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Abstract

This thesis explores the possibility of using a consensus algorithm to replace the traditional,
triple modular redundancy scheme for fault tolerance. We start with the presentation of state of
the art fault tolerance mechanisms and discuss the advantages and drawbacks of TMR systems.
To be able to compare these mechanisms to our approach, we outline the basics of distributed
algorithms and discuss different consensus algorithms found in literature. Based on this theoret-
ical background a reduction of TMR and replica determinism to consensus has been created.

A theoretical evaluation of the well known Exponential Information Gathering protocol, the
Phase King protocol and the Phase Queen protocol as well as modifications of these protocols to
implement them directly in hardware is given. The theoretical results are analyzed in detail and
augmented by results from fault injection experiments performed using a software simulator. As
the simulator was specifically tailored to incorporate the properties of the target platform, we
were able to evaluate their fitness for direct hardware implementation solely based on the simu-
lation results. As the fault injection experiments were designed to violate the fault hypothesis in
some cases, the degradation properties of the algorithms could also be analyzed.

The Phase King and the Exponential Information Gathering protocol were implemented on
a Field Programmable Gate Array (FPGA) network. To circumvent the single shared clock tree
in synchronous systems which introduces a single point of failure we decided to implement the
system based on a mesochronous clocking system, namely the Distributed Algorithms for Ro-
bust Tick-Synchronization (DARTS) protocol and a fully parametrizable communication buffer
supporting metastability free communication in this setting. The implementation of these two il-
lustrate that Byzantine fault tolerance using distributed algorithms is achievable in VLSI circuits.
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Kurzfassung

Diese Arbeit analysiert die Möglichkeit die traditionellen, dreifach redundanten Fehlertoleranz-
mechanismen durch Konsensus-Implementierungen zu ersetzen. Nach einem Überblick über
gängige Fehlertoleranzansätze und einer Erörterung der Probleme bei der Verwendung von Tri-
ple Modular Redundancy und Replikadeterminismus werden das Consensus Problem und die
zugrundeliegenden Modelle erörtert. Anhand der theoretischen Modelle werden verwandte Pro-
bleme wie Byzantine Agreement und Reliable Broadcast vorgestellt und eine Reduktion von
Agreement mit TMR und Replikadeterminismus zu Consensus präsentiert.

Eine theoretische Analyse bekannter Konsensusprotokolle, nämlich des Exponential Infor-
mation Gathering, des Phase King und des Phase Queen Algorithmus, sowie deren für Hardware-
Implementierung modifizierte Versionen, wird durchgeführt. Die theoretischen Eigenschaften
der Protokolle werden im Detail analysiert und mit zusätzlichen Daten aus Fehlerinjektions-
Simulationen erweitert. Diese Zusatzinformationen ermöglichen Einblicke in das Verhalten der
Protokolle, wenn diese außerhalb der festgelegten Spezifikation ausgeführt werden.

Das Phase King Protokoll und das Exponential Information Gathering Protokoll werden auf
einem Field Programmable Gate Array (FPGA) Netzwerk implementiert. Da ein einzelner Clock
Tree, wie er in synchronen Systemen gängig ist, ein gewaltiges Fehlerpotenzial aufweist, wurde
zugunsten einer Implementierung mittels verteiltem System entschieden. Dies wurde durch Zu-
hilfenahme des Distributed Algorithms for Robust Tick-Synchronization (DARTS) Protokolls
und eines parametrisierbaren Kommunikatonsbuffers, der metastabilitätsfreie Kommunikation
in dieser Konfiguration erlaubt, erreicht. Die Implementierung dieser zwei Protokolle zeigt, dass
verteilte Algorithmen dafür geeignet sind, ein byzantinisch fehlertolerantes Hardwaresystem zu
entwickeln.

v





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aims and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Fault Tolerance 5
2.1 Properties of Fault Tolerant Systems . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Replica Determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Triple Modular Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Dependability Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Event Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Consensus 21
3.1 Formal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 The Consensus Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 A Reduction of Replica Determinism to Consensus . . . . . . . . . . . . . . . 26
3.4 Relation between Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Byzantine Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 An Exponential Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 A Polynomial Algorithm with Constant Message Size . . . . . . . . . . . . . . 36
3.8 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9 Applying Committees to Phase King . . . . . . . . . . . . . . . . . . . . . . . 45
3.10 Sample of Phase King with Committees using EIG as ICP . . . . . . . . . . . 46
3.11 Applying Committees to Phase Queen . . . . . . . . . . . . . . . . . . . . . . 47
3.12 Recursively Applying Phase King . . . . . . . . . . . . . . . . . . . . . . . . 48
3.13 Phase King when Consensus is Repeadedly Needed . . . . . . . . . . . . . . . 48
3.14 Results of Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Simulations in Software 51
4.1 Purpose of a Software Simulator . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



4.2 Big Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Transformation of EIG for Single Bit Messages . . . . . . . . . . . . . . . . . 55
4.4 Simulation based Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Hardware Framework 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Delay, Skew, Runts and Glitches . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Clocking Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Metastability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Architectural Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Communication Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.7 Round Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.8 Information Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Implementation in Hardware 79
6.1 Implementation of the EIG Protocol . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Resolve Function of the EIG Implementation . . . . . . . . . . . . . . . . . . 82
6.3 Design of Component Implementing the Phase King Protocol . . . . . . . . . . 83
6.4 Resolve Functions for Phase King . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Evaluation of Hardware Implementation 89
7.1 Evaluation of the Implementations . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 EIG Case 1 - Fault Free Execution . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3 EIG Case 2 - Communication Link Failures . . . . . . . . . . . . . . . . . . . 91
7.4 EIG Case 3 - Spurious Messages . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.5 Phase King Case 1 - Fault Free Execution . . . . . . . . . . . . . . . . . . . . 96
7.6 Phase King Case 2 - Communication Link Faults . . . . . . . . . . . . . . . . 96
7.7 Phase King Case 3 - Spurious Messages . . . . . . . . . . . . . . . . . . . . . 97
7.8 Hardware Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.9 Device Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Conclusion and Future Work 103

Bibliography 105

viii



CHAPTER 1
Introduction

1.1 Motivation

Shrinking feature sizes and the continuous increase of clock frequency in current very large
scale integrated (VLSI) circuits increase their susceptibility to faults caused by external influ-
ences such as electromagnetic interference as well as to internal failures like electromigration
[13, Fue12]. The single, shared clock tree inherent to most state of the art systems constitutes a
single point of failure [29, SSS07]. Due to the high clock speeds, the distribution of the clock
signals has become very challenging [13, Fue12]. Alternate approaches, like globally asyn-
chronous and locally synchronous (GALS) systems [28, Roy03] try to solve this problems by
introducing smaller synchronous islands whose design is much easier. Unfortunately the lack
of a global clock signal makes communication and fault detection harder to implement. By
adding at least some precision guarantees to the clocking system, like in DARTS [14, Fue06]
[29, SSS07], the problem of communicating between the synchronous islands becomes easier
again.

In [25, Pol09] a metastability free communication scheme for mesochronous systems has
been developed to further increase fault tolerance. Since most critical systems must guarantee
safe operation over periods of time, transient and even permanent faults of single nodes have to
be tolerated by these systems without generating erroneous outputs.

To achieve such a fault tolerant behavior, we use mechanisms known in Distributed Comput-
ing and apply them to VLSI circuits. Therefore, we have to map electronic circuits to distributed
systems. Since such a mapping is not straight forward [13, Fue12], further investigation using
benchmarking and prototype implementations is required.

To achieve fault tolerance, we use consensus algorithms. Distributed computing has a vast
set of tools for handling Byzantine faults. [21, Lam82] [4, Bar87] [23, Pea80]) [7, Ber89b] [12,
Fis85] [1, Att04]
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In the scope of this thesis we implement two consensus protocols on a Field Programmable
Gate Array (FPGA) and evaluate their behaviour when subjected to fault injections (both vio-
lating and respecting their fault hypothesis). The hardware implementation utilizes the metasta-
bility free, mesochronous, point to point communication framework developed by [26, PHS09].
As currently no consensus algorithm optimal in all complexity measures (resilience, message
and time complexity) is currently known [1, Att04], we have to analyze their hardware imple-
mentation overhead before deciding which one is the most suitable one for our needs. This is
achieved by theoretically evaluating the protocols and by simulating them on a PC with a sim-
ulation framework exactly capturing the restrictions of the communication subsystem available
in our hardware framework.

1.2 Aims and Methodology

The aim of this thesis is to evaluate consensus algorithms known in distributed computing con-
cerning their fitness for hardware implementation. We have selected the Exponential Information
Gathering, the Phase King, the Phase Queen algorithm and their Early Stopping variants for our
analysis. To be able to create a fair analysis, we have placed certain restrictions on the selected
algorithms, namely a lock step synchronous execution model as well as using single bit mes-
sages only. Related problems to consensus like Byzantine Agreement or Atomic Broadcast are
also presented and their relations to the consensus problem are analyzed. We use this analysis to
show that ensuring replica determinism is reducible to consensus (for crash and for Byzantine
faults).

Besides the theoretical analysis a simulation based fault injection analysis is performed. We
focus on random fault injection experiments which both violate and respect the fault hypothesis,
respectively. This enables us to confirm the correct execution in case the fault hypothesis is
respected and to get data on the algorithms degradation when violating the hypothesis. Based
on the theoretical analysis and the fault injection experiments we can select the algorithm best
suited for hardware implementation. Utilizing an FPGA prototype of the selected one, we repeat
the fault injection experiments and therefore verify the accuracy of the simulation results.

1.3 Contribution

We have created an exhaustive evaluation of three consensus algorithms and their early stopping
variants concerning implementability as VLSI circuits. Besides the theoretical work, a simula-
tion environment capturing the main properties of our hardware model was created from scratch.
Using this simulator we were able to experimentally evaluate the resilience and the degradation
properties of the algorithms before selecting the one best suited for hardware implementation.
The selected algorithm as well as the Exponential Information Gathering algorithm were im-
plemented on an FPGA prototyping platform and evaluated in hardware using fault injection
experiments. We were able to show that consensus is a viable alternative to Triple Modular Re-
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dundancy and replica determinism in environments where Byzantine faults may occur.

1.4 Structure of the Thesis

The thesis is structured into 4 parts. The first part (Chapter 2) discusses state of the art ap-
proaches to increase fault tolerance as well as their advantages and disadvantage. It starts with
the definition of basic properties necessary to understand fault tolerance in Section 2.1 and out-
lines common failure models in Section 2.2. Throughout the Sections 2.3 and 2.4 replica deter-
minism and triple modular redundancy are described, and the problems arising when implement-
ing replica deterministic behavior are outlined. In Section 2.6 methods to create an abstraction
of time and the problem of ordering different events are discussed, while Section 2.7 closes the
chapter by discussing problems created by variations in the input events.

Chapter 3 constitutes the second part. Our approach of creating highly dependable VLSI cir-
cuits using consensus algorithms is outlined. The system model founding the basis for our later
evaluation is presented in Section 3.1. Based on this model, the problem of reaching consensus is
defined in Section 3.2. Afterwards, enforcing replica determinism is reduced to consensus using
the state machine approach in Section 3.3. Section 3.4 gives an overview of related broadcasting
problems, like Atomic Broadcast, and their relation with the consensus problem. Afterwards,
solutions to reach Byzantine Agreement, a closely related problem to consensus, is considered
in Section 3.5. The analysis of selected consensus algorithms is performed in Sections 3.6 and
3.7. While we first concentrate on the basic protocols, Sections 3.8 - 3.12 outline techniques to
optimize the protocols for certain scenarios.

The third part of the thesis describes the simulation environment used for the empirical eval-
uations of the algorihms in Chapter 4. While the Sections 4.1 and 4.2 describe the simulation
environment and the framework used to gather the results, Section 4.3 presents the transforma-
tion of the Exponential Information Gathering protocol to single bit messages required by our
hardware framework. The evaluation of the simulation results and the selection of the protocols
to be implemented in hardware is done in Section 4.4.

The fourth part describes common problems when designing hardware and the hardware
framework used for the implementation of the protocols (Chapter 5). The design of the imple-
mentation of the selected protocols is given in Chapter 6, while Chapter 7 presents the results of
the hardware experiments. Finally, Chapter 8 summarizes and concludes the thesis and gives an
outline on possible future work.

3





CHAPTER 2
Fault Tolerance

One of the major characteristics of a safety critical system is the ability to tolerate partial fail-
ures. To guarantee correct behaviour at the system level certain parts of the system have to be
implemented redundantly and computations have to be split into smaller units operating at dif-
ferent times or in different space domains.

This chapter summarizes the design principles used in safety critical applications as well as
the classification of faults and possible solutions for handling them. At the end of this chapter
we will outline the major drawbacks of state of the art solutions and we will use the next chapter
to present a new solution for satisfying the requirements of highly fault tolerant systems.

2.1 Properties of Fault Tolerant Systems

In this section we present the key concepts and properties of fault tolerant systems. Since it is
impossible to guarantee a completely fault free system, certain techniques must be applied to
increase robustness and therefore its dependability. Considering non reparable systems, e.g. an
autonomous Mars rover or a satellite, a high dependability is of vital importance. Additionally,
elaborate mechanisms for diagnosing and debugging have to be designed. Based on their results
repair strategies can be executed to return to an operational state.

First, we introduce the partitioning into faults, errors and failures. A fault can either be
caused by out of specification operation (e.g. an invalid input signal) or by an erroneous im-
plementation of the specification (e.g. an programming error). Errors are caused by faults and
are their manifestation in the system’s state. A failure on the other hand is an event at a certain
instant of time, where the erroneous system state causes a deviation of the system’s specified
operation. [19, Kop97] Their relation is also outlined in Figure 2.1.

The design of fault tolerant systems is mostly based on fault containment regions. A fault
detected inside such a region is hindered to propagate to other fault containment regions and
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Error
faultfailure

Figure 2.1: Relation between fault, error and failure

therefore a single fault can not affect the whole system. If a detection or removal of a fault is
not possible at this level it can be handled at the next higher one, namely the error containment
region. Similar to the fault containment region the error containment region detects errors and
hinders them to propagate. The highest level is the failure containment region. [19, Kop97]

With these concepts it is possible for a system to handle, tolerate or remove certain faults,
errors and failures. The so called fault hypothesis gives assumptions on the type of fault the sys-
tem can cope with as well as the frequency it occurs. The number of faults that can be detected
is measured as the fault detection coverage. All faults not manageable by the system have to be
rare events (probability of occurrence has to be below a given threshold) to guarantee depend-
ability. How well the assumptions made in the fault hypothesis capture reality is given by the
assumption coverage and it is therefore a qualitative measure of the fault hypothesis. [19, Kop97]

Faults can be grouped into transient faults, intermittent faults and permantent faults. The
first class of faults are transient faults which occur for short periods of time and then disappear
again. Such faults mainly manifest themselves by single bit flips and are often caused by external
sources such as electromagnetic interferences, or disturbances in the power supply. Depending
on the system, the rate of transient faults which can be tolerated can be 10 to 100,000 times
higher than the rate of permanent faults. [19, Kop97]

The second class, namely intermittent faults, contain faults occurring for arbitrary periods
of time and then disappear again. These faults are often caused by changes in the system’s en-
vironment, e.g. a change in temperature. It is quite hard to reproduce and identify this type of
fault as the external factors leading to the malfunction may cause the problem only in case they
appear in combination. [33, Tan06]

The last class of faults are permantent faults. These faults can not be repaired online and
maintenance is required. Nevertheless, masking these faults using redundant hardware is still
possible in the field.

If a fault can not be repaired online, counter measures depend on the type of systems. We
distinguish between fail-safe systems and fail-operational systems. A fail-safe system is a sys-
tem providing a safe shutdown state which can always be reached. If a fatal error occurs, the
system will be switched to the shutdown state. An example of this kind of system is the railway
signaling mechanism. If an error occurs, all signals are switched to stop and no train will move
any more (= safe shutdown state)
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The second class of systems are called fail-operational. In such systems no safe state is
present and therefore no possibility of shutdown exists. An example for such a system would
be an airplane, where at least basic operation has to be provided at any given point in time to
prevent it from crashing.

2.2 Failure Models

The properties presented in Section 2.1 are significant in choosing the right failure model for a
system. In general three classes of failures are distinguished in literature [1, Att04]:

1. Crash failures

2. Omission failures

3. Byzantine failures

crash omission Byzantine

Figure 2.2: Failure models and their relation

In case of crash failures, all subsystems deliver correct results at all times. However, some
of them may crash at an arbitrary point in time and stay silent from this point onward. While
in a synchronous or partially synchronous setting this class of faults can easily be detected, they
can not be handled by asynchronous circuits due to their inherent lack of information delivery
deadlines. [12, Fis85]

When considering omission failures the service simply does not respond properly. This can
appear in several ways: First the reception of incoming requests may be faulty, thus, the com-
putation unit does not even recognize that it has to respond. In the second case, the unit has
computed the results but is not able to communicate it to other units, e.g. because of a broken
pin in the communication interface. The third variant of this failure class are all kinds of delays
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that are not related to the communication subsystem, e.g. a long lasting calculation or an infinite
loop.

The strongest and most malicious class of failures is called arbitrary failures or Byzantine
failures. Failures of this class can manifest themselves in any imaginable way. Processors or
computational units suffering from Byzantine faults may not behave according to their specifi-
cation or algorithm at all. They can transmit arbitrary messages at any point in time, produce
random values or it can even happen that multiple, Byzantine faulty subsystems work in tandem
to increase their effect on the whole system.

As outlined in Figure 2.2, the crash failure model is the weakest one and can be seen as a
subset of the omission failures that again constitute a subset of the Byzantine failure model.

2.3 Replica Determinism

As discussed before, an increase in dependability of a system is possible if we replicate nodes
in certain domains. This can be done at the hardware as well as the software level. Methods
to redundantly execute an operation can be established in the time domain, by executing an al-
gorithm multiple times, or in the space domain, such that a computational task takes place on
multiple nodes. When it comes to multiple executions, different implementations of a given
specification are often used to detect mistakes in the specification in an early stage and to avoid
common implementation errors within the system.

A key property of a replicated system is its type of standby operation. Basically we dis-
tinguish between active and passive redundancy. Both types are used to enable the system to
operate correctly in case of failures by using additional hardware. When using active redun-
dancy all replicas of a component compute the same functions in parallel and their results are
subjected to voting and classified as correct or incorrect (e.g. Triple Modular Redundancy).
Components computing incorrect results are shut down by the voting logic. Passive redundant
designs also offer replicated components but the operations are only computed by one of them.
If faults are detected within this component the system switches to another fault free replica.
A vital challenge in this case, is to update the replica to the last correct state of the faulty one.
A mix of these two are standby-redundant systems. These, like the designs presented before,
use replications of their components. All replicas compute the same operation, and therefore
have the same history state. In contrast to an active system the output is only taken from one
replica. In case of faults the output is taken from another, correct replica. Another special case
of replicaton is the N+1 redundancy. Here only one spare component is available to take over
the operation of a faulty component out of a total number of N components. Thus, in the N+1
design one fault can be tolerated.

The most common forms of redundancy are hardware redundancy, software redundancy,
information redundancy and time redundancy. Hardware redundancy addresses mechanisms
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like the use of multiple sensors monitoring the same entity where the sensors values are subject
to a voting process to set an actuator. Here, if one sensor fails, other sensors’ values can be
used to calculate correct results. Another type of hardware redundancy are methods to spacially
distribute replicas. Software redundancy is established by computing results with certain im-
plementations of an algorithm generated from the same specification. With this concept we can
develop designs prone to errors introduced by unclean programming, or by missleading assump-
tions of the specificaton. Therefore, several independent teams develop similar functionality
according to the specification with different program constructs, algorithms as well as different
programming languages, thus reducing the probability of identical software faults propagating
throughout the system. For evaluation and comparison of the different versions it is crucial to
specify the input and output formats, the comparison algorithm used as well as the functionality
of the used algorithm. This N-Version concept introduced by software redundancy can also be
applied to hardware concepts, namely distinct functional redundancy. In this case similar func-
tionality is achieved by using different physical concepts, like mechanical and hydraulic braking
mechanisms within a car e.g. Information redundancy addresses replication of transferred data,
checksums and error detection or error correction used.

Typical codes range from simple parity codes over CRC codes to cryptographic hash func-
tions. The selection of the used code depends on the available computational resources, the
length and format of data as well as the capacity of the communication system itself, and the
type of faults to be detected or even corrected at the receiver. The major drawback of all of the
above mentioned kinds of redundancy are the increased hardare overheads. In systems where
hardware capacity is quite limited e.g. by spacial constraints or unit costs, these replication
strategies do not suite well. Time redundancy on the other hand computes the same function-
ality upon the same input data multiple times on the same component. The computations are,
however, shifted by a defined offset in time. This, by definition, doesn’t increase the robustness
of the component with respect to permanent faults since the same component is used for each
time replicated computation, but suits well in environments suffering from frequent transient
faults. Another aspect of time redundancy is to classify a failure as transient or permanent, and
thus supporting a quite strong indication whether a component has to be disabled permanently
or can be kept online for later use. Which kind of replication has to be used and further if one
type of replication is sufficient to cover the fault hypothesis depends on the system requirements
and its constraints, and has to be decided and evaluated in an early stage of the system design.

The methodology to accomplish correct behaviour by replicating operations in a determinis-
tic system is called replica determinism. According to the definition given in [24, Pol93] correct
replicas within the same group of replicated components result in the same output in the value
as well as the time domain if and only if the computation is started from the same initial state on
by executing the same input requests. Same output in the value and time domain hereby means
within the specificaton. Thus, differing input and output formats are tolerated within defined
ranges. Also the timeliness does not mean that outputs have to be generated at exactly the same
instant of time, but within a specified range of time. Problems the designer of a distributed sys-
tem has to face are those leading to inconsistent behaviour or even non-determinism. Such un-
desirable behaviours can be forced by inconsistent inputs, inconsistent order, non-deterministic
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constructs, inconsistent scheduling decisions, inconsistent interpretation of time and inconsis-
tent interpretations of values [24, Pol93].

1. Inconsistent inputs: When our system has to cope with inconsistent inputs, such as ana-
logue sensor values, the outputs can be different. Assuming two temperature sensor, it is
quite realistic that one sensor reports 20◦C while another reports 21◦C due to different
calibration, spacial distribution or restrictions in the representation of the measured value.

2. Inconsistent order: Assume two non-commutative messages, node A receives message 1,
which says activate the thrust reverser for landing, before message 2 which says increase
engine power for a go around, while node B receives them in the opposite order.

3. Non-deterministic constructs: Also constructs which cannot be assumed to deliver equiva-
lent responses on different nodes, such as a true random number generators or complicated
high level constructs depend on internal node information. The problem here is, that at any
two replicas we cannot predict what the exact state of the other replica is after execution
of such constructs.

4. Inconsistent scheduling decisions: Assume two tasks which can not be commutatively
executed on two nodes being preemted on one of them, while executed on the other. As-
suming two nodes A and B. For simplicity A is adding a natural number x to a value
v stored in internal memory and B is multiplying v by a natural number y. Replica 1
schedules A and then B while replica 2 schedules B and then A. It is easy to see that this
leads to (v + x) ∗ y on replica 1 while it leads to v ∗ y + x on replica 2.

5. Inconsistent interpretation of time: Since we have limited computational and storage ca-
pacity we cannot provide a dense time base like real time. Assuming a decision dependent
on the local clock of each node while one node’s clock will say it’s 12:00 another node’s
clock will pretend it’s 11:59. If the decision is something like shut down the engine at
midday but run the engine before, the two nodes will compute different decisions whether
the engine should run or shut down.

6. Inconsistent interpretation of values: The same number has to be interpreted equally
on all nodes regardless whether the architecture used is big or little endian. Further,
since irrational numbers cannot be represented right in the computer rounding and ex-
ponent/mantissa interpretation have to be consistent among the nodes.

While some of these inconsistencies can be eliminated at design time others have to be han-
dled online. Depending on the system two possible approaches can be distinguished to solve
non-determinism at runtime. On one hand a strictly centralized or asymetric approach can be
used. In this case each group of nodes chooses a dedicated leader. This leader accepts incom-
ing requests and distributes them among the other nodes in its group. It is its responsibility to
correctly pass the requests, to resolve inconsistencies and to respond to external clients. The
drawbacks of this approach are that the leader-node is a single point of failure and a clear hi-
erarchical structure within the group has to be enforced. Further, it is quite hard to guarantee
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Byzantine fault tolerance in this model, since a faulty leader can fool the other nodes within its
group easily. The second approach is the distributed or symmetric scheme. In this approach
no dedicated leader exists and therefore no single point of failure. Inconsistencies have to be
resolved distributedly with some kind of agreement protocol. [24, Pol93]

In the following sections we will discuss the handling of order, time and inputs in more
detail.

2.4 Triple Modular Redundancy

Dependability can be increased by using more reliable (which is closely related to more expen-
sive) components or by designing the system in a redundant way. One well known approach is
Triple Modular Redundancy (TMR), where each node is replicated three times. Each replica is
followed by a voter network which calculates the output value by, e.g. choosing the majority of
the node values. The complexity of this voter network depends on the dependability constraints
and the chosen fault hypothesis. In the simplest implementation, a two out of three majority
voter, its complexity is much lower than the complexity of the nodes (e.g. microcontrollers)
themselves. Based on this observation it gets apparent that in such settings a single voter per
stage may become insufficient to satisfy the dependability criteria. However, if more ambitious
voting mechanisms are required their complexity can force the designer to replicate the voters
themselves eliminating the single point of failure introduced by the single voter. The number
of required replications for each component and the number of required voters per stage mainly
depends on the systems dependability requirements, as well as the robustness of the used com-
ponents. An introduction on how to calculate the required probability measures based on the
components dependability can be found in Section 2.5.
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v1,1

v1,0

Figure 2.3: TMR network

An example for a TMR network is given in Figure 2.3. In this work we focus on the com-
monly used TMR design which uses three nodes and three voters. While the first level of nodes
(p0,∗) works with the respective input values (the result of a single temperature sensor, e.g.),
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Component Value to propagate Descriptions
binary decimal

p0,0 1000 0000 128
p0,1 0111 1111 127
p0,2 0000 0000 0 sending to v0,0

p0,2 1111 1111 255 sending to v0,1

p0,2 1111 1111 255 sending to v0,2

v0,0 0000 0000 0
v0,1 1111 1111 255
v0,2 1111 1111 255

Table 2.1: Inexact input data with one faulty node p0,2

the second level nodes (p1,∗) use the already replicated and voted results of the first level. The
last, in our example the third level, calculates the final result usable for directly manipulating an
actuator, e.g. As between each two levels of nodes a voter is used, single faults in a lower level
are masked out safely before the values are forwarded to and processed by the next higher one.
While the complexity of the nodes is dependent on the implemented application, the complexity
of the voters is mainly influenced by the value domain they are operating on. The easiest way
of voting is by comparing the input values bit for bit and propagating the majority value for
each single one. A more challenging task is to compute the majority on a multi bit value like a
temperature, if small deviation of the values have to be tolerated. In this case a simple bitwise
comparison is insufficient, since a single bit missmatch in the value domain could lead to large
deviations in the outputs of the voters (as shown in Table 2.1).

In the example setting introduced in Figure 2.3 the use of an exact voter on non replica de-
terministic inputs may enable an error to propagate through the whole system. As outlined in
Table 2.1 a single fault can cause v0,0 to believe the correct value to be 00000000b = 010. At
the same time the faulty node p0,2 can manipulate v0,1 and v0,2 into believing that the correct
value is 11111111b = 25510. Both results are far from the correct inputs 10000000b = 12810

and 01111111b = 12710. Further, the erroneous value may propagate through the whole TMR
network even if p0,2 remains the only faulty component.

To avoid this scenario certain voting techniques have been developed. In the scope of this
thesis, we will discuss different voting techniques as well as their advantages and drawbacks.
The first technique is called exact voting. When we use exact voting we have to guarantee ex-
actly equal outputs of all replicas at the time of voting. Thus, replica determinism has to be
enforced among the replicas to guarantee correct results. The major benefit of exact voting is
the simple implementation of the voter itself, since it only has bitwise comparisons of its inputs.
Nevertheless, as we will see in Section 2.3, in some cases replica determinism is quite hard or
even impossible to achieve, thus, another voting technique has to be applied in these cases. The
second technique presented here is inexact voting. In contrast to exact voting, inexact voting
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Figure 2.4: Relation between MTTF, MTTR and MTBF

only forces the deviation of the correct values to be at most a specified range apart. Compared
to exact voting, the voter needs more information about the value domain and what semantics
they represent.

2.5 Dependability Measures

To quantitatively evaluate the dependability of a system we need to introduce statistical mea-
sures. Most literature distinguishes between Availability, Reliability and Maintainability [27,
Rou99] [19, Kop97] as the key concepts of building dependable systems. While the availabilty
gives an estimate on the probability that a system is usable at any given time, the reliability
describes the estimation on how probable it is that a system is still operational after a given
timespan. Beside these two, maintainability is a measure on how easy it is to repair a corrupted
or a failed system.

Reliability reflects the component robustness and the quality of design. The Mean Time
Between Failures (MTBF) is the timespan between the occurrence of two failures, which is
given by the sum of the Mean Time To Failure (MTTF) and the Mean Time To Repair (MTTR) as
depicted in Figure 2.4. As we can see the effort taken to guarantee a certain reliability measure
is dependent on the time without any failures on the one hand and the possibility for repair on
the other hand. The MTTF gives the average time a component can be operated correctly. It is
assumed that the component is fully operational at the begin and after each repair action. The
MTTR gives the mean time needed to repair a component by divison of the total time needed
for repair actions by the number of components repaired. The reliability R(t) can be directly
calculated from the MTBF for repairable components and from the MTTF for unmaintainable
components. The inverse of the MTBF is the failure rate λ which specifies the frequency of
failures occurrences. [19, Kop97]
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R(t) = e−λt = e−
t

MTBF (2.1)

R(t) =
n∑
i=k

(
n

i

)
(e−λt)i(1− e−λt)n−i (2.2)

The Equation 2.1 specifies how to calculate the reliability of a system without replicated
components, while Equation 2.2 describes the reliability of a system where k replicas are as-
sumed to work correctly at any given point in time.

Another very important property is the systems availability which describes the confidence
that a system is operational at any given time. The availability therefore is dependent on the
Mean Time To Failure (MTTF) and the Mean Time To Repair (MTTR) as outlined in Equation
2.3. The longer the maintenance action lasts, the higher is the MTTR and thus the lower the
availability of the system under consideration becomes. Thus, for a system which can not be
repaired, the availability is 0.

A =
MTTF

MTTF +MTTR
(2.3)

The MTTF is mainly affected by are Design Failures, Infant Mortality, Random Failures
and Wear Out.

1. Design failures are failures due to deficiencies during the system design phase. In a well
designed system this type of failures should have very low influence on the systems avail-
ability. The influence of this class of failures can be minimized by appropriate testing,
validation, simulation and certain review phases during product development. [31, Sin06]

2. Infant mortality addresses faulty behaviour introduced by manufacturing problems like
leaking capacitors or poor soldering. This kind of faults can be detected by certain tests
such as burn-in testing to emulate normal operation before the system is in a productive
environment (e.g. with a testbed developed by an independent team), power cycling to
simulate intermittend states and memory effects at startup, temperature cycling and other
physical impacts to stress the mechanical limitations of the hardware. [31, Sin06]

3. Random failures can occur at any time of the systems lifetime, and thus fault-correction
methods like replication have to be considered to increase the systems availability. [31,
Sin06]
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4. Wear out addresses degradation of hardware components leading to faults. This class of
failures can only be managed by replicating the hardware and introducing standby systems
or by continuous maintenance of the components. [31, Sin06]

All of these classifications can be visualized by the bathtube curve. Other than the relia-
bility, the bathtube distribution determines the probability that a component fails exactly at a
given time t. The curve outlined in Figure 2.5 shows a sample plot of the bathtube curve and
shows the relations to the above classifications. Design and manufacturing failures occur in the
early stages of the systems lifetime, while random failures can occur at any time. The longer the
system is in use the higher the chance for components to wear out more and more becomes and
thus the probability of faults increases again at the end of the systems lifetime.

infant mortality

wear out

random failure

combined

t

λ

Figure 2.5: Bathtube curve: Showing the failure rate λ of a hardware system over time

According to the reliability of the different subcomponents, the probability on how many
faults have to be tolerated by the system can be estimated. A system withstanding k faults is
called k-resilient or k-fault tolerant. By replicating the nodes of the system the resiliency can be
increased. According to the classification in Section 2.2 we can distinguish three major cases for
TMR systems. To handle crash-failures the system has to provide f + 1 replicated components
whereof at most f components are allowed to get faulty. Trivially this constraint is needed, since
otherwise in the case of faults no output could be generated at all. For omission faults at least
2f + 1 replicated components are needed. Since in the case of omission faults the timeliness of
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the components values cannot be guaranteed we need at least a majority of correct values at the
voter to differentiate an outdated value from a correct value. Lastly, the most challenging class,
the Byzantine faults, require 3f + 1 replicas. [19, Kop97]

2.6 Event Order

As already pointed out inconsistent interpretation of the event order can destroy replica deter-
minism. Therefore, it is important to guarantee a consistent event order in a distributed system.
To achieve this, several mechanisms are known and summarized in this section. The two most
important concepts for achieving event order in distributed systems are physical clocks and vec-
tor clocks.

Physical Clocks

A common knowlege of time simplifies many problems in a distributed computing system.
When talking about time, however, in most cases some kind of clock or timer is meant. These
devices fire an interrupt or increment the value of a register after a given timespan of real time t.
Due to variations in the underlying physical system, like material or temperature variations, the
value clock(t) is only an approximation of real time. A measure of this approximation’s quality
is given by the drift rate of the clock ρ which is described in Equation 2.4. An example for the
clock drift is given in Figure 2.6

(1− ρ)t ≤ clock(t) ≤ (1 + ρ)t (2.4)

According to this Equation the value of any two clocks clocki and clockj may diverge over
time by a factor of ρi + ρj , where ρi and ρj specify the drift rates of the two clocks, respec-
tively. The maximum drift of all clocks in the ensemble at any given time is called the preci-
sion of the system Π. To guarantee a non infinite precision we have to define a convergence
function to counteract the missalignment of the clocks. This convergence function Φ speci-
fies the maximum offset of any two clocks after the resynchronization while the drift offset
Γ = max∀i,j(ρi+ρj)δsync describes the maximum drift of any two clocks within a given resyn-
chronization interval δsync. To guarantee a system wide precision Π Equation 2.5 must hold.
[19, Kop97]

Φ + Γ ≤ Π (2.5)
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Figure 2.6: Drift rate

Since the synchronization of the clocks in a distributed system can only be achieved via
communication of the nodes, another important role on the precision of a clocking system is the
maximum latency jitter ε of the communication system. The lower bound on the precision (see
Equation 2.6) of a system consisting of N nodes with a worst case latency of ε was given by [22,
Lun84].

ε(1− 1

N
) ≤ Π (2.6)

On a single node the ordering of events can be handled quite easily by combining each event
with a local timestamp. In a distributed system this is however not the case since, even with
an accurate clock synchronization, an event may have timestamps differing by Π on different
nodes, which makes ordering events a complex challenge.

One method to order events on different nodes is to apply an agreement protocol whenever
an event occurs, which has the drawback of additional communication and processing overhead.
Another approach is to introduce a sparse time base, splitting the real time (which is a dense time
base) into intervals of silence where no event is fired and intervals where all occurring events are
handled as concurrent. While the first approach is quite unrestrictive, the second approach can
only handle events in the field of system control.

Vector Clocks

Intuitively an event φ1 is said to happen before an event φ2 if it occurs earlier in the context of
real time. As we have seen in the previous section consistently capturing time in a distributed
system is quite hard. To circumvent some of the problems we rely on Lamport’s happened before
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(d) There is no happens before relation between φ1 and φ2

Figure 2.7: Examples for the happens before relation

relation [20, Lam78], which is even valid in fully asynchronous system. The relation defines:

An event φ1 happens before φ2 in an execution α denoted by φ1
α⇒ φ2 if either

1. φ1 and φ2 occur on the same node and φ1 occurs first

2. φ1 is a send event of a message m and φ2 is the corresponding receive event of m.

3. or if there exists a sequence of events φ1, φ, φ2 such that φ1
α⇒ φ and φ α⇒ φ2

Examples of the happens before relation as described above are depicted in Figure 2.7. Sub-
figure 2.7d specifically outlines that two events on different nodes cannot be ordered with the
happens before relation if there is no communication between the nodes where φ1 and φ2 hap-
pen.

Implementing logical clocks is one way to realize the happens before relation. Thereby each
node in the system has its own logical clock LCi which is updated with every single event oc-
currence. To every message the logical clock of the sending node is appended. If a local event
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takes place at node i its logical clock LCi is incremented by one. Otherwise, if a message from
node j has been received at node i, LCi is set to the maximum of both clocks incremented by
one. [20, Lam78]

Theorem 1. Assume two events φ1, φ2 and let α be an execution segment such that φ1
α⇒ φ2

holds, it follows LC∗(φ1) < LC∗(φ2). [20, Lam78]

In contrast to Theorem 1 the inverse arguement is not valid because we mapped the partial
order of the happens before relation to the total order of the natural numbers. By establishing
a partial ordering of logical clocks, vector clocks are a tool supporting both directions. [1, Att04]

In the case of vector clocks each node maintains a vector ~vi holding n natural numbers. The
ith entry of vector ~vi represents the logical clock of node i. Initially the logical clocks are set to
0 and are incremented on each event occurrence, such as the reception of a message, the sending
of a message or a local event, occurring at node i. The vector ~vi is appended to every message
sent from node i to node j. Node j updates its local vector ~vj with the informations of ~vi by
simply setting each entry of ~vj to the maximum of the corresponding pairs of logical clocks as
depicted in Equation 2.7.

∀x, 0 ≤ x < n : ~vj [x] = max(~vi[x], ~vj [x]) (2.7)

Theorem 2. For every admissible execution, for all nodes i and j, ~vj [i] ≤ ~vj [j] holds. [1, Att04]

To achieve partial ordering we have to define how to compare two vector clocks. ~vi is said
to be smaller or equal compared to ~vj (~vi ≤ ~vj) if ~vi[x] ≤ ~vj [x] for all 0 ≤ x < n. Further, ~vi
is said to be smaller compared to ~vj (~vi < ~vj) if ~vi ≤ ~vj and ~vi 6= ~vj .

Theorem 3. Assume two events φ1, φ2 and let α be an execution segment such that φ1
α⇒ φ2

holds, it follows ~v∗(φ1) < ~v∗(φ2). [1, Att04]

Theorem 4. Assume two events φ1, φ2 and let α be an execution segment such that ~v∗(φ1) <
~v∗(φ2) holds, it follows φ1

α⇒ φ2. [1, Att04]

Theorem 5. If ~v∗(φ1) and ~v∗(φ2) are incompareable in execution α, that is ~v∗(φ1) 6≤ ~v∗(φ2)
and ~v∗(φ2) 6≤ ~v∗(φ1), φ1 and (φ2) are said to be concurrent, denoted by φ1||αφ2.[1, Att04]

According to Theorems 3, 4 and 5 the happens before relation can be completely captured
with vector clocks.
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2.7 Input

We have shown how system dependability is linked to the reliability of single units of the system.
As sensors are quite unreliable compared to e.g. microcontrollers, these parts are implemented
redundantly in most cases. The analog values of many of these sensors originate from a con-
tinuous value domain, and the resolution of values in the system is limited. Thus, the values
have to be converted from a continuous value domain to a discrete one. This transformation can
lead to deviations in the measured values called digitalization or quantization error. Besides, the
deviations of the captured values can lead to different measurements of the same object by two
sensors. Thus, even in the fault free case, some kind of agreement strategy has to be applied to
achieve replica determinism.

Since a per bit comparison is not possible in all cases, voting strategies have to be applied to
reach agreement on the sensor values. The selected voting strategy mainly depends on the type of
agreement, where syntactic agreement and semantic agreement can be distinguished. We say the
system agrees syntactically on the sensor values, if the decision takes place without interpretation
of the values and its possible contexts according to the system state. An example for voting
would be to take the average over all input values. A single fauly value can however influence
the solution very heavily in this case. When talking about semantic agreement, the agreement
algorithm interprets the values passed to the voters. Context information can help the algorithm
to filter out erroneous values, e.g. values exceeding their natural bounds. The algorithm can
furthermore combine the inputs of different sensors and check their validity according to the
laws of nature. Thus, it is not necessary that every sensor of the network measures the same
entity. [19, Kop97]

20



CHAPTER 3
Consensus

In the previous chapter we have seen that for reaching a certain reliability in a distributed sys-
tem, protocols are needed that allow the system to function properly even if a limited number of
computational units act faulty. To achieve this goal, we have to guarantee cooperation of the non
faulty nodes of the system to detect and handle the misbehaviour of the faulty ones and com-
monly agree on the same information. At a first glance this can be implemented quite easily by
a majority voting over all the known values. If more powerful fault models are used, however,
the problem can not be solved so trivially. Since in this case even one single fault can lead to
disagreement and therefore in close elections more intricate mechanisms have to be used. How
to solve these kinds of problems is subject of this chapter with the main focus on the consensus
problem and a selected subset of its solutions. [11, Fis00]

In the following we will present algorithms and primitives providing agreement among a
group of nodes. We will use the system model introduced in Section 3.1 for the algorithms and
the analysis. The algorithms presented are designed to run on distributed systems consisting of
self-contained nodes communicating via a fully connected message passing system. The impact
of faults is modeled using an adversary, an omniscient, imaginary entity capable of injecting
faults into the system.

3.1 Formal Model

In our model, a system consists of a set Π of n nodes pi (i ∈ {0, 1, ..., n− 1}) each executing an
instance Ani of algorithm A and a fully connected communication system (for details see Figure
3.1).
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Figure 3.1: Fully connected communication network

Since communication between the nodes takes place via message passing only (realized by
n(n − 1) distinct channels) the algorithm Ani has only access to the nodes pi internal state and
the input and output buffers of pi. outbuf i[j] thereby is the output buffer of node pi, contain-
ing all sent but not yet delivered messages from pi to pj . On delivery, a message is copied from
outputi[j] to inbuf j [i] and therefore becomes accessible for node pj . When node pj reads (con-
sumes) a message, it will be removed from its input buffer. For details on the message buffers
see Figure 3.2.

pi pj

inbufi[j] outbufj [i]

outbufi[j] inbufj [i]

Figure 3.2: Message buffers for incoming and outgoing messages

Each node pi can be modeled as a state machine Qi where qi ∈ Qi represents the nodes
current state including all message buffers (inbuf i[∗] and outbuf i[∗]). While qi is the local
state for node pi a configuration C = {q0, ..., qn−1} represents a consistent state of the whole
system. The transition between two different configurations can either be a computation event
(compi) corresponding to a state change of pi’s local state machine Qi or a message delivery
event (del(i, j,m)) forwarding a message from outbuf j [i] to inbuf i[j]. An alternation of con-
figurations C and events φ is called an execution α as depicted in Figure 3.3. [1, Att04]
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Figure 3.3: Execution α

An execution is admissible, if it satisfies a given set of liveness and safety properties. A
safety property guarantees that nothing bad will happen, while on the other hand, a liveness
property states that eventually something good will happen. [1, Att04]

tkRi t
(k+1)R
i

≤ Π ≤ δ

round k

p0

p1

p2

Figure 3.4: Example for the execution of a distributed algorithm in the lockstep synchronous
model

Possibly, the most restricting property of a formal model is the way in which communi-
cation may take place. The most prominent models in this regard are the asynchronous, the
synchronous and the lockstep synchronous model. In a fully asynchronous system the timely
behaviour of the system is completely unrestricted. With respect to message passing systems,
this means no assumptions on the time needed to send a message m from one node to another
can be given. It is not possible to distinguish between two configurations where a message m
sent by node pi is not yet delivered at time t or pi has, due to faults, not sent m at all. The syn-
chronous model assumes that there exists some kind of event, namely a tick, after which a certain
process of computation will always be executed. The transfer of a message m from one node to
another is bounded by a given latency ∆tm and therefore its delivery can be guaranteed to be in
the interval [0,∆tm]. If a message m has not arrived at time ∆tm, it is save to assume that it has
never been sent or has been lost. Our system model is assumed to be lockstep synchronous. This
means that a single computation step takes place in zero time and that all communication is de-
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livered between two successive impulses triggered by a distributed synchronization mechanism
accessible by all nodes. The interval between the rth and the r + 1st impulse is called the rth

round. We assume in the lockstep synchronous model that all messages sent by node p to node
q in round r are delivered at the beginning of round r+ 1. An example for an execution of a dis-
tributed algorithm in the lockstep synchronous model is given in Figure 3.4. As we can see, the
lockstep synchronous model can be implemented on top of the synchronous model by selecting
sufficient clock ticks to ensure the save delivery of all messages within one round. Therefore,
the beginning of two rounds must be at least R ≤ Π+δ

1−ρ ticks apart, where Π gives the precision
of the clocking system as described in Section 2.6 and δ defines the known upper bound on the
transmission delay. Therefore, we can savely trigger round k when the kRth tick tkRi occured at
node pi.

Beside our distributed system, there exists an omniscient, imaginary adversary controlling
the whole system. It is only restricted by the fault hypothesis and the system model. Using these
powers, the adversary can alter message scheduling, e.g. the time a message is delivered, node
scheduling, e.g. when certain events are triggered, and can select nodes which will suffer from
faults and can define when these faults occur. For example in a Byzantine fault aware system,
tolerating f-faulty nodes, the adversary may cause up to f nodes to crash or execute arbitrary
code and even worse the adversary can cause the faulty nodes to work together emerging their
mightiness. In systems using cryptography it is assumed that messages are not altered arbitrarily
by the adversary. In this model the computational power of the adversary is restricted and thus it
can be assumed that spurious messages can be identified by correct nodes. Therefore, protocols
using cryptography can perform better than protocols not using cryptography. In the scope of
this thesis the further investigations are restricted to protocols not using cryptography.

We say node pi to be correct if it executes according to Ani . Otherwise pi is called faulty.
Note that the classification of a node as faulty is assumed only valid during a single execution of
the protocol, since otherwise temporary faults would be classified like permanent faults. Proto-
cols withstanding f faulty nodes are called f -resilient.

To be able to qualitatively compare protocols, we introduce resilience, message complexity,
bit complexity and time complexity as measures. We will always evaluate them in worst case
executions to get the practically relevant bound for the protocols. We say a bound is tight, if
there exists an execution hitting the bound while proving that no lower bound for this scenario
can be found. The measures used to compare the protocols are defined as follows:

1. Resilience states how many faulty nodes f a protocol can tolerate in a system consisting
of a total of n nodes, while all liveness and safety properties must be satisfied.

2. Message complexity gives an upper bound on the number of messages sent during a single
execution of the protocol. The size of a single message has no influence on this measure.

3. Message size gives an upper bound on the size of a single message.
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4. Bit complexity gives an upper bound on the number of bits that have to be transferred
during an execution of the protocol. Note: Since the number of messages and the size of
the messages may vary from round to round, the bit complexity gives, in contrast to the
message complexity, the exact number of bits transferred.

5. Time complexity gives an upper bound on the number of communication rounds the pro-
tocol needs until each node successfully terminates, while ensuring the liveness and safety
properties.

3.2 The Consensus Problem

In a distributed system there are many scenarios in which all the nodes pi, each holding a private
value xi, have to agree consistently on a single value y (agreement) within finite time (termi-
nation). For the operation to be considered correct, y must be one of the values (x0, ..., xn−1)
(validity). This is quite simple in a reliable system where all nodes and the communication sys-
tem behave correctly. As soon as our assumption (which is quite strong) does not hold, reaching
consensus in arbitrary execution scenarios is not that easy anymore. Depending on the under-
lying fault model, (for details about these classifications see Section 2.2) protocols have been
developed in the last decades to solve this challenge. In this section we will outline the common
properties of consensus algorithms, and some impossibility results already proved in literature.
Protocols solving the consensus problem under Byzantine failures are presented throughout the
Sections 3.6 - 3.13.

Lets recall the categorization of the nodes as correct and incorrect (faulty):

1. a node pi is called correct or non faulty if it behaves timely and according to its specifica-
tion given by Ani .

2. a node pi is called incorrect or faulty if and only if it is not correct.

In the following, the set of faulty nodes is labeled as F , while the set of correct nodes
is abreviated as Π \ F . The maximum number of faulty nodes is given by f = |F |. Since
a particular execution can have fewer faults, the total number of faulty nodes during a single
execution is given by t ≤ f . Therefore, any algorithm A(P ) satisfying the consensus problem
P has to guarantee the following three properties:

1. Termination: In every admissible execution the decision value yi of all nodes pi ∈ Π \ F
is eventually assigned. [1, Att04]

2. Agreement: If the decision values yi and yj for every pair of correct nodes pi, pj ∈ Π \ F
is assigned then yi = yj . [1, Att04]

3. Validity: For every execution where ∀pi ∈ Π : xi = v the decision value of all correct
nodes yi is v. [1, Att04]
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The first property, termination, states that the protocol has to execute within finite time,
otherwise an infinite loop would perfectly solve the consensus problem, though never reaching
consens as we intend. The second property, agreement, has to be established, to prevent each
node deciding on its own initial value xi. The last property, validity, guarantees that trivial solu-
tions like simply assigning yi = 0 on all nodes, regardless of their initial value xi, is prohibited.
[1, Att04]

As described above we compare the protocols satisfying consensus according to their worst
case performance characteristics. A lot of research and lower bound proofs have been inves-
tigated in the last decades leading to the following results. [12, Fis85] proved that consensus
cannot be reached in an asynchronous system, even with a single crash failure. Further, the
lower bounds of n ≥ f + 1 for crash and n ≥ 3f + 1 for Byzantine fault tolerant protocols have
been developed. The lower bound on the number of rounds is given by r ≥ f +1, which is valid
for crash as well as Byzantine failure tolerant consensus protocols. For systems withstanding
Byzantine failures, the message complexity has been proved to be at least polynomial in n. [1,
Att04]

3.3 A Reduction of Replica Determinism to Consensus

As already described in Section 2.3, replicated nodes have to guarantee replica determinism,
which is quite a challenging task. Schneider has given a quite easy but powerful abstraction
of replica determinant nodes, based on a state-machine approach. Therefore, a client server
model is applied, where clients request the execution of a task on a server. The idea is that tasks
executed on these servers are built as state machines S consisting of states Q and transitions
φ, where a state represents the history of the execution and a transition represents the atomic
execution of a deterministic program extending the history and thus lead to a state transition.
[30, Sch90]

Lemma 1. By the atomicity of the transitions the output of a state machine S is determined only
by its initial state q ∈ Q and the requests issued. [30, Sch90]

Assuming a point-to-point communication primitive (as given in Figure 3.5), by the atomic-
ity of transitions, it is quite easy to guarantee that requests originating from client c0 to the state
machine sm0 are executed in the same order they were issued by the client. Thus, in this simple
case order can be easily guaranteed.
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sm0

c0

outputinput

Figure 3.5: Simple example of state machine approach

Unfortunately, in the case of faults, it is not sufficient to rely on the output value of a sin-
gle instance of the state machine, and thus many instances of the same state machine have to
be used. To ensure that each replica executes the requests in exactly the same sequence, the
replicas have to be coordinated. [30, Sch90] To guarantee replica determinism on the order of
events and input values some kind of agreement protocol has to be applied (see Figure 3.6). In
the Byzantine case, [23, Pea80] showed that agreement can only be guaranteed with n ≥ 3f + 1
nodes.

agreement

sm0 sm1 . . . sm2

c0v0

Figure 3.6: State machine with agreement on inputs

Assuming that we can handle replica coordination between the state machines, the problem
of choosing a correct output still remains. Since it is not possible to guarantee a f-fault tolerant
system by applying a single voter (representing a single point of failure) we have to distinguish
between two possible implementations of output usage:
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1. Outside the system: If the output is used outside the system and the component can be
replicated, we can replicate the voter too, increasing the system resiliency.

2. Within the system: If the output is used as the input value of a client, we can reduce the
single point of failure of the voter and the single point of failure of the client to one single
point of failure, since we can implement the voter within the client.

As the clients represent a single point of failure, they have to be replicated for the same
reason as for the state machines. Leading to the same constraints on their input values (the state
machines output values). Therefore, each state machine instance has to agree on the input value
chosen among the clients’ proposals, and thus agreement among these has to be enforced, as
shown in Figure 3.7.

agreement/input

agreement/output

sm0 sm1 . . . sm3

c0,v0 c1,v1 . . . c3,v3

Figure 3.7: State machine with agreement on outputs

Since an instance of a state machine and a client instance as well as two client instances
(the one responsible for the input value and the one responsible for the output value) can be
combined, we can reduce the problem of ensuring replica determinism with values used inside
the sphere of the system to the consensus problem (as stated in Theorem 6).

Theorem 6. The problem of ensuring replica determinism within the sphere of the system guar-
anteeing f-resiliency can be reduced to consensus (as well for the crash as for the Byzantine
fault model).
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agreement

sm0,c0,v0 sm1,c1,v1 . . . sm3,c3,v3

Figure 3.8: Simplification of the state machine approach to consensus

3.4 Relation between Problems

Before we start our discussion about consensus protocols we clarify the relation between certain
problems similar to the consensus problem.

Besides the severity of fault classes described in Section 2.2 we can distinguish between
deterministic protocols as well as randomized protocols. In the case of deterministic protocols,
drawn on the state machine approach (see Section 3.3), the state resulting from a transition is
uniquely given by the current state and the event triggering a transition. This is not the case
when randomized protocols are used. In the case of randomized protocols the same event can
result in different successor states. Given a common current state, it is possible for the protocol
to decide between different transitions with a predefined probability. [16, Had93]

For our further analysis we restrict ourselves to deterministic protocols.

Further, we restrict our elaboration of certain problems to those which communicate by
broadcasting messages via a fully connected point-to-point message passing subsystem. As the
loss of a single message can already cause inconsistencies within the system a distributed system
using unreliable broadcasts cannot be assumed to be fault tolerant. Reliable Broadcast, FIFO
Broadcast, Causal Broadcast, Atomic Broadcast, FIFO Atomic Broadcast and Causal Atomic
Broadcast are common protocols to solve this problem. We describe the kind of problems they
are solving and their properties in the remainder.

The properties of reliable broadcast are validity, agreement and integrity ensuring no mes-
sage m is generated or altered during a broadcast, and ensuring that all correct nodes eventually
deliver the message originally sent by the sender. In the case the sending node fails during ex-
ecution reliable broadcast offers two possible outcomes on the delivery of a message m. Either
no correct node delivers m or all correct nodes deliver m.

1. Validity: In every admissible execution all correct nodes pi ∈ Π \ F eventually deliver a
message m broadcasted by a correct node p ∈ Π \ F in advance.
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2. Agreement: If a correct node p ∈ Π \ F delivers message m all correct nodes pi ∈ Π \ F
eventually deliver m.

3. Integrity: Every correct node p ∈ Π \F delivers message m exactly once if and only if m
has been broadcasted by a correct node p ∈ Π \ F before.

If our system relies on messages delivered in the same order they have been broadcasted by
a node we have to refine our problem description with first in first out semantic, leading to FIFO
Broadcast, ensuring that a message m broadcasted by a correct node p before p broadcasts m′

is not delivered after m′.

4. FIFO Order: If m has been broadcasted before m′ by a correct node p ∈ Π \ F , then no
correct nodes pi ∈ Π \ F delivers m′ before m.

As an example, this can be an important property in the case a node broadcasts its current
state, or the value of a sensor. Consider a system monitoring an autonomous flight system and
two states. The first state reporting a non critical system state and the second state reporting a
loss of altitude, probably leading to a collision. If the messages are not delivered in FIFO order
this can lead to catastrophic consequences.

In many scenarios, the causality of events (introduced by [20, Lam78] and outlined in Sec-
tion 2.6) is crucial for their correct interpretation. Protocols able to ensure causal order are called
Causal Broadcast and are extentions to Reliable Broadcast by the causal order property. Be-
sides FIFO Broadcast, Causal Broadcast guarantees causal relationships not only for messages
sent by a single sender p, but for messages broadcasted by any correct node.

5. Causal Order: If the broadcast of m causally influences m′ no correct node p ∈ Π \ F
delivers m′ before m.

As we already depicted in Section 2.6, causality defined by the happened before relation
accomplishes a partial order of messages. Lets think about two messages: (i) m sent by node
pi (managing the fuel consumption) which says the speed of our airplane has to be decreased
by 10m/s and (ii) a second message m′ sent by node pj (calculating the vertical acceleration
according to m) that says that the speed of the airplane has to increase by 10% to keep the
desired altitude.

If the two messages causally relate to each other, the order of the messages is crucial. As-
sume two nodes p and q controlling the engines of the airplane and p receives m before m′,
while q receives m′ before m. Given, the speed of the airplane was x m/s, node p outputs
an actual speed of (x − 10) ∗ 1, 1 while q outputs x ∗ 1, 1 + 10. Therefore, in such a system
the causal order has to be supported. To establish total order of messages among all nodes, we
introduce the following property based on the properties given by Reliable Broadcast, namely
Atomic Broadcast.

6. Total Order: If two correct nodes p, q ∈ Π \ F deliver the messages m and m′, p delivers
m before m′ if and only if q delivers m before m′.
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Figure 3.9: Relations among broadcasting problems

FIFO Atomic Broadcast and Causal Atomic Broadcast are defined as FIFO Broadcast and
Causal Broadcast but are extended by the total order property. An overview of certain variations
and relations of the presented broadcasting primitives is given in Figure 3.9.

To analyze the relations between the given problems as well as the consenus problem we
apply a well known method from the field of formal methods, namely reduction. Reduction
allows us to state that a problem A is not harder than a problem B under certain assumptions
about the system model, if we can find a transformation TB←A transforming every instance of a
problem B to a instance of problem A. We abbreviate this with A � B. If the reduction holds
in both directions, thus A � B as well as B � A we say the problems A and B are equivalent.
[16, Had93]

In the following, we will sketch the idea of a reduction between Atomic Broadcast and
Consensus, leading us to the fact that Consensus is not a harder problem than Atomic Broadcast.

1. Termination (of Consensus): Since every correct node must know in which round it has to
decide after the protocol starts, termination of consensus is given.
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2. Validity of Reliable Broadcast states that a correct processor pi only delivers a message
m previously broadcasted by a correct processor pj . Constructing an algorithm executing
Atomic Broadcast for all nodes p ∈ Π. We know that n ≥ 3f + 1 holds in the Byzantine
fault model (or n ≥ f + 1 holds in the crash fault model), for a total number of nodes n
and a maximum number of faulty nodes f . Thus, at least n − f nodes deliver a message
initially broadcasted by one of the n − f correct nodes. By Total Order it is supported
that even if multiple executions of the protocol are executed on the nodes back to back,
all messages delivered and used for the consensus protocol are in the same order they
were previously broadcasted. This has the same effect like running multiple consensus
instances one after another. Therefore, validity (of Consensus) follows immediately by
validity of Atomic Broadcast.

3. Agreement of Reliable Broadcast states that if a correct processor pi ∈ Π \ F delivers
message m all correct processors pj ∈ Π \ F deliver m. Again, by constructing an
algorithm executing Atomic Broadcast for all nodes p ∈ Π we know that at least n − f
nodes deliver the same message m for each execution of Reliable Broadcast. Applying a
majority voter f(m0, . . . ,mn−1) every node pi ∈ Π \ F will decide on the same value
yi = f(m0, . . . ,mn−1). Assume a node pi decides another majority value than node pj .
Since all correct nodes deliver exactly the same values this means either pi or pj are faulty.
Therefore, all correct processors decide on the same value y. Proving that agreement of
Consensus follows directly from agreement of Atomic Broadcast.

The other direction can be argumented similarly and thus we can state that the two problems
are equivalent. By this we can adopt all results from one of the problems to the other and vice
versa. [16, Had93]

3.5 Byzantine Agreement

In literature Atomic Broadcast is often referred to as Byzantine Agreement. Thus, we will out-
line some common representatives of these algorithms. Byzantine Agreement is the problem of
reaching agreement on a single value proposed by a dedicated node pi in a Byzantine faulty
environment. The aim here is to propagate the message m of the sender pi to all other nodes in
the system in such a way that all correct nodes (i) either deliver the message m if the sender pi
is correct (ii) or deliver no message at all. A draft for a reduction of consensus to Atomic Broad-
cast has been given in Section 3.4. Therefore, the agreement on a single value xi propagated
by a dedicated sender pi is the major difference to the Consensus problem, where agreement
on a set of values (x0, . . . , xn−1), one value xi per node is required. The Byzantine Agreement
Algorithms sketched are given in Table 3.1.

The algorithm shown in [23, Pea80] was the first protocol for The Byzantine Generals Prob-
lem proposed in [21, Lam82], where the handling of malfunction and inconsistent communica-
tion of system components was described. The Byzantine Generals Problem is about a group of
generals camping around their enemy city. The generals of the Byzantine army can only com-
municate via messengers to agree on a common battle plan. The problem given is how to ensure
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Protocol n rounds communication computation
[23, Pea80] n ≥ 3f + 1 f + 1 exp(n) exp(n)
[10, Dol82] n = 3f + 1 2f + 3 f3log(f) 1

Table 3.1: Representatives of Byzantine agreement algorithms

all loyal (non faulty) generals decide for the same plan. The algorithm communicates in each
round which informaton all the nodes heard so far. This information is stored in a tree on each
node (the so called information tree). Given that the number of nodes exceeds n ≥ 3f+1, a cor-
rect solution can be found by majority voting based on the information tree. In contrast to other
implementations, the algorithm is quite simple, but requires a huge communication and compu-
tation effort. Since, this kind of agreement is similar to the Exponential Information Gathering
protocol presented in the next section, we won’t go into more detail now.

Another algorithm has been developed by [10, Dol82]. It uses an asymmetric approach
where the identifiers of a node are sent to state their witness to 1 while the trust in 0 is given by
omitting to send a message. In the first round the dedicated transmitter broadcasts an initiation
message with its value to all nodes (including itself). On receipt of an initiation message con-
taining 1 each correct node broadcasts its node id. Dependent on a round dependent threshold
the nodes being witnesses to the propagated value can support the message received during ini-
tiation. The propagation of spurious messages is prohibited by restricting the correct nodes to
only broadcast messages if enough supporters for the message are known. If the number of sup-
porters exceeds 2f + 1 the nodes agree on 1. Otherwise they agree on 0. (A detailed description
of the algorithm can be found in [10, Dol82].)

Revisit that in the Byzantine Agreement Problem all correct nodes agree on a value or at
least decide that the originator of the value is faulty. [10, Dol82] In the Consensus Problem all
correct nodes have to decide for a single value out of a set of values distributed throughout the
system. In the following Sections 3.6-3.13 we will discuss the most famous algorithms solving
the consensus problem assuming the Byzantine fault case.

3.6 An Exponential Algorithm

Exponential Information Gathering (EIG)

One of the most famous Byzantine consensus algorithms is the EIG algorithm, given by an ex-
tention to the Byzantine agreement protocol presented by [23, Pea80]. The algorithm requires
n ≥ 3f + 1 nodes and runs for f + 1 rounds, which are optimal results for Byzantine consensus,
but forces an exponential communication effort with respect to the number of nodes n.

The algorithm is split into two parts. The first part is used to gather and distribute information
among the nodes. The second part is used to calculate a decision based on the results of the first
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part.

1. Gathering Information: The information gathered is stored in a tree locally on each pro-
cessor pi (treei). The root node of the treei holds the initial value of pi. It has n − 1
children one for each node pj , where pj ∈ P \ pi. And each of them again has successors
for each node pq, where pq ∈ P \ {pi, pj} and so forth.

All edges in the tree are labeled with the name of the succeeding node, while each node is
labeled by the sequence of edge labels starting from the root ("p0,p1,p2" e.g.). The node
values, namely treei(p0, p1, p2), are filled during the information gathering phase with
the values received from the other nodes. Initially they hold the algorithms default value.
The tree is constructed such that the meaning of each entry is the perception of node pi of
the value transmitted from pj . Therefore, e.g., the value treei(p0, p1, p2) is the perception
of pi of p2’s view of p1’s view of p0’s value.

In each round r of the algorithm the level l = r + 1 constructed in the last round of the
tree is broadcasted to all other nodes and filled into their tree. This procedure is continued
for f+1 rounds after which the tree is complete and the second part of the protocol can
calculate the decision value of node pi based on treei.[23, Pea80] [1, Att04]

2. Calculation of the Decision Value: To calculate the decision value for node pi the resolve
function is applied recursively to treei, starting with its root node.

Therefore, resolve(π) returns the value of tree(π) if the node labeled with π is a leaf
node. Otherwise it returns the majority of all values computed by the resolve functions of
the direct children of the node labeled π, or the default decision value ⊥ of the protocol,
if no majority exists. [1, Att04] [15, Gar98] [5, Ber89a]
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Figure 3.10: Example trees for nodes p0 and p1, p0, p1 ∈ P \ F

The algorithm for node pi is outlined in Algorithm 1. The function labels(d) returns all the
node labels at distance d from the root in the tree.

Algorithm 1 Exponential Information Gathering algorithm, code for node pi, 0 ≤ i ≤ n
Initialization:

1: x := {1|0} {initial value for pi}
2: y {decision value}
3: ⊥ := 0 {default value}

4: f {upper bound on nr of faulty nodes}
5: n {nr of nodes}

6: tree {the decision tree}

Information Gathering:
7: for round k, 1 ≤ k ≤ f + 1: do

8: for each π in labels(k − 1): do
9: send tree(π) + π to all nodes, where i /∈ π

10: on receipt of treej(π′) + π′ from node pj append treej(π′) to tree(π′, j)
11: if no message was received for a leaf add ⊥ to that leaf

Calculation of Decision
12: y := resolve(root)
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In Figure 3.10 the trees for two correct nodes p0 and p1 are outlined. The two grey shaded
nodes are an example of the information exchange between the nodes. The node value p2 of
tree0 is copied to the node p2,p0 in tree1. During round 2 p0 tells p1 about the values it re-
ceived in the previous round, the value of p2 in our example. Based on this mechanism, it can
be shown that, for all non-faulty processors, the resolve function resolvei(π) equals the node
value treej(π′) and that at least one common node on each path from the root to the leaves must
exist. This is the basis for the algorithms correctness proof (which is omitted here).

3.7 A Polynomial Algorithm with Constant Message Size

As we have seen in the previous section, the Exponential Information Gathering protocol pro-
vides optimal resiliency and is also optimal in the number of rounds required, but has an ex-
ponential increase in message complexity with respect to the number of nodes. In this section
we present algorithms with constant message complexity. We will see the tradeoff between the
complexity criteria (resiliency, round complexity and message complexity). Unfortunately, by
now no algorithm is known to be optimal in all three criteria. [1, Att04]

Phase Queen

The Phase Queen algorithm is the first algorithm with polynomial communication effort that
will be discussed in more detail. It executes in f + 1 phases, where each phase consists of
two rounds of communication. The message size required by the Phase Queen algorithm is 1
bit. Compared to the Exponential Information Gathering protocol, beside the slightly increased
number of rounds it additionally requires n ≥ 4f + 1 nodes to tolerate f faulty ones.

The Phase Queen algorithm is given in Algorithm 2. Each node has a private preference
value V which is initially set to X (the input value of the node). As outlined above, the algo-
rithm executes in f + 1 phases. Each phase consists of two rounds of communication, namely
the universal exchange and the queens broadcast, as shown in Figure 3.11. During the universal
exchange every node broadcasts its private preference V to all other nodes in the system. On
receipt of the messages, the number of received 1s and 0s are counted in C[0] and C[1], respec-
tively. Missing messages are counted as if they would have the default value v⊥ = 0. If the
count of 1s exceeds the threshold of n

2 , the node sets its preference to 1 otherwise to 0. In the
second round of the phase, namely the queens broadcast, a dedicated node is chosen to broadcast
its private preference to all other nodes. On receipt of the queens broadcast, the receiving nodes
set their preference value V to the received message, if the belief in V was too low, namely, if
the count of received 1s respectively 0s is below n

2 +f , V is overwritten by the queens broadcast.
The queen of each phase is chosen at design time. It has to be a uniquely chosen node for each
phase. Thus, the same node can only be queen in at most one phase of the protocol.

By the thresholds of both parts of a phase, it is ensured that all correct nodes will prefer a
certain value V at the end of a phase if they already preferred it at the start of the round. When
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Algorithm 2 Phase Queen algorithm, code for node pi, 0 ≤ i ≤ n
Initialization:

1: x := {1|0} {initial value for pi}
2: y {decision value}

3: f {upper bound on nr of faulty nodes}
4: n {nr of nodes}

5: V := {x} {preference value}
6: C[0] := 0 {counter for received 0s}
7: C[1] := 0 {counter for received 1s}

Computation:
8: for round k, 1 ≤ k ≤ f + 1: do

universal exchange
9: send V

10: C[0] := the number of received 0s
11: C[1] := the number of received 1s
12: V := C[1] > n

2

queens broadcast
13: if k = i then
14: send V
15: if C[V ] < n

2
+ f then

16: V := the message received

decision
17: y := V

the first non-faulty queen broadcasts its value, the believe of all non-faulty nodes will be fixed,
if it was not already.

The belief, however, can not be different for different, non-faulty nodes, as it requires a min-
imum of n

2 + f equal values and therefore there can be no majority for a different value on any
other node. Therefore, if one non-faulty node has a majority for a value, all other non-faulty
nodes must also prefer this value or do not prefer a value at all (and will use the queen’s sugges-
tion).

Phase King

The second polynomial algorithm we discuss here is called Phase King and follows a similar
philosophy as the Phase Queen algorithm discussed previously. Like Phase Queen, it breaks ties
by allowing a dedicated node per phase to propagate its current preference. The Phase King
algorithm uses an extra round of communication where the nodes can tell others whether they
have already a strong preference or not. This additional information reduces the number of re-
quired nodes to n ≥ 3f + 1. The algorithm requires 3(f + 1) rounds when using 2 bit messages
or 4(f + 1) rounds when using 1 bit messages. [8, Ber92a] [5, Ber89a]
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Figure 3.11: Execution of Phase Queen algorithm

A pseudocode implementation of the Phase King algorithm is given in Algorithm 3. To
establish single bit messages, the second universal exchange has to be split in two separate com-
munication rounds. In the first universal exchange (first round of phase) the protocol broadcasts
its preference value to all other nodes.

As in the Phase Queen algorithm, in the second round of the phase the number of received
0s and 1s are counted in C[0] and C[1], respectively. Therefore, C[0] and C[1] give an indicator
which value v ∈ {0, 1} is strongly preferred. This preference is exchanged during the second
universal exchange. If C[v] exceeds the threshold n−f , we can safely assume that at least more
than half of all correct nodes would decide Y = v. Further, we can state that no two correct
nodes pi and pj i 6= j will ever evaluate Ci[0] ≥ n− f while Cj [1] ≥ n− f . Assume this could
happen. By the thresholds of ≥ n− f both nodes would have received at least n− f messages
stating 0 or 1, respectively. Summing up at least a total of (n − f) + (n − f) = 2n − 2f
messages (counting the spurious messages twice) must have been sent. By n ≥ 3f+1 this gives
a total of 4f+2 messages. By the pigeonhole principle, given a maximum of 3f+1 messages per
round f + 1 messages must be spurious, and therefore f + 1 nodes must be faulty. Leading to
a contradiction. Therefore, we can conclude that as soon as one correct node signalises a strong
preference for v, no other correct node pj will have a strong preference for v̄ 6= v. After the
second exchange D[v] holds the number of nodes that detected a strong preference to decide to
v during the first universal exchange. A node pi can set its local preference value Vi to v, if D[v]
exceeds f , namely, if at least one correct node detected a strong preference for v.

During the third round of phase k, namely the kings phase, a dedicated node pk broadcasts
its preference value Vk. Every node pi with Di[Vi] < n− f sets its preference to the value prop-
agated by the king. Since C[v] ≥ n− f for at least n− f nodes, and therefore D[v] ≥ n− f we
can conclude that, if all correct nodes prefer a value v at the beginning of a phase they will prefer
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the same value at the end of the phase. A similar argument as for Phase Queen can be given to
state that if one correct node evaluates D[v] ≥ n− f to true no other correct node can evaluate
D[v̄] ≥ n − f . Assuming a correct king, either a correct node already holds the value v during
the kings broadcast with D[v] ≥ n− f or sets V = v during the kings broadcast. Therefore, by
applying f + 1 phases we can guarantee correctness of the protocol. [7, Ber89b] [8, Ber92a]

Algorithm 3 Phase King algorithm, code for node pi, 0 ≤ i ≤ n
Initialization:

1: x := {1|0} {initial value for pi}
2: y {decision value}

3: f {upper bound on nr of faulty nodes}
4: n {nr of nodes}

5: V := {x} {preference value}
6: C[0] := 0 {counter for received 0s}
7: C[1] := 0 {counter for received 1s}
8: D[0] := 0 {counter for strong preference of 0}
9: D[1] := 0 {counter for strong preference of 1}

Computation:

10: for phase k, 1 ≤ k ≤ f + 1: do

universal exchange 1
11: if D[V ] < n− f AND k > 1 then
12: V := the message received
13: send V

universal exchange 2 part 1
14: C[0] := the number of received 0s
15: C[1] := the number of received 1s
16: send C[0] ≥ n− f

universal exchange 2 part 2
17: D[0] := the number of received 1s
18: send C[1] ≥ n− f

kings broadcast
19: D[1] := the number of received 1s
20: V := D[1] > f

21: if k = i then
22: send V

23: if D[V ] < n− f AND k > 1 then
24: V := the message received

decision
25: y := V
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3.8 Early Stopping

In this section we present a technique called Early Stopping. Early Stopping enables the algo-
rithm to detect when a preference for a decision value can safely be finalized. This is the case,
when the algorithm detects that all correct nodes would reach agreement, and thus termination
at an earlier phase is possible. [2, Bar95]

Early Stopping Phase King

No matter if faults have occured or not, the number of rounds required by the Phase King algo-
rithm is constant. The Early Stopping Phase King variant, however, yields r = min(3(f+1), 3(t+2))
rounds of communication for n ≥ 3f+1 nodes and a total bit complexity of b = O(nt min(f + 2, t+ 1))
using two bit messages and r = min(5(f + 1), 5(t+ 2)) for single bit messages, if f is the max-
imum number of faults the algorithm can handle and t is the actual number of faults occurring
during a single execution. [2, Bar95]

As we can see in Algorithm 4 the universal exchanges are similar to the exchanges used
in Algorithm 3. The main difference to the previously discussed Phase King algorithm can be
found in the king’s broadcast. In contrast to Phase King, the king’s broadcast in this variant
is performed by every node. During this stage every node sends a tuple consisting of a value
preferred by itself and an indicator determining the believe in the strong preference for this value.
By line 19, if less than f + 1 nodes signal that they strongly believe in its preference value, the
preference value of the phase’s king is set as preference value. This execution is similar to the
unmodified algorithm.

To optimize the algoritm we have to detect when it is save to stop. In the unmodified Phase
King, a node evaluating D[v] ≥ n − f would not change the value v ∈ {0, 1} during this
phase. This is signalised by sending Π = 1 during the kings phase. The number of nodes which
signalised Π = 1 and therefore won’t change their decision values in the current execution of
the protocol is counted by S. If more than 2f nodes signalise this (S > 2f ), at least f + 1
correct nodes have a strong preference D[v] ≥ n − f for a value v. Therefore, at least f + 1
correct nodes have notified that at least n − f ≥ 2f + 1 correct nodes already prefered V = v
at the beginning of phase k. Lets call this set P ′ in the remainder. In the unmodified version
the nodes pi ∈ P ′ would again send their values V = v to each other during the next phase.
Every correct node would evaluate C[v] ≥ n− f during the next phase and therefore all correct
nodes would decide to v. By this, we can terminate the execution of the protocol for a node
safely, if it encounters S > 2f . Therefore, the other nodes that have not terminated yet must
compensate the missing messages from the nodes already terminated. If no message from pi is
received during a phase by a node pj , pi assumes to receive its own preference value Vi, except
for Πj it assumes 1. By line 30 of Algorithm 4 all correct nodes (including the terminated ones)
have set V = (D[1] > f) = v in the kings phase (and in any later one) when the first processor
terminates. Thus, all correct nodes will decide Y = v too. [6, Ber92b]
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Algorithm 4 Early Stopping Phase King algorithm, code for process pi, 0 ≤ i ≤ n
Initialization:

1: x := {1|0} {initial value for pi}
2: y {decision value}

3: f {upper bound on nr of faulty nodes}
4: n {nr of nodes}

5: V := {x} {preference value}
6: C[0] := 0 {counter for received 0s}
7: C[1] := 0 {counter for received 1s}
8: D[0] := 0 {counter for strong preference of 0}
9: D[1] := 0 {counter for strong preference of 1}

10: Π := 0 {strength indicator for preference value}
11: A[0..n− 1] := {0}n {input memory for king’s phase}
12: B[0..n− 1] := {0}n {input memory for king’s phase}
13: S := 0 {number of nodes known with a permanent decision}

Computation:

14: for phase k, 1 ≤ k ≤ f + 1: do

universal exchange 1
15: if k > 1 then
16: B[i] := the value received from pi
17: S :=

∑i<n
i=0 B[i]

18: if S ≤ f then
19: V := A[k − 1]
20: else if S > 2f then
21: y := V
22: TERMINATE
23: send V

universal exchange 2 part 1
24: C[0] := the number of received 0s
25: C[1] := the number of received 1s
26: send C[0] ≥ n− f

universal exchange 2 part 2
27: D[0] := the number of received 1s
28: send C[1] ≥ n− f

kings broadcast part 1
29: D[1] := the number of received 1s
30: V := D[1] > f
31: Π := D[V ] ≥ n− f
32: send V

kings broadcast part 2
33: A[i] := the value received from pi
34: send Π

35: B[i] := the value received from pi
36: S :=

∑i<n
i=0 B[i]

37: if S ≤ f then
38: V := A[k − 1]
39: else if S > 2f then
40: y := V
41: TERMINATE

decision
42: y := V
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Protocol resiliency message size time complexity
EIG n ≥ 3f + 1 exp f + 1
EIG n ≥ 3f + 1 1 msgsize(n, f + 1)
Phase Queen n ≥ 4f + 1 1 2(f + 1)
Phase King n ≥ 3f + 1 1 4(f + 1)

Early Stopping EIG n ≥ 3f + 1 exp min((f+1), (t+2))
Early Stopping EIG n ≥ 3f + 1 1 msgsize(n,min((f+1), (t+2)))
Early Stopping Phase Queen n ≥ 4f + 1 1 min(3(f+1), 3(t+2))
Early Stopping Phase King n ≥ 3f + 1 1 min(5(f+1), 5(t+2))

Table 3.2: Properties of algorithms and their Early Stopping variants

Other Early Stopping Results

An early stopping variant of the Phase Queen algortihm was presented in [6, Ber92b]. It uses a
similar approach as the already presented one for the Phase King algorithm.

The Early Stopping Phase Queen variant achieves a round complexity of r = min(2(f+1), 2(t+2))
for two bit messages and r = min(3(f+1), 3(t+2)) for single bit messages, given that n ≥ 4f+1.

An implementation for the early stopping EIG algorithm (presented in [6, Ber92b] achieves
a round complexity of r = min((f+1), (t+2)) using n ≥ 3f + 1 nodes. While these measures are
optimal, the exponential increase in message size, however, still exists.

Table 3.2 contains a comparison of all discussed algorithms (including their early stopping
variants). Since the further analysis and the implementations are based on algorithms using
1 bit messages, the function msgsize(n,R) is introduced here, to make the theoretical results
more comparable. It evaluates the number of messages to be sent per round, if the message size
does not exceed 1. In Table 3.2 it is used to transform the exponential message size used by
the Exponential Information Gathering algorithm to its time complexity if single bit messages
are used. Therefore, the result of msgsize(n,R) is exponential in n and R, where R gives the
number of rounds the protocol executes.

As shown in Tables 3.3 - 3.5, applying an early stopping variant of an algorithm is not
always beneficial. Since all of the early stopping variants do increase the round complexity of
the algorithm, their use has to be carefully evaluated first.

First, we evaluate the benefits of the Early Stopping Exponential Information Gathering
protocol. We therefore analyze the rounds needed by the normal protocol and compare it to the
Early Stopping variant. We thereby restrict the protocols to single bit messages. The EIG proto-
col needs r = msgsize(n, f + 1) rounds in this case, where msgsize(n,R) is given by Equation
3.1. It can be seen that in case of single bit messages the EIG protocol has an exponentially
increasing round complexity.
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n f t rounds needed for ESEIG rounds needed for EIG
4 1 0 4 4
4 1 1 4 4
7 2 0 7 37
7 2 1 37 37
7 2 2 37 37

16 5 0 16 396076
16 5 1 226 396076
16 5 2 2956 396076
16 5 3 35716 396076
16 5 4 396076 396076
16 5 5 396076 396076

Table 3.3: Evaluation of benefit using Early Stopping EIG

msgsize(n,R) = 1 +
d<R∑
d=1

i≤d∏
i=1

(n− i) (3.1)

Table 3.3 also shows the rounds required by the early stopping variant of EIG for f = 1,
f = 2 and f = 5 for the minimum number of required nodes (n = 3f + 1). For f = 1 we
have to use a system consisting of n = 4 nodes and the unmodified EIG as well as its early
stopping variant require 4 rounds, even if no fault occurs. In case of f = 2, the unmodified
algorithm needs exactly 37 rounds, when using the single bit variant independent of the number
of actually occurring faults t. The early stopping version, however, only requires seven rounds,
if there is no fault actually occurring (t = 0). If at least one fault occurs (t > 0), however,
the early stopping version also requires 27 rounds. For f = 5 the unmodified algorithm even
requires 396.076 rounds of communication. Therefore, the benefit of the early stopping variant
for t ∈ {0, 1, 2, 3} is enormous.

Table 3.4 summarizes the round complexity of the Phase Queen algorithm (using f = 1
f = 2 and f = 5). Again the benefit of early stopping gets relevant for higher values of f . We
can see that for f = 1, r = 6 rounds of communication are required in the early stopping case.
Therefore, the standard protocol with r = 2(f + 1) = 4 is faster in this case and therefore using
early stopping would be disadvantageous under this failure hypothesis.

If we have to assume a very high number of faults (f = 20, e.g.), the execution time in
the fault free case will be much better in the early stopping variant (6 rounds vs. 42 rounds).
As the table shows, even for lower numbers of tolerable faults (f = 5, e.g.), the early stopping
variant can lead to medium reduction in execution time, if the overall fault probability is low.
Nevertheless, the Phase Queen algorithm is a good example on how the early stopping variant
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f t rounds needed for ESPQ rounds needed for PQ
1 0 6 4
1 1 6 4
2 0 6 6
2 1 9 6
2 2 9 6
5 0 6 12
5 1 9 12
5 2 12 12
5 3 15 12
5 4 18 12
5 5 18 12
20 0 6 42

Table 3.4: Evaluation of benefit using Early Stopping Phase Queen

f t rounds needed for ESPK rounds needed for PK
1 0 10 8
1 1 10 8
2 0 10 12
2 1 15 12
2 2 15 12
5 0 10 24
5 1 15 24
5 2 20 24
5 3 25 24
5 4 30 24
5 5 30 24

Table 3.5: Evaluation of benefit using Early Stopping Phase King

may worsen the time complexity of the algorithm instead of improving it.

In Table 3.5 we have summarized the single bit variant of the Phase King algorithm for
f = 1, f = 2 and f = 5. According to Table 3.2 it requires r = min(5(f + 1), 5(t+ 2))
rounds. Since, if t ≤ f = 1 the algorithm takes 10 rounds no matter if a fault occurs or not, the
normal variant of the Phase King algorithm with r = 4(f + 1) = 8 rounds is the better choice
in this case. Nevertheless, the benefit of early stopping increases for bigger f as we can see for
f = 5 as long as the number of actually occurring faults is low.

To summarize the results of this section, the use of Early Stopping has to be evaluated very
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carefully with regard to the number of tolerable and actually occurring faults. In some cases,
the application of early stopping may even worsen the time complexity of an algorithm. For
systems with a large number of nodes and a high value of f , early stopping shows the biggest
benefits if the probability of actual occurring faults is low. Further, the early stopping variants
will only improve the average case and not the worst case runtime. If the execution time of the
algorithm has to be bounded, the application of early stopping will be futile, even if it improves
the average performance. Therefore, in many cases the usage of the normal, non early stopping
variants may be favorable.

3.9 Applying Committees to Phase King

As presented in Section 3.7, the Phase King algorithm is optimal in the required number of
nodes n and in its bit complexity. But its round complexity is at least 4 times the optimum one.

To reduce the round complexity [8, Ber92a] adapted the idea of a divide and conquer strate-
gie (as proposed in [7, Ber89b]) and applied the committee technique to the Phase King algo-
rithm to reduce the round complexity.

As we have already presented, the correctness of the Phase King algorithm is based on the
existence of a single, fault free King’s broadcast. Running the algorithm for f + 1 phases guar-
antees the existence of such a broadcast. The idea applied by [8, Ber92a] is to partition the set
of nodes in R disjoint sets Qk. Each set Qk represents the preference of the King in phase k,
0 ≤ k ≤ R.

Algorithm 5 Excerpt of Phase King algorithm with committees, code for node pi, 0 ≤ i ≤ n
1: ...

kings broadcast
2: if pi ∈ Q′k then
3: run ICP with V and broadcast all messges sent by ICP to all nodes
4: if C[V ] < n

2
+ f then

5: V := the consensus value of Qk

6: ...

As shown in Algorithm 5, we apply a so called intra-committee protocol, abbreviated with
ICP , to assure consistency among the nodes of a set Qk. ICP can be any algorithm, determin-
istically solving the consensus problem [8, Ber92a]. Since we try to reduce the round complexity
of the algorithm it is advantageous if ICP is round optimal. The tradeoff here is clearly the need
for ICP which requires multiple rounds of communication per phase. By carefully choosing
R, ICP can be chosen to be round optimal while the other complexity measures are marginal,
since the committees are quite small.
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During the execution of ICP all messages communicated inside Qk are broadcasted to all
p ∈ P . By this, every p ∈ P \ Qk can compute the preference value of the kth committee and
thus the kings broadcast. To guarantee consistency for the King’s broadcast, respectively the
committees’ broadcast, at least more than a third of the committees nodes have to be non-faulty.
By this, correctness of this protocol follows the correctness of Phase King, as long as a commit-
tee can be found where non-faulty nodes dominate. [8, Ber92a]

A similar technique was used in [7, Ber89b] to reduce the round complexity of Phase Queen
as we will discuss in Section 3.11. In the following Section 3.10 we present an example for the
use of committees with the Phase King protocol.

3.10 Sample of Phase King with Committees using EIG as ICP

In this section we will provide an example of the Phase King Protocol with Committees. As
ICP we use the Exponential Information Gathering protocol as shown in Section 3.6. Further,
we do not restrict the message size used by the ICP . Nevertheless, the extended Phase King
algorithm is used in the single bit version as presented in Section 3.7. Recalling the previously
discussed properties, the ICP needs n ≥ 3f + 1 nodes and f + 1 rounds with an exponential
increase in message size with respect to n. The Phase King algorithm on the other hand also
uses n ≥ 3f + 1 nodes but an increased number of 4(f + 1) rounds for single bit messages.

Assuming f = 4 for this example, the unmodified Phase King algorithm needs at least
nPK ≥ 13 nodes and rPK = 20 rounds to execute. As we have already discussed, the correct-
ness of Phase King algorithm can be achieved, if at least one kings broadcast is fault free. Since
all messages of ICP are received by every node, and the committees are known in advance,
each node can evaluate the kings broadcast of each round on its own. Since the universal ex-
changes during the unmodified Phase King execution does not change when we use committees,
the criteria of a fault free kings broadcast to guarantee correctness can safely be assumed. To
establish this we execute the algorithm in 2 phases using an EIG instance able to withstand
fEIG2 = 2 faults each. We abbreviate this by EIG2(single) and EIG2(multi) for single bit
messages and unrestricted messages, respectively, in the remainder.

Since the number of nodes needed for nEIG2 ≥ 7 we extend the sample model using Phase
King with committees to nPKc ≥ 14. To show that at least one kings broadcast is executed
fault free under the assumption f = fPK = fPKc = 4 we distinguish three cases: (i) Either
2 faults occur during each phase which can be handled by EIG2 or (ii) 1 fault occurs during
the first phase and 3 faults occur during the second phase which can be handled by EIG2 in
the first phase and thus the first phase has a correct kings broadcast or (iii) 1 fault occurs during
the second phase and 3 faults occur during the first phase which can be handled by EIG2 in the
second phase and thus the second phase has a correct kings broadcast. Therefore, correctness of
the algorithm using the constructed committees can be shown. [8, Ber92a]
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rPKc(∗) = 2(3 + rEIG2(∗)) (3.2)

As given in Equation 3.2, each phase consists of 3 rounds for the universal exchanges and
rEIG2(∗) rounds for the ICP protocol. Since rEIG2(multi) = 3 the algorithm using two com-
mittees needs rPKc(multi) = 12 rounds of execution in contrast to rPK = 20 for the unmodified
version.

For our further evaluations we have restricted the communication model to support single
bit messages only. Therefore, a mapping of the message size to a sufficient number of additional
rounds, as presented in Section 3.8, has to be established. Therefore, rEIG2(single) = 37 and
further rPKc(single) = 80. (A detailed conversion is given in Equation 3.1). Similar results can
be derived for other scenarios, using restricted message sizes and EIG as ICP .

In summary, the committee technique can be used quite well to reduce the number of rounds
in a system where message size is not restricted. In restricted systems the unmodified algorithms
perform better.

3.11 Applying Committees to Phase Queen

In [7, Ber89b] a similar technique as described in Section 3.9 is applied to the Phase Queen algo-
rithm. Here the Queens broadcast is substituted by an inter committee protocol ICP , fullfilling
the same properties as the inter committee protocol used in Section 3.9. The major difference
in the committees Q′k used to reduce the round complexity in Phase Queen case is the way they
have to be constructed.

Since we have to guarantee at least one broadcast of a queen (in our case a committee),
we introduce f ′k representing the number of faulty nodes assumed per committee. [7, Ber89b]
proposes to choose R′ and the size of the committees |Q′k| as follows:

R∑
k=1

(f ′k + 1) = f ′ + 1|Q′k| = 4f ′k + 1 (3.3)

By Equation 3.4 and the fact that ICP is a protocol which resiliency metric is at least
n ≥ 4f + 1 a phase of consense about the committees value must exist.

R∑
k=1

(4f ′k+1) = 4

R∑
k=1

(f ′k+1)−3R = 4(f ′+1)−3R = 4f ′+1−3(R−1) ≤ 4f ′+1 ≤ n (3.4)
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3.12 Recursively Applying Phase King

Another idea presented in [7, Ber89b] is to apply the Phase King algorithm with committees
recursively to achieve nearly optimal round complexity f + O(f) and asymptotically optimal
total bit transfer. To achieve this a similar technique as presented in Section 3.9 is used. As
before, the Recursive Phase King algorithm (RPK) executes in the same way as the Phase King
algorithm, but splits the set of nodes p ∈ Q into two equally sized subsets executing the kings
broadcast. Therefore, new instances of RPK are executed using the two sets forming two com-
mittees Q0 and Q1. In each phase another committee is used as King, by applying RPK on the
Phase King’s committee set. This procedure is executed as long as the sets Q0 and Q1 are large
enough to execute the round optimal consensus protocol ICP . During each recursion a Phase
King algorithm is executed on the two currently used subcommittees.

RPK(Q) executes the universal exchange for n = |Q| nodes, in the succeeding rounds the
algorithm RPK(Q0) and RPK(Q1) are executed, and so on. Since the sets are equally par-
titioned, every stage of the recursion needs n + n

2 + n
4 + . . . rounds to execute the universal

exchanges, and f + 1 additional rounds for the ICP , providing a nearly optimal reduction of
the previously given number of rounds to f +O(f). In summary, the Recursively applied Phase
King algorithm requires n ≥ 3f + 1 nodes, f + O(f) communication rounds and a total bit
transfer in the order of O(nf). [7, Ber89b]

3.13 Phase King when Consensus is Repeadedly Needed

In the previous sections we discussed the requirement of consensus algorithms where a set of
nodes has to agree on a set of values {0|1}n. Generalizing the problem leads us to Multicon-
sensus, where agreement on a set of values {0|1}n×k is required k times. [2, Bar95] presents
an algorithm achieving it for n ≥ 3f + 1 nodes and optimal amortized costs in all other mea-
sures, when k is sufficiently large. In this variant of the Multiconsensus problem each instance is
started after the previous instance has terminated. The numbers of communication rounds r∗, the
total number of bits b∗ and the message sizem∗ for an instance of k-input sets is r∗ = O(1+ f

k ),
b∗ = O(nt + nt3

k ) and m∗ = O(1 + t2

k ). As we can see, for k ≥ f2 this leads optimal lower
bounds in all measures (r∗ = O(1), b∗ = O(nt) and m∗ = O(1)). When restricting the mes-
sage size to single bit messages, namely m∗ = 1, algorithms have been developed providing
r∗ = O(1 + f

k ) and b∗ = O(nt) but requiring an quadratic increase of nodes in f . [3, Bar91] [2,
Bar95]

3.14 Results of Theoretical Analysis

Summing up, in this chapter we described the problem of reaching consensus and presented
protocols solving the problem. Also a draft for the reduction of Triple Modular Redundancy and
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replica determinism to the consensus problem in Byzantine faulty environments was outlined.

Among the presented and theoretically analyzed protocols were:

1. Protocols requiring an exponentially increasing number of communication rounds like the
Exponential Information Gathering protocol.

2. Protocols requiring polynomially increasing number of communication rounds like the
Phase King protocol and the Phase Queen protocol.

3. Enhancements of these protocols enabling early stopping.

The theoretical results show that the early stopping variants of the algorithms only perform
better than the algorithms themselves, if the number of faults specified (f ) is high and the num-
ber of faults actually occurring (t) is much lower than f . Independent of the protocol the benefit
of early stopping is only measurable for large f and relatively small t. Since in many systems it
is more beneficial to guarantee a lower bound on the number of rounds a protocol executes than
to optimize the average case further investigations have to be taken in the next chapter.

In addition, a divide and conquer strategy, namely, the committee technique has been pre-
sented. While the protocols using the committee technique perform better with respect to the
number of rounds required if the message size is unrestricted, the unmodified protocols perform
better when the message size is restricted to single bit messages. Since our implementation is
restricted to single bit messages the committee technique is omited in the remaining simulations
and evaluations.
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CHAPTER 4
Simulations in Software

4.1 Purpose of a Software Simulator

After we have introduced some algorithms achieving consensus in a distributed system with-
standing Byzantine faults Chapter 3, we are now going to simulate these in a software envi-
ronment closely resembling the properties of our target environment. The purpose for these
simulations is to get a better understanding of how the algorithms work in detail and to test their
behaviour if used out of their specification. This enables us to easily explore their behavior in
case the fault hypothesis is violated. Besides, we can determine the last round a decision is
changed giving us a good indicator for optimizations.

In the next section (Section 4.2) we will give an overview of the simulation environment. We
will start with describing the single parts of our environment and how they interact with each
other. Afterwards we detail the adoptions of the algorithms to fit our environment. At the end of
this chapter the simulation results for the previously shown algorithms are presented.

4.2 Big Picture

The simulator is developed as console application using C# and the .Net framework 2.0. There-
fore, it is compatible for windows and any platform supporting Mono.

The simulator is based on the single shot principle. It therefore executes a single run of the
algorithm at a time. Each run is described by a binary input vector, a list of faulty nodes and
which of the algorithms should be used. (e.g. EIG, Phase King, Phase Queen). The simulation
class handles the initialization of the system (including the creation of the nodes) as well as
the simulation of a single run. The results of a simulation run are structured into the following
items: (i) does the algorithm satisfy agreement, (ii) does the algorithm satisfy validity, (iii) what
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adversary

evaluation / results
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Figure 4.1: Structure of the SingleShotSimulation framework

decision value has been achieved, (iv) the time of termination of the nodes and (v) the latest
change in the decision value for each node.

Communication during a single simulation run is implemented using a n×nmatrix accessi-
ble to all nodes (as shown in Figure 4.2). For example: Writing a value into the first row and the
third column of the communication matrix (comm[0][2] = val) corresponds to node p0 sending
val to node p2. As our target environment only supports single bit, binary data transmissions, the
entries of the matrix are implemented as boolean values. As each node is allowed to access its
channels only, additional code in the simulator ensures, by checking the sender’s and receivers’
id, that no access violations occur. Therefore, only communication operations possible in the
target environment can be executed in the simulator.

The round based model is implemented as a loop running until the last node terminates,
as Algorithm 6 shows. The execution structure for the lock step synchronous model can be
explained as follows:

1. First the Receive phase is executed, where the input vector of each node is updated by the
communication which took place in the previous round. This is achieved by copying the
corresponding column of the matrix into the input buffer of the nodes.
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Figure 4.2: Communication primitive used during simulation

2. Next the communication matrix is reset. Therefore, already delivered values will have no
effect on communication operations of later rounds.

3. Third, each correct node executes one round of its algorithm, while faulty nodes behave
corresponding to their fault description.

4. Fourth, the Send stage of the round model is reached, forwarding the messages of the
nodes outbuffers to the corresponding positions of the communication primitive.

5. In a last step the simulator checks whether all nodes have already decided. Based on this
observation, the exit condition of the simulator can be calculated.

The node implementation class encapsulates the behaviour of a node participating in a cer-
tain implementation of an algorithm. The nodes initially have knowledge on their private value,
their communication channels, the unique index assigned by the simulation environment and
whether they are faulty. Additional properties inherent to the algorithm (like the number of
faults to be tolerated) are also known by each node. For statistical purposes the node remembers
the round number in which the last decison was taken, the round number in which the algorithm
has terminated and its final decision value.

The functions Receive, Send, Run and ExecuteFault represent the node’s public interface
accessible by the simulation environment. The Receive function copies the corresponding col-
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Algorithm 6 RunSystem method of the SingleShotSimulation environment
Initialization:

1: round := 0 {nr of the current round}
2: everyNodeTerminated := 0 {have all nodes already terminated}
3: nodes {implementation of the nodes}

LockStepSynchronous round model:
4: while ¬everyNodeTerminated do

receive
5: for all nodes : n do
6: n.Receive()

execute
7: for all nodes : n do
8: n.Run(round)
9: n.ExecuteFault(round) {here certain faults are induced to the system}

send
10: for all nodes : n do
11: n.Send()

exit condition
12: everyNodeTerminated := 1
13: for all nodes : n do
14: if ¬n.HasTerminated then
15: everyNodeTerminated := 0

16: round := round+ 1

umn of the global communication primitive into the internal receive buffer of the node, while
the Send function copies the output buffer into the correct row of the communication matrix.
The Run method executes a single round r of the implemented algorithm. To simulate faults,
an adversary is implemented using the ExecuteFault method. If, at initialization, the node was
marked faulty by the simulation environment, the adversary can manipulate the output buffer
of the node. In the current implementation this is based on a random number generator. The
generated random numbers are used to define the faulty rounds as well as to determine which
bits of the output buffer are to be flipped.

To automate the simulation procedure even further, a simulation factory has been created.
It exhaustively generates simulations for each combination of faulty nodes and input vectors
(as shown in Figure 4.3). After calculating the list of the

(
n
f

)
node fault masks the specified

algorithm is executed for each combination of the fault masks with one of the 2n possible input
combinations. The runtime behaviour of the SimulationFactory is therefore exponential in n and
f . After each execution the simulation results are gathered and evaluated.

In the following sections we present the transformations required to execute the algorithms
presented in Chapter 3 within our target environment.
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Generation of Input Vector and Fault Masks

fault mask 0 fault mask 1 . . . fault mask n
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noden

. . .
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Figure 4.3: Big picture of the simulation environment

4.3 Transformation of EIG for Single Bit Messages

Exemplary for all transformations required, we describing the transformation of the Exponential
Information Gathering algorithm (see Section 3.6) to single bit messages. This is required as our
target environment, and therefore our simulator, can only handle one single bit message in any
round. The Exponential Information Gathering protocol forces an exponential increase of com-
munication bits with respect to n. Figure 4.4 outlines the message size needed for the algorithm
with given f in a certain round r. Therefore, we have to create a transformation of the original
algorithm’s message size to our model.

Since in round 1 each node sends its own value to all the other nodes the communication
effort is exactly 1 bit, thus the message size in round 1 is 1 bit. As in round 2 each node
broadcasts all, except its own, values received in the previous round, the message size is already
n − 1 bits. In the next round every node broadcasts the values received in the previous round
except the one received from itself. Leading us to (n− 1)(n− 2) bits per message and so forth.
Based on this observation, the message size for round r is given by Equation 4.1.
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Msize(r) =
r∏

k=1

(n− k) (4.1)

The simplest transformation is to increase the number of rounds such that all message bits
can safely be transmitted using single bit messages. Therefore, after transforming the Expo-
nential Information Gathering, its measure for the message size converts to single bit mes-
sages, whereas the number of rounds / time complexity and the message complexity increase
to O(exp(n)). To enable a more uniform simulator design, however, we have decided to also
transmit the messages received from the node itself in every round. This increases the time and
message complexity slightly compared to the optimum implementation.

The information gathered within the rounds is stored in a linear memory array. Each entry
represents a unique item of the tree. The first n positions in the memory store the messages
received in the first round. From round 1 onward each node broadcasts a bit of information
gathered in the previous rounds to the other nodes. A detailed outline of how this transmission
of information is executed is shown in Figure 4.5. After all the information has been gathered
the resolve function CalculateDecision() is used to calculate the final decision of the node
Y . The resolution process is solely based on the information stored in the linear memory ar-
ray. Therefore, CalculateDecision() has to identify which values in the array represent valid
decision tree entries and which have to be ignored. Consider, e.g., a tree of height two. The
first entry of the second level (p0 said that p0’s value is) will not be used by the algorithm to
deduce the decision value and has therefore to be ignored. A similar argument can be used for
all other nodes in the system. Since f and n are known in advance, the positions to be skipped
(and therefore also the valid positions) are known at design time. The resolve function for f = 1
and n = 4 is shown in Figure 4.6.

As the transformations of the other algorithms simulated are straight forward, we do not
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Figure 4.5: EIG: Example usage of linear memory used during information gathering
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detail them further. In the following Section 4.4 we present the simulation results and, based on
the findings, select algorithms for the evaluation in hardware.

4.4 Simulation based Comparison

In this section the results of the protocol simulations are presented. For our evaluation about
109 scenarios have been executed. The fault injection of our tests have been parameterized with
the number of nodes (n), the number of faults the implementation is able to handle (f ) and the
number of faults actually occurring (t). The faulty nodes of a simulation run are calculated of-
fline before its start. The experiments were designed to be exhaustive, therefore each possible
combination of faulty nodes will be simulated. The faulty nodes are allowed to completely mod-
ify their output buffers. The degree of output buffer corruption is generated randomly for each
round, based on a normal distribution of the faults. The simulations are designed to augment the
theoretical reasoning on the correctness of the algorithms.

Additionally, the implementation of the algorithms in the simulation environment can be
used as a reference for estimating the complexity of the hardware implementation and the re-
quired hardware resources.

In Table 4.1 the results for the Exponential Information Gathering (EIG) protocol are listed.
Only the more interesting parameter combinations are listed. The results for cases where the
number of actual faults is higher than the number of tolerable faults have to be considered care-
fully, as the properties validity and agreement are only defined for correct nodes. If, e.g., all
nodes in the system are fault, the correctness of the run will be 100% as no correct node has
violated agreement.

If the number of tolerable faults exceeds one (f > 1), the number of required rounds is quite
high (in fact the EIG has the worst round complexity of all the investigated algorithms in this
case). For f = 1 on the other hand, the round complexity is quite good. A decision is reached
in 5 rounds. Even if the single tolerable fault is slightly exceeded (t = 2), still 81% of the tested
scenarios were decided correctly. For f = 1 and n = 4 20 memory bits are required for storing
the decision tree. The implementation of the resolve function as well as the address generation
for accessing the tree during the information gathering phase have been identified to be the most
expensive parts of a potential hardware implementation.

The results for the algorithms Phase King, Early Stopping Phase King, Phase Queen and
Early Stopping Phase Queen are presented in Tables 4.2 - 4.5. As we can see, the results regard-
ing the last round of termination match the theoretical results given in Tables 3.3 - 3.5.

As presented in Table 4.2, the Phase King algorithm requires a moderate number of 8 rounds
of execution, given f = 1, while it would take even 10 rounds of execution in case of early
stopping. The simulation of the Phase King algorithm outside its specification leads to a correct
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Protocol n f t
runs last round of

correct(%) faulty(%) decision termination
EIG 4 1 0 100 0 5 5
EIG 4 1 1 100 0 5 5
EIG 4 1 2 81 19 5 5
EIG 7 2 0 100 0 57 57
EIG 7 2 1 100 0 57 57
EIG 7 2 2 100 0 57 57
EIG 7 2 3 81 19 57 57
EIG 7 2 4 69 31 57 57

Table 4.1: Simulation results for Exponential Information Gathering

Protocol n f t
runs last round of

correct(%) faulty(%) decision termination
PK 4 1 0 100 0 3 8
PK 4 1 1 100 0 8 8
PK 4 1 2 87 13 8 8
PK 7 2 0 100 0 3 12
PK 7 2 1 100 0 7 12
PK 7 2 2 100 0 12 12
PK 7 2 3 81 19 12 12
PK 7 2 4 78 22 12 12

Table 4.2: Simulation results for Phase King

result in 87% of all cases, which is quite good, compared to the EIG implementation where 81%
of all the cases were correct.

Like the EIG protocol it requires n ≥ 3f + 1 which is optimal. The hardware implemen-
tation costs of the Phase King algorithm are lower than the ones for the EIG protocol. As the
algorithm has an increased number of rounds and requires counter for detecting the strong pref-
erence it has a slightly higher implementation cost as the Phase Queen one. The early stopping
variant requires two additional rounds of communication for f = 1 and achieves a correctness
of 82% if t = 2, which is slightly worse than the unmodified algorithm. Therefore, the Phase
King algorithm suits better for the implementation in hardware than its early stopping variant.

According to the simulator implementation of the Phase Queen algorithm, it requires less
hardware than the other two protocols. Further, it decides in the least number of communication
rounds. Additionally, the simulations’ results show that the protocol performs best regarding
the correctness of the protocols when used outside their specification, but it requires a higher
number of nodes to tolerate f faults. In the case of f = 1 the Exponential Information Gathering
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Protocol n f t
runs last round of

correct(%) faulty(%) decision termination
ESPK 4 1 0 100 0 3 10
ESPK 4 1 1 100 0 10 10
ESPK 4 1 2 82 18 10 10
ESPK 7 1 0 100 0 3 10
ESPK 7 1 1 100 0 8 10
ESPK 7 1 2 73 27 10 10
ESPK 7 2 0 100 0 3 10
ESPK 7 2 1 100 0 8 15
ESPK 7 2 2 100 0 15 15
ESPK 7 2 3 79 21 15 15
ESPK 7 2 4 74 26 15 15

Table 4.3: Simulation results for Early Stopping Phase King

Protocol n f t
runs last round of

correct(%) faulty(%) decision termination
PQ 5 1 0 100 0 1 4
PQ 5 1 1 100 0 4 4
PQ 5 1 2 93 7 4 4
PQ 5 1 3 88 12 4 4
PQ 9 2 0 100 0 1 6
PQ 9 2 1 100 0 4 6
PQ 9 2 2 100 0 6 6
PQ 9 2 3 92 8 6 6
PQ 9 2 4 85 15 6 6
PQ 9 2 4 70 30 6 6

Table 4.4: Simulation results for Phase Queen

algorithm, the Phase King algorithm and the Early Stopping Phase King algorithm require 4
nodes, while the Phase Queen algorithm and its early stopping version require 5 nodes. As an
increased number of nodes normally also mean an increased number of replicated application
hardware, the costs of the Phase Queen algorithm are too high for our purpose.

Like the Phase Queen algorithm, the Early Stopping Phase Queen algorithm requires 5 nodes
in the case of f = 1, but needs two more rounds of communication. Additionally, the perfor-
mance when used out of specification is worse than observed during simulations of the Phase
Queen algorithm. Taking this into account the Phase Queen algorithm and its early stopping
version do not suit very well to our requirements and therefore we restrict our further evaluation
on algorithms using n = 3f + 1 nodes.
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Protocol n f t
runs last round of

correct(%) faulty(%) decision termination
ESPQ 5 1 0 100 0 1 6
ESPQ 5 1 1 100 0 4 6
ESPQ 5 1 2 75 25 6 6
ESPQ 5 1 3 57 43 6 6
ESPQ 9 1 0 100 0 1 6
ESPQ 9 1 1 100 0 4 6
ESPQ 9 1 2 95 5 6 6
ESPQ 9 2 0 100 0 1 6
ESPQ 9 2 1 100 0 6 9
ESPQ 9 2 2 100 0 9 9
ESPQ 9 2 3 80 20 9 9
ESPQ 9 2 4 61 39 9 9
ESPQ 9 2 4 47 53 9 9

Table 4.5: Simulation results for Early Stopping Phase Queen

Summarizing, given f = 1 and a minimum number of required nodes n = 4, the Phase King
algorithm performs best. Therefore, it is the best choice for our hardware implementation. To
have a baseline for comparison to [25, Pol09], additionally the EIG protocol is implemented in
hardware.
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CHAPTER 5
Hardware Framework

5.1 Introduction

In this chapter we will introduce the hardware framework building the basis for our consen-
sus implementations. In Section 5.2 and 5.4 we introduce the major problems inherent to high
performance circuit design due to (i) the limited timing margins available, (ii) the impossibil-
ity of accurate delay prediction, (iii) the problems occurring if components are used outside
their specification and (iv) the problem of crossing clock domain boundaries. In Section 5.3
the most widely used clocking paradigms are introduced and their advantages as well as their
disadvantages are outlined. This is followed by the presentation of a communication buffer for
multisynchronous systems developed by [25, Pol09] in Section 5.6. This communication primi-
tive forms the basis for our further implementations. On top of it the round generation model is
implemented as described in Section 5.7.

5.2 Delay, Skew, Runts and Glitches

One of the major challenges when designing hardware is the unpredictability of signal delays.
Due to the influence of process variations, changes in supply voltage or in the temperature, as
well as data dependent delays, such as gate delays or interconnect delays, the exact delay of a
signal path cannot be predicted deterministically. Thus, we can assert that the delay on individ-
ual paths cannot be assumed to be equal. [34, Wak00]

The maximum delay deviation between two signal paths is called the skew. The larger the
skew of two correlated data lines is, the less timely correlated are the informations. Therefore,
skew may cause inconsistent interpretation of the signal at the inputs of different logic gates and
therefore lead to an invalid dynamic state. Even worse, if we capture such an invalid dynamic
state, the steady state of the circuit may also be compromised. Dependent on the change of the
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input signal and the response of the output signal, we distinguish between static-0, static-1 and
dynamic hazards. The manifestation of a hazard in the physical implementation of a circuit is
called a glitch. [32, Spa01] [34, Wak00]

In Figure 5.1 a static-1 hazard is depicted where a change of the input values forces the
output to shortly go to zero while the start and the end value of the operation are one. This
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problems occurs because of the skew in the data lines. Therefore, a short interval in time exists
where both input signals are erroneously different. A similar situation can be observed with the
static-0 hazard in Figure 5.2, where the output should remain zero but a positive glitch is created.
A dynamic hazard is outlined in Figure 5.3. Depending on the structure of the circuit, a positive
or a negative glitch may occur before the real output transition. The first part of the circuit (the
inverter and the AND gate) is called the glitch producer, creating static-0 or static-1 hazards. The
second part, the OR gate, is called the edge producer. The situation may even be worse. The
glitches may be too short to reach their full amplitude (called runts) and therefore violate the
digital abstraction, leading to hard to detect problems in the circuit.

Summing up, skew cannot be predicted precisely, which may lead to inconsistent transient
states. If these intermediate states are latched by the circuit, wrong data may pollute even the
steady state of the circuit. As not all glitches can be avoided by design, a suitable mechanism
for latching stable signals only is required. In Section 5.3 a selection of possible design styles
solving the problem will be given.
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5.3 Clocking Schemes

The main elements of sequential circuits are storage blocks (like flip flops or latches). They
retain the state of the system. The functionality of the circuit is, however, implemented by com-
binational gates (like AND-gates, OR-gates and Inverters). The combinational logic uses the
current state stored in the sequential element and the input values of the circuit to calculate the
next state. To implement a consistent behavior throughout the system, the sequential elements
have to be coordinated to guarantee a clean state change. The coordination of these components
is called the timing of the circuit. A common way to implement the timing is to introduce an
additional signal, the so called clock signal, which is used to trigger the storage operation of
the sequential elements. In the following, we will outline some common design styles used in
state of the art high speed circuit designs. Design styles can be evaluated by different properties
such as the area overhead introduced, the support for composability, the level of testability, the
robustness of the circuits, the power consumption of the circuit as well as the maximum speed
(frequency) that can be achieved within a circuit. The main tasks of a clocking scheme are to
indicate a safe time for an information sink to save a value without capturing an intermediate
state and the time the information source may provide a new value after the sink has consumed
the previous.

Synchronous Design

The synchronous design paradigm is by far the most widely used one today [32, Spa01]. It uses
a central clock source to coordinate all sequential elements throughout the circuit. This central
clock source enables the design tools to analyze the complete circuit and to determine the max-
imum speed it can be safely operated with. On the other hand, exactly this clock distribution
forms the major drawback for todays high-frequency circuits. The distribution of the clock sig-
nal with a minimum skew throughout the whole chip is quite challenging or even impossible for
larger chips [36, Zhu02]. To be able to drive the vast amount of inputs connected to the clock
net, the clock buffers must be very strong and therefore the power consumption of the clock net
is very high. [17, Mat03]

Fortunately modern design tools are very advanced and powerful enabling us to still cope
with current design challenges. As long as the design’s constraints and timing margins can be
met, another tremendous advantage is that in most cases the static timing analysis makes a spe-
cial hazard analysis unnecessary, since a propagation of erroneous signals to a steady state is
prevented by design. [34, Wak00]

Nevertheless, the effort in routing the clock tree and the introduction of a single point of
failure due to the single clock source, makes the synchronous design approach unsuitable for
our needs.
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Asynchronous Design

In the asynchronous design paradigm no shared clock signal is used. Thus, many limitations
of the synchronous design can be overcome when using the asynchronous style. Nevertheless
many new challenges have to be solved. As already discussed the main challenges for a timing
paradigm are to determine the time an input signal can be safely captured and the time an output
signal may be changed without interfering with the sinks, respectively. Asynchronous circuits
used the most natural mechanism to achieve timing closure, namely handshaking. The source
tells the sink, using a dedicated request signal, that new data is available, while the sink uses an
acknowledge signal to flag the reception of the data. Two main strategies exist for implementing
handshaking [32, Spa01]. The first one is called bundled data [32, Spa01]. It assumes that the
data and the request line have similar delays and therefore the signaling of data validity can be
safely implemented using a dedicated request signal. Note that the timing constraint for the re-
quest signal are much easier to guarantee as for a clock signal in the synchronous case since the
request signal is a local signal only. The second approach uses specialized coding [32, Spa01].
Therefore, the request and the data are combined into a multi-rail signal. This enables the sink
to detect the skew on the signal lines and it can wait until the complete multi-rail signal has
arrived safely. The big advantage of handshaking is that a closed loop control scheme is used.
Therefore, the sink is able to execute back-pressure, if the data source is too fast.

Summing up, in asynchronous design we exchange the global clock signal with explicit
handshaking converting from an open loop to a closed loop circuit. The advantage gained, in re-
turn, is a self regulating data flow based on a direct relation between validity and consistency of
data and therefore no delay and timing assumptions are required. The major drawback, besides
the intellectual challenges and the lack of tool support is that, due to the lack of a global time
base, many problems (including consensus) do not have a solution in a fully asynchronous sys-
tem [12, Fis85]. Therefore, the asynchronous paradigm is not suitable for our implementation.

Globally Asynchronous Locally Synchronous Design

System based on the Globally Asynchronous Locally Synchronous (GALS) design principle con-
sist of islands designed with the synchronous design approach, but uses asynchronous commu-
nication in between. Thus, we can use the models and tools known from the synchronous world
to design the islands, and, second, have the flexibility of the asynchronous paradigm when com-
posing the different modules to a complete system. Since each of these synchronous islands
has its own clock domain, the clock tree complexity is decreased substantially. This also leads
to a reduction of power consumption, as well as to higher robustness against electro magnetic
interferences. [36, Zhu02]

The major drawback of this design style is an increase of communication effort between the
components. Typical concepts for communication include asynchronous communication chan-
nels with full handshaking [36, Zhu02] and pausible clocking [35, Yun96]. The sender and the
receiver use their restrictive clock domains. To safely transport data between them, the hand-
shake signals must be synchronized [36, Zhu02] to avoid disambigues data to be received. The
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second concepts overcomes the need of synchronizers in the handshake signals by stopping the
receiver clock domain while data is transmitted. On the reception of the data, the receivers clock
is reactivated and it can process the newly arrived data.

Mesochronous Design

Mesochronous design is a derivation of the synchronous design principle. In mesochronous de-
signs we can assume multiple synchronous islands as in the GALS approach. The difference
between GALS and mesochronous systems is that, while the clock relations in GALS systems
are unknown, in mesochronous systems the clocks of all islands have a bounded phase relation.
A commonly seen example for bounded phase relations are Phase Locked Loops (PLLs) driven
by the same source. While, commonly a PLL generates a nearly exact phase shifted signal of
the source, in mesochronous systems the phase alignment of the clocks is much more relaxed
(up to several clock cycles).

By the assumption of identical frequencies of the clocks and varying but bounded phase re-
lationships, we can use the models and tools from the synchronous design paradigm here, while
lowering the efforts in synchronizing the inter module communication. By the bounded phase
relation we can design communication buffers to compensate for the phase differences and en-
able a safe communication.

5.4 Metastability

When building digital circuits it is assumed that only two voltage levels may occur in the sys-
tem, namely high and low. In physical implementations, however, these two states have to be
represented by analogue voltage ranges, leaving a forbidden range between them. It is assumed
that signals only cross this forbidden range while switching from one state into the other and
therefore will only be in this area for a short timespan. As we already have discussed this ab-
straction may not be valid, if runts occur.

In this section we will introduce an even more problematic situation, namely metastability.
If a circuit latches a signal shortly before or after a transition, the time to decide if the old or the
new value is correct will increase significantly. During this timespan the signals of the memory
element may stay in the forbidden voltage range. [34, Wak00]

The consequence of this out of specification usage is called metastability. It constitutes one
of the major threats when designing high performance circuits. As combinational gates may
map metastable inputs to metastable outputs, metastability may propagate through the whole
system. Other manifestations of metastability can be late transitions, glitches or even oscilla-
tions [25, Pol09] [18, Kle87] [9, Cha73]. Late transitions may occur, if the intermediate voltage
level of the memory element is not interpreted as signal change by the next stage and therefore
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a signal transition is only generated after metastability has resolved. This behavior sounds quite
benign, however, it increases the signal delay to the next memory element and the timing analy-
sis of a synchronous system may no longer be valid and the next memory element will become
metastable as well. Glitches may occur if, in contrast to the late transition case, metastability is
interpreted as signal change by the following stage. In such a case a signal transition will occur
at the beginning of the resolution process and, if the memory element decides to the old value, a
second transition will be created at the end of the metastable state leading to a glitch [9, Cha73].
As can be seen, metastability may be interpreted differently by two successor stages (as glitch
or as late transitions) and therefore may lead to an inconsistent system state not considered at
design time. Lastly, oscillations may occur, if the rise and fall time of the signals is much shorter
than the internal delay of the memory element [18, Kle87]. As this is normally not the case in
current CMOS technology, we will not go into further details here.

Why are we concerned with metastability? In a sufficient well designed circuit such a phe-
nomenon should normally not occur. Unfortunately, on the boundaries of the circuits the data
signals are not in the sphere of control of our circuit and therefore metastability will surely oc-
cur. Current countermeasures, like synchronizers, [9, Cha73] are mainly based on statistically
increasing the time between two observable metastable states but do not remove the problem
completely [9, Cha73].

In summary, basically all bistable components can suffer from metastability when they are
used out of their specification. Metastability can therefore not be eliminated but it can be made
less probable by careful design.

5.5 Architectural Design

This section gives an overview on our design framework and the way it is composed out of its
different components. Further, we describe the used test environment. A detailed discussion of
the design units is given in Sections 5.6 and 5.7. As depicted in Figure 5.4, the test environment
used consists of three seperate Field Programmable Gate Arrays (FPGAs). FPGA A is used
as a dedicated controller FPGA managing the clock generation of the system, while the other
FPGAs, B and C, are hosting the four nodes of our system. The framework presented in the
following sections is similar to the one used in [25, Pol09].

As we want to evaluate protocols prone to Byzantine faults, we also have to provide a frame-
work which can handle these kind of faults. Therefore, we decided against using a synchronous
design and employ a mesochronous one instead. The mesochronous clocks may be created using
the Distributed Algorithms for Robust Tick Synchronization (DARTS) protocol [14, Fue06] [29,
SSS07]. The DARTS protocol generates ticks with bounded phase shift. While other approaches
use a single tick and propagate it with great effort throughout the whole system, DARTS uses
a distributed, Byzantine fault tolerant tick generation algorithm with dedicated tick generators
at each node. Therefore, no global clock tree exists, eliminating this single point of failure. In
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contrast to a GALS system, the tick generation on each node is not simply done by an oscillator,
but with a fault tolerant algorithm providing a fixed bounded phase shift. This algorithm can
tolerate up to f faults for a number of at least n ≥ 3f + 1 nodes. This is a suitable requirement
for all the protocols under concern in this thesis. [14, Fue06] [29, SSS07]

As our development hardware is off the shelf, it was quite hard to integrate the DARTS chips
into the development environment. Therefore, we decided to use a simulation of the DARTS ca-
pabilities implemented on FPGA A taken from [25, Pol09]. The simulator centrally creates ticks
for each FPGA, while adhering to the phase shift constraints of the original DARTS algorithm.
The generator is configured using a dedicated memory. The memory can be filled by a moni-
toring PC before the experiments start. An important advantage of the simulation over the real
DARTS environment is that the same pattern can be replayed multiple times making debugging
problems much easier.

Each of the FPGAs B and C contains two nodes. Namely FPGA B contains node 0 and node
1, while FPGA C contains node 2 and 3. Communication between the nodes takes place via a
dedicated, fully connected network. Thus, each node is equipped with four transmitter and four
receiver components. These are interconnected with each other forming n × n unidirectional
communication links. The compensation of the phase shift between the different clock domains
is performed by a communication buffer within the receiver components. The way the commu-
nication buffer works is elaborated in Section 5.6.

The communication with the monitoring PC is implemented via USB. Each configuration
register and memory block is mapped to a dedicated address which can be accessed by the
PC. Thus, we can read and write memory blocks on each FPGA from the PC. This grants us the
possibility to configure the above mentioned clock generators, as well as the input values of each
node. For better evaluation and testing of the protocols, we further support the configuration of
saboteurs from the software during runtime. Therefore, it is possible to set one or more nodes
faulty. We support multiple fault scenarios for the nodes:

1. Set the communication links between two FPGAs to High Z. This simulates a floating
output, where neither the logical level 0 nor the logical level 1 is driven.

2. Set the communication links to 0 or 1. This simulates stuck at 0 and stuck at 1 faults,
respectively.

3. Invert all bits on a line. This method is available either for the data path and the clock
path, respectively.

4. Send the same signal on the data path as well as on the clock path. This simulates a
bridging fault. The signal to be replicated can be either the clock or the data signal.

5. Sending inconsistent values to neighboring nodes. This mode represents the typical Byzan-
tine behavior.
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To check the results of the consensus protocols we also provide a memory region storing the
expected output values. After each run of a protocol we crosscheck the results with the values
given in this buffer and increment an error counter if they do not match.

5.6 Communication Buffer

We have already outlined the major problems that have to be solved when communication is
required (see Sections 5.2 and 5.4). Synchronous design solves this problem by enforcing that a
send operation taking place at clock tick Cki on node i is read at the next clock tick Ckj at node
j. It is guaranteed by design that the setup-/hold-window of the receiver will not be violated.

Generally, this assumption can not be maintained for GALS systems. Fortunately our meso-
chronous clocking scheme provides more guarantees as a plain GALS systems. By exploiting
the bounded phase relation, we can use a relaxed version of the synchronous communication
principle. The solution requires that we wait a sufficient number of clock cycles before eval-
uating the sent data at the receiver. From the viewpoint of throughput, this solution is quite
similar to the introduction of macroticks and microticks. Here a microtick equates a tick of the
native clock, while a macrotick is the already synchronized clock with a precission π ≤ 1. Both
variants lack in throughput of data at the cost of high clock frequencies required.

By applying a sufficiently large ring buffer, the clock skew can be tolerated without sacrific-
ing throughput. In [26, PHS09] a solution with full throughput is presented. For this purpose,
separate read and write addresses are used within the ring buffer. Thus, if the buffer is sufficiently
large and the offset between the read and write addresses is sufficiently spaced, metastability or
inconsistencies can no longer occur. In contrast to the macrotick approach, the throughput is not
decreased while the system is still provable correct.

As outlined in Figure 5.5 the communication subsystem consists of three major components.
The transmitter operates as a peripherial slave within the clock domain of the senders application
logic. The application can transfer data by passing it via an input register. It is the responsibility
of the transmitter to fill in idle patterns in case no new data is provided. After new data has been
applied it is 8b/10b encoded and serialized to the receivers communication buffer. The commu-
nication buffer is part of the receiver. While the decoder and the output register are completely
within the sphere of the receivers clock domain, the communication buffer is split into two parts.
On the one side, the logic used for reading the data out of the ring buffer is controlled by the
receivers clock, while on the other side the logic used for writing data into the buffer is within
the sphere of the sender. To compensate the clock skew of these two clock domains a sufficient
buffer size has to be applied. Therefore, the buffer size and the address margins calculated are
of major importance to avoid metastability. The size and safety margins for the buffer have to
be calculated at design time.

As stated in the previous section, we use an emulation of the DARTS clocking algorithm.
Thus, the communication buffer used in this environment has to face the same constraints as a
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Figure 5.5: Scheme of the communication subsystem

communication buffer used with DARTS. By the precedence relation introduced in Section 2.6
we can restate the problem of misaligned clocks to Equation 5.1.

∀i, j ∈ P,∀k > 0 : Cki → Ck+π
j (5.1)

Equation 5.1 gives the precision constraining the clocking system. Stating that no two clocks
within the system are more than π ticks apart. As we have described above, a major concern
in communication is the guarantee that (i) no new write action to a memory of the buffer takes
place before this location has been read and that (ii) no memory location is read before data has
been written to it. Note that the ring buffer is initially prefilled. Thus, the initial values in the
buffer are considered as valid write operations.
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To support the two properties given above we have to pair the write and read transitions.
Based on the proofs of [26, PHS09], we can state a relation between a read and the corresponding
write operation (Equation 5.2).

W k
i = Cki → Ck+α

j = Rkj (5.2)

Further, [26, PHS09] has shown that a memory element has safely been read before it is
overwritten, if Equation 5.3 holds. By this, α, as given in Equation 5.4, determines the start
address of the first write operation, while β, as given in Equation 5.5, gives a bound on the
minimum required buffer size.

Rkj = Cki → Ck+π+β
j = W k

j (5.3)

α = π + d
∆+
send + ∆+

msg + ∆+
mem −∆−recv

T−
e (5.4)

As α is the start address of the first write operation, it is assumed that the buffers first α
elements are initially prefilled. ∆+

send and ∆−recv give the upper and lower bound on the clock
delays on the sender and receiver side, respectively. ∆+

msg gives the upper bound of ticks it takes
to transfer the message from the senders input buffer to the receivers communication buffer.
∆+
mem is the upper bound of ticks the communication buffer requires to write an element. π is

the clocking system’s precision and T− the minimum time between two succeeding ticks of a
clock.

β = 2π + d
∆+
send + ∆+

msg + ∆+
mem −∆−recv

T−
e+ d

∆+
recv + ∆rd +−∆−send −∆−msg

T−
e (5.5)

In addition to the start address offset given by α, we have to guarantee that no overwrite
takes place before the location has already been read. This additional margin is given by the
maximum and minimum clock delay on the receiver and the sender side ∆+

recv and ∆−send. ∆+
rd

is the upper bound needed to read a certain memory location in the communication buffer. ∆−msg
gives the lower bound, which states how long it takes to transfer the message from the commu-
nication buffer to the receiver’s output buffer.
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5.7 Round Generation

All the algorithms evaluated in this thesis rely on the lockstep synchronous execution model. As
described in Section 3.1, the execution takes place in fixed rounds. In each round an algorithm
can send an arbitrary number of messages. By definition, each successfully transmitted message
sent during round r from node pi to node pj is available at node pj at the beginning of round
r + 1. Since our hardware framework only supports one message per clock cycle, we decided
to restrict the number of messages sent by each node pi to each node pj (j ∈ P ) to one. There-
fore, we have a proportional mapping of the message complexity to the time complexity of our
algorithms. Since larger messages have to be split up in several shorter ones, the algorithm’s bit
complexity directly influences its message complexity and further its time complexity. There-
fore, we only use resilience and time complexity when comparing the algorithms.

As our algorithms require an underlying round structure, we implemented a component no-
tifying the application logic when a new round starts and when a new message receipt occurs.
The generation of these signals is based on the microtick signal of our clock generation. We can
not rely on message reception here, as faulty messages would compromise the round genera-
tion scheme. Since the round generator has some restrictions on the underlying communication
subsystem, the communication subsystem has to provide (i) a constant, a priori known mes-
sage transmission time of tslot micorticks (ii) a constant, a priori known transmission latency of
tlatency micorticks and (iii) a constant, a priori known startup time of tstart micorticks. Since
our communication subsystem provides all of these criteria, a round generation and a message
notification scheme as given in Algorithm 7 can be used for our implementation. [25, Pol09]

Our communication layer supports the sending of an 8 bit message at the begin of every
message slot. By the common system wide reset provided by the clocking system, we can safely
align the start of the first message slot directly after the communication systems startup (tstart
microticks). All successive message slots are aligned back to back. Therefore, after startup the
node has to wait for tstart microticks before it starts the first round. After this the algorithm
infinitely repeats to signal the beginning of a new round every tslot + tsync microticks.

tsync = tslotd
tlatency − tslot + tcalc + 1

tslot
e (5.6)

Since the lockstep model requires that each successfully transmitted message sent during
round r is delivered in round r + 1 we have to wait for at least tslot microticks for sending out
all bits of the message. To provide a sufficient compensation for the message latency and the
zero time computation assumed by the lockstep synchronous model, we wait additional tsync
microticks until the next round starts. As the message slots are aligned back to back tsync (as
given in Equation 5.6) has to be a multiple of tslot microticks.
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Algorithm 7 Round Generation Algorithm
Initialization:

1: r := {0} {round counter}
2: nr {number of rounds algorithm needs}
3: tstart {startup time of communication layer}
4: tlatency {transmission latency of a message}
5: tslot {length of a message slot}
6: tsync {synchronization time}
7: tcalc {calculation time of the algorithm}

round generation:
8: wait for tstart microticks
9: for ever do

10: signal start of round r
11: {compensate last rounds messages latency}
12: wait for tlatency microticks
13: signal message reception

14: {wait for the message arrival}
15: wait for tslot microticks

16: {realign execution to the next message slot}
17: wait for tsync − (tlatency − tslot + 1) microticks

18: if r < nr then
19: r = r + 1
20: else
21: r := 0

5.8 Information Mapping

The message passing subsystem used (see Section 5.6) is designed to transmit messages of 8 bit
size. To use the maximum bandwidth provided we decided to execute 8 instances of the proto-
cols in parallel and map their information to one message. Since each of the protocols discussed
in Chapter 3 is designed to use messages of 1 bit size, one possibility is to map the information
to the message one to one. Another possibility is to use a single instance of the protocol which
works with 8 bits of data. In this section we discuss the advantages and drawbacks of both ver-
sions and show usecases justifying the decision for the chosen mapping.

Due to physical variations, different methods of calibration or the adjustment of sensors the
value can differ even in a fault free execution. Assume a set of values measured by a temperature
sensor. In the fault free case, all temperature sensors will measure nearly the same values and
therefore the results will only vary in the least significant bits.

In the case that no explicit decision can be reached, the decision finding process in the con-
sensus protocols under evaluation always falls back to a previously chosen default value. When
using a single, eight bit consensus protocol, even a deviation in the least significant bit may
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prohibit the calculation of a decision value and the default value may be used. When using eight
single bit instances of the algorithm, however, the most significant bits will be the same and a
correct decision value is found. Only for the least significant bits, no solution may be found
and the default value will be used. Validity will not be violated in this case, as for the most
significant bits the majority value is chosen and for the least significant bits both choices will be
correct,as both values ’0’ and ’1’ were present in the input space.

Let’s reconcile the agreement and validity properties outlined in Section 3.2 for both ver-
sions: For this example the values 0x0F, 0x0E, 0x0D and 0x0C have been chosen. In the case of
a single consensus instance handling n = 4 and f = 1 operating on an 8 bit value domain the
results of the EIG resolve function using an 8 bit default value v = 0x00 will decide to 0x00, as
the input values do not match. Since the EIG algorithm is only designed for exact input values,
the algorithm will consider three nodes faulty which violates f = 1.

In the case of 8 consensus instances in parallel the resolve functions lead results in a range
of values around the sensors values in most of the cases. For each input value the result is
calculated bitwise. Therefore, the input values xp0 = 0x0F (=0b00001111), xp1 = 0x0E
(=0b00001110), xp2 = 0x0D (=0b00001101) and xp3 = 0x0C (=0b00001100) lead to a re-
solve value of 0x0C (0b00001100) at label "node 0 said that . . . ", 0x0D (0b00001101) at label
"node 1 said that . . . ", 0x0E (0b00001110) at label "node 2 said that . . . ", 0x0F (0b00001111)
at label "node 3 said that . . . " and a decision value of yp∗ = 0x0C (=0b00001100) for the whole
tree. Nevertheless, cases exist where the decision value does not meet the range around the orig-
inal values. As an example, assume xp0 = 0x0F (=0b00001111), xp1 = 0x0E (=0b00001110),
xp2 = 0x11 (=0b00010001) and xp3 = 0x10 (=0b00010000). Although the deviations of these
values from each other are as far apart as in the example before, the result of the resolve function
for yp∗ = 0x00 (=0b00000000). However, validity is satisfied, since at least one correct node
has the input value 0b0 considering each bit separately. Since all nodes decide to the same value
agreement is satisfied too.

An exhaustive elaboration of 8 bit values was made for both variants. All decisions differing
from the nearest input value by 5 were categorized as invalid. When the maximum deviation of
any two input values is restricted by 4 the analysis showed that 91.6% of all runs were consid-
ered correctly if each bit is treated separately, while only 15.7% were considered correctly when
using eight bit consensus. A more in-depth analysis of this topic is out of the scope of this thesis
and will therefore not be performed here.
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CHAPTER 6
Implementation in Hardware

In the previous chapter we outlined an architectural overview of the hardware framework we
use. This chapter presents the implementation of the EIG and Phase King protocol on top of this
framework. The components outlined in this chapter are designed for protocols using n = 4 and
f = 1. In contrast to the software simulations, the hardware components are designed to exe-
cute 8 consensus instances in parallel, therefore processing a byte of information. Each instance
is limited to single bit messages and no information of the other ones are incorporated into its
execution. As the hardware framework transmits a byte of information in parallel, the data of
all 8 instances can be transmitted using a single invocation of the message layer. Therefore, bit
x (0 ≤ x < 8) of the message corresponds to the consensus instance x. To hide the details of
the implementation from the application logic and to enable it to use it with both protocols, the
implementations are encapsulated behind a common interface depicted in Figure 6.1.

Note: Components and signals used for fault injection and testing have been omitted.
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Figure 6.1: Interface between application logic and consensus implementation

clk and res_n are the clock and the reset signal, respectively, provided by the controller node.
The input_value port is used to supply the consensus protocol with the value to reach consensus
for. The result of the consensus calculation can be read from port output_value. output_valid
indicates, if the output value can be read in the current clock cycle (’1’) or if the calculation is
still in progress (’0’). The signals transmitter_clk(0 . . . 3) and transmitter_data_stream(0 . . . 3)
as well as receiver_clk(0 . . . 3) and receiver_data_stream(0 . . . 3) are the interfaces to all other
nodes. Please note that each node has a interface to itself, to keep the protocol implementation
as regular as possible. Details on the communication protocol used on these links has already be
given in Section 5.6.

6.1 Implementation of the EIG Protocol

round counter

sender state machine receiver state machine resolve

the tree

Figure 6.2: Architectural design of the EIG component

An architectural overview of the EIG component’s design can be found in Figure 6.2. The tree
forms the central element of this implementation. Each of the 20 records of this linear memory
can store one message. All information gathered during the execution is saved in the tree. Since
8 instances of the EIG protocol are executed in parallel, each message contains the information
of all the 8 instances. Therefore, the least significant bit of the message (message[0]) contains
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round = ROUND_MAX

new round and
round < ROUND_MAX

Figure 6.3: Sender state machine of EIG implementation

the data corresponding to instance 0, message[1] the data corresponding to instance 1 and so
forth. The round counter is configured to trigger 5 rounds, each consisting of 1 message. The
round counter also coordinates the receiver state machine, the sender state machine and the re-
solve function.

Sender State Machine

The state machine responsible for broadcasting the messages to the other nodes is quite straight
forward and can be found in Figure 6.3. It starts in the state reset. After the component’s reset
signal is released, the state transition to state bc_in is triggered at the next clock tick. In state
bc_in the input value of the node is broadcasted to each of the 4 nodes of the system (including
the node itself). Afterwards a transition to bc_in_wait is triggered. It is used to wait for the be-
ginning of the next round. At the beginning of round 2 (as signaled by the round counter) the first
level of the tree is broadcasted in state bc_tree. Similar to bc_in_wait, bc_tree_wait is a helper
state for bc_tree to implement the waiting logic until the next round switch occurs. Dependent
on the number of rounds already executed, the successor state of bc_tree_wait is different. If all
tree levels have already been broadcasted (namely round = ROUND_MAX = 5), the state
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resetstart

wait read

round = 1

message reception signaled

on next clk cycle

Figure 6.4: Receiver state machine of the EIG implementation

machine starts the next consensus iteration by returning to round 1 and reading the next input
value. If, on the other hand, the broadcast of the tree has not yet been finished, the state machine
returns to the state bc_tree.

Receiver State Machine

The purpose of the receiver state machine is simply to save the received messages at the right
positions in the tree. As we have seen in Section 5.7, the latest possible reception time of each
message is signaled by the round counter. Using this information it is simple to decide when to
read the messages safely out of the receive buffers. This behavior is implemented by synchro-
nizing to the round counter at startup (state reset) which is achieve by simply waiting for the
start of round 1. After this synchronization, the state machine stays in the wait state until the
round counter indicates the reception of a new message triggering a state change to the read
state where the message is copied to the tree. One clock cycle later the state machine switches
back to the wait state.

tree[(round− 1) ∗ 4 + i] = received data from node i; (6.1)

The addressing of the data in the tree memory is done according to Equation 6.1. For more
detailed information on the data storage within the tree please refer to Section 4.3).

6.2 Resolve Function of the EIG Implementation

The resolve function is triggered in round 1. Thus, the values used, namely tree[4 . . . 19], are
the values of the previous iteration of the consensus protocol. The hardware implementation of
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the resolve function is designed similarly to the one used for the simulator in Section 4.3. The
major difference is, that the messages used in the hardware implementation consist of 8 bits,
while the simulation environment only uses single bit messages.

The resolve function is shown in Figure 6.5. For each group of messages stored in the leaves
of the tree, a bitwise resolve function is executed. The results of these intermediate functions
(namely resolve0, resolve1, resolve2 and resolve3) are used as the input values for the next
resolve stage. Please note that all information processed by a single node only (tree[4], tree[9],
tree[14] and tree[19]) do not contribute to the resolve function.

6.3 Design of Component Implementing the Phase King Protocol

round counter

sender state machine

receiver state machine

resolve_if

C[0] C[1] D[0] D[1]

Figure 6.6: Architectural design of Phase King component

An overview of the Phase King component implementation is given in Figure 6.6. The protocol
is executed in 8 rounds. In contrast to the EIG implementation, where the gathered information
is stored in a linear memory which has to be post-processed by a dedicated resolve function after
all information is gathered, the Phase King implementation executes its resolve functions multi-
ple times. The Phase King resolve function calculates a weight value by counting the numbers of
ones and zeros for each bit position in all messages received in the current round. Depending on
the current round, the calculated resolve values give an indicator for the strength of a preferred
value. In our implementation, the execution of the resolve function is triggered by the receiver
state machine. The calculated results are stored in the registersC[0], C[1],D[0] andD[1]. These
registers are accessed later on by the sender state machine to retrieve these values. (A detailed
description can be found in Section 3.7.)
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Figure 6.5: Implementation of the resolve function for n = 4 and f = 1
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Figure 6.7: Simplified sender state machine of the Phase King implementation (wait states re-
moved)

Sender State Machine

The sender state machine is shown in Figure 6.7. Please note that all wait states have been re-
moved from the figure to increase its readability. The wait states are used to synchronize the
message receptions with the round counter.

At system startup (after the clock has started and the reset signal has been released) the
state machine synchronizes to the node’s round counter by waiting for round = 0. Afterwards
the input value is broadcasted to all nodes (including the node itself) and the local preference
value is set to the local input value in state p1_bc_in. In round 1 (state p1_bc_c0), the state
machine broadcasts thresholdHigh(C[0]) (according to Algorithm 8) and afterwards in round
2 thresholdHigh(C[1]) (state p1_bc_c1). The values of C[0] and C[1] have been calculated by
the receiver state machine as depicted in Figure 6.6.

Afterwards, when reaching round = 3 the King’s Phase is initiated. Therefore, the node
with the index 0 broadcasts its current preference. This is called the King’s broadcast of phase 1.
The broadcast value is calculated based onD[1] and according to thresholdLow(D[1]) as given
in Algortihm 9. At the beginning of phase 2 (round = 4) each node updates its local preference

85



value according to the received King’s broadcast and the values reflecting D0 and D1 (calcu-
lated in phase 1) in state p2_bc_pref and broadcasts its preference to all other nodes. The states
p2_bc_c0 and p2_bc_c1 are similar to the states p1_bc_c0 and p1_bc_c1, respectively, but use
updated values for C[0] and C[1]. The King’s broadcast of phase 2 is sent in state p2_bc_king
by the node with index 1. The calculation is similar to the calculation in state p1_bc_king, but
uses the updated register D[1] of phase 2. Finally in round = ROUND_MAX = 8 the final
decision is reached in state p1_bc_in and the next input value is already broadcasted. (A more
detailled discussion of the algorithm and the registers C[0], C[1], D[0] and D[1] can be found in
Section 3.7.)

Algorithm 8 thresholdHigh(value) used in sender state machine of Phase King
1: for value(i), 0 ≤ i ≤ 8− 1: do

2: if value(i) ≥ N − F then
3: output(i) = 1
4: else
5: output(i) = 0

Algorithm 9 thresholdLow(value) used in sender state machine of Phase King
1: for value(i), 0 ≤ i ≤ 8− 1: do

2: if value(i) > N − F then
3: output(i) = 1
4: else
5: output(i) = 0

Receiver State Machine

Like the sender state machine, the receiver state machine depicted in Figure 6.8 is reduced to
the most important states. Thus, states with the purpose of simply waiting for the next message
reception are neglected here. Therefore, a transition is triggered whenever the round counter
component signals the safe access to messages previously received.

The receiver state machine starts in the state reset. A synchronization to the round count-
ing component is done by waiting for the first message receipt in round 1. After this, the state
machine triggers a transition to the state p1_read_in where the input value of the other nodes
can be safely read from the receiver components. In this stage the values for C[0] and C[1]
are calculated by the resolve functions using the input values of all nodes (including the node
itself). Since in each message 8 values for 8 instances of the Phase King protocol are packed,
the weighted indicators have to be calculated for each bit of the messages separately. C[0] holds
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Figure 6.8: Simplified receiver state machine of the Phase King implementation (wait states
removed)

the number of counted ’0’ per bit over all messages and C[1] holds the number of counted ’1’
per bit over all messages. The value reflecting C[0] is received in the state p1_read_c0. Upon
these values, D[0] is calculated by the resolve function, weighting them by counting the bits set
to ’1’ in the received messages. Upon the received values C[1], the same procedure is applied to
calculate the valueD[1] (in state p1_read_c1). Finally, the current phase of the protocol is com-
pleted in state p1_read_king. In this state the King’s broadcast is received. In contrast to the
other messages, the kings message is received from a single node only (namely from the king of
the phase). Thus, in phase 1 the King’s broadcast is only received from node 0. Values in other
receiver buffers are ignored. On the reception of the next message the state machine triggers a
transition to the state p2_read_pref starting the second phase of the protocol. The behavior in
this second phase is similar to the first one, except that the King’s message is received from node
1.
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Figure 6.9: Implementation of the resolve_if(∗) component for n = 4 and f = 1

6.4 Resolve Functions for Phase King

The resolve functions for Phase King used in this implementation are based on two weighting
types. Both calculate an indicator pref in the ranging from 0 to 4 for each bit of the preference
value. The first weighting type counts the number of received ones, while the second weighting
type counts the number of zeros, abbreviated with resolve_if(1) and resolve_if(0). The re-
sult of this weighting components is stored in registers holding 8 of these pref values (one for
each instance of the Phase King protocol). This preferences are calculated bitwise over all four
messages received. Assume we received the values 0x01, 0x03, 0x04, 0xFF from the nodes in a
round. The preference values would calculate to 1, 1, 1, 1, 1, 2, 2, 3 for applying resolve_if(1)
and 3, 3, 3, 3, 3, 2, 2, 1 for resolve_if(0).

As presented in Figure 6.9, the whole eight bit values are passed to the component and split
into groups by combinational units which are responsible for calculating the weights for each
group. The units can be parameterized with a reference value, determining the weighting criteria,
namely if ones or zeros have to be counted. As we have discussed previously, these indicators
are stored in the registers C[0], C[1], D[0] and D[1]. Based on these registers, the broadcast
messages are calculated according to Algorithms 8 and 9.
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CHAPTER 7
Evaluation of Hardware

Implementation

In the first part (Section 7.1-7.7) we illustrate how the implemented algorithms work by dis-
cussing different execution scenarios. They highlight how different input values and faults in-
fluence the execution of the algorithm. These tests were executed using ModelSim on a PC. In
the second part (Section 7.9) measurements executed on a real FPGA prototype are presented.
The measurements were performed using a specialized test framework implemented on top of
the consensus nodes. Each node was equipped with a dedicated tester, generating input values
and comparing the results to pre-calculated reference values. To make the results comparable to
the ones gathered from the simulations in software (presented in Secton 4.4), we use f = 1 and
t = 0, t = 1 and t = 2.

7.1 Evaluation of the Implementations

As outlined in Section 5.5, the behaviour of the nodes can be configured via a software tool.
This configuration includes (i) if the node is faulty and (ii) if it is faulty which kind of faults are
applied. The structure of the fault configuration registered for one round of a single, faulty node
is shown in Figure 7.1. This registers are split into two groups. The first one configures if a node
is faulty and which of its links exhibits what kind of faults. To emulate byzantine behavior, the
second part of the fault configuration, enables us to specify which messages to send to each of
the neighbors.

The configuration of the link faults is split into groups of eight bits. Each group is used for
the configuration of one neighbor. As shown in Figure 7.2, various link faults can be emulated.
Possible configurations are:

1. Bit 1 set: Simulates a floating output (’Z’) on the data link.
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Figure 7.1: Fault configuration record for one round executed by a faulty node p
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Figure 7.2: Fault configuration of a link fault

2. Bit 2 set: Simulates a stuck at 0 fault on the data link.

3. Bit 3 set: Simulates a stuck at 1 fault on the data link.

4. Bit 4 set: Inverts the information on the data link.

5. Bit 5 set: Inverts the clock signal on the clk link.

6. Bit 6 set: Simulates a bridging fault by duplicating the clk signal on the data link.

7. Bit 7 set: Simulates a bridging fault by duplicating the data signal on the clk link.

Bit 0 has a special meaning. It is used as a master flag to enable or disable the fault simulation
on the link.
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The evaluations presented in the following sections include three different scenarios for each
implemented algorithm:

1. Case 1: All nodes behave correctly and process the values according to their implementa-
tion.

2. Case 2: Node p3 behaves faulty and sets the communication links (data rail and clock rail)
between node p3 and node p2 to several, invalid states.

3. Case 3: Node p3 behaves faulty and broadcasts spurious messages. The major difference
between this case and the case described before is that the messages broadcasted here have
a valid structure and thus the fault can not be detected by the communication subsystem.

7.2 EIG Case 1 - Fault Free Execution

In this scenario the values x0 = 1, x1 = 2, x2 = 3 and x3 = 4 are used as input values and all
nodes behave according to their specification. To give a better insight on the algorithm, we dis-
play the round number, the input value, the received data, the information tree and the calculated
output value of node p2 in the simulation. To create a correct reference for the faults injected
throughout case 2 and 3, we also depicted the outgoing data and clk rails between node p3 and
p2 as well as the configuraton of the faults injected into node p3.

Node p2’s execution of this scenario is shown in Figure 7.3. In round 1 new input values
are processed by the algorithm (1). Afterwards, each node broadcasts its input value to all other
nodes (including itself). These values are received during round 1 (2) and are available for the
receiver at the begin of round 2. In round 2 they are added to the information tree (3). Thus, the
first four entries of the tree are filled with the input values of the nodes. Next, each node broad-
casts the informations stored in tree[0..3]. Therefore, in each round r > 1, the nodes distribute
their local view of node pr−1’s proposal. Since no fault occurs in this scenario, the tree correctly
fills with the values of the nodes. For example: (4) shows the values received during round 2,
which are the values send by node 1 as witnessed by the other nodes in round 1. The correct
final decision of 0 is made at the begin of round 6 (5).

7.3 EIG Case 2 - Communication Link Failures

In the second scenario node p3 is configured to be faulty. In this scenario the link between node
p3 and node p2 is corrupted.

The input values of all nodes are set to 1 in this execution. As we can see in Figure 7.4, the
data link is configured to exhibit an open fault (high Z) in the first round (1), a stuck at 0 fault in
the second round and a stuck at 1 fault in the third round. In the fourth round the information sent
via the data rail is inverted and in the fifth round the clock signal on the clk rail is inverted. In
round six and seven bridging faults are applied by replicating the clk signal on the data rail and
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the data signal on the clk rail. (2) shows the tree filled with the input values of the nodes. Since
the communication link between node p3 and node p2 is corrupted, the value witnessed from
node p3 is zero because the communication subsystem has detected the erroneous transmission
and discarded the value. The reception of 0x00 from p3 at p2 can be witnessed throughout the
whole information gathering phase. Since only the link between these two nodes is corrupted,
the other nodes (p0 and p1) received correct values from p3, as we can see in (3). Here, p0 and
p1 report that node 3 has stated its initial value to be 0x01, while all information received from
p3 is 0x00. Nevertheless, the information gathered by the algorithm results in 0x01, which is
correct.

7.4 EIG Case 3 - Spurious Messages

In the third scenario (case 3), again, the inputs are set to 1 for all nodes. In this case, however,
the faulty behaviour of node p3 manifests itself by broadcasting arbitrary but valid messages to
the nodes. In case 2 the link faults could be detected by the communication subsystem and 0x00
was delivered for the faulty links. In this scenario the faulty node’s spurious messages reach the
consensus algorithm.

As depicted in Figure 7.5, permutations of 0x01, 0x02, 0x03 and 0x04 are broadcasted by
node p3 to the other nodes (1). In round 1 p3 sends 0x01 to node p0, 0x02 to node p1, 0x03
to node p2 (2) and 0x04 to itself. In the follwing round (round 2) we can see the manifestation
of the faulty messages in the information tree (3). Similar corruptions can be observed in round
3 (4) and round 4 (5). Since the majority of all groups of information in the tree is 0x01, the
decision value resolved in round 6 is still 0x01, which is the correct result for this execution.
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Figure 7.3: EIG Case 1: Fault free execution of p2 with the input values x0 = 1, x1 = 2, x2 = 3 and x3 = 4
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Figure 7.4: EIG Case 2: p3 generates faulty signals on the communication links to node p2 (input values x0 = x1 = x2 = x3 = 0x01)
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Figure 7.5: EIG Case 3: p3 broadcasts arbitrary but valid messages to all the other nodes (input values x0 = x1 = x2 = x3 = 0x01)
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7.5 Phase King Case 1 - Fault Free Execution

As shown in Figure 7.6, the input values are set to 0x01 (1). Since in this case all nodes behave
correctly, the execution shown for node p2 is similar to the executions observable on all other
nodes. Thus, every node sets its local preference value to the input value and broadcasts it to all
other nodes in round 1.

Since all nodes received 0x01, at the begin of round 2 (2), C[0] and C[1] (calculating
the number of received ’0’s and ’1’s for every single bit evaluate to 0, 4, 4, 4, 4, 4, 4, 4 and
4, 0, 0, 0, 0, 0, 0, 0, respectively (3). These values are transformed to an 8 bit value according
to the given threshold (see Section 3.7) and broadcasted to all other nodes (4) and (6). The trans-
formed value of C[0] is received at the start of round 3 where D[0] is calculated (5) according
to the received number of ’1’s (for each bit of the messages). The same calculation is executed
for D[1] (7) with the received values of C[1] in round 4. In our sample D[0] and D[1] evaluate
to 0, 4, 4, 4, 4, 4, 4, 4 and 4, 0, 0, 0, 0, 0, 0, 0, respectively. According to the values of D[1], the
kings broadcast is sent by node p0 in round 4 (8). In round 5 the nodes update their local pref-
erence values depending on the trust in their current preference (manifested by D[0] and D[1])
and the message received from the king of the current phase (p0). The updated preference value
is then sent to all nodes similarly to the input value in round 1. This described procedure is
repeated for all later rounds. At the beginning of round 9, the output value of the protocols im-
plementation is set to the calculated preference value. In this case the output value is evaluated
to 0x01, which is correct (9).

7.6 Phase King Case 2 - Communication Link Faults

In the second scenario, the communication link between node p3 and p2 is faulty. Like in Section
7.3, the data stream and the data stream clk are modified. In the first round a floating output of
the data stream is simulated at node p3. In the second and third round a stuck at 0 and a stuck
at 1 fault are applied, respectively. In round 4 and 5 the data stream and the data stream clk are
inverted, respectively. In round 6 and 7 a bridging fault is simulated by duplicating the signal of
the data stream on the data stream clk and vice versa. This configuration is repeated from round
8 onwards.

As we can see in Figure 7.7, the input value is set to 0x01 (1). As the link faults could be
detected by the communication subsystem and therefore are replaced by 0x00, the faults man-
ifest themselves as 0x00 in the algorithm (2). This directly influences the result of C[0] and
C[1] (3). Due to the faults, C[0] and C[1] evaluate to 1, 4, 4, 4, 4, 4, 4, 4 and 3, 0, 0, 0, 0, 0, 0, 0,
respectively. Their values are received in round 3 (4) and round 4 (6). A similar observation
can be made for D[0] (5) and D[1] (7). The King’s broadcast can be seen in (8). Since all other
nodes behave correctly, the decision value is still evaluated to 0x01 (9), which is correct.

96



7.7 Phase King Case 3 - Spurious Messages

All inputs are set to 0x01. Like in Section 7.4, node p3 sends spurious messages. In contrast
to case 2, the messages apper to be valid for the communication subsystem and therefore are
delivered to the nodes. Again, permutations of 0x01, 0x02, 0x03 and 0x04 are broadcasted by
node p3.

As shown in Figure 7.5, in round 1 node p3 sends 0x01, 0x02, 0x03 and 0x04 to node p0, p1,
p2 and p3, respectively (1). Therefore, node p2 receives 0x03 during round 1 (2). This time the
manifestation of the fault can be identified in round 2 when C[0] and C[1] are calculated (3). For
the first bit no deviation with respect to a correct execution can be identified. Since the spurious
value received was 0x03, the first bit is set to ’1’ as in 0x01. Therefore, the influences of node
3 cannot be observed in the results for the first bit of the messages. Nevertheless, influences of
the spurious message can be identified in the results for the second bit. Similar behaviour can
be observed in the results of D[0] and D[1]. Since node 3 never broadcasts the kings message,
the spurious message in round 4 (4) and round 8 (5) don’t have any influences to the protocols
execution. By the thresholds used for the decision finding, node p2 decides correctly to 0x01 in
this case (6).
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Figure 7.6: PK Case 1: Fault free execution of p2 with the input values x0 = x1 = x2 = x3 = 0x01
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Figure 7.7: PK Case 2: p3 generates faulty signals on the communication links to p2 with the input values x0 = x1 = x2 = x3 = 0x01
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Figure 7.8: PK Case 3: p3 broadcasts arbitrary but valid messages to all the other nodes using x0 = x1 = x2 = x3 = 0x01 as input

100



7.8 Hardware Measurements

The evaluation presented in this section has been performed on a Xilinx Virtex 4 FPGA. A setup
as presented in Section 5.5 has been applied. The testcases applied have been computed offline
on the PC. Via a software tool each testcase has been downloaded to the FPGA. After 200 ms the
status of the protocols has been uploaded to the PC and evaluated. To achieve adequate results,
we performed tests in more than 2 106 configurations for both implementations using t = 0,
t = 1 and t = 2.

As shown in Table 7.1, the implementation of the Exponential Information Gathering pro-
tocol requires 5 rounds of communication and has a throughput of 8 bit of information per 150
microticks. The latency of a single execution (the time until the results for a given input value
are available) is 154 microticks. The protocol’s implementation provides a correctness of 100%
for t = 0 and t = 1 for a given f = 1, as expected. If two faults are applied (t = 2 > f ) the
protocol’s results are correct in 75% of the evaluated cases. To support comparability, the tests
have been generated similar to the ones given in Section 4.4.

Protocol n f t
runs

throughput latency
correct(%) faulty(%)

EIG 4 1 0 100 0 150 ticks/8 bit 154 ticks
EIG 4 1 1 100 0 150 ticks/8 bit 154 ticks
EIG 4 1 2 75 25 150 ticks/8 bit 154 ticks
PK 4 1 0 100 0 240 ticks/8 bit 241 ticks
PK 4 1 1 100 0 240 ticks/8 bit 241 ticks
PK 4 1 2 80 20 240 ticks/8 bit 241 ticks

Table 7.1: Results of hardware evaluation

The implementation of Phase King requires 8 rounds of communication and, thus, provides
a throughput of 8 bit of information per 240 microticks and a latency of 241 microticks. Like
EIG, it provides a correctness of 100%, if the number of faults applied are at most the number
of faults specified (t ≤ f ). If two faults are applied (t = 2 > f ) the implementation solves the
consensus problem correctly in 80% of the evaluated cases. Therefore, the tests evaluated reflect
the benchmarks known from the previous simulations in software.

In summary, both implementations have been tested exhaustively. The results of the im-
plemented protocols match the results gathered from the software simulation. Both provide a
correctness of 100%, if n ≥ 3f + 1 and t ≤ f holds. While the EIG’s throughput is much better
than the one Phase King provides, this is not the case for higher numbers of tolerable faults,
which can be seen as a direct consequence of the exponential increase of message (or in our case
round) complexity of the EIG algorithm.
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7.9 Device Utilization

Besides the robustness of the implementations, we also evaluated the device utilization the pro-
tocols require. Therefore, only the communication subsystem and a single node of the protocols
implementation are considered here. Further, the additionally installed hardware for the tests
presented in the previous section has been omitted here.

EIG PK
Number of Slice Flip Flops 600 (< 1%) 595 (< 1%)
Total Number of 4 input LUTs 2670 (< 5%) 2867 (< 5%)
Number of occupied Slices 1541 (< 4%) 1624 (< 6%)
Max Frequency 110.858 MHz 114.378 MHz

Table 7.2: Device utilization of a Xilinx Virtex 4 (xc4vlx60)

The implementation of the EIG protocol on an Xilinx Virtex 4 FPGA utilizes less than 1%
of the FPGA’s flip flops and less than 5% of the FPGA’s lookup tables (see Table 7.2). The
timing analysis of the EIG implementation results in a maximum frequency of 110 MHz for the
design. The Phase King protocol utilizes less than 1% of the FPGA’s flip flops and less than 5%
of the lookup tables. The timing analysis lead to a maximum frequency of 114 MHz, which is
slightly faster than the one of the EIG implementation. Compared to the maximum frequency
(128 MHz) of the used design for the receiver component of the communication buffer the speed
of the consensus implementations is still good.

Concluding the evaluations taken, in the case of f = 1 both implementations perform well.
Both grant acceptable utilization of the FPGA. The implementation of the Phase King protocol
supports a higher speed of the circuit than the Exponential Information Gathering protocol, but,
compared to the number of rounds (and as a direct consequence the number of microticks) re-
quired for a single execution, EIG performs better in this setup (f = 1). Nevertheless, given a
higher number of f , the Phase King implementation is the protocol to be prefered.
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CHAPTER 8
Conclusion and Future Work

In this thesis we have shown that the implementation of consensus algorithms are a power-
ful alternative to using TMR systems with replica determinism. A thorough analysis of three
well known consensus algorithms, namely of the Exponential Information Gathering, the Phase
Queen and the Phase King algorithm, was performed and the algorithms have been adopted to
work in the confines of VLSI circuits. The restrictions on message size imposed by the VLSI cir-
cuits make it necessary to take the message complexity into account when analyzing the timing
behavior of the algorithms. The concentration on the round complexity is not sufficient in this
case. Due to this restriction, the runtime complexity of the EIG protocol becomes exponential
in the number of tolerable faults in case of single bit messages. Nevertheless, the EIG protocol
is still the best choice (out of the three examined ones) when only a single fault has to be con-
sidered. All other analyzed protocols have a linear increase in runtime, if they are converted to
single bit messages. The different algorithms were compared using a software simulator where
their basic properties in case of the sole usage of single bit messages were checked. Finally we
implemented two of the algorithms in hardware and were able to demonstrate that both, the EIG
and the Phase King protocol, perform as expected when implemented on an FPGA.

There are still some open questions which were out of the scope for this work. The most
important ones are:

1. All implementations considered assume a fully connected network. The impact of a sparse
communication structure would be an interesting questions for future research.

2. It is clear that hardware may behave Byzantine but is a Byzantine fault tolerant system
necessary in all cases or can more benign fault models be used in some? Where would be
the limits of the benign models?

3. Would error correction on the communication links improve the system reliability? Could
the fault hypothesis be relaxed in such a case?
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4. How does the hardware complexity scale with different timing models? Would a purely
synchronous model be smaller than our mesochronous one?

5. We have seen that using eight single bit consensus instances in parallel still lead, in con-
trast to one eight bit instance, to acceptable input values when handling inexact input
data. A more thorough statistical analysis of different input combination and the resulting
decision values would be advantageous.
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