total UML Profile Elements

Total EA Profile Elements

Total Undefined Elements

Figure 4.2: Connectors

87,1%

12,0%

0,6% 0,3%

Total UML Connections

Total UML Profile Connections

Total EA Profile Connections

Total Undefined Connections

28

Figure 4.3: Diagrams

83%

0%

17%

Total UML Diagrams

Total SysML Diagrams

Total Other Diagrams

Figure 4.4: Visualization Ratio

8%

92%

Total not visualized
Elements

Total visualized Elements

29

that elements are mostly modeled in diagrams. It has also to be mentioned that in EA deleting an
element from a diagram with the delete key from the keyboard does not mean that this element
is also deleted from the model. You always have either right click on the element and delete it
or delete it directly from the project browser. Therefore we can assume that even less elements
are not visualized by purpose. This might indicate that UML models are strongly related to dia-
grams and that they are usually visualized with the available graphical UML notations.

Summary of the Findings

• Mostly non extended UML concepts were used in the 92 models.

• Model elements were usually visualized in diagrams.

Limitations/Future Work. In future work the script analysis methods could be improved to
reduce number of unclassified model elements in the results.

Which EA Profiles and Unclassified Elements were used?

Table 4.2 and Table 4.3 give a closer look to the used EA Profile and Unclassified elements/-
connectors used in the models. The values in the EA Profile column are the “FQName“
values of the stereotypes in the EA database.

Table 4.2: EA Profile Elements in Total and in How many Models

EA Type EA Profile Total In Models

Element EAUI 192 3
Element, Connector EAUML 37 3
Element BPMN 16 2
Element C# 3 2
Element Delphi 2 2
Connector Archimate 30 1
Element Java 29 1
Total 309 9

Table 4.3: Model Elements declared as Unclassified in Total and in How many Models

EA Type Unclassified Model Element Total In Models

Element, Connector Unclassified 429 31
Element Text Element 402 49
Total 831 59

Interpretation. The most used profile was “EAUI“, which could be found in 3 models with

30

a total of 192 elements (see Table 4.2). A closer look to the models with “EAUI“ profile con-
cepts showed that “EAUI“ profile elements represented graphical user interfaces in the models.
Most of the “EAUI“ elements visualized buttons, text, forms or check boxes. “EAUML“ were
found in 3 models as well, “BPMN“, “C#“ and “Delphi“ in 2 models and “Java“ and “Archi-
mate“ in one model. “EAUML“ is a specific EA generated stereotype.

An text element representing text in EA models is the most used Unclassified element
(see Table 4.3). Almost 50% of Unclassified elements are text elements. The other un-
classified model elements were not observed in detail.

These figures underline how less non UML concepts were used through all the models and
that there exist no EA Profile type or Unclassified element which could be found more regularly
in the models.

Summary of the Findings

• Mostly elements had stereotypes with “FQName“ attributes.

• Only 429 out of 35205 (i.e. 98,78 % of all elements and connectors) elements and con-
nectors were marked as unclassified by the script. Therefore the script had a high rate of
correct classification.

• Simple text in the EA models took the biggest part of unclassified model elements.

What is the Model’s Age?

Other interesting figures about the models are their ages. In EA for every element the creation
and the last modification date is saved, which can be read out from the corresponding database
for each EA project file. The earliest created and latest modified element was taken from each
model to calculate the model’s ages measured in days. Bellow Table 4.4 shows the statistical
data regarding the ages of the analyzed models. The statistics include maximum (max), mini-
mum (min), arithmetic mean, median, mode, quartile 25% and 75% and the standard deviation
of the model age distribution. Furthermore, the amount of models, which are older than a year
and the amount of models, which are older than a month but younger than a year were measured.

Interpretation. On average (arithmetic mean) each model was 1,047.5 days old, almost 3 years.
The youngest model was a day old and the oldest 2,955 days, which is a time span of over 8
years. The standard deviation shows that the ages of the models were highly unequally dis-
tributed. Over 50 % of the models were more than 1139 days old, but 25% were not more than
6.5 days old. So we can notice an increase of the model ages between the 25% quartile and the
median. The value which appeared most often was 1, which means that most models were only
a day old. When considering the median, the arithmetic mean and the additional data in the last
two rows of Table 4.4, most of the models had an age measurable in years. Only 9 models had
a life age which might fit to the average lengths of IT projects life spans.

31

To summarize the statistics mentioned above, we can deduce that the models had either a short
life cycle of a few days, or very long cycle of over a year.

Table 4.4: Statistics About the Model Age in Days

Measured Values Age in Days

Min 1
Max 2,955
Arithmetic Mean 1,047.55
Standard Deviation 966.77
Median 1,139.5
Quartile 25% 6.5
Quartile 75% 2,006.25
Mode 1

Measured Values In Models

Models older than 1 Year 53
Models older than 1 Month, younger than 1 Year 9

Summary of the Findings

• 53 Models were older than 1 year

• 9 Models were older than 1 month, younger than 1 year

• Either models had a short life cycle of a few days or a very long life cycle over a year.

Limitations/Future Work. Additional from each model element creation and modification date
can be measured and evaluated. With such analysis the evolution of models could be figured out.
For example which parts are created first, which last, are more elements created at the beginning
or at the end, which elements are more modified than others.

For which Domains the Models were used?

The models were also examined in what was modeled and for which domain. This was done
by manual review over all model sources. Table 4.5 lists all found domains with the number of
models. Figure 4.5 visualizes the data from Table 4.5. As models in the education domain all
models were counted which were used in university lectures or in master thesis. In Table 4.6
these models were split into their usage with the number of models. Models found in master
thesis were not counted as “Example Model - Lecture Excercise“, they were split to their desig-
nated use. Figure 4.6 visualizes the findings in Table 4.6.

Interpretation. The most used propose was describing a software system as Table 4.6 and
Figure 4.6 show. Business processes and embedded systems were only described in 2 models.

32

In 3 models some kind of structure was modeled, for example in one model the parts of a stan-
dardized document for a specific domain were described. Models could be found in 9 different
domains. The leading domain the models were build for was the IT sector (see Table 4.5 and
Figure 4.5). As second ranked was the industrial sector, followed by the education sector. In the
education sector mostly small example or exercise models were found, except some few models
for master thesis.

Table 4.5: Model Domains

Domain Models

IT 45
Industrial sector 17
Education (incl. Master thesis) 13
Medical care 5
E-Commerce 4
Hospitality 2
Housing 2
Ecology 2
Public sector 2

Table 4.6: Models - Designated Use

Designated Use Models

Software System 76
Example Model - Lecture Excercise 9
Structure 3
Embedded System 2
Business Process 2

33

Figure 4.5: Model Domains

49%

19%

14%

6%

4%

2%
2%

2%

2%

Domains

IT

Industrial sector

Education (incl. Master thesis)

Medical care

E-Commerce

Hospitality

Housing

Ecology

Public sector

Figure 4.6: Models - Designated Use

83%

10%

3%

2%
2%

Designated Use

Software System

Example Model - Lecture Excercise

Structure

Embedded System

Business Process

34

The strong use of UML concepts in the models might cause the high usage for describing
software systems. In the 92 models the UML language was mainly used for what it was intended
for, describing software systems.

Summary of the Findings.

• Most models defined software systems.

• Half of the models were used in the IT sector, the other half were split over several sectors.

What was the Model’s Size?

For the measurement of the model’s size the amount of model elements a model consisted were
chosen (elements, packages, diagrams, connectors). In Table 4.7 we can see statistical data
about the model’s size. The arithmetic mean, the median, the standard deviation, the minimum
and the maximum were calculated over the amount of model elements per model. Figure 4.7
completes the results about the model sizes. The models were grouped there into 4 different
model size categories, small (S) 9-100 model elements, medium (M) 101-500 model elements,
large (L) 501-1000 model elements and x-large (XL) 1001-3918 model elements. For each
model size group the amount of models in this group is denoted. Additional statistics (arith-
metic mean, median, max, min and standard deviation) for each model size category are listed
in the Tables 4.8, 4.9, 4.10, 4.11.

Interpretation. The average (arithmetic mean) amount of model elements per model is 407,
the corresponding standard deviation is 656 and the median is 165. Because of the high standard
deviation the distribution of elements over the models seems to be quite unequal. Further, this
results in considering the median as more reliable average measurement of the dataset. There is
also a huge gap between maximum and minimum. According to the median at least 50 % of the
models have less then 165 model elements. 76 models (i.e., 83% of the models) have less than
501 model elements (see Figure 4.7).

Table 4.7: Statistics about the Model Sizes

Measured Values Number of Model Elements

Arithmetic Mean 407
Standard Deviation 656
Median 165
Maximum 3918
Minimum 9

For the smallest model size group (9-100, Table 4.8) the median and the arithmetic mean is
almost the same and positioned in the middle of the model size range. This indicates a normal

35

Figure 4.7: Model Dimensions

33

43

7
9

0

5

10

15

20

25

30

35

40

45

50

9 - 100 (S) 101 - 500 (M) 501 - 1000 (L) 1001 - 3918 (XL)

N
u

m
b

e
r

o
f

M
o

d
e

ls

Number of Model Elements

Model size distribution

Number of S, M, L,
XL Models

Table 4.8: Statistics about the Model Sizes within the Model Size Group Small (S)

Measured Values Number of Model Elements

Arithmetic Mean 54
Standard Deviation 23
Median 52
Maximum 92
Minimum 9

36

distribution of the dataset. The empirical rule1 states that approximately over 68% of the models
in this group have a size between 31 and 77 model elements.

Table 4.9: Statistics about the Model Sizes within the Model Size Group Medium (M)

Measured Values Number of Model Elements

Arithmetic Mean 252
Standard Deviation 109
Median 243
Maximum 473
Minimum 104

For the group M (Table 4.9), 50% of the models have 104 to 243 model elements. The me-
dian and arithmetic mean are close together and situated in the middle of this range of size
group. The standard deviation is smaller than the arithmetic mean. For the overall statistics of
the model sizes (Table 4.7) the standard deviation was even bigger than the arithmetic mean.

Table 4.10: Statistics about the Model Sizes within the Model Size Group Large (L)

Measured values Number of Model Elements

Arithmetic Mean 742
Standard Deviation 112
Median 758
Maximum 901
Minimum 594

The L group (see Table 4.10) has the same statistical propositions as the other groups above.
Arithmetic mean and median are close together and located in the middle of the group. The
standard deviation has the same ratio to the arithmetic mean as in the statistics of model group
sizes before.

In group L the models (Table 4.11) have a maximum of 3918 model elements and a mini-
mum of 1456 model elements. The arithmetic mean and median are close together.

We can notice that the general statistics about the model sizes (Table 4.7) are positively skewed 2,
this means more small models than large models exist. In contrast the arithmetic mean and the
median in the model size groups are close together. This supports the choice of the group sizes

1“For a distribution that is symmetrical and bell-shaped (in particular, for a normal distribution) approximately
68% of the data values will lie within 1 standard deviation on each side of the mean“ ([2], page 252).

2“In a skewed distribution, the scores lend to pile up toward one end of the scale and taper off gradually at the
other end. A skewed distribution with the tail on the right-hand side is said to be positively skewed.“ ([12], page 50).

37

Table 4.11: Statistics about the Model Sizes within the Model Size Group X-Large (XL)

Measured Values Number of Model Elements

Arithmetic Mean 2178
Standard Deviation 731
Median 2100
Maximum 3918
Minimum 1456

and their reliability. A closer look to Figure 4.7 indicates that many small models, several
medium sized models and only few big models exist.

To summarize the evaluation about the model sizes, the observed models were kept small to
medium. Real huge models (over 10 000 model element) were not found via Google. Of course
models from real big players are missing and therefore the data is only relevant for open EA
project files, reachable via the Google search engine. If in practice models are kept in this sizes
can not be found out with this sample of models.

Summary of the Findings

• Not very big models were evaluated.

• In general the models were small to medium sized with in average 165 model elements.

4.2 Usage of UML Language Units

With this section the answering of the research questions start. In this section figures about the
language unit distribution over all models will be presented. The elements were categorized into
10 different language units (see appendix A) to see which general UML concepts were used as
most and which not. The general definition of language units, used in this research, is described,
followed by the presentation of the results of the evaluations.

A Side Note to the Language Unit Conception

In the UML standard by the OMG [22] all UML elements belong to one of the specified lan-
guage units. A language unit is a way to categorize similar UML concepts. One language unit
is for example the language unit class. Elements like classes, attributes, operations, interfaces,
associations, etc. belong to this language unit. This work also groups the concepts of UML into
language units similar to the OMG specification of UML. There are some slightly differences
between the OMG definitions of the different language units and how similar concepts were cate-
gorized in this work. Following the modifications to the OMG UML language unit are described.

The Language Unit Concepts. All considered UML concepts for each language unit are listed

38

in Appendix A. The choice which concepts the script should have to handle was strongly related
to the supported modeling possibilities EA offered, the UML literature [26], [15], [25], and
the OMG specification of UML [22].

Combined Language Units (Activity and Action). In the UML specifications there are the
language unit action and activity. In this research paper concepts from the UML language unit
activity and the UML language unit action were grouped into one language unit, called activity.

Additional Language Unit (Object). The UML concept object was analyzed separately. Hence
an own language unit called object was introduced.

Extended Language Unit (Auxiliary Construct). The language unit “Auxiliary Construct“
defined in the UML OMG specifications is also used but with additional concepts. Notes and
constraints are units of the language unit “Auxiliary Construct“ in this work.

Special treatment: Connectors. Connectors were treated in a special way. As in Chapter
2 explained connectors describe relationships between elements in EA projects. Connectors
can be UML concepts like associations, generalizations or compositions or other concepts from
other modeling languages. In the most cases it is difficult to classify UML connector concepts to
a language unit. For example generalizations can be used between any classifiers. Consequently
connectors in the analyzed models were not considered as part of any language unit. In the
evaluation part connectors measure the way how and which elements were connected to each
other and how often. A complete list of all considered UML relationships can be found in the
Appendix A.

Special treatment: Packages. Packages are saved in an own table in the repository of EA
(see Chapter 3, Figure 3.1). Consequently in this work packages are not part of any language
unit and are rarely relevant in the evaluations of the models. Packages in this work are seen as
EA packages and not as UML packages in the evaluation. Therefore the UML concept package
is not listed in one of the considered concepts in Appendix A.1. They are treated separately. In
the analysis of the model data only the number of EA packages per model is considered.

The adapted UML language units the script uses for categorizing UML concepts are listed in
Table 4.12 bellow with the total amount of different UML concepts the script considers. Dia-
grams are not included in Table 4.12 as all UML diagrams are considered anyway, only elements,
attributes an operations are counted. A complete list of all for this work relevant UML concepts
can be find in Appendix A.1, grouped by language units and with the appropriate Automation
Interface calls.

39

Table 4.12: The Language Units for the Evaluation

Language Units Amount of Different UML Concepts Considered

Class 14
Interaction 23
State Machine 34
Use Case 3
Activity 87
Object 1
Component 4
Deployment 5
Composite 4
Auxiliary Construct 3
Total Amount of Different UML Concepts
Considered in this Work (excl. Connectors and Diagrams) 199

In How Many Models are the Distinct Language Units Used?

Figure 4.8 lists all considered language units with the number of models in which modeling
elements, belonging to the respective language unit, were used. Only elements were regarded
for calculating the distinct language unit usages in the models. Like for the model sizes analysis,
connectors and diagrams were skipped. The reason for this is that some connectors (for example
generalizations) can not be clearly classified to a language unit (see “A side note to the language
unit conception“ above). Thus only considering the elements of the language units seems to
be the best and accurate approach in getting reliable data about the popularity of the language
units. Moreover no differentiation between UML elements with and UML elements without
stereotypes was made. For example a class extended by a stereotype still counted as member
from the language unit class.

Interpretation By far the most used language unit over all models is class, which is used in
66 models out of 92. The second most used language unit is use case. In 50 models (i.e., 54%
of the models), concepts from this language units were used. On the third rank we have the lan-
guage unit interaction, which was used in 32 models. Object and activity constructs are fourth
and fifth in the rank. Slightly more models with elements from the language unit object can
be found than with activity concepts. On the next three ranks we can find the language units
component, deployment and composite. Least used was the language unit state machine. Only
6 models out of 92 used state machine concepts.

A special case is the language unit auxiliary construct. Actually it is the most used language
unit over all 92 sample models, but because of the usage of the elements (e.g., comment, ...),
which can be used in every part of a model, it is treated separately.

Summary of the Findings

40

Figure 4.8: Language Unit Usage

66

50

32

25
20 18

15
9

6

67

0

10

20

30

40

50

60

70

80

N
u

m
b

e
r

o
f

M
o

d
e

ls

Language Units

• Class and use case UML concepts were most used.

• State machine UML concepts were least used.

How many distinct Language Units are used in Models?

To answer this research question the amount of distinct language units used in models was an-
alyzed. Table 4.13 lists the measured statistical data about the number of language units in
models. Minimum, maximum, arithmetic mean, standard deviation, median and mode are the
calculated numbers. Furthermore Figure 4.9 illustrates the amount of language units the sample
models have. The language unit auxiliary construct was excluded for this evaluation.

Table 4.13: Statistics about the Number of Language Units used in Models

Measured Values Language Units

Minimum 1
Maximum 8
Arithmetic mean 2,61956522
Standard Deviation 1,79880631
Median 2
Mode 1

Interpretation. We see on Figure 4.9 that 36 models (i.e., 39% of the models) consist of
elements which only belong to one UML language unit. 53 models (i.e., 58% of the models)

41

Figure 4.9: Amount of Language Units used in Models

36

17

13 12

5 5
3

1

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

N
u

m
b

e
r

o
f

M
o

d
e

ls

Number of Language Units

Amount of Language Units in Models

have elements which belong to 1 to 2 language units. According to this data we can assume that
in 39% of the models one language unit was enough to represent and describe a system function-
ality. Nevertheless for the other 56 models only elements of one language unit were insufficient
to describe the model. Further, we see that the distribution has a positive skew. So more models
with little amount of language units exist than models with several language units.

The maximum amount of different language units in a model was 8 (see Table 4.13), which
occurred ones. The mode value tells us that the most frequent amount of language units in mod-
els was 1. The standard deviation of the arithmetic mean is high. Consequently for measuring
the central tendency of this distribution the median is more reliable than the arithmetic mean.
Hence, in average (median) a model consist of 2 language units.

Summary of the Findings

• In average a model consisted of 2 language units.

Which Language Unit Pairs are frequently used?

To answer the research question which language unit pairs are frequently used, a matrix (see
Table 4.14), illustrating the language units in rows and columns, was created. The total appear-
ance of each language unit pair in models can be found in the cells. The numbers in the diagonal
from top left to bottom right is equal to the number of models using the language unit (compare
with Figure 4.8). The tool WEKA was used for calculating the occurrence of each language

42

unit pair. For this a list with the used language units in each model served as input for WEKA.
The list was generated from the results of the models. Out of this list, with the in WEKA imple-
mented Apriori Algorithm [14], the occurrences of all pairs could be generated. Furthermore,
the language unit pairs were weighted in Table 4.15. The exact same matrix structure was used
as for Table 4.14. The numbers are calculated by dividing the amount of models with the lan-
guage unit pair combination through the amount of models with the focused language unit. The
rows present the focused language unit and the columns the partner language unit. This gives a
statement about the strength of the relation for a distinct language unit. For example at column
“UC“ on row “Cl“ we have the value 0,50. This means that in 50% of model with elements
from the language unit class also elements from the language unit use case were modeled. As
closer the number to 1 as more unlikely the focused language unit will be modeled without the
partner language unit and consequently as stronger the relation is.

The language unit auxiliary construct was not considered for these metrics and as above dia-
grams and connectors were skipped too as parts of the observed language units. For the diagram
evaluations see Section 4.3.

Table 4.14: Language Unit Pairs with their occurrence in the 92 Models

Language Unit Cl UC Int Obj Act Comp Deploy Composite SM

Cl 66 33 26 21 13 14 14 8 5
UC 33 50 25 21 12 13 14 7 4
Int 26 25 32 14 6 8 10 8 2
Obj 21 21 14 25 11 5 8 1 4
Act 13 12 6 11 20 4 5 2 3
Comp 14 13 8 5 4 18 8 8 3
Deploy 14 14 10 8 5 8 15 4 2
Composite 8 7 8 1 2 8 4 9 1
SM 5 4 2 4 3 3 2 1 6

Cl = Class, UC = Use Case, Int = Interaction, Obj = Object, Act = Activity

Comp = Component, Deploy = Deployment, Composite = Composite, SM = State Machine

Interpretation. Observing Table 4.14, 5 mostly used language unit pairs could be detected:

• Class/use case - in 33 models (i.e., 36 % of the models)

• Class/interaction - in 26 models (i.e., 28 % of the models)

• Use case/interaction - in 25 models (i.e., 27 % of the models)

• Class/object - in 21 models (i.e., 23 % of the models)

43

Table 4.15: Relation Strengths of the Language Unit Pairs

Language Unit Cl UC Int Obj Act Comp Deploy Composite SM

Cl 1,00 0,50 0,39 0,32 0,20 0,21 0,21 0,12 0,08
UC 0,66 1,00 0,50 0,42 0,24 0,26 0,28 0,14 0,08
Int 0,81 0,78 1,00 0,44 0,19 0,25 0,31 0,25 0,06
Obj 0,84 0,84 0,56 1,00 0,44 0,20 0,32 0,04 0,16
Act 0,65 0,60 0,30 0,55 1,00 0,20 0,25 0,10 0,15
Comp 0,78 0,72 0,44 0,28 0,22 1,00 0,44 0,44 0,17
Deploy 0,93 0,93 0,67 0,53 0,33 0,53 1,00 0,27 0,13
Composite 0,89 0,78 0,89 0,11 0,22 0,89 0,44 1,00 0,11
SM 0,83 0,67 0,33 0,67 0,50 0,50 0,33 0,17 1,00

Cl = Class, UC = Use Case, Int = Interaction, Obj = Object, Act = Activity

Comp = Component, Deploy = Deployment, Composite = Composite, SM = State Machine

• Use case/object - in 21 models (i.e., 23 % of the models)

The other language unit pairs have much less relevance. The high numbers are all located on the
top left area of the matrix, involving the language units class, use case, interaction and object.
As more it goes to the bottom right, as lower are the numbers. This clearly shows again which
language units are used as most among the sample models.

On table 4.15 we can see that the language unit class had not a strong relation to any of the
other language units. The strongest relation was with use case concepts; 50% of models with
class concepts also had use case concepts. Similar is the result for the language unit use case.
Although in 66% of the models using the use case language unit also class language unit con-
cepts were used. In contrast the language unit interaction was strongly modeled together with
the language units class and use case. Class concepts were found in 81% of models with in-
teractions and use case concepts in 78% of models with interactions. Also the language unit
object was strongly modeled with class and use case concepts. For the language unit activity
similarities as for class and use case exist. It seems that for activities other language units had
not a big relevance. Component concepts could be mostly found with class, second with use case
concepts. In nearly all models with the language unit deployment, class and use case concepts
could be found. These 2 pairs have the strongest relation (both 0,93) through all language unit
pairs. Composite concepts appeared in the most models together with parts of the language units
class, use case, interaction or component. The rarely modeled language unit state machine was
found with class concepts as most.

Frequently used over the 92 sample models were combinations between class, use case, ob-
ject and interaction concepts in a model. Few relevant were the other combinations, including
the language units activity, component, composite, deployment and state machines. This also
reflects the usage rate of the distinct language units. Furthermore some language units seem to
be more dependent than others. Class, use case and activity concepts had no strong relations

44

to other language units. This tells us that other language units did not influence much the oc-
currence of these 3 language units in models. On the other hand the language units interaction,
object, component, composite and deployment were strongly related to classes and use cases.
State machine concepts are excluded from this conclusion as there was not enough data available
about this language unit.

Summary of the Findings

• The frequently used language unit pairs consist mainly of the language units class, use
case, object and interaction.

• The language units class, use case and activity had no high relation strengths to other
language units.

• The language units interaction, object, component, composite and deployment were strongly
related to class and use case.

Which Language Units are Frequently used in Combination?

Cluster analysis was used to find out which language unit combination patterns could be found
in the 92 models. With clustering a set of data patterns can be obtained telling which data is
correlated and which not. For generating clusters out of the language unit sets the tool WEKA
was used with the SimpleKMeans Algorithm3. As distance metric the Euclidean distance was
selected. Items within a cluster have small distances, items between clusters have long distances.
In terms of language units the distances are as closer as more often the language units were in
combination together in the models. Detailed information about clustering and clustering meth-
ods can be found in [14]. Figure 4.10 shows the cluster output of WEKA. The “Attribute“
column lists the different language units. “Full Data“ represents in percentage in how many
of the 92 sample models the respective “Attribute“ (language unit) could be found, in sum all
values in “Full Data“ are 100. The columns with the headline “0“ to “4“ are the calculated
clusters, the number in brackets show the amount of models a cluster have. The numbers in
these cells tell us how many models in a cluster (in percentage) have the distinct language unit.
1 means that the language unit is in every model and 0 means that the language unit is in no
model in the cluster. The clusters are disjunct so a model can only appear in one cluster.

Interpretation: 5 reliable clusters were found. Followed the characteristics of each cluster
will be explained.

• Cluster 0. This model group has the focus on 6 language units: Class, use case, interac-
tion, component, deployment and composite. Nearly not relevant are the language units
activity, object and state machine.

3Data mining with WEKA. http://www.ibm.com/developerworks/opensource/library/os-weka2/. Accessed:
2013-16-01

45

Figure 4.10: WEKA Cluster Output

• Cluster 1. In this group use case and objects are modeled in every model and activity and
class in 90% of the models. Therefore 4 language units are characteristic for this group.
The other language units have no big relevance.

• Cluster 2. This cluster can be also called the “use case“ group. Use case concepts were
modeled as most. Classes can not be found in any model. The other language units have
a low representing.

• Cluster 3. In this group the language unit class is the center. We can call it the “class“
group. Other language units are rarely modeled.

• Cluster 4. The language unit quartet “class - use case - interaction - object“ gives the
group his name. These language units appear in the most models of this cluster. All the
other language units are not relevant. State machine and composite concepts even appear
in no model

The clusters support some of the results from the previous research question. Many models with
focuses on class (Cluster 3) or use cases (Cluster 2) exist. Close relations between class, use
case, object and interaction could be found as well. In Cluster 4 all 4 language units appeared in
Cluster 1 class, use case and interaction and in Cluster 2 class, use case and object had the main
weight in the models. These all reflects the language unit pair metrics of the question above. Ad-
ditional the combination between the language units class, use case, activity and objects could

46

be obtained.

In summary the following 3 additional common language unit combinations were found with
the clustering method:

• class - use case - interaction - component - deployment - composite

• class - use case - object - activity

• class - use case - interaction - object

With the common language unit pairs from the section above, this completes the list of the com-
mon language unit combinations.

Summary of the Findings

• class - use case - interaction - component - deployment - composite is a common language
unit combination

• class - use case - object - activity is a common language unit combination

• class - use case - interaction - object is a common language unit combination

Limitations/Future Work. The clustering analysis in this work are only relevant for the 92
sample models. Much more reliable would be real big sets of UML models.

47

4.3 Usage of UML Diagrams

In this section the UML diagram type distribution over the 92 sample models will be presented
as well as which diagram types appear mostly together in models. Further the content of each
diagram type is analyzed over all models.

In how many Models are the distinct Diagram Types used?

For each model the total amount of different used diagram types were counted to answer this
research question. Figure 4.11 presents in a bar chart the amount of models having a distinct
diagram type.

Figure 4.11: UML Diagram Distribution - in Models

64

39 38

20
18 17

11
8 8

5
1

0

10

20

30

40

50

60

70

N
u

m
b

e
r

o
f

M
o

d
e

ls

Diagram Types

Interpretation. The class diagram is the most used diagram type, followed by the sequence dia-
gram and the use case diagram. These can be considered as the top 3 used UML diagram types.
In the mid rank of diagram usage over the models are the activity, component, deployment and
composite structure diagrams. Not many diagrams are from type state machine, communication,
package and object. In no single model profil, timing and interaction overview diagrams could
be found.

Comparing these results with Figure 4.8 on page 41 we can see a few differences. Obviously
objects were not modeled in object diagrams and EA packages not in package diagrams. EA
packages are essential for every EA project, without a package it is not possible to model ele-
ments or diagrams. For the modelers of the 92 models creating additional package diagrams to
visualize the package structure of the models were obviously seen as unnecessary. Objects took
part in different diagram types (cf. 4.20 on page 58). Presenting only interactions between
objects in own object diagrams were seen as completely unnecessary in the sample models as
objects were used in various interactions with other language unit concepts. Further, more use

48

cases than use case diagrams exist. In contrast more diagram types (sequence and communi-
cation diagrams) corresponded to the language unit interaction exist than interaction concepts.
The reason for this was that in interaction diagrams also concepts from other language units than
from interactions were found. Some interaction diagrams only consisted of classes, actors or use
cases (cf. 4.20) The other diagram types and language units appear in similar amount over the
models. In one of the further results the content of the diagrams is represented. This will help to
clarify in which diagrams the distinct language units were modeled.

Summary of the Findings

• The class diagram are the most used UML diagram type, followed by sequence and use
case diagrams.

• Only 1 object diagram exist. Therefore in at least 24 out of 25 models with object con-
cepts, objects were not visualized in object diagrams.

• In 39 models sequence and in 8 models communication diagrams exist. Both are diagrams
for visualizing interaction concepts. Hence models exist with interaction diagrams but no
element from the language unit interaction.

• The other language units appear with their corresponding diagram types in almost the
same amount of models.

How many distinct UML Diagram Types are used in Models?

As for the language units also for diagrams the amount of different diagram types in models is
measured. Table 4.16 lists the measured statistical data about the number of diagram types in
models. Minimum, maximum, arithmetic mean, standard deviation, median and mode are the
calculated numbers. Furthermore Figure 4.12 illustrates the amount of distinct UML diagram
types in models.

Interpretation. We see on Figure 4.12 that 41 models (i.e., 45% of the models) consist of
one UML diagram type. 15 models had 2 different diagram types and 14 models had 3 different
diagram types. According to this data we can assume that in 45% of the models one diagram
type was enough to visualize a systems functionality. Nevertheless for the other 51 models only
one diagram type was insufficient to picture the different parts of a system. Furthermore, we see
that the distribution has a positive skew. The density of data is situated on the left side. So more
models with little amount of diagram types exist than models with several diagram types.

The maximum amount of different diagram types in a model was 8 and the minimum 0 (see
Table 4.16), both occurred ones. In one model no UML diagram was modeled. The mode value
tells us that the most frequent amount of diagram types in models was 1. The standard deviation
of the arithmetic mean is high. Consequently for measuring the central tendency of this distribu-
tion the median is more reliable than the arithmetic mean. Hence, in average (median) a model
consist of diagrams of 2 distinct types.

49

Figure 4.12 has almost the same shape as Figure 4.9 on page 42. Only a few exceptions ex-
ist like the different minimum of the distribution and that more models with only one distinct
diagram type exist than with only one language unit.

Figure 4.12: Amount of distinct UML Diagram Types in Models

1

41

15 14

7

2

7

4

1

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8

N
u

m
b

e
r

o
f

M
o

d
e

ls

Number of distinct UML Diagram Types

Table 4.16: Statistics about the Number of distinct Diagram Types in Models

Measured Value Diagram Types

Maximum 8
Minimum 0
Arithemtic Mean 2,49
Standard Deviation 1,90
Median 2
Mode 1

Summary of the Findings

• In average 2 types of diagrams were found in the models.

50

What is the Usage of Diagrams over the Models?

In Table 4.17 we see the distribution of the diagram types in the models. Each distribution
only considers models with the respective diagram type. For example the average amount of
class diagrams in models with class diagrams. The statistics measuring the distribution are the
maximum, the arithmetic mean, the median, the standard deviation and the mode.

Table 4.17: Diagram Distribution over Models

Maximum Arithmetic Mean Median Standard Deviation Mode

Class Diagram 79 6,17 3 10,69 1
Sequence Diagram 15 2,64 1 2,65 1
Use Case Diagram 26 3,5 3 4,02 3
Activity Diagram 25 4,6 2,5 5,78 1
Component Diagram 14 3,22 1,5 3,55 1
Deployment Diagram 11 4,71 7 3,51 1
Composite Structure Diagram 3 1,27 1 0,62 1
State Machine Diagram 6 2,38 1 2,12 1
Communication Diagram 25 8,38 1 9,86 1
Package Diagram 10 3 1 3,52 1
Object Diagram 1 1 1 0 1

Interpretation. In the most cases the standard deviation is relatively high. Therefore the median
is more reliable for presenting the average than the arithmetic mean. Models with class and use
case diagrams have a high median. In average 3 class or use case diagrams are in models with
class or use case diagrams. It seems that for the 92 sample models more visualizations views
were needed to describe class structure and use cases. The biggest median was calculated for
deployment diagrams. In 50% of the models with deployment diagrams 7 or more deployment
diagrams could be found. Though the mode value is only 1, which means the most frequent
amount of deployment diagrams in models is 1. So there were some outstanding exception
within the sample models with a high number of deployment diagrams. Models with activity
diagrams had an average of 2,5 activity diagrams per model. Therefore for activity models in
average more than one visualization view was needed. 1,5 component diagrams could be found
in average in the models. The median values of all the other diagrams occurrences in models is 1.

Summary of the Findings

• In average deployment, class, use case, component and activity diagrams were modeled
more than one time in a model.

• All the other UML diagram types were in average modeled 1 time in a model.

51

Which UML Diagram Type Pairs are frequently used?

The exact same approach was done as for the calculation of the frequent language unit pairs in
Chapter 4.2. Table 4.18 and Table 4.19 have the same structure and meaning than Table 4.14
and Table 4.15 from Chapter 4.2. The total amount of models in which the respective diagram
type pair combination can be found is noted in the cells (Table 4.18). Table 4.19 lists the relation
strengths of the diagram pairs.

Table 4.18: Diagram Pairs with their occurrence in the 92 Models

Diagram Type Cl UC Int Obj Act Comp Deploy Composite SM

Cl 64 27 34 0 15 13 16 10 7
UC 27 38 26 0 11 11 15 5 6
Int 34 26 43 0 11 13 15 7 6
Obj 0 0 0 1 0 0 0 0 0
Act 15 11 11 0 20 6 7 3 4
Comp 13 11 13 0 6 18 9 9 4
Deploy 16 15 15 0 7 9 17 5 4
Composite 10 5 7 0 3 9 5 11 1
SM 7 6 6 0 4 4 4 1 8

Cl = Class Diagram, UC = Use Case Diagram, Int = Interaction Diagrams (Sequence Diagram + Communication Diagram)

Obj = Object Diagram, Act = Activity Diagram, Comp = Component Diagram

Deploy = Deployment Diagram, SM = State Machine Diagram

Table 4.19: Relation Strengths of the Diagram Pairs

Diagram Type Cl UC Int Obj Act Comp Deploy Composite SM

Cl 1,00 0,42 0,53 0,00 0,23 0,20 0,25 0,16 0,11
UC 0,71 1,00 0,68 0,00 0,29 0,29 0,39 0,13 0,16
Int 0,79 0,60 1,00 0,00 0,26 0,30 0,35 0,16 0,14
Obj 0,00 0,00 0,00 1,00 0,00 0,00 0,00 0,00 0,00
Act 0,75 0,55 0,55 0,00 1,00 0,30 0,35 0,15 0,20
Comp 0,72 0,61 0,72 0,00 0,33 1,00 0,50 0,50 0,22
Deploy 0,94 0,88 0,88 0,00 0,41 0,53 1,00 0,29 0,24
Composite 0,91 0,45 0,64 0,00 0,27 0,82 0,45 1,00 0,09
SM 0,88 0,75 0,75 0,00 0,50 0,50 0,50 0,13 1,00

Cl = Class Diagram, UC = Use Case Diagram, Int = Interaction Diagrams (Sequence Diagram + Communication Diagram)

Obj = Object Diagram, Act = Activity Diagram, Comp = Component Diagram

Deploy = Deployment Diagram, SM = State Machine Diagram

Interpretation. The following top 3 diagram type pairs could be detected from Table 4.18:

52

• Class/interaction - in 34 models (i.e., 37 % of the models)

• Use case/interaction - in 26 models (i.e., 28 % of the models)

• Class/use case - in 27 models (i.e., 29 % of the models)

The findings here corresponds to the results from Chapter 4.2 in many ways. Class, interaction
and use case were considered as the most relevant diagram and language unit pairs. The only ex-
ception is that object diagrams had no relevance at all in the 92 models and therefore no diagram
pair with object diagrams could be found. The reason for this is because objects were mainly
modeled in interaction diagrams (cf. Table 4.3). The other diagram type pairs have much less
relevance like the related language unit pairs. This is also shows illustrative the matrix (Table
4.18). As for the matrix (Table 4.14) the high numbers are all located on the top left area of the
matrix (Table 4.18). As more it goes to the bottom right, as lower are the numbers. This clearly
shows again the ranking of the diagram types among the sample models.

Similar relation weights between the UML diagram type pairs exist as for the language unit
pairs (compare Table 4.15 with Table 4.19). What can be noticed is that on one hand interac-
tion diagrams had stronger dependencies to the other UML diagram types as the language unit
interaction to other language units. On the other hand object diagrams were not relevant at all
for any UML diagram type.

Summary of the Findings

• Diagram pairs appeared in similar amount together in the models as the language unit
pairs.

• The most diagrams were more dependent to interaction diagrams than the language units
to the interaction language unit. Exeptions are composite/interaction and object/interac-
tion pairs.

• Object diagrams had no relevance.

Which UML Diagram Type are frequently used in Combinations?

As for the language unit combinations also for finding UML diagram type combination patterns
clustering was used. The exactly same methods as in Chapter 4.2 were applied for calculating
the clusters. The WEKA output is depicted in Figure 4.13, which has the same structure as Fig-
ure 4.10, with the exception that instead of language units diagram types were observed.

Interpretation. 5 reliable clusters were found. Followed the characteristics of each cluster
will be explained.

• Cluster 0. This cluster can be also called the “use case group“. The main focus lays
definitely on use case diagrams, which is modeled as most. The other diagram types have
a low representing.

53

Figure 4.13: WEKA Cluster Output

• Cluster 1. In this group the main focus lays on activity diagrams. In every model of this
cluster activity diagrams appeared. The other diagrams had no serious presence in the
models. We can call this cluster the “activity group“.

• Cluster 2. Interaction diagrams characterize this group. A low role had class diagrams
which appear in 50% of the models. The other diagram types are not important in this
cluster. The name “interaction group“ fits to this cluster.

• Cluster 3. The diagram types “class - use case - interaction - component - deployment“
gives the group his name. These diagram types appear in the most models of this cluster.
The other diagram types are not relevant. State machine and composite concepts even
appear in no model

• Cluster 4. In this group the diagram type class is the center. We can call it the “class
group“. Other diagram types are rarely modeled.

The calculated diagram clusters are a bit different to the language unit clusters. There are 2 more
clusters only focusing on one diagram type (cluster 1 and cluster 2), and only 1 cluster (cluster
3) where several diagram types are used.

In summary the following additional common diagram type combination were found with the
clustering method: class - use case - interaction - component - deployment

Summary of the Findings

54

• 2 more clusters (interaction and activity clusters) focusing on one “type“ were found than
for the language unit clusters

• 4 clusters were characterized by only one diagram type, which were class, interaction,
activity and use case diagrams.

• Class - use case - interaction - component - deployment is an common diagram type
combination among the models.

What is the Content of UML Diagrams?

In Table 4.20 we can find a statistical evaluation about the diagram content. The diagrams
were only searched for elements of a certain UML type (cf. 4.20). The observed UML element
types are “class“, “action“, “activity“, “interaction“, “life line“, “use case“, “actor“ “state“,
“state machine“, “object“ and “component“. These chosen UML element types were seen as
sufficient to get data about which language units were usually visualized in which diagram types
over the sample models. The numbers in Table 4.20 declare the total amount of an element of
the respective type which were visualized by the given diagram type. The numbers in bracket
stands for the number of models this combination of diagram type and UML element type could
be found.

55

Table 4.20: Diagram Content

Diagram/Concept Cl Act Action Int LL UC Actor SM State Obj Comp

ClassDiagram 2723 (63) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (1) 0 (0) 5 (1) 32 (1) 0 (0)
PackageDiagram 5 (3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
ComponentDiagram 2 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 5 (3) 0 (0) 0 (0) 0 (0) 261 (13)
DeploymentDiagram 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 44 (1) 20 (4)
SequenceDiagram 21 (3) 0 (0) 0 (0) 0 (0) 574 (29) 0 (0) 68 (24) 0 (0) 0 (0) 41 (6) 43 (4)
ActivityDiagram 0 (0) 353 (16) 56 (7) 0 (0) 0 (0) 0 (0) 18 (2) 0 (0) 0 (0) 11 (2) 11 (1)
UseCaseDiagram 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 475 (34) 185 (34) 0 (0) 0 (0) 3 (1) 0 (0)
StateMachineDiagram 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 74 (6) 0 (0) 0 (0)
CommunicationDiagram 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 58 (6) 0 (0) 0 (0) 375 (7) 0 (0)
CompositeStructureDiagram 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 15 (1) 7 (7)
ObjectDiagram 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 12 (1) 0 (0)

Cl = Class, UC = Use Case, Int = Interaction, LL = LifeLine

Comp = Component, Act = Activity, SM = State Machine, Obj = Object

56

Interpretation. Followed the content of each diagram type is analyzed:

• Class diagram. The results in Table 4.20 show that in class diagrams mainly classes
were visualized. From the 64 models with class diagrams (cf. 4.3), in 63 models classes
were found in class diagrams. So only one class diagram exist without any modeled class.
In all 2723 classes could be found in the 63 models with classes in class diagrams. Few
actors, states and objects could be found as well in class diagrams but only in one model
each.

• Package diagram. Only classes could be found in package diagrams

• Component diagram. In component diagrams mostly components were visualized.

• Deployment diagram. As deployment concepts were not considered, components were
modeled as most (4 models with components in deployment diagrams exist). In one model
44 objects were modeled in deployment diagrams.

• Sequence diagram. life lines and actors were usually found in sequence diagrams.

• Activity diagram. Activities and actions are mostly modeled in activity diagrams. Many
activities and only few actions were modeled in activity diagrams.

• Use case diagram. Use case diagrams consist mainly from concepts of the language unit
use case.

• State machine diagram. In state machine diagrams only states could be found. None of
the other considered element types were modeled in state machine diagrams. Even none
of the state machine elements could be found in state machine diagrams.

• Communication diagram. The most found concept were objects (in 7 models) followed
by actors (in 6 models).

• Composite structure diagram. Composite concepts were not considered. In the most
models with composite structure diagrams component elements could be found.

• Object diagram. The only found object diagram in the 92 sample models had 12 object
elements and 1 actor.

In summary concepts from the language unit object and use case had an important role in inter-
action diagram types. In the other UML diagram types mainly the concepts from the associated
language unit were found.

Summary of the Findings

• Lifelines and actors were significantly modeled in sequence diagrams. In the other dia-
gram types mainly the UML concepts which are associated to these diagrams were found.

• Communication diagrams only existed of actors and objects. This is exactly for what
communication diagrams should be used for.

57

Limitations/Future Work. The considered element types should have given a good indicator
which language units are visualized with which diagram type. Studies about all model elements
in diagrams could lead to further and more accurate evaluations. Furthermore, data were only
obtained for all diagrams of a type but not for the individual diagrams. This restricts the evalua-
tion in analyzing individual diagrams about their content. By observing the content of a distinct
diagram, they can be categorized into multi-view/unit-view-diagrams. Where a multi view di-
agram means that elements of types of different language units are modeled and a unit view
diagram only consist of concepts from one language unit. This might be interesting for future
work. Furthermore the diagram sizes can be interesting for further work as well. Exist there
many diagrams with only a few elements or do diagrams have usually many elements modeled?
Subsequently does the diagram type and used language unit influence the size of a diagram?
Are there diagram type/language unit combinations which results in bigger diagrams than oth-
ers? How are specific element types distributed among certain diagram types? There are many
opportunities for possible future work related tho this research question.

4.4 Usage of UML Concepts

In this Chapter we investigate the use of the considered UML concepts of each language unit.
The list of all concepts the script is able to read out can be found in the appendix A. It will
be cleared now which concepts from the language units were used, which not, which one quite
often and how much of a language unit was not used. For each language unit the used elements
and connectors between those elements are listed in the next tables in this Chapter. The next
research questions about the used language unit concepts use all the same statistics and table
structure. Therefore, only for the following research question the statistical measurements and
the table properties will be explained in detail.

Which Class Concepts are used?

Table 4.21 and Table 4.22 holds data about the usage of the concepts of the language unit class.
In Table 4.21 all elements which represent an UML concept are listed with their distribution
over the 92 models. The column Concept stands for the UML concept. In Models stands
for the number of models having this UML concept. Total represents the total amount of the
respective concept over all models. The other columns indicate how the elements of the UML
concept are distributed over the models. The measured statistics are the maximum (max), min-
imum (min), arithmetic mean (am), median (med) and the standard deviation of the arithmetic
mean (sd). In the last row of the table we can find the total amount of models with concepts
from the language unit class and the total amount of elements which were detected as language
unit class concepts. Table A.1 in the appendix lists all UML class concepts the script considers
in the 92 models.

In Table 4.22 all connectors which are modeled as relationship between concepts from the
language unit class are depicted. Only relationships between elements of the language unit class
were considered. The column Relationship holds the relationship concept. In Models

58

gives information about the amount of models the connector was modeled between concepts
from the language unit class. The total occurrence of the connector in all models stands in col-
umn Total. The same statistical data is measured for connectors as for elements. In the last
row the number of models having relationships between concepts from the language unit class
is depicted as well as the total amount of relationships between class concepts over all models.

Table 4.21: Class Concepts Distribution over the Models

Concept In Models (66) Total Max Min AM Med SD

Class 65 2 124 214 1 32,68 18 41,74
- (Class) Abstract Class (14) (48) 10 2 3,43 2,5 2,13
- (Class) Association Class (3) (7) 4 1 2,33 2 1,25
- (Class) Active Class (0) (0) 0 0 0 0 0
- (Class) Parameterized Class (0) (0) 0 0 0 0 0
Class Attribute 51 7 812 1 457 1 153,18 44 297,75
Class Operation 43 6 851 861 1 159,33 61 242,50
Class Operation Parameter 32 4 262 861 1 133,19 25 213,04
Interface 28 180 65 1 6,43 1,5 13,12
Enumeration 10 75 31 1 7,50 2 10,16
DataType 1 1 1 1 1,00 1 0,00
Signal 0 0 0 0 0 0 0
N-ary Association 0 0 0 0 0 0 0

Total 66 21 305
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

Interpretation. By far the most used UML class concept was the class by itself. 65 out of
66 models which uses the language unit class had classes. This means that over 98% of the
models, which have members of the language unit class implemented, had class elements. By
manually observing the one model without classes it came out that this model only had one con-
cept from the language unit class modeled which were interfaces. Not surprisingly followed by
class attributes and class operations. Operations appear in less models than attributes. If we look
at the proportion between class to attributes (2124/7812) and class to operations (2124/6851) we
can assume that in general a class consisted of multiple attributes and operations in the sample
models. Parameters in operations also seems to be quite popular because in 32 of the 43 models
with class operations also operation parameters were modeled. The proportion between opera-
tion to operation parameter (6851/4262) concludes that operation parameter where widely used
in operations. Also still widely used are interfaces. 28 out of 66 class models have interfaces
which means over 42% of all class models contain interfaces. Little relevant are abstract classes
and enumerations in the 66 class models. Rarely important seems to be the other concepts. Only
in 3 models association classes were modeled and in no models we could find any signal, active
class, parameterized class or N-ary association. These UML class concepts had no relevance in

59

Table 4.22: Class Relationship Distribution over the Models

Relationship In Models (62) Total Max Min AM Med SD

Association 54 2141 714 1 39,65 14 103,63
Generalization 40 389 46 1 9,73 4 11,90
Realisation 27 177 51 1 6,56 2 11,43
Dependency 20 247 96 1 12,35 8 19,92
Aggregation 19 637 546 1 33,53 5 120,84
Composition 12 51 17 1 4,25 2 4,49
Message Synchron 3 31 20 2 10,33 9 7,41
Unclassified Connector 2 6 3 3 3,00 3 0,00
Use Dependency 2 3 2 1 1,50 1,5 0,50
Message Asynchron 1 5 5 5 5,00 5 0,00
Instantiate 1 9 9 9 9,00 9 0,00

Total 62 3 696
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

the sample models.

If we take a look at the distribution of each UML class concept several conclusions can be
drawn. The distributions are in general highly asymmetric. Except for the data type all other
concept distributions have a positive skew. Their median is always lower than the arithmetic
mean. Further, the standard deviation is very high, sometimes even higher than the arithmetic
mean. Subsequently the median is more reliable for measuring the average as the arithmetic
mean in all cases. The highest average could be measured for class operations. In average 61
operations were modeled in models with class operations. Class attributes were modeled 44
times in average per model, followed by class operation parameters with an average of 25 and
classes with an average of 18 per model. On the other hand in models with interfaces only 1,5
interfaces in average could be found. In models with abstract classes 2,5 were modeled in aver-
age and in models with enumerations 2 enumerations were modeled in average.

In case of used relationships between UML class concepts the most popular one was the associ-
ation (in 54 class models) followed by the generalization (in 40 class models). 177 Realisations
could be found in 27 models. Dependencies were modeled in 20 class models, aggregations
in 19 class models and compositions in 12 class models. The other 5 connectors ranked at the
last places can be seen as the EA freedom of modeling. For example messages belong to the
language unit interaction but in EA it is possible to model messages between classes as well.
Anyway these connectors had no relevance in the class models as they are rarely modeled. The
figures in Table 4.21 further say that associations between class concepts could be found in 54
models but in 65 models classes were found. It seems that in some models (exactly in 11) only
the other types of relationships like generalization, aggregation and so on were used between

60

classes or relationships between classes and UML concepts from other language units lead to
this difference. In section 4.5 relationships between different language units are evaluated.

The distributions of the distinct relationships have the same shape as the distributions of the
elements. The distributions are highly asymmetric and have mostly a positive skew. Also here
the median is best for measuring the average. Associations have the highest average with 14
associations per models. Compositions and realisations have the lowest average.

The most used modeling concepts in class models were classes with attributes and operations
connected with associations and generalizations. The two considered UML class concepts n-ary
association and signal were not used in the models. Moreover, according to these figures class
operations were usually modeled with parameters together. Operation parameters were used in
32 out of 43 models with class operations (i.e., 75% of models with class operations also had op-
eration parameters). Furthermore, Interfaces and realisations were found in an nearly congruent
amount of models with almost the same occurrence and similar statistics about their distribu-
tions over the models. As we know realisations are used to realize interfaces. So the data closely
assume that interfaces were usually realized by classes.

Summary of the Findings

• Class, attribute, operation, association and generalization concepts are the most used mod-
eling concepts of the language unit class.

• The proportion between class to attributes and operations assumes that a class consisted in
general of multiple attributes and operations. Further operation parameters were widely
used for operations. It seems that in the 92 sample models the concepts of attributes,
operations and operation parameters in classes were strongly used.

• Only 2 considered UML class concepts were not used.

• 75% of models with class operations also had operation parameters.

• It seems interfaces were usually realized, as interfaces and realisations appeared in similiar
amount of models with nearly the same total amount and distribution over all models.

Limitations/Future Work. In this work only the distribution of the used relationships were
observed. Mored detailed investigations could look at which concepts are connected. Further
also the amount of attributes and operations a class have could be analyzed in future work as
well as how many parameters operations have.

Which Use Case Concepts are used?

A list of all UML use case concepts the script checked the models for can be found in Table
A.5. Table 4.23 and Table 4.24 represent the results about the usage of the language unit use
case over all models.

61

Table 4.23: Use Case Concepts Distribution over the Models

Concept In Models (50) Total Max Min AM Med SD

Actor 44 257 32 1 5,84 3 7,11
Boundary 37 86 17 1 2,32 1 2,78
Use Case 35 489 52 1 13,97 10 12,93

Total 50 832
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

Table 4.24: Use Case Relationships Distribution over the Models

Relationship in Models (35) Total Max Min AM Med SD

UseCaseLink 23 152 27 1 6,61 3 6,62
Association 18 224 40 1 12,44 9,5 11,11
Generalization 13 45 14 1 3,46 2 3,67
Include 9 76 20 1 8,44 9 5,93
Extend 8 73 41 1 9,13 3 12,69
Dependency 4 11 6 1 2,75 2 2,05
Message Synchron 2 6 5 1 3,00 3 2,00
Realisation 1 8 8 8 8,00 8 0,00
Unclassified Connector 1 2 2 2 2,00 2 0,00
Aggregation 1 1 1 1 1,00 1 0,00

Total 50 598
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

Interpretation. More models with actors exist than with use cases (see Table 4.23). Even
more models with Boundaries exist as with use cases. The difference in the amount of mod-
els actors and use cases were used is a result of the usage of actors in interaction diagrams to
represent communication partners (see Chapter 4.3). Further it seems that in at least 2 models
boundaries were used as system border for other UML concepts than use case elements. The
language unit use case does not have many concepts and we see that the concepts appeared in
an similar amount of models.

In total the most used concept is the use case element, followed by actor and as last the boundary
element. The distributions are highly asymmetric and they have all a positive skew. The stan-
dard deviation is always higher than the arithmetic mean. The maximum of each distribution
also indicate the existent of some outliers. Therefore, the median measures the average best.
Use cases can be found 10 times in models with use cases in average. Actors are only modeled
3 times and boundaries 1 time in average.

62

In 23 out of 50 models with use case elements, the connector type “UseCaseLink“ acted as
relationship between use case concepts. The “UseCaseLink“ is an EA connector type which
only can be modeled between use cases and actors. It can be seen as use case connection with
blank behavior, nor extend neither include. So this connector type does not say much about the
relationships between the use case concepts. Second most used relation type between use case
concepts was the association. Generalizations were third popular relation types, which appear
in at least 26% of all models with use case concepts. The specialized relationships extend and
include took a minor role in the use case models. Only 9 out of 50 use case models had include
relationships and 8 out of 50 had extend relationships modeled. Maybe the modelers did not
know how to use include and extend relationships in use case diagrams as “UseCaseLink“ were
much more often used. Rarely relevant were dependencies between use case concepts. Again
also connectors (messages, realisations, aggregations) which do not belong to the language unit
use case were found, but they had no relevance at all in the use case models.

We have much more models with one of the observed language unit concepts (50), than with
one of the possible relation types the language unit supports (35). One of the reasons is the
strong correlation between the language units use case, interaction and object (cf. Table 4.45,
Table 4.50 and Table 4.47). Relations between concepts from different language units are con-
sidered in Chapter 4.5.

In the 92 sample models in over 40% boundary concepts were modeled. This clearly shows
that this concept had a high relevance for the examined models. A possible conclusion could be
that boundaries were also used within other language unit constructs to represent system borders
or separate or highlight parts. In general use cases were more frequently modeled than actors or
boundaries. The more simpler use case connection type was preferred by most of the designers
within the 92 sample models. Extend and include relationships had not that necessity for use
cases in the sample models. Maybe it might be a good idea to replace these UML concepts by
a simple use case link like EA offers it. Further research in this area has to be done by OMG or
other parties.

Summary of the Findings

• Boundary concept seems to be useful for other language units as well, to separate or
highlight parts.

• Use case elements are most frequently modeled followed by actors and boundaries.

• The EA use case link type was the most used relationship between use case concepts.
Surprisingly include and extend relations were no often used. Maybe the modelers had
not enough knowledge about the include and extend relationships.

• 15 models with use case concepts but no relationship between use case concepts were
found. An possible indicator for the high cohesion with other language units (cf. Ta-
ble 4.45).

63

• use cases, actors, boundaries, use case links, and associations are the heart of use case
models.

Which Activity Concepts are used?

As next we observe the language unit activity. In Table 4.25 and Table 4.27 data about the
usage of the language unit activity is depicted. In Table 4.26 all non modeled UML concepts
are listed. In Table 4.26 the concept “any other kind of Action“ includes all the different action
types the script is able to read out, except the “WriteVariableAction“ and the “CallOperationAc-
tion“ which occur in the models as seen on Table 4.25. All considered activity concepts can be
found in Table A.2 of the appendix.

Table 4.25: Activity - Concepts

Concept In Models (20) Total Max Min AM Med SD

ActivityElement 18 392 80 2 21,78 10 24,16
ActivityInitialNode 17 69 18 1 4,06 3 4,14
ActivityFinalNode 15 65 16 1 4,33 3 4,06
ActivityDecisionNode 15 90 19 1 6,00 4 4,76
Action 11 85 30 1 7,73 4 9,35
- (Action) Atomic-Action (10) (81) 29 1 8,10 4 9,44
- (Action) CallOperation-Action (3) (3) 1 1 1,00 1 0,00
- (Action) WriteVariable-Action (1) (1) 1 1 1,00 1 0,00
ActivityDecisionMergeNode 7 15 4 1 2,14 2 1,12
ForkNode 7 8 2 1 1,14 1 0,35
JoinNode 6 17 7 1 2,83 2 1,95
FlowFinalNode 6 10 3 1 1,67 1,5 0,75
ActivityPartition 5 18 8 1 3,60 3 2,42
ActivityMergeNode 5 11 3 1 2,20 2 0,75
JoinForkNode 3 5 2 1 1,67 2 0,47
DataStore 3 10 5 2 3,33 3 1,25
ObjectNode 2 5 4 1 2,50 2,5 1,50
InterruptibleActivityRegion 2 4 3 1 2,00 2 1,00
LoopNode 1 1 1 1 1,00 1 0,00
ExpansionRegion 1 3 3 3 3,00 3 0,00
- (ExpansionRegion) in Iterative Mode 1 3 3 3 3,00 3 0,00

Total 20 821
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

Interpretation. As for class and use case concept distributions the median is again the most
reliable number for measuring the average. If we focus on the used elements from the language

64

Table 4.26: Activity - Not used Concepts

Concept In Models

Any Other kind of Action (36) 0
ActionPin 0
ActivityParameter 0
CentralBufferNode 0
ConditionalNode 0
ConditionalNode with Expansion Node(s) 0
ConditionalNode with Pin(s) 0
ExceptionHandler 0
ExceptionHandler with incoming InterruptFlow(s) 0
ExpansionNode 0
ExpansionRegion in parallel mode 0
ExpansionRegion in stream mode 0
ExpansionRegion with Expansion Node(s) 0
InterruptibleActivityRegion with InterruptFlow(s) 0
LoopNode with Expansion Node(s) 0
LoopNode with Pin(s) 0
SequenceNode 0
SequenceNode with Activity Parameter(s) 0
SequenceNode with Expansion Node(s) 0
SequenceNode with Pin(s) 0
StructuredActivityNode 0
StructuredActivityNode with Expansion Node(s) 0
StructuredActivityNode with Pin(s) 0

Table 4.27: Activity Relationships Distribution over the Models

Relationship In Models (18) Total Max Min AM Med SD

ControlFlow 18 812 145 4 45,11 32,5 39,16
Dependency 4 15 6 2 3,75 3,5 1,79
InformationFlow 3 32 16 6 10,67 10 4,11
ObjectFlow 1 2 2 2 2,00 2 0,00

Total 18 861
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

65

unit activity on Table 4.25 first thing we can notice is that there exist far more activities than
actions. Almost 5 times more activities were modeled than actions. In average a model had 10
activities in models with activities but only 4 actions in models with actions. This is a quite
surprising fact as in the UML literature actions are seen as the main component for describing
activity diagrams. It seems activities were used like actions in many of the 92 models. Initial,
final an decisions nodes could be found in the most activity models beside activities. In average
3 to 4 nodes were found in activity models with nodes.

In the most cases the default action, the atomic action, was implemented in the models. Only 2
other kind of actions were used out of the catalog of further 38 possible action types. The call
operation action appears in 3 models and the write variable action in one model. Of course the
questions occurs if the write variable action might be modeled by accident and not by purpose.
It seems also that activity models were kept simple. Not many different activity elements could
be found. The most models consist of activities, nodes for end, final and decision making and
some actions. In 5 out of 20 models activity partitions and in 3 data store elements were found.
Only in 2 models interruptible activity regions were modeled, and only in one model loop node
and expansion regions.

Far longer is the list of not used concepts of the language unit activity (Table 4.26), if we
consider all the special action types. There exist no activity with an activity parameter and also
no single action with an action pin. Many concepts which are emphasized in the most UML
guides had no importance for the 92 evaluated EA models. This indicates that the activity dia-
grams were not that detailed.

If we focus on the use of relationships between activity concepts we will detect two interest-
ing facts. First, by far more control flows were used then object flows (see Table 4.27). On
Table 4.26 we see that no single action pin was modeled in all 92 models. Modeled object
flows between activity concepts were not detected in the 92 sample models. Second, the number
of total control flows is almost double as high as the number of activity and action elements
together in the 92 sample models. In average control flows were found over 32 times in the 18
models with control flows. Compared to the average of activity elements, nodes and actions this
is rather high. This leads to the conclusion that in activity models very often different possible
ways of activity/action flows were modeled. This might indicate that even though designer used
mostly simple activity concepts for activity models, they had a certain complexity still.

Summary of the Findings

• activities were used like actions.

• the heart of activity models consist of activities, initial, final and decisions nodes and
control flows.

66

• In 6 out of 20 activity models (i.e., 30% of the activity models) useless decision and merge
nodes were found.

• The list of the not used UML concepts is large. Actions pins, activity parameters and
many other UML concepts from the language unit activity (see Table 4.26) were never
used.

• The action semantics introduced in UML 1.5 had no relevance for the models.

• Models mainly consisted of control flows rather than object flows.

• Activity models had a high number of possible paths.

Which Interaction Concepts are used?

Table 4.28 and Table 4.29 contain data about the usage of the interaction concepts.

Interpretation. The element distributions of the interaction concepts over the models have
the same shape as the distributions previously. Therefore, the median is again chosen as the
better average for interpreting the datasets. The top used UML concept was life line, followed
by interaction fragment and interaction (see Table 4.28). In average 3 life lines were modeled in
interaction models. In case of interaction fragments the most popular one is from kind loop, fol-
lowed by alt, seq and last opt which occurs just in one model. All the other kinds of interaction
fragments were not used. In general 8 out of 32 models (i.e., 25% of the interaction models) had
interaction fragments. Two message endpoint constructs and one gate were found in one model.
Without any relevance are the other interaction concept elements in Table 4.28. Never used were
interaction states, interaction parameters, interaction occurrences, message labels, state lifelines,
value lifelines and the other types of interaction fragments.

The most common message type was synchron, which appeared 452 times in 15 models (see
Table 4.29). The asynchron message type were only modeled in two models. The reason for
this is clear. In EA when a message is drawn between two life lines, this message is from type
synchron by default. So it seems that the modelers did not care much about the message type
and used the EA default settings. Rather relevant are the other types of messages in the inter-
action models. In average 16 sychnron messages between interaction concepts were modeled
in models. Constructing a model with the average amount of life lines and sychnron messages
would result in 16 communication paths between 3 life lines. If we compare the total amount of
models with messages with the total amount of models with life lines we notice that there exist
much more models with life lines than with messages. This has the simple reason that many life
lines interact with concepts from other language units, mainly use cases and objects. Messages
between communication partners from different language units are not counted here. The inter
language relations with interaction participation is analyzed in Chapter 4.5.

An interesting fact, which appeared out of the results, is that just in 4 models the concept in-
teraction element by itself appears. So for the sample models the common way of modeling

67

Table 4.28: Interaction - Concepts

Concept In Models (32) Total Max Min AM Med SD

LifeLine 31 246 46 1 7,94 3 9,76
CombinedFragment 8 33 11 1 4,13 3 3,41
- (CombinedFragment) - Loop (5) (14) 7 1 2,80 2 2,23
- (CombinedFragment) - Alt (4) (11) 4 1 2,75 3 1,30
- (CombinedFragment) - Seq (2) (5) 4 1 2,50 2,5 1,50
- (CombinedFragment) - Opt (1) (3) 3 3 3,00 3 0,00
Interaction 4 39 20 1 9,75 9 7,98
MessageEndpoint 1 2 2 2 2,00 2 0,00
Gate 1 1 1 1 1,00 1 0,00
CombinedFragment - Break 0 0 0 0 0 0 0
CombinedFragment - Par 0 0 0 0 0 0 0
CombinedFragment - Critical 0 0 0 0 0 0 0
CombinedFragment - Neg 0 0 0 0 0 0 0
CombinedFragment - Assert 0 0 0 0 0 0 0
CombinedFragment - Strict 0 0 0 0 0 0 0
CombinedFragment - Ignore 0 0 0 0 0 0 0
CombinedFragment - Consider 0 0 0 0 0 0 0
InteractionState - Invariant 0 0 0 0 0 0 0
InteractionState - Continuation 0 0 0 0 0 0 0
InteractionParameter 0 0 0 0 0 0 0
InteractionOccurrence 0 0 0 0 0 0 0
MessageLabel 0 0 0 0 0 0 0
State Lifeline 0 0 0 0 0 0 0
Value Lifeline 0 0 0 0 0 0 0

Total 32 321
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

Table 4.29: Interaction Relationships Distribution over the Models

Relationship in Models (16) Total Max Min AM Med SD

Message Synchron 15 452 133 1 30,13 16 31,74
Message Asynchron 2 21 12 9 10,50 10,5 1,50
Message 1 20 20 20 20,00 20 0,00
Message Synchron - New 1 6 6 6 6,00 6 0,00

Total 16 499
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

68

interaction views of systems was in modeling the interaction concepts without the construct of
an interaction element holding those concepts. The reason for this is probably the toolbox for
interaction concepts, where users can pick the elements which should be drawn in a diagram, in
EA. The toolbox does not list the interaction element. Furthermore, the averages of the interac-
tion concept distributions indicate that the interaction models were kept small but this has to be
enjoyed carefully. In the diagram statistics (see Chapter 4.3) the results show that in interaction
diagrams many concepts from the language unit use case and object were found. Further, in nu-
merous models with interaction concepts also use case concepts and object concepts were found
as well (see Chapter 4.2). Hence, interaction concepts interacted in many cases with concepts
from other language units and so the size of the interaction models is different then it can be
derived from this statistics.

Summary of the Findings

• Only few different concept types from the language unit interaction could be found in the
models.

• The preferred message type is synchron.

• The data indicates that the amount of messages per life line is rather high.

• The concept interaction by itself was not commonly used. Considering EA might be the
reason why this is the case.

• The obtained data supports the strong cohesion of interaction concepts with use case and
object concepts.

Which Object Concepts are used?

Table 4.30 and table 4.31 holds data about the usage of the object concepts.

Table 4.30: Object - Concepts

Concept In Models (25) Total Max Min AM Med SD

Object 25 671 140 1 26,84 12 37,51

Total 25 671
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

Interpretation. Objects could be found in 25 models with a total amount of 671 (see Table
4.30). The standard deviation is higher than the arithmetic mean and the maximum indicates the
existent of at least one outlier, therefore, the median measures the average best. In average 12
objects were modeled in models with objects.

69

Table 4.31: Object Relationships Distribution over the Models

Relationship In Models (17) Total Max Min AM Med SD

Association (Link) 11 425 164 2 38,64 13 48,92
Message Synchron 5 27 11 1 5,40 3 4,63
Communication Message 5 580 457 6 116,00 51 171,57
Dependency 2 25 16 9 12,50 12,5 3,50
Message Synchron - New 2 4 2 2 2,00 2 0,00
Aggregation 1 16 16 16 16,00 16 0,00
Object Flow 1 69 69 69 69,00 69 0,00
Unclassified Connector 1 1 1 1 1,00 1 0,00

Total 17 1147
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

The most used relationship between objects was the object link, which is an instance of the
association (see table 4.31). Also in this table the median can be seen as more reliable. Numer-
ous interaction relationships were used between objects. Synchron messages, communication
messages and synchron - new messages were modeled between objects. This is a strong indica-
tor for the cohesion between objects and interactions. On the other hand only in one model the
activity relationship object flow was used between objects. This also shows that the language
units activity and objects hat not much in common in the 92 sample models.

In 25 models objects were modeled but only in 17 models relationships between objects could
be found. Consequently in at least 8 models objects had relationships to other language unit
concepts or nor relationships at all. Considering the strong cohesion between objects and inter-
actions the first assumption seems to be more reliable.

Summary of the Findings

• Object links were the most used relationships between objects.

• In at least 8 models objects had relationships to other language unit concepts or none.

Which State Machine Concepts are used?

Table 4.32 lists all used state machine concepts. UML concepts which were not used in state
machine models are depicted in Table 4.34. The used relationships between state machine con-
cepts can be found in Table 4.33.

Interpretation. In every state machine model states were found (see Table 4.32). Also quite
popular were initial states and final states, which occur in 4 models (i.e., in 66% of the state
machine models). Still some relevance had the main concept of the language unit, the state ma-

70

Table 4.32: State Machine - Concepts

Concept In Models (6) Total Max Min AM Med SD

State 6 72 24 4 12,00 10 7,44
InitialPseudoState 4 16 8 1 4,00 3,5 2,74
FinalState 4 18 9 1 4,50 4 2,96
Terminate 2 2 1 1 1,00 1 0,00
Choice 2 3 2 1 1,50 1,5 0,50
StateMachine 2 2 1 1 1,00 1 0,00
Junction 1 1 1 1 1,00 1 0,00
EntryPoint 1 1 1 1 1,00 1 0,00

Total 6 115
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

Table 4.33: State Machine Relationships Distribution over the Models

Relationship In Models (6) Total Max Min AM Med SD

Transition 6 127 48 6 21,17 18,5 15,31

Total 6 127
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

chine, which appeared in 2 models (i.e., in 33% of the state machine models). The few usage
of the state machine element can be derived from the EA way of modeling, as state machine
concepts can be created without state machine elements as container. This is different to the
UML standard which says that every state machine construct should be only modeled in a state
machine.

For the distributions of the UML concepts the median is again more reliable than the arith-
metic mean as average number. In average 10 states were found in models with state machine
concepts. Final states have the second highest average with 4, followed by initial states with 3,5
elements per model.

A significant number of state machine concepts were never used in the models (see Table 4.34).
One of them are triggers and state behaviors which were never modeled by the modelers.

The only modeled relationship between state machine concepts was the transition, which could
be found in all 6 state machine models (see Table 4.33). Almost double as many transitions were
modeled as states. The average of transitions per model is 18,5, which is significant higher than
for states. Creating a model according to the average values, for each state almost 2 transitions

71

Table 4.34: State Machine - Not Used Concepts

Concept In Models

ProtocolStateMachine 0
State with Regions 0
StateBehavior 0
SubmachineState 0
State - isOrthogonal 0
Simple State 0
ExitPoint 0
ShallowHistoryNode 0
ShallowHistoryNode with Default Target 0
DeepHistoryNode 0
DeepHistoryNode with Default Target 0
SynchState 0
SignalTrigger 0
SignalTrigger with Specification 0
CallTrigger 0
CallTrigger with Specification 0
TimeTrigger 0
TimeTrigger with Specification 0
ChangeTrigger 0
ChangeTrigger with Specification 0
AnyTrigger 0
AnyTrigger with Specification 0

would be created.

We have to consider that not much data could be found about state machine concepts and there-
fore the findings about the used concepts have to be enjoyed carefully.

Summary of the Findings

• The majority of considered state machine concepts were never modeled (for example trig-
gers and behaviors).

• States, transitions and initial and final states covered 233 of the 242 found state machine
concepts over all models (i.e., over 96% of the total amount of found state machine con-
cepts)

Limitation/Future Work. In the model samples state machine concepts were used rarely. A
bigger set of models with state machines would be needed for more detailed and reliable re-
searches in the usage of state machine concepts.

72

Which Component Concepts are used?

Data about the usage of component concepts are depicted in Table 4.35 and Table 4.36.

Table 4.35: Component Concepts

Concept In Models (18) Total Max Min AM Med SD

Component 15 400 181 1 26,67 13 44,39
RequiredInterface 11 82 47 1 7,45 1 13,21
ProvidedInterface 10 109 56 1 10,90 2,5 17,22
Packaging Component 0 0 0 0 0 0 0

Total 18 591
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

Table 4.36: Component relationships distribution over the models

Relationship In Models (12) Total Max Min AM Med SD

Dependency 9 104 40 1 11,56 6 13,70
Assembly 5 51 19 1 10,20 10 6,37
Message Synchron 4 85 43 1 21,25 20,5 20,28
Message Asynchron 2 37 21 16 18,50 18,5 2,50
Association 2 23 14 9 11,50 11,5 2,50
Unclassified Connector 1 1 1 1 1,00 1 0,00
Generalization 1 1 1 1 1,00 1 0,00

Total 12 302
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

Interpretation. The main concept of the language unit, the component by itself, was used
in 15 out of 18 models with elements from the language unit component (see Table 4.35). The
2 types of interfaces were the second most popular component concepts. Interesting is the fact
that three models had no components but some of the other two concepts, provided interface
or/and required interface. Therefore, in at least 3 models provided and required interfaces were
used with no other component concepts together.

Without any importance for the evaluated models is the packaging component concept. A pack-
aging component is similar to component with the difference that it can have inside other pack-
ages and elements as well. This construct seems to have no relevance for the functionality of
any system described with the help of the analyzed models.

73

The most used relationship according to the “In Models“ column between component concepts
was dependency followed by assembly (see Table 4.36). The interaction relationships were
modeled between component instances in some models. The synchron message was found in 4
and the asynchron message in 2 models between component instances. The other relationships
are less relevant for the evaluation as they only occurred in 2 or 1 models.

Summary of the Findings

• Component, required and provided interface were the most used component concepts. In
at least 3 models provided and required interfaces were used without any other component
concepts together.

• Dependency was the most used relationship between component concepts.

Which Deployment Concepts are used?

The used deployment concepts and relationships between deployment concepts in the models
can be found in Table 4.37 and Table 4.38.

Table 4.37: Deployment - Concepts

Concept In Models (15) Total Max Min AM Med SD

NodeElement 11 44 10 1 4,00 3 3,28
Artifact 9 42 16 1 4,67 2 5,16
Device 7 15 4 1 2,14 2 1,12
ExecutionEnvironment 3 8 4 1 2,67 3 1,25
DeploymentSpecification 2 2 1 1 1,00 1 0,00

Total 15 111
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

Table 4.38: Deployment Relationships Distribution over the Models

Relationship In Models (7) Total Max Min AM Med SD

Association 5 21 7 3 4,20 3 1,60
Dependency 2 4 2 2 2,00 2 0,00
InformationFlow 1 2 2 2 2,00 2 0,00

Total 7 27
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

74

Interpretation. Top ranked in the usage is the standard node element, followed by the arti-
fact (see Table 4.37). Still some relevance has the node type device, which was found in 7
deployment models (i.e., 50% of the deployment models). Less relevant but still used were the
node type execution environment and the artifact type deployment specification. Therefore only
special types of artifacts are important but the standard blank artifact type seems to be useless in
the observed models.

The most used relationship was the association between deployment concepts (see Table 4.38)
followed by dependency and information flow.

Summary of the Findings

• Nodes, artifact and devices in combination with associations as relationships were the
most used deployment concepts.

Which Composite Concepts are used?

Table 4.39 gives an overview of the popularity of the individual composite concepts. No rela-
tionships between composite concepts were measured in all composite models. Subsequently
no table for the used relationships exist. The UML relationship type “Connector“ would belong
to this language unit.

Table 4.39: Composite - Concepts

Concept In Models (9) Total Max Min AM Med SD

Part 8 26 13 1 3,25 1 4,18
Port 2 4 3 1 2,00 2 1,00
Collaboration Element 0 0 0 0 0,00 0 0,00
Collaboration Use 0 0 0 0 0,00 0 0,00

Total 9 30
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

Interpretation. In 8 models with elements from the language unit composite (i.e., over 88%
of the models with elements from the language unit composite), part elements were modeled.
Far behind is the port concept, which just occurred in 2 models (i.e., 22,22% of the models
with composite concepts). Never used was the collaboration element and the collaboration use
element. In average (median) 1 part were modeled in models with part concepts. The modelers
used parts very rarely.

Summary of the Findings

75

• No relationships exist between composite concepts. The UML concept “Connector“ could
be modeled between composite concepts to express relationships. It seems that classifiers,
which were modeled with parts and ports, were simple structured without relationships
between parts and ports.

• Only parts and ports were modeled

• In average only 1 part was found in models with part concepts

Future Work/Limitation. More models with composite concepts would be needed for more
meaningful studies about this language unit.

Which Auxiliary Construct Concepts are used?

Last the auxiliary construct use is observed in Table 4.40. No relationships exist between aux-
iliary construct concepts.

Table 4.40: Auxiliary Construct - Concepts

Concept In Models (67) Total Max Min AM Med SD

Comment 67 902 97 1 13,46 5 19,50
Constraint 2 16 9 7 8,00 8 1,00
Information Item 0 0 0 0 0,00 0 0,00

Total 67 918
Max = Maximum, Min = Minimum, AM = Arithmetic Mean

Med = Median, SD = Standard Deviation

Interpretation. In 67 models 902 comments could be found (see Table 4.40), only in 2 models
constraints. The other auxiliary construct concepts were not important for the 92 observed mod-
els. In average (median) 5 notes were modeled in models with notes and 8 constraints in models
with constraints.

The numerous models with notes and the median of the notes distribution indicate a high popu-
larity of comments through the evaluated models. No other single UML concept could be found
in that many models.

Summary of the Findings

• Comments were quite popular within the 92 sample models.

Overall Limitations/Future Work - UML Concepts

The specification of the latest UML 2.x version by OMG has much more concepts than consid-
ered here. In this work a limit was set by concentrating on the most important UML concepts

76

to keep the study within an acceptable border. Further studies could go more into detail by
observing all possible concepts and features within the language units. For example the use of
multiplicities for attributes and associations might be interesting for future work. Further, in this
work only the relationships between UML concepts were analyzed but not between which UML
concept exactly those relationships exist. The reason was that this work mainly concentrated on
the popularity of the UML concepts by itself. Future work could do deeper and more detailed
research in this case.

What was the common Comment Length?

Table 4.41 and Table 4.42 show statistics about the length of UML comments in the 92 sample
models. In Table 4.41 comments were categorized into 3 groups of sizes - short, medium and
large comments. Comments with more than 30 characters were categorized as short, comments
which had between 30 and 100 characters were categorized as medium sized and all comments
which had more than 100 characters were seen as large comments. To get more knowledge about
the data sets of comments further statistics were calculated in Table 4.42. The maximum, the
minimum, the arithmetic mean as well as the median over all comment lengths were calculated.

Table 4.41: Comment Length

Comment Size Total

Short Comments (< 30 Characters) 71
Medium Sized Comments (30 to 100 Characters) 315
Large Comments (> 100 Characters) 505
Total Comments with Content 891

Table 4.42: Comment Length - Statistical Analysis

Biggest Comment 1669 Characters
Smallest Comment 4 Characters
Average Size (Arithmetic Mean) 186 Characters
Average Size (Median) 116 Characters

Interpretation. 71 comments in the 92 models had less than 30 characters and were hence
counted as short comments. 315 comments had between 30 to 100 characters and are handled as
so called medium sized comments in this work. The most comments were found in the biggest
group. 505 comments had more than 100 characters. Comparing Table 4.41 with Table 4.40
from the previously research question it can be noticed that 11 out of 902 comments had no
content at all.

77

We see the averages are 186 and 116 characters and the biggest comment has 1669 charac-
ters. This points out that comments where mostly from bigger sizes.

Summary of the Findings.

• Comments had big sizes, in average between 100 to 200 characters.

What was the Content of the Comments?

Another interesting data can be taken out from Table 4.43, where the content of the comments
were analyzed. Context declares the type of comment contents and Total in how many
comments this type of content could be found.

Table 4.43: Comment Context

Context Total

Natural Language 837
HTML Tags (<html>,,
,<body>,<p>,,,,,...) 28
Constraint Parameters (=, <, >, !=, <>, ==) 15
Calculations(*,+,-,/) 9
OCL Keywords(context, inv:,self., select, collect,implies) 1
Pseudo Code (IF, ELSE, AND, OR) 1
Total Comments 891

Interpretation. Mostly comments consisted of text written in natural language without any
special constructs. HTML tags were the second most used comment type, but far behind text
comments. Several comments had some calculations or constrain parameters inside. Only one
comment was written in OCL language and only one comment was written in pseudo code.

Summary of the Findings

• Comment contents were mostly written in natural language.

• Considering the comments lengths, those text consisted therefore usually of several words.

Are the Language Concepts introduced with UML 2.x used?

To answer this question all considered UML concepts in this work were categorized to the UML
version they were introduced. Table 4.44 lists the UML concepts according to the UML ver-
sion they first appeared in. The column UML Concept shows the element type. In Models
declare the amount of models this concept was found. The UML version the concept was in-
troduced earliest stands in UML Version. Only elements were taken into account, connectors
were skipped.

Table 4.44: List of UML Concepts Categorized by the UML Ver-
sion they were Introduced

UML Concept In Models UML Version

Class 65 <= 1.4
ClassAttribute 51 <= 1.4
ActorElement 44 <= 1.4
ClassOperation 43 <= 1.4
Boundary 37 <= 1.4
UseCaseElement 35 <= 1.4
ClassOperationParameter 32 <= 1.4
LifeLine 31 <= 1.4
Interface 28 <= 1.4
Object 25 <= 1.4
Activity 18 <= 1.4
ActivityInitialNode 17 <= 1.4
ActivityFinalNode 15 <= 1.4
ActivityDecisionNode 15 <= 1.4
Component 15 <= 1.4
Abstract Class 14 <= 1.4
Action 11 <= 1.4
RequiredInterface 11 <= 1.4
Node 11 <= 1.4
Enumeration 10 <= 1.4
Atomic-Action 10 <= 1.4
ProvidedInterface 10 <= 1.4
Artifact 9 <= 1.4
CombinedFragment 8 2.x
PartElement 8 2.x
ActivityDecisionMergeNode 7 <= 1.4
ForkNode 7 <= 1.4
Device 7 2.x
State 6 <= 1.4
JoinNode 6 <= 1.4
Unused ActivityDecisionMergeNode 6 <= 1.4
FlowFinalNode 6 2.x
CombinedFragment - Loop 5 2.x
ActivityPartition 5 2.x
ActivityMergeNode 5 <= 1.4

Continued on Next Page

79

Table 4.44 – Continued From Previous Page

UML Concept In Models UML Version

Interaction 4 <= 1.4
CombinedFragment - Alt 4 2.x
InitialPseudoState 4 <= 1.4
FinalState 4 <= 1.4
AssociationClass 3 <= 1.4
CallOperationAction 3 1.5
JoinForkNode 3 <= 1.4
DataStore 3 2.x
ExecutionEnvironment 3 2.x
CombinedFragment - Seq 2 2.x
Terminate 2 2.x
Choice 2 <= 1.4
StateMachine 2 <= 1.4
ObjectNode 2 2.x
InterruptibleActivityRegion 2 2.x
Port 2 2.x
DeploymentSpecification 2 2.x
DataType 1 <= 1.4
MessageEndpoint 1 2.x
Gate 1 2.x
CombinedFragment - Opt 1 2.x
Junction 1 <= 1.4
EntryPoint 1 <= 1.4
LoopNode 1 2.x
ExpansionRegion 1 2.x
ExpansionRegion in iterative mode 1 2.x
Unused JoinForkNode 1 <= 1.4
WriteVariableAction 1 1.5
Active Class 0 <= 1.4
Parameterized Class 0 <= 1.4
Signal 0 <= 1.4
N-ary Association 0 <= 1.4
CombinedFragment - Break 0 2.x
CombinedFragment - Par 0 2.x
CombinedFragment - Critical 0 2.x
CombinedFragment - Neg 0 2.x
CombinedFragment - Assert 0 2.x

Continued on Next Page

80

Table 4.44 – Continued From Previous Page

UML Concept In Models UML Version

CombinedFragment - Strict 0 2.x
CombinedFragment - Ignore 0 2.x
CombinedFragment - Consider 0 2.x
InteractionState - Invariant 0 <= 1.4
InteractionState - Continuation 0 2.x
InteractionParameter 0 2.x
InteractionUse 0 2.x
State LifeLine 0 2.x
Value LifeLine 0 2.x
ProtocolStateMachine 0 2.x
State with Regions 0 <= 1.4
StateBehaviorElement 0 <= 1.4
StateBehavior - Entry 0 <= 1.4
StateBehavior - Do 0 <= 1.4
StateBehavior - Exit 0 <= 1.4
StateBehavior - Any 0 <= 1.4
SubmachineState 0 <= 1.4
State - isOrthogonal 0 <= 1.4
Simple State 0 <= 1.4
ExitPoint 0 <= 1.4
ShallowHistoryNode 0 <= 1.4
DeepHistoryNode 0 <= 1.4
SynchState 0 <= 1.4
SignalTrigger 0 <= 1.4
CallTrigger 0 <= 1.4
TimeTrigger 0 <= 1.4
ChangeTrigger 0 <= 1.4
AnyTrigger 0 <= 1.4
CallBehaviorAction 0 2.x
AcceptCallAction 0 2.x
AcceptEventAction 0 2.x
AcceptEventTimerAction 0 2.x
AddStructuralFeatureValueAction 0 2.x
AddVariableValueAction 0 1.5
BroadcastSignalAction 0 1.5
ClearAssociationAction 0 1.5
ClearStructuralFeatureAction 0 2.x

Continued on Next Page

81

Table 4.44 – Continued From Previous Page

UML Concept In Models UML Version

ClearVariableAction 0 1.5
CreateLinkAction 0 1.5
CreateLinkObjectAction 0 1.5
CreateObjectAction 0 1.5
DestroyLinkAction 0 1.5
DestroyObjectAction 0 1.5
HyperlinkAction 0 2.x
RaiseExceptionAction 0 2.x
ReadExtentAction 0 1.5
ReadIsClassifiedObjectAction 0 1.5
ReadLinkAction 0 1.5
ReadLinkObjectEndAction 0 1.5
ReadLinkObjectEndQualifierAction 0 1.5
ReadSelfAction 0 1.5
ReadStructuralFeatureAction 0 1.5
ReadVariableAction 0 1.5
ReclassifyObjectAction 0 1.5
RemoveStructuralFeatureValueAction 0 2.x
RemoveVariableValueAction 0 1.5
ReplyAction 0 2.x
SendObjectAction 0 2.x
SendSignalAction 0 1.5
StartClassifierBehaviorAction 0 2.x
TestIdentifyAction 0 2.x
ValueSpecificationAction 0 2.x
WriteLinkAction 0 1.5
WriteStructuralFeatureAction 0 2.x
SendSignalAction 0 1.5
ActionPin 0 1.5
ActivityParameter 0 2.x
CentralBufferNode 0 2.x
ConditionalNode 0 2.x
ExceptionHandler 0 2.x
ExpansionNode 0 2.x
ExpansionRegion 0 2.x
SequenceNode 0 2.x
StructuredActivityNode 0 2.x

Continued on Next Page

82

Table 4.44 – Continued From Previous Page

UML Concept In Models UML Version

PackagingComponent 0 2.x
CollaborationElement 0 2.x
CollaborationUse 0 2.x

Interpretation. We can see that the most used UML concepts among the models already
exist at UML version 1.4 or earlier. Required and provided interfaces were the most used new
UML concepts. All other newly introduced UML concepts in version 2.x were found in less
than 10 out of 92 evaluated models. The new action semantics which were established in the
UML version 1.5 had no relevance among the 92 models. Only 2 new action concepts could be
found which appeared in 3 and in 1 model.

Summary of the Findings

• Used UML concepts mostly exist already in UML version 1.4 or earlier

• All new concepts from UML version 2.x had not a big acceptance over the models.

• The introduced actions semantics from version 1.5 were rarely used (not more than in 3
models).

4.5 Relationships between UML Language Units

In this chapter all modeled relationships between model elements from different UML language
units were observed. All possible relationships which were considered in this work are listed
in table A.12 and table A.13 of the appendix A. Relationships to or from concepts from the
language unit auxiliary constructs were not considered.

Between which Language Units Relationships exist?

Table 4.45 shows between which language units relationships exist in how many models. The
rows and columns stand for the language units and the cells contain the number of models having
modeled relationships between the language units. Further, Table 4.46 supports the significance
of the amount of models with relationships between two distinct language units. This is done by
calculating the ratio between the amount of models having relationships between the language
unit pairs (see Table 4.45) and the amount of models containing the considered language units
(see Chapter 4.2, Table 4.14). Each cell in Table 4.46 is the result of total models with rela-
tionships between language unit A and language unit B divided by total modals which contain

83

language unit A and language unit B. A result of 1 means that in every model (i.e., in 100% of
the models) where language unit A and B appeared also relationships were explicitly modeled
between A and B. On the other hand 0 means that in all models containing A and B no single
relationship between A and B were modeled.

Table 4.45: Number of Models which modeled Relationships between Language Units

Language Unit Cl UC Int Obj Act Comp Deploy Composite SM

Cl 64 4 3 7 2 5 0 1 1
UC 4 35 21 14 4 3 0 0 0
Int 3 21 16 6 0 0 0 0 0
Obj 7 14 6 17 4 1 1 0 0
Act 2 4 0 4 18 0 0 0 1
Comp 5 3 0 1 0 13 2 7 0
Deploy 0 0 0 1 0 2 7 0 0
Composite 1 0 0 0 0 7 0 0 0
SM 1 0 0 0 1 0 0 0 6

Cl = Class, UC = Use Case, Int = Interaction, Obj = Object, Act = Activity

Comp = Component, Deploy = Deployment, SM = State Machine

Table 4.46: Explicit Strengths of the Language Unit Relationships

Language Unit Cl UC Int Obj Act Comp Deploy Composite SM

Cl 0,97 0,12 0,12 0,33 0,15 0,36 0,00 0,13 0,20
UC 0,12 0,70 0,84 0,67 0,33 0,23 0,00 0,00 0,00
Int 0,12 0,84 0,50 0,43 0,00 0,00 0,00 0,00 0,00
Obj 0,33 0,67 0,43 0,68 0,36 0,20 0,13 0,00 0,00
Act 0,15 0,33 0,00 0,36 0,90 0,00 0,00 0,00 0,33
Comp 0,36 0,23 0,00 0,20 0,00 0,72 0,25 0,88 0,00
Deploy 0,00 0,00 0,00 0,13 0,00 0,25 0,47 0,00 0,00
Composite 0,13 0,00 0,00 0,00 0,00 0,88 0,00 0,00 0,00
SM 0,20 0,00 0,00 0,00 0,33 0,00 0,00 0,00 1,00

Cl = Class, UC = Use Case, Int = Interaction, Obj = Object, Act = Activity

Comp = Component, Deploy = Deployment, SM = State Machine

Interpretation. Relations between interaction and use case language units were modeled at
most. They could be found in 21 models (see Table 4.45). The second most modeled relation
were between use case and object concepts, which appeared in 14 models. In 7 models relation-
ships between class and object and relationships between composite and component were found.
Following, the language unit pairs which had the 5 most models with relationships between them
are:

84

• Use case and interaction - in 21 models

• Use case and object - in 14 models

• Class and object - in 7 models

• Component and composite - in 7 models

• Interaction and object - in 6 models

Table 4.45 also shows that there are numerous language unit combinations which had no rela-
tionships. Deployment, composite and state machine concepts had only with 2 other language
units modeled relationships. Interaction concepts only had relationships with class, use case and
objects.

The language unit combination interaction/use case had a strength of 0,84 in Table 4.46. This
means in 84% of the models with interaction and use case concepts also relations were modeled
between these language units. Another big cohesion also exists between Component and Com-
posite concepts, which had a strength of 0,88. So in 88% of the models with these language
units also modeled relations between them exists. As we go further in Table 4.46 the lan-
guage unit pair use case/object had a strength of 0,67. In 67% of the models with this language
unit combination also Connectors between them were modeled. Still relevant is the language
unit combination of interaction/object which had a value of 0,43. The combination class/object
which is one of the 5 most used combinations had only a value of 0,33. The other language unit
pairs had a little amount of modeled relationships between them in the models and low ratios
between relationships and model occurrences.

Interaction/use case and component/composite have the strongest cohesion within the evaluated
models. Further the results mirror the language unit combinations of Chapter 4.2. Use case,
interaction and object are also there strongly modeled together in the models. The results in this
section show that they also have modeled relationships to each other and not only modeled in
models side by side without Connectors.

To sum it up the most language unit pairs had little modeled relationships to each other. Only
few language unit combinations were strongly related to each other. This result is different com-
pared to the results about the appearance of the language unit combinations in models, where
many language units appeared together in many models. There exist probably several reasons
why language units which appear in many models together have only a few modeled relations
to each other. One could be that UML does not provide adequate language tools for expressing
relations between these language concepts. Another one that EA simply does not support the
required relationships between elements. It is also possible that the modelers do not know con-
structs for modeling relations between some language units. Finally it could be that there was
no need for modeling relations between these language units because they should give separated
views to the abstracted system. For example the language units class and interaction. According
to the data from Table 4.14 of Chapter 4.2 and Table 4.46 many models exist with this language

85

unit combinations but just a few really have modeled relations between them. It seems that class
constructs does not take a big part in interaction models and that these two language units model
different aspects of a system. A bit different is the situation between interaction and object con-
cepts. In almost half of the models with interaction and object participation modeled relations
between them exists. This covers also the interpretation and use of interactions with objects in
the UML literature, where objects can be found as instances of classes in several sequence dia-
grams as life lines. It is important to clarify that a life line in EA is an own element type. So in a
sequence diagram a life line has to be distinguished from an object or an actor. In EA elements
like actors, classes or objects can be dragged into a sequence diagram and would be displayed
as life lines but in the database they are still saved as an element from the type actor, object or
class. For the following detailed analyzes of the relationships between objects, use cases and
interactions the EA element types were analyzed. A life line was seen as an interaction concept,
an object was seen as an object concept and an actor was seen as an use case concept.

Summary of the Findings

• Few relationships between concepts of different language units exist in the 92 models.

• The strongest cohesion exist between the language unit combinations use case/interaction
and component/composite.

• As Tables 4.14, 4.15, 4.18 and 4.19 in Chapters 4.2 and 4.3 already showed, interaction,
objects and use case concepts were often modeled together. The results above showed
now that these language units also had modeled relations to each other in the most models
where they appeared together.

Limitations/Future Work. In this work only relationships listed in Table A.12 and Table A.13
are considered. All possible further relationships, which might be not considered in this work
between UML language units, can be part of future work.

Which Relationships are used for the Top Related Language Units?

In this chapter from the top 5 language unit pairs, which were figured out in the answer of the
research question above, the used relationships will be listed and interpreted. The relationships
for each language unit pair are described with three tables. One table lists all used relationships
between the language units with the total amount and the occurrence in models. This table can
be seen as an overview, the other tables present more details about the data in the first overview
table. One of the other tables describes in more detail the EA specific “ElementUnderElement“
relationships, if some exist between the language units. An “ElementUnderElement“ relation-
ship means that under an element in the EA project browser another element is modeled. In
this work this was seen as a modeled relationships between those two elements. In Figure 4.14
illustrates an “ElementUnderElement“ construct between a use case and a life line. The use case
is the parent element and the life line the child element. Therefore in the “More Detail: Ele-
mentUnderElement“ table the parent and child element combination with the total amount and
occurrence in models is presented. The last table lists the element types of the language units

86

between the found relationships. No difference between source and target was made, as it was
not seen as relevant for this evaluation.

Figure 4.14: EA Specific “ElementUnderElemen“ Construct

Interaction - UseCase Pair

Table 4.47 lists the used relationships between interaction and use case concepts. Table 4.48
gives a closer look between which concepts of the language units use case and interaction “El-
ementUnderElement“ relationships were modeled. Finally Table 4.49 lists the exact concepts
which were linked with the other relationships.

Table 4.47: Used Relationships

Relationship Total In Models

Message 138 18
ElementUnderElement 102 16
LifeLine2ClassifierInstance 5 3
Total 245 21

Table 4.48: More Detail: ElementUnderElement

Parent Element Child Element Total In Models

UseCase LifeLine 42 15
UseCase Interaction 38 3
Interaction Actor 22 3
Total 102 16

87

Table 4.49: More Detail: Other Relationships

UML Concept UML Concept Relation Type Total In Models

Actor LifeLine Message 138 18
LifeLine Actor LifeLine2ClassifierInstance 5 3
Total 143 19

Interpretation. In 21 out of 25 models with elements from the language units interaction
and use case also relationships were modeled. The most popular way of expressing a rela-
tion between interaction and use case concepts is with the UML message concept (see Table
4.47). In 18 out of 21 models with relations between interaction and use case concepts this
type of linking was used. Closely followed by modeling one element under another element
(“ElementUnderElement“) in the EA Project Browser with 16 out of 21 models. Far behind
is the modeling construct of instantiating a life line object from a use case concept (“Life-
Line2ClassifierInstance“), which only appears in 3 models.

As we can see top ranked in the “ElementUnderElement“ constructs are life lines under use
cases. In 15 models (i.e., 71% of models with use case and interaction relationships) this way
of connection was modeled with a total of 42 times. Far behind are interactions under use cases
and actors under interactions.

Message Connectors were found between life line instances of actors and life lines in 18 mod-
els. The relation type “LifeLine2ClassifierInstance“ was used in 3 models between life lines and
actors. The relationship “LifeLine2ClassifierInstance“ in this context means that a life line is
initiated from an actor.

The results lead to the conclusion that use cases were described by sequence diagrams, as life
lines can only be modeled in sequence diagrams in EA, and so by whole interaction structures.
Furthermore, in interaction models, mostly in sequence diagrams if we consider the diagram
evaluations from Chapter 4.3, actors were modeled as communication partners together with
life lines.

Summary of the Findings

• use cases were explained in detail by sequence diagrams.

• in sequence diagrams life lines and actors were communication partners.

UseCase - Object Pair

88

Table 4.50: Used Relationships

Relationship Total In Models

Association 74 11
ElementUnderElement 210 5
CommunicationMessage 103 4
Object2Classifier 14 3
Message 5 2
Aggregation 3 1
Total 409 14

Table 4.51: More Detail: ElementUnderElement

Parent Element Child Element Total In Models

UseCase Object 210 5
Total 210 5

Table 4.52: More Detail: Other Relationships

UML Concept UML Concept Relation Type Total In Models

Actor Object Association 66 10
Actor Object CommunicationMessage 103 4
Actor Object Message 5 2
Object UseCase Object2Classifier 4 2
Object Actor Object2Classifier 10 2
Object Actor Aggregation 3 1
Object UseCase Association 8 2
Total 199 14

Interpretation. The most popular relationship between the language units use case and ob-
ject is association (see Table 4.31). In 11 out of 14 models with relationships between use
case and object an association link was used to express this construct. An association is not the
UML standard way of modeling Connectors between object and use case concepts. There exist
an explanation why associations where used in this context. In EA linking two communication
partners automatic generates an simple association between them. If you want to explicit model
an communication message between two interaction partners in an communication diagram (for
example between an object and an actor) you have to add extra the message you want to send or
receive between the partners to the modeled association. The message counts as communication
message and the relationship between the communication partners as association in EA. As the
results show in many cases modelers simple linked two communication partners without extra
adding an communication message to the link.

89

The second most used way of linking these two language units were by modeling one con-
cept under another in the EA project browser. Table 4.51 gives more details about this. In only
3 models an object represented an instance of an use case classifier and in 2 models messages
could be found between use case and object concepts. One model had even an aggregation rela-
tion between those two language units.

Only objects were modeled under use cases but not the other way around as we can see on
Table 4.51.

In Table 4.52 we can see that associations, communication messages and sequence messages
were usually found between actor and object elements.

If we compare these results with the results from the diagram contents of Chapter 4.3, Ta-
ble 4.20 and the results of the relationships between use case and interactions a conclusion
can be made. In sequence as well as in communication diagrams objects and use case concepts
could be found. The evaluations here show that actor and objects were in communication to each
other with associations and messages. Further, objects were found under use cases. Under use
cases also life lines were found and therefore sequence diagrams. This leads to the conclusion
that use cases were described by interaction constructs in form of communication and sequence
diagrams with mostly objects, life lines and life line instances of actors as communicators.

Summary of the Findings

• Use cases were also described by communication diagrams.

• In communication diagrams actors and objects were communication partners.

Object - Class Pair

For the object/class pair only 2 tables describe the used relationships (Table 4.53 and Ta-
ble 4.54). There were no “ElementUnderElement“ constructs found between these 2 language
units.

Table 4.53: Used Relationships

Relationship Total In Models

Object2Classifier 57 7

Interpretation. As Table 4.53 lists, for all modeled relations between object and class con-
cepts only one type was used, “Object2Classifier“. For a more detailed view Table 4.54 shows
between which exact UML concepts from both language units the relationship was used. In the

90

Table 4.54: More Detail: Other Relationships

UML Concept UML Concept Relation Type Total In Models

Object Class Object2Classifier 50 6
Object Interface Object2Classifier 7 2
Total 57 7

most cases an object represented an instance of a class. In only 2 models it was different and a
object was an instance of an interface.

Summary of the Findings

• “Object2Classifer“ was the only modeled relationship between objects and class concepts.

Component - Composite Pair

Table 4.55: Used Relationships

Relationship Total In Models

ElementUnderElement 28 7
Delegate 6 6
Dependency 2 1
Total 36 7

Table 4.56: More Detail: ElementUnderElement

Parent Element Child Element Total In Models

Component Part 25 7
Component Port 3 1
Total 28 7

Interpretation. On top we see the “ElementUnderElement“ construct in Table 4.55. In ev-
ery model with a modeled relationship between component and composite elements this type
of relation was used. In 6 out of 7 models the delegate connector could be found and in only
one model 2 dependency connectors were used. To see between which concepts the different
relation types were modeled we take a look into Table 4.56 and Table 4.57. There we see a
component element was always the parent element within an “ElementUnderElement“ relation.

91

Table 4.57: More Detail: Other Relationships

UML Concept UML Concept Relation Type Total In Models

ProvidedInterface Part Delegate 6 6
Component Port Dependency 2 1
Total 8 7

So in the project browser of EA composite concepts were modeled under component elements.
In 6 out of 6 models with a delegate connection between component and composite the relation
was between a provided interface and a part element. Only one model had a delegate connection
between a component and a port element.

Summary of the Findings

• Relationships were mostly modeled between parts and components.

Object - Interaction Pair

Table 4.58: Used Relationships

Relationship Total In Models

Message 17 4
ElementUnderElement 99 2
Total 116 6

Table 4.59: More Detail: ElementUnderElement

Parent Element Child Element Total In Models

Interaction Object 99 2

Table 4.60: More Detail: Other Relationships

UML Concept UML Concept Relation Type Total In Models

LifeLine Object Message 17 4

Interpretation. In 4 models message Connectors between object and interaction concepts could

92

be found and in 2 models an element under element construct was used (Table 4.58). If we ob-
serve the data from Table 4.59 and Table 4.60 it shows us a clear picture how the language
unit object and interaction were mainly used together. The messages were only between object
and life lines and according to Table 4.59 in 2 models objects were modeled under interaction
elements. Objects were less in relation with life lines than with actors. It seems objects in inter-
action diagrams are more in communication with use case concepts, specially actors.

Only in a few models relationships between objects and interactions could be found. Use case
concepts were the more common interacting partner for objects in the models. Objects were
mostly modeled within interaction diagrams (see Chapter 4.3, Table 4.20) but acted more with
actors than with life lines.

Summary of the Findings

• Objects had mainly relationships with actors in interaction diagrams rather than with life
lines.

Overall Findings of Relationships between UML Language Units

The results of the evaluations showed that the language units use case, interaction, object and
class had a strong correlation together. Following the findings supporting the strengths of the
combination of these four language units are listed:

• The appearances of the language unit pairs as found in Table 4.14 in Chapter 4.2 are:
class/use case (in 33 models), class/interaction (in 26 models), use case/interaction (in 25
models), class/object (in 21 models), use case/object (in 21 models) and object/interaction
(in 14 models).

• The relevant diagram contents listed in Table 4.20 in Chapter 4.3 are: In 24 models actors
could be found in sequence diagrams, in 6 models objects were found in sequence dia-
grams, in 6 models actors could be found in communication diagrams, in 7 models objects
were found in communication diagrams.

• In 15 models life lines were modeled under use cases

• In 18 models actors were linked to life lines with messages

• In 11 models actors and objects were linked via associations and in 4 models via commu-
nication messages.

• In 7 models classes were instantiated by objects.

The results showed that the language units use case and interaction were strongly related. In EA
life lines can only be modeled in sequence diagrams and in no other diagram type. This means
that in 25 models with concepts from the language units use case and interaction in 15 models
use cases were described by sequence diagrams because in 15 models life lines were modeled

93

under use cases in the EA project browser as “ElementUnderElement“ constructs. Further in 6
models objects were found in sequence diagrams and in 7 models objects were found in com-
munication diagrams. In the other UML diagrams objects were rarely found (see Table 4.20,
Chapter 4.3). In 7 models out of 21 models with class und object elements (i.e., 33% of models
with class und object elements) objects represented instance of classes.

Summarized use case and interaction language unit concepts were strongly related and objects
could be found in many relations to the language units use case, interaction and class, where for
classes objects were mainly used as instances of classes.

4.6 Stereotype Usage

The last section of this chapter explores for which UML concepts stereotypes were used and
how often in the 92 sample models. The aim of this specific research is to show which UML
constructs are usually more extended and configured by modelers and which are not.

In EA exist multiple ways of defining stereotypes and assign them to model elements. As a
consequence stereotypes are mapped in different ways in the EA model repository. Further,
stereotypes are not only used to extend UML elements. In EA stereotypes also declare an model
element as concept from BPMN, ArchiMate, SoaML or other from EA supported modeling lan-
guages. This means that even as UML concept declared model elements can be from another
language than UML, only by using such stereotypes. Those stereotypes have always a full qual-
ity name (FQName) declaring the modeling language. A FQName is an attribute value pair in
the description of the stereotypes in the database. If a user defines an own stereotype there is also
the opportunity to set a FQName in some cases. Then it could be even an UML profile. Anyway
there exists no clear way to distinguish if a model element with a stereotype which has a FQ-
Name is an UML element or not. As a consequence in this work all model elements which have
a FQName are declared as EA Profile and not considered in the evaluations of the UML
(see also page 25 in this work). If the stereotype has no FQName it is not an EA Profile and
therefore considered as UML Profile in this work. Following only model elements which are
declared as UML Profile are considered. So these model elements have stereotypes without
a FQName.

Which UML Concepts had Stereotypes?

Table 4.61 lists all UML concepts which were extended by stereotypes, which were consid-
ered as UML Profile. The values in the Concept column represent the UML element type,
which are sorted by their Language Unit. In the Total column the total amount of el-
ements of the UML concept in the models can be found. In the Total (St) column the
amount of model elements from the UML concept which are extended by stereotypes is de-
picted. The in Models column shows in how many models the UML element type occurs.

94

The numbers in the in Models (St) column indicate in how many models model elements
from the UML concept are extended by stereotypes.

Table 4.61: UML Concepts with Stereotypes

Language Unit Concept Total Total (St) In Models In Models (St)

Class Class 2124 555 (26%) 65 27 (42%)
Class ClassAttribute 7812 3839 (49%) 51 12 (24%)
Class ClassOperation 6851 1844 (27%) 43 10 (23%)
Class Abstract Class 48 14 (29%) 14 5 (36%)
Class ClassOperationParameter 4262 11 (0%) 32 1 (3%)
Class Interface 180 1 (1%) 28 1 (4%)
UseCase UseCaseElement 489 53 (11%) 35 8 (23%)
UseCase ActorElement 257 25 (10%) 44 2 (5%)
Interaction LifeLine 246 101 (41%) 31 9 (29%)
Object Object 671 555 (83%) 25 18 (72%)
Activity ActivityElement 392 7 (2%) 18 3 (17%)
Activity ActivityPartition 18 3 (17%) 5 1 (20%)
Activity Action 85 2 (2%) 11 1 (9%)
Component Component 400 78 (20%) 15 4 (27%)
Component ProvidedInterface 109 32 (29%) 10 2 (20%)
Component RequiredInterface 82 18 (22%) 11 2 (18%)
Deployment Document Artifact 42 27 (64%) 9 4 (44%)
Deployment NodeElement 44 3 (7%) 11 2 (18%)
Deployment ExecutionEnvironment 8 1 (13%) 3 1 (33%)
Composite Port 4 2 (50%) 2 1 (50%)
Unclassified Dependency 489 178 (36%) 36 10 (28%)
Unclassified Association 3047 171 (6%) 67 9 (13%)
Unclassified Assembly 51 24 (47%) 5 2 (40%)
Unclassified Message 921 88 (10%) 34 2 (6%)
Unclassified Aggregation 729 546 (75%) 23 1 (4%)
Unclassified Use 158 2 (1%) 23 1 (4%)

Total 29 519 8 166 92 56
St = Stereotype, Total (St) = Total Model Elements of a UML Concept with Stereotypes

In Models (St) = Total Models with Model Elements of a UML Concept with Stereotypes

Interpretation. 555 out of 2124 classes were extended by stereotypes (i.e., 1/4 of all classes) in
27 out of 65 models with classes (see Table 4.61. 555 objects in 18 models had stereotypes (i.e.,
over 80 % of modeled objects). Many class operations and attributes were extended by stereo-
types. Almost half of all class attributes, these are 3839 attributes, were extended by stereotypes
in 12 models (i.e., 1/5 of models with class attributes). 1844 class operations in 10 models (i.e.,
1/4 of the models with class operations)) had stereotypes. Also for life lines the percentage of

95

used stereotypes is high. From 246 life lines found in 31 models 101 were extended by stereo-
types in 9 models. Not many artifacts exist in the models but more than half of them are extended
by stereotypes in 4 out of 9 models with this UML concept. The UML relationship with the most
stereotypes in models was dependency. Associations were mostly used without stereotypes only
171 of 3047 associations were extended by stereotypes in 9 models. Nearly half of all assembly
connectors had stereotypes. The amount of aggregations with stereotypes is high. 546 out of
729 aggregations were extended by stereotypes but they were all found in one model. In case of
language units we can notice that no single UML concept from the language unit state machine
were extended by stereotypes.

To sum it up the 6 most modified UML concepts by stereotypes, which appeared in at least
9 models, are:

• Object (i.e., in 72% of models with objects)

• Class (i.e., in 42% of models with classes)

• Life lines (i.e., in 29% of models with life lines)

• Dependency (i.e., in 28% of models with dependencies)

• Attributes (i.e., in 24% of models with attributes)

• Operations (i.e., in 23% of models with operations)

What are the most popular Stereotypes?

By observing the used stereotypes of the model elements in the models, a list with all the
names of the used stereotypes could be generated. In Table 4.62 we see the names of the 5
most used stereotypes. EA Type stands for the model element(s) the stereotype was used for.
Stereotype lists the name of the stereotype. Total the total amount this stereotype was
used and in Models the number of models where this stereotype could be found on the model
element.

Table 4.62: Top 5 used Stereotypes

EA Type Stereotype Total In Models

Object, Life Line, Class Entity 281 20
Object, Life Line Control 138 14
Class Table 332 13
Object, Life Line Class Boundary 92 13
Class Attribute Column 2199 8

Interpretation. The stereotype “entity“ was the most used stereotype within the sample models.
In 20 models this stereotype could be found on objects, life lines and classes. The stereotypes

96

“control“ were found in 14 models on objects and life lines, followed by “table“ and “boundary“
in 13 models. The fifth most used stereotype was “column“ which could be found in 8 models
on class attributes.

The stereotypes “entity“, “boundary“ and “control“ belong probably to the UML profile for
Software Development Processes. This is an official UML Profile introduced with the UML
version 1.3 [21].

Interesting is also the use of the stereotypes “table“ and “column“. It seems that classes were
sometimes used as table entities with columns as attributes. This could indicate the use of “En-
tity Relationship“ (ER) [4] modeling concepts via UML stereotypes in the sample models.

Summary of the Findings

• The UML Profile “Software Development Processes“ was found in several models.

• With the popular stereotypes “table“ and “column“ in the 92 models, classes were used as
table constructs were the attributes presented the columns.

Limitations/Future Work. Because of the stereotype management of the EA modelling tool it
could not clearly distinguished between UML model elements and model elements from other
modelling languages. In this research not all UML model elements could be investigated, only
those which could be definitely declared as UML model elements were considered. Therefore a
task for further investigations could be to find a way, maybe in cooperation with Sparx Systems,
for an exact interpretation of all UML model elements in an EA project. In addition more de-
tailed researches on stereotypes could be made in future work. For example exact classifications
of the stereotypes to the UML profile they belong, comparison between user created stereotypes
and UML predefined stereotypes, or deeper investigations about how stereotype properties were
used.

97

CHAPTER 5
Related Work

Metrics for UML models have been treated in many studies. UML metrics found in scientific
work can be classified into 2 groups. First there is the extensive group of research work about
UML quality metrics. Second there is the much smaller group of work dealing with UML usage
metrics. The research done in this thesis belongs to the second group.

5.1 UML Quality Metrics

Land and Chaudron [17] did an empirical assessment of the completeness of UML designs. A
UML model was seen as complete if for each model element its counterpart could be found.
A counterpart for an use case is for example a sequence diagram or a class in a class diagram
which is related to the use case.

In another work the complexity of UML class diagrams [10] was measured. One metric mea-
sured the number of generalization hierarchies in a class diagram for example.

A similar work [1] dealed with quantitative data metrics (number of classes, number of at-
tributes) of UML models. Only a few metrics are discussed and explained, but not how UML
models in general are constructed. For the calculation of the indicators simple OCL queries or
scripting languages are used.

An excellent paper about UML class metrics is “A Survey of Metrics for UML Class Diagrams“
[11]. This paper describes all the important UML class metrics which exist. All the metrics try
to measure the quality of UML class diagrams. Such relevant metric are the CK metrics [5],
Li and Henry’s metrics [18], MOOD metrics [7] and many more. Some of the metrics mea-
sure complexity, coupling, inheritance and polymorphism in UML class diagrams. According
to these published metrics, a Web service named “AnalysisWSService“ was developed by two

99

professors from the University of Alcalá in Spain 1. This service reads in an XMI file of the
UML class diagram and calculates in total 37 different metrics about this diagram. The output
is a structured HTML page with all the values of the metrics. This output can give the designers
a good measurement about the quality of their UML class diagrams and can be used as indicator
for software quality.

The Institute of Advanced Computer Science in Leiden, Netherlands, did some research in an-
alyzing UML models [3]. Their main focus laid on goodness and quality of UML models and
the variety of modeling styles. Some of the experiences and surveys in the past tried to find out
if there is a correlation between class-count and the effort spend in modeling or does the usage
of UML models improve software quality. They are also offering free model analyzing service
if people send them their models per E-Mail. One interesting point they found out according to
their studies were for example that developers apply more detail on critical and complex parts
of a system. Another finding was that complexity and coupling was higher for classes that are
modeled than not modeled.

Furthermore there is also a software design metrics tool for UML models2. This tool analyzes
the quality of UML models by calculating for example the degree of coupling or the complexity
of UML models. This should serve as a kind of quality benchmark for UML models.

5.2 UML Usage Metrics

Compared to the field of UML quality metrics, there are only a few papers which focused on the
usage of UML in practice.

One paper focused on the usage of UML 1.x [6]. In this work the result of a survey about
how UML 1.x is used was published. The authors developed a web survey and with the help
of the Object Management Group (OMG), the link to the survey was shared all over the OMG
members and all the other relevant organizations who are using UML. The main motivation of
this project was to find best practices in using UML and to better understand how the language
is used. The work analyzed the regular usage of 7 major UML analysis components in projects,
which were 6 UML diagrams and Use Case Narratives. The participants were asked in how
many projects the distinct UML components were used. The usage-sale consisted of none, <
1/3, 1/3 - 2/3, > 2/3 and in all projects. The results showed that class diagrams were used as
most in projects, followed by use case diagrams and sequence diagrams. Use case and sequence
diagrams had similar usage rates. In this work class diagrams were also used as most followed
by sequence and use case diagrams, which both were almost same in usage as well. As fourth
ranked in usage were Use Case Narratives, followed by activity, statechart and collaboration
diagrams. Thus, activity can be seen as the fourth often used diagram type. These results are

1A Web Service for Calculating the Metrics of UML Class Diagrams. http://www.drdobbs.com/web-
development/a-web-service-for-calculating-the-metric/240001719?pgno=1. Accessed: 2013-24-01.

2SDMetrics - The Software Design Metrics tool for the UML . http://www.sdmetrics.com. Accessed: 2013-21-
01.

100

similar with the results in Figure 4.11 of Chapter 4.3 in this work, where activity diagrams
were the fourth most used diagram type in the observed models. They draw the conclusion that
people did not use some of the other UML components because of the lack of knowledge they
had about these concepts. All in all according to the authors this research was a first step in
finding best practices for UML usage.

Another relevant UML survey about the UML 2.x usage is presented in3. But just three ques-
tions were asked about the usage. The only question related to the researches of this work was
about the diagram type usage. Class and Use Case diagrams were the top frequently used dia-
gram types and the timing diagram was hardly used at all. Further, state machine and sequence
diagrams were ranked as fourth and fifth most used diagrams, with slightly different usage rates.
Accordingly, in this UML survey state machine diagrams played a more important role than in
this work (compare with Figure 4.11, Chapter 4.3). One of the conclusions were that people
still know little about all the UML 2.x concepts.

A current work about how UML is used in practice is “UML in Pracice“ by Marian Petre [23].
In this paper, five patterns of UML use were identified in interviews with 50 different compa-
nies. The patterns were about if UML is used and when how deeply UML is involved in the
company processes. In fact only 15 repliers did use UML. Mostly they used UML selectivly in
some design parts, no one used it for all the design works in the company. The only question
which had a similarity with this work was about the UML diagram usage. 5 different diagram
types were used. Class diagrams by 7 users, sequence and activity diagrams by 6 users, state
machine diagrams by 3 users and use case diagrams by 1 user. Comparing it with the results of
Chapter 4.3, Figure 4.11 the first and second rank is the same.

To find a kernel UML with the most important UML constructs Erickson and Siau conducted
a Delphi study [8]. For this, experts where ask to rate the importance of the 9 standard UML
1.x diagrams and related constructs. The scale reached from 1 to 5, 1 was very important and 5
was not important at all. From the results the mean values were calculated. The means of the
diagram and constructs were as follows: class 1, use case 1.61, sequence 1.73, statechart 1.81,
component 2.31, activity 2.41, collaboration 2.57, deployment 2.69, object 3.00. The diagrams
and constructs of class, use case and sequence were the most important. Also in the results of
this research work class, use case and interaction concepts and diagrams occurred as most over
the 92 models (cf. Chapter 4.2, Figure 4.8 and Chapter 4.3, Figure 4.11). Completely different
were the findings about the importance of statechart and object constructs. Objects were seem
to be the least important UML constructs but in this work they were widely used in the sample
models. State machine constructs were not relevant at all in the sample models, but according to
the work of Erickson and Siau statechart is ranked as fourth most important UML diagram and
construct.

Another survey where people were asked about the importance of the UML 1.x standard di-

3Project Pragamtics, LLC. http://www.projectpragmatics.com/Home/resources-for-you-1/the-uml-survey-
results-are-in. Accessed: 2013-03-01.

101

agrams [13] had similarities with this work. There the most important UML diagrams were
class, use case and sequence diagrams as well. Class and use case diagrams were seen as equal
important followed closely by sequence diagrams. Statechart, object and activity were close
together on the next ranks. Considered as least important were collaboration, component and
deployment on the last three ranks. Again the only differences with this work were the impor-
tance of statechart and object diagrams.

The work with the most similarity, in case of the research methodology, was written by Reg-
gio, Leotta, Ricca and Clerissi from the Universitiy of Genova [24]. There UML books, UML
courses and UML tools were observed for the occurrence of distinct UML constructs. As more
often a UML construct appeared as more important it was seen. All UML diagrams from ver-
sion 2.x, several activity and use case diagram constructs were considered for this evaluation.
Class, use case, sequence, activity and state machine diagrams had all an usage of over 90% in
all sources. In under 50% of all sources composite structure, timing, interaction-overview and
profile diagrams were found. The most relevant use case constructs were use case, actor, extend
and include, which were all found in over 90% of the sources. From the 48 considered activity
constructs only 9 were seen as very relevant. These 9 were action, control flow edge, initial and
final node, decision/merge nodes, fork/join nodes, activity partition, object node and object flow
edge. The construct activity was only found in 50% of the sources. Basically the results cover
the findings of this work but there exist a few exceptions. First, state machine diagrams were
much less relevant in the 92 evaluated sample models (see Figure 4.11, Chapter 4.3). Second,
the activity by itself was one of the most used activity constructs in the models, further activity
partition, object flow edges and object nodes were rarely used in the models (compare with Table
4.25, Chapter 4.4). Third, the extend and include concepts were also seen as much less relevant
in the evaluated models than in [24] (compare with Table 4.24, Chapter 4.4).

According to the related work, we can say that for the two UML metrics groups two differ-
ent methods of collecting necessary data were used. On one hand quality metrics were mostly
calculated by analyzing concrete UML models. On the other hand for the UML usage metrics
only surveys or the appearance of UML constructs in books, courses, and tools were evaluated to
deduce how UML is used in practice. In contrast, this work calculated and evaluated the usage
of UML by analyzing real world models. So far this approach was only used for UML quality
metrics. Hence, this is the key difference to the related work about UML usage.

102

CHAPTER 6
Conclusion and Future Work

In total 92 EA models were analyzed, which extensively used UML. The aim of the work was to
understand the practical usage of UML. The usage analysis of UML was split into the following
5 categories:

• UML Language Units

• UML Concepts

• UML Diagrams

• Relationships between UML Language Units

• Stereotype

According to these categories, research questions were formulated for each group, which we
have answered in this work.

The considered UML concepts in this work were split into language units, related to UML
language units. The results showed that the language units class, use case and interaction were
used most. The least used language unit is state machine. In average (median) concepts from
2 different language units were found in one model. The language unit combination class and
use case were found as most in the models. With clustering methods, models could be classified
according to their used language units. 5 possible classifications for the 92 models could be
found. The first class of models consist mainly of use case, object, activity and class concepts.
The second and third model classes had their focus only on one language unit, either class or
use case. The fourth class had its focus on the language units class, use case, interaction and
object. The last model class consisted of 6 different language units, which were class, use case,
interaction, component, deployment and composite.

For diagrams the exact same metrics were calculated as for the language units plus additional

103

diagram metrics. As for language units, the most used diagram types were class, use case and
interaction. The least used diagram type is object. As for language units, also for diagrams
in average 2 different diagram types were found in one model. Class and interaction diagrams
were mostly used together in the models. The clustering method detected 5 different model
classes according to their used diagram types. 4 of these model classifications had their focus
on one specific diagram type, meaning that this diagram type appeared in almost all of the mod-
els within this cluster. One model group had its main focus on activity diagrams, one on class
diagrams, one on use case diagrams and one on interaction diagrams. The fifth group consisted
mainly of class, use case, interaction, component and deployment diagrams.

To sum it up diagram usage were strongly related to the language units usage in a model, because
the model elements were usually drawn in the corresponded diagrams. If classes were modeled
usually class diagrams could be found as well, if activities were modeled usually activity dia-
grams could be found as well and so on. The only difference was with the language unit object
and object diagrams. Only in 1 model an object diagram could be found but in 25 models objects
were modeled. Objects were usually modeled in interaction diagrams. Further there was found
a correlation with interaction diagrams and actors. Actors were mainly found in use case and/or
interaction diagrams. More models with interaction diagrams than interaction concepts were
found, because in interaction diagrams concepts from several language units could be found. In
general interaction diagrams visualized communications between objects, actors and life lines.
In class diagrams mainly classes were found and in use case diagrams mainly use cases and
actors.

For class, use case and activity models usually 3 diagrams of the related type were used in
the model. For instance in a model with class concepts 3 class diagrams could be found in av-
erage. The other diagram types appeared in general once in a model. Therefore, models usually
had only one diagram representing the visualization of interactions.

In most models only basic UML concepts could be found. Newly introduced UML concepts
from version 1.5 and 2.x were rarely used. Many of the considered UML concepts were not
found in the sample models. The most popular UML concepts were comments, classes, activi-
ties, life lines, objects, use cases, actors, associations, generalizations, messages, use case links
and control flows. Comments were even found in the most models (i.e., 67 models). An ana-
lyzes of the comment content further showed that generally natural language (mostly with over
100 characters) were used instead of programming language, OCL constraints or other kind of
formal calculations.

It seems that the possibility of modeling connections between different language units with
EA was not widely used within the 92 models. Only two occurrences of strong cohesion could
be found: A very strong cohesion between component and composite concepts and another one
between use case, object and interaction components. For all the other language units which ap-
pear together in the models only few modeled connections, which the script is able to read out,
could be found. For this evaluation the result is clear. Classes were used widely but were mod-

104

eled encapsulated, describing just a particular part of the system. Class concepts did not interact
very often with other language units within the 92 sample models. Same is true for the language
unit activity, state machine and deployment. Another result is that use cases were usually de-
scribed further by interaction constructs, mostly by sequence diagrams and few communication
diagrams. The communication partners in these diagrams were mainly actors, objects and life
lines. In case of the strong component and composite cohesion the relationships were mostly
between components or provided interfaces and part elements.

The top UML concepts which were extended by stereotypes were classes, attributes, operations,
objects, dependency relationships and life lines. For objects and life lines the UML Profile “Soft-
ware Development Processes“ were used in most cases. Classes in combination with attributes
and operations were modeled as table concepts.

This UML study covers the basic UML constructs. In future work an extended list of con-
sidered UML constructs could be analysed. As UML models only EA project files reachable via
google were considered. In future work more UML models created with other tools like Eclipse
UML 2 Tools 1, Visual Paradigm for UML 2, Modelus Suite 3, etc. could be observed.

Furthermore, companies could be asked directly for UML models, which can be analyzed. Con-
sidering more UML tools and ways of how to get UML models would lead to a bigger set of
UML models. As bigger the amount of UML models, as more reliable and accurate the results
about the UML usage in the practice are. It would be very interesting how similar or different
the results of such UML studies are compared to this work.

Some of the used metrics in this work have limitations. In future work these limitations could
be overcome. A variety of additional usage metrics could be used in future work as well. Met-
rics about multiplicity usage, naming conventions of elements and coloring of elements were
probably interesting. An concrete example is the way of expressing relations between model
elements. In the Appendix A we can see all the possible relationships the script is able to read
out from the models. But of course also other ways of expressing relations could be used. As an
example with naming conventions this could be made. For instance, an activity is implementing
an class operation by having the same name like the operation or an activity describes a use case
in the same way. This is another possibility how relations between model elements could be
measured. There might be many more interesting usage metrics, which could be established in
future work.

1http://www.eclipse.org/modeling/mdt/?project=uml2. Accessed: 2013-13-11
2http://www.visual-paradigm.com/product/vpuml. Accessed: 2013-13-11
3http://vektiva.com/modelus. Accessed: 2013-13-11

105

APPENDIX A
Appendix

A.1 UML Concepts

All UML concepts the implemented script is able to handle are listed in the following attached
tables. Each table has 6 columns. A “Model Element“ represents an EA element which can be
directly added to an EA model. An “UML Concept“ is in fact a “Model Element“ but in some
cases for generating a specific UML element the created EA element needs further settings. So
some model elements can occur in several variations. For example there are five different types
of UML classes but EA only provides one model element for all of these five UML elements. To
create an abstract class in EA, first a class element has to be created and afterwards in the prop-
erties of this EA model element the abstract attribute has to be activated. Therefore a distinction
was made between the model element and the UML concept, as one type of a model element can
represent different UML concepts. A class can be a class, an association class, an abstract class,
an active class or a parameterized class but it will be always treated as class in the evaluation.

The columns “EA Type“, “EA MetaType“, “EA Subtype“ and “Additional AI Calls“ correspond
to the appropriate API calls in EA to find out which UML concept the observed EA model el-
ement in the models represent. For some model elements different subtype values are possible.
For example a model element is declared as class when the type and the metatype has the value
“Class“ and the subtype is either 0 or 1 or 2 or 3. All four subtype values are possible to deter-
mine that this EA model element is an UML class element. In such cases the different subtype
values do not declare any semantical differences as all other model element properties are equal
except the subtype. Why EA sometimes save different subtypes for the same model element
could not found out clearly, probably different EA versions save model elements in different
ways or it sometimes declare the way how this model element was created (for example via
the diagram toolbox or directly in the project browser). That some subtypes had no semantical
influence on the UML concept it represents in real was determined by manually observing all
elements which were declared as unclassified by the script. If the model element was clearly
representing a class for example the subtype was added to the list of possible values a class can

107

have as subtypes in EA.

In the next few pages all model elements which the script is able to read out, grouped by the
language units they belong to, are listed.

108

Table A.1: The Considered Class Elements

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

Class Class Class Class 0,1,2,3
Class Association Class Class AssociationClass 17
Class Abstract Class Class Class 0,1,2,3 EA.Element.Abstract == 1
Class Active Class Class Class 0,1,2,3 EA.Element.IsActive == 1
Class Parameterized Class Class Class 0,1,2,3 SQL request on DB table t_xref for corresponded EA.Element

if column Description has Value ==
“Type=ClassifierTemplateParameter“

Attribute Class Attribute Attribute
Operation Class Operation Operation
OperationParameter Class Operation Parameter OperationParameter

&& EA.OperationParam.Type == ““
Interface Interface Interface Interface 0,1,2,8 EA.Element.StereotypeEx == “interface“
Signal Signal Signal Signal 0
Nary Association Nary Association Association Association 0
Enumeration Enumeration Class Enumeration 0,8 EA.Element.StereotypeEx == “enumeration“
PrimitiveType PrimitiveType PrimitiveType PrimitiveType 0
DataType DataType DataType DataType 0

109

Table A.2: The Considered Activity Elements

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

ActivityElement ActivityElement Activity Activity 0,8
SequenceNode SequenceNode Activity SequenceNode 19
SequenceNode SequenceNode with Pin(s) Activity SequenceNode 19 Iterate through All

sub elements IF
EA.Element.Type == “ActionPin“
THEN Node has Pin(s)

SequenceNode SequenceNode Activity SequenceNode 19 Iterate through All
with Expansion Node(s) sub elements IF

EA.Element.Type == “ExpansionNode“
THEN Node has Node(s)

SequenceNode SequenceNode Activity SequenceNode 19 Iterate through All
with Activity Parameter(s) Sub Elements IF

EA.Element.Type == “ActivityParameter“
THEN Node has Parameter(s)

Action AtomicAction Action Action 0,8
Action CallBehaviorAction Action CallBehaviorAction 0,8
Action AcceptCallAction Action AcceptCallAction 0,8
Action AcceptEventAction Action AcceptEventAction 0,1,8
Action AcceptEventTimerAction Action AcceptEventTimerAction 0,8
Action AddStructuralFeature-

ValueAction Action AddStructuralFeatureValueAction 0,8
Action AddVariableValueAction Action AddVariableValueAction 0,8
Action BroadcastSignalAction Action BroadcastSignalAction 0,8
Action ClearAssociationAction Action ClearAssociationAction 0,8
Action ClearStructuralFeatureAction Action ClearStructuralFeatureAction 0,8
Action ClearVariableAction Action ClearVariableAction 0,8
Action CreateLinkAction Action CreateLinkAction 0,8
Action CreateLinkObjectAction Action CreateLinkObjectAction 0,8
Action CreateObjectAction Action CreateObjectAction 0,8
Action CallOperationAction Action CallOperationAction 0,8
Action DestroyLinkAction Action DestroyLinkAction 0,8
Action DestroyObjectAction Action DestroyObjectAction 0,8

Continued on Next Page

110

Table A.2 – Continued From Previous Page

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

Action HyperlinkAction Action HyperlinkAction 0,8
Action RaiseExceptionAction Action RaiseExceptionAction 0,8
Action ReadExtentAction Action ReadExtentAction 0,8
Action ReadIsClassifiedObjectAction Action ReadIsClassifiedObjectAction 0,8
Action ReadLinkAction Action ReadLinkAction 0,8
Action ReadLinkObjectEndAction Action ReadLinkObjectEndAction 0,8
Action ReadLinkObject-

EndQualifierAction Action ReadLinkObjectEndQualifierAction 0,8
Action ReadSelfAction Action ReadSelfAction 0,8
Action ReadStructuralFeatureAction Action ReadStructuralFeatureAction 0,8
Action ReadVariableAction Action ReadVariableAction 0,8
Action ReclassifyObjectAction Action ReclassifyObjectAction 0,8
Action RemoveStructuralFeature-

ValueAction Action RemoveStructuralFeatureValueAction 0,8
Action RemoveVariableValueAction Action RemoveVariableValueAction 0,8
Action ReplyAction Action ReplyAction 0,8
Action SendObjectAction Action SendObjectAction 0,8
Action SendSignalAction Action SendSignalAction 0,8
Action StartOwnedBehaviorAction Action StartOwnedBehaviorAction 0,8
Action TestIdentifyAction Action TestIdentifyAction 0,8
Action ValueSpecificationAction Action ValueSpecificationAction 0,8
Action WriteLinkAction Action WriteLinkAction 0,8
Action WriteStructuralFeatureAction Action WriteStructuralFeatureAction 0,8
Action WriteVariableAction Action WriteVariableAction 0,8
ActionPin ActionPin ActionPin ActionPin 0
ActionPin ActionPin - ClassifierType ActionPin ActionPin 0 EA.Element.ClassifierID != 0
ActionPin ActionPin - PrimitiveType ActionPin ActionPin 0 SQL request on DB table t_object

for corresponded EA.Element
if column Classifier_guid is not empty

ActionPin ActionPin - NoType ActionPin ActionPin 0 SQL request on DB table t_object
for corresponded EA.Element
if column Classifier_guid is empty

ObjectNode ObjectNode ObjectNode ActionPin 0
ActivityParameter ActivityParameter ActivityParameter ActivityParameter 0

Continued on Next Page

111

Table A.2 – Continued From Previous Page

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

ActivityParameter ActivityParameter - ActivityParameter ActivityParameter 0 EA.Element.ClassifierID != 0
ClassifierType

ActivityParameter ActivityParameter - ActivityParameter ActivityParameter 0 SQL Request on DB table t_object
PrimitiveType

for correspondedEA.Element
if column Classifier_guid is empty

ActivityParameter ActivityParameter - NoType ActivityParameter ActivityParameter 0 SQL Request on DB table t_object
for corresponded EA.Element
if column Classifier_guid is empty

ExpansionRegion ExpansionRegion ExpansionRegion ExpansionRegion 0,8 Iterate through CustomProperties
in iterative mode IF

CustomProperty.Name == “mode“
&& CustomProperty.Value == “iterative“

ExpansionRegion ExpansionRegion ExpansionRegion ExpansionRegion 0,8 Iterate through CustomProperties
in parallel mode IF

CustomProperty.Name == “mode“
&& CustomProperty.Value == “parallel“

ExpansionRegion ExpansionRegion ExpansionRegion ExpansionRegion 0,8 Iterate through CustomProperties
in stream mode IF

CustomProperty.Name == “mode“
&& CustomProperty.Value == “stream“

ExpansionRegion ExpansionRegion ExpansionRegion ExpansionRegion 0,8 Iterate through Sub Elements
with Expansion Node(s) IF

EA.Element.Type == “ExpansionNode“

Interruptible- InterruptibleActivityRegion InterruptibleActivityRegion InterruptibleActivityRegion 0
ActivityRegion
Interruptible- InterruptibleActivityRegion InterruptibleActivityRegion InterruptibleActivityRegion 0 Iterate through
ActivityRegion with InterruptFlow(s) linked connectors IF

EA.Connector.Type == “InterruptFlow“
ActivityPartition ActivityPartition ActivityPartition ActivityPartition 0
ExpansionNode ExpansionNode ExpansionNode ExpansionNode 0
DataStore DataStore Object DataStore 5,8 EA.Element.StereotypeEx == “datastore“
CentralBufferNode CentralBufferNode CentralBufferNode CentralBufferNode 0

Continued on Next Page

112

Table A.2 – Continued From Previous Page

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

InitialNode InitialNode StateNode Pseudostate 100
FinalNode FinalNode StateNode Pseudostate 101
FlowFinalNode FlowFinalNode StateNode Pseudostate 102
MergeNode MergeNode Decision, MergeNode DecisionNode, MergeNode 0 (InConnectors > OutConnectors)

&& (OutConnectors == 1)
DecisionNode DecisionNode Decision, MergeNode DecisionNode, MergeNode 0 (OutConnectors > InConnectors)

&& (InConnectors == 1)
DecisionMergeNode DecisionMergeNode Decision, MergeNode DecisionNode, MergeNode 0 (OutConnectors > 1)

&& (InConnectors > 1)
Unused Unused Decision, MergeNode DecisionNode, MergeNode 0 (OutConnectors <= 1)
DecisionMergeNode DecisionMergeNode

&& (InConnectors <= 1)
JoinNode JoinNode Synchronization Synchronization 0,1 (InConnectors > OutConnectors)

&& (OutConnectors == 1)
ForkNode ForkNode Synchronization Synchronization 0,1 (OutConnectors > InConnectors)

&& (InConnectors == 1)
JoinForkNode JoinForkNode Synchronization Synchronization 0,1 (OutConnectors > 1)

&& (InConnectors > 1)
Unused Unused Synchronization Synchronization 0,1 (OutConnectors <= 1)
JoinForkNode JoinForkNode

&& (InConnectors <= 1)
ExceptionHandler ExceptionHandler ExceptionHandler ExceptionHandler 0,8

ExceptionHandler ExceptionHandler ExceptionHandler ExceptionHandler 0,8 Iterate through
with InterruptFlow(s) linked connectors IF

EA.Connector.Type == “InterruptFlow“
Structured- StructuredActivityNode StructuredActivityNode StructuredActivityNode 16
ActivityNode
Structured- StructuredActivityNode StructuredActivityNode StructuredActivityNode 16 Iterate through Sub
ActivityNode with Pin(s) elements IF

EA.Element.Type == “ActionPin“
Structured- StructuredActivityNode StructuredActivityNode StructuredActivityNode 16 Iterate through Sub
ActivityNode with Expansion Node(s) elements IF

EA.Element.Type == “ExpansionNode“
Continued on Next Page

113

Table A.2 – Continued From Previous Page

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

LoopNode LoopNode LoopNode, Activity LoopNode 17
LoopNode LoopNode with Pin(s) LoopNode, Activity LoopNode 17 Iterate through Sub

elements IF
EA.Element.Type == “ActionPin“

LoopNode LoopNode LoopNode, Activity LoopNode 17 Iterate through Sub
with Expansion Node(s) elements IF

EA.Element.Type == “ExpansionNode“
ConditionalNode ConditionalNode ConditionalNode ConditionalNode 18
ConditionalNode ConditionalNode with Pin(s) ConditionalNode ConditionalNode 18 Iterate through Sub

elements IF
EA.Element.Type == “ActionPin“

ConditionalNode ConditionalNode ConditionalNode ConditionalNode 18 Iterate through Sub
with Expansion Node(s) elements IF

EA.Element.Type == “ExpansionNode“

114

Table A.3: The Considered Interaction Elements

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

LifeLine LifeLine Sequence Sequence 0
CombinedFragment CombinedFragment - Alt CombinedFragment CombinedFragment 0
CombinedFragment CombinedFragment - Opt CombinedFragment CombinedFragment 1
CombinedFragment CombinedFragment - Break CombinedFragment CombinedFragment 2
CombinedFragment CombinedFragment - Par CombinedFragment CombinedFragment 3
CombinedFragment CombinedFragment - Loop CombinedFragment CombinedFragment 4
CombinedFragment CombinedFragment - Critical CombinedFragment CombinedFragment 5
CombinedFragment CombinedFragment - Neg CombinedFragment CombinedFragment 6
CombinedFragment CombinedFragment - Assert CombinedFragment CombinedFragment 7
CombinedFragment CombinedFragment - Strict CombinedFragment CombinedFragment 8
CombinedFragment CombinedFragment - Seq CombinedFragment CombinedFragment 9
CombinedFragment CombinedFragment - Ignore CombinedFragment CombinedFragment 10
CombinedFragment CombinedFragment - Consider CombinedFragment CombinedFragment 11
Gate Gate MessageEndpoint Gate 2
InteractionState InteractionState - Invariant InteractionState InteractionState 0
InteractionState InteractionState - Continuation InteractionState InteractionState 1
MessageEndpoint MessageEndpoint MessageEndpoint MessageEnd 0
Interaction Interaction Interaction Interaction 0,8
InteractionParameter InteractionParameter Interaction Interaction 0,8 SQL Request on DB Table t_xref

for corresponded EA.Element
if column Description has Value == “Type=Parameter“

InteractionOccurrence InteractionOccurrence InteractionOccurrence InteractionOccurrence 0
MessageLabel MessageLabel MessageEndpoint Comment 4
State Lifeline State Lifeline TimeLine TimeLine 0
Value Lifeline Value Lifeline TimeLine TimeLine 1

115

Table A.4: The Considered State Machine Elements

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

StateMachine StateMachine StateMachine StateMachine 0,8
ProtocolStateMachine ProtocolStateMachine StateMachine ProtocolStateMachine 0,8
State State State State 0,8
State State with Regions State State 0,8 SQL request on DB table t_xref

for corresponded EA.Element
if column Description has Value == “@PAR;Name=“

State SubmachineState State State 0,8 Iterate through CustomProperties
IF
CustomProperty.Name == “isSubmachineState“
&& CustomProperty.Value == “-1“

State State - isOrthogonal State State 0,8 Iterate through CustomProperties
IF
CustomProperty.Name == “isOrthogonal“
&& CustomProperty.Value == “-1“
}

State State - isSimple State State 0,8 Iterate through CustomProperties
IF
CustomProperty.Name == “isSimple“
&& CustomProperty.Value == “-1“
}

StateBehaviorElement StateBehaviorElement Iterate through Operations
StateBehaviorElement StateBehavior - Entry EA.Method.ReturnType == “entry“
StateBehaviorElement StateBehavior - Do EA.Method.ReturnType == “do“
StateBehaviorElement StateBehavior - Exit EA.Method.ReturnType == “exit“
StateBehaviorElement StateBehavior - Any != “entry“ AND “do“ AND “exit“
InitialPseudoState InitialPseudoState StateNode Pseudostate 3
FinalState FinalState StateNode FinalState 4
Junction Junction StateNode Pseudostate 10
Choice Choice StateNode Pseudostate 11
Terminate Terminate StateNode Pseudostate 12
ExitPoint ExitPoint StateNode Pseudostate 14
EntryPoint EntryPoint StateNode Pseudostate 13
ShallowHistoryNode ShallowHistoryNode StateNode Pseudostate 5

Continued on Next Page

116

Table A.4 – Continued from Previous Page

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

ShallowHistoryNode ShallowHistoryNode with default target StateNode Pseudostate 5 (OutConnectors >= 1)
DeepHistoryNode DeepHistoryNode StateNode Pseudostate 15
DeepHistoryNode DeepHistoryNode with default target StateNode Pseudostate 15 (OutConnectors >= 1)
SynchNode SynchNode StateNode Pseudostate 6
SignalTrigger SignalTrigger Trigger Trigger 0 Iterate through CustomProperties

IF
CustomProperty.Name == “kind“
&& CustomProperty.Value == “Signal“

SignalTrigger SignalTrigger with Specification Trigger Trigger 0 SQL Request on DB Table t_xref
for corresponded EA.Element
if column Description has Value == “RefGUID=“

CallTrigger CallTrigger Trigger Trigger 0 Iterate through CustomProperties
IF
CustomProperty.Name == “kind“
&& CustomProperty.Value == “Call“

CallTrigger CallTrigger with Specification Trigger Trigger 0 SQL Request on DB Table t_xref
for corresponded EA.Element
if column Description has Value == “RefGUID=“

TimeTrigger TimeTrigger Trigger Trigger 0 Iterate through CustomProperties
IF
CustomProperty.Name == “kind“
&& CustomProperty.Value == “Time“

TimeTrigger TimeTrigger with Specification Trigger Trigger 0 SQL Request on DB Table t_xref
for corresponded EA.Element
if column Description has Value == “RefGUID=“

ChangeTrigger ChangeTrigger Trigger Trigger 0 Iterate through CustomProperties
IF
CustomProperty.Name == “kind“
&& CustomProperty.Value == “Change“

ChangeTrigger ChangeTrigger with Specification Trigger Trigger 0 SQL Request on DB Table t_xref
for corresponded EA.Element
if column Description has Value == “RefGUID=“

AnyTrigger AnyTrigger Trigger Trigger 0 Iterate through CustomProperties
IF

Continued on Next Page

117

Table A.4 – Continued from Previous Page

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

CustomProperty.Name == “kind“
&& CustomProperty.Value == ““

AnyTrigger AnyTrigger with Specification Trigger Trigger 0 SQL Request on DB Table t_xref
for corresponded EA.Element
if column Description has Value == “RefGUID=“

118

Table A.5: The Considered Use Case Elements

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI calls

UseCase UseCase UseCase UseCase 0,8
Boundary Boundary Boundary Boundary 0
Actor Actor Actor Actor 0,8

119

Table A.6: The Considered Object Concepts

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

Object Object Object Object 0,8

120

Table A.7: The Considered Component Elements

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

Component Component Component Component 0,8
Packaging Component Packaging Component Package Package 20
ProvidedInterface RequiredInterface RequiredInterface RequiredInterface 1
RequiredInterface ProvidedInterface ProvidedInterface ProvidedInterface 0

121

Table A.8: The Considered Deployment Elements

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

Artifact Artifact Artifact Artifact 0,1
DeploymentSpecification DeploymentSpecification DeploymentSpecification DeploymentSpecification 0
Device Device Device Device 0
ExecutionEnvironment ExecutionEnvironment ExecutionEnvironment ExecutionEnvironment 0
NodeElement NodeElement Node Node 0

122

Table A.9: The Considered Composite Elements

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

Collaboration Collaboration Collaboration Collaboration 0,8
Collaboration Use Collaboration Use CollaborationOccurrence CollaborationOccurrence 0,8
PartElement PartElement Part Part 0
Port Port Port Port 0

123

Table A.10: The Considered Auxiliary Construct Elements

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

InformationItem InformationItem InformationItem InformationItem 0
Comment Comment Note Note 0,1,2
Constraint Constraint Constraint Constraint 0

124

A.2 UML Diagrams

All considered UML diagrams are listed in Table A.11. The column “Diagram Type“ stands
for the UML diagram type. Column “EA Type“ and “EA MetatType“ correspond to the appro-
priate API calls in EA to find out which UML diagram type the observed EA diagram element
in the models represent.

In Table A.12 all considered EA connectors, which were categorized to the different UML rela-
tionships, are listed. This Table is defined like the Tables in the Appendix A.1 above.

The last Table A.13 in this section lists all considered UML relationships, which were not ex-
pressed by an EA connector element.

Table A.11: The Considered Diagram Types

Diagram Type EA Type EA MetaType

ClassDiagram Logical, Class empty
UseCaseDiagram Use Case empty

UML Behavioral::Use Case
StateMachineDiagram Statechart, empty

UML Behavioral::State Machine
ActivityDiagram Activity, empty

UML Behavioral::Activity
SequenceDiagram Sequence, empty

UML Behavioral::Sequence
DeploymentDiagram Deployment empty
ComponentDiagram Component empty
CompositeStructureDiagram CompositeStructure empty
ObjectDiagram Object empty
PackageDiagram Package empty
CommunicationDiagram Collaboration empty
TimingDiagram Timing empty
InteractionOverviewDiagram InteractionOverview empty
SYSML::ActivityDiagram Activity SysML1.2::Activity
SYSML::BlockDefinition Logical SysML1.2::BlockDefinition
SYSML::InternalBlock CompositeStructure SysML1.2::InternalBlock
SYSML::PackageDiagram Package SysML1.2::Package
SYSML::ParametricDiagram CompositeStructure SysML1.2::Parametric
SYSML::RequirementDiagram Custom SysML1.2::Requirement
SYSML::SequenceDiagram Sequence SysML1.2::Sequence
SYSML::StateMachineDiagram Statechart SysML1.2::StateMachine
SYSML::UseCaseDiagram Use Case SysML1.2::UseCase

125

Table A.12: The Considered UML Connectors

Model Element UML Concept EA Type EA MetaType EA Subtype Additional AI Calls

Association Association Association Association Class, empty
Generalization Generalization Generalization Generalization empty
Realisation Realisation Realisation Realisation empty EA.Connector.Stereotype == “realize“,

EA.Connector.Stereotype == ““
Dependency Dependency Dependency Dependency empty
Aggregation Aggregation Aggregation Aggregation Weak, empty
Composition Composition Aggregation Aggregation Strong
ControlFlow ControlFlow ControlFlow ControlFlow empty
ObjectFlow ObjectFlow ObjectFlow ObjectFlow empty
UseCaseLink UseCaseLink UseCase UseCaseLink empty
Extend Extend UseCase UseCaseLink Extends EA.Connector.StereotypeEx == “extend“
Include Include UseCase UseCaseLink Includes EA.Connector.StereotypeEx == “include“
Message Asynchron Message Asynchron Sequence Sequence empty
Message Asynchron - Message Asynchron - Sequence Sequence New
New New
Message Asynchron Message Asynchron Sequence Sequence New EA.Connector.MiscData(3) == “1“
New - Reply New - Reply
Message Asynchron - Message Asynchron - Sequence Sequence Delete
Delete Delete
Message Asynchron - Message Asynchron - Sequence Sequence Delete EA.Connector.MiscData(3) == “1“
Delete - Reply Delete - Reply
Message Synchron Message Synchron Sequence Sequence empty
Message Synchron - Message Synchron - Sequence Sequence New
New New
Message Synchron - Message Synchron - Sequence Sequence New EA.Connector.MiscData(3) == “1“
New - Reply New - Reply
Message Synchron - Message Synchron - Sequence Sequence Delete
Delete Delete
Message Synchron - Message Synchron - Sequence Sequence Delete EA.Connector.MiscData(3) == “1“
Delete - Reply Delete - Reply
Transition Transition StateFlow Transition empty
Trace Trace Dependency Trace empty EA.Element.StereotypeEx == “trace“
Abstraction Abstraction Dependency Dependency empty EA.Element.StereotypeEx == “abstraction“

Continued on Next Page

126

Table A.12 – Continued from Previous Page

Model Element Concept Type MetaType Subtype Additional AI Calls

Derive Derive Dependency Dependency empty EA.Element.StereotypeEx == “derive“
Refine Refine Dependency Refine empty EA.Element.StereotypeEx == “refine“
UseDependency UseDependency Dependency Dependency empty EA.Element.StereotypeEx == “use“
Occurence Occurence Dependency Dependency empty EA.Element.StereotypeEx == “occurrence“
Represents Represents Dependency Dependency empty EA.Element.StereotypeEx == “represents“
Role Binding Role Binding Dependency Dependency empty EA.Element.StereotypeEx == “role binding“
Assembly Assembly Assembly Assembly empty
Delegate Delegate Delegate Delegate empty
Nesting Nesting Nesting Nesting empty
PackageImport PackageImport Package PackageImport empty EA.Element.StereotypeEx == “import“
PackageMerge PackageMerge Package PackageMerge empty EA.Element.StereotypeEx == “merge“
Manifest Manifest Manifest Manifest empty EA.Element.StereotypeEx == “manifest“
TemplateBinding TemplateBinding TemplateBinding TemplateBinding empty
NoteLink NoteLink NoteLink NoteLink empty
InformationFlow InformationFlow InformationFlow InformationFlow empty
Instantiate Instantiate Dependency Dependency empty EA.Element.StereotypeEx == “instantiate“
CommunicationMessage CommunicationMessage Collaboration Collaboration empty

127

Table A.13: Special Considered UML Relationships

Source Language Unit Possible Target Language Units Relationship Name Description

State Machine Act, Int, SM StateBehavior2Behavior The behavior of a state refers to a modeled behavior
Class Cl, Int, SM, UC, Act, Comp, Deploy, Composite StateBehavior2Operation The behavior of a state represents an operation
Activity Cl, Act, UC, Comp, Deploy, Composite ActionPin2Classifier An action pin which represents a classifier
Activity Act, Int, SM Action2Behavior An action calls a behavior
Activity Cl Action2Signal An action sends/receives a signal
Activity Cl, Int, SM, UC, Act, Comp, Deploy, Composite Action2Operation An action calls an operation
Activity SM Action2Trigger An action calls a trigger
Object Cl, Act, UC, Comp, Deploy, Composite Object2Classifier A object represents a classifier
Activity Cl, Act, UC, Comp, Deploy, Composite ActivityParameter2Classifier An activity parameter represents a classifier
Class Act, Int, SM ClassOperation2Behavior A class operation calls a behavior
Class Cl, Act, UC, Comp, Deploy, Composite ClassOperationReturnType2Classifier The return type of a class operation represents a classifier
Class Cl, Act, UC, Comp, Deploy, Composite ClassOperationParamType2Classifier An operation parameter has a classifier as type
Class Cl, Act, UC, Comp, Deploy, Composite ClassAttributeType2Classifier A class attribute has a classifier as type
State Machine Cl, Act, UC, Comp, Deploy, Composite StateBehaviorParamType2Classifier A parameter of a state behavior represents a classifier
State Machine Cl, Int, SM, UC, Act, Comp, Deploy, Composite CallTrigger2Operation A trigger calls an operation
State Machine Cl SignalTrigger2Signal A signal calls a behavior
Interaction Cl, Act, UC, Comp, Deploy, Composite LifeLine2ClassifierInstance The life line is an instance of a classifier
Interaction Cl, Act, UC, Comp, Deploy, Composite InteractionReturnType2Classifier The interaction return type has a classifier as type
Interaction Cl, Act, UC, Comp, Deploy, Composite InteractionParameterType2Classifier An interaction parameter has a classifier as type
Interaction Act, Int, SM InteractionOccurrence2Behavior An interaction occurrence which calls a behavior
Use Case Cl, Act, UC, Comp, Deploy, Composite UseCase2Classifier The use case has an instance as classifier type
Use Case Cl, Act, UC, Comp, Deploy, Composite Actor2Classifier The actor has an instance as classifier type

* Element2Diagram A model element which is described in an diagram
Cl = Class, UC = Use Case, Int = Interaction, Act = Activity

Comp = Component, Deploy = Deployment, SM = State Machine

128

A.3 Model Sources

A full list of all observed EA models can be found in Table A.14. The full URL for each EA
model is provided in column “SOURCE“. The values in column “EAP FILE“ represent the ea
file names as provided in the project website of this work.

129

Table A.14: Model Sources (Accessed - 2013-12-03)

SOURCE EAP FILE

https://github.com/hoggier/DAPIV/blob/master/Academico.eap Academico.eap
http://trac.assembla.com/GrupoTallerProgramacion2/browser/doc/adminEdificio.eap adminEdificio.eap
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CEUQFjAA&url=http%3A%2F% arc42-V40-EN.eap
2Fdl.dropbox.com%2Fu%2F45486%2Farc42-downloads%2Farc42-V40-EN.eap&ei=3K3tULaiM9GSswbK5oHQ
DA&usg=AFQjCNGjmDTzUwEa_6WKPagrRFaLOew6mQ&sig2=JND
GeRpt8yjBr9wCuEdEFg&bvm=bv.1357316858,d.d2kHUM2ZJ8TLtAaJm4DYCg&usg=AFQjCNGjmDTzUwEa_6
WKPagrRFaLOew6mQ&sig2=zDMVezkDV4PIRWQU_xqmOQ
http://assetsdev.atc.gr/trac/browser/assets/trunk/z_project_setup/documentation/assets-models.eap?rev=4624 Assets-models.eap
http://code.google.com/p/my-ibs/source/browse/trunk/+my-ibs/BookStore.eap BookStore.eap
http://code.google.com/p/cockus3d/source/browse/tags/core/c3d.eap c3d.eap
gforge.nci.nih.gov/frs/download.php/5831/caBIO42.eap caBIO42.eap
http://code.google.com/p/pizza/source/browse/branches/tp2Reentega/diagramas/secuencias/registrarPedido/cal calcularTiempo.EAP
cularTiempo.EAP?r=252
https://www.assembla.com/code/cartech/subversion/nodes/Modely/CarTech.eap CarTech.eap
http://code.google.com/p/umm2-addin/source/browse/trunk/CCLImporter/input/CCL08A.eap?r=78 CCL08A.eap
http://proj.badc.rl.ac.uk/pimms/browser/ControlledVocabs/trunk/Activity/CMIP5_Experiments/CMIP5_experime CMIP5_experiments.eap
nts.eap?rev=7
https://www.assembla.com/code/cod4tv/subversion/nodes/Documentation/codtv.eap codtv.eap
http://trac.assembla.com/counter_speechport/browser/cspeechport.eap?rev=5 cspeechport.eap
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ CU05.Registrar presupuesto de orden de trabajo com.eap
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ CU05.Registrar presupuesto de orden de trabajo.eap
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ CU14.Generar Notificacion al Cliente com.eap
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ CU14.Generar Notificacion al Cliente.eap
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ CU70.Generar Informe de Reparaciones com.eap
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ CU70.Generar Informe de Reparaciones.eap
http://trac.openmicroscopy.org.uk/ome/browser/ome-xml/Documentation/Diagrams/Enterprise?rev=178 DataModel.eap
http://trac.lternet.edu/trac/NIS/browser/trunk/DataPackageManager/documents/DataPackageManager.eap DataPackageManager.eap
https://project.fit.cvut.cz/trac/UHKT2/browser/SP1/1.%20Iterace/Soubory%20pro%20EA Diagram aktivit JK,TR.eap
https://project.fit.cvut.cz/trac/UHKT2/browser/SP1/1.%20Iterace/Soubory%20pro%20EA Diagram aktivit JN,MZ.eap
https://project.fit.cvut.cz/trac/UHKT2/browser/SP1/1.%20Iterace/Soubory%20pro%20EA Diagram aktivit MZ.eap
https://project.fit.cvut.cz/trac/UHKT2/browser/SP1/1.%20Iterace/Soubory%20pro%20EA Diagram aktivit PD,MM.eap
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ Diagrama de Clases de Analisis.eap

Continued on Next Page

130

Table A.14 – Continued from Previous Page

SOURCE EAP FILE

https://project.fit.cvut.cz/trac/UHKT2/browser/SP1/1.%20Iterace/Soubory%20pro%20EA Use case JN,MZ.eap
https://www.assembla.com/code/HP_UTN/subversion/nodes/Diagramas%20UML.eap?rev=87 Diagramas UML.eap
http://pm.stu.cn.ua/repositories/changes/any2any/trunk/docs/diplom.eap diplom.eap
http://trac.assembla.com/soray/browser/user/Marcell/DiplomaThesis%20%282%29.eap?rev=390 DiplomaThesis(2).eap
http://myhomemdz.dyndns.org/viewvc/freedom/trunk/Dise%C3%B1o%20de%20Sistemas.eap?view=log&r Diseño de Sistemas.eap
1=45&pathrev=46
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ DTEs.eap
http://ndg-security.ceda.ac.uk/browser/trunk/NDGSecurity/documentation/esgInteroperabilityForIPCCar5/esg.eap?rev=7917 esg.eap
http://ndg-security.ceda.ac.uk/browser/TI12-security/trunk/documentation/esgInteroperabilityForIPCCar5/esg-i esg-ipcc-ar5.eap
pcc-ar5.eap?rev=4680
http://www.wuala.com/antunes20/ANDROID/esof_SVE.eap esof_SVE.eap
http://trac.lternet.edu/trac/NIS/browser/trunk/DataPortal/documents/EventSubscriptionService.eap EventSubscriptionService.eap
http://exdb.fit.cvut.cz/browser/doc/EXDB.eap?rev=1068 EXDB.eap
http://trac.assembla.com/antrad_svn/browser/trunk/UftSw/model/FirstBlood.EAP?rev=120 FirstBlood.eap
http://trac.lternet.edu/trac/NIS/browser/trunk/Gatekeeper/documents/gatekeeper.eap gatekeeper.eap
http://code.google.com/p/g0c/source/browse/GoC.eap GoC.eap
https://www.assembla.com/code/SIwP/subversion/nodes/honda.eap honda.eap
https://project.fit.cvut.cz/trac/UHKT2/browser/SP1/1.%20Iterace/K%20odevzd%C3%A1n%C3%AD/Iterace Iterace1 (bez DT).eap
1%20%28bez%20DT%29.eap
http://code.google.com/p/2-1-risiko/source/browse/trunk/Risiko/UML/Aufgabe_01/klassendiagramm_final.EAP klassendiagramm_final.EAP
http://hitsp.wikispaces.com/file/detail/Library+May07.eap Library May07.eap
https://github.com/Regala/Micro-Machines-Java/blob/master/LPOO_Proj2_UML.eap LPOO_Proj2_UML.eap
http://ndg-security.ceda.ac.uk/browser/trunk/NDGSecurity/documentation/MashMyData/MashMyData.eap MashMyData.eap
?rev=7917&order=name
http://hssp-implementation.wikispaces.com/file/detail/metamodel.eap metamodel.eap
http://code.google.com/p/mille-kanallies/source/browse/trunk/Mill/doc/Mille-Kanallies-ClassDiagram-Raw.eap Mille-Kanallies-ClassDiagram-Raw.eap
http://code.google.com/p/netcat-explained/source/browse/miniNetcat/Documentacion/miniNetcat-project.eap MiniNetcat-project.eap
https://www.assembla.com/code/dt-localization/subversion/nodes/trunk/Analysis/model.eap?rev=39 model.eap
http://code.google.com/p/sidov/source/browse/trunk/Repositorio/Requerimientos/ModeladoSIDOV.eap?r=113 ModeladoSIDOV.eap
http://code.google.com/p/nyx/source/browse/models.eap models.eap
http://code.google.com/p/studiadrugiegostopnia/ moduly.eap
http://code.google.com/p/netcat-explained/source/browse/netcat-explained-project.eap netcat-explained-project.eap
https://view.softwareborsen.dk/Softwareborsen/oio-desktop/docs/OIO-Desktop%20Architecture.eap?view=log OIO-Desktop Architecture.eap
http://trac.openmicroscopy.org.uk/ome/browser/ome-xml/Documentation/Diagrams/Enterprise?rev=178 OmeroDbDiagrams.eap

Continued on Next Page

131

Table A.14 – Continued from Previous Page

SOURCE EAP FILE

http://fisheye.ow2.org/browse/Sirocco/sandbox/pawel/OpenCloud-Placement/OpenCloud_model.eap?hb=true OpenCloud_model.eap
http://trac.lternet.edu/trac/NIS/browser/documents/system-design/PASTA.eap Pasta.eap
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ Patron State.eap
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ Patrones.eap
http://bio-models.svn.sourceforge.net/viewvc/bio-models/trunk/object_models/enterprise_architect/phenotype phenotye.eap
.eap?view=log
http://trac.openmicroscopy.org.uk/ome/browser/ome-xml/Documentation/Diagrams/Enterprise?rev=178 PostEvolution.eap
http://trac.assembla.com/ppro-bofe/browser/Reports/2/ppro2.eap ppro2.eap
http://assetsdev.atc.gr/trac/browser/assets/trunk/services/preservation-riskmanagement/src/model/preservatio preservation-riskmanagement.eap
n-riskmanagement.eap?rev=6426
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ Primera Entrega - Modelo de Dominio - Version 2.1.eap
http://chomikuj.pl/mredwanz/semestr+V+%28systemy%29/In*c5*bcynieria+Oprogramowania/laboratorium project.eap
/projekt,425192160.EAP
http://trac.assembla.com/remigol_projekt/browser/projekt.eap?rev=66 Projekt (2).eap
http://trac.assembla.com/remigol_projekt/browser/projekt%2Bmoj.eap?rev=71 projekt+moj.eap
http://code.google.com/p/proyecto-final-alquileres/source/browse/trunk/Diagramas/ProyectoFinal.EAP?r=18 ProyectoFinal.eap
https://project.fit.cvut.cz/trac/UHKT2/browser/SP1/1.%20Iterace/Soubory%20pro%20EA První návrh UHKT JN,MZ.eap
https://trac.lternet.edu/trac/NIS/browser/trunk/DataManager/documents/QualityModel.eap QualityModel.eap
http://code.google.com/p/si-laundry/source/browse/Robustness-5208100034-update.eap Robustness-5208100034-update.eap
http://code.google.com/p/s1n4c3c/source/browse/S1N4C3C/S1N4C3C_v01.eap?r=4 S1N4C3C_v01.eap
http://trac.openmicroscopy.org.uk/ome/browser/ome-xml/Documentation/Diagrams/Enterprise?rev=178 ScreenWell.eap
https://www.assembla.com/code/se-space/subversion/nodes/Sequence%20Diagrams.eap?rev=15 Sequence Diagrams.eap
http://code.google.com/p/sidov/source/browse/trunk/Repositorio/Requerimientos/Sidov.EAP?r=350 Sidov.eap
http://code.google.com/p/studiadrugiegostopnia/ sklep iconix.eap
http://dev.herasaf.org/source/browse/ERCPRA/trunk/herasaf-ercpra-documentation/diagrams Solution_GEF_DirectEdit_Structure.eap
http://dev.herasaf.org/source/browse/ERCPRA/trunk/herasaf-ercpra-documentation/diagrams Solution_GEF_Domain-DiagramModel.eap
http://dev.herasaf.org/source/browse/ERCPRA/trunk/herasaf-ercpra-documentation/diagrams Solution_GEF_Structure.eap
http://dev.e-taxonomy.eu/trac/attachment/wiki/Revisionary_Models/MergedModel1/UnifiedModel.eap UnifiedModel.eap
http://pamediakopes.wikispaces.com/file/detail/use_case_model.eap use_case_model.eap
https://www.assembla.com/code/se-space/subversion/nodes/UseCase%20Diagram.eap?rev=15 UseCase Diagram.eap
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ Vista Arquitectonica de Despliegue – Componentes.eap
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ Vista Arquitectonica de la Funcionalidad.eap
code.google.com/p/taller-mecanico-dsi2011-tripode/source/browse/trunk/ Vista Arquitectonica de Subsistemas e Interfaces.eap
http://code.google.com/p/absolutdocs/source/browse/trunk/doc/disenio/componentes/visualizador/Visualiza Visualizador.eap

Continued on Next Page

132

Table A.14 – Continued from Previous Page

SOURCE EAP FILE

dor.eap?r=362
http://assetsdev.atc.gr/trac/browser/assets/trunk/services/visual-loganalysis/src/main/model/visual-loganaly Visual-loganalysis.eap
sis.eap?rev=12854
http://code.google.com/p/voip-sec/ VoIPSecCPU.eap
http://code.google.com/p/voip-sec/ VoIPSecTime.eap
http://taskman.eionet.europa.eu/projects/reportnet/wiki/WiseDS wiseDS_architecture_v0_9.eap
http://code.google.com/p/studiadrugiegostopnia/ Wniosek o urlop.eap

133

Bibliography

[1] A. Baroni and F. Abreu. Formalizing Object-Oriented Design Metrics upon the UML
Meta-Model. In 16th Brazilian Symposium on Software Engineering, 2002.

[2] C.H. Brase and C.P. Brase. Understandable Statistics: Concepts and Methods. BROOKS
COLE Publishing Company, 2011.

[3] M. R. V. Chaudron. Quality Assurance for UML Modeling. In Software Quality Days,
January, Vienna, Austria, 2012.

[4] P. P. Chen. The Entity-Relationship Model: Toward a Unified View of Data. Association
for Computing Machinery (ACM) Transactions on Database Systems, volume 1, pages
9-36, 1976.

[5] S. Chidamber and C. Kemerer. Towards a Metrics Suite for Object Oriented Design.
In Conference on Object-Oriented Programming: Systems, Languages and Applications
(OOSPLA’91), volume 26, pages 197–211. SIGPLAN Notices, 1991.

[6] B. Dobing and J. Parsons. Current practices in the Use of UML. In Proceedings of the
24th International Conference on Perspectives in Conceptual Modeling (ER’05), pages
2–11, Berlin, Heidelberg, 2005. Springer-Verlag.

[7] F. Brito e Abreu and R. Carapuça. Object-Oriented Software Engineering: Measuring and
Controlling the Development Process. In 4th Interntional Conference on Software Quality,
Mc Lean, VA, USA, 1994.

[8] J. Erickson and K. Siau. Can UML be Simplified? Practitioner use of UML in separate
Domains. In proceedings of 12th International Workshop on Exploring Modeling Methods
in System Analysis and Design (EMMSAD), pages 89–98, 2007.

[9] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Languange.
Object Technology Series. Addison Wesley Professional, 2004.

[10] M. Genero and M. Piattini. Empirical Validation of Measures for Class Diagram Structural
Complexity through controlled Experiments. In Proceedings of 5th International ECOOP
Workshop on Quantitative Approaches in object-oriented Software Engineering (QAOOSE
2001), June, Budapest, Hungary, 2001.

135

[11] M. Genero, M Piattini, and C. Calero. A Survey of Metrics for UML Class Diagrams.
Journal of Object Technology, 4(9):55–92, November-December 2005.

[12] F.J. Gravetter and L.B. Wallnau. Statistics for the Behavioral Sciences. Available Titles
Aplia Series. Wadsworth Cengage Learning, 2009.

[13] M. Grossman, J. E. Aronson, and R. V. McCarthy. Does UML make the Grade? In-
sights from the Software Development Community. Information and Software Technology,
47(6):383–397, April 2005.

[14] G.K. Gupta. Introduction To Data Mining With Case Studies. Prentice-Hall Of India Pvt.
Limited, 2006.

[15] M. Hitz, G. Kappel, E. Kapsammer, and W. Retschitzegger. UML 2 @ Work, Objektorien-
tierte Modellierung mit UML 2. dpunkt.verlag, 3. edition, 2005 (in German).

[16] C. Kobryn. Will UML 2.0 be Agile or Awkward? Communications of the Association for
Computing Machinery, 45(1):107–110, January 2002.

[17] C. F. J. Lange and M. R. V. Chaudron. An Empirical Assessment of Completeness in UML
Designs. In Proceedings of the 8th International Conference on Empirical Assessment in
Software Engineering (EASE‘04), pages 111–121, 2004.

[18] W. Li and S. Henry. Object-Oriented Metrics that Predict Maintainability. Journal of
Systems and Software, 23(2):111–122, 1993.

[19] Object Management Group. OMG fUML Sepcification, Version 1.1, 2013. Available at
http://www.omg.org/spec/FUML/1.1/PDF/.

[20] Object Management Group. OMG MDA Guide, Version 1.0.1, 2003. Available at
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf.

[21] Object Management Group. OMG UML Sepcification, Version 1.3, 2001. Available at
http://www.omg.org/spec/UML/1.3/PDF.

[22] Object Management Group. OMG UML Sepcification, Version 2.4.1, 2011. Available at
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF.

[23] M. Petre. UML in Practice. In International Conference on Software Engineering
(ICSE’13), 2013.

[24] G. Reggio, M. Leotta, F. Ricca, and D. Clerissi. Downsize the UML: A Preliminary Survey
Detecting the Used Constructs. Technical Report DISI-TR-13-02, Department of Com-
puter and Information Science - University of Genoa, 2013.

[25] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference Manual,
Second Edition. Pearson Higher Education, 2004.

136

[26] C. Rupp, S. Queins, and B. Zengler. UML 2 Glasklar: Praxiswissen für die UML-
Modellierung. Hanser, 2007 (in German).

[27] J. Walkenbach. Excel 2007 Power Programming with VBA. Mr. Spreadsheet’s Bookshelf.
Wiley, 2011.

137

	Introduction
	Motivation
	Problem Statement
	Aim of this Work
	Methodological Approach
	Structure of this Work

	Research Methodology
	Elaboration of Metrics
	Implementation and Testing of Metrics
	Collection of UML Models
	Analysis of UML Models

	Technical Implementation
	Input: Enterprise Architect Models
	Implementation: Script for Analyzing Enterprise Architect Models
	Output: Obtained Model Data

	Results
	Basic Data of the Observed Models
	Usage of UML Language Units
	Usage of UML Diagrams
	Usage of UML Concepts
	Relationships between UML Language Units
	Stereotype Usage

	Related Work
	UML Quality Metrics
	UML Usage Metrics

	Conclusion and Future Work
	Appendix
	UML Concepts
	UML Diagrams
	Model Sources

	Bibliography

