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Abstract

An interesting problem in Computer Vision is the construction of local image descriptors. It
deals with the description of intensity patterns within image patches. Image patches are lo-
cal image regions centered at feature points. The description of such image patches helps in
establishing correspondences between the feature points of two or more images of the same
scene under intensity, scale, rotation, and affine changes. Such correspondences are used in a
wide range of applications, such as image matching, image retrieval, object tracking, and object
recognition.

This thesis presents new methods for the construction of local image descriptors in order
to establish feature point correspondences under nonlinear intensity changes. Nonlinear inten-
sity changes occur in multispectral imaging or when a scene is acquired under variable lighting
conditions. Background noise and degradation in ancient document images also cause nonlin-
ear intensity changes. Nonlinear intensity changes affect the performance of the state-of-the-art
local descriptors, such as Scale Invariant Feature Transform (SIFT) and result in a low match-
ing performance in image-to-image and image-to-database matching tasks. To cope with these
problems, the new methods proposed in this thesis use novel image features, which are obtained
by combining the strengths of image gradients, Local Binary Patterns, and illumination invari-
ant edge detectors. These features are read from image patches by using the SIFT-like feature
histogram schemes to construct five new local descriptors, which are: Local Binary Pattern of
Gradients, Local Contrast SIFT, Differential Excitation SIFT, Normalized Gradient SIFT, and
Modified Normalized Gradient SIFT.

To evaluate the performance of new descriptors, experiments on five different image datasets
are performed. The performance of new descriptors are compared with that of SIFT and seven
other state-of-the-art local descriptors. In the case of image-to-image matching, ground truth
homographies between the pairs of images are used and the number of correct descriptor matches
is counted for the performance comparison. In the case of image-to-database matching, a nearest
neighbor based descriptor matching strategy is used and the recognition rates for two different
tasks are computed. These tasks are Scene Category Recognition (SCR) and Optical Character
Recognition (OCR).

The experimental results show that the new descriptors obtain on average 0.5% to 12.8%
better performance than SIFT in image-to-image matching. In the case of SCR, they obtain on
average 1% to 5% better scene recognition rates than SIFT, whereas in the case of OCR, they
demonstrate on average 1.1% to 6.7% better character recognition rates than SIFT.
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CHAPTER 1
Introduction

Local descriptors have proven to be effective for a wide range of applications, such as image
registration [68,71], image segmentation [21], object recognition [63], image retrieval [73], and
biometric authentication [29]. Local descriptors represent the intensity patterns within image
patches. Image patches are local image regions centered at feature points, which differ from their
immediate neighborhood [39]. Local descriptors help in establishing correspondences between
the feature points of two or more images of the same scene under scale, rotation, intensity,
and affine changes [39, 40]. Several methods have been proposed for the construction of local
descriptors [38]. Each method computes the local descriptors differently, but aims to make the
descriptors invariant to scale, rotation, intensity, and affine changes between the images [19, 49,
63, 69]. This thesis presents new methods for the construction of local descriptors in order to
establish feature point correspondences under intensity changes.

1.1 Intensity Changes Problem

There are generally two types of intensity changes: (i) monotonic [19,69], and (ii) nonlinear [68,
71]. Monotonic intensity changes occur between the gray scale images of the same scene. They
occur due to variable lighting conditions during the scene acquisition. They affect the intensity
values, but result in almost similar intensity histograms. For instance, in Figure 1.1, the intensity
histograms of two images I1 and I2 of the same scene, are shown [38]. Each intensity histogram
shows the number of pixels against 256 intensity values. Some minor intensity changes between
I1 and I2 can be seen, despite such monotonic intensity changes the intensity histograms of I1

and I2 look quite similar.
In contrast to monotonic intensity changes, nonlinear intensity changes occur between mono-

chrome images of the same scene. Each of the monochrome image is taken with a sensor (filter)
sensitive to a different wavelength [7]. A collection of several monochrome images of the same
scene is referred to as a multispectral image [70], which is a data cube, consisting of two spatial
dimensions plus one wavelength dimension [46]. The wavelength dimension consists of several

1
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(c) Intensity Histogram of I1
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(d) Intensity Histogram of I2

Figure 1.1: shows monotonic intensity changes between the images of the same scene.

discrete wavelength bands. A Red-Green-Blue (RGB) image in this context is a special type of
a multispectral image. It consists of three bands. Each band of the multispectral image holds an
image of the same scene, containing pixel intensities, which correspond to scene based sensory
responses [7]. These responses are sensitive to objects in the scene as well as wavelength and
cause nonlinear intensity changes between different band images of the same scene.

In Figure 1.2 two images IV S and IIR of the same scene are shown to illustrate the nonlin-
ear intensity changes [1]. Due to scene acquisition in Visible Spectrum (VS) and Infra-Red (IR)
bands [1], the scene contents in these images look different. The intensity histograms of IV S
and IIR are also shown in Figure 1.2. It can be seen that large changes in the scene appearance
as well as pixel intensities occur in the case of nonlinear intensity changes in contrast to mono-
tonic intensity changes. This makes the task of image-to-image and image-to-database matching
based on intensity values, intensity histograms, and local descriptors, more challenging and dif-
ficult than monotonic intensity changes [1, 53].

1.2 Challenges in the Construction of Local Descriptors

This thesis presents new methods for the construction of local descriptors in order to overcome
the effects of nonlinear intensity changes between the images. Local descriptors represent the
intensity patterns within image patches. Therefore, the intensity-based methods [28, 64, 69] for
the construction of local descriptors, can not be used. This is due to large changes in the in-
tensity values, which occur in the case of nonlinear intensity changes, as shown in Figure 1.2.
The gradient based methods [19, 33] seem to be more suitable, because they use intensity dif-

2
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(d) Intensity Histogram of IIR

Figure 1.2: shows nonlinear intensity changes between the images of the same scene when VS
and IR bands are used.

ferences (i.e., image gradients) as image features instead of intensity values for the construction
of local descriptors. A performance evaluation of local descriptors in [38] shows that gradient
based methods demonstrate better performance under intensity changes than the intensity based
methods. Moreover, the performance evaluation shows that Scale Invariant Feature Transform
(SIFT) [33] obtains better performance than other gradient based methods, such as Shape Con-
text [3], Steerable filters [14], and Moment invariants [38]. Based on this performance evalua-
tion [38], SIFT is used as a state-of-the-art method in this thesis for both descriptor construction
and performance evaluation.

SIFT demonstrates better performance against intensity changes due to its spatial feature
histogram scheme, which divides each image patch around the feature point into 4× 4 location
bins and then, constructs a histogram of oriented gradients for each location bin with the help of
Gaussian weighted gradient magnitudes. SIFT concatenates such feature histograms and builds
a description vector of length 128 for the image patch.

To illustrate the robustness of SIFT to intensity changes, two image patches R1 and R2

are shown in Figures 1.3(a) and (b), respectively. These image patches depict the same scene
contents, but under monotonic intensity changes. In spite of that, the SIFT descriptors ofR1 and
R2, which are shown in Figures 1.3(a) and (b), respectively, look quite similar. The elements of
the SIFT descriptors are shown with line segments [65] inside 4×4 location bins [33]. The length
of a line segment corresponds to the magnitude of a SIFT descriptor element. By comparing the
line segments in corresponding location bins, it can be seen that the SIFT descriptors of R1 and
R2 look quite similar, despite the monotonic intensity changes.

3
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Figure 1.3: shows the effects of intensity changes on SIFT descriptor [33]. The elements of
the SIFT descriptors are shown as line segments inside 4×4 location bins [65]. First row shows
monotonic intensity changes, whereas second and third rows show nonlinear intensity changes
between the image patches.

Now consider two image patchesRV S andRIR in Figures 1.3(c) and (d), respectively. These
image patches depict the same scene contents in V S and IR bands. Therefore, nonlinear in-
tensity changes can be seen, which affect the appearance of the scene contents as well as the
intensity values and result in dissimilar SIFT descriptors, as shown in Figures 1.3(c) and (d).
It can be noted that SIFT efficiently overcomes the monotonic intensity changes between the
corresponding image patches, but it suffers from nonlinear intensity changes. This problem mo-
tivates us to design new methods for the construction of local descriptors in order to overcome
the effects of nonlinear intensity changes.

Note that, degradation in ancient document images also cause nonlinear intensity changes.
For instance, in Figures 1.3(e) and (f) two image patches G1 and G2, respectively, are shown.
These image patches depict the same Glagolitic character [36], but due to degradation (noise
and fading ink) the SIFT descriptors of G1 and G2 also look different.
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1.3 Thesis Contribution

This thesis makes the following contributions:

• A performance evaluation of eight different state-of-the-art local descriptors under non-
linear intensity changes [49]. The local descriptors used in this performance evaluation
are:

1. SIFT [33]

2. Gradient Location Orientation Histogram (GLOH) [38]

3. Speeded Up Robust Features (SURF) [2]

4. Center Symmetric Local Binary Patterns (CS-LBP) [19]

5. DAISY [58]

6. Local Intensity Order Pattern (LIOP) [69]

7. Gradient Orientation Modification (GOM)-SIFT [71]

8. Orientation Restriction (OR)-SIFT [68]

These state-of-the-art local descriptors are further investigated in order to design new
methods for the construction of local descriptors to achieve better performance against
nonlinear intensity changes.

• A new method for the construction of local descriptors is proposed, which is referred to as
Local Binary Pattern of Gradients (LBPG) [51]. This new method combines the strengths
of SIFT and CS-LBP to overcome the effects of nonlinear intensity changes.

• Two different modifications to SIFT are proposed. These modifications are based on two
different illumination invariant edge detectors, i.e., Local Contrast (LC) [56] and Differen-
tial Excitation (DE) [8]. The edge detectors provide illumination invariant edge responses,
which are used in the SIFT method instead of gradient magnitudes to boost the contribu-
tions of local edges in the construction of local descriptors. This results in two new local
descriptors, which are: LC-SIFT [52] and DE-SIFT [52].

• A modified SIFT-like descriptor construction scheme is proposed. The scheme proposed
computes two new local descriptors by making use of Normalized Gradients (NG) and
Modified Normalized (MN) gradients as image features. These new local descriptors are:
NG-SIFT [53] and MN-SIFT [49].

• A new method for the recognition of Glagolitic characters is proposed [50]. It is based
on Dense SIFT [63] algorithm and designed for degraded ancient manuscripts, named
Missale Sinaiticum, containing historical documents written in the 11th century [36].
Due to parchment aging and degradations, the recognition of Glagolitic characters in
these manuscripts, is a challenging task. The method proposed deals with such prob-
lems by making use of Dense SIFT algorithm and the descriptors proposed (LBPG, LC-
SIFT, DE-SIFT, NG-SIFT, and MN-SIFT). It obtains better recognition rates than another

5



method [10], which has been used for the recognition of Glagolitic character in similar
manuscripts.

1.4 Evaluation Methodology

Experiments on five different image datasets are performed and the performance of the descrip-
tors proposed and the state-of-the-art local descriptors is measured for three different tasks,
which are:

• Image Matching [38]

• Scene Category Recognition (SCR) [5]

• Optical Character Recognition (OCR) [10]

For image matching and SCR, experiments on multispectral image datasets [1, 5, 7, 70], are
performed, whereas for OCR, a gray scale image dataset of Missale Sinaiticum, is used. In each
task, the performance of descriptors proposed (LBPG, LC-SIFT, DE-SIFT, NG-SIFT, and MN-
SIFT) is compared with that of the state-of-the-art local descriptors (SIFT, GLOH, CS-LBP,
SURF, DAISY, GOM-SIFT, OR-SIFT, and LIOP).

Image patches centered at Harris Laplace feature points [37] are used in image matching
and SCR for the construction of descriptors proposed and the state-of-the-art local descriptors,
whereas in the case of OCR, image patches centered at densely sampled feature points [63] are
used. In the case of image matching, the number of correct descriptor matches is counted by
using the ground truth homographies between the pairs of images for the performance compari-
son. Whereas for SCR and OCR, a nearest neighbor based descriptor matching strategy is used
to obtain the recognition rates for the performance comparison.

1.5 Thesis Structure

The rest of this thesis is structured as follows. Chapter 2 presents related work. It focuses on
methods that have been used for the construction of local descriptors. The methods that have
been widely used against monotonic and nonlinear intensity changes are briefly described in
order to understand how such methods compute the local descriptors to cope with the intensity
changes and how new local descriptors can be computed to overcome the effects of nonlinear in-
tensity changes. Chapter 3 briefly describes the construction of the proposed descriptors. It also
presents the main ideas behind each descriptor proposed. Chapter 4 presents the experimental
results for image matching. The results achieved on four multispectral datasets are reported and
the comparison of descriptors proposed and the state-of-the-art local descriptors is presented.
Chapter 5 presents the experimental results for SCR. Chapter 6 presents a new method based
on Dense SIFT for the recognition of Glagolitic characters. It also presents the experimental
results when descriptors proposed and the state-of-the-art local descriptors are used instead of
Dense SIFT for the recognition of Glagolitic character. Finally, Chapter 7 concludes the thesis
and gives directions for future research.
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CHAPTER 2
Related Work

This chapter presents an overview of the state-of-the-art methods, which have been used for
the construction of local descriptors. These methods can be grouped into two different types:
(i) intensity, and (ii) gradient based methods. The intensity based method [69] uses intensity
values as image features for the construction of local descriptors, whereas the gradient based
methods [2, 19, 33, 58] use the directional changes in the intensity, i.e., image gradients for the
construction of local descriptors.

In section 2.1.1, first the feature point detectors are described. Then, the feature point de-
scriptors are discussed in Section 2.1.2. The feature point descriptors are also referred to as local
descriptors. Section 2.2 describes the intensity (i.e., illumination) invariant local descriptors. Fi-
nally, local descriptors invariant to nonlinear intensity changes are discussed in Section 2.3.

2.1 Feature Points

Feature points are distinct image locations, which differ from their immediate neighborhood [39].
They are also referred to as interest points [37] or keypoints [33]. They represent isolated image
points, points lying on image edges, representing corner, or blob-like image structures. Gen-
erally, they are detected because of large image gradients around them [17, 40]. The descrip-
tion of image pathes centered at such feature points help in establishing the correspondences
between the feature points of two or more images under intensity, scale, rotation, and affine
changes [33, 75].

2.1.1 Feature Point Detection

The detection of feature points can be traced back to the work of Moravec [41]. He uses a
local image window and determines the average changes in the image intensity that result from
shifting the window by a small amount in various directions for the corner detection. Harris and
Stephens [18] revisit the Moravec’s corner detection and use a smooth circular window in order
to make the corner detection stable under noise and other small image variations. Such a corner
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detection was initially used for stereo matching [41]. But in the later research, Harris shows
its effectiveness for structure from motion recovery application [17]. Since then, it is known as
Harris corner [17] and has been widely used for various other applications [75]. Although the
process is known as a corner detection, but beside corners, it also detects isolated image points,
which have large image gradients in all directions. Such image points are also referred to as
interest points, feature points, or keypoints [2, 33, 38]. Several methods have been proposed for
the detection of feature points in order to make the feature points invariant to intensity, scale,
rotation, and affine changes [39].

The initial Harris corner detector [17] does not take into account the scale changes between
the images. But later on, multi-scale Harris corner detectors have been developed [37, 39]. To
this end, the scale space theory of Lindeberg has been widely used [31, 32]. Lindeberg shows
an effective method for the estimation of an appropriate and consistent characteristic scale for
detecting the feature points. Mikolajczyk and Schmid use the Lindeberg’s scale space theory
and detect Harris Laplace feature points [37]. They use a two step process. In the first step, they
assess the Harris function [17] on multi-scale images and then, in the second step they remove
all the Harris corners that do not show stability along the scale direction by using a Laplacian
function [37]. They demonstrate good performance, i.e., repeatability with respect to scale,
rotation, and intensity changes.

Lowe [33] also uses the scale space theory of Lindeberg. But he applies the theory in a
different manner for the detection of SIFT keypoints. He uses a Difference of Gaussian filters
instead of the Laplacian function and also a Hessian function [33] instead of the Harris func-
tion [17]. He shows that Difference of Gaussian filters with Hessian function detect blob-like
image structures, which show good performance under scale, rotation, and affine changes for
image matching and object recognition tasks [33, 34].

Mikolajczyk and Schmid revisit the detection of SIFT keypoints [33]. They use Hessian
and Laplacian functions for the detection of Hessian Laplace feature points [40]. These points
are similar to SIFT keypoints and represent blob like image structures. Moreover, Mikolajczyk
and Schmid show that, with an affine adaptation Harris Laplace and Hessian Laplace feature
points can be made robust to affine changes [40]. To this end, they estimate the affine shape
of the feature points by modifying the points’ scale and neighborhood until they converge to
affine invariant points. They refer to affine invariant feature points as Harris Affine and Hessian
Affine [40]. They show that such feature points resist large affine changes and also demonstrate
good performance under scale and rotation changes.

Bay et al. [2] also revisit the SIFT keypoint detection [33]. They use integral images [55,67]
in order to speed up the detection process. They propose SURF features [2], which have been
widely used [22, 25], especially for the real time applications [42]. Matas et al. [35] propose a
completely different method, i.e., Maximally Stable Extremal Regions (MSER) in contrast to
SIFT and Harris Laplace feature points. They show that MSER possess desirable properties,
such as resisting continuous transformation of image coordinates, image intensities, and can be
detected at near the frame rate. They use MSER in the wide-baseline stereo matching task and
obtain good results under scale, intensity changes, out-of-plane rotation, and occlusion [35].
MSER have also been used in other visual tasks [9, 24, 38].

Rosten and Drummond propose a FAST feature point detector [47]. They show that SIFT [33]
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and Harris Laplace [40] methods, although detect high quality feature points, but they are com-
putationally intensive for the real-time applications. To meet the requirements of the real time
applications, they propose a fast feature point detector [47], which uses a machine learning tech-
nique to first learn the intensity patterns around the feature points and then recognizes similar
intensity patterns to detect the feature points at nearly the frame rate [47].

From a basic Harris corner detector [18] to a FAST corner detector [47], several methods
have been proposed. These methods detect the feature points of desired quality and quantity
in order to meet the application needs. Each method creates a list of feature points. The lists
differentiates between the feature points based on their image location, scale, and orientation
attributes. Although such attributes carry useful information, i.e., where these feature points
are coming from, but are insufficient for establishing the feature point correspondences between
the images. In order to deal with this problem, the description of the feature points have been
widely used [38]. In the next subsection various methods for the construction of feature point
descriptors are discussed in detail.

2.1.2 Feature Point Description

The description of feature points can be tracked back to the work of Zhang et al. [74]. They use
correlation windows centered at Harris corners [17] for establishing the correspondences. But
they get a large number of outliers due to their simple approach. They remove the outliers by
making use of a fundamental matrix describing the geometric constraints between the images.

Torr [59] also uses a similar approach to establish the feature point correspondences between
the images. He also uses the geometric constraints between the images to remove the outliers.
However, the work of Schmid and Mohr for the description of the feature points is considered
to be ground-breaking [54]. They use Harris corners [17] and describe their neighborhoods with
rotationally invariant descriptors. They demonstrate good performance for object recognition,
especially under occlusion and clutter.

The work of Lowe on the description of the SIFT keypoints [34] is also considered of great
significance. Lowe uses image patches centered at SIFT keypoints for the descriptor construc-
tion. Unlike the construction of rotationally invariant descriptors [54], he uses the biological
vision model of Edelman et al. [11], which shows that complex neurons in the primary visual
cortex respond to a gradient at a particular orientation and spatial frequency, but the location of
the gradient on the retina is allowed to shift over a small receptive field rather than being pre-
cisely localized [33]. Inspired by this biological vision model, Lowe filters the image patches
centered at SIFT keypoints with directional gradients and spatially divides each image patch into
4 × 4 location bins. He computes a feature histogram of orientated gradients for each location
bin by making use of the sum of Gaussian weighted gradient magnitudes. He concatenates the
feature histograms over all the location bins to build a SIFT keypoint descriptor. He shows that
such a method for descriptor construction, creates robust and distinct descriptors, which obtain
high precision results in image-to-image matching and object recognition tasks under occlusion,
scale, rotation, and affine transformations [33].

SIFT descriptor has been extensively used in a wide range of applications [2,5,38,71]. Sev-
eral modifications to SIFT have also been proposed in order to improve the SIFT robustness
to intensity [19, 68, 71] and affine changes [72]. Mikolajczyk and Schmid compare the local
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descriptors [28,33,64] and show that SIFT demonstrates the best performance for image match-
ing [38]. They also propose an extended version of SIFT, i.e., GLOH, which is based on log-
polar location bins instead of 4 × 4 location bins [33] of SIFT. They compute 272 dimensional
description vectors for each image patch by using the log-polar location bins and then reduce the
vector dimensions to 128 by making use of Principle Component Analysis (PCA) [23], in order
to make the GLOH descriptors comparable to 128 dimensional SIFT descriptors. For PCA, they
estimate the covariance matrix on 47,000 image patches and use the largest 128 eigenvectors for
the GLOH descriptors [38].

Similarly, Ke and Sukthankar [23] propose a modified SIFT descriptor. They concatenate
the horizontal and vertical gradients of each image patch to compute the descriptor instead of us-
ing the 4×4 location binning scheme of the SIFT. They refer to their method as PCA-SIFT [23].
To compute PCA-SIFT, they first resize each image patch to 41×41 pixels and read the image
gradients from the resized patch at 39×39 locations to build 2 × 39 × 39=3042 dimensional
PCA-SIFT descriptor. They reduce the descriptor dimensions to 128 with PCA. They demon-
strate better performance than SIFT and show that PCA-SIFT descriptor of dimension less than
128 also performs better than SIFT. This makes the descriptor matching less computationally
intensive than 128 dimensional SIFT.

Bay et al. [2] also revisit the SIFT descriptor. They propose SURF descriptor as an alternative
to SIFT. They use integral images [67] and the Haar wavelength responses instead of the image
gradients to make the construction of SURF descriptors faster than SIFT. They show that 64
dimensional SURF descriptor outperforms 128 dimensional SIFT, which makes the descriptor
matching less computationally intensive than SIFT.

Heikkila et al. also revisit the SIFT descriptor. They propose CS-LBP descriptor [20]. They
use Local Binary Patterns (LBP) [44] scheme to compute the CS-LBP features for the con-
struction of descriptors. They show that CS-LBP features possess properties similar to image
gradients, but can be computed much faster than image gradients and demonstrate more robust-
ness to intensity changes than image gradients. They read the CS-LBP features from the image
patches by using the SIFT-like feature histogram scheme to build the CS-LBP descriptors. They
demonstrate better results for image matching and object recognition than SIFT under intensity,
scale, rotation, and affine changes. However, the CS-LBP method computes 256 dimensional
description vectors, which make the descriptor matching more computationally intensive than
SIFT.

Tola et al. also revisit the SIFT descriptor and propose a new local descriptor, which they
refer to as DAISY [58]. They design DAISY for the dense matching applications [13, 27],
which requires the construction of descriptors for densely sampled feature points [63]. They
use circular location bins instead of 4 × 4 location bins of SIFT. Additionally, they replace the
Gaussian weighted sums of gradient magnitudes used in the SIFT method, with the convolution
of the image with several oriented derivatives of the Gaussian filters to expedite the descriptor
construction. They show that such modifications to SIFT result in descriptors, which perform
comparable to SIFT, but they make the descriptor construction much faster than SURF and
SIFT. However, DAISY computes 200 dimensional description vectors and makes the descriptor
matching computationally intensive than SIFT.

Wang et al. use a completely different method for the construction of descriptors [69]. They
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use an intensity order based location binning scheme instead of cartesian (4 × 4) [33], log po-
lar [38], and circular [58] bins. They obtain the intensity based location bins by sorting the pixel
intensities of the image patch in the ascending order [12], then, equally quantizing the image
patch into ordinal (i.e., location) bins according to the intensity orders. They compute LIOP fea-
tures for each ordinal bin to compute a descriptor for the image patch. They demonstrate better
performance under monotonic intensity changes than SIFT and CS-LBP. However, LIOP con-
structs 144 dimensional description vectors and makes the descriptor matching computationally
intensive than SIFT.

The above discussion show that SIFT has been extensively used and several modifications to
SIFT have been proposed, which either improve the performance of SIFT [19,38,72] or expedite
the construction of SIFT to meet the needs of the real time applications [2,6,58]. In either case,
SIFT has been used as an effective and efficient method for both descriptor construction and
performance evaluation [8, 38, 72].

The main focus in this thesis is the construction of nonlinear intensity invariant local descrip-
tors. Therefore, SIFT and its extended versions, such as GLOH, SURF, DAISY, and CS-LBP are
of great importance. In the next section, these local descriptors are described in detail in order to
understand how do they compute the descriptors robust to intensity (i.e, illumination) changes.
A detailed overview of such local descriptors helps in providing the required insight to compute
new local descriptors robust to nonlinear intensity changes between the images.

2.2 Intensity Invariant Local Descriptors

This section describes SIFT, SURF, GLOH, SURF, DAISY, LIOP, and CS-LBP descriptors in
detail.

2.2.1 SIFT

SIFT is a gradient based descriptor [33]. It uses a spatial feature histogram scheme to describe
the intensity patterns within the image patches. It divides each image patch into 4×4 location
bins, as illustrated in Figure 2.1, where an image patch inside a bounding box is shown and a ’+’
sign depicts the location of the feature point. SIFT isolates this image patch from the image, as
shown in Figure 2.1(b) and convolves the patch with kernels [1,0,-1] and [1,0,-1]> to obtain the
directional gradients Fh and Fv, respectively. Then, it computes the gradient magnitudes (Ω)
and orientations (β) as follows:

Ω =
√
F 2
h + F 2

v (2.1)

β = atan2(Fv, Fh) (2.2)

Having computed the gradients, SIFT constructs a feature histogram of oriented gradients for
each location bin. To this end, it quantizes the gradient orientations (between 0 and 2π radians)
into eight different levels and constructs the feature histograms by using the sum of Gaussian
weighted gradient magnitudes. The Gaussian weighting gives higher weightage to the gradient
samples near the patch center than the patch boundary. SIFT also distributes such Gaussian
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(a) (b) (c)

Figure 2.1: (a) An image patch centered at a feature point ’+’ is shown inside a bounding box,
(b) the patch is cropped, and (c) divided into 4× 4 location bins to compute a SIFT descriptor.

weighted gradient magnitudes among the adjacent feature histograms via a soft binning scheme
in order to compensate the resulting descriptor for geometric deformations and feature point
localization errors [33]. Finally, it concatenates the feature histograms over all the location bins
to build a 4 × 4 × 8 = 128 dimensional SIFT descriptor. It normalizes the descriptor to unit
norm to overcome the effects of intensity changes, limits the larger descriptor elements to 0.2,
and then re-normalizes the descriptor to unit norm.

2.2.2 GLOH

GLOH [38] is an extended version of SIFT. It uses a method based on log-polar location bins
instead of 4 × 4 location bins of SIFT to compute the descriptors. Figure 2.2 shows 4 × 4
(cartesian) and log-polar location bins. In the case of log-polar location bins, three bins in the
radial and eight in the angular directions are used, which result in total 17 location bins. The
angular directions for the central bin, are not used. GLOH quantizes the gradient orientations
into 16 different levels and computes a histogram of 272 bins for the image patch. The dimension
of this histogram is reduced with PCA to 128. The covariance matrix for PCA is estimated on
47,000 image patches and the largest 128 eigenvectors are used for the GLOH descriptor [38]. A
performance evaluation published in [38] shows better performance of GLOH than SIFT under
intensity changes.

2.2.3 SURF

SURF [2] is a modified version of SIFT. It computes descriptors faster than SIFT and also
demonstrates better performance than SIFT [2]. Like SIFT, it uses 4×4 location bins to capture
the spatial information around the feature points for the construction of robust and distinct de-
scriptors. Unlike SIFT, it uses Haar wavelet responses as image features. Figure 2.3 shows two
dimensional Haar wavelet filters, which SURF uses to compute the Haar wavelet responses in
horizontal (dx) and vertical (dy) directions. From each location bin, SURF reads Haar wavelet
responses at 5×5 regularly spaced sample points. It also uses a Gaussian weighting of Haar
wavelet responses to compensate the descriptor for geometric deformations and feature point
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(a) (b)

Figure 2.2: Location bins, which are used in the construction of (a) SIFT and (b) GLOH de-
scriptors. Images from [38].

(a) (b)

Figure 2.3: Two dimensional Haar wavelet filters are shown, which are used in the construction
of SURF descriptors. These filters compute responses in (a) x and (b) y directions. The dark
parts have the weight -1 and the light parts +1. Images from [2].

localization errors. Then, it constructs a four dimensional feature histogram v for each location
bin as:

v = { Σdx,Σdy,Σ|dx|,Σ|dy| } (2.3)

where Σd. and Σ|d.| represent the sum and the absolute sum of Haar wavelet responses. SURF
concatenates feature histograms over all the location bins and builds a description vector of
dimension 64. The performance evaluations of local descriptors in [22, 48], show better perfor-
mance of SURF than SIFT under intensity changes.

2.2.4 CS-LBP

CS-LBP [19] is an extended version of SIFT. It computes descriptors faster than SIFT and also
demonstrates better performance under intensity changes than SIFT [19]. Unlike SIFT, it uses
a modified Local Binary Patterns (LBP) [44] scheme to compute the CS-LBP features and uses
such features instead of image gradients in the SIFT like feature histogram scheme to construct
the descriptors.

Equation 2.4 describes the computation of a CS-LBP feature for a central sample nc, which
is illustrated in Figure 2.4, where ni represents equally spaced N samples at a radial distance
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n4 n0

n2

n6

n7

n3

n5

n1

nc

LBP =
s(n0 – nc)20 + s(n1 – nc)21 +
s(n2 – nc)22 + s(n3 – nc)23 +
s(n4 – nc)24 + s(n5 – nc)25 +
s(n6 – nc)26 + s(n7 – nc)27  

CS-LBP =
s(n0 – n4)20 +
s(n1 – n5)21 +
s(n2 – n6)22 +
s(n3 – n7)23

Figure 2.4: Illustration of LBP and CS-LBP for a neighbourhood of eight pixels. Images
from [19].

of R from nc. s(z) binarizes the intensity differences between ni and its center-symmetric
neighbor ni+(N/2). The binarized differences are weighted and summed over all the center-
symmetric pairs to obtain a CS-LBP feature for nc, as described in Equation 2.4. This process
is performed on each pixel of the image patch by using the pixel as a sample nc in the CS-LBP
method (Figure 2.4). Then, the CS-LBP features are read from the image patch by using the
SIFT-like feature histogram scheme to obtain the CS-LBP descriptor.

Parameter N gives 2N/2 distinct center-symmetric local binary patterns and results in 4 ×
4× 2N/2 dimensional CS-LBP descriptors, where 4× 4 represents the 16 location bins of SIFT.
Heikkila et al. [19] show that N=8 and R=2 result in 256 dimensional CS-LBP2,8 descriptors,
which demonstrate better performance than SIFT under intensity changes.

CS-LBPR,N =

(N/2)−1∑
i=0

s(ni − ni+(N/2))2
i (2.4)

s(z) =

{
1 z≥0.01
0 otherwise

(2.5)

2.2.5 DAISY (Dense Descriptor)

DAISY [58] is a fast method for the construction of descriptors. It is designed for densely
sampled feature points [13, 27]. It is inspired by SIFT. It achieves faster descriptor computation
by replacing the sum of Gaussian weighted gradient magnitudes in the SIFT method with the
convolutions of the image with several oriented derivatives of the Gaussian filters as described
below [58]:

GΣ
o = GΣ ∗

(
∂I

∂o

)+

(2.6)

where GΣ represents a Gaussian kernel of a standard deviation Σ, o is the orientation of the
derivative, the operator (.)+ is such that (a)+ = max(a, 0) and GΣ

o represents the convolution
result, which is also referred to as a convolved orientation map. Each orientation map of DAISY
holds the values of the specific oriented derivative of the image, i.e., Go =

(
∂I
∂o

)+.
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DAISY uses 8 such orientation maps, i.e., o1, o2, ..., o8. It convolves each orientation map
with Gaussian kernels of three different Σ values, i.e., Σ1 = 2.55,Σ2 = 3Σ1 and Σ3 = 5Σ1.
Then, it reads values from the convolved orientation maps at specific locations to construct the
descriptors.

To understand the construction of a DAISY descriptor, let hΣ(u, v) be a feature vector made
of values at a location (u, v) in the orientation maps:

hΣ(u, v) = [GΣ
o1(u, v), GΣ

o2(u, v), ...., GΣ
o8(u, v)]> (2.7)

where GΣ
o1 , G

Σ
o2 ,...,GΣ

o8 are Σ-convolved orientation maps and the feature vector hΣ(u, v) holds
the values of Σ-convolved orientation maps at a location (u, v). DAISY normalizes this feature
vector to obtain an unit norm vector h̃Σ(u, v). DAISY concatenates h̃Σ(u, v) vectors, which
it obtains from 25 different locations centered at pixel (u0, v0) to build a DAISY descriptor
D(u0, v0):

D(u0, v0) =
[
h̃>Σ1

(u0, v0),

h̃>Σ1
(l1(u0, v0, R1)), ....., h̃>Σ1

(lN (u0, v0, R1)),

h̃>Σ2
(l1(u0, v0, R2)), ....., h̃>Σ2

(lN (u0, v0, R2)),

h̃>Σ3
(l1(u0, v0, R3)), ....., h̃>Σ3

(lN (u0, v0, R3))
]> (2.8)

where lj(u0, v0, R) is a location with distance R from (u0, v0) in the direction given by j when
the directions are quantized into N values. DAISY uses N=8 directions with R1 = 2.5, R2 =
3R1, R3 = 6R1 and Σ1 = 2.55, Σ2 = 3Σ1, Σ3 = 5Σ1. These parameter settings result in
8 + 8× 3× 8 = 200 dimensional DAISY descriptors [58].

Figure 2.5 shows 25 different locations as ’+’ signs, which DAISY uses for the descriptor
construction. A line segment points one of the directions that DAISY uses. Circles represent
the circular bins, whose radii are proportional to the standard deviations of the Gaussian kernels
used in DAISY. It can be seen that the circular bins give less overlap between the adjacent bins
than the location bins of SIFT and GLOH, which are shown in Figure 2.2. But such circular bins
result in descriptors, which obtain a performance comparable to SIFT, SURF, and GLOH, but
they make the descriptor construction faster than SIFT, SURF, and GLOH.

2.2.6 LIOP

LIOP is an intensity invariant local descriptor [69]. Unlike SIFT, GLOH, DAISY, and SURF, it
uses an intensity order based location binning, which is obtained by sorting all the pixel inten-
sities of the image patch in the ascending order [12], followed by equally quantizing the image
patch into B ordinal bins based on the intensity order. Figure 2.6 shows the description of an
image patch based on the LIOP method, where various colors inside the image patch depict
different ordinal bins.

LIOP computes intensity invariant image features for each ordinal bin. To this end, it defines
PN = {(p1, p2, ...., pN ) : pi ∈ R} as a set of N-dimensional vectors and ΠN as a set of all
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Figure 2.5: Circular bins are shown, which are used in the DAISY method. The radii of the
circular bins are proportional to the standard deviations of the Gaussian kernels used in DAISY.
To compute a descriptor at a pixel location (u0, v0), DAISY reads values from 8 different orien-
tation maps at 25 different locations, which are depicted in the illustration with ’+’ signs around
(u0, v0). Image from [58].

possible permutations of integers {1, 2, ..., N}. Then, by making use of a mapping γ : PN →
ΠN , LIOP maps the N-dimensional vector to a permutation π ∈ ΠN as follows [69]:

γ(P ) = π, P ∈ PN , π ∈ ΠN (2.9)

For instance, γ maps a vector P = {86, 217, 152, 101} to a permutation π = {1, 4, 3, 2} based
on the ascending order of the elements of P . Then, by making use of another mapping φ, LIOP
maps the permutation π to an N!-dimensional feature vector V i

N ! as:

φ(π) = V i
N !, π ∈ ΠN (2.10)

where V i
N ! is a vector, whose elements are all 0 except the i-th element, which is greater than 0.

LIOP uses the above definitions and constructs P (x) as an intensity vector, which contains the
intensities of N neighboring samples of a pixel x. It then computes a LIOP (x) feature vector
as:

LIOP (x) = φ(γ(P (x)))

= V i
N ! (2.11)

LIOP uses a circle of radius R around x to read the pixel intensities of N neighboring samples.
It uses equally spaced neighboring samples in the anticlockwise direction. It repeats the same
process on each pixel of the image patch to compute a LIOP descriptor as:

LIOP descriptor = (des1, des2, ...., desB)

desj = Σx∈binj
LIOP (x) (2.12)
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Image Patch Patch Division Bin 1 Bin 2 Bin n

LIOP descriptor = { v11 ,………,v1m , v21 ,………..…,v2m , …………., vn1 ,……….…,vnm } 

Figure 2.6: Illustration of the computation of the LIOP descriptor. Images from [69].

where B represents the number of ordinal bins and Σx∈binj
LIOP (x) is the linear sum of

LIOP (x) features of the jth ordinal bin. LIOP concatenates descriptors (desB) over all the
ordinal bins to build a N !× B dimensional description vector for the image patch. The experi-
mental results in [69] show thatN = 4 andB = 6 result in LIOP descriptors, which demonstrate
better performance than SIFT and CS-LBP under monotonic intensity changes.

2.3 Nonlinear Intensity Invariant Local Descriptors

This section presents nonlinear intensity invariant local descriptors. These descriptors are ex-
tended versions of SIFT and have been used to cope with the nonlinear intensity changes.

2.3.1 GOM-SIFT

GOM-SIFT [71] is an extended version of SIFT. It uses a Gradient Orientation Modification
(GOM) as described in Equation 2.13. GOM modifies the gradient orientations (β) of each im-
age patch and creates the restricted ones φ. GOM-SIFT uses such restricted gradient orientations
instead of β in the SIFT method to construct the descriptors.

Yi et al. [71] show that nonlinear intensity changes affect the gradient orientations. Due to
which the SIFT feature histograms of the corresponding image patches become different, which
lead to dissimilar SIFT descriptors. To deal with these problems, they propose GOM and restrict
the gradient orientations. They show that GOM improves the robustness of SIFT to nonlinear
intensity changes and increases the performance by 7.04%.

φ =

{
−β β ∈ (−π, 0)

β β ∈ [0, π]
(2.13)
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OR-SIFT

C1 = B1 and B5

C2 = B2 and B6

C3 = B3 and B7

C4 = B4 and B8

C1

C2

C3

C4

B1:  00 - 450

B2:  450 - 900

B3:  900 - 1350

B4:  1350 - 1800

B5:  1800 - 2250

B6:  2250 - 2700

B7:  2700 - 3150

B8:  3150 - 00

Figure 2.7: Orientation bins, which are used in the construction of SIFT (left) and OR-SIFT
(right) descriptors. Images from [68].

2.3.2 OR-SIFT

Vural et al. [68] show that on one hand GOM [71] improves the robustness of SIFT, but on
the other hand, it affects the rotation invariance of SIFT. This is mainly due to the orientation
mapping, which is described in Equation 2.13. To deal with this problem, they propose an
Orientation Restricted (OR) method [68], which first, computes the SIFT descriptors [33] and
then combines the elements of the SIFT descriptors in the opposite orientation directions to
obtain the OR-SIFT descriptors.

Figure 2.7 illustrates the OR method. B1, B2, ..., B8 are 8 quantized orientation bins of
a SIFT feature histogram. A SIFT descriptor consists of 16 such feature histograms. In OR
method, each feature histogram of the SIFT is transformed into an OR-SIFT feature histogram
by combining the histogram bins of the SIFT in the opposite orientation directions. For instance,
C1 bin of OR-SIFT is obtained by summing the values in B1 and B5 bins of the SIFT feature
histogram. Vural et al. show that such an OR method improves the robustness of SIFT and
demonstrates better performance than SIFT and GOM-SIFT.

2.4 Summary

In this chapter an overview of the state-of-the-art feature point detectors and descriptors, were
presented. The chapter described that how feature point detectors and descriptors have evolved
over the time. It described the basic Moravec [41] and Harris [18] corner detectors and then the
state-of-the-art feature point detectors, such as SIFT [33], Harris Laplace [37], and SURF [2].
Each detector creates a list of feature points, which contains information, such as location and
the detection scale of the feature points. Such attributes hold useful information, i.e., where
these feature points are coming from, but are insufficient for establishing the feature point cor-
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respondences between the images. To address this problem, the description of feature points has
been widely used.

The chapter described various methods for the description of feature points. It described the
SIFT descriptor in detail. It also described the modified versions of SIFT, which have been
widely used to improve the robustness of SIFT to image transformations, such as intensity
(monotonic and nonlinear) changes [19, 38, 68, 71] or to expedite the construction of SIFT to
meet the needs of the real time applications [2, 6, 58].
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CHAPTER 3
Methodology

This chapter presents the methodology used in the construction of new local descriptors. The
new local descriptors are given below:

• LBPG [51]

• LC-SIFT [52]

• DE-SIFT [52]

• NG-SIFT [53]

• MN-SIFT [49]

In the following sections the construction of new local descriptors are described in detail.

3.1 Harris Laplace Points

Harris Laplace points [37] are used as feature points in this thesis to extract normalized image
patches from the images for the construction of new as well as the state-of-the-art local de-
scriptors. Mikolajczyk and Schmid [38] show that the ranking of the local descriptors is mostly
independent of the feature point detector. Therefore, Harris Laplace detector is only used in this
thesis. Harris Laplace detects corner like image structures [37], whereas Hessian Laplace and
Difference of Gaussian detect blob-like image structures [33].

Harris Laplace points are invariant to scale and rotation changes. They are detected with a
scale adapted Harris function as [18, 37]:

L(x,sn) = (sn)nG(sn) ∗ I(x) (3.1)

where x = (x, y) is a pixel location of a gray scale image I(x) andL(x,sn) is an nth level image
in the scale space, which is created through a convolution (∗) of I(x) with a Gaussian kernel
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G(sn). The term (sn)n is used for scale normalization, where sn represents the successive level
of the scale-space representation [32], which is obtained as sn = kns0, where s0 is an initial
scale factor at the finest level of the resolution and k is a factor of scale change between the
successive levels n = {0, 1, 2, ...,m} [37].

To detect the Harris Laplace points, the Harris function FH(x,sn) is assessed at each scale
space image as follows [37]:

C(x,sn) =

[
DxDx(x,sn) DxDy(x,sn)
DxDy(x,sn) DyDy(x,sn)

]
(3.2)

FH(x,sn) = det(C(x,sn))− αtrace2(C(x,sn)) (3.3)

whereD•(x,sn) = (sn)2G(x, s̃)∗L•(x,sn) and • represents the directional gradients in x and
y directions. The gradients are smoothed with a Gaussian kernel G(x, s̃). Then, local maxima
detection is performed as follows [37]:

FH(x,sn) > FH(xw,sn) ∀xw ∈ W (3.4)

where W is an 8 neighborhood of a pixel x. To verify that each detected local maximum also form
maximum in the scale direction, a Laplacian function FL(x,sn) is computed as follows [37]:

FL(x,sn) = (sn)2[Lxx(x,sn) + Lyy(x,sn)] (3.5)

The Laplacian values in the adjacent scales are compared and the local maxima, which show
stability along the scale direction are retained, and the non maxima are suppressed as [37]:

FL(x,sn) > FL(x, sn−1) ∧ FL(x,sn) > FL(x, sn+1) (3.6)

Finally, a pixel x is declared as a Harris Laplace point if it simultaneously satisfies Equations 3.4
and 3.6.

Two thresholds th and tl are used to reject weak Harris Laplace points i.e., the points that
hold Harris and Laplacian values below th and tl, respectively, as [37]:

FH(x,sn) < th ∧ FL(x,sn) < tl (3.7)

3.2 Harris Laplace Regions

Harris Laplace (HarLap) [38] regions are normalized image patches centered at Harris Laplace
points. They are used in this thesis for the construction of new descriptors (LBPG, LC-SIFT, DE-
SIFT, NG-SIFT and MN-SIFT) as well as the state-of-the-art local descriptors (SIFT, GLOH,
SURF, DAISY, CS-LBP, LIOP, GOM-SIFT and OR-SIFT).

A method proposed in [38] is used for the computation of the HarLap regions. The method
selects an image patch centered at each Harris Laplace point according to the detection scale
(sn) of the point. It resizes the selected patch to obtain a fixed size patch of 41× 41 pixels and
then, normalizes the intensity values of this fixed size patch to obtain the new intensities between
0 and 1. Such a resized and intensity normalized image patch is referred to as a HarLap region.
Figure 3.1 illustrates the computation of a HarLap region, where an image patch centered at
a Harris Laplace point (’+’) is shown inside a bounding box. The image patch is resized and
intensity normalized to obtain a HarLap region, which is shown in Figure 3.1(c).
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Figure 3.1: (a) An image patch centered at a Harris Laplace point is shown inside a bounding
box, (b) the patch is cropped from the image, (c) resized and intensity normalized to obtain a
HarLap region of constant size 41×41 pixels.
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Figure 3.2: Illustration of the computation of the LBPG descriptor.

3.3 LBPG

LBPG [51] is a new method for the construction of local descriptors. It combines the strengths
of CS-LBP [19] and SIFT [33] methods to overcome the effects of nonlinear intensity changes.
The CS-LBP method overcomes the effects of intensity changes by making use of CS-LBP
features. It uses such features instead of image gradients in the SIFT-like feature histogram
scheme to construct the descriptors. It demonstrates good performance under monotonic in-
tensity changes [19], but demonstrates a lower performance with regard to nonlinear intensity
changes [51]. To cope with this problem, image gradients are used instead of image inten-
sity [19] in the LBPG method to compute the CS-LBP features. The LBPG method is illustrated
in Figure 3.2. In the following subsections, each block of the illustration is described.

3.3.1 Image Gradients

To compute the image gradients, LBPG convolves each HarLap region with [−1, 0, 1] and
[−1, 0, 1]> kernels and obtains directional gradients Fh and Fv, respectively. Then, it computes
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the gradient magnitudes (Ω) and gradient orientations (β) as follows:

Ω =
√
F 2
h + F 2

v (3.8)

β = atan2(Fv, Fh) (3.9)

3.3.2 LBPG Feature

Having computed the gradients, LBPG applies the CS-LBP scheme [19] on image gradients (Ω
and β), as described in Equations 3.10 and 3.11, respectively. This results in LBPGΩ (magni-
tude) and LBPGβ (orientation) features, where Ωi represents a gradient magnitude sample at
a distance of 2R from its center symmetric neighbor Ωi+(N/2). s(z) binarizes the differences
between center symmetric neighbors. The binarized differences are weighted and summed over
all the center symmetric pairs to obtain a LBPGΩ feature, as described in Equations 3.10. This
process is performed on each Ω feature of the HarLap region by using the feature as a sample nc
(see Figure 2.4).

Similarly, the β features of the HarLap region are also processed in the same manner and
LBPGβ features are obtained, as described in Equation 3.11, where βi and βi+(N/2) are center
symmetric β neighbors. Parameter N represents the number of samples and generates 2N/2

distinct binary patterns for both LBPGΩ and LBPGβ features. In the LBPG method N = 6 is
used and R = 2 is borrowed from [19].

LBPGΩ R,N =

(N/2)−1∑
i=0

s(Ωi − Ωi+(N/2))2
i (3.10)

LBPGβ R,N =

(N/2)−1∑
i=0

s(βi − βi+(N/2))2
i (3.11)

s(z) =

{
1 z ≥ 0.01
0 otherwise

(3.12)

3.3.3 LBPG Feature Histograms

Having computed the LBPG features, the HarLap region is divided into 4× 4 location bins [33].
For each location bin, two feature histograms are computed, one by using the LBPGΩ features
and the other one by using the LBPGβ features of the location bin. The feature histograms are
concatenated over all the location bins to build two descriptors, i.e., LBPGΩ and LBPGβ , each
descriptor is 128 dimensional.

3.3.4 LBPG Descriptor

Finally, LBPGΩ and LBPGβ descriptors are concatenated and an LBPG descriptor of length
128 + 128 = 256 is obtained. The descriptor is then normalized to unit norm. Larger value
descriptor elements are limited to 0.2 and then the descriptor is renormalized to unit norm [33,
38].
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Figure 3.3: Comparison of SIFT [33], CS-LBP [19], and LBPG [51] descriptors based on a
HarLap region pair, which depicts the same scene contents in 510nm and 720nm wavelength
bands. The descriptor matching scores based on Inner product and Euclidean distance, show
that LBPG outperforms SIFT and CS-LBP descriptors.

3.3.5 LBPG Example

To illustrate the robustness of LBPG method towards nonlinear intensity changes, two Har-
Lap regions are shown in Figure 3.3. The regions depict the same scene contents in 510nm
and 720nm (wavelength) bands, but the scene contents look different due to nonlinear inten-
sity changes between the HarLap regions. LBPG, SIFT, and CS-LBP descriptors are computed
for the HarLap regions and then these descriptors are compared with Inner Product and Eu-
clidean distance. The descriptor matching scores, which are shown in Figure 3.3, show that
LPBG obtains better descriptor matching scores than SIFT and CS-LBP descriptors, i.e., 0.968
(Inner product) and 0.063 (Euclidean distance). In the case of a perfect match, Inner product
and Euclidean distance metrics provide matching scores of 1 and 0, respectively, for unit norm
descriptors.

3.4 LC-SIFT

LC-SIFT [52] is an extended version of SIFT [33]. It is based on boosting the contribution of
local edges in the SIFT method to overcome the effects of nonlinear intensity changes. Such
an edge boosting is obtained by replacing the gradient magnitudes in the SIFT method with LC
(Local Contrast) magnitudes [56].

LC-SIFT benefits from an observation that intensity changes between the images of the same
scene occur due to varying lighting conditions, but such intensity changes little affect the image
edges. The relative change in the intensity across the edges is preserved. If gradient magnitudes
are used, they give dissimilar SIFT descriptors [19,69]. This is because of gradient magnitudes,
which depend on local intensity differences and such differences vary with intensity changes.
Heikkilä et al. use the CS-LBP method [19] to cope with the effects of intensity changes on the
gradient magnitudes. They binarize the intensity differences with a s(z) function, as described
in Equation 2.5 and compute the CS-LBP features. They use CS-LBP features instead of image
gradients in the SIFT-like feature histogram scheme to compute the descriptors. In contrast to
CS-LBP method, LC-SIFT uses LC magnitudes instead of gradient magnitudes to overcome the
effects of intensity changes.
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3.4.1 LC Magnitudes

To compute the LC magnitudes, an edge detector is used [56]. This edge detector computes the
magnitude of edges invariant to image contrast and intensity changes. These edges magnitudes
are referred to as LC magnitudes. The LC magnitudes for a HarLap region R are obtained as
follows [56]:

LC(x, y) =
Rmax(x, y)−Rmin(x, y)

Rmax(x, y) +Rmin(x, y) + υ
(3.13)

where Rmin and Rmax are minimum and maximum pixel intensities, which are computed in a
3 × 3 window centered at each pixel (x, y) of R and υ is an infinitely small positive number
to avoid a division by zero. In fact, LC magnitudes are normalized edge magnitudes, which
equally boost the contribution of weak and strong edges in the SIFT method and improve the
performance of SIFT as well as demonstrate better robustness to intensity changes than CS-LBP
features and gradient magnitudes based descriptors.

3.5 DE-SIFT

DE-SIFT [52] is an extended version of SIFT. It is inspired by LC-SIFT. It uses an edge boosting
similar to LC-SIFT. This edge boosting is obtained by using an illumination invariant edge
detector [8], which computes image edges for a HarLap region R as follows:

d(x, y) =
i=1∑
i=−1

j=1∑
j=−1

R(x+ i, y + j) (3.14)

DE(x, y) = atan2(d(x, y)− 9R(x, y), R(x, y)) (3.15)

where d(x, y) is a local intensity sum, (x, y) represents a pixel location and atan2 limits the
DE magnitudes between −π/2 and π/2 radians, which are then mapped with a proposed linear
mapping, i.e., DE(x, y) := π/2 +DE(x, y), between 0 and π radians, in order to compute the
DE-SIFT descriptors by using positive DE magnitudes [52].

3.5.1 DE-SIFT and LC-SIFT Examples

To illustrate the robustness of LC and DE magnitudes to intensity changes, two HarLap regions
are shown in Figure 3.4. The regions depict the same scene contents in 460nm and 720nm
bands. The intensity changes between the regions can be seen, which more affect the gradient
magnitudes than LC and DE magnitudes. As a result the descriptor matching scores, which are
shown in Figure 3.4, suggest lower performance of SIFT than LC-SIFT and DE-SIFT. LC and
DE magnitudes in contrast to gradient magnitudes, demonstrate more invariance and robustness
to intensity changes. They equally enhance the weak and strong edges of the regions. This
results in better descriptor matching scores of LC-SIFT and DE-SIFT than SIFT. In the case of
a perfect match, the Euclidean distance and Inner product metrics give matching scores of 0 and
1, respectively, for unit norm descriptors.
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Figure 3.4: Comparison of Gradient Magnitude (GM), LC, and DE magnitudes based on a
HarLap region pair. The pair depicts the same scene contents in 460nm and 720nm bands. LC-
SIFT and DE-SIFT are based on LC and DE magnitudes, respectively. They demonstrate better
descriptor matching scores than OR-SIFT [68] and SIFT [33].

3.6 NG-SIFT

NG-SIFT is an extended version of SIFT. It is inspired by LC-SIFT and DE-SIFT. It is based
on Normalized Gradients (NG) to overcome the effects of nonlinear intensity changes. GOM-
SIFT [71] and OR-SIFT [68] use restricted gradient orientations, to make SIFT robust to nonlin-
ear intensity changes, whereas, LC-SIFT and DE-SIFT use LC and DE magnitudes, respectively,
instead of gradient magnitudes in the SIFT method. In contrast to these local descriptors, NG-
SIFT uses normalized gradients, which are fixed magnitude image features, i.e., either 0 or 1,
and demonstrate more robustness to nonlinear intensity changes.

3.6.1 Normalized Gradients

To compute the normalized gradients for NG-SIFT, each HarLap region is first, convolved with
[−1, 0, 1] and [−1, 0, 1]> kernels to obtain the directional gradients Fh and Fv, respectively. The
gradient magnitudes and orientations are computed, as described in Equations 3.8–3.9. Then,
the gradients are normalized as:

F̂h(x, y) =
Fh(x, y)

Ω(x, y) + υ
(3.16)

F̂v(x, y) =
Fv(x, y)

Ω(x, y) + υ
(3.17)

Ω̂(x, y) =

√
F̂h

2
(x, y) + F̂v

2
(x, y) (3.18)

β̂(x, y) = atan2( F̂v(x, y) , F̂h(x, y) ) (3.19)
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where (x, y) is a pixel location and υ is an infinitely small positive number, which is added to
avoid a division by zero. Note that, the gradient normalization used in Equations 3.16–3.17, does
not affect the gradient orientations, i.e., β̂(x, y) = β(x, y). However, after the normalization the
magnitude of every gradient sample becomes Ω̂(x, y) = 1 except for Ω(x, y) = 0, which results
in Ω̂(x, y) = 0. Here, the idea is to avoid the modification of gradient orientations, because LC-
SIFT and DE-SIFT demonstrate better performance than GOM-SIFT [71] and OR-SIFT [68]
because they do not modify the gradient orientations, only replace the gradient magnitudes in
the SIFT method with LC and DE magnitudes. NG-SIFT also uses the same idea and uses the
normalized image gradients instead of image gradients to compute the descriptors.

3.6.2 Proposed SIFT-like descriptor construction scheme

To use the normalized gradients (Ω̂, β̂) for the construction of NG-SIFT descriptors, a SIFT-
like descriptor construction scheme is proposed. In the scheme proposed, each gradient sample
contributes only a normalized gradient magnitude to its corresponding feature histogram bin,
unlike SIFT, which uses a Gaussian weighted gradient magnitude for this purpose and also
distributes such a weighted magnitude to adjacent histogram bins via a soft binning scheme [33].
This makes the scheme proposed simple and computationally less intensive than SIFT.

To further elaborate on the scheme proposed, Figure 3.5(a) shows an HarLap region H . The
size of this region is 41 × 41 pixels and a location grid is used to divide it into 4×4 location
bins. A location bin is denoted with Hr,c (r = 0, 1, 2, 3 and c = 0, 1, 2, 3) and its pixels as
{H(x, y) : x ∈ [lc, uc] ∧ y ∈ [lr, ur]} where,

lc = (41− 1)c/4 (3.20)

uc = (41− 1)(c+ 1)/4 (3.21)

lr = (41− 1)r/4 (3.22)

ur = (41− 1)(r + 1)/4 (3.23)

For instance, H0,3 bin consists of {H(x, y) : x = 30, 31, ..., 40 ∧ y = 0, 1, .., 10} pixels.
To construct a NG-SIFT descriptor for H , the normalized gradients (Ω̂, β̂) are computed by

using Equations 3.16–3.19 and then, the β̂ features are quantized as follows:

L(x, y) = mod( b β̂(x, y)

2π/8
+

1

2
c , 8 ) (3.24)

wheremod(.) performs a modular arithmetic, for instance, β̂(x, y) = −π/2 after such a modular
arithmetic becomes L(x, y) = 6. Then, a feature histogram hr,c,t is computed for Hr,c bin as:

hr,c,t =

uc∑
x=lc

ur∑
y=lr

Ω̂(x, y)δ(L(x, y) = t) (3.25)

where t = 0, 1, ..., 7 and δ(.) is defined as:

δ(z) =

{
1 z is true
0 otherwise

(3.26)

28



 

 

H0,0  H0,1  H0,2  H0,3 

H1,0  H1,1  H1,2  H1,3 

H2,0  H2,1  H2,2  H2,3 

H3,0  H3,1  H3,2  H3,3 

 
 

(a)

SIFT 41  41

(b) SIFT

NG−SIFT 41  41

(c) NG-SIFT

Figure 3.5: (a) Illustration of 4×4 location bins, which are used in the construction of NG-SIFT.
The elements of SIFT and NG-SIFT descriptors of the HarLap region, which is shown in (a) are
depicted with line segments [65] inside 4× 4 location bins in (b) and (c), respectively.

Finally, the feature histograms are concatenated over all the location bins to obtain a 128 di-
mensional NG-SIFT descriptor for the HarLap region.

3.6.3 NG-SIFT Example

To illustrate the difference between SIFT and NG-SIFT, in Figures 3.5(b) and (c), SIFT and NG-
SIFT descriptors of H (Figure 3.5(a)), respectively, are shown. The elements of SIFT and NG-
SIFT descriptor are shown with line segments inside 4×4 location bins [65] for the sake of figure
clarity. It can be seen that the elements of SIFT descriptor are larger if a location bin contains
strong image edges, whereas for the same location bin, NG-SIFT shows invariance to image
edges and their magnitudes due to the normalized gradients of the location bin (Equation 3.25).
Here, the idea is to overcome the effects of nonlinear intensity changes, which affect the image
edges, their magnitudes, and result in dissimilar SIFT descriptors for the corresponding HarLap
regions belonging to different band images of the same scene, such as shown in Figure 3.6,
where a HarLap region pair belonging to Blue and NIR band images is shown. It can be seen
that the nonlinear intensity changes between the corresponding Harris Laplace regions of the
Blue and NIR band images, more affect the SIFT descriptor than NG-SIFT.

3.7 MN-SIFT

MN-SIFT is an extended version of NG-SIFT. As described, NG-SIFT is based on normalized
gradients, which are fixed magnitude image features i.e., either 0 or 1. Such binary magnitude
features result in robust NG-SIFT descriptors; but on the other hand they degrade the perfor-
mance of NG-SIFT on the images of textured scenes [53]. To achieve better performance on the
images of textured scenes, while keeping the descriptors robust to nonlinear intensity changes,
Modified Normalized (MN) gradients (Ω̄, β) are proposed. These MN gradients are used as im-
age features instead of NG in the NG-SIFT method to construct the MN-SIFT descriptors. The
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Figure 3.6: First row shows a HarLap region belonging to a Blue band image, SIFT, and NG-
SIFT descriptors, whereas, the second row shows the corresponding NIR band image HarLap
region, SIFT, and NG-SIFT descriptors.

MN gradients are computed as follows:

Ω̄(x, y) =
Ω(x, y)− Ωmin

Ωmax − Ωmin
; β(x, y) = atan2(Fv(x, y), Fh(x, y)) (3.27)

where Ωmin = min{Ω(x̄) : x̄ ∈ (x, y), 0 ≤ x ≤ 40, 0 ≤ y ≤ 40} and Ωmax = max{Ω(x̄) :
x̄ ∈ (x, y), 0 ≤ x ≤ 40, 0 ≤ y ≤ 40} are minimum and maximum Ω values of the Har-
Lap region. Ω and β features of the HarLap region are computed with Equations 3.8 and 3.9,
respectively. Compared to Ω̂ (Equation 3.18), Ω̄ takes on values between 0 and 1. The experi-
mental results [49] show that Ω̄ based descriptors (i.e., MN-SIFT) demonstrate more robustness
to nonlinear intensity changes than SIFT, NG-SIFT, LC-SIFT, DE-SIFT, and LBPG on textured
as well as structured scene images.

3.8 Comparison

This section presents the similarities and differences between the new descriptors (LBPG, LC-
SIFT, DE-SIFT, NG-SIFT, and MN-SIFT) and the state-of-the-art local descriptors (SIFT, GLOH,
SURF, CS-LBP, DAISY, LIOP, OR-SIFT, and GOM-SIFT).

LBPG is a gradient based descriptor. It uses CS-LBP modified gradients, which are re-
ferred to as LBPGΩ and LBPGβ features, in order to overcome the effects of nonlinear intensity
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changes. To read such modified gradients from HarLap regions, LBPG performs 4× 4 location
binning of each HarLap region twice and computes LBPGΩ and LBPGβ descriptors for the re-
gion. It borrows 4×4 location bins from SIFT. LBPG is a different method compared to CS-LBP,
because it uses image gradients to compute the CS-LBP features, whereas CS-LBP method uses
image intensity. It is also different from OR-SIFT and GOM-SIFT, which are modified gradient
orientation based descriptors. LBPG computes 256 dimensional description vectors.

LC-SIFT is a gradient based descriptor. It uses LC magnitudes (Equation 3.13) in the SIFT
method instead of gradient magnitudes to compute the descriptors. It uses 4 × 4 location bins.
It quantizes the gradient orientations into 8 different levels and then, constructs the feature his-
tograms by using the sum of Gaussian weighed LC-magnitudes. The LC magnitudes equally
boost the contribution of weak and strong edges in the SIFT method, and demonstrate better
performance than gradient magnitudes. LC-SIFT constructs 128 dimensional description vec-
tors. Unlike OR-SIFT and GOM-SIFT, it is a modified gradient magnitude based descriptor.

DE-SIFT is a gradient based descriptor. It uses DE magnitudes, which are described in
Equation 3.15, in the SIFT method instead of gradient magnitudes to compute the descriptors.
It uses 4× 4 location bins. It quantizes the gradient orientations into 8 different levels and then,
by using the sum of Gaussian weighed DE-magnitudes, it constructs the feature histograms.
DE magnitudes equally boost the contribution of weak and strong edges in the SIFT method and
demonstrate better performance than gradient magnitudes. DE-SIFT constructs 128 dimensional
description vectors. It is a modified gradient magnitude based descriptor, unlike OR-SIFT and
GOM-SIFT.

NG-SIFT is a gradient based descriptor. It uses normalized gradients as image features and
4 × 4 location bins to compute the descriptors. It is based on a proposed SIFT-like descriptor
construction scheme, which quantizes the gradient orientations into 8 different levels and uses
the sum of normalized gradient magnitudes for the construction of feature histograms. NG-
SIFT constructs 128 dimensional description vectors. It is a modified gradient magnitude based
descriptor, in contrast to OR-SIFT and GOM-SIFT.

MN-SIFT is an extended version of NG-SIFT. It uses MN gradients, which are described
in Equation 3.27, in the NG-SIFT method to compute the descriptors. It quantizes the gradient
orientation into 8 different levels and uses sum of MN gradient magnitudes for the construction
of feature histograms. It computes 128 dimensional description vectors.

SIFT is a gradient based descriptor. It uses 4 × 4 location bins, quantizes the gradient
orientation into 8 different levels and uses the sum of Gaussian weighed gradient magnitudes for
the construction of feature histograms. SIFT constructs 128 dimensional description vectors.

GLOH is an extended version of SIFT. It uses log polar location bins. It quantizes the
gradient orientation into 16 different levels and computes the feature histograms by using the
sum of gradient magnitudes. It computes 272 dimensional descriptors and then uses PCA to
reduce the descriptor dimensions to 128. For descriptors proposed, log polar location bins and
PCA are not used.

SURF is a Haar wavelet based descriptor. It uses 4 × 4 location bins. It uses Gaussian
weighting similar to SIFT for the construction of descriptors. For the descriptors proposed,
the Haar wavelet responses are not used. This thesis uses 128 dimensional extended SURF to
evaluate the performance of SURF against nonlinear intensity changes.
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CS-LBP is an extended version of SIFT. It uses a modified Local Binary Patterns scheme to
compute the CS-LBP features. It reads such image features from the HarLap regions by making
use of SIFT-like feature histogram scheme. It computes 256 dimensional description vectors.

DAISY uses image gradients and circular location bins to compute the descriptors. DAISY
computes 200 dimensional description vectors. For descriptors proposed, circular location bins
are not used.

LIOP is an intensity based descriptor. It uses intensity based location bins. LIOP computes
144 dimensional description vectors. For descriptors proposed, intensity based location bins are
not used.

GOM-SIFT is a modified version of SIFT. It uses a gradient orientation modification, as
described in Equation 2.13 to cope with nonlinear intensity changes. It uses 4 × 4 location
bins and uses the sum of Gaussian weighed gradient magnitudes for the construction of feature
histograms. It computes 128 dimensional description vectors.

OR-SIFT is a modified version of SIFT. It uses a method based on two steps to deal with the
nonlinear intensity changes. In the first step it computes SIFT descriptors and then, in the second
step it combines the elements of the SIFT descriptors in the opposite orientation directions to
compute the OR-SIFT descriptors. It computes 128 dimensional description vectors.

3.9 Summary

In this chapter, five new local descriptors (LBG, LC-SIFT, DE-SIFT, NG-SIFT, and MN-SIFT)
were presented. The new descriptors are based on novel image features, which are used in the
SIFT-like feature histogram schemes to compute the descriptors in order to overcome the effects
of nonlinear intensity changes.

In the case of LBPG, such features are obtained by applying the CS-LBP scheme on image
gradients and then, using such features in the SIFT-like feature histogram scheme to compute
the descriptors. In the case of LC-SIFT and DE-SIFT, LC and DE magnitudes are used instead
of gradient magnitudes in the SIFT method to compute the descriptors. LC-SIFT and DE-SIFT
are modified gradient magnitude based descriptors, in contrast to modified gradient orientation
based GOM-SIFT and OR-SIFT descriptors.

In the case of NG-SIFT, normalized gradients are used as image features in a proposed SIFT-
like descriptor construction scheme to compute the descriptors. Due to the fixed magnitude
nature of the normalized gradients, i.e., 0 or 1, NG-SIFT demonstrates a lower performance on
the images of textured scenes. To deal with this problem, MN-SIFT is proposed, which uses
modified normalized gradients and demonstrates better performance than NG-SIFT on textured
as well as structured scene images.
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CHAPTER 4
Image Matching

This chapter presents the experimental results for image matching. Image matching is a task,
which is performed in this thesis between the pairs of images under nonlinear intensity changes
by using the local descriptors. Two different descriptor matching strategies are used [38]: (i)
nearest neighbor, and (ii) distance threshold. Each descriptor matching strategy computes de-
scriptor matches between the pairs of images in order to evaluate the performance of the de-
scriptors proposed (LBPG, LC-SIFT, DE-SIFT, NG- SIFT, and MN-SIFT) and to compare their
performance measures with that of the state-of-the-art local descriptors (SIFT, OR-SIFT, GOM-
SIFT, CS-LBP, GLOH, DAISY, and LIOP). Mikolajczyk and Schmid use the same descriptor
matching strategies to evaluate the performance of local descriptors for image matching [38], but
on gray scale images and under monotonic intensity changes. Similarly, Heikkilä et al. [19] and
Wang et al. [69] use the same descriptor matching strategies to evaluate the performance of local
descriptors on gray scale images under monotonic intensity changes. In contrast to [19, 38, 69],
this chapter presents the performance evaluation of the local descriptors on the images of dif-
ferent wavelength bands, i.e., under nonlinear intensity changes. The objective is to find out
the best local descriptor among the state-of-the-art local descriptors for image matching under
nonlinear intensity changes and then use it as a reference to evaluate the performance of the
descriptors proposed.

4.1 Image Matching Framework

Figure 4.1 illustrates the image matching framework used in this thesis. Mikolajczyk and
Schmid [38] propose this image matching framework for gray scale images. In this thesis it
is extended to evaluate the performance of local descriptors on multispectral images, i.e., under
nonlinear intensity changes. The framework has been extensively used for evaluating the per-
formance of new local descriptors or when a comparison among the existing local descriptors is
required [2, 19, 22, 69].

The framework shown in Figure 4.1, performs image matching between pairs of different
band images of the same scene. Four different multispectral image datasets are used, which are:
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Multispectral image
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R
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HarLap Regions
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Compute HarLap Correspondences:
Overlap error ≤ ε   (%)

ε = {10, 20, 30, 40, 50, 60 }

Compute descriptors

Descriptor Matching (Output)
1) Nearest Neighbor descriptor matching (number of correct matches)
2) Distance threshold based descriptor Matching (Precision—Recall curves + AUC)

R = CAVE dataset: 400nm band image
= RWHI dataset: 420nm band image
= RGB-NIR dataset: NIR band image
= MSD dataset: Visible Spectrum image

T = CAVE dataset: 450nm, 510nm, 570nm, 630nm, and 700nm band images
= RWHI dataset: 470nm, 530nm, 590nm, 650nm, and 720nm band images
= RGB-NIR dataset: Blue (B) and Red (R) band images
= MSD dataset: Long Wave Infra Red (LWIR) image

Descriptors (dimensions):
SIFT (128), GLOH(128), SURF(128), CS-LBP(256), DAISY(200), 
LIOP(144), GOM-SIFT(128), OR-SIFT(128), LBPG(256), LC-SIFT(128), 
DE-SIFT(128), NG-SIFT(128), and MN-SIFT(128).

Compute descriptors

Figure 4.1: Framework for the performance evaluation of the local descriptors for image match-
ing under nonlinear intensity changes.

CAVE [70], RWHI [7], RGB-NIR [5], and MSD [1]. The total number of multispectral images
in these datasets is 659. The multispectral images depict various indoor and outdoor scenarios.
These four datasets are selected in order to make the performance evaluation independent of the
dataset bias [60].

Image matching begins with choosing a band image of a scene as a reference image and then
performing its image matching with different band images of the same scene. HarLap regions
are used for the construction of local descriptors, as described in Section 3.2. Then, HarLap
region correspondences are established by using the homographies between the images. Ho-
mographies also act as ground truth data to identify the correct and false descriptor matches.
Descriptor matches are obtained with a nearest neighbor and a distance threshold based descrip-
tor matching strategies [38]. Nearest neighbor descriptor matching strategy gives the number of
correct nearest neighbor descriptor matches for performance comparison, whereas the distance
threshold based descriptor matching uses a set of distance thresholds, and computes Precision–
Recall curves for performance comparison. Mikolajczyk and Schmid show that feature point
detectors, i.e., HarLap or Hessian Laplace do not affect the ranking of the local descriptors for
image matching and any of these detectors can be used [38]. Therefore, in this thesis only Har-
Lap detectors is used. HarLap detects corner like image structures, whereas Hessian Laplace
detects blob like image structures, similar to SIFT keypoint detector [33].

4.2 Evaluation Criteria

To understand the image matching framework, let K be a homography between Ir (reference)
and It (target) images. The framework uses K for establishing correspondences between the
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HarLap regions of Ir and It with the help of an overlap error criterion [38]. The overlap error (ε)
measures, how well two regions n and m correspond under K by using the ratio of intersection
to union of the regions:

ε = 1− n ∩ (KTmK)

n ∪ (KTmK)
(4.1)

n and m are considered as a corresponding HarLap regions if overlap error between them is less
than or equal to 50% as:

G(n,m) =

{
1 ε ≤ 50%

0 otherwise
(4.2)

where G is a ground truth matrix, n ∈ {0, 1, 2, ..., N − 1} and m ∈ {0, 1, 2, ...,M − 1}. The
number of detected HarLap regions in Ir and It are denoted with N and M , respectively. Then,
framework compares the description vectors with Euclidean distance (‖ . ‖) as:

D(n,m) =‖ Dn −Dm ‖ (4.3)

where Dn and Dm are the description vectors of the nth and mth HarLap regions of Ir and It,
respectively. Then, a matching matrix Dw is computed as:

Dw(n,m) =

{
1 D(n,m) ≤ w
0 otherwise

(4.4)

where w is a distance threshold.

4.2.1 Precision – Recall Curve

The framework uses a set of distance thresholds to compute the Dw matrix (see Equation 4.4).
To this end, it uses a nearest neighbor based descriptor matching strategy, which first ranks
the nearest neighbors by sorting the Euclidean distances between the neighbors in the ascending
order [38] and then selects a first distance threshold, which is 10th on the ranking list to compute
theDw matrix, then a second threshold as 30th on the list, and so on. Then, it creates a Precision–
Recall curve for image matching by using the following measures:

Recall =
Nc

Na
(4.5)

Precision =
Nc

Nc +Nf
(4.6)

where

Na =
∑
n

∑
m

G(n,m) (4.7)

Nc =
∑
n

∑
m

Dw(n,m)×G(n,m) (4.8)

Nf = −Nc +
∑
n

∑
m

Dw(n,m) (4.9)
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where Na, Nc, and Nf are the number of correspondences, number of correct, and number of
false descriptor matches, respectively. In addition to these measures, following measures are
also used.

4.2.2 AUC

AUC represents Area Under a Precision–Recall Curve (AUC). It is a single valued measure. It
is computed with a definite integral of precision p as a function of recall r in the closed interval
r ∈ [0, 1]:

AUC =

∫ r

0
p(r)dr (4.10)

Precision–Recall curves compare the performance of the local descriptors based on the precision
criterion with respect to recall, whereas AUC measure provides a single valued score for this
performance comparison.

4.2.3 Number of Correct Nearest Neighbor Matches

The number of correct nearest neighbor matches are based on a nearest neighbor based descriptor
matching strategy [38]. This matching strategy is different from the distance threshold based
descriptor matching strategy, which uses a set of distance thresholds to compute the Precision–
Recall curves and AUC scores for the performance comparison. The nearest neighbor based
descriptor matching strategy computes a nearest neighbor for each description vector of the
reference image in the target image, and then by making use of the G matrix (Equation 4.2), it
counts the number of correct nearest neighbor matches. It is a one-to-one descriptor matching
strategy in contrast to distance threshold based descriptor matching strategy, which computes
several matches for each description vector of the reference image in the target image, and
several of them may be correct if they fulfill the distance threshold based descriptor matching
criteria (Equations 4.2–4.4).

4.2.4 Overlap Error

An overlap error threshold of 50% is used as a default setting for establishing correspondences
between the HarLap regions (Equation 4.2). This threshold is borrowed from [38], where it is
used for the performance evaluation of the local descriptors for image matching. In addition to
50% overlap error, 10%, 20%, 30%, 40%, and 60% overlap errors, are also used in this thesis.
Note that, ε% overlap error means that the number of correspondences, the number of correct
nearest neighbor matches, Precision–Recall curves, and AUC scores are computed between 0%
and ε% overlap errors, where ε ={10, 20, 30, 40, 50, 60}.

Figure 4.2 illustrates six different overlap errors between HarLap regions. The reference im-
age HarLap regions are shown in green and the projected ones in red. The projected regions are
obtained by transforming the target image regions into the geometrical coordinates of the refer-
ence image by using the ground truth homography K. The overlap error comes from different
size and position of the HarLap regions [39].
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Figure 4.2: Overlap error ε. Examples of target regions (red) projected on the corresponding
reference regions (green) with the ground truth transformation. Overlap error (%) in each case
is shown below the regions. The overlap error comes from different size and position of the
HarLap regions. ’+’ sign in each case depicts the region center (i.e., HarLap point). Images
from [39].

4.2.5 Repeatability

Repeatability is a measurement for the performance evaluation of the HarLap detector. It is
computed as the ratio of the number of HarLap region correspondences to the smaller of the
number of HarLap regions between the pairs of images in the image matching.

Repeatability =
Na

min(N,M)
(4.11)

where Na is the number of correspondences, N and M are the number of HarLap regions in Ir
and It images, respectively.

4.3 CAVE Multispectral Image Dataset

CAVE1 image dataset consists of multispectral images of 32 different scenes [70]. Each scene is
captured in 31 different discrete wavelength bands, ranging from 400nm to 700nm with a fixed
step size of 10nm. To perform image matching on the images of the CAVE dataset, the 400nm
band image per scene is used as a reference image and its image matching with 450nm, 510nm,
570nm, 630nm, and 700nm band images of the same scene is performed. This is to evaluate the
performance of the local descriptors under increasing nonlinear intensity changes between the
wavelength band images of the CAVE dataset. In the case of 400nm–450nm image matching
(i.e., image matching between 400nm and 450nm band images), nonlinear intensity changes are
relatively low than the ones in 400nm–720nm image matching.

CAVE Test Scenes

A subset of scenes from the CAVE dataset is shown in Figure 4.3. An image pair for each scene
is shown. Each pair shows the same scene contents in 400nm (left) and 700nm (right) bands.
The nonlinear intensity changes between the images of the same scene can be seen, which are
due to the wavelength differences between the band images. They make the image matching
based on local descriptors difficult.

1http://www.cs.columbia.edu/CAVE/databases/multispectral/
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(a) Toy (b) Face

(c) Beans (d) Painting

(e) Balls (f) Watercolor

Figure 4.3: Samples from evaluated CAVE Dataset [70]. Six different scenes are shown in
400nm (left) and 700nm (right) bands.

Experiments on a CAVE Test Scene

This section presents the experimental results for the Toy scene of the CAVE dataset, which is
shown in Figure 4.3(a). The experimental results described are: repeatability score, number of
correct matches, Precision–Recall curves, and AUC scores. All the results are based on 50%
overlap error, i.e., the number of correspondences, the number of correct matches, Precision–
Recall, and AUC scores are counted between 0% and 50% overlap errors.

Repeatability: Figure 4.4(a) shows the number of HarLap regions detected and the number
of HarLap region correspondences established between 400nm and 700nm band images of the
Toy scene. The numbers of detected HarLap regions are 1023 and 1064, whereas the number
of HarLap correspondences is 817. The repeatability score for this image matching is 100 ×
817/min(1023, 1064) = 79.9% where min(1023, 1064) = 1023 is the smaller number of
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(a) (b)

(c) (d)

Figure 4.4: Results for image matching between 400nm and 700nm band images of the Toy
scene of the CAVE dataset, which are shown in Figure 4.3(a). The last five descriptors in (b)–(d)
are descriptors proposed.

HarLap regions.
Nearest neighbor matches: Figure 4.4(b) shows the number of correct nearest neighbor de-

scriptor matches out of 817 correspondences. The highest number of correct matches is demon-
strated by NG-SIFT. It obtains 751 correct matches, whereas LIOP obtains the worst number of
correct matches, i.e., 629. SIFT obtains 698 correct matches and performs inferior to LBPG,
DE-SIFT, and MN-SIFT, which obtain 730, 725, and 730 correct matches, respectively. LC-
SIFT obtains a slightly lower number of correct matches than SIFT. Other local descriptors
demonstrate inferior performance to SIFT.

Precision-Recall Curve: Figure 4.4(c) shows the Precision-Recall curves, which are based
on 817 HarLap region correspondences. To understand these curves, consider a point (Recall,
Precision)=(0.5,0.6). The number of correct and false matches obtained by MN-SIFT at this
point are: 0.5 × 817 = 409 and 409/0.6 − 409 = 273, respectively. Similarly, the number of
correct and false descriptor matches for other local descriptors can also be computed in order to
compare them with that of MN-SIFT. Precision-Recall curves show that MN-SIFT demonstrates
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the best performance. It achieves an AUC score of 0.532 (shown inside parentheses in the figure
legend) and outperforms SIFT and other local descriptors. DE-SIFT, LPBG, and NG-SIFT also
obtain better AUC scores than SIFT. LC-SIFT obtains a slightly lower AUC score than SIFT.
GOM-SIFT, CS-LBP, DAISY, and SURF obtain better AUC scores than SIFT, whereas OR-
SIFT, GLOH, and LIOP perform inferior to SIFT. In Figure 4.4(d), the AUC% scores are plotted
in order to better visualize the comparison among the local descriptors.

4.3.1 Experiments on CAVE Dataset

This section presents the experimental results for image matching when all the 32 scenes of
the CAVE dataset are considered for 400nm–450nm, 400nm–510nm, 400nm–570nm, 400nm–
630nm, and 400nm–700nm image matching. The experimental results shown in Figure 4.4 com-
pare the local descriptors based on only image matching between 400nm–700nm band images
of the Toy scene of the CAVE dataset.

Repeatability: Figure 4.5 shows the average number of HarLap regions detected and the
average number of HarLap region correspondences established between the various band images
of the CAVE dataset. The average number of detected HarLap regions in 400nm images of
the CAVE dataset is 838±65 where 838 is an average value and 65 represents the standard
deviation. Similarly, the average number of detected HarLap regions in 450nm, 510nm, 570nm,
630nm, and 700nm images are 765, 787, 804, 834, and 837, respectively. The detection of
HarLap regions is performed independently, i.e., detection in one band image does not affect the
detection in other band images of the same and other scenes. Therefore, Figure 4.5 shows similar
number of detected HarLap regions in various band images of the CAVE dataset. However, the
effects of nonlinear intensity changes on the average number of HarLap region correspondences
can be seen. For instance, the average number of correspondences in 400nm–450nm image
matching is 630±58 (see Figure 4.5(a)), which is higher than the number of correspondences in
400nm–700nm image matching, i.e., 602±50 (see Figure 4.5(c)). This shows a decrease in the
number of correspondences with increasing wavelength differences (i.e., increasing nonlinear
intensity changes) between the band images. Figure 4.5(d) shows such effects by plotting the
average number of correspondences between 400nm and other band images of the CAVE dataset.
The error bars (vertical lines) represent the average ± standard deviation scores.

Nearest Neighbor Matches: Figure 4.6 shows the average number of correct nearest neigh-
bor descriptor matches obtained by the local descriptors when all scenes of the CAVE dataset
are considered. It can be seen that all the local descriptors demonstrate better performance in the
case of 400nm–450nm image matching (see Figure 4.6(a)) than 400nm–510nm, 400nm–570nm,
400nm–630nm, and 400nm–700nm image matching due to low nonlinear intensity changes be-
tween 400nm–450nm images. In order to better visualize and compare the effects of nonlinear
intensity changes on the performance measures of the local descriptors, Figure 4.6(d) combines
the average number of correct matches, which are shown in Figures 4.6(a)–4.6(c). This figure
shows the best results for NG-SIFT. It obtains 539±56 correct matches in 400nm–450nm image
matching (shown at 450nm in Figure 4.6(d)), whereas it achieves 429±47 correct matches in
400nm–700nm image matching. It can be seen that NG-SIFT demonstrates the highest number
of correct matches with increasing wavelength (differences between the band images) than other
local descriptors.

40



(a) (b)

(c) (d)

Figure 4.5: Average number of HarLap region correspondences when all scenes of the CAVE
dataset are considered for 400nm–450nm, 400nm–510nm, 400nm–570nm, 400nm–630nm, and
400nm–700nm image matching. The error bars (vertical lines) represent the average ± standard
deviation scores.

LBPG obtains the second best results. LBPG is an extended version of CS-LBP. It is pro-
posed to improve the performance of CS-LBP with regard to nonlinear intensity changes. It
is also an extended version of SIFT and uses CS-LBP modified image gradients in the SIFT
method for the construction of local descriptors. This shows that the CS-LBP modified image
gradients are more robust to nonlinear intensity changes than the image gradients and CS-LBP
features, which are used in the construction of SIFT and CS-LBP descriptors, respectively.

MN-SIFT obtains the third best results. It is a modified version of NG-SIFT. It is proposed
in order to improve the performance of NG-SIFT on textured scene images. The CAVE dataset
consists of a fewer number of textured scene images; therefore, the comparison shows lower
performance of MN-SIFT than NG-SIFT. Both NG-SIFT and MN-SIFT are based on normalized
image gradients. The experimental results show that such normalized gradients are more robust
to nonlinear intensity changes than image gradients.

LC-SIFT and DE-SIFT also demonstrate higher number of correct matches than SIFT. They
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Figure 4.6: Average number of correct nearest neighbor descriptor matches when all scenes of
the CAVE dataset are considered for 400nm–450nm, 400nm–510nm, 400nm–570nm, 400nm–
630nm, and 400nm–700nm image matching at 50% overlap error.

are extended versions of SIFT. They use edge boosting in order to increase the contribution of
local edges in the SIFT method. Their performances show that such an edge boosting gives
higher number of correct matches than SIFT.

GLOH, CS-LBP, SURF, OR-SIFT, GOM-SIFT, and DAISY obtain lower results than SIFT.
They are extended versions of SIFT, however, demonstrate inferior performance to SIFT with
regard to nonlinear intensity changes. LIOP obtains the worst results, which suggests that the
intensity based descriptors that LIOP computes, are less suitable for image matching under non-
linear intensity changes in contrast to gradient based descriptors. Among the gradient based
descriptors, the descriptors proposed show the best performance. It shows that the modified
gradients (i.e., LBPG, LC, DE, NG, and MN), which are proposed for the construction of de-
scriptors, are more robust to nonlinear intensity changes than image gradients, CS-LBP features,
and Haar wavelet responses, which are used in the construction of SIFT, CS-LBP, and SURF de-
scriptors, respectively.

AUC: Figure 4.7 compares the local descriptors based on average AUC (%) scores. The
average AUC scores are based on average Precision-Recall curves, which are shown in Fig-
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Figure 4.7: Average AUC(%) scores when all scenes of the CAVE dataset are considered for
image matching at 50% overlap error.

ure 4.8. The Precision-Recall curves evaluate the performance of local descriptors based on the
Precision criterion with respect to Recall. In the case of 400nm–450nm image matching (see
Figure 4.7(a)), all the local descriptors demonstrate better performance than 400nm–510nm,
400nm–570nm, 400nm–630nm, and 400nm–700nm image matching.

The best AUC scores can be seen for NG-SIFT, which outperforms other local descriptors
with respect to increasing nonlinear intensity changes (wavelength) between the band images, as
shown in Figure 4.7(d). NG-SIFT obtains an average AUC (%) score of 42.54±2.4 in 400nm–
450nm image matching (shown at 450nm in Figure 4.7(d)), whereas it achieves an average
AUC score of 33.91±3.09 in 400nm–700nm image matching. This is due to high nonlinear
intensity changes between 400nm–700nm images, but still it outperforms other local descrip-
tors, even SIFT, which obtains an AUC score of 31.54±2.38 in 400nm–450nm image matching.
MN-SIFT achieves the second best average AUC scores. NG-SIFT and MN-SIFT are based on
normalized image gradients, which are proposed as new image features for the descriptor con-
struction to overcome the effects of nonlinear intensity changes. DE-SIFT obtains the third best
AUC scores. LBPG performs comparable to DE-SIFT. LC-SIFT also outperforms SIFT. SURF,

43



(a) (b)

(c) (d)

Figure 4.8: Average Precision-Recall curves when all scenes of the CAVE dataset are consid-
ered for image matching at 50% overlap error.

DAISY, GLOH, and GOM-SIFT achieve better AUC scores than SIFT. CS-LBP, OR-SIFT, and
LIOP obtain lower AUC scores than SIFT. LIOP obtains the worst results.

4.3.2 Effect of Overlap Error

This section presents the effects of overlap error threshold on the performance measures of the
local descriptors. The results described in this section are similar to the ones in Section 4.3.1,
which are based on 50% overlap error, whereas in this section additional results are described
when overlap error thresholds of 10%, 20%, 30%, 40%, and 60%, are used.

Overlap error is used to establish the HarLap region correspondences between the pairs of
images in image matching. It creates the ground truth G matrix (Equation 4.2), which is used to
identify and count the number correct descriptor matches (Equation 4.8). In Figure 4.2 six dif-
ferent overlap errors between the HarLap regions are illustrated. Mikolajczyk and Schmid [38]
use an overlap error threshold of 50% for the performance evaluation of the local descriptors.
To this end, Section 4.3.1 compares the local descriptors based on 50% overlap error, whereas
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Figure 4.9: Average number of HarLap region correspondences when all scenes of the CAVE
dataset are considered for image matching under various overlap error thresholds. The results
based on 50% overlap error are shown in Figure 4.5(d).

this section presents additional results under various overlap errors.
Repeatability: Figure 4.9 shows the effects of overlap error thresholds on the average num-

ber of HarLap region correspondences. The number of correspondences in 400nm–450nm image
matching at 10% overlap error is 192±33, as shown in Figure 4.9(a) at 450nm. The same overlap
error gives 117±20 correspondences in 400nm–700nm image matching, which is far less than
the number of correspondences in 400nm–450nm image matching due to high nonlinear inten-
sity changes between 400nm–700nm images. The overall average number of correspondences
in 400nm–450nm, 400nm–510nm, 400nm–570nm, 400nm–630nm, and 400nm–700nm image
matching is 142±23, which is also shown in Figure 4.9(d) at 10% overlap error. This figure
shows the average number of correspondences with increasing overlap errors and combines the
results, which are shown in Figures 4.9(a)–4.9(c) and Figure 4.5(d) in order to better visualize
the effects of increasing overlap error on the average number of HarLap region correspondences.
The figure shows an increase in the number of correspondences with increasing overlap error. A
large overlap error results in a large number of correspondences and also increases the number
of correct nearest neighbor descriptor matches, as shown in Figure 4.10 (for the CAVE dataset).
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Figure 4.10: Average number of correct nearest neighbor descriptor matches when all scenes
of the CAVE dataset are considered for image matching under various overlap error thresholds.
The results based on 50% overlap error are shown in Figure 4.6(d).

Nearest neighbor matches: Figure 4.10 compares the local descriptors based on the aver-
age number of correct nearest neighbor descriptor matches under various overlap error thresh-
olds. All the local descriptors demonstrate a low number of correct matches at 10% overlap
error (see Figure 4.10(a)). MN-SIFT in 400nm–450nm image matching achieves 172 correct
matches out of 192 correspondences (Figure 4.9(a)), whereas in the case of 400nm–700nm im-
age matching, it obtains 90 correct matches due to high nonlinear intensity changes. The overall
average number of correct matches obtained by MN-SIFT in 400nm–450nm, 400nm–510nm,
400nm–570nm, 400nm–630nm, and 400nm–700nm image matching is 118, which is shown in
Figure 4.10(d) at 10% overlap error. This figure compares the local descriptors based on the aver-
age number of correct nearest neighbor matches with respect to increasing overlap error thresh-
olds and combines the results, which are shown in Figures 4.10(a)(a)–4.10(c) and Figure 4.6(d).
The figure shows an increase in the number of correct matches with increasing overlap error
thresholds. At 10% overlap error, all the local descriptors demonstrate similar performances.
But at 60% overlap error, MN-SIFT demonstrates 502 correct matches and outperforms all the
other local descriptors. LBPG and NG-SIFT achieves the second best results. DE-SIFT and
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Figure 4.11: Average AUC (%) scores when all scenes of the CAVE dataset are considered for
image matching under various overlap error thresholds. The results based on 50% overlap error
are shown in Figure 4.7(d).

LC-SIFT demonstrate better performance than SIFT, whereas SIFT obtains better performance
than GLOH, CS-LBP, SURF, OR-SIFT, GOM-SIFT, and DAISY. LIOP demonstrates the lowest
number of correct matches with increasing overlap error threshold.

AUC: Figure 4.11 compares the local descriptors based on average AUC (%) scores under
various overlap error thresholds. The best AUC score is demonstrated by GLOH in 400nm–
450nm image matching, at 10% overlap error. GLOH obtains an AUC score of 36%, but achieves
AUC score of 20.6% in 400nm–700nm image matching, at 10% overlap error and performs 4.4%
inferior to LBPG. The overall average AUC score achieved by LBPG in 400nm–450nm, 400nm–
510nm, 400nm–570nm, 400nm–630nm, and 400nm–700nm image matching is 25.8%, which
is shown in Figure 4.11(d) at 10% overlap error. This figure combines the AUC scores, which
are shown in Figures 4.11(a)–4.11(c) and Figure 4.7(d) to compare the performance of the local
descriptors based on average AUC scores under increasing overlap error thresholds. The figure
shows low AUC scores for all the local descriptors at 10% and 60% overlap errors, whereas the
local descriptors demonstrate the best AUC scores between 20% and 40% overlap errors. NG-
SIFT obtains the best AUC score at 40% overlap error. MN-SIFT obtains the second best AUC
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score. LBPG performs comparable to DE-SIFT and both outperform SIFT. LC-SIFT and GLOH
also outperforms SIFT. The comparison shows similar AUC scores for SIFT and GOM-SIFT.
Both outperform CS-LBP, OR-SIFT, and DAISY. LIOP obtains the worst results.

The experimental results achieved on CAVE dataset show that all the descriptors proposed
perform better than the state-of-the-art local descriptors for image matching. SIFT demonstrates
better performance than other state-of-the-art local descriptors, i.e., OR-SIFT, GOM-SIFT, CS-
LBP, GLOH, DAISY, and LIOP when average number of correct nearest neighbor descriptor
matches are used for the performance evaluation, whereas GLOH demonstrates better perfor-
mance when AUC score is used for the performance evaluation. Compared to SIFT and GLOH,
the descriptors proposed demonstrate better performance in both average number of correct near-
est neighbor descriptor matches and AUC scores based performance evaluation.

4.4 RWHI Image Dataset

Real-World Hyperspectral Image (RWHI)2 dataset consists of multispectral images of 50 differ-
ent indoor and outdoor scenes [7]. Each scene is acquired in 31 different discrete wavelength
bands, ranging from 420nm to 720nm with a fixed step size of 10nm [7]. A subset of scenes
from RWHI dataset is shown in Figure 4.12. An image pair for each scene is shown in 420nm
(left) and 720nm (right) bands. Nonlinear intensity changes between the images of the same
scene can be seen, which are due to the wavelength differences between the band images.

To perform image matching on the images of RWHI dataset, the 420nm image per scene
is used as a reference image, and its image matching with 470nm, 530nm, 590nm, 650nm and
720nm images of the same scene are performed in order to evaluate the performance of local de-
scriptors under increasing nonlinear intensity changes between the images of the RWHI dataset.
In contrast to CAVE dataset, the images of the RWHI dataset possess low nonlinear intensity
changes.

Experiments on a RWHI Test Scene

This section presents the image matching results for the imga6 scene of the RWHI dataset, which
is shown in Figure 4.12(a). The experimental results described are: repeatability score, number
of correct nearest neighbor descriptor matches, Precision–Recall curves, and AUC scores.

Repeatability: Figure 4.13(a) shows the number of HarLap region correspondences be-
tween 420nm–720nm images of the imga6 scene at 50% overlap error. The number of corre-
spondences is 547 out of 1026 and 1003 detected HarLap regions in 420nm and 720nm images,
respectively. The repeatability score for this image matching is 100× 547/min(1026, 1003) =
54.5%, where min(1026, 1003) = 1003 is the smaller number of HarLap regions.

Nearest neighbor correct matches: Figure 4.13(b) compares the local descriptors based on
the number of correct nearest neighbor descriptor matches in 420nm–720nm image matching
of the imga6 scene. SIFT obtains 428 correct matches and shows lower performance than LC-
SIFT, NG-SIFT, and MN-SIFT, which obtain 433, 437, and 446 correct matches, respectively.
LBPG and DE-SIFT obtain 418 and 422 correct matches, respectively, and demonstrate lower

2http://vision.seas.harvard.edu/hyperspec/
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(a) imga6 (b) imgb9

(c) imgc8 (d) imgd7

(e) imge7 (f) imgg4

Figure 4.12: Samples from the evaluated RWHI Dataset [7]. Six different scenes are shown in
420nm (left) and 720nm (right) bands.

performance than SIFT. MN-SIFT obtains the highest number of nearest neighbor matches, i.e.,
446, whereas LIOP demonstrates the worst number of correct matches, i.e., 323.

Precision-Recall Curve: Figure 4.13(c) compares the local descriptors based on Precision–
Recall curves. To understand these curves, consider a point (Recall, Precision)=(0.4,0.8). The
number of correct and false matches obtained by MN-SIFT at this point are 0.4×547 = 219 and
219/0.8 − 219 = 55, respectively. Similarly, the number of correct and false matches can also
be computed for other local descriptors to compare them with that of MN-SIFT. The Precision–
Recall curves show the best results for MN-SIFT. It obtains the best AUC score of 0.51 (shown
inside parentheses in the figure legend) and outperforms SIFT and all the other local descriptors.
NG-SIFT obtains the second best results. LC-SIFT, DE-SIFT, and LBPG perform inferior to
SIFT. Except SURF, all the other descriptors show lower AUC scores than SIFT. LIOP obtains
the worst results. In Figure 4.13(d) AUC% scores are plotted to better visualize the comparison
among the local descriptors.

4.4.1 Experiments on RWHI Dataset

This section presents the experimental results when all scenes of the RWHI dataset are consid-
ered for 420nm–470nm, 420nm–530nm, 420nm–590nm, 420nm–650nm, and 420nm–720nm
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(c) (d)

Figure 4.13: Results for image matching between 420nm and 720nm band images of the imga6
scene of the RWHI dataset, which are shown in Figure 4.12(a).

image matching at 50% overlap error. The RWHI dataset consists of 50 different scenes. There-
fore, the results presented in this section are average values ± standard deviations.

Repeatability: Figure 4.14 shows the average number of HarLap regions detected and the
average number of HarLap region correspondences established between the images of the RWHI
dataset. The average number of detected HarLap regions in 420nm images is 1009, whereas in
470nm, 530nm, 590nm, 650nm, and 720nm images, they are 1031, 1024, 1028, 1029, and
1033, respectively. The detection of HarLap regions is independently performed, i.e., detec-
tion in a band image does not affect the detection in other band images of the same and other
scenes. Therefore, Figure 4.14 shows similar average number of detected HarLap regions in
various band images of the RWHI dataset. However, the effects of nonlinear intensity changes
on the number of HarLap region correspondences can be seen. For instance, the average number
of correspondences in 420nm–470nm image matching is 873 (see Figure 4.14(a)), whereas in
420nm–720nm image matching, it is 563 (see Figure 4.14(c)). This shows a decrease in the num-
ber of correspondences with increasing wavelength differences (increasing nonlinear intensity
changes) between the band images. Figure 4.14(d) shows such effects by plotting the average
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(a) (b)

(c) (d)

Figure 4.14: Average number of HarLap region correspondences when all scenes of the RWHI
dataset are considered for 420nm–470nm, 420nm–530nm, 420nm–590nm, 420nm–650nm, and
420nm–720nm image matching at 50% overlap error.

number of correspondences with respect to increasing wavelength.
Nearest Neighbor Matches: Figure 4.15 compares the local descriptors based on average

number of correct nearest neighbor descriptor matches. All the local descriptors demonstrate
better performance in the case of 420nm–470nm image matching than others, due to low non-
linear intensity changes. To better visualize the effects of nonlinear intensity changes on the
performance of the local descriptors, Figure 4.15(d) combines the results, which are shown in
Figures 4.15(a)–4.15(c). This figure shows that NG-SIFT demonstrates the best performance.
It obtains 825 correct matches in 420nm–470nm image matching (shown at 470nm), whereas it
obtains 454 correct matches in 420nm–720nm image matching.

MN-SIFT demonstrates the second best performance. LBPG obtains the third best results.
LC-SIFT and DE-SIFT obtain higher number of correct matches than SIFT. GLOH, SURF, OR-
SIFT, GOM-SIFT, and DAISY obtain lower numbers of correct matches than SIFT, whereas
CS-LBP performs comparable to SIFT. LIOP obtains the worst results.

AUC: Figure 4.16 compares the local descriptors based on average AUC (%) scores. These
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(a) (b)

(c) (d)

Figure 4.15: Average number of correct nearest neighbor descriptors matches when all scenes
of the RWHI dataset are considered for image matching at 50% overlap error.

scores are based on the average Precision–Recall curves, which are shown in Figure 4.17. The
curves compare the performance of the local descriptors based on average Precision scores with
respect to Recall, when all scenes of the RWHI dataset are considered for image matching. The
results show the best AUC scores for all the local descriptors in 420nm–470nm image matching
compared to others.

NG-SIFT obtains the best AUC scores in 420nm–470nm image matching. It achieves an
AUC (%) score of 53.93, whereas it gives an AUC score of 36.86 in 420nm–720nm image
matching and performs inferior to its extended version, i.e, MN-SIFT, which achieves an AUC
score of 37.40. This shows the effects of nonlinear intensity changes (i.e., wavelength differ-
ences between the band images) on the AUC scores of the local descriptors. To better visu-
alize such effects, Figure 4.16(d) combines the average AUC scores, which are shown in Fig-
ure 4.16(a)–4.16(c). This figure shows the best performance of NG-SIFT and MN-SIFT with
increasing wavelength. DE-SIFT and LBPG also demonstrate better performance than SIFT.
But they perform comparable to SURF. LC-SIFT outperforms SIFT, but it obtains lower results
than DAISY, CS-LBP, and SURF. LIOP obtains the worst results.
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(c) (d)

Figure 4.16: Average AUC (%) scores when all scenes of the RWHI dataset are considered for
image matching at 50% overlap error.

4.4.2 Effect of Overlap Error

This section evaluates the performance of the local descriptors under various overlap error
thresholds, i.e., 10%, 20%, 30%, 40%, 50% and 60%, on RWHI dataset.

Repeatability: Figure 4.18 shows the effects of overlap error on the average number of
HarLap regions correspondences. For instance, in 420nm–470nm image matching the aver-
age number of correspondences is 540 at 10% overlap error, whereas in 420nm–720nm image
matching, the number of correspondences is 190 (see Figure 4.18(a)). The overall average num-
ber of correspondences in 420nm–470nm, 420nm–530nm, 420nm–590nm, 420nm–650nm, and
420nm–720nm image matching is 342, which is also shown in Figure 4.18(b) at 10% overlap
error. This figure shows the average number of correspondences under various overlap error
thresholds. The figure shows an increase in the number of correspondences with increasing
overlap error thresholds.

Nearest neighbor matches: Figure 4.19 shows the effect of overlap error thresholds on
the number of correct nearest neighbor descriptor matches achieved by the local descriptors.
At 10% overlap error, all the local descriptors obtains a low number of correct matches (see
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(a) (b)

(c) (d)

Figure 4.17: Average Precision-Recall curves when all scenes of the RWHI dataset are consid-
ered for image matching at 50% overlap error.

Figure 4.19(a)), for instance, NG-SIFT in 420nm–470nm image matching obtains 515 correct
matches out of 540 correspondences (Figure 4.18(a)), whereas in 420nm–720nm image match-
ing NG-SIFT gives 160 correct matches at the same overlap error, which are much less than 515.
This performance decrease is due to high nonlinear intensity changes between 420nm–720nm
images.

The overall average number of correct matches obtained by NG-SIFT in 420nm–470nm,
420nm–530nm, 420nm–590nm, 420nm–650nm, and 420nm–720nm image matching is 318 as
shown in Figure 4.19(b) at 10% overlap error. This figure compares the local descriptors under
various overlap error thresholds. The figure shows an increase in the average number of cor-
rect matches with increasing overlap error thresholds. A slight performance difference among
the local descriptors can be seen at 10% overlap error. However, the performance difference
becomes more clearer at 60% overlap error, where NG-SIFT and MN-SIFT obtain 653 correct
matches and outperform others. LBPG, LC-SIFT and DE-SIFT obtains higher number of cor-
rect matches than SIFT. CS-LBP, DAISY, GOM-SIFT, SIFT, and SURF demonstrate similar
performances and outperform GLOH, LIOP, and OR-SIFT.
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(a) (b)

Figure 4.18: Average number of HarLap region correspondences when all scenes of the RWHI
dataset are considered for image matching under various overlap error thresholds. The results
based on 50% overlap error are shown in Figure 4.14(d).

(a) (b)

Figure 4.19: Average number of correct nearest neighbor descriptor matches when all scenes
of the RWHI dataset are considered for image matching under various overlap error thresholds.
The results based on 50% overlap error are shown in Figure 4.15(d).

AUC: Figure 4.20 shows the effects of overlap error threshold on the AUC (%) scores of the
local descriptors. In 420nm–470nm image matching, GLOH demonstrates the best AUC score
of 80%, at 10% overlap error (see Figure 4.20(a)). In case of 420nm–720nm image matching, it
obtains an AUC score of 45%. The overall average AUC score obtained by GLOH in 420nm–
470nm, 420nm–530nm, 420nm–590nm, 420nm–650nm, and 420nm–720nm image matching
is 62.8%, which is shown in Figure 4.20(d) at 10% overlap error. The figure compares the
local descriptors based on average AUC scores under various overlap error thresholds. LBPG
demonstrates the best AUC scores at 20% overlap error. NG-SIFT and MN-SIFT demonstrate
the best AUC scores at 60% overlap error. They give an improvement of 7% over SIFT at 60%
overlap error. LBPG, LC-SIFT, and DE-SIFT also outperform SIFT. LIOP obtains the worst
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(c) (d)

Figure 4.20: Average AUC scores when all scenes of the RWHI dataset are considered for
image matching under various overlap error thresholds. The results based on 50% overlap error
are shown in Figure 4.16(d).

results.

4.5 MSD Dataset

Multimodal Stereo Dataset (MSD)3 consists of 100 VS–LWIR image pairs [1]. The pairs depict
various urban scenario in Visible (VS: 400–700nm) and Long-Wave Infrared (LWIR: 800–1500
nm) bands. In contrast to CAVE [70] and RWHI [7] datasets, the images of MSD posses high
nonlinear intensity changes, which can be seen from Figure 4.21, where VS–LWIR image pairs
of three different scenes in VS (left) and LWIR (right) bands, are shown. Such nonlinear inten-
sity changes also induce textural differences between the images and make the image matching
based on local descriptors difficult.

3http://www.cvc.uab.es/adas/projects/simeve/?q=node/2
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(a) VS-0000032 (b) VS-0000036 (c) VS-0000081

(d) LWIR-0000032 (e) LWIR-0000036 (f) LWIR-0000081

Figure 4.21: Samples from the evaluated MSD Dataset [1]. Three different scenes are shown.
Each scene shows the same image contents in the Visible Spectrum (left) and Long Wave Infra
Red (right) bands.

4.5.1 Experiments on MSD Dataset

This section presents the experimental results when all scenes of the MSD dataset are consid-
ered for VS–LWIR image matching at 50% overlap error. The dataset consists of 100 VS–LWIR
image pairs. Therefore, the results presented in this section are average values ± standard devi-
ations.

Repeatability: Figure 4.22(a) shows the average number of HarLap region correspondences
in VS–LWIR image matching. The average number of detected HarLap regions in VS and
LWIR images are 1002 and 1008, respectively. The detection of HarLap regions is performed
independently, i.e., detection in a VS image does not affect the detection in the LWIR images of
the same and other scenes. Therefore, Figure 4.22(a) shows similar average number of detected
HarLap regions in VS and LWIR images. However, the effects of nonlinear intensity changes on
the average number of HarLap region correspondences can be seen, i.e., the average number of
correspondences in the case of VS–LWIR image matching is 581 and the average repeatability
score is 100 × 581/min(1008, 1002) = 58% where min(1008, 1002) = 1002 is the smaller
number of detected HarLap regions.

Nearest Neighbor Matches: Figure 4.22(b) compares the local descriptors based on av-
erage number of correct nearest neighbor descriptor matches in VS–LWIR image matching.
This figure shows the best performance of NG-SIFT, which obtains 120 correct matches and
demonstrates 48-match improvement over SIFT. LBPG obtains the second best results. OR-
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(a) (b)

Figure 4.22: Average number of HarLap regions correspondences and average number of cor-
rect matches when all scenes of the MSD dataset are considered for VS–LWIR image matching
at 50% overlap error.

SIFT achieves the third best results. OR-SIFT is a modified version of SIFT, which has been
used to overcome the effects of intensity reversal and nonlinear intensity changes between the
images [68]. The MSD dataset consists of a large number of VS–LWIR pairs with intensity re-
versal problem, therefore, OR-SIFT demonstrates better results than SIFT, MN-SIFT, LC-SIFT,
and DE-SIFT. However, on CAVE and RWHI datasets, OR-SIFT performs inferior to these local
descriptors. GOM-SIFT also outperform SIFT, but it performs inferior to OR-SIFT. GOM-SIFT
has also been used to overcome the effects of nonlinear intensity changes and intensity reversal
between the images.

MN-SIFT obtains the fourth best results. LC-SIFT and DE-SIFT achieves similar results
and perform comparable to SIFT. GLOH, CS-LBP, SURF, and DAISY show lower results than
SIFT, which show that they are less robust to nonlinear intensity changes between VS–LWIR
images. LIOP obtains the worst results.

AUC: Figure 4.23(a) compares the local descriptors based on average AUC (%) scores.
These scores are based on average Precision-Recall curves, which are shown in Figure 4.23(b).
The best performance is demonstrated by MN-SIFT, whereas NG-SIFT obtains the second best
results. LBPG performs comparable to OR-SIFT; but outperforms SIFT. DE-SIFT, LC-SIFT,
and GOM-SIFT demonstrate better performance than SIFT. SURF, DAISY, and GLOH all obtain
low AUC scores than SIFT. LIOP obtains the worst results, which shows that intensity based
descriptors are less suitable for VS–LWIR image matching than the gradient based descriptors.

4.5.2 Effect of Overlap Error

This section presents the comparison of local descriptors based on VS–LWIR image matching
under various overlap error thresholds. Section 4.5.1 describes similar results when 50% overlap
error is used. This section presents additional results when overlap error thresholds of 10%, 20%,
30%, 40%, and 60%, are used.
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(a) (b)

Figure 4.23: Average AUC (%) scores and Precision–Recall curves when all scenes of the MSD
dataset are considered for image matching with 50% overlap error.

(a) (b)

Figure 4.24: Average number of HarLap region correspondences when all scenes of the MSD
dataset are considered for image matching under various overlap error thresholds. The results
based on overlap error threshold of 50% are shown in Figure 4.22(a).

Repeatability: Figure 4.24 shows the average number of HarLap region correspondences
under various overlap error thresholds. The average number of correspondences between VS–
LWIR images is 7 at 10% overlap error, as shown in Figures 4.24(a) and (b). An increase in
the number of correspondences with increasing overlap error thresholds can be seen in Fig-
ure 4.24(b). A larger overlap error results in a large number of correspondences between the
VS–LWIR images and increases the number of correct nearest neighbor descriptor matches, as
shown in Figure 4.25, for the MSD dataset.

Nearest neighbor matches: Figure 4.25 compares the local descriptors based on average
number of correct nearest neighbor descriptor matches under various overlap error thresholds.
All the local descriptors obtain low number of correct matches at 10% overlap error. For
instance, MN-SIFT obtains only 1 correct match out of 7 correspondences (Figure 4.24(a)),
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(a) (b)

(c) (d)

Figure 4.25: Average number of correct nearest neighbor descriptor matches when all scenes of
the MSD dataset are considered for image matching under various overlap error thresholds. The
results based on 50% overlap error threshold are shown in Figure 4.22(b).

whereas OR-SIFT demonstrate the best results. OR-SIFT also demonstrates the best perfor-
mance at 20%, 30% and 40% overlap errors. MN-SIFT and NG-SIFT achieve the second best re-
sults. Hoverer, at 60% overlap error, NG-SIFT demonstrates the best number of correct matches,
i.e, 169, whereas MN-SIFT obtains the second best results and achieves 155 correct matches.

LBPG and OR-SIFT demonstrate the third best results at 60% overlap error. GOM-SIFT
achieves 112 correct matches and outperforms LC-SIFT and DE-SIFT. LC-SIFT obtains better
results than SIFT. DE-SIFT performs comparable to SIFT. GLOH, SURF, CS-LBP, DAISY, and
LIOP demonstrate lower performance than SIFT. Compared to the intensity based descriptors of
LIOP, all the gradient based descriptors obtain large number of correct matches with increasing
overlap error in VS–LWIR image matching.

AUC: Figure 4.26 shows the effects of overlap error thresholds on the average AUC (%)
scores of the local descriptors. All the local descriptors demonstrate lower AUC scores at 10%
overlap error. However, with certain overlap error thresholds, AUC scores improve. For in-
stance, OR-SIFT outperforms other local descriptors between 10% and 40% overlap errors.
Afterwards, OR-SIFT demonstrates lower AUC scores than NG-SIFT, which obtains the best
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Figure 4.26: Average AUC scores when all scenes of the MSD dataset are considered for image
matching under various overlap error thresholds. The results based on 50% overlap error are
shown in Figure 4.23(a).

AUC score at 60% overlap error. NG-SIFT achieves an AUC score of 8.4% and demonstrates
4.4% improvement over SIFT. MN-SIFT achieves the second best AUC and outperforms SIFT
by 2.9%. LBPG obtains the third best result. SIFT achieves better AUC scores than GLOH,
SURF, DAISY, LIOP, and CS-LBP.

OR-SIFT and GOM-SIFT are based on gradient orientation modification. They demonstrate
better performance than gradient magnitude modification based descriptors, such as LC-SIFT
and DE-SIFT. This is due to high intensity reversal between the VS and LWIR images of the
MSD dataset. However, the experimental results show that LC-SIFT and DE-SIFT demonstrate
better performance than OR-SIFT and GOM-SIFT on CAVE and RWHI datasets.

61



4.6 RGB-NIR Scene Dataset

RGB-NIR Scene Dataset4 consists of 477 RGB–NIR image pairs in 9 different scene cate-
gories [5]. The scene categories are Country, Field, Forest, Indoor, Mountain, Buildings, Street,
Urban, and Water. Each scene category depict different scenarios in Visible (RGB) and Near
Infra-Red (NIR) bands, as shown in Figure 4.27. To perform image matching on the images of
the RGB-NIR scene dataset, a Blue–NIR and a Red–NIR image matching per RGB-NIR pair is
performed.

4.6.1 Experiments on RGB-NIR Scene Dataset

This section presents the experiment results for image matching when all the RGB-NIR image
pairs of the RGB-NIR scene dataset are considered for Blue–NIR and Red–NIR image match-
ing. The experiments are performed on the pairs of images of the same scene, and then, the
average results are reported. To evaluate the performance of the local descriptors, the exper-
imental results for each scene category are separately presented in order to show which local
descriptor obtains the best performance in which scene category of the dataset. Additionally, the
performance comparison of the local descriptors under various overlap error thresholds are also
reported.

Country Category

This section presents the experimental results when all the RGB-NIR image pairs of the Country
category are considered for Blue–NIR and Red–NIR image matching.

Nearest neighbor matches: Figure 4.28(a) shows the average number of correct nearest
neighbor descriptor matches at 50% overlap error. The highest number of correct matches is
demonstrated by MN-SIFT. It obtains 92 and 163 correct matches in Blue–NIR and Red–NIR
image matching, respectively. The average of these matches is (92+163)/2=128, which is shown
in Figure 4.28(b) at 50% overlap error. This figure compares the local descriptors based on
average number of correct matches with respect to overlap error thresholds. The figure shows
similar results for all the local descriptors, at 10% overlap error, but afterwards, the local de-
scriptors exhibit different performances. They obtain the highest number of correct matches at
60% overlap error, where MN-SIFT and NG-SIFT obtains 150 correct matches and outperform
SIFT and other local descriptors. LBPG obtains the second best result. LC-SIFT and DE-SIFT
demonstrate better performance than SIFT. GLOH, OR-SIFT, GOM-SIFT, GLOH, DAISY, and
CS-LBP perform inferior to SIFT. LIOP obtains the worst performance.

AUC: Figure 4.28(c) compares the local descriptors based on average AUC (%) scores at
50% overlap error. The best AUC score is demonstrated by MN-SIFT. It demonstrates AUC
scores of 8.2% and 17% in Blue–NIR and Red–NIR image matching, respectively. The average
of these AUC scores is (8.2+17)/2=12.7%, which is shown in Figure 4.28(d) at 50% overlap
error. This figure compares the local descriptors based on average AUC scores with respect to
overlap error thresholds. This comparison shows wide variations in the AUC scores of the local

4http://ivrg.epfl.ch/supplementary_material/cvpr11/
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(a) Country

(b) Field (c) Forest

(d) Indoor (e) Mountain

(f) Buildings (g) Street

(h) Urban (i) Water

Figure 4.27: Samples from the evaluated RGB-NIR scene dataset [5]. An RGB-NIR image pair
from each scene category is shown. Each pair shows the same image contents in RGB (left) and
NIR (right) bands.

descriptors. The local descriptors demonstrate the best AUC scores at 20% overlap error. Af-
terwards, a decline in the AUC scores with respect to overlap error can be seen. MN-SIFT and
NG-SIFT show the best AUC scores at 60% overlap error and outperform others. They achieve
AUC scores of 10% and 9.5% and demonstrate 2.5% and 2% improvement over SIFT, respec-
tively. LC-SIFT, DE-SIFT, and LBPG achieve similar AUC scores and perform comparable to
SIFT.
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Figure 4.28: (a,b) Average number of correct nearest neighbor matches and (c,d) average AUC
(%) scores when all the RGB-NIR image pairs of the Country category are considered for Blue–
NIR and Red–NIR image matching under various overlap error thresholds.

Field Category

Figure 4.29 shows the image matching results when all the RGB-NIR image pairs of the Field
category are considered for Blue–NIR and Red–NIR image matching. The experimental results
show the highest number of correct matches for MN-SIFT under various overlap errors. All the
local descriptors demonstrates the best results at 60% overlap error. In the case of AUC scores,
all the local descriptors obtain the best results at 20% overlap error, where LBPG and SIFT
outperform the other local descriptors. Afterwards, a decline in the AUC scores with respect to
overlap error can be seen.
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Figure 4.29: Image matching results for Field category.

Forest Category

Figure 4.30 shows the experimental results when all the RGB-NIR image pairs of the Forest
category are considered for Blue–NIR and Red–NIR image matching.

Indoor Category

Figure 4.31 shows the experimental results when all the RGB-NIR image pairs of the Indoor
category are considered for Blue–NIR and Red–NIR image matching.

Mountain Category

Figure 4.32 shows the experimental results when all the RGB-NIR image pairs of the Mountain
category are considered for Blue–NIR and Red–NIR image matching.
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Figure 4.30: Image matching results for Forest category.

Building Category

Figure 4.33 shows experimental results when all the RGB-NIR image pairs of the Buildings
category are considered for Blue–NIR and Red–NIR image matching.

Street Category

Figure 4.34 shows the experimental results when all the RGB-NIR image pairs of the Street
category are considered for Blue–NIR and Red–NIR image matching.

Urban Category

Figure 4.35 shows the experimental results when all the RGB-NIR image pairs of the Urban
category are considered for Blue–NIR and Red–NIR image matching.
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Figure 4.31: Image matching results for Indoor category.

Water Category

Figure 4.36 shows the experimental results when all the RGB-NIR image pairs of the Water
category are considered for Blue–NIR and Red–NIR image matching.

4.7 Summary

In this chapter the experimental results for image matching were presented. The performance
of the descriptors proposed (LBPG, LC-SIFT, DE-SIFT, MN-SIFT and MN-SIFT) were com-
pared with that of state-of-the-art local descriptors (SIFT, OR-SIFT, GOM-SIFT, GLOH, CS-
LBP, SURF, DAISY and LIOP) on four different multispectral image datasets (CAVE, RWHI,
RGB-NIR and MSD). All the experiments were performed under nonlinear intensity changes
by performing image matching between the pairs of different wavelength band images of the
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Figure 4.32: Image matching results for Mountain category.

same scene. The performance comparison was based on average number of correct nearest
neighbor descriptor matches, average Precision–Recall curves, and average AUC scores. The
experimental results showed that SIFT demonstrated on average better performance than other
state-of-the-art local descriptors (OR-SIFT, GOM-SIFT, GLOH, CS-LBP, SURF, DAISY and
LIOP). Therefore, SIFT was used as a reference descriptor to evaluate the performance of the
descriptors proposed.

The experimental results showed that the gradient orientation modification based descrip-
tors, i.e., OR-SIFT and GOM-SIFT, which have been used to overcome the effects of nonlinear
intensity changes, demonstrated lower performance than SIFT on CAVE, RHWI and RGB-NIR
datasets. But they demonstrated comparable performance to SIFT on MSD dataset. The de-
scriptors proposed, which are based on gradient magnitude modification obtain on average bet-
ter results than SIFT, OR-SIFT, and GOM-SIFT on all the evaluated datasets. This proves that
the modification of the gradient magnitudes, which are proposed for the construction of the de-
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Figure 4.33: Image matching results for Building category.

scriptors proposed, improve the performance of the local descriptors with regard to nonlinear
intensity changes.

CS-LBP have been used to overcome the effects of monotonic intensity changes. It also
demonstrates good performance under nonlinear intensity changes. The experimental results
show that LBPG, which is a gradient extension of CS-LBP, demonstrates even better perfor-
mance than CS-LBP on all the evaluated datasets. This shows that the modification of image
gradients based on the CS-LBP scheme, generates more robust image features, which improve
the performance of the descriptors proposed against nonlinear intensity changes than the origi-
nal/standard image gradients based descriptors.

LIOP demonstrates the worst performance on all the evaluated datasets. This shows that
the intensity based descriptors that LIOP computes, are less suitable for image matching under
nonlinear intensity changes. GLOH, SURF, and DAISY demonstrate on average a slightly lower
performance than SIFT. All these descriptors demonstrate better performance than LIOP, OR-
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Figure 4.34: Image matching results for Street category.

SIFT, and GOM-SIFT.
NG-SIFT and MN-SIFT demonstrate the best performance on all the evaluated datasets.

They are based on normalized image gradients. The experimental results show that such normal-
ized image gradients are more robust to nonlinear intensity changes than image gradients, CS-
LBP features, and Haar wavelet responses, which are used in the construction of SIFT, CS-LBP,
and SURF descriptors, respectively. The experimental results show that MN-SIFT outperforms
NG-SIFT on the images of textured scene (such as County, Field, Forest, Mountain, Street, and
Water), whereas NG-SIFT demonstrates better performance than MN-SIFT on structured scene
images (such as Buildings and Urban).
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Figure 4.35: Image matching results for Urban category.
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(c) (d)

Figure 4.36: Image matching results for Water category.
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CHAPTER 5
Scene Category Recognition

This chapter presents the experimental results for Scene Category Recognition (SCR). It is an
image-to-database matching task, which is performed in this thesis under nonlinear intensity
changes to evaluate the performance of the descriptors proposed (LBPG, LC-SIFT, DE-SIFT,
NG-SIFT, and MN-SIFT) and to compare their performance measures with that of state-of-the-
art local descriptors (SIFT, OR-SIFT, GOM-SIFT, CS-LBP, GLOH, DAISY, and LIOP) for a
recognition task. A nearest neighbor based descriptor matching strategy is used for SCR. Brown
and Susstrunk [5] use the same descriptor matching strategy and evaluate the performance of
SIFT and the color variants of SIFT [63] for SCR by computing the descriptor matching between
the images of the same wavelength bands. Unlike the work of Brown and Susstrunk [5], the SCR
presented in this chapter is performed by using images of different wavelength bands for training
and testing. The idea is to induce nonlinear intensity changes between the images of the training
and test sets for the performance evaluation of the local descriptors. In the following sections,
the experimental setup and results are described.

5.1 Experimental Setup

The framework [49] used for SCR is shown in Figure 5.1. It consists of an RGB–NIR scene
dataset [5], a 10 folds cross validation test/train split, HarLap regions, and a Naive Bayes Nearest
Neighbor image classifier [4]. In the following sections, each block of the SCR framework is
described in detail.

5.2 Image Dataset

Experiments are performed on an RGB–NIR Scene Dataset [5] (see Figure 4.27). This dataset
consists of 477 RGB–NIR image pairs in 9 different scene categories. The scene categories are
Country, Field, Forest, Indoor, Mountain, Buildings, Street, Urban, and Water. The framework
uses images of different bands for training and testing. For instance, if the images of NIR band
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RGB-NIR Scene Dataset
477 RGB-NIR image pairs in 
9 different scene categories

Descriptors (dimensions):
SIFT (128), GLOH(128), SURF(128), CS-LBP(256), DAISY(200), LIOP(144), GOM-SIFT(128), OR-SIFT(128), LBPG(256), LC-SIFT(128), DE-SIFT(128), NG-SIFT(128), 
and MN-SIFT(128)

Train / Test Split
10 fold Cross Validation

Test set:
10 RGB-NIR image pairs 

per scene category
Totally: 90 RGB-NIR pairs

Training set:
consists of remaining 

RGB-NIR image pairs other 
than test set

Select either Red or Blue as 
a test band and discard 

others

Select NIR as a band for 
training and discard

others

Extract HarLap Regions
and

Compute Descriptors

Extract HarLap Regions
and

Compute Descriptors

Naive Bayes Nearest 
Neighbor image 

Classifier 

Output:
Classification and 
recognition rates

Figure 5.1: Framework for the performance evaluation of the local descriptors for SCR under
nonlinear intensity changes.

are chosen for training, then testing is carried out on the images of Red (R) or Blue (B) bands in
order to induce nonlinear intensity changes between the images of training and test sets.

5.3 Cross Validation

Experiments are repeated 10 times by randomly performing the train/test split. Then, the average
recognition rates obtained by the local descriptors are reported for the performance comparison.
For each train/test split, the 477 RGB–NIR image pairs are randomly split into training and test
sets: 90 RGB–NIR image pairs (i.e., 10 RGB–NIR image pairs per scene category) are used for
testing and training is performed using the rest.

5.4 Testing and Training Images

If the images of Blue band are used for testing, then, the images of other bands in the test set, i.e.,
Red, Green and NIR are discarded for both testing and training. Similarly, if the images of Red
band are selected for testing, then, the images of other bands in the test set, i.e., Blue, Green, and
NIR are discarded for both testing and training. The images of NIR band in the training set are
only used for training, and the images of other bands (i.e., Red, Green, and Blue) in the training
set are discarded for both testing and training.

5.5 Description of Testing and Training Images

To compute the local descriptors, HarLap [38] regions are used, as described in Section 3.2.
The local descriptors used for SCR are listed in Figure 5.1 along with their description vector
dimensions.
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5.6 Naive Bayes Nearest Neighbor Classifier

Naive Bayes Nearest Neighbor (NB–NN) image classifier is used for SCR in this thesis. Brown
and Susstrunk [5] use the same image classifier for SCR. Boimam et al. [4] propose this classifier
and show that the descriptors zi in an image I are Independent and Identically Distributed (i.i.d.)
Gaussian variables and their class conditional density is approximated with the nearest neighbors
as follows [4]:

p(I|c) =
∏
i

p(zi|c) ≈
∏
i

N (zi, NNc(zi), σ
2) (5.1)

where NNc(zi) are nearest neighbors of zi in class c of the training set and σ is the width of
the Parzen window, which is used in the estimation of the probability density [4]. Boimam et
al. show that if a single nearest neighbor in each class c of the training set is used for zi, then
Equation 5.1 obtains a simple form as follows:

p(I|c) =
∏
i

p(zi|c) ∝ −
∑
i

‖zi −NNc(zi)‖ (5.2)

where ‖.‖ is an Euclidean distance between zi and its nearest neighbor NNc(zi) in class c of the
training set. Then, by making use of the Naive Bayes classifier with equal class priors a class
label for the image I is obtained as follows:

Ĉ = arg max
c
p(c|I) ≈ arg min

c

∑
i

‖zi −NNc(zi)‖ (5.3)

5.7 Experimental Results

This section presents the experimental results for SCR. The results are based on average recog-
nition rates (fraction of correct classification) obtained by the local descriptors by randomly
performing the train/test split 10 times. In the following subsections, the experimental results
for SCR based on the images of Blue–NIR and Red–NIR bands, are described.

5.7.1 SCR based on Blue–NIR band images

In the case of SCR based on Blue–NIR band images, the descriptors of NIR band images in the
training set are compared with the descriptors of the Blue band images of the test set by using
the NB-NN classifier, as described in Section 5.6. Having compared the descriptors, the scene
category labels for the test images are obtained by using Equation 5.3. Then, the recognition
rates are computed and the performance of the descriptors proposed is compared with that of the
state-of-the-art local descriptors.

To understand the recognition rates reported in this chapter, a confusion table is shown in
Figure 5.2. The confusion table shows the average recognition rates obtained by SIFT in nine
different scene categories of the RGB-NIR dataset in the SCR based on Blue–NIR band images.
In fact, the diagonal elements in the confusion table are the average recognition rates, which are
used for the performance evaluation of SIFT with regard to other local descriptors.
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Figure 5.2: Confusion table shows the average recognition rates achieved by SIFT in nine dif-
ferent scene categories of the RGB–NIR scene dataset when testing and training are performed
on the images of Blue and NIR bands, respectively.

The recognition rates are shown with different gray shades for better visualization and com-
parison of the recognition rates. The darkest shade (full black) depicts a recognition rate of 1
and the brightest shade (full white) depicts a recognition rate of 0. The rows of the confusion
table correspond to ground truth (actual labels) and the columns correspond to predicted labels.
The sum of recognition rates over each row gives a recognition rate of 1, i.e, 100% recognition
rate.

The confusion table shows that SIFT achieves the best recognition rate of 0.74 in the in-
door category. Therefore, the other columns of the same row show lighter shades. Similarly,
the recognition rates in other rows of the confusion table can also be explained. The diagonal
elements of the confusion table are also shown in Table 5.1 to compare the performance of SIFT
with that of other local descriptors.

Figure 5.3 shows the confusion tables when all the local descriptors are used for SCR based
on Blue–NIR images. The diagonal elements of these confusion tables are shown in Table 5.1,
where the best result in each column is printed in boldface. The results show wide variations in
the average recognition rates of the local descriptors. The best mean recognition rate (i.e, overall
average recognition rate) is demonstrated by MN-SIFT. It achieves a mean recognition rate of
0.43 (last column).

GOM-SIFT obtains the second best results. Note that, GOM-SIFT demonstrates a low per-
formance in Blue–NIR image matching, as described in Section 4.6; but in the case of SCR based
on Blue–NIR band images, it achieves the second best mean recognition rate, which shows its
more robustness to nonlinear intensity changes in the recognition task, i.e., SCR compared to
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Table 5.1: Average Recognition rates when testing and training are performed on the images of
Blue and NIR bands of the RGB–NIR scene dataset, respectively. Mean represents the average
recognition rates over all the scene categories.

Descriptor Country Field Forest Indoor Mountain Buildings Street Urban Water Mean

SIFT 0.04 0.08 0.64 0.74 0.52 0.44 0.10 0.68 0.18 0.38
CS-LBP 0.00 0.40 0.32 0.84 0.14 0.32 0.16 0.48 0.34 0.33
OR-SIFT 0.10 0.22 0.36 0.54 0.24 0.46 0.10 0.32 0.32 0.30
GOM-SIFT 0.08 0.34 0.74 0.70 0.38 0.50 0.12 0.48 0.34 0.41
DAISY 0.00 0.24 0.76 0.68 0.64 0.44 0.16 0.54 0.14 0.40
SURF 0.06 0.26 0.36 0.78 0.78 0.24 0.20 0.32 0.04 0.34
GLOH 0.06 0.06 0.80 0.68 0.46 0.42 0.12 0.58 0.08 0.36
LIOP 0.04 0.16 0.62 0.48 0.12 0.06 0.18 0.32 0.06 0.23
LBPG 0.08 0.10 0.46 0.34 0.32 0.26 0.30 0.26 0.06 0.24
LC-SIFT 0.08 0.32 0.52 0.60 0.40 0.50 0.22 0.64 0.22 0.39
DE-SIFT 0.04 0.30 0.60 0.60 0.18 0.36 0.36 0.42 0.16 0.34
NG-SIFT 0.26 0.34 0.48 0.54 0.22 0.14 0.14 0.46 0.08 0.30
MN-SIFT 0.10 0.42 0.74 0.74 0.54 0.22 0.16 0.66 0.28 0.43

image matching. Similarly, DAISY demonstrates better mean recognition rates than SIFT. The
results show adverse effects of nonlinear intensity changes on the performance of NG-SIFT,
which achieves a mean recognition rate of 0.30 and demonstrates the best average recognition
rates only in the Country category. LIOP obtains the worst performance, which shows that
the intensity based descriptors that LIOP computes, are less suitable for SCR under nonlinear
intensity changes.

LC-SIFT obtains a mean recognition rate of 0.39 and demonstrates an improvement of 1%
over SIFT. DE-SIFT obtains a lower mean recognition rate than SIFT. LBPG achieves the sec-
ond lowest mean recognition rates. It performs only 1% better than LIOP. SIFT demonstrates
better recognition rate than OR-SIFT, SURF, CS-LBP, GLOH, and LIOP. Figure 5.3 also shows
confusion between the scene categories. For instance, it can be seen that the Building category
is confused with the Indoor category, and the Urban and Country categories are confused with
Field and Forest categories.

5.7.2 SCR based on Red–NIR band images

This section describes the experimental results when Red–NIR band images are used for SCR,
i.e., the descriptors of NIR band images of the training set are compared with the descriptors
of Red band images of the test set by using the NB–NN, as described in Section 5.6. All the
results presented in this section are average recognition rates, which are obtained by performing
the train/test split 10 times.

Figure 5.4 shows the confusion tables for SCR based on Red–NIR band images. The diag-
onal elements (average recognition rates) of these confusion tables are also shown in Table 5.2.
The best results in each column are printed in boldface. The results show variations in the
average recognition rates of the local descriptors with regard to scene categories. The mean
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Table 5.2: Average Recognition rates when testing and training are performed on the images
of Red and NIR bands of the RGB–NIR Scene dataset, respectively. Mean represents average
recognition rates over all the scene categories.

Descriptor Country Field Forest Indoor Mountain Buildings Street Urban Water Mean

SIFT 0.14 0.10 0.68 0.68 0.64 0.62 0.10 0.52 0.34 0.42
CS-LBP 0.08 0.30 0.38 0.92 0.26 0.34 0.24 0.54 0.32 0.38
OR-SIFT 0.02 0.32 0.36 0.58 0.26 0.44 0.18 0.36 0.26 0.31
GOM-SIFT 0.00 0.36 0.80 0.72 0.38 0.62 0.12 0.48 0.34 0.42
DAISY 0.20 0.24 0.70 0.60 0.44 0.64 0.12 0.50 0.22 0.41
SURF 0.08 0.18 0.24 0.78 0.64 0.40 0.20 0.34 0.12 0.33
GLOH 0.12 0.10 0.78 0.66 0.38 0.62 0.14 0.52 0.16 0.39
LIOP 0.00 0.16 0.70 0.42 0.16 0.16 0.10 0.20 0.08 0.22
LBPG 0.14 0.12 0.48 0.28 0.32 0.32 0.20 0.46 0.12 0.27
LC-SIFT 0.10 0.26 0.62 0.58 0.38 0.62 0.14 0.38 0.12 0.36
DE-SIFT 0.16 0.24 0.64 0.62 0.34 0.40 0.44 0.56 0.28 0.41
NG-SIFT 0.24 0.42 0.50 0.70 0.24 0.38 0.14 0.42 0.04 0.34
MN-SIFT 0.08 0.34 0.66 0.78 0.56 0.64 0.18 0.56 0.30 0.46

recognition rates in the last column show that MN-SIFT obtains the best results. It achieves a
mean recognition rate of 0.46, and outperforms all the other local descriptors. Note that, this
recognition rate is 3% higher than 0.43, which MN-SIFT demonstrates in the case of SCR based
on Blue–NIR band images (Table 5.1). This performance improvement is due to low nonlin-
ear intensity changes between the images of Red–NIR bands compared to Blue–NIR band im-
ages. This shows that low intensity changes less affect the nearest neighbor descriptor matches
(Equation 5.2) and result in better recognition rates than SCR based on Blue–NIR band images.
Similarly, the improvement in the recognition rates of the other local descriptors can also be
seen.

Table 5.2 also shows the effects of image contents on the average recognition rates of the
local descriptors. For instance, SIFT obtains the best average recognition rates of 0.64 and 0.34
in Mountain and Water categories, respectively. NG-SIFT obtains the best recognition rates of
0.24 and 0.42 in Country and Field categories, respectively. DE-SIFT shows the best recognition
rates in Street and Urban categories. GOM-SIFT achieves the best recognition rates in Forest
and Water categories. Both GOM-SIFT and SIFT obtain the best recognition rates in Water
category. But, GOM-SIFT outperforms SIFT in Forest category, whereas SIFT outperforms
GOM-SIFT in Mountain category. Both DAISY and MN-SIFT obtain the best recognition rates
in Building category. Both SURF and SIFT achieve the best recognition rates in Mountain
category. Whereas OR-SIFT, LC-SIFT, LBPG, GLOH, and LIOP do not demonstrate the best
recognition rates in any of these scene categories of the RGB-NIR dataset.

The last column in Table 5.2 shows the best mean recognition rate of 0.46 for MN-SIFT,
whereas both SIFT and GOM-SIFT obtain the second best mean recognition rates of 0.42. LIOP
obtains the worst mean recognition rates. Although, LIOP achieves some recognition rates, but
compared to that of gradient based descriptors, such recognition rates are much lower, which
show that gradient based descriptors are more robust to nonlinear intensity changes. It can also
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be seen that SIFT, DE-SIFT, GOM-SIFT, MN-SIFT, and DAISY obtain comparable recognition
rates for SCR based on Red–NIR bands, whereas other local descriptors demonstrates lower
recognition rates.

5.8 Summary

In this chapter, the experimental results for SCR were presented, in order to compare the perfor-
mance of descriptors proposed (LBPG, LC-SIFT, DE-SIFT, NG-SIFT and MN- SIFT) with that
of state-of-the-art local descriptors (SIFT, GLOH, SURF, CS-LBP, DAISY, LIOP, GOM- SIFT,
and OR-SIFT) for a recognition task. SCR was performed on nine different scene categories of
the RGB-NIR scene dataset. All experiments were performed under nonlinear intensity changes,
i.e., by using the images of different wavelength bands for training and testing.

The experimental results show that the performance of LC-SIFT and MN-SIFT is compa-
rable to SIFT, GOM-SIFT, DAISY, and GLOH when testing and training are performed on the
images of Blue and NIR bands, respectively. Whereas, NG-SIFT, DE-SIFT, and LBPG obtain
lower scene recognition rates.

The experimental results show that the performance of DE-SIFT and MN-SIFT is compara-
ble to SIFT, GOM-SIFT, and DAISY when testing and training are performed on the images of
Red and NIR bands, respectively. Whereas, NG-SIFT, LC-SIFT and LBPG demonstrate lower
scene recognition rates.

LIOP obtains the worst results for SCR, which shows that intensity based descriptors are
less suitable for the recognition task under nonlinear intensity changes. All the gradient based
descriptors demonstrate better performance than LIOP.

The best recognition rates in both Red–NIR and Blue–NIR bands based SCR are demon-
strated by MN-SIFT. The experimental results show that all the local descriptors demonstrate
good performance for SCR when the images of Red–NIR bands are used due to low nonlinear
intensity changes compared to ones between the images of Blue–NIR bands.
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(a) SIFT (b) CS-LBP (c) OR-SIFT

(d) GOM-SIFT (e) DAISY (f) SURF

(g) GLOH (h) LIOP (i) LBPG

(j) LC-SIFT (k) DE-SIFT (l) NG-SIFT

(m) MN-SIFT

Figure 5.3: Confusion table shows the average recognition rates achieved by the local descrip-
tors in nine different scene categories of the RGB–NIR scene dataset when testing and training
are performed on the images of Blue and NIR bands, respectively. The average recognition rates
(diagonal elements) are also shown in Table 5.1.
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(a) SIFT (b) CS-LBP (c) OR-SIFT

(d) GOM-SIFT (e) DAISY (f) SURF

(g) GLOH (h) LIOP (i) LBPG

(j) LC-SIFT (k) DE-SIFT (l) NG-SIFT

(m) MN-SIFT

Figure 5.4: Confusion table shows average recognition rates achieved by the local descriptors in
nine different scene categories of the RB–NIR dataset when testing and training are performed
on the images of the Red and NIR bands, respectively. The average recognition rates (diagonal
elements) are also shown in Table 5.2.
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CHAPTER 6
Optical Character Recognition

This chapter presents a new method for the recognition of Glagolitic characters. The method pro-
posed is designed for historical documents, named Missale Sinaiticum [36], where the Glagolitic
character recognition based on the state of the art methods is hard to achieve due to high degra-
dation and background noise [10, 15]. These degradations are due to the parchment aging, en-
vironmental effects, fading ink, bleed through, folding marks, and stains [36]. The method
proposed deals with such degradations by making use of Dense SIFT algorithm [63] and the
nearest neighbor distance maps [50]. The maps encode the Euclidean distances between the
Dense SIFT descriptors of the test documents and the SIFT descriptors of the training set. This
creates local minima in the distance maps, which help in the localization and recognition of
the Glagolitic characters. To evaluate the performance of the method proposed, experiments
on three datasets are performed and the performance is compared with that of the SIFT based
method proposed by Diem et al. [10] for the similar documents. Additionally, the descriptors
proposed (LBPG, LC-SIFT, DE-SIFT, NG-SIFT, and MN-SIFT) are used instead of Dense SIFT
in the method proposed to compare their Glagolitic character recognition rates with that of Dense
SIFT, CS-LBP, OR-SIFT, GOM-SIFT, and SURF descriptors. Note that, Glagolitic Character
recognition is an image to database matching task, which is performed in this chapter to evaluate
the performance of the descriptors proposed.

6.1 Challenges in Optical Character Recognition

Optical Character Recognition (OCR) is a long standing problem in document image analy-
sis [43, 66]. It deals with the conversion of document images into machine readable format by
recognizing the identity of each and every document image character [43]. The conversion pro-
cess generally takes place in a sequence of steps, which includes text line detection, character
segmentation, feature calculation, and classification [30]. The complexity and accuracy of each
step depends on the document type [43], for instance, on handwritten documents the complexity
of each step is normally high and the accuracy is low than machine-printed documents [16, 66].
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In the case of historical documents, such as shown in Figure 6.1(a), the complexity of each
step grows and the accuracy degrades, mainly due to background noise, degradation, stains, and
fading ink [10].

This chapter concerns with the recognition of Glagolitic characters in Missale Sinaiticum
(Cod. Sin. Slav. 5N) manuscripts, which were written in the 11th century and discovered
in 1975 at St. Catherine’s Monastery. An image portion belonging to Missale Sinaiticum
manuscripts, is shown in Figure 6.1(a), where background noise and degradations can be seen.
Such degradations affect the localization (i.e., detection and segmentation) and recognition of the
Glagolitic characters. To deal with these problems, a new and robust method for the recognition
of Glagolitic character is proposed.

Several methods for handwritten character recognition [9,10,62] have been proposed, which
can be used for the Glagolitic character recognition. However, these methods differ in imple-
mentation and also depend on the document type, amount of background noise, and the nature
of degradation in the documents. Some methods use text line detection in order to localize the
characters and then, isolate the characters of the text line to compute the features on isolated
characters for the character recognition [62]. These methods perform well if document images
possess homogenous background and are free from background noise [10]. Some methods use
local image features to localize and then, recognize the characters. They do not use text line
detection as a preprocessing step [10].

In the case of Missale Sinaiticum manuscripts, text line detection and character isolation are
hard tasks, which make the local image features based methods more suitable. Another reason,
which makes the local image features based methods more suitable, is image binarization used
in the text line detection [62]. In the case of Missale Sinaiticum, image binarization is also
a challenging problem, as shown in Figure 6.1. If Otsu’s image binarization [45] is used, it
results in a binarization, which distorts the shape of the majority of the characters, as shown
in Figure 6.1(b), mainly due to background noise and fading ink. Such a binarization further
complicates the text line detection and makes the isolation of the text line characters difficult [10,
26]. The state-of-the-art methods for image binarization can be used, such as [56] and [57],
whose results are shown in Figure 6.1(c) and Figure 6.1(d), respectively. But their results also
suggest that achieving a perfect image binarization of the Missale Sinaiticum manuscripts is
difficult. If we achieve a perfect image binarization and text line detection, then the isolation
of the text line character still remains a challenging task. Here, isolated characters are required
for the feature computation, so that such features can be matched with that of isolated training
set characters to recognize the identity of the manuscripts’ characters. But the image portion in
Figure 6.1(a) shows that Glagolitic characters in the manuscripts are overlapping and there is no
fixed spacing between them, which make the isolation of the Glagolitic characters difficult.

Diem et al. [10] show that by using local image features a better character recognition can
be achieved on Missale Sinaiticum manuscripts. To this end, they use SIFT algorithm [33] and
cluster the SIFT keypoints of the manuscripts to localize the characters. Then, by using a SVM
classifier on the descriptors of the clustered SIFT keypoints; they recognize the characters. They
obtain good results with regard to background noise and fading ink. Similarly, Uchida et al.
use SURF algorithm [2] and recognize the handwritten characters [61]. However, they use a
different approach than [10], i.e., by decomposing the characters into SURF patterns and then
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(a) (b) Otsu [45]

(c) Su et al. [56] (d) Su et al. [57]

Figure 6.1: (a) A sample belonging to Missale Sinaiticum [36] manuscript is shown. The
other images are the binarized versions of (a), which are obtained by applying (b) Otsu’s image
binarization [45] (c) local maximum and minimum approach [56] and (d) the combined approach
for the text binarization [57].

recognizing the patterns with a nearest neighbor classifier [61].
The method proposed is also a local image feature based method. It is a text line detection

free method. It does not require image binarization as a pre-processing step. It uses Dense
SIFT (DSIFT) algorithm [63] to overcome the effects of degradations in Missale Sinaiticum
manuscripts, which affect the detection and repeatability of the SIFT keypoints [33], and result in
low Glagolitic character recognition rates [10]. DSIFT efficiently overcomes such degradations
and obtains better recognition rates than [10]. In the next sections, the method proposed is
described in detail.

6.2 Proposed Method

The method proposed is illustrated in Figure 6.2. First, it computes DSIFT descriptors on a test
document image and then compares such descriptors with the SIFT descriptors of the training
set. It uses a nearest neighbor based descriptor matching strategy and compares the descriptors
with the Euclidean distance. This results in Nearest Neighbor Distance Maps (NNDM), which
identify probable locations of the Glagolitic characters in the test document image and help in the
localization as well as the recognition of the Glagolitic characters. In the following subsections
each block of the flowchart is described in detail.
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Figure 6.2: Illustration of the method proposed for the recognition of Glagolitic characters in
degraded document images.

6.2.1 Test Image

A test document image I(x, y) is shown in Figure 6.1(a), where (x, y) represents a pixel location.
This image is used in the following subsections to explain the building blocks of the flowchart.

6.2.2 Dense SIFT Descriptors

To compute DSIFT descriptors, the SIFT descriptor algorithm [63] is applied at a fixed scale
value of σ = 7.7 at each pixel of the test image I(x, y). This scale value is based on the average
size of the single Glagolitic character images in the training set. The average width and height of
the training set character images are 65 and 51 pixels, respectively. For the estimation of scale,
the average width is used and the scale is estimated as σ = 65/(2×

√
2× 3).

6.2.3 Training SIFT Descriptors

To compute training SIFT descriptors, the SIFT algorithm [63] is applied at the same scale value
of σ = 7.7 but only at the center pixel of each single Glagolitic character image of the training
set. To further elaborate on this, three samples from classes 1, 5, and 20 of the training set are
shown in Figure 6.3, where a ’+’ sign on each sample depicts the center pixel. Training set
consists of manually segmented single Glagolitic character images. The width and height of
such segmented character images vary within Glagolitic character classes and also between the
classes. Therefore, the average width is used for the construction of both training and testing
SIFT descriptors to cope with the size changes.
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(a) 1 (b) 5 (c) 20

Figure 6.3: Samples from Glagolitic character classes (a) 1, (b) 5, and (c) 20 of the training
set. The center pixel of each sample is depicted with a ’+’ sign, which is used in the method
proposed to compute a SIFT descriptor on the sample at a fixed scale value of σ = 7.7

6.2.4 Nearest Neighbor Distance Map

The number of evaluated Glagolitic character classes is 25 in this thesis. To localize and rec-
ognize the characters of these classes, Nearest Neighbor Distance Maps (NNDM) Mj(x, y) are
computed as follows:

Mj(x, y) = ‖dx,y − djnn‖; j ∈ {1, 2, .., 25} (6.1)

where j represents the jth Glagolitic character class of the training set, dx,y is a DSIFT descriptor
of I(x, y) at a pixel location (x, y), djnn is the nearest neighbor of dx,y in the jth class of the
training set, and ‖.‖ represents the Euclidean distance between dx,y and djnn.

For each pixel of Mj(x, y), a value is computed (see Equation 6.1), which is in fact, an
Euclidean distance between a DSIFT descriptor dx,y and its nearest neighbor in the jth class
of the training set. Such distances help in the localization as well as the recognition of the
characters. To further elaborate on this, distance maps M1(x, y), M5(x, y) and M20(x, y) are
shown in Figure 6.4. A Glagolitic character image is also shown on the top left corner of the
distance map to interpret the map. Dark spots in each distance map can be seen, which are local
minima and suggest probable locations of the Glagolitic characters in I(x, y). For instance,
a Glagolitic character of class 5 (Figure 6.3(b)) occurs near the top right corner of I(x, y);
therefore, a dark spot can be seen at the same location in the M5(x, y) map, which is shown
inside a bounding box in Figure 6.4(c). Similarly, other dark spots in M1(x, y), M5(x, y) and
M20(x, y) maps show that Glagolitic characters similar to classes 1, 5, and 20 are also present
in I(x, y), respectively.

6.2.5 Non-Minima Suppression

To localize the Glagolitic characters in the test image, an image N(x, y) is created. This image
is based on NNDM and created as follows by computing a minimum value for each pixel of
N(x, y):

N(x, y) = Mj′(x, y); j′ = arg min
j∈{1,2,..,25}

Mj(x, y) (6.2)
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(a) I(x, y) (b) M1(x, y)

(c) M5(x, y) (d) M20(x, y)

Figure 6.4: Nearest Neighbor Distance Maps M1(x, y), M5(x, y) and M20(x, y), which show
the probable locations of Glagolitic characters in the test image similar to Glagolitic characters
in classes 1, 5, and 20 of the training set, respectively.

Afterwards, a Non-Minima Suppression is applied on N(x, y) and an image Nmin(x, y) is ob-
tained as:

Nmin(x, y) =

{
1 N(x, y) = min({N(xw) : xw ∈ W})
0 otherwise

(6.3)

where xw=(xw, yw) is a pixel location that lies inside a circular window W of radius b65/2 + 0.5c
pixels centered at (x, y). This window is slid over all the pixel locations of N(x, y) and an
image Nmin(x, y) is obtained. For each slide, a local minimum is computed and the pixel (x, y)
of the image Nmin is set to 1 if the window center, i.e., (x, y) matches with the pixel location
of the local minimum, otherwise zero is assigned. Figure 6.5 shows the results for non-minima
suppression, where the pixel locations correspond to Nmin(x, y) = 1 are depicted with blue
dots. It can be seen that, for each Glagolitic character at least one local minimum is obtained.
This local minimum is used in the subsequent step to recognize the Glagolitic character.
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Figure 6.5: Blue dots depict the pixel locations of the local minima. They are obtained by
applying a non-minima suppression on the distance maps of the test image.

6.2.6 Classification

Having localized the characters (i.e., local minima), image Nmin(x, y) is processed as follows
to obtain a class labeled image L(x, y):

L(x, y) =

{
0 Nmin(x, y) = 0

j′ j′ = arg minj∈{1,2,..,25}Mj(x, y)
(6.4)

For the assignment of class labels, each pixel corresponds to Nmin(x, y) = 0 is assigned zero
or a background class label, whereas a class label j is obtained for Nmin(x, y) = 1 by using the
NNDM, as described in Equation 6.4.

Figure 6.6(a) shows a result for Glagolitic character recognition based on method proposed.
The result shows correctly classified characters in green. The red colored characters with red
markers are misclassified characters, and the red colored characters without markers are not re-
trieved characters. White markers are not eligible; they represent either background or characters
of unevaluated Glagolitic classes (refer to Section 6.2.4). It can be seen that method proposed
obtains a better character recognition than [10], whose result is shown in Figure 6.6(b).

6.3 Experimental Results

This section presents the experimental setup and results for Glagolitic character recognition.
Experiments on three different image datasets (of Missale Sinaiticum manuscripts) [10] are per-
formed. In the following subsections, the experimental results are described in detail.

6.3.1 Experiments on Single Character Images

This section presents the experimental results for the recognition of single Glagolitic character
images. Two datasets are used, which are called Dataset-1 and Dataset-2.
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(a) Proposed (b) Diem et al. [10]

Figure 6.6: Glagolitic character recognition based on (a) method proposed and (b) the method
suggested by Diem et al. [10]. The red colored characters without markers are not retrieved char-
acters, whereas characters with green and red markers are correctly and misclassified characters,
respectively. White markers are not eligible; they represent either background or the characters
of the unevaluated Glagolitic classes.

Figure 6.7: Samples from evaluated Dataset-1. Images from [10].

Dataset-1

Dataset-1 consists of two sets; SETA and SETB. A subset of samples from SETA and SETB is
shown in Figure 6.7, and the description of SETA and SETB is given in Table 6.1. SETA con-
sists of 10 Glagolitic character classes with 10–12 single Glagolitic character images per class
(in total 107 characters). SETB also consists of the same 10 Glagolitic character classes, but
there are 9 single Glagolitic character images per class, which are either degraded or partially
visible than the ones in SETA, as shown in Figure 6.7. SETB is used as a test set to evalu-
ate the performance of method proposed on degraded and faded characters by using the SIFT
descriptors of SETA.

On each training sample of SETA, only one SIFT descriptor is computed at a fixed scale of
σ = 7.7, as described in Section 6.2.3, whereas on each test sample of SETB, DSIFT descriptors
are computed at the same scale value of σ = 7.7. SIFT descriptors of the SETA are then matched
with the DSIFT descriptors of each test sample of the SETB to create NNDM for the test sample.
The number of Glagolitic character classes in SETA is 10, therefore, j = {1, 2, .., 10} is used in
Equation 6.1. Then, non-minima suppression is performed and a class label for the test sample
is obtained, as described in Equation 6.4.

To compare the performance of method proposed with that of the method proposed by Diem
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Table 6.1: Dataset-1 and Dataset-2: type, number of samples and number of classes.

Type number of samples number of classes
Dataset 1 SETA training 107 10

SETB test 90 10
Dataset 2 SETC training 500 25

SETD test 198 25

Table 6.2: Precision scores achieved on Dataset-1 and Dataset-2.

Diem et al. [10] Proposed (DSIFT)
Dataset-1 0.789 0.822
Dataset-2 0.712 0.751

et al. [10], precision score is computed, which is defined as the ratio of correctly classified
characters to total number of characters. Table 6.2 shows the precision scores. It can be seen
that the method proposed demonstrates the best performance. It obtains a precision score of
0.822 and outperforms [10] by 3.3%.

Dataset-2

Dataset-2 also consists of two sets: SETC and SETD. The description of each set is given in
Table 6.1. Dataset-2 is, in fact, an extended version of Dataset-1. This extension is obtained by
increasing the number of Glagolitic character classes from 10 to 25, with 500 and 198 samples
in SETC and SETD, respectively. SETC consists of single Glagolitic character images similar
to the ones in SETA, whereas SETD consists of degraded and faded characters similar to the
ones in SETB. To compute the training SIFT descriptors, SETC is used and the class labels
for the test samples in SETD is obtained. Table 6.2 shows the precision scores achieved on
Dataset-2 (SETC–SETD). A performance decrease can be seen for each method, compared to
the precision scores achieved by them on Dataset-1, inspite of that, method proposed obtains a
precision score of 0.751, and outperforms [10] by 3.9%.

6.3.2 Experiments on Document Images

To perform experiments on document images, Dataset-3 is used. This dataset consists of 15
different image portions. An image portion belonging to Dataset-3 is shown in Figure 6.1(a).
The number of Glagolitic characters in these image portions is 1055, which are divided into two
sets for the performance evaluation: (i) normal, and (ii) degraded. Normal set consists of 913
single Glagolitic character images similar to the ones in SETA and SETC, whereas the degraded
set consists of 142 character images similar to the ones in SETB, SETD, and Figure 6.1(a). To
recognize the Glagolitic characters in the image portions of Dataset-3, SETC is used as a training
set and for performance comparison Recall, Precision, and F-measure are computed, which are
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Table 6.3: Results achieved on Dataset-3 (15 image portions: totally 913 normal and 142 de-
graded Glagolitic characters).

Method Recall Precision F-measure
Normal Degraded Normal Degraded Normal Degraded

Diem et al. [10] 0.732 0.296 0.862 0.539 0.792 0.382
Proposed (DSIFT) 0.811 0.478 0.962 0.837 0.879 0.609

defined as follows [10]:

Recall =
TP

TP + FN
(6.5)

Precision =
TP

TP + FP
(6.6)

F-measure =
2×Recall × Precision
Recall + Precision

(6.7)

where TP represents True Positives (class labels that correspond with the ground truth), FP
stands for False Positives (correctly located values with false class labels), and FN denotes False
Negatives (ground truth values that are not detected by the system). The precision measure
represents the fraction of correctly classified characters in the retrieved characters, whereas recall
represents the ratio of retrieved characters to those present in the image portion. F-measure
represents a weighted average of precision and recall.

Table 6.3 shows the results achieved on Dataset-3. The experimental results show that
method proposed obtains recall of 0.811 and 0.478 on normal and degraded sets, which are 7.9%
and 18.2% higher than [10], respectively. Similarly, the precision scores of the method proposed
show 10.0% and 29.8% improvement over [10] on normal and degraded sets, respectively. These
results show that the method proposed is more robust to degradation and background noise in
the Missale Sinaiticum manuscripts than the SIFT based method of Diem et al. [10].

6.4 OCR Using Descriptors Proposed

This section presents the experimental results when descriptors proposed are used instead of
SIFT in the method proposed for the recognition of Glagolitic character. As discussed, the
Missale Sinaiticum manuscripts posses background noise, stain, and fading ink, which induce
intensity changes between the images of the training and test sets (Figure 6.7). Such intensity
changes affect the SIFT descriptor, as shown in Figure 6.8, where two images of the same
Glagolitic character are shown, but their SIFT descriptors look quite different, due to fading ink
and background noise. The elements of the SIFT descriptors are shown as line segments inside
4×4 location bins [65]. To overcome the effects of such intensity changes, descriptors proposed
(LBPG, LC-SIFT, DE- SIFT, NG-SIFT and MN-SIFT) are used instead of SIFT in the method
proposed to achieve a better recognition of Glagolitic characters.
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Figure 6.8: Two images of the same Glagolitic character are shown, where intensity changes
between the images can be seen, which affect the SIFT descriptor. The elements of the SIFT
descriptors are shown as line segments inside 4×4 location bins [65].

6.4.1 Experiments on Single Character Images

To evaluate the performance of descriptors proposed, first, experiments on single Glagolitic
character images are performed. Two datasets are used, which are: Dataset-1 and Dataset-
2 (refer to Table 6.1). DSIFT (i.e., the proposed method with SIFT descriptor) is used as a
reference to evaluate the performance of the descriptors proposed. The precision scores achieved
on these datasets are shown in Table 6.4. Note that, dense descriptor construction, as described
in Section 6.2.2, is used for the construction local descriptors including the descriptors proposed
to recognize the Glagolitic characters of Dataset-1 and Dataset-2.

The experimental results show that MN-SIFT demonstrates the best precision scores. It
obtains a precision score of 0.889 on Dataset-1 and outperforms all the other local descriptors.
It obtains 6.7% better precision scores than DSIFT. This shows its more robustness to intensity
changes than DSIFT. Similarly, NG-SIFT, LC-SIFT, and DE-SIFT also achieves 2.20%, 1.10%,
and 2.20% better precision scores than DSIFT, respectively. Only LBPG demonstrates 18%
lower precision score than DSIFT. This is due to the CS-LBP scheme, which is sensitive to
image noise and is used twice in the LBPG method [51]. Other local descriptors, like CS-LBP,
OR-SIFT, and GOM-SIFT, demonstrate lower precision scores than DSIFT.

Table 6.4 shows the precision scores achieved on Dataset-2. The results show lower preci-
sion scores for all the local descriptors compared to Dataset-1. Only MN-SIFT obtains the best
precision score of 0.801 on Dataset-2 and outperforms DSIFT by 5%. All other local descriptors
demonstrate lower precision scores than DSIFT.

6.4.2 Experiments on Document Images

To evaluate the performance of descriptors proposed on document images, Dataset-3 is used
(see Section 6.3.2) and the performance of the descriptors proposed is compared with that of
DSIFT. Dense descriptor construction, as described in Section 6.2.2, is used for all the local
descriptors to recognize the Glagolitic characters of Dataset-3. Table 6.5 shows the results. The
best performance by MN-SIFT can be seen; it obtains the best results on normal as well as de-
graded characters. LC-SIFT also demonstrate better performance than DSIFT. NG-SIFT and
DE-SIFT demonstrate better recall and f-measure scores than DSIFT only on degraded char-
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Table 6.4: Precision scores achieved on Dataset-1 and Dataset-2 when descriptors proposed are
used.

Method Dataset-1 Dataset-2
Diem et. al. [10] (SIFT) 0.789 0.712
DSIFT 0.822 0.751
Dense CS-LBP 0.789 0.731
Dense OR-SIFT 0.722 0.617
Dense GOM-SIFT 0.789 0.647
Dense SURF 0.744 0.647
Dense GLOH 0.567 0.493
Dense LBPG 0.633 0.483
Dense LC-SIFT 0.833 0.726
Dense DE-SIFT 0.844 0.741
Dense NG-SIFT 0.844 0.711
Dense MN-SIFT 0.889 0.801

Table 6.5: Results achieved on Dataset-3 (15 image portions: totally 913 normal and 142 de-
graded Glagolitic characters) when descriptors proposed are used.

Method Recall Precision F-measure
Normal Degraded Normal Degraded Normal Degraded

Diem et al. [10] (SIFT) 0.732 0.296 0.862 0.539 0.792 0.382
DSIFT 0.811 0.478 0.962 0.837 0.879 0.609
Dense CS-LBP 0.760 0.466 0.946 0.806 0.842 0.591
Dense OR-SIFT 0.833 0.432 0.954 0.805 0.890 0.562
Dense GOM-SIFT 0.829 0.429 0.942 0.719 0.882 0.537
Dense SURF 0.423 0.224 0.808 0.610 0.555 0.327
Dense GLOH 0.440 0.348 0.672 0.571 0.531 0.432
Dense LC-SIFT 0.879 0.634 0.962 0.857 0.919 0.729
Dense DE-SIFT 0.789 0.509 0.926 0.788 0.852 0.619
Dense LBPG 0.653 0.275 0.937 0.772 0.769 0.406
Dense NG-SIFT 0.804 0.503 0.949 0.810 0.870 0.621
Dense MN-SIFT 0.893 0.652 0.972 0.890 0.931 0.753

acters. However, LBPG gives lower results than DSIFT. The gradient orientation modification
based descriptors, i.e., GOM-SIFT [71] and OR-SIFT [68] also obtain better results than DSIFT.

6.5 Summary

In this chapter a new method for the recognition of Glagolitic characters were presented. It
is designed for highly degraded Missale Sinaiticum manuscripts. It is based on Dense SIFT
algorithm and uses nearest neighbor descriptor matching strategy to localize and recognize the
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Glagolitic characters. It is a simple and scalable method. It does not require feature learning as
a pre-processing step for the recognition of characters. It is also a binarization free method and
does not require the text line detection as pre-processing step to localize the characters in the
document images.

The experimental results show better performance of method proposed on single Glagolitic
character images than a SIFT based method, which has been used for Missale Sinaiticum. The
results show better performance on normal as well as degraded and faded out characters. The
results also show that the method proposed efficiently localizes and recognizes the Glagolitic
characters under background noise, stains, and fading ink.

The chapter also presented the results for Glagolitic character recognition when descriptors
proposed are used instead of Dense SIFT in the method proposed. The idea is to overcome
the effects of intensity changes, which occur between the images of the Missale Sinaiticum
manuscripts due to degradation. The experimental results show that LC-SIFT, DE-SIFT, NG-
SIFT and MN-SIFT obtain better performance, whereas LBPG demonstrate lower performance
than Dense SIFT.
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CHAPTER 7
Conclusion

In this thesis new local descriptors are proposed to overcome the effects of nonlinear inten-
sity changes in image-to-image and image-to-database matching tasks. The new descriptors are
based on novel image features, which are obtained by combining the strengths of image gradi-
ents, DE, LC, and LBP. These features are used in the SIFT like feature histogram schemes and
five new local descriptors are computed, which are: LBPG, LC-SIFT, DE-SIFT, NG-SIFT, and
MN-SIFT.

In the case of image-to-image matching, experiments on pairs of images are performed.
Homographies between the pairs of images are used as ground truth data to count the num-
ber of correct descriptor matches in order to compare the performance of new descriptors with
that of state-of-the-art local descriptors (SIFT, GLOH, CS-LBP, SURF, GOM-SIFT, OR-SIFT,
DAISY, and LIOP). In the case of image-to-database matching, a nearest neighbor based de-
scriptor matching strategy is used to obtain the recognition rates for two different recognition
tasks, which are: SCR and OCR. The experimental results show that the new descriptors obtain a
better performance than the state-of-the-art local descriptors in image-to-image matching, SCR,
and OCR.

In the case of image-to-image matching, four different multispectral image datasets (CAVE,
RWHI, RGB-NIR, and MSD) are used. All the experiments are performed under nonlinear inten-
sity changes, i.e., image matching between the pairs of different band images of the same scene.
The experimental results show that OR-SIFT and GOM-SIFT, which have been used against
nonlinear intensity changes, demonstrate lower performance than SIFT on CAVE, RHWI, and
RGB-NIR datasets. Their performances are comparable to SIFT only on MSD dataset. Both
OR-SIFT and GOM-SIFT are extended versions of SIFT and are based on gradient orienta-
tion modifications to overcome the effects of nonlinear intensity changes. The new descriptors,
which are based on gradient magnitude modification, demonstrate a better performance than
OR-SIFT, GOM-SIFT, and SIFT, on all the evaluated datasets.

This shows that the modifications of gradient magnitudes, which are proposed for the con-
struction of new local descriptors, are more robust to nonlinear intensity changes than gradient
orientation modifications. The experimental results show that CS-LBP, which has been used
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to overcome the effects of monotonic intensity changes, also demonstrates good performance
under nonlinear intensity changes. However LBPG, which is a gradient extension of CS-LBP,
demonstrates even better performance than CS-LBP on all the evaluated datasets.

LIOP demonstrates the worst performance in image-to-image matching. LIOP have been
used against monotonic intensity changes, but the experimental results show that it performs
worst on all the evaluated datasets due to nonlinear intensity changes. This shows that the in-
tensity based description vectors that LIOP computes are less suitable and less robust against
nonlinear intensity changes. GLOH, SURF, and DAISY in image-to-image matching perform
comparable to SIFT. But compared to the new descriptors, they demonstrate inferior perfor-
mance. NG-SIFT and MN-SIFT obtain the best results in image-to-image matching. They are
based on normalized image gradients, which shows that such gradients are more robust towards
nonlinear intensity changes than image gradients, CS-LBP features, and Haar wavelet responses,
which are used in the construction of SIFT, CS-LBP, and SURF descriptors, respectively.

Experiments in the case of SCR, are performed on a RGB–NIR scene dataset. All the ex-
periments are performed under nonlinear intensity changes by using images of different bands
for training and testing. The scene recognition rates are computed and the performance of the
new descriptors are compared with that of the state-of-the-art local descriptors. The experimen-
tal results show that LC-SIFT and MN-SIFT perform comparable to SIFT, GOM-SIFT, DAISY,
and GLOH, when Blue and NIR band images are used for testing and training, respectively.
However, NG-SIFT, DE-SIFT, and LBPG demonstrate lower scene recognition rates. The ex-
perimental results show that the performance of DE-SIFT and MN-SIFT is comparable to SIFT,
GOM-SIFT, and DAISY when testing and training are performed on Red and NIR band images,
respectively, whereas NG-SIFT, LC-SIFT, and LBPG demonstrate lower scene recognition rates.

MN-SIFT demonstrates the best SCR performance, whereas LIOP obtains the worst perfor-
mance. Compared to LIOP, all the gradient based descriptors, i.e., LC-SIFT, MN-SIFT, DE-
SIFT, SIFT, GLOH, GOM-SIFT, OR-SIFT, and DAISY obtain better performances. This shows
that the intensity based description vectors that LIOP computes, are less suitable for the scene
recognition task under nonlinear intensity changes. Additionally, the experimental results show
that all the local descriptors obtain better scene recognition rates when Red and NIR band im-
ages are used. This is mainly due to low nonlinear intensity changes between the images of Red
and NIR bands than Blue and NIR band images.

In the case of OCR, a gray scale image dataset of Missale Sinaiticum manuscripts is used.
This dataset consists of historical documents written in the 11th century in Glagolitic. But due
to parchment aging, fading ink, and environmental effects the documents are in degraded con-
ditions, which aggravates the recognition of Glagolitic characters. To deal with such problems,
a new method is proposed, which is based on Dense SIFT algorithm and uses a nearest neigh-
bor based descriptor matching strategy to localize and recognize the Glagolitic characters in the
documents. The method proposed is a simple and scalable method. It does not require feature
learning for character recognition. It is also a binarization free method and does not require text
line detection as a pre-processing step to localize the characters.

The experimental results show that the method proposed obtains a better Glagolitic character
recognition than the method proposed by Diem et al. [10], which has been used for solving the
similar problem. Consistent improvement in the performance is achieved on normal as well as
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degraded characters. The localization of the characters is shown under background noise, stains,
and fading ink. Even better performance is achieved when the new descriptors are used instead
of Dense SIFT in the method proposed. This is due to intensity changes (degradations) between
the images of the Missale Sinaiticum manuscripts, which affect the performance of Dense SIFT.
The experimental results show that LC-SIFT, DE-SIFT, NG-SIFT, and MN-SIFT demonstrate
better performance, whereas LBPG obtains a lower performance than Dense SIFT.

7.1 Summary of Contributions

The contributions of this thesis include,

• A performance evaluation of eight different state-of-the-art local descriptors (SIFT, CS-
LBP, SURF, GOM-SIFT, OR-SIFT, DAISY, and LIOP) under nonlinear intensity changes.

• Five new local descriptors (LBPG, LC-SIFT, DE-SIFT, NG-SIFT, and MN-SIFT) are pro-
posed in order to improve the performance of the local descriptors under nonlinear inten-
sity changes.

• LBPG features are proposed, which are based on image gradients and CS-LBP features in
order to construct descriptors robust to nonlinear intensity changes.

• Four different modifications to gradient magnitudes are proposed, i.e, LC, DE, NG, and
MN. These modifications boost the contribution of local edges in the SIFT method, and
result in new descriptors i.e, LC-SIFT, DE-SIFT, NG-SIFT, and MN-SIFT. These new
descriptors demonstrate better matching performance than gradient magnitudes, CS-LBP
features, and Haar wavelet responses, which are used in the construction of SIFT, CS-LBP,
and SURF descriptors, respectively.

• A simple SIFT like feature histogram scheme is proposed, which is used for the construc-
tion of NG-SIFT and MN-SIFT descriptors in order to achieve better performance against
nonlinear intensity changes.

• A new method for the recognition of Glagolitic characters is proposed.

7.2 Future Research

Three potential research topics that can be built upon the work presented in this thesis are de-
scribed in the following sections.

7.2.1 Feature Point Detection

The state-of-the-art feature point detectors, such as Harris Laplace and Hessian Laplace use
Harris and Hessian functions, respectively, for the detection of feature points. These functions
are based on image gradients, which are used in order to identify the image locations that have
large image gradients in all directions for the detection of feature points. This thesis shows that
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due to nonlinear intensity changes, the image gradients vary. It is necessary to investigate if the
proposed gradient modifications will make the Harris and Hessian functions invariant to such
nonlinear intensity changes. This will increase the repeatability of the feature points and also
result in better correspondences between the feature points under nonlinear intensity changes.

7.2.2 Image Registration

Multispectral imaging provides higher spectral resolution than typical RGB imaging. It captures
images in discrete wavelength bands. But due to scene motion, such imaging induces mis-
alignment between different band images of the same scene. To deal with this problem, image
registration has been used. The performance of the methods used for image registration depends
on local descriptors, which are used to establish the feature point correspondences, in order
to estimate the unknown homographies between the pairs of misaligned images. This thesis
shows that if wavelength differences between the wavelength band images are small, low non-
linear intensity changes occur and the new descriptors perform comparable to the state-of-the-art
local descriptors. But under high wavelength differences, the new descriptors demonstrate bet-
ter performance than the state-of-the-art local descriptors. Further investigation is required for
multi-modal images, which posses even higher nonlinear intensity changes and make the image
matching and image registration more challenging and difficult based on local descriptors.

7.2.3 Document Image Analysis

This thesis presents a new method for the recognition of isolated ancient characters. It is an im-
age binarization free method, does not require text line detection and bounding box fitting around
the characters for recognition. It shows promising results under intensity changes, background
noise, fading ink, stain, and folding marks. This method needs to be tested for the recognition
of Latin, Greek, Arabic, and Bangla characters in printed as well as handwritten documents. A
performance investigation of this method for word spotting and the localization of text in videos,
are also required.
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APPENDIX A
List of Symbols

Fh Image gradient in horizontal direction
Fv Image gradient in vertical direction
Ω Gradient Magnitude
β Gradient Orientation
Ω̂ Normalized Gradient Magnitude
β̂ Normalized Gradient Orientation
Ω̄ Modified Normalized Gradient Magnitude
φ Restricted Gradient Orientation
> Vector transpose
dx Haar wavelet response in horizontal direction
dy Haar wavelet response in vertical direction∑

Vector sum
Σ Standard deviation of a 2D Gaussian kernel
ε Overlap error
υ Infinitely small positive number
(x, y) Pixel index (cartesian coordinate)
Na Number of correspondences
Nc Number of correct matches
Nf Number of false matches
% Percentage
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APPENDIX B
Definition of Terms

SIFT Scale Invariant Feature Transform
GLOH Gradient Location Orientation Histogram
SURF Speeded Up Robust Features
LBP Local Binary Patterns
CS-LBP Center Symmetric-Local Binary Patterns
DAISY Dense local image descriptor
LIOP Local Intensity Order Pattern
GOM-SIFT Gradient Orientation Modification - SIFT
OR-SIFT Orientation Restricted - SIFT
LBPG Local Binary Pattern of Gradients
LC-SIFT Local Contrast - SIFT
DE-SIFT Differential Excitation - SIFT
NG-SIFT Normalized Gradient-SIFT
MN-SIFT Modified Normalized gradient-SIFT
DSIFT Dense SIFT
CAVE Multispectral Image Dataset
RHWI Real-World Hyperspectral Image Dataset
MSD Multi-modal Stereo Dataset
RGB-NIR Red-Green-Blue and Near Infra-Red bands
VS-LWIR Visible Spectrum and Long Wave Infra-Red bands
AUC Area under a Precision–Recall Curve
HarLap Harris Laplace
PCA Principle Component Analysis
nm Nanometer (unit of wavelength)
SCR Scene Category Recognition
OCR Optical Character Recognition
NNDM Nearest Neighbor Distance Map
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