
On Supporting the Development
of Answer-Set Programs

using Model-driven
Engineering Techniques

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

European Master in Computational Logic

eingereicht von

Paula-Andra Busoniu
Matrikelnummer 1128272

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: a.o. Univ.-Prof. Dr. Hans Tompits
Mitwirkung: Jörg Pührer

Wien, 20.07.2013
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit

Paula-Andra Busoniu
Lienfeldergasse 60C 16-17, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

First of all, I would like to express my sincere and deepest gratitude to my advisor, a.o. Univ.-
Prof. Dr. Hans Tompits, for his continuous guidance, patience, and support.

Furthermore, I am especially grateful to Jörg Püh́rer and Johannes Oetsch who have always
provided meaningful inputs, feedback, and suggestions about this work.

I would also like to thank my parents, for their financial and moral support without which I
would have never been able to finish this thesis.

iii

Abstract

Answer-set programming (ASP) is an approach for declarative problem solving with roots in the
areas of logic programming and knowledge representation. Due to its expressive power and the
availability of efficient solvers, it has been successfully applied in several different fields such as
knowledge representation and reasoning, constraint satisfaction problems, planning, diagnosis
and semantic-web reasoning. Furthermore, in the last years, it was also exploited in the devel-
opment of industrial applications.

As a result of its growing popularity, besides the theoretical issues and the implementation
and improvement of ASP solvers, methodologies and engineering tools to assist the program-
mer during the development process have also become the focus of ASP research. Although it is
widely viewed that answer-set programs are specifications of themselves, producing answer-set
programs is not always straightforward. Another problem of answer-set programs is the tradi-
tional visualisation of answer sets in a textual manner, which makes the extraction of relevant
information a tedious task, particularly for large interpretations. Graphical representations are
easier to understand and well-established model-driven engineering techniques and technologies
are especially helpful in guiding the ASP development process by graphical models, starting
from modelling the problem domain and ending at the visualisation of problem solutions.

In this thesis, we address the issue of the usage of graphical models for the automation of
ASP code generation and for the representation of answer sets. The proposed graphical model-
ling environment is a round-trip tool that provides the user with a graphical editor to represent
the problem domain using a subset of the UML class diagram. From the model, a description
of an ASP language signature (predicates, arities, types, and meaning of the argument terms) is
automatically generated. The signature, together with the constraints of the domain, is expressed
in Lana, a meta-language for annotating answer-set programs. Based on the signature in Lana,
the programmer proceeds to develop ASP encodings.

After computing the answer sets of the answer-set program, the user is able to visualise the
problem solutions by means of UML object diagrams. Violations of constraints in the solu-
tions can be seen either by checking for certain error-indicating atoms in answer sets or can be
visualised directly in the graphical representation of the solution.

v

Kurzfassung

Antwortmengen-Programmierung (engl., “answer-set programming” - ASP) ist ein Ansatz für
deklaratives Problemlösen mit Wurzeln in den Bereichen der Logik-Programmierung und Wis-
sensrepräsentation. Aufgrund seiner Ausdruckskraft und der Verfügbarkeit effizienter Solver
wurde es erfolgreich in verschiedenen Bereichen eingesetzt, etwa in der Wissensrepräsenta-
tion und dem logischen Schließen, für Constraint Satisfaction Probleme, Planungs- und Dia-
gnoseprobleme, sowie für das Semantische Web. Darüber hinaus wird es auch in industriellen
Anwendungen verwendet.

Als Folge der wachsenden Popularität von ASP hat sich der Schwerpunkt der Forschung
in diesem Gebiet von theoretischen Fragen sowie der Umsetzung und Verbesserung von Sol-
ver Technologie zu Fragen der Methodik und der Bereitstellung von Entwicklungswerkzeugen
verschoben, um den Programmierer bei der Entwicklung zu unterstützen. Obwohl, allgemein
betrachtet, Antwortmengen-Programme als Spezifikationen ihrer selbst angesehen werden kön-
nen, ist ihre Erstellung nicht immer einfach. Ein weiteres Problem im Umgang mit ASP ist, daß
Antwortmengen üblicherweise in Textform dargestellt werden, was die Extraktion relevanter In-
formationen, insbesondere für große Mengen, erschwert. Grafische Darstellungen sind leichter
zu verstehen, und etablierte modellbasierte Entwicklungstechniken und -technologien sind be-
sonders hilfreich für den ASP Entwicklungsprozess mittels grafischer Modelle, beginnend von
der Modellierung des Problembereiches und endend mit der Visualisierung von Problemlösun-
gen.

In dieser Masterarbeit geht es um den Einsatz von grafischen Modellen für die Automatisie-
rung von ASP Code-Generierung und der Darstellung von Antwortmengen. Die vorgeschlagene
grafische Modellierungsumgebung umfasst ein umfangreiches Tool mit einem grafischen Editor
zur Darstellung eines Problems mittels eines Fragmentes des UML Klassendiagramms. Aus dem
Modell wird eine Beschreibung einer ASP Sprachsignatur automatisch generiert. Die Signatur,
zusammen mit den Einschränkungen der Domäne, werden in Lana, einer Annotationsprache für
ASP, beschrieben. Basierend auf der Signatur in Lana kann der Programmierer den ASP Code
entwickeln.

Nach der Berechnung der Antwortmengen eines Programms kann der Benutzer die Problem-
lösung mit Hilfe von UML Objekt-Diagrammen visualisieren. Die Verletzung von Regeln in den
Lösungen können entweder durch Überprüfen bestimmter Atome in Antwortmengen oder direkt
in der graphischen Darstellung der Lösung erkannt werden.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Overview of our Results . 2
1.4 Structure of the Thesis . 4

2 Preliminaries 5
2.1 Answer-Set Programming . 5

2.1.1 clasp and gringo . 8
2.1.2 The DLV System . 10
2.1.3 The Integrated Development Environment SeaLion for ASP 12
2.1.4 The Annotating Language Lana . 13

2.2 Model-Driven Engineering . 15
2.2.1 Unified Modelling Language . 15

2.2.1.1 Class Diagrams . 16
2.2.1.2 Object Diagrams . 18

3 Problem Domain Modelling for ASP 21
3.1 Relevant UML Class Diagram Features . 22

3.1.1 Formal Description . 23
3.2 Translation of UML Class Diagrams to ASP 28

3.2.1 Preprocessing the UML Class Diagram 28
3.2.2 Mapping the UML Class Diagram to ASP 34
3.2.3 DLV Modifications . 50

3.3 Chapter Summary . 53

4 Visualising the Problem Solutions 55
4.1 The Modified UML Object Diagram . 55

4.1.1 Formal Description . 56
4.2 Mapping the Problem Solution to a UML Object Diagram 60

4.2.1 Collecting the Instances, Relationships, and Generalisations from an
Answer Set . 61

4.2.2 Adding Instances and Links . 68

ix

4.3 Chapter Summary . 75

5 Implementation 77
5.1 Graphical Editors in Eclipse using the Graphical Modelling Framework 77
5.2 Architecture . 78
5.3 UML Class Diagram Editor . 80
5.4 The Automatic Translation of UML Class Diagrams to ASP 82
5.5 UML Object Diagram Editor . 85
5.6 The Automatic Translation of Interpretations to UML Object Diagrams 88
5.7 Chapter Summary . 89

6 Example 91

7 Conclusions and Related Work 99

Bibliography 101

x

CHAPTER 1
Introduction

1.1 Motivation

Answer-set programming (ASP) is an approach for declarative problem solving with roots in the
areas of logic programming and knowledge representation. Due to its expressive power and the
availability of efficient solvers, it has been successfully applied in several different fields such as
knowledge representation and reasoning [5], constraint satisfaction problems [3], planning [11,
28], diagnosis [4], and semantic-web reasoning [13]. Furthermore, in the last years, it was also
exploited in the development of industrial applications [7].

As a result of its growing popularity, the focus of ASP research has currently switched from
theoretical issues and the implementation and improvement of ASP solvers towards the de-
velopment of methodologies and engineering tools to assist the programmer during the coding
process. Although it is widely viewed that answer-set programs are specifications of themselves,
producing answer-set programs is not always straightforward. Another problem of answer-set
programs is that answer sets are usually represented in a textual manner, which makes the ex-
traction of relevant information a tedious task, particularly for large interpretations. A more con-
venient form of representing answer sets is in a graphical fashion, for which different tools have
already been developed in the ASP literature, like the Kara system [27]. The latter approach is
part of SeaLion [33], an integrated development environment (IDE) developed in conjunction
of an ongoing research project on methods and methodologies for developing answer-set pro-
grams [32]. SeaLion incorporates several features known from IDEs for other programming
languages, like a debugging component or a documentation generator, ASPDoc, which allows
the automatic generation of source-code documentation, in a fashion similar to JavaDoc, based
on the Lana annotation language [10]. SeaLion and ASPDoc will be discussed in more detail
in Sections 2.1.3 and 2.1.4, respectively.

In this thesis, we follow the graphical visualisation method but by using techniques and
technologies from model-driven engineering [30] for supporting the development of answer-set
programs. The main focus of model-driven engineering are domain models, at different levels
of abstraction, with the purpose of increasing the efficiency by raising the level of abstraction,

1

and eliminating the errors by using automatic model transformations. In the approach proposed
in this thesis, the model-driven engineering methodology is used to guide the ASP development
process by graphical models, starting from modelling the problem domain and ending at the
visualisation of problem solutions. More specifically, UML class and object diagrams1 [17] are
used in the automation of ASP code generation and the representation of answer sets.

Our goal is to adapt programming tools used in model-driven engineering which had an
impact in other paradigms. We believe that the techniques and technologies employed by this
approach would improve the quality of the development process and would also attract the less
experienced users towards ASP. Furthermore, the use of graphical models and ASPDoc ensures
an improved documentation, minimising at the same time the effort needed to realise it.

1.2 Related Work

The implementation of tools for easing the encoding process of answer-set programs has been
investigated in recent years. Besides SeaLion, major progresses have been realised in terms of
IDEs for core ASP languages such as APE [38], ASPIDE [16], and iGROM [25]. The features
implemented in the IDEs include highlighting, autocompletion, annotations used to spot the
errors, quick fixes, dynamic code templates, and debugging. In addition, VisualASP [15] and
ASPIDE use graphical representations to express ASP concepts, such as dependency graphs.

The visualisation of solutions is also possible in different systems such as ASPVIZ [34],
IDPDraw [24], and Kara [27] (the latter also supports the visual editing of interpretations).

Concerning the use of models to support the design of answer-set programs, the first step in
this direction has been realised by VIDEAS [31]. However, the approach used in VIDEAS is
different from the work presented in this thesis, starting with the fact that VIDEAS automatically
generates ASP code, not only the signatures of the programs. Furthermore, instead of using
UML class diagrams, VIDEAS uses ER diagrams [35] to describe the domain model. The two
main advantages of using UML class diagrams are their concise graphical representation which
was proven to be more comprehensible [9] and the possibility to integrate them with other UML
models, such as UML object diagrams.

1.3 Overview of our Results

The results described in this thesis include, on the one hand, a theoretical framework describing
the translation of UML class diagrams to ASP signatures and the representation of answer sets
as UML object diagrams, and, on the other hand, a practical implementation, developed in Java.
The final outcome is an Eclipse plugin integrated with SeaLion.

The overall work cycle our approach is depicted in Figure 1.1. A user, who does not re-
quire knowledge about ASP, is provided with a graphical modelling environment that allows to
represent the problem domain using a subset of a the UML class diagram. From the model, a de-
scription of an ASP language signature (predicates, arities, types, and meaning of the argument
terms) is automatically generated. The signature, together with the constraints of the domain,

1“UML” is short for Unified Modelling Language.

2

Figure 1.1: The workflow of the encoding process.

are expressed in Lana [10], a meta description language for ASP. The constraints (primary key
constrains for instances, cardinality constraints for associations, and completeness or disjoint-
ness constraints for generalisations) are expressed as assertions. Based on the signature in Lana,
the programmer proceeds to develop ASP encodings.

After computing the answer sets of the answer-set program, the user is able to visualise
the problem solutions by means of UML object diagrams. Violation of constraints in the solu-
tions can be seen either by checking for certain error-indicating atoms in answer sets or can be
visualised directly in the graphical representation of the solution.

For the implementation of the two graphical editors (namely, the UML class diagram and
UML object diagram editors), the technologies provided by the Eclipse Modelling Framework
(EMF) [37] and the Graphical Modelling Framework (GMF) [22] are used. The graphical mod-
els created using GMF are stored in Ecore XML models and are accessible by EMF libraries,
which are required for the creation and manipulation of the diagrams.

SeaLion offers support for the languages of DLV and Gringo to a large extent and the
possibility to use external solvers. The resulting answer sets can be parsed by the IDE and
displayed as expandable tree structures in a dedicated Eclipse view for interpretations. Starting
from there, the user can invoke the program to choose the interpretation (or a fragment of the
interpretation) he or she wants to visualise. For this step, the Ecore XML model representing
the UML class diagram must be provided as a blueprint for the instance model.

The most important aspect of the system is the strong connection between the designing and
the visualisation phases of the encoding process, allowing the user to visualise the solutions in

3

terms of the initial specifications of the problem.
In addition, both Gringo [18] and DLV [6] languages are supported and a certain amount

of customisation in the code generation is allowed.

1.4 Structure of the Thesis

In Chapter 2, we present a concise background about answer-set programming and model-driven
engineering. Afterwards, in Chapter 3, we offer a formal translation from UML class diagrams
to ASP and in Chapter 4 we discuss the mapping of answer sets to UML object diagrams in the
context of the initial UML class diagram. Chapter 5 gives an overview about the implementation,
and we conclude in Chapter 7, in which we also discuss possible future developments.

4

CHAPTER 2
Preliminaries

2.1 Answer-Set Programming

Answer-set programming (ASP) is an approach for declarative problem solving with roots in the
areas of logic programming and knowledge representation.

Definition 1. An alphabet (for logic programs) is a triple A = 〈P,V, C〉, where P is a finite
non-empty set of predicate symbols, V is a set of variables, and C is a non-empty set of constant
symbols. An arity n ∈ N is assigned to each predicate symbol.

By convention, the notation for the predicate p with arity n is p/n. In addition, predicate
symbols are denoted by strings starting with a letter, variables are denoted by strings starting
with a capital letter, and constants are denoted by numbers or strings starting with a lower case
symbol.

Definition 2. Let A = 〈P,V, C〉 be an alphabet. The elements of C ∪ V are called terms. A
ground term is a constant. An atom over A is a string of the form p(t1, . . . , tn), where p/n ∈ P
and {t1, . . . , tn} ⊆ C ∪ V . A negated atom over A is an expression of form not a, where a
is an atom over A and not is called default negation. A literal over A is either an atom or a
negated atom over A.

Definition 3. The set of ground atoms over a set A of predicates and a set C of constants is
given by

BA,C = {p(c1, . . . , cn) | p/n ∈ A, {c1, . . . , cn} ⊆ C}.

Definition 4. A (disjunctive) rule over A is an ordered pair of the form

h1 | . . . | hk :− b1, . . . , bn,not bn+1, . . . ,not bm, (2.1)

where h1, . . . , hk, b1, . . . , bn, bn+1, . . . , bm are atoms over A.

For a rule r of form (2.1), the following notation is introduced:

5

• head(r) = {h1, . . . , hk} is the head of r,

• body(r) = {b1, . . . , bn,not bn+1, . . . ,not bm} is the body of r,

• body+(r) = {b1, . . . , bn} is the positive body of r, and

• body−(r) = {bn+1, . . . , bm} is the negative body of r.

Definition 5. A rule r of form (2.1) is non-disjunctive if k ≤ 1, normal if k = 1, positive if
body−(r) = ∅, a fact if body(r) = ∅, and ground if r contains no variable. Furthermore r is
safe if every variable occurring in head(r) ∪ body−(r) also occurs in body+(r).

For facts, we usually omit the symbol “ :−”.

Definition 6. A disjunctive logic program, or simply a program, is a finite set of safe rules.

Defining the programs only over safe rules guarantees that no additional constants come into
play during the evaluation of a program.

Definition 7. A non-disjunctive (resp., normal, positive) program (over A) is a program (over
A) for which every rule in the program is non-disjunctive (resp., normal, positive).

Definition 8. Let e be either a rule or a program. Then,

• Pe is the set of all predicate symbols occurring in e,

• Ve is the set of all variables occurring in e, and

• Ce is the set of all constants occurring in e.

Definition 9. An interpretation I over A is a set of ground atoms over A.

Definition 10. An interpretation I over A satisfies a ground atom a if a ∈ I . In this case,
we write I |= a. If I does not satisfy a, we write I 6|= a. Furthermore, I satisfies not a,
symbolically I |= not a, if I 6|= a. I satisfies a set of atoms if I satisfies every atom in the set.

Definition 11. An interpretation I over A is a model of a ground rule r if I |= body+(r) and
I ∩ body−(r) = ∅ implies head(r) ∩ I 6= ∅. In this case, we write I |= r.

The intuition behind an interpretation I is that I represents an assumption about what is true
and what is false.

Definition 12 ([19]). The reduct of a ground program Π with respect to an interpretation I is
the positive program

ΠI = {head(r) :− body+(r) | r ∈ Π, I ∩ body−(r) = ∅}.

Definition 13. An interpretation I over A is a stable model (or answer set) of a disjunctive
ground program Π if I is a minimal model of the reduct ΠI , that is, if

6

• I |= Π and

• for each J ⊂ I, J 6|= ΠI .

Until now, we have only introduced a way to determine the answer sets of ground programs.
In order to define the answer sets of a non-ground program, we need an additional step in which
the program is transformed into a ground program.

Definition 14. The Herbrand universe of a program Π over A = 〈P,V, C〉 is the set

HU(Π) =
{
CΠ, if CΠ 6= ∅,
{c}, otherwise, with c an arbitrary constant in C.

Definition 15. The Herbrand base of a program Π is the set

HB(Π) = BPΠ,HU(Π).

Definition 16. A substitution over A is a partial function θ : V → C ∪ V mapping variables to
terms. Furthermore, if, for each v ∈ V , θ(v) ∈ C, θ is called grounding.

Definition 17. Let e be an expression (i.e., an atom, set of atoms, rule, or program) over A =
〈P,V, C〉. Then, eθ is the expression resulting from e by replacing every variable v ∈ V in e
by θ(v).

Definition 18. The grounding of a rule r over a set C of constants is the set of ground rules

Gr,C = {rθ | θ : Vr → C}.

The grounding of a program Π over a set C of constants is the ground program

GΠ,C =
⋃
r∈Π

Gr,C .

Finally, the grounding of a program Π is the ground program

GΠ = GΠ,HU(Π).

Definition 19. An interpretation I of a program Π is an answer set of Π if I is an answer set
of GI

Π.

Note that an answer set of a non-ground program Π is a subset of the Herbrand base of Π.
The set of all answer sets of a program Π is denoted by AS (Π). If AS (Π) = ∅, then Π is

inconsistent, otherwise Π is consistent.
By restricting the answer sets to the minimal models, the atoms that are not present in the

head of any rule cannot be present in an answer set. Intuitively, every atom in an answer set
needs a justification, i.e., an atom cannot be true if there is no rule deriving it. Therefore, all the
facts of a program are present in all its answer sets. On the other hand, constraints are used to
eliminate solution candidates which do not fulfil certain conditions.

Programs may have zero, one, or more answer sets, as illustrated next.

7

Example 1. Consider the programs Π1, Π2, and Π3:

Π1 = {p :− not p},
Π2 = {p | q}, and
Π3 = {p | q,

p :− q,
q :− p}.

Their answer sets are given as follows:

AS (Π1) = ∅,
AS (Π2) = {{p}, {q}}, and
AS (Π3) = {{p, q}}.

A system used for computing answer sets is an ASP solver. Although the syntax of the
disjunctive rules is the same in any system, the solvers provide additional features, such as built-
in arithmetic constants, which introduce new syntactic elements. The use and meaning of these
new features differ from solver to solver. There exist many efficient solvers, but we will only
discuss two of them, namely clasp [18] and DLV [6], focusing on the differences in the syntax
of the additional elements used in the implementation.

2.1.1 clasp and gringo

We will not discuss all the specifics of the clasp and gringo system, but only the additional
elements used later on—comments and aggregates. The gringo syntax allows two types of
comments—line comments and block comments. A line comment starts with “%”; block com-
ments are represented between “%*” and “*%”.

Definition 20. An aggregate function (in gringo) is an operation over multisets of weighted
literals. An aggregate atom has the following form:

l op [L1 = w1, . . . , Ln = wn] u,

where l and u are the lower and upper bound, respectively, op is an aggregate function, and
[L1 = w1, . . . , Ln = wn] is a multiset of weighted literals.

Intuitively, the aggregate predicate is evaluated to true if the result of op over the multiset of
weights of the true literals is between the bounds l and u (inclusively). Among other aggregate
functions, gringo supports the aggregate #sum which returns the sum of weights.

We are particularly interested in the aggregate function #count:

l #count{L1, . . . , Ln} u.

Informally, it is defined as being equivalent with the aggregate #sum with all the weights over
the literals set to 1 [18]. The aggregate counts the number of different literals in the multiset
{L1, . . . , Ln}.

8

A more compact notation of this aggregate predicate is

l {L1, . . . , Ln} u.

We formally define the satisfaction of aggregate atoms under an interpretation next. For this
purpose, the grounding of rules has to be reconsidered.

Definition 21. A variable X is local in an aggregate if it occurs in at least one literal in the
aggregate but not in any other non-aggregate atom outside the brackets (but it can occur in any
other aggregate inside the same rule). A variable is global with respect to a rule if it occurs in at
least one non-aggregate atom.

The set of global variables of a rule r is denoted by Vgr .
Literals in the aggregates can contain constants, local variables, and global variables. Fur-

thermore, the limits must not be present. When the lower limit is not present, it is considered to
be 0. When the upper limit is not present, only the lower limit is considered.

Definition 22. In presence of aggregates, the grounding of a rule r over a set C of constants is
given by

Gr,C = {rθ | θ : Vgr → C and for every bound l of an aggregate atom, lθ ∈ N}.

The grounding of a program contains only rules without global variables and the lower and
upper bound of all the aggregate atoms are integers.

Definition 23. An aggregate atom

l #count{L1 = w1, . . . , Ln = wn} u,

containing only local variables, is satisfied by an interpretation I over A, symbolically

I |= l #count{L1 = w1, . . . , Ln = wn} u,

if l ≤| S |≤ u, where S is the set defined as follows:

S =
⋃

i=1,...,n

{Liθ | ∃θ : V → C, I |= Liθ}.

The following example shows the semantics of the aggregate predicate #count in clasp:

Example 2. Consider the program

Π = {r1 = p(a),
r2 = p(b),
r3 = p(c),
r4 = l(a, b),
r5 = l(a, c),
r6 = l(b, c),
r7 = int(0),
r8 = int(X) :− int(X), X < 10, N = X + 1,
r9 = g(X,N) :− p(X), N {l(X,Y)} N, int(N),
r10 = no(N) :− N {l(X,Y)} N, int(N),
r11 = sum(N) :− N #sum [g(X,Y) = Y] N, int(N)}.

9

Due to the presence of the rules r7 and r8, any answer set includes the ground atoms int(0), . . . ,
int(10). Rule r9 ensures that a ground atom g(X,N)θ, where θ is a grounding, is present in an
answer set I if p(X)θ ∈ I , and the cardinality of the set

{l(Xθ, t) | there is some t ∈ CΠ such that l(Xθ, t) ∈ I}

is Nθ. Rule r10 ensures that no(n) ∈ I if the number of ground atoms corresponding to
the atoms l(X,Y) and p(X) present in I is equal to n. Furthermore, rule r11 ensures that
sum(n) ∈ I if n =

∑
g(X,i)∈I i. The single answer set is given by

AS (Π) = {{int(0), . . . , int(10),
p(a), p(b), p(c), l(a, b), l(a, c), l(b, c), g(a, 2), g(b, 1), g(c, 0),no(3), sum(3)}}.

2.1.2 The DLV System

DLV [6] is a deductive database system, based on disjunctive datalog. Unlike gringo, DLV does
not allow block comments. Another difference is that the aggregate function #count has a
different syntax and, even more, a different semantics.

Definition 24. An aggregate function (in DLV) is of the form fS, where f is a function name
among #count, #min, #max, #sum, and #times, and S is called symbolic set and has the
syntax

{V1, . . . , Vn : L1, . . . , Lm},

where V1, . . . , Vn are local variables and L1, . . . , Lm are non-aggregate literals.

Literals in the aggregate constants can contain constants and local and global variables.

Definition 25. An aggregate atom (in DLV) is of the form

Lg ≺1 fS ≺2 Rg,

where f(S) is an aggregate function, ≺1,≺2 ∈ {=, <,<=, >,>=}, and Lg and Rg (called left
guard and right guard, respectively) are terms.

In the context of aggregates, the safety condition for a rule has to be reconsidered.

Definition 26 ([14]). A rule r is safe if the following conditions hold:

1. Each global variable of r appears in a positive standard literal in body+(r).

2. Each local variable of r that appears in a symbolic set {Vars : Conj} also appears in a
positive literal in Conj .

3. Each guard of an aggregate atom of r is either a constant or a global variable.

10

In DLV, #count is an aggregate function, returns a number, and has the syntax

#count S,

where S is a symbolic set.
The grounding of a rule in this context is defined the same as in gringo (see Definition 22).

Definition 27. The result of the aggregate function

#count{V1, . . . , Vn : L1, . . . , Lm}

containing only local variables is defined over the interpretation I as the cardinality of the fol-
lowing set

{〈V1θ, . . . , Vnθ〉 | θ : V → C, I |= {L1, . . . , Lm}θ}.

Another aggregate function needed in the encoding is #sum, which also returns a number
and has the syntax

#sum S,

where S is a symbolic set.
The aggregate function #sum returns the sum of the first local variable from the symbolic

set.

Definition 28. The result of the aggregate function

#sum{V1, . . . , Vn : L1, . . . , Lm}

containing only local variables is defined over the interpretation I as the sum of the elements in
the set

{v1|〈v1, . . . , vn〉 ∈ SS},
where

SS = {〈V1θ, . . . , Vnθ〉 | θ : V → C, I |= {L1, . . . , Lm}θ}.

Example 3. Consider the following program:

Π = {p(a),
p(b),
p(c),
l(a, b),
l(a, c),
l(b, c),
g(X,Z) :− p(X),#count{Y : l(X,Y)} = Z,
no(Z) :− #count{X,Y : l(X,Y), p(X)} = Z,
sum(Z) :− #sum{Y,X : g(X,Y)} = Z}.

Then, we have that

AS (Π) = {{p(a), p(b), p(c), l(a, b), l(a, c), l(b, c), g(a, 2), g(b, 1), g(c, 0),no(3), sum(3)}}.

The difference in the semantics of the aggregate #count between clasp and DLV is under-
lined by the necessity of rules r7 and r8 in Example 2 in order to obtain the same answer set as
in Example 3.

11

Figure 2.1: SeaLion.

2.1.3 The Integrated Development Environment SeaLion for ASP

SeaLion [33] is an integrated development environment for ASP built as a plugin on top of
Eclipse (see Figure 2.1), providing an API framework that can be used in the development of
new features.

It supports both DLV and gringo to a large extent and includes two source-code editors
which offer syntax highlighting—one for gringo and one for DLV. The files with the extension
“.lp”, “.lparse”,“.gr”, or “.gringo” are opened by default in the gringo editor, while
the files with the extension “.dl” or “.dlv” are opened by default in the DLV editor. However,
the user can choose any editor to open a file, independently of its extension. For solving an
answer-set program, SeaLion allows the user to add external solvers.

The answer sets of a program can be visualised either in the Eclipse’s console view or in an
interpretation view, as expandable trees of depth 3. The root node of the tree is the interpretation
itself and is marked as “I”. The leaves of the tree are the ground atoms present in the answer set.

12

The atoms over the same predicate p are grouped together as children of the node marked with
the predicate name, followed by its arity. Besides providing a better visualisation of answer sets,
the interpretation view also represents a starting point in the development of answer-set tools
which use interpretations. Furthermore, using the drag and drop feature, an interpretation can be
represented in the file opened in the editor as a program containing only facts.

SeaLion supports Eclipse features such as Eclipse annotations in order to report problems.
Moreover, refactoring of answer-set programs is supported—in particular, the uniform and safe
renaming of ASP elements. Another feature implemented in SeaLion is the possibility to visual-
ise answer-set programs in the Eclipse’s Project Explorer as a tree representation, with predicates
as nodes. Clicking on a node allows the user to visualise the corresponding source code in the
file. Other features under development include debugging, autocompletion, and quick fixes for
source-code problems.

2.1.4 The Annotating Language Lana

Lana (short for “Language for ANnotating Answer-set programs”) [10] is an annotation lan-
guage for structuring, documenting, and testing answer-set programs. Lana annotations are
given in the comments of the program, which makes them invisible to ASP solvers. To distin-
guish them from other comments, an extra “*” is added after “%” at the beginning of a line.

Lana’s two main tools are ASPDoc and ASPUnit, which are inspired by JavaDoc and JUnit,
respectively. ASPDoc is a documentation tool, which takes annotated ASP code and produces
HTML files as output. The ASPDoc generator can be accessed through the export menu of
Eclipse. ASPUnit is an implementation of a unit-testing framework.

The keywords in Lana normally start with the symbol @. Grouping the rules in blocks is
the central feature of Lana. Blocks are introduced using the keyword @block followed by
an optional name and the opening bracket “{”. The rules and all the other ASPDoc elements
between “{” and “}” belong to this block. Blocks can be nested, but they must not overlap.
This grouping has no semantic meaning; its purpose is solely to document the fact that some
rules belong together. Among other features, Lana allows the user to specify the signature of
the predicates in an answer-set program. The name of a predicate, together with its arity, is
introduced by the keyword @atom. Furthermore, for testing purposes, the keywords @input
and @output are used to specify that certain atoms represent input or output atoms for a block,
respectively.

Further information about the arguments of the predicates and their domains are introduced
by the keyword @atom. This may allow automatic verification of type violations.

ASPUnit allows the formulation of unit tests for single blocks. Certain keywords are used
to introduce different assertions, such as pre-, post-, and general conditions. Every assertion
belongs to a block and is formulated in ASP. An assertion contains one of the keywords always
or never followed by a set of ground atoms. The assertion holds if all the ground atoms after
always and the negation of the atoms after never are entailed by the rules in the assertion
combined with a set of predicates.

A precondition is assumed to hold for the input predicates, a postcondition is assumed to
hold for the output predicates, and a general assertion is assumed to hold for all predicates, be
them input, output, or unspecified predicates.

13

Table 2.1: Overview of Lana Elements.
Element Definition Informal Description
block block | atom | term | input Lana elements related to blocks.

element signature | output signature |
precondition | postcondition

block “@block” name “{” Groups ASP rules into coherent parts.
[description] {block element}
[ASP code] “}”

atom “@atom” name “(”termList“)” Defines a predicate; termList are the
[description] predicate’s arguments.

term “@term” name Declares a term from some atom term
[description] [type] list, its meaning, and type information.

type “@from” groundTerms | Type of a term is defined by a list of
“@with” ruleBdy | ground terms, the terms satisfying
“@samerangeas” term ruleBdy, or as the type of another term.

input “@input” inputPredicates | Declares input predicates of a block as a
signature “@requires” inputPredicates list of name/arity pairs.
output “@output” outputPredicates | Declares output predicates of a block as a

signature “@defines” outputPredicates list of name/arity pairs.
assertion “@assert” name “{” A logical condition for answer sets.

[description] assertspec “}”
pre- “@precon” name “{” A logical condition for the inputs of a

condition [description] assertSpec “}” block.
post- “@postcon” name “{” A logical condition for the answer sets

condition [description] assertspec “}” of a block.
assertspec (“@always” | “@never”) atmList The testmode for assertions, preconditions

[embASPcode] and postconditions; embASPcode is code
within the Lana comment environment.

A summary of the elements in Lana is presented in Table 2.1.
In order to exemplify the Lana annotations, we extract an example as discussed by Oetsch,

Pührer, and Tompits [33]:

%* @block maze {
%* This is the main block of the maze generation program.
%* @atom entrance(R,C) gives the position of the maze entrance
%* @term R is a row index
%* @with 0 < R, R < 20
%* @term C is a column index
%* @with 0 < R, R < 20
%* ...

empty(R,C) | wall(R,C) :- row(R),col(C).
...

%* }

14

2.2 Model-Driven Engineering

The main focus of model-driven engineering (MDE) [30] are domain models, with the purpose
of increasing the efficiency by raising the level of abstraction and eliminating errors by using
automatic model transformations.

Models are tools used for abstraction and may provide different perspectives of a system,
facilitating its comprehension. They are written in a well-defined language and represent valu-
able assets, especially if they are synchronised between themselves and the code of the system.
One of the main concerns in the MDE community is maintaining consistency between models
and reducing the effort that is required for that. The models can be used in the designing phase,
to forward engineer the system. Another use is to reverse engineer an existing system in order
to better explain its functioning. Tools that provide the user with both functionalities are called
round-trip tools [17].

Metamodels are used to describe the syntax specifications of the modelling language, which
is called domain-specific modelling language (DSML). The models have to respect the syntax
specified by their metamodels. The semantics of a DSML can also be specified in a metamodel,
although that is usually not the case. UML is commonly used as a metamodel (it will be de-
scribed in more detail in Section 2.2.1). The concrete model is designed using the syntax of the
DSML and provides certain information about the application, like its structure and behaviour.

Model-transformation processes are used to perform different transformation steps starting
from a high abstraction level and ending with the code generation. Every transformation step is
composed of rules mapping the elements of one model to another. There are two different types
of model transformations: model-to-model and model-to-code. Model-to-model transforma-
tions are used in order to refine the model and to provide additional details. Using the model
transformations in order to generate code is a “correct-by-construction” approach, instead of the
normal “construct-by-correction” approach [36].

Models represent valuable assets in the system verification as well. In order to verify the
correctness of the system, three different MDE techniques are used: model validation, model
checking, and model-based testing.

2.2.1 Unified Modelling Language

The Unified Modelling Language [17] is a general set of graphical notations and diagrams used
to describe software systems, in particular those built using concepts from object-oriented pro-
gramming. It helps to provide a level of abstraction and its main use is to document information.
UML is an open standard, evolving under the control of the Object Management Group (OMG),
which is an open consortium of companies. UML was created by combining the best concepts
from data modelling, business modelling, object modelling, and component modelling, resulting
in a versatile language which has become the standard for visualising, specifying, constructing,
and documenting various software systems. Thus, UML is often used as a sketching tool, to
allow team members to discuss issues that might arise during the implementation of the system.
However, the use of UML can be extended to the point where the entire system is specified
in UML diagrams, which then effectively act as blueprints for the implemented system. In this
case, the focus of the diagram is on completeness rather than highlighting only important inform-

15

ation. Furthermore, with the help of various tool sets, UML can itself be used as a programming
language, with developers drawing UML diagrams which are compiled directly to executable
code. However, this last approach requires particularly sophisticated tools [17].

2.2.1.1 Class Diagrams

A class diagram is used to represent the structure of a system, with the types of objects in the
system and the various relationships among them. A class diagram is constituted of the following
elements:

Class. A class is an element which defines the type of a set of objects, together with their
properties. A class is usually represented by a rectangle with three different compartments.
The name of the class is represented in the first compartment, the attributes in the second,
and the operations of the class in the third compartment.

Attribute. An attribute represents a property of a class. It is represented by a row in the class.
The minimal requirements for an attribute are its name and type. Additionally, default
values, multiplicities, and even visibility modifiers can be present. The multiplicity on
attributes is used to indicate how many attributes with this name and type must be present
in the object. The default multiplicity for an attribute is 1.

Association. The association represents a named relationship between two classes. It is repres-
ented as a line between classes, from the source class to the target class. Usually, the line
has an open arrowhead pointing at the target class. The arrowhead implies the navigability
concept, indicating that one class is accessible from another. Furthermore, a bidirectional
association indicates that the objects involved in the association should be synchronised.

Multiplicities at both ends of the association are added to indicate how many objects
participate in the association. The multiplicity is represented as a pair “min..max” of
numbers meaning that the number of objects belonging to the respective class related
through this association with another object must be between min and max (inclusively).

Aggregation. The aggregation is a particular type of association and represents a whole-part
relationship. However, it is not very clear what is the exact meaning of the aggregation
and there are many different interpretations. UML does not provide any semantics for the
aggregation [17, p. 67].

The symbol of the aggregation is a line between the source class to the target class. In
addition to the arrowhead pointing at the target class, an empty diamond is present at the
source end.

Composition. The composition adds the ownership meaning to the aggregation. The ownership
relationship implies that even though a class may be a component of many other classes,
one instance of the class must have only one owner. For example, a microchip can be
part of computers, cars, air planes, and other electronic devices, but a specific microchip
(uniquely identified by its attributes values) can be part of one and only one device.

16

Figure 2.2: Single generalisation vs. multiple generalisations.

The graphical representation of composition is the same as for the aggregation, with the
difference that the diamond is filled and the source multiplicity is not present, being con-
sidered 1..1.

Generalisation. The generalisation signifies that the properties of one class are inherited in
another class. In object-oriented programming, this is implemented through the concept
of inheritance. The generalisation is graphically represented by a line from a source class
to a target class, with a triangle arrowhead at the target class. The source class is called
specialisation class, while the target class is called general class.

Multiple classification. The main idea of multiple classification is that a class is described as a
subtype of more classes, without defining exactly to which type it belongs. For example,
any person is either a man or a woman, but the entire class “person” is neither of type
“man” nor of type “woman”. Another aspect of multiple classification is disjointness—
one person cannot be both a man and a woman.

Generalisation set. The generalisation set was introduced in UML 2 in order to deal with mul-
tiple classifications. One aspect of the multiple classification that needs to be dealt with is
the allowance of certain combinations. This element groups together a set of specialisa-
tion classes for a generalisation. The additional meaning captured by the generalisation
set is disjointness—any object of the general class may be inherited in only one of the
objects within that set. In Figure 2.2, the difference between single and multiple gener-
alisations is displayed. The single generalisation represents a generalisation gen with the
generalisation set {class2, class3, class4} and the multiple generalisations represent three
generalisations, gen1, gen2, and gen3, with their generalisation sets {class5}, {class6},
and {class7}, respectively. If the generalisation is complete, it implies that any object of
the general class has to be an object of one of the classes within the generalisation set.

To illustrate the multiple classification concept, consider Figure 2.3, following Fowler
[17, p. 77]. In this diagram,

{female, patient ,nurse}, {male, psychotherapist}, {female, patient}, and
{female, surgeon}

17

Figure 2.3: Generalisation example.

are some of the legal combinations of specialisation classes. The combination

{patient , psychotherapist ,nurse}

is illegal because it contains two classes from the same generalisation set. Furthermore,
the generalisation with the generalisation set {male, female} should be complete because
any person is either a male or a female, but the other two are not complete.

Association class. The association class allows the user to add a class to a relationship in order
to define additional properties for it.

Qualified association. This concept is used as an association for every instance of an attribute.

Constraints. Diferent constrains such as completeness and exclusivity over classification are
allowed.

Other elements of the UML class diagram. Other elements of the UML class diagram, such
as operation, interface, abstract class, derived attributes, access and visibility modifiers,
dependency, and dynamic classification, describe the behaviour or the implementation of
the classes and are closely related to the object-oriented concept of methods.

2.2.1.2 Object Diagrams

Object diagrams, also called instance diagrams, are used to represent concrete sets of objects
present in the system at a certain point in time. The same graphical elements from the class
diagram are used, with the observation that classes are implemented as concrete objects in which
all the attributes have a defined value. Furthermore, all the links (aggregations, associations, and
compositions) are represented by lines between objects, without any multiplicities, considering
the fact that in an object diagram they are concrete implementations of the relationships.

A UML object diagram representing patients and their doctors is displayed in Figure 2.4.
The diagram depicts that Doctor Harry Jones treats patient Elaine Smith for insomnia, patient
Oliver Walker for poliomyelitis, and patient Jack Taylor for hepatitis A. Sarah Brown is treated
for pneumonia by Doctor Anna Wilson, who also treats Elaine Smith for insomnia.

18

Figure 2.4: Example UML Object Diagram.

19

CHAPTER 3
Problem Domain Modelling for ASP

The two candidates taken into consideration to describe the domain model were the enhanced
entity relationship (EER) diagram and the UML class diagram.

ASP is strongly related to relational databases. While the EER diagram is widely used in
relational databases design, UML is a more general graphical modelling standard used for de-
scribing and designing software systems in an object-oriented style. Even if UML class diagrams
are very successful in providing additional information regarding the system dynamics (opera-
tions, methods, behaviour), when it comes to data structure, it has the same expressive power
as the EER diagram. Therefore, when we selected the UML class diagram, we had to take into
consideration additional aspects, such as aesthetics.

The main two advantages of the UML class diagram over the EER diagram are its wide-
spread acceptance as a standard and the possibility to integrate it with other UML models, such
as the UML object diagram. Another important feature of UML is the use of XMI as stand-
ard input/output format. Furthermore, the more concise graphical representation of UML was
proven to be more comprehensible [9].

However, the two approaches—object-oriented vs. relational database—are significantly dif-
ferent. Moreover, the capabilities of the UML class diagram to describe the behaviour of entities
are meaningless for ASP. Thus, only a subset of the UML class diagram features are of interest
in representing the problem domain. All the features of UML class diagrams describing the
behaviour or object-oriented programming concepts which have no meaning in ASP are elimin-
ated.

Nonetheless, there is a concept that UML class diagrams miss—the identifier concept in
EER diagrams. The idea of a primary key is not required in the UML class diagram, since every
object is uniquely identified by a generated surrogate key called object identifier (OID). David
C. Hay [23] suggested a series of different modalities to deal with this. One proposal is to extend
UML with the 〈〈ID〉〉 stereotype. Another possibility is in the object-oriented manner—generate
an OID for every entity instance. This is equivalent to adding in every class an extra attribute
with the same use and constraints as a primary key. The third possibility is to make use of the

21

Figure 3.1: Metamodel of the UML class diagram.

“#” (octothorpe) symbol next to the attribute name1 (see the UML class diagram in Figure 3.2
below). The last one (using the “#” symbol) is the solution we adopt here.

3.1 Relevant UML Class Diagram Features

The metamodel describing the relevant fragment of the UML class diagram is shown in Fig-
ure 3.1. The elements of the metamodel are described in the following.

UML class diagram. The UML class diagram is the top element containing all the other ele-
ments. No other element can exist outside an UML class diagram.

Class. The class is an element with two sets of attributes—primary key attributes and non-
primary key attributes.

Attribute. The attribute is a property of a class and it may be either a primary key or a non-
primary key attribute, depending on which set in the class it belongs to. Every attribute

1In UML, “#” is used to symbolise a protected attribute.

22

has a name and a type. No other properties are supported for attributes. The multiplicity
on attributes is also not allowed, due to its implicit requirement to deal with arrays or lists
in order to store the attributes. Nevertheless, this is not a major drawback, since these
attributes can be represented through a one-to-many association (relationship) to a newly
created class that describes the respective attribute.

Aggregation and Association. The aggregation and the association are relationships which al-
low multiplicity on the source class. They contain a name and the two multiplicities for
the source and the target class. As discussed in Section 2.2.1, the graphical represent-
ation of the association in the UML class diagram captures the concept of navigability,
which is represented through the direction of the arrow on the link (unidirectional or bi-
directional). This is an object-oriented concept and has no meaning in either relational
databases or ASP. Consequently, the directionality is only informative and all associations
are represented as unidirectional associations.

Composition. The composition is a particular type of association which does not allow multi-
plicity on the source class, being by default 1..1.

Association class. The association class is an element which links a class to a relationship. It
has no properties and it is owned by the relationship, meaning that it cannot exist without
a relationship.

Generalisation. The generalisation connects two classes, the source one being considered the
specialisation class of the generalisation and the target one being the general class.

Generalisation set. The generalisation set is an element which links a generalisation to a class,
allowing the user to create a generalisation set. They do not exist independently from a
generalisation.

Qualified association is a feature that is excluded. This concept is used as an association for
every instance of an attribute. But since the multiplicity on attributes is not allowed, this concept
loses its meaning.

3.1.1 Formal Description

We need to formally describe a UML class diagram. In order to do so, we need to impose some
constraints on the UML class diagrams. We assume that the names of the classes, associations,
aggregations, generalisations, and association classes are unique in a UML class diagram. Fur-
thermore, the character “_” does not occur in the name of any element of a diagram. In addition,
if the upper bound in a multiplicity is −1, it means that there is no upper limit on the number of
instances involved in that relationship.

However, an attribute can exist only inside a class and its name is unique only in the class
it belongs to. In order to uniquely identify the attributes in the entire diagram, we alter their
names by including the name of the class they belong to. Furthermore, we want to ensure that
the alteration is bijective so that we can determine reversely the name of the attribute and the
class it belongs to.

23

Definition 29. An alphabet (for UML class diagrams) is a finite or countably infinite set Σ. The
elements of this set are called symbols.

Definition 30. For an alphabet Σ, the set of strings over Σ is the smallest set Σ∗ satisfying the
following conditions:

1. ε ∈ Σ∗, where ε is the empty string, and

2. if w ∈ Σ∗ and s ∈ Σ, then ws ∈ Σ∗, where ws represents the concatenation of strings.

Definition 31. A language over Σ is a subset of Σ∗.

Definition 32. The concatenation of two languages L1 and L2 is the set

L1L2 = {xy|x ∈ L1, y ∈ L2}.

Definition 33. The k times concatenation of a language L is denoted by Lk and is the set

Lk =
{
{ε}, if k = 0,
LLk−1, otherwise.

The following additional conventions are used:

• L∗ =
⋃

i≥0 L
i,

• L+ =
⋃

i≥1 L
i, and

• [ak − ak+n] =
⋃

0≤i≤n{ak+i}, where (a0, a1, . . .) is a finite or infinite sequence of sym-
bols, for k ≥ 0 and n ≥ 1.

Definition 34 ([8]). A regular expression over an alphabet Σ is an explicit formula describing a
language over Σ and is defined recursively as follows:

1. Every element a ∈ Σ is a regular expression describing the language {a}.

2. If r1 and r2 are regular expressions over Σ describing the languages L1 and L2, respect-
ively, then

• r1r2 is a regular expression describing the language L1L2,

• r1|r2 is a regular expression describing the language L1 ∪ L2,

• rk
1 is a regular expression describing the language Lk

1 ,

• r∗1 is a regular expression describing the language L∗1,

• r+
1 is a regular expression describing the language L+

1 .

3. Regular expressions over Σ are only the formulas that can be produced by the above rules.

24

Example 4. Assuming the usual alphabetical ordering for letters, the following are regular ex-
pressions:

[a− b]∗ = {ε, a, b, aa, ab, ba, bb, . . . };
[a− b]+ = {a, b, aa, ab, ba, bb, . . . }.

Definition 35. A UML class diagram is a tuple

α = 〈umlName,Assoc,Aggreg ,Comp,Gen,Classes,Attr〉,

where umlName ∈ [a-z]+[a-zA-Z0-9]∗ is the name of the UML class diagram, Assoc is a
set of associations, Aggreg a set of aggregations, Comp a set of compositions, Gen a set of
generalisations, Classes a set of classes, and Attr a set of attributes in the diagram, defined as
follows:

1. An attribute in the class className is a pair

(className ′_attrName, attrType),

where
attrName, attrType ∈ [a-zA-Z]+[a-zA-Z0-9]∗,

representing the name and the type of the attribute of α, respectively, and ′ transforms a
string starting with a lower-case letter into a string starting with the corresponding upper-
case one. Assuming that ′ applied to a letter transforms the letter into its equivalent upper
case (i.e., a′ = A, . . . , z′ = Z), the function ′ over a string in [a-zA-Z]+[a-zA-Z0-9]∗ is
thus defined as follows:

s′ =
{
u′v, if s = uv, u ∈ {a, . . . , z}, and v ∈ [a-zA-Z0-9]∗,
s, otherwise.

2. A class is a tuple
〈className,AclassName , kclassName〉,

where
className ∈ [a-z]+[a-zA-Z0-9]∗,

representing the name of the class of α,

AclassName = (classNameA1, . . . , classNameAnclassName
)

is a sequence containing names of attributes from Attr , and

1 ≤ kclassName ≤ nclassName

specifies that the attributes with the names in the set

{classNameA1, . . . , classNameAkclassName
} ⊆ AclassName

represent the primary key attributes of the class.

25

3. An association or an aggregation is a tuple

〈assocName, srcCls, tgtCls,minSrc,maxSrc,minTgt ,maxTgt , assocCls〉,

where assocName ∈ [a-z]+[a-zA-Z0-9]∗, representing the name of the relationship of α,
srcCls and tgtCls are names of classes from the set Classes , representing the source and
target class of the relationship, respectively,

minSrc,minTgt ∈ N, and maxSrc,maxTgt ∈ N ∪ {−1},

representing the multiplicities, and assocCls is either null, if the relationship has no as-
sociation class, or the name of a class from the set Classes representing the association
class, if it exists.

4. A composition is a tuple

〈compName, srcCls, tgtCls,minTgt ,maxTgt , assocCls〉,

where compName ∈ [a-z]+[a-zA-Z0-9]∗, representing the name of the composition of α,
srcCls and tgtCls are names of classes from the set Classes , representing the source and
target class of the composition, respectively,

minTgt ∈ N and maxTgt ∈ N ∪ {−1},

representing the multiplicities, and assocCls is either null, if the composition has no
association class, or the name of a class from the set Classes representing the association
class, if it exists.

5. A generalisation (including its generalisation set) is a tuple

〈genName, generalCls, genSet , complete〉,

where
genName ∈ [a-z]+[a-zA-Z0-9]∗,

representing the name of the generalisation, generalCls is the name of a class from the
set Classes , representing the general class, genSet is a set of names of classes from the
set Classes , representing the generalisation set containing the specialisation classes of the
generalisation, and complete is a boolean variable specifying whether the generalisation
is complete.

As a convention, from this point on, we will refer to the elements of α (i.e., attributes, classes,
relationships, or generalisations) through their names (the first element in the pair or tuple that
represents them). This is possible due to the fact that the names of the attributes are unique in
the class and the names of all other elements are unique in the diagram.

Another convention is in the notation of a class. If we refer to a class through its name c,
we use Ac to denote the set of attributes in the class, kc to denote the number of primary key
attributes, and cA1, . . . , cAnc to denote the ordered elements of Ac .

26

Figure 3.2: A UML class diagram.

Example 5. The UML class diagram in Figure 3.2 is formally represented by the tuple

〈uml,Assoc, ∅, ∅,Gen,Classes,Attr〉,

where

Attr = {(Person_id, integer), (Person_name, string), (Person_address, string),
(Person_phone, integer), (Teacher_id, integer), (Teacher_startDate, date),
(Teacher_endDate, date), (Student_id, integer), (Student_faculty, string),
(Student_startDate, date), (Student_endDate, date), (Course_id, integer),
(Course_name, string), (Exam_id, integer), (Exam_date, date),
(Exam_grade, integer)},

Classes = {〈person(Person_id, Person_name, Person_address, Person_phone), 1〉,
〈teacher, (Teacher_id, Teacher_startDate, Teacher_endDate), 1〉,
〈student, (Student_id, Student_faculty, Student_startDate, Student_endDate), 1〉,
〈course, (Course_id, Course_name), 1〉,
〈exam, (Exam_id, Exam_date), 1〉},

Assoc = {〈teaches, teacher, course, 1, 3, 1, 10,null〉,
〈studies, student, course, 1, 30, 1, -1, exam〉}, and

Gen = {〈role, {student, teacher}, false〉}.

27

3.2 Translation of UML Class Diagrams to ASP

The idea is to map every class to a predicate. For relationships and generalisations, we adapt
some concepts from relational databases [26], such as foreign keys.

Definition 36. A foreign key is a set of attributes in a class matching the primary key attributes
in another class.

In relational databases, the classes are mapped to tables and the relationships are mapped
using foreign keys to cross-reference tables. The easiest way to handle generalisations is to
add all the attributes of the general class to the specialisation classes. Another way is to have
predicates for the specialisation classes, as well as for the general class and to reference the
general class in all the specialisation classes through foreign keys. Adding all the attributes
of the general class to the specialisation classes can lead to predicates with very large arities.
Therefore, adding only the foreign key attributes is the preferred solution.

The generalisations, associations, and association classes require an additional preprocessing
step in which the representation of the UML class diagram is altered by introducing foreign keys.
This step is described in detail in Section 3.2.1.

3.2.1 Preprocessing the UML Class Diagram

In this section we describe how the classes are altered to fit our needs.

Definition 37. The concatenation of two sequences is defined as

(a1, . . . , an)(b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm).

For every generalisation in the UML class diagram, the primary key attributes of the general
class are added as foreign key attributes in the specialisation classes of the generalisation.

The relationships in a UML class diagram are handled differently, according to their multi-
plicities. For this purpose, we differentiate between three types of relationships.

One-to-one relationship. A one-to-one relationship is a relationship with the multiplicities 1..1
at its both ends.

One-to-many (or many-to-one) relationship. A one-to-many (or many-to-one) relationship is
a relationship with the multiplicity 1..1 at one end of the relationship and a different mul-
tiplicity at the other end.

Many-to-many relationship. A many-to-many relationship is a relationship with both multi-
plicities different than 1..1.

For a one-to-many relationship, it suffices to add the foreign key attributes of the mandatory
(one end) class to the many-end class. For a one-to-one relationship, we prefer to add the foreign
key attributes of the source class to the target class.

28

Definition 38. A one-to-one (one-to-many, many-to-one) relationship has one of the following
forms:

〈r , c, c1, 1, 1, 1, 1, ac〉 ∈ Assoc ∪Aggreg (one-to-one),

〈r , c1, c,min,max, 1, 1, ac〉 ∈ Assoc ∪Aggreg , min 6= 1 or max 6= 1 (many-to-one),

〈r , c, c1, 1, 1,min,max, ac〉 ∈ Assoc ∪Aggreg , min 6= 1 or max 6= 1 (one-to-many),

〈r , c1, c, 1, 1, ac〉 ∈ Comp (one-to-one), or

〈r , c1, c,min,max, ac〉 ∈ Comp, min 6= 1 or max 6= 1 (one-to-many).

Many-to-many relationships are represented in ASP through a new predicate. In the pre-
processing step they require the introduction of a new class. The association class for a certain
relationship is modified by adding the foreign keys of the two classes involved in the relation-
ship.

Definition 39. The preprocessed UML class diagram corresponding to the UML class diagram

α = 〈umlName,Assoc,Aggreg ,Comp,Gen,Classes,Attr〉

is the tuple

α∗ = 〈umlName,Assoc,Aggreg ,Comp,Gen,Classes∗,Attr∗〉,

where Attr∗ and Classes∗ include all the attributes in Attr and the classes in Classes . Some
classes in Classes∗ are modified and additional attributes and classes are included in the sets
Attr∗ and Classes∗ in the preprocessing step as follows:

1. Every generalisation 〈g , gc, gS , compl〉 ∈ Gen , for

〈gc, (gcA1, . . . , gcAngc), kgc〉 ∈ Classes,

is preprocessed by adding the foreign key (gcA1_g , . . . , gcAkgc_g), referencing the gen-
eral class, to all the specialisation classes in the generalisation set. Every specialisation
class ci ∈ gS , with 〈ci,Aci , kci〉 ∈ Classes∗, becomes

〈ci,Aci(gcA1_g , . . . , gcAkgc _g), kci〉.

If an attribute aN ∈ {gcA1, . . . , gcAkgc}, with (aN , aT) ∈ Attr , then (aN _g , aT) ∈
Attr∗.

2. Every one-to-one or one-to-many relationship r with one of the forms in Definition 38
is preprocessed by adding the foreign key of the class 〈c,Ac , kc〉 ∈ Classes to the class
〈c1,Ac1 , kc1〉 ∈ Classes∗, which becomes

〈c1,Ac1(cA1_type_r , . . . , cAkc _type_r), kc1〉,

where

type =

{
src, if c is the source class of r ,
tgt, if c is the target class of r .

If an attribute aN ∈ {cA1, . . . , cAkc}, with (aN , aT) ∈ Attr , then (aN _type_r , aT) ∈
Attr∗.

29

3. Every many-to-many relationship

〈r , s, t ,minS ,maxS ,minT ,maxT , ac〉 ∈ Assoc ∪Aggreg ,

where minS and maxS , and minT and maxT , respectively, are not simultaneously 1, is
preprocessed by introducing a new class r with ks + kt attributes representing the foreign
keys of the classes s and t . The newly added class r is the tuple

〈r , (sA1_src_r , . . . , sAks _src_r , tA1_tgt_r , . . . , tAkt _tgt_r), ks + kt〉.

If aN ∈ {sA1, . . . , sAks}, with (aN , aT) ∈ Attr , then (aN _src_r , aT) ∈ Attr∗. If
aN ∈ {tA1, . . . , tAkt} and (aN , aT) ∈ Attr , then (aN _tgt_r , aT) ∈ Attr∗.

4. Every association class of a relationship

〈r , s, t ,minS ,maxS ,minT ,maxT , ac〉 ∈ Assoc ∪Aggreg or

〈r , s, t ,minT ,maxT , ac〉 ∈ Comp,

where ac 6= null, 〈s,As , ks〉 ∈ Classes , and 〈t ,At , kt〉 ∈ Classes , is preprocessed by
adding the foreign keys of the classes involved in the relationship. The class

〈ac,Aac , kac〉 ∈ Classes∗

becomes

〈ac,Aac(sA1_src_r , . . . , sAks _src_r , tA1_tgt_r , . . . , tAkt _tgt_r), kac〉.

If aN ∈ {sA1, . . . , sAks} and (aN , aT) ∈ Attr , then (aN _src_r , aT) ∈ Attr∗. Further-
more, if aN ∈ {tA1, . . . , tAkt} and (aN , aT) ∈ Attr , then (aN _tgt_r , aT) ∈ Attr∗.

Moreover, only the attributes and classes in the initial diagram or introduced in the above pre-
processing step are included in the preprocessed diagram.

One can note that the primary key attributes of the classes in the initial UML class diagram
are not modified. Furthermore, although the above are the default transformations, the user has
the possibility to choose a different representation for relationships which may require different
transformations. The user may force a one-to-one (one-to-many, many-to-one) relationship to
be handled like a many-to-many relationship, or he or she may choose to represent a relationship
solely through its association class (if it exists).

The preprocessed UML class diagram (Definition 39) has certain properties which will be
very useful in the translations.

Theorem 1. Any foreign key attribute cls ′_a_suf in a preprocessed UML class diagram, where
cls ∈ [a-z]+[a-zA-Z0-9]∗ and a ∈ [a-zA-Z]+[a-zA-Z0-9]∗, must have a corresponding primary
key attribute cls ′_a in the class cls .

Proof. Trivially, according to Definition 39.

30

Theorem 2. The name of any attribute 〈attrN , attrT 〉 ∈ Attr∗ in a preprocessed UML class
diagram has one of the following forms:

• cls ′_a , where cls ∈ [a-z]+[a-zA-Z0-9]∗ and a ∈ [a-zA-Z]+[a-zA-Z0-9]∗,

• cls ′_a_gen , where cls, gen ∈ [a-z]+[a-zA-Z0-9]∗ and a ∈ [a-zA-Z]+[a-zA-Z0-9]∗,

• cls ′_a_src_rel , where cls, rel ∈ [a-z]+[a-zA-Z0-9]∗ and a ∈ [a-zA-Z]+[a-zA-Z0-9]∗, or

• cls_a_tgt_rel , where cls ′, rel ∈ [a-z]+[a-zA-Z0-9]∗ and a ∈ [a-zA-Z]+[a-zA-Z0-9]∗.

Proof. According to Definition 39, Attr∗ contains only the attributes in the initial UML class
diagram and the foreign key attributes introduced in the preprocessing step. The names of the
attributes in Attr have the form cls ′_a , where cls ∈ [a-z]+[a-zA-Z0-9]∗ and

a ∈ [a-zA-Z]+[a-zA-Z0-9]∗

(Part 1 of Definition 35). The names of the foreign key attributes introduced in Definition 39
are either cls ′_a_gen , where cls, gen ∈ [a-z]+[a-zA-Z0-9]∗ and a ∈ [a-zA-Z]+[a-zA-Z0-9]∗

(introduced for a generalisation, according to Part 1 of Definition 39) or cls ′_a_src_rel or
cls_a_tgt_rel , where cls ′, rel ∈ [a-z]+[a-zA-Z0-9]∗ and a ∈ [a-zA-Z]+[a-zA-Z0-9]∗ (intro-
duced for a relationship or an association class, according to Parts 2, 3, or 4 of Definition 39).

Theorem 3. An attribute cls ′_a in a preprocessed UML class diagram, where

cls ∈ [a-z]+[a-zA-Z0-9]∗

and
a ∈ [a-zA-Z]+[a-zA-Z0-9]∗

belongs only to the class cls .

Proof. According to Theorem 2, the names of all the foreign key attributes contain at least two
different “_” symbols. Therefore, an attribute in a preprocessed UML class diagram with the
name cls ′_a , where cls ∈ [a-z]+[a-zA-Z0-9]∗ and a ∈ [a-zA-Z]+[a-zA-Z0-9]∗, must be an
attribute present in the initial UML class diagram. According to Definition 56, the name of an
attribute in the UML class diagram is cls ′_a , where cls is the name of the class it belongs to and
thus it exists in only one class.

Theorem 4. An attribute cls ′_a_gen in a preprocessed UML class diagram, where cls, gen ∈
[a-z]+[a-zA-Z0-9]∗ and a ∈ [a-zA-Z]+[a-zA-Z0-9]∗, cannot exist without the generalisation gen
whose general class is cls .

Proof. The name of any attribute in the initial UML class diagram contains exactly two “_”
characters. Therefore, an attribute with the name cls ′_a_gen is an attribute introduced in the
preprocessing step. The only foreign key attributes that contain three “_” characters are the
ones introduced for the generalisations. According to Part 1 of Definition 39, for any foreign
key attribute cls ′_a_gen introduced in the preprocessing step, cls is the general class in the
generalisation gen .

31

Theorem 5. The foreign key attributes referencing the general class of a generalisation must be
contained in and only in the specialisation classes in its generalisation set.

Proof. According to Part 1 of Definition 39, the foreign key attributes introduced for a gener-
alisation are introduced in all the specialisation classes in its generalisation set. Furthermore,
the only attributes that contain exactly three “_” characters in their names are the foreign key
attributes introduced for generalisations. Thus, the foreign key attributes referencing the gen-
eral class of a generalisation must be contained in and only in the specialisation classes in its
generalisation set.

Theorem 6. An attribute cls ′_a_type_rel in a preprocessed UML class diagram, for cls, rel ∈
[a-z]+[a-zA-Z0-9]∗, a ∈ [a-zA-Z]+[a-zA-Z0-9]∗, and type ∈ {src, tgt}, cannot exist without
the relationship rel whose source class is cls , if type = src, or whose target class is cls , if
type = tgt.

Proof. The name of the attribute cls ′_a_type_rel in the preprocessed UML class diagram con-
tains four “_” characters. According to Part 1 of Definition 35, all the attributes in a UML
class diagram contain exactly two “_” characters. Therefore, the attribute cls ′_a_type_rel is
introduced in Parts 2, 3, or 4 of Definition 39.. However, in all these preprocessing steps, the
relationship rel must exist and if type = src (resp., type = src), the source (resp., the target)
class is cls .

Theorem 7. The association class of a relationship in a preprocessed UML class diagram con-
tains the foreign key attributes of the two connected classes.

Proof. Trivially, according to the preprocessing step 4 of Definition 39.

Theorem 8. If a relationship r is represented by a new predicate, the new class r introduced in
the preprocessing step contains only the foreign key attributes of the linked classes, which also
represent the primary key attributes of r . Furthermore, the foreign key attributes of the linked
classes are present only in the class r and in the association class of r , if one exists.

Proof. A relationship r represented by a new predicate is either a many-to-many relationship
or a relationship forced to be handled as a many-to-many relationship. Both cases require a
preprocessing step as described in Part 3 of Definition 39. If the relationship r has an association
class, the additional preprocessing step 4 of Definition 39 is performed.

Every foreign key attribute introduced for a relationship r has a unique name which includes
both the name of the relationship and the name of the class it references (due to the names of
the attributes in a UML class diagram in Definition 56 and the prefix _type_r). Therefore,
according to the remarks above and the fact that any relationship can be handled either as a
one-to-one relationship or a many-to-many relationship, but never as both, we can conclude
that if a relationship r is represented by a new predicate, the new class r introduced in the
preprocessing step contains only the foreign key attributes of the linked classes, which also
represent the primary key attributes of r . Furthermore, the foreign key attributes of the linked
classes are present only in the class r and in the association class of r , if one exists.

32

Theorem 9. If a relationship r is represented by adding the foreign key attributes of the target
to the source class, in a preprocessed UML class diagram, the foreign key attributes referencing
the target class are contained in and only in the source class and the association class, if one
exists. Furthermore, the foreign key attributes referencing the source class are contained only in
the association class, if one exists.

Proof. A relationship r represented by adding the foreign key attributes of the target (source)
class to the source (target) class is a one-to-one relationship handled in the preprocessing step 2
of Definition 39. If the relationship r has an association class, the additional preprocessing step 4
of Definition 39 is performed.

In the preprocessing step 2 of Definition 39, only the foreign key attributes of the target class
are added to the source class. The foreign key attributes of the source class are added only in the
association class, if one exists, according to the preprocessing step 4 of Definition 39.

Therefore, according to the remarks in Theorem 8 and above, we can conclude that if a
relationship r is represented by adding the foreign key attributes of the target to the source class,
in a preprocessed UML class diagram the foreign key attributes referencing the target class are
contained in and only in the source class and the association class, if one exists. Furthermore,
the foreign key referencing the source class are contained only in the association class, if one
exists.

Theorem 10. If a relationship r is represented by adding the foreign key attributes of the source
to the target class, in a preprocessed UML class diagram the foreign key attributes referencing
the source class are contained in and only in the target class and the association class, if one
exists. Furthermore, the foreign key referencing the target class are contained only in the asso-
ciation class, if one exists.

Proof. Proof exactly like the proof of Theorem 9.

Example 6. The preprocessed UML class diagram corresponding to the UML class diagram in
Figure 3.2 is the tuple

〈uml,Assoc, ∅, ∅,Gen,Classes∗,Attr∗〉,

where Assoc and Gen are the sets defined in Example 5,

Attr∗ = {(Person_id, integer), (Person_name, string), (Person_address, string),
(Person_phone, integer), (Teacher_id, integer), (Teacher_startDate, date),
(Teacher_endDate, date), (Student_id, integer), (Student_faculty, string),
(Student_startDate, date), (Student_endDate, date), (Course_id, integer),
(Course_name, string), (Exam_id, integer), (Exam_date, date),
(Exam_grade, integer), (Person_id_role, integer),
(Student_id_src_studies, integer), (Course_id_tgt_studies, integer),
(Teacher_id_src_teaches, integer), (Course_id_tgt_teaches, integer)}, and

33

Classes∗ = {〈person, (Person_id, Person_name, Person_address, Person_phone), 1〉,
〈teacher, (Teacher_id, Teacher_startDate, Teacher_endDate,

Person_id_role), 1〉,
〈student, (Student_id, Student_faculty, Student_startDate, Student_endDate,

Person_id_role), 1〉,
〈course, (Course_id, Course_name), 1〉,
〈exam, (Exam_id, Exam_date, Student_id_src_studies,

Course_id_tgt_studies), 1〉,
〈studies, (Student_id_src_studies, Course_id_tgt_studies), 1〉,
〈teaches, (Teacher_id_src_teaches, Course_id_tgt_teaches), 1〉.}

3.2.2 Mapping the UML Class Diagram to ASP

After performing all the possible transformations mentioned in Section 3.2.1, mapping the ele-
ments in the UML class diagram to terms and atoms in ASP as well as the generation of con-
straints are straightforward. The classes are mapped to predicates, the attributes are mapped to
terms, and the relationships and generalisations play a role only in the generation of constraints.

For the encoding of the ASP translation, the gringo syntax is used in the following. The
necessary modifications for DLV syntax are shown in Section 3.2.3.

Let the preprocessed UML class diagram we want to translate to ASP be

α = 〈umlName,Assoc,Aggreg ,Comp,Gen,Classes,Attr〉.

The preprocessed UML class diagram α is defined according to Definition 39. Therefore, the
names of the attributes (namely className ′_attrName) begin with an upper case letter and the
names of all other elements begin with a lower case letter.

There are two types of attributes when it comes to mapping them. The attributes

(className ′_attrName, attrType) ∈ Attr ,

where “_” is neither in attrName nor in className , are attributes belonging only to the class
className . The attributes 〈className ′_attrN_end, attrT 〉 ∈ Attr are attributes added as
part of a foreign key in the preprocessing step, where end includes the name of an aggregation,
association, composition, or generalisation.

In what follows, we use Lana statements for describing the different mappings.

Definition 40. An attribute

(className ′_attrName, attrType) ∈ Attr ,

where “_” is neither in attrName nor in className , is mapped to the term className ′_attrName
with the domain defined by the predicate attrType with arity 1. An attribute

〈className ′_attrN_end, attrT 〉 ∈ Attr ,

where “_” is neither in className nor in attrName , is mapped to the term className ′_attrN_end
with the same domain as the term className ′_attrN .

34

The corresponding mappings in Lana are:

%**
@term className’_attrName
attrName of className
@with attrType(#V)
*%

%**
@term className’_attrName_end
className’_attrName_end foreign key attribute

referencing className
@samerangeas className’_attrName
*%

Example 7. The attributes “(Person_id, integer)” and “(Person_id_role, integer)” from the pre-
processed UML class diagram in Figure 3.2 are mapped to the following terms:

@term Person_id
id of person
@with integer(#V)

@term Person_id_role
id foreign key attribute referencing person
@samerangeas Person_id

There are two different approaches to mapping the classes in a UML class diagram. One
option is to map the class to a single predicate over all the terms corresponding to the attributes.
The other option is to map the class to multiple so-called partitioning predicates with smaller
arities. These predicates are specified by the user and must respect the unique-names constraint.

Definition 41. A partitioning predicate for a class 〈c,Ac , kc〉 ∈ Classes is a predicate pred
with arity npred, described by the atom pred(predA1, . . . , predAnpred

), such that

{cA1, . . . , cAkc} = {predA1, . . . , predAnpred
}.

Definition 42. A class 〈c,Ac , kc〉 ∈ Classes can be mapped

1. to the predicate c with arity nc , or

2. to a set of partitioning predicates

Sc = {pc,1(pc,1A1, . . . , pc,1Anpc,1
), . . . , pc,m(pc,mA1, . . . , pc,mAnpc,m

)},

such that ⋃
p(pA1,...,pAnp)∈Sc

Ap = Ac .

35

The corresponding mappings in Lana are:
%**
@atom c(cA1, . . . , cAnc)
cA1, . . . , cAkc uniquely identify c

*%
%**
@atom pc,1(pc,1A1, . . . , pc,1Anpc,1

)
. . .
@atom pc,m(pc,mA1, . . . , pc,mAnpc,m

)
*%

Example 8. The class

〈teacher, (Teacher_id, Teacher_startDate, Teacher_endDate, Person_id_role), 1〉

from the preprocessed UML class diagram in Figure 3.2 is mapped by default to only one pre-
dicate and the following atom is defined:

@atom teacher(Teacher_id,Teacher_startDate,Teacher_endDate,
Person_id_role)

Teacher_id uniquely identifies teacher

If the class

〈person, {Person_id, Person_name, Person_address, Person_phone}, 1〉

from the preprocessed UML class diagram in Figure 3.2 is mapped to the set of partitioning
predicates

Sperson = {namePerson(Person_id, Person_name) ,

addressPerson(Person_id, Person_address),

phonePerson(Person_id, Person_phone)},

the following atoms are defined:

@atom namePerson(Person_id,Person_name)
contains only the name of the person

@atom addressPerson(Person_id,Person_address)
contains only the address of the person

@atom phonePerson(Person_id,Person_phone)
contains only the phone of the person

Mapping a class 〈c,Ac , kc〉 ∈ Classes to a single predicate is equivalent to mapping it to the
set of partitioning predicates Sc = {c(cA1, . . . , cAnc)}. With this observation in mind, only the
second mapping, i.e., given by Definition 42, will be considered in the generation of constraints.

36

The set of partitioning predicates describing a class c is denoted by Sc .
Due to the fact that the diagram α was altered as described in Section 3.2.1, the relationships

(aggregations, associations, compositions) and generalisations are absorbed in classes and there-
fore no additional element mapping is necessary. However, they are involved in the constraints
generation process. All the constraints are represented by assertions and require additional en-
codings.

To make the encodings readable, we define certain encodings and we assume that when a set
of rules is represented in ASP code through its name, the name is replaced by all the rules in the
set.

Definition 43. For a class 〈c,Ac , kc〉 ∈ Classes and its partitioning predicates set Sc , we define
the following encodings:

P attr
c,cAi

= {attr_c_cAi(cA1, . . . , cAkc , cAi) :− p(pA1, . . . , pAnp) |
p(pA1, . . . , pAnp) ∈ Sc , cAi ∈ {pA1, . . . , pAnp} \ {cA1, . . . , cAkc}},

P attr
c =

⋃
cAi,kc<i≤nc

P attr
c,cAi

,

P PK
c = {c_pk(cA1, . . . , cAkc) :− p(pA1, . . . , pAnp) | p(pA1, . . . , pAnp) ∈ Sc},

P
complete
c = P attr

c ∪ {c_complete(cA1, . . . , cAnc) :−
attr_c_cAkc+1(cA1, . . . , cAkc , cAkc+1), . . . ,
attr_c_cAnc (cA1, . . . , cAkc , cAnc).|nc > kc}∪
{c_complete(cA1, . . . , cAnc):-p(pA1, . . . , pAnp) |
p(pA1, . . . , pAnp) ∈ Sc , kc = nc = np},

P
PKcomplete
c = P

complete
c ∪
{c_complete_pk(cA1, . . . , cAkc) :− c_complete(cA1, . . . , cAnc)}.

Definition 44. For a class 〈c,Ac , kc〉 ∈ Classes , we define the function

βc : [a-zA-Z0-9]∗ × [a-zA-Z0-9]∗ → [a-zA-Z0-9]∗,

βc(var ,No) =
{

var , if var ∈ (cA1, . . . , cAkc),
varNo, if var /∈ (cA1, . . . , cAkc).

Moreover,

βc(pred(term1, . . . , termm),No) = pred(βc(term1,No), . . . , βc(termm,No)).

The primary key constraint represents the fact that an instance is uniquely identified by its
primary key. This constraint is violated when there exist two different instances with the same
primary key. The primary key constraint also ensures that the foreign keys, introduced in the
preprocessing step, reference at most one instance.

Definition 45. The primary key constraint violation for an attribute cAi in the class 〈c,Ac , kc〉 ∈
Classes has the encoding

37

CPK
c,cAi

= P attr
c,cAi
∪

{pkViolation_c_cAi :− βc(attr_c_cAi(cA1, . . . , cAkc , cAi), 1),
βc(attr_c_cAi(cA1, . . . , cAkc , cAi), 2), βc(cAi, 1) 6= βc(cAi, 2)}.

The corresponding Lana assertion is:
%**
@assert pkViolation_c_cAi {
cAi does not violate the primary key constraint
@never pkViolation_c_cAi

CPK
c,cAi

}

*%

Example 9. The primary key violation for the attribute “Course_name” in the class “course” of
the UML class diagram in Figure 3.2, if it is mapped to only one default predicate, is:

@assert pkViolation_course_Course_name {
Course_name does not violate the primary key constraint
@never pkViolation_course_Course_name
pkViolation_course_Course_name :-

attr_course_Course_name(Course_id,Course_name1),
attr_course_Course_name(Course_id,Course_name2),
Course_name1!=Course_name2.

attr_course_Course_name(Course_id,Course_name) :-
course(Course_id,Course_name).

}

The integrity constraints concern the partitioning predicates. This constraint is violated when
there exists an instance (with its primary key attributes defined) for which some of the attribute
values are not defined.

Definition 46. The integrity constraint violation for a partitioning predicate p(pA1, . . . , pAnp)
of the class 〈c,Ac , kc〉 ∈ Classes has the following encoding:

CIV
c,p = P

PKcomplete
c ∪ {integrityViolation_p_c :− p(pA1, . . . , pAnp),
not c_complete_pk(cA1, . . . , cAkc)}.

The corresponding Lana assertion is:
%**
@assert integrityViolation_p_c {
all the attributes of c must be defined
@never integrityViolation_p_c
CIV

c,p

}

*%

38

Example 10. If the class

〈person, (Person_id, Person_name, Person_address, Person_phone), 1〉

from the preprocessed UML class diagram in Figure 3.2 is mapped to the set of partitioning
predicates

Sperson = {namePerson(Person_id,Person_name), addressPerson(Person_id,Person_address),
phonePerson(Person_id,Person_phone)},

the integrity constraint violation for the partitioning predicate “namePerson” has the following
encoding:

@assert integrityViolation_namePerson_person {
all the attributes of person must be defined
@never integrityViolation_namePerson_person
integrityViolation_namePerson_person :-

namePerson(Person_id,Person_name),
not person_complete_pk(Person_id).

person_complete_pk(Person_id) :-
person_complete(Person_id, Person_name,

Person_address, Person_phone).
person_complete(Person_id, Person_name,

Person_address, Person_phone) :-
attr_Person_name(Person_id, Person_name),
attr_Person_address(Person_id, Person_address),
attr_Person_phone(Person_id, Person_phone).

attr_person_Person_name(Person_id,Person_name) :-
namePerson(Person_id,Person_name).

attr_person_Person_address(Person_id,Person_address) :-
addressPerson(Person_id,Person_address).

attr_person_Person_phone(Person_id,Person_phone) :-
phonePerson(Person_id,Person_phone).

}

The foreign key constraints represent the fact that all the referenced instances must exist. The
foreign key referencing the class 〈c,Ac , kc〉 ∈ Classes in the class 〈c1,Ac1 , kc1〉 ∈ Classes is
introduced for a UML class element (namely, aggregation, association, composition, or gener-
alisation) in the preprocessing step. Considering the name of the element to be elem , according
to the modifications defined in Section 3.2.1, the foreign key has the form

{cA1_end , . . . , cAkc _end},

where end = elem if elem is a generalisation, end = src_elem if c is the source class in the
relationship elem , or end = tgt_elem if c is the target class in the relationship elem . Therefore,
in order to bind the two predicates in an ASP rule through the foreign key, it suffices to add the

39

suffix _end as defined before to all attributes in c. The predicates c(cA1_end , . . . , cAnc _end)
and c1(c1A1, . . . , c1Anc1

) share the variables

{cA1_end , . . . , cAkc _end},

which represent exactly the foreign key attributes.

Definition 47. The foreign key constraint violation for a class

〈c,Ac , kc〉 ∈ Classes

referenced by the class 〈c1,Ac1 , kc1〉 ∈ Classes as a result of preprocessing the element elem ,
has the following encoding:

CFK
elem,c,c1

= P
complete
c1 ∪ P PKcomplete

c ∪
{fkViolation_c1_c_end :− c1_complete(c1A1, . . . , c1Anc1

),
not c_complete_pk(cA1_end , . . . , cAkc _end)},

where elem, c, and c1 belong to one of the following categories:

1. 〈elem, c, c1, 1, 1,min,max , elemClass〉 ∈ Assoc ∪ Aggreg and elem is represented by
adding the foreign key of c to c1. In this case, end = src_elem .

2. 〈elem, c1, c,min,max , 1, 1, elemClass〉 ∈ Assoc ∪ Aggreg and elem is represented by
adding the foreign key of c to c1. In this case, end = tgt_elem .

3. 〈c1, c, target ,min1,max 1,min2,max 2, elemClass〉 ∈ Assoc ∪ Aggreg and c1 is rep-
resented by adding the class c1 for which the foreign keys of c and target represent the
primary key. In this case, end = src_c1.

4. 〈c1, source, c,min,max ,min2,max 2, elemClass〉 ∈ Assoc ∪ Aggreg and c1 is repres-
ented by adding the class c1 for which the foreign keys of c and source represent the
primary key. In this case, end = tgt_c1.

5. 〈elem, c, target ,min1,max 1,min2,max 2, c1〉 ∈ Assoc ∪Aggreg and elem is represen-
ted solely by adding the foreign keys of c and target to c1. In this case, end = src_elem .

6. 〈elem, source, c,min,max ,min2,max 2, c1〉 ∈ Assoc∪Aggreg and elem is represented
solely by adding the foreign keys of c and source to c1. In this case, end = tgt_elem .

7. 〈elem, c, c1,min,max , assocCls〉 ∈ Comp and elem is represented by adding the for-
eign key of c to c1. In this case, end = src_elem .

8. 〈c1, c, target,min,max , elemClass〉 ∈ Comp and c1 is represented by adding the class
c1 for which the foreign keys of c and target represent the primary key. In this case,
end = src_c1.

40

9. 〈c1, source, c,min,max , elemClass〉 ∈ Comp and c1 is represented by adding the class
c1 for which the foreign keys of c and source represent the primary key. In this case,
end = tgt_c1.

10. 〈elem, c, target ,min,max , c1〉 ∈ Comp and elem is represented solely by adding the
foreign keys of c and target to c1. In this case, end = src_elem .

11. 〈elem, source, c,min,max , c1〉 ∈ Comp and elem is represented solely by adding the
foreign keys of c and source to c1. In this case, end = tgt_elem .

12. 〈elem, c, gS , complete〉 ∈ Gen and c1 ∈ gS . In this case, end = elem .

The corresponding Lana assertion is:
%**
@assert fkViolation_c1_c_end {
c1 references c
through the foreign key cA1_end, . . . , cAkc _end
no reference of a non existent c in c1

@never fkViolation_c1_c_end
CFK

elem,c,c1

}

*%

Example 11. The foreign key constraint violation for the class “course” and the association
“teaches” in the UML class diagram in Figure 3.2 has the following encoding:

@assert fkViolation_teaches_course_tgt_teaches {
teaches references course
through the foreign key Course_id
no reference of a non existent course in teaches
@never fkViolation_teaches_course_tgt_teaches
fkViolation_teaches_course_tgt_teaches :-

teaches_complete(Teacher_id_src_teaches,
Course_id_tgt_teaches),

not course_pk(Course_id_tgt_teaches).
course_pk(Course_id) :- course(Course_id,Course_name).
teaches_complete(Teacher_id_src_teaches,

Course_id_tgt_teaches) :-
teaches(Teacher_id_src_teaches,Course_id_tgt_teaches).

}

Definition 48. For relationships, the following functions are defined:

inv(type) =
{

src, if type = tgt,
tgt, if type = src.

41

β(var , type, elem) =


var , if type = “” or var

is of form nameVar_inv(type)_elem ,
nameVar_type_elem, otherwise.

Moreover,

β(pred(t1, . . . , tm), type, elem) = pred(β(t1, type, elem), . . . , β(tm, type, elem)).

Definition 49. We define the following encodings for a relationship elem , represented by the
class c and having an association class assocCls different than c:

P FK
elem = P

complete
assocCls ∪ P

complete
c ∪

{elem_fk(c1A1_src_elem, . . . , c1Akc1
_src_elem,

c2A1_tgt_elem, . . . , c2Akc2
_tgt_elem) :−

assocCls_complete(assocClsA1, . . . , assocClsAnassocCls
),

elem_fk(c1A1_src_elem, . . . , c1Akc1
_src_elem,

c2A1_tgt_elem, . . . , c2Akc2
_tgt_elem) :−

β(c_complete(cA1, . . . , cAnc), type, elem)},

where elem, c, c1, c2 belong to one of the following categories:

1. 〈elem, c1, c2,min,max , 1, 1, assocCls〉 ∈ Assoc ∪ Aggreg and elem is represented by
adding the foreign key of c2 to c1 and c = c1. In this case, type = src.

2. 〈elem, c1, c2, 1, 1,min,max , assocCls〉 ∈ Assoc ∪ Aggreg and elem is represented by
adding the foreign key of c1 to c2 and c = c2. In this case, type = tgt.

3. 〈elem, c1, c2,min1,max 1,min2,max 2, assocCls〉 ∈ Assoc ∪ Aggreg and elem is rep-
resented by adding the class elem for which the foreign keys of c1 and c2 represent the
primary key. In this case, c = elem and type =“”.

4. 〈elem, c1, c2,min,max , assocCls〉 ∈ Comp and elem is represented by adding the for-
eign key of c1 to c2 and c = c2. In this case, type = tgt.

5. 〈elem, c1, c2,min,max , assocCls〉 ∈ Comp and elem is represented by adding the class
elem for which the foreign keys of c1 and c2 represent the primary key. In this case,
c = elem and type =“”.

Definition 50. The multiplicity constraint violations for a relationship elem have the following
encodings:

42

Cmultiplicity
elem,type =



P
complete
c1 ∪ P FK

elem∪
{multiplicityViolation_type_elem :−

c_complete(cA1_inv(type)_elem, . . . , cAnc _inv(type)_elem),
not min1{elem_fk(sA1_src_elem, . . . , sAks _src_elem,

tA1_tgt_elem, . . . , tAkt _tgt_elem)}max1},
if elem has an association class and elem
is not represented solely by the association class,

P
complete
c1 ∪ P complete

c ∪
{multiplicityViolation_type_elem :−

c_complete(cA1_inv(type)_elem, . . . , cAnc _inv(type)_elem),
not min1{c1_complete(c1A1, . . . , c1Anc1

)}max1},
otherwise,

where elem, c, c1, s , and t belong to one of these categories:

1. 〈elem, c, c1, 1, 1,min1,max 1, assocCls〉 ∈ Assoc ∪ Aggreg and elem is represented by
adding the foreign key of c to c1. In this case, type = tgt, s = c, and t = c1.

2. 〈elem, c1, c,min1,max 1, 1, 1, assocCls〉 ∈ Assoc ∪ Aggreg and elem is represented by
adding the foreign key of c to c1. In this case, type = src, s = c1, and t = c.

3. 〈c1, srcCls, c,min1,max1,min,max , assocCls〉 ∈ Assoc ∪ Aggreg and c1 is represen-
ted by adding the class c1 for which the foreign keys of c and srcCls represent the primary
key. In this case, elem = c1, type = src, s = srcCls , and t = c.

4. 〈c1, c, tgtCls,min,max ,min1,max 1, assocCls〉 ∈ Assoc∪Aggreg and c1 is represented
by adding the class c1 for which the foreign keys of c and tgtCls represent the primary
key. In this case, elem = c1, type = tgt, s = c, and t = tgtCls .

5. 〈elem, c, tgtCls,min,max ,min1,max 1, c1〉 ∈ Assoc ∪Aggreg and elem is represented
solely by adding the foreign keys of c and tgtCls to c1. In this case, type = tgt, s = c,
and t = tgtCls .

6. 〈elem, srcCls, c,min1,max 1,min,max , c1〉 ∈ Assoc ∪Aggreg and elem is represented
solely by adding the foreign keys of c and srcCls to c1. In this case, type = src, s =
srcCls , and t = c.

7. 〈elem, c, c1,min1,max 1, assocCls〉 ∈ Comp and elem is represented by adding the for-
eign key of c to c1. In this case, type = tgt, s = c, and t = c1.

8. 〈c1, c, tgtCls,min1,max 1, assocCls〉 ∈ Comp and c1 is represented by adding the class
c1 for which the foreign keys of c and tgtCls represent the primary key. In this case,
elem = c1, type = tgt, s = c, and t = tgtCls .

43

9. 〈c1, srcCls, c,min,max , assocCls〉 ∈ Comp and c1 is represented by adding the class
c1 for which the foreign keys of c and srcCls represent the primary key. In this case,
elem = c1, type = src, min1 = max 1 = 1, s = srcCls , and t = c.

10. 〈elem, c, tgtCls,min1,max 1, c1〉 ∈ Comp and elem is represented solely by adding the
foreign keys of c and tgtCls to c1. In this case, type = tgt, s = c, and t = tgtCls .

11. 〈elem, srcCls, c,min,max , c1〉 ∈ Comp and elem is represented solely by adding the
foreign keys of c and srcCls to c1. In this case, type = src, min1 = max 1 = 1,
s = srcCls , and t = c.

The corresponding Lana assertion is:
%**
@assert multiplicityViolation_type_elem {
min1<=no(c1 referencing c)<=max1

@never multiplicityViolation_type_elem
Cmultiplicity

elem,type

}

*%

Example 12. The multiplicity constraint violation for the target of the association “studies” in
the UML class diagram in Figure 3.2 has the following encoding:

@assert multiplicityViolation_tgt_studies {
1<= no(studies referencing course)
@never multiplicityViolation_tgt_studies
multiplicityViolation_tgt_studies :-

student_complete(Student_id_src_studies,
Student_faculty_src_studies,
Student_startDate_src_studies,
Student_endDate_src_studies, Person_id_role_src_studies),

not 1 {studies_fk(Student_id_src_studies,
Course_id_tgt_studies)}.

studies_fk(Student_id_src_studies,Course_id_tgt_studies) :-
studies_complete(Student_id_src_studies_tgt_studies,

Course_id_tgt_studies_tgt_studies).
studies_fk(Student_id_src_studies,Course_id_tgt_studies) :-

exam_complete(Exam_id, Exam_date, Exam_grade,
Student_id_src_studies, Course_id_tgt_studies).

student_complete(Student_id, Student_faculty,
Student_startDate, Student_endDate, Person_id_role) :-

student(Student_id,Student_faculty,Student_startDate,
Student_endDate,Person_id_role).

studies_complete(Student_id_src_studies,
Course_id_tgt_studies) :-

44

studies(Student_id_src_studies,Course_id_tgt_studies).
}

The association class implies a one-to-one connection with the relationship it represents.
Therefore, one must verify the existence of the relationship and additional constraints must be
defined.

The relationship reference constraint for an association class assocCls of a relationship elem
represents the fact that no association instance must exist without its corresponding relationship.
The relationship reference constraint must verify not only the existence of the two instances, but
also the existence of the relationship.

Definition 51. The relationship reference constraint violation for the relationship elem has the
following encoding:

CRR
elem = P

complete
assocCls ∪ P

complete
c ∪

{relationshipReferenceViolation_assocCls_elem :−
assocCls_complete(assocClsA1, . . . , assocClsAnassocCls

),
not 1 {βc(c_complete(cA1, . . . , cAnc), type, elem)} 1},

where elem belongs to one of these categories:

1. 〈elem, c, target,min,max , 1, 1, assocCls〉 ∈ Assoc ∪ Aggreg and elem is represented
by adding the foreign key of target to c. In this case, type = src.

2. 〈elem, source, c, 1, 1,min,max , assocCls〉 ∈ Assoc ∪ Aggreg and elem is represented
by adding the foreign key of source to c. In this case, type = tgt.

3. 〈elem, source, target ,min1,max 1,min2,max 2, assocCls〉 ∈ Assoc∪Aggreg and elem
is represented by adding the class elem for which the foreign keys of source and target
represent the primary key. In this case, c = elem and type = “”.

4. 〈elem, source, c,min,max , assocCls〉 ∈ Comp and elem is represented by adding the
foreign key of source to c. In this case, type = tgt.

5. 〈elem, source, target ,min,max , assocCls〉 ∈ Comp and elem is represented by adding
the class elem for which the foreign keys of source and target represent the primary key.
In this case, c = elem and type = “”.

The corresponding Lana assertion is:
%**
@assert relationshipReferenceViolation_assocCls_elem {
for every association instance assocCls

must exist a relationship elem
@never relationshipReferenceViolation_assocCls_elem
CRR

elem

}

*%

45

Example 13. The relationship reference constraint violation for the association class “exam” of
the relationship “studies” in the UML class diagram in Figure 3.2 has the following encoding:

@assert relationshipReferenceViolation_exam_studies {
no reference of a non existent relationship studies in exam
@never relationshipReferenceViolation_exam_studies
relationshipReferenceViolation_exam_studies :-

exam_complete(Exam_id, Exam_date, Exam_grade,
Student_id_src_studies, Course_id_tgt_studies),

not 1 {studies_complete(Student_id_src_studies,
Course_id_tgt_studies)} 1.

exam_complete(Exam_id, Exam_date, Exam_grade,
Student_id_src_studies, Course_id_tgt_studies) :-

exam(Exam_id,Exam_date,Exam_grade,Student_id_src_studies,
Course_id_tgt_studies).

studies_complete(Student_id_src_studies,
Course_id_tgt_studies) :-

studies(Student_id_src_studies,Course_id_tgt_studies).
}

The association instance constraint for a relationship elem and its association class assocCls
represents the fact that every relationship must have its corresponding association instance.

Definition 52. The association instance constraint violation for a relationship elem has the
following encoding:

CAI
elem = P

complete
assocCls ∪ P

complete
c ∪

{associationInstanceViolation_elem_assocCls :−
βc(c_complete(cA1, . . . , cAnc), type, elem),
not 1 {assocCls_complete(assocClsA1, . . . , assocClsAnassocCls

)} 1},

where elem is defined in a similar fashion to Definition 51.

The corresponding Lana assertion is:
%**
@assert associationInstanceViolation_elem_assocCls {
every relationship elem

must have an association instance assocCls
@never associationInstanceViolation_elem_assocCls
CAI

elem

}

*%

Example 14. The association instance constraint violation for the relationship “studies” and its
association class “exam” in the UML class diagram in Figure 3.2 has the following encoding:

46

@assert associationInstanceViolation_studies_exam {
every relationship studies must have an association

instance exam
@never associationInstanceViolation_studies_exam
associationInstanceViolation_studies_exam :-

studies_complete(Student_id_src_studies,
Course_id_tgt_studies),

not 1 {exam_complete(Exam_id, Exam_date, Exam_grade,
Student_id_src_studies, Course_id_tgt_studies)} 1.

studies_complete(Student_id_src_studies,
Course_id_tgt_studies) :-

studies(Student_id_src_studies,Course_id_tgt_studies).
exam_complete(Exam_id, Exam_date, Exam_grade,

Student_id_src_studies, Course_id_tgt_studies) :-
exam(Exam_id,Exam_date,Exam_grade,Student_id_src_studies,

Course_id_tgt_studies).
}

The generalisation constraint represents the fact that there cannot be two different general-
isation instances for the same specialisation instance.

Definition 53. The generalisation constraint violation for the generalisation class

〈g , gc, gS , compl〉 ∈ Gen,

〈g ,Ag , kg〉 ∈ Classes , and a class sp ∈ gS has the following encoding:

Cgeneralisation
g,sp = P

complete
gc ∪ P complete

sp ∪
{generalisationViolation_g_sp :−

gc_complete(gcA1_g , . . . , gcAngc _g),
2 {sp_complete(spA1, . . . , spAnsp)}g}.

The corresponding Lana assertion is:
%**
@assert generalisationViolation_g_sp {
no two different sp specialisations of gc
@never generalisationViolation_g_sp
Cgeneralisation

g,sp

}

*%

Example 15. The generalisation constraint violation for the specialisation “teacher” of the gen-
eralisation “role” in the UML class diagram in Figure 3.2 has the following encoding:

@assert generalisationViolation_role_student {

47

no two different student specialisations of person
@never generalisationViolation_role_student
generalisationViolation_role_student :-

person_complete(Person_id_role, Person_name_role,
Person_address_role, Person_phone_role),

2 {student_complete(Student_id, Student_faculty,
Student_startDate, Student_endDate, Person_id_role)}.

person_complete(Person_id, Person_name, Person_address,
Person_phone) :-

person(Person_id,Person_name,Person_address,Person_phone).
student_complete(Student_id, Student_faculty,

Student_startDate, Student_endDate, Person_id_role) :-
student(Student_id,Student_faculty,Student_startDate,

Student_endDate,Person_id_role).
}

A disjointness constraint represents the fact that there cannot be two different specialisation
instances from the generalisation set for a generalisation.

Definition 54. The disjointness constraint violation for a generalisation 〈g , gc, gS , compl〉 ∈
Gen , where gS = {sp1, . . . , splg} and 〈gc,Agc , kgc〉 ∈ Classes , has the following encoding:

Cdisjointness
g = P

complete
gc ∪ P complete

sp1
∪ · · · ∪ P complete

splg
∪

{disjointnessViolation_g :−
gc_complete(gcA1_g , . . . , gcAngc _g),
2 {sp1_complete(sp1A1, . . . , sp1Ansp1

), . . . ,
splg_complete(splgA1, . . . , splgAnsplg

)}}.

The corresponding Lana assertion is:
%**
@assert disjointnessViolation_g {
no specialisation of gc as more than one g
@never disjointnessViolation_g
Cdisjointness

g

}

*%

Example 16. The disjointness constraint violation for the generalisation “role” in the UML class
diagram in Figure 3.2 has the following encoding:

@assert disjointnessViolation_role {
no specialisation of person as more than one role
@never disjointnessViolation_role
disjointnessViolation_role :-

48

person_complete(Person_id_role, Person_name_role,
Person_address_role, Person_phone_role),

2 {student_complete(Student_id, Student_faculty,
Student_startDate, Student_endDate, Person_id_role),

teacher_complete(Teacher_id, Teacher_startDate,
Teacher_endDate, Person_id_role)}.

person_complete(Person_id, Person_name, Person_address,
Person_phone) :-

person(Person_id,Person_name,Person_address,Person_phone).
student_complete(Student_id, Student_faculty,

Student_startDate, Student_endDate, Person_id_role) :-
student(Student_id,Student_faculty,Student_startDate,

Student_endDate,Person_id_role).
teacher_complete(Teacher_id, Teacher_startDate,

Teacher_endDate, Person_id_role) :-
teacher(Teacher_id,Teacher_startDate,Teacher_endDate,

Person_id_role).
}

If the generalisation set is complete, an additional completeness constraint is required. A
completeness constraint represents the fact that for every general instance there exists exactly
one specialisation instance from the generalisation set.

Definition 55. The completeness constraint violation for a generalisation 〈g , gc, gS , compl〉 ∈
Gen , where gS = {sp1, . . . , splg} and 〈gc,Agc , kgc〉 ∈ Classes , has the following encoding:

Ccompleteness
g = P

complete
gc ∪ P complete

sp1
∪ · · · ∪ P complete

splg
∪

{completenessViolation_g :−
gc_complete(gcA1_g , . . . , gcAngc _g),
1 {sp1_complete(sp1A1, . . . , sp1Ansp1

), . . . ,
splg_complete(splgA1, . . . , splgAnsplg

)}1}.

The corresponding Lana assertion is:
%**
@assert completenessViolation_g {
every gc must have one g specialisation
@never completenessViolation_g
Ccompleteness

g

}

*%

The completeness constraint covers the disjointness constraint and therefore the disjointness
constraint is not required any more.

49

Definition 56. The UML Class Diagram

〈umlName,Assoc,Aggreg ,Comp,Gen,Classes,Attr〉

is mapped to the block umlName that includes all the Lana elements corresponding to the UML
Class Diagram, mapped as illustrated above.

The corresponding Lana assertion is as follows:

%**
@block umlName {
encoding of the UML diagram umlName
*%
ASP code
%**
}

*%

3.2.3 DLV Modifications

Concerning the translation described above, there are two differences between DLV and gringo
one needs to consider.

The first one is the lack of block comments. This requires splitting the block comments into
line comments by adding “%*” at the beginning of every Lana generated line.

The second difference involves the aggregate predicate #count (cf. Section 2.1.2) and re-
quires additional encodings, especially when the multiset contains more elements (in the case of
disjointness and completeness constraints for generalisation).

In the above gringo translation, most of the constraints containing the aggregate predicate
are of the following form:

constraintName :− pred(predA1, . . . , predAnpred
),

not min{pred1(pred1A1, . . . , pred1Anpred1
)}max

with
{predA1, . . . , predAnpred

} ∩ {pred1A1, . . . , pred1Anpred1
} 6= ∅.

Let freeVars = {pred1A1, . . . , pred1Anpred1
} \ {predA1, . . . , predAnpred

}. There are two
cases to be considered: freeVars = ∅ and freeVars 6= ∅.

If freeVars = ∅ and considering {predA1, . . . , predAnpred
} constant, then

#{pred1A1, . . . , pred1Anpred1
} ∈ {0, 1}.

Therefore, min and max have to be taken into consideration:

• If 0 ≤ min < max and 1 ≤ max , then the constraint is never violated, so there is no
need to add any assertion.

50

• If min > max or 1 < min ≤ max , then the constraint is always violated, because it
cannot be the case that min ≤ #{{pred1A1, . . . , pred1Anpred1

}} ≤ max . Therefore, the
constraint is a fact and has the form:

constraintName.

• If min = max = 0, then #{pred1A1, . . . , pred1Anpred1
} = 0. In this case, the constraint

is violated if pred(predA1, . . . , predAnpred
) and

pred1(pred1A1, . . . , pred1Anpred1
)

exist at the same time:

constraintName :− pred(predA1, . . . , predAnpred
),

pred1(pred1A1, . . . , pred1Anpred1
).

• If min ≤ max and min = 1, then #{pred1(pred1A1, . . . , pred1Anpred1
)} = 1. In

this case, the constraint is violated if whenever pred(predA1, . . . , predAnpred
) exists,

there is no pred1(pred1A1, . . . , pred1Anpred1
). Since {pred1A1, . . . , pred1Anpred1

} ⊆
{predA1, . . . , predAnpred

}, the following constraint is safe:

constraintName :− pred(predA1, . . . , predAnpred
),

not pred1(pred1A1, . . . , pred1Anpred1
).

Otherwise, if freeVars 6= ∅, the constraint has the following form:

constraintName :− pred(predA1, . . . , predAnpred
),

not min <= #count{pred1(pred1A1, . . . , pred1Anpred1
)} <= max .

Definition 57. Consider a generalisation 〈g , gc, gS , compl〉 ∈ Gen such that 〈g ,Ag , kg〉 ∈
Classes and 〈spi,Aspi

, kspi
〉 ∈ Classes , for all spi ∈ gS . Then, the DLV modification of

Cgeneralisation
g,spi

is

Cgeneralisation
g,spi

= P
complete
gc ∪ P complete

spi
∪

{generalisationViolation_g_sp :−
gc_complete(gcA1_g , . . . , gcAngc _g),
#count{freeVars i:spi_complete(spiA1, . . . , spiAnspi

)}>=2}.

Example 17. The generalisation constraint violation for the specialisation “teacher” of the gen-
eralisation “role” in the UML class diagram in Figure 3.2 has the following encoding in DLV:

%* @assert generalisationViolation_role_teacher {
%* no two different teacher specialisations of person
%* @never generalisationViolation_role_teacher
%* generalisationViolation_role_teacher :-

51

person_complete(Person_id_role, Person_name_role,
Person_address_role, Person_phone_role),

#count{Teacher_id, Teacher_startDate, Teacher_endDate :
teacher_complete(Teacher_id, Teacher_startDate,
Teacher_endDate, Person_id_role)} >= 2.

%* person_complete(Person_id, Person_name, Person_address,
Person_phone) :-

person(Person_id,Person_name,Person_address,Person_phone).
%* teacher_complete(Teacher_id, Teacher_startDate,

Teacher_endDate, Person_id_role) :-
teacher(Teacher_id,Teacher_startDate,Teacher_endDate,

Person_id_role).
%*}

For the disjointness and completeness constraints of a generalisation, because the multiset
may contain more than one element, the aggregate function #sum is used. Additional predicates
counting the number of specialisation instances are introduced for every class in the generalisa-
tion set.

For a generalisation 〈g , gc, gS , compl〉 ∈ Gen , for 〈g ,Ag , kg〉 ∈ Classes , the foreign key
referencing gc in every specialisation class sp ∈ gS is (gcA1_g , . . . , gcAkgc _g). For the class
sp ∈ gS , freeVarssp = {spA1, . . . , spAnsp} \ {gcA1_g , . . . , gcAkgc _g}.

Definition 58. The following encoding is used for counting the number of specialisation in-
stances of sp:

P count
g,sp = {count(NoS , gcA1_g , . . . , gcAkgc _g , sp) :−

gc_complete(gcA1_g , . . . , gcAngc _g),
NoS = #count{freeVarssp :

sp_complete(spA1, . . . , spAnsp)}}.
According to the preprocessing step described in Section 3.2.1 and Definition 39, it can never
be the case that freeVarssp = ∅ and therefore we do not have to consider this case separately.

Definition 59. The DLV modification of the encoding of Cdisjointness
g is:

Cdisjointness
g = P

complete
gc ∪ P count

g,sp1
∪ · · · ∪ P count

g,splg
∪

{disjointnessViolation_g :−
gc_complete(gcA1_g , . . . , gcAngc _g),
#sum{NoS , S:count(NoS , gcA1_g , . . . , gcAkgc _g , S)}>=2}.

Definition 60. The DLV modification of the encoding of Ccompleteness
g is:

Ccompleteness
g = P

complete
gc ∪ P count

g,sp1
∪ · · · ∪ P count

g,splg
∪

{completenessViolation_g :−
gc_complete(gcA1_g , . . . , gcAngc _g),
not #sum{NoS , S : count(NoS , gcA1_g , . . . , gcAkgc _g , S)} = 1}.

52

3.3 Chapter Summary

Due to their object oriented approach, only a fragment of the features of UML class diagrams
is relevant for modelling the problem domain of an ASP program. The features describing the
behaviour of classes or object oriented programming concepts are excluded. However, there
is one concept that is not present in UML class diagram—the primary key. In order to handle
this inconvenience, the “#” symbol placed in front of an attribute is used to symbolise that the
attribute is part of the primary key of the class.

The predicates, arities, types, and meaning of their argument terms are extracted from the
model and described in Lana. The approach used in the translation is inspired from relational
databases—the attributes are mapped to terms, the classes are mapped to atoms, and the associ-
ations and generalisations are mapped by introducing foreign keys.

Although a default translation is provided, the user may decide towards a different approach
on certain aspects, such as the representation of relationships and the use of multiple so-called
partitioning predicates to represent a class.

The constraints implied by the graphical models are expressed as assertions. The translation
constraints involve the primary keys, the foreign keys, the cardinality of relationships, the ref-
erential integrity between the relationships and their association instances, and the disjointness
and the completeness of the generalisation.

Both gringo and DLV syntaxes are supported.

53

CHAPTER 4
Visualising the Problem Solutions

4.1 The Modified UML Object Diagram

The goal of the solution diagrams is to visualise a snapshot of the objects, as well as the errors
in the solution. Therefore, in addition to the usual elements, i.e., instances (objects), generalisa-
tions, associations, aggregations, compositions, and association instances, new elements need
to be introduced in order to represent the errors. An instance should be uniquely identified
by its primary key. Although the specialised instances in the object diagrams normally absorb
the attributes of their general instance, representing the generalisation as two instances linked
by the generalisation symbol is preferred in order to allow the visualisation of errors such as
disjointness or completeness constraint violations.

The additional elements and the errors they help to visualise are presented in the following:

Primary Key Violation Instance. All the instances with the same primary key are represented
as one element. When there are more instances with the same primary key, they are
merged into one single element, the primary key violation instance.

Primary Key Violation Attribute. In the primary key violation instance, some non-primary
key attributes have multiple values. The primary key violation attribute is a compact way
to represent an attribute with multiple values.

Empty Instance. An empty instance is an instance with no attribute values. This is not really
an instance, but a representation of the class signature. The empty instance is necessary
to represent completeness generalisation, association instance, or multiplicity constraint
violations, where an instance of a certain type should exist but it does not.

Broken Reference Instance. A broken reference instance is an instance with some attribute
values undefined. Incompletely defined instances are the result of either foreign key or
integrity constraint violations. The broken reference instances may also contain primary
key violation attributes.

55

Broken Association Instance. A broken association instance is an element representing an as-
sociation instance or a relationship reference constraint violation—either there exists a
relationship without an instance associated to it or there exists an instance associated to
more than one relationship.

Source Multiplicity Violation Relationship. The source relationship is the element represent-
ing a relationship (aggregation, association, composition) which violates its source multi-
plicity. This element requires additional information about the multiplicity of the relation-
ship—the multiplicity and the number of relationships starting in the source instance of
the relationship.

Target Multiplicity Violation Relationship. The target multiplicity violation relationship is
the element representing a relationship (aggregation, association, composition) which vi-
olates its target multiplicity. This element requires additional information about the multi-
plicity of the relationship—the multiplicity and the number of relationships ending in the
target instance of the relationship.

Conjunctive Multiplicity Violation Relationship. The conjunctive multiplicity violation rela-
tionship is the element representing a relationship (aggregation, association, composition)
which violates the source and target multiplicities at the same time. This element requires
additional information about the multiplicities of the relationship—the multiplicities and
the number of relationships starting and ending in the source and the target instance of the
relationship.

Broken Generalisation. This element represents the foreign key constraint violation for a gene-
ralisation—i.e, an instance represents the specialisation of multiple general instances.

Disjointness Violation Generalisation. This element represents the disjointness constraint vi-
olation. In practice, it is represented as a normal generalisation, but it allows (requires) a
generalisation set.

Completeness Violation Generalisation. This element represents the completeness constraint
violation—when a generalisation is complete and there is a general instance without its
corresponding specialisation instance. The completeness generalisation representation in-
cludes a generalisation set with empty instances.

4.1.1 Formal Description

Definition 61. The UML object diagram corresponding to the UML class diagram

〈umlName,Assoc,Aggreg ,Comp,Gen,Classes,Attr〉

56

is a tuple

〈umlName, Instances,EmptyInst ,PkViolInst ,BrokenRefInst ,
Aggregations,TgtMultViolAggreg ,SrcMultViolAggreg ,ConjMultViolAggreg ,
Associations,TgtMultViolAssoc,SrcMultViolAssoc,ConjMultViolAssoc,
Compositions,TgtMultViolComp,SrcMultViolComp,ConjMultViolComp,
AssociationInstances,BrokenAssocInstances,Generalisation,
BrokenGen,DisjViolGen,ComplViolGen〉,

where

• umlName is the name of the UML diagram,

• Instances is the set of correct instances,

• EmptyInst is the set of empty instances,

• PkViolInst is the set of primary key violation instances,

• BrokenRefInst is the set of primary broken instances,

• Aggregations is the set of aggregations,

• TgtMultViolAggreg is the set of target multiplicity violation aggregations,

• SrcMultViolAggreg is the set of source multiplicity violation aggregations,

• ConjMultViolAggreg is the set of conjunctive multiplicity violation aggregations,

• Associations is the set of associations,

• TgtMultViolAssoc is the set of target multiplicity violation associations,

• SrcMultViolAssoc is the set of source multiplicity violation associations,

• ConjMultViolAssoc is the set of conjunctive multiplicity violation associations,

• Compositions is the set of compositions,

• TgtMultViolComp is the set of target multiplicity violation compositions,

• SrcMultViolComp is the set of source multiplicity violation compositions,

• ConjMultViolComp is the set of conjunctive multiplicity violation compositions,

• AssociationInstances is the set of association instances,

• BrokenAssocInstances is the set of broken association instances,

• Generalisation is the set of generalisations,

57

• BrokenGen is the set of broken generalisations,

• DisjViolGen is the set of disjointness violation generalisations, and

• ComplViolGen is the set of completeness violation generalisations,

and the elements of the diagram are defined as follows:

1. An attribute is a pair (attr , val), where (attr , attrT) ∈ Classes; attr and val are the
name and the value of the attribute, respectively.

2. An empty attribute is an attribute with no value and is represented only by its name, attr ,
where (attr , attrT) ∈ Classes .

3. A primary key violation attribute is a pair (attr , {val1, . . . , valm}), where

(attr , attrT) ∈ Classes

and attr and {val1, . . . , valm} are the name and the values of the attribute, respectively.

4. An instance for a class 〈c,Ac , kc〉 ∈ Classes is a tuple

〈c, pkAttrs,nonPkAttrs〉,

where pkAttrs and nonPkAttrs are sets of attributes. The following conditions must be
fulfilled:

• |pkAttrs| = kc and

• |Ac | = |pkAttrs ∪ nonPkAttrs|,

where |S| is the cardinality of a set S.

5. An empty instance for a class 〈c,Ac , kc〉 ∈ Classes is a tuple

〈c, (cA1, . . . , cAkc), {cAkc+1, . . . , cAnc}〉,

where all the attributes are empty attributes and

Ac = {cA1, . . . , cAkc , cAkc+1, . . . , cAnc}.

6. A primary key violation instance for a class 〈c,Ac , kc〉 ∈ Classes is a tuple

〈c, pkAttrs,nonPkAttrs, pkViolAttribs〉,

where the sets pkAttrs and nonPkAttrs contain attributes and pkViolAttribs contains
primary key violation attributes. The following conditions must be fulfilled:

• pkViolAttribs 6= ∅,
• |pkAttrs| = kc , and

58

• |Ac | = |pkAttrs ∪ nonPkAttrs ∪ pkViolAttribs|.

7. A broken reference instance for a class 〈c,Ac , kc〉 ∈ Classes is a tuple

〈c, pkAttrs,nonPkAttrs〉,

where pkAttrs and nonPkAttrs contain attributes and empty attributes; nonPkAttrs may
also contain primary key violation attributes. The following conditions must be fulfilled:

• there is some attr ∈ pkAttrs ∪ nonPkAttrs , where attr is an empty attribute,

• |pkAttrs| = kc , and

• |Ac | = |pkAttrs ∪ nonPkAttrs|.

8. A relationship (aggregation, association, composition) is a tuple

〈relName, sourceInstance, targetInstance〉,

where sourceInstance and targetInstance represent instances (i.e., instances, empty in-
stances, or broken reference instances).

9. A source multiplicity violation relationship (aggregation, association, composition) is a
tuple

〈relName, sourceInstance, targetInstance,noSourceInstances,minSrc,maxSrc〉,

where sourceInstance and targetInstance represent instances (i.e., instances, empty in-
stances, or broken reference instances) and noSourceInstances > maxSrc (if maxSrc 6=
−1) or noSourceInstances < minSrc.

10. A target multiplicity violation relationship (aggregation, association, composition) is a
tuple

〈relName, sourceInstance, targetInstance,noTargetInstances,minTgt ,maxTgt〉,

where sourceInstance and targetInstance represent instances (i.e., instances, empty in-
stances, or broken reference instances) and noTargetInstances > maxTgt (if maxTgt 6=
−1) or noTargetInstances < minTgt .

11. A conjunctive multiplicity violation relationship (aggregation, association, composition)
is a tuple

〈relName, sourceInstance, targetInstance,noSourceInstances,
minSrc,maxSrc,noTargetInstances,minTgt ,maxTgt〉,

where sourceInstance and targetInstance represent instances (i.e., instances, empty in-
stances, or broken reference instances), noSourceInstances > maxSrc (if maxSrc 6=
−1) or noSourceInstances<minSrc, and noTargetInstances>maxTgt (if maxTgt 6=
−1), or noTargetInstances < minTgt .

59

12. An association instance is a tuple

(relationship, instance),

where relationship represents a relationship and instance represents the instance associ-
ated with it.

13. A broken association instance is defined exactly as the association instance, by the tuple

(relationship, instance).

14. A generalisation is a tuple

〈genName, generalInstance, specificInstance〉,

where generalInstance and specificInstance represent instances (i.e., instances, empty
instances or broken reference instances).

15. A broken generalisation is defined exactly as the generalisation, by the tuple

〈genName, generalInstance, specificInstance〉.

16. A disjointness violation generalisation is a tuple

〈genName, generalInstance, genSet〉,

where generalInstance represents an instance of any kind and genSet represents a set of
specialisation instances. The following conditions must be fulfilled:

• |genSet | > 1 and

• there is no empty instance instance ∈ genSet .

17. A completeness violation generalisation is a tuple

〈genName, generalInstance, genSet〉,

where generalInstance represents an instance of any kind and genSet represents a set of
specialisation instances. The following conditions must be fulfilled:

• |genSet | ≥ 1 and

• every instance ∈ genSet is an empty instance.

4.2 Mapping the Problem Solution to a UML Object Diagram

The UML class diagram used to model the problem domain, together with the additional prepro-
cessing information (the representation of the relationships and the partitioning predicates) are
required for the representation of an answer set as UML object diagram. The UML class diagram
is preprocessed according to the provided information, as it was shown in Section 3.2.1.

60

4.2.1 Collecting the Instances, Relationships, and Generalisations from an
Answer Set

Only the predicates present in the partitioning predicate set of one of the classes in the UML
diagram are considered in the translation.

In this step, the focus is not on classifying the elements of the diagram according to their
errors, but collecting all the information in the answer set in the most compact manner possible.
Therefore, the most general representation of the instances, relationships, and generalisations is
used.

Let the UML class diagram be represented as in Definition 35 by a tuple

〈umlName,Assoc,Aggreg ,Comp,Gen,Classes,Attr〉,

and let Sc be the partitioning predicate set of the class 〈c,Ac , kc〉 ∈ Classes .

Definition 62. A partial instance is a set of the form

{(predA1, predVal1), . . . , (predAnpred
, predValnpred

)}

for which there exists a literal

pred(predVal1, . . . , predValnpred
)

in the interpretation and a partitioning predicate

pred(predA1, . . . , predAnpred
) ∈ Sc

for 〈c,Ac , kc〉 ∈ Classes .

A partial instance is a direct representation of a literal in the interpretation, according to the
information in the preprocessed UML class diagram. The partial instances correspond to the
preprocessed classes so they contain also the foreign key attributes introduced for relationships
or generalisations.

It is not mandatory that all the attributes of the class are defined in the partial instances.
However, since the primary key attributes are present in all the partitioning predicates, all the
primary key attributes must be defined.

Let Pc be the set of all partial instances of the class c.
An instance is identified by its primary key attributes and all the partial instances with the

same primary key represent particular information about the same instance. The partial instances
with the same primary key describing instances with no primary key violation attributes should
have the same values for all the attributes.

The instances of the class c are reconstructed by merging all the possible partial instances
according to Algorithm 4.2. After applying this algorithm, only the largest partial instances
(with respect to subset inclusion) are present in the partial instance sets of the classes.

We need a generic representation which must include all the information contained in the
answer set regarding an instance identified by its unique primary key.

61

input : two partial instances p1 and p2

output: true if the two partial instances can be merged

canMerge(p1,p2)1

foreach (a, b) ∈ p1 do2

if (a, x) ∈ p2, x 6= b then // the partial instances can be merged3

only if the defined attributes have the same values
return false ;4

end5

return true ;6

end7

Algorithm 4.1: Algorithm canMerge.

input : the set of partial instances Pc

output: the set of all possible merged partial instances Pc

merge(Pc)1

foreach p1 ∈ Pc do2

merged← false;3

foreach p2 ∈ Pc , p2 6= p1 do4

if canMerge(p1, p2) then5

merged← true;6

Pc ← Pc ∪ {p1 ∪ p2} ;7

end8

end9

if merged then // remove the partial instances that are10

included in others
Pc ← Pc \ {p1} ;11

end12

end13

Algorithm 4.2: Algorithm merge.

Definition 63. A generic instance of a class 〈c, (cA1, . . . , cAnc), kc〉 ∈ Classes has the follow-
ing structure:

〈c, pkAttrs,nonPkAttrs, pkViolAttribs〉,

where:

• pkAttrs and nonPkAttrs represent sets of attributes and have the form

{(attr1, val1), . . . , (attrn , valn)},

• {attr |(attr , val) ∈ pkAttrs} ⊆ {cA1, . . . , cAkc},

62

• pkViolAttribs is the set of attributes with multiple values that violate the primary key
constraint and has the form

{(attr1, {val1,1, . . . , val1,m}), . . . , (attrn , {valn,1, . . . , valn,m})},

• {attr |(attr , val) ∈ nonPkAttrs ∪ pkViolAttribs} ⊆ {cAkc+1, . . . , cAnc},

• for each attribute (attr , val)∈nonPkAttrs , there is no set values such that (attr , values)∈
pkViolAttribs , and

• for each attribute (attr , values) ∈ pkViolAttribs , there is no val such that (attr , val) ∈
nonPkAttrs .

While the partial instances correspond to the preprocessed classes, the generic instances
correspond to the classes in the initial UML class diagram, thus contain only the proper attributes
of the classes.

Let Pc be the set of all partial instances of the class c. The instances of c are extracted from
the partial instances according to Algorithm 4.4. The partial instances which do have the same
values for their primary key attributes, but different values for some of the non-primary key
attributes, are combined in the same generic instance, using the primary key violation attributes.

As with the case of partial instances, it is not mandatory that all the attributes of the class
are defined in the generic instances. However, considering the fact that they are extracted from
partial instances, their primary key attributes must be defined.

All the relationships (aggregations, associations, compositions) are graphically represented
as links between two instances. Ideally, beside one single association instance, a relationship
does not need to include anything else. However, due to the possible errors that can be present,
more association instances for the same relationship may exist.

Definition 64. A generic relationship for a relationship

〈relName, srcCls, tgtCls,minSrc,maxSrc,minTgt ,maxTgt , assocCls〉 ∈ Assoc ∪Aggreg

or
〈relName, srcCls, tgtCls,minTgt ,maxTgt , assocCls〉 ∈ Comp

is a tuple
〈relName, pkSource, pkTarget , pkAssocInstances〉,

where:

• pkSource and pkTarget are sets containing primary key attributes of the source and the
target instance, respectively, and have the form

{(attr1, val1), . . . , (attrn , valn)},

63

input : the set of instances Inst , the name of the class c, and the attributes pkAttrs and
nonPkAttrs

output: the set of instances Inst including the new instance

extractInstance(className, pkAttrs, nonPkAttrs, Inst)1

if 〈className, pkAttrs, nonPkAttrs1, pkViolAttribs〉 ∈ Inst then // the classes2

are identified only by the primary key
foreach (attr, val) ∈ nonPkAttrs do3

if (attr, val1) ∈ nonPkAttrs1, val1 6= val then // multiple values for4

the attribute attr
pkViolAttribs← pkViolAttribs ∪ {(attr, {val, val1})} ;5

nonPkAttrs1 ← nonPkAttrs1 \ {(attr, val1)} ;6

end7

else if (attr, val1) ∈ pkViolAttribs, val /∈ val1 then // multiple values8

for the attribute attr
pkViolAttribs← pkViolAttribs ∪ {(attr, val1 ∪ {val})} ;9

end10

end11

end12

else // add a new instance13

Inst←Inst ∪{〈className, pkAttrs, nonPkAttrs, ∅〉} ;14

15

Algorithm 4.3: Algorithm extractInstance.

• pkAssocInstances is the set containing the primary keys of all the association instances
linked to the relationship and has the form

{{(attr1,1, val1,1), . . . , (attr1,n1 , val1,n1)}, . . . ,
{(attrk,1, valk,1), . . . , (attrk,nk

, valk,nk
)}},

• if 〈srcCls, (srcClsA1, . . . , srcClsAnsrcCls
), ksrcCls〉 ∈ Classes , then {attr |(attr , val) ∈

pkSource} ⊆ {srcClsA1, . . . , srcClsAksrcCls
},

• if 〈tgtCls, (tgtClsA1, . . . , tgtClsAntgtCls
), ktgtCls〉 ∈ Classes , then

{attr |(attr , val) ∈ pkTarget} ⊆ {tgtClsA1, . . . , tgtClsAktgtCls
},

and

• if 〈assocCls, (assocClsA1, . . . , assocClsAnassocCls
), kassocCls〉 ∈ Classes , then for all

pkAssoc ∈ pkAssocInstances ,

{attr |(attr , val) ∈ pkAssoc} ⊆ {assocClsA1, . . . , assocClsAkassocCls
}.

64

input : the set of partial instances Pc for every class c in Classes_
output: the set of instances Instances

Inst← ∅ ;1

foreach 〈c, (cA1, . . . , cAn), k〉 ∈ Classes do2

foreach p ∈ Pc do3

pkAttrs← {(attr, val)|(attr, val) ∈ p, attr ∈ {cA1, . . . , cAk}} ;4

nonPkAttrs← {(attr, val)|(attr, val) ∈ p, attr ∈ {cAk+1, . . . , cAn}} ;5

extractInstance(c, pkAttrs, nonPkAttrs, Inst) ;6

end7

end8

Algorithm 4.4: Algorithm extractInstances.

The relationships are represented in the ASP encoding by introducing foreign keys which
may be split in several partitioning predicates. Therefore, it may be the case that not all the
primary key attributes for the involved instances are defined.

Using the preprocessed UML class diagram, the additional information describing the rep-
resentation of the relationships and the partial instances, and the generic relationships, are ex-
tracted in the set Relationships by gathering the foreign key attributes from the partial instances,
as described in Algorithm 4.5.

All the association instances and the relationships contained in the association instances must
also be extracted. They are extracted as described in Algorithm 4.6. The association instances
which violate the relationship reference constraint are added to the set RRViolAssocInstances ,
represented only through their primary key attributes. The other association instances are rep-
resented in the relationship.

A generalisation is represented as a link between two instances. However, it may be the
case that there are more specialisation instances for the same general instance. Therefore, the
generalisation representation includes its generalisation set.

Definition 65. A generic generalisation corresponding to a UML generalisation

〈genName, generalCls, genSet , complete〉 ∈ Gen

is a tuple

〈genName, pkGeneral , genSet〉,

where:

• pkGeneral is a set containing primary key attributes of the general instance and has the
form

{(attr1, val1), . . . , (attrn , valn)},

65

input : the relationship information, the set of Classes and the set Relationships
output: the set Relationships containing the new relationships relName

if minSrc = 1,maxSrc = 1, relName is represented by adding the foreign key of srcCls1

to tgtCls then
foreach p ∈ PtgtCls do2

pkS← {(srcCls_attr, val)|(srcCls_attr_src_relName, val) ∈ p} ;3

pkT← {(attr, val)|〈tgtCls, (tgtClsA1, . . . , tgtClsAntgtCls
), ktgtCls〉 ∈4

Classes_, attr ∈ {tgtClsA1, . . . , tgtClsAktgtCls
}, (attr, val) ∈ p} ;

Relationships← Relationships ∪ {〈relName, pkS, pkT, ∅〉} ;5

end6

end7

else if minTgt = 1,maxTgt = 1, relName is represented by adding the foreign key of8

tgtCls to srcCls then
foreach p ∈ PsrcCls do9

pkT← {(tgtCls_attr, val)|(tgtCls_attr_tgt_relName, val) ∈ p} ;10

pkS← {(attr, val)|〈srcCls, (srcClsA1, . . . , srcClsAnsrcCls
), ksrcCls〉 ∈11

Classes_, attr ∈ {srcClsA1, . . . , srcClsAksrcCls
}, (attr, val) ∈ p} ;

Relationships← Relationships ∪ {〈relName, pkS, pkT, ∅〉} ;12

end13

end14

else if relName is represented by a new class relName then15

foreach p ∈ PrelName do16

pkS← {(srcCls_attr, val)|(srcCls_attr_src_relName, val) ∈ p} ;17

pkT← {(tgtCls_attr, val)|(tgtCls_attr_tgt_relName, val) ∈ p} ;18

Relationships← Relationships ∪ {〈relName, pkS, pkT, ∅〉} ;19

end20

end21

Algorithm 4.5: Algorithm extractRelationships.

• genSet is the set containing the primary keys of all the specialisation instances of the
general instance and has the form

{(sp1, {(attr1,1, val1,1), . . . , (attr1,n1 , val1,n1)}), . . .
(spm, {(attrm,1, valm,1), . . . , (attrm,nm , valm,nm)})},

• if 〈generalCls, (generalClsA1, . . . , generalClsAngeneralCls
), kgeneralCls〉 ∈ Classes , then

{attr |(attr , val) ∈ pkGeneral} ⊆ {generalClsA1, . . . , generalClsAkgeneralCls
},

and

• if (specificCls, pkSpecific) ∈ genSet and

〈specificCls, (specificClsA1, . . . , specificClsAnspecificCls
), kspecificCls〉 ∈ Classes

66

input : the relationship information
〈relName, srcCls, tgtCls,minSrc,maxSrc,minTgt ,maxTgt , assocCls〉, the
set of Classes and the set Relationships

output: the set Relationships containing the new relationships relName and the set
RRViolAssocInstances

if assocCls 6= null then1

foreach p ∈ PassocCls do2

pkS← {(srcCls_attr, val)|(srcCls_attr_src_relName, val) ∈ p} ;3

pkT← {(tgtCls_attr, val)|(tgtCls_attr_tgt_relName, val) ∈ p} ;4

pkAssoc←5

{(attr, val)|〈assocCls, (assocClsA1, . . . , assocClsAnassocCls
), kassocCls〉 ∈

Classes, attr ∈ {assocClsA1, . . . , assocClsAkassocCls
}, (attr, val) ∈ p} ;

if 〈relName, pkS, pkT, pkA〉 ∈ Relationships then6

pkA← pkA ∪ {pkAssoc} ;7

end8

else if relName is represented solely by its association class assocCls then9

Relationships← Relationships ∪ {〈relName, pkS, pkT, {pkAssoc}〉} ;10

end11

else // the relationship does not exist, so the assoc12

instance is added to RRViolAssocInstances
Relationships← Relationships ∪ {〈relName, pkS, pkT, {pkAssoc}〉} ;13

RRViolAssocInstances← RRViolAssocInstances ∪ {pkAssoc} ;14

15

end16

end17

Algorithm 4.6: Algorithm extractAssociationInstances.

then

{attr |(attr , val) ∈ pkSpecific} = {specificClsA1, . . . , specificClsAkspecificCls
}.

In the same way as the relationships, the generalisations are represented in the ASP encoding
by introducing foreign keys which may be split in several partitioning predicates. It may be
therefore the case that not all the primary key attributes for the involved instances are defined.
However, the generalisations are represented by introducing the foreign key of the general class
to the specific class and thus all the primary key attributes of the specialisation instances, if they
exist, are defined.

Using the preprocessed UML class diagram and the partial instances, the generic generalisa-
tions are extracted in the set Generalisations , by gathering the foreign key attributes from the
partial instances, as described in Algorithm 4.7.

67

input : the general information 〈genName, generalCls, genSet , complete〉, the set of
Classes and the set of generalisations Generalisations

output: the set of generalisations Generalisations containing the new generalisations
genName

foreach sp ∈ genSet do1

foreach p ∈ Psp do2

pkGeneral← {(generalCls_attr, val)|(generalCls_attr_genName, val) ∈ p} ;3

pkSpecific← {(attr, val)|〈sp, (spA1, . . . , spAnsp), ksp〉 ∈ Classes, attr ∈4

{spA1, . . . , spAksp }, (attr, val) ∈ p} ;
if 〈genName, pkGeneral, pkSpecific1〉 ∈ Generalisations then5

pkSpecific1 ← pkSpecific1 ∪ {〈sp, pkSpecific〉} ;6

end7

else Generalisations←8

Generalisations ∪ {〈genName, pkGeneral, {〈sp, pkSpecific〉}〉} ;
end9

end10

Algorithm 4.7: Algorithm extractGeneralisations.

4.2.2 Adding Instances and Links

An instance 〈c, pkAttrs,nonPkAttrs, pkViolAttribs〉 ∈ Inst is mapped to an object in the
UML object diagram according to the sets of attributes defining it. This mapping is realised in
terms of Algorithm 4.8.

If all the attributes of the instance are defined and no attribute violates the primary key
constraint, the instance is a correct instance. If there exists at least an attribute which is not
defined in the instance, the instance is mapped to a broken reference instance. Otherwise, if
some of the attributes violate the primary key constraint, the instance is mapped to a primary
key violation instance.

A generalisation 〈genName, pkGeneral , genSet〉 ∈ Generalisations is mapped to ele-
ments in the object diagram according to its generalisation set and the number of general in-
stances for the same specialisation instance. The exact mapping is shown in Algorithm 4.9.

If there are at least two specialisation instances present in the generalisation set, the general-
isation is mapped to a disjointness violation generalisation. Otherwise, if there are more general
instances for the specialisation instance, the generalisation is a broken generalisation. If none of
the aforementioned errors is present in the generalisation, the generalisation is a correct one and
is mapped to a normal generalisation.

Moreover, if one of the instances involved in the generalisation is not already among the
elements of the object diagram, the instance is mapped to a broken reference instance.

A relationship is mapped to a link between two instances. The number of relationships
with the same name starting and ending in the involved instances are taken into account when
mapping the relationship. If the multiplicities are within the bounds, the relationship is a correct
one. Otherwise, it is mapped to the element in the object diagram corresponding to the violated

68

input : the set Inst and Classes and the sets of instances in the object diagram
Instances,EmptyInst ,PkViolInst ,BrokenRefInst

output: the updated object diagram

foreach 〈c, pkAttr, nonPkAttr, pkViolAttr〉 ∈ Inst do1

if 〈c, {cA1, . . . , cAn}, k〉 ∈ Classes then2

broken← false ;3

newPkAttr← ∅ ;4

newNonPkAttr← ∅ ;5

newPkViolAttr← ∅ ;6

if |pkAttr| < k or |pkAttr ∪ nonPkAttr ∪ pkViolAttr| < n then // some7

attributes are not defined
broken← true ;8

end9

foreach attr ∈ {cA1, . . . , cAk} do10

if (attr, val) ∈ pkAttr then11

newPkAttr← newPkAttr ∪ {(attr, val)} ;12

else newPkAttr← newPkAttr ∪ {attr} ;13

end14

end15

foreach attr ∈ {cAk+1, . . . , cAn} do16

if (attr, val) ∈ nonPkAttr then17

newNonPkAttr← newNonPkAttr ∪ {(attr, val)} ;18

else if (attr, val) ∈ pkViolAttr then19

newPkViolAttr← newPkViolAttr ∪ {(attr, val)} ;20

end21

else newNonPkAttr← newNonPkAttr ∪ {attr} ;22

end23

end24

if broken then25

BrokenRefInst←26

BrokenRefInst ∪ {〈c, newPkAttr, newNonPkAttr ∪ newPkViolAttr〉} ;
end27

else if newPkViolAttr 6= ∅ then28

PkViolInst← PkViolInst ∪ {〈c, newPkAttr, newNonPkAttr, newPkViolAttr〉}29

;
end30

else Instances← Instances ∪ {〈c, newPkAttr, newNonPkAttr〉} ;31

end32

end33

Algorithm 4.8: Algorithm addInstances.

69

input : the sets Generalisations and Classes and the sets of generalisations in the
object diagram Generalisation,BrokenGen and DisjViolGen

output: the updated object diagram

foreach 〈g, pkG, genS〉 ∈ Generalisations do1

genI← getInstance(pkG) ;2

if genI = null then // new broken instance should be added3

genI← 〈gc, pkG ∪ {attr|attr ∈ {gcA1, . . . , gcAkgc }, @(val)((attr, val) ∈4

pkG)}, {gcAkgc+1, . . . , gcAngc }〉 ;
BrokenRefInst← BrokenRefInst ∪ {genI};5

end6

if |genS| > 1 then7

genS1 ← ∅ ;8

foreach (sp, pkS) ∈ genS do9

specI← getInstance(pkS) ;10

if specI = null then // new broken instance should be11

added
specI← 〈sp, pkS ∪ {attr|attr ∈ {spA1, . . . , spAksp }, @(val)((attr, val) ∈12

pkS)}, {spAksp+1, . . . , spAnsp }〉 ;
BrokenRefInst← BrokenRefInst ∪ {specI};13

end14

genS1 ← genS1 ∪ {specI} ;15

end16

DisjViolGen← DisjViolGen ∪ {〈g, genI, genS1〉} ;17

end18

else for (sp, pkS) ∈ genS do19

specI← getInstance(pkS) ;20

if specI = null then // new broken instance should be added21

specI← (sp, pkS ∪ {attr|attr ∈ {spA1, . . . , spAksp },@(val)((attr, val) ∈22

pkS)}, {spAksp+1, . . . , spAnsp }) ;
BrokenRefInst← BrokenRefInst ∪ {specI};23

end24

if 〈g, pkG1, genS1〉 ∈ Generalisations, pkG1 6= pkG, specI ∈ genS1 then25

// multiple generalisation instances
BrokenGen← BrokenGen ∪ {〈g, genI, specI〉};26

end27

else28

Generalisation← Generalisation ∪ {〈g, genI, specI〉};29

end30

end31

end32

Algorithm 4.9: Algorithm addGeneralisations.

70

constraint. The mapping for the associations is described in Algorithm 4.10. The mapping of
aggregations and compositions is realised in the same way.

Exactly as in the case of the generalisations, the instances involved in a relationship which
are not present among the instances in the object diagram are mapped to broken reference
instances. Furthermore, the association instances of the relationships are also added (cf. Al-
gorithm 4.11). If there are more instances associated to one relationship or the association
instance belongs to the set RRViolAssocInstances , they are mapped to broken association in-
stances.

Up to this point, only the elements present in the answer set were taken into account. How-
ever, we also need to represent the lack of elements that should exist but are not present, such
as the specialisation instance of a complete generalisation or the mandatory instance or the as-
sociation instance for a relationship. In order to do that, we need to investigate all the complete
generalisations and all the relationships with a mandatory end class in the diagram. Only the
generic instances present in Instances are considered when searching for multiplicity or com-
pleteness constraint violations. The reason behind that is that all the other instances were not
actually present in the answer set and they were only generated as a result of some constraint
violation and the goal of the object diagram is to display the errors in the answer set, not to
propagate errors.

The complete generalisations are inspected as shown in Algorithm 4.12. For all the complete
generalisations in the UML class diagram, if a generalisation instance exists and it does not have
any specialisation instance, a completeness violation generalisation is added with the general-
isation set being the set of empty instances corresponding to the classes in the generalisation
set.

The associations are inspected as shown in Algorithm 4.13. For all the associations in the
UML class diagram, if the minimal bound for the target (source) class is greater or equal to 1, it
means that for every source (target) instance, there should be at least one association to a target
(source) instance. If that is not the case, the target (source) multiplicity constraint is violated and
a multiplicity violation association needs to be added.

For aggregations and compositions, the algorithm is exactly the same, only the sets are
different.

Example 18. Consider the UML class diagram in Figure 3.2 and the following ASP program:

person(1,"R. Fellner", "Pazmaniteng 24-9", "01700731601").
person(2,"Maria Muster", "Weihburggasse 26", "01701731651").
course(1,"Logic").
course(2,"Deductive databases").
course(3,"Nonmonotonic Reasoning").
course(4,"Mathematics").
student(1,"Computer Science", "01-10-2010", "15-10-2012", 1).
student(3,"Computer Science", "01-10-2010", "15-10-2012", 3).
teacher(1,"01-10-2000", "20-12-2020", 2).
studies(1,1).
studies(3,2).

71

input : the sets Relationships and Classes , Assoc and the sets of associations in the
object diagram Associations,TgtMultViolAssoc, SrcMultViolAssoc,
ConjMultViolAssoc

output: the updated object diagram

foreach 〈r, pkS, pkT, pkAI〉 ∈ Relationships and1

〈r, s, t, minS, maxS, minT, maxT, ac〉 ∈ Assoc do
noT← |{pkT1|〈r, pkS, pkT1 , pkAI1〉 ∈ Relationships}| ;2

noS← |{pkS1|〈r, pkS1 , pkT, pkAI1〉 ∈ Relationships}| ;3

tViol :− (minT > noT) or (maxT 6= -1 and maxT < noT) ;4

sViol :− (minS > noS) or (maxS 6= -1 and maxS < noS) ;5

srcInst← getInstance(pkS) ;6

if srcInst = null then7

srcInst← 〈s, pkS ∪ {attr|attr ∈ {sA1, . . . , sAks },@(val)((attr, val) ∈8

pkS)}, {sAks+1, . . . , sAns }〉 ;
BrokenRefInst← BrokenRefInst ∪ {srcInst};9

end10

tgtInst← getInstance(pkT) ;11

if tgtInst = null then12

tgtInst← 〈t, pkT ∪ {attr|attr ∈ {tA1, . . . , tAkt },@(val)((attr, val) ∈13

pkT)}, {tAkt +1, . . . , tAnt }〉 ;
BrokenRefInst← BrokenRefInst ∪ {tgtInst};14

end15

if tViol and sViol then16

rel :− 〈r, srcInst, tgtInst, noS, minS, maxS, noT, minT, maxT〉;17

ConjMultViolAssoc :− ConjMultViolAssoc ∪ {rel } ;18

end19

else if tViol then20

rel :− 〈r, srcInst, tgtInst, noT, minT, maxT〉;21

TgtMultViolAssoc :− TgtMultViolAssoc ∪ {rel } ;22

end23

else if sViol then24

rel :− 〈r, srcInst, tgtInst, noS, minS, maxS〉;25

SrcMultViolAssoc :− SrcMultViolAssoc ∪ {rel } ;26

end27

else28

rel :− 〈r, srcInst, tgtInst〉;29

Associations :− Associations ∪ {rel } ;30

end31

addAssociationInstance(rel, pkAI, ac);32

end33

Algorithm 4.10: Algorithm addAssociations.

72

input : the relationship rel, the set of association instances pkAI, the set Relationships
and RRViolAssocInstances

output: the updated object diagram

if |pkAI| > 1 or pkAI ⊆ RRViolAssocInstances then // broken association1

instances
foreach pkAssoc ∈ pkAI do2

inst :− getInstance(pkAssoc) ;3

if inst = null then4

inst← 〈ac, pkAssoc ∪ {attr|attr ∈ {acA1, . . . , acAkac }, @(val)((attr, val) ∈5

pkAssoc)}, {acAkac+1, . . . , acAnac }〉 ;
BrokenRefInst← BrokenRefInst ∪ {inst};6

end7

BrokenAssocInstances :− BrokenAssocInstances ∪ {(rel, inst)};8

end9

end10

else // normal association instances11

noR← |{〈r1 , pkS1 , pkT1 , pkAI1〉|〈r1 , pkS1 , pkT1 , pkAI1〉 ∈12

Relationships, pkAssoc ∈ pkAI1}| ;
foreach pkAssoc ∈ pkAI do13

inst :− getInstance(pkAssoc) ;14

if inst = null then15

inst← 〈ac, pkAssoc ∪ {attr|attr ∈ {acA1, . . . , acAkac }, @(val)((attr, val) ∈16

pkAssoc)}, {acAkac+1, . . . , acAnac }〉 ;
BrokenRefInst← BrokenRefInst ∪ {inst};17

end18

if noR > 1 then19

BrokenAssocInstances :− BrokenAssocInstances ∪ {(rel, inst)};20

end21

else AssociationInstances :− AssociationInstances ∪ {(rel, inst)};22

end23

24

Algorithm 4.11: Algorithm addAssociationInstance.

73

input : the sets Generalisations , Inst and Classes and the set of completeness violation
generalisations ComplViolGen in the object diagram

output: the updated object diagram

foreach 〈g, gc, genS1, true〉 ∈ Gen and 〈 gc, pkG, nonPkAttrs〉 ∈ Instances do1

if @〈g, pkG, genS〉 ∈ Generalisations then2

genI← getInstance(pkG) ;3

emptyGenSet← ∅ ;4

foreach sp ∈ genS1 do5

emptyI :− 〈sp, (spA1, . . . , spAksp), {spAksp+1, . . . , spAnsp }〉;6

emptyGenSet :− emptyGenSet ∪ {emptyI};7

EmptyInst :− EmptyInst ∪ {emptyI} ;8

end9

ComplViolGen :− ComplViolGen ∪ {〈gc, genI, emptyGenSet〉};10

end11

end12

Algorithm 4.12: Algorithm addCompletenessViolationGeneralisations.

input : the sets Relationships , Classes , Assoc and the sets of associations in the object
diagram TgtMultViolAssoc, SrcMultViolAssoc

output: the updated object diagram

foreach 〈r, s, t, minS, maxS, minT, maxT, ac〉 ∈ Assoc do1

if minT >= 1 and 〈 s, pkS, nonPkAttrs〉 ∈ Instances and2

@〈r, pkS, pkT, pkAI〉 ∈ Relationships then
srcInst :− getInstance(pkS) ;3

emptyI :− 〈t, {(tA1, . . . , tAkt)}, {tAkt +1, . . . , tAnt }〉;4

TgtMultViolAssoc :− TgtMultViolAssoc ∪ {〈r, srcInst, emptyI, 0,minT,maxT〉};5

EmptyInst :− EmptyInst ∪ {emptyI} ;6

end7

if minS >= 1 and 〈 t, pkT, nonPkAttrs〉 ∈ Instances and8

@〈r, pkS, pkT, pkAI〉 ∈ Relationships then
tgtInst :− getInstance(pkT) ;9

emptyI :− 〈s, {(sA1, . . . , sAks)}, {sAks+1, . . . , sAns }〉;10

SrcMultViolAssoc :− SrcMultViolAssoc ∪ {〈r, emptyI, tgtInst, 0,minS,maxS〉};11

EmptyInst :− EmptyInst ∪ {emptyI} ;12

end13

end14

Algorithm 4.13: Algorithm addMultiplicityViolationAssociations.

74

Figure 4.1: Object diagram example

teaches(1,2).
teaches(1,3).
teaches(1,4).

Then, the UML object diagram is the one in Figure 4.1.
All the literals over the predicates “person”, “course”, “student”, and “teacher” are mapped

to the corresponding instances. The associations are represented by the predicates “studies” and
“teaches”.

The graphical elements which correspond to certain errors in the diagram are represented in
red.

In this example, there are three types of errors: source multiplicity violation associations (for
the associations “studies” and “teaches”) for which the empty instances “student” and “teacher”
were also introduced, broken reference instance for “person” (as a result of the generalisation
“role”), and broken association instance (for the association “studies”).

4.3 Chapter Summary

The UML object diagram is modified in order to display the errors of the problem’s solution.
Considering the possible errors that can appear in the answer set, we added primary key viol-
ation attributes and instances, empty instances, broken reference instances, broken association
instances, source, target and both multiplicity violation relationships, broken generalisations,
and disjointness and completeness violation generalisations.

75

The class diagram and the additional preprocessing information (regarding the representa-
tion of relationships and classes) are required to create the graphical representation of the solu-
tion.

76

CHAPTER 5
Implementation

5.1 Graphical Editors in Eclipse using the Graphical Modelling
Framework

Our approach is implemented as an Eclipse plugin and is integrated with SeaLion. One of the
advantages of developing on top of Eclipse rather than creating a new system from scratch is the
fact that Eclipse is a widespread platform which offers a variety of tools to help the developer.
Another advantage is the possibility to develop platform-independent tools.

The Graphical Modelling Framework (GMF) [22] is one of the tools provided by Eclipse. It
employs a model-driven engineering approach to generate graphical editors and views based on
the Eclipse Modelling Framework (EMF) [37] and the Graphical Editing Framework (GEF) [20].
GMF provides an integration with the Eclipse Workbench UI, such as the toolbar, outline, and
property view. Furthermore, it offers two distinct views (graphical and tree view) and imple-
ments Undo/Redo via Command and Command Stack and selection and creation tools.

The steps involved in the generation of the diagram editor include different definitions, such
as domain model, graphical, tooling, and generation definitions.

Ecore files are used to define the DSML (see Section 2.2). Ecore is a metalanguage which
allows the user to define platform-independent models. An Ecore file is basically an XML file
with a specific syntax which will be used to support the code generation. Further constraints for
the DSML can be specified using audit rules or the Object Constraint Language (OCL) [21].
They are used to validate the graphical models represented in the editor. The validation may be
live, when all the changes that lead to a constraint violation are revoked, or it may be done by
invoking the validation command offered by Eclipse.

The graphical definition model is used to define the graphical components (such as links,
nodes, and attributes) related with the elements in the domain model. The tooling definition
model specifies the palette, the creation tools, and the actions for the graphical elements. The
mapping definition model binds the domain, the graphical, and the tooling definition models.

After all the graphical components and mappings are defined, the next step involves a model-

77

to-model transformation from the mapping definition model to the generation model. The last
step is a model-to-code transformation which produces the encoding of the diagram editor as a
plugin for Eclipse.

In the resulting editor, the domain model and the diagram information are kept in separate
synchronised files. The domain model is described in an Ecore file, which can be rendered with
the editor by simply right-clicking the file and selecting “Initialise *_diagram file” from the
menu, where “*” represents the extension of the Ecore file.

5.2 Architecture

The architecture of the graphical environment is displayed in Figure 5.1. The system guides
the ASP development process the entire way from the design phase to the visualisation of the
solution.

In the first step, the user describes the graphical representation of a UML class diagram in
the UML class diagram editor. An Ecore file containing the domain model of the UML class
diagram is created and is kept synchronised by the editor. The Ecore file will be used as input
(together with an optional XML file with additional preprocessing information) for the ASP
code generator. The output of the ASP code generator is an answer-set program containing the
signature of the program and the constraints expressed in Lana, as detailed in Section 3.2.2. The
additional preprocessing information (the representation mode of relationships and the way the
classes are split in partitioning predicates) is gathered in an XML file. The syntax of this XML
file is described by the following Document Type Definition (DTD) [12]:

<!DOCTYPE information [
<!ELEMENT information (aggregation* association* composition*

partitioningPredicate*)>
<!ELEMENT aggregation EMPTY>
<!ATTLIST aggregation

name CDATA #REQUIRED
representingMode (0|1|2) "0">

<!ELEMENT association EMPTY>
<!ATTLIST association

name CDATA #REQUIRED
representingMode (0|1|2) "0">

<!ELEMENT composition EMPTY>
<!ATTLIST composition

name CDATA #REQUIRED
representingMode (0|1|2) "0">

<!ELEMENT partitioningPredicate attribute+>
<!ATTLIST partitioningPredicate

name CDATA #REQUIRED
description CDATA ""
class CDATA #REQUIRED>

78

Figure 5.1: The architecture of the graphical modelling environment.

79

<!ELEMENT attribute EMPTY>
<!ATTLIST attribute

name CDATA #REQUIRED>
]>

For every relationship, representingMode is 0 if the relationship is represented by adding the
foreign key attributes of the mandatory class to the other class, 1 if it is represented by intro-
ducing a new predicate containing the foreign key attributes of the classes involved, and 2 if it
is represented solely by its association class. The attributes in partitioningPredicate represent a
subset of the attribute names from a class that are present in this partitioning predicate.

In an XML file representing the output of the ASP code generator, all the attributes of every
class from the UML class diagram are present in at least one of its partitioning predicate and the
representing mode for every relationship from the UML class diagram is defined. However, this
does not have to be true in an XML file used as input.

The programmer (who can be different from the user) proceeds to develop an ASP encoding
based on the ASP signature. A solver is used to produce the interpretations of the program
from which an interpretation, or a fragment of it, is selected to be visualised. In addition to the
selected literals and the Ecore file representing the UML diagram domain model, the XML file
with all the preprocessing information is required. Using the UML class diagram as blueprint
and the preprocessing information, the translator produces the UML object diagram which will
be opened in the UML object diagram editor.

5.3 UML Class Diagram Editor

The meta-model describing the UML class diagram was already depicted in Figure 3.1.
The multiplicities on the references and properties and the containment of the references

ensure certain constraints over the graphical editor. The multiplicity 1..1 on all the properties
implies that every property of every class has to be set (i.e., the names of the UML class diagram,
classes, relationships, the multiplicities of the relationships, and the names and types of the
attributes). Some of the properties have default values. The multiplicities are by default 0..1 and
the property complete for the generalisation is by default false. Additional constraints are added
using audit rules. Most of the additional constraints are checked in live mode, which implies
that any modification leading to their violation is cancelled.

The elements that can be represented in the graphical editor are classes, attributes, primary
key attributes, associations, aggregations, compositions, association classes, generalisations, and
generalisation sets. The names of all elements contain only alphanumeric characters and they
have to start with a letter. Moreover, there cannot be two attributes in the same class or two
elements (classes, aggregations, associations, compositions, or generalisations) in the diagram
with the same name.

Attribute. An attribute is a label name : type and the fact that an attribute is a primary key for
a class is represented by adding the symbol # on the left side. The containment property
of the references attributes and pkAttributes ensures the fact that no attribute can exist

80

standalone. Moreover, the multiplicity 1..∗ on the set of attributes in the pkAttributes
reference ensures the fact that every class has at least a primary key attribute. Once a class
is deleted, all the contained attributes are also deleted.

Class. A class is represented by a rectangle with three compartments. The first one contains
the name of the class, the second one its primary key attributes, and the third one its
non-primary key attributes. The last two compartments are collapsible.

Association. An association is a line connecting two classes, with an open arrow target decor-
ation. The name of the association and the multiplicities are displayed in the centre and
respectively at the corresponding ends. An additional audit rule ensures that the minimal
bounds cannot exceed the maximal ones.

Aggregation. An aggregation is a special type of association and is a line connecting two
classes, with an empty diamond source decoration and an open arrow target decoration.

Composition. A composition is another special type of association and is a line connecting two
classes, with a black filled diamond source decoration and an open arrow target decoration.
Another difference is the lack of source multiplicity for the composition—the multiplicity
is implicitly 1..1, due to the ownership meaning of the composition.

Association class. An association class is a dotted line connecting a relationship (namely ag-
gregation, association, or composition) to a class. The multiplicity 0..1 of the reference
associationClass in the Ecore model ensures that there is at most one class linked to an
association. Furthermore, the containment property of this reference forces the deletion
of the association class whenever the relationship it is connected to is deleted.

Generalisation. A generalisation is a line with a triangle target decoration connecting two
classes. The name of the generalisation is actually the name of the generalisation set.
The generalisation does not have any multiplicity associated to it. However, it does have
a boolean attribute named complete. This attribute, set by default to false, captures the
completeness meaning of the generalisation. The additional constraints expressed as audit
rules do not allow generalisations from one class to itself or two different generalisations
between the same two classes.

Generalisation Set. A generalisation set is a line connecting a generalisation to a class. It is not
a standalone element, due to the containment property of the generalisationSet reference.
Therefore, the deletion of the generalisation it is associated with leads to its own deletion.

An example of a UML class diagram was presented in Figure 3.2.

Example 19. Another example in which we added the class “module” and the composition
“has” from “module” to “course” is depicted in Figure 5.2. In this figure, the creation tools for
the elements of the diagram and the tree view are also visible.

81

Figure 5.2: The UML class diagram editor.

5.4 The Automatic Translation of UML Class Diagrams to ASP

The input and output of the ASP code generator were already discussed in Section 5.3. In this
section, we will discuss only the preprocessing information provided by the user. The dialogue
with the user is realised in three different steps.

First, the user specifies the input and the output files and some general preprocessing in-
formation which has effect over the entire diagram (the dialogue is represented in Figure 5.3).
Optionally, he or she can also provide an initial XML file containing some preprocessing in-
formation (which may have been generated before as output or was created manually).

The user can select the desired system (DLV or gringo) for the encoding and can determ-
ine if the program should generate also assertions or only the definitions of terms and atoms.
Moreover, the user can decide if the program proceeds to generate all the default predicates.
These predicates can be altered afterwards. If the user does not select this option, he or she
has to add them manually and finishing at this point is not allowed. However, if this option is
selected, the translation can start. That is due to the fact that we need to guarantee that every
attribute is present in at least one partitioning predicate.

In the same step, the user can choose to represent all relationships which have an association
class solely through the association class. If this option is selected and a relationship does not
have an association class, the relationship is handled according to its multiplicities. If the rela-
tionship is a many-to-many relationship, it is represented by adding a new predicate. Otherwise,
the relationship is a one-to-one (one-to-many) relationship and the foreign key of one class is

82

Figure 5.3: Specifying the input and output for the Code Generator.

added to the other, if the option “Always represent one-to-one(many) relationships by adding
foreign keys” is selected, or a new predicate is added, if the option “Always represent relation-
ships by introducing a new predicate” is selected. The options regarding the representation of
the relationships which can be selected in this step are applied to all relationships in the diagram.

In the next step (see Figure 5.4), the user can change the representation mode for every
individual relationship. Only the possible options for the selected relationship are displayed in
the dialogue.

The user can also choose to update the predicates of the involved classes (namely the target,
source, and association class) so that they will cover all the attributes—for example, that may
mean deleting attributes in some predicates and adding a new predicate if the representation
mode of the relationship was changed from adding primary keys to adding a new predicate. The
predicates are updated for all the relationships that were modified if and only if this option is
selected when the button “Next” is pressed. The code generation process cannot start at this
moment.

In the last step, the user can add, remove, or modify partitioning predicates (Figure 5.5) for
different classes. Every partitioning predicate must include all the primary key attributes of the
class. The code generation can start only if all the attributes from the UML class diagram are
present in at least a partitioning predicate.

83

Figure 5.4: Representing individual relationships.

84

Figure 5.5: Defining partitioning predicates.

5.5 UML Object Diagram Editor

The elements of the UML object diagram editor are divided in two categories: legal elements
and elements that depict different types of errors. The legal elements correspond one-to-one
to the elements of the UML class diagram, except the generalisation set whose existence in
a UML object diagram implies either a disjointness or completeness constraint violation of a
generalisation.

We did add some constraints on the elements in the graphical editor, even though the ob-
ject diagrams are automatically generated and these constraints are taken into account in the
translation process.

Attribute. An attribute is a label name = value and the fact that an attribute is a primary key for
an instance is represented by adding the symbol # on the left side. No attribute can exist
standalone. Once an instance is deleted, all the contained attributes are also deleted.

Instance. An instance is represented by a rectangle with three compartments. The first one
contains the name of the class, the second one its primary key attributes, and the third one
its non-primary key attributes. The last two compartments are collapsible.

Association. An association is a line connecting two instances, with an open arrow target dec-
oration. The name of the association is displayed in the centre of the association.

Aggregation. An aggregation is a line connecting two instances, with an empty diamond source
decoration and an open arrow target decoration.

85

Composition. A composition is a line connecting two instances, with a filled diamond source
decoration and an open arrow target decoration.

Association instance. An association instance is a dotted line connecting a relationship (namely
aggregation, association, or composition) to an instance. No association instance can exist
without the relationship they are linked to.

Generalisation. A generalisation is a line with a triangle target decoration connecting two in-
stances. The generalisation does not have a generalisation set because a general instance
can have at most one specialisation instance for a legal generalisation.

The additional elements are used to depict different types of errors in the answer set (relative
to the UML class diagram used as blueprint and the preprocessing information provided as
input). These elements are represented using a different colour (normally red) from the one used
by the legal elements.

Primary Key Violation Attribute. A primary key violation attribute is a red rectangle with two
compartments. The first one contains the name of the attribute and the second its values
(more than one).

Primary Key Violation Instance. A primary key violation instance is a blue rectangle with
four compartments. The first one contains the name of the class, the second one its primary
key attributes, the third one its non-primary key legal attributes, and the fourth one its
primary key violation attributes.

Empty Instance. An empty instance is a red rectangle with three compartments. The first one
contains the name of the class, the second one the names of its primary key attributes,
and the third one the names of its non-primary key attributes. No attribute has any value
defined.

Broken Reference Instance. A broken reference instance is a red rectangle with three com-
partments. The first one contains the name of the class, the second one its primary key
attributes, and the third one its non-primary key attributes. A broken reference instance
must have at least an attribute (be it primary key or non-primary key) which has no value.
However, among the non-primary key attributes, there may exist also primary key viola-
tion attributes.

Broken Association Instance. A broken association instance is a dotted red line connecting a
relationship to an instance.

Source/Target/Both Multiplicity Violation Relationship. The source/target/both multiplicity
relationship (aggregation, association, composition) is a red line decorated in the same
way like its corresponding legal relationship, but it also shows the multiplicity (resp.,
multiplicities) which is (resp., are) violated together with the actual number of relation-
ships with this name in which the instance is (resp., the instances are) involved. The
expression which shows how the multiplicity constraint has been violated has the form

86

Figure 5.6: Object diagram for Example 20.

not(min <= no <= max), where min and max are the bounds defined in the UML
class diagram and no represents the actual number of relationships involving the instance.

Broken Generalisation. A broken generalisation is a red line with a triangle target decoration
connecting two instances.

Disjointness Violation Generalisation. A disjointness violation generalisation is a red line with
a triangle target decoration connecting two instances. A disjointness violation generalisa-
tion must have a generalisation set containing at least two different instances.

Completeness Violation Generalisation. A completeness violation generalisation is a red line
with a triangle target decoration connecting two instances for which the specialisation
instance is an empty instance. A completeness violation generalisation may have a gener-
alisation set containing only empty instances.

Generalisation Set. A generalisation set is a red line connecting a disjointness or completeness
violation generalisation with an instance.

The UML graphical editor allows the user to edit object diagrams, but it does not provide
synchronisation with the interpretation.

An example of UML object diagram is represented in Figure 4.1.

Example 20. Consider the following program and the UML class diagram from Figure 5.2 with
the default ASP translation of its elements, except for the composition “has”, which we chose to
translate by adding the predicate “has(Module_name_src_has,Course_id_tgt_has)”- Then, the
UML object diagram corresponding to the solution is the one shown in Figure 5.6.

87

person(1,"R. Fellner", "Pazmaniteng 24-9", "01700731601").
person(2,"Maria Muster", "Weihburggasse 26", "01701731651").
course(1,"Logic").
course(2,"Deductive databases").
course(3,"Nonmonotonic Reasoning").
course(5,"Mathematics").
course(5,"Knowledge Representation and Reasoning").
course(6,"Interactive Theorem Proving").
module("EMCL-B-ILS", 8).
module("EMCL-A-KR", 8).
has("EMCL-B-ILS",1).
has("EMCL-B-ILS",3).
has("EMCL-A-KR",6).
has("EMCL-A-KR",1).
student(1,"Computer Science", "01-10-2010", "15-10-2012", 1).
student(3,"Computer Science", "01-10-2010", "15-10-2012", 3).
teacher(1,"01-10-2000", "20-12-2020", 2).
studies(1,1).
studies(3,2).
teaches(1,2).
teaches(1,3).
teaches(1,4).

5.6 The Automatic Translation of Interpretations to UML Object
Diagrams

Note that the input and the output provided by the user have already been discussed in Sec-
tion 5.3, and the translation of interpretations has already been detailed in Chapter 4.

The only aspect that was not yet discussed is how the literals from an answer set are mapped
to UML object elements when only a fragment of the interpretation is selected. If the user selects
to visualise only a fragment of an interpretation, the object diagram will still represent the entire
interpretation, with the observation that only the instances that are present (either through their
primary keys or their foreign keys) in the selected literals are visible. Furthermore, only the
relationships between two visible instances are displayed. All the other elements are hidden.

The user can choose from the menu to display all the elements of the diagram.

Example 21. We consider the same UML class diagram, the same ASP translation of its ele-
ments, and the same program used in Example 20. If the user chooses to visualise only the
literals

course(5, "Knowledge Representation and Reasoning"),
module("EMCL-A-KR", 8),
student(3, "Computer Science", "01-10-2010", "15-10-2012", 3),
studies(1, 1).

88

Figure 5.7: Object diagram for Example 21.

the corresponding UML object diagram is represented in Figure 5.7.
As one can easily see, even if the literal “course(5,“Mathematics”)” is not present among

the selected literals, its presence in the interpretation still introduces the primary key violation
instance. Furthermore, even if in the UML object diagram, only one composition “has” for the
course “Knowledge Representation and Reasoning” is visible, there exists another one in the
interpretation and thus this composition violates the source multiplicity and it is represented
accordingly.

5.7 Chapter Summary

The graphical modelling environment is a round-trip graphical tool which guides the user in the
development of answer-set programs.

It implements different tools—two UML diagram editors, an ASP code generator, and a
UML object diagram translator.

The code generator allows the user a certain amount of flexibility.
Concerning the visualisation of the solution, the user may select to visualise a fragment of

an interpretation, instead of the entire interpretation. However, even though the resulting UML
object diagram contains only the graphical elements which are present in the fragment, the
elements are represented in the context of the UML object diagram of the entire interpretation.

89

CHAPTER 6
Example

In this chapter, we illustrate the intended usage of the tool described previously. In order to do
this, we consider a basic example, which requires us to solve the scheduling of courses.

We assume that each weekday is divided into one-hour timeslots which are spread over one
week. A course is held for a fixed number of hours per week and a lesson is a part of a course
corresponding to a timeslot. Given a set of teachers and courses, our encoding must create a
time schedule which allocates lessons in such a way that a teacher does not hold more than one
lesson at a time.

In a first step, we represent the requirements of the problem as a UML class diagram depicted
in Figure 6.1. Due to the association “teaches” and its association class “lesson”, a teacher
cannot teach two different lessons in the same timeslot and a lesson cannot be taught by two
different teachers. Furthermore, due to the composition “lessons”, a lesson is associated to one
and only one course.

Afterwards, we generate the predicate signatures and constraints of the program, a fragment
of which is represented below:

%**
@block schedule

@term Course_id
id of course

@term Course_name
name of course

@term Course_hoursPerWeek
hoursPerWeek of course

@term TimeSlot_day

91

Figure 6.1: The UML class diagram of the scheduling problem.

day of timeslot

@term TimeSlot_hour
hour of timeslot

@term Lesson_id
id of lesson

@term Course_id_src_lessons
id foreign key attribute referencing course
@samerangeas Course_id

@term Teacher_id_src_teaches
id foreign key attribute referencing teacher
@samerangeas Teacher_id

@term TimeSlot_day_tgt_teaches
day foreign key attribute referencing timeslot

92

@samerangeas TimeSlot_day

@term TimeSlot_hour_tgt_teaches
hour foreign key attribute referencing timeslot
@samerangeas TimeSlot_hour

@term Teacher_id
id of teacher

@term Teacher_name
name of teacher

@atom course(Course_id,Course_name,Course_hoursPerWeek)
completely describes course
@atom timeSlot(TimeSlot_day,TimeSlot_hour)
completely describes timeSlot
@atom lesson(Lesson_id,Course_id_src_lessons,Teacher_id_src_teaches,

TimeSlot_day_tgt_teaches,TimeSlot_hour_tgt_teaches)
completely describes lesson
@atom teaches(Teacher_id_src_teaches,TimeSlot_day_tgt_teaches,

TimeSlot_hour_tgt_teaches)
completely describes teaches
@atom teacher(Teacher_id,Teacher_name)
completely describes teacher

@assert associationInstanceViolation_teaches_lesson
every relationship teaches must have an association instance lesson
@never associationInstanceViolation_teaches_lesson
associationInstanceViolation_teaches_lesson :-

teaches_complete(Teacher_id_src_teaches, TimeSlot_day_tgt_teaches,
TimeSlot_hour_tgt_teaches), not 1 lesson_complete(Lesson_id,
Course_id_src_lessons, Teacher_id_src_teaches,
TimeSlot_day_tgt_teaches, TimeSlot_hour_tgt_teaches) 1.

teaches_complete(Teacher_id_src_teaches, TimeSlot_day_tgt_teaches,
TimeSlot_hour_tgt_teaches) :- teaches(Teacher_id_src_teaches,
TimeSlot_day_tgt_teaches,TimeSlot_hour_tgt_teaches).

lesson_complete(Lesson_id, Course_id_src_lessons,
Teacher_id_src_teaches, TimeSlot_day_tgt_teaches,
TimeSlot_hour_tgt_teaches) :- lesson(Lesson_id,
Course_id_src_lessons, Teacher_id_src_teaches,
TimeSlot_day_tgt_teaches, TimeSlot_hour_tgt_teaches).

93

...

*%

%**
*%

We proceed with the encoding of the problem:

hour(1..4).
day("Monday").
day("Tuesday").
day("Wednesday").
day("Thursday").
day("Friday").

timeSlot(D,H) :- day(D), hour(H).
lesson(Id*100+(1..Nr),Id,TId):-course(Id,_,Nr), teaches(TId,Id).
1{lessonSchedule(Id,D,H) : timeSlot(D,H)}1 :- lesson(Id,_,_).
lesson(Id, CId, TId, D, H) :- lessonSchedule(Id, D, H),

lesson(Id, CId, TId).
teaches(TId, D, H) :- lesson(_, _, TId, D, H).

Considering the input

course(1,"Maths I",4).
course(2,"Maths II",5).
course(3,"Maths III",3).
course(4,"Maths IV",2).
course(5,"Maths V",6).
course(6,"Anorganic Chemistry",3).
course(7,"Organic Chemistry",3).
course(8,"Thermodynamics",2).

teacher(1,"Max Musterman").
teacher(2,"John Richard").
teaches(1, 1..5).
teaches(2, 6..8).

we notice that in the solution all the lessons are mapped to the same timeslot, which makes it
invalid. Therefore, we have to assume that we made a mistake in the encoding. If we activate
the assertions, we additionally notice the presence of the constraint violation atom “association-
InstanceViolation_teaches_lesson”. Furthermore, the broken associations in the corresponding

94

Figure 6.2: The UML class diagram of the scheduling problem.

UML class diagram (a fragment of which is displayed in Figure 6.2) lead us to the same conclu-
sion.

After further analysis of the ASP program, we determine that in the initial program we
omitted a constraint regarding the fact that a teacher cannot teach two different lessons at the
same time. This constraint is

:- teacher(TId,_), timeSlot(D,H), 2{lesson(Id,CId,TId,D,H)}.

In the presence of the new rule, the scheduling of lessons is

lesson(101, 1, 1, "Wednesday", 2).
lesson(102, 1, 1, "Tuesday", 2).
lesson(103, 1, 1, "Monday", 3).
lesson(104, 1, 1, "Friday", 1).
lesson(201, 2, 1, "Friday", 2).
lesson(202, 2, 1, "Thursday", 4).
lesson(203, 2, 1, "Tuesday", 1).
lesson(204, 2, 1, "Thursday", 2).
lesson(205, 2, 1, "Monday", 2).
lesson(301, 3, 1, "Monday", 1).
lesson(302, 3, 1, "Wednesday", 3).
lesson(303, 3, 1, "Wednesday", 4).

95

Figure 6.3: Part of the UML object diagram of the solution.

96

lesson(401, 4, 1, "Tuesday", 3).
lesson(402, 4, 1, "Wednesday", 1).
lesson(501, 5, 1, "Thursday", 3).
lesson(502, 5, 1, "Friday", 4).
lesson(503, 5, 1, "Thursday", 1).
lesson(504, 5, 1, "Tuesday", 4).
lesson(505, 5, 1, "Monday", 4).
lesson(506, 5, 1, "Friday", 3).
lesson(601, 6, 2, "Wednesday", 1).
lesson(602, 6, 2, "Tuesday", 1).
lesson(603, 6, 2, "Monday", 1).
lesson(701, 7, 2, "Monday", 2).
lesson(702, 7, 2, "Friday", 1).
lesson(703, 7, 2, "Thursday", 1).
lesson(801, 8, 2, "Wednesday", 2).
lesson(802, 8, 2, "Tuesday", 2).

This is indeed a valid solution which can be attested by the lack of any constraint violation
atoms in the answer set as well as by the lack of any errors in the corresponding UML object
diagram (partially represented in Figure 6.3).

97

CHAPTER 7
Conclusions and Related Work

In this thesis, we presented a solution to apply model-driven techniques used in software engin-
eering in order to ease the development process of answer-set programs.

On the one hand, MDE has extensively been applied to model relational databases. There
are several open-source tools handling the visualisation of existent tables as UML class dia-
grams and keeping the database synchronised by generating scripts for creating new tables and
relationships or for modifying existing ones. ArgoUML [2], UModel [39], Agile Data [1],
and MagicDraw [29] are some examples of such tools. The tools are used to model rela-
tional databases—schemas, tables, relationships, views, indexes, default values, and different
constraints such as primary or foreign keys. They all use UML class diagrams and stereotypes
to represent the database diagrams.

On the other hand, adapting MDE techniques in ASP is still not a fully explored area. A
first step towards using graphical models to support the design of answer-set programs has been
realised by VIDEAS, which introduces model-to-code generation mappings and code genera-
tion to ASP. VIDEAS uses ER diagrams to model answer-set programs and as a basis to auto-
matically generate constraints before the programmer proceeds with an encoding. In addition,
FactBuilder provides the user a modality to define a consistent fact base. FactBuilder is
a command-line tool which ensures the satisfaction of constraints represented in the ER diagram
when facts are entered.

Our approach involves further developments in adapting MDE for ASP which results in an
Eclipse plugin consisting of two graphical modelling editors (namely the UML class diagram
and the UML object diagram editors), a code generator from UML class diagrams to ASP, and
the translation of answer sets to UML object diagrams. The generated ASP code does not impose
any constraints on the subsequent development process.

Future work may involve the consideration of additional elements of the UML class dia-
gram, such as enumerations to specify the type of the attributes, default values, relationship
inheritance, relationships involving an arbitrary number of classes, and multiplicities for attrib-
utes and qualified associations. Furthermore, keeping the ASP encoding and the UML class
diagram synchronised in both directions, with the possibility to illustrate the changes involved

99

and the elements that are affected (directly or indirectly), may be beneficial.
The functionality of the UML object diagram editor can be extended from using it solely to

visualise the answer sets and the inconsistencies with the problem model to allowing the user
to visually edit the interpretations. In the current state, the editor can be used to edit graphical
models, but the changes are not reflected in the interpretation.

100

Bibliography

[1] Agile Data - A UML Profile for Data Modeling. http://www.agiledata.org/
essays/umlDataModelingProfile.html.

[2] ArgoUML Database Modeling. http://argouml-db.tigris.org/
documentation/UML_Model.htm.

[3] Marcello Balduccini. Representing Constraint Satisfaction Problems in Answer Set Pro-
gramming. In Proceedings of the 2nd Workshop on Answer Set Programming and Other
Computing Paradigms (ASPOCP 2009), 2009.

[4] Marcello Balduccini and Gelfond Michael. Diagnostic Reasoning with A-Prolog. Theory
and Practice of Logic Programming, 3(4-5):425–461, 2003.

[5] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

[6] Robert Bihlmeyer, Wolfgang Faber, Giuseppe Ielpa, Vincenzino Lio, and Gerald Pfeifer.
DLV User Manual. http://www.dlvsystem.com/dlvsystem/html/DLV_
User_Manual.html.

[7] Francesco Calimeri and Francesco Ricca. On the Application of the Answer Set Pro-
gramming System DLV in Industry: A Report from the Field. ALP Newsletter, March
2012. http://www.cs.nmsu.edu/ALP/wp-content/uploads/2012/03/
cali-ricc-alp-apps.pdf.

[8] Samarjit Chakraborty. Formal Languages and Automata Theory-Regular Expressions and
Finite Automata. Computer Engineering and Networks Laboratory, 2003.

[9] Andrea De Lucia, Carmine Gravino, Rocco Oliveto, and Genoveffa Tortora. An Exper-
imental Comparison of ER and UML Class Diagrams for Data Modelling. Empirical
Software Engineering, 15(5):455–492, 2010.

[10] Marina De Vos, Doģa Gizem Kisa, Johannes Oetsch, Jörg Pührer, and Hans Tompits. An-
notating Answer-Set Programs in LANA. Theory and Practice of Logic Programming,
12(4-5):619–637, 2012.

101

http://www.agiledata.org/essays/umlDataModelingProfile.html
http://www.agiledata.org/essays/umlDataModelingProfile.html
http://argouml-db.tigris.org/documentation/UML_Model.htm
http://argouml-db.tigris.org/documentation/UML_Model.htm
http://www.dlvsystem.com/dlvsystem/html/DLV_User_Manual.html
http://www.dlvsystem.com/dlvsystem/html/DLV_User_Manual.html
http://www.cs.nmsu.edu/ALP/wp-content/uploads/2012/03/cali-ricc-alp-apps.pdf
http://www.cs.nmsu.edu/ALP/wp-content/uploads/2012/03/cali-ricc-alp-apps.pdf

[11] Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding planning problems
in nonmonotonic logic programs. In Sam Steel and Rachid Alami, editors, Recent Ad-
vances in AI Planning, volume 1348 of Lecture Notes in Computer Science, pages 169–
181. Springer Berlin / Heidelberg, 1997.

[12] DTD Tutorial. http://www.w3schools.com/dtd/default.asp.

[13] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans
Tompits. Combining answer set programming with description logics for the semantic
web. Artificial Intelligence, 172(12–13):1495 – 1539, 2008.

[14] Wolfgang Faber, Gerald Pfeifer, Nicola Leone, Tina Dell’Armi, and Giuseppe Ielpa.
Design and Implementation of Aggregate Functions in the DLV System. Theory and Prac-
tice of Logic Programming, 8(5–6):545–580, 2008.

[15] Onofrio Febbraro, Kristian Reale, and Francesco Ricca. A Visual Interface for Drawing
ASP Programs. In Wolfgang Faber and Nicola Leone, editors, Proceedings of the 25th
Italian Conference on Computational Logic (CILC 2010), volume 598 of CEUR Workshop
Proceedings. CEUR-WS.org, 2010.

[16] Onofrio Febbraro, Kristian Reale, and Francesco Ricca. ASPIDE: Integrated Develop-
ment Environment for Answer Set Programming. In Proceedings of the 11th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2011), volume
6645 of Lecture Notes in Computer Science, pages 317–330. Springer, 2011.

[17] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley Professional, 2004.

[18] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub,
and Sven Thiele. A User’s Guide to gringo, clasp, clingo, and iclingo. Unpublished
draft, 2008. http://downloads.sourceforge.net/potassco/guide.pdf?
use_mirror=.

[19] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
Proceedings of the 5th International Conference and Symposium on Logic Programming
(ICLP ’88), pages 1070–1080. MIT Press, 1998.

[20] Graphical Editing Framework. http://www.eclipse.org/gef/.

[21] Graphical Modeling Framework Constraints. http://wiki.eclipse.org/GMF_
Constraints.

[22] Graphical Modeling Framework Tutorial. http://wiki.eclipse.org/
Graphical_Modeling_Framework/Tutorial.

[23] David C. Hay. UML and Data Modelling: A Reconciliation. Technics Publications, 2011.

[24] IDPDraw. http://dtai.cs.kuleuven.be/krr/software.

102

http://www.w3schools.com/dtd/default.asp
http://downloads.sourceforge.net/potassco/guide.pdf?use_mirror=
http://downloads.sourceforge.net/potassco/guide.pdf?use_mirror=
http://www.eclipse.org/gef/
http://wiki.eclipse.org/GMF_Constraints
http://wiki.eclipse.org/GMF_Constraints
http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial
http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial
http://dtai.cs.kuleuven.be/krr/software

[25] iGROM. http://igrom.sourceforge.net/.

[26] Tom Jewett. Database design with UML and SQL. http://www.tomjewett.com/
dbdesign/. Department of Computer Engineering and Computer Science, California
State University, Long Beach.

[27] Christian Kloimüllner, Johannes Oetsch, Jörg Pührer, and Hans Tompits. Kara: A System
for Visualising and Visual Editing of Interpretations for Answer-Set Programs. In Proceed-
ings of the 19th International Conference on Applications of Declarative Programming and
Knowledge Management (INAP 2011) and 25th Workshop on Logic Programming (WLP
2011), pages 152–164, 1843-11-06, 2011. INFSYS Research Report.

[28] Vladimir Lifschitz. Answer Set Planning. In Proceedings of the 16th International Con-
ference on Logic Programming (ICLP ’99), pages 23–37. The MIT Press, 1999.

[29] MagicDraw - Applying UML for Relational Data Modeling. http://www.
magicdraw.com/files/articles/Sep04%20Applying%20UML%20for%
20Relational%20Data%20Modeling.html.

[30] Joaquin Miller and Jishnu Mukerj. Model Driven Architecture (MDA) Document Num-
ber ormsc/2001-07-01. http://www.omg.org/cgi-bin/apps/doc?ormsc/
01-07-01.pdf, 2001.

[31] Johannes Oetsch, Jörg Pührer, Martina Seidl, Hans Tompits, and Patrick Zwickl. VIDEAS:
A Development Tool for Answer-Set Programs based on Model-Driven Engineering Tech-
nology. In Proceedings of the 11th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2011), volume 6645 of Lecture Notes in Computer
Science, pages 382–387. Springer, 2011.

[32] Johannes Oetsch, Jörg Pührer, and Hans Tompits. Methods and Methodologies for Devel-
oping Answer-Set Programs—Project Description. In Technical Communications of the
26th International Conference on Logic Programming (ICLP 2010), volume 7 of Leibniz
International Proceedings in Informatics, Schloss Dagstuhl—Leibniz-Zentrum für Inform-
atik, pages 154–161, 2010.

[33] Johannes Oetsch, Jörg Pührer, and Hans Tompits. The SeaLion has Landed: An IDE
for Answer-Set Programming—Preliminary Report. In 19th International Conference on
Applications of Declarative Programming and Knowledge Management (INAP 2011) and
25th Workshop on Logic Programming (WLP 2011), pages 141–151. INFSYS Research
Report 1843-11-06, 2011.

[34] Cliffe Owen, Marina De Vos, Martin Brain, and Julian Padget. ASPVIZ: Declarative Visu-
alisation and Animation using Answer Set Programming. In Proceedings of the 24th Inter-
national Conference on Logic Programming (ICLP 2008), volume 5366 of Lecture Notes
in Computer Science, pages 724–728, 2008.

103

http://igrom.sourceforge.net/
http://www.tomjewett.com/dbdesign/
http://www.tomjewett.com/dbdesign/
http://www.magicdraw.com/files/articles/Sep04%20Applying%20UML%20for%20Relational%20Data%20Modeling.html
http://www.magicdraw.com/files/articles/Sep04%20Applying%20UML%20for%20Relational%20Data%20Modeling.html
http://www.magicdraw.com/files/articles/Sep04%20Applying%20UML%20for%20Relational%20Data%20Modeling.html
http://www.omg.org/cgi-bin/apps/doc?ormsc/01-07-01.pdf
http://www.omg.org/cgi-bin/apps/doc?ormsc/01-07-01.pdf

[35] Peter Phin-Shan Chen. The Entity-Relationship Model—Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[36] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):41–47, 2006.

[37] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Mod-
eling Framework. Addison-Wesley Professional, 2008.

[38] Adrian Sureshkumar, Marina De Vos, Martin Brain, and John Fitch. APE: An AnsProlog*
Environment. In Proceedings of the 1st International Workshop on Software Engineering
for Answer Set Programming (SEA 2007), volume 281 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007.

[39] UModel Database Modeling Tool. http://www.altova.com/umodel/
uml-database-diagrams.html.

104

http://www.altova.com/umodel/uml-database-diagrams.html
http://www.altova.com/umodel/uml-database-diagrams.html

	Introduction
	Motivation
	Related Work
	Overview of our Results
	Structure of the Thesis

	Preliminaries
	Answer-Set Programming
	clasp and gringo
	The DLV System
	The Integrated Development Environment SeaLion for ASP
	The Annotating Language Lana

	Model-Driven Engineering
	Unified Modelling Language
	Class Diagrams
	Object Diagrams

	Problem Domain Modelling for ASP
	Relevant UML Class Diagram Features
	Formal Description

	Translation of UML Class Diagrams to ASP
	Preprocessing the UML Class Diagram
	Mapping the UML Class Diagram to ASP
	 DLV Modifications

	Chapter Summary

	Visualising the Problem Solutions
	The Modified UML Object Diagram
	Formal Description

	Mapping the Problem Solution to a UML Object Diagram
	Collecting the Instances, Relationships, and Generalisations from an Answer Set
	Adding Instances and Links

	Chapter Summary

	Implementation
	Graphical Editors in Eclipse using the Graphical Modelling Framework
	Architecture
	UML Class Diagram Editor
	The Automatic Translation of UML Class Diagrams to ASP
	UML Object Diagram Editor
	The Automatic Translation of Interpretations to UML Object Diagrams
	Chapter Summary

	Example
	Conclusions and Related Work
	Bibliography

