
Extending Separable Subsurface
Scattering to Arbitrary Materials

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Christian Freude

Matrikelnummer 0728278

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Mitwirkung: Projektass.(FWF) Károly Zsolnai, BSc MSc

Wien, 02.12.2014

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Extending Separable Subsurface
Scattering to Arbitrary Materials

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Christian Freude

Registration Number 0728278

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Assistance: Projektass.(FWF) Károly Zsolnai, BSc MSc

Vienna, 02.12.2014

(Signature of Author) (Signature of Advisor)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Christian Freude

Fleischmarkt 18, 1010 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-

lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i





Acknowledgements

First and foremost, I want to thank my supervisors Károly Zsolnai and Michael Wimmer for

their outstanding support and patience, and for giving me the opportunity to contribute to their

research as part of my thesis. I also want to thank Thomas Auzinger for his insightful advice and

support on numerous occasions. Thanks to Jorge Jimenez, Adrian Jarabo and Diego Gutierrez

for their collaboration.

Furthermore, I want to thank my family and especially my parents for supporting me and

my studies, as well as God for his help and guidance. In addition, I also want to thank all my

fellow students who accompanied and helped me throughout my studies.

Additionally, thanks to the creators (listed in Table A.2) of several 3D models used for this

thesis, and Joao Henriques for sharing his useful ’textborder’ function for MATLAB with the

community.

iii





Abstract

This thesis proposes extensions for the Separable Subsurface Scattering algorithm to support

arbitrary materials. Four separable (rank-1) kernel models for the approximation of physically

based diffuse reflectance profiles are presented. Each model offers different approximation qual-

ity and controllability. The first two models are based on singular value decomposition and a

custom analytic pre-integration scheme. They enable fast deterministic kernel computation and

provide fixed-quality solutions. Two additional parametrized models are based on automatic

and manual optimization and provide more control over the approximation quality but are more

time-consuming to generate. Higher rank approximations can be computed using the approach

based on singular value decomposition.

All four kernel models are used to compute approximations for physically measured diffuse

reflectance profiles of different materials and tested using several special-case irradiance signals

and complex proof-of-concept scenes. The results are compared to the state of the art in real-

time rendering of subsurface scattering, showing comparable approximation quality at lower

computational cost. The proposed extensions enable rendering of physically based subsurface

scattering for arbitrary materials and dynamic scenes in real time.
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Kurzfassung

In dieser Diplomarbeit werden Erweiterungen des Separable Subsurface Scattering Algorithmus

vorgestellt, welche es ermöglichen, diesen für beliebige Materialien zu verwenden. Darunter be-

finden sich vier separable (Rang-1) Filter-Modelle, welche die Approximation von physikalisch-

basierten diffusen Reflexionsprofilen ermöglichen. Jedes Modell bietet hierbei einen unterschied-

lichen Grad an Approximationsqualitat und Anpassungsmöglichkeit. Die ersten beiden Modelle

ermöglichen eine schnelle und deterministische Berechnung der Filter und bieten eine fixe Ap-

proximationsqualität. Zwei weitere parametrisierte Modelle basieren auf automatischer und ma-

nueller Optimierung und ermöglichen mehr Kontrolle über die Approximationsqualität, wobei

diese mehr Zeit zur Filtergenerierung benötigen. Approximationen von höherem Rang können

mittels Singulärwertzerlegung berechnet werden.

Alle vier Filtermodelle werden verwendet, um gemessene diffuse Reflexionsprofile von ver-

schiedenen Materialien zu approximieren und getestet, mittels der Berechnung von verschieden

einfachen und komplexen Szenen. Die Ergebnisse werden mit dem heutigen Stand der Tech-

nik zur Berechnung von Subsurface Scattering in Echtzeit verglichen, und zeigen vergleichbare

Approximationsqualität bei verringertem Berechungsaufwand. Die vorgestellten Erweiterungen

ermöglichen das Rendern von physikalisch-basiertem Subsurface Scattering für beliebige Mate-

rialien und dynamische Szenen in Echtzeit.
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CHAPTER 1
Introduction

1.1 Motivation

One interesting challenge in computer graphics is the computation of photo-realistic images and

animations. Throughout the last decade, research and development of sophisticated algorithms

and faster hardware has led to the point where many computer-generated images and animations

are indistinguishable from real-life footage. Photo-realistic rendering is not only needed for the

generation of special effects or even feature-length films for the movie industry, but has become

more and more important for industrial visualisation. Furthermore, due to the incredibly fast

development and huge processing power of modern GPUs, even video games often feature 3D

graphics, that are close to photorealism.

However, whereas the film industry can afford to use offline rendering, with rendering times

up to multiple minutes or hours per frame, games have to deliver real-time performance, meaning

that one frame has to be computed in a few milliseconds. This constraint leads to the fact that in

modern computer games, many rendering effects which are affordable in offline rendering are

simplified or even ignored in order to achieve real-time performance. One example of such an

effect is subsurface scattering (SSS), which plays an important role in the realistic appearance

of many materials. It is therefore an interesting and challenging research endeavour to make

SSS rendering feasible for use in games and other real-time applications.

Subsurface Scattering

Many physical materials are translucent to some extent. This has the effect that light is not

reflected entirely at the surface, but some fraction is transmitted into or through the material.

Inside, this light may get scattered multiple times before some fraction may leaf the material at

some point or is completely absorbed. Highly translucent materials absorb only a small amount

of light, while for materials with very low translucency, light is usually scattered multiple times

inside the material and therefore its absorption becomes very likely. The latter are also referred

to as optically thick, in which case the volumetric propagation of light inside the material is
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referred to as subsurface scattering. Well-known examples are e.g. wax, marble, milk or human

skin.

For the simulation and rendering of SSS it is necessary to take the material’s volume into

account and how light propagates throughout its medium. In a more general context, this is

often referred to as rendering of participating media or volume rendering. Even in the context

of offline rendering, computation of light propagation in a medium is a hard problem (outlined

in more detail in Chapter 2), and rendering of a single image can take from several seconds up

to multiple hours. Real-time applications, however, often have only a very limited time budget

of a few milliseconds, and it is therefore necessary to develop sophisticated techniques in order

to make real-time SSS rendering possible.

1.2 Problem Statement

Despite the importance of SSS for the realistic appearance of many surfaces and materials, it is

often ignored in the context of real-time rendering to increase rendering performance. Although

SSS is challenging, even for offline rendering, a variety of different methods for real-time SSS

rendering have been developed over the past years (outlined in Section 3). A lot of effort was

put into the approximation of SSS in human skin, as rendering of faces is quite a common and

important task in the context of games.

In particular, one implementation of a technique by Jimenez and Gutierrez [23, 25], called

Separable Subsurface Scattering (SSSS), demonstrated that SSS in human skin can be com-

puted in approximately one millisecond (outlined in more detail in Chapter 4). This method

approximates SSS via a post-processing step, in which the surface irradiance is blurred in screen

space, in order to mimic light transmittance below the surface due to SSS. In general, such an

approximation requires an expensive 2D convolution with a filter kernel specific to the rendered

material. The main idea of the SSSS algorithm is to approximate the 2D filter kernel via a corre-

sponding separable filter kernel, which makes it possible to perform the expensive 2D blurring

operation via two fast 1D convolution passes. In case of the original SSSS method, the used sep-

arable filter kernel is derived via a parametrized model which is specifically designed and tuned

to approximate SSS in human skin. Although the parameters provide some form of control over

the SSS effect, the model is quite limited and therefore not suited for close approximation of

materials other than human skin. The SSSS algorithm enables fast rendering via use of the sep-

arable convolution approach, whereas the limited filter kernel model hinders its application for

the approximation of SSS in arbitrary materials.

Therefore, it is the aim of this thesis to propose a more general separable filter kernel model

in order to extend this technique to support SSS rendering for arbitrary materials. For this

purpose, it is necessary to find a separable filter kernel model which is able to approximate

corresponding 2D filters, representing a wide variety of different materials. In general, arbitrary

2D filters are not separable, and therefore a close separable approximation may not be possible.

However, the particular properties and form of filters used for SSS rendering via irradiance

blurring enable a close approximation via low-rank or separable (rank-1) filter kernels.
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1.3 Contributions

The main contribution of this work are several filter kernel models which can be used to ex-

tend the previously mentioned SSSS algorithm to support arbitrary materials. These proposed

extensions of the SSSS algorithm were researched and developed in the course of a research

project in close collaboration with Károly Zsolnai, Thomas Auzinger and Michael Wimmer

from the Vienna University of Technology, Adrian Jarabo and Diego Gutierrez from the Univer-

sity of Zaragoza and Jorge Jimenez, Xian-Chun Wu and Javier von der Pahlen from Activision-

Blizzard.

In order to support different materials, it is necessary to find an appropriate model which

supports the close approximation of 2D filter kernels for arbitrary materials via a separable (rank-

1) filter kernel. Over the course of multiple tests of various approaches, four different separable

kernel approximation models were researched and developed, which act as replacements for the

limited skin model of the original SSSS algorithm. These models enable the approximation of

SSS for arbitrary materials, as they are more general and less limited than the model used in the

original SSSS method.

The first of the proposed models provides a separable approximation of a 2D filter kernel

via compression based on singular value decomposition. Furthermore, this model also supports

higher-rank solutions, which enable higher approximation quality at the cost of increased render-

ing time. The second separable approximation approach uses a custom analytic pre-integration

scheme, and is exact for a special class of irradiance signals. These two models support fast

kernel generation while providing fixed-quality solutions. More control over the approximation

quality, at the cost of increased kernel generation speed, is provided by two additional models

that are based on optimization and manual approximation. The optimization-based approach

computes the separable kernel by minimizing a parametrized function, which can be used to

control the kernel shape and subsequently the approximation quality. The last kernel model was

developed by Jorge Jimenez and is described in this thesis for the sake of completeness. It is

based on manual approximation by the user, and provides a few intuitive parameters, which can

be used to fully control the separable filter kernel. All four models offer varying levels of qual-

ity, computation speed and controllability, which makes it possible to select the approach that is

most suited for a particular application.

In order to evaluate the models and the corresponding filter kernels, a series of rendering

tests were performed. The different filters were applied to several artificial test signals for easy

comparison. Furthermore, more complex proof-of-concept scenes were assembled and rendered

to prove the practical application of the proposed models in the context of real-time SSS render-

ing of arbitrary materials in dynamic scenes.

1.4 Structure of the Work

The following chapter will outline some of the basic concepts and theories of subsurface scatter-

ing and volume rendering as well as common concepts used for SSS rendering. Chapter 3 gives

and overview over existing SSS rendering methods and approaches, while Chapter 4 includes a

more detailed explanation of the original SSSS algorithm. The proposed extensions to arbitrary
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materials are presented in Chapter 5, and their evaluation for different materials using artificial

tests and practical proof-of-concept renderings is shown in Chapter 6. This chapter also includes

the discussion of the results and outlines several limitations. The last chapter represents a high-

level overview of the proposed extensions and draws a final conclusion based on the presented

results.
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CHAPTER 2
Basic Concepts

This chapter provides an overview over basic concepts and theories regarding subsurface scat-

tering and volume rendering in general. First, the basic concept of SSS is explained, followed by

the introduction to volumetric rendering theory. Finally, a few aspects of practical SSS rendering

and corresponding concepts are discussed.

2.1 Subsurface Scattering

In the real world many materials are more or less translucent. When light hits the surface of

such a translucent material some part of the light gets reflected directly on the surface and some

other part enters the medium below the surface. Inside this medium the light may get scattered

multiple times before getting absorbed or leaving the material again at a certain point on the

surface. This is illustrated in Figure 2.1. The more light gets absorbed by a certain material

the less translucent it is. For materials with very low translucency, light is usually scattered

multiple times inside its medium with the effect that its absorption becomes more and more

likely after every scattering event. Such materials with high absorption and low translucency are

often called optically thick. This volumetric propagation of light inside optically thick materials,

including scattering and absorption, is often referred to as subsurface scattering. In Figure 2.2

examples of real-world subsurface scattering in human skin, marble and milk are shown, where

the translucency and SSS is especially visible in the thinner edge regions. This are of course only

a few examples and there are many more materials which exhibit similar subsurface scattering.

For simulation and rendering of such materials it is necessary to model how light propagates

throughout the material’s volume and how light interacts with the medium. The corresponding

theory and basic concepts are explained in the following section.
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Figure 2.1: This is an illustration of subsurface scattering showing different examples of possible

light paths annotated as follows: (a) denotes light that is directly reflected at the surface, (b)

corresponds to light that was scattered inside the medium but never absorbed, and (c) shows a

light path that never leaves the medium again and is completely absorbed.

2.2 Volume Rendering Theory

For the simulation of light propagation inside a material it is important to know how light in-

teracts with the medium. In order to model these interactions the medium is often described

statistically and assumed to be comprised of little particles which interact with light. These

particles may emit, absorb or scatter light as it travels through the medium. For simulation and

rendering it is necessary to know how the light or radiance changes throughout the medium due

to such particle–light interactions. Given this model, let’s consider a single ray of light with a

certain direction which travels trough a point inside the medium. The change of radiance in this

point along the ray direction is determined by the combined effect of the following interaction

events:

Emission: Light is emitted.

Absorption: Light is absorbed.

In-Scattering: Light is scattered into the direction of the ray.

Out-Scattering: Light is scattered into a different direction.

An illustration of these four interaction events can be seen in Figure 2.3. In this context, a

medium is usually defined probabilistically using the so called absorption coefficient σa, scat-

tering coefficient σs and phase function p, which are described in more detail in the following

paragraph.
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(a) Skin

(b) Marble

(c) Milk

Figure 2.2: Real-world examples of subsurface scattering. (Image sources: [11, 15])

(a) Emission (b) Absorption (c) In-Scattering (d) Out-Scattering

Figure 2.3: Illustrations of light–medium interactions. (Images from Jarosz [18])

Radiative transfer equation: The four particle–light interaction events and medium prop-

erties, described earlier, are incorporated by the so called Radiative Transfer Equation (RTE)

shown in Equation 2.1. Although, its theoretical foundation was introduced by Chandrasekhar

[3], the explanations, equations and notations of this section are based on work by Jarosz [18].
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The RTE describes the change in radiance L along a given direction ~ω in a given point x.

(~ω · ▽)L(x→ ~ω) = − σa(x) L(x→ ~ω)︸ ︷︷ ︸
absorption

− σs(x) L(x→ ~ω)︸ ︷︷ ︸
out-scattering︸ ︷︷ ︸

extinction

+ σa(x) Le(x→ ~ω)︸ ︷︷ ︸
emission

+ σs(x) Li(x→ ~ω)︸ ︷︷ ︸
in-scattering

(2.1)

L(x→ ~ω) denotes the radiance propagating in direction ~ω in point x. The absorption coefficient

σa and the scattering coefficient σs are characteristic for a given medium and represent the

probability that light is scattered or absorbed in point x of the medium’s volume. Absorption

and out-scattering can be furthermore combined to form the so called extinction: σtL(x → ~ω),
where σt = σa + σs.

The term Le represents the emitted light, while Li describes the light scattered into the

direction ~ω at point x. As Li represents in-scattered light from all directions, it is necessary to

integrate the radiance over the whole sphere around point x. This leads to the expanded term of

Li shown in Equation 2.2.

Li(x→ ~ω) =

∫

Ω4π

p(x, ~ω′ → ~ω) L(x← ~ω′) d~ω′ (2.2)

The term L(x ← ~ω′) represents the light arriving in point x from direction ~ω′. It is scaled by

the so called phase function p(x, ~ω′ → ~ω) which denotes how much light is scattered into the

different directions. The coefficients σa and σs or the phase function p can be constant or may

vary with respect to x, for which the medium is referred to as homogeneous or heterogeneous,

respectively.

Phase functions can be of arbitrary form as long as they satisfy the two conditions of being

normalized and reciprocal as defined in Equation 2.3.

Reciprocity: p(x, ~ω′ → ~ω) = p(x, ~ω′ ← ~ω)

Normalization:

∫

Ω4π

p(x, ~ω′ ↔ ~ω) d~ω′ = 1, ∀~ω (2.3)

In case of the constant phase function pI(x, ~ω
′ ↔ ~ω) = 1

4π the medium scatters light uniformly

in all direction and is therefore called isotropic. Phase functions which are not constant with

respect to the direction model anisotropic scattering. Depending on the predominant scattering

direction the medium may be referred to as back-scattering or forward-scattering. One very

common example of an anisotropic phase function is the so called Henyey-Greenstein phase

function [17] shown in Equation 2.4.

pHG(x, θ) =
1− g2

4π (1 + g2 − 2g cos θ)1.5
(2.4)

Here θ denotes the scattering angle and g is a parameter in the interval [−1, 1] which can be

used to define the anisotropy and describes the average cosine of the scattering directions. The
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phase function is isotropic for g = 0, forward-scattering for 0 < g ≤ 1 and back-scattering for

−1 ≤ g < 0. The advantages of this function are its simplicity and the fact that it can be used

to approximate other more complicated scattering functions. The anisotropy parameter g is also

used for the definition of the so called reduced scattering coefficient defined as σs
′ = (1− g)σs

and the reduced excision coefficient defined as σt
′ = σa+σs

′, according to Pharr and Humphreys

[34].

Volume rendering equation: Unfortunately, the RTE is a differential equation and therefore

not suitable to be evaluated directly. However, it is possible to derive, based on the RTE, the so

called Volume Rendering Equation (VRE), shown in Equation 2.5, which can be evaluated by

Monte Carlo integration.

L(x← ~ω) = Tr(x↔ xs) L(xs ← −~ω)︸ ︷︷ ︸
reduced surface radiance

+

∫ s

0
Tr(x↔ xt) σa(x) Le(x→ −~ω) dt

︸ ︷︷ ︸
accumulated emmited radiance

+

∫ s

0
Tr(x↔ xt) σs(xt) Li(xt → −~ω) dt

︸ ︷︷ ︸
accumulated in-scattered radiance

(2.5)

The VRE expresses the radiance L arriving at point x from direction ~ω. This equation basically

represents the sum of the light from the nearest surface arriving at point x in direction ~ω and the

emitted or in-scattered light along the ray from the surface to point x, attenuated by absorption

and out-scattering. Here, xs is the nearest surface point in direction ~ω and s is its distance to x.

Points between x and xs are denoted as xt. The Tr terms represent the so called transmittance

between two points, with Equation 2.6 as its expanded from.

Tr(x
′ ↔ x) = e−τ(x′↔x)

where

τ(x′ ↔ x) =

∫ d

0
σt(x+ t~ω) dt

(2.6)

The transmittance Tr represents the fraction of light left after travelling distance d between point

x and x
′. This fraction depends on the extinction coefficient σt, as the radiance may get reduced

by absorption and out-scattering.

2.3 SSS Rendering

In principle any algorithm which supports volumetric rendering may be used to render SSS. For

example it is possible to evaluate the VRE using a Monte-Carlo based renderer. However, in case

of subsurface scattering it is mandatory to compute multiple scattering, which is significantly

harder than single scattering. Therefore, rendering of SSS can become very time consuming due

to the necessary computation of multiple scattering in optically thick media.
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Due to the high number of scattering events inside an optically thick material, and the ac-

companying attenuation, most of the rays which enter the surface simply terminate without ever

reaching a light source. If we would consider to use e.g. a simple volumetric path tracer for ren-

dering of SSS, it will become apparent that a vast amount of computed paths are simply wasted

and do not contribute to the final solution, which leads to slow image convergence. Although

more sophisticated and efficient algorithm exist, this simple example illustrates that simulation

and rendering of SSS can be quite difficult and time consuming.

The fact that performing a full volumetric SSS simulation is hard and time consuming lead

to the development of alternative approaches for which the majority is based upon concepts

described in the following paragraphs.

Diffusion: A characteristic feature of multiple scattering in optically thick materials is that

every scattering event basically blurs the light distribution in the medium. As a consequence

the light distribution becomes uniform after a sufficient amount of scattering events, even for

highly anisotropic materials. This makes it possible to compute an approximation of multiple

scattering based on diffusion theory, which replaces the exact but time consuming simulation.

This diffusion theory is used and applied in various ways by different papers mentioned in the

next chapter. One approach is to compute the multiple scattering component by performing

light diffusion on a discretisation of the material’s volume. Another approach is to approximate

diffusion via dipoles or multipoles used in BSSRDF shading models.

BSSRDF: In order to render SSS without the need for full volumetric simulation of the partic-

ipating media it is possible to use an advanced surface shading model incorporating the so called

Bidirectional Scattering Surface Reflectance Distribution Function (BSSRDF). It is basically a

function which tells you how much light hitting a surface at one location from a certain direction

is reflected from the surface at another location in a certain direction. This is formally described

in Equation 2.7.

dLo(xo, ~ωo) = S(xi, ~ωi;xo, ~ωo) dΦi(xi, ~ωi) (2.7)

This equation states that the outgoing radiance Lo at point xo in direction ~ωo is determined by

the incident flux Φi at point xi in direction ~ωi scaled by the BSSRDF S parametrized with the

corresponding locations and directions. This model can be seen as a more general version of the

commonly used Bidirectional Reflectance Distribution Function (BRDF) which assumes that

light that hits a surface is directly reflected at the same location (xo = xi). Similar to the various

existing BRDF models, there are also different BSSRDF models proposed in the literature, of

which some notable examples are mentioned in the next chapter.

Irradiance Filtering: Given that offline rendering algorithms need a significant amount of

time to compute SSS, it is not surprising that real-time rendering of SSS can be even more

challenging. Due to the time constraint of only a few milliseconds per frame, it is currently not

possible to compute a full SSS simulation in real time, but some kind of fast approximation has

to be used.

One characteristic feature of SSS is that it blurs surface detail and illumination. It is therefore

a very common real-time approach to approximate subsurface light diffusion by filtering the
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(a) 1D illustration of a diffuse reflectance profile (b) 2D diffuse reflectance profile

Figure 2.4: These two figures demonstrate the basic concepts behind a diffuse reflectance profile.

Figure (a) shows an illustration of how a diffuse reflectance profile is generated. A light beam

hits the surface of an infinitely wide and thick half-space, enters the material and is attenuated

and scattered below the surface. Eventually, light that was not absorbed leaves the material’s

surface again at different locations, forming the diffuse reflectance profile Rd. Please note that

this illustration was inspired by previous work of Habel et al. [14]. An example for an actual

2D diffuse reflectance profile is shown in (b), which was generated via particle tracing. (Images

courtesy of Károly Zsolnai)

irradiance on the surface. Various different filter kernels ranging from simple Gaussians to more

complex functions are proposed and used throughout the literature. Some notable examples are

mentioned in the next chapter.

Diffuse Reflectance Profile: Using only a simple Gaussian blur to approximate SSS in real

time is expectably a very crude approximation. In order to perform a physically based SSS

approximation it is necessary to use a so called Diffuse Reflectance Profile (DRP) for the con-

volution of the irradiance on the surface. A DRP represents the amount of diffuse reflected light

from the surface of a material illuminated by a normally incident infinitesimal light beam. This

is further illustrated in Figure 2.4. Alternatively, it might also be interpreted as the diffuse im-

pulse response of the surface or material. The DRP is in general a 2D function Rd(x, y) with

the origin at the incident location of the light beam. For isotropic and homogeneous materials

this function is radially symmetric and can therefore also be expressed as a 1D function Rd(r)
parametrized by the distance to the origin (radius), where Rd(r) = Rd(‖(x, y)‖). DRPs for

different materials can be generated using e.g. brute-force Monte-Carlo simulation and are com-

monly computed for an infinitely extending half-space. DRPs may be applied for irradiance

filtering according to Equation 2.8.

Me(x, y) =

∫

R2

E(x′, y′)Rd(x− x′, y − y′)dx′dy′ (2.8)
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Here, Me(x, y) denotes the radiant exitance for arbitrary surface points (x, y), which is the result

of the convolution of the surface irradiance E(x, y) with the diffuse reflectance profile Rd(x, y).
Using 2D convolution notation, Equation 2.8 may be expressed as Me(x, y) = (E ∗ Rd)(x, y).
By using DRPs as filters for the surface irradiance convolution it is possible to perform fast ap-

proximation and rendering of physically based SSS.

The concepts described previously in this chapter are common foundations for the methods

discussed in the next chapter which gives an overview of the state of the art in SSS rendering

and outlines important real-time algorithms.
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CHAPTER 3
Related Work

For the simulation and rendering of SSS various approaches have been developed. This chapter

gives an overview over some of the more significant methods. At first an overview over algo-

rithms suitable for offline rendering is given, followed by a more detailed discussion of real-time

techniques including algorithms on which the extended method is build upon.

3.1 Offline Rendering

Chandrasekhar [3] laid the foundation for rendering of participating media and consequential

SSS. In principle, it is possible to use brute-force path tracing introduced by Kajiya [26] or

variations of more sophisticated algorithms like photon mapping proposed by Jensen [20], bidi-

rectional path tracing developed by Lafortune and Willems [28] or metropolis light transport

introduced by Veach and Guibas [37].

However, for optically thick materials many of those rendering algorithms are quite inef-

ficient and may result in increased rendering times and slow convergence. Therefore, finding

more efficient ways to render participating media is and was an active and challenging research

area. The following are a few significant methods developed to increase efficiency for offline

rendering of participating media and especially SSS.

Stam [36] introduced the diffusion approximation for multiple scattering in participating me-

dia and presented practical techniques for its evaluation. Jensen et al. [21] developed a BSSRDF

model including exact single scattering and an approximation for multiple scattering based on

dipole diffusion. The model was verified using a specially developed technique for the measure-

ment of optical material properties. Furthermore, the model’s usage in the context of ray-tracing

was discussed. Improving on the previous method Jensen and Buhler [19] presented a two pass

approach for rendering of translucent materials which also builds upon the dipole diffusion ap-

proximation. The first pass caches irradiance samples on the surface which are then used in

the second pass for an efficient hierarchical evaluation of the diffusion approximation. Due to

this two pass approach it is easily integrateable into scanline or ray-tracing based renderers and

supports indirect illumination.
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Dipoles used for the diffusion approximation are only able to model homogeneous semi-

infinite slaps and therefore are not suitable if different material layers need to be modelled. In

order to eliminate this issue, Donner and Jenson [8] introduced a technique to render translucent

materials composed of multiple thin layers by developing a multipole diffusion approximation.

Each layer is modelled by a multipole which are combined by convolution in frequency space to

form the reflectance and transmittance profiles of a layered material. Another paper by Donner

and Jenson [9] presented a method which combined photon tracing with diffusion to render more

advanced global illumination effects like volumetric caustics and shadows in translucent mate-

rials. The basic idea is to store photons at their first scattering location inside the translucent

material, which are later used as sources for the diffusion. They further adaptively blend be-

tween a dipole, multipole and quadpole to improve the quality of the approximation for complex

geometry.

D’Eon and Irving [7] developed a new BSSRDF based on an improved diffusion approach

called quantized diffusion which models the reflectance and transmittance profiles of individual

layers as sum of Gaussians. It enables rendering of translucent materials with very thin layers

for which previous dipole or multi-pole models deliver inaccurate results. The application of the

new BSSRDF for rendering was demonstrated using the two-pass approach of Jensen and Buhler

[19]. Kulla and Fajardo [27] introduced a new importance sampling strategy for rendering of

participating media. It supports illumination of homogeneous or heterogeneous media by point

and area light sources and integrates well into ray-tracing based renderers, but introduces small

bias. The sampling strategy places samples along a ray according to the incoming radiance and

special probability density functions, constructed during ray-marching, aid rendering efficiency

and sample placement. Habel et al. [14] combined the diffusion approximation with a Monte

Carlo integration scheme based on photon beams. Compared to quantized diffusion, it is more

accurate, robust and faster and even handles arbitrary incident light directions. Furthermore, it

was integrated into various rendering frameworks to show its practicality and usability.

Although the mentioned algorithms all are able to deliver high quality results while being

increasingly efficient, they still need, depending on the actual scene and algorithm, at least a

few seconds to compute the final image. This is obviously still to slow for real-time rendering

of SSS an therefore slightly different approaches taking more radical approximations have to be

used for real-time performance.

3.2 Real-time Rendering

During the research and development phase for the film ’Matrix Reloaded’ Borshukov and Lewis

[2] where in need of a fast SSS rendering approach for CG models of the actors faces. As current

methods at that time did not meet their computation-speed constraints they developed a simple

diffusion approximation in image space. This idea laid the foundation for various real-time SSS

rendering algorithms which adopted this approach.

An examples of an early adoption of this idea in the context of real-time rendering is the

method proposed by Green [13] which performs the diffusion by simple irradiance convolution

with a single Gaussian filter in texture space. A similar example is the approach introduced

by Gosselin et al. [12] which uses Poisson disk filtering to approximate SSS in skin. Another
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sophisticated algorithm for real-time SSS rendering in skin was presented by d’Eon et al. [5, 6]

which is based on texture-space diffusion and adapted shadow maps. They derived a very ef-

ficient sum of Gaussian approximation of the dipole and multipole model of Donner and Jen-

son [8] for multi-layered materials. In order to compute the light reflected of a surface due to

SSS, the irradiance is stored in a texture and convolved with the reflectance profile represented

as a sum of Gaussians. Light transmitted through thin geometry is approximated by clever use of

the already convolved irradiance textures and the sum of Gaussians parametrized by the thick-

ness derived from shadow maps. As Gaussians are separable, the required convolutions can be

computed fast enough to deliver real-time frame rates and this method even works for animated

light and geometry. Hable et al. [16] built upon the method by d’Eon et al. [5,6] and adapted it to

support efficient rendering in console game production environments. They used a single convo-

lution pass with jittered sampling to increase rendering performance and introduced additional

optimizations to avoid convolution of back-facing surfaces.

In contrast to approximation of diffusion in a 2D space like e.g. texture space, other methods

solve the diffusion approximation on some form of discretization of the object’s volume. Wang

et al. [38] developed a technique for measurement and real-time rendering of heterogeneous

translucent materials based on the diffusion approximation. They obtain the heterogeneous ma-

terial parameters by solving the inverse diffusion problem via optimization. For rendering, the

diffusion approximation is solved on the GPU based on a volumetric polygrid. A similar but

improved real-time approach for heterogeneous translucent materials was presented by Wang et

al. [40]. It is also based on the diffusion approximation, but uses a QuadGraph for discretisation,

which can be built automatically and supports topology-preserving deformations. Li et al. [29]

introduced a method for interactive manipulation and rendering of heterogeneous translucent

materials. It uses a hierarchical tetrahedral representation of the object and a specially devel-

oped solver for the discrete diffusion equation, both implemented on the GPU. Since these

computations are performed every frame it is possible to perform cutting and fracturing opera-

tions on the geometry as well as painting of the heterogeneous material properties at interactive

frame rates.

The main drawback of the previously mentioned real-time methods is that they scale poorly

with the number of translucent objects in the scene, as the algorithm has to consider every

object separately. To eliminate this strong dependence on scene complexity Jimenez et al. [22,

24] improved upon the approach by d’Eon et al. [5, 6] by performing the diffusion in screen

space instead of texture space. This alleviates multiple drawbacks of the texture-space approach

and improves rendering performance. They also conducted a psychophysical experiment which

showed that there is no significant perceptual difference of the screen-space approach compared

to texture-space diffusion. The beneficial properties of screen-space rendering are also utilized

by various other methods. Mertens et al. [30] developed an importance sampling strategy for

the BSSRDF of Jensen et al. [21] and applied it in screen space. Building on the same BSSRDF

model Shah et al. [35] used a three-pass splatting approach, efficiently computed on the GPU,

which supports multiple and single scattering. In the first two passes visible surface points

from the light and the camera are computed. This information is used in the third pass to splat

precomputed and camera-aligned reflectance profiles centered at the surface locations visible

from the light, to compute SSS at the surface locations visible from the camera. Mikkelsen [31]
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approximated SSS by blurring the irradiance using a cross-bilateral filter in image space. Here

the filter, a single empirically chosen Gaussian, is applied in two separable 1D passes, where its

size is adapted per pixel, based on the underlying geometry.

The majority of the previously mentioned real-time algorithms use a runtime integration

scheme based on convolution. A quite different and notable algorithm based on pre-integration

was presented by Penner and Borshukov [33]. It enables real-time skin rendering via the de-

composition and pre-integration of the SSS effect into three different components representing

low and high frequency surface variations as well as shadow edges. SSS variations caused by

low frequency changes in curvature and illumination are pre-integrated into a lookup table. The

high frequency variations due to fine surface details are pre-integrated by normal map filtering.

And illumination variation caused by shadows is handled via penumbra pre-integration into an

additional lookup table. These precomputed lookup tables and filtered normal maps are then

used together in the final surface shading computations to approximate the SSS effect in skin.

Three notable examples of rendered images, generated by a subset of the discussed algo-

rithms, are shown in Figure 3.1. These images show different materials rendered with SSS and

demonstrate that today’s rendering algorithms are able to produce high quality renderings which

can be considered as being photorealistic.

3.3 Separable Subsurface Scattering

A recent implementation of a real-time SSS algorithm which builds upon the screen-space

convolution approach and shares some similarities with previous methods was introduced by

Jimenez and Gutierrez [23, 25]. This method is, as numerous others, specifically tuned for hu-

man skin. It is based upon the SSS screen-space method by Jimenez et al. [22] and uses the

approach of Jimenez and Gutierrez [24] for translucency. The main difference is that it uses a

parametrized and separable kernel which is specially designed to approximate the 2D diffuse

reflectance profile for human skin. As it uses only two separable blur passes in screen space it is

able to compute SSS in approximately one millisecond or less, while being almost independent

of the scene complexity. These properties make this method very attractive for use in real-time

rendering for games, where multiple rendering effects and additional game related simulations

have to be computed using only a few milliseconds. Due to the fact that this method is especially

designed for human skin, it is an interesting challenge to extend it for SSS rendering of arbitrary

materials. The following chapter includes a more detailed explanation of this algorithm and

outlines the context in which the proposed extensions are presented.
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(a) Offline rendering (b) Real-time rendering

(c) Offline rendering

Figure 3.1: This figure show rendered images from the following publications: (a) shows an

image rendered offline via the method introduced by Donner and Jenson [9], image (b) was

generated by the real-time algorithm of d’Eon et al. [6], and (c) is an image computed using

the offline algorithm by d’Eon and Irving [7].
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CHAPTER 4
Separable Subsurface Scattering

This chapter provides a more detailed explanation of the implementation of real-time SSS ren-

dering for human skin by Jimenez and Gutierrez [23, 25], often referred to as Separable Sub-

surface Scattering (SSSS). First, the main idea of the method is explained in comparison to

the state-of-the-art approach. Then, a general overview over the algorithm and the rendering

pipeline is given, followed by a more detailed explanation of the SSS model for human skin

and noteable aspects of the algorithm and its implementation. Finally, initial attempts to find a

straightforward extension are discussed.

4.1 Main Idea

As outlined in the previous chapters, many real-time algorithms approximate SSS by convolution

of the surface irradiance via filter kernels of varying complexity. The application of such a filter

kernel would usually require a costly 2D convolution which is not feasible for most real-time

rendering scenarios.

There exists, however, a special class of filters for which the costly 2D convolution can be

replaced by two consecutive 1D convolutions. Such filters are called separable, because they

can be decomposed into two components according to Equation 4.1.

A(x, y) = a(x) b(y) (4.1)

This decomposition makes it possible to replace the 2D convolution with filter A by two con-

secutive 1D convolutions (horizontal and vertical) with a and b. For radially symmetric filters,

such as diffuse reflectance profiles of homogeneous and isotropic materials, a = b.

This separability scheme is, among others, the reason why d’Eon and Luebke [5] proposed

to approximate physically based filter kernels derived from diffuse reflectance profiles using

a mixture of 2D Gaussians. A two-dimensional Gaussian kernel has the convenient property

of being the only separable kernel which is also radially symmetric. Due to the separability

property, it is possible to apply such a 2D Gaussian mixture via multiple 1D convolution passes
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(two per Gaussian). This principle is applicable to any 2D filter kernel, e.g., diffuse reflectance

profile, which can be decomposed into multiple separable components as illustrated in Equation

4.2, ∫

R2

E(x′, y′) Rd(x− x′, y − y′) dx′dy′ ≈
∫

R2

E(x′, y′) A(x− x′, y − y′) dx′dy′ =

∫

R2

E(x′, y′)
N∑

i=1

ai(x− x′) ai(y − y′) dx′dy′ =

N∑

i=1

∫

R2

E(x′, y′) ai(x− x′) ai(y − y′) dx′dy′ =

N∑

i=1

∫

R

∫

R

E(x′, y′) ai(x− x′) dx′ ai(y − y′) dy′

(4.2)

and Equation 4.3 using a shorter notation.

(E ∗Rd)(x, y) ≈ (E ∗A)(x, y) =

N∑

i=1

((E ∗ ai) ∗ ai)(x, y)

with

A(x, y) =

N∑

i=1

ai(x)ai(y)

(4.3)

Here, the convolution of the irradiance E with the diffuse reflectance profile Rd is approximated

by a convolution of E with approximation A which is comprised of multiple components ai.

It is, therefore, possible to apply the different components ai via the combination of multiple

consecutive 1D convolutions. In case of d’Eon and Luebke [5], the approximation A is repre-

sented by a Gaussian mixture approximation Ag of the diffuse reflectance profile Rd, as shown

in Equation 4.4.

Rd(x, y) ≈ Ag(x, y) =
N∑

i=1

wiG(x, y; τi) (4.4)

In this equation, Ag represents a 2D Gaussian mixture with weights wi, and G denotes the

zero-mean 2D Gaussians with variances τi. This approximation Ag is applicable according to

Equation 4.3, as each individual 2D Gaussian G is separable.

Although this approach already offers a significant performance improvement compared to

naive 2D convolution, computing multiple 1D convolution passes may still not be feasible for

certain real-time rendering scenarios. Given the 2D Gaussian mixture approach, the fastest

solution would be to use only one Gaussian, which would result in two 1D convolutions based

on a single separable Gaussian. Unfortunately, diffuse reflectance profiles are in general not well

approximated by only a single 2D Gaussian, which is the reason why d’Eon and Luebke [5] used

up to six.
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Figure 4.1: Visualisation of the SSSS rendering pipeline. (1a) and (1b) show the diffuse and

specular input computed in the first pass. (2a) represents the first horizontal convolution pass,

with (2b) as its output. The subsequent vertical convolution (3a) results in the filtered diffuse

output (3b). The final image (4) is generated by adding the specular component to the filtered

diffuse output. Please note that the images for (2a) and (3a) are only illustrative mock-ups and

do not represent the actual filter kernel.

In order to enable reasonable approximation of SSS via only two 1D convolutions, according

to Equation 4.5,

(E ∗Rd)(x, y) ≈ (E ∗A)(x, y) = (E ∗ a) ∗ a)(x, y) (4.5)

the main idea of SSSS is to use a custom separable, but not necessarily radially symmetric,

kernel As which approximates the diffuse reflectance profile Rd as close as possible, according

to Equation 4.6.

Rd(x, y) ≈ As(x, y) = as(x) as(y) (4.6)

The particular form of as is explained in more detail in Section 4.3.

By not using a single Gaussian as the separable kernel, but a different more specialized func-

tion as, this SSSS filter kernel is not radially symmetric. This radial asymmetry, also discussed

in Section 5.1, is a property of all separable kernels which are not Gaussians, and manifests itself

as a pronounced cross pattern of relatively higher values aligned with the kernels main axis. This

cross pattern can lead to undesirable artefacts, as shown in Section 6.4.

The separable kernel model used by the SSSS algorithm is further explained in more detail

in Section 4.3, while the following section outlines the general steps necessary to apply the

separable convolution approach for SSS rendering.

4.2 Algorithm Overview

The SSSS algorithm is able to approximate subsurface scattering for human skin and fully dy-

namic scenes in real time. This is achieved by computing an approximation of SSS as a post-

processing step, which makes this approach almost independent of the scene’s complexity. It
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primarily consists of a convolution using a separable filter kernel, as outlined previously, which

can be applied in two 1D convolution passes. It can therefore be easily integrated into existing

rendering pipelines by implementing the following changes and additional passes.

1. Pass — Diffuse Shading: The scene is rendered from the viewpoint of the camera into a

render-target texture using diffuse shading only, including additional effects like

texture-, normal- and shadow mapping. The specular component may be stored in a sep-

arate render-target texture to be reapplied after the next two convolution passes. This

diffuse pass also includes the calculation of the translucency component based on shadow

mapping.

2. + 3. Pass — Separable Convolution: The diffuse render-target texture from the previous

pass is convolved using the separable filter kernel in two 1D convolution passes (one hor-

izontal and vertical). The size of the kernel is adaptively scaled based on various factors,

explained in more detail in Section 4.4. The weight of the individual kernel samples may

be scaled to account for geometric discontinuities. For pseudocode of the convolution

pass see Algorithm 4.1.

4. Pass — Reapply Specular: This final pass is used to reapply the specular shading, computed

and stored in the first pass, by blending it on top of the convolved diffuse shading.

An intuitive visualisation of the SSSS rendering pipeline can be found in Figure 4.1. At first this

pipeline may seem almost like a normal post-processing effect that just blurs the illuminated

surfaces in screen space using a simple filter kernel. However, as SSS is a more complex effect

than a simple blur, special care has to be taken to account for the underlying surface geometry,

specular reflection and appropriate filter kernel size. These important details of the individual

passes are explained in Section 4.4, preceded by a more detailed explanation of the special

separable filter kernel model in the following section.

4.3 SSS for Human Skin

The SSSS algorithm uses a carefully designed filter kernel to approximate SSS in human skin.

This special filter is separable, and, therefore, can be applied using two 1D convolutions, which

makes fast SSS rendering possible. The basic idea of SSSS is to find a separable filter which

approximates the diffuse reflectance profile of human skin as close as possible according to

Equation 4.7.

Rd(x, y) ≈ As(x, y) = as(x) as(y) (4.7)

The ground-truth 2D diffuse reflectance profile is represented by Rd and approximated by

As, which represents the separable filter determined by as. This term is defined as a special

parametrized function, shown in Equation 4.8, which can be used to tweak the separable kernel

As. The basic approach is to vary the parameter of as such that As matches Rd as close as
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possible.

as(r;w, t, f) = p

(
w r

0.001 + f

)
t+ δ(1− t)

where

p(r) =

n∑

i=0

wi G(r, vi)

with

G(r; v) =
1

2πv
e−

r2

2v

(4.8)

The function p is based on the Gaussian mixture approximation of the radially symmetric 1D

diffuse reflectance profile of the 3-layer model for skin introduced by d’Eon and Luebke [5]. It

uses only the red channel of this 1D profile, which is transformed using the three parameters

w, t and f . The parameter w stands for width, as it can be used to control the global size or

falloff width of the function. The parameter t can be interpreted as the function’s strength or

magnitude. It influences the interpolation between the 1D Gaussian mixture profile p(r) and

the delta function, and can therefore be used to continuously switch between the two. The third

parameter f defines the falloff width separately for each channel. Finally, r simply denotes the

radius at which the function is evaluated. The internal profile p(r) is a 1D Gaussian mixture

with zero mean, where wi and vi represent the individual weights and variances, respectively.

In this particular case, the weights and variances are fixed to the (red channel) values of the 1D

Gaussian mixture approximation of the 3-layer skin diffuse reflectance profile from d’Eon and

Luebke [5]. Please note that the as function represents only a single RGB channel, and that t

and f are defined for each channel individually, while only the w parameter is the same across

all channels.

The goal for SSSS is to find a separable approximation As of the 2D ground-truth diffuse

reflectance profile Rd for human skin, according to Equation 4.9, by variation or optimization

of the model parameters.

Rd(x, y) ≈ As(x, y) = as(x;w, t, f) as(y;w, t, f) (4.9)

For the original implementation the best parameter set (w, t and f ) for as, such that the resulting

separable kernel As approximates Rd as close as possible, was found by optimization according

to Equation 4.10.

argmin
w,t,f

{∫

ℜ2

(Rd(x, y)− as(x;w, t, f) as(y;w, t, f))
2 dx dy

}
(4.10)

Additionally, the implementation provides an UI interface for interactive manipulation of the

parameters, which makes it possible to tweak the kernel by hand until a desired approximation

or effect has been achieved. The latter makes this model suited for artistic control, which in

principle enables the approximation of any kernel.

However, it is worth noting that the transformed internal profile p used for this implementa-

tion is the red channel of a 3-layer skin profile. Furthermore, the w, t and f parameter set, which
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transforms this fixed internal profile, is specially optimized to result in a kernel modelling SSS

in human skin. It is therefore not safe to assume that a suitable parameter set can be found for

any arbitrary material, let alone that this may be achieved in a straightforward manner.

This separable kernel As defined by the optimized parameter set is used to replace a costly

2D convolution or multiple 1D convolutions by only two 1D convolution passes with as, as out-

lined in Section 4.1 by Equation 4.5 and 4.6. Depending on the approximation quality, the differ-

ences between the results of the full 2D convolution and the separable (1D) two-pass convolution

may be insignificant. However, in the application of such a separable kernel for convolution in

image space, special care has to be taken, as outlined by the following section.

4.4 Implementation Details

This section discusses several implementation details of the SSSS algorithm, and explains dif-

ferent aspects of the rendering pipeline in more detail.

Diffuse–Specular Separation: The first pass of the SSS rendering pipeline, outlined in Sec-

tion 4.2, includes the computation of diffuse and specular shading components for the rendered

surfaces. As the specular component represents light which is directly reflected at the surface

of the material, it would be incorrect to include it in the SSS approximation and the convolution

with the SSS filter kernel. Therefore, the specular component is stored in a separate render-

target and reapplied after convolution in an additional pass. In case the use of an additional

render-target is prohibited by constraints of the particular application or used hardware, it is also

possible to simply combine the specular and diffuse component before convolution. However,

this approach may lead to washed-out specular highlights in the final render.

Translucency: The approximation of SSS via convolution in screen space primarily accounts

for local subsurface scattering where light hits and leaves the surface on approximately the same

side of the visible surface. The contribution of light which may enter the material at back-

facing surfaces or travels over a longer distance through the material is generally not taken into

account. This missing SSS effect is approximated by an additional translucency component,

which is computed in the first pass using the approach by Jimenez and Gutierrez [24]. It is

simply added to the diffuse render-target texture and therefore also included in the subsequent

convolution.

Kernel Size: For a simple screen-space blur filter, it is usually sufficient to use a constant

kernel size. This, however, is not possible in case of SSS, as the kernel usually represents some

physically based diffuse reflectance profile. It is therefore necessary to scale the kernel to an

appropriate size corresponding to the area of the visible surface in screen space.

The kernel size used for convolution is determined per pixel by the product of three factors,

namely Kernel Scale, SSS Width and SSS Strength. A naive convolution using a fixed kernel

size for all pixels would result in a constant overall blur, and would completely neglect surface

area distortions due to perspective projection. For each pixel the represented surface may have

varying distance to the camera, and consequently the surface area represented by each individual
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screen-space pixel varies according to the perspective projection. It is therefore necessary to

scale the kernel per pixel to fit the actual area represented by the corresponding surface region. In

each pixel the projected surface area is estimated and combined with the pixel depth to compute

the corresponding Kernel Scale factor ksc via Equation 4.11.

ksc =
1

tan(12 fy) pd
(4.11)

The factor fy denotes the field of view angle along the Y axis and pd is the pixel depth. This

equation basically represents the distance to the projection window divided by the pixel depth.

As a consequence, the kernel size gets smaller as the distance of the geometry (depth of the

pixel) increases.

The SSS Width factor represents an additional user-definable parameter. It modulates the

global scale of the SSS effect, making it possible to adjust the kernel size to objects of different

sizes. And the so-called SSS Strength factor enables the artist to define per-pixel surface regions

with varying strength of the SSS effect. This scaler can be encoded into the alpha channel of the

diffuse texture, for example.

Geometry-aware Filtering: Due to the fact that the algorithm uses a screen-space convolution

to approximate local SSS, it is necessary to take the surface geometry into account. Otherwise

the kernel would blur the diffuse illumination across regions which may be close in screen space

but are far apart in object space, e.g., silhouette edges. In order to prevent this, the contribution

of off-center samples is scaled according to their estimated object-space distance to the kernel

center. This is done by computing the final sample color sc via interpolation between the original

input pixel color ic at the kernel’s center position and the off-center sample color oc, based on

their depth difference and additional factors, according to Equation 4.12.

sc = oc (1− t) + ic t

where

t =
C SSSw |id − od|

tan(12 fy)

(4.12)

The factors id and od represent the depth of the input source pixel and the off-center sample,

respectively. C is an implementation-specific constant and SSSw represents the SSS Width. This

approach ensures that the contribution of off-center samples with significant depth differences is

continuously discarded and replaced by the original input source color.

Kernel Computation and Convolution: The SSSS algorithm uses a separable kernel model

including a parameter set that is optimized for SSS in human skin, as described in Section 4.3.

In order to apply this separable kernel As for SSS rendering via two 1D convolution passes, the

actual implementation precomputes the filter kernel by sampling the kernel function as using a

user-specified sample count. Although the separable convolution approach already cuts down

the necessary sample count from N ∗ N (naive 2D) to N + N , it is still necessary to choose a

moderately small filter size N (sample count) in order to ensure real-time performance. Results
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Algorithm 4.1: Pixel shader pseudocode of the separable 1D convolution render pass

1 Sample diffuse color and depth;

2 Compute kernel size;

3 for all (1D) kernel samples do

4 Compute sample offset modulated by the kernel size;

5 Sample diffuse color at computed offset;

6 if geometry-aware filtering requested then

7 Compute interpolation factor;

8 Replace current diffuse sample color by interpolation between the original center

input pixel and the current sample;

9 end

10 Accumulate diffuse sample color scaled by the kernel sample weight;

11 end

12 return filtered result;

from the original SSSS implementation, along with the results shown in Chapter 6 indicate

that a sample count as low as N = 17 is sufficient in most cases. This low sample count is,

furthermore, enabled by importance sampling of as. As the shape of as is basically a high peak

with a long lower falloff, importance sampling of as is applied by computing more samples near

the center (r = 0). This is done by computation of equally spaced samples using the chosen

sample count, and redistribution of the sample positions via a quadratic mapping function.

In order to be able to change the size of the kernel in screen space without recomputation,

the w parameter is not used during precomputation, but later applied during shader evaluation.

For the precompuation step w = 1 is assumed, and the kernel’s sample weights and offsets are

precomputed via importance sampling of as. Furthermore, after the evaluation of the internal

profile p, and just before the application of the t parameter, the weights of the 1D kernel samples

are normalized.

The precomputed filter kernel is passed to the pixel shader as a simple array of 4D vectors

that represent the individual samples of the kernel. The XYZ components of each vector contain

the RGB weights, and the W component encodes the sample position (radius offset), as they

are not uniform due to importance sampling. The actual w parameter value is used in the pixel

shader to offset the sampling positions during convolution. A single pixel shader is used for

both 1D convolution passes by simply providing a normalized offset vector (2D) parameter that

is scaled by the kernel offsets to compute the corresponding (vertical or horizontal) sampling

positions.

4.5 Additional Notes

The implementation of this algorithm by Jimenez and Gutierrez [23, 25], showcasing real-time

SSS for human skin applied to a scanned model of a human head, was uploaded to GitHub

[25]. A screenshot of the original implementation can be seen in Figure 4.2. The extensions
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Figure 4.2: Screenshot of the original SSSS implementation.

to arbitrary materials, proposed in the next chapter, are derived and developed based on this

codebase. The used technologies include C++, DirectX 10 and HLSL and the utilization of

functions and GUI elements commonly used for DirectX feature demonstrations. The rendered

model is a high-resolution scan of a human head including diffuse and normal textures, as well

as an additional texture encoding ambient occlusion and specular parameters. Additionally, the

implementation includes features like shadow mapping, high-dynamic range (HDR) rendering,

depth of field and enhanced subpixel morphological antialiasing (SMAA). The final renderings

are furthermore enhanced using effects like HDR bloom and film-grain noise. Detailed on-screen

profiling output is provided, reporting a per-frame computation time for the SSS rendering passes

of about one millisecond.

As this method and its implementation are carefully designed for SSS rendering of human

skin, its possible application for other materials presents an interesting research challenge. The

next chapter, therefore, includes a detailed description of proposed extensions to this technique,

which make it capable of rendering SSS for arbitrary materials, while the following section

outlines first extension attempts.

4.6 First Extension Attempts

As mentioned previously in Section 4.3, the SSSS algorithm introduced by Jimenez and Gutier-

rez [23, 25] uses a kernel model highly adapted to SSS in human skin. It is therefore quite

unapparent if the extension to arbitrary materials will be possible in a straightforward manner.

For the purpose of testing different approaches and kernels, an optimization framework,

based on MATLAB and its included optimization functions, was developed. For the majority
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of tests, the optimization goal was to minimize the root mean square (RMS) error between the

approximating kernel and the ground-truth kernel obtained via MCML simulations.

The first approach was to see if it is possible to approximate the diffuse reflectance profile of

the simulated materials by simply optimizing the w, t and f parameters of the original model,

according to Equation 4.13.

argmin
w,t,f

{∫

ℜ2

(Rd(x, y)−As(x, y;w, t, f))
2 dx dy

}

with

As(x, y;w, t, f) = as(x;w, t, f) as(y;w, t, f)

(4.13)

Unfortunately, it became apparent that this does not produce satisfactory approximations. One

possible explanation is that this model has only a few degrees of freedom and the possible

shapes of the profile are very limited. The model is only capable of scaling the fixed internal

skin profile p (see Equation 4.8) along r, using the w or f parameter, and to some extent along

its magnitude, using the parameter t. It is therefore difficult to approximate profiles which have

a shape different than the used internal skin profile.

The next step was to perform the optimisation and approximation using different models for

as with more degrees of freedom, different parameters and based on alternative functions. This

is generally described by Equation 4.14, where u denotes the parameters of the chosen model.

argmin
u

{∫

ℜ2

(Rd(x, y)−As(x, y;u))
2 dx dy

}

with

As(x, y;u) = as(x;u) as(y;u)

(4.14)

The tests ranged from using different sets of the Gaussian mixture parameters of the internal

skin profile as optimization variables, to the direct use of Gaussian mixtures or exponentials of

varying complexity. The end result of these initial tests was to define as based on simple zero-

mean 1D Gaussian mixtures (see Equation 4.16) with a moderately low amount of components

(up to 6), which offered a good tradeoff between approximation quality and optimization time.

This is similar to the approach of d’Eon and Luebke [5] with the difference that they com-

puted a higher rank approximation Ag based on 2D Gaussian mixtures, according to Equation

4.15,

Rd(x, y) ≈ Ag(x, y) =
N∑

i=1

wiG(x, y; τi) (4.15)

while the initial test results, mentioned above, were based on a separable (rank-1) approximation

As using 1D Gaussian mixtures, according to Equation 4.16.

Rd(x, y) ≈ As(x, y) = as(x) as(y)

with

as(r) =

N∑

i=1

wiG(r; τi)

(4.16)
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First tests using kernels based on the 1D Gaussian mixture approximation looked promising,

but as research progressed, this approach was replaced by several different kernel models which

are described in the following chapter.
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CHAPTER 5
Separable Kernel Models

This chapter describes the proposed extensions to the SSSS algorithm. Four kernel models

for arbitrary materials are discussed, which offer different properties regarding approximation

quality and kernel construction speed.

The general goal of the proposed kernel models is to provide a separable approximation A

of an arbitrary diffuse reflectance profile Rd, according to Equation 5.1.

Rd(x, y) ≈ A(x, y) = a(x) a(y) (5.1)

The only exception is the model described in Section 5.1, since it also supports higher-rank

approximations. It is, therefore, necessary to identify suitable forms for a, which enable a close

separable approximation of Rd. The resulting kernel A can then be used to replace Rd, according

to Equation 5.2,

Me(x, y) = (E ∗Rd)(x, y) ≈ (E ∗A)(x, y) = ((E ∗ a) ∗ a)(x, y) (5.2)

in the computation of the radiant exitance Me via convolution of the surface irradiance E. The

separability property of A makes it possible to perform the usually required 2D convolution with

A by using two consecutive 1D convolutions with a. This enables the fast approximation of SSS

in real time.

In the following subsections, different models for extending SSSS to arbitrary materials are pro-

posed and described in more detail. In order to access and explain the properties, approximation

quality and motivation for the proposed models, example convolutions based on representative

images and kernels for the Skin1 material are included. Please note that the convolution re-

sults shown in this chapter were computed in MATLAB and used the full-resolution kernels for

illustrational purposes, while actual real-time rendering results are included in the next chapter.

The first two of the approximation models described in the following sections are determin-

istic and can be computed efficiently, while the last two allow more user control, but take more

time to generate, as outlined in more detail in the corresponding sections. Table 5.1 shows a
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Model Visual quality 1D convolutions Separable Closed-form solution

d’Eon 1 Gaussian low 2 ✓ ✗

d’Eon 2+ Gaussians high 2 per Gaussian ✗ ✗

SVD rank-1 low 2 ✓ ✓

SVD rank-2+ excellent 2 per rank ✗ ✓

Kernel pre-integration high 2 ✓ ✓

Guided optimization controllable 2 ✓ ✗

Manual approximation controllable 2 ✓ ✓

Table 5.1: Overview and comparison of the proposed kernel approximation models and their

properties. The attribute ’Closed-form solution’ also indicates if the kernel computation requires

optimization (✗) or not (✓).

quick overview of the different kernel models and their characteristics, and also includes the

properties of the state-of-the-art method by d’Eon et al. [5, 6], for easy comparison.

5.1 Singular Value Decomposition

The initial tests mentioned previously resulted in a separable kernel model which was based

on a 1D Gaussian Mixture (see Equation 4.16) and minimization of the commonly used RMS

error metric in kernel space (see Equation 4.14). However, one general drawback of using

optimization is that, depending on the function and its complexity, the computation of one single

kernel can be very time consuming and sometimes even impractical. Therefore, it would be

more desirable to have a deterministic scheme which allows the computation of a separable

approximation and automatically (inherently) minimizes the kernel-space RMS error.

Fortunately, mathematics offers such a scheme, which is called singular value decomposition

(SVD), which can be used to decompose a matrix M into the product of three specific matrices,

often denoted as U , Σ and V , according to Equation 5.3. M represents an arbitrary matrix of

size m× n. Matrices U and V are both orthogonal and of size m×m and n× n, respectively,

and Σ is a diagonal matrix of size m× n with non-negative entries.

M = UΣV T (5.3)

This decomposition can also be applied to the discrete form of a diffuse reflectance profile Rd ∈
R
m×m, which is illustrated in Equation 5.4

Rd = UΣV T

with

U =
(
u(1)|u(2)| · · · |u(m)

)

V =
(
v(1)|v(2)| · · · |v(m)

)

Σ = diag(σ1, σ2, · · · , σm)

(5.4)
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One very useful application of SVD is that it can be used to generate a low-rank approximation

of Rd. Such an approximation AN can be computed by only using a subset (first N values) of

the singular values of Σ in the reconstruction, according to Equation 5.5.

AN = UΣNV T

where

ΣN = diag(σ1, · · · , σN , 0, · · · , 0)
(5.5)

Using this scheme, it is possible to compute an approximation of Rd with a rank as low as one.

This is particularly useful since a filter kernel of rank one is separable. Furthermore, following

from Eckart and Young [10], the best solution A to the minimization problem shown in Equation

5.6,

min
A
‖Rd −A‖F

subject to

rank(A) = N

(5.6)

with respect to the Frobenius norm (see Equation 5.7),

‖A‖F =

√√√√
m∑

i=1

m∑

j=1

a2ij =

√√√√
m∑

i=1

σ2
i (5.7)

is given by the SVD approximation AN (see Equation 5.5.

In the previously mentioned initial tests, discussed in Section 4.6, separable solutions which

minimized the RMS error were optimized based on 1D Gaussian mixtures (see Equation 4.16

and 4.14). As the Frobenius norm corresponds to the RMS error, it was possible to replace these

previous 1D Gaussian mixture approximations by a simple and deterministic rank-1 approxima-

tion A1 based on SVD, shown in Equation 5.8.

Rd ≈ A1 = u(1)σ1v
(1)T

or equivalently

As = as as
T

where

as = u(1)
√
σ1

(5.8)

Please note that U and V are identical, since the approximated 2D kernel is radially symmetric.

It is therefore sufficient to simply use u(1) and the square root of σ1 for as.

The quality of such a rank-1 approximation is closely related to the magnitude of the sin-

gular values represented by the diagonal entries of matrix Σ. The number of non-zero singular

values corresponds to the rank of the matrix. Consequently, the lower the rank, the more likely

that a low-rank approximation with an acceptable quality can be computed. Furthermore, the

magnitude of the singular values and the total energy distribution among them also influences

the quality of low-rank approximations. In case the majority of the energy is only contained in
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Figure 5.1: This figure shows the first 30 singular values of the individual channels for the

ground-truth kernels of the five main materials used for final rendering. The plots indicate a rapid

decay of the singular-value magnitude for all materials, which makes low-rank approximations

feasible.

a few of the first singular values, approximations with very low rank are feasible. This is the

case for most of the tested material profiles and makes low-rank approximations possible. An

overview for the singular values of the ground-truth kernels of the five main materials used for

final rendering can be seen in Figure 5.1.

Rank-one approximations have the advantage that they can be applied for SSS rendering by

using only two 1D convolution passes, as described by Equation 5.9.

Me(x, y) = (E ∗Rd)(x, y) ≈ (E ∗As)(x, y) = ((E ∗ as) ∗ as)(x, y) (5.9)

However, depending on the approximated diffuse reflectance profile, it is possible that such

a rank-1 approximation, due to its low rank, does not provide the desired quality needed for

a particular rendering scenario. In such a case, it is possible to simply compute higher rank

approximations and apply them using multiple passes, as shown in Equation 5.10, similar to the

application of the 2D Gaussian mixture approach by d’Eon and Luebke [5].

(E ∗Rd)(x, y) ≈ (E ∗AN )(x, y) =
N∑

i=1

((E ∗ ai) ∗ ai)(x, y)

where

ai = u(i)
√
σi

(5.10)

A higher rank filter kernel is simply applied by using a different SVD component ai for each

separable convolution pass, based on the corresponding U column and Σ entry. The drawback of

this higher rank approach is that it requires two 1D-convolutions per rank and, therefore, more

time for rendering, which may be not feasible for certain real-time applications.

Energy Conservation:

One disadvantage of the SVD-based approach is that it does not take energy conservation into

account. In this context energy conservation means that the 1-norm (see Equation 5.11) of the
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approximation kernel A is not equal to the 1-norm of the approximated ground-truth diffuse

reflectance profile Rd. For the discrete representation of Rd the 1-norm is computed by a simple

summation of all absolute values according to Equation 5.11.

‖Rd‖1 =
m∑

i=1

m∑

j=1

|aij | (5.11)

In case an approximation A has a different 1-norm than Rd, ‖Rd‖1 6= ‖A‖1, and an equal 1-

norm may be artificially enforced by proper scaling of the approximation kernel according to

Equation 5.12.

Ã = A
‖Rd‖1
‖A‖1

(5.12)

However, this may also introduce distortions, and, in consequence, does not conserve the prop-

erty of the SVD-based approximation of being minimal in terms of the RMS error metric. In

general, SVD-based rank-1 approximations have different 1-norm in comparison to the approx-

imated profile Rd, In case of our implementation the ground-truth profiles are all normalized,

meaning ‖Rd‖1 = 1. Since the SSSS algorithm also normalizes the kernels prior to convolution,

a kernel that is not energy conserving in the above sense, may get distorted in an undesirable

way. In case of the SVD-based approximation approach, this issue gets more and more insignif-

icant as higher-rank approximations are used, as they are closer to the ground truth and therefore

also have similar 1-norm.

For SVD-based rank-1 approximations, however, the difference in the 1-norm is more signif-

icant, as outlined by the following example. Figure 5.2 shows the RMS errors of three different

SVD-based approximation kernels for the example material Skin1. The errors represent the dif-

ference of the approximation kernel AN to the ground-truth diffuse reflectance profile Rd, which

may also be referred to as the difference in kernel space. A separable (rank-1) and energy con-

serving approximation kernel, which is introduced and discussed further below in Section 5.2,

is included for comparison.

These plots show that the normalization increases the kernel-space error of all SVD-based

approximations, while the error difference decreases with increasing rank, as higher rank ap-

proximations exhibit less error, and, therefore, a more similar 1-norm. The normalization de-

stroys the property of the SVD-based approximation of being minimal in therms of kernel-space

RMS error. This example illustrates that energy conservation is important, since the SSSS al-

gorithm normalizes all kernels before the convolution, and therefore SVD-based kernels may

get distorted. This can also be seen in the corresponding plots shown in Figure 5.3–5.4, which

illustrate the distortions by comparing the normalized and not normalized SVD-based kernels.

The normalization of the kernel is necessary to ensure that the energy of the input signal (irradi-

ance) is not changed by the convolution operation, in order to satisfy the energy conservation of

light-transport.

The low quality of the SVD-based rank-1 approximation is further illustrated by compar-

isons of the images included in Figure 5.6. Below each image a corresponding difference image

shows the absolute difference between the ground-truth convolution result and its approxima-

tion. This is basically the difference between the radiant exitance Me(x, y) = (E ∗Rd)(x, y)
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Figure 5.2: This figure shows a comparison of the RMS errors for three SVD-

based approximation kernels of the Skin1 material. It shows that normaliza-

tion of the SVD-based kernels increases the RMS errors, and that the dif-

ference vanishes with increasing rank. Subsequently, the property of SVD-

based approximations of being minimal in terms of the RMS error is de-

stroyed. An energy-conserving kernel model based on pre-integration, which

is discussed in Section 5.2, was included for comparison. Please note that the

different colors correspond to the RGB channels of each kernel. The corre-

sponding kernel plots can be seen in Figures 5.3–5.4 and A.30.

(convolution with the ground truth) and M̃e(x, y) = (E ∗A)(x, y) (convolution with the ap-

proximation), which can also be referred to as the difference in image-space. The convolutions

and the corresponding difference images indicate that the rank-1 SVD-based approximation is

of low quality, as it fails to model the falloff region of the ground-truth kernel. Alternative kernel

models which are separable, energy-conserving, and are able to approximate such falloff regions

more closely are proposed later on in this chapter.

Figure 5.3, in particular, shows that for the SVD-based rank-1 kernel the lack of energy con-

servation in combination with normalization leads to distortions. Apart from these distortions

the plots also indicate that the SVD-based rank-1 kernel fails to approximate the ground-truth,

especially at the diagonal. The comparison of the convolution results (Figure 5.6) with respect

to the additional energy-conserving rank-1 example kernel (pre-integration), indicate that, espe-

cially in case of rank-1 approximations, a minimal RMS error in kernel space does not guarantee

that the final rendering result will be of sufficient quality.

As the final rendering quality is the main criteria for the assessment of the approximation

models, it is, therefore, important to analyse the kernel approximations in image space. Further-

more, special care has to be taken in order to assure energy conservation, which is the reason

why the remaining kernel models, described in this chapter, ensure that the 1-norm of the ap-
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Figure 5.3: This figure shows plots of the SVD1 kernel approximation for the Skin1 material

before (SVD1) and after normalization (SVD1 N.). As this rank-1 SVD-based approximation

kernel does not preserve energy by construction, the forced normalization distorts the kernel,

leading to higher RMS errors as shown in Figure 5.2.

proximation kernel is equal to that of the approximated ground-truth profile.

An additional limitation of SVD-based approximation kernels is that they are in general not

radially symmetric, as shown in Figure 5.7. This radial asymmetry vanishes with increasing

rank, and is most noticeable for separable (rank-1) SVD-based approximations. Furthermore,

any separable (rank-1) kernel that is different from a 2D Gaussian kernel exhibits radial asymme-

try to some extent, as the latter is the only kernel which is both separable and radially symmetric.

This can lead to cross-pattern artefacts that were also previously outlined in Section 4.1, and are

demonstrated in Section 6.4. The comparable approach by d’Eon and Luebke [5] does not suffer

from this problem, as it uses a 2D Gaussian mixture where each Gaussian is radially symmetric.

The discussed properties of the SVD-based approximation scheme are illustrated by several ex-

amples and results included in Chapter 6, which indicate that rank-1 SVD-based approximations

appear to be of insufficient quality, while higher-rank SVD approximations quickly converge to

the ground truth with increasing rank. Furthermore, in comparison to the state-of-the-art Gaus-

sian mixture approach of d’Eon and Luebke [5], the SVD-based approximation scheme has a

favorable convergence rate with increasing rank and with respect to equal count of required

convolution passes.

However, the application of low-rank approximations results in several convolutions per
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Figure 5.4: This figure shows plots of the SVD3 kernel approximation for the Skin1 material be-

fore (SVD3) and after normalization (SVD3 N.). This rank-3 SVD-based approximation kernel

show less distortion by the normalization, as indicated by the kernel-space RMS errors shown

in Figure 5.2.

frame, which may still be too time consuming for certain rendering scenarios. It is therefore

desirable to find, in the spirit of the SSSS algorithm, a rank-1 kernel model of sufficient quality.

Consequently, an energy-conserving rank-1 (only) kernel model is presented in the following

section.
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Figure 5.5: This figure shows plots of the SVD5 kernel approximation for the Skin1 material

before (SVD5) and after normalization (SVD5 N.). Since this rank-5 SVD-based approximation

kernel has a low RMS error, as shown in Figure 5.2, the distortions due to normalization are

minimal.
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(a) Input (b) Ground-truth

(c) SVD rank-1 (d) SVD rank-3 (e) SVD rank-5 (f) Pre-Integration

(g) SVD rank-1 (h) SVD rank-3 (i) SVD rank-5 (j) Pre-Integration

Figure 5.6: This figure shows convolutions and difference images for the kernel approximations

of the Skin1 material used as examples for the SVD-based approximation issues discussed in

Section 5.1. Images (a) and (b) represent the input and ground-truth convolution results, recep-

tively. The second row shows the convolution results for the example kernels, while the corre-

sponding difference images are presented in the last row. Please note that the difference images

represent the absolute differences which are normalized across all images. Therefore, most dif-

ference images are considerably dark in comparison to the rank-1 SVD-based difference image,

which has the higher error.
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(a) Input (b) SVD rank-1 (c) SVD rank-3 (d) SVD rank-5 (e) Ground-truth

Figure 5.7: This figure illustrates the radial asymmetry of SVD-based approximations of the

Skin1 material as an example. The radial asymmetry is most pronounced for the rank-1 approx-

imation, and vanishes with increasing rank.
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5.2 Pre-Integration

The rank-1 kernel approximation model based on SVD decomposition presented in the previous

section enables the computation of approximation kernels that are optimal in terms of the kernel-

space RMS error. However, as outlined previously, the simple kernel-space RMS metric is not

sufficient to assess the final approximation quality, since the rank-1 SVD-based approach does

not deliver satisfactory approximation quality in image space, as indicated by Figure 5.6, and is

not energy-conserving. Therefore, a rank-1 kernel approximation model based on analytic pre-

integration, that is optimal in terms of the image-space RMS error in case of certain irradiance

signals, and energy-conserving per definition, is proposed in this section.

The main idea of this approach is to derive an approximation kernel Ap in such a way that

it produces the exact same convolution result as the original profile Rd for a special class of

input irradiance signals. Let’s consider an idealised vertical or horizontal shadow boundary or

edge as an example for such a special irradiance signal. Since the signal does not change along

the direction of the edge, the convolution result signal is also constant along the same direction.

This makes it possible to achieve the same convolution result by using a 1D kernel that is derived

by simple pre-integration of the 2D kernel along the corresponding direction, as will be shown

later. Thus, the resulting kernel is separable. Although such a kernel would only be exact for

a very specific class of idealized irradiance signals, general irradiance signals could be loosely

considered as being comprised of multiple different edges. Therefore, the application of such a

kernel for arbitrary signals seems feasible, and is supported by the results included in the next

chapter.

The goal is to derive an approximation kernel Ap that is exact in the sense that it produces

the same radiant exitance Me as Rd for a special class of irradiance signals E, according to

Equation 5.13.

Me(x, y) = (E ∗Rd)(x, y) = (E ∗Ap)(x, y) (5.13)

As special class of signals we consider so-called additively separable functions, i.e.,

E(x, y) = E1(x) + E2(y). (5.14)

Such signals have the property that ∂E
∂x∂y = ∂E

∂y∂x = 0. An example would be an irradiance

signal which is symmetric about one principal axis, e.g., a vertical or horizontal step, edge or

shadow boundary. The convolution of such a signal with the kernel Ap would match exactly the

ground truth result based on convolution with Rd.

Such an approximation kernel Ap can be computed via pre-integration of Rd, as explained
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later, and the corresponding kernel model can be derived according to Equation 5.15.

Me(x, y) =

∫ ∫
E(x′, y′) Rd(x− x′, y − y′) dx′ dy′ =

=

∫ ∫
(E1(x

′) + E2(y
′)) Rd(x− x′, y − y′) dx′ dy′ =

=

∫
E1(x

′)

∫
Rd(x− x′, y − y′) dy′

︸ ︷︷ ︸
ap(x−x′)

dx′

+

∫
E2(y

′)

∫
Rd(x− x′, y − y′) dx′

︸ ︷︷ ︸
ap(y−y′)

dy′ =

=

∫
E1(x

′) ap(x− x′)
1

‖ap‖1

∫
ap(y − y′) dy′

︸ ︷︷ ︸
=1

dx′

+

∫
E2(y

′) ap(y − y′)

︷ ︸︸ ︷
1

‖ap‖1

∫
ap(x− x′) dx′ dy′ =

=

∫ ∫
E(x′, y′)

1

‖ap‖1
ap(x− x′) ap(y − y′) dx′ dy′

(5.15)

Let’s assume we want to compute the radiant exitance Me by convolving an additively separable

irradiance signal E with the ground-truth diffuse reflectance profile Rd. Due to the fact that

the irradiance signal E is separable, it is possible to split the integral into two terms. The inner

integrals can then be simplified and replaced by the terms ap(x − x′) and ap(y − y′), which

can be computed by pre-integrating Rd along the corresponding independent dimension x and

y, respectively. So ap basically represents the integration of Rd along one of its dimensions (x

or y), and the result is the same for both dimensions, since Rd is radially symmetric. This, sub-

sequently, enables to express Rd(x− x′, y − y′) as 1
‖ap‖1

ap(x− x′) ap(y − y′), where ‖ap‖1
represents the 1-norm of ap. Therefore, Me(x, y) can be finally represented according to Equa-

tion 5.16.

Me(x, y) =

∫ ∫
E(x′, y′) Rd(x− x′, y − y′) dx′ dy′ =

=

∫ ∫
E(x′, y′)

1

‖ap‖1
ap(x− x′) ap(y − y′) dx′ dy′

(5.16)

Since ap is the integration of Rd along one axis, it has the same 1-norm as Rd (‖ap‖1 = ‖Rd‖1).

Due to the (radial) symmetry of Rd it is possible to write the proposed analytic pre-integrated
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kernel approximation Ap according to Equation 5.17.

Ap(x, y) =
1

‖Rd‖1
ap(x) ap(y)

with

ap(x) = ap(y) =

∫

R

Rd(x, y) dx =

∫

R

Rd(x, y) dy

(5.17)

The approximation kernel Ap is separable, and the scaling factor 1
‖Rd‖1

ensures that it is energy-

conserving with respect to the 1-norm (‖Ap‖1 = ‖Rd‖1). This pre-integration scheme may also

be applied to more general filters, however, in such a case the approximation kernel would

include two different a components.

The proposed pre-integrated approximation kernel can be applied for convolution according

to Equation 5.18.

Me(x, y) = (E ∗Rd)(x, y) ≈ (E ∗Ap)(x, y) = ((E ∗ a) ∗ a)(x, y)
with

Rd(x, y) ≈ Ap(x, y) = a(x) a(y)

where

a(r) =

√
1

‖Rd‖1
ap(r)

(5.18)

Here, E represents an arbitrary irradiance signal, and, therefore, the ground-truth radiant exi-

tance Me is only approximated.

This pre-integration kernel model offers an energy-conserving separable (rank-1) approximation

that provides, per definition, an optimal solution in case of additively separable input signals with

respect to the image-space RMS error, but not for general input signals. However, it is possible

to use this kernel even for arbitrary irradiance signals, as shown by the final results included in

Chapter 6.

An additional drawback of this approach is that its quality is not scalable like the SVD-based

approach, by using multiple convolution passes. It only provides a single separable solution

without any user control over the approximation quality, which is not optimal in the general

case. A more general energy-conserving rank-1 kernel model which provides a certain amount

of control over the approximation quality is presented in the following section.

5.3 Guided Optimization

The two kernel models described in the previous sections both provide separable (rank-1) ap-

proximations, while only the pre-integrated kernel model is energy-conserving and only optimal

for a special class of irradiance signals, but not in general. The SVD-based approach is only ap-

proximately energy-conserving at higher ranks, while providing some control over the approxi-

mation quality at the cost of additional convolution passes. In this section a separable (rank-1)
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and energy-conserving kernel model based on optimization is proposed, which is more general

than the pre-integration approach, and, additionally, allows more control over the approximation

quality.

It is, as mentioned previously, important to obtain a good approximation quality in image

space, since simple minimization of the RMS error in kernel space is not sufficient, as illustrated

by the rank-1 SVD-based approximation, which is the optimal solution in terms of the kernel-

space RMS error. Therefore, the optimal approach would be to optimize directly in image

space. Unfortunately, this approach poses problems in terms of increased computation time

and dependence on the actual input irradiance signal, which are discussed later in this section.

The alternative approach used for the proposed model is, therefore, to guide the approximation

in kernel space, based on the minimization of a weighted RMS term in combination with an

additional constraint which ensures that the approximation kernel has the same 1-norm as the

approximated profile.

The motivation for this guided optimization approach stems from the fact that the rank-1 SVD-

based approximations are really bad at capturing the falloff of diffuse reflectance profiles, do

not have the same 1-norm as the approximated profile, and allow no control over the approxi-

mation quality, except by using higher-rank approximations. The bad falloff approximation is

illustrated by the example plots given in Figure 5.8, which show the red channels of multiple

rank-1 kernels of the Skin1 material, for which corresponding example images are included in

Figure 5.10 and 5.12. Not only do these plots and images illustrate that a rank-1 SVD-based

approximation poorly captures the falloff region, which is a characteristic feature of SSS, but

they also indicate that rank-1 approximations of higher quality are possible. One example is the

pre-integration model, described in the previous section, which unfortunately only provides a

fixed-quality solution. Due to the fact that the rank-1 SVD-based approach is already optimal

in terms of the kernel-space RMS error, but exhibits low falloff approximation quality, the idea

was to optimize a weighted RMS term in order to enable better falloff approximation. The RMS

term is weighted by a parametrized function that allows shifting of the approximation accuracy

between different regions of the kernel, which enables control over the approximation quality.

The optimization also includes an additional constraint to ensure that the approximation kernel

has the same 1-norm as the approximated profile, which is not the case for rank-1 SVD-based

approximations.

The main goal of the optimization is to find a separable kernel As(x, y) = a(x)a(y) that ap-

proximates the diffuse reflectance profile Rd(x, y) as close as possible and additionally provides

an equal 1-norm. The corresponding optimization approach is represented by Equation 5.19.

argmin
a

∫

R2

Γ(x, y; k) (Rd(x, y)− a(x)a(y))2 dx dy

subject to

‖Rd‖1 = ‖a‖
2
1

(5.19)

The objective function includes a weighted RMS term combined with an additional constraint

that ensures an equal 1-norm for the approximation As and the profile Rd. The term a represent

a generic function and is the parameter subject to optimization. Furthermore, Γ (see Equation
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5.20) is a weighting function defined over R2, which can be used to assign weights to the differ-

ent regions of the kernel via the k parameter. With increasing value of k, the outer regions of the

kernel (falloff) are approximated more closely, at the expense of a lower approximation quality

at the center, which allows to guide and control the optimization, the approximation quality and

the kernel shape. The particular form of the weighting function and the parameters are explained

later in this section, after a more detailed motivation for this guided optimization approach using

a custom weighting function.

The motivation for additional control over the optimization via the weighting function (shown

in Equation 5.20) can be illustrated and explained via Figure 5.9, which shows two sets of

images-space RMS errors for approximation kernels optimized using different parameters for

the weighting function, and additional rank-1 kernels for comparison. The image-space errors

were computed based on two example images showing patches of skin, where one is uniformly

lit (uniform), while the other includes more pronounced shading (shaded).

Let’s consider the RMS errors for the guided optimization kernels corresponding to a weight-

ing function with k = 0 (Guided optimization, k=0) and k = 2 (Guided optimization, k=2). The

former represents Γ(x, y) = 1 (equal weights) and, therefore, the optimization corresponds,

apart from the additional constraint, to the minimization of the classical RMS error, while the

latter (k = 2) applies higher weights to regions further away from the center, in which case the

optimization does not minimize the classical RMS error. The comparison of the corresponding

errors reveals that the image-space errors for k = 0 are higher than those for k = 2 for the shaded

skin patch, and almost (at least for the red and green channel) vice versa for the uniformly lit

patch of skin.

This may be explained via the input images, as they represent two quite different irradiance

signals, as illustrated in Figure 5.10 and 5.12. Choosing k = 0 results in equal weights for

all kernel regions and, in combination with the 1-norm constraint, gives a kernel with higher

approximation quality at the center regions than in the falloff. By choosing k = 2, the falloff is

approximated more closely than the center regions, due to the shifted weights distribution. This

basically means that with higher k, the outer regions (falloff) of the kernel are approximated

more closely, at the expense of lower approximated quality at the center. Therefore, k = 0
results in a lower image-space RMS error for the uniformly lit skin patch in comparison to

k = 2, since there is no pronounced shadow region where a low falloff quality could be visible,

and the high-frequency details are preserved, which is not the case for k = 2. And for the shaded

skin patch, k = 2 gives a lower image-space RMS error in comparison to k = 0, since falloff

regions are the predominant image feature, which k = 0 fails to approximate at high quality.

Not only does this illustrate the dependence of the image-space error on the used input

image, but also that even with an additional norm-1 constraint, the minimization of the classical

uniformly-weighted RMS error (k = 0) is, in general, not always sufficient in order to find

an appropriate separable approximation kernel with a low image-space RMS error. Since the

image-space error does not solely depend on the kernel, but also on the used input image for

the convolution, and this error type measures the quality of the final result, the optimal goal

would be to optimize the kernel in image space using multiple representative input images.

This approach however can be considered as impractical, since multiple input images and the

46



−10 −5 0 5 10

10
−10

10
−5

mm

R
d

RED Channel − Axis slice (R)

 

 

Gr. Truth
SVD1
Pre−Int.
Man. approx.

−10 −5 0 5 10

10
−10

10
−5

mm

R
d

RED Channel − Diagonal slice (R)

 

 

Gr. Truth
SVD1
Pre−Int.
Man. approx.

−10 −5 0 5 10

10
−10

10
−5

mm

R
d

RED Channel − Axis slice (R)

 

 

Gr. Truth
Guided opt. K0
Guided opt. K1
Guided opt. K2

−10 −5 0 5 10

10
−10

10
−5

mm

R
d

RED Channel − Diagonal slice (R)

 

 

Gr. Truth
Guided opt. K0
Guided opt. K1
Guided opt. K2

Figure 5.8: This figure shows plots of different kernels for the Skin1 material corresponding to

the images shown in Figure 5.10 and 5.12. Please note that only the red channel is shown for

easy comparison, and that the line colors do not correspond to the RGB channels.

required convolutions in combination with the high dimensionality of the optimization problem

would render the automatic optimisation unusable due to a significant increase in computation

time.

Therefore, an alternative kernel-space approach, proposed via the optimization scheme shown

in Equation 5.19, was chosen, namely to guide the optimization in kernel space via a weighting

function. This weighting function Γ(x, y; k) can be used to emphasize different kernel regions

based on the parameter k, according to Equation 5.20.

Γ(x, y; k) =
(
x2 + y2

)k/2
(1− e−bx2

) (1− e−by2) (5.20)

By variation of parameter k it is possible to either use equal weight distribution (k = 0) or assign

a higher weighting to the off-center regions (k ≥ 1), based on the distance (radius) to the kernel

center, as outlined previously.
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Figure 5.9: This figure shows a comparison of image-space RMS errors for all separable (rank-1)

approximation kernel models, using the Skin1 material as an example. Please note that the dif-

ferent colors correspond to the RGB channels of each kernel. The RMS errors were computed

based on two different example input images, i.e. a skin patch showing pronounced shading

(shaded) and a uniformly lit patch of skin (uniform). The corresponding input images and con-

volution results are shown in Figure 5.10 and 5.12, and the difference images are included in

Figure 5.11 and 5.13. Please note that the manual approximation model is introduced later on in

Section 5.4

The additional term (1−e−bx2

) (1−e−by2) evolved from attempts to imitate the analytic pre-

integration-based kernel using the more general optimization approach. For this purpose, a guide

function Γp(x, y) was derived that yields the analytic pre-integration kernel as the optimization

result. This guide function Γp(x, y) has a quite complicated structure as shown in Figure 5.14a.

In order to mimic this complex function, Equation 5.20 provides a simple parametrized alterna-

tive. By using Γ(x, y; 1.55) with b = 50, it is possible to generate a guide function similar to

Γp(x, y), as shown in Figure 5.14b. Here, the parameter b is used to apply lower weights to the

main axis regions similar to the Γp(x, y) function.

Figure 5.15 shows that choosing k = 1.55 and b = 50 produces an approximation that is

similar to the pre-integration kernel. This hints at the potential of the guided approximation

approach, which is quite general, as arbitrary weighting functions may be used. Please note

that for this particular case, the parameter value of 50 is defined with respect to a kernel-space

interval of x, y ∈ [−1, 1], and is, for the actual optimization, adapted according to the kernel’s

sampling intervals.

Figure 5.15, furthermore, illustrates that by application of lower weights to the main axis re-

gions via b > 0, the k parameter no longer directly controls the falloff and center approximation,

as the image corresponding to k = 0 (Figure 5.15c) no longer preserves high-frequency images

features, but looks similar to k = 2 (Figure 5.15d). Therefore, all examples, apart from Figure

5.15, do not use this additional term and use b = 0, in order to maintain the controllability of the

falloff and center approximation via k. Please note that in the actual implementation the case

b = 0 is treated as a special case in which the exponential terms are not used in order to prevent

them from scaling down the weight function to zero.
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The proposed guide function Γ(x, y; k) can be used to compute separable (rank-1) approxima-

tions which are energy-conserving and have image-space errors comparable to the other sepa-

rable kernel models, as shown in Figure 5.9. Furthermore, by variation of the parameter k it

is possible to control the approximation quality and compute different kernel approximations,

which either provide higher approximation quality in the center or the falloff region, depending

on the value of k.

This is illustrated by Figure 5.10 and 5.12, which show the convolutions of two example

images. i.e., a patch of skin with pronounced shading and a uniformly lit skin patch. Plots of

the corresponding kernels (red channel only) are provided in Figure 5.8 in order to illustrate

the different kernel shapes. The convolution and difference images indicate that in case of the

shaded skin patch (Figure 5.10), a closer falloff approximation (k = 1 or k = 2) provides

better image-space results than using k = 0. However, in case of the more uniformly lit skin

patch, a closer approximation of the center region (k = 0 or k = 1), in order to preserve

more surface detail, offers a better image-space approximation than choosing k = 2. For both

cases, k = 1 seems like a reasonable trade-off between the center (k = 0) and falloff (k = 2)

approximation. This is also indicated by the corresponding difference images, shown in Figure

5.11 and 5.13, and image-space errors included in Figure 5.9. These example results also show

that the approximation kernel corresponding to k = 1 has a lower image-space error than the

rank-1 SVD-based approximation in both cases. Furthermore, it is worth noting that the final

image-space error is significantly influenced by the actual input image, which can be seen by

comparison of the image-space RMS errors corresponding to the shaded and uniform skin patch

(Figure 5.9).

Since this model represents a rank-1 kernel approximation, As can be applied like any sep-

arable kernel, as described previously by Equation 5.1 and 5.2. The drawback of this model is

that optimization has to be used, which in the context of high-resolution kernels can be quite

difficult and time consuming to compute, as outlined in Section 6.4, since the dimensionality of

the optimization increases with the kernel size. In order to tackle this problem, a customized op-

timization framework was developed. It uses an iterative approach were the initial optimization

is performed using a down-sampled version of the ground-truth kernel. All successive optimiza-

tion steps are then initialised using the solution from the previous step until the full resolution

is reached. For energy conservation, a soft constraint was used in order to support the efficient

computation of usable solutions. This means that the norm-1 constraint was included in the ob-

jective function and was not supplied as a separate constraint to the optimization framework. It

is, furthermore, worth noticing that it was necessary to weaken the influence of the soft 1-norm

constraint with respect to the weighted RMS term in order to obtain reasonable approximations.

This may be only necessary due to the particular implementation of the optimization framework,

however, it illustrates that finding parameters which work in general is certainly no trivial task,

and can make the usage of this optimization approach difficult.

The proposed guided approximation approach builds on optimization in kernel space, as auto-

matic image-space optimization can be considered impractical, due to its high computational

demands. This assessment is supported by the fact that the proposed kernel-space optimization

can already take up to ~19 minutes in the worst case. This increased computation time and the
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relative moderate flexibility of the guided optimization model might still be too restrictive to be

used by artists in a production environment. Therefore, a more artist-friendly model which can

be interpreted as a manual optimization in image space is described in the following section.
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(a) Input (b) Ground-truth

(c) SVD rank-1 (d) Pre-Integration (e) Manual approximation

(f) Guided optimization (k=0) (g) Guided optimization (k=1) (h) Guided optimization (k=2)

Figure 5.10: This figure shows images of the shaded skin patch convolved with different kernel

approximations of the Skin1 material. The corresponding image-space RMS errors are shown in

Figure 5.9. Images (a) and (b) represent the input and ground-truth convolution results, recep-

tively. The remaining images show the convolution results for the example kernels, while the

corresponding difference images are included in Figure 5.11.
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(a) SVD rank-1 (b) Pre-Integration (c) Manual approximation

(d) Guided optimization (k=0) (e) Guided optimization (k=1) (f) Guided optimization (k=2)

Figure 5.11: This figure shows difference images corresponding to the convolutions of the

shaded skin patch shown in Figure 5.10. Please note that these images represent the absolute

differences which are normalized across all images.
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(a) Input (b) Ground-truth

(c) SVD rank-1 (d) Pre-Integration (e) Manual approximation

(f) Guided optimization (k=0) (g) Guided optimization (k=1) (h) Guided optimization (k=2)

Figure 5.12: This figure shows images of the uniform skin patch convolved with different kernel

approximations of the Skin1 material. The corresponding image-space RMS errors are shown in

Figure 5.9. Images (a) and (b) represent the input and ground-truth convolution results, recep-

tively. The remaining images show the convolution results for the example kernels, while the

corresponding difference images are included in Figure 5.13.
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(a) SVD rank-1 (b) Pre-Integration (c) Manual approximation

(d) Guided optimization (k=0) (e) Guided optimization (k=1) (f) Guided optimization (k=2)

Figure 5.13: This figure shows difference images corresponding to the convolutions of the

shaded skin patch shown in Figure 5.12. Please note that these images represent the absolute

differences which are normalized across all images.
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(a) Γp(x, y) (b) Γ(x, y; 1.55)

Figure 5.14: Comparison of the pre-integration-based guide function Γp(x, y) and the simpler

approximation using the parametrized approach Γ(x, y; 1.55).
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(a) Pre-Integration (b) Guided Opt. k = 1.55, b = 50

(c) Guided Opt. k = 0, b = 50 (d) Guided Opt. k = 2, b = 50

Figure 5.15: This figure shows a comparison between convolutions of the

shaded skin patch, using the pre-integration kernel (a) and guided approxi-

mation kernels corresponding to different parameters, where (b) shows the

kernel corresponding to the parameters k = 1.55 and b = 50, which shows a

similar results compared to the pre-integration kernel. Images (c) and (d) are

two additional results, for which parameter b is the same as in image (b), and

only the k parameter was varied. This two images illustrated that, in com-

parison to Figure 5.10, the influence of the k parameter is weakened, and the

direct control over closer falloff or center approximation is not maintained in

case the additional b parameter is used.
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5.4 Manual Approximation

The kernel model described in the previous section used a guided optimization approach in ker-

nel space in order to find kernel approximations which provide reasonable image-space results.

An additional motivation for this approach was that automatic image-space optimization would

pose highly impractical computational demands.

However, in this section, a simple kernel model is described that allows a manual image-

space optimization. This model was developed by Jorge Jimenez and is described for the sake of

completeness. The main goal of this model is to provide the user (or artist) with a small number

of intuitive parameters that are manually controlled in order to find a separable approximation

kernel which approximates the ground truth as close as possible, or in any other way intended

by the artist.

The artist-friendly kernel approximation model Am, described in Equation 5.21, has only

three parameters, where am is based on a mixture of two 1D Gaussians.

Am(x, y) = am(x) am(y)

with

am(x) = w G(x, τn) + (1− w) G(x, τf )

(5.21)

The rank-1 approximation is represented by the separable kernel Am, where the am term is

basically a 1D Gaussian mixture including two components which are linearly interpolated via

the w parameter. By adjustment of the variances of the two Gaussians and their interpolation

w, it is possible to approximate the near and far scattering component of the diffuse reflectance

profile via τn and τf , respectively.

This is further illustrated in Figure 5.16, which shows a simple 1D illustration explaining

the Gaussian mixture am which is represented by the green function. By choosing appropri-

ate variances τn and τf for the two Gaussians, represented by the orange and blue functions,

respectively, it is possible to approximate the near and far scattering regions of the grey ground-

truth profile function. Please note that this figure does not show an optimal approximation and

also represents a simplified 1D illustration. The manual approximation kernel with its form

Am(x, y) = am(x) am(y) is slightly more complex, but, nevertheless, the conceptual relation

of the parameters τn and τf to near and far scattering, respectively, is still appropriate.

The ability to adjust the interpolation between the far and near scattering Gaussian via the w

parameter is further illustrated in Figure 5.17. By adjustment of the w parameter it is possible

to seamlessly transition from predominant near scattering which preserves sharper features, to

emphasised far scattering which offers a more pronounced falloff.

In order to find appropriate parameters, the user (or artist) can simply tweak the parameters

by hand and visually verify the resulting approximation. This can either be done at runtime,

given that the rendering framework provides the necessary parameter interface, or by use of an

external offline framework, in which case the found parameter or kernel is simply imported at

runtime. An example for such an offline framework was developed in MATLAB and can be seen

in Figure 5.18.

The manual approximation kernel Am can be applied for convolution like every other sepa-

rable kernel, accordion to Equation 5.1 and 5.2. Although this model does not explicitly include
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Gaussian (near scattering)
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Figure 5.16: This figure illustrates the manual approximation approach based on am
via a simple 1D example. In this plot the grey function represents an arbitrary example

for a ground-truth profile that should be approximated. The green function denotes the

approximating Gaussian mixture, composed out of the two weighted Gaussian func-

tions for near (orange) and far (blue) scattering. Please note that this figure does not

show an optimal approximation and is for illustration purposes only.

a constraint or term which ensures energy conservation, the resulting kernel can be considered

as such, since the parameters are manually optimized in image space, which ensures that the

resulting kernel has the desired shape after enforced energy conservation via normalization.

This artist-friendly model was originally developed in the context of real-time rendering for

games by Jorge Jimenez and was reimplemented and tested during research for the SSSS ex-

tension presented in this thesis. The model is, due to its low parameter count, fairly simple

and provides an intuitive interpretation of the two Gaussians as the near and far scattering com-

ponents, which makes adjustments by hand quite intuitive. Furthermore, this model does not

constrain artists to physical correctness, but provides a certain degree of artistic freedom in the

choice for the parameter values. Depending on the skill of the user or artist, the search for the

particular parameters that produce the desired approximation can take up to several minutes,

but can be supported by instant feedback via evaluation and application of the kernel model at

runtime, as mentioned earlier.

One drawback of this model is that the approximation quality is limited, as it only uses two

Gaussians. However, as shown by the final results included in the next chapter, the approxima-

tion quality may be sufficient for most rendering scenarios.
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(a) Input (b) Ground-truth

(c) Predominant near scattering (d) Balanced near–far scattering (e) Predominant far scattering

Figure 5.17: This figure illustrates the linear interpolation of the two Gaussians of the manual

approximation model via the variation of the w parameter. For reference, image (a) shows

a patch of skin and (b) displays the filtered result using the ground-truth Skin1 kernel. The

application of the manual approximation kernel with varying w parameter is shown in the second

row. Here, different w settings are illustrated, showing emphasised near scattering (c), balanced

near–far scattering (d), and emphasised far scattering (e).

The models for the approximation of diffuse reflectance profiles, described in the previous sec-

tions, all have different advantages and drawbacks. Therefore, it depends highly on the specific

application which kernel might be suited best for a specific rendering scenario. In order to com-

pare and verify the models for different materials and various scenes, a series of rendering test

were performed. Detailed test results and images are provided in the following chapter.
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(a) Main window (b) Parameter controls

Figure 5.18: This figure shows two screenshots of the manual approximation model in MAT-

LAB. The main window of the UI is shown in (a), which displays axis-aligned kernel plots and

convolution results for the ground-truth kernel and the manual approximation kernel, for easy

comparison and adjustment. The actual model parameter controls can be changed via a separate

window, shown in (b).
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CHAPTER 6
Results

This chapter includes visualisations, renderings and comparisons of the different approximation

kernels, based on the models described in the previous chapter. First, initial preparations which

were necessary for the development and testing of the extensions are discussed. Then, plots

of the simulated ground-truth 1D diffuse reflectance profiles, computed via MCML simulation,

are presented. And finally, the application of the generated approximation kernels for various

test signals and scenes is shown using several rendered images, and the results are, furthermore,

compared and discussed.

Given the vast amount of material-kernel combinations, this chapter only includes the results

for the five materials, i.e., Apple, Marble, Ketchup, Skin1 and Wholemilk, which were used for

the final scene rendering. Furthermore, the manual approximation kernel was only constructed

for these main materials. Results for the remaining materials are included in the appendix.

6.1 Initial Preparations

In order to extend the SSSS algorithm to support arbitrary materials, a few initial preparations

were necessary. First, physically based material measurements had to be obtained and used

to derive ground-truth diffuse reflectance profiles for different materials. This was achieved

by using the measured material parameters from Jensen et al. [21] as an input for brute-force

simulation using MCML [39]. It supports simulation of multi-layered cylindrically symmetric

tissue models, and outputs the diffuse reflectance profile as a 1D function, Rd(r).

MCML Setup: All material parameters, taken from Jensen et al. [21], were converted to cen-

timeter or cm−1, respectively, and used to build the MCML input files. For each material, the

RGB channels were simulated separately, and aside from the material properties (see Table 6.2),

each channel used the same parameters specified in Table 6.1. The mean free path (MFP) was

computed as 1
σ′

t
= 1

σa+σ′

s
, with the reduced scattering coefficient being trivial, i.e., σ′

s = σs,

since only isotropic scattering (g = 0) was considered.
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No. Photons: 107

Grid spacing: dr =
min(MFPrgb)

20

No. of grid elements: nr = ⌈32 max(MFPrgb)
dr

⌉

Thickness: 108 cm (quasi-infinite).

Table 6.1: MCML parameters used for all materials and each RGB channel. In this table MFPrgb

denotes the mean free path of the three RGB channels.

An example of such a simulated raw ground-truth diffuse reflectance profile can be seen in

Figure 6.1, while plots for all materials are included in the appendix (Figure A.1–A.11). The left

plots show a close view of the region near zero on a linear scale, while the right plots show the

complete simulation interval on a logarithmic scale. Some plots may exhibit noise in the falloff

regions, which can be explained as follows.

Diffuse reflectance profiles simulated using Monte-Carlo simulation tend to become more

and more noisy with increasing radius. As light travels further through a material, its absorption

becomes increasingly likely, which can lead to a low number of samples in regions far from

the center, and subsequently to noise. The noise level usually depends on different parameters,

such as simulation interval and photon count as well as the material properties. For the included

results, the noise is insignificant, because it includes only very small values.

Based on this simulated 1D ground-truth diffuse reflectance profiles Rd(r), the 2D diffuse

reflectance profiles Rd(x, y), from which the kernel approximations are derived, were computed

by ’simple rotation’ of Rd(r) about the Y axis. A corresponding example plot can be seen in

Figure 6.2 where the ground-truth profile is indicated by the dotted line, for easy comparison.

Name σa (cm−1) [RGB] σs (cm−1) [RGB] g η Thickness (cm)

Apple [0.03, 0.034, 0.46] [22.9, 23.9, 19.7] 0 1.3 108

Chicken1 [0.15, 0.77, 1.9] [1.5, 2.1, 3.8] 0 1.3 108

Chicken2 [0.18, 0.88, 2] [1.9, 2.5, 3.2] 0 1.3 108

Cream [0.002, 0.028, 0.163] [73.8, 54.7, 31.5] 0 1.3 108

Ketchup [0.61, 9.7, 14.5] [1.8, 0.7, 0.3] 0 1.3 108

Marble [0.021, 0.041, 0.071] [21.9, 26.2, 30] 0 1.5 108

Potato [0.024, 0.09, 1.2] [6.8, 7, 5.5] 0 1.3 108

Skimmilk [0.014, 0.025, 0.142] [7, 12.2, 19] 0 1.3 108

Skin1 [0.32, 1.7, 4.8] [7.4, 8.8, 10.1] 0 1.3 108

Skin2 [0.13, 0.7, 1.45] [10.9, 15.9, 17.9] 0 1.3 108

Wholemilk [0.011, 0.024, 0.14] [25.5, 32.1, 37.7] 0 1.3 108

Table 6.2: Material parameters used for the MCML simulation. In this table, g denotes the

anisotropy and η represents the index of refraction.
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Figure 6.1: An example plots of the simulated raw 1D diffuse reflectance profile for the material

Skin1. The left plot (a) shows a subregion near zero on a linear scale, while the right plot (b)

show the complete simulation interval on a logarithmic scale. The corresponding derived 2D

diffuse reflectance profile can be seen in Figure 6.2.

Aside from ground-truth diffuse reflectance profiles, it was also necessary to prepare additional

scenes for rendering tests. For this purpose, various object meshes were obtained from online

sources like Blend Swap [32]. Blender [1] and MeshLab [4] were used to further prepare and

combine the object meshes for later use in the SSSS rendering framework, which was extended

to support multiple scenes and texture sets. The scenes include the original model of a human

head, a marble dragon statue, whole milk, fruits on a plate, a plant and ketchup on a plate. For

a list of authors and sources of the used models please see Table A.2 in the appendix. Final

images showing the scenes rendered with SSS using the corresponding materials are included in

Section 6.3.

6.2 Approximation Kernels

Based on the 2D ground-truth kernels, derived from the simulated radially symmetric 1D diffuse

reflectance profiles, various approximations were computed using the models introduced in the

previous chapter. An example plot of an approximation kernel is shown in Figure 6.2, while

additional plots of the kernels and materials used for the examples included in this and the

previous chapter can be found in the appendix (Figure A.12–A.64). Please note that all ground-

truth kernels were normalized prior to approximation. This means that the discrete values of

each kernel sum up to 1 (per channel). For comparison with the SVD-based approach, additional

kernels using the Gaussian mixture model from d’Eon et al. [5, 6] were computed. The model

parameters found for the manual approximation kernels are included in the appendix (Table

A.1).

For additional visualisation, the different approximation kernels were used to convolve a
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Figure 6.2: Example plot of the SVD rank-1 kernel approximation for material Skin1.

The dotted function (Gr. Truth) represents the corresponding ground-truth 2D diffuse

reflectance profile. The first row show slices trough the 2D kernel along the main axis

for all three channels (RGB), while the second row shows the corresponding diagonal

slices. Please note that this example plot and all additional kernel approximation plots

included in the appendix show normalized kernels.

simple vertical white–black edge. A corresponding overview for easy comparison of the main

materials can be seen in Figures 6.3–6.5, while the images for the additional materials are in-

cluded in the appendix (Figure A.65–A.67). Additionally, the four rank-1 approximation kernels

were further used to convolve a more complex test signal, which includes a circle and two tilted

and adjacent squares. The corresponding images can be seen in Figure 6.6–6.10, and the ad-

ditional material examples are included in the appendix (Figure A.68–A.73). For the guided

approximation, the kernel corresponding to k = 1 was chosen as a representative example, since

this represents a trade-off between center (k = 0) or falloff approximation (k = 2), as outlined

in Section 5.3.

These simple artificial test signals make it possible to easily compare the various kernels vi-

sually, and quickly estimate their approximation quality and examine their individual properties.

Please note that these convolutions were performed using kernels with importance sampling and

200 samples along each dimension. This high sample count is impractical for real-time frame

rates but was chosen to allow close examination of the different kernel approximations without

distortions due to possible sampling artifacts. The final rendering examples, included in the next

section, however, represent actual real-time examples for which a low sample count of 17 was

used.

Although kernel-space RMS errors are not suited to assess the final approximation quality, as

illustrated via the rank-1 SVD-based kernel example, the errors of the four rank-1 approximation
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kernels for the materials used in the final rendering examples, are included in Table 6.3, for the

purpose of completeness. This table can be used to illustrate that the (not normalized) rank-1

SVD-based approach has the lowest RMS error in kernel space in all cases.

6.3 Test Renderings

In order to test the different kernels for practical real-time rendering scenarios, a series of scenes

using corresponding materials were rendered. The final renderings are shown in Figure 6.11

to 6.16, which include smaller cut-outs showing different kernel models for comparison. Dif-

ference images and corresponding image-space RMS errors are shown in Figure 6.17–6.22 and

Table 6.4, respectively.

Please note that these renderings are merely a proof of concept, since some objects and the

material kernel used for rendering do not match, in specific cases. Therefore, the Fruits and

the Plant scene used the same single Apple material kernel, and the soap was rendered using

the Wholemilk material kernel. In order to ensure real-time frame rates, these renderings used

kernels with 17 samples (importance-sampling), as outlined in Section 12. Image-space RMS

errors, for the corresponding cutouts, are included in Table 6.4.
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(a) Skin1 (b) Apple

Figure 6.3: Overview of the simple 1D test signal convolutions using different kernels for mate-

rial Skin1 and Apple.
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(a) Ketchup (b) Wholemilk

Figure 6.4: Overview of the simple 1D test signal convolutions using different kernels for mate-

rial Ketchup and Wholemilk.
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(a) Marble

Figure 6.5: Overview of the simple 1D test sig-

nal convolutions using different kernels for ma-

terial Marble.
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(a) Input (b) Ground truth

(c) SVD rank-1 (d) Pre-Integration

(e) Guided optimization (k=1) (f) Manual approximation

Figure 6.6: Convolution of an artificial test signal using different kernels for material Skin1.
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(a) Input (b) Ground truth

(c) SVD rank-1 (d) Pre-Integration

(e) Guided optimization (k=1) (f) Manual approximation

Figure 6.7: Convolution of an artificial test signal using different kernels for material Apple.
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(a) Input (b) Ground truth

(c) SVD rank-1 (d) Pre-Integration

(e) Guided optimization (k=1) (f) Manual approximation

Figure 6.8: Convolution of an artificial test signal using different kernels for material Ketchup.
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(a) Input (b) Ground truth

(c) SVD rank-1 (d) Pre-Integration

(e) Guided optimization (k=1) (f) Manual approximation

Figure 6.9: Convolution of an artificial test signal using different kernels for material Wholemilk.
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(a) Input (b) Ground truth

(c) SVD rank-1 (d) Pre-Integration

(e) Guided optimization (k=1) (f) Manual approximation

Figure 6.10: Convolution of an artificial test signal using different kernels for material Marble.
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SVD rank-1 Pre-Integration

R G B ΣRGB R G B ΣRGB

Apple 0.057 0.058 0.066 0.181 0.120 0.122 0.142 0.384

Marble 0.038 0.041 0.045 0.124 0.079 0.088 0.096 0.263

Ketchup 0.061 0.161 0.157 0.379 0.139 0.370 0.354 0.863

Skin1 0.035 0.062 0.095 0.192 0.074 0.142 0.226 0.442

Wholemilk 0.036 0.040 0.046 0.123 0.074 0.084 0.099 0.258

Guided optimization (k=1) Manual approximation

R G B ΣRGB R G B ΣRGB

Apple 0.137 0.141 0.162 0.440 0.106 0.107 0.118 0.330

Marble 0.090 0.099 0.110 0.299 0.077 0.074 0.075 0.226

Ketchup 0.141 0.167 0.160 0.469 0.151 0.683 1.000 1.833

Skin1 0.084 0.166 0.230 0.479 0.093 0.202 0.261 0.557

Wholemilk 0.084 0.097 0.115 0.296 0.070 0.081 0.091 0.243

Table 6.3: This table shows the kernel-space RMS errors for the materials used for final

rendering. Please note that the RGB errors are normalized, which means that the highest

per-channel error is mapped to one.
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Figure 6.11: Renderings of the Head scene using different kernels. The cut-outs below show that

the pre-integration based kernel is quite close to the ground truth, while the guided optimization

and the manual approximation have a slightly different falloff in the shadow region.
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Figure 6.12: Renderings of the Dragon scene using different kernels. The comparison in the cut-

outs shows that most approximations blur the surface details of marble more than the ground

truth. The guided optimization kernel shows the strongest blur, in comparison to the pre-

integration and manual approximation approximations.
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Figure 6.13: Renderings of the Milk scene using different kernels. In this particular case the

kernel differences are best observed on the engraved SSSS letters.
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Figure 6.14: Renderings of the Fruit scene using different kernels. In this proof-of-concept

scene the illumination is quite uniform and the surface details are less pronounced. This makes

the differences between the individual kernels quite subtle and harder to observe. Therefore, the

kernels look quite similar with some differences visible in falloff regions.
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Figure 6.15: Renderings of the Plant scene using different kernels. In this particular scene larger

surface areas are missing and the kernels may be best observed on individual plant leafs shown

in the cut-outs.
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Figure 6.16: Renderings of the Ketchup scene using different kernels. This scene includes uni-

form illumination and very few surface details, which makes differences between the individual

kernels harder to observe. Therefore, the kernel approximations look quite similar and close to

the ground truth.
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(a) SVD rank-1 (b) Pre-Integration

(c) Guided optimization (k=1) (d) Manual approximation

Figure 6.17: Difference images for the different approximation kernels used for the Dragon

scene cutout renderings.

(a) SVD rank-1 (b) Pre-Integration

(c) Guided optimization (k=1) (d) Manual approximation

Figure 6.18: Difference images for the different approximation kernels used for the Fruit scene

cutout renderings.
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(a) SVD rank-1 (b) Pre-Integration

(c) Guided optimization (k=1) (d) Manual approximation

Figure 6.19: Difference images for the different approximation kernels used for the Head scene

cutout renderings.

(a) SVD rank-1 (b) Pre-Integration

(c) Guided optimization (k=1) (d) Manual approximation

Figure 6.20: Difference images for the different approximation kernels used for the Ketchup

scene cutout renderings.
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(a) SVD rank-1 (b) Pre-Integration

(c) Guided optimization (k=1) (d) Manual approximation

Figure 6.21: Difference images for the different approximation kernels used for the Milk scene

cutout renderings.

(a) SVD rank-1 (b) Pre-Integration

(c) Guided optimization (k=1) (d) Manual approximation

Figure 6.22: Difference images for the different approximation kernels used for the Plant scene

cutout renderings.
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SVD rank-1 Pre-Integration

R G B ΣRGB R G B ΣRGB

Dragon 0.676 0.684 0.677 2.037 0.318 0.314 0.304 0.937

Fruit 0.257 0.339 0.247 0.843 0.148 0.198 0.140 0.486

Head 1.000 0.455 0.198 1.653 0.320 0.177 0.115 0.611

Ketchup 0.425 0.138 0.140 0.702 0.246 0.193 0.206 0.644

Milk 0.461 0.448 0.384 1.292 0.208 0.211 0.186 0.605

Plant 0.245 0.227 0.147 0.618 0.193 0.184 0.115 0.492

Guided optimization (k=1) Manual approximation

R G B ΣRGB R G B ΣRGB

Dragon 0.332 0.315 0.308 0.955 0.325 0.307 0.323 0.955

Fruit 0.141 0.187 0.128 0.456 0.133 0.184 0.133 0.450

Head 0.298 0.358 0.252 0.908 0.524 0.473 0.354 1.351

Ketchup 0.155 0.267 0.494 0.915 0.124 0.257 0.510 0.891

Milk 0.210 0.211 0.192 0.613 0.139 0.179 0.159 0.478

Plant 0.203 0.193 0.111 0.506 0.147 0.134 0.094 0.376

Table 6.4: This table shows the image-space RMS errors of the different kernel ap-

proximations used for the rendering cutouts included in Figure 6.11–6.16. Please note

that the RGB errors are normalized, which means that the highest per-channel error is

mapped to one. The corresponding difference images can be seen in Figure 6.17–6.22.
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6.4 Discussion

In this section, the different kernel approximation models are compared and discussed based on

the previously presented results. The simple test-signal convolutions shown in Figure 6.3–6.10

enable a quick visual overview for the different approximation kernels, and the more advanced

renderings (Figure 6.11–6.16) are accompanied by difference images (Figure 6.17–6.16) and

corresponding image-space RMS errors in Table 6.4.

SVD Model: The SVD-based approach offers a deterministic solution, where the approxima-

tion quality directly corresponds to the chosen rank for the approximation kernel. While this

model is, in principle, optimal in terms of the kernel-space RMS error, the lack of energy con-

servation, especially at low ranks, destroys this property, as the SSSS algorithm normalized all

kernels prior to convolution.

The artificial test-signal convolutions in Figure 6.3–6.10 indicate that SVD-based rank-1 ap-

proximations are of low quality for all materials. The corresponding kernels poorly approximate

the falloff of the ground truth and therefore underestimate the far-range scattering, which is a

significant feature of SSS. This is, furthermore, supported by the test renderings (Figure 6.11 to

6.16) and the corresponding difference images (Figure 6.17–6.22), as well as by the image-space

RMS errors (Table 6.4), for which the SVD-based rank-1 approximations has the highest errors

in most cases. Consequently, the SVD-based rank-1 approximation kernels are less suited for

SSS rendering based on a separable kernel.

However, it is worth noting that the approximation quality rapidly increases with higher

ranks. Figure 6.3–6.5 indicate that the rank 3–5 solutions are already quite close approxima-

tions, and that the rank-6 kernel is almost indistinguishable from the ground truth. This is

furthermore illustrated by example renderings of the human head shown in Figure 6.23, where

this scalable approach of higher rank SVD approximation is compared to a similar state-of-the-

art model by d’Eon et al. [5, 6], which also supports scalability in terms of convolution passes.

This model uses a Gaussian Mixture, where the number of Gaussian determines the approx-

imation quality and the number of required convolution passes. The image-space RMS error

comparison in Table 6.5 indicates that the SVD-based approximation scheme represents a sav-

ing of roughly one rank (two 1D convolutions) in comparison to the d’Eon approach of the same

quality. The image-space RMS errors, as well as the corresponding difference images shown in

Figure 6.24 and 6.25), support that the SVD-based approach, compared to the Gaussian Mixture

model, has a favorable quality progression with respect to the required convolution passes and

converges more quickly to the ground truth. However, this increase in approximation quality

via higher-rank approximations requires more convolution passes for rendering and, therefore,

more computation time than a separable (rank-1) approach.

The only separable (rank-1) approximation provided by d’Eon et al. [5,6] is the single Gaus-

sian. The approximation of the ground-truth kernel using only a single Gaussians is expectedly

quite difficult and provides low-quality approximations, which is also the case for the rank-1

SVD approach. Therefore, more suitable models for rank-1 approximations are discussed be-

low.
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SVD d’Eon

R G B ΣRGB R G B ΣRGB

rank-1 0.910 0.391 0.180 1.481 1.000 0.449 0.229 1.679

rank-2 0.518 0.230 0.104 0.852 0.874 0.380 0.152 1.406

rank-3 0.274 0.111 0.048 0.432 0.613 0.244 0.092 0.949

rank-4 0.166 0.070 0.036 0.272 0.386 0.127 0.045 0.557

rank-5 0.089 0.034 0.017 0.141 0.230 0.068 0.032 0.330

rank-6 0.055 0.024 0.010 0.088 0.147 0.040 0.026 0.214

Table 6.5: This table shows image-space RMS errors corresponding to the SVD–d’Eon

comparison shown in Figurer 6.23. Please note that the RGB errors are normalized,

meaning that the highest error is mapped to 1. The corresponding difference images

can be seen in Figure 6.24–6.25.

Pre-Integration Model: The analytic pre-integration based model is, like the SVD-based ap-

proach, deterministic, but only provides a single level (rank-1) of approximation quality. It

furthermore produces the exact same convolution result as the ground-truth kernel for additively

separable irradiance input signals, as shown in Figure 6.3–6.5.

However, the results for more complex irradiance signals (Figure 6.7–6.9) and especially the

final renderings (Figure 6.11–6.16) indicate that, even for arbitrary irradiance signals, the quality

of the analytic pre-integration kernel is sufficient to approximate SSS in a visually plausible way.

The difference images shown in 6.17–6.22 as well as the image-space RMS errors (Table 6.4)

show that the approximation quality is quite similar to the guided optimization and the manual

approximation models in most cases, while the SVD-based approach is of lower quality.

If the pre-integration approach does not produce satisfactory results, or a certain non-physical

appearance is desired, the following two models may be applied to compute a customized rank-1

approximation.

Guided Optimization Model: The guided optimization model enables the computation of

separable and energy-conserving approximation kernels via the minimization of a parametrized

objective function which is used to guide the optimization, as outlined in Section 5.3. This

model is able to produce results similar to the analytic pre-integration model, as illustrated by

the rendering examples shown in Figure 6.11–6.16, but provides additional degrees of freedom,

as shown in the simple test signal convolutions included in 6.3–6.5.

Using the parametrized objective function, it is possible to guide the optimization to approx-

imate either far or near scattering. It is therefore possible to customize the kernel for the specific

application at hand, as illustrated in Section 5.3, by selecting the appropriate value for parameter

k. Figure 6.3–6.5 show corresponding kernels optimized for a closer approximation of the near

scattering (k = 0) and kernels customized for far scattering (k = 2). The results indicate that
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the parameter k basically controls the approximation-quality trade-off between the center region

and the falloff. In case of a close falloff approximation (k = 2), the center region is overly

blurred, while for a close near-scattering approximation (k = 0), the falloff is of poor quality.

For the rendering examples, the kernel corresponding to the parameter k = 1 was chosen

as it represents the trade-off between falloff and center approximation. Although the renderings

shown in Figure 6.11–6.16 suggest that the guided optimization approach looks quite similar to

the pre-integration and manual approximation models, the difference images (Figure 6.17–6.22)

show the more subtle differences, and Table 6.4 shows slightly increased errors, for most cases.

One drawback of the guided approximation approach is that the optimization of the kernels

can be quite difficult and time consuming. The optimization time for the guided approximation

kernels ranges from ~1–19 minutes, depending on the material and parameter configuration.

For efficient optimization of usable solutions, a soft 1-norm constraint was used, which resulted

in a maximal constraint error of ~25%, depending on material and parameter configuration.

Furthermore, this model only provides quite limited control over the kernel approximation. In

case more specific control over the kernel shape is required, the following model may be more

suited.

Manual Approximation Model: This rank-1 model based on a Gaussian mixture provides

a few intuitive parameters suitable for manual control, and can be interpreted as a manual op-

timization in image space, as opposed to the guided optimization approach which operates in

kernel space.

The parameters may be adjusted by an artist to obtain either physically based approximations

of the ground-truth model or non-physically based kernels that produce a desired effect. As this

model only uses two 1D Gaussians, it may be difficult to closely approximate the ground-truth

kernels. However, the test-signal convolution results, shown in Figure 6.3–6.9, and also the

final renderings, shown in Figure 6.11–6.16, indicate that even this simple model is able to

approximate SSS in a visually plausible way. This is furthermore supported by the difference

images (Figure 6.17–6.22) and the image-space RMS errors included in Table 6.4, which show

that this model provides similar, if not lower, RMS errors in comparison to the other models.

It is however worth nothing that these kernels are highly adapted to the given scene and its

corresponding features. On one hand, the manual adjustment of the model parameters can be

tricky and may be considered as a drawback by some users, but on the other hand this simple

model may be a viable tool for artists to achieve a desires SSS effect.

The example renderings shown in Figure 6.11–6.16, in combination with the corresponding dif-

ference images (Figure 6.17–6.22), as well as the image-space RMS errors (Table 6.4), suggest

that, apart from a few outliers, all models, expect the rank-1 SVD-based approach, offer com-

parable approximation quality. It is, however, worth noticing that the RMS errors condense a

whole 2D image into one single value, and, subsequently, cannot capture regional differences,

therefore, additional difference images are provided. Furthermore, please note that the image-

space difference is dependant on the rendered scene, and that the count of different scenes is

quite moderate. As the results do not show a single best solution for all example cases, the indi-

vidual properties and characteristics of each model play an important role in the decision which
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model to use in a particular situation. This is further outlined and discussed in the next and final

chapter.

An overview of the different models is provided in Table 5.1, which conveniently sum-

marizes their properties. It lists different properties corresponding to visual quality, number of

required 1D convolutions and the separability for each kernel model. The attribute ’Closed-form

solution’ also indicates if the kernel computation requires automatic optimization (✗) or not (✓).

The models for SSSS rendering, presented in this work, are manifold and offer different ap-

proaches to compute separable (rank-1) approximation kernels, which enable fast SSS rendering.

This makes real-time SSS rendering for arbitrary materials possible, as long as an appropriate

approximation can be computed. The proof-of-concept test renderings shown in Figure 6.11 to

6.16 indicate that the models are applicable for a variety of materials and show that they produce

plausible results for arbitrary geometry and illumination scenarios. Furthermore, it is possible

to render SSS based on these models using importance sampling with as low as 17 samples,

as outlined in Section 12. This enables real-time frame rates, where SSS is computed in less

than 1 ms. However, as the models and the underlying algorithm both use approximations, this

approach has some limitations discussed in the following section.

Limitations

The most obvious limitation is the approximation itself. Apart from using higher rank SVD-

based approximations, the kernels are limited to rank-1 in order to enable fast convolution.

Ground-truth kernels, however, are in general of higher rank, and therefore rank-1 models in-

clude an approximation error. The error increases with the rank of the ground-truth kernel and

depends on the energy distribution among the corresponding singular values. However, due to

the particular shape of diffuse reflectance profiles, only a few singular values are of significance,

which aids the proposed low-rank approximation models. Furthermore, as SSS can be a very

subtle effect, and many people may not be aware of it, the approximation error may not be

noticeable especially if the ground-truth comparison is not provided.

An additional limitation of the rank-1 approximation is that it is in general not radially

symmetric, as outlined in Sections 4.3 and 5.1. This property may be exposed by small features,

which may act similar to a Dirac peak and reveal the radially asymmetric shape of the kernel.

This asymmetry usually has the form of a more or less pronounced cross aligned with the kernel’s

main axis. It becomes more and more visible as features in the irradiance signal become smaller

than the kernel size. An example of the corresponding artifacts is shown in Figure 6.26.

This image also illustrates artifacts due to low sampling rates in combination with a large

on-screen kernel size. In this particular case, the convolution was performed using importance

sampling with only 17 samples. As a result, banding artifacts may be visible in regions were

the kernel falloff is clearly visible, due to large kernel size and harsh illumination. However, the

results previously shown in this chapter indicate that for many rendering scenarios such artefacts

are less noticeable.

Another limitation, not directly related to our proposed models but worth noticing, stems

from the translucency approach used by the SSSS method. This approach is based on simple

shadow mapping and therefore may overestimate the thickness of non-convex objects and sub-

88



sequently reduce their translucency for corresponding regions. This can be especially noticeable

under harsh back-illumination from a single light source, hence illumination from different di-

rections using multiple light sources may hide such artifacts. An example of such artifacts is

shown in Figure 6.27. In this particular case, milk droplets cast shadows on an edge where the

translucency component of SSS is clearly visible. Due to the non-convex shape of the mesh, the

thickness in the shadowed regions is overestimated, and, therefore, the translucency is wrongly

attenuated. Although shadowed regions, per definition, exhibit no light that could be transmitted

through the material, it would be expected that at least some light from illuminated neighbouring

regions would scatter into the shadows on the backside.
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Figure 6.23: Comparison of the SVD model versus the Gaussian mixture model from d’Eon et

al. [5, 6] using the Skin1 material applied to the Head scene (17 samples). The corresponding

image-space RMS errors are included in Table 6.5, and the difference images are shown in

Figure 6.24 and 6.25.
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(a) d’Eon 1 Gaussian (b) d’Eon 2 Gaussians (c) d’Eon 3 Gaussians

(d) SVD rank-1 (e) SVD rank-2 (f) SVD rank-3

Figure 6.24: Difference images of the SVD–d’Eon (rank 1-3) comparison shown in Figure 6.23,

with corresponding image-space RMS errors included in Table 6.5.
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(a) d’Eon 4 Gaussians (b) d’Eon 5 Gaussians (c) d’Eon 6 Gaussians

(d) SVD rank-4 (e) SVD rank-5 (f) SVD rank-6

Figure 6.25: Difference images of the SVD–d’Eon (rank 4-6) comparison shown in Figure 6.23,

with corresponding image-space RMS errors included in Table 6.5.
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Figure 6.26: This figure shows example artifacts due to the radially asymmetric shape of a

separable (rank-1) kernel. In addition, banding artifacts are visible due to harsh illumination

combined with a large on-screen kernel size and a low sample count of 17. In this particular

case, the analytic pre-integration kernel for the Skin1 material was used.

Figure 6.27: This figure shows examples of translucency artifacts in case of non-convex objects.

These artifacts stem from the translucency approach based on shadow mapping, which is used

by the SSSS algorithm.
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CHAPTER 7
Conclusion

The rendering of SSS for arbitrary materials in real time is a challenging task. While offline ren-

dering algorithms can afford complex simulations, real-time methods need to compute visually

plausible images in just a few milliseconds. This lead to various real-time approaches that use

different approximations to render SSS. One commonly established scheme is to filter surface

irradiance in screen space, which has the beneficial property of being almost independent from

scene complexity. In this context, rendering speed and quality are mainly determined by the

used filter. One of the most simple filters is a single 2D Gaussian, which is radially symmet-

ric and separable. This separability enables fast convolution, but the use of only a single 2D

Gaussian results in poor rendering quality. Therefore, the state of the art is to perform multiple

convolutions based on a 2D Gaussian mixture approximation of the diffuse reflectance profile,

which delivers high quality results at the price of increased rendering time.

The basic idea of Separable Subsurface Scattering is to use a separable, but not necessar-

ily radially symmetric, filter which mimics the ground truth as close as possible. The models

proposed in this thesis build upon this idea and represent different separable approximations.

The SVD-based approach offers a rank-1 kernel with inferior quality compared to the other

models. However, the results show that higher rank SVD-based approximation kernels have a

favorable cost-quality progression compared to the state of the art. The analytic pre-integration

based model offers a deterministic solution, fast computation and is exact for special-case irra-

diance signals, while providing much better quality than the SVD-based rank-1 solution. In case

more control over the approximation quality is desired, the guided optimization approach offers

a parametrized model to compute kernels which may be adapted for near or far scattering. A

drawback of this approach is that the optimization is more difficult and time consuming. The

last model is based on the manual optimization of a mixture of two 1D Gaussians, which enables

total artistic control by providing an intuitive interpretation of the parameters. The results show

that even this simple model is able to provide visually plausible approximation kernels.

The conclusion, based on the results presented in the previous section, is to use higher-rank

SVD-based solutions whenever time constraints allow for multiple (2+) convolutions, which

will eventually be the case, as the speed of modern GPUs increases rapidly. In case only two
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1D convolutions are affordable, a separable (rank-1) approximation provides a good trade-off

between quality and rendering speed. As all models, except the SVD-based rank-1 model, de-

liver quite similar results, and there is no single best solution for all cases, the reason to favour

one model over the other is highly determined by their individual properties. In case fast and

automatic physically based kernel approximation is required, the pre-integrated model is a vi-

able solution. However, if more artistic control or a non-physical effect is desired, the manual

approximation approach delivers good quality, while providing easy and interactive control over

the approximation. This is further supported by the fact that this model is already used in pro-

duction. Since the guided optimization approach, only delivers similar and not clearly superior

results in comparison to the previous models, but is more difficult to use and needs more time

for kernel generation, this approach seems less attractive, but may be viable if the application

scenario requires automatic computation of a specific approximation.

This approach for real-time rendering of SSS inherits a few limitations from the proposed

kernel models and the corresponding SSSS algorithm. The fact that the proposed models rep-

resent an approximation of a ground-truth kernel is a limiting factor for the final SSS rendering

quality. Rank-1 kernels are only capable of approximating the ground truth within their rank-1

constraint, and the quality depends on the energy distribution among the singular values. Higher

quality approximations are only possible by using kernels of higher rank which require multi-

ple (2+) convolutions. In order to ensure real-time performance, it is also necessary to use a

small sample count. This may introduce banding artifacts and reveal the radial asymmetry of

separable kernels, in case of small features in combination with a large on-screen kernel size.

The simplified translucency approach used for SSSS rendering may also introduce artifacts for

non-convex objects.

Despite these limitations, different renderings of artificial test signals and proof-of-concept

scenes showed that all four models, with the exception of rank-1 SVD-based approximations, en-

able plausible approximation of SSS for various materials. Moreover, since the SSSS algorithm

is in essence a post-processing step, this SSS rendering approach may be easily integrated into

existing rendering pipelines. The proposed models, in combination with the SSSS algorithm,

enable real-time rendering of SSS for arbitrary materials in fully dynamic scenes.
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APPENDIX A
Appendix
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Figure A.1: Plots of the diffuse reflectance profile for material Apple. The reason behind occa-

sional noise is explained in Section 6.1.
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Material
√
τn [RGB]

√
τf [RGB] w

Apple [0.0495, 0.0455, 0.0372] [1.1, 1.08, 0.926] 0.368

Ketchup [0.0907, 0.0331, 0.0331] [1.5, 0.118, 0.0966] 0.665

Marble [0.0371, 0.0207, 0.015] [0.663, 0.616, 0.558] 0.234

Skin1 [0.429, 0.211, 0.03] [1.15, 0.69, 0.471] 0.533

Wholemilk [0.0846, 0.0846, 0.0583] [1.5, 1.39, 1.17] 0.407

Table A.1: Model parameters for the manual approximation kernels.
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Figure A.2: Plots of the diffuse reflectance profile for material Chicken1. The reason behind

occasional noise is explained in Section 6.1.
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Figure A.3: Plots of the diffuse reflectance profile for material Chicken2. The reason behind

occasional noise is explained in Section 6.1.
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Figure A.4: Plots of the diffuse reflectance profile for material Cream. The reason behind occa-

sional noise is explained in Section 6.1.
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Figure A.5: Plots of the diffuse reflectance profile for material Ketchup. The reason behind

occasional noise is explained in Section 6.1.
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Figure A.6: Plots of the diffuse reflectance profile for material Marble. The reason behind

occasional noise is explained in Section 6.1.
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Figure A.7: Plots of the diffuse reflectance profile for material Potato. The reason behind occa-

sional noise is explained in Section 6.1.
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Figure A.8: Plots of the diffuse reflectance profile for material Skimmilk. The reason behind

occasional noise is explained in Section 6.1.
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Figure A.9: Plots of the diffuse reflectance profile for material Skin1. The reason behind occa-

sional noise is explained in Section 6.1.
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Figure A.10: Plots of the diffuse reflectance profile for material Skin2. The reason behind

occasional noise is explained in Section 6.1.
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Figure A.11: Plots of the diffuse reflectance profile for material Wholemilk. The reason behind

occasional noise is explained in Section 6.1.
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Figure A.12: Plot of the d’Eon 1 Gaussian kernel for material Skin1.
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Figure A.13: Plot of the d’Eon 2 Gaussians kernel for material Skin1.

103



−10 0 10

10
−10

10
−5

mm

R
d

Axis slice (R)

 

 

Gr. Truth
d’Eon 3G

−10 0 10

10
−10

10
−5

mm

R
d

Axis slice (G)

 

 

Gr. Truth
d’Eon 3G

−10 0 10

10
−10

10
−5

mm

R
d

Axis slice (B)

 

 

Gr. Truth
d’Eon 3G

−10 0 10

10
−10

10
−5

mm

R
d

Diagonal slice (R)

 

 

Gr. Truth
d’Eon 3G

−10 0 10

10
−10

10
−5

mm

R
d

Diagonal slice (G)

 

 

Gr. Truth
d’Eon 3G

−10 0 10

10
−10

10
−5

mm

R
d

Diagonal slice (B)

 

 

Gr. Truth
d’Eon 3G

Figure A.14: Plot of the d’Eon 3 Gaussians kernel for material Skin1.
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Figure A.15: Plot of the d’Eon 4 Gaussians kernel for material Skin1.
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Figure A.16: Plot of the d’Eon 5 Gaussians kernel for material Skin1.

−10 0 10

10
−10

10
−5

mm

R
d

Axis slice (R)

 

 

Gr. Truth
d’Eon 6G

−10 0 10

10
−10

10
−5

mm

R
d

Axis slice (G)

 

 

Gr. Truth
d’Eon 6G

−10 0 10

10
−10

10
−5

mm

R
d

Axis slice (B)

 

 

Gr. Truth
d’Eon 6G

−10 0 10

10
−10

10
−5

mm

R
d

Diagonal slice (R)

 

 

Gr. Truth
d’Eon 6G

−10 0 10

10
−10

10
−5

mm

R
d

Diagonal slice (G)

 

 

Gr. Truth
d’Eon 6G

−10 0 10

10
−10

10
−5

mm

R
d

Diagonal slice (B)

 

 

Gr. Truth
d’Eon 6G

Figure A.17: Plot of the d’Eon 6 Gaussians kernel for material Skin1.
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Figure A.18: Plot of the SVD rank-1 kernel for material Skin1.
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Figure A.19: Plot of the SVD rank-2 kernel for material Skin1.
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Figure A.20: Plot of the SVD rank-3 kernel for material Skin1.
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Figure A.21: Plot of the SVD rank-4 kernel for material Skin1.
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Figure A.22: Plot of the SVD rank-5 kernel for material Skin1.
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Figure A.23: Plot of the SVD rank-6 kernel for material Skin1.
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Figure A.24: Plot of the Manual approximation kernel for material Skin1.
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Figure A.25: Plot of the Guided optimization (k=0) kernel for material Skin1.

109



−10 0 10

10
−10

10
−5

mm

R
d

Axis slice (R)

 

 

Gr. Truth
Guided opt. K1

−10 0 10

10
−10

10
−5

mm

R
d

Axis slice (G)

 

 

Gr. Truth
Guided opt. K1

−10 0 10

10
−10

10
−5

mm

R
d

Axis slice (B)

 

 

Gr. Truth
Guided opt. K1

−10 0 10

10
−10

10
−5

mm

R
d

Diagonal slice (R)

 

 

Gr. Truth
Guided opt. K1

−10 0 10

10
−10

10
−5

mm

R
d

Diagonal slice (G)

 

 

Gr. Truth
Guided opt. K1

−10 0 10

10
−10

10
−5

mm

R
d

Diagonal slice (B)

 

 

Gr. Truth
Guided opt. K1

Figure A.26: Plot of the Guided optimization (k=1) kernel for material Skin1.
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Figure A.27: Plot of the Guided optimization (k=2) kernel for material Skin1.
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Figure A.28: Plot of the Guided optimization (k=0, b=50) kernel for material Skin1.
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Figure A.29: Plot of the Guided optimization (k=2, b=50) kernel for material Skin1.
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Figure A.30: Plot of the Pre-Integration kernel for material Skin1.
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Figure A.31: Plot of the SVD rank-1 kernel for material Apple.
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Figure A.32: Plot of the Manual approximation kernel for material Apple.
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Figure A.33: Plot of the Guided optimization (k=1) kernel for material Apple.
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Figure A.34: Plot of the Pre-Integration kernel for material Apple.
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Figure A.35: Plot of the SVD rank-1 kernel for material Ketchup.
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Figure A.36: Plot of the Manual approximation kernel for material Ketchup.
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Figure A.37: Plot of the Guided optimization (k=1) kernel for material Ketchup.
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Figure A.38: Plot of the Pre-Integration kernel for material Ketchup.
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Figure A.39: Plot of the SVD rank-1 kernel for material Wholemilk.
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Figure A.40: Plot of the Manual approximation kernel for material Wholemilk.
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Figure A.41: Plot of the Guided optimization (k=1) kernel for material Wholemilk.
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Figure A.42: Plot of the Pre-Integration kernel for material Wholemilk.
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Figure A.43: Plot of the SVD rank-1 kernel for material Marble.
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Figure A.44: Plot of the Manual approximation kernel for material Marble.
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Figure A.45: Plot of the Guided optimization (k=1) kernel for material Marble.

119



−2 0 2

10
−5

mm

R
d

Axis slice (R)

 

 

Gr. Truth
Pre−Int.

−2 0 2

10
−5

mm

R
d

Axis slice (G)

 

 

Gr. Truth
Pre−Int.

−2 0 2

10
−5

mm

R
d

Axis slice (B)

 

 

Gr. Truth
Pre−Int.

−2 0 2

10
−5

mm

R
d

Diagonal slice (R)

 

 

Gr. Truth
Pre−Int.

−2 0 2

10
−5

mm

R
d

Diagonal slice (G)

 

 

Gr. Truth
Pre−Int.

−2 0 2

10
−5

mm

R
d

Diagonal slice (B)

 

 

Gr. Truth
Pre−Int.

Figure A.46: Plot of the Pre-Integration kernel for material Marble.
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Figure A.47: Plot of the SVD rank-1 kernel for material Chicken1.
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Figure A.48: Plot of the Guided optimization (k=1) kernel for material Chicken1.
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Figure A.49: Plot of the Pre-Integration kernel for material Chicken1.
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Figure A.50: Plot of the SVD rank-1 kernel for material Chicken2.
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Figure A.51: Plot of the Guided optimization (k=1) kernel for material Chicken2.
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Figure A.52: Plot of the Pre-Integration kernel for material Chicken2.
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Figure A.53: Plot of the SVD rank-1 kernel for material Cream.
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Figure A.54: Plot of the Guided optimization (k=1) kernel for material Cream.
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Figure A.55: Plot of the Pre-Integration kernel for material Cream.
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Figure A.56: Plot of the SVD rank-1 kernel for material Potato.
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Figure A.57: Plot of the Guided optimization (k=1) kernel for material Potato.
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Figure A.58: Plot of the Pre-Integration kernel for material Potato.
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Figure A.59: Plot of the SVD rank-1 kernel for material Skin2.
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Figure A.60: Plot of the Guided optimization (k=1) kernel for material Skin2.
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Figure A.61: Plot of the Pre-Integration kernel for material Skin2.
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Figure A.62: Plot of the SVD rank-1 kernel for material Skimmilk.
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Figure A.63: Plot of the Guided optimization (k=1) kernel for material Skimmilk.
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Figure A.64: Plot of the Pre-Integration kernel for material Skimmilk.
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(a) Chicken1 (b) Chicken2

Figure A.65: Overview of the simple 1D test signal convolutions using different kernels for

material Chicken1 and Chicken2.
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(a) Cream (b) Potato

Figure A.66: Overview of the simple 1D test signal convolutions using different kernels for

material Cream and Potato.
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(a) Skin2 (b) Skimmilk

Figure A.67: Overview of the simple 1D test signal convolutions using different kernels for

material Skin2 and Skimmilk.
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(a) Input (b) Ground truth

(c) SVD rank-1 (d) Pre-Integration

(e) Guided optimization (k=1)

Figure A.68: Convolution of an artificial test signal using different kernels for material

Chicken1.
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(a) Input (b) Ground truth

(c) SVD rank-1 (d) Pre-Integration

(e) Guided optimization (k=1)

Figure A.69: Convolution of an artificial test signal using different kernels for material

Chicken2.
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(a) Input (b) Ground truth

(c) SVD rank-1 (d) Pre-Integration

(e) Guided optimization (k=1)

Figure A.70: Convolution of an artificial test signal using different kernels for material Cream.
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(a) Input (b) Ground truth

(c) SVD rank-1 (d) Pre-Integration

(e) Guided optimization (k=1)

Figure A.71: Convolution of an artificial test signal using different kernels for material Potato.
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(a) Input (b) Ground truth

(c) SVD rank-1 (d) Pre-Integration

(e) Guided optimization (k=1)

Figure A.72: Convolution of an artificial test signal using different kernels for material Skin2.
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(a) Input (b) Ground truth

(c) SVD rank-1 (d) Pre-Integration

(e) Guided optimization (k=1)

Figure A.73: Convolution of an artificial test signal using different kernels for material Skim-

milk.
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Scene Object Info

Human Head Source: Infinite-Realities (included in the original

SSSS demo)

Author: Lee Perry-Smith

Link: http://www.ir-ltd.net

Marble Dragon Source: Stanford University Computer Graphics Lab-

oratory

Link: http://graphics.stanford.edu/

data/3Dscanrep/

Fruits Green apple Source: Blend Swap

Author: metalix

Link: http://www.blendswap.com/

blends/view/25355

Red apple slices Source: CadNav

Link: http://www.cadnav.com/

3d-models/model-8246.html

Grapes Source: Blend Swap

Author: PickleJones

Link: http://www.blendswap.com/

blends/view/52078

Plate Source: Blend Swap

Author: longrender

Link: http://www.blendswap.com/

blends/view/1279

Plant Source: Blend Swap

Author: betomo16

Link: http://www.blendswap.com/

blends/view/69457

Ketchup Plate Source: Blend Swap

Author: longrender

Link: http://www.blendswap.com/

blends/view/1279

Milk Fluid Author: Károly Zsolnai

Table A.2: List of model authors and sources of various objects used for the test rendering

scenes.
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