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Zusammenfassung

Zahlreiche Industrieländer sind von fallenden Sterbe- als auch Geburtenraten betrof-
fen, welche in weiterer Folge zu einer Überalterung der Bevölkerung führen. Diese
demographischen Veränderungen haben unter anderem Auswirkungen auf die Sozial-
systeme in den jeweiligen Ländern, allen voran auf die öffentlichen Pensionssysteme,
welche von einer immer kleiner werdenden arbeitenden Bevölkerungsgruppe finan-
ziert werden müssen. In diesem Zusammenhang wird oft Immigration als Schlüssel
zur Eindämmung des Alterungsprozesses genannt. Aufgrund von höherer Mobilität,
politischen Turbulenzen und ökonomischen Ungleichgewichten auf der Welt gab es
einen massiven Anstieg der Nettomigration in hoch entwickelte Länder. Das führte
dazu, dass sich Immigration im Laufe der letzten Jahrzehnte zu einem immer wichti-
geren Thema entwickelt hat. Ziel der vorliegenden Arbeit ist es, das reale Phänomen
der Immigration aus Sicht des Gastlandes durch Abstrahierung mittels mathematischer
Modelle nachzubilden, um so ein besseres Verständnis für die zugrunde liegenden
Mechanismen zu bekommen. Das beinhaltet naturgemäß auch die analytische sowie
numerische Lösung der beschreibenden Gleichungen.

Das Hauptaugenmerk liegt auf der Untersuchung von ökonomischen und demogra-
phischen Effekten von Immigration durch Methoden der dynamischen Optimierung.
Im Speziellen sollen qualitative und quantitative (altersspezifische) Effekte der Immi-
gration im Gastland bestimmt werden. Die Anwendung von dynamischer Optimierung
für die Untersuchung dieser spezifischen, demographischen Fragestellungen, führt ins-
besondere zu einer Weiterentwicklung der verwendenten, mathematischen Methoden
und zeigt auch die Vielfalt ihrer Einsatzbereiche.

Es werden mehrere mathematische Modelle erstellt und gelöst, um die oben genann-
ten Untersuchungen durchzuführen. Die ersten beiden Modelle beschränken sich rein
auf die demographischen Auswirkungen von Immigration und befassen sich mit dem
Einfluss dieser auf zukünftige Bevölkerungsgrößen und -strukturen und in weiterer
Folge mit deren Einfluss auf demographische Indikatoren. Die Frage nach der optima-
len altersspezifischen Immigrationspolitik, welche den Abhängigkeitsquotienten der
resultierenden Bevölkerung langfristig minimiert, wird mittels eines Kontrollmodells
untersucht. Der Abhängigkeitsquotient bezeichnet das Verhältnis der wirtschaftlich ab-
hängigen Altersgruppen (Personen, die noch nicht bzw. nicht mehr im erwerbsfähigen
Alter sind) zur Bevölkerung im erwerbsfähigen Alter. Dabei wird eine stationäre Be-
völkerung betrachtet. Das resultierende optimale Kontrollmodell ist linear und umfasst
zusätzliche Beschränkungen an die Zustandsgröße oder alternativ an die Kontrollvaria-
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ble. Ein sehr allgemeines Maximumsprinizip muss daher zur Bestimmung der optima-
len Lösung angewendet werden. Es werden zwei verschiedene Modellformulierungen
betrachtet. Die erste Formulierung beinhaltet die zusätzliche Forderung, dass die An-
zahl der Immigranten, die jährlich ins Land strömen, fest gewählt ist. Während diese
Forderung durchaus realistisch ist, zeigt das mathematische Modell, dass es in diesem
Fall optimal ist, dass Immigranten nahe dem maximalen Lebensalter ins Land einwan-
dern, da diese auf natürliche Weise den Abhängigkeitsquotienten nur gering belasten.
Daher wird in einem nächsten Schritt ein Modell gewählt, welches anstelle der An-
zahl der Immigranten die zusätzliche Nebenbedingung einer fixen Bevölkerungsgröße
beinhaltet. Für dieses Modell wird gezeigt, dass unter der Bedingung, dass die alterss-
pezifischen Schranken stark gelockert werden, es optimal ist, dass Migranten mit Mitte
30 einwandern.

In einem nächsten Schritt wird dann die Annahme einer stationären Bevölkerung
fallen gelassen, und das über die Zeit variable Altersprofil der Immigranten in eine
Bevölkerung konstanter Größe bestimmt, welches die Zahl der Arbeiter in einer Bevöl-
kerung maximiert. Das erfordert die Formulierung eines spezifischen Kontrollmodells,
in dem die Dynamiken mittels Differentialgleichungen mit verteilten Parametern be-
schrieben werden, untersucht werden. Aus mathematischer Sicht ist dieses Problem aus
den folgenden Gründen interessant: (i) das Modell beinhaltet ein Problem mit verteil-
ten Parametern und einer speziellen Zustandsnebenbedingung (ii) das Problem ist auf
unendlichem Zeithorizont gestellt, und (iii) es handelt sich um ein Maximierungspro-
blem mit einem nicht-konkaven Funktional als Zielfunktion, sodass Wohlgestelltheit
des Problems und insbesondere Existenz der Lösung nicht automatisch folgen.

Es kann gezeigt werden, dass unter einer generischen Bedingung und der Annah-
me, dass die Bevölkerung konstante Mortalität und Fertilität aufweist, das optimale
altersspezifische Migrationsprofil unabhängig von den Anfangsdaten ist und konstant
über die Zeit. Daher kann die Lösung durch das bereits untersuchte stationäre Problem
charakterisiert werden.

Da Immigration nicht nur demographische Auswirkungen hat, werden in einem
weiteren Schritt ökonomische Modelle betrachtet, um auch die wirtschaftlichen Aus-
wirkungen von Immigration zu untersuchen. Daher werden bestehende überlappende
Generationenmodelle dahingehend erweitert, dass auch Immigranten darin abgebildet
werden können. Dabei liegen die Herausforderungen in der ökonomisch und mathe-
matisch sauberen und konsistenten makro- und mikroökonomischen Modellierung.
Es werden zeitkontinuierliche überlappende Generationenmodelle verwendet, welche
auch die Formulierung und Lösung von partiellen Differentialgleichungen beinhalten.
In einem ersten Modell werden die ökonomischen Auswirkungen eines Immigrations-
schocks auf die verschiedenen Generationen in der Ökonomie betrachtet.

In einem letzten Modell wird untersucht, welche Rolle das Alter der Immigran-
ten für das Pensionssystem des Gastlandes spielt. Die Auswirkungen der altersspe-
zifischen Einwanderung auf die Höhe der Sozialversicherungssteuer und die Pen-
sionszahlungen im Allgemeinen werden untersucht. Dabei wird ein Pay-as-you-go-
Rentensystem, in dem die Höhe der Renten fest gewählt ist, betrachtet. Für das betrach-
tete numerische Experiment wird gezeigt, dass die Sozialversicherungssteuer sinkt,
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wenn die Einwanderer in einem höhere Alter kommen, obwohl der Altersquotient in
der Bevölkerung erheblich steigt. Das beruht auf der Tatsache, dass die Zuwanderer
Pensionsansprüche im Gastland aufweisen. Darüber hinaus kann gezeigt werden, dass
unter den gewählten Voraussetzungen, Immigranten, über alle Altersgruppen hinweg,
Nettozahler des Rentensystems sind. Daher können sie zumindest zu einem gewissen
Teil die finanzielle Lücke, die durch die Überalterung der einheimischen Bevölkerung
verursacht wird, schließen. Allerdings sieht man auch, dass Zuwanderung allein auf
lange Sicht die fiskalen Herausforderungen nicht lösen kann. Dafür wäre eine unrea-
listische Erhöhung der Sozialversicherungssteuer notwendig, um einen ausgeglichenen
Haushalt gewährleisten zu können. Daher müssen auch andere Maßnahmen, wie eine
Erhöhung des gesetzlichen Rentenalters und Veränderungen in den Parametern des
Rentensystems, betrachtet werden.
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Abstract

Declining mortality rates combined with decreasing fertility rates have led to the pre-
vailing situation of population aging in many developed countries. Social insurance,
pension schemes etc., of a higher share of elderly people will have to be financed
by a lower share of the younger and middle-aged population constituting the labor
force. Therefore, immigration is very often named as a remedy to counteract these
demographic changes. Moreover, higher mobility, political instabilities, and economic
imbalances have led to an increase in net immigration to high-income countries over
the last decades. Consequently, immigration has become an important and interesting
topic.

In this thesis, economic and demographic effects of immigration are investigated
by developing suitable mathematical models. In particular, it is an attempt to tackle
demographic and economic questions by applying optimal control theory. Qualitative
and quantitative effects of (age-specific) immigration patterns on the receiving country
are determined. Hence, the ideas used in this thesis may be fruitful for the study of
immigration policies.

In this thesis, models for the study of (age-specific) effects of immigration in the host
country are developed. The first two models only cover demographic effects of immi-
gration, dealing with the impact of immigrants on future population size and structure
and consequently on demographic indicators. The question of the optimal age-specific
immigration policy that minimizes the dependency in a population in the long-run
is posed. A stationary problem is considered which consists of the investigation of a
rather specific linear optimal control model including a state constraint which makes
it necessary to apply a very general maximum principle. Two alternative policies are
considered. In the first one, the total number of immigrants is prescribed. In the sec-
ond one, the total population size is fixed while the rest of the model remains the
same. It turns out that the solution exhibits a bang-bang behavior, which depends on
the sign of the so-called switching function. In the model with a fixed total number of
immigrants, it is shown that in the optimal solution there are ages in the vicinity of the
maximum attainable age where immigration occurs. When the total population size of
the receiving country is fixed, the optimal solution is such that immigration happens
at not more than two separate age intervals and always in ages younger than the re-
tirement age. When relaxing the age-specific bounds for immigration in the model, it
turns out that the optimal age of immigration would be in the mid-thirties in the case
study of Austria.

v



More generally, in a later step the time-varying age-specific immigration pattern to
a population of fixed size that maximizes the number of workers in a population is
investigated. This leads to the formulation of a very specific, distributed parameter
model. From a mathematical point of view the considered problem is challenging for
three reasons: (i) it has the form of a distributed optimal control problem with state
constraints (although rather specific); (ii) the time horizon is infinite and a theory for
infinite-horizon optimal control problems for age-structured systems is missing; (iii)
it is a maximization problem for a non-concave functional, where the existence of a
solution and the well-posedness are problematic. It turns out that under an additional
generic well-posedness condition for a population with time-invariant mortality and
fertility the optimal age-density of the migration is time-invariant and independent of
the initial data. Hence, the solution can be found by solving the associated steady-state
problem, as it has been studied before.

Since immigration is never solely a demographic issue, in a next step economic
models are considered to investigate also the economic effects of immigration. Existing
overlapping generations models have to be extended in order to be able to deal with
immigration. Here, the challenges consist of an economic and mathematical sound
adaptation of the macro- and microeconomic modeling. Continuous time overlapping
generations models are used which also include the formulation and solving of partial
differential equations. In a first model, the welfare effects of immigration on the various
cohorts of the host population are investigated.

In a second model, the focus is on the description of the life-cycle behavior of im-
migrants entering at various ages of their life to determine their impact on the pension
schemes of a country. The impact of age-specific immigration on the social security rate
and the pension expenditure rate in a benefit-defined pay-as-you-go pension scheme
are presented. Moreover, scaled pension expenditures and tax payments for the two
groups, natives and immigrants, are given. For the presented numerical experiment
the social security rate decreases with the age of the arriving immigrants although
the old-age dependency ratio increases substantially. This is because of the fact that
immigrants qualify for fewer pensions in the host country. Moreover, across all age
groups immigrants are net payers of the pension system. Hence, they are at least to a
small extend able to close the financial gap caused by the aging of the native popula-
tion. However, one also sees that immigration alone cannot solve the fiscal problems
arising with the demographic change because an unbearably high increase of the so-
cial security rate would be necessary to guarantee a balanced budget. Hence, also
other measures such as an increase in the statutory retirement age and changes in the
parameters of the pension system would additionally be necessary.

vi



Acknowledgments

First of all, I would like to thank Hannes for his never-ending support during the last
years! I am also grateful to my friends and family who supported me during this time.

Many thanks go to Klaus Prettner for his encouragement and support.
I also have to thank all of my co-authors of the joint publications which build an

essential part of the thesis at hand.
I am grateful for the financial support by the Austrian Science Fund under the

grants ’Age structured populations with fixed size’ (No P20408-G14) and ’Endogenous
heterogeneities and periodicity in dynamic optimization’ (No I476-N13).

vii



’J’ai décidé d’être heureux parce que c’est bon pour la santé.’
Voltaire

viii



Contents

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Brief review of the relevant theory 7

2.1 Linear age-dependent population dynamics . . . . . . . . . . . . . . . . . 7
2.2 Optimal control of age-dependent population dynamics . . . . . . . . . . 11

2.2.1 Basic concepts in optimal control theory . . . . . . . . . . . . . . . 11
2.2.2 Pontryagin’s Maximum Principle . . . . . . . . . . . . . . . . . . . 12
2.2.3 Distributed parameter control . . . . . . . . . . . . . . . . . . . . . 13

2.3 Overlapping generations models in continuous time . . . . . . . . . . . . 17

3 Minimizing the dependency ratio in a population

with below-replacement fertility through immigration 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Model description and preliminary statements . . . . . . . . . . . . . . . . 23
3.3 The optimal immigration profile for a fixed number of immigrants . . . . 26

3.3.1 A case study: the Austrian case . . . . . . . . . . . . . . . . . . . . 32
3.4 The optimal immigration profile for a fixed population size . . . . . . . . 36

3.4.1 Analytical study of the optimal immigration profile . . . . . . . . . 37
3.4.2 A case study: the Austrian case . . . . . . . . . . . . . . . . . . . . 39

3.5 Direct and indirect effect of an additional individual . . . . . . . . . . . . 41
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Optimal immigration in a fixed size population: A distributed control model 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Population dynamics and preliminary statements . . . . . . . . . . . . . . 46
4.3 The optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Necessary optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Uniqueness, stationarity, and structure of the optimal immigration pattern 67
4.6 A case study: the Austrian Population . . . . . . . . . . . . . . . . . . . . . 70
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ix



5 Overlapping generations models with immigration 75

5.1 Modeling an immigration shock with a continuous time OLG model . . . 75
5.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.2 Government . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1.3 Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Long-run impact of age-specific immigration . . . . . . . . . . . . . . . . . 90
5.2.1 Population dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 The pension system . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.3 Utility maximization of natives . . . . . . . . . . . . . . . . . . . . . 94
5.2.4 Remaining Life Time Utility Maximization of Immigrants . . . . . 97
5.2.5 The government budget . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.6 Firm’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.7 Definition of steady-state equilibrium . . . . . . . . . . . . . . . . . 101
5.2.8 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.9 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Conclusions and Possible Extensions 109

x



List of Figures

2.1 Lexis Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Female mortality rate µ(a) (left, logarithmic scale) and fertility rate f (a)

(right); Austria 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Scenario 1: The adjoint variable ξ(·) for Problem 1 . . . . . . . . . . . . . . 35

3.3 Scenario 2: The adjoint variable ξ(·) for Problem 1 . . . . . . . . . . . . . . 35

3.4 Scenario 1: The optimal immigration profile M∗(·) for Problem 1 . . . . . 35

3.5 Scenario 2: The optimal immigration profile M∗(·) for Problem 1 . . . . . 35

3.6 Scenario 1: The age structure of the SI population N∗(·) for Problem 1 . . 35

3.7 Scenario 2: The age structure of the SI population N∗(·) for Problem 1 . . 35

3.8 The adjoint variable ξ(·) determining the optimal immigration for two
separate age intervals Γ1 and Γ2 in two cases: a) λ1 > 0 (left) and b)

λ1 < 0 (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.9 Scenario 1: The adjoint variable ξ(·) for Problem 2 . . . . . . . . . . . . . . 40

3.10 Scenario 2: The adjoint variable ξ(·) for Problem 2 . . . . . . . . . . . . . . 40

3.11 Scenario 1: The optimal immigration profile M∗(·) for Problem 2 . . . . . 40

3.12 Scenario 2: The optimal immigration profile M∗(·) for Problem 2 . . . . . 40

3.13 Scenario 1: The age structure of the SI population N∗(·) for Problem 2 . . 41

3.14 Scenario 2: The age structure of the SI population N∗(·) for Problem 2 . . 41

3.15 The direct (dashed line), indirect (solid blue line) and total (solid black
line) effect of an additional a-year-old . . . . . . . . . . . . . . . . . . . . . 43

4.1 Functions f (a) (dashed line), µ(a) (dashed-dotted line) and u(a) (solid
line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 The initial N0(a) (dashed line) and the age structure N(T, a) (solid line)
at T = 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 The number of births B(t) (dashed line), the number of deaths D(t)

(dotted line) and the number of immigrants R(t) (solid line) over time . . 54
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Chapter 1

Introduction

1.1 Motivation

This thesis deals with mathematical models and methods for the analysis of demo-
graphic and economic consequences of immigration. Consequently, this work focuses
on the development and the solution of age-structured optimal control problems. This
first chapter of the thesis explains why immigration is an important and interesting
topic to be studied by mathematical methods.

Immigration has become a more and more central topic in the last decades up until
now. One reason for this development is the aging of populations in most developed
countries caused by low birth rates and an increasing life expectancy. This aging has
substantial impact on the society through changes of the size and the structure of
the labor force and the non-productive part of the population. Another reason is the
increase of mobility and immigration in the world. Especially, fertility rates well below
the replacement level, as faced by many European countries, have given rise to the
question of whether young workers from outside the country may help to counteract
the negative consequences of the demographic changes.

Immigration is studied in various fields of research due to its impact on several
dimensions of social life, including economy, demography, politics, etc. This makes
it thoroughly an interdisciplinary topic. Subsequently, we will build up mathematical
models which solely focus on the demographic and economic dimension of immigra-
tion.

Immigration through the eyes of a demographer

From a demographic point of view, it is interesting to investigate how immigration
affects population dynamics in a below-replacement fertility context, that is, when
the population would shrink without migration. The future population size and age
structure of a country depend on three demographic variables: fertility, mortality and
net migration. Therefore, in order to influence future population structures policy
makers may either set up measures to encourage young couples to get children and
therefore increase fertility levels, or to steer immigration in order to off-set population
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aging. While the former measure may or may not work and its effectiveness is not as
straight forward, immigration directly affects the age structure of the host country.

In United Nations (2001), it is analyzed whether migration is a suitable approach to
avoid population aging and decline in various low-fertility countries. It is concluded
that, in general, it is already too late to fully stop the aging process in the countries
under investigation. With respect to migration, it is concluded that in the short and
middle-term it would be advantageous in comparison to other measures, such as the
increase of the retirement age, which would have to be set unrealistically high. In
United Nations (2001) it is also stated that very high numbers of immigrants would be
needed in order to seriously affect the ongoing aging. However, most of the studies
the United Nations build their results on, assumed that the age profile of inflowing
migrants would remain the same in the future. In Arthur and Espenshade (1988), on
the other hand, it was shown how sensitively the ultimate population size and age
structure depends on variations in immigrants’ ages. Hence, in the chapters below, we
show by using the optimal control approach how an age-specific immigration policy
can be used to reduce the number of dependent persons in the population. We use
optimal control theory to study the aforementioned question of an optimal age-specific
immigration policy. While there are certainly other aspects that have to be taken into
account when formulating an immigration policy, age definitely plays an important
role as already reflected in immigration policies of countries such as Australia and
Canada.

Economic effects of immigration

Migration is never a solely demographic issue. It also affects the economy of both
sending and receiving country as well as the economic well-being of their inhabitants.
Investigating the mutual effects of migration on both, sending and receiving country,
economists speak of brain drain, and correspondingly, brain gain, see for example Stark
et al. (1997), that the affected countries may observe. Papers dealing with the effect of
emigration usually investigate the role of remittances for the economic development
of the sending country, see Rapoport and Docquier (2005). In this thesis, however,
the focus was solely put on the role of immigration for the economy of the receiving
country and its inhabitants.

A large part of the research on the impact of immigration on the receiving countries
consists of empirical papers investigating the effect of immigration on wages. Most of
these studies focus on US data, cf. Borjas (1994, 2003, 2005). In general, the research
has shown small and very often insignificant effects of immigration on the wages of
native workers. However, recent contributions such as by Borjas (2003) have found
a significant negative effect of immigration on the wages of natives on national level
having no high school diploma. Hence, the importance of differentiation with respect
to education and other characteristics seems to matter in the estimation of wage effects
of immigration, as has also been summarized and further developed in Ottaviano and
Peri (2012). We incorporate this reasoning in the model elaborated in Chapter 5 and
carefully model the heterogeneous economic behavior of immigrants and natives.
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Other economic papers focus on the effect of immigration or in particular immi-
gration shocks on the native’s welfare, see for example Razin and Sadka (2000); Fehr
et al. (2003); Boldrin and Montes (2008); Jinno (2013). The focus is on how the various
generations are affected differently. The general economic mechanism behind this con-
sideration is that, under the assumption that the country does not have good access to
international capital markets and the assumption of no capital mobility, those who are
the holder of capital win due the rise in the price for capital, because of a decrease in
the capital-per-capita. Simultaneously, due to the additional labor economy wide wage
rates fall. In line with this is the first model in Chapter 5.

Another main line of economic research investigates the effect of immigration on the
host country’s public finances and in particular the social security system, cf. Storeslet-
ten (2000, 2003); Mayr (2005), where they empirically and theoretically determine the
fiscal impact of immigrants. In line with this, in the last part of this thesis it is investi-
gated how immigrants affect the pension system of the host country and whether they
can act as a rejuvenating and fiscal balancing force. To model the economic interaction
of people of different ages, overlapping generations models (OLG) are the typical work
horse representing also the common tool to investigate the economic consequences of
the ongoing demographic transition, cf. Sánchez-Romero et al. (2013).

Immigration and mathematical modeling

The described importance for society has made immigration an interesting topic in
mathematical modeling. There are several ways to mathematically model migration
processes, including integral equations, projection matrices and difference equations.
Here, we will focus on ordinary and partial differential equations. As its impor-
tance has already been pointed out by the celebrated demographer and mathematician
Nathan Keyfitz in a work together with his daughter, Keyfitz and Keyfitz (1997), the
famous Mc Kendrick - von Foerster equation is a perfect tool to study population dynam-
ics due to its easy adaption to study migration effects. The quite recent development of
new mathematical methods and tools, such as the invention of new maximum princi-
ples in the area of optimal control of population dynamics, see Feichtinger et al. (2003);
Veliov (2008), and the invention of the vintage capital theory, has made it possible
to study the optimization of complex demographic processes including immigration.
For example, Feichtinger et al. (2004) introduce intertemporal and age-dependent fea-
tures to a theory of population policy at the macro-level, and combine a Lotka-type
renewal model of population dynamics with a Solow/Ramsey economy. They char-
acterize meaningful qualitative results for the optimal migration path and the optimal
saving rate. Another interesting question is posed in Larramona et al. (2007), where the
authors build a three-stage optimal control model in order to investigate the optimal
timing of immigration over the life-cycle. They show that for individuals with a higher
education it is optimal to immigrate earlier as for those with a lower education.

However, not only populations as a whole but also their sub-populations, such as
a country’s labor force or electorate as well as a company’s employee underlie an
aging process. Hence, the question about the sequence of recruitment numbers that
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generates a given stock trajectory plays an important role not only in demography, but
also in manpower planning. In a recent line of research the aging of learned societies
was investigated. Learned societies are an example of an organization of fixed size
where annual intake is strictly determined by the number of deaths and quits or by the
number of members reaching a statutory retirement age.

Feichtinger and Veliov (2007) investigated the optimal recruitment processes to a
learned society with similar optimal control techniques as presented in this thesis.
Recruitment processes may be viewed as a specific form of immigration and there-
fore the mathematical modeling is rather similar. A related problem was also treated
in Feichtinger et al. (2007). The interesting results in these articles on aging learned
societies, made it natural to adapt the methods in-use and investigate immigration
processes to an aging society. Hence, the results established in Feichtinger and Veliov
(2007); Feichtinger et al. (2007); Dawid et al. (2009), representing parts of previous re-
search projects, have built the starting point of the thesis in hand. However, the models
investigated in Chapter 3 and 4 not only brought a new area of application in focus,
but also represented a further development from a mathematical point of view. A new
complexity was introduced in form of a non-local boundary condition being a result of
the fact that the number of births in a population depends on the current population.
This made the mathematical treatment much more cumbersome.

1.2 Structure of the thesis

In this thesis, four mathematical models are presented which deal with demographic
and fiscal effects of immigration to a population with below-replacement fertility. Three
different types of mathematical modeling tools are used below: optimal control models
including ordinary differential equations, distributed parameter models and overlap-
ping generations models. The commonality of the models below, besides of the demo-
graphic context, is the use of optimal control theory. Since optimal control theory is
not a common tool in demography, dealing with demographic questions required the
adaptation of the methods in use. This led to interesting mathematical challenges such
as the formulation of a specific, new Maximum Principle.

Chapter 2 gives a comprehensive overview of the mathematical concepts used in the
models below. Hence, the basic notions and concepts of population dynamics and the
control of such are introduced.

In Chapter 3 the first model investigating the optimal immigration age profile to a
stationary population, where the optimality criterion is given by the total dependency
ratio of the resulting population, is presented. The content of Chapter 3 is heavily
based on a joint work with Gustav Feichtinger and Anton Belyakov and was published
in Simon et al. (2012).

In Chapter 4 a distributed parameter control model is set up to determine intertem-
poral optimal immigration profiles to a fixed size population. The content of Chapter
4 was a joint work with Vladimir Veliov and Bernhard Skritek and was published in
Simon et al. (2013).
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Finally, in Chapter 5 continuous time overlapping generations models are used to
investigate, first, the effect of an immigration shock on the welfare of the host country’s
inhabtiants, and second, the impact of immigration on the sustainability of the pension
system of a country with below-replacement fertility.

In Chapter 6 the main results of the thesis are discussed.
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Chapter 2

Brief review of the relevant theory

This chapter is devoted to the mathematical analysis of populations with age structure
and serves as a short guide to give an overview of the mathematical concepts used in
the rest of the thesis below. We introduce linear age-dependent population dynamics
and methods for the optimization of such. In particular, in Section 2.2 we also briefly
discuss distributed parameter control and in Section 2.3 we describe overlapping gen-
erations models.

2.1 Linear age-dependent population dynamics

Among the different ways to model population dynamics, including integral equations,
difference equations, and projection matrices, we will focus here on the most elegant
one, namely (partial) differential equations. The presentation of the mathematical con-
cepts in this section follows closely Webb (1985) and Anita (2000), which provide a
good overview on the mathematical formulation of population dynamics via partial
differential equations and the control of such.

The study of population dynamics has already a long history. In 1798 Malthus pro-
posed his famous model of population dynamics where the rate of population growth
is proportional to the size of the population. The solution to such a model is an ex-
ponentially growing population. Obviously, the Malthusian model is by far an appro-
priate way to study the dynamics of the populations in the 21st century. Nowadays,
populations are characterized by low fertility levels and high numbers of immigrants.
Hence, as it has already been pointed out in Keyfitz and Keyfitz (1997), it is of great
importance to choose a modeling method which allows for an explicit modeling of
the immigration term as it is possible by extending the famous McKendrick-von Foerster

Equation.
In the following, we will denote by N(t, a) the (non-probabilistic) density of females

of age a ∈ [0, ω], ω ∈ (0, ∞], at time t ≥ 0 in a one-sex population. Here, ω denotes the
maximal attainable age.

The measurable, non-negative and bounded functions f (a) and µ(a) denote the age-
specific fertility and mortality rates of the population. Then, l(a) := e−

∫ a
0 µ(s) ds is the

probability of surviving from 0 to age a.

7
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The boundedness assumption for the mortality rate needs some explanation. There
is no empirical evidence about boundedness or unboundedness of µ(a). We can assume
equally well that the mortality rate is unbounded close to some maximal age a = ω in
such a way that all the population dies till age ω. An alternative (not less plausible,
in our opinion) is that µ(a) is bounded and large enough after a certain age, say 110
years, so that individuals above this age exist only mathematically.

With M(t, a) ≥ 0 we denote the ’number’ of immigrants of age a entering the pop-
ulation at time t.

Then, the population dynamics for the total population N(t, a) is given by the equa-
tion

(

∂

∂a
+

∂

∂t

)

N(t, a) = −µ(a) N(t, a) + M(t, a), t, a ≥ 0, (2.1)

where
(

∂
∂a +

∂
∂t

)

means the directional derivative

D N(t, a) = lim
h→0

N(t + h, a + h)− N(t, a)

h
. (2.2)

The symbol
(

∂
∂a +

∂
∂t

)

is used instead of D N due to historical reasons. However, it

is important to interpret this symbol as above since D N may exist in cases where
the partial derivatives ∂

∂a and ∂
∂t are not existing, and this is typically the case in the

controlled population models.
More specifically, in Chapter 4, it will be assumed that M(t, a) = R(t)u(t, a), where

R(t) is the number of immigrants at time t and u(t, a) is the age-density which satisfies

0 ≤ u(a) ≤ u(t, a) ≤ ū(a),
∫ ω

0
u(t, a)da = 1.

For M(t, a) = 0, equation (2.1) reduces to the famous McKendrick-von Foerster Equation,
cf. Keyfitz and Keyfitz (1997), which describes the dynamics of a population without
migration. The partial differential equation in (2.1) is linear and of first-order. It be-
longs to the class of transport equations, which are typically solved via the method
of characteristics, cf. Evans (2010). However, there is a crucial difference between the
classical transport equation and the Mc Kendrick-von Foerster equation due to the
endogenous and non-local boundary condition involved in the latter, see (2.4).

The initial condition for (2.1) is given by the initial population density

N(0, a) = N0(a), a ∈ (0, ω), (2.3)

where N0 : [0, ∞) → R is non-negative and bounded, and the boundary conditions are
given by the number of births in the population for every time t:

N(t, 0) =
∫ ω

0
f (a) N(t, a)da, t > 0. (2.4)

Note, that this condition depends on the solution N(t, a) itself and is therefore an
endogenous and non-local boundary condition.
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In order to let (2.1) be meaningful, one has to specify the mathematical setting of
the above problem.

Therefore, for any positive number T we abbreviate

DT := [0, T]× [0, ∞), D := [0, ∞)× [0, ∞), (2.5)

and we define the space N that consists of all functions N : D → R which are
(i) measurable, and the function t 7→

∫ ∞

0 |N(t, a)|da < ∞ is finite and locally bounded;
(ii) locally absolutely continuous on almost every line t − a = const intersected with D

(these are the characteristic lines of the differential operator in (2.1)).
In Figure 2.1 some characteristic lines are plotted. In the context of population

dynamics one also calls them life lines, because the life of a cohort born lets say at time
t − a evolves along these lines until the final age ω.

age

timeTt t-a+st-a

a

a+s

Figure 2.1: Lexis Diagram

Then for any N ∈ N the directional derivative D N(t, a) is well-defined for a.e. (t, a) ∈

D. Moreover, M : D → R
+ is measurable and locally bounded.

Let us first define a stationary solution N(a) of problem (2.1) - (2.4) as a solution
N(t, a) = N(a) independent of time. By definition, this stationary solution is absolutely
continuous and satisfies

dN(a)

da
= −µ(a)N(a) + M(a), a ∈ (0, ω) (2.6)

N(0) =
∫ ω

0
f (a)N(a)da. (2.7)
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For the study of the existence of a stationary solution, we have to introduce an
important concept in population dynamics, namely the net reproduction rate (NRR),

NRR :=
∫ ω

0
f (a)l(a)da. (2.8)

In the one-sex model we consider, the NRR gives the number of children expected
to be born to a single individual during her life under the assumption of constant
age-specific mortality and birth rates.

Then, we easily see that for the existence of a solution of the stationary, homogenous
problem it holds:

Proposition 2.1. Let M = 0 and µ and f are fixed as above. Then equations (2.6) – (2.7) have

a non-negative and non-trivial solution if and only if NRR = 1, where NRR is given as in

(2.8).

For positive immigration M(a) the following holds:

Proposition 2.2. Let f and µ be fixed as above and let M(a) ≥ 0 not be identically equal to

zero. Then equations (2.6), (2.7) have a non-negative solution if and only if NRR < 1. In this

case the solution is unique and given by the formula

N(a) =
1

1 − NRR

∫ ω

0

(

f (τ)
∫ τ

0

l(τ)

l(s)
M(s)ds

)

dτ l(a).

In Chapter 3, we will focus on the stationary problem formulation (2.6), (2.7) and
determine the optimal choice of M(a) under certain additional constraints. The opti-
mality criterion will be given by a specific demographic indicator.

Let us now return to the original problem (2.1)–(2.4) and discuss the existence,
non-negativity and uniqueness of a solution. Note, that with a solution of (2.1)–(2.4)
we mean a function N ∈ N if the equations are satisfied almost everywhere with
(

∂
∂a +

∂
∂t

)

N interpreted as DN.

Theorem 2.1. Problem (2.1)–(2.4) has a unique solution N ∈ N and N is (essentially)

bounded on every subset DT ⊂ D, 0 < T < ∞. The solution is non-negative.

We omit the proof because it is similar to the proof of Lemma 4.2 in Chapter 4.

In Chapter 4 we will further restrict N(t, a) by requiring that

∫ ω

0
N(t, a)da = N̄,

where 0 < N̄ < ∞ is fixed and the requirement holds for almost every t. This require-
ment will lead us to the study of a two-dimensional system of integral equations when
investigating existence and uniqueness of a solution. . For more general existence and
uniqueness results we refer to Brokate (1985); Webb (1985); Feichtinger et al. (2003).
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2.2 Optimal control of age-dependent population dynamics

This section serves for a better understanding of the optimization techniques for pop-
ulation models as above. The most important notions and concepts of optimal con-
trol theory are explained. In no way this section should be considered as a complete
overview of the theory, but more as a short guide to get the basic tools to be equipped
for the next chapters. For a more complete overview of optimal control theory, the
reader may consult books such as Pontryagin et al. (1962); Feichtinger and Hartl (1986);
Grass et al. (2008); Léonard and Long (1992).

2.2.1 Basic concepts in optimal control theory

Optimal control theory aims to identify optimal ways to control a dynamic system.
Many different questions can be studied via an optimal control problem. Applications
range from macroeconomic models and population dynamics, to mechanical motions,
forestry and even drug control. In this section, we present an optimal control model
which is general enough to be used for studying age-structured problems with it.

In general, to determine an optimal control means that the control input to the sys-
tem, named control, which has to lie in a given control region, is chosen such that the
state is steered optimally, where optimality is measured by an objective functional. The
trajectory of the state follows the law of a dynamic system, which is influenced by the
choice of the control variable, and is typically subjected to additional state constraints.
In age-structured systems, the state is typically the age-density of a population or of a
sub-population. Depending on the application, the control might be an age-specific mi-
gration policy, the harvesting effort of farmed populations such as fish, or age-specific
drug prevention techniques to reduce drug abuse.

The control region is defined via constraints on the control variable. Sometimes
mixed constraints, involving both the state and the control, are present. As mentioned,
the optimality criterion is given by the so-called objective function.

Let us denote by u ∈ R
m the control variable and by x ∈ R

n the state variable of a
system. Then, a general optimal control problem can be formulated as follows:

L0(x(·), u(·)) =
∫ ω

a0

L(a, x(a), u(a))da

+ l0(x(a0), x(ω)) → inf, (2.9)

dx

da
= f (a, x(a), u(a)), u ∈ U ([0, ω]), (2.10)

Li(x(·), u(·)) =
∫ ω

a0

fi(a, x(a), u(a))da

+ li(x(a0), x(ω)) ≶ 0, (2.11)

where i = 1, 2, . . . , m.
Here, (2.9) defines the objective function L0(x, u), where ω denotes the final age

and a0 is the initial age, typically a0 = 0. It may hold that ω = ∞ as it is also the case
in the model presented in Chapter 4. The value l0(x(a0), x(ω)) is called the scrap value.
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Equation (2.10) describes the state dynamics in form of an ODE. In (2.11) constraints
on the state or mixed-constraints may be described. Here, U ([0, ω]) denotes the set of
admissible controls, which is defined as a class of functions, u : [0, ω] 7→ U, typically
being measurable or piecewise continuous.

Note also that in many economic applications, where the independent variable is
time and not age, it is common that the decision maker discounts time with a time
preference rate ρ, reflecting the fact, that the future state of the system is less important
than its current one. Then, the integrand in the objective function takes the form
e−ρaL(a, x(a), u(a)). Typically, this is the case in so-called life-cycle models, see e.g.
Heijdra and Romp (2009), where agents aim to optimally choose the consumption over
their life-cycle. Such models are essentially involved in Chapter 5.

Now assume that for u(·) ∈ U ([0, ω]), L (u) := L0(x(u), u) exists and that (2.10)
has a unique solution x(·). Then a solution of problem (2.9)–(2.11) may be defined in
the following way:

Definition 2.1. : A solution to problem (2.9) – (2.11) is a control u∗(·) ∈ U ([0, ω]) and the

corresponding state x∗(·), which fulfill (2.11), such that ∀u(·) ∈ U ([0, ω]) either (2.11) does

not hold or L (u(·)) ≤ L (u∗(·)) .

This is the standard definition of optimality and is of key importance in the analysis
of optimal control models.

2.2.2 Pontryagin’s Maximum Principle

The solution of an optimal control problem of the above type can be characterized
by necessary optimality conditions of Pontryagin type called Pontryagin’s Maximum
Principle. The maximum principle, loosely speaking, consists of a maximization con-
dition on the so-called Hamiltonian function, a law of motion which has to be fulfilled
by the so-called adjoint variable and a transversality condition.

Note, that although for (2.9)–(2.11) it would be more accurate to formulate a mini-
mum principle, we still hold on to the maximum formulation because it is more com-
mon in the literature.

The so-called Pontryagin function is defined as

H(a, x, u, ξ) = ξ(a) f (a, x, u)−
m

∑
i=0

λi fi(a, x, u), ξ ∈ R
n

where function ξ(a) is called the adjoint variable and λi are the Lagrange multipliers.
In the following we formulate Pontryagin’s Maximum Principle in a similar form stated
in Alekseev et al. (1987) on p.218:

Theorem 2.2 (Pontryagin Maximum Principle). Let G be an open set in the space R × Rn,

let W be an open set in the space R × Rn × R × Rn and let U be an arbitrary topological

space. Let the functions fi: G × U → R, i = 0, 1, . . . , m, f : G × U → Rn, and their partial

derivatives with respect to x be continuous in G × U , and let the functions li, i = 1, . . . , m be

continuously differentiable in W.
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If (x∗(·), u∗(·)) is an optimal solution for the problem (2.9)–(2.11), then there are Lagrange

multipliers

λ0 ≥ 0, λ = (λ1, . . . , λm),

not all zero, and an adjoint variable ξ(·) such that:

a) the adjoint equation

dξ

da
= −ξ(a)

∂ f

∂x
(a, x∗(a), u∗(a)) +

m

∑
i=0

λi
∂ fi

∂x
(a, x∗(a), u∗(a))

= −
∂H

∂x
(a, x∗(a), u∗(a), ξ(a)),

along with the transversality conditions

ξ(ω) = −
m

∑
i=0

λi
∂li

∂xω
(x∗0 , x∗ω)

ξ(a∗0) =
m

∑
i=0

λi
∂li
∂x0

(x∗0 , x∗ω)

the maximum principle in Hamiltonian (Pontryagin) form

H∗(a) ≡ H(a, x∗(a), u∗(a), ξ(a)) ≡ max
v∈U

H(a, x∗(a), v, ξ(a))

the function H∗(a) being continuous on the closed interval [a0, ω].

b) the conditions of concordance of signs hold:

λi ≷ 0, (2.12)

c) the conditions of complementary slackness hold:

λiLi(x∗(·), u∗(·)) = 0, i = 1, 2, . . . , m

(inequalities (2.12) mean that λi ≥ 0 if Li ≤ 0 in condition (2.11), λi ≤ 0 if Li ≥ 0, and λi

may have an arbitrary sign if Li = 0).

The proof of the Maximum Principle involves many important concepts of optimal
control theory. Some of them are also used in a later chapter for the proof of necessary
optimality conditions of a distributed control system.

2.2.3 Distributed parameter control

The models in Chapter 3 and Chapter 4 represent two examples for the optimal control
of age-structured control systems, where the area of application is demography. Simi-
larly, such models can also be found in the research of the control of epidemiological
processes, drug initiation, cf. Almeder et al. (2004), or harvesting and birth control,
Brokate (1985). More extensive bibliography can be found in Feichtinger et al. (2003).
In all these fields of applications the age of the individual plays an important role.
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While the control of the stationary dynamics in Chapter 3 can be studied by rather
standard techniques, the problem in Chapter 4 represents a very specific form of a so-
called distributed parameter model and required the extension of existing techniques for
the characterization of the solution of such problems.

Distributed parameter models are the proper tool for studying the control of het-
erogeneous, dynamic systems. Heterogeneous, dynamic systems are characterized by
state variables which exhibit an explicit dependence on a certain parameter, which for
example might be age. The dynamics is typically given by partial differential equa-
tions. Very often the solution of a distributed parameter model is characterized by
the formulation of a maximum principle of Pontryagin’s type. Rather recently new
maximum principles were developed such as the ones presented in Feichtinger et al.
(2003); Veliov (2008), where the authors formulate maximum principles for fairly gen-
eral distributed parameter systems. In Veliov (2008) the analysis is not only directed
to age-dependent dynamics. The author considers a very broad form of heterogeneity
which is represented by a parameter taking values in an abstract measurable space, so
that continuous and discrete heterogeneities, as well as probabilistic heterogeneities,
may be included in the problem formulation.

Whereas, as already mentioned, distributed parameter control may also arise in
other applications than age-structured systems, for example size-structured systems in
forestry control, we will put here a focus on the control of age-dependent population
dynamics. A general maximum principle for nonlinear population dynamics was ob-
tained in Brokate (1985). In recent years, a vast literature dealing with age-structured
models and various extensions of the McKendrick-type system treated in there arose
where the existing optimality conditions were not applicable and hence required the
development of new theoretical results. In Feichtinger et al. (2003) the analysis targeted
age-structured optimal control models, similar to the problem considered in Chapter
4. However, the results obtained in there were not sufficient for the study of the model
presented in this thesis and hence required a further development of existing results.

This section is aimed to present the state of the present theory. In Feichtinger et al.
(2003), the authors considered the following general distributed optimal control model:

min
u,v,w

J(u, v, w) :=
∫ ω

0
l(a, N(T, a))da

+
∫ T

0

∫ ω

0
L(t, a, N(t, a), P(t, a), B(t), u(t, a), v(t), w(a))da dt, (2.13)

subject to the equations

(

∂

∂a
+

∂

∂t

)

N(t, a) = f (t, N(t, a), P(t, a), B(t), u(t, a)), (2.14)

P(t, a) =
∫ ω

0
g(t, a, a′, N(t, a′), u(t, a′))da′, (2.15)

B(t) =
∫ ω

0
h(t, a, N(t, a), P(t, a), B(t), u(t, a))da, (2.16)
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the initial condition
N(0, a) = N0(a, w(a)), (2.17)

the boundary condition
N(t, 0) = ϕ(t, B(t), v(t)), (2.18)

and the control constraints

u(t, a) ∈ U, v(t) ∈ V, w(a) ∈ W. (2.19)

Here, t ∈ [0, T] and a ∈ [0, ω] denote time and age, respectively. Then, N(t, a) ∈ R
m,

P(t, a) ∈ R
n and B(t) ∈ R

r are the state variables of the system. The variables u(t, a),
v(t) and w(a) are the distributed, boundary and initial controls. We will omit here the
strict mathematical definition of the problem and refer the reader to Feichtinger et al.
(2003).

Now assume that for admissible controls u(t, a), v(t) and w(a), J(u, v, w) exists and
that problem (2.14)–(2.18) has a unique solution (N, P, B). Then a solution of problem
(2.13)–(2.19) may be defined in the following way:

Definition 2.2. : A solution to problem (2.13)–(2.19) are controls u∗(t, a) ∈ U, v∗(t) ∈

V, w∗(a) ∈ W and the corresponding states (N∗(t, a), P∗(t, a), B∗(t)) such that ∀(u, v, w)

that fulfill (2.19) it holds that J(u, v, w) ≥ J(u∗, w∗, v∗) .

The above system might be interpreted as follows. For m = 1 the distributed state
variable N(t, a) may give the density of the population or in case of m > 1 it may
describe the density of various sub-populations of a society, for instance skilled and
unskilled workers as typically investigated in a demo-economic model, being of age a

at time t . The term N(t, a) states that each individual is characterized by its age a at
any time t. Hence, the age a is the distributed parameter in this model. The term B(t)

is an aggregated quantity such as the size of the population or of a sub-population.
The term P(t, a) may model the effect that cohorts have on the dynamics of each other.
Function u(t, a) is an age-specific control such as an age-specific training rate, when
we think again of the model of skilled and unskilled workers. The boundary control
v(t) may reflect a birth control measure or in a vintage capital model, the number of
purchased new machines.

For the characterization of a solution of the above problem, we assume sufficient
smoothness of the involved functions. Below ∇x denotes the differentiation with re-
spect to variable x. We define the following initial, boundary and distributed Hamilto-
nians

H0(a, w) := ξ(0, a)N0(a, w) +
∫ T

0
L(s, a, w)ds,

Hb(t, v) := ξ(t, 0)ϕ(t, v) +
∫ ω

0
L(t, b, v)db,

H(t, a, u) := L(t, a, u) + ξ(t, a) f (t, a, u)

+
∫ ω

0
η(t, a′)g(t, a′, a, u)da′ + ζ(t)h(t, a, u).
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and the corresponding adjoint system, whose existence may be assumed:

(

∂

∂a
+

∂

∂t

)

ξ(t, a) = ξ(t, a)∇N f (t, a) + ζ(t)∇Nh(t, a) +∇N L(t, a) (2.20)

ξ(t, ω) = 0, ξ(T, a) = ∇yl(a, N(T, a)), (2.21)

η(t, a) = ∇PL(t, a) + ξ(t, a)∇Q f (t, a) + ζ(t)∇Ph(t, a), (2.22)

ζ(t) = ξ(t, 0)∇Q ϕ(t) +
∫ ω

0

[

ξ(t, a)∇Q f (t, a) +∇QL(t, a) + ζ(t)∇Qh(t, a)
]

da. (2.23)

Then, the following necessary optimality conditions for a solution of (2.13) – (2.19)
hold.

Theorem 2.3. Let (N∗, P∗, B∗, u∗, v∗, w∗) be an optimal solution of problem (2.13) – (2.19).
Then the adjoint system (2.20 - 2.23) has a unique solution (ξ, η, ζ)in L∞([0, T]× [0, ω]) and

then for a.e. t0 ∈ [0, T], a0 ∈ [0, ω] and (t, a) ∈ DT the following holds:

∂H0

∂w
(a0, w∗(a0))(w − w∗(a0)) ≥ 0, ∀w ∈ W,

∂Hb

∂v
(v − v∗(t0)) ≥ 0, ∀v ∈ V,

H(t, a, u)− H(t, a, u∗(t, a)) ≥ 0, ∀u ∈ U.

This newly established maximum principle could be applied to a wide range of
problems, cf. Feichtinger et al. (2004, 2006); Prskawetz and Veliov (2007); Wrzaczek
et al. (2010). There are several reasons for the wide applicability of the new optimal-
ity conditions for age-structured systems. For example, they can deal with integral
quantities such as P(t, a) that exhibit an age-dependence. Another extension to exist-
ing maximum principles is the involvement of boundary controls v(t). Another crucial
feature is that the distributed control may appear in both dynamics and the boundary
condition.

We may now give a specification to problem (2.13) – (2.19) and turn to the model of
Chapter 4. In the model considered in Chapter 4 the following specifications hold true.
The objective function is given by

max
u(t,a),R(t)

∫ T

0
e−rT

{

qR(t)) +
∫ ω

0
p(a)N(t, a)da

}

dt (2.24)

The objective function is subjected to

(

∂

∂a
+

∂

∂t

)

N(t, a) = −µ(a)N(t, a) + R(t)u(t, a), (2.25)

B(t) =
∫ ω

0
f (a)N(t, a)da, (2.26)

with initial and boundary conditions

N(t, 0) = B(t), N(0, a) = N0(a), (2.27)
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and the control constraints

u(a) ≤ u(t, a) ≤ ū(a),
∫ ω

0
u(t, a)da = 1, (2.28)

R(t) ≥ 0. (2.29)

The other variables and functions are missing in this specific model formulation.
Hence, so far, on a finite domain [0, ω]× [0, T] the solution of the model could be char-
acterized by the above maximum principle. However, the problem posed in Chapter 4
represents a substantial extension to the above problem setting. First, it is posed on an
infinite horizon, i.e. T = ω = ∞. A general maximum principle for infinite horizon
age-structured problems does not exist yet. Second, the problem introduced in Chapter
4 exhibits another difficulty because it is required that the size of the total population
is held constant, namely

∫ ω
0 N0(a)da = M, i.e.

∫ ω

0
N(t, a)da = M, for almost every t, (2.30)

which is a sort of a state constraint and such are not included in Brokate (1985); Fe-
ichtinger et al. (2003); Veliov (2008). In Chapter 4, we showed that the requirement
(2.30) can always be fulfilled when R(t) is chosen in the feedback form

R(t) :=
∫ ∞

0
(µ(a)− f (a)) N(t, a)da.

Hence, in Chapter 4 it was necessary to establish a new, specific maximum principle in
order to characterize the solution of Problem (2.24) – (2.30).

2.3 Overlapping generations models in continuous time

In Chapter 5 we make use of another class of economic-mathematical models, namely
overlapping generations models (OLG). Similar to the above mentioned distributed pa-
rameter control models, OLG models are a work horse for studying the effects caused
by the age-heterogeneity of agents. OLG models are commonly a tool for macro
economists. They follow the neoclassical reasoning and give micro-funded models
of the whole economy, where the various players in the economy are brought together
by a general equilibrium mechanism. This general equilibrium mechanism typically
requires to solve a system of fixed point equations. Moreover, they make it possible
to study phenomena where life-cycle aspects are of importance and no representative
agent hypothesis is suitable. In general, OLG models are able to replicate several key
mechanisms of economic activity:

• transfers in an economy happen between different generations,

• agents face a finite but uncertain life time of which they know of and hence
behave accordingly,

• the main sectors of economic activity, being firms, households and government,
can be modeled,
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• the economic effects of the demographic changes in the industrialized countries.

In the basic version, individuals determine their optimal consumption and hence
saving over the life cycle. However, many extensions exist where the life cycle choices of
individuals do not only include the optimal consumption over the life horizon but also
other important life-time decisions such as labor endowment, the education period,
see Boucekkine et al. (2002), the retirement age, see Heijdra and Romp (2009), health
investments, see Kuhn et al. (2011), and so on.

The first pillar of an OLG model are the households that inhabit the economy and
solve an optimization problem, where they optimally determine several life time de-
cisions. In most OLG models, with exceptions for example in Evans et al. (2009),
individuals have perfect foresight meaning that they are able to perfectly forecast fu-
ture prices. The households rent their labor and assets to firms. These firms produce
goods that are in return bought by the households. And last but not least, there is the
government which collects taxes from the economic agents in order to finance inter-
and intragenerational transfers, such as pensions, health care and so on.

All these different economic agents meet at the corresponding markets, which are
assumed to be cleared in each time step. Hence, there is also no unemployment, mean-
ing that the firms demand exactly as much labor as it is supplied by the households.
OLG models contain the Ramsey (1928) model as a special case.

One distinguishes between discrete time and continuous time OLG models. Many
discrete OLG models only have two or three overlapping generations and are suitable
for the study of fundamental economic mechanisms. For example, in three period OLG
models, the implicit length of such a generation is roughly 20–30 years, adding up to
a life-time of roughly 80–90 years, which does not allow for a realistic modeling of
the demography. In an attempt to investigate economies of specific countries, Auer-
bach and Kotlikoff (1987) invented the so-called computational general equilibrium models

(CGE) which exhibited a high number of co-existing agents. These CGE models are
not analytically tractable and can only be solved by numerical methods.

However, analytic tractability is desirable because it makes it possible to derive
general conclusions. Hence, continuous time OLG models come into play. In Blanchard
(1985), the author developed the first continuous time OLG model based on previous
ideas by Yaari (1965). The Blanchard-Yaari model is also known as perpetual youth
model due to the fact that the agents always face a constant probability to die.

Hence, a natural extension of the Blanchard-Yaari model is the introduction of a fi-
nite life time and a probability density function which models the changing probability
of survival over the life horizon.

In a continuous time OLG model the individual behavior can be modeled by an
optimal control model. Hence, OLG models exhibit two important features that are of
great interest for this work: dynamic optimization and heterogeneous modeling.

Continuous time OLG models make it possible to realistically model the demo-
graphic developments in a society. Hence, they gained in importance when people
started to investigate the consequences of aging societies. There are several papers in-
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volving OLG models that deal with the economic consequences of a mortality shock or
changes in the fertility, see for example Heijdra and Lighart (2006).

The model studied in Chapter 5 is also a continuous time OLG model with finite
horizon. We extend the standard model by including another heterogeneity, namely
the agents nativity. We model immigrants and natives who interact in an economy.
In contrast to other papers, where the influence of fertility or mortality on economic
parameters was investigated such as the growth rate or the per-capita capital, we focus
in here on the immigration profile.
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Chapter 3

Minimizing the dependency ratio in

a population with

below-replacement fertility through

immigration

Here, we present an optimal control model to determine the optimal age-specific im-
migration profile to a stationary population. We consider two alternative problem
formulations. First, in Section 3.3, we fix the total number of people who annually
immigrate to a country. Then, in Section 3.4, we prescribe the (stationary) total size of
the receiving country’s population.

3.1 Introduction

In many industrialized countries fertility rates are below-replacement level. Addition-
ally, these countries face a mortality decline, in particular at ages after retirement. Since
fertility decline is very often the dominating effect, the population of these countries
would decline without immigration. Moreover, the age structure of these countries’
population is changing, showing a growth in the number of elderly people and a de-
clining number of young people.

One important indicator of age structures is the so-called dependency ratio, which
is the ratio of persons of nonworking age to persons of working age, usually the 20
to 65-year-olds. A low dependency ratio is desirable because it indicates that there
are proportionally more adults of working age who can support the young and the
elderly of the population. This in turn is advantageous for the countries’ health-care
system and pension schemes. A downfall of the relative number of working people in
a population also has negative impacts on the growth path of the economy. A possible
way to counter the risks of these demographic changes is to step up immigration.

Similar to Arthur and Espenshade (1988); Mitra (1990); Schmertmann (1992); Wu
and Li (2003), in this work we consider a population where we assume that immigra-
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tion, fertility, and mortality rates are constant and fertility is below-replacement level.
These studies already have shown that such populations eventually converge to station-
ary populations. Following Schmertmann (1992) from now on we will denote this kind
of population as SI, meaning stationary through immigration. Below-replacement level
fertility and mortality rates indicate that without immigration the population would
converge to zero. In our model we assume that the age-specific fertility rates of immi-
grants equal those of the natives. Following Schmertmann (2012) we do not account
for emigration.

In this work, we aim to find the age-specific immigration profile that minimizes the
dependency ratio in a stationary population. We do so by applying optimal control
theory which is a rather new methodology in demographic research, see for example
Feichtinger and Veliov (2007). We formulate an optimal control problem where the
age-specific immigration profile is the control variable and the age structure of the
population is the state variable. By deriving a maximum principle, we characterize the
optimal solution to the posed optimal control problem.

A similar question to the one posed here is asked in United Nations (2001) where
the authors determine whether migration of a country can be used to hinder a decline
or aging of its population. They refer to this as replacement migration. They examine
the situation of eight industrialized countries during the time period from 1995 to 2050.

In Schmertmann (2012) the question is raised how age-targeted immigration pol-
icy can be used to increase the relative number of working people in a population.
There, the total number of annual immigrants is fixed and the problem is reduced
to a static optimization problem. What is shown is that the highest relative number
of workers can be achieved if all immigrants arrive at one single age under the as-
sumption that at each age an arbitrarily high number of immigrants can be recruited.
Schmertmann’s paper leaves the question open what the optimal age-specific immigra-
tion profile would look like if not all immigrants are admitted at one single age. This
issue, among others things, is tackled below.

From a mathematical point of view, a similar linear optimal control problem to
the one proposed here is considered in Dawid et al. (2009). The authors determine
the optimal recruitment policy of a stationary learned society, i.e. a professional and
hierarchical organization, that minimizes the average age of the organization for a fixed
number of recruits.
Feichtinger and Veliov (2007) extended their study to the transitory case. Remarkably,
the optimal recruitment is the same as in the stationary case. That is why we also
start with the stationary case. In Chapter 4 we extend the model of this chapter in
various directions. One major difference is that the model in Chapter 4 is a so-called
distributed parameter model, dealing with the transitory dynamics.

In the following, we consider two alternative policies in order to investigate their
impact on the optimal immigration profile.

Policy 1: We fix the total number of people who annually immigrate to a country.

Policy 2: We prescribe the (stationary) total size of the receiving country’s population.
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Moreover, we assume that there are age-specific upper bounds for immigration. This
is a reasonable assumption because it takes into account that the present immigration
cannot be changed dramatically.

We find that the optimal immigration profile for both policies exhibits a bang-bang

pattern, meaning that the solution jumps from one age-specific bound to the other and
takes no values in between. We prove that for the optimal profile under Policy 1 that
besides immigration at young and middle ages, immigration takes place also in the
vicinity of the maximum attainable age. Such counter-intuitive old-age immigration
does not happen under Policy 2. We show that under reasonable assumptions about the
vital rates and the age-specific immigration bounds, the optimal immigration profile
under Policy 2 is such that it is optimal to allow maximum immigration on not more
than two separate age intervals before the retirement age.

The optimal control approach enables us to determine the marginal value of an
immigrant at a certain age in terms of the dependency ratio,
cf. Wrzaczek et al. (2010), by interpretation of the so-called adjoint variable, cf. Grass
et al. (2008), whose clear meaning will be defined in Section 3.3. As a consequence we
are able to decide what age-specific immigration profile is optimal for minimizing the
dependency ratio. Moreover, the impact of an a-year-old immigrant on the dependency
ratio can be represented as a sum of two components. The first component, which is
referred to as the direct effect, accounts for a woman’s expected life time inside and
outside the work force. The second component, known as the indirect effect accounts for
the effect on the dependency ratio contributed by her expected number of descendants.
Clearly, when an immigrant arrives towards the end of childbearing age she will have
less children than a younger woman which indicates that she will be less of a burden
for the dependency ratio of the resulting stationary population. However, the expected
remaining time in the working population is then also reduced, meaning that she will
be dependent for a relatively longer time.

We give numerical illustrations of our findings for the case study of the Austrian
population based on demographic data from 2008 and find that in the case of a fixed
population size together with very loose age-specific bounds for immigration, the op-
timal age of immigration lies in the mid-thirties.

3.2 Model description and preliminary statements

In the following, α and β denote the lower and upper age limits determining the work-
ing age population and ω is the maximum attainable age of an individual. We aim to
minimize the dependency ratio given as

D(M(·)) :=

∫ α
0 N(a)da +

∫ ω
β N(a)da

∫ β
α N(a)da

, 0 < α < β < ω,

by choosing the age distribution of immigrants M(·). With D(M(·)) we mean the
dependency ratio that results when realizing the immigration profile M(·) and N(a)

denotes the number of resulting females in the population of age a. Here, the age a is
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considered as a continuous variable and subsequently Ṅ(a) denotes the derivative of
N(a) with respect to a.

We come up with the following optimal control problem:

min
M(·)

D(M(·)), (3.1)

subject to

Ṅ(a) = −µ(a)N(a) + M(a), (3.2)

N(0) =
∫ ω

0
f (a)N(a)da, (3.3)

0 ≤ M(a) ≤ M̄(a), 0 < a < ω. (3.4)

Additionally, we prescribe one of the two alternative constraints, corresponding to
Policy 1 and Policy 2 mentioned in Section 3.1:

Problem 1. This is problem (3.1) – (3.4) with the additional constraint that the total
number of immigrants, Mtot is fixed:

Mtot =
∫ ω

0
M(a)da. (3.5)

Problem 2. This is problem (3.1) – (3.4) with the additional constraint that the size of
the stationary population, Ntot is fixed:

Ntot =
∫ ω

0
N(a)da. (3.6)

From a mathematical point of view, these two problems differ significantly, since (3.5)
is an integral control constraint while (3.6) a state constraint.

The immigration age profile M(·) is referred to as control, since it is the decision
variable in the optimization problem. The population structure is determined by the
so-called state variable of the problem, N(·). In contrast to the control, the state variable
cannot instantaneously be influenced since it has its own dynamics, see (3.2).

By f (a) and µ(a) we denote age-specific fertility and mortality rates which do not
change with time and are continuous functions of a. Additionally, we assume that
∫ ω

0 µ(a)da = +∞, cf. Anita (2000), which ensures that N(ω) = 0 holds. Subsequently,

we will with l(a) := e−
∫ a

0 µ(s) ds denote the age-specific probability of surviving until
age a.

The support of f (·) is a subset [amin, amax] ⊂ [0, ω], where amin and amax denote
the youngest and the oldest age of childbearing, respectively. Subsequently, for both
problems we assume that fertility f (·) is below-replacement, i.e. that the following
assumption holds:

Assumption 3.1. Age-specific fertility f (·) and mortality µ(·) are such that

NRR :=
∫ ω

0
f (a)l(a)da < 1

holds.
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Below-replacement fertility means that a population cannot reproduce itself.
With M̄(a) we denote the age-specific immigration bounds which are assumed to

be continuous. From a mathematical point of view the reason for imposing these
age-specific bounds is the applicability of Pontryagin’s Maximum Principle. However,
more practically spoken these bounds are justifiable because they may reflect the fact
that age is not the only factor that should be taken into account when determining the
optimal immigration policy and also the number of potential immigrants of a certain
age is limited.

Notice that the control M(·) enters linearly the problem. This property of the opti-
mal control problem is responsible for the bang-bang behavior of the solution obtained
below. The dynamics (3.2) describing the age structure of the population only holds
for a stationary population. See also Chapter 2 for a detailed discussion of dynamic
population models.

Subsequently, for a given age interval [α, β] ⊆ [0, ω] the function I[α,β](·) is defined as
the characteristic function

I[α,β](a) =

{

1 if a ∈ [α, β],

0 otherwise.

We also recall the notion of the reproductive value of an a-year-old female, intro-
duced in Fisher (1930) (see also Keyfitz (1977)), which is the expected number of future
daughters of an individual from her current age onward, given that she has survived
to this age:

v(a) =
∫ ω

a

l(x)

l(a)
f (x)dx. (3.7)

Notice that v(0) = NRR. Then, we determine the solution of (3.2) by using the Cauchy
formula:

N(a) =e−
∫ a

0 µ(s) dsN(0) +
∫ a

0
e
∫ a

s µ(τ) dτ M(s)ds

=l(a)N(0) +
∫ a

0

l(a)

l(s)
M(s)ds.

From (3.3) it follows that

N(0) =
1

1 − NRR

∫ ω

0
f (a)

∫ a

0

l(a)

l(s)
M(s)ds da

=
1

1 − NRR

∫ ω

0
f (a)l(a)

∫ a

0

M(s)

l(s)
ds da

=
1

1 − NRR

∫ ω

0

M(s)

l(s)

∫ ω

s
f (a)l(a)da ds

=
1

1 − NRR

∫ ω

0
M(s)v(s)ds.
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With this presentation of the solution one can obtain an alternative representation of the
objective function (3.1): Consequently, for the total population the following relations
hold:

∫ ω

0
N(a)da =

∫ ω

0

l(a)

1 − NRR
da
∫ ω

0
M(s)v(s)ds +

∫ ω

0

∫ a

0

l(a)

l(s)
M(s)ds da

=
e[0,ω](0)

1 − NRR

∫ ω

0
M(s)v(s)ds +

∫ ω

0
e[0,ω](s)M(s)ds

=
∫ ω

0

(

e[0,ω](0)

1 − NRR
v(s) + e[0,ω](s)

)

M(s)ds

=
∫ ω

0
G(s)M(s)ds,

where

G(s) :=
e[0,ω](0)

1 − NRR
v(s) + e[0,ω](s). (3.8)

Analogously, we obtain

∫ β

α
N(a)da =

∫ ω

0
F(s)M(s)ds,

where

F(s) :=
e[α,β](0)

1 − NRR
v(s) + e[α,β](s), (3.9)

and hence the following relation holds:

D(M(·)) = 1 −

∫ ω
0 F(a)M(a)da
∫ ω

0 G(a)M(a)da
. (3.10)

Here, e[0,ω](a) =
∫ ω

a
l(x)
l(a)

dx is the life expectancy in [0, ω] at age a. Similarly, e[α,β](a) =
∫ ω

a
l(x)
l(a)

I[α,β](x)dx is the working life expectancy of an a-year-old, reflecting the ex-
pected number of years an a-year-old would spend working. Clearly, e[α,β](a) = 0 for
a ≥ β. We will need the alternative representation (3.10) of the objective function in a
later step, see Lemma 3.1 and Theorem 3.2.

3.3 The optimal immigration profile for a fixed number of im-

migrants

In this section, we analyze Problem 1, given by (3.1)–(3.5), by making use of optimal
control theory.

In order to determine an optimal immigration profile, M∗(·), we derive necessary
conditions to characterize the optimal solution.

Now, we restate the problem so that the maximum principle, see Theorem 2.2 in
Chapter 2, is applicable. Therefore, in addition to N(a) we introduce the auxiliary state
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variables X(a), Y(a), being absolutely continuous functions of a. The corresponding
state equations read as

Ẋ(a) = N(a), X(0) = 0,

Ẏ(a) = I[α,β](a)N(a), Y(0) = 0.

Equivalently, it holds that

X(a) =
∫ a

0
N(τ)dτ and Y(a) =

∫ a

α
I[α,β](τ)N(τ)dτ.

In this way we can express the objective function (3.1) by evaluating the functions X(·)

and Y(·) at the terminal value ω. Therefore, Problem 1 is equivalent to the problem

min
M(a)

X(ω)

Y(ω)
, (3.11)

subject to

Ṅ(a) = −µ(a)N(a) + M(a), (3.12)

Ẋ(a) = N(a), X(0) = 0, (3.13)

Ẏ(a) = I[α,β](a)N(a), Y(0) = 0, (3.14)

N(0) =
∫ ω

0
f (a)N(a)da, (3.15)

0 ≤ M(a) ≤ M̄(a), (3.16)

Mtot =
∫ ω

0
M(a)da. (3.17)

Introducing scalars λ1, λ2, further referred to as Lagrange multipliers, and the so-called
adjoint variables ξ(·), ζ(·) and η(·) we define the Hamiltonian of (3.11) - (3.17) as

H(a, N, X, Y, M, ξ, ζ, η) =

ξ(a) (−µ(a)N(a) + M(a)) + ζ(a)N(a) + η(a)I[α,β](a)N(a)

− λ0
X(ω)

Y(ω)
− λ1 f (a)N(a)− λ2M(a).

The next theorem provides necessary optimality conditions and can be summarized
as a maximization condition for the Hamiltonian

max
0≤M≤M̄(a)

H

with appropriate adjoint variables.

Theorem 3.1. Let (N∗(·), M∗(·)) be an optimal solution of problem (3.1)–(3.5). Then there

exist Lagrange multipliers λ1, λ2 ∈ R and an absolutely continuous function ξ(·), such that

(i) ξ(·) satisfies on [0, ω] the equations

ξ̇(a) = µ(a)ξ(a)− λ1 f (a)−
(D(M∗(·)) + 1)2

Ntot(M∗(·))
I[α,β](a) +

(D(M∗(·)) + 1)
Ntot(M∗(·))

,

ξ(0) = λ1, ξ(ω) = 0, (3.18)
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(ii) and the following maximum principle holds for almost every a ∈ (0, ω):

(ξ(a)− λ2)M∗(a) = max
0≤M≤M̄(a)

(ξ(a)− λ2)M. (3.19)

Proof. The theorem follows from the application of Pontryagin’s maximum principle
as stated in Theorem 2.2. Given the Hamiltonian

H(a, N, X, Y, M, ξ, ζ, η) =

ξ (−µ(a)N + M) + ζN + ηI[α,β](a)N − λ0
X(ω)

Y(ω)
− λ1 f (a)N − λ2M.

We have

ξ̇(a) = −
∂H

∂N
, ξ(0) = λ1, ξ(ω) = 0,

η̇(a) = −
∂H

∂Y
, η(ω) =

X(ω)

Y2(ω)
,

ζ̇(a) = −
∂H

∂X
, ζ(ω) =

1
Y(ω)

,

where η = X(ω)
Y2(ω)

= (D+1)2

Ntot
and ζ = 1

Y(ω)
= D+1

Ntot
. Hence,

ξ̇(a) = µ(a)ξ(a)− λ1 f (a)−
X(ω)

Y2(ω)
I[α,β](a) +

1
Y(ω)

,

= µ(a)ξ(a)− λ1 f (a)−
(D(M∗(·)) + 1)2

Ntot(M∗(·))
I[α,β](a) +

(D(M∗(·)) + 1)
Ntot(M∗(·))

.

Q.E.D.

From (3.19) the following can be concluded:

M∗(a) =















M̄(a) if ξ(a) > λ2,

undetermined if ξ(a) = λ2,

0 if ξ(a) < λ2.

(3.20)

Hence, we introduce the following assumption on mortality µ(a) and fertility f (a):

Assumption 3.2. For all real numbers d0, d1 and d2 it holds that

meas{a ∈ Ω : d0µ(a)− d1 f (a) = d2} = 0.

Proposition 3.1. Let Assumption 3.2 be fulfilled, then the optimal control M∗(a) exhibits no

singular arc, that is, the indeterminacy in (3.20) may happen only on a set of measure zero.
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Proof. Assume that there exists a non void interval [a, ā] ⊂ [0, ω] where the optimal
solution M∗(a) exhibits a singular arc. Then, ξ(a) = λ2 and simultaneously ξ̇(a) = 0
on [a, ā]. From (3.18) we have that

ξ̇(a) = µ(a)λ2 − f (a)λ1 − c1I[α,β](a) + c2 = 0 ∀a ∈ [a, ā].

where

c1 =
(D(M∗(·)) + 1)2

Ntot(M∗(·))

and

c2 =
(D(M∗(·)) + 1)

Ntot(M∗(·))

. This contradicts Assumption 3.2 and hence the result follows. Q.E.D.

Assumption 3.2 means that equality ξ(a) = λ2 happens only at isolated points, so
that the values M∗(a) at these points have no effect on the dependency ratio. Assump-
tion 3.2 holds for fertility and morality rates that are not linearly related on a set of
positive measure.

It can immediately be concluded that the optimal control is of bang-bang type, jump-
ing from one boundary to the other. Therefore, function ξ(·)− λ2 is usually referred to
as switching function because the change of its sign determines the ages a at which the
optimal control switches from one boundary to the other.

Hence, to obtain the optimal immigration profile it is necessary to determine ξ(·)

and λ2. We note, that the right hand side of the differential equation (3.18) is discon-
tinuous at ages a = α and a = β and therefore the solution ξ has two kinks at each of
these ages. Additionally, we see that (3.18) is a boundary value problem for a linear
differential equation. By using the Cauchy formula for (3.18) we obtain the solution

ξ(a) = λ1v(a) +
D(M∗(·)) + 1
Ntot(M∗(·))

(

(D(M∗(·)) + 1)e[α,β](a)− e[0,ω](a)
)

. (3.21)

Using the boundary condition ξ(0) = λ1 and taking into account that NRR = v(0) we
obtain that

λ1 =

D(M∗(·))+1
Ntot(M∗(·))

(

(D(M∗(·)) + 1)e[α,β](0)− e[0,ω](0)
)

1 − NRR
. (3.22)

With (3.20) and expressions (3.21), (3.22) we are now able to obtain the optimal immi-
gration profile M∗(·), where the Lagrange multiplier λ2 has to be determined in such
a way, that (3.5) holds for the resulting solution.

The above introduced scalar λ1 is the Lagrange multiplier corresponding to the
initial condition (3.3) and it reflects the marginal worth of an increase in the annual
flow of newborns. The constant λ2 corresponds to the control constraint (3.5) and gives
the marginal change in the dependency ratio when adding an additional immigrant.

In economic applications of optimal control theory, the adjoint variable is inter-
preted as shadow price of the state variable. The term shadow price is commonly used
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in capital theory, cf. Dorfman (1969); Léonard and Long (1992). There, it is interpreted
as the highest hypothetical price a rational decision-maker would be willing to pay for
owning an additional unit of the corresponding state variable at time a measured by
the discounted (extra) future profit. Notice that the shadow price is not a real market
price and therefore can also have a negative value. See also for example Grass et al.
(2008), where an overview of recent developments of optimal control theory is given,
for a more detailed discussion of the economic interpretation of the maximum princi-
ple. In line with this interpretation, ξ(a) gives the shadow price of an individual of age
a. As it can be seen below, for this particular optimal control problem considered here
the shadow price is a part of the effect of adding an additional immigrant of age a.

Problem 1 has a rather peculiar property which in fact questions its credibility,
although, in general, prescribing the number of immigrants to a population seems to
be a quite reasonable policy. Namely, the optimal immigration policy for Problem 1
always involves very old immigrants

In the theorem below, it is shown that the optimal immigration profile M∗(·) is
such that arbitrarily close to the maximum age ω there are ages where immigration is
optimal. An individual’s contribution consists of her own expected years lived in the
host country and the analogous contribution of all her future descendants. Since we
aim to minimize the relative number of dependent people in the population, the fact
that immigration at the end of the life horizon is optimal seems to be counter-intuitive.
However, in the next theorem it is shown that this is not only a numerical effect as
found in the case study below, but can be proven theoretically.

Furthermore, we assume that the following assumption holds:

Regularity Assumption 1. For any c > 0 it holds that

F(a) 6= c G(a),

almost everywhere in [0, ω].

Functions G and F are given as in (3.8) and (3.9). This assumption means that an
immigrant’s effect on the working population is not proportional to its effect on the
overall population.

Moreover, for the proof of Theorem 3.2 below we need the following Lemma:

Lemma 3.1. For any immigration profile M(·) satisfying (3.16), (3.17), there exists a set

Γ ⊂ [0, ω], meas(Γ) > 0 such that M(a) > 0 for a ∈ Γ and

F(a)

G(a)
< J(M(·)), ∀a ∈ Γ,

holds.

Proof. Because of the regularity assumption the strict inequality

F(a)
∫ ω

0
G(a)M(a)da > G(a)

∫ ω

0
F(a)M(a)da,
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holds on a subset Γ ⊂ Γ0 of positive measure. Multiplying both sides by M(a) and
integrating on [0, ω] we obtain

∫ ω

0
F(a)M(a)da

∫ ω

0
G(a)M(a)da >

∫ ω

0
G(a)M(a)da

∫ ω

0
F(a)M(a)da,

which gives a contradiction. Q.E.D.

Theorem 3.2. Let M(·) be an arbitrary immigration profile which fulfills (3.4), (3.5) and

additionally M(a) < M̄(a) for a ∈ [ω − δ, ω] and some δ > 0. Then there is an immigration

profile M̃(·) which satisfies (3.4),(3.5) such that

D(M̃) < D(M).

Proof. For the proof we consider the equivalent maximization problem

max
M(a)

J(M(·)),

subject to

Mtot =
∫ ω

0
M(a)da,

0 ≤ M(a) ≤ M̄(a).

This problem is equivalent to the minimization problem (3.1)–(3.5). Note, that J(M(·)) =

1 − D(M(·)).
Let Γ be the set from Lemma 3.1, and let b ∈ Γ be a Lebesgue point. Recall that

almost every point of Γ is such. Let us define an immigration profile M̃(·)

M̃(a) :=















M(a) a /∈ [b − δ, b] ∪ [ω − δ, ω],

M(a)− h a ∈ [b − δ, b],

M(a) + h a ∈ [ω − δ, ω],

where M(a) > 0 and 0 < h ≤ M̄(a)− M(a) holds. The corresponding objective value
reads as

J(M̃(·)) =

∫ ω
0 F(a)M(a)da − h

∫ b
b−δ F(a)da + h

∫ ω
ω−δ F(a)da

∫ ω
0 G(a)M(a)da − h

∫ b
b−δ G(a)da + h

∫ ω
ω−δ G(a)da

.

We define
H(δ) := h

∫ x

x−δ
F(a)da, x = b, ω,

where, by transformation of the independent variable, H(δ) = h
∫ δ

0 F(x − t)dt holds.
By Taylor expansion around 0 we obtain

H(δ; x) = h(H(0; x) + δH′(0; x) + δ2H′′(0; x) + o(δ2)),

= hδF(x) + hδ2F′(x) + ho(δ2).
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As usual, o(ǫ) means a function such that O(ǫ)/ǫ → 0 with ǫ → 0. The same
approach is used for G. Therefore, by neglecting all terms but the linear one in δ,

J(M̃(·)) =

∫ ω
0 F(a)M(a)da − δhF(b) + δhF(ω)
∫ ω

0 G(a)M(a)da − δhG(b) + δhG(ω)
.

Note, that G(ω) = F(ω) = 0 and therefore it holds that

J(M̃(·))− J(M(·)) > 0

⇔

∫ ω
0 F(a)M(a)da − δhF(b)
∫ ω

0 G(a)M(a)da − δhG(b)
>

∫ ω
0 F(a)M(a)da
∫ ω

0 G(a)M(a)da

⇔ −F(b)
∫ ω

0
G(a)M(a)da > −G(b)

∫ ω

0
F(a)M(a)da

⇔
F(b)

G(b)
<

∫ ω
0 F(a)M(a)da
∫ ω

0 G(a)M(a)da
,

which is fulfilled by the choice of b ∈ Γ as was proven in Lemma 3.1. Since problem
(3.1)–(3.5) and problem (3.11)–(3.16) and therefore J(M̃(·)) > J(M(·)) and D(M̃(·)) <

D(M(·)) are equivalent we have thus proven Theorem 3.2. Q.E.D.

This counter-intuitive property of the optimal solution is due to the age-specific
immigration bounds, (3.4), that are introduced in this model. If they are removed, as
done in a static setup in Schmertmann (2012), this effect probably cannot be observed
anymore. We also overcome this counter-intuitive result in Section 3.4 by considering
Problem 2, where we fix the size of the stationary population instead of the size of the
immigration.

3.3.1 A case study: the Austrian case

The numerical results for the optimal immigration profile and the dependency ratio
obtained in this section are based on the analytical derivations above. In the following,
we will assume that α = 20, β = 65, and ω = 110. For the computations we initialize
the age structure of demographic variables referring to Austrian data as of 2008, cf.
Figure 3.1, and interpolate these data piecewise linearly to obtain continuous represen-
tations of the fertility and mortality rate. The actual age-specific immigration numbers
of 2008 are denoted by Mact(a). In 2010 the total dependency ratio for Austria was
62.2% and under the current fertility, mortality and immigration rates it would rise up
to a level of 78%.

In the following, we investigate two different Scenarios for Problem 1:

Scenario 1. We set
M̄(a) = 2Mact(a), ∀a ∈ [0, ω],

which corresponds to a possible doubling of the number of immigrants at any age
compared with the 2008 level. Since it is argued that a rise in immigration would help
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Figure 3.1: Female mortality rate µ(a) (left, logarithmic scale) and fertility rate f (a)

(right); Austria 2008

to reduce the aging process, we prescribe a total volume of Mtot = 80000 females in
order to simulate an increase in the number of annual immigrants.
The resulting age profile that fulfills the maximization condition (3.19) is

M∗(a) =

{

M̄(a) if a ∈ [11, 49] ∪ [82, 110],

0 otherwise.

This can be concluded from the values of the adjoint variable ξ(a) at ages a depicted
in Figure 3.2. The solid line in Figure 3.2 corresponds to the λ2-level. Consequently, for
ages where ξ(a) has values larger than λ2 immigration is at its upper bound and for
ages where ξ(a) is smaller than λ2 the optimal immigration profile is zero. The adjoint
variable ξ(·) exhibits two kinks at ages α = 20 and β = 65, due to the discontinuity of
the right hand side of the differential equation (3.18). For a detailed explanation of the
shape of the adjoint variable as a function of a see Section 3.5.

The resulting optimal immigration profile M∗(a) is illustrated in Figure 3.4 and is
such that in particular workers close to retirement and young retirees are excluded
from immigration. Since the lower age-specific immigration bounds are assumed to be
zero for all ages, due to its bang-bang characteristic the M∗(a) is either zero or takes
its maximal value.

In Figure 3.6, the age structure of the optimal stationary through immigration pop-
ulation is depicted. As typical for a closed stationary population, the age structure of
a stationary through immigration population exhibits a flat line at young ages due to
the low mortality at these ages. The resulting total SI (stationary through immigration)
population size is 13.0 million females. This large number for the population size re-
sults from the fact that immigrants enter at young ages and hence get more children
while they live in the host country.

The resulting minimal dependency ratio is 75.14%, which corresponds to about 75
dependents per 100 workers.

Scenario 2. We also performed the calculations with Mtot = 50000 which is close
to the actual total number of (female) immigrants for Austria in 2008. The age-specific
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upper bound was set to M̄(a) = 20Mact(a) which corresponds to a high supply of
immigrants at all ages. This stylized scenario is considered to see what the optimal
immigration profile is if the age-specific immigration rates are relaxed – so to be rela-
tively free to choose from all ages – while the number of annual immigrants is kept on
the current level.

From the switching function depicted in Figure 3.3, we can conclude that the optimal
immigration profile reads

M∗(a) =

{

M̄(a) if a ∈ [33, 36] ∪ [109, 110],

0 otherwise.

See also Figure 3.5. Clearly, relaxing the age-specific immigration bounds shortens the
optimal age interval for immigration drastically. Scenario 2 reflects the case where
there is a huge supply of immigrants in all ages. In this case only immigrants in
the mid-thirties are appreciated because they spend a long time working in the host
country and also have a lower net reproduction rate.

The resulting minimal dependency ratio is 72.24%. The resulting total size of the
female SI population is 4.1 million females which would mean that the size of the
Austrian population would be close to the current one. Hence, with such an age-
targeted immigration policy the dependency ratio could be reduced by more than 5%
compared to a scenario where the fertility, immigration and mortality rates would
remain on current levels. However, a rise of 10% from the 2010 level would still remain.

Figure 3.7 represents the age structure of the optimal SI population. The steep
increase in the mid thirties comes from the very restrictive immigration policy which
focuses on immigrants at these ages. In comparison to Scenario 1, it is optimal that
immigrants enter at older ages and hence a smaller stationary population results.

In both scenarios it is optimal to let people immigrate at the end of the life time, al-
though they are part of the economically dependent population. This can be explained
by the fact that (3.5) has to be fulfilled and the age-specific bounds hold. Although, in
practice, a restriction of the number of immigrants is clearly a meaningful immigration
policy, this rather peculiar result, as already explained analytically above, makes us
move to a new problem formulation, see Problem 2, to overcome this result. Alterna-
tively, one could also think of a scenario where instead of prescribing the total number
of immigrants, the government fixes an upper bound for the total immigration influx,

∫ ω

0
M(a) ≤ Mtot, Mtot > 0,

For this policy, however, the problem becomes incorrect in the sense that the optimal
solution converges to zero. Hence, subsequently, in Problem 2, we fix the total popula-
tion size instead.
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variable ξ(·) for Problem 1

0 10 20 30 40 50 60 70 80 90 100 110
0

500

1000

1500

2000

2500

3000

3500

4000

4500

age

M
* (a

)

M (a)

M̄ (a)

M*(a)

Figure 3.4: Scenario 1: The optimal
immigration profile M∗(·) for Problem 1

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

age

M
* (a

)

M (a)

M̄ (a)

M*(a)

Figure 3.5: Scenario 2: The optimal
immigration profile M∗(·) for Problem 1

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

age

S
I p

op
ul

at
io

n 
N

(a
)

Figure 3.6: Scenario 1: The age structure
of the SI population N∗(·) for Problem 1
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3.4 The optimal immigration profile for a fixed population size

We slightly change the model and instead of fixing the volume of immigrants (Policy
1), we require that the number of people in the population equals a prescribed value
(Policy 2), i.e. we consider problem (3.1)–(3.4) with the additional constraint (3.6).
Theorem 3.2 below states necessary conditions for the optimal solution.

Theorem 3.3. If (N∗(·), M∗(·)) is an optimal solution of problem (3.1)–(3.4) and (3.6), then

there are Lagrange multipliers λ1, λ2, and an absolutely continuous function ξ : [0, ω] → R

such that:

i) the function ξ(·) satisfies

ξ̇(a) = µ(a)ξ(a)− λ1 f (a)− I[α,β](a) + λ2, a ∈ [0, ω],

ξ(0) = λ1, ξ(ω) = 0, (3.23)

ii) and the maximum principle holds for almost every a ∈ (0, ω):

ξ(a)M∗(a) = max
0≤M≤M̄(a)

ξ(a)M.

Proof. Minimization of the dependency ratio D in a population with fixed size is equiv-
alent to maximization of the number of working people:

max
M(a)

∫ ω

0
I[α,β](a)N(a)da.

Again, we define the Pontryagin function as

H(a, N, X, Y, M, ξ) =

ξ(−µ(a)N + M) + I[α,β](a)N − λ1 f (a)N − λ2N,

and apply Pontryagin’s maximum principle presented in Theorem 2.2 in Chapter 2.
The optimality conditions for (N∗, M∗) can be formulated by the following expressions:

ξ(a)M∗(a) = max
0≤M≤M̄(a)

ξ(a)M(a), (3.24)

ξ̇(a) = µ(a)ξ(a)− λ1 f (a) + I[α,β](a) + λ2, ξ(0) = λ1, ξ(ω) = 0,

where λ1 should be calculated in such a way that (3.6) is satisfied for the resulting
maximizer in (3.24). Q.E.D.

Again we assume that Assumption 3.2 holds. Then, the optimal immigration profile
is also of bang-bang type,

M∗(a) =















M̄(a) if ξ(a) > 0,

singular if ξ(a) = 0,

0 if ξ(a) < 0,

(3.25)
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and it remains to determine ξ(·). Similar calculations as in Section 3.3 give

ξ(a) = λ1v(a) + e[α,β](a)− λ2e[0,ω](a). (3.26)

where v(a) is given by (3.7). Using the boundary condition ξ(0) = λ1, we obtain

λ1 =
e[α,β](0)− λ2e[0,ω](0)

1 − NRR
. (3.27)

In order to determine the optimal solution (N∗(·), M∗(·)), the Lagrange multiplier λ2

in (3.23) has to be chosen in such a way that condition (3.6) is fulfilled. Therefore,
the value of λ2 depends on the choice of the prescribed value Ntot. Note, that ξ(·)

is independent of the optimal solution (N∗(·), M∗(·)) and can therefore be calculated
separately for each λ2.

3.4.1 Analytical study of the optimal immigration profile

In the following, we derive general results for the optimal immigration profile for
given age-specific fertility f (a) and mortality µ(a) rates. This section is driven by
the question of whether there is always one optimal age interval where M∗(a) is on
the upper bound M̄(a), or if the optimal immigration policy could possibly consist of
several separated age intervals of maximal immigration. This reasoning is similar to
Feichtinger and Veliov (2007) where it was shown that the optimal recruitment policy is
bi-polar meaning that there are two distinct age intervals where recruitment is optimal.
Here, it is also shown that the optimal immigration profile attains its upper bound
M̄(a) on no more than two separate intervals.

Since the change of the sign of the adjoint variable ξ(a) determines the switches
of the optimal solution from one limit to the other, we count how many times the
switching function (3.26) can cross its switching level ξ(a) = 0. To estimate this number
from above we count how many times the derivative in (3.23) can change its sign at
level ξ(a) = 0 from positive to negative

ξ̇(a)
∣

∣

ξ=0 = −λ1 f (a)− I[α,β](a) + λ2 = 0. (3.28)

Assumption 3.3. The upper limit M̄(a) is such that if M(a) ≡ M̄(a), then the corresponding

solution N(·) of (3.2), (3.3) satisfies

∫ ω

0
N(a)da > Ntot.

Corollary 3.1. There is at least one interval with ξ(a) > 0.

Otherwise the optimality condition (3.25) requires M(a) = 0 for almost every a.
This, however, leads to a contradiction between Assumption 3.1 and Ntot > 0 in (3.6).
Q.E.D.

Proposition 3.2. For the Lagrange multiplier λ2 it holds that λ2 ∈ [0, 1].
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Proof. From equation (3.27) we conclude that if λ2 < 0 leads to λ1 > 0 and both lead
to ξ̇(a)

∣

∣

ξ=0 < 0 in equation (3.28) ∀a ∈ [0, ω). Hence, ξ(a) > 0 on a ∈ [0, ω) and
M∗(a) = M̄(a) which contradicts Assumption 3.3.

If λ2 > 1 then λ1 < 0 because e[α,β](0) < e[0,ω](0), thus the derivative in (3.28) has the
following property ξ̇(a)

∣

∣

ξ=0 = −λ1 f (a)− I[α,β](a) + λ2 > −1+ λ2 > 0 for all a ∈ [0, ω],
since min{ f (a)} = 0. But to satisfy the terminal condition ξ(ω) = 0 for the adjoint
variable it should hold, that ξ(a) < 0 for a ∈ [0, ω). That contradicts Assumption 3.1
and Ntot > 0 in (3.6). Q.E.D.

Proposition 3.3. The following relations hold true:

a) ξ(a) < 0 if λ2 > 0 for all a ∈ [β, ω),

b) ξ(a) = 0 if λ2 = 0 for all a ∈ [β, ω].

Proof. Since e[α,β](a) = 0 and v(a) = 0 holds for all a ∈ [β, ω] it follows from (3.26) and
Proposition 3.2 that ξ(a) = −λ2e[0,ω](a) ≤ 0, a ∈ [β, ω]. Thus, b) is obvious and a)

follows from the inequality e[0,ω](a) > 0 for all a ∈ [0, ω). Q.E.D.

Assumption 3.4. The fertility f (a) is single peaked with support to the left from β and to the

right from 0, i.e. amin < α < amax ≤ β.

b b b
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Figure 3.8: The adjoint variable ξ(·) determining the optimal immigration for two
separate age intervals Γ1 and Γ2 in two cases: a) λ1 > 0 (left) and b) λ1 < 0 (right)

Let us denote the age of maximal fertility by a f max = arg max( f (a)).

Proposition 3.4. The set of {a : ξ(a) > 0} consists of at most two disconnected intervals Γ1

and Γ2 (see Fig. 3.8). Moreover,

a) if a f max < α then α ∈ Γ2,

b) if a f max > α then α ∈ Γ1.

Proof. It follows from Proposition 3.3 that Γ1, Γ2 ⊂ [0, β].
The derivative (3.28) can change its sign from plus to minus only at a = α because

of the jump of the function I[α,β](a) or/and at a = a0, where a0 is such a root of the
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equation ξ̇(a0)
∣

∣

ξ=0 = 0 that ξ̈(a0)
∣

∣

ξ=0 = −λ1 ḟ (a0) < 0. It follows from Proposition 3.2

and Assumption 3.4 that equation ξ̇(a0)
∣

∣

ξ=0 = 0 cannot have more than two roots all
located either in [0, α) or in [α, β] depending on the sign of λ1.

If λ1 > 0 then equation ξ̇(a0)
∣

∣

ξ=0 = 0 can only have roots in [0, α), where a0 is the
first root, if any, of the equation −λ1 f (a) + λ2 = 0.

If λ1 < 0 then equation ξ̇(a0)
∣

∣

ξ=0 = 0 can have roots only in [α, β] so a0 is the
second root, if any, of the equation −λ1 f (a) − 1 + λ2 = 0, which can happen only
when a f max > α.

Thus, it follows from the continuity of the function ξ(a) that it can be positive on not
more than two separate intervals. It is also easy to see graphically in Fig. 3.8 that if the
function ξ(a) is positive on two separate intervals Γ1, Γ2 ⊂ [0, β], these intervals must
contain both points a0 and α where derivative (3.28))changes its sign, so that a0 ∈ Γ1,
α ∈ Γ2 when λ1 > 0 and α ∈ Γ1, a0 ∈ Γ2 when λ1 < 0. Q.E.D.

The above proposition gives us some information on the shape of the optimal im-
migration profile. It tells us that it is optimal that immigrants come in not more than
two separate age groups. Hence, for example, depending on the parameters of the
problem, immigrant’s children may be valued positively or not, see also the Figures for
the Austrian case study below.

3.4.2 A case study: the Austrian case

For the calculations we initialize again the fertility and mortality profiles with Austrian
data as of 2008, cf. Figure 3.1.

Similar to Problem 2, in the numerical procedure to obtain the solution (N∗, M∗),
first, the boundary value problem consisting of the adjoint equation and the corre-
sponding initial and boundary value, see (3.18), has to be solved. Here, the adjoint
equation does not explicitly depend on the optimal solution (N∗, M∗) itself but on the
free parameter λ2. Hence, one has to guess an initial value, λ0

2 and plug it into (3.26)–
(3.27) . We approximate the occurring integrals in the solution presentation, see (3.26),
by using the trapezoidal rule. Subsequently, the new candidate for a solution M∗

new(·)

is determined according to (3.25). The procedure is stopped if the absolute value of
the difference of the resulting population size and the prescribed value Ntot in (3.6) is
sufficiently small. Otherwise a new guess for λ2 has to be provided and the procedure
is repeated.

For the total population size we prescribe the resulting sizes from Section 3.3, i.e.
Ntot = 13.0 million and Ntot = 4.1 million, respectively.

Scenario 1. Therefore, by setting Ntot = 13.0 million and M̄(a) = 2Mact(a), we
achieve a corresponding dependency ratio D = 74.73% which is slightly smaller than
the one we obtain above and the resulting volume of immigrants is 72000. The corre-
sponding optimal immigration profile reads as

M∗(a) =

{

M̄(a) if a ∈ [9, 41],

0 otherwise,
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which is determined according to (3.25) and shown in Figure 3.10. Figure 3.9 shows
the corresponding adjoint variable ξ(·) and Figure 3.11 the optimal immigration profile.
Notice that the adjoint variable in Figure 3.9 exhibits only one inner maximum. The
optimal age structure is depicted in Figure 3.13.

Scenario 2. We also calculate the optimal immigration profile for Ntot = 4.1 million
females and M̄(a) = 20Mact(a),

M∗(a) =

{

M̄(a) if a ∈ [33, 36],

0 otherwise.

Figure 3.10 shows the adjoint variable ξ(·) and Figure 3.12 the optimal immigration
profile. The resulting optimal population age structure is shown in Figure 3.14. For
these parameter values we achieve a corresponding dependency ratio D = 72.24% and
the resulting volume of immigrants is 50000.
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Figure 3.9: Scenario 1: The adjoint
variable ξ(·) for Problem 2

0 10 20 30 40 50 60 70 80 90 100 110
−14

−12

−10

−8

−6

−4

−2

0

2

age

ξ(
a)

Figure 3.10: Scenario 2: The adjoint
variable ξ(·) for Problem 2
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Figure 3.11: Scenario 1: The optimal
immigration profile M∗(·) for Problem 2
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Figure 3.12: Scenario 2: The optimal
immigration profile M∗(·) for Problem 2

Notice that the optimal solution (N∗, M∗) depends on the data Ntot and M̄(a) and
hence the adjoint function changes with these exogenous parameters.
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Figure 3.13: Scenario 1: The age structure
of the SI population N∗(·) for Problem 2
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Figure 3.14: Scenario 2: The age structure
of the SI population N∗(·) for Problem 2

In consequence of the below figures, we may conclude that if we target a relatively
large population, and if the supply of acceptable immigrants is relatively low, namely
two-times the actual figures, then immigrants with children (older than 9 years old)
are appreciated. If a relatively small population is targeted, and if the supply of immi-
grants in all ages is high, i.e. 20Mact(a), then optimal immigration is concentrated in
the mid thirties and immigrants with children are not appreciated.

Moreover, we find that by considering Problem 2 the peculiar result of old-age im-
migration does not appear anymore.

3.5 Direct and indirect effect of an additional individual

The adjoint variable in Problem 1 and Problem 2, ξ(a), may also be interpreted as
shadow price of the corresponding state variable, N(a). This means that it reflects the
decrease of the dependency ratio, when the optimal age structure of the population
is marginally increased at age a, roughly speaking, when the population is increased
by one a-year-old. A positive value of the adjoint variable means a decrease in the
dependency ratio. In this dynamic set up, a change of the (optimal) age structure at
one particular age, also affects the age structure at other ages.

This shadow price, see equation (3.21) and (3.26), consists of two parts

ξ(a) = ξd(a) + λ1v(a).

The direct effect, ξd(a), represents the marginal value of an individual of age a given by
her participation in the labor force: For Problem 1

ξd(a) =
(D(M∗(·)) + 1)

Ntot(M∗(·))

(

(D(M∗(·)) + 1)e[α,β](a)− e[0,ω](a)
)

,

holds and correspondingly for Problem 2

ξd(a) = e[α,β](a)− λ2e[0,ω](a),
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holds. The direct effect accounts positively for her expected remaining years in [α, β]

and negatively for her remaining life expectancy in [0, α] (for a ≤ α) and [β, ω].

The indirect effect of an a-year-old, λ1v(a), is her reproductive value, i.e. the number
of expected future daughters, weighted by the shadow price of newborns, λ1, since
ξ(0) = λ1. Therefore, the indirect effect can be interpreted as the value of expected
future births of an a-year-old in units of the dependency ratio. This is a generalization
of the interpretation of the reproductive value, cf. Fisher (1930); Wrzaczek et al. (2010).
Note, that the indirect effect can also be negative, namely when an additional newborn
is negatively valued for the population.

For Problem 1, the Lagrange multiplier λ2 may also be interpreted as the marginal
effect on the dependency ratio when changing the total number of immigrants Mtot.
Similarly, for Problem 2, λ2 measures the effect of a marginal change of the prescribed
population size Ntot on the dependency ratio.

In Figure 3.15 we plot the direct and indirect effect of an additional a-year-old sep-
arately. The figure corresponds again to the Austrian case for Problem 1, (3.1)–(3.5),
where we set Mtot = 50000 and M̄(a) = 20Mact(a). The dotted line gives the weighted
reproductive value, representing the indirect effect. The dashed line gives the direct
effect. The sum of these two lines, by definition, exhibits ξ(·), which is depicted by the
solid line.
As it can be seen in Figure 3.15, the indirect effect reduces the absolute value of the
adjoint variable ξ(·) in early ages, preventing these ages to be optimal. Furthermore,
this effect is zero for ages older than the maximum age of childbearing. Therefore, after
this age the direct effect and the adjoint variable coincide. We also see from equation
(3.21) that the direct effect always increases until age 20. This is due to the fact, that the
remaining life expectancy decreases, implying a higher value of this individual in units
of the dependency ratio and also because the ratio between the number of person-years
lived in the working ages,

∫ β
α l(x)dx, and the individual’s probability to survive until

age a, l(a), increases with a.

Moreover, we see in Figure 3.15, that the direct effect reaches its maximum at age
20, since these individuals spend their whole working life in the receiving country, and
then falls monotonically until age 65. However, the sharp increase in the indirect effect
between ages [20, 40] shifts the optimal age away from 20 and further to the right.

The increase of the direct effect after age 65 is due to the fact that the remaining
life expectancy in [0, ω], which is the only term left in equation (3.21), is decreasing
with age, and therefore the burden induced by these females on the dependency ratio
is reduced.

Moreover, for the particular optimal control problem considered here it holds that
for Problem 1, ξ(a)− λ2, and for Problem 2, ξ(a), give the decrease in the dependency
ratio when changing the optimal age structure of immigrant inflows. So, under Policy
2 the shadow price is only a part of the total effect of an additional immigrant.
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Figure 3.15: The direct (dashed line), indirect (solid blue line) and total (solid black
line) effect of an additional a-year-old

3.6 Discussion

The aim of the present study was to determine the age-specific immigration policy
that minimizes the dependency ratio in a population with below-replacement fertility
assuming that the vital rates remain constant over time. We apply optimal control
theory which is a rather new approach in demographic research. We assume that there
are age-specific bounds that constrain the immigration profile from above. This is a
reasonable assumption since it takes into account the present immigration profile that
is hard to change drastically.

Two alternative policies are considered. In the first one, the total number of im-
migrants is prescribed. In the second one, the total population size is fixed while the
rest of the model remains the same. It turns out that the solution exhibits a bang-bang
behavior, which depends on the sign of the so-called switching function. The shape of
the switching function with varying age a is determined by the adjoint variable.

In the model with a fixed total number of immigrants, it is shown that in the optimal
solution there are ages in the vicinity of the maximum attainable age where immigra-
tion occurs. When we fix the total population size of the receiving country, the optimal
solution is that immigration happens at not more than two separate age intervals and
in ages younger than the retirement age. We present numerical results for a case study
of the Austrian population based on demographic data from 2008 which underline our
theoretical findings.

Moreover, by analyzing the shape of the switching function or, equivalently, the
adjoint variable, and interpreting it as a shadow price, we determine the marginal
value of an a-year-old individual in terms of the objective function.
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3.7 Extensions

A straightforward extension is the study of the transitory case as it is investigated
in Chapter 4. Similar as in Feichtinger and Veliov (2007), the resulting problem is a
distributed control problem, which is formalized on infinite horizon. The state dynam-
ics is a first order partial differential equation, which is of McKendrick-type Keyfitz
(1977); Keyfitz and Keyfitz (1997). Although, the similarity in the structure of the prob-
lem indicates that as in Feichtinger and Veliov (2007) it holds that for stationary data,
i.e. fertility and mortality rates, the optimal solution is also stationary, this result does
not follow immediately and needs some deeper mathematical involvement as shown
in Chapter 4. Therefore, optimality conditions for this distributed parameter control
model have to be derived in order to carry out the relevant analysis.



Chapter 4

Optimal immigration in a fixed size

population: A distributed control

model

In this chapter the question of time-varying optimal choice of the immigration age-
profile to a fixed size population within certain bounds is investigated. In Section 4.4
we formulate necessary optimality conditions of Pontryagin type for the resulting non-
standard age-structured control system posed on an infinite horizon. In Section 4.5
we investigate stationarity, uniqueness and the structure of the optimal solution and
finally in Section 4.6 we give numerical examples.

This chapter presents a joint work with Vladimir Veliov and Bernhard Skritek, pub-
lished in Simon et al. (2013).

4.1 Introduction

In what follows, we consider a human population where immigration is allowed, al-
though subjected to restrictions. Many countries face low fertility levels combined
with an increase in life expectancy especially in older ages. These demographic de-
velopments influence the populations’ well-being in many ways and lead for example
to severe challenges for their social security systems. One possible way to counteract
these developments is to steer immigration in an appropriate way.

It is assumed that the intensity of the migration inflow and, to a certain extend, the
age-structure of the migrants can be used as control (policy) instruments. The problem
we consider is to keep the size of the population constant by choosing immigration
appropriately which, in addition, optimizes a certain objective function.

Of course, the problem is meaningful only if the population would steadily decrease
without immigration. This means we consider a population with below-replacement

fertility.

The subsequent model is related to the problem considered in Chapter 3, where a
stationary population was considered and the optimal age-specific immigration profile

45
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that minimizes the dependency ratio while fixing either the population size or the
immigration quota was determined. However, the model considered in this chapter is
substantially more difficult. Here we move to non-stationary populations which led
to the formulation and study of a distributed control problem on an infinite horizon.
Hence, the population dynamics in this case can be modeled by an extension of the
McKendrick-von Foerster equation, see Keyfitz and Keyfitz (1997).

From the mathematical point of view the considered problem is challenging for
three reasons: (i) it has the form of a distributed optimal control problem with state
constraints (although rather specific) given by the fixed size condition; (ii) the time
horizon is infinite and a theory for infinite-horizon optimal control problems for age-
structured systems is missing (Chan and Zhu (1990) and Feichtinger and Veliov (2007)
are exceptions, as well as a few non-sound papers); (iii) we deal with a maximization
problem for a non-concave functional, where the existence of a solution and the well-
posedness are problematic.

As an application we consider the Austrian female population in 2009 and deter-
mine from the available data the age-specific mortality and fertility rates and the initial
age structure of the population and of the immigration. Then we consider the age-
profile of the immigration as a control (policy) variable, allowing for modifications of
the age-profile from 2009. Using the analytical results which we will establish in this
chapter below, we then determine numerically the immigration policy that maximizes
the aggregate number of workers over time. We considered two scenarios. While in
the first scenario we do not account for adaptation costs of immigrants, in the second
scenario we do. It turns out that for both scenarios the optimal immigration intensity
is at its upper bound on a single age-interval and on its lower bound at all other ages.
In the first scenario, the optimal immigration age-pattern is such that it is optimal that
immigrants from the age 20 to the mid-thirties migrate. For the scenario with immigra-
tion costs we observe that the optimal immigration age-pattern is moved to younger
ages and even to ages before the youngest working age which was set to be 20.

For the presentation of the problem and the proofs below ideas from Feichtinger
and Veliov (2007) are used, where the authors investigate the recruitment problem of
organizations of fixed size. Like here, a distributed control problem is involved. How-
ever, the present problem is substantially more complicated due to the involvement of
births in the boundary condition. As mentioned earlier, see for example Section 2.1
in Chapter 2, the considered problem exhibits a non-local boundary condition. This
leads to the study of a system of integral equations when investigating the existence
and uniqueness of a solution.

4.2 Population dynamics and preliminary statements

Subsequently, a particular linear age-dependent population model is posed and inves-
tigated. The optimization problem of which is then formulated in Section 4.3. Hence,
the age-structured population dynamics, including initial and boundary conditions,
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and the fixed size condition are introduced and then existence and uniqueness are
proven as well as some qualitative results of the solution are stated.

Note, that if not stated differently we follow the notations of Chapter 2. Below t ≥ 0
denotes time, a ≥ 0 denotes age and a 7→ N(t, a) ≥ 0 is the (non-probabilistic) age-
density of a population. The mortality and the fertility rate at age a are denoted by
µ(a) and f (a), respectively. The immigration flux (number of immigrants) at time t

will be denoted by R(t) ≥ 0, and the immigration age-density by u(t, a), a ∈ [0, ∞) and
t ∈ [0, ∞). That is, u satisfies

u(t, a) ≥ 0,
∫ ∞

0
u(t, a)da = 1. (4.1)

Hence, R(t)u(t, a) is the flow of immigrants of age a at time t. Then the evolution of
the population is described as

(

∂

∂a
+

∂

∂t

)

N(t, a) = −µ(a) N(t, a) + R(t) u(t, a), t, a ≥ 0, (4.2)

N(0, a) = N0(a), a ≥ 0, (4.3)

N(t, 0) = B(t), t ≥ 0, (4.4)

where N0(·) is the initial population density and

B(t) :=
∫ ∞

0
f (a) N(t, a)da. (4.5)

are the births in the population. The formal meaning of these equations will be given
below.

Now we pass to a strict formulation of the previous consideration, starting with some
basic assumptions (BA) on the data.

(BA) The functions µ, f , N0 : [0, ∞) → R are assumed to be Lipschitz continuous
and otherwise given as stated in Section 2.1 of Chapter 2. Mortality µ satisfies µ(a) ≥

µ0 > 0 for all sufficiently large a; f (a) and N0(a) are equal to zero for all sufficiently
large a; there is a0 ≥ 0 such that f (a0) > 0 and N0(a) > 0 for a ∈ [0, a0]; N0 satisfies
∫ ∞

0 N0(a)da = N̄ with some positive N̄ < ∞.

Remark 4.1. The Lipschitz continuity assumption is made just for technical conve-
nience and can be relaxed. The remaining assumptions about the fertility f (a), the
present age-density of the population, N0(a), and that the population is non-void un-
til some fertile age a0 are factual. The boundedness assumption for the mortality is
justified according to Section 2.1 in Chapter 2.

Recall the definition of the domains D and DT in (2.5) of Section 2.1. Then, let u :
D → R be an immigration age-profile, that is u is measurable and locally bounded and
satisfies (4.1). Moreover, let R : [0, ∞) → R be also measurable and locally bounded.
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Function N is assumed to belong to the function space N as defined in Section
2.1. Then, by definition N ∈ N is a solution of (4.2)–(4.4) if the equations are satisfied

almost everywhere with
(

∂
∂a +

∂
∂t

)

N interpreted as DN. Notice that for functions from

N the right-hand side of (4.4) makes sense, and that the traces N(0, ·) and N(·, 0) are
a.e. well-defined and measurable (see Feichtinger et al. (2003) for more details). The
above definition of a solution is equivalent to the ones commonly used in the literature,
e.g. Anita (2000); Webb (1985).

After defining a solution we are now able to discuss its uniqueness. Hence, the
following lemma states the uniqueness of a solution of the above problem:

Lemma 4.1. Let u and R be fixed as above. Then system (4.2)–(4.4) has a unique solution

N ∈ N and N ∈ L∞(DT) for every T > 0. The function B is locally bounded.

The proof of Lemma 4.1 is omitted as it is essentially the same as that of Lemma 4.2,
but easier, since R is given and we deal with only one Volterra equation – that for B.
Hence, see the proof of Lemma 4.2 for more details.

Given an immigration profile, u(t, a), one can always keep the size of the population
constant (equal to N̄ :=

∫ ∞

0 N0(a)da) by an appropriate choice of the immigration
intensity, namely by choosing R(t) in the feedback form

R(t) :=
∫ ∞

0
(µ(a)− f (a)) N(t, a)da. (4.6)

Hence, in parallel we may consider the system

DN(t, a) = −µ(a) N(t, a) +
∫ ∞

0
(µ(s)− f (s)) N(t, s)ds u(t, a) (4.7)

with side conditions (4.3) and (4.4). The meaning of a solution N ∈ N is the same
as for (4.2)–(4.4), regarding the fact that the integral on the right-hand side of (4.7) is
well-defined and finite due to the fact that N belongs to N . Then, the following holds:

Lemma 4.2. Let u be fixed as above. Then equation (4.7) with side conditions (4.3)–(4.4) has a

unique solution N ∈ N and N is (essentially) bounded on every subset DT ⊂ D, 0 < T < ∞.

Moreover, the functions R and B, defined by (4.6) and (4.5), are locally Lipschitz continuous.

Proof of Lemma 4.2. Let us start with the uniqueness. Let N ∈ N be a solution of (4.3),
(4.4), (4.7). Let R(t) and B(t) be defined by (4.5) and (4.6), respectively. Both are
measurable and locally bounded, according to the properties N .

The function N has the following representation, resulting from solving (4.2) along
the characteristic lines:

N(t, a) :=

{

e−
∫ a

0 µ(τ) dτ B(t − a) +
∫ t

t−a e−
∫ a

a−t+s µ(τ) dτ R(s) u(s, a − t + s)ds if a < t,

e−
∫ a

a−t µ(τ) dτ N0(a − t) +
∫ t

0 e−
∫ a

a−t+s µ(τ) dτ R(s) u(s, a − t + s)ds if a ≥ t,
(4.8)

for t ∈ [0, ∞). Inserting this expression for N in (4.5) and (4.6) and changing the
order of integration in the double integrals we obtain the following system of Volterra



49

equations of the second kind for B and R:

B(t) =
∫ t

0
R(s)

∫ ∞

0
e−
∫ a+t−s

a µ(τ) dτ f (a + t − s) u(s, a)da ds (4.9)

+
∫ t

0
B(s) e−

∫ t−s
0 µ(τ) dτ f (t − s)ds +

∫ ∞

0
e−
∫ t+s

s µ(τ) dτ f (s + t) N0(s)ds,

R(t) =
∫ t

0
R(s)

∫ ∞

0
e−
∫ a+t−s

a µ(τ) dτν(a + t − s) u(s, a)da ds

+
∫ t

0
B(s) e−

∫ t−s
0 µ(τ) dτν(t − s)ds +

∫ ∞

0
e−
∫ t+s

s µ(τ) dτ ν(s + t) N0(s)ds,

where ν(a) := µ(a)− f (a). The system can be written as

x(t) =
∫ t

0
k(t, s)x(s)ds + Φ(t),

where x = (B, R) and the kernel of this system k(t, s) =
(

ki,j(t, s)
)

is given by

k1,1(t, s) =e−
∫ t−s

0 µ(τ) dτ f (t − s),

k1,2(t, s) =
∫ ∞

0
u(s, a) e−

∫ a+t−s
a ρ(τ) dτ f (a + t − s)da,

k2,1(t, s) =
∫ ∞

0
u(s, a) e−

∫ a+t−s
a ρ(τ) dτν(a + t − s)da,

k2,2(t, s) =e−
∫ t−s

0 ρ(τ) dτν(t − s),

and

Φ(t) =

(

∫ ∞

t e−
∫ s−t

0 µ(τ) dτ f (s)N0(s − t)ds
∫ ∞

t e−
∫ s−t

0 µ(τ) dτν(s)N0(s − t)ds

)

.

Notice that all the four components of k(t, s) are bounded due to the properties of u

and the data. Indeed, take for example the most complicated component

∣

∣

∣

∣

∫ ∞

0
e−
∫ a+t−s

a µ(τ) dτν(a + t − s) u(s, a)da

∣

∣

∣

∣

≤ sup
a≥0

{

e−
∫ a+t−s

a µ(τ) dτ|ν(a + t − s)|
}

∫ ∞

0
u(s, a)da

≤ ν̄, 0 ≤ s ≤ t < ∞,

where ν̄ = supa≥0 |ν(a)| < ∞.
According to Theorems 5.4 and 5.5 in Chapter 9 of Gripenberg et al. (1990) this

system has a unique locally bounded solution (B, R), so that B and R are uniquely
determined, hence N is also uniquely determined by (4.8).

On the other hand, from the existence of the locally bounded solution (B, R) we ob-
tain a function N from (4.8). Due to the local boundedness of B and R and due to
∫ ∞

0 N0(a)da = N̄, we have that N ∈ N . It is straightforward to check that N satisfies
(4.3), (4.4), (4.7) which proves the existence.
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It remains to prove that the functions R and B are locally Lipschitz continuous. We
have

B(t + h)− B(t) =
∫ ∞

0
f (a)(N(t + h, a)− N(t + h, a + h))da (4.10)

+
∫ ∞

0
f (a)(N(t + h, a + h)− N(t, a))da.

Notice that both N and DN are bounded on every set DT. Then the second integral
is proportional to h because of the absolute continuity of N along the characteristics.
For the first integral it holds that

∫ ∞

0
f (a)(N(t + h, a)− N(t + h, a + h))da

=
∫ h

0
f (a) N(t + h, a)da +

∫ ∞

h
f (a) N(t + h, a)da −

∫ ∞

0
f (a) N(t + h, a + h)da

=
∫ h

0
f (a) N(t + h, a)da +

∫ ∞

0
( f (a + h)− f (a)) N(t + h, a + h)da.

The last integral is proportional to h due to the Lipschitz continuity of f and the
boundedness of N. Therefore, the Lipschitz continuity follows. The proof for R is
analogous. Q.E.D.

The fact that R satisfies (4.6) has an obvious demographic meaning and can be
established by integration of equation (4.2) with respect to a, provided that N is a
differentiable function and the equation is satisfied in the classical sense:

∫ ∞

0

∂

∂a
N(t, a)da +

∫ ∞

0

∂

∂t
N(t, a)da = −

∫ ∞

0
µ(a)N(t, a)da + R(t)

∫ ∞

0
u(t, a)da.

Since
∫ ∞

0 u(t, a)da = 1 holds and additionally the size of the population is constant
over time, namely,

∫ ∞

0 N(t, a)da = N̄, we obtain

lim
a→∞

N(t, a)− N(t, 0) = −
∫ ∞

0
µ(a)N(t, a)da + R(t),

and finally N(t, 0) =
∫ ∞

0 f (a)N(t, a)da gives

R(t) =
∫ ∞

0
(µ(a)− f (a))N(t, a)da.

However, differentiability is not necessarily the case which might be caused by an
inconsistency of the initial and the boundary conditions (4.3), (4.4), or by discontinuities
of u. It turns out that the optimal control for the problem described in the next section
is indeed discontinuous indeed. Therefore, we give a strict proof of the fact thatR
satisfies (4.6) is equivalent to the fixed size condition in the subsequent Lemma:

Lemma 4.3. Let u and R be as above and let N be the unique solution of (4.2)–(4.4). Then the

population N has a fixed size (that is,
∫ ∞

0 N(t, a)da = N̄) if and only if the function R satisfies

(4.6). In this case N coincides with the unique solution of (4.7) with side conditions (4.3)–(4.4).
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Proof of Lemma 4.3. First, let us show that the function t 7→ N̄(t) :=
∫ ∞

0 N(t, a)da is
locally Lipschitz and thus almost everywhere differentiable. Hence, consider the fol-
lowing equation

∫ ∞

0
N(t + h, a)da −

∫ ∞

0
N(t, a)da =

=
∫ ∞

0
[N(t + h, a), a + h)− N(t + h, a)]da +

∫ ∞

0
[N(t + h, a)− N(t + h, a + h)]da.

(4.11)

Then, the first integral is Lipschitz because of the absolute continuity of N along the
characteristic lines. For the second integral it holds that

∫ ∞

0
[N(t + h, a)− N(t + h, a + h)]da =

∫ ∞

0
N(t + h, a)da −

∫ ∞

h
N(t + h, a)da

=
∫ h

0
N(t + h, a)da,

and hence Lipschitz continuity follows from the boundedness of N.

The above function being almost everywhere differentiable, gives that the fixed size
property is equivalent to d

dt N̄(t) = 0 for a.e. t. The latter is equivalent to having the
weak derivative of N̄(·) equal to zero. That is, having

∫ ∞

0
Ψ(t)

d
dt

N̄(t)dt = 0

for every Ψ(t) ∈ C∞
0 (0, ∞) (the space of all infinitely differentiable function with com-

pact support and Ψ(0) = 0).
We have

∫ ∞

0
Ψ(t)

d
dt

N̄(t)dt = [Ψ(t)N̄(t)]
∞

t=0 −
∫ ∞

0
N̄(t)

d
dt

Ψ(t)dt.

The first term is zero because of the properties of Ψ(t). The second we can rewrite
along the characteristic lines of (4.2) as follows:

∫ ∞

0
Ψ(t)

d
dt

N̄(t)dt = −
∫ ∞

0

∫ ∞

0
N(t, a)

d
dt

da Ψ(t)dt

= −
∫ ∞

0

∫ ∞

0
N(s, τ + s)

d
ds

Ψ(s)ds dτ −
∫ ∞

0

∫ ∞

0
N(τ + s, s)

d
ds

Ψ(τ + s)ds dτ.

Integrating again by parts and using (4.4) we obtain
∫ ∞

0
Ψ(t)

d
dt

N̄(t)dt = −

[

∫ ∞

0
N(s, τ + s)Ψ(s)

]∞

0
dτ

+
∫ ∞

0

d
ds

∫ ∞

0
N(s, τ + s)Ψ(s)ds dτ

−

[

∫ ∞

0
N(τ + s, s)Ψ(τ + s)

]∞

0
dτ

+
∫ ∞

0

d
ds

∫ ∞

0
N(τ + s, s)Ψ(τ + s)ds dτ.

(4.12)
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The fact that N(τ, 0) =
∫ ∞

0 f (a)N(τ, a)da gives
∫ ∞

0
Ψ(t)

d
dt

N̄(t)dt =
∫ ∞

0

∫ ∞

0
f (a)N(τ, a)da Ψ(τ)dτ

+
∫ ∞

0

∫ ∞

0

d
ds

N(s, τ + s)Ψ(s)ds dτ

+
∫ ∞

0

∫ ∞

0

d
ds

N(τ + s, s)Ψ(τ + s)ds dτ.

Using (4.2) and rewriting the integral again in the (t, a)-plane we obtain
∫ ∞

0
Ψ(t)

d
dt

N̄(t)dt =
∫ ∞

0

∫ ∞

0
Ψ(t)[−µ(a)N(t, a) + f (a)N(t, a) + R(t)u(t, a)]da dt.

The fact
∫ ∞

0 u(t, a)da = 1 and the arbitrary choice of Ψ ∈ C∞
0 (0, ∞) imply that the left

hand side is zero if and only if R(t) =
∫ ∞

0 [µ(a)− f (a)]N(t, a)da.
The last claim of the lemma is evident. Q.E.D.

Note, that since we consider a human population, negative values for R and N make
no sense. However, so far it is not clear whether the solution is non-negative. In the
following lemma, boundedness and non-negativity of the involved functions N, B and
R are investigated:

Lemma 4.4. Let u be fixed as above. Assume that for the unique solution N ∈ N of (4.7) with

side conditions (4.3)–(4.4) it holds that R(t) ≥ 0 for every t ≥ 0, where R is defined by (4.6).

Then the functions N, B and R are non-negative and bounded, uniformly with respect to u as

above for which the assumption R(t) ≥ 0 is fulfilled.

Proof of Lemma 4.4. First we shall prove that under the conditions in Lemma 4.4 we
have B(t) ≥ 0 for all t ≥ 0. We recall that B is a continuous function due to Lemma
4.2. Moreover, from assumption (BA) we have B(0) =

∫ ∞

0 f (s)N0(s)ds > 0. Denote

θ = sup{t ≥ 0 : B(s) > 0 on [0, t)}.

Assume that θ is finite (otherwise we are done). Then B(θ) = 0, where B(θ) =
∫ ∞

0 f (s)N(θ, s)ds. On the other hand we have from the presentation of the solution
N(t, a) in (4.8) that

B(θ) =
∫ θ

0
f (s)B(θ − s)e−

∫ s
0 µ(τ) dτ ds

+
∫ θ

0

∫ θ

θ−s
e
∫ s

s−θ+a µ(τ) dτR(a)u(a, s − θ + a)da ds

+
∫ ∞

0
N0(θ − s)e−

∫ s
s−θ µ(τ) dτ f (s)ds

+
∫ ∞

θ

∫ θ

0
e−
∫ s

s−θ+a µ(τ) dτR(a)u(a, s − θ + a)da ds

and hence, we observe that

0 = B(θ) ≥
∫ θ

0
B(s) e−

∫ θ−s
0 µ(τ) dτ f (θ − s)ds+

∫ ∞

0
e−
∫ θ+s

s µ(τ) dτ f (s+ θ) N0(s)ds, (4.13)
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where we use the assumption R(t) ≥ 0. Obviously both terms are non-negative. We
shall show that at least one of them is strictly positive, which contradicts (4.13). If
f (a) > 0 for some a ∈ [0, θ), then the first integral in (4.13) is strictly positive since
B(s) > 0 on [0, θ). Alternatively, let f (a) = 0 for all a ∈ [0, θ). Then a0 ≥ θ (see

assumption (BA)). Take s = a0 − θ. Then the integrand e−
∫ θ+s

s µ(τ) dτ f (s + θ) N0(s) is
strictly positive (see (BA)), hence the second integral in (4.13) is strictly positive, too.
The obtained contradiction proves that B(t) ≥ 0 for all t ≥ 0. From (4.8) it follows also
that N(t, a) ≥ 0.

Then the boundedness follows:

R(t) ≤
∫ ∞

0
|µ(a)− f (a)| |N(t, a)|da ≤ (µ̄ + f̄ )

∫ ∞

0
|N(t, a)|da

= (µ̄ + f̄ )
∫ ∞

0
N(t, a)da = (µ̄ + f̄ ) N̄,

where f̄ is the upper bound for f . The same argument proves also boundedness of B.
Then the boundedness of N(t, a) follows from (4.8) and the fact that u(t, a) = 0 for all
sufficiently large a. Q.E.D.

We mention that the requirement R(t) ≥ 0 is related, but not necessarily implied by
the standard below-replacement condition, see the discussion in the beginning of the
next section.

4.3 The optimization problem

The main aim in this chapter is to determine optimal age patterns of immigrants in a
population of fixed size. The specific optimization problem that we introduce below
arises only for populations that need a positive immigration in order to sustain their
size, as it is the case for most European countries. Many of these countries face below-
replacement fertility,

∫ ∞

0
f (a) e−

∫ a
0 µ(θ) dθ da < 1, (4.14)

for a long period. Below replacement fertility implies extinction of the population with-
out immigration and thus immigration is needed to sustain the size. However, it does
not imply that the population, i.e. N, will decrease in the short run, therefore negative
immigration, i.e. emigration, R(t) < 0, may be needed for some t (see Keyfitz (1971)).
In Figure 1-3 we provide an illustrative example which shows that the immigration rate
R(t) determined by (4.6) takes negative values for some t several generations after the
initial time, although fertility and mortality satisfy condition (4.14). Figure 1 presents
the fertility f (a), mortality µ(a) and the immigration profile u(a) for this stylized ex-
ample. The initial population N0(a) and the population N(T, a) at time T = 90 are
depicted in Figure 2.

Hence, Figure 4.3 shows that below-replacement fertility is not enough to guarantee
positive immigration, i.e. R(t) > 0. Since in the present model we use immigration as a
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policy instrument and negative immigration is not admissible, we have to eliminate this
possibility by introducing assumption (A2) below, which is stronger than the below-
replacement fertility condition.

Clearly, in practice, discrimination of immigrants will not happen based on age only.
Therefore, we introduced certain bounds on the immigration profile. Nevertheless,
the age of applicants for a visa is taken into account, for example, by the Australian
authorities1. There, in the skilled point test, 60 points are needed for a working permit
and 30 of those can be gained by being a member of the age group ranging from 25 to
29, while for age 45+ zero points are awarded.

Let m(a) be the present immigration profile, that is, at time t = 0, which is his-
torically determined by habits, policies or other factors. Then the present normalized

1www.visabureau.com/australia
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age-density of immigration is given by

û(a) :=
m(a)

∫ ∞

0 m(a)da
. (4.15)

Therefore, when using the age-density of the immigration as a control (policy) vari-
able we can implement only slight changes in û(a). For this reason we consider con-
trol constraints of the form u(a) ≤ u(t, a) ≤ ū(a), where the lower and the upper
bounds are not much different from the present values û(a), say u(a) = (1 − ε)û(a)

and ū(a) = (1 + ε)û(a) with some small ε > 0.

The optimization problem we consider in what follows is:

max
R,u

∫ ∞

0
e−rt

[

∫ ∞

0
p(a) N(t, a)da − q R(t)

]

dt, (4.16)

subject to

DN(t, a) = −µ(a)N(t, a) + R(t) u(t, a), (t, a) ∈ D, (4.17)

N(0, a) = N0(a), a ≥ 0, (4.18)

N(t, 0) =
∫ ∞

0
f (a) N(t, a)da, t ≥ 0, (4.19)

∫ ∞

0
N(t, a)da = N̄, (4.20)

u(a) ≤ u(t, a) ≤ ū(a),
∫ ∞

0
u(t, a)da = 1, (4.21)

R(t) ≥ 0. (4.22)

Hence, we end up with a distributed control problem where the age-specific immmi-
gration u(t, a) is the control variable and the population density N(t, a) is the state
variable. See also Chapter 2 for a short discussion on distributed control models. Here,
function p(a) is a weight function that is higher if people of a certain age are more
valuable from point of view of the policy maker solving this optimization problem.
For example, p(a) could be the function taking the value 1 for ages a ∈ [20, 65], rep-
resenting the working ages, and 0 otherwise. The second term penalizes the size of
immigration (if q > 0). Equation (4.20) represents a state constraint. The intertempo-
ral discount rate is r. The constant q represents the benefits or costs of immigration
arising, for example, from possible integration or education expenditures. If q = 0
then maximizing the performance value is related to minimizing the dependency ratio
of the population (considered in a steady state in Chapter 3), that is the fraction of
non-workers to workers in a population, which is a measure of how solvent a social
security system is.

Additionally to (BA) we make the following assumptions.

(A1) The discount rate r is strictly positive, the function p : [0, ∞) → R is measurable
and bounded; q is a real number; the functions u, ū : [0, ∞) → R are measurable and
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bounded, and satisfy the relations 0 ≤ u(a) ≤ ū(a) for all a ≥ 0, ū(a) = 0 for all
sufficiently large a; moreover

∫ ∞

0 u(a)da < 1 and
∫ ∞

0 ū(a)da > 1.

According to Lemma 4.3, we can reformulate problem (4.16)–(4.22) in the following
way:

max
u∈U

J(u) :=
∫ ∞

0
e−rt

[

∫ ∞

0
[p(a)− q(µ(a)− f (a))] N(t, a)da

]

dt, (4.23)

DN(t, a) = −µ(a) N(t, a) + u(t, a)
∫ ∞

0
(µ(s)− f (s)) N(t, s)ds, (t, a) ∈ D,(4.24)

N(0, a) = N0(a), a ≥ 0, (4.25)

N(t, 0) =
∫ ∞

0
f (a) N(t, a)da, t ≥ 0. (4.26)

Here, the set of admissible controls U is defined as

U :=
{

u : D → R : u(a) ≤ u(t, a) ≤ ū(a),
∫ ∞

0
u(t, a)da = 1

}

. (4.27)

Due to the last requirement in (A1) the set of admissible controls, U , is nonempty.
The condition for a non-negative immigration rate, R(t) ≥ 0, is disregarded in the

above reformulation. It will be stipulated by the following additional assumption.

(A2) For any u ∈ U the immigration intensity R, defined by (4.6) for the corresponding
solution of (4.24)–(4.26), is strictly positive for all t.

Even with below-replacement fertility, see (4.14), it could happen that R(t) < 0 for
some t. We assume that for the present immigration pattern û(a) the resulting immi-
gration size satisfies R̂(t) ≥ R0 > 0. Implicitly this property requires that the initial
density N0(a) results from a population which has experienced below-replacement fer-
tility for quite a while before the present time t = 0. This is the situation in most of the
European countries in the 21st century, for example, as in our case study in Section 4.6.
We assume a bit more, namely that R(t) > 0 for any admissible control u, having in
mind that all admissible controls are close to û.

Existence of a solution of the optimization problem

Since R(t) > 0, Lemma 4.4 together with r > 0 and the boundedness of p, µ and f ,
imply that J(u) is finite for every u ∈ U and that supu∈U J(u) is finite. Thanks to this
we can use the standard definition of optimality: u ∈ U is optimal if J(u) ≥ J(v) for
every v ∈ U . We mention that the proof of existence is not routine since we deal with a
problem of maximization of a non-concave functional. Indeed, the mapping U ∋ u −→

“objective value J(u)" is not concave, as argued in Feichtinger and Veliov (2007) even
in the substantially simpler case f = 0.

Proposition 4.1. Let assumptions (BA), (A1), (A2) be fulfilled. Then the optimal control

problem (4.23)–(4.26) has a solution.
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Proof of Proposition 4.1. The proof is a modification of that in Feichtinger and Veliov
(2007) while the underlying idea stams from Anita et al. (1998). Denote by J(u) the
objective value for an admissible control u. Due to Lemma 4.4 and r > 0, the value
J(u) is finite and uniformly bounded with respect to u ∈ U . Then J∗ = supu∈U J(u) is
also finite. Pick a maximizing sequence {uk} of admissible controls for which J(uk) ≥

J∗ − 1
k . Denote by Nk the corresponding solution of (4.24)–(4.27), and let Rk be defined

as in (4.6). According to Assumption (A2) and Lemma 4.4, there is a constant C such
that 0 ≤ Nk(t, a) ≤ C and 0 < Rk(t) ≤ C almost everywhere and for all k.

The sequence {e−rtNk} of elements of L1(D) is weakly relatively compact due to the
Dunford-Pettis criterion.

Therefore, there exists a subsequence, which will also be denoted by Nk, such that
e−rtNk converges L1(D)-weakly to some e−rtN∗, and N∗ is obviously bounded by the
same constant C. According to Mazur’s lemma there exist a sequence

e−rtÑk :=
nk

∑
i=k

pk
i e−rtNi, pk

i ≥ 0,
nk

∑
i=k

pk
i = 1,

that (strongly) converges to e−rtN∗ in L1(D). Obviously for every T > 0 the sequence
Ñk converges to N∗ in L1(DT). With the same weights pk

i we define

R̃k(t) :=
nk

∑
i=k

pk
i Ri(t) =

∫ ∞

0
(µ(a)− f (a))Ñk(t, a)da. (4.28)

Since Rk(t) > 0 holds for all k > 0 and t > 0, this also holds for R̃k and we can define

ũk(t, a) :=
1

R̃k(t)

nk

∑
i=k

pk
i Ri(t)ui(t, a).

Obviously ũk is also an admissible control. Moreover we have that

DÑk =
nk

∑
i=k

pk
i (−µNi + Riui) = −µÑk + R̃kũk, (4.29)

Ñk(t, 0) =
nk

∑
i=k

pk
i Ni(t, 0) =

nk

∑
i=k

pk
i

∫ ∞

0
f (a)Ni(t, a)da =

∫ ∞

0
f (a)Ñk(t, a)da,(4.30)

which means that (ũk, Ñk) is an admissible control-trajectory pair for problem (4.23)–
(4.27).

Since Ñk converges to N∗ in L1(DT), we may pass to an almost everywhere con-
verging subsequence that we denote again by Ñk. Moreover, we may assume (passing
again to a subsequence) that e−rtũk converges to some e−rtu∗ weakly in L1(D). Now
we will show that u∗ is an admissible control. For every measurable and bounded set
Γ ⊂ [0, ∞) it holds that

∫

Γ

∫ ā

0
ũk(t, a)da dt →

∫

Γ

∫ ā

0
u∗(t, a)da dt

where ā is such that ū(a) = 0 for a ≥ ā, hence also u∗(t, a) = 0 (see (A1)). Since ũk

are admissible controls the left hand side is equal to meas(Γ), and thus also the right
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hand side. Since this holds for any measurable and bounded set Γ, this implies that ū

satisfies the integral constraint in (4.27). The inequality constraints are obviously also
satisfied. Therefore, u∗ is an admissible control. In the next paragraph we shall prove
that the pair N∗ solves (4.24)–(4.26) with u = u∗.

Let us define
R∗(t) =

∫ ∞

0
(µ(a)− f (a))N∗(t, a)da.

Due to the pointwise convergence of Ñk in DT we obtain by passing to a limit in (4.28)
that R̃k(t) −→ R∗(t) for a.e. t ∈ [0, T), and since T is arbitrary this holds for a.e. t ≥ 0.
Moreover, for a.e. t the mapping [0, T − t] ∋ s −→ Ñk(t + s, s) is uniformly Lipschitz
continuous. From here it easily follows (see Feichtinger et al. (2003) for more details)
that N∗(t, 0) is well defined for a.e. t and Ñk(t, 0) −→ N∗(t, 0). Then by passing
to a limit in (4.30) we obtain that N∗ satisfies the boundary condition (4.26) for a.e.
t ∈ [0, T], hence for all a.e. t ≥ 0. In a similar way one can prove that N∗ satisfies the
initial condition (4.25). In order to show that (4.24) is also satisfied we take an arbitrary
measurable set Γ ⊂ [0, T] integrate with respect to a ∈ Γ the representation (4.8) of
the solution Ñk for u = ũk. Due to the established properties we can pass on to the
limit. Since Γ is arbitrary, we obtain that (u∗, N∗, R∗) satisfy (4.8) on DT, hence N∗ is a
solution of (4.24) on D for u = u∗.
Thus (u∗, N∗) is an admissible control-trajectory pair.

Now let us show that J(u∗) ≥ J∗. We have

J(ũk) =
∫ ∞

0
e−rt

[

∫ ∞

0
p(a)Ñk(t, a)da − qR̃k(t)

]

dt

=
∫ ∞

0
e−rt

[

∫ ∞

0
p(a)

nk

∑
i=k

pk
i Ni(t, a)da − q

nk

∑
i=k

pk
i Ri(t)

]

dt

=
nk

∑
i=k

pk
i J(ui) =

nk

∑
i=k

pk
i

(

J∗ −
1
i

)

≥ J∗ −
1
k

.

Using this we obtain

J∗ ≤ lim sup
k

(

J(ũk) +
1
k

)

= lim sup
k

J(ũk)

= lim sup
k

∫ ∞

0
e−rt

[

∫ ∞

0
p(a)Ñk(t, a)da − qR̃k(t)

]

dt

=
∫ ∞

0
e−rt

[

∫ ∞

0
p(a)N∗(t, a)da − qR∗(t)

]

dt

= J(u∗).

Q.E.D.

4.4 Necessary optimality conditions

In this section we formulate and prove necessary optimality conditions of Pontryagin’s
type for problem (4.23)-(4.27). The problem at hand has a similar structure as those
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studied in Brokate (1985), Feichtinger et al. (2003), Veliov (2008), with the substantial
difference that here the time-horizon is infinite. There are no results in the literature
that provide necessary optimality conditions for age-structured optimal problems on
infinite horizon, except the ones mentioned in the introduction, which are not applica-
ble for problem (4.23)-(4.26).

The subsequent Pontryagin-type necessary optimality conditions involve (i) an ap-
propriate adjoint equation; (ii) an appropriate transversality condition that uniquely de-
termines a solution of the adjoint equation; (iii) a maximization condition for each t sep-
arately. The word “appropriate" in (i) and (ii) means that the maximization condition
in (iii) holds true with the ”appropriate" adjoint function.

The appropriate adjoint equation associated with our problem will be shown to have
the form

D ξ(t, a) = (r + µ(a)) ξ(t, a) − f (a) ξ(t, 0) (4.31)

− (µ(a)− f (a))
∫ ∞

0
ξ(t, α) u(t, α)dα − p(a) + q(µ(a)− f (a)).

A main challenge is to define an appropriate transversality condition. Following ideas
originating in Aubin and Clarke (1979) and developed in Aseev and Veliov (2012) for
ordinary differential systems and also in Feichtinger and Veliov (2007) for a problem
which is similar but substantially simpler than (4.23)-(4.26), we introduce the “transver-
sality" condition ‖ξ‖∞ < ∞. This is justified by Proposition 4.2 and Theorem 4.1 below.

Subsequently, we first show that the adjoint equation associated with our problem
and assumed to be given by (4.31) has a unique bounded solution and then formulate
the main result, i.e. the necessary optimality condition, in Theorem 4.1.

The adjoint equation has a unique bounded solution

We start with some preliminary results and an additional assumption.
In the following (u, N) denotes an optimal solution of problem (4.23)–(4.26) and R

and B are the number of immigrants and births given by (4.6) and (4.5).

We introduce the notations

ρ(a) := r + µ(a), ν(a) := µ(a)− f (a), φ(a) := p(a)− q (µ(a)− f (a))

and the auxiliary variables

λ(t) := ξ(t, 0), η(t) :=
∫ ∞

0
ξ(t, a) u(t, a)da. (4.32)

Then the adjoint equation becomes

D ξ(t, a) = ρ(a) ξ(t, a)− f (a) λ(t)− ν(a) η(t)− φ(a). (4.33)

In the next lemma, we first show for arbitrary bounded functions λ(t) and η(t) that
a unique solution of the adjoint equation exists.
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Lemma 4.5. Let assumptions (BA), (A1), (A2) be fulfilled. Then, for any given functions

λ, η ∈ L∞(0, ∞) equation (4.33) has a unique bounded solution on D and it is given by the

formula

ξ(t, a) =
∫ ∞

a
e−
∫ s

a ρ(θ) dθ [ f (s) λ(s + t − a) + ν(s) η(s + t − a) + φ(s)]ds, (4.34)

where the integral is absolutely convergent.

Proof. The integral in (4.34) is absolutely convergent and the function ξ is bounded due
to the boundedness of the term in brackets and the inequality

∫ ∞

a
e−
∫ s

a ρ(θ) dθ ds ≤
∫ ∞

a
e−r(s−a) ds =

1
r

.

One can verify by substitution that ξ defined by (4.34) satisfies (4.33).
To prove the uniqueness assertion we consider the difference ∆ξ(t, a) between two

bounded solutions which is also bounded. It satisfies the equation

D ∆ξ(t, a) = ρ(a)∆ξ(t, a).

If ∆ξ(t, a) 6= 0 for some t and a, then the function x(s) := ∆ξ(t+ s, a+ s), s ≥ 0, satisfies
ẋ(s) = ρ(a + s) x(s) with x(0) = ∆ξ(t, a). Due to ρ(a + s) ≥ r > 0, x(s) is unbounded
since x(0) = ∆ξ(t, a) 6= 0. This contradiction completes the proof. Q.E.D.

By substituting (4.34) in (4.32) one obtains that ξ is a bounded solution of (4.31) if
and only if it is the unique bounded solution of (4.34) with the functions λ and η de-
termined as bounded solutions of the resulting system of equations after substitution.
This system is given by equations (4.35) – (4.36):

λ(t) = ξ(t, 0),

=
∫ ∞

0
e−
∫ s

0 ρ(θ)dθ [ f (s)λ(s + t) + ν(s)η(s + t) + φ(s)]ds,

=
∫ ∞

t
e−
∫ s−t

0 ρ(θ)dθ [ f (s − t)λ(s) + ν(s − t) + η(s) + φ(s − t)]ds. (4.35)

And similarly for η we obtain,

η(t) =
∫ ∞

t

∫ ∞

0
u(t, a) e−

∫ a+s−t
a ρ(τ) dτ [ f (a + s − t) λ(s) (4.36)

+ν(a + s − t) η(s) + φ(a + s − t)]da ds.

Hence, one has to show that λ and η, solving (4.35)–(4.36), are unique.

In the following, we reformulate the above system of equation as

x(t) =
∫ ∞

t
k(t, s)x(s)ds + Φ(t), (4.37)

where x = (λ, η) , k(t, s) =
(

ki,j(t, s)
)

is the matrix
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k1,1(t, s) = e−
∫ s−t

0 ρ(τ) dτ f (s − t) (4.38)

k1,2(t, s) = e−
∫ s−t

0 ρ(τ) dτν(s − t) (4.39)

k2,1(t, s) =
∫ ∞

0
u(t, a) e−

∫ a+s−t
a ρ(τ) dτ f (a + s − t)da (4.40)

k2,2(t, s) =
∫ ∞

0
u(t, a) e−

∫ a+s−t
a ρ(τ) dτν(a + s − t)da, (4.41)

and the inhomogeneity is

Φ(t) =

(

∫ ∞

t e−
∫ s−t

0 ρ(τ) dτφ(s − t)ds
∫ ∞

t

∫ ∞

0 u(t, a) e−
∫ a+s−t

a ρ(τ) dτφ(a + s − t)da ds

)

.

Then, a key point in the subsequent analysis is to show that integral equation (4.37)
has a unique bounded solution. (The precise statement is formulated in Lemma 4.6
below.)

This, however requires an additional assumption about the kernel k(t, s), which is
formulated in terms of the below numbers κij:

κ11 :=
∫ ∞

0 e−
∫ a

0 ρ(θ) dθ f (a)da, κ12 :=
∫ ∞

0
e−
∫ a

0 ρ(θ) dθ |ν(a)|da, (4.42)

κ21 := max
a≥0

∫ ∞

0 e−
∫ a+τ

a ρ(θ)dθ f (a + τ)dτ, κ22 := max
a≥0

∫ ∞

0
e−
∫ a+τ

a ρ(θ)dθ |ν(a + τ)|dτ.

In the proof of Lemma 4.6 it is shown that the following condition (A3) ensures that
the integral operator in (4.37) is contractive in an appropriate norm:

(A3) The following inequality is fulfilled

1
2

[

κ11 + κ22 +
√

(κ11 − κ22)2 + 4 κ12 κ21

]

< 1. (4.43)

In the proof of Lemma 4.6 it is shown that the appropriate norm mentioned above is
given by ‖(y1, y2)‖ := max{‖y1‖L∞

, α‖y2‖L∞
} for an appropriate α > 0. The proof also

reveals the reason for assuming (A3).
Note, that (A3) imposes a condition solely on the data of the problem. This condi-

tion is not only used in the proof of the optimality condition below, but also for the
characterization of the optimal solution in the next section (see the proof of Lemma 4.7).
The results in these sections, however, are also valid under an alternative condition that
involves the set of admissible controls and the numbers

κ̄21 :=
∫ ∞

0 û(a)
∫ ∞

0 e−
∫ a+τ

a ρ(θ) dθ f (a + τ)dτ da,

κ̄22 :=
∫ ∞

0 û(a)
∫ ∞

0 e−
∫ a+τ

a ρ(θ) dθ |ν(a + τ)|dτ da,

where û is a reference time-invariant control (see (4.15) and the explanations there
around).
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(A3’) For some ε > 0 it holds that

ū(a) ≤ (1 + ε)û(a), a ≥ 0,

and the following inequality is fulfilled:

1
2

[

κ11 + (1 + ε)κ̄22 +
√

(κ11 − (1 + ε)κ̄22)2 + 4 (1 + ε)κ12 κ̄21

]

< 1. (4.44)

Remark 4.2. Assumptions (A3) and (A3’) implicitly require that κ11 < 1 which is
equivalent to the below-replacement fertility condition if r = 0. For r > 0 the below-
replacement fertility condition is stronger than κ11 < 1. We mention also that κ̄21 ≤ κ21

and κ̄22 ≤ κ22, so that (A3’) may be a weaker assumption than (A3) if ε is sufficiently
small which is the reason for considering them both in the below analysis.

Having formulated Assumption (A3) and (A3’) we are now able to state the follow-
ing key lemma:

Lemma 4.6. Under (BA) and (A1)–(A3), system (4.35), (4.36) has a unique solution in

L∞(0, ∞). The same is true also under (BA), (A1), (A2), (A3’).

Proof of Lemma 4.6. Consider the kernel k(t, s) of the integral equation (4.37) defined in
(4.38). It defines an operator K : (L∞(0, ∞))2 → (L∞(0, ∞))2. The operator depends on
u, so we need the existence of a solution of the integral equation for every admissible
u. If the operator norm is smaller than one, a resolvent L : (L∞(0, ∞))2 → (L∞(0, ∞))2

with kernel l(t, s) exists according to Corollary 3.10 and Theorem 3.6 in Gripenberg
et al. (1990) and can be written as

x(t) = Φ(t)−
∫ ∞

0
l(t, s)Φ(s)ds.

To show that the norm is smaller than one, we define for α > 0 a new norm in
(L∞(0, ∞))2.

‖(x1, x2)‖ = max{‖x1‖L∞
, α‖x2‖L∞

}.

Take x ∈ (L∞(0, ∞))2 with ‖x‖ = 1, and estimate the norm of y = Kx:

‖y‖ = max{y1, αy2}

= max
{

sup
t≥0

∫ ∞

t
[k11(t, s)x1(s) + k12(t, s)x2(s)]ds,

α sup
t≥0

∫ ∞

t
[k21(t, s)x1(s) + k22(t, s)x2(s)]ds

}

≤ max
{

sup
t≥0

∫ ∞

t
|k11(t, s)|ds ‖x1‖∞ + sup

t≥0

∫ ∞

0

1
α
|k12(t, s)|ds α‖x2‖∞, (4.45)

sup
t≥0

∫ ∞

t
α|k21(t, s)|ds ‖x1‖∞ + sup

t≥0

∫ ∞

0
|k22(t, s)|ds α‖x2‖∞

}

.
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Since
∫ ∞

0 u(t, a)da = 1, with κij defined in (4.42), it holds that:

sup
t≥0

∫ ∞

0
|kij(t, s)|ds ≤ κij, i, j ∈ {1, 2}.

With this, (4.45) and ‖x‖ = 1 it can be concluded that

‖y‖ ≤ max{κ11 +
1
α

κ12, ακ21 + κ22}.

Thus, the right hand side is an estimation for the operator norm of K. The operator
norm being smaller than unity is implied by the existence of θ0 < 1 and α > 0 such
that

κ11 +
1
α

κ12 ≤θ0, (4.46)

ακ21 + κ22 ≤θ0. (4.47)

Since the first line is monotonously decreasing and the second is increasing in α, for
the optimal α, which allows for the smallest possible θ0, both equations are fulfilled as
equality. Therefore, we solve the equation

κ11 +
1
α

κ12 = ακ21 + κ22

for α and obtain

α1,2 =
1

2κ21

[

κ11 − κ22 ±
√

(κ11 − κ22)2 + 4κ12κ21

]

.

We insert the positive solution for α into the second line of (4.47) to obtain θ0:

θ0 =
1
2

[

κ11 + κ22 +
√

(κ11 − κ22)2 + 4κ12κ21

]

.

The requirement θ0 < 1 is exactly inequality (4.44) in condition (A3).

The sufficiency of (A3’) follows because the assumption implies that for all admis-
sible u it holds that supt≥0

∫ ∞

0 kij(t, s)ds ≤ (1 + ε)κ̄2j for j = 1, 2. System (4.46) – (4.47)
then reads as

κ11 +
1
α

κ12 ≤θ0, (4.48)

(1 + ε)(ακ̄21 + κ̄22) ≤θ0.

By following the same steps as above, we obtain that (4.43) is sufficient for the operator
norm of K to be smaller than one.

Q.E.D.

As a consequence of the above two lemmas in combination, we obtain the following
proposition which states the uniqueness of a bounded solution of the adjoint variable.
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Proposition 4.2. Under (BA) and (A1)–(A3), the adjoint equation (4.31) has a unique solution

in L∞(D). The same is true also under (BA), (A1), (A2), (A3’).

Proof. According to Lemma 4.6 system (4.35), (4.36) has a bounded solution. Then
according to Lemma 4.5 equation (4.31) also has a bounded solution, obtained by sub-
stitution of the solution (λ, η) of (4.35), (4.36) in (4.33).

For any bounded solution ξ of (4.31) the functions λ and η defined by (4.32) are
bounded and satisfy (4.35), (4.36). Therefore λ and η are uniquely determined (Lemma
4.6), hence ξ is unique (Lemma 4.5). Q.E.D.

Necessary optimality condition of Pontryagin type

The next theorem gives a necessary optimality condition of the type of the Pontryagin
maximum principle for problem (4.23)-(4.26).

Theorem 4.1. Let assumptions (BA), (A1)–(A3) (or alternatively (BA), (A1), (A2), (A3’)) be

fulfilled and let (u, N) be an optimal solution of problem (4.23)-(4.26). Let ξ be the unique

solution in L∞(D) of the adjoint equation (4.31). Then for a.e. t ≥ 0 the optimal control u(t, ·)
maximizes the integral

∫ ∞

0
ξ(t, a)v(a)da, (4.49)

on the set of measurable functions v(·) satisfying

u(a) ≤ v(a) ≤ ū(a),
∫ ∞

0
v(a)da = 1. (4.50)

Proof. Subsequently, we show that if u is an optimal control and hence ∆J ≤ 0, due to
optimality, then v(a) = u(t, a) maximizes the integral in (4.49). Let J be the optimal
objective value and let ξ be the unique bounded solution of the adjoint equation (4.31)
on D (see Proposition 4.2). Let us fix an arbitrary θ > 0, let h > 0 be arbitrary (and
presumably small) and T > 0 be such that θ − h ≥ 0 and θ + h ≤ T. Denote Θh :=
[θ − h, θ + h]× [0, ∞) ⊂ D and define a “disturbed" control

ũ(t, a) :=

{

u(t, a) for (t, a) 6∈ Θh,
v(a) for (t, a) ∈ Θh,

(4.51)

where v is any measurable function satisfying (4.50).
Then ũ satisfies the control constraints. Let Ñ be the corresponding solution of

(4.24)–(4.26) and R̃, B̃ be corresponding functions (immigration and birth flows) de-
fined by (4.6) and (4.5), while R and B correspond to N. Denote ∆J = J(ũ) − J(u),
∆u = ũ − u, ∆N = Ñ − N, ∆R = R̃ − R, ∆B = B̃ − B, all depending on the chosen
h and v. According to (A2), R̃ is non-negative, and all the functions introduced above
are bounded (see Lemma 4.4).

Clearly,

∆J =
∫ T

0
e−rt

∫ ∞

0
φ(a)∆N(t, a)da dt. (4.52)
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In order to obtain an expression for ∆N we multiply the equation

D∆N(t, a) = −µ(a)∆N(t, a) (4.53)

+
∫ ∞

0
ν(α) [∆N(t, s) u(t, a) + N(t, s)∆u(t, a) + ∆N(t, s)∆u(t, a)]ds

resulting from (4.24) by e−rtξ(t, a) and integrate on D. Since D = {(s, x + s) : s, x ≥

0} ∪ {(x + s, s) : s, x ≥ 0} and the two sets on the right intersect only on a set of
measure zero, we may represent
∫ ∞

0

∫ ∞

0
D∆N(t, a)e−rtξ(t, a)dt da =

∫ ∞

0

∫ ∞

0
e−rsξ(s, x + s)

d
ds

∆N(s, x + s)ds dx

(4.54)

+
∫ ∞

0

∫ ∞

0
e−r(x+s)ξ(x + s, s)

d
ds

∆N(x + s, s)ds dx.

By integration by parts (for the inner interval) the first term on the right-hand side
gives

∫ ∞

0

[

e−rsξ(s, x + s)∆N(s, x + s)|∞s=0 (4.55)

−
∫ ∞

0
∆N(s, x + s)e−rs(−rξ(s, x + s) +

d

ds
ξ(s, x + s))ds

]

dx.

The term with s → ∞ is zero because both ξ and N (and therefore ∆N) are bounded,
and the term with s = 0 is zero because ∆N(0, a) = 0.

The second term on the right-hand side of (4.54) is treated in the same way and
combining the two terms we obtain that the right-hand side of (4.54) is equal to

−
∫ ∞

0
e−rtξ(t, 0)∆N(t, 0)dt

−
∫ ∞

0

∫ ∞

0
e−rt(Dξ(t, a)− rξ(t, a))∆N(t, a)da dt, (4.56)

where we changed again to the (t, a)-plane. To obtain equation (4.58) below, first, we
take into account that N(t, 0) =

∫ ∞

0 f (a)N(t, a)da and observe that (4.56) equals the
right-hand side of equation (4.54). Then, we observe that

D∆N(t, a) = −µ(a)∆N(t, a) +
∫ ∞

0
(µ(s)− f (s))∆N(t, s)ds u(t, a),

= −µ(a)∆N(t, a) +
∫ ∞

0
ν(s)∆N(t, s)ds u(t, a),

and insert this relation into the left-hand side of equation (4.54). Hence, equation (4.54)
becomes

∫ ∞

0

∫ ∞

0
e−rtξ(t, a)

[

µ(a)∆N(t, a) +
∫ ∞

0
ν(s)∆N(t, s)ds

]

da dt (4.57)

= −
∫ ∞

0

∫ ∞

0
e−rtξ(t, 0) f (a)∆N(t, a)da dt

−
∫ ∞

0

∫ ∞

0
e−rt(Dξ(t, a)− rξ(t, a))∆N(t, a)da dt.
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Reordering of the terms gives

0 =
∫ ∞

0

∫ ∞

0
e−rt

[

(ξ(t, 0) f (a) +Dξ(t, a)− rξ(t, a)− µ(a)ξ(t, a))∆N(t, a) (4.58)

+
∫ ∞

0
ν(s)ξ(t, a) (∆N(t, s)u(t, a) + N(t, s)∆u(t, a) + ∆N(t, s)∆u(t, a)) ds

]

da dt.

Using the adjoint equation (4.31) and change the order of integration in the first
term of the right-hand side of equation (4.58), we obtain that

0 =
∫ ∞

0

∫ ∞

0
e−rt

[

− φ(a)∆N(t, a)

+
∫ ∞

0
(ν(s)ξ(t, a)N(t, s)∆u(t, s) + ν(s)ξ(t, a)∆N(t, s)∆u(t, a)) ds

]

da dt.

Adding this to (4.52) we get

∆J =
∫ ∞

0

∫ ∞

0

∫ ∞

0
e−rtν(s)ξ(t, a)

[

N(t, s)∆u(t, a) + ∆N(t, s)∆u(t, a)
]

ds da dt

=
∫ ∞

0

∫ ∞

0
e−rtR(t)ξ(t, a)∆u(t, a)da dt (4.59)

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
e−rtν(s)ξ(t, a)∆N(t, s)∆u(t, a)ds da dt.

Next we shall show that the second term on the right-hand side above is of second
order with respect to h (cf. (4.51)). Note, that ∆u(t, a) = 0 for t 6∈ [θ − h, θ + h], thus
we need an estimation of ∆N only on the time-horizon [0, T] with some T > θ, say
T = θ + 1.

By solving equation (4.24) along the characteristic lines we obtain the representation

N(t, a) = B(t − a)e−
∫ a

0∨(a−t) µ(τ) dτ +
∫ t

0∧(t−a)
e−
∫ a

a−t+s µ(τ) dτR(s)u(s, a − t + s)ds,

where B is extended as B(t) = N0(−t) for t < 0 and 0 ∨ α := max{0, α}. Due to
assumption (BA) we can estimate e−

∫ a
α µ(τ) dτ ≤ 1. A similar equality holds for Ñ(t, a)

corresponding to the control ũ. Subtracting the two expressions and estimating, we
obtain that

|∆N(t, a)| ≤ |∆B(t − a)|+
∫ t

0∨(t−a)

∣

∣∆R(s)ũ(s, a − t + s) + R(s)∆u(s, a − t + s)
∣

∣ds.

From (4.6), (4.5) we can estimate

|∆R(t)| ≤ c1

∫ ∞

0
|∆N(t, a)|da = c1‖∆N(t, ·)‖L1 ,

where c1 is a constant depending only on f and µ, and analogously we can estimate
|∆B(t)|. Then it is a matter of routine estimations (taking into account that ∆u is non-
zero on a set of measure proportional to h) to obtain the inequality

‖∆N(t, ·)‖L1 ≤
∫ t

0
c2‖∆N(x, ·)‖L1 e−(t−x)µ0 dx + c3h, t ∈ [0, θ + 1],
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where c2 and c3 are independent of h (although may depend on θ and the data of the
problem).

Since T = θ + 1 is finite, Gronwall’s lemma gives

‖∆N(t, ·)‖L1 ≤ Ch, t ≤ T.

Now it is straightforward to estimate the last term in (4.59) by

∫ θ+h

θ−h
e−rtC h ‖ν‖L∞

‖ξ‖L∞

∫ ā

0
|∆u(t, α)|dα dt ≤ C h2.

Using this in the estimation (4.59) and having in mind the definition of ũ(t, a) in
(4.51) and the fact that ∆J ≤ 0 due to the optimality of u we obtain that

1
2h

∫ θ+h

θ−h
e−rt

∫ ∞

0
R(t) ξ(t, a) u(t, a)da dt ≥

1
2h

∫ θ+h

θ−h
e−rt

∫ ∞

0
R(t) ξ(t, a) v(a)da dt−

C

2
h.

Almost every s is a Lebesgue point of the function t →
∫ ∞

0 R(t)ξ(t, a)u(t, a)da, and
R(t) > 0. Therefore, we can conclude the proof of the theorem by taking the limit
h → 0. Q.E.D.

4.5 Uniqueness, stationarity, and structure of the optimal im-

migration pattern

In this section, we use Theorem 1 to obtain some qualitative properties of the optimal
solution of problem (4.23)-(4.26). The most interesting one is that the optimal control
u (that is, the optimal immigration profile) is unique and time-invariant: u(t, a) =

u(a). This fact is not evident. Its proof is based on stability condition (A3) and on an
additional well-posedness condition. The latter also implies a bang-bang structure of
the optimal control u(a).

To prove uniqueness and stationarity of the optimal solution we rewrite the adjoint
equation in a feedback form. To do this we introduce the functional σ(·):

σ(g) = max
v∈V

∫ ∞

0
g(a)v(a)da, g ∈ L∞(0, ∞), (4.60)

where V is the set of functions v : [0, ∞) → R satisfying (4.50). Then using the op-
timization condition in Theorem 4.1 we can rewrite the adjoint equation (4.31) in the
feedback form

Dξ(t, a) = (r + µ(a))ξ(t, a)− f (a)ξ(t, 0)− (µ(a)− f (a))σ(ξ(t, ·))− φ(a). (4.61)

The existence of a solution in L∞(D) to this equation follows from the necessity of
the maximum principle.

Lemma 4.7. If assumption (A2) is fulfilled, then equation (4.61) has a unique bounded solution.
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Proof of Lemma 4.7. The proof is similar to the one of Lemma 4.6. Let us take two
bounded solutions, ξ1 and ξ2 and denote by ∆ξ(t, a) the difference between the two.
The solutions ξi can be written as (cf. (4.34))

ξi(t, a) =
∫ ∞

a
e−
∫ s

a ρ(θ)dθ [ f (s)ξi(s + t − a, 0) + ν(s)σ(ξi(s + t − a, ·)) + φ(s)]ds, i = 1, 2.

Let ∆λ(t) := ξ1(t, 0)− ξ2(t, 0) and ∆σ(t) := σ(ξ1(t, ·))− σ(ξ2(t, ·)), then we obtain the
homogeneous system of integral equations

∆ξ(t, a) =
∫ ∞

0
e−
∫ s+a

a ρ(θ)dθ( f (s + a)∆λ(s + t) + ν(s + a)∆σ(ξ(s + t, ·)))ds,

∆λ(t) =
∫ ∞

0
e−
∫ s

0 ρ(θ)dθ [ f (s)∆λ(s + t) + ν(s)∆σ(s + t)]ds.

Denote by K : (L∞(0, ∞))2 → (L∞(0, ∞))2 the integral operator representing the sys-
tem of integral equations above. The existence of a unique solution of this system is
guaranteed if ‖K‖ < 1. To show this, take the norm in the system of equations and use
that σ is Lipschitz with Lipschitz constant 1 (cf. Lemma 4.1 in Feichtinger and Veliov
(2007)),

‖∆ξ‖∞ ≤κ21‖∆λ‖∞ + κ22‖∆ξ‖∞

‖∆λ‖∞ ≤κ11‖∆λ‖∞ + κ12‖∆ξ‖∞.

As in the proof of Lemma 4.6 we define a norm ‖(∆ξ, ∆λ)‖ := max{‖∆ξ‖∞, a‖∆λ‖∞}

for α > 0. We choose again an appropriate α > 0 such that the norm of the operator
K is minimized. The minimum is exactly the left hand side of (4.43) and Assumption
(A3) guarantees that it is smaller than one. Therefore, a unique solution exists to the
homogeneous system, which is obviously ∆ξ = 0. Q.E.D.

Now we introduce a regularity assumption that ensures that the maximization condition
in Theorem 4.1 determines a unique control. As shown in Feichtinger and Veliov
(2007) in a simpler version of the problem considered here, without a certain regularity
assumption the uniqueness fails and this is due to non-concavity of the problem. On
the other hand the regularity assumption is in a reasonable sense generic and easy to
check.

(A4) For all real numbers d0, d1 and d2 it holds that

meas{a ∈ [0, ∞] : d0 + d1µ(a) + d2 f (a)− p(a) = 0} = 0.

This assumption requires that µ, f and p must not be linearly related on a set of
positive measure.

Theorem 4.2. Let assumptions (BA), (A1)–(A4) be fulfilled. Then optimal control problem

(4.23) – (4.27) has a unique optimal control u and it is time-invariant: u(t, a) = u(a).
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Proof. First we shall prove that (4.61) has a stationary bounded solution ξ̂(t, a) = ξ̂(a).
To do this we show that the equation

ξ ′(a) = (r + µ(a))ξ(a)− f (a)ξ(0)− (µ(a)− f (a))σ(ξ(·))− φ(a) (4.62)

has a bounded solution. Denote λ = ξ(0) and η = σ(ξ(·)) , then we can write the
solution to the differential equation as

ξ(a) =
∫ ∞

a
e−
∫ s

a ρ(θ) dθ [ f (s)λ + ν(s)η + φ(s)]ds.

Using the definition of σ(ξ(·)), (4.60), the equations for λ and η are

λ =
∫ ∞

0
e−
∫ s

0 ρ(τ) dτ[ f (s)λ + ν(s)η + φ(s)]ds

η =max
v∈V

∫ ∞

0
v(a)

∫ ∞

a
e−
∫ s

a ρ(τ) dτ[ f (s)λ + ν(s)η + φ(s)]ds da.

Denoting the terms independent from λ and η by (b1, b2) we can write the equations
above as

(I − K)

(

λ

η

)

=

(

b1

b2

)

, (4.63)

where I is the 2 × 2 identity matrix and K is the matrix defined by the right hand side.
As in the proof of Lemma 4.6 and 4.7, define a norm on R2 as ‖(x, y)‖ = max{|x|, α|y|},
α > 0. Estimating the operator norm of K in the same way as in the proof of Lemma 4.6
gives that the norm is smaller or equal to the left hand side in (4.44). Then assumption
(A3) states that the norm is smaller than one, thus (I − K) is invertible and therefore a
unique solution to (4.63) exists. Thus, a bounded solution ξ̂(a) of (4.62) exists and it is
obviously a stationary bounded solution of (4.61).

According to Lemma 4.7 the stationary function ξ̂(a) is the unique bounded solution
of (4.61).

On the other hand, Theorem 4.1 claims that for every optimal control u, the adjoint
equation (4.31) has a unique bounded solution ξ(t, a) and for a.e. t ≥ 0

∫ ∞

0
ξ(t, a)u(t, a)da = max

v∈V

∫ ∞

0
ξ(t, a)v(a)da = σ(ξ(t, ·)).

Then ξ is a bounded solution also of (4.61), which implies that ξ = ξ̂. The above
maximization condition reads now as

∫ ∞

0
ξ̂(a)u(t, a)da = max

v∈V

∫ ∞

0
ξ̂(a)v(a)da, (4.64)

where ξ̂ is the unique bounded solution of (4.62).
Assumption (A4) obviously implies that the solution ξ̂ of (4.62) cannot be constant

on a set of positive measure. Then similarly as in Corollary 5.1, in Feichtinger and
Veliov (2007) one can prove that (4.64) uniquely determines (modulo a set of measure
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zero) a control u ∈ U , it is time-invariant and has the following structure: there is a
real number l such that

u(t, a) =

{

u(a) if ξ̂(a) ≤ l,
ū(a) if ξ̂(a) > l.

(4.65)

Q.E.D.

We formulate the last finding in the proof of the above theorem as a corollary.

Corollary 4.1. Let ξ̂ be the unique bounded solution of (4.62). Then, there is l ∈ R such that

the unique optimal control u(t, a) = û(a) is determined by (4.65). This number l is the only

one for which the resulting û satisfies
∫ ∞

0 û(a)da = 1.

Thus the optimal solution is of bang-bang type. A related result is obtained in
Chapter 3 for a static counterpart of the problem considered in this chapter. Since ξ(a)

can be interpreted marginally as “shadow price" of an a-year-old individual, the above
corollary asserts that there is a critical value l such that it is optimal to encourage
as much as possible migration in ages for which the shadow price is higher than l

(u(a) = ū(a)) and restrict as much as possible migration in ages for which the shadow
price is smaller than l. The remarkable fact here is that the shadow price is independent
of the initial age-distribution of the population and time-invariant.

4.6 A case study: the Austrian Population

In this section, we numerically determine the optimal immigration policy given by
(4.23)–(4.26) for the case study of the Austrian population. The numerical results for
the optimal time-invariant immigration profile and the population’s age structure ob-
tained in this section are based on the analytical results above. In all the numerical
calculations below, we specify p(a) in (4.23) as the characteristic function of the age in-
terval [20, 65]. If we additionally set q = 0 the objective function (4.23) is the discounted
and aggregated number of workers over time. It is related to the so-called dependency
ratio, which is the ratio of nonworking age population to the working age population.
The dependency ratio is an important demographic indicator for the solvency of the
social security system of a population. The case of q > 0, which is also discussed below,
accounts for possible costs for the integration of immigrants.

For the computations, we initialize the age structure of demographic variables re-
ferring to Austrian data as of 2009 and interpolate these data piecewise linearly to
obtain continuous representations of the vital rates, f (a), µ(a). As already mentioned
in Remark 4.1, we assume that µ(a) = µ(95) for a ≥ 95. These demographic data
together with an intertemporal discount rate of r = 0.04 satisfy assumption (A3) with
κ11 = 0.0737, κ12 = 0.0774, κ21 = 0.1480, κ22 = 0.1506. For these values the quantity in
the left hand side of (4.43) equals 0.2259 and is therefore well below 1. For the initial
age structure N0(a) we take the annual average numbers of the Austrian female pop-
ulation in 2009, see Figure 4.5 (solid line). The normalized immigration age-density of
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2009 is denoted by û(a), see Figure 4.4. We set the lower and upper age-specific limits
for immigration to

u(a) = 0 and u(a) = 2û(a).

In the following, we analyze three scenarios: in the uncontrolled case the immigration
age density remains the same in the future u(t, a) = û(a); then we assume that q

in (4.23) takes the value zero and the immigration age density is chosen optimally
u(t, a) = u∗(a); and additionally we set q = 200 where again u(t, a) = u∗(a) is chosen
optimally. With the last scenario we analyze the effect of immigration costs on the
optimal immigration age-pattern, see Figure 4.4.

The optimal solution u(t, a) = u∗(a) in the above scenarios is depicted in Figure 4.4.
As it can be seen in this figure, the optimal age profile of immigrants is at its upper
bound from slightly before the lowest working age of a = 20 until the mid thirties.
It is on its lower bound at any other ages. Notice also that increasing the costs of
immigration shifts the optimal age pattern to the left as indicated by the dashed line in
Figure 4.4.

In Figure 4.5 we compare the age structure of the initial population with the sta-
tionary population at t = 400 which results in the uncontrolled case and when ap-
plying the optimal u∗(a) for q = 200. The sharp increase of the optimal population
N∗(400, a) at the low working ages is due to the annual inflow of immigrants at these
ages. Hence, one can follow that the age structure in the controlled case is more favor-
able, i.e. younger, than in the uncontrolled case. In particular, there are more young
and middle-aged workers.
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In Figure 4.6 we plot the evolution of the number of newborns B(t), the number of
deaths D(t) and the recruitment rate R(t) on the time horizon [0, 400], where D(t) =

R(t) + B(t). Notice that for the uncontrolled as well as for the controlled immigration,
there is a huge increase in the number of immigrants R(t) at the beginning, caused by
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the high number of deaths which would be a result of the baby boom, that occurred in
Austria in the 50s and 60s.
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over time for the optimal control and q = 0 compared with the uncontrolled case
(corresponding dashed lines)

In Figure 4.7 the change of the number of workers and in Figure 4.8 the dependency
ratio over time are shown. We compare the scenario with q = 0 to the case where
current age-specific immigration rates would remain the same in the future. Clearly,
we can sustain a higher number of workers and simultaneously a lower dependency
ratio when applying the optimal immigration pattern u∗(a).
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4.7 Discussion

The main contributions of the above investigations are as follows. We obtain a new
Pontryagin type maximum principle with a transversality condition in the form of
boundedness of the adjoint variable. This is done under suitable stability assump-
tions which are fulfilled for populations with sufficiently low fertility. Existence of an
optimal solution is also proven.

The most striking result is that under an additional generic well-posedness condi-
tion for a population with time-invariant mortality and fertility the optimal age-density
of the migration turns out to be time-invariant and independent of the initial data. This
makes it possible to find it by solving the associated steady-state problem, which is an
optimal control problem for an ordinary differential equation and was studied in de-
tails in Chapter 3 and published in Simon et al. (2012). Thanks to this property also
qualitative results for the optimal policy are obtained.

However, two of the key assumptions in the above model pose questions: the sta-
bility conditions (A3) (or (A3’)) and the assumption that the discount rate r is strictly
positive.

We were not able to prove the main results—the optimality conditions and the sta-
tionarity of the optimal immigration age-profile—only assuming below-replacement
fertility (4.14), which has a clear demographic meaning. A challenging question is
whether the “stability" provided by (4.14) is not enough for the validity of the results.
Apparently this question requires more profound analysis of the stability of the in-
volved systems of integral equations.

The question whether the optimality conditions (especially the “transversality" con-
dition for the associated adjoint equation) and the stationarity result can be obtained
in the case of no discount (that is, for r = 0) seems to be important since discounting
is not a common practice in the “evaluation" of demographic processes.
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Chapter 5

Overlapping generations models

with immigration

In this chapter we develop overlapping generations models (OLG) which explicitly
include immigration. Taking account of immigration in standard economic models
requires adaptations in various respects.

In the following, we propose two general equilibrium models. In Section 5.1 we
investigate the effect of a sudden variation in the number of immigrants on the host
country to shed light on the welfare effects of immigration for the various generations
of the host country’s population. Subsequently, in Section 5.2, we vary the age structure
of the inflowing migrants and determine the impact of immigration on the pension
system and capital accumulation.

5.1 Modeling an immigration shock with a continuous time

OLG model

Immigration is a complex process. People who immigrate to a country differ, among
other characteristics, in ethnicity, religious believes, age, skill level and their economic
situation. In this work we will focus only on the last three of these features. The
number of annual immigrants as well as their skill level and age distribution impact the
population structure and the productivity of the work force. The economic situation of
immigrants, in here, reflected by their capital endowment when entering the country,
changes the capital labor ratio in the presumably closed economy. As a consequence,
all these characteristics impact the economic activities in the country and henceforth
the welfare of its inhabitants.

OLG models are typically used to investigate how different generations interact
with each other in an economy. Here, we extend this model structure by adding a new
heterogeneity, namely by explicitly modeling natives and immigrants.

Here, we aim to determine the welfare consequences of an exogenous immigration
shock to a closed economy. This means a rapid change in the number of immigrants
for a small period of time due to policy changes or possibly also unstable conditions
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such as wars or economic crises in other countries.
In order to identify the welfare effects for different cohorts of the native population,

the model must replicate the age structure of the population and the life cycle choices
for the agents of the different vintages.

In Ben-Gad (2003, 2006) the population is modeled in form of overlapping dynasties
where arriving immigrants are the founders of new dynasties. This provides a first step
to a realistic description of the population structure. However, immigrants have all the
same age when entering the host country. Moreover, these dynasties live infinitely long.
In contrast to these articles, here we consider an age pattern of inflowing immigrants
and finite but uncertain life times.

In Boldrin and Montes (2008), like here, it is investigated how an immigration shock
affects the welfare of different cohorts. There, they use the framework of a three period
discrete time overlapping generations model. The age structure of the population is
determined by assigning the individuals to these three periods. As a result there are
only three coexisting generations at each point of time. In order to depict a realistic
finite life time, the length of these periods is approximately 25-30 years.

Unlike the other model treated in this chapter, where the focus was on the long
term effects, i.e. steady state changes, here we investigate the intertemporal changes in
the macroeconomic variables and therefore also consider a temporal shock which lasts
only for a couple of years.

In the following, we assume that immigrants enter without any assets. The life cycle
of both, natives and immigrants, is divided into a schooling, a working and a retirement
period. Cohorts living in different periods are linked by intergenerational transfers, i.e.
labor taxes are redistributed to the old in form of pension payments. While receiving
their education, native agents accumulate debts, due to own consumption and the lack
of labor income. They pay back and start saving during their working period.

It is assumed that immigrants enter the country after finishing their education. This
is in accordance with Austrian data, where more than 85 % of all immigrants between
ages 16-24 enter after finishing schooling. This holds for even 95 % of all immigrants
over the age of 35. We assume that human capital is solely accumulated by education.
There are also no intergenerational knowledge spillovers.

We distinguish two different cases. First, we assume that the number of schooling
years, this means the length of education, is exogenously given and may vary between
natives and immigrants. Since education determines the efficiency of labor, we aim
to investigate how differences in education between natives and immigrants impact
the welfare of the native population. This impact on the welfare varies for different
generations. As a consequence, some generations win and others lose in terms of life
cycle utility.

Later, we endogenize the education decision of natives and let them decide over
their optimal number of schooling years.

While natives accumulate capital through saving, immigrants consume immediately
what they earn during working life and receive pensions after retirement. Therefore,
immigrants do not hold any assets in course of their life cycle. Here, we follow Ruist
(2011). He argues that if it is assumed that immigrants are close to the bottom of
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the income structure, they have little incentives to save and invest in the host country,
because saving incentives are correlated with income. Moreover, most immigrants
remit much of their savings to their country of origin and some of them even intend to
go back after some time.

It is assumed that immigrants and natives feature the same fertility and mortality
rates. Immigrants’ offspring is considered as native and therefore also acts as saver
and capital owner.

5.1.1 Model

Age structured populations are studied in economics through overlapping generations
models. These models allow for a realistic determination of life-cycle behaviors. Here,
an age-structured population with immigration is considered. The household side of
the closed economy is modeled by an overlapping generations framework. The firm
sector is assumed to consist of one representative firm that uses aggregate capital and
labor for the production of a single good.

Population Structure

The economy is populated by different age cohorts whose lifespan is uncertain but
bounded. In the following, time is denoted by t ≥ 0, where t = 0 is the starting time
of the consideration of the economy, and a cohort’s birth date is τ. The age of death is
a random variable over [0, ω], where ω < ∞ is the maximal reachable age. As Chapter
2 and Chapter 3 the probability of surviving of an individual born at time τ until age
a = t − τ ∈ [0, ω] is again denoted by l(a) ∈ C1[0, ω] and does not change with time.
Therefore, −l′(a) is again the unconditional probability of dying at age a. Accordingly,

µ(a) = −
l′(a)

l(a)
,

is equal to the conditional probability of dying at age a, given that the individual
survives until this age. Therefore, µ(a) is the density function of the random vari-
able describing the age of death. For the probabilistic density function µ(a) it holds
∫ ω

0 µ(a)da = l(0) = 1.

Let N(τ, t) denote the number of natives 1 and M(τ, t) the number of individuals
born outside the host country at time τ and still being alive at time t > τ. Then N(τ, 0)
and M(τ, 0) for τ ∈ [−ω, 0] represent the age structure of natives and immigrants at
the starting point of the economy. The native cohort with birth date τ changes over
time according to

dN(τ, t)

dt
= −N(τ, t)µ(t − τ). (5.1)

1The term "number of people"’ is strictly speaking not correct. To be more correct, one would have to
speak of N(·, t) as a density representing the distribution of individuals along cohorts.
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The births are given as a boundary condition for this equation at τ = t as

N(τ, τ) =
∫ τ

τ−ω
f (τ − s) (N(s, τ) + M(s, τ)) ds, (5.2)

where f (·) ∈ C[0, ω] denotes the age-specific fertility rate. Again we assume, see
Chapter 2, that

NRR < 1.

Additionally, we assume that the children of immigrants are part of the native popula-
tion and that immigrants and natives have the same age-specific fertility and mortality
rates. The dynamics of the population M(τ, t) reads as,

dM(τ, t)

dt
= −M(τ, t)µ(t − τ) + m(τ, t), M(τ, τ) = 0. (5.3)

Here, m(τ, t) denotes the age-specific and possibly time-varying immigration profile.
Then, the number of natives in the population at time t is given by

N(t) =
∫ ω

t−ω
N(t, τ) dτ,

and the number of immigrants is

M(t) =
∫ ω

t−ω
M(t, τ) dτ.

Individual Optimal Behavior

Let the utility from consumption c > 0 of any individual be denoted by u(c) and
consider a CRRA-utility function

u(c) =

{

c1−σ

1−σ if σ ∈ (0, 1) ∪ (1,+∞),

ln(c) if σ = 1.

where σ is the risk aversion coefficient and 1/σ is the intertemporal elasticity of substi-
tution between consumption over time. The higher 1/σ, i.e. the lower the risk aversion
coefficient, the more willing is the household to substitute consumption over time.
Function u(c) belongs to the family of constant relative risk aversion utilities (CRRA).

Since in our considerations the age of dying a ∈ [0, ω] is not a fixed number but a
random variable, we adopt the expected utility hypothesis. fa an individual of cohort τ

chooses a consumption profile c(τ, ·) such that her expected life-time discounted utility
E[u] is maximized. The subjective discount rate is denoted by ρ. It defines how the
preference for consumption decreases over the life time and is assumed to be constant.

Agents have perfect foresight meaning that agents perfectly forecast the rates of
return on capital, r(t), and labor, w(t). Consequently, they supply labor such that its
actual return, in form of wage, meets their expectations and the same holds for the
saving decision determining the supplied capital and the expected return on capital. A
typical life cycle consists of a schooling period, h, a work period and retirement after
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the fixed age R. We assume that people born at time τ are identical from the economic
point of view.

An agent of the cohort born at time τ takes the real return on assets r(t) and the
wage rate w(t) as given and chooses her consumption in order to maximize her ex-
pected utility

∫ τ+ω

τ
e−
∫ t

τ (ρ+µ(η−τ))dη cσ(τ, t)

σ
dt (5.4)

subject to the flow dynamics

da(τ, t)

dt
= (r(t) + µ(t − τ))a(τ, t) + (1 − θ)w(t)e(h, t − τ)− c(τ, t)

+ I[R,ω](t − τ)p(t), t ∈ (τ, τ + ω). (5.5)

Here, a(τ, t) denote the financial assets of an agent born in τ at time t. We assume that
each agent depending on her age t − τ is endowed with efficient units of labor, e(h, t −

τ) : [0, R] × [0, ω] → [0, ∞), i.e. for a given age t − τ function e(h, ·) determines her
productivity in the production process. Consequently, labor income equals w(t)e(h, t−

τ).
For a fixed number of schooling years h we define

e(h, t − τ) =

{

eg(h,t−τ) if h ≤ t − τ ≤ R,
0 otherwise,

where g(h, t − τ) := δ1h + δ2(t − τ − h) + δ3(t − τ − h)2 and δ1, δ2 > 0 and δ3 < 0.
Therefore, the productivity, and consequently, the wage of an agent is a concave

function in work experience measured in working years t − τ − h. This representation
of e(h, t − τ) follows Mincer (1974), where the logarithm of wages is modeled as the
sum of a linear function of years of education h and a quadratic function of years of
experience. During schooling and after retirement there is no supply of labor. A share
θ of the labor income must be paid into a Pay-As-You-Go (PAYG) pension system. They
benefit from the payments of the working cohorts when they retire in form of pension
payments p(t), t ∈ [τ + R, τ + ω].

Agents hold all their assets in form of annuities, cf. Yaari (1965). Since the life-
insurance company redistributes the wealth of the agents who died to those who sur-
vived in the same age cohort, the real rate of return r(t) is augmented by the age-
specific mortality rate µ(t − τ).

Agents have no assets when they enter the economy except of those who are alive
at time t = 0:

a(τ, 0) given, if τ ∈ (−ω, 0), (5.6)

a(τ, τ) = 0, if τ ≥ 0. (5.7)

Moreover, one cannot die indebted2:

a(τ, τ + ω) = 0. (5.8)

2In fact we should require that, a ≥ 0, but at the optimum equality holds.
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Since the individual utility maximizing problem (5.4)–(5.8) constitutes a dynamic
optimization problem, we apply Pontryagin’s Maximum Principle to obtain the optimal
consumption profile. The corresponding present value Hamiltonian reads as

H̄(t, τ, c, a, λ) = e−ρ(t−τ)l(t − τ)
c1−σ(τ, t)

1 − σ

+ λ̄(τ, t)((r(t) + µ(t − τ))a(τ, t) + (1 − θ)w(t)e(h, t − τ)

− c(τ, t) + I[R,ω](t − τ)p(t)).

The first order necessary optimality conditions, see Theorem 2.2, are:

∂λ̄(τ, t)

∂t
= −λ̄(τ, t)(r(t) + µ(t − τ)), (5.9)

∂H̄(τ, t)

∂c
= e−ρ(t−τ)l(t − τ)c−σ(τ, t)− λ̄(τ, t) = 0. (5.10)

From (5.10) we obtain the following expression for the optimal consumption profile

c(τ, t) = e
−ρ(t−τ)

σ

(

λ̄(τ, t)

l(t − τ)

)

−1
σ

. (5.11)

By introducing

λ(τ, t) := λ̄(τ, t)eρ(t−τ) 1
l(t − τ)

(5.12)

we derive a differential equation for the shadow price that is independent of the mor-
tality function:

∂λ(τ, t)

∂t
=

∂λ̄(τ, t)

∂t

eρ(t−τ)

l(t − τ)
+ ρeρ(t−τ) λ̄(τ, t)

l(t − τ)
− eρ(t−τ)λ̄(τ, t)

l′(t − τ)

l2(t − τ)

And by using the optimality condition (5.9) and relation (5.12) we find that

∂λ(τ, t)

∂t
= (−r(t) + ρ)λ(τ, t)

holds. Therefore, the equation

λ(τ, t) = e
∫ t

τ (−r(η)+ρ)dηλ0(τ) (5.13)

holds. Inserting (5.13) into expression (5.11) and defining

λ̃(τ) := λ
−1
σ

0 (τ),

yields an expression for c(τ, t) that is solely represented by exogenous variables except
for the initial value λ0(τ) which yet has to be determined

c(τ, t) = e
−1
σ

∫ t
τ (r(η)−ρ) dηλ̃(τ). (5.14)
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We substitute consumption (5.14) into the budget constraint (5.5) and determine λ̃(τ)

in such a way that the boundary conditions (5.6), (5.8) or alternatively (5.7)–(5.8) are
fulfilled.

More precisely, for (τ, t) ∈ {(τ, t) : τ ∈ (0, ∞), t ∈ [τ, τ + ω)} the optimal consump-
tion is given by

c(τ, t) = λ̃(τ)e
1
σ

∫ t
τ (r(η)−ρ) dη ,

with

λ̃(τ) =

∫ τ+ω
τ e−

∫ t
τ (r(η)+µ(η−τ)) dη

(

(1 − θ)w(t)e(h, t − τ) + I[R,ω](t − τ)p(t)
)

dt
∫ τ+ω

τ e
∫ t

τ (
1
σ ((1−σ)r(η)−ρ)+µ(η−τ)) dη dt

,

and for (τ, t) ∈ {(τ, t) : τ ∈ (−ω, 0), t ∈ (0, τ + ω)}

c(τ, t) = λ̃(τ)e
1
σ

∫ t
τ (r(η)−ρ) dη ,

λ̃(τ) =
a(τ, 0)

∫ τ+ω
0 e

∫ t
τ (

1
σ ((1−σ)r(η)−ρ)+µ(η−τ))dη dt

+

∫ τ+ω
0 e−

∫ t
τ (r(η)+µ(η−τ))dη

(

(1 − θ)w(t)e(h, t − τ) + I[R,ω](t − τ)p(t)
)

dt
∫ τ+ω

0 e
∫ t

τ (
1
σ ((1−σ)r(η)−ρ)+µ(η−τ)) dη dt

.

The case of c(τ, t) < 0 for some t can be ruled out because it could only happen
for λ̃(τ) < 0 which would imply, see Equation (5.14), that the shadow price would be
negative for all t ∈ [τ, τ + ω], thus c(τ, t) would be negative for all t, which contradicts
the optimality of c(τ, ·).

Endogenous education decision

It is well-known that education plays an important role when it comes to economic
performance of a country in general, and hence also when one aims to determine eco-
nomic effects of immigration because immigrants, among other things, change the skill
composition of the labor force. Whereas many models, cf. Lacomba and Lagos (2010);
Razin and Sadka (2000), consider different skill groups to account of the educational
heterogeneity in the population, here we explicitly model the accumulation of human
capital of the agent which determines her efficiency in the production process and
therefore is related to her skill level. While it is assumed that immigrants have an
exogenous, fixed education level when they enter the country, a native agent endoge-
nously chooses her optimal period of education. Children of immigrants can become
higher educated than their parents when they choose to be so. In general, human cap-
ital can be accumulated through education and/or learning-by-doing. Here, we only
allow for an education period at the beginning of the life time. In the beginning of
the life-cycle agents dedicate their time to education and during that time they do not
work. An increase of education leads to an increase in the efficiency units of labor.
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Subsequently, we model the agent’s decision on her optimal length of schooling. Do-
ing so, a rational agent compares the future income stream of an additional schooling
year with the potential income of quitting schooling now.

We assume that the decision of quitting school is once and for all. We obtain a
necessary condition for the optimal number of schooling years by using the Lagrange
method. Since the only heterogeneity here is the vintage of the cohort represented by
τ, all members of a cohort receive the same education. Therefore, the schooling period
is a function of the vintage τ, h(τ). Wherever we consider a fixed cohort τ we suppress
the dependence on τ and simply write h.

The schooling problem of those belonging to the cohort τ reads as

max
h∈[0,R]

∫ ω

0
e−
∫ s

0 (ρ+µ(η))dηu(c(τ, τ + s))ds,

subject to the budget constraint
∫ ω

0
e
∫ ω

s (r(τ+η)+µ(η))dη((1 − θ)w(τ + s)e(h, s) + I[R,ω](s)p(τ + s))ds

=
∫ ω

0
e
∫ ω

s (r(τ+η)+µ(η))dηc(τ, τ + s)ds. (5.15)

Equation (5.15) is obtained by using the Cauchy formula for the linear differential
equation in (5.5).

The corresponding Lagrangian L reads as

L(h, µ) =
∫ ω

0
(e−

∫ s
0 (ρ+µ(η)) dηu(c(τ, τ + s))

+ µ(e
∫ ω

s (r(τ+η)+µ(η)) dη((1 − θ)w(τ + s)e(h, s)

+ I[R,ω](s)p(τ + s)− c(τ, τ + s))))ds.

Hence by using the necessary condition ∂L
∂h = 0, we obtain the optimal number of

schooling years h∗,

∫ R

h
e
∫ ω

s (r(τ+η)+µ(τ+η)) dη(1 − θ)w(τ + s)
∂e(h, s)

∂h
ds

= e
∫ ω

h (r(τ+η)+µ(η)) dη(1 − θ)w(τ + h)e(h, h). (5.16)

Observe that

∂e(h, s)

∂h
=

{

0 if s < h, s > R

eg(h,s)(δ1 − δ2 − 2δ3s + 2δ3h) if s ∈ [h, R].

The right hand side of Equation (5.16) is the expected forgone income when not real-
izing h as the number of years to be spent at school and the left hand side determines
the expected gain during the remaining working years from postponing the working
entry age.

The term ∂e(h,s)
∂h in the left hand side of Equation (5.16) determines the resulting

marginal increase in productivity for age s.
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The optimal schooling time is not easy to determine explicitly for non-constant r(t)

and w(t) and general, non rectangular survival laws. In our model w(t) and r(t)

are determined endogenously through profit maximizing of the representative firm
at every instant of time. In general, (5.16) can only be solved numerically and only
provides a necessary condition for the optimal h ≡ h∗(τ). Moreover, existence of an
optimal number of school years is not granted.

To simplify the implicit relation (5.16) for h we make the assumption of δ3 = 0,
which reflects a linear increase of efficiency in experience. Then we obtain

(δ1 − δ2)
∫ R

h
e−
∫ s

0 r(τ+η) dηeδ2(s−h)l(s)(1 − θ)w(τ + s)ds

= e−
∫ h

0 r(τ+η) dη l(h)(1 − θ)w(τ + h). (5.17)

For constant r and w and a rectangular survival function, (5.17) reduces to

(δ1 − δ2)
∫ R

h
e−rseδ2(s−h) ds = e−rh.

Hence,

(δ1 − δ2)e
−δ2h −1

r − δ2

(

eR(δ2−r) − e(δ2−r)h
)

= e−rh.

Then, the explicit expression for the optimal solution h reads as

h∗ = R +
1

r − δ2
ln
(

1 −
r − δ2

δ1 − δ2

)

.

We see that h∗ is independent of the constant wage rate w.

5.1.2 Government

Each time t the government collects taxes θ on labor to finance the implemented PAYG
pension system. It is required that at any time t the government must have a balanced
budget:

θw(t)
∫ t

t−R

(

e(h∗(τ), t − τ)N(τ, t) + e(hM, t − τ)M(τ, t)
)

dτ

= p(t)
∫ t−R

t−ω
(N(τ, t) + M(τ, t)) dτ.

5.1.3 Firms

In our model economy agents interact with firms. We apply the representative firm
hypothesis. The firm produces output Y(t) with labor L(t) and capital K(t) as input
factors. The firm pays wages for labor input and borrows the services of capital from
households and also pays for these services. The production function is of neoclassical
type,

Y(t) = F(K(t), L(t)) = Kα(t)L1−α(t),
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where

K(t) =
∫ t

t−ω
N(τ, t)a(τ, t)dτ,

L(t) =
∫ t

t−R

(

e(h∗(τ), t − τ)N(τ, t) + e(hM, t − τ)M(τ, t)
)

dτ.

We assume here that immigrants and natives are perfect substitutes. Output can either
be used for consumption or for increasing the capital stock. Firms maximize their
profits by choosing capital K(t) and labor L(t) in an optimal way. The firm’s problem
reads as

max
K,L

{Y(t)− R(t)K(t)− w(t)L(t)}.

Factors receive their marginal products,

R(t) = FK(K(t), L(t)),

w(t) = FL(K(t), L(t)).

Let us denote by k(t) = K(t)
L(t)

the capital-(effective) labor ratio and let f (k) := kα. There-
fore the factor returns can be obtained by

R(t) = f ′(k(t)),

w(t) = f (k(t))− f ′(k(t))k(t).

5.1.4 Numerical Experiments

Subsequently, we consider a benchmark case where at the moment of shock the econ-
omy as well as the population are in a steady state.

Demography

In Arthur and Espenshade (1988) it was shown that any population with below-replacement
fertility and a constant number of annual immigrants with a fixed age distribution as
well as constant age-specific mortality rates, eventually converge to a stationary popu-
lation.

Here, for each a = t0 − τ we calibrate N(a, t0) with the number of members of
cohort τ in the native female population of Austria in 2001 and M(a, t0) is the number
of individuals born outside the country of the corresponding cohort τ 3. We simulate
equations (5.1) – (5.3) with constant age-specific fertility rates f (a), where again a = t−

τ, and constant age-specific mortality rates µ(a) and a constant inflow of immigrants
m(a) until a stationary population is reached, see Figure 5.1. In the following, time is
measured in years.

For the fertility rates f (a) and the immigration rates m(a) we took linearly interpo-
lated Austrian data of 2008. For the numerical examples below we follow Boucekkine
et al. (2002) and consider a survival function of the form

l(a) =
e−aµ0 − ǫ

1 − ǫ
,

3No later data could be found for M(a, t0).
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with ǫ > 1, µ0 < 0. This survival law fulfills l(0) = 1 and ω is determined such that
l(ω) = 0 holds,

ω = −
ln(ǫ)

µ0
.

Therefore, lima→ω µ(a) = +∞. We fully specify l(a) by setting µ0 = 0.068 and ω = 80.
For these specifications, the net reproduction rate (NRR) is approximately 0.7, which is
below replacement level.
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Figure 5.1: Steady state population age structure at time of the shock

Figure 5.1 shows the steady state age structure of the two sub-populations. Notice
that in the stationary population the share of immigrants is about 35%.

Economic Parameters

We set the initial assets profile a(τ, 0) to the steady state solution,

a(τ, 0) = a(t − τ), τ < t,

before the immigration shock. Table 5.1 summarizes the important parameters the
calculations we present in this section. In the economic model age 0 corresponds to
the real age of 16, because this is the age when compulsory schooling typically ends.
The period of the life-cycle before age 16 is not modeled explicitly. The consumption
of these agents is assumed to be part of the parents consumption.

During the additional education time agents accumulate debts due to their lack of
labor income.

Immigration shock

We normalize time such that the time when the immigration shock happens is t = 0.
The immigration shock is modeled as a doubling of the number of immigrants from
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Parameters Core Model

education migr. hm
i 0,6,11

retirement age R 49 (65-16)
µ0 0.068

life span ω 80 (96-16)
tax θ 0.12

CES σ 1
capital share α 1/3

δ1 0.041
δ2 0
δ3 0

time pref. rate ρ 0
depreciation rate δ 0

shock period t ∈ [100, 105]

Table 5.1: Parameter calibration

a pre-shock value of 35000 annual immigrants and lasts for 5 years. During this time
twice as many immigrants enter the country while the age structure is held constant.

Such a scenario could be compared to the years 1989 -1993, where due to the war in
former Yugoslavia, the numbers of net migrants to Austria where in some years even
three times as high. Figure 5.2 shows how the number of natives N(t) and immigrants
M(t) change over time as a consequence of the shock. The immigration shock leads
in later consequence to a higher number of natives, since the immigrants children are
assumed to integrate themselves fully in the host country.
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Figure 5.2: Number of natives and immigrants over time: natives (solid); immigrants
(dashed)
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Numerical Results

We first analyze the case where also the education of the natives is exogenously given
and consider three scenarios with respect to the educational achievements of immi-
grants. First, we assume that immigrants who enter have only the basic education,
hm

1 = 0, then we consider that immigrants obtain the same number of schooling years
as natives, hm

2 = h = 6, and the last case reflects an inflow of immigrants with a high
education i.e. hm

3 = 11 4. We then compare the utility changes of the different cohorts
for all three scenarios.

Due to the increase in the number of immigrants at the beginning of the shock, i.e.
at time t = 0, the capital (effective) labor ratio k(t) decreases. Consequently, the interest
rate goes up and the wage rate goes down as can be seen in Figure 5.3. This favors
those who are owners of capital and affects adversely workers.
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Figure 5.3: Wage rate (left) and interest rate (right) over time for hm
1

Figure 5.4 represents the immigration shock effects for the welfare of different co-
horts. It shows the relative change in life time utility over time for the various cohorts
compared to the steady state value for the various hm

i .
The figure shows that the cohorts who are middle aged and old at the time of the

shock benefit. This is because they are the owners of capital at that time. The welfare is
the highest for those who are currently 46 (30 + 16) years old at the time of the shock.
The second peak in Figure 5.4 is due to the flattening out of the number of immigrants
and the fact that equipped offspring of the immigrants enter the economy. This causes
a peak in the capital labor ratio. As a consequence the interest rate r decreases and
the wage rate w increases. However, this peak is already damped as compared to the
initial one.

The cohorts which have the severest drawbacks of the immigration shock are those
who enter the economy in the decade after the shock. This is because they face very
high interest rates at the beginning of their lifetime, when they actually accumulate

4However, this last scenario hm
3 = 11 does not really suit our setting, because high educated immi-

grants, might as well (similar to high educated natives) accumulate savings and therefore would also
contribute to the capital stock.
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Figure 5.4: Relative change in welfare for different cohorts: hm
1 = 0 (green), hm

2 = 6
(blue), hm

3 = 11 (red) for h = 6
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Figure 5.5: Relative change in welfare for different cohorts: hm
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debts because they are still educating themselves. Moreover, they face a very low
wage rate during their working life and decreasing interest rates. With respect to the
different education of the immigrants, one can say that the higher the education of the
immigrants, the more severe are the effects on the utility.

In a next step, we endogenize the education decision of the native individuals in
order to see how the increase of labor effects the skill composition in the country.
In Figure 5.5(a) the utility changes for various cohorts in case of an endogenous de-
termination of the schooling period by the native agents is depicted. It shows that
endogenous education slightly decreases the loss of future generations and the gain of
old generations. Therefore, by choosing their education optimally young natives can
damp the negative effect of the immigration shock on their life time utility.

In Figure 5.5(b) the change in the length of the schooling period of the various
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cohorts of vintages τ younger than the shock is depicted. One observes that at the
shock the schooling period goes down. This fall is then followed by a period where
cohorts go even longer to school then before the shock.

5.1.5 Conclusions

The model presented in this section focuses on the welfare effects induced by an im-
migration shock. The shock is modeled by an increase of the number of immigrants
for a short period of time. By developing a continuous time overlapping generations
model for a closed economy, we determine the resulting changes in life-time utility of
different age cohorts. Numerical results for Austrian data are provided.

We conclude that the immigration shock is welfare improving for those cohorts
being at the end of their working life or already retired. They benefit from the increased
interest rate. Moreover, retirees may have an additional benefit from the increased tax
payments of the higher number of workers due to the incoming immigrants. However,
since the wage rate goes down, pension payments might also go down. So the effect of
the immigration shock on pensions of retirees is not unambiguous.

The shock leads to the highest decrease in life cycle utility of those cohorts born
during or after the shock. This result is interesting in terms of immigration policies. It
implies that young cohorts would prefer closed borders whereas older cohorts would
not. Moreover, we may conclude that the increased number of immigrants during the
shock leads to an increase in the work force and therefore the wage rate goes down
due to increased competition. This is accompanied by an increase in the interest rate
because of the induced reduction in the capital-labor ratio.

5.1.6 Outlook

The present model can be extended in various ways. So far it only represents the
first attempt to depict possible effects of an inflow of individuals who change the
demographic and economic situation in the host country.

So far it is assumed that immigrants’ offspring make the same life-cycle decisions
as the natives of the same cohort do and are therefore considered as natives. In further
investigations one could relax this assumption and investigate how the results change
if a share of the children still behave as their parents did.

Moreover, so far we haven’t accounted of emigration.
By considering a different pension system rather than the contribution defined

PAYG system one may get more insight in what is driving the results and how they
depend on this modeling assumption.

It would be of particular interest how the results depend on the steady-state age
structure of the population. Since changes in the two factor returns, interest rate r and
wage rate w, affect different cohorts, one may expect that the intermediate-term effects
induced by the shock depend critically on the age structure.
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5.2 Long-run impact of age-specific immigration

The subsequent model investigates the long-run impact of immigration by explicitly
modeling the life-cycle of the immigrants in the host country.

The aging of the populations of Western countries goes hand in hand with the aging
of their labor forces. This has severe effects on the sustainability of the social security
system and especially the pension schemes. In many countries the pension system is a
so-called pay-as-you-go (PAYG) system, where the currently working population pays
for those in retirement. Hence, a growing number of older persons in comparison to
a shrinking labor force, caused by low mortality rates at older ages and additionally
low fertility rates, implies a shrinking money flow into the system. In what follows,
the Austrian PAYG pension system will be mimed.

One remedy may be to step up immigration. It is a common belief that since the age-
structure of immigrants is younger than the one of the native population, immigration
could help to reduce the fiscal imbalance caused by the aging process. However, clearly
these immigrants would also grow older and hence many people argue that in the long-
run there would be no positive effect of immigration with respect to the fiscal balance.

In Storesletten (2000) it was shown that for a calibration with US data immigration is
slightly beneficial for the government finances. Jinno (2013) investigated how an immi-
gration policy which consists of the admission of unskilled immigrants, whose children
incur assimilation costs in order to become skilled workers, positively influences the
net pension benefits for native residents and immigrants under a defined-benefit pen-
sion system. They find that native residents do not always become net beneficiaries,
even if the government admits an unlimited number of immigrants. Jinno (2013) also
shows that this result does not hold in a defined contribution system.

Empirical studies on the effect of immigration on the Austrian economy have al-
ready been made, for example, by Winterebmer and Zweimüller (1996) and Mayr
(2005). In Winterebmer and Zweimüller (1996), it was investigated how an increase in
immigration affects wages of young native blue collar workers in Austria. It is found
that in regions, industries, or firms with a higher share of foreign workers, natives earn
higher wages.

In an empirical paper, Mayr (2005) used the general accounting method to study
the intertemporal fiscal impact of immigration to Austria. It is concluded that under
the assumption that future immigrants resemble those of the current immigration the
total fiscal effect of immigration is positive. The reasons for the positive effect of immi-
gration are (i) the young age structure, and (ii) lower per capita net transfer payments
during retirement compensating for lower per capita net tax payments during working
age. We try to replicate these empirical findings in a theoretical model where we ex-
plicitly take into account the age structure of immigrants and the fact that immigrants
qualify for lower pensions.

Hence, in contrast to the aforementioned theoretical papers, where typically two- or
three-period OLG models are considered and immigrants are assumed to arrive either
in period one or period two, which roughly distinguishes between immigrants who
arrive as children or in adulthood, we explicitly model how the age-structure of the
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immigrants affects the host country. With the subsequent model one may tackle the
following questions:

x What is the long-term effect of immigration on the sustainability of the pension
system measured in terms of the social secruity rate and the pensions-to-output
ratio?

x Are immigrants net beneficiaries or net payers of the pension system?

x Since the age of the immigrants has a strong impact on the age structure and
size of a population the obvious question is whether the age structure of the
immigrants matters for the pension system, and how?

While in Jinno (2013) a two-period OLG model is considered, we consider a contin-
uous time OLG model, where a continuum of overlapping generations coexist at the
same time. This allows a more accurate modeling of the demography.

Clearly, under the assumption of preserving below-replacement fertility, immigra-
tion is needed in order to avoid a major shrinking and aging of the population. Hence,
we assume that fertility would remain on low levels, and investigate how age-specific
immigration rates would be able to compensate for this. Moreover, we assume that
immigrants have higher fertility than natives.

We explicitly model a pension system which realistically resembles current practice
in many European countries and consider a pay-as-you-go pension system with de-
fined benefits such as it is the case in Austria. In this work we focus on the steady
state, and it is assumed that the government budget is balanced. Hence, there are no
debts.

From an economic point of view, immigrants and natives differ significantly. Hence,
in contrast to other macroeconomic models such as Fehr et al. (2003), where the fo-
cus was solely on the macroeconomic aspect of immigration, we explicitly distinguish
between natives and immigrants in the model. As a matter of fact, they participate
quite differently in the pension system. While natives spend their majority or even the
whole working life in their home country and consequently earn high pensions, many
immigrants arrive in the middle of their productive period and hence qualify for lower
pensions in the host country. In what follows, we investigate how this difference is
reflected in terms of the pension system. Moreover, immigrants and natives also differ
during their productive period, which affects their contributions to the pension system.
We model this difference by allowing that immigrants and natives do not act as perfect
substitutes in the production process and they may have different productivity profiles.
This leads to different wages for immigrants and natives.

In the numerical example we again focus on the Austrian case. We conclude that
immigrants are net contributors to the pension system. In contrast to the native popu-
lation the immigrant population pays more into the pension system then it earns and
hence immigration contributes for the closing of the financial gap caused by the aging
of the population.

In a stylized scenario, we find that although immigrants who enter in their mid-
thirties spend a shorter time working in the host country and lead to a sharp increase of
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the aging ratio they still lead to a smaller social contribution rate and a lower pensions-
to-output ratio in comparison to a scenario where all immigrants enter in their early
twenties. However, we also find that with immigration alone it is not possible to keep
the social contribution rate on current levels. Hence, additional measures have to be
taken for a balanced pension system.

5.2.1 Population dynamics

In this section, we describe the demographic side of the model which is exogenous to
the economic model. We consider a bench mark demographic scenario, where under
the assumption of a constant annual inflow of immigrants, we denote by M(a, a∗) the
number of immigrants at age a who have arrived in the country at age a∗ ≤ a. Once
immigrants have migrated, they stay in the host country for the rest of their lives.

The age-specific immigration density m(·) fulfills

∫ amax

amin

m(a∗)da∗ = 1, m(a∗) ≥ 0.

Moreover, we assume that age-specific immigration patterns m(·) as well as fertility
f (·) and mortality µ(·) are time-invariant. Natives’ fertility and mortality are such that
fertility is again under the replacement level, i.e. NRR < 1 holds, see Chapter 2 for
the definition of NRR. Moreover, we assume that age-specific mortality rates of natives
and immigrants are the same.

The resulting population is stationary through immigration, cf. Schmertmann (1992),
and consists of natives N(a) and immigrants M(a) =

∫ amax

amin
M(a; a∗)da∗. The param-

eters amin and amax are the minimal and maximal age of immigration, where a ∧ b :=
min{a, b} and 0 < amin < amax < R holds. Here, ω = 110 denotes the maximal at-
tainable age. The number of annual intakes is given by the exogenous parameter I

which determines together with m(·) the size of the steady-state population. Hence,
the changes in age structure of the immigrants follows the subsequent dynamic law

M′(a; a∗) = −µ(a)M(a; a∗), a∗ < a < ω, (5.18)

M(a∗; a∗) = m(a∗)I, a∗ ∈ [amin, amax]. (5.19)

Here, M′(a; a∗) denotes the derivative with respect to age a. The age structure of the
native population fulfills

N′(a) = −µ(a)N(a), 0 < a < ω, (5.20)

N(0) =
∫ ω

0

(

f (a)N(a) + fM(a)
∫ amax∧a

amin

M(a; a∗)da∗
)

da, (5.21)

where N(a) gives the number of natives of age a and fM(·) is the age-specific fertility
of immigrants. Equation (5.21) gives the number of births in the population, where it
is assumed that the children of immigrants are considered as natives. This means that
while immigrants of the first generation have a higher fertility than the average native,
fM ≥ f , their children, i.e. immigrants of the second generation, show already no
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significant difference in their child bearing behavior compared with natives. According
to Sobotka (2008), the fertility of immigrants converges to the fertility levels of the host
country. We assume that this assimilation happens within one generation which is also
indicated by some data as mentioned in Sobotka (2008).

According to the Cauchy formula, the solution of (5.18) – (5.19) reads as follows:

M(a, a∗) = Im(a∗)l(a), a∗ < a < ω, (5.22)

and hence

M(a) =
∫ amax

amin

M(a; a∗)da∗,

=
∫ amax∧a

amin

l(a)

l(a∗)
m(a∗)I da∗, amin < a < ω.

As before l(a) = e−
∫ a

0 µ(s) ds. For the solution of (5.20) it holds that

N(a) = e−
∫ a

0 µ(s)dsN(0)

= l(a)N(0).

Inserting this into (5.21) gives

N(0) = N(0)
∫ ω

0
f (a)l(a)da +

∫ ω

0
fM(a)M(a)da,

=

∫ ω
0 fM(s)M(s)ds

1 −
∫ ω

0 f (s)l(s)ds
,

and hence

N(a) =

∫ ω
0 fM(s)M(s)ds

1 −
∫ ω

0 f (s)l(s)ds
l(a), 0 < a < ω. (5.23)

5.2.2 The pension system

The literature distinguishes between two different prototypical social security systems:
the pay-as-you-go (PAYG) system and the fully-funded system. In the fully-funded
system, the contributions of the individuals earn the market interest. They accumulate
over their working period and are paid out after retirement. In the PAYG system the
currently working people finance the pensions of the retired. Due to this, the PAYG
system leads to a crowding out of capital. There are two variants of the PAYG system:
benefit defined (BD) and contribution defined (CD). In the BD version the pensions
are fixed and the corresponding social security tax rate is determined by the general
equilibrium mechanism. In the CD system the opposite holds true meaning that the
pension benefits are calculated such that the government’s financial goals are reached.

Subsequently, we aim to mime the Austrian pension system. The Austrian pension
system consists of three pillars, where the first and dominant pillar is a PAYG. There
were three major reforms: 2000, 2003, 2004, which lead to changes in NB and p1, see
Knell et al. (2006). The following notions are of importance:
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x NB is the assessment period, i.e. it equals the number of an individual’s working
years used for calculating the pension entitlements,

x the so-called assessment base is derived from the average earnings over the assess-
ment period NB,

x p1 is the annual accrual rate of the pension, which is the percentage of the annual
wage payed out as pension. The accrual rate annually adds up over the whole
working period to a maximum of 80%. Currently, p1 = 1.78%

Hence, natives’ pensions are given by

pN = p1
R

NB

∫ R

R−NB

eN(a)wN da,

where eN(a) are the efficiency units of labor and wN is the wage rate. Immigrants’
pension payments are determined as follows. In Austria, immigrants who arrive later
than 15 years before the statutory retirement age R, i.e. a∗ ∈ (R − 15, amax] get a
minimal pension. Otherwise public pension payments p depend on the age of arrival
a∗:

p(a∗) :=











p1
R−a∗

NB

∫ R
R−NB

wMeM(a; a∗)da if 0 ≤ a∗ ≤ R − NB,

p1
∫ R

a∗ wMeM(a; a∗)da if R − NB < a∗ ≤ R − 15,

p1
∫ R

R−15 wMeM(a; a∗)da if R − 15 < a∗ < amax,

(5.24)

where again eM(a; a∗) are the efficiency units of labor and wM is the wage rate. This
follows the set up of the third pillar of the Austrian pension system. It holds that
pN = p(0). Here, for the sake of simplicity, we neglect pension portability from the
home country to the host country. Pension portability would lead to a higher income
of immigrants during their retirement but it would not affect the government budget
since this part of the immigrant’s pension would be financed by the sending country.
Hence, we would have to deal with an open economy framework. For a discussion
of pension portability see, for example, Jousten (2012). As a consequence of these
assumptions, the pensions received by an average immigrant are considerably smaller
and depend on her age of arrival in the host country.

5.2.3 Utility maximization of natives

Native households maximize their life-time utility by choosing the age-dependent con-
sumption profile. Households are comprised of one adult and dependent children, and
the number of households of a certain age is determined by the population structure.
The number of new households entering the economy is determined by the country’s
fertility, mortality and immigration rates. It is assumed that children become indepen-
dent, enter into the labor market and start a new household at age a0 = 18. This is in
accordance with empirical findings, cf. Sambt and Prskawetz (2011).
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Let the utility from consumption cN > 0 of any individual be denoted by u(cN). In
the following we choose the specific utility function

u(cN) =







c1−σ
N

1−σ if σ ∈ (0, 1) ∪ (1,+∞),

ln(cN) if σ = 1,

where σ is the risk aversion coefficient. For this particular utility function it is related
to the intertemporal elasticity of substitution which is simply 1/σ. The intertemporal
elasticity of substitution gives the change in marginal consumption growth with respect
to marginal utility growth. The higher 1/σ, i.e. the lower the risk aversion coefficient,
the more willing is the household to substitute consumption over time. When σ → ∞,
this is the case of infinite risk aversion. Function u(c) belongs to the family of constant
relative risk aversion utilities (CRRA). It is assumed that the dependence of the children
is not directly reflected in the utility function as for example considered in Sánchez-
Romero et al. (2013).

Since in our considerations the age of dying a ∈ [0, ω] is uncertain, we adopt the ex-
pected utility hypothesis. Therefore, an individual chooses a consumption profile c(·)

such that her expected life-time discounted utility E[u] is maximized. The subjective
discount rate is denoted by ρ, and is assumed to be constant. It gives the impatience
of households for consumption. A high impatience means that households weigh later
time points in life less. This leads to a higher consumption at earlier ages compared to
a scenario with a low value of ρ. Hence, ρ defines how the preference for consumption
decreases over the life time.

Again we recall that l′(a) is the unconditional probability of dying at age a. We
denote by UN(cN) the expected, discounted and aggregated utility from consumption
over the whole life horizon:

UN(cN) =
∫ ω

0
−l′(s)

∫ s

0
e−ρau(cN(a))da ds, (5.25)

= −
∫ ω

0
e−ρau(cN(a))

∫ ω

a
l′(s)ds da, (5.26)

=
∫ ω

0
e−ρau(cN(a))l(a)da, (5.27)

=
∫ ω

0
e−
∫ a

0 (ρ+µ(τ))dτu(cN(a))da. (5.28)

In Equation (5.26) we changed the order of integration. Moreover, it holds that l(a) =

−
∫ ω

a l′(s) ds.
Households have perfect foresight and perfectly forecast the rates of return on cap-

ital, r, and labor, w. Consequently, they make their saving decisions in such a way that
they meet their expectations on the return of capital. Individuals start working with 18
and retire at the fixed age R. They take the real return on assets r and the wage rate w

as given and choose their consumption in order to maximize their expected utility:

∫ ω

0
e−
∫ a

0 (ρ+µ(s))ds c1−σ
N (a)

1 − σ
da, (5.29)
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subject to the flow dynamics

k′N((a) = ((r + µ(a))kN(a) + (1 − θ)wN(a)eN(a)− cN(a) + I[R,ω](a)pN , a ∈ (0, ω)

(5.30)
Individuals have no assets when they enter the economy:

kN(0) = 0. (5.31)

Moreover, individuals cannot die indebted5:

kN(ω) = 0. (5.32)

In (5.30), r denotes the rate of return of capital. We assume that each individual de-
pending on her age a is endowed with eN(a) efficient units of labor, i.e. for a given age
a function eN(·) determines her productivity in the production process. Consequently,
gross labor income equals yN(a) = wNeN(a). During schooling and after retirement
the individual does not supply labor.

Individuals hold all their assets in form of annuities, cf. Yaari (1965). Due to these
life-insurances, the wealth of the individuals who died are redistributed to those who
survived in the same age cohort. Hence, the real rate of return r is augmented by the
age-specific mortality rate µ(a).

During working life individuals pay a share θ of their labor income into a contribu-
tions defined PAYG pension system. They benefit from the payments of the working
cohorts when they retire in form of pension payments pN . Using the Cauchy formula
for the life cycle profile of the financial assets in Equation (5.30), we obtain that

k(a) =
∫ a

0
e
∫ a

s (r+µ(η)) dη
(

(1 − θ)wNeN(s)− cN(s) + pNI[R,ω](s)
)

ds. (5.33)

holds.

Optimal consumption profile

The corresponding present-value Hamiltonian of problem (5.29)–(5.32) reads as

HN = e−ρau(cN(a)) + λN(a)((r + µ(a))kN(a)

+ (1 − θ)wNeN(a)− cN(a) + I[R,ω](a)pN).

Again we apply Pontryagin’s maximum principle, see Theorem 2.2 in Chapter 2, and
obtain the first order necessary optimality conditions:

λ′
N(a) = −λN(a)(r + µ(a)),

∂HN

∂cN
= e−ρal(a)c−σ

N (a)− λN(a) = 0. (5.34)

Hence, we obtain
λN(a) = l(a)e−raλ0.

5In fact we should require that kN ≥ 0 but at the optimum equality holds.
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From (5.34) we obtain the following expression for the optimal consumption profile

cN(a) =

(

eρa λN(a)

l(a)

)− 1
σ

. (5.35)

Hence, it holds that

cN(a) = e
(r−ρ)a

σ c0, (5.36)

where c0 := λ
− 1

σ
0 . In order to determine c0 we substitute consumption (5.35) into the

dynamic budget constraint (5.30). Then c0 should be determined in such a way that
boundary conditions (5.31)–(5.32) are fulfilled. To this end we use (5.33) with a = ω

and express

c0 =

∫ ω
0 e−ral(a)((1 − θ)wNeN(a)− pNI[R,ω](a))da

∫ ω
0 l(a)e(r(1+

1
σ )−

ρ
σ )a da

.

With the so determined c0, formula (5.36) gives an explicit representation of the optimal
consumption of the native population.

5.2.4 Remaining Life Time Utility Maximization of Immigrants

Now let us turn to the immigrant’s perspective. We assume that immigrants, once they
have migrated to a new country, remain their for the rest of their lives. It is assumed
that they arrive without any assets6 and maximize their rest of life time utility out
of consumption. This means, that we do not model the immigrants’ life time in the
home country. This is consistent because of our assumption of a closed economy
and therefore do not know the economic characteristics of the rest of the world. In
contrast to many other models, where it is assumed that immigrants only enter at the
beginning of the life-cylce, see e.g. Fehr et al. (2003), we assume that immigrants enter
the country at ages a∗ ∈ [amin, amax]. They arrive without any assets and after their
arrival they choose optimally their consumption level cM(·; a∗) over the remaining life
cycle. Similarly as for natives, the life-time utility of consumption cM(·) is

UM(cM) =
∫ ω

a∗
−l′(s)

∫ s

a∗
e−ρau(cM(a))da ds,

= −
∫ ω

a∗
e−ρau(cM(a))

∫ ω

a
l′(s)ds da,

=
∫ ω

a∗
e−ρau(cM(a))l(a)da.

Hence, the utility maximizing problem reads as,

max
cM

∫ ω

a∗
e−
∫ a

0 (ρ+µ(η))dη c1−σ
M (a)

1 − σ
da, (5.37)

6This corresponds to the fact that immigrants use their assets for the journey to the host country or
leave the assets for their dependents in the home country
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subject to

k′M(a; a∗) = (r + µ(a))kM(a; a∗) + (1 − θ)wMeM(a; a∗)

− cM(a; a∗) + I[R,ω](a)p(a∗), (5.38)

kM(a∗; a∗) = 0 kM(ω; a∗) = 0. (5.39)

We assume that each individual depending on her age a is endowed with eM(a; a∗)

efficient units of labor, i.e. for a given age a function eM(·; a∗) determines her produc-
tivity in the production process. Consequently, gross labor income equals yM(a; a∗) =

wMeM(a; a∗). In general, we allow for dependence of productivity on a∗ as empirically
found in Storesletten (2000) for the US. The constant θ denotes the wage tax and p are
the pensions as explained above. Using again the Cauchy formula for the life cycle
profile of the financial assets of immigrants in Equation (5.38) we obtain that

kM(a∗; a∗) =
∫ a

a∗
e
∫ a

s (r+µ(η)) dη
(

(1 − θ)wMeM(s; a∗)− cM(s; a∗) + pM(a∗)I[R,ω](s)
)

ds.

(5.40)

Optimal consumption profile

The corresponding present-value Hamiltonian reads as

HM = e−ρau(cM(a; a∗)) + λM(a; a∗)((r + µ(a))kM(a; a∗)

+ (1 − θ)wMeM(a; a∗)− cM(a; a∗) + I[R,ω](a)pM(a∗)).

The first order necessary optimality conditions, see Theorem 2.2 in Chapter 2, are:

λ′
M(a; a∗) = −λM(a; a∗)(r + µ(a)),

∂HM

∂cM
= e−ρal(a)c−σ

M (a; a∗)− λM(a; a∗) = 0. (5.41)

Hence, we obtain
λM(a; a∗) = l(a)e−raλa∗ .

From (5.41) we obtain the following expression for the optimal consumption profile

cM(a; a∗) =

(

eρa λM(a; a∗)

l(a)

)− 1
σ

.

Then
cM(a; a∗) = e

(r−ρ)
σ aca∗ , (5.42)

where ca∗ := λ
− 1

σ
a∗ . We determine ca∗ by inserting the above expression in (5.40) :

ca∗ =

∫ ω
0 e−ral(a)((1 − θ)wNeN(a)− pM(a∗)I[R,ω](a))da

∫ ω
0 l(a)e(r(1+

1
σ )−

ρ
σ )a da

.

With the so determined ca∗ formula (5.42) gives an explicit representation of the optimal
consumption of the immigrant population.
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5.2.5 The government budget

In the following we give formulas for the aggregate values of the pension expenditures
and the tax payments of the two sub-populations.

The pension expenditures for the immigrant population are, see (5.24),

PEM :=
∫ ω

R

∫ amax∧a

amin

p(a∗)M(a; a∗)da∗ da.

The pension expenditures for the native population are

PEN := p(0)
∫ ω

R
N(a)da.

Hence, total pension expenditures depend on the age structure of the population, the
parameters of the pension system, NB and p1, as-well as the wage rates of natives and
immigrants wM and wN , respectively.

The tax payments of the immigrant population are

taxM := θ
∫ ω

0

∫ amax∧a

amin

wMeM(a; a∗)M(a; a∗)da∗ da,

and finally, tax payments of the native population are

taxN := θ
∫ ω

0
wNeN(a)N(a)da.

Hence, the aggregate values are given by PEtot = PEM + PEN and accordingly
taxtot = taxM + taxN .

Then, the social security system is balanced if

taxtot = PEtot. (5.43)

The Austrian pension system is a PAYG defined benefits. Therefore, θ has to be
adjusted such that (5.43) holds. In this work we focus on the steady state. It is assumed
that the government budget is always balanced and there are no debts. Hence, the
sustainability of the pension system is reflected by changes in the contribution rate θ.
Higher benefits are counteracted by an increase in the contribution rate. The contri-
bution rate can be viewed as a generalization of the demographic old-age dependency
ratio because it relates the aggregate expenses for the pensions in a population to the
total contributions of the working people. Similarly, the old- age dependency ratio
relates the number of non-working people in a population to those who are working.
A lower contribution rate means that less taxes have to be used to close the gap of
the pension system caused by the demographic change. Hence, the additional con-
tributions could be used for other pillars of the social security system such as health
insurance.
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5.2.6 Firm’s problem

The production sector of the economy is modeled by a representative firm which uses
capital and labor to produce a single consumption good. The consumption good can
either be saved or consumed. To which extend the product is consumed or saved is
decided by the individuals who inhabit the economy.

The production function is given by

Y = Kα(AL)1−α,

where Y is the output, L is the effective aggregate labor input and K is the capital
stock. The constant α is the capital share and A is the labor-augmenting technological
level. It is assumed that immigrants and natives are imperfect substitutes. Therefore,
the aggregate effective labor L is taken to be a so-called CES (constant elasticity of
substitution) aggregator which combines the two different kinds of labor:

L =

(

γL
β−1

β

M + (1 − γ)L
β−1

β

N

)

β
β−1

,

where LM and LN are the effective labor input of immigrants and natives, respectively,

LM =
∫ ω

0

∫ amax∧a

amin

eM(a; a∗)M(a; a∗)da∗ da, (5.44)

LN =
∫ ω

0
eN(a)N(a)da. (5.45)

The weights γ and 1−γ are associated with the two different forms of labor in the labor
force. The constant β, 0 < β < ∞, is the elasticity of substitution between native labor
and immigrant labor. If β > 1, then the two types of labor are substitutes, meaning that
a reduction in the supply of one type increases the demand for the other. For β < 1,
the two types of labor are compliments and therefore a reduction of the supply of one
does not increase the demand for the other. If β → 1, the CES aggregator reduces to
a Cobb-Douglas function. The limit of β → ∞ describes the case of perfect substitutes
and β → 0 means that immigrant labor and native labor are perfect compliments. The
aggregate capital stock is given by:

K =
∫ ω

0

∫ amax∧a

amin

kM(a; a∗)M(a; a∗)da∗ da +
∫ ω

0
kN(a)N(a)da. (5.46)

The representative firm maximizes profit by hiring labor L and renting capital K

from households. Therefore, prices for workers and capital equal the corresponding
marginal product

R = A1−ααk̂α−1, (5.47)

log(wM) = log(A1−α(1 − α)k̂α) +
1
β

log(L) + log(γ)−
1
β

log(LM), (5.48)

log(wN) = log(A1−α(1 − α)k̂α) +
1
β

log(L) + log(1 − γ)−
1
β

log(LN), (5.49)

where k̂ := K/L is the capita per effective labor.
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5.2.7 Definition of steady-state equilibrium

A steady-state competitive equilibrium is defined as the policy functions of individuals
(cN(·) and cM(·, a∗)), labor and capital demand of firms (K and L), factor prices (wM,
wN and r), social contribution rate (θ) and the value of pensions (pN and p(a∗)), that
fulfill the following conditions:

x The functions cN(a) and cM(a, a∗) are optimal in terms of the optimization prob-
lems given by (5.29)–(5.32) and (5.37)–(5.39).

x Factor prices are equal to marginal products given by (5.47)–(5.49).

x The goods market clears.

x The budget of the pension system is balanced, i.e. Equation (5.43) holds.

In Table 5.2 we summarized the equations that have to be fulfilled in equilibrium.
The determination of a steady-state equilibrium turns out to be a fixed-point problem
in k̂

k̂ = φ(k̂), (5.50)

where φ is a non-linear function in k̂. For more details on the solution of (5.50) see the
description of the numerical algorithm in section 5.2.8 below.

5.2.8 Numerical Experiments

Calibration

The above model is now calibrated with Austrian data.

Demography For the computations we initialize the age structure of demographic
variables, f (a), fM(a), µ(a), m(a), referring to Austrian data as of 2008 provided by,
and interpolate these data piecewise linearly to obtain continuous representations of
the vital rates. For the influx of migrants we take the mean value of net migration
to Austria over the past 10 years, I = 35000. We assume a maximal attainable age of
ω = 110.

Households To construct age-specific efficiency profiles for immigrants and natives,
we used the 2008, 2009 and 2010 Income, Social Inclusion and Living Conditions (EU-
SILC) survey data for Austria. Due to a lack of data, we assumed that eM(a; a∗) =

eM(a), i.e. we did not account of the differences in wages depending on the age of
arrival of the immigrant. In Figure 5.6 we plotted the estimated efficiency profiles.
Notice that while the efficiency of the natives is always increasing with age, that of the
immigrants is slightly bending backwards in the ages before retirement.

We set the subjective discount factor ρ = 0, meaning that the only source of dis-
counting future preferences is the survival probability and the relative risk aversion
σ = 1.6 which is in line with Sánchez-Romero et al. (2013).
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cN(a) = e
(r−ρ)

σ a
∫ ω

0 e−ra l(a)((1−θ)wNeN(a)−pNI[R,ω](a))da
∫ ω

0 l(a)e(r(1+
1
σ )−

ρ
σ )a da

,

cM(a; a∗) = e
(r−ρ)

σ a
∫ ω

0 e−ra l(a)((1−θ)wNeN(a)−pM(a∗)I[R,ω](a))da
∫ ω

0 l(a)e(r(1+
1
σ )−

ρ
σ )a da

,

kN(a) =
∫ a

0 e
∫ a

s (r+µ(η)) dη
(

(1 − θ)wNeN(s)− cN(s) + pNI[R,ω](s)
)

ds,

kM(a; a∗) =
∫ a

a∗ e
∫ a

s (r+µ(η)) dη
(

(1 − θ)wMeM(s; a∗)− cM(s; a∗) + pM(a∗)I[R,ω](s)
)

ds,

LN =
∫ ω

0 eN(a)N(a)da,

LM =
∫ ω

0

∫ amax∧a
amin

eM(a; a∗)M(a; a∗)da∗ da,

K =
∫ ω

0

∫ amax∧a
amin

kM(a; a∗)M(a; a∗)da∗ da +
∫ ω

0 kN(a)N(a)da,

R = A1−ααk̂α−1,

log(wM) = log(A1−α(1 − α)k̂α) + 1
β log(LM + LN) + log(γ)− 1

β log(LM),

log(wN) = log(A1−α(1 − α)k̂α) + 1
β log(LM + LN) + log(1 − γ)− 1

β log(LN),

θ
∫ ω

0

(

∫ amax∧a
amin

wMeM(a; a∗)M(a; a∗)da∗ + wNeN(a)N(a)da
)

da

= p(0)
∫ ω

R

(

N(a)
∫ amax∧a

amin
p(a∗)M(a; a∗)da∗

)

da,

M(a, a∗) = Im(a∗)l(a),

M(a) =
∫ amax∧a

amin

l(a)
l(a∗)

m(a∗)I da∗,

N(a) =
∫ ω

0 fM(s)M(s)ds

1−
∫ ω

0 f (s)l(s)ds
l(a).

Table 5.2: System of equations to determine the endogenous variables: microeconomic
relations (first block); macroeconomic relations (second block); demography (third

block);

Firm To properly estimate the weight γ, we assume that the differences in wages of
immigrants and natives is solely given by their efficiency of labor

yM(a)

yN(a)
=

eM(a)

eN(a)
.

Hence, wM
wN

= 1, holds and consequently we can estimate γ by

γ =

(

LM
LN

)1/β

1 +
(

LM
LN

)1/β
.

Note the dependence of γ on β.
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Figure 5.6: The efficiency profiles of immigrants and natives

We follow Sánchez-Romero et al. (2013) where the author’s also dealt with the Aus-
trian economy and chose the capital share, α = 0.31 and the rate of capital depreciation,
δ = 0.04. The labor-augmenting productivity factor A = 4.2489 · 104 is chosen such that
aggregate output Y approximates the value of Austria’s GDP.

Pension system We set the parameters of the pension system to those of the current
Austrian pension system, where NB = 25, p1 = 1.78% and R = 62.5 holds.

Solution algorithm for the numerical solution

Below we numerically solve the system of equations of Table 5.2 determining the gen-
eral equilibrium in the economy. Similar systems of equations have already been solved
in other economic papers dealing with general equilibrium models. The general equi-
librium mechanism is the most famous nonlinear equation problem in economics. A
general solution algorithm is, for example, proposed in Judd (1999).

Since finding the equilibrium can be summarized to solving a non-linear fixed point
equation in k̂, in the following we apply a fixed-point iteration method. Subsequently,
we assume that there exists a unique solution of equation (5.50). We take an initial
guess k̂0 and insert it into the equations determining the marginal products R, wM

and wN and with them we calculate the tax rate θ. Then, we compute per-capita
consumption cN(a) and cM(a, a∗) and per-capita capital kN(a) and kM(a; a∗).

Here, in particular, we follow the below algorithm to find an equilibrium solution
k̂∗:

Step 1: First we choose an adjustment factor η ≥ 0 and a tolerance ǫ > 0 and
small. The adjustment factor is chosen to guarantee stable conver-
gence. The tolerance ǫ determines a stopping criterion for the solu-
tion algorithm. We initially compute the age densities of immigrants
and natives, M(a; a∗) and N(a) according to (5.22), (5.23).Then, we
make an initial guess k̂0.
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Step 2: Given the initial guess k̂0 we compute the marginal products of capi-
tal and labor, R, wM and wN , according to equations (5.47)–(5.49).

Step 3: We subsequently determine the social security rate θ by solving (5.43).

Step 4: In the next step we compute the household problem for natives (5.29)–
(5.32) and immigrants (5.37)–(5.39) meaning that we compute the age-
specific consumption profiles cN(a) and cM(a, a∗) and subsequently
also kN(a) and kM(a, a∗) with the previous determined values of R,
wM, wN and θ. Everything else in the equations is exogenously
given. Notice that for the immigrants the household problem de-
pends on the arrival age a∗ and hence has to be calculated for all
amin ≤ a∗ ≤ amax separately.

Step 4: Subsequently, we compute the aggregate variables, K, LM and LN

where K is determined as in (5.46) and LM and LN are given as in
(5.44)–(5.45).

Step 5: Then, we compute a new guess k̂i+1 = K/(LM + LN).

Step 6: The procedure is stopped if ‖ηk̂i+1 + (1 − η)k̂i‖ < ǫ. Otherwise we
go back to Step 2 and set i = i + 1.

In the numerical example below it was necessary to set 0 < η < 1 because for η = 0
unstable iterations appeared.

Numerical Results

Demography In Table 5.3 we summarize the various demographic scenarios, where
we assumed that all immigrants arrive in a specific 5–year long sub-interval between
amin = 18 and amax = 40.

In Figures 5.7 – 5.10, the resulting stationary through immigration populations are
plotted. Notice that the younger the immigrants, the bigger is the resulting population.
This is caused by a higher fertility of younger immigrants.

Since for the sustainability of the pension system not the total dependency of a
population matters but instead the ratio of working to retired people, we calculated
the resulting old-age ratios (OADs), see Table 5.3. For the calculation of the various
OADs we used age groups 18 − 61 and 62+. We find that unlike in Chapter 3 where
the optimal age to minimize the dependency was in the mid-thirties the OAD clearly
rises with the age of immigration a∗. This is because for the dependency ratio, a
high number of children, caused by a high fertility rate of young immigrants, is not
beneficial since they increase the dependent population.
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Demography
a∗ ∈ [18,25] [25,30] [30,35] [35,40]
Ntot + Mtot 9.1 m 7.2 m 4.2 m 2.2 m

Mtot
Ntot+Mtot

0.21 0.26 0.41 0.70
Mtot
Ntot

0.26 0.35 0.68 2.38
OAD 0.38 0.40 0.45 0.57

Table 5.3: Demographic results
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Figure 5.7: Long run population structure
for immigration in ages a∗ ∈ [18, 25]
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Figure 5.8: Long run population structure
for immigration in ages a∗ ∈ [25, 30].
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Figure 5.9: Long run population structure
for immigration in ages a∗ ∈ [30, 35]
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Figure 5.10: Long run population
structure for immigration in ages

a∗ ∈ [35, 40].

Effects on the Pension System In Table 5.4 the impact of age-specific immigration
on the social security rate θ and the pension expenditure rate PEtot/Y are presented.
Moreover, scaled pension expenditures and tax payments for the two groups, natives
and immigrants, are given. One can see that for the given scenario the social security
rate decreases with the age of the arriving immigrants although the OAD increases
substantially. This is because of the fact that immigrants qualify for fewer pensions in
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NB = 25, R=62.5, eN(a) 6= eM(a), β = 10000
a∗ ∈ [18,25] [25,30] [30,35] [35,40]
θ 0.34 0.33 0.32 0.31
PEM/w 3.4 · 105 3.0 · 105 2.6 · 105 2.2 · 105

PEN/w 14.5 · 105 10.0 · 105 4.6 · 105 1.2 ·105

taxN/w 14.2 · 105 9.7 · 105 4.4 · 105 1.2 · 105

taxM/w 3.7 · 105 3.3 · 105 2.8 · 105 2.3 · 105

net transfers migrants/PEtot 1.3 % 2.0 % 3.0 % 3.0%
PEtot/Y in % 23.3 % 23.0 % 22.6% 21.4 %

Table 5.4: Pension expenditures and contribution rates

the host country. Moreover, in Table 5.4 we see that across all age groups immigrants
are net payers of the pension system. Hence, they are at least to a small extend able
to close the financial gap caused by the aging of the native population. However,
one also sees that immigration alone cannot solve the fiscal problems arising with the
demographic change because an increase of the social security rate to θ ∈ [0.31, 0.34]
would be necessary to guarantee a balanced budget. Also pension expenditure rates
would have to rise from currently 12.8%, cf. OECD (2012) to values between 21% and
23%. Hence, also other measures such as an increase in the statutory retirement age
and changes in the parameters of the pension system would additionally be necessary.

Impact of immigration on economic variables and life cycle behavior Subsequently,
we investigate the life cycle behavior of consumption and asset accumulation of natives
and immigrants.

NB = 25, R=62.5, eN(a) 6= eM(a), β = 10000
a∗ ∈ [18,25] [25,30] [30,35] [35,40]
r 0.020 0.019 0.017 0.012
w 30840 31080 31560 32790

Table 5.5: Economic parameters

In Figures 5.11–5.12 the native’s life-cycle profile of consumption and financial assets
for the various entry scenarios of the immigrants are plotted. We note that unlike
natives, immigrants even if they arrive at relatively young ages, they do not become
net borrowers, see Figures 5.13 and 5.15. This is because they do not earn as high
pensions as natives do and hence immediately start accumulating assets. There is also
a clear dependence of the native’s capital accumulation on the age of arrival of the
immigrants. If immigrants arrive in early ages natives accumulate more capital. This
is caused by a higher interest rate on capital, see Table 5.5, although there is a reverse
effect caused by an increased θ. A higher θ is usually responsible for a crowding out
of capital. Hence, the higher interest rate R compensates the crowding out effect of
an increased θ. In Figures 5.12, 5.14 and 5.16 the life-cycle consumption profiles of
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immigrants and natives are plotted. Figure 5.12 shows that the earlier the immigrants
enter the country the lower is the initial consumption level and native individuals
borrow more at the beginning of the life cycle.

Moreover, we find that if immigrants enter the host country later in life they accu-
mulate even more assets than a native individual because they have to anticipate the
missing pension payments at the end of their life.
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Figure 5.11: Scaled assets of natives over
the life-cycle for β = 10000
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Figure 5.12: Scaled consumption
of natives over the life-cycle

for β = 10000
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Figure 5.13: Scaled assets of immigrants
over the life-cylce for β = 10000
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Figure 5.14: Scaled consumption of
immigrants over the life-cylce for

β = 10000

5.2.9 Outlook

In this work, the focus was on the steady state effects of immigrants’ age structure
regarding the sustainability of the pension system. Hence, in further investigations an
extension to the transitory dynamics would make it possible to study the short term
effects which would shed light on more recent developments. We found that since
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Figure 5.15: Scaled assets of immigrants
over the life-cylce for β = 10000
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Figure 5.16: Scaled consumption of
immigrants over the life-cylce for

β = 10000

immigrants are heterogeneous with respect to their age of arrival they also earn differ-
ent pensions after retirement. This heterogeneity may lead to different insentives for
retirement when the age of retirement is not exogenous anymore. Hence, an interest-
ing extension of this model could be to investigate how the results would change in
case of an endogenous retirement decision. Moreover, one could also drop the strong
assumption of no capital movement and pass over to an open economy framework.



Chapter 6

Conclusions and Possible

Extensions

In this thesis, I tried to summarize and combine the work I have done during the last
three years as a research assistant, partly in close cooperation with my colleagues and
co-authors, A. Belyakov, G. Feichtinger, B. Skritek, and V. Veliov. Clearly, not all of it
could be included. This thesis should be understood as a compilation of mathemat-
ical models dealing with immigration. It was an attempt to tackle demographic and
economic questions by applying optimal control theory. In particular, it was aimed to
determine qualitative and quantitative effects of (age-specific) immigration patterns on
the receiving country to study demographic and economic consequences of immigra-
tion. Hence, the ideas used in this thesis may be fruitful for the study of immigration
policies.

The theoretical approach used within this thesis is rather specific as it uses a method,
i.e. optimal control theory, which is typically used in engineering or the natural sci-
ences as it enables to solve models consisting of equations describing natural processes
or physical laws. However, with the triumph of neoclassical economics, optimal con-
trol theory became also a very popular modeling method in economics. Consequently,
the idea of using optimal control theory for answering purely demographic questions
in this thesis also seemed not too far-fetched, although it is not as commonly used as
in economics. Further development of the models and techniques used in the thesis
could lead to new approaches to solve complex policy problems.

From a mathematical point of view the challenges to be tackled in this thesis lied
in the formulation of valid models and the application of optimal control theory to
age-structured systems as-well as the presentation of their analytical and numerical
solution. The technique used in Chapter 4 for obtaining transversality conditions for
a specific infinite-horizon age-structured optimal control problem is of independent
interest and can be applied for various problems of this type.

In Chapter 3 and Chapter 4 purely demographic models were formulated.

In Chapter 3 the question of the optimal age-specific immigration policy that mini-
mizes the dependency in a population in the long-run was posed. A stationary problem
was considered which consisted of the investigation of a rather specific linear optimal
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control model including a state constraint which made it necessary to apply a very
general maximum principle.

Subsequently, in Chapter 4 more generally, the time-varying age-specific immigra-
tion pattern to a population of fixed size that maximizes the number of workers in
a population was investigated. This lead to the formulation of a very specific, dis-
tributed parameter model. From a mathematical point of view the considered problem
was challenging for three reasons: (i) it has the form of a distributed optimal control
problem with state constraints (although rather specific); (ii) the time horizon is infinite
and a theory for infinite-horizon optimal control problems for age-structured systems
is missing; (iii) it is a maximization problem for a non-concave functional, where the ex-
istence of a solution and the well-posedness are problematic. It turned out that under
an additional generic well-posedness condition for a population with time-invariant
mortality and fertility the optimal age-density of the migration is time-invariant and
independent of the initial data. Hence, the solution could be found by solving the
associated steady-state problem, as it had been studied in Chapter 3.

Since immigration is never solely a demographic issue, in a next step economic mod-
els were considered to investigate also the economic effects of immigration. Hence, in
Chapter 5 existing overlapping generations models had to be extended in order to be
able to deal with immigration. Here, the challenges consisted of an economic and
mathematical sound adaptation of the macro- and microeconomic modeling. We used
continuous time overlapping generations models which also included the formulation
and solving of partial differential equations. In a first model, the welfare effects of
immigration on the various cohorts of the host population were investigated. In a sec-
ond model, the focus was on the description of the life-cycle behavior of immigrants
entering at various ages of their life to determine their impact on the pension schemes
of a country. The considered models could clearly be extended in various ways, de-
pending on the question one aims to pose. Hence, for example, the rather specific
objective function in Chapter 3 could be replaced by the labor participation rate or by
a more promising measure of the future dependency in a population as presented in
Sanderson and Scherbov (2010). More generally, the concepts used in the demographic
models of Chapter 3 and Chapter 4 could be used for the study of resource alloca-
tion problems when considering biological populations instead of human populations.
In Chapter 5 when investigating the effects of immigrants on the finances of the host
country, one may pass over to a transitory problem in order to be able to capture more
recent developments as the consequences of the aging process are faced in recent years.
Moreover, pension portability and the consideration of an open economy would lead
to a more realistic consideration.
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