
Guidelines for the Development of
Resilient Web Services to Enhance

Business Process Continuity
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Marco Unterberger
Matrikelnummer 0726018

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Wien, 25.09.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Guidelines for the Development of
Resilient Web Services to Enhance

Business Process Continuity
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Business Informatics

by

Marco Unterberger
Registration Number 0726018

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Vienna, 25.09.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Marco Unterberger
Fuchsthallergasse 2/22, 1090 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i





Acknowledgements

I would like to express special gratitude to my supervisor Prof. Andreas Rauber (IFS Research
Group, Vienna University of Technology), who gave me the opportunity to do this thesis on
the topic of Resilient Web Services. Thank you very much for your scientific guidance and
constructive advice. I always benefited from your expertise and holistic view of the problem
domain. Furthermore I would also like to thank my colleagues at Secure Business Austria (Vi-
enna), especially Tomasz Miksa and Rudolf Mayer who offered a lot of encouragement during
the work on this thesis.

Finally, I take this opportunity to devote my deepest gratitude to my beloved parents Gerda
and Hans for their continuous support. You have encouraged me throughout my years of study.
Special thanks belong to my grandmother and my aunt Erika for their great support and enthusi-
asm. Last but not least, I want to express my gratitude to Sabrina. Thank you so much for your
understanding during the past year(s), for your love and your support throughout my studies.

iii





Abstract

Processes, either in scientific or business domains, are in general subjected to decay. In general,
processes often interact with external components, which are located outside of the process
boundaries. Web Services have become the de facto standard for realizing remote software
components. Thus, Web Services are often part of a process and therefore can have a strong
impact on a correct process execution. However, processes themselves are designed for long
lasting, whereas Web Services have a highly dynamic and varying nature. That means, their
functional behaviour often changes on demand. That dilemma of volatile third party resources
is a major driver for process decay. Business Continuity Management (BCM) is a framework
for developing and implementing Business Continuity within an enterprise including various
activities like risk management and process analysis. However, Business Continuity plans and
strategies do not cover external artifacts sufficiently. Such external services involve a potential
risk, but are hard to address by BCM as they are out of the sphere of influence.

This thesis analysis reasons why Web Services so easily become outdated. Based on a lit-
erature survey, the most common service changes scenarios causing the Web Service’s dynamic
nature are presented. In a first step we investigate challenges regarding Web Service’s resilience.
Therefore, we observe the Web Service beyond its public interface to identify non apparent chal-
lenges. In more detail, we concentrate our effort on two major challenges: Web Service version
management and Web Service dependency management. We organized our work as follows: In
the first step, theoretical concepts including requirements and policies addressing the resilience
challenges have been developed. In a second step, we provided a reference implementation for
that framework to support resilient Web Services. Both, the theoretical and practical contribu-
tions lead to the Resilient Web Service Framework. By applying this framework, it supports
Web Service providers in offering resilient Web Services.

For the purpose of demonstration, we applied the Resilient Web Service Framework on a
selected set of scenarios of the Web Service management domain. The introduced resilience an-
notations get automatically attach to the service’s WSDL. It demonstrates the successfully cap-
turing of Web Service’s dependencies at runtime. Furthermore, notifications have been pushed
in case of a dependency modification.

v





Kurzfassung

Geschäfts- als auch wissenschaftliche Prozesse interagieren oftmals mit externen Softwarekom-
ponenten, welche außerhalb der eigenen Prozessgrenzen lokalisiert sind und haben zumeist
einen starken Einfluss den Prozess. Web Services sind eine Technologie um solch externe Soft-
warekomponenten zu realisieren. Prozesse sind im Allgemeinen auf Langlebigkeit ausgerichtet.
Im Gegensatz dazu ist die Funktionalität eines Web Services stark an reale Bedarfsanforde-
rungen gebunden ist. Kommt es zu einer neuen Anforderung, wird die Funktionalität des Web
Services dahingehend adaptiert. Das hat zur Folge, dass Web Services eine hohe Dynamik und
Variabilität in ihrem Verhalten aufweisen. Dies ist hauptverantwortlich dafür, dass die Langle-
bigkeit von Prozessen stark gefährdet ist.

Betriebliches Kontinuitätsmanagement (im Englischen Business Continuity Management)
ist ein Framework um Betriebliches Kontinuitätsmanagement innerhalb eines Unternehmens zu
entwickeln und zu überwachen. Es beinhaltet unter anderem Aktivitäten wie Risikoverwaltung
und Prozessanalyse. Jedoch decken die verfügbaren Aktivitäten externe Artefakte wie Web Ser-
vices nicht zur Genüge ab. Solche externen Risiken sind mithilfe von Betrieblichen Kontinui-
tätsmanagement schwer bis gar nicht zu adressieren.

Diese Arbeit untersucht die Gründe, welche die Resilienz eines Web Services beeinträchti-
gen und entwickelt Richtlinien um die Resilienz von Web Services sicherzustellen. Beginnend
mit einer Literaturrecherche werden die häufigsten Änderungsszenarien präsentiert, welche für
die dynamische Natur der Web Services mitverantwortlich sind. Darauf aufbauend werden die
Herausforderungen an ein Resilientes Web Service erforscht. Dafür ist es notwendig das eigent-
liche Web Service hinter der publizierten Schnittstelle genauer zu betrachten um nicht offen-
sichtliche Anforderungen aufzudecken. Genauer gesagt konzentriert sich diese Arbeit auf zwei
Hauptanforderungen. Zum einem ist dies die Web Service Versionierungsverwaltung und zum
anderen die Web Service Abhängigkeitenverwaltung. Die Arbeit ist wie folgt aufgebaut: Im ers-
ten Schritt werden theoretische Konzepte und Strategien entwickelt welche die Anforderungen
an Resiliente Web Services adressieren. In einem weiteren Schritt wird eine Referenzimplemen-
tierung dieses Frameworks präsentiert. Durch die Anwendung dieses Frameworks sollen Web
Service Anbieter dabei unterstützt werden, Resiliente Web Services zur Verfügung zu stellen.

Um die Fähigkeiten des Frameworks zu demonstrieren, selektierten wir spezielle Szenarien
aus der Domäne Web Service Verwaltung. Dabei hat das Framework gezeigt, dass die Um-
setzung einer resilienten Versionierungsverwaltung erfolgreich forciert wurde. Das erfolgreiche
Erfassen der Abhängigkeiten eines Web Services zur Laufzeit wurde ebenso demonstriert. Des
Weiteren wurde gezeigt, dass im Falle einer aufgetretenen Modifikation einer Abhängigkeit eine
Benachrichtigung versendet wurde.

vii





Contents

1 Motivation 1
1.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Aim of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Introduction 5
2.1 Service-Oriented Architecture (SOA) . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Services (as Web Services) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Basic Web Service Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 7
Web Service technology stack . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Web Service classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Web Service Life-Cycle (from a software engineering perspective) . . . . . . . 10
2.5 Business Processes (BP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 SOA Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Service-level Agreement (SLA) . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Provenance enhanced Web Services . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Commit Hooks in a Version Control System . . . . . . . . . . . . . . . . . . . 16
2.10 Compatible Web Service evolution . . . . . . . . . . . . . . . . . . . . . . . 17
2.11 View Path concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12 Service Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.13 The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.14 The concept of ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Web Ontology Language (OWL) . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Challenges of Web Service evolution 23
3.1 Challenges of Web Service evolution . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Addressing Web Service evolution by versioning . . . . . . . . . . . . . . . . 28
3.3 Summary of Web Service versioning approaches . . . . . . . . . . . . . . . . 31

4 Resilient Web Service Framework 33
4.1 The PictureService . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Requirements for a Resilient Web Service . . . . . . . . . . . . . . . . . . . . 35

ix



4.3 Versioning policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Provenance aware computation . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Enhance semantics of the Web Service interface . . . . . . . . . . . . . . . . . 37
4.6 Sandbox for Web Service operation executions . . . . . . . . . . . . . . . . . 39

Provide proper source code testing methods . . . . . . . . . . . . . . . . . . . 39
Provide operations in sandbox mode . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Web Service dependency management . . . . . . . . . . . . . . . . . . . . . . 41
Capture dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Propagation of dependency changes . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Remote Web Service dependencies . . . . . . . . . . . . . . . . . . . . . . . . 50
4.9 Summary of the Resilient Web Service Framework . . . . . . . . . . . . . . . 51

5 Resilient Web Service Framework Tools 55
5.1 Resilience annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Functional compatibility verification tool . . . . . . . . . . . . . . . . . . . . 57
5.3 Java2RWSDL converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Provenance enriched SOAP header . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Capture Web Service’s View Path . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6 Resilient Web Service Framework at a glance . . . . . . . . . . . . . . . . . . 61

6 Proof of concept & Demonstration 63
6.1 Transforming an existing Web Service into a RWS . . . . . . . . . . . . . . . 63

Setup of the Resilient Web Service Framework . . . . . . . . . . . . . . . . . 63
6.2 Adding a new resilient operation results in new a minor release . . . . . . . . . 64
6.3 PaaS updates ImageMagick via the package manager . . . . . . . . . . . . . . 66
6.4 Limitations of the Resilient Web Service Framework . . . . . . . . . . . . . . 69

7 Summary & Outlook 71
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A Appendix A 73
A.1 WSDL 2.0 sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 WSDL-Temporal sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.3 WSDL of PictureService . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.4 Recommendations for Arifact Versioning in SOA . . . . . . . . . . . . . . . . 80

Bibliography 85

x



List of Figures

2.1 The famous publish-find-bind triangle [39] . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Web Service Architecture Stack [9] . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Standard SOAP envelope [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Services can encapsulate varying amounts of logic [17] . . . . . . . . . . . . . . . 12
2.5 TIMBUS three phases approach [42] . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Data Process Architecture represented as a DAG from [40] . . . . . . . . . . . . . 16
2.7 Visualization of traditional IT environment in comparison to the various service

models in Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Chain of Adapters structure [27] after the second version have been published . . . 30

4.1 A resilient operation in aggregation with its multiple test methods and the single
demo method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Used two different view paths to convert the upper image from JPEG to PNG and
makes a diff (lower image), which is showing the deviations. . . . . . . . . . . . . 42

4.3 Web Service dependencies on different levels . . . . . . . . . . . . . . . . . . . . 44
4.4 Concept for reacting on dependency updates . . . . . . . . . . . . . . . . . . . . . 47
4.5 Description detailing the changes made to the system by replacing Oracle Java ver-

sion 1.6 with 1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Description detailing the change of the CPU by replacing the Intel Q9300 with Q9650 48
4.7 Communication paths between resilient parties . . . . . . . . . . . . . . . . . . . 49
4.8 RSS feed channel hosted by the PaaS provider. . . . . . . . . . . . . . . . . . . . 50

5.1 Sample result of the annotations verification tool . . . . . . . . . . . . . . . . . . 58
5.2 Provenance enhanced Web Service response . . . . . . . . . . . . . . . . . . . . . 60
5.3 Feature appliance assigned to involving party and Web Service life cycle phases . . 62

6.1 Pre commit hook detects two violations and aborts the commit . . . . . . . . . . . 65
6.2 Source code annotations are valid. The commit action was successfully . . . . . . 65
6.3 Excerpt of the Web Service’s viewed by Protege . . . . . . . . . . . . . . . . . . . 66
6.4 Execute update apt-get install imagemagick to updates its version. . . . . . . . . . 67
6.5 Result of the SPARQL query to detect if and which elements are affected. . . . . . 68
6.6 Excerpt of the updated Web Service’s viewed by Protege . . . . . . . . . . . . . . 68
6.7 A new push notification from the PaaS provider is available . . . . . . . . . . . . . 69

xi



List of Tables

3.1 Evolution profile of Web Services [21] . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Possible changes during Web Service evolution . . . . . . . . . . . . . . . . . . . 25
3.3 A general comparison of the three versioning strategies [19] . . . . . . . . . . . . 28
3.4 Summary of presented versioning approaches . . . . . . . . . . . . . . . . . . . . 32

4.1 Two possible View Paths for the convertJpeg2Png operation of the PictureService . 41
4.2 Responsible party for collecting the dependencies with respect to the chosen service

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Summary of the resilience annotations offered by the Resilient Web Service Frame-
work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Which tool supports which policy . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.1 Recommended Practices for Artifact Versioning in Service-Oriented Systems (from
[36]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xii



CHAPTER 1
Motivation

1.1 Setting

Digital Preservation, a relatively new research area in computer science, investigates preserva-
tion of digital artifacts to ensure their accessibility over the next decades. So far, the main focus
of this research area has targeted the preservation of static digital artifacts like text documents
and images. A trend out of this research field deals not only with the preservation of digital
artifacts itself, but with the preservation of an entire (scientific) process. Preserving such a pro-
cess includes different activities like preservation planning, custom software tools development,
verification-validation for redeployed processes and also maintenance activities.

The Service Oriented Architecture (SOA) paradigm is state-of-the-art in a modern software
development to design loosely coupled, dynamic exchangeable, platform independent software
components. To guarantee interoperability and re-usability, these components are restricted to
open, platform- and development-independent standards like SOAP1,HTTP, WSDL2 and many
others. Web Services as the widely used implementation approach of it, have become the de
facto standard for software components offered across organization boundaries as outsourced,
reusable services. Such external Web Services are often part of processes to extend process
functionality. Processes themselves are designed for long lasting, whereas -by default- Web Ser-
vices act under a highly dynamic and varying environment. Furthermore, processes and also the
included external Web Services always underlay certain quality assurances like throughput, la-
tency, availability and most important security issues. To achieve a long term operating process,
it has to be controlled and monitored. In the area of business processes, SOA offers a lot of ad-
vantages in gaining flexibility for business processes orchestration. But they also have immense
drawbacks like any kind of outsourced software. From the point of view of a process owner
such disadvantages are e.g.: threats for security and confidentiality; service quality assurance;
service availability. When it comes to process preservation, you have to deal with all different

1http://www.w3.org/TR/soap/
2http://www.w3.org/TR/wsdl/

1

http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl/


kinds of dependencies of a process. Preserving a process running within an accessible environ-
ment (meaning the process owner has direct access to all dependencies) is already a challenging
research topic. But if there are also Web Services included, which are by definition outside of
the process owners environment, it becomes an even more challenging task. This thesis is a
contribution to make Web Services more reliable and sustainable to enhance the availability and
simplify preservation of Web Service supported processes.

1.2 Problem Statement

As mentioned above, Web Services not only bring advantages for process owners, but also im-
mense drawbacks. Fulfilling the loosely binding paradigm of SOA, a Web Service offers cer-
tain functionality, by computing an incoming request and—in most cases—sending a response.
Web Service design principles are in contrast with tracing any consumers interaction, by default.
Those principles perfectly satisfy the needs of interchangeability and other key aspects of a SOA
environment rather than the requirements of a business process. To satisfy new business needs,
Web Service providers are constantly forced to release new updates of an existing service. Thus,
Web Services are bound to evolve dynamically over time to address changes in functional and
non-functional requirements. The most common approach to manage updates on Web Services
is to simply release a new version ( [11]). However, a compatible Web Service versioning is
necessary, as the provider cannot expect each consumer to change its implementation every time
a new update has been released. This leads to the following problem:

What are the features of a resilient versioning policy and how to assist a service provider to
stick to a such a policy?

There exists also more complex approaches for managing different Web Service versions
( [3], [30], [22]). All these contributions focus on an accurate recognition of what are possible
changes in the Web Service interface and what are best practices to avoid those changes. But,
there is a lack of attention on possible threats of behavioral (non-functional) service evolution.

It is important to accentuate, that a proper version management for the interface of a service
is not sufficient in our context. A Web Service depends on more than just a source code file
which gets transformed to a platform independent interface. To ensure sustainability, we have
to investigate also changes of service’s dependable software components, data files, executables
and hardware. Hence, we have to detect what are the dependable artifacts for a correct Web
Service execution?

How to identify the Web Service dependencies and monitor its modifications?
How to detect and evaluate changes in the Web Service execution behaviour in case of a

dependency modification?
In case a modification of a Web Service’s dependency happens, all its consumers have to

be notified about that. But since it is a fundamental part of SOA to fulfil the loosely binding
paradigm, a Web Service is by default not aware of its consumers.

What notification approaches are applicable in the domain of SOA and what information
has to be included?

2



1.3 Aim of the work

In this thesis we will develop guidelines and strategies for enhancing Web Service sustainability
along with the aim to enhance process continuity. Therefore we first have to investigate what
are typical pitfalls for processes caused by the SOA design paradigm. We will depict critical
issues when it comes to Web Service sustainability. Furthermore, potential sources of problems
responsible for a process break will be named and analyzed. Under consideration of released
Web Services standards and specifications, we will investigate what requirements Resilient Web
Services (RWS) need to fulfil and how these can be met. In the first case, we will show how
current efforts can be applied to enhance Web Service resilience. In the second case, further
research on how to tackle the left open challenges is necessary. We first develop theoretical
concept and formulate policies to address those challenges.

The introduced RWS framework encompasses all policies. Additionally, we implement soft-
ware prototypes to demonstrate the applicability of the developed framework. The target of the
framework is to provide policies and a tool set supporting the Web Service provider in the pro-
cess of a resilient Web Service development;

Please note: It is not the aim of work to build an out-of-the-box software product covering all
possible aspects of resilient Web Services. Rather, the framework should support both, consumer
and provider to overcome the major problems caused by the dynamically nature of Web Services.

1.4 Structure of the work

The content of this thesis is structured as follows:

• In chapter 2 we introduce important basic and also more advanced concepts concerning
SOA and Web Services in general. That chapter gives an insight on what are processes and
especially on what artifacts it depends on. We introduce the basic terminology of the Web
Service stack and common Web Service quality factors. Followed by an introduction on
SOA Governance, Service Level Agreements and provenance according to our domain.
We also present the concept of a View Path for describing digital artifacts. In the last
section, we give a short introduction on OWL.

• Chapter ?? surveys the different types of changes which can occur in Web Service evo-
lution. Furthermore, we investigate the arising challenges of service updates, what are
common practices and research contributions to deal with those challenges. Related ef-
forts are presented and discussed.

• Chapter 4 discuses and presents requirements for a resilient Web Service design. What
are the challenges to address? To meet these requirements, policies for a resilient Web
Service design are presented. Among others, major requirements like the dependency
identification process and a monitoring strategy are presented.

• The Resilient Framework, as a prototype solution is presented in chapter 5. That chapter
focuses on the practical implementations of the concepts introduced in this thesis. It sum-

3



marizes our contributions to enhance Web Service sustainability. A diagram including the
various framework components is presented.

• To demonstrate the capabilities of our resilient framework we have chosen various real
life scenarios. Chapter 6 first presents the steps that are necessary to setup the resilient
framework. Subsequent two update scenarios are presented. First, the service provider
introduces an update of the service functionality. Second, the service’s hosting system up-
dates a software dependency of the service. The chapter closes with some critical remarks
about the service limitations.

• The last chapter concludes this thesis by summarizing the roadmap to resilient enhanced
Web Services. What are important cornerstones? How to get rid of common pitfalls? A
brief outlook captures aspects and issues which are not covered in this effort, due to time
constraints. ...otherwise, this thesis would never ever be finished.

4



CHAPTER 2
Introduction

This chapter introduces basic and advanced topics related to the domain of this thesis. It en-
compasses information about architecture models, definitions, technologies, specification and
standards related to Web Services and processes.

2.1 Service-Oriented Architecture (SOA)

Service-Oriented Architecture is an architectural model which has been arising in the last ten
years. The aim of this paradigm is to break down logical functionality of a software system
into smaller units of logic, also named services. Services are designed to encapsulate a spe-
cific task, rather than fulfilling a large amount of features. But that does not exclude services
to make use of logic provided by other services to encompass a broader functionality. In such
a scenario one or more services build a composed collection (of services). By separating con-
cerns into smaller parts, large processes can be divided into subparts enhancing process agility
and flexibility. To achieve this paradigm, services communicate using a defined message ex-
change pattern supported by standardized communication protocols and a standardized interface
description language. We will present that in more detail in chapter 2.2. A bunch of different
SOA definitions related to different contexts exists, either in relation to a more technical view
or with a major focus on business and enterprises. In the following we present three common
definitions of SOA:

• Definition by Gartner 1

Service-oriented architecture (SOA) is a design paradigm and discipline that
helps IT meet business demands. Some organizations realize significant bene-
fits using SOA including faster time to market, lower costs, better application

1http://www.gartner.com/it-glossary/service-oriented-architecture-soa

5

http://www.gartner.com/it-glossary/service-oriented-architecture-soa


consistency and increased agility. SOA reduces redundancy and increases us-
ability, maintainability and value. This produces interoperable, modular sys-
tems that are easier to use and maintain. SOA creates simpler and faster sys-
tems that increase agility and reduce total cost of ownership (TCO).

• Definition by an article of the IBM press [7]

A service-oriented architecture is a framework for integrating business pro-
cesses and supporting IT infrastructure as secure, standardized components-
services-that can be reused and combined to address changing business prior-
ities.

• Definition by the Open Group 2

Service-Oriented Architecture (SOA) is an architectural style that supports
service-orientation. Service-orientation is a way of thinking in terms of ser-
vices and service-based development and the outcomes of services.

Concluding, the rise of SOA neither has been driven by software engineering nor by the busi-
ness needs. It is much more the idea to separate concerns in a service-orientation style, which
brings a lot of benefits for both communities. Although both terms, SOA and Web Services, are
strongly related consider not to mix them. It has to be stated that just by the use of Web Services
we do not have automatically established a SOA: SOA is an architecture style; Web Services are
a set of standard that enable platform independent, interoperability in heterogeneous networks.
Hence, Web Services represents one way to realize a SOA.

2.2 Services (as Web Services)

As already mentioned above, a service is an enclosed unit of logic. Literature often does not
differentiate between the term Service and Web Service. To be conform with the definition of a
Web Service from W3C3,

A Web service is a software system identified by a URI, whose public interfaces
and bindings are defined and described using XML. Its definition can be discovered
by other software systems. These systems may then interact with the Web service
in a manner prescribed by its definition, using XML based messages conveyed by
Internet protocols.

It has to provide a public, platform independent service interface description and has to
support a standardized messaging protocol. Former will be realized with the Web Service De-
scription Language (WSDL), latter is by default in most cases the Simple Object Access Protocol
(SOAP). Deriving from the SOA paradigm, Erl [17] associates following principles to services
in general, nevertheless those will be also valid for Web Services:

2http://www.opengroup.org/soa/source-book/intro
3http://www.w3.org/TR/ws-arch

6

http://www.opengroup.org/soa/source-book/intro
http://www.w3.org/TR/ws-arch


Figure 2.1: The famous publish-find-bind triangle [39]

• Loose coupling - Services maintain a relationship that minimizes dependencies and only
requires that they retain an awareness of each other.

• Service contract - Services adhere to a communications agreement, as defined collec-
tively by one or more service descriptions and related documents.

• Autonomy - Services have control over the logic they encapsulate.

• Abstraction - Beyond what is described in the service contract, services hide logic from
the outside world.

• Reusability - Logic is divided into services with the intention of promoting reuse.

• Composability - Collections of services can be coordinated and assembled to form com-
posite services.

• Statelessness - Services minimize retaining information specific to an activity.

• Discoverability - Services are designed to be outwardly descriptive so that they can be
found and assessed via available discovery mechanisms.

Basic Web Service Architecture

A basic Web Service architecture models interactions between three different roles (Service
Consumer, Service Provider, Service Registry/Service Broker). In figure 2.1 the interaction
patterns for each role are presented. A Web Service can act in one or multiple roles at the same
time. Those basic publish-find-bind architecture is also called the SOA-Triangle, which can be
found in nearly every introductory SOA literature.

Rosen et al. [39] describe this architecture as follows: By registering a service description
(WSDL) at the a public registry, the service provider publishes (=release) a service (for public
use). A service consumer searches at the service registry/broker for an adequate service and

7



Figure 2.2: Web Service Architecture Stack [9]

dynamically binds to the Web Service. In theory that approach fits the needs of a SOA perfectly.
Although it is very solid, in practices it is insufficient just knowing the logical syntax of a Web
Service operation. Beside that, policy concerns and Quality-of-Service (QoS) attributes are of
interest.

Web Service technology stack

Fulfilling Web Service principles mentioned above, a Web Service architecture involves different
standards and technologies on different layers. Figure 2.2 [9] presents an overview of the most
important technologies and its relations among each other.

• XML - The eXtensible Markup Language4 is a simple, but highly flexible structured
text format derived from SGML5 optimized for automated machine processing, but also
human-readable. Originally designed to for large-scale electronic publishing, XML has
become the de-facto standard for a variety of data exchange patterns on the web and also
between Web Services. Schema files constraint the appearance of elements in an XML
file. The most common schema types are Document Type Definitions (DTD)6 and the
W3C XML Schema Definition (XSD)7.

4http://www.w3.org/XML
5http://www.w3.org/MarkUp/SGML
6http://www.w3.org/TR/REC-xml
7http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405

8

http://www.w3.org/XML
http://www.w3.org/MarkUp/SGML
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405


Figure 2.3: Standard SOAP envelope [17]

• SOAP - The Simple Object Access Protocol (in its current version 1.28) is a lightweight
XML based protocol intended for exchanging structural information in distributed en-
vironments. Through its simplicity and extensibility it perfectly fulfills requirements of
message exchange patterns in Web Service communication. A SOAP message is build up
of an Envelope elements, which mainly consists of two parts: An optional Header element
consisting of one or more header blocks containing application-specific information like
processing instructions, security, authentication or routing. So to say all WS-* extensions
elements are implemented within those header blocks. The second part is the required
so called Body element which contains the actual payload information intended for the
ultimate message recipients. Figure 2.3 illustrates a SOAP envelope.

• WSDL - The Web Service Description Language (in the current version 2.0)9 provides a
model for describing a service endpoint and its operations in an abstract reusable manner.
In previous specifications the endpoint was described independent of concrete network
protocols or data types. Only the binding element relates the abstract definition of ser-
vices to network protocols and data format specifications. In version 2.0 the model was
redesigned, to put even more emphasis on re-usability and the separation of independent
design concerns. In the introduction of the version specification [14] it says at abstract
level a Web Service is described in terms of messages it sends and receives; operations
which associates a message exchange pattern with one or more messages; an interface
groups together operations without any commitment to transport or wire format. At a
concrete level, a binding specifies transport and wire format details for one or more in-

8http://www.w3.org/TR/soap12-part1/
9http://www.w3.org/TR/wsdl20

9

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl20


terfaces. An endpoint associates a network address with a binding. And finally, a service
groups together endpoints that implement a common interface.

A sample WSDL 2.0 document can be found in the appendix A.1.

2.3 Web Service classification

On the roadmap to design a guideline for Resilient Web Services we have to investigate the
different behavior types of services. In general, Web Service can be divided into stateful and
stateless. A stateful Web Service keeps state information between one invocation and another.
This means that the response of a stateful Web Service not only depends on the request data, but
also on the internal state of the Web Service. In contrast to that, the response of stateless Web
Services only depends on the request data. Dranidis et al. [16] dig deeper and present further
distinction factors for stateful Web Services. Their effort results in three major criteria how to
distinguish stateful Web Services:

conversational/non-conversational By conversational it is meant, that Web Service operations
can only be accepted in a specific sequence. This has to do with the state of the service
itself and the state-manipulating operations. To give an example: In case of a shopping
cart service it would not make any sense to accept the ’order’ operation call before once the
’add item’ operation has been called. In non-conversational Web Services all operations
can be accepted at all states.

private-state/shared-state A stateful Web Service always holds a certain state. We can differ-
entiate this state in a so called private-state or shared-state. The distinguish mark of a
private-state is that in such a Web Service state changes depends exclusively on the se-
quence of operation invocations. In contrast to shared-state, in which state changes can be
triggered by other services and applications in the environment.

transient-state/persistent-state If a Web Service operates in a transient-state, state changes
will be reset after the session has been completed and will be initialized at the beginning
of a new session respectively. Web Services with a persistent-state outlasts the duration
of a session and so to say ’remembers’ the state.

Thus, a stateful Web Service can be classified with one option out of each criteria. To give
an example, we choose the Amazon Shopping cart, which is of course stateful and additionally:
contains conversational methods, holds a shared-state and operates on a persistent-state.

2.4 Web Service Life-Cycle (from a software engineering
perspective)

From the service provider view, the Web Service Life-Cycle encompasses at least four phases
[29]: Build, Deploy, Run, and Manage. In the build phase the core service development happens.
Collecting requirements, implementing functionality and testing are the main activities. The

10



deployment phase includes the publication of the service and making it public available. During
the run phase, the service interface can be accessed by consumers. The service is ready for
processing incoming requests. In the manage phase ongoing administration and maintenance
activities are executed. Such a life-cycle is nothing new in software engineering. At a first sight,
it does not really differ from traditional software application development. But there is one
big difference: (Traditional) software applications are mostly tailored products considering and
satisfying previously contracted needs. That does not apply to for Web Services. It is common
practice that Web Services are not build upon specific consumers needs. Web Services are
mainly offered by enterprises to make certain functionality or data available to a public audience
(e.g.; FedEx shipment tracking). It is also very common to wrap legacy system functionality and
make it available via a Web Service, than to develop a custom adapter for that purpose. Such
considerations often result in a more abstract and less concrete (tailored) service design. That
means that services are rather designed for a general purpose, then for a specific consumer. That
fact definitely supports the SOA paradigm, but adds additional challenges for Resilient Web
Services. Among others, two challenges are: Due to changes in the underlying legacy system,
the Web Service behaviour gets unknowingly affected; Legacy systems often use an outdated
data format internally, which must be transformed to a current usual data formats firstly. The
Resilient Web Service framework—developed within this thesis—will cover aspects of all life-
cycle phases.

2.5 Business Processes (BP)

A business process (BP) performs various tasks in a specific order to produce value for an orga-
nization. Such processes can have different subbranches including tasks which might or might
not be executed. Tasks can be processed fully automatically or need human interaction. Tasks
can be executed locally or distributed over a network. It can contain semantic elements for loop-
ing, parallel execution or decision making (if/else). Tasks can cross organizational boundaries
and interact with other external BPs to produce a common value. The Business Process Model
and Notation (BPMN) (in its current version v2.010) standard by the Object Management Group
(OMG) provides a graphical notation to model business processes. The intent of BPMN is to
provide an easy understandable notation for all collaborating business parties. It should over-
come the gap between the process design and the process implementation. Today, nearly every
nameable software vendor provides its own BPMN modeling tool.

As already mentioned in the motivation for this thesis, tasks are often realized by external
services. Depending on the logical context of a service, it either performs an individual task or is
responsible for performing a group of task, like a subprocess or even the whole process. Figure
2.4 presents the several sample cases.

10http://www.omg.org/spec/BPMN/2.0/PDF

11

http://www.omg.org/spec/BPMN/2.0/PDF


Figure 2.4: Services can encapsulate varying amounts of logic [17]

Process decay

Processes are subject to decay in their ability to re-execute them sometime in future. Belhajjame
et al. [5] present that standard workflows are suspended to different risks and scenarios which
make a workflow become inoperable in a certain way. Typical workflows suffer from decay
due external resources or time specific datasets. External resources can become unavailable or
change their behaviour. Data-tuples in databases can evolve over time. These are only two
issues, which can lead to severe consequences in re-executing a process. To avoid process decay
Hettne et al. [25] present a guideline of best practices including: Make it executable from outside
the local environment and Test and Validate the correctness of the outcome. Also the usage
of meta-data for describing artifacts, behaviour, expected input and output in the process is
mentioned. Hence, Web Services are often parts of such processes, their sustainability highly
influences process decay.

Process preservation

The TIMBUS project 11, a co-funded EU project focuses on the design and realization of resilient
business process (driven by a risk mitigation perspective). Within this project different aspects
of process preservation are covered. From a more detailed perspective, a process is more than
just the execution of process steps. A process is always executed in specific environment with a
certain context. These include legal aspects, liabilities, personal data, infrastructure information,

11http://timbusproject.net

12

http://timbusproject.net


authentification and rights management and many more. So digital preservation also has to keep
an eye on those context and environment related issues to make processes available for a long
time span. Therefore, Strodl et al. [42] present the three phase approach realized within the
TIMBUS project. They additionally show the applicability of this approach for a classification
process. The three phases are Plan, Preserve and Redeploy. In the planning phase the original
process including all relevant components and dependencies is captured within a context model.
During the preserving phase the original business process execution is captured from the source
system. Additionally, required preservation actions are preformed to prepare the process for
archival storage. In the redeployment phase the process get roll-out on a new environment.
Therefore, the access and usage of services, data and legal conditions have to be adjusted to the
new environment. Are more detailed presentation of this approach is shown in figure 2.5.

Figure 2.5: TIMBUS three phases approach [42]

2.6 SOA Governance

SOA Governance enforces compliance of services and other artifacts with defined policies and
guidelines and is therefore essential to a successful SOA.To manage SOA Governance it is most
important to separate policy logic from business logic. Erl et al. [18] split the so-called SOA
Governance life cycle in four different phases (= types of governance):

• Design-time governance Policies and procedures to ensure that the right services are built

13



and used.

• Deploy-time governance Policies that affect the deployment of services into production.

• Run-time governance Policies that affect the binding of consumers and providers.

• Change-time governance Policies and procedures that affect the design, versioning, and
provisioning of service enhancements.

What we can derive is that governance is not only attached afterwards on a releasable service.
It is present in each phase of a service life cycle. From the first architectural decision to the final
service retirement. For this thesis, we keep all four phases in mind, but —in our case— the two
most important ones are the Run-time and Change-time governance. What can we provide to
support service providers and consumers in this two phases?

2.7 Service-level Agreement (SLA)

Gartner defines a service-level Agreement in general as follows12:

An agreement that sets the expectations between the service provider and the cus-
tomer and describes the products or services to be delivered, the single point of
contact for end-user problems and the metrics by which the effectiveness of the pro-
cess is monitored and approved.

As mentioned above in 2.2, operations of a service endpoint are described in its correspond-
ing WSDL document. With a WSDL interface, a service is defined in a very technical (func-
tional) manner focusing on data types, communication protocols, message exchange patterns,
but lacking off semantic (non-functional) information. But those non-functional requirements
can become very important in a B2B context.

Before we start with SLAs, we first have to explain what are Non-functional properties
(NFP): Other than functional properties (FP), which describe the behaviour of a service, NFPs
are requirements describing characteristics of a service. It is not about, what a service DOES
(defined by FPs), but HOW a service performs its functionality. In context of web services
and also services in general, those are also named Quality-of-Service attributes. Anbazhagan et
al. [32] present the following popular QoS metrics for Web Services:

• Availability is the quality aspect of whether the Web service is present or ready for im-
mediate use. Availability refers to the ratio of time in which the Web Service is up and
running.

• Accessibility is the quality aspect of a service that represents the degree it is capable of
serving a Web service request.

• Integrity is the quality aspect of how the Web service maintains the correctness of the
interaction in respect to the source.

12http://www.gartner.com/it-glossary/sla-service-level-agreement

14

http://www.gartner.com/it-glossary/sla-service-level-agreement


• Performance is the quality aspect of Web service, which is measured in terms of through-
put and latency.

• Reliability is the quality aspect of a Web service that represents the degree of being capa-
ble of maintaining the service and service quality.

• Regulatory is the quality aspect of the Web service in conformance with the rules, the
law, compliance with standards, and the established service level agreement.

• Security is the quality aspect of the Web service of providing confidentiality and non-
repudiation by authenticating the parties involved, encrypting messages, and providing
access control.

Other popular metrics are Cost-Per-Usage and User Rating Feedback which are not covered
in [32].

A SLA is a legal agreement between a service provider and a client based on QoS metrics.
With the help of those metrics, so called Service-level Objectives (SLO) can be defined, which
must be achieved to fulfill the agreement. Additionally for each SLO a validity period and en-
forcing penalties are defined. Keller et al. [28] present a framework called WSLA (Web Service
Level Agreements), which can be used for specifying and monitoring SLAs for Web Services. It
consists of a flexible and extensible language (WSLA Language) based on XML Schema and a
WSLA Runtime Architecture. It can be used to describe the complete life cycle of a SLA within
it various stages. From SLA Negotiation and Establishment (stage 1) to SLA Termination (stage
5).
WSLA Language - The language specification defines a type system for various SLA artifacts
and structures the SLA in three sections as follows: all contractual parties, service description
specified by service characteristics and obligations, which defines various guarantees and con-
straints to be imposed on SLA parameters.
WSLA Runtime Architecture - The runtime architecture is the composition of different elemen-
tary services needed to enable the management of an SLA throughout its life cycle. The core of
the runtime architecture is the SLA Compliance Monitor. It is responsible for deploying, mea-
suring and evaluating interactions. An implementation is part of the IBM Web Service Toolkit
(WSTK).
As this thesis is based on a programmatically alignment, SLAs represent the contractual coun-
terpart to it. From the consumers point of view, SLA can be used as a hedging instrument to
protect themselves against a Web Service provider, who can not assure the resilience of its Web
Service or violates it demonstrably.

2.8 Provenance enhanced Web Services

The term provenance original comes from the field of arts and literature. It describes the origin
of an artifact and thereby valuates it and helps to prove its authenticity. In the past years this
term has been adopted in the IT—especially in e-Science—to refer the origin of data elements,
so called data provenance. A very popular survey of data provenance in e-Science is presented

15



by Simmhan et al. [41]. In a further effort [40] the same author investigates the applicability
of provenance, which architectures are common for various scientific and business domains and
presents an entire taxonomy of provenance techniques based on a survey. One such architecture
is called Data Processing Architecture (DPA) by the author. Furthermore, it is stated that a SOA
is a typical instance of a DPA. By each Web Service operation invocation, the service processes
input data and responds with transformed output data. Such transformations can be described
by a directed acyclic graph (DAG) as shown in figure 2.6 [40].

Figure 2.6: Data Process Architecture represented as a DAG from [40]

To retrace the processed data presented in Web Service’s response, it is needed to attach
provenance information to each particular response. More details on which information should
be included is presented in section 4.4.

2.9 Commit Hooks in a Version Control System

In a Version Control System (VCS), a commit is the operation in which a set of distinctive
changes (e.g. update or add new source code files) gets transferred from a local working copy to
the VCS. Advanced VCS systems support so-called pre- and post-commit hooks. A pre-commit
hook is executed before the commit operation is performed. In contrast to a post-commit hook,
which gets executed after a successfully execution of a commit. In general, a pre-commit hook is
used to validate and control changes in the files which are going to be committed. In practices,
such hooks are also used e.g. to run formatter tools on the source code files before they get
committed. A post-commit hook can be used to notify other tools (in the tool-chain of software

16



development) about source code changes. A popular use case for that is, to trigger a new build
of the software project by notifying a CI server like Jenkins.

By using a pre-commit hook, every new commit of the Web Service gets validated against its
backward compatibility. In case of a non successful validation the commit gets aborted. Details
about the application of the pre-commit hook are presented in section 5.2.

2.10 Compatible Web Service evolution

The IEEE Standard Glossary of Software Engineering Terminology [1] defines the term compat-
ibility as follows:

The ability of two or more systems or components to perform their required func-
tions while sharing the same hardware or software environment and The ability of
two or more systems or components to exchange information.

When talking about a compatible evolution, Web Services are expected to limit changes
to those that are either backward or forward compatible, or both: According to Web Service
interface versioning, the WSDL 2.0 specification defines backward and forward compatibility
as follows:

Backward compatible - The Web Service behaves correctly if it receives a message in an
older version of the interaction language.
Forward compatible - The Web Service behaves correctly if it receives a message in a newer
version of the interaction language.

In case of a RWS, a Web Service update must guarantee backward compatibility. Section 3.3
presents various approaches addressing backward compatibility of interface evolution. However,
those approaches focus only the Web Service interface itself, but not on its behaviour.

Further details according to a compatible Web Service interface design are presented in
WSDL 2.013.

2.11 View Path concept

From the viewpoint of a business process owner, a Web Service’s interface describes its offered
operations, information about the transport protocol and of input and output data types. Ad-
ditional information beyond the Web Service’s interface is non-obvious for interacting parties.
Web Services depend on both, software and hardware dependencies. As one way to represent
the Web Service’s software and hardware dependencies, we want to present the View-Path (VP)
concept, which simply means that any digital object needs an environment to render it. Van
Diessen et al. [43] define a VP as follows:

A View Path represents a full set of functionality needed to render the informa-
tion from a digital object.

13http://www.w3.org/TR/wsdl20-primer

17

http://www.w3.org/TR/wsdl20-primer


Furthermore, van Diessen et al. define a basic layer model including four layers, which are
involved in the performance/rendering process of a digital object. In following itemization we
describe each layer:

Data format layer defines the structure format of the digital objects’ bit stream.

Application layer includes all applications which are needed to create, use, modify and view
information.

Operation system layer provides the shared functionality which is needed by every applica-
tion.

Hardware layer is the platform on which the digital object is rendered into a physical object,
like a screen representation or a printed document.

That basic layer model shows the chain of software and hardware dependencies needed for
a correct rendering. Guttenbrunner et al. [24] add that, depending on the digital object, some
layers in the View Path can be missing or additional layers can be present. They demonstrate
e.g. in case of a Java application, the Java Virtual Machine (JVM) itself as an additional layer
between the application and operation system layer. Any change in the View Path can lead to
changes in the performance/rendering of the digital object. However, depending on the digital
object itself, there can exist more than one valid View Path.

Applying the View Path layer model supports us identifying the Web Service’s dependencies
(see section 4.7).

2.12 Service Models

The National Institute of Standards and Technology (NIST) [38] defines three different types of
service models.

Software as a Service (SaaS). The capability provided to the consumer is to
use the provider’s applications running on a cloud infrastructure. The applications
are accessible from various client devices through either a thin client interface,
such as a web browser (e.g., web-based email), or a program interface. The con-
sumer does not manage or control the underlying cloud infrastructure including
network, servers, operating systems, storage, or even individual application capa-
bilities, with the possible exception of limited user-specific application configura-
tion settings.

Platform as a Service (PaaS). The capability provided to the consumer is to de-
ploy onto the cloud infrastructure consumer-created or acquired applications cre-
ated using programming languages, libraries, services, and tools supported by the
provider. The consumer does not manage or control the underlying cloud infrastruc-
ture including network, servers, operating systems, or storage, but has control over
the deployed applications and possibly configuration settings for the application-
hosting environment.

18



Infrastructure as a Service (IaaS). The capability provided to the consumer is
to provision processing, storage, networks, and other fundamental computing re-
sources where the consumer is able to deploy and run arbitrary software, which
can include operating systems and applications. The consumer does not manage or
control the underlying cloud infrastructure but has control over operating systems,
storage, and deployed applications; and possibly limited control of select network-
ing components (e.g., host firewalls).

Figure 2.7: Visualization of traditional IT environment in comparison to the various service
models in Cloud Computing

Figure 2.7 presents the traditional IT environment approach in comparison to the three
different Cloud Computing approaches defined by the NIST. Depending which service model
the RWS provider chooses, its responsibilities vary. In a traditional IT environment the RWS
provider has to manage—and therefore is responsible for—all layers of the Web Service’s View
Path. To the purpose of focusing the company’s main capabilities on its core business, outsourc-
ing of tasks and responsibilities is common practices in IT. With cloud computing a separation
of responsibilities is realizable. In the IaaS model, the provider outsources the complete infras-
tructure. Thereby, it transfers the hardware responsibilities to another vendor. In PaaS all layers
are outsourced, except the Application and Date layer. That common model is offered by no-
table vendors like Google App Engine, Amazon AWS, Windows Azure. PaaS delivers runtime
environment, application server and database instances out of the box. Next to the benefit of out-
sourcing those responsibilities, PaaS provider mostly guarantees high scalability and elasticity.
According to the viewpoint of a RWS provider, next to a traditional IT environment, PaaS and
IaaS are usable service models. Since the RWS provider will offer its own functionality to con-
sumers, the SaaS model is not applicable. The responsibilities for collecting the depend View
Path vary depending which service model the RWS provider chooses. In section 4.7 further
details are provided.

19



2.13 The Semantic Web

In an article published in the Scientific American in 2001 Berners-Lee et al. [6] introduced the
term Semantic Web for the first time and define it as follows:

The Semantic Web will bring structure to the meaningful content of Web pages,
creating an environment where agents roaming from page to page readily carry out
sophisticated tasks for users ... The Semantic Web is not a separate Web but an
extension of the current one, in which information is given well-defined meaning,
better enabling computers and people to work in cooperation.

It described the evolution of the traditional existing “Web of documents“, which largely con-
sists of documents for humans to read, to a “Web of data“ that includes data and information
for machines to manipulate. That should be realized by a standardized way of expressing the
relationships between -more or less- static web pages. It should allow machines to understand
the meaning of digital context and of hyperlinked information. Therefore, the need for ex-
pressing meaning and knowledge representation have to be satisfied (Machine-Understandable
information). Instead of publishing information to be consumed by humans, publish machine-
processable data and metadata using languages that can be understood by machines.

Todays vision of Semantic Web drifted to a concept of the—so called—Data Activity14.
As stated on the official website, The overall vision of the Data Activity is that people and
organizations should be able to share data as far as possible using their existing tools and
working practices but in a way that enables others to derive and add value, and to utilize it in
ways that suit them. Achieving that requires a focus not just on the interoperability of data but
of communities.

2.14 The concept of ontologies

Ontologies are considered one of the pillars of the Semantic Web. An ontology defines the
concepts and relationships used to describe and represent an area of concern15. In short an
ontology is a specification of a conceptualization. Gruber [23] defines the term ontology in the
context of computer and information science as follows:

An ontology defines a set of representational primitives with which to model a
domain of knowledge or discourse. The representational primitives are typically
classes (or sets), attributes (or properties), and relationships (or relations among
class members). The definitions of the representational primitives include informa-
tion about their meaning and constraints on their logically consistent application.

Depending on the application and the according area, ontologies can become very complex.
Beside others, two main needs can be satisfied by the use of ontologies. Firstly, it can be used

14http://www.w3.org/2013/data
15http://www.w3.org/standards/semanticweb/ontology

20

http://www.w3.org/2013/data
http://www.w3.org/standards/semanticweb/ontology


to organize knowledge by using the power of linked data. Secondly, complex reasoning proce-
dures can be applied. W3C offers different formats to describe and define different forms of
vocabularies in a standard format. The most important are the Resource Description Framework
Schema (RDF Schema) 16 (in its current version 1.1 from February 2014) and the Web Ontology
Language (OWL) 17 (OWL 2, an extension and revision of OWL has been released in December
2012). The first one provides a data-modelling vocabulary for RDF data by combining several
basic concepts and the abstract syntax of RDF. OWL is described in the next section.

Web Ontology Language (OWL)

The Web Ontology Language is a computational logic-based language such that knowledge
(expressed in OWL) can be reasoned by applications. This can be useful either to verify the
consistency of that knowledge or to make implicit knowledge explicit (i.e. reason). OWL 2 [26],
an extension from best practices and experiences of OWL is a language for expressing ontologies
in a declarative (logical) way. It is designed to formulate, define and reason about domains of
interest. To represent knowledge in OWL 2 there exists three basic notations: Axioms, the basic
statements that an OWL ontology expresses. Entities, are elements used to refer to real-world
objects. Expressions, are combinations of entities to form complex descriptions from basic
entities. Additionally there exists different syntaxes for OWL 2 serving different purposes. The
RDF/XML18 syntax is more or less the default one and therefore mandatory to be supported by
all OWL 2 tools. It defines the mapping between the structural specifications of OWL 2 and
RDF graphs. The Manchester19 syntax is designed to be easier for non-logicians to read. It
exists also a OWL XML20 syntax which defines the XML serialization for OWL 2. There exists
tools which can translate between the various syntaxes.

16http://www.w3.org/TR/2014/REC-rdf-schema-20140225
17http://www.w3.org/TR/2012/REC-owl2-primer-20121211
18http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211
19http://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211
20http://www.w3.org/TR/2012/REC-owl2-xml-serialization-20121211

21

http://www.w3.org/TR/2014/REC-rdf-schema-20140225
http://www.w3.org/TR/2012/REC-owl2-primer-20121211
http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211
http://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211
http://www.w3.org/TR/2012/REC-owl2-xml-serialization-20121211




CHAPTER 3
Challenges of Web Service evolution

Web Services are part of modern businesses and therefore—like any artifact in a rapidly chang-
ing environment—are subject to constant functional and behavioural changes. Such changes can
be triggered by business needs, regulations and other business-related events. What are common
change scenarios are covered by an empirical study on the evolution of real life Web Service like
Amazon EC2 or PayPal SOAP API. Fokaefs et al. [21] present the most common service change
scenarios. To understand how services evolve, they investigate what types of changes are more
or less frequent, and whether these changes endanger the stability of the service clients. Ta-
ble 3.1 shows the evolution profile for well-known Web Services including the Amazon EC21,
FedEx Package Movement Information and Rate Services2, PayPal SOAP API3 and the Bing
search service4. As shown in the table, most service evolutions are dominated by additions. The
authors derive two conclusions thereof: Firstly, the investigated services were in a stage of rapid
development and high expansion. Secondly, radical changes like deletions are in most cases
avoided. Also in one service (FedEx Package Movement Information) an increasing number
of changes have been noticed. This indicates that this service was in a more stable stage and
developers performed restructuring and perfective changes.

3.1 Challenges of Web Service evolution

Miksa et al. [34] describe possible sources of change in Web Services. The authors classify
the changes into two categories: Internal changes and External changes depending on the view
of the process owner. Furthermore, they identify four categories to classify the possible ef-
fects when altering Web Services: Web Service becomes unavailable, Web Service changes its
communication interface,Functional changes,Behavioural changes. Functional changes relate

1http://aws.amazon.com/ec2
2http://www.fedex.com/us/developer
3https://www.paypalobjects.com/en_US/ebook/PP_APIReference/architecture.

html
4http://www.bing.com/developers

23

http://aws.amazon.com/ec2
http://www.fedex.com/us/developer
https://www.paypalobjects.com/en_US/ebook/PP_APIReference/ architecture.html
https://www.paypalobjects.com/en_US/ebook/PP_APIReference/ architecture.html
http://www.bing.com/developers


Table 3.1: Evolution profile of Web Services [21]

Service Version Changed(%) Deleted(%) Inserted(%)

Amazon EC2 2 2.82 0 97.18
Amazon EC2 3 13.33 0 86.67
Amazon EC2 4 50 0 50
Amazon EC2 5 8.82 0 91.18
Amazon EC2 6 16.67 50 33.33
Amazon EC2 7 1.17 0 98.29
Amazon EC2 8 1.40 0 98.60
Amazon EC2 9 3.54 0.88 95.58
Amazon EC2 11 2.67 0 97.33
Amazon EC2 12 5.56 0 94.44
Amazon EC2 13 0.79 0 99.21
Amazon EC2 14 2.70 0 97.30
Amazon EC2 15 10.26 0 89.74
Amazon EC2 16 1.08 0 98.92
Amazon EC2 17 64.90 0 35.10
Amazon EC2 18 31.06 0 68.94
FedEx Rate 2 8.93 21.43 69.94
FedEx Rate 3 9.20 5.75 85.06
FedEx Rate 4 8.11 17.05 74.84
FedEx Rate 5 8.00 20.00 72.00
FedEx Rate 6 1.51 6.67 91.83
FedEx Rate 7 3.05 30.46 66.50
FedEx Rate 8 11.48 12.02 76.50
FedEx Rate 9 11.53 42.88 45.59

Bing 2.1 0 21.33 78.67
Bing 2.2 0 9.38 90.63
Bing 2.3 0 0 100.0
Bing 2.4 0 0 100.0

PayPal 53.0 2.33 0 97.67
PayPal 62.0 0.55 0 99.45
PayPal 65.1 1.35 0 98.65

FedEx Pack. 3 80.00 0 20.00
FedEx Pack. 4 100.00 0 0

24



to internal changes of the service while the interface stays the same. For example, switching the
temperature unit from Kelvin to degree Celsius. In addition to functional changes, we have to
consider also behavioural changes. Those are changes, which results in an identical output, but
leads to another service quality behaviour. Such changes are mainly concerned with QoS issues
like security, availability and traditional performance indicators like response time or through-
put.

Li et al. [31] present by an empirical approach how service evolution affects clients. They
identify 16 common change patterns and also try to bridge the gap to automatic client migration.
Although there are a lot of contributions addressing that topic, most of them lack of attention to
behavioural challenges.

According to Papazoglou [37] services can evolve by accommodating a multitude of changes
along the following functional trajectories:

Structural changes Changes that occur in the service type, messages, interfaces and opera-
tions.

Business protocol changes Business protocols help describing the structure and the ordering
of the messages that are exchanged between a service and its clients in a certain usage
scenario. Changes in policies or regulations can lead to changes in the business protocol.

Policy induced changes Changes in the policy assertions and internal or external constraints
on the service. Those changes limit or specify any aspect of a business agreement that is
agreed between interacting parties.

Operational behaviour changes Changes, which concentrate on analyzing the effects and side
(cascading) effects of changing service operations.

Furthermore, he classifies the nature of service changes depending on the effects and side
effects they cause: Shallow Change, which is strict localized to a service and therefore only
effect that service and its clients. Whereas a Deep change, are cascading types of changes which
extend beyond the clients of a service possibly to entire value-chain. Typical shallow changes
are changes on the Structural level and Business protocol changes. Policy induced changes and
Operational behavior changes are typically deep changes.

Functional and behavioural changes are more or less hard to detect, but can cause severe
problems for a correct process execution. Brown and Ellis [11] differentiate between backward-
compatible changes and non-backward-compatible changes. Backward-compatible changes are
changes, which do not affect the requester implementation, which means a certain subpart of the
interface stays the same. Non-backward-compatible changes affect the requester’s implementa-
tion. Table 3.2 presents an overview of reasons for possible changes based on [34] , [37], [11].
In addition each issue is classified, its backward-compatibility is checked and information on
the impact for a consumer is presented.

Table 3.2: Possible changes during Web Service evolution

25



Issue Description C
la

ss
ifi

ca
tio

n
[F

un
ct

io
na

l/B
eh

av
io

ur
al

]

B
W

-C
om

pa
tib

ili
ty

[Y
es

/N
o]

Im
pa

ct
[N

o/
C

an
ha

ve
/H

ig
h]

(C
an

)l
ea

d
to

[N
o-

im
pa

ct
/U

ne
xp

ec
te

d
R

es
ul

ts
/U

na
va

ila
bi

lit
y]

Internal source
code update

Altering requirements like perfor-
mance enhancement, bug fixing or
code refactoring forces the Web Ser-
vice development team to update the
current stable source code version.

F,B Y,N C R

Changing method
parameters

Driven by changing requirements, a
service provider is forced to change
the service interface. A change can ef-
fect the amount of parameters, type of
each single parameter or switch an op-
tional parameter to a required one.

F N C U

Dependency
changes

Due to an outdated (not available any
more, not maintained) dependency, a
suitable replacement have to be found
and packaged within the current Web
Service.

F,B Y,N C R

Licensing of
Dependencies
changes

Like the Web Service itself, also the
dependencies can evolve over time
and with it the license policy can
change. Dependencies can become
fee-based or illegal for commercial us-
age. In the first cases one can pay the
fee or search for a substitute. In the
second case one have to search and
find a suitable substitute.

B Y,N H U

26



Web Service Pol-
icy changes

WS-Policy (W3C Recommendation5)
defines a framework for expressing
domain-specific capabilities and re-
quirements. By changing such a pol-
icy for a deployed Web Service, the
request behaviour can be limited or
more worse, the requester may be de-
nied from accessing the service. Both
can make the Web Service useless for
a consumer.

F,B N H U

Web Service Secu-
rity changes

Due to a successful security exploit of
the Web Service backend or new se-
curity policies, Web Service providers
are forced to adapt the current policy.
e.g.: add user authentication for Web
Service calls;

F,B N C,H U

Add operation Add a new operation to the existing
Web Service.

F Y N N

Remove operation Delete an existing operation of the
Web Service.

F N H U

Web Service Ad-
dress changes

Either the address of the WSDL Inter-
face or the Web Service endpoint ad-
dress itself change.

F N H U

Changing the Web
Service transport
protocol

Although SOAP enables protocol in-
dependence at first sight, it will
cause problems when a Web Service
Provider decides to change the un-
derlying transport exchange protocol.
Without any doubts, the most used
protocol is HTTP/S, but nevertheless
FTP, SMTP or a message exchange
approach like the Java Message Ser-
vice (JMS6) can be used.

F N H U

To get rid of some of the state problems, various authors and vendors of SOA frameworks
came up with different approaches for different Web Service Lifecycle phases. There exist
several approaches, which are applied on a already deployed service. In contrast to that, there
exist approaches developed to be applied at design time. In the subsequent sections we present
various versioning approaches.

5http://www.w3.org/TR/ws-policy/
6http://www.jcp.org/en/jsr/detail?id=914

27

http://www.w3.org/TR/ws-policy/
http://www.jcp.org/en/jsr/detail?id=914


Table 3.3: A general comparison of the three versioning strategies [19]

Strategy
Strict Flexible Loose

Strictness high medium low
Governance Impact high medium high
Complexity low medium high

3.2 Addressing Web Service evolution by versioning

In this section we will present state-of-the-art approaches tackling the Web Service versioning
dilemma. This topic has become very popular in the last years. Various business driven and
research driven efforts related to that problem have already been published.

Erl et al. [19] define three main versioning strategies for Web Services based on their com-
patibility properties: Strict, Flexible and Loose.

Strict Any compatible or incompatible changes result in a new version of the service contract.
This approach does not support backwards or forwards compatibility.

Flexible Any incompatible change results in a new version of the service contract and the con-
tract is designed to support backwards compatibility but not forwards compatibility.

Loose Any incompatible change results in a new version of the service contract and the contract
is designed to support backwards compatibility and forwards compatibility.

Each strategy brings its benefits, but also drawbacks. Table 3.3 presents a general com-
parison of the three versioning strategies with respect to Strictness, Governance Impact and
Complexity. The higher the strictness (of an approach), the lower its complexity. To ensure
real backward compatibility, we rather should choose a strict versioning approach, but that will
hardly be feasible for complex Web Service environments. It makes no sense to draft a new
service contract each time a compatible or incompatible change occurs. Compatible changes
(e.g. source code optimization) not necessarily lead to behavioural changes. In case of RWS, a
flexible strategy is the most suitable strategy.

Evdemon [20] distinguishes Message Versioning (focuses on versioning the schemas used
to describe messages processed by the service) and Contract Versioning (focuses on versioning
the WSDL and contract information used to describe the service). Based on the two approaches,
he recommends six design principles for versioning Web Services best practices:

1. Use targetNamespace to communicate major version releases.

2. Judicious use of unambiguous wildcards can minimize service versioning.

That means to provide an extensible schema to meet changing service or consumer needs.
The element <xsd:any> whicha can be used as wildcard element enables schemas to be
extended in a well-defined manner.

28



3. Extensions must not use the targetNamespace value.

4. When adding new data structures, make them optional and add them to the end of service
request messages.

That means that existing consumers remain unaware of the new data structures.

5. Changing service response messages (other than type restrictions) are breaking changes
that will require a new version of the service.

6. Adopt a one-to-one relationship between interface versions and UDDI tModels.

To notify consumers about changes in the Web Service, Evdemon makes use of UDDI (a
central Web Service registry) to communicate the changes. The tModel (technical model)
is a data structure that represents a Web Service in UDDI. Evdemon suggests to provide a
separate tModel for each Web Service version.

Bechara [4] presents different patterns according to the release type (minor or major re-
lease). He presents three different patterns to handle Web Service versioning. The Consumer
Binding pattern recommends providers to inform consumers on service updates. But, the con-
sumer is responsible for adapting the code to access the new service version. The Layer of
Indirection pattern allows two minor releases co-exists without changing the consumers’ code.
A routing component forwards consumers’ requests (based on the request content or address) to
the service version required by this consumer. To overcome that problem, the author presents
the Adapter Pattern. By adapting an old version request to new major version request the con-
sumers’ code does not need to be changed. This mediation layer for decoupling the consumer
from the provider is shown with the help of the Oracle Service Bus.

Kaminski et al. [27] explore the question: What are desirable properties of an evolving Web
Services. They present following six requirements as an outcome:

Backwards Compatibility A new service version must be backward-compatible to the previ-
ous one. At least the service interface must fulfill that requirement.

Common Data Store Common service states must be exposed to all clients regardless of which
service version they are using. It is recommended to share a single datastore along multiple
service versions.

No Code Duplication An important software engineering requirement is to avoid code dupli-
cation. That should be also common practice in a proper versioning strategy.

Untangled Versions Each piece of new code should be assigned to a specific service version.
That should avoid deadcode-fragments and reducing the overall complexity. A typical
cause e.g., is uncontrolled distribution of unfinished code.

Unconstrained Evolution Service evolution should be unconstrained by previous versions (as
much as possible). Redesigning of the interface and refactoring of the source code should
not be prohibited. But, this requirement is likely unachievable in practice. Especially
because it conflicts with other recommended requirements.

29



Visible Mechanism Web Service frameworks should support the versioning process and keep
it visible to the developer. Do not anticipate every possible action and avoid behind the
scenes magic.

To fulfill the mentioned requirements, the authors introduce a freeze, adapt and delegate
technique, which can be realized by the Chain of Adapters pattern. The idea behind: For any
service updated which forces an interface evolution, a new seperate interface instance in combi-
nation with a tailored adapter is deployed. Every new interface adapts its previous version. That
leads to a single service instance offering multiple service interfaces (see figure 3.1). The Chain
of Adapters can be applied by service developers to achieve backward compatibility (at least for
the service interface). This approach does not validate the backward-compatibility of the service
behaviour. The scalability of that approach is also questioned.

Figure 3.1: Chain of Adapters structure [27] after the second version have been published

WS-Temporal

Banati et al. [3] present the so called WSDL-Temporal (WSDL-T) approach for Web Service
change management. They introduce two new attributes (Validity and Timestamp). Those at-
tributes are used to extend relevant artifacts in a WSDL 2.0 document, like element, operation,
endpoint. As the name says, the validity attribute gives information about the validity of the
current element. It can have any value out of the validity set latest,past,deleted,alwaysTrue. Al-
waysTrue denotes that, the artifact will be present in all the versions of the Web Service. The
elements with this validity status form the basic functionality of the service and contracted as not
changeable. The timestamp attribute captures the current datetime when the last change event
affecting this element has happend. Apart from that, the scheme for naming of an element is
modified. and version number is appended in the name with the delimiter # e.g. name#x.y.z
where x.y.z denotes the version number according to the user defined version scheme. That
allows multiple declared versions of e.g. an operation within a single WSDL document. The
essence of WSDL-Temporal effort lies in enabling a single Web Service running at a given URI

30



absorbing changes. By extending the standardized WSDL to WSDL-T eases the management
of various versions of a Web Service and allows access to various service versions at the same
URL. Appendix (A.1 , A.2) provides a sample of a WSDL 2.0 file and how its instance of a
WSDL-T file can look like. In a further effort [2] the authors also extend the BPEL specification
for WSDL-T based Web Services.

Generic Web Services to support backward compatibilty

Beside the mentioned versioning strategies above, Borovskiy et al. [10] contribute a new method
of preserving backward compatibility for the evolution of a Web Services. They introduce the
concept of Generic Web Services (GWS) which is in its essence a rule for designing backward
compatible service interfaces. A GWS consists of at least one generic operation. Such an op-
eration possesses a specific relaxed signature. That means, its parameters are loosing restric-
tions on its type and value. That can be achieved by redesigning input parameters in contrast
to common design style: Developers are encouraged to define method parameters in a highly
significant way. (for example: getPlayer(String firstname, String lastname, int age)). When
it comes to signature relaxation, input parameters are designed in a way that there exists two
different kind of parameters: Identifying parameters and value parameters, which are controlled
by the identifying parameters (for example: getPlayer(String[] attributes, Object[] values) ). A
generic operation must have at least one input parameter, which defines another. If a service has
a generic interface, adding new features does not require any changes in its interface. So the
interface will remain stable.

Best Practices for Artifact Versioning in Service-Oriented Systems

Next to Web Service versioning itself, Novakouski et al. [36] describe challenges of software
versioning in service-oriented architecture environments. They name typical challenges in this
domain. Which change types can appear? What are key artifacts which might be not consid-
ered during the software life cycle? By which granularity such artifacts should be versioned?
Manging those changes become more complex, because of the increasing number of artifacts
and the complexity of distributed service environments. However, the presented guidelines and
recommendations aim to provide information how to apply version control policies to the vari-
ous phases within the lifecycle of an SOA infrastructure. The full list of recommendations can
be found in table A.4 of the appendix.

3.3 Summary of Web Service versioning approaches

In that chapter we introduce various challenges for a RWS design according to its version man-
agement. Based on an empirical study about the evolution of real life Web Service, the most
common change scenarios are presented. Followed by the state-of-the-art and best practices of
Web Service version management including various contributions and strategies how to handle
the dynamic evolution of Web Services. Table 3.4 presents a summary of benefits and drawbacks

31



of the presented approaches according to our thinking of a proper Web Service versioning strat-
egy which supports Web Service sustainability. As it shows, all approaches focus more or less
only on Web Service interface versioning and how to handle the co-existence of various inter-
face versions. Although some strategies consider backward compatibility they are all lacking of
versioning the Web Service endpoint itself. Those contributions cover only functional changes
to a certain extend, but completely lack of behavioural change detection.

Table 3.4: Summary of presented versioning approaches

Benefits Drawbacks Ref.
Consumer Binding Consumers get notified about

service updates.
A new service is published for
each update. Breaks backward
compatibility immediately.

[4]

Layer of Indirection Request-based message routing.
Consumers binding code re-
mains unchanged.

Additional routing component.
Maintain consumer-version-
mapping.

[4]

Chain of Adapters Consumers binding code re-
mains unchanged. Avoids code
duplication.

Additional adapter needed for
each version. Maintain vari-
ous adapters and interfaces. Not
all changes (e.g. operation
deletion) can be hidden by an
adapter.

[27]

WS-Temporal Extend service artifacts with va-
lidity date. Multiple versions
within the same interface (Con-
sumers do not have to adapt their
binding).

Multiple versions within the
same interface (Interface gets
needlessly blown-up which can
lead to accidentally wrong con-
sumer binding)

[3], [2]

Generic Web Ser-
vices (GWS)

Enhance backward and forward
compatibility of the interface.

Inaccurate method parameters
make consumer binding more
difficult. Sub-typing problem
can occur.

[10]

Unfortunately, there exists not a single solution covering all aspects of the thesis’s problem
domain. Therefore, requirements are developed to address challenges according to Resilient
Web Services. Various concepts (e.g. test methods, verify behavioural backward compatibility,
consumer update notification) are introduced in the following chapter (4) to guide Web Service
providers through the development and maintenance process of a Resilient Web Service.

32



CHAPTER 4
Resilient Web Service Framework

The various related approaches present in chapter 3 have their benefits, but still do not cover all
aspects which we think are necessary for a proper RWS design. Following aspects are covered
with little or no concern:

Traceability of computations According to ISO 900003 clause 7.5 traceability is stated as
follows:

Throughout the product life cycle, there should be a process to trace the components
of the software item or product. Such tracing may vary in scope according to the
requirements of the contract or marketplace, from being able to place a certain
change request in a specific release, to recording the destination and usage of each
variant of the product.

To apply that statement in our domain, traceability is the ability to identify and trace the
evolution of the Web Service and its depending artifacts. RWS needs to support tracing of
changes arising during the Web Service’s life cycle.

Reproducibility of computations According to ISO 2004 Repeatability is:

A measure of variability derived under specified repeatability conditions. i.e. in-
dependent test results are obtained with the same method on identical test items in
the same laboratory by the same analyst using the same equipment, batch of culture
media and diluents, and tested within short intervals of time.

To establish repeatability in the domain of Web Services, it is not sufficient to control only
the Web Service source code. It is also necessary to control the surrounding environment by
which a Web Service execution is effected. Both, the traceability and reproducibility of compu-
tations should be addressed and achieved by a proper RWS design.

33



4.1 The PictureService

Before we start discussing the various requirements for a RWS, we introduce an example service
named PictureService. It is a Java based Web Service offering various operations applied to
images. Each operation can be distinguished, either as {stateless; stateful} and {deterministic;
non-deterministic}. In more detail, the service interface provides the following operations:

• Image convertJpeg2Png(Image image);
{stateless; deterministic}
Converts a given JPEG image to a PNG image.
Since the outcome of the operation depends on nothing but the input, that operation is
stateless. It is also deterministic, because it contains no randomness in its execution.

• Collection searchPicturesForLocations(String... locations);
{stateless; non-deterministic}
Retrieves a public collection of pictures according to the provided location parameters.
Since the service itself do not maintain any state, the service can be classified as stateless.
It is non-deterministic because locations tags can be added and removed from pictures
dynamically.

• Collection retrieveAlbum(String albumName);
{stateful; deterministic}
Retrieves the private collection of the pictures containing in the album.
Since the picture collection is maintained by the service it has an internal state. Uploading
a new picture to the service, will affect both, the internal state and the picture collection.
The operation is deterministic, because if the operation is requested with the same input
parameter and the service itself is in the same state, its return will be identical.

• Collection retrieveAlbumWithComments(String albumID);
{stateful; non-deterministic}
Retrieves the private collection including public comments of all images containing in the
album.
Since the picture collection is maintained by the service it has an internal state. In compar-
ison to the previous operation, this operation is non-deterministic. Because the result set
also includes public comments by other users. Those comments are fetch by the service
on request and are not maintained by it.

Thereby, the service makes use of the Facebook4J1 API to connect to user profiles and
retrieves the albums belonging to the user. It also utilizes ImageMagick2 to offer the image
convert functionality. In appendix-A.3 the generated WSDL of the PictureService is presented.

1http://facebook4j.org/
2http://www.imagemagick.org

34

http://facebook4j.org/
http://www.imagemagick.org


4.2 Requirements for a Resilient Web Service

Realizing a RWS, following requirements must be addressed:

• Versioning strategy - A resilient versioning strategy and its application has to be ensured.

• Provenance enriched responses - The origin of a Web Service’s response must be com-
prehensible for its consumers.

• Enhance semantics of the Web Service interface - A RWS must provide more semantic
information about its operations.

• Execute service operations in a sandbox - A RWS has to provide a demo version for each
operation which does not persist any changes in the environment of the service.

• Dependency management - A RWS owner must be aware of the dependencies of its ser-
vice.

• Notification support - Any change in the service, either functional or behavioural has to
be propagated to other resilient parties (e.g. consumers).

In the following, the various RWS requirements are presented in more detail.

4.3 Versioning policy

As mention in section 2.10, a RWS must guarantee not to break its backward compatibility
with consumers. Since we do not focus on forward compatibility in the domain of RWS, we
only classify between compatible and incompatible changes, where incompatibility means the
absence of backward compatibility. To identify a Web Service’s version we use a common
version identification pattern like it is used by the Apache group3: major.minor.point release
(e.g. 2.4.0)

• major release - incompatible changes are carried out by new major version number (e.g.
deprecation of operations) (v1.3.3→v2.0.0)

• minor release - used to indicate compatible changes like adding a new service operation,
or adding optional parameters to an existing operation (v1.3.3→v1.4.0)

• point release - least significant types of changes where no new functionality is added
to the service. Such changes includes bug fixes or dealing with performance issues
(v1.3.3→v1.3.4)

3http://commons.apache.org/releases/versioning.html

35

http://commons.apache.org/releases/versioning.html


As a requirement for a RWS, each operation has to declare a validity period (see section-
4.5). A new major release breaks that requirement. In such a case the RWS provider has to
support multiple major releases concurrently, at least until the validity periods (see section 4.5)
of the previous major version has been expired. To support multiple service instances in parallel,
the major attribute of the version is represented in the service location. In the following sample
the service has the following version: 2.3.1.

http://www.rws.com/pictureService-v2/PictureServiceService?wsdl

Whereas the complete version identification is declared as an attribute in the service element
of the service’s WSDL.

<service name=“PictureService“ version=“2.3.1“>

POLICY I The RWS provider has to follow the resilient versioning policy to ensure a resilient
Web Service evolution.

4.4 Provenance aware computation

For Web Service consumers it must be comprehensible with which service version they are
interacting. Therefore, the Web Service must provide somehow—among other attributes—its
current version number. To provide automated provenance information, we propose to make use
of the current source code revision number and the service release version. That is necessary
to link from the service’s release version to its internal source code version. By adding those
information as meta data (e.g. in the header part) to a service response, a consumer can always
verify which Web Service’s version was used to process its request. The provenance information
includes the following attributes:

• Web Service release version - Actual Web Service version identification (e.g.
version 2.3.1). The version number is defined by the Web Service provider. It represents
the Web Service evaluation.

• VCS revision number - Revision number of the current Web Service’s source code
file. In contrast to the Web Service release version, the revision number is generated and
defined by the VCS.

• Timestamp of last update - Timestamp of the most current commit in the VCS.
It presents the last update of the Web Service’s source code. The format has to comply
with RFC33394 (e.g. 2014-04-12T23:20:50.52Z). It can be used to determine the actual
time of the Web Service’s interaction.

4http://www.rfc-editor.org/rfc/rfc3339.txt

36

http://www.rfc-editor.org/rfc/rfc3339.txt


POLICY II To enable provenance tracking of a service response, the RWS provider has to
attach provenance attributes, specifically the Web Service release version, VCS revision number
and the Timestamp of last update to each SOAP response header.

4.5 Enhance semantics of the Web Service interface

WSDL describes a service in a functional syntax. It lacks any semantic element describing the
service behaviour. There is also no attribute for the Web Service owner to publish its contact in-
formation within the service interface (WSDL). That fact makes it more difficult for a consumer
to get in contact with a service owner. UDDI, which had been introduced to establish a service
discovery platform on the World Wide Web, enables service providers to register its services and
share its contact information. In UDDI the businessEntity5 data structure reflects that informa-
tion. The contact data structure is part of the businessEntity data structure and provides a way
to imply contact information. Since the registration at a centralized UDDI compatible registry
is optional and the maintenance often cumbersome, many providers do not register its services
at all. But if that contact information is directly attached to the WSDL and represented in a
standardized schema, it would be easier for providers to provide that information. However, we
require for RWS owners to provide its contact information. Since it has to be compliant with the
contact data structure specification of UDDI, we demand the following attributes to be present:

• personName - name of the person.

• useType - type of contact (e.g.“technical contact“,“hosting contact“).

• email - email addresses for the contact.

• phone - (OPTIONAL) telephone numbers for the contact.

It is recommended to bundle the contact information with the published service. The most
common approach will be attaching the contact information directly to the service’s WSDL.

POLICY III A RWS provider has to attach its contact information—compliant to the UDDI
contact data structure—to the public WSDL interface of its published services.

Apart from the missing contact information, any semantic information regarding a Web Ser-
vice operation is also missing. By default, an operation definition is limited to its argument(s),
return type and its naming. Any further information like file formats or operation classification
is not available. In the scenario of RWSs, we require the following attributes as mandatory
information for a Web Service operation:

5http://www.uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#
_Toc25130756

37

http://www.uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130756
http://www.uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130756


• Parameter exchange format - In case the Web Service’s operation uses not only simple
arguments and return types (Integer, Double, ...), the exchange formats have to be defined
in more detail. A proper definition of the exchanged file format is required to improve
the consumers binding to objects returned by the Web Service. More precisely, the file
format for string and binary data types has to be defined by making use of common file
formats, which are either domain-specific or managed in a public registry. PRONOM, as
an example of such a file format registry, encapsulates impartial and definitive information
about the file formats required to support longterm access to digital records. The Pronom
Unique Identifier (PUID) can be used to present the corresponding file format (e.g. Raw
JPEG Stream → fmt/41).

• Validity period - Each Web Service operation has to be tagged with a so-called validity
value representing a future timestamp (RFC 3339 format is proposed). The Web Service
provider has to guarantee that the operation’s functional and non-functional behaviour
remains unchanged within that period of time, except in case of severe security issues
or other forms of force majeure. In such a scenario required exceptional measures can
be further elaborated in SLAs. Referring to table 3.2, only BW-compatible changes are
permitted. That information helps business process owners to plan and choose a suitable
operation for their purpose.

• Operation classification - In addition to the improved parameter description capabilities,
a Web Service operation description must also reflect its operation classification. Refer-
ring to Web Service classification a detailed classification must be provided. In section
2.3 we have presented a very detailed Web Service classification schema by Dranidis et
al. This thesis does not cover the conversational and the transient classification property.
However, we think those two properties do not impact the resilience of a Web Service.
The private state property is also not directly covered, as it presents no relevant infor-
mation for a consumer. It is only relevant to distinguish a service behaviour between
{stateless;stateful} and {deterministic;non-determinstic}.

This information has to be provided by the Web Service owner at deployment time. Annota-
tions in the source code file can be a proper solution for providing that information in a structural
form. Further details about the annotations and its application are provided in section-5.1.

POLICY IV The RWS provider has to enhance an operation description, by providing infor-
mation about the parameter exchange format, supported validity period and the classification of
each offered operation.

POLICY V The RWS provider has to maintain a Web Service operation for at least the
guaranteed validity period.

38



4.6 Sandbox for Web Service operation executions

Testing is a major requirement for all resilient Web Services. Both, the Web Service provider and
its consumers want to verify that the service is behaving as expected. Therefore, both parties
require an approach to execute the service’s operations without persisting any changes in the
Web Service and its environment.

First, we want to pay attention to the common source code testing procedure.

Provide proper source code testing methods

Providing a RWS requires proper test methods to support verifying the repeatability of com-
putations. For Web Service providers, it is mandatory to test the correctness of an operation’s
functionality during the development phase of the Web Service. A common quality metric for
software testing is the code coverage metric. Code coverage is a measure of systematic software
testing describing to which extend the source code is tested. The higher the test coverage value,
the more possible forks of the code are accessed. To ensure a high coverage, the test case has
to maximize the accessed paths in the operation’s source code. Software testing distinguishes in
general between white-, grey- and black-box testing, according to the degree of internal source
code knowledge of the tester. The more defined a test set is, the greater assurance of software
quality and reliability can be made. To improve the code coverage, the Web Service provider can
use Random Testing (RT). RT is a fundamental testing procedure, which randomly selects test
cases from the whole input domain. That approach can be used to enhance the possibility to pass
every possible branch of method body. In theory, only if every possible path has been executed,
a method is fully tested. Myers and Sandler [35] criticized that RT is a least effective testing
method for using if you have little or no information about the software under test. But if you
have that information (e.g. insights in the source code), like in our scenarios, RT is able to evenly
spread the test cases over the input domain, which enhances its effectiveness. Chen et al. [13]
name this approach Adaptive Random Testing (ART). Chen et al. [12] also showed that ART can
achieve higher coverage on program structures. This is not only applicable for programs with
numeric inputs, but also for those with non-numeric inputs. According to Cornett [15], 70-80%
is an acceptable code coverage threshold for system tests.

POLICY VI A Resilient Web Service’s source code must be tested till it exhibits a code cov-
erage rate in between 70% - 80% or higher. The higher the rate, the lower is the possibility for
any bugs or other uncertainties. A stable, faultless implementation will prevent the Web Service
provider from ongoing update procedures.

Since testing methods often trigger state changes or modify data tuples, a rollback strategy
has to be applied. That means, that after each test method execution, all conducted transactions
get discarded and not persisted. Such a rollback action is common practice in modern source
code testing frameworks like JUnit.

POLICY VII For each test method, the RWS provider has to implement a rollback strategy
to avoid the persisting of any state changes or data modifications.

39



It is the purpose of those source code testing methods to cover all possible behavioural
patterns of an operation. That also includes throwing errors intentionally and test the operation’s
exception handling. Such testing scenarios are mandatory for the Web Service provider. Those
testing methods are usually deposit next the actual Web Service source code file. They are
targeted only for internal use during the development phase and therefore they are not published
via the WSDL interface. However, for Web Service consumers it is also necessary to test the
Web Service behaviour, but within another setting. Consumers typically are not interested in
internal operation execution procedure, but in its computational results. Therefore the Web
Service provider has to provide additional demo operations which get executed in a sandbox. A
sandbox for testing the service behaviour is necessary in order to not trigger any changes in the
life system.

Provide operations in sandbox mode

For Web Service consumers, it is important to execute a Web Service’s operation at runtime in
order to make a decision if the service functional behaviour meets their business needs. There-
fore, the RWS provider has to decidedly provide a demo method for each service operation. The
purpose of such a demo operation is to execute the real service behaviour without persisting
neither any internal state changes, nor any state changes in its surrounding system. A major
concern to address is to mock the internal state (e.g. operations are often only executable in a
certain state) and data write access (e.g. prohibit any modifications in common data stores) of
the Web Service. Since the response of a stateless operation only depends on the request data,
no additional demo operations is necessary.

POLICY VIII For each stateful Web Service operation, the Web Service provider must offer
a demo operation mode, which performs the original functionality, without persisting any state
changes. By convention, the signature of the demo operation must be equal to the original oper-
ation including a Demo suffix for the name. Those additional demo operations must be provided
by the RWS interface. The service owner has to provide sample request for each demo operation.
Those requests are used in a later point in time create the Web Service View Path (see section
4.7).

For the retrieveAlbumWithComments operation, figure 4.1 depicts the additional methods
which have to be provided by the RWS owner. The RWS owner has to provide a proper amount
of internal testing methods to fulfil POLICY 6. To indicate such an internal test method, it has to
start with a test_ prefix in the name. Those methods are not available through the service inter-
face. Its purpose is to test the service’s functionality during the development phase. Additional,
the RWS owner has to provide a demo operation for each operation. It is recommended to add
a Demo suffix to its name. The demo operations have to be available in the service interface.
Additionally the service provider has to provide input requests for the demo operations. At a
later point in time, those requests are used to collect the Web Service’s View Path.

40



Figure 4.1: A resilient operation in aggregation with its multiple test methods and the single
demo method

Table 4.1: Two possible View Paths for the convertJpeg2Png operation of the PictureService

View Path #1 View Path #2
Data formats Raw JPEG Stream

(fmt/41);Portable Network
Graphics (fmt/13)

Raw JPEG Stream
(fmt/41);Portable Network
Graphics (fmt/13)

Application ImageMagick 6.8.9-7 Q16
Microsoft Visual C++ 2010

ImageMagick 6.8.9-7

JVM Java SE 6 Update 45 Java SE 7 Update 10
Operating System Windows 7 Enterprise SP1 OS X 10.9.4
Hardware 3,3GHz Intel Core i3

8GB 1600MHz DDR3
NVIDIA GT630 2GB

2,3GHz Intel Core i5
4GB 1333MHz DDR3
Intel HD Graphics 3000
384MB

4.7 Web Service dependency management

In case of developing Resilient Web Services, we are not only interested in the syntactical de-
scription of a Web Service interface (WSDL). A RWS must also provide information about its
hardware and software dependencies. That means a RWS must be aware of its View Path. In the
following we present an example depicting the effect of two divergent View Paths: According
to the convertJpeg2Png operation of the PictureService, which converts a JPEG file to a PNG
image, we present in table 4.1 two different View Paths. The left column represents a typical
Windows environment, the right column a common OS X setup.

What can be the result of two varying view paths is presented in figure 4.2. The upper image
shows the input file which gets converted from JPEG to PNG by ImageMagick6. That process
has been executed within both, the execution environment of View Path #1 and View Path #2.
Subsequent, ImageMagick is used to compare the two converted images. The resulting diff is

6http://www.imagemagick.org

41

http://www.imagemagick.org


Figure 4.2: Used two different view paths to convert the upper image from JPEG to PNG and
makes a diff (lower image), which is showing the deviations.

presented in the lower image. The red points identify deviations between both converted images.
Since a divergent view path can result in a different computation result, a proper RWS de-

pendency management is required. A RWS dependency management includes the following
aspects:

1. Capture dependencies → Create the Web Service’s view path

2. Monitor dependencies for changes → Detect changes of the view path

3. Propagate changes to recipient → Notification support

42



Table 4.2: Responsible party for collecting the dependencies with respect to the chosen service
model

Hardware Dep. Software Dep. Source Code Dep.
IaaS x
PaaS x x
In-house hosting x x x

Capture dependencies

To reveal all Web Service dependencies, figure 4.3 presents possible dependencies to its level of
insight. The figure is four-folded (minor overlappings included): In the first container a high-
level view from the viewpoint of a service consumer is given. As already mentioned, only the
WSDL is visible for the consumer. In the second container we present a look underneath the
Web Service’s interface. It highlights the dependencies of a Web Service itself according to
additional included Web Services, software components and shared data resources. The third
container details the above view by providing possible environmental dependencies of a service.
Those include e.g. reference software libraries, invoked system programs or application server
dependabilities. Also hardware dependencies can be fundamental for proper Web Service ex-
ecution. Therefore, in the last container, we present relevant hardware artifacts. Next to the
standard hardware artifacts like CPU, Harddrive and Memory, also not so popular artifacts like
GPU or any external devices like sensors can become a hardware dependency.

As shown in figure 4.3, we have to distinguish between software and hardware dependen-
cies. The software dependencies collection encompasses all software artifacts, which are needed
to successfully execute a specific Web Service operation from the platform independent Web
Service interface to the core Operating System libraries. The hardware dependencies collection
comprises all hardware artifacts, which are used in the processing a Web Service request.

The big challenge of the identification process is to ensure that none of the required depen-
dencies is missing. To assure a preferably complete set, it is recommended to execute the obliged
Demo methods (see section 7). It is a design requirement to separate the identification process
from the actual Web Service to its hosting system, because it can be resource intensive and time
consuming (see limitations of the framework in section 6.4). To capture the Web Service’s View
Path is the task of the platform on which the RWS is hosted. It has to provide tools for automated
collecting the software and hardware artifacts of the hosted Web Service.

The responsibility for collecting the specific information depends on which service model
has been chosen by the RWS provider. Table 4.2 presents the responsibilities for collecting
the dependencies with respect to the chosen service model. In a scenario, in which the service
provider outsources the hosting IT infrastructure and consumes it as IaaS, the IaaS provider is
the responsible party for collecting the hardware dependencies. If the service provider chooses
to consume the hardware infrastructure and software platform as a service, the PaaS provider
has to capture all relevant dependencies. In a traditional IT environment (In-house hosting), the
service provider has to carry out the dependency management on his own.

As a side note: The automated identification process for software dependencies is a highly
dynamic approach. Therefore, it is hard to assure that all dependencies are correctly captured.

43



Figure 4.3: Web Service dependencies on different levels
44



Missing dependencies will lead to an incomplete dependency collection. To complete the depen-
dency collection, one possibility is to add required dependencies manually by expert knowledge.

It is also required to make those dependencies explicitly available. Therefore, we opted
OWL as representation format. A major criteria for choosing OWL is that the collected View
Path can contain several thousand dependencies which is nothing but a linked data connection.
Other benefits using OWL as the representation format are follows: OWL defines convenient
mechanisms for reasoning (e.g. SPARQL); Easy to use Java API and reference implementation7

for creating, manipulating and serializing OWL Ontologies; It exists tools for comparing ontolo-
gies.
Within the TIMBUS8 research project a process context model has been developed. It defines the
generic concepts related to the process context and its dependencies in a domain-independent
ontology (DIO). These concepts can be redefined and mapped to a domain-specific ontology
(DSO). The context model is one approach to make the Web Service’s View Path explicit avail-
able.

Binder et al. [8] present an approach for capturing the process context model. By utilizing
strace—which allows an interception of the system calls—they present a tool for capturing
the context model for a certain process execution. More details about the application of the tool
are present in section 5.5.

POLICY IX The service hosting platform provider is responsible for capturing the Web Ser-
vice’s View Path.

Subsequent to the capturing process, it is required to permanently monitor those artifacts for
modification. Such a modification includes file updates, file deletion and also additional created
files. A dependency modification during the Web Service’s run phase can cause sever conse-
quences; including divergent computations, divergent QoS values, and service unavailability.
Therefore, it is important to detect changes in the serivce’s dependencies in-time. Changes of
depended artifacts can be caused by various sources.

• Upgrade or replace hardware resources like CPU or GPU

• Install update packages for the running operating system

• Upgrade the application execution environment

• Falsely removed dependent application

• ...

An in-time detection can only be guaranteed by a permanent monitoring approach. The
party which is responsible for the capturing is also responsible to detect changes on those de-
pendencies. However, such a permanent monitoring is resource consuming. Furthermore, it is
not necessary to detect every file modification that happens (e.g. write to a logging file, remove

7http://owlapi.sourceforge.net
8http://www.timbusproject.net

45

http://owlapi.sourceforge.net
http://www.timbusproject.net


a temporary file). Therefore, we present an alternative approach. The basic concept can be
described as follows: A notable modification of the view path can only be introduced by the
platform provider through an update process (e.g. update Java version 1.6 to 1.7, install secu-
rity batch). Thus, the view path modification detection only has to be triggered in combination
with an update event. To test if a certain context model is affected, RDF query languages like
SPARQL can be used to detect if the context model contains a certain individual. In case the
context model is affected, a notification about the update has to be forwarded to the service
owner like discussed in the next section. The service owner has to evaluate, whether the service
behaviour has changed. In case of a detected changes, the service owner has to forward a notifi-
cation to the service’s consumers. This concept is also modeled as a sequence diagram presented
in figure 4.4.

POLICY X The service hosting platform has to provide a push notification mechanism to
inform those events to Web Service users as well as providing an interface to allow them to pull
the respective informations.

Propagation of dependency changes

In case of a modification has been detected, it is necessary to propagate that change to the
depended RWS parties. To ensure interoperability across various RWS parties, a common ex-
change format has to be defined. Since the View Path is represented in OWL, it is reasonable
to propagate changes by utilizing the PREMIS9 OWL. It is an ontology based on the PREMIS
Data Dictionary for Preservation Metadata, which is a digital preservation standard based on
the OAIS10 reference model. Mayer et al. [33] present an approach for a software update sce-
nario by utilizing the Event entity concept of PREMIS. In more details, an update of a software
package is presented by so called SoftwareReplacement event. It is used to link individuals by
linkingSourceObject and linkingOutcomeObject properties, representing the change. Figure 4.5
depicts such a SoftwareReplacement event by means of a Java version update. Since the RWS
design also requires to propagate hardware changes, we have designed a HardwareReplacement
event similar to the SoftwareReplacement event. As an example for the HardwareReplacement
event, figure 4.6 shows the replacement of the current Intel CPU Q9300 with the more powerful
Q9650 instance.

POLICY XI The service hosting platform has to propagate occurred changes in the follow-
ing format. For software updates the SoftwareReplacement event has to be used. In case of a
hardware update the HardwareReplacement event has to be used.

As aforementioned the number of resilient parties can vary depending on the service model
chosen by the service owner. Figure 4.7 presents who is responsible for propagating the changes
to whom according to the various service models and communication paths.

9http://www.loc.gov/standards/premis
10http://www.iso.org/iso/catalogue_detail.htm?csnumber=57284

46

http://www.loc.gov/standards/premis
http://www.iso.org/iso/catalogue_detail.htm?csnumber=57284


Figure 4.4: Concept for reacting on dependency updates

47



< C l a s s A s s e r t i o n >
< C l a s s IRI =" h t t p : / / i d . l o c . gov / o n t o l o g i e s / p r emi s . r d f # Event " / >
< NamedIn d iv idua l IRI =" [ s e r v i c e L o c a t i o n ] / [ i d e n t i f i e r ] / S o f t w a r e R e p l a c e m e n t " / >

</ C l a s s A s s e r t i o n >
< O b j e c t P r o p e r t y A s s e r t i o n >

< O b j e c t P r o p e r t y IRI =" h t t p : / / i d . l o c . gov / o n t o l o g i e s / p r emi s . r d f #
l i n k i n g S o u r c e O b j e c t " / >

< NamedIn d iv idua l IRI =" [ s e r v i c e L o c a t i o n ] / [ i d e n t i f i e r ] / S o f t w a r e R e p l a c e m e n t " / >
< NamedIn d iv idua l IRI =" [ o r i g i n a l M o d e l U R I ]# O r a c l e J a v a 1 . 6 . u44 " / >

</ O b j e c t P r o p e r t y A s s e r t i o n >
< O b j e c t P r o p e r t y A s s e r t i o n >

< O b j e c t P r o p e r t y IRI =" h t t p : / / i d . l o c . gov / o n t o l o g i e s / p r emi s . r d f #
l i n k i n g O u t c o m e O b j e c t " / >

< NamedIn d iv idua l IRI =" [ s e r v i c e L o c a t i o n ] / [ i d e n t i f i e r ] / S o f t w a r e R e p l a c e m e n t " / >
< NamedIn d iv idua l IRI =" [ s e r v i c e L o c a t i o n ] / [ modif iedModelURI ]# OpenJDK1 . 7 . u65 "

/ >
</ O b j e c t P r o p e r t y A s s e r t i o n >

Figure 4.5: Description detailing the changes made to the system by replacing Oracle Java
version 1.6 with 1.7

< C l a s s A s s e r t i o n >
< C l a s s IRI =" h t t p : / / i d . l o c . gov / o n t o l o g i e s / p r emi s . r d f # Event " / >
< NamedIn d iv idua l IRI =" [ s e r v i c e L o c a t i o n ] / [ i d e n t i f i e r ] / HardwareReplacement " / >

</ C l a s s A s s e r t i o n >
< O b j e c t P r o p e r t y A s s e r t i o n >

< O b j e c t P r o p e r t y IRI =" h t t p : / / i d . l o c . gov / o n t o l o g i e s / p r emi s . r d f #
l i n k i n g S o u r c e O b j e c t " / >

< NamedIn d iv idua l IRI =" [ s e r v i c e L o c a t i o n ] / [ i d e n t i f i e r ] / HardwareReplacement " / >
< NamedIn d iv idua l IRI =" [ o r i g i n a l M o d e l U R I ]# I n t e l −Core (TM)2−Quad−−CPU−−−Q9300

−−@−2.50GHz"/ >
</ O b j e c t P r o p e r t y A s s e r t i o n >
< O b j e c t P r o p e r t y A s s e r t i o n >

< O b j e c t P r o p e r t y IRI =" h t t p : / / i d . l o c . gov / o n t o l o g i e s / p r emi s . r d f #
l i n k i n g O u t c o m e O b j e c t " / >

< NamedIn d iv idua l IRI =" [ s e r v i c e L o c a t i o n ] / [ i d e n t i f i e r ] / HardwareReplacement " / >
< NamedIn d iv idua l IRI =" [ s e r v i c e L o c a t i o n ] / [ modif iedModelURI ]# I n t e l −Core (TM)2−

Quad−−CPU−−−Q9650−−@−3.00GHz"/ >
</ O b j e c t P r o p e r t y A s s e r t i o n >

Figure 4.6: Description detailing the change of the CPU by replacing the Intel Q9300 with
Q9650

48



Figure 4.7: Communication paths between resilient parties

Since in a pull strategy the consumer is responsible for fetching changes, an urgent notifica-
tion can be delayed. That can harm the correct Web Service execution even before the provider
gets notified about it and is able to react on it. Therefore, it is recommended to use a push strat-
egy for propagating changes in a resilient environment. However, the implementation of a push
mechanism involves usually a higher effort than a pull approach. One simple solution for a push
style implementation approach can be realized by RSS. By utilizing the channel concept of RSS,
a separate channel can be established for each communication path.

Depending on the communication path, the content of the feed varies. Think about the
following scenario: The service makes outsources the service platform to a PaaS. The PaaS
provider is forced to update Java to the new release version. Subsequent to the update process,
the PaaS provider has to push a notification according to POLICY 11 to a certain RSS channel
notifying the PictuerService owner. The service owner himself now has to detect which of
the operations are affected by the updates. In case of the retrieveAlbum() operation behaving
differently than expected (e.g. the sequence of the images in the collection has changed), the
owner has to notify its clients.

Discussion:
Since RSS is a push style notification approach, an update notification can be automatically
fetched and processed. According to the presented scenario above, tools like rsstail11 are able to
listen for updates on a certain RSS channel. We can utilize such a tool to trigger an execution of
the demo operations automatically. In case of a change in the execution behaviour is detected,
a further step will be to automatically create a report summarizing which operation remains
unchanged and which behaves differently. That report can be automatically forwarded to the
service owner and its consumers without any timing delay. Subsequently to this instant notifi-
cation, both the service owner and the affected consumers can elaborate their further necessary
actions.

11http://www.vanheusden.com/rsstail

49

http://www.vanheusden.com/rsstail


< r s s v e r s i o n ="2 .0" >
< channe l >

< t i t l e >PaaS u p d a t e s r e l a t e d t o t h e P i c t u r e S e r v i c e < / t i t l e >
< l i n k > h t t p : / / paa s . com / s e r v i c e s / p i c t u r e s e r v i c e / r s s < / l i n k >

<i tem >
< t i t l e > Java v e r s i o n 1 . 7 < / t i t l e >
< d e s c r i p t i o n > Upda tes Java from v e r s i o n 1 . 6 t o 1 . 7 < / d e s c r i p t i o n >
< l i n k > h t t p : / / r e s i l i e n t . com / P i c t u r e S e r v i c e / r s s / 5 < / l i n k >
< a u t h o r >PaaS A d m i n i s t r a t o r < / a u t h o r >
<guid >5 </ guid >
<pubDate >2014−04−12T23 : 2 0 : 5 0 . 5 2 Z</ pubDate >

</ i tem >

<item >
. . .

</ i tem >

</ channe l >
</ r s s >

Figure 4.8: RSS feed channel hosted by the PaaS provider.

Figure 4.8 presents a RSS feed channel between the PaaS provider and the service owner.
For each update, a new item gets added. It includes a link element holding an URL linking to
the PREMIS description of the change.

POLICY XII Update notifications have to be pushed via some channel (recommended is
RSS) to subscripted consumers. Each resilient party has to establish a separate RSS channel for
each resilient service.

4.8 Remote Web Service dependencies

Additional to the already mentioned aspects, there is the aspect of remote Web Service depen-
dencies as presented in figure 4.3. In case of a RWS (service A) depends on another Web Service
(service B), it is mandatory that service B must also be resilient. Furthermore, the guaranteed va-
lidity period of service A (=its lifetime) must not exceed service B’s validity period. Otherwise,
service A can not guarantee resilience. To mitigate the risk of a remote software component to
become unavailable, which can have severe impact on the Web Service execution and—in the
wider sense—to process execution, a Software Escrow system can be used. By introducing a
legal third party, the Escrow Agent, in-between the consumer and the developer of a software
component, it establishes a trustworthy way to deposit software. The escrow agent itself is re-
sponsible for depositing the software and realizing by a contracted trigger event. In addition to a
standard usage and maintenance license between a consumer and a developer, both parties have

50



to sign an escrow contract between them and the escrow agent. Such a contract considers on the
one hand technical issues and also legal issues. Leading technical issues are: completeness and
quality of the deposited material. What are the necessary source code files, libraries , datasets or
compile instructions. On the legal side, important issues are the usage rights for deposited third
party libraries or to specify the event that triggers the release of the deposited material. Weigl et
al. [44] introduce a software solution for supporting the escrow agent by handling the mentioned
technical issues. As a subpart of that tool, they are able to detect remote calls by analyzing the
source code of a software artifact.

POLICY XIII In case of a RWS depends on another Web Service, that remote service must
also be resilient.

POLICY XIV The maximal lifetime of the Web Service must not exceed the maximum
lifetime of any of the remote services it is depending on.

4.9 Summary of the Resilient Web Service Framework

In that chapter we present requirements necessary to address RWS challenges. Various con-
cepts (e.g. demo operations, view path capturing, consumer push notification) are introduced
to guide Web Service providers through the development and maintenance process of a RWS.
A major issues addressed in this chapter are the challenges according to a proper Web Service
dependency management. Maybe the most critical challenge is a complete identification of all
Web Service dependencies. Therefore, we present the view path concept, which can be used to
describe a Web Service dependency collection. It encompasses software and hardware artifacts
of a Web Service’s execution environment. We propose the Web Service’s View Path identifi-
cation by executing the required demo operations provided by the Web Service owner. Once
the identification has been successfully, a proper dependency modification tracking strategy has
to be applied. If a modification is detected, is has to be validated if the Web Service remains
unchanged in its function and behaviour. Therefore, current Web Service’s execution results are
compared to previous captured results.

In the following we present a compact overview of all resilience policies introduced in this
chapter.

POLICY 1 The RWS provider has to follow the resilient versioning policy to ensure a resilient
Web Service evolution.

POLICY 2 To enable provenance tracking of a service response, the RWS provider has to
attach provenance attributes, specifically the Web Service release version, VCS revision number
and the Timestamp of last update to each SOAP response header.

POLICY 3 A RWS provider has to attach its contact information—compliant to the UDDI
contact data structure—to the public WSDL interface of its published services.

51



POLICY 4 The RWS provider has to enhance an operation description, by providing infor-
mation about the parameter exchange format, supported validity period and the classification of
each offered operation.

POLICY 5 The RWS provider has to maintain a Web Service operation for at least the guar-
anteed validity period.

POLICY 6 A Resilient Web Service’s source code must be tested till it exhibits a code cov-
erage rate in between 70% - 80% or higher. The higher the rate, the lower is the possibility for
any bugs or other uncertainties. A stable, faultless implementation will prevent the Web Service
provider from ongoing update procedures.

POLICY 7 For each test methods, the RWS provider has to implement a rollback strategy to
avoid the persisting of any state changes or data modifications.

POLICY 8 For each stateful Web Service operation, the Web Service provider must offer a
demo operation, which performs the original functionality, without persisting any state changes.
By convention, the signature of the demo operation must be equal to the original operation
including a Demo suffix for the name. Those additional demo operations must be provided by
the RWS interface. The service owner has to provide sample request for each demo operation.
Those requests are used in a later point in time create the Web Service View Path (see section
4.7).

POLICY 9 The service hosting platform provider is responsible for capturing the Web Ser-
vice’s View Path.

POLICY 10 The service hosting platform has to provide a push notification mechanism to
inform those events to Web Service users as well as providing an interface to allow them to pull
the respective informations.

POLICY 11 The service hosting platform has to propagate occurred changes in the follow-
ing format. For software updates the SoftwareReplacement event has to be used. In case of a
hardware update the HardwareReplacement event has to be used.

POLICY 12 Update notifications have to be pushed via some channel (recommended is RSS)
to subscripted consumers. Each resilient party has to establish a separate RSS channel for each
resilient service.

POLICY 13 In case of a RWS depends on another Web Service, that remote service must also
be resilient.

52



POLICY 14 The maximal lifetime of the Web Service must not exceed the maximum lifetime
of any of the remote services it is depending on.

Nevertheless, we want to conclude that chapter by some critical remarks.

Demo operations are hard to implement Providing a RWS, it requires to provide demo op-
erations which do not alter the Web Service’s state or do not leave any traces in its environment.
Due to the complex Web Service interaction scenarios including other artifacts (e.g. another
Web Service, database, external device) it becomes very challenging and time consuming to
provide intelligent demo operations. Therefore, a framework supporting an intelligent rollback
strategy is required.

Validation of Web Service responses are hard to automate To validate an unchanged func-
tionality of a Web Service operation, one way is to compare the current response to previous
responses. However, that can become very challenging because of non-deterministic operations
and complex return types (e.g. images, pdf reports). It is hardly feasible to computational
automate that validation process for complex deterministic results. Also its reliability would
only be verifiable to a certain extend. For a proper response validation—either for backward-
compatibility changes or in any other scenario—human judgment is indispensable.

Complete and correct identification of the Web Service’s view path The theoretically con-
cept of the view path is easily applicable for a Web Service execution environment. The practical
implementation of that concept is much more complex. Firstly, automatic dependency identifi-
cation is only applicable to some extend. Only those dependencies, which are accessed by the
execution of the demo operations can be identified. That means that the quality of the provided
Web Service demo operations is a crucial factor. Secondly, it is hardly feasible to verify the cor-
rectness of the identified view path. Therefore, a critical review of the automatically identified
View Path by experts is unavoidable.

53





CHAPTER 5
Resilient Web Service Framework

Tools

That chapter presents the practical part of this thesis. More precisely, the RWS framework
consists of two parts. Firstly, the resilience annotations which have to be used by the Web
Service provider to add the required semantics to the Web Service source code file. Secondly,
the framework encompasses a tool box including:

• A tool for the verification of the provided annotations

• A tool for the identification of the Web Service’s View Path

• A tool to transform the semantic enhanced source code file into a semantic enhanced
service interface

In the upcoming sections, every particular contribution is presented in more detail.

5.1 Resilience annotations

The resilience annotations supports three types of custom Java annotations1 to enhance the Web
Service’s definition and its provided operations. Firstly, Java class level annotations to identify
and describe that class as a RWS. Secondly, a set of method annotations used to describe the
operations more precisely. Thirdly, a parameter annotation which has to be used to define the
message exchange formats. Table 5.1 lists and describes the developed custom annotations
which are available at development time.

Applying those annotations on our non-resilient PictureService version is depicted in listing
5.1.

1https://jcp.org/en/jsr/detail?id=250

55

https://jcp.org/en/jsr/detail?id=250


Table 5.1: Summary of the resilience annotations offered by the Resilient Web Service Frame-
work

Annotation Description
Class level
@Resilient(version) Declare a class as a RWS and identify its current release

version.
Method level
@Stateful Annotate a stateful Web Service method.
@Stateless Annotate a stateless Web Service method.
@Validity(endDate) Used to set the validity by which the Web Service

Provider guarantees an unchanged execution behaviour.
@Return Declare the return file format. It can be used in case the

return type exceeds a simple data type.
@Demo Declare an operation as a demo operation.
Parameter level
@FileFormat Used to identify the file formats, encoding types of

method parameters.

Listing 5.1: Java source code file with the additional resilience annotations
1 import com.resilient.annotations.*;
2 ...
3

4 @WebService
5 @Resilient(version = "2.4.0")
6 public class ResilientPictureService implements IPictureService {
7

8 @WebMethod
9 @Stateless

10 @Deterministic
11 @Validity(endDate = "2015-01-01T23:59:59.00Z")
12 @Return(format="fmt/13")
13 public Image convertJpeg2Png(
14 @FileFormat(format="fmt/41") Image image)
15 throws PictureServiceException {
16 ...
17 }
18 ...
19 @WebMethod
20 @Demo
21 @Stateless
22 @NonDeterministic
23 @Validity(endDate = "2015-01-01T23:59:59.00Z")
24 public List<URL> searchPicturesForLocations(String... places) throws

PictureServiceException {
25 // for demonstration purpose
26 }
27 }

56



The none-bold annotations like @WebService (#4) and @WebMethod (#8,19) are the stan-
dard Java annotations used to declare a class as a Web Service and a method as an Web Service
operation. The bold annotations represent the resilience annotations according to table 5.1. To
declare that Web Service as a RWS, we add the @Resilient (#5) annotation on class level. The
@Resilient annotation also includes the current version identifier provided by the Web Service
owner. Since the convertJpeg2Png operation has an image data type as parameter and also an
image return type, the operation has to declare both, the @FileFormat (#14) annotation for the
parameter and the @Return (#12) annotion for the return type. Next to the convertJpeg2Png we
present the declaration of the demo version of the searchPicturesForLocation operation. Except
of the @Demo annotion (#20), the declaration of the real searchPicturesForLocation will be
equal.

5.2 Functional compatibility verification tool

We have developed a Java based tool for verifying both, the correct application of the resilience
annotations and the functional compatibility against the previous version. The comparison is
done on source code level. In a first step, the correctness of the applied annotations is verified.
In more detail, the tool checks the following:

• In case an operation parameter type is a non-trivial data type (e.g. base64Binary) the
@FileFormat annotation must be present.

• For each stateful operation there must exist a demo operation according to the naming
convention.

• The timestamp of the validity annotation posses a date in the future.

In a second step the current annotation values are compared to its previous version values.
In case of the current annotations of an operation differs from its previous ones, the commit
gets also aborted. (e.g. @Return(format=“fmt/13“) 9 @Return(format=“fmt/154“)). A sample
outcome of the tool is presented in figure 5.1. The tool reveals in total two violations. Due to its
violation report, the service owner can easily fix the issues.

Subsequently, the tool fetches the last committed version of the service from the VCS. In
case of the applied changes in the service source code are incorrectly reflected by the version
(see section-4.3) the commit gets aborted. (e.g. an operation has been deleted, but the new
version identifier only reflects a minor change v1.3→1.4 instead of →2.0)

Usage The purpose of the verification tool is to deny commits to the VCS which violate the
resilience annotation policy. Therefore, we have developed a pre-commit-hook which executes
the verification tool. In case the tool reports an error, the commit gets aborted.

57



t r y i n g t o f e t c h f i l e R e s i l i e n t P i c t u r e S e r v i c e
s t a r t v e r i f i c a t i o n f o r f i l e R e s i l i e n t P i c t u r e S e r v i c e . j a v a

( 0 ) C l a s s l e v e l a n n o t a t i o n s => v a l i d

( 1 ) Method l e v e l a n n o t a t i o n s =>
@Validity a n n o t a t i o n i s m i s s i n g f o r method ’ re t r ieveAlbumWithComments ’ .
@FileFormat a n n o t a t i o n i s m i s s i n g f o r param ’ image ’ o f method ’

conve r t Jpeg2Png ’ .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
In t o t a l 2 v a l i d a t i o n v i o l a t i o n ( s ) found !

Figure 5.1: Sample result of the annotations verification tool

5.3 Java2RWSDL converter

As described in the requirements, it is essential to expose the annotations also in the WSDL file.
Therefore, we make use of the Apache Axis2 framework. We adjust the standard Java2WSDL
component by adding attributes which represent the resilience annotations and their values.
The tool adds the behaviour={stateful, stateless};{deterministic, non-deterministic} and valid-
ity=timestamp attribute to the existing operation element. In case of the operation is a demo
operation, an additional demo=“true“ attribute is added. The @FileFormat annotation becomes
part of the input and output message type. Listing 5.2 presents an excerpt of the resulting resilient
WSDL (RWSDL). The bold elements are the additional elements which reflects the resilience an-
notations.

Listing 5.2: Excerpt of the resilient WSDL including the values of the resilience annotations
(marked in bold)
<xs:complexType name="convertJpeg2Png">
<xs:sequence>
<xs:element name="arg0" type="xs:base64Binary" minOccurs="0" fileformat="fmt

/41" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="convertJpeg2PngResponse">
<xs:sequence>
<xs:element name="return" type="xs:base64Binary" minOccurs="0" fileformat="

fmt/13"/>
</xs:sequence>
</xs:complexType>
...
<operation name="convertJpeg2Png" behaviour="stateless;deterministic"

validityDate="2015-01-01T23:59:59.00Z">
<input wsam:Action="http://resilient.com/ResilientPictureService/

convertJpeg2PngRequest" message="tns:convertJpeg2Png"/>
<output wsam:Action="http://resilient.com/ResilientPictureService/

convertJpeg2PngResponse" message="tns:convertJpeg2PngResponse"/>

58



<fault message="tns:PictureServiceException" name="PictureServiceException"
wsam:Action="http://resilient.com/ResilientPictureService/convertJpeg2Png
/Fault/PictureServiceException"/>

</operation>
...
<operation name="convertJpeg2PngDemo" behaviour="stateless;none-deterministic

" validityDate="2015-01-01T23:59:59.00Z">
<input wsam:Action="http://resilient.com/ResilientPictureService/

convertJpeg2PngDemoRequest" message="tns:convertJpeg2PngDemo"/>
<output wsam:Action="http://resilient.com/ResilientPictureService/

convertJpeg2PngDemoResponse" message="tns:convertJpeg2PngDemoResponse"/>
<fault message="tns:PictureServiceException" name="PictureServiceException"

wsam:Action="http://resilient.com/ResilientPictureService/
convertJpeg2PngDemo/Fault/PictureServiceException"/>

</operation>
...
<service name="PictureService" version="2.3.1">...</service>

5.4 Provenance enriched SOAP header

For a Web Service consumer it is important to know with which service version it is interact-
ing. To that purpose, our framework automatically adds provenance information to each Web
Service response. After a request has been processed, the framework attaches the attributes
releaseVersion, sourceCodeRevision, lastUpdate as header information to the
response. Because the header information is meta data, the response payload does not get al-
tered. Therefore, the framework makes us of the interceptor concept2 of the Java Enterprise
Edition (EE) specification. Interceptors are used to intercept a current process at a specific point
in its life-cycle (e.g. interceptor is triggered before Web Service operation is invoked). The cus-
tom provenance interceptor of the framework gets triggered after the Web Service operation has
been executed and adds the provenance information to the response header. Figure 5.2 presents
a provenance enriched response generated by framework. The attached provenance elements are
visualized in bold.

5.5 Capture Web Service’s View Path

We have developed a script based tool, which can be used to trigger Web Service operations by
utilizing cUrl. cUrl is a command line tool for sending and receiving files using URL syntax. It
supports among others the following Internet protocols: HTTP(S), FTP(S), SCP, IMAP, SMTP.
The tool requires two input paramters. First parameter is the service address and the second
parameter is the directory of the provided demo requests. The request file has to have the exten-
sion request. For each provided request, the tool triggers the appropriate operation and persist
the response attached with the current timestamp. Listing 5.3 depicts the script.

2https://jcp.org/en/jsr/detail?id=318

59

https://jcp.org/en/jsr/detail?id=318


<S : Enve lope xmlns : S=" h t t p : / / schemas . xmlsoap . o rg / soap / e n v e l o p e /" >
<S : Header >

<ns2 : p r o v e n a n c e I n f o r m a t i o n >
< r e l e a s e V e r s i o n >2 .1 < / r e l e a s e V e r s i o n >
< sourceCodeRevis ion >23 </ sourceCodeRevis ion >
< las tUpdate >2014−05−08T08 : 3 2 : 4 0 . 0 2 Z</ las tUpdate >

</ ns2 : p r o v e n a n c e I n f o r m a t i o n >
</S : Header >
<S : Body>

<ns2 : conver tTIFF2JPEGResponse xmlns : ns2 =" h t t p : / / example /" >
< r e t u r n >iVBORw0KGgoAAAANSUhEUgAAAPoAA . . .
</ ns2 : conver tTIFF2JPEGResponse >

</S : Body>
</S : Envelope >

Figure 5.2: Provenance enhanced Web Service response

Listing 5.3: Call WebService test methods with cUrl.
#!/bin/sh

# use curl to call web service test methods
# INPUT: remote service address
# INPUT: directory including the provided requests
# OUTPUT: each request gets fired and a ’response’ file including the current

timestamp is produced.

serviceURL="$1"
dir="$2"
timestamp=$(date +%Y-%m-%dT%H:%M:%S)
error_msg="the program ’curl’ is not available under /usr/bin/curl! You can

use ’sudo apt-get install curl’ to install curl on your system."

if [ ! -d "$dir_out" ]; then
mkdir "$dir_out"

fi

[ -f /usr/bin/curl ] &&
echo "start requesting Web Service ("$serviceURL")." ||

{ echo "$error_msg" ; exit 1;}

for input in $(find "$dir_in" -name "*.request")
do

echo "input file is "$input
curl --header "Content-Type: text/xml;charset=UTF-8" --data @"$input" "

$serviceURL" > "$input"."$timestamp".response
echo "output file is " "$dir_out"."$timestamp".response
mv "$input"."$timestamp".response "$dir_out"/‘basename "$input"‘.response

done

60



Usage One approach to collect the service’s dependencies is to execution the demo operations.
As part of the framework, we have developed a script based tool for collecting Web Service
dependencies. More precisely, we utilize the Process Migration Framework provided by [8]. As
aforementioned, it is used to create a context model for a input process. By calling the demo
operation execution tool within the PMF framework the service’s context model can be received.

5.6 Resilient Web Service Framework at a glance

The practical part of the Resilient Web Service Framework consists of following components:

• Resilience Annotations (section 5.1) - Provides a set of resilience annotations which have
to be applied to the service source code in order to improve the semantics of the service
interface.

• Verification Tool (section 5.2) - In a first step the tool verifies that the annotations are
applied correctly. In a second step it verifies that the attached version identification does
not violate the resilient versioning strategy.

• Java2RWSDL (section 5.3) - Transform Java Web Service source code file into a resilient
WSDL. It processes the applied resilience annotations and attaches them to the service’s
interface.

• Provenance Enriched Header (section 5.4) - Attaches the provenance information to a
service response header by intercepting the request.

• Pre-commit-Hook - is responsible for triggering the verification tool on a commit (section
5.2).

• Dependency Collection Tool (section-5.5) - Collects the Web Service’s dependencies by
requesting the demo operations with the provided input requests. The service’s view path
is presented as a context model instance.

Table 5.2 depicts which component supports which policy. We have to note, that two policies
(P13,P14) are not covered within this framework.

Table 5.2: Which tool supports which policy

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Resilience Annotations x x x x
Verification Tool x x x x x x

Java2RWSDL x x
Provenance Response x

Capturing Tool x x
RSS Notifications x x x

61



Derived from the implemented feature set, we have explored them to two different levels.
At a first level we distinguish either the feature is relevant for the service provider or the service
consumer. At the second level we distinguish if a feature is applied during the development
process (Deploy Time) or at Runtime. Figure 5.3 depicts the outcome of that assignment. Each
feature gets classified as a supporting tool either for provider or consumer and its application
phase is provided by the figure. Additional the figure sets the features in relation to the Web
Service life cycle phases present in section 2.4.

Figure 5.3: Feature appliance assigned to involving party and Web Service life cycle phases

The framework is available for download at http://www.ifs.tuwien.ac.at/dp/
process/projects/rws.html.

62

http://www.ifs.tuwien.ac.at/dp/process/projects/rws.html
http://www.ifs.tuwien.ac.at/dp/process/projects/rws.html


CHAPTER 6
Proof of concept & Demonstration

To demonstrate the capabilities of the Resilient Web Service Framework we will go trough
various scenarios addressing different aspects of applying it. Starting point is the PictureService
introduced in section 4.1. It is a Java Web Service using Apache Maven as the dependency
management and build tool.

6.1 Transforming an existing Web Service into a RWS

As a first step the service provider has to setup the Resilient Web Service Framework.

Setup of the Resilient Web Service Framework

Setting up the framework on a Linux environment includes the following steps:

• Create a writeable directory named resilient in the root folder.

• Assuming the service is named PictureService, the newly created directory has to contain
the following files:

– PictureService.svn - file storing the SVN URL and the credentials.

– PictureService.contact - file storing the contact information in a UDDI compliant
format.

– PictureService.server - file storing the location and credentials of the application
server.

– PictureService.rss - RSS file storing all RSS feeds for that certain service channel.

– Verification tool - Gets executed during the pre-commit-hook.

– Java2RWSDL tool - Generates a (R)WSDL for a Java Web Service source code file.

– Dependency Collection Tool - Used to collect the Web Service’s dependencies.

63



• Copy the pre-commit-hook file provided by the framework in the hooks subdirectory
of your SVN repository. Make sure that the hook is executable.

• In case the service provider makes use of a resilient PaaS provider, he has to subscribe
its service to the related PaaS RSS channel. That step is necessary to get notifications on
dependency updates.

To transform an existing Web Service into a RWS, the Web Service provider has to apply
the following steps:

• The basic service source code has to be extended with the provided resilience annotations.

• For each service operation, a demo operation has to be provided (see POLICY 8).

• The service provider has to apply source code tests to fullfil the required code coverage
(see POLICY 6,7).

• In addition to the resilience annotations, the service provider has to attach the following
annotation @Interceptors(ProvenanceInterceptor.class) on class level
of the service. That ensures that the provenance information is attached to the SOAP
response header.

Applying all the aforementioned instructions will result in the following benefits:

• The resilient versioning policy is forced by the SVN automatically.

• Java2RWSDL generates a resilient WSDL out of the source code (an example already has
been presented in section-5.3).

• Each SOAP response is provenance enriched.

• In case of the service URL is http://my.server.com/pictureService-v1/PictureService, the
contact information of the provider can be found
http://my.server.com/pictureService-v1/PictureService/contact
and the RSS feed is reachable at
http://my.server.com/pictureService-v1/PictureService/updates

6.2 Adding a new resilient operation results in new a minor release

Scenario description In this scenario we want to demonstrate the framework capabilities ac-
cording to a source code update introduced by the service owner. The source code update is
about adding a new operation to the service. Since adding a new operation does not break the
compatibility, it is considered a minor update.

1. The service owner implements a new resilient operation the retrieveAlbumByTags.

64



$ svn commit −m " add re t r i eveAlbumByTags o p e r a t i o n t o P i c t u r e S e r v i c e "
Sending s r c / main / j a v a / com / r e s i l i e n t / s e r v i c e / p i c t u r e S e r v i c e /

R e s i l i e n t P i c t u r e S e r v i c e . j a v a
T r a n s m i t t i n g f i l e d a t a . svn : E165001 : Commit f a i l e d ( d e t a i l s f o l l o w ) :
svn : E165001 : Commit b l o c k e d by pre−commit hook ( e x i t code 2 ) wi th o u t p u t :
R e s i l i e n t Pre−Commit−Hook g e t s e x e c u t e d
t r y t o f e t c h f i l e / tmp /5−22/ t r u n k / s r c / main / j a v a / com / r e s i l i e n t / s e r v i c e /

p i c t u r e S e r v i c e / R e s i l i e n t P i c t u r e S e r v i c e . j a v a
s t a r t a n n o t a t i o n v a l i d a t i o n f o r s e r v i c e [ R e s i l i e n t P i c t u r e S e r v i c e . j a v a ]

C l a s s l e v e l a n n o t a t i o n s a r e v a l i d .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
@Return a n n o t a t i o n i s m i s s i n g f o r method ’ r e t r i eveAlbumByTags ’ .
@Val id i ty a n n o t a t i o n i s i n v a l i d f o r method ’ re t r ieveAlbumWithComments ’ . Not a

p r o p e r RFC3339 t imes t amp .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
In t o t a l 2 v a l i d a t i o n v i o l a t i o n ( s ) found !
Commit a b o r t e d !

Figure 6.1: Pre commit hook detects two violations and aborts the commit

$ svn commit −m " add m i s s i n g a n n o t a t i o n s "
Sending s r c / main / j a v a / com / r e s i l i e n t / s e r v i c e / p i c t u r e S e r v i c e /

R e s i l i e n t P i c t u r e S e r v i c e . j a v a
T r a n s m i t t i n g f i l e d a t a .
Committed r e v i s i o n 6 .

Figure 6.2: Source code annotations are valid. The commit action was successfully

2. The service owner commits the changes to the repository. The pre-commit-hook gets
triggered and starts with the annotation verification. The verification tool reports two
violations and aborts the commit (Figure 6.1).

3. The service owner adds the missing annotation and corrects the invalid timestamp. Sub-
sequent he tries to commit again (Figure 6.2). This time the commit is successfully.

4. The service owner deploys the service to the application server according to the version
policy. Since it is only a minor update and the compatibility does not break, the service
can be redeployed at the original location.

5. After the successfully deployment of the service, the application server triggers the cap-
turing of the service’s View Path. For this, the PaaS provider executes the Dependency
Collection Tool provided by the Resilient Framework. It is under the responsibility of
the PaaS provider to manage the View Path(s) of its hosted resilient service(s). Since
the Web Service View Path contains nearly 600 individuals, we can not visualize them
in a figure properly. Therefore, we only present an excerpt of the View Path. Figure
6.3 presents a subset of the Web Service’s View Path as the context model representa-

65



Figure 6.3: Excerpt of the Web Service’s viewed by Protege

tion viewed with Protege 4.3.0. By applying for e.g. magick via the string filter, the
four depending packages libmagickwand5,imagemagick,imagemagickcore5
and imagemagick-common are presented.

6.3 PaaS updates ImageMagick via the package manager

Scenario description In that scenario we demonstrate the framework capabilities according to
a dependency update applied by the PaaS provider. Since the Collect Dependency Tool is based
on the PMF framework, only package based operating systems are applicable. Therefore, we
assume the PaaS provider uses a Linux operating system.

• Due to the release of a new version of imageMagick the PaaS provider wants to update
the current installed version (ImageMagick 6.7.7-10 2012-11-06 Q16).

• The PaaS provider first runs apt-get -s install imagemagick to detect which
installed packages are affected by that update. Figure 6.4 depicts the result of the com-
mand. It shows that in total 7 packages will be upgraded and 11 packages will additionally
installed. None of the current installed packages have to be removed.

• According to that information the PaaS provider can reason over the View Path to de-
tect if the PictureService will be affected by the update. That can be done by executing
a simple SPARQL query reasoning for the items listed at The following packages will
be upgraded in figure 6.4. The result of the SPARQL query is presented in figure 6.5.

66



unma ~ # apt−g e t −s i n s t a l l imagemagick
Reading package l i s t s . . . Done
B u i l d i n g dependency t r e e
Reading s t a t e i n f o r m a t i o n . . . Done
The f o l l o w i n g package was a u t o m a t i c a l l y i n s t a l l e d and i s no l o n g e r r e q u i r e d :

a u t h b i n d
Use ’ ap t−g e t au to remove ’ t o remove i t .
The f o l l o w i n g e x t r a p a c k a g e s w i l l be i n s t a l l e d :

dpkg gcc−4.9−base imagemagick −6. q16 imagemagick−common l i b f f t w 3 −3 l i b f f t w 3 −
doub le3 l i b f f t w 3 −l ong3 l i b f f t w 3 −s i n g l e 3 l ibgomp1 l i b m a g i c k c o r e −6.q16−2

l i b m a g i c k c o r e −6.q16−2−e x t r a l ibmagickwand −6.q16−2 l i b n e t p b m 1 0 l i b s e l i n u x 1
l i b s e l i n u x 1 : i386 l i b t i f f 5 netpbm

S u g g e s t e d p a c k a g e s :
imagemagick−doc a u t o t r a c e cups−bsd l p r l p r n g e n s c r i p t f fmpeg g n u p l o t g r a d s

g r a p h v i z hp2xx h tml2ps libwmf−b i n povray r a d i a n c e t e x l i v e −base−b i n
t r a n s f i g l i b f f t w 3 −b i n

l i b f f t w 3 −dev i n k s c a p e
The f o l l o w i n g NEW p a c k a g e s w i l l be i n s t a l l e d :

gcc−4.9−base imagemagick −6. q16 l i b f f t w 3 −doub le3 l i b f f t w 3 −l ong3 l i b f f t w 3 −
s i n g l e 3 l i b m a g i c k c o r e −6.q16−2 l i b m a g i c k c o r e −6.q16−2−e x t r a l ibmagickwand
−6.q16−2 l i b n e t p b m 1 0

l i b t i f f 5 netpbm
The f o l l o w i n g p a c k a g e s w i l l be upgraded :

dpkg imagemagick imagemagick−common l i b f f t w 3 −3 l ibgomp1 l i b s e l i n u x 1
l i b s e l i n u x 1 : i386

7 upgraded , 11 newly i n s t a l l e d , 0 t o remove and 1436 not upgraded .

Figure 6.4: Execute update apt-get install imagemagick to updates its version.

Following packages of the PictureService View Path are affected by that certain update:
imagemagick,libgomp1,libselinux1,imagemagick-common

• Subsequently the provider executes the update. That changes the installed ImageMagick
version to ImageMagick 6.8.9-6 Q16 2014-09-06.

• After the installation of the new version of ImageMagick, the service provider re-executes
the Dependency Collection Tool and gets the updated View Path. Figure 6.6 shows the
same View Path excerpt as it is presented in figure 6.3, but now the View Path contains
the updated imageMagick dependencies.

• At this point the PaaS provider adds a new feed concerning the update to the Picture-
Service RSS channel. According to the POLICY 11 the feed has to provide a Software
Replacement event for all affected packages. Figure 6.7 shows the RSS notification—
pushed by the PaaS provider—with a standard RSS feed reader (e.g. Mozilla Firefox
Browser). By clicking on the link in the feed, the detailed PREMIS update informations
are provided.

• Receiving a notification forces the RWS provider to verify the service behaviour. If the
service behaviour has changed, the service provider has to push a notification—forward

67



Figure 6.5: Result of the SPARQL query to detect if and which elements are affected.

Figure 6.6: Excerpt of the updated Web Service’s viewed by Protege

68



Figure 6.7: A new push notification from the PaaS provider is available

this event—to his consumers. If the PaaS update affects the service view path, but has no
impact on the service behaviour, the service provider does not has to inform its consumers.

6.4 Limitations of the Resilient Web Service Framework

Although, the framework covers a lot of different aspects, we also want to present its limitations.

• Behavioural Backward Compatibility - At the beginning of this thesis, addressing be-
havioural backward compatibility was one of the cornerstones. But the investigations
reveal that this is only doable to a certain extent. For stateless deterministic operations, a
response comparison solves that issue. For stateful determinstic it is a bit more compli-
cated, but also feasible. By tracing and re-executing the state changes a response verifi-
cation should be possible. But for non-deterministic operations a behavioural backward
compatibility verification is—by definition—impossible. Hence, the stress of this thesis
had shifted and we focused on other important resilience aspects.

• WSDL driven approach - RESTful Web Services, as a lightweight alternative to SOAP
services, have become popular in recent years. Most of the developed policies and also the
tools are applicable also on RESTful services (except the Java2RWSDL, which would not
make sense because RESTful services do not have a WSDL interface). In case of missing
the Java2RWSDL tool-support, an alternative has to be found to attach the resilience anno-
tations to the RESTful interface. The XML based Web Application Description Language
(WADL) is used to model the resources provided by a HTTP-based web application in a
machine readable manner. Since a RESTful service is a typical implementation of a HTTP
web application, the Resilient Web Service Framework can be extended to also support a
resilient RESTful to a resilient WADL transformation.

• Comments on the capturing of the View Path - Since the process of capturing Web
Service dependencies is using strace to trace system calls a lot of data is generated.
The subsequent processing to gather the context model is very time intensive. For the
PictureService it takes nearly twenty minutes on a moderate computer. Another important
aspects is that the completeness of the dependency collection can not be verified. On the
one hand the quality of the View Path always depends on the quality of the provided demo

69



operations by the service provider. On the other hand, expert knowledge is required for a
critical review of the service’s view path.

• Hardware dependency gathering - The current version of the PMF tool does not extract
hardware dependencies. Utilizing the Linux Hardware Extractor1 developed by the TIM-
BUS project, the PMF tool can be extended to also extract hardware related informations.
Since Web Services are often deployed in virtual environment (like in a PaaS scenario)
hardware changes will not affect the service directly.

1https://opensourceprojects.eu/p/timbus/context-population/extractors/
linux-hw/

70

https://opensourceprojects.eu/p/timbus/context-population/extractors/linux-hw/
https://opensourceprojects.eu/p/timbus/context-population/extractors/linux-hw/


CHAPTER 7
Summary & Outlook

In this thesis we contributed the concept of Resilient Web Services (RWS) aiming to ensure
process continuity. Firstly, we motivated this thesis by focusing on the causes, which force
the problems according to process continuity. Among others, volatile external third party ar-
tifacts are the main reason for process decay [5]. Web Services are a common way to realize
such remote artifacts. However, Web Services are subject to constant functional and behavioural
changes. Such changes can be triggered either by arising business needs and regulations or mod-
ifications in the Web Service dependency stack. To satisfy those needs, Web Service providers
are constantly forced to release updates of an existing service.

As a first step we investigated the reasons for the dynamic nature of Web Services. We
presented the main challenges leading to outdated processes through the volatility of Web Ser-
vices. We investigated the various kind of changes according to Web Service evolution. In the
related work we presented contributions addressing the changes of the Web Service interface by
a proper versioning strategy. Since a proper version strategy does not guarantee resilience, we
investigated further challenges related to RWS. Such challenges are e.g. a resilient dependency
management, a semantic enhanced Web Service interface or a notification support for consumers
in case of an update event has happened. According to those challenges we introduced a frame-
work including a set of requirements to support RWS. Subsequently we derived a policy catalog
out of the requirements. The framework encompasses policies in the following areas:

• Enforcing a resilient versionig strategy

• Adding semantics to the Web Service interface

• Providing provenance enriched Web Service responses

• Testing of the Web Service behaviour

• Identifying and monitoring of Web Service dependencies

• Notifying Web Service consumers on updates

71



To prove the applicability of the framework, we developed the following prototype tools:

• Verification tool - Used to verify the interface backward compatibility based on the previ-
ous source code version of the Web Service.

• Java2RWSDL - Used to transform a Java class to a semantic enhanced version of WSDL.

• Dependency Collection Tool - Used to identify the Web Service View Path.

To demonstrate the capabilities of the Resilient Web Service Framework we presented sce-
narios addressing different aspects of service evolution. The first scenario dealed with a typical
Web Service source code update introduced by the service provider. The second scenario demon-
strated the benefits of the RWS framework according to an update of Web Service dependency
stack. In the last section, we discussed the limitations of the framework.

7.1 Future work

Although we tried to address the most important aspects according to RWS, certain not less
important aspects are missing. Some of them are already mentioned in the chapters above, but
for a more comprehensive view we will present them in this section again. Next to the known
limitations (see section 6.4) of the current version of the framework, a future contribution has to
address the following missing issues to improve the RWS framework:

• Better integration of expert knowledge according to the dependency capturing process.
Since the Web Service dependency identification process utilizes the provided testing
methods, the completeness of the Web Service view path can not be guaranteed. There-
fore, additional expert knowledge would be necessary to verify and adapt the captured
view path. Since the Web Service’s view path is presented as a process context model,
tools like Protege supports the visualization of the dependencies. However, the users of
the framework have to install an additional application.

• Artifacts substitutes. At the moment the framework functionality is lacking of an alter-
native recommendation system for outdated dependencies. In case of the Web Service
depends on an outdated dependency, the accountable resilient provider has to replace that
dependency by a suitable substitute. To find such a substitute, a proper recommendation
system is crucial to ensure Web Service resilience.

• Remote Web Service dependencies. The framework currently does not support the iden-
tification of Web Service’s remote dependencies. We do not inspect the source to detect
such external dependencies. Currently the developed policies only cover the aspect of the
operation lifetime guaranteed by the remote service. One approach to support that issues,
can be e.g. a tool polling the lifetime of the remote service and triggering a notification
in case of an unexpected unavailability of that dependency. A violation of the guaranteed
lifetime can be covered by a SLA.

72



APPENDIX A
Appendix A

A.1 WSDL 2.0 sample

Listing A.1 presents the WSDL 2.0 interface of the The GreatH Web Service. It is the description
of a hypothetical hotel reservation service used as a scenario in the official WSDL2.0 specifica-
tion to promote the features of WSDL2.0.

Listing A.1: WSDL sample
<?xml version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"
targetNamespace="http://greath.example.com/2004/wsdl/resSvc"
xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"
xmlns:ghns="http://greath.example.com/2004/schemas/resSvc"
xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"
xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:wsdlx=
"http://www.w3.org /ns/wsdl-extensions">
<documentation>The GreatH Web service. </documentation>
<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/ XMLSchema"
targetNamespace = "http://greath.example.com/2004/ schemas/resSvc"
xmlns="http://greath.example.com/2004 /schemas/resSvc">
<xs:element name="checkAvailability" type= "tCheckAvailability"/>
<xs:complexType name="tCheckAvailability">
<xs:sequence><xs:element name="checkInDate" type="xs:date"/>
<xs:element name="checkOutDate" type="xs:date"/>
<xs:element name="roomType" type="xs:string"/>
</xs:sequence> </xs:complexType>
<xs:element name="checkAvailabilityResponse" type="xs:double"/>
<xs:element name="invalidDataError" type="xs:string"/>
</xs:schema></types>
<interface name = "reservationInterface" >
<fault name = "invalidDataFault" element = "ghns:invalidDataError"/>
<operation name = "opCheckAvailability"
pattern="http://www.w3.org/ns/wsdl/in-out"

73



style="http://www.w3.org/ns/wsdl/style/iri" wsdlx:safe = "true">
<input messageLabel="In" element="ghns:checkAvailability" />
<output messageLabel="Out" element= "ghns:checkAvailabilityResponse"
/>
<outfault ref="tns:invalidDataFault" messageLabel="Out"/>
</operation></interface>
<binding name="reservationSOAPBinding" interface =
"tns:reservationInterface" type="http://www.w3.org/ns/wsdl/soap"
wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">
<fault ref="tns:invalidDataFault" wsoap:code="soap:Sender"/>
<operation ref="tns:opCheckAvailability" wsoap:mep
="http://www.w3.org/2003/05/soap/mep/soap response"/>
</binding>
<service name="reservationService" interface =
"tns:reservationInterface">
<endpoint name="reservationEndpoint" binding =
"tns:reservationSOAPBinding" address =
"http://greath.example.com/2004/reservation"/>
</service></description>

A.2 WSDL-Temporal sample

Listing A.2 presents a possible WSDL-T interface of the The GreatH Web Service. It is important
to notice, that each WSDL element includes the two additional elements validity and timestamp.

Listing A.2: WSDL-T sample
<?xml version="1.0" encoding="utf-8" ?>
<description xmlns="http://www.w3.org/ns/wsdl"
targetNamespace="http://greath.example.com/2004/wsdl/resSvc"
xmlns:tns= "http://greath.example.com/2004/wsdl/resSvc"
xmlns:ghns="http://greath.example.com/2004/schemas/resSvc"
xmlns:wsoap="http://www.w3.org/ns/wsdl/soap"
xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:wsdlx=
"http://www.w3.org /ns/wsdl-extensions" validity="latest" timestamp

="07/11/2011 16:53:34" >
<documentation> The GreatH WSDL-Temporal Web service.
</documentation><types>
<xs:schema xmlns:xs="..." targetNamespace="..." xmlns="...">
<xs:element name="checkAvailability#1.0.0" type = "
tCheckAvailability#1.0.0" validity="latest" timestamp="07/11/2011
16:53:34" />
<xs:complexType name="tCheckAvailability#1.0.0" validity="latest"
timestamp="07/11/2011 16:53:34" >
<xs:sequence><xs:element name="checkInDate#1.0.0" type="xs:date"
validity="latest" timestamp="07/11/2011 16:53:34" />
validity="latest" timestamp="07/11/2011 16:53:34" />
<xs:element name="roomType#1.0.0" type="xs:string"
validity="latest" timestamp="07/11/2011 16:53:34" />
<xs:element name="numberOfRooms#1.1.0" type="xs:int"
validity="latest" timestamp="17/11/2011 11:23:54" />
<xs:element name="branchHotelName#1.1.0" type="xs:string"

74



validity="latest" timestamp=="17/11/201111:23:54"/>
</xs:sequence> </xs:complexType>
<xs:element name="checkAvailabilityResponse#1.1.0"
type="xs:tCheckAvailabilityResponse" validity="latest" timestamp =
"17/11/2011 11:23:54" />
<xs:complexType name="tCheckAvailabilityResponse#1.1.0"
validity="latest" timestamp="07/11/2011 16 :53:34" >
<xs:sequence><xs:element name="numberOfRooms#1.1.0"
type="xs:int" validity="latest" timestamp="17/11/2011 11:23:54" />
<xs:element name="totalFare#1.1.0" type="xs:string" validity="latest"
timestamp="17/11/2011 11:23:54" />
</xs:sequence> </xs:complexType>
<xs:element name="checkAvailabilityResponse#1.0.0" type= "xs:double"
validity="past" timestamp="07/11/2011 16:53:34" />
<xs:element name="invalidDataError#1.0.0" type="xs:string"
validity="latest" timestamp="07/11/2011 16:53:34" />
</xs:schema> </types>
<interface name="reservationInterface#1.0.0" validity="latest"
timestamp="07/11/2011 16:53:34" >
<fault name = "invalidDataFault#1.0.0" element = "ghns:
invalidDataError#1.0.0" validity="latest" timestamp="07/11/2011
16:53:34" />
<operation name="opCheckAvailability#1.0.0" pattern= "http://www.w3.
org/ns/wsdl/in-out" style= "http://www.w3.org/ns/wsdl/style/iri" wsdlx:safe
= "true" validity="latest" timestamp="07/11/2011 16:53:34" >
<input messageLabel="In" element="ghns:checkAvailability#1.0.0" />
<output messageLabel="Out" element= "ghns:
checkAvailabilityResponse#1.0.0" />
<outfault ref="tns: invalidDataFault#1.0.0" messageLabel="Out"/>
</operation></interface>
<binding name="reservationSOAPBinding#1.0.0" interface = "tns:
reservationInterface#1.0.0" type="http://www.w3.org/ns/wsdl/soap"
wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/"
validity="latest" timestamp="07/11/2011 16:53:34" >
<fault ref="tns:invalidDataFault#1.0.0" wsoap:code="soap:Sender"/>
<operation ref="tns:opCheckAvailability#1.0.0" soap:mep =
"http://www.w3.org/2003/05/soap/mep/soap-response"/>
</binding>
<service name="reservationService#1.0.0" interface = "tns:
reservationInterface#1.0.0" validity="latest" timestamp="07/11/2011
16:53:34" >
<endpoint name="reservationEndpoint#1.0.0" binding="tns:
name="reservationSOAPBinding#1.0.0" address =
"http://greath.example.com/2004/reservation" validity="latest"
timestamp="07/11/2011 16:53:34" />
</service></description>

A.3 WSDL of PictureService

Listing A.3 presents the standard WSDL of the PictureService. It gets automatically generated
from the Java code by deploying the service to an JavaEE application server (e.g. JBoss).

75



Listing A.3: WSDL of the PictureService

<?xml version=’1.0’ encoding=’UTF-8’?><!-- Published by JAX-WS RI at http://
jax-ws.dev.java.net. RI’s version is Metro/2.3 (tags/2.3-7528; 2013-04-29
T19:34:10+0000) JAXWS-RI/2.2.8 JAXWS/2.2 svn-revision#unknown. --><!--
Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI’s version is
Metro/2.3 (tags/2.3-7528; 2013-04-29T19:34:10+0000) JAXWS-RI/2.2.8 JAXWS
/2.2 svn-revision#unknown. --><definitions xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:
wsp="http://www.w3.org/ns/ws-policy" xmlns:wsp1_2="http://schemas.xmlsoap
.org/ws/2004/09/policy" xmlns:wsam="http://www.w3.org/2007/05/addressing/
metadata" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="
http://pictureService.service.resilient.com/" xmlns:xsd="http://www.w3.
org/2001/XMLSchema" xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://pictureService.service.resilient.com/" name="
PictureServiceService">

<types>
<xsd:schema>
<xsd:import namespace="http://pictureService.service.resilient.com/"

schemaLocation="http://wsatvie006:8080/pictureService-1.0-SNAPSHOT/
PictureServiceService?xsd=1"/>

</xsd:schema>
</types>
<message name="convertJpeg2Png">
<part name="parameters" element="tns:convertJpeg2Png"/>
</message>
<message name="convertJpeg2PngResponse">
<part name="parameters" element="tns:convertJpeg2PngResponse"/>
</message>
<message name="PictureServiceException">
<part name="fault" element="tns:PictureServiceException"/>
</message>
<message name="searchImages">
<part name="parameters" element="tns:searchImages"/>
</message>
<message name="searchImagesResponse">
<part name="parameters" element="tns:searchImagesResponse"/>
</message>
<message name="retrieveAlbum">
<part name="parameters" element="tns:retrieveAlbum"/>
</message>
<message name="retrieveAlbumResponse">
<part name="parameters" element="tns:retrieveAlbumResponse"/>
</message>
<message name="retrieveAlbumWithComments">
<part name="parameters" element="tns:retrieveAlbumWithComments"/>
</message>
<message name="retrieveAlbumWithCommentsResponse">
<part name="parameters" element="tns:retrieveAlbumWithCommentsResponse"/>
</message>
<portType name="PictureService">
<operation name="convertJpeg2Png">
<input wsam:Action="http://pictureService.service.resilient.com/

PictureService/convertJpeg2PngRequest" message="tns:convertJpeg2Png"/>

76



<output wsam:Action="http://pictureService.service.resilient.com/
PictureService/convertJpeg2PngResponse" message="tns:
convertJpeg2PngResponse"/>

<fault message="tns:PictureServiceException" name="PictureServiceException"
wsam:Action="http://pictureService.service.resilient.com/PictureService/
convertJpeg2Png/Fault/PictureServiceException"/>

</operation>
<operation name="searchImages">
<input wsam:Action="http://pictureService.service.resilient.com/

PictureService/searchImagesRequest" message="tns:searchImages"/>
<output wsam:Action="http://pictureService.service.resilient.com/

PictureService/searchImagesResponse" message="tns:searchImagesResponse"/>
<fault message="tns:PictureServiceException" name="PictureServiceException"

wsam:Action="http://pictureService.service.resilient.com/PictureService/
searchImages/Fault/PictureServiceException"/>

</operation>
<operation name="retrieveAlbum">
<input wsam:Action="http://pictureService.service.resilient.com/

PictureService/retrieveAlbumRequest" message="tns:retrieveAlbum"/>
<output wsam:Action="http://pictureService.service.resilient.com/

PictureService/retrieveAlbumResponse" message="tns:retrieveAlbumResponse
"/>

<fault message="tns:PictureServiceException" name="PictureServiceException"
wsam:Action="http://pictureService.service.resilient.com/PictureService/
retrieveAlbum/Fault/PictureServiceException"/>

</operation>
<operation name="retrieveAlbumWithComments">
<input wsam:Action="http://pictureService.service.resilient.com/

PictureService/retrieveAlbumWithCommentsRequest" message="tns:
retrieveAlbumWithComments"/>

<output wsam:Action="http://pictureService.service.resilient.com/
PictureService/retrieveAlbumWithCommentsResponse" message="tns:
retrieveAlbumWithCommentsResponse"/>

<fault message="tns:PictureServiceException" name="PictureServiceException"
wsam:Action="http://pictureService.service.resilient.com/PictureService/
retrieveAlbumWithComments/Fault/PictureServiceException"/>

</operation>
</portType>
<binding name="PictureServicePortBinding" type="tns:PictureService">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="

document"/>
<operation name="convertJpeg2Png">
<soap:operation soapAction=""/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
<fault name="PictureServiceException">
<soap:fault name="PictureServiceException" use="literal"/>
</fault>
</operation>

77



<operation name="searchImages">
<soap:operation soapAction=""/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
<fault name="PictureServiceException">
<soap:fault name="PictureServiceException" use="literal"/>
</fault>
</operation>
<operation name="retrieveAlbum">
<soap:operation soapAction=""/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
<fault name="PictureServiceException">
<soap:fault name="PictureServiceException" use="literal"/>
</fault>
</operation>
<operation name="retrieveAlbumWithComments">
<soap:operation soapAction=""/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
<fault name="PictureServiceException">
<soap:fault name="PictureServiceException" use="literal"/>
</fault>
</operation>
</binding>
<service name="PictureServiceService">
<port name="PictureServicePort" binding="tns:PictureServicePortBinding">
<soap:address location="http://wsatvie006:8080/pictureService-1.0-SNAPSHOT/

PictureServiceService"/>
</port>
</service>
</definitions>

Listing A.3 presents the XSD Schema for the in- and output types of the PictureService.
It gets automatically generated from the Java code by deploying the service to the Glassfish
applications server.

Listing A.4: XSD Schema for the in- and output types of the PictureService
<?xml version=’1.0’ encoding=’UTF-8’?><!-- Published by JAX-WS RI at http://

jax-ws.dev.java.net. RI’s version is Metro/2.3 (tags/2.3-7528; 2013-04-29
T19:34:10+0000) JAXWS-RI/2.2.8 JAXWS/2.2 svn-revision#unknown. --><xs:

78



schema xmlns:tns="http://pictureService.service.resilient.com/" xmlns:xs
="http://www.w3.org/2001/XMLSchema" version="1.0" targetNamespace="http
://pictureService.service.resilient.com/">

<xs:element name="PictureServiceException" type="tns:PictureServiceException
"/>

<xs:element name="convertJpeg2Png" type="tns:convertJpeg2Png"/>

<xs:element name="convertJpeg2PngResponse" type="tns:convertJpeg2PngResponse
"/>

<xs:element name="retrieveAlbum" type="tns:retrieveAlbum"/>

<xs:element name="retrieveAlbumResponse" type="tns:retrieveAlbumResponse"/>

<xs:element name="retrieveAlbumWithComments" type="tns:
retrieveAlbumWithComments"/>

<xs:element name="retrieveAlbumWithCommentsResponse" type="tns:
retrieveAlbumWithCommentsResponse"/>

<xs:element name="searchImages" type="tns:searchImages"/>

<xs:element name="searchImagesResponse" type="tns:searchImagesResponse"/>

<xs:complexType name="retrieveAlbumWithComments">
<xs:sequence>
<xs:element name="arg0" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="retrieveAlbumWithCommentsResponse">
<xs:sequence>
<xs:element name="return" type="xs:string" minOccurs="0" maxOccurs="unbounded

"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="PictureServiceException">
<xs:sequence>
<xs:element name="message" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="retrieveAlbum">
<xs:sequence>
<xs:element name="arg0" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="retrieveAlbumResponse">
<xs:sequence>

79



<xs:element name="return" type="xs:string" minOccurs="0" maxOccurs="unbounded
"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="convertJpeg2Png">
<xs:sequence>
<xs:element name="arg0" type="xs:base64Binary" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="convertJpeg2PngResponse">
<xs:sequence>
<xs:element name="return" type="xs:base64Binary" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="searchImages">
<xs:sequence>
<xs:element name="arg0" type="xs:string" nillable="true" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="searchImagesResponse">
<xs:sequence>
<xs:element name="return" type="xs:base64Binary" minOccurs="0" maxOccurs="

unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

A.4 Recommendations for Arifact Versioning in SOA

Table A.4 presents a list of recommendations for artifact version in SOA as presented by No-
vakouski et al. [36]. Each recommendation is assigned to a certain topic. This contribution is
mainly referring to the topics of Service Interface Design, Life-Cycle Policy and Tool Strategies.

Number Topic Recommendation
1 Key Artifacts Place all WSDL documents under version control.
2 Key Artifacts Define data types used in service interfaces in sep-

arate XML schemas, and place them under version
control.

3 Key Artifacts If the development effort for service-oriented sys-
tems includes composite services, consider the doc-
uments that control the composition as key artifacts
and place them under version control.

80



4 Key Artifacts Ensure that the versioning policy contains guidance
for how to handle changes in SOA infrastructure
components.

5 Key Artifacts Identify all metadata that is relevant to service con-
sumers, decide how to document it, and place the
resulting artifacts under version control.

6 Service Interface Design If the service provider will support multiple inter-
faces for a single service, include policies about how
long to support each exposed interface. In addition,
use a naming convention that indicates that these are
all variants of the same interface.

7 Service Interface Design Develop policies for how long to support multi-
ple versions of the same interface that account for
the faster change rates of unique interfaces. Even
though over- loaded interfaces have lower change
rates, place both the interface itself and the schemas
that represent operation input types under version
control.

8 Service Interface Design Consistently with standard software development,
version all key artifacts for internal use. From the
perspective of the external service consumer, version
either the entire service or the individual operation
interfaces, depending on the needs of the potential
consumers. Avoid exposing version information at
a level lower than operation, as that is likely to con-
fuse service consumers.

9 Service Interface Design If a system provides services at different QoS levels,
each with a different service interface, place all ex-
posed interfaces under version control. In addition,
use a naming convention that indicates that these are
all variants of the same interface.

10 Policy Elements Construct a comprehensive naming scheme, includ-
ing version creation thresh- olds, change types, com-
patibility rules, and a scheme for determining the
identi- fication name or number of a new artifact.

11 Policy Elements Describe backward- and forward-compatibility re-
quirements and goals in the versioning policy, as
appropriate to the context. Actively seek backward
com- patibility in service-oriented systems develop-
ment, but realize that forward compatibility is much
more difficult to ensure and may not be feasible.

81



12 Policy Elements Use major and minor version classification to com-
municate compatibility issues to service consumers.
However, do not make it a critical part of a version-
ing policy in SOA environments because it is not ap-
propriate for all contexts.

13 Policy Elements Use basic numeric naming schemes, including ma-
jor/minor designations, for web services. Consider
more complex schemes as the consumer base or ca-
pabilities increase in size.

14 Technology Strategies Use WSDL documents as the backbone of any
service-versioning strategy, and use the namespace
field to differentiate services and interfaces. In
more com- plex environments, extend or annotate
the WSDL format to manage extra in- formation.

15 Technology Strategies Make service design decisions, particularly regard-
ing the use of namespaces, before defining XML-
schema versioning policies.

16 Technology Strategies For composite services, version the composition-
control documents and make them version aware.
With BPEL, use the extensions described by Juric
and colleagues. Otherwise, consult recommended
practices for the selected business-process-engine
technology to enable version awareness.

17 Key Artifacts/ Technol-
ogy Strategies

Place SLA documents under version control. Either
use an ESB infrastructure to provide a standard way
of managing SLA concerns, or investigate custom
solutions for SLA management.

18 Technology Strategies Plan the service infrastructure well in advance to
avoid significant infrastructure change. If possi-
ble, use common open-technology standards to min-
imize the potential impact of infrastructure change.
Architect service-oriented systems in a way that al-
lows the infrastructure to evolve with minimal dis-
ruption to services and consumers.

19 Technology Strategies In all but the most basic service-oriented systems
(i.e., those with a small number of services that have
well-known consumers), use some form of broker
or router to simplify the interface exposed to con-
sumers and enable greater control by the provider.

82



20 Tool Strategies Select a VCS that is sufficiently robust to accom-
modate all the needs of the software development
project. To improve productivity, also select an IDE
that integrates well with the chosen VCS.

21 Tool Strategies In all but the most basic service-oriented systems
(i.e., those with a small num- ber of services that
have well-known consumers), use registries in con-
junction with service repositories to store additional
service metadata and related artifacts. For larger
implementations, use advanced service registry fea-
tures to inform service consumers of changes and
deal with multiple service versions.

22 Technology Strategies If possible, use open web-service standards not only
to support versioning if necessary but also to ensure
compatibility with other systems.

23 Technology Strategies If standard versioning approaches appear to be in-
sufficient for a given service- oriented system, con-
sult current research for ideas about new standards
and methods for extending existing standards.

24 Life-Cycle Policy Align the version-control policy with the organiza-
tion testing strategy.

25 Life-Cycle Policy Use compatibility testing for new versions of a ser-
vice for both backward and forward compatibility to
ensure proper support for consumers.

26 Life-Cycle Policy Explicitly determine how many versions of a service
to support and for how long.

27 Life-Cycle Policy Release early versions of a service to support testing
by service consumers, but manage and name them
consistently to differentiate clearly between test ver-
sions and production versions of a service.

28 Life-Cycle Policy When participating in the construction of a multi-
organizational service-oriented system, write a cod-
ified communication policy about service changes to
ensure the smooth evolution of the system.

29 Life-Cycle Policy Actively provide notification of changes for trans-
parent service interfaces; use passive policies for
opaque service interfaces.

30 Life-Cycle Policy Select update rates based on customer needs and
SLAs, but ensure that the procedure can accommo-
date on-demand changes in critical situations.

31 Life-Cycle Policy Follow a predictable update and deprecation sched-
ule to make change coordination significantly easier.

83



32 Life-Cycle Policy At the end of a service life cycle, manage its retire-
ment process and eliminate all references to the ser-
vice to prevent rogue services.

Table A.1: Recommended Practices for Artifact Versioning in
Service-Oriented Systems (from [36])

84



Bibliography

[1] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990,
pages 1–84, Dec 1990.

[2] Hema Banati, Punam Bedi, and Preeti Marwaha. Extending bpel for wsdl-temporal based
web services. In Proceedings of the 12th International Conference on Hybrid Intelligent
Systems (HIS 2012), pages 484—489, Pune, India, December 2012.

[3] Hema Banati, Punam Bedi, and Preeti Marwaha. WSDL-Temporal: An approach for
change management in Web Services. In Proceedings of the 2nd International Confer-
ence on Uncertainty Reasoning and Knowledge Engineering (URKE 2012), pages 44–49,
Jakarta, Indonesia, August 2012.

[4] Gabriel Bechara. http://www.oracle.com/technetwork/articles/web-services-versioning-
094384.html.

[5] Khalid Belhajjame, Marco Roos, Esteban Garcia-Cuesta, Graham Klyne, Jun Zhao, David
De Roure, Carole Goble, Jose Manuel Gomez-Perez, Kristina Hettne, and Aleix Garrido.
Why workflows break - understanding and combating decay in taverna workflows. In
Proceedings of the 8th IEEE International Conference on E-Science (E-SCIENCE 2012),
pages 1–9, 2012.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American,
284(5):34–43, 2001.

[7] N. Bieberstein, R. Laird, K. Jones, and T. Mitra. Executing SOA: A Practical Guide for the
Service-Oriented Architect. Pearson Education, 2008.

[8] Johannes Binder, Stephan Strodl, and Andreas Rauber. Process migration framework – vir-
tualising and documenting business processes. In Workshop Proceedings of the 18th IEEE
International EDOC Conference (EDOC’14), pages 95–103, Ulm, Germany, September
2014.

[9] David Booth, Hugo Haas, and Francis McCabe. Web service architecture. Technical report,
http://www.w3.org/TR/ws-arch/#whatis, 2004.

85



[10] Vadym Borovskiy, Juergen Müller, Matthieu-Patrick Schapranow, and Alexander Zeier.
Ensuring service backwards compatibility with generic web services. In Proceedings of
the ICSE Workshop on Principles of Engineering Service Oriented Systems (PESOS 2009),
pages 95–98, Vancouver, Canada, May 2009.

[11] Kyle Brown and Michael Ellis. Best practices for web services versioning.
http://www.ibm.com/developerworks/webservices/library/ws-version/, Jan 2004.

[12] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, and W.E. Wong. Code coverage of adaptive
random testing. IEEE Transactions on Reliability, 62(1):226–237, March 2013.

[13] Tsong Yueh Chen, T. H. Tse, and Y. T. Yu. Proportional Sampling Strategy: A Com-
pendium and Some Insights. Journal of Systems and Software, 58(1):65–81, August 2001.

[14] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weerawarana. Web
services description language (wsdl) version 2.0 part 1: Core language. Technical report,
http://www.w3.org/TR/wsdl20/, June 2007.

[15] Steve Cornett. http://www.bullseye.com/minimum.html, 2006.

[16] Dimitris Dranidis, Ervin Ramollari, and Dimitrios Kourtesis. Run-time Verification of
Behavioural Conformance for Conversational Web Services. In Proceedings of the 7th
IEEE European Conference on Web Services (ECOWS 2009), pages 139–147, Eindhoven,
The Netherlands, November 2009.

[17] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2005.

[18] Thomas Erl, Stephen G. Bennett, Benjamin Carlyle, Clive Gee, Robert Laird,
Anne Thomas Manes, Robert Moores, Robert Schneider, Leo Shuster, Andre Tost, Chris
Venable, and Filippos Santas. SOA Governance: Governing Shared Services On-Premise
and in the Cloud (The Prentice Hall Service Technology Series from Thomas Erl). Prentice
Hall, 2011.

[19] Thomas Erl, Anish Karmarkar, Priscilla Walmsley, Hugo Haas, L. Umit Yalcinalp, Kevin
Liu, David Orchard, Andre Tost, and James Pasley. Web Service Contract Design and
Versioning for SOA. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1 edition, 2009.

[20] John Evdemon. Principles of Service Design: Service Versioning.
http://msdn.microsoft.com/en-us/library/ms954726.aspx, August 2005.

[21] Marios Fokaefs, Rimon Mikhaiel, Nikolaos Tsantalis, Eleni Stroulia, and Alex Lau. An
empirical study on web service evolution. In 18th IEEE International Conference on Web
Services (ICWS 2011), pages 49–56, Washington, DC, USA, July 2011.

[22] David Frank, Linh Lam, Liana Fong, Ru Fang, and Manoj Khangaonkar. Using an In-
terface Proxy to Host Versioned Web Services. In Proceedings of the IEEE International
Conference on Services Computing (SCC 2008), pages 325—332, Honolulu, Hawaii, USA,
July 2008.

86



[23] Tom Gruber. Encyclopedia of Database Systems. Springer US, 2009.

[24] Mark Guttenbrunner and Andreas Rauber. A Measurement Framework for Evaluating Em-
ulators for Digital Preservation. ACM Transactions on Information Systems (TOIS 2012),
30(2), March 2012.

[25] Kristina M. Hettne, Katherine Wolstencroft, Khalid Belhajjame, Carole A. Goble, Eleni
Mina, Harish Dharuri, David De Roure, Lourdes Verdes-Montenegro, Julian Garrido, and
Marco Roos. Best practices for workflow design: How to prevent workflow decay. In
Proceedings of Semantic Web Applications and Tools for Live Sciences (SWAT4LS 2012),
Paris, France, November 2012.

[26] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Sebastian
Rudolph, editors. OWL 2 Web Ontology Language: Primer. W3C Recommendation,
11 December 2012. Available at http://www.w3.org/TR/owl2-primer/.

[27] Piotr Kaminski, Hausi Müller, and Marin Litoiu. A design for adaptive web service evolu-
tion. In International Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2006), pages 86–92, Shanghai, China, May 2006.

[28] Alexander Keller and Heiko Ludwig. The WSLA framework: Specifying and Monitoring
Service Level Agreements for Web Services. Journal of Network and Systems Manage-
ment, 11(1):57–81, March 2003.

[29] Heather Kreger. Web services conceptual architecture (wsca 1.0). Technical report, May
2001.

[30] Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and Schahram Dustdar. End-to-
End Versioning Support for Web Services. In Proceedings of the IEEE International Con-
ference on Services Computing (SCC 2008), pages 59–66, Honolulu, Hawaii, USA, July
2008.

[31] Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. How does web service api evolution
affect clients? In Proceedings of the 20th IEEE International Conference on Web Services
(ICWS 2013), pages 300–307, Santa Clara Marriott, CA, USA, June 2013.

[32] Anbazhagan Mani and Arun Nagarajan. Understanding quality of service for web
services. Technical report, http://www.ibm.com/developerworks/webservices/library/ws-
quality, 2002.

[33] Rudolf Mayer, Johannes Binder Stephan Strodl, and Andreas Rauber. Automatic discov-
ery of preservation alternatives supported by community maintained knowledge bases. In
Proceedings of the 11th International Conference on Digital Preservation (iPres 2014),
Melbourne, Australia, October 6–10 2014.

[34] Tomasz Miksa, Rudolf Mayer, and Andreas Rauber. Ensuring sustainability of web ser-
vices dependent processes. International Journal of Computational Science and Engineer-
ing (IJCSE). Accepted for publication.

87

http://www.w3.org/TR/owl2-primer/


[35] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley & Sons,
2004.

[36] Marc Novakouski, Grace Lewis, William Anderson, and Jeff Davenport. Best practices for
artifact versioning in service-oriented systems. Technical report, January 2012.

[37] Mike P. Papazoglou. The challenges of service evolution. In Advanced Information Systems
Engineering, volume 5074 of Lecture Notes in Computer Science, pages 1–15. Springer
Berlin Heidelberg, 2008.

[38] B.P. Rimal, Eunmi Choi, and I Lumb. A taxonomy and survey of cloud computing systems.
In INC, IMS and IDC, 2009. NCM ’09. Fifth International Joint Conference on, pages 44–
51, Aug 2009.

[39] Michael Rosen, Boris Lublinsky, Kevin T. Smith, and Marc J. Balcer. Applied SOA service-
oriented architecture and design strategies. Wiley Publishing, Inc., 2008.

[40] Yogesh Simmhan, Beth Plale, and Dennis Gannon. A Survey of Data Provenance Tech-
niques. Technical Report IUB-CS-TR618. Technical report.

[41] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A survey of data provenance in
e-science. SIGMOD RECORD, 34(3):31–36, September 2005.

[42] Stephan Strodl, Rudolf Mayer, Gonçalo Antunes, Daniel Draws, and Andreas Rauber. Dig-
ital preservation of a process and its application to e-science experiments. In Proceedings
of the 10th International Conference on Preservation of Digital Objects (IPRES 2013),
Lisbon, Portugal, September 2013.

[43] Raymond J. van Diessen. Preservation requirements in a deposit system. Technical re-
port, BM/KB Long-Term Preservation Study Report Series Number 3 Chapter 3, 2002.
http://www.kb.nl/sites/default/files/docs/2-authenticity.pdf.

[44] Elisabeth Weigl, Johannes Binder, Stephan Strodl, Barbara Kolany, Daniel Draws, and An-
dreas Rauber. A framework for automated verification in software escrow. In Proceedings
of the 10th International Conference on Preservation of Digital Objects (IPRES 2013),
Lisbon, Portugal, September 2013.

88


	Motivation
	Setting
	Problem Statement
	Aim of the work
	Structure of the work

	Introduction
	Service-Oriented Architecture (SOA)
	Services (as Web Services)
	Basic Web Service Architecture
	Web Service technology stack

	Web Service classification
	Web Service Life-Cycle (from a software engineering perspective)
	Business Processes (BP)
	SOA Governance
	Service-level Agreement (SLA)
	Provenance enhanced Web Services
	Commit Hooks in a Version Control System
	Compatible Web Service evolution 
	View Path concept
	Service Models
	The Semantic Web
	The concept of ontologies
	Web Ontology Language (OWL)


	Challenges of Web Service evolution
	Challenges of Web Service evolution
	Addressing Web Service evolution by versioning
	Summary of Web Service versioning approaches

	Resilient Web Service Framework
	The PictureService
	Requirements for a Resilient Web Service
	Versioning policy
	Provenance aware computation
	Enhance semantics of the Web Service interface
	Sandbox for Web Service operation executions
	Provide proper source code testing methods
	Provide operations in sandbox mode

	Web Service dependency management
	Capture dependencies
	Propagation of dependency changes

	Remote Web Service dependencies
	Summary of the Resilient Web Service Framework

	Resilient Web Service Framework Tools
	Resilience annotations
	Functional compatibility verification tool
	Java2RWSDL converter
	Provenance enriched SOAP header
	Capture Web Service's View Path
	Resilient Web Service Framework at a glance

	Proof of concept & Demonstration
	Transforming an existing Web Service into a RWS
	Setup of the Resilient Web Service Framework

	Adding a new resilient operation results in new a minor release
	PaaS updates ImageMagick via the package manager
	Limitations of the Resilient Web Service Framework

	Summary & Outlook
	Future work

	Appendix A
	WSDL 2.0 sample
	WSDL-Temporal sample
	WSDL of PictureService
	Recommendations for Arifact Versioning in SOA

	Bibliography

