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Abstract

The view on the neural control of human locomotion has undergone
changes in the past decades. In spite of the encephalization and the
erect, bipedal mode of walking characteristic for human beings, inde-
pendent observations imply that unperturbed locomotor patterns can be
generated by similar spinal neural circuits as in other vertebrates. How-
ever, little is known about the organization of these rhythm and pattern
generating networks in humans.

It has been shown that the human lumbar spinal cord isolated from
supraspinal control due to traumatic spinal cord injury (SCI) can gen-
erate rhythmic, locomotor-like activity in response to sustained epidural
spinal cord stimulation (SCS) of certain frequencies. The rhythmic ac-
tivities consist of a series of stimulus time-related and rhythmically mod-
ulated posterior-root muscle (PRM) reflexes, each initiated in posterior
root afferents and electromyographically recorded as compound muscle
action potentials (CMAPs). The relation between individual stimuli and
responses, as well as their electromyographic (EMG) characteristics, al-
low for the identification of mechanisms in addition to the information
gained from the overall EMG patterns.

This thesis aims at uncovering the locomotor capabilities and their
underlying mechanisms intrinsic to the human lumbar spinal cord. In
the first part, rhythmic EMG data in response to SCS were analyzed,
both, regarding overall patterns and the constituent units. Based on the
information gained, in the second part, computer models were formulated
to test hypotheses, to learn about their implications to primary and
secondary phenomena and to generate research questions.

EMG activities of quadriceps, hamstrings, tibialis anterior and tri-
ceps surae, bilaterally in response to epidural stimulation at ≤ 42 Hz
were analyzed in 10 individuals with motor complete posttraumatic SCI.
Thirty-nine segments (duration: 10 s) of rhythmic activities found in all
four-muscle groups of one lower limb were identified in 7 subjects. Phases
of bursting and suppressed activities were recognized. Latencies of PRM
reflexes were calculated.

A computational network model of neurons with Hodgkin-Huxley-
like membrane dynamics was developed to test whether hypothesized
rhythm and pattern generating networks would reproduce the recorded
data. A core rhythm-generating network model was extended by adding
conduction delays, presynaptic inhibition and disinhibition of parallel
central pathways.

Within a given 10-s segment, rhythmic activities of all muscle groups
had a constant phase relation. Dimensionality reduction by non-negative
matrix factorization revealed that all expressed activity patterns of indi-
vidual muscle groups can be best reproduced by a linear combination of 3
to 4 basic patterns, while two basic patterns that are similar to those seen
in fictive locomotion (co- and reciprocal activity) already explain 83.2%
of the variance. PRM reflexes constituting bursts during the extension
phases had predominantly monosynaptic latencies. During flexion phase,
a suppression of these responses was often observed. In such cases these
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monosynaptic reflexes were replaced by delayed, oligosynaptic PRM re-
flexes.

Computer simulation showed that the activation of the rhythm and
pattern generating circuits with persistent sodium channels as the source
for rhythm generation is frequency dependent and this frequency de-
pendence matches the electrophysiological data beyond the hypotheses.
Stimulus time-locked motoneuron firing (resulting in the PRM reflexes)
was explained by the interplay of relatively strong and highly synchro-
nized afferent input and the relatively diffuse and weaker influence of the
interneurons. This afferent influence of the motoneurons was presynapti-
cally, rhythmically gated and postsynaptically modulated by excitatory
input from the pattern formation and inhibitory input from last-order
interneurons. Together with the selection of alternative interneuronal
pathways (within the flexor side) the model reliably reproduced electro-
physiological findings.

The electrophysiological data, as well as the computer simulations,
give insight into the organization of the human spinal rhythm and pat-
tern generating networks and reveal common control characteristics with
the central pattern generators for locomotion described in animal exper-
imental work. The constant phase relation of rhythmic outputs to one
lower limb suggests a common, plurisegmental rhythm generator, and
the various EMG patterns indicate separate stereotypic pattern forma-
tion modules. These neural circuitries possess many of the necessary
components to generate functional locomotion. Yet, there is a lack of co-
ordination in and between the muscles. Such coordination may require
inputs from supraspinal centers, as well as feedback from the periphery.
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Kurzfassung

Die Sicht auf die neuronale Kontrolle der menschlichen Fortbewegung
hat sich im Laufe der letzten Dekaden stark gewandelt. Trotz der Enze-
phalization und dem aufrechten, zweifüßigen Gang haben unabhängige
Beobachtungen gezeigt, dass Bewegungsmuster der Beine von Nerven-
schaltkreisen im Rückenmark – ähnlich denen anderer Wirbeltiere – er-
zeugt werden können. Es ist jedoch wenig über die Organisation der
Netzwerke zur Rhythmus- und Mustererzeugung im Menschen bekannt.

Es wurde gezeigt, dass das lumbale Rückenmark des Menschen – in
Isolation von supraspinalen Einflüssen in Folge einer Rückenmarksverlet-
zung – auf Stimulation mit einer epidural platzierten Elektrode mit der
Generierung von Bewegungsmustern reagieren kann, die der menschli-
chen Fortbewegung ähneln. Die entsprechenden rhythmischen elektro-
myographischen (EMG) Aktivitäten bestehen aus einzelnen stimulati-
onskorrelierten ‘posterior root-muscle’ (PRM) Reflexen, die rhythmisch
moduliert sind. Die Reflexe werden in den Hinterwurzeln initiiert und von
den Muskeln elektromyographisch aufgezeichnet. Der eindeutige Zusam-
menhang zwischen einzelnen Stimulationsimpulsen und den jeweiligen
Muskelantworten erlaubt – zusätzlich zur Analyse der allgemeinen Mus-
ter – einen detaillierten Einblick in das dynamisch modifizierte Netzwerk
im Rückenmark.

Das Ziel dieser Arbeit ist es, die Eigenschaften und zugrundeliegende
Mechanismen jener neuronalen Rhythmus- und Mustergeneratoren im
menschlichen Lumbalmark zu untersuchen, die der Fortbewegung die-
nen. Im ersten Teil werden rhythmische, durch Rückenmarkstimulation
initiierte EMG Aktivitäten analysiert. Die Analyse umfasst sowohl all-
gemein die EMG Muster als auch die einzelnen Komponenten (die PRM
Reflexe). Basierend auf dieser Analyse werden im zweiten Teil der Ar-
beit Computermodelle formuliert, um Hypothesen zu testen, den Einfluss
von Annahmen auf primäre und sekundäre Phänomene zu verstehen und
neue Fragestellungen zu finden.

Bei 10 Probanden mit motorisch kompletter Querschnittslähmung
wurden EMG Aktivitäten der Ober- und Unterschenkelmuskulatur bei-
der Beine bei epiduraler Rückenmarkstimulation mit Stimulationsfre-
quenzen ≤ 42 Hz analysiert. Für die weitere Analyse wurden 10 Sekun-
den lange Abschnitte in den EMG Aufzeichnungen ausgewählt, in denen
rhythmische Aktivitäten in allen 4 abgeleiteten Muskelgruppen eines Bei-
nes auftraten. Insgesamt konnten 39 solcher Beispiele in 7 der 10 Pro-
banden identifiziert werden. Die Relation der rhythmischen Aktivitäten
der verschiedenen Muskelgruppen untereinander wurde festgestellt, und
Latenzzeiten der PRM Reflexe wurden berechnet.

Ein Netzwerkmodell von Neuronen mit Hodgkin-Huxley-ähnlichen
Membraneigenschaften wurde entwickelt, um zu testen, ob die angenom-
menen rhythmus- und mustererzeugenden Netzwerke elektrophysiologi-
sche Daten reproduzieren können. Ein rhythmuserzeugendes ‘half-center’
Modell wurde mit Signallaufzeiten, präsynaptischer Inhibition und Dis-
inhibition von parallelen, zentralen Pfaden erweitert.

In jedem der identifizierten 10 Sekunden Abschnitte hatten die rhyth-
mischen Aktivitäten aller Muskelgruppen eine konstante Phasenrelation.
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Die Dimensionsreduktion mittels nicht-negativer Matrix-Faktorisierung
zeigte, dass die EMGMuster aller Muskelgruppen mit einer Linearkombi-
nation von 3 bis 4 Grundmustern optimal reproduziert werden können.
Zwei Faktoren – ähnlich zur fiktiven Lokomotion in Tierexperimenten
(sinusoid und reziprok zueinander) – beschreiben bereits 83.2% der Va-
rianz. Die PRM Reflexe in der Extensionsphase hatten hauptsächlich
monosynaptische Latenzzeiten, während in der Flexionsphase oft eine
Suppression der monosynaptischen Reflexkomponente bei gleichzeitiger
Entstehung oligosynaptischer PRM Reflexe beobachtet wurde.

Die Computersimulation zeigte, dass die Aktivierung von rhythmus-
und mustergenerierenden Netzwerken, die auf einem anhaltenden, lang-
sam sich selbst inaktivierenden Natriumstrom basieren, frequenzabhäng-
ig ist und dass diese Frequenzabhängigkeit mit den elektrophysiologi-
schen Beobachtungen übereinstimmt.

Der eindeutige Zusammenhang von Stimulationspuls und EMG Ant-
wort wurde durch das Zusammenspiel von relativ starker, hochsynchro-
ner Aktivierung der Hinterstränge nahe der Motoneurone mit diffusem
und relativ schwachem Einfluss der Interneurone am Motoneuron erklärt.
Der afferente Einfluss auf die Motoneurone wurde präsynaptisch rhyth-
misch inhibiert und postsynaptisch von exzitatorischem Input von Inter-
neuronen des mustererzeugenden Netzwerks und inhibitorischem Input
von Ia Interneuronen und Renshaw Zellen moduliert. Zusammen mit der
Selektion von alternativen zentralen Pfaden innerhalb des ‘Flexor-half-
centers’ konnte das Modell verlässlich elektrophysiologische Phänomene
nachvollziehen.

Die elektrophysiologischen Daten und das darauf aufbauende Com-
putermodell gewähren Einblicke in die Organisation der rhythmus- und
mustererzeugenden Netzwerke des menschlichen Rückenmarks. Gemein-
samkeiten mit den Mechanismen der zentralen Mustergeneratoren (‘cen-
tral pattern generators’), die aus Tierversuchen bekannt sind, konnten
nachgewiesen werden. Die konstante Phasenbeziehung der rhythmischen
Aktivitäten in einem Bein legt einen gemeinsamen, multisegmentalen
Rhythmusgenerator nahe. Die unterschiedlichen EMG Muster sind ein
Indikator für separate Mustergeneratoren. Es wurde gezeigt, dass diese
neuralen Schaltkreise eine Vielzahl der notwendigen Komponenten be-
sitzen, um funktionelle Fortbewegungsmuster zu erzeugen. Jedoch fehlt
deren adäquate Koordination in und zwischen den einzelnen Muskeln.
Eine derartige Koordination kann sowohl von Inputs von supraspinalen
Zentren als auch von peripherem Feedback abhängen.
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Chapter One

Introduction

The capability of the lumbar spinal cord to produce rhythmic motor out-
puts in the absence of supraspinal control has been demonstrated across fish
and mammals, including humans (Brown, 1914; Grillner, 1981, 1985, 2011).
In quadrupedal mammals, central rhythm and pattern generators have been
demonstrated within the lumbar spinal cord segments for hindlimb control,
which can produce alternating activity to groups of flexors and extensors in
absence of (patterned) signals from descending and movement related afferent
sources (Pearson & Gordon, 2000; Grillner, 2006). The human lumbar spinal
cord networks can be activated by different types of externally generated in-
puts to produce rhythmic motor outputs to the paralyzed lower limbs. Pat-
terned sensory feedback generated by the mechanical events during imposed,
passive stepping movements on a treadmill can evoke rhythmic electromyo-
graphic (EMG) activities in the paralyzed lower limbs (Wernig & S. Müller,
1992; V. Dietz, Colombo, Jensen, & Baumgartner, 1995; Dobkin, Harkema,
Requejo, & Edgerton, 1995; Harkema et al., 1997). Non-patterned sustained
drive provided by continuous electrical stimulation over the lumbar spinal
cord in supine, motor complete spinal cord injured (SCI) individuals at a fre-
quency within the range of 25 Hz–60 Hz can generate rhythmic EMG activi-
ties in the lower limbs without manual manipulations of the legs (Dimitrijevic,
Gerasimenko, & Pinter, 1998b; Gerasimenko, Daniel, Regnaux, Combeaud, &
Bussel, 2001; Minassian, Jilge, et al., 2004).

The present study bases on these previous findings that the human lumbar
cord can generate a variety of motor outputs, including rhythmic, locomotor-
like patterns in response to sustained non-patterned input. A systematic ex-
amination of the intrinsic capabilities of the human lumbar spinal cord to
process neural input signals with a predominant tonic character to produce
rhythmic and patterned efferent activity is presented. The focus lies on the
features and varieties of the rhythmic activities that can be produced by the
human lumbar spinal cord in the absence of supraspinal control due to SCI
and reduced sensory feedback input in the supine position. The analysis was
not restricted to locomotor-like patterns, i.e. patterns of reciprocal activation
of flexors and extensors. The main interest was to identify common principles
of rhythm and pattern generation underlying the variety of motor outputs
generated.

The lumbar spinal cord was isolated from supraspinal, volitional motor

3



1. Introduction

control due to traumatic spinal cord injury. The supine position of the subjects
limited (axial) lower limb loading and hip extension and thus the influence of
sensory feedback thought to be essentially contributing to rhythm-generation
(V. Dietz, R. Müller, & Colombo, 2002). A tonic, driving input to lumbar and
upper sacral segments of the spinal cord is provided by continuous epidural
SCS at a fixed frequency. Whereas the site of activation is through sensory
afferents of posterior roots (Rattay, Minassian, & Dimitrijevic, 2000; Minas-
sian, Persy, Rattay, Pinter, et al., 2007), the sustained, tonic nature of the
neural input signals to the spinal cord is thought to be similar to that of the
(missing) non-patterned components of brainstem descending excitatory drive
(Dimitrijevic et al., 1998b).

Specifically, EMG activities of quadriceps, hamstrings, tibialis anterior and
triceps surae in response to epidural stimulation at < 42.5 Hz in 10 individu-
als with motor complete posttraumatic SCI were analyzed. A semi-automatic
search for 10-second segments of stable rhythmic activities produced in all
four studied unilateral limb muscles with a cycle frequency between 0.2 and
3 Hz was performed, without restriction of the specific patterns produced.
By applying a decomposition technique, I sought to identify basic compo-
nents of the patterns underlying the rhythmic activities. The EMG activities
recorded from the lower limb muscles further consist of individual compound
muscle action potentials (CMAPs) time-related to each stimulus, i.e. series of
posterior root-muscle reflexes, which are rhythmically modulated (Minassian,
Jilge, et al., 2004). In the second step of the analysis, I examined in detail the
EMG characteristics of the responses to each pulse of repetitive stimulation
during the 10-second segments of stable rhythmic activities. The EMG activ-
ity in response to pulsed posterior root stimulation is comprised of stimulus
time-locked CMAPs, which have been identified as reflexes and termed after
their initiation and recording sites—posterior root muscle (PRM) reflexes. In
the case when rhythmic EMG activities were generated the reflex pathways
were modified, resulting in modulation of CMAP amplitude, morphology and
latency. This modulation gives insight into the spinal circuitries involved.
Prolonged CMAP latencies were previously reported to exist in tibialis ante-
rior during flexion phase (Minassian, Jilge, et al., 2004). Here, the change of
latencies are systematically investigated throughout different phases of rhyth-
micity in functionally different muscle groups. The rational was to find out
whether there are systematic modifications of the individual EMG responses
that are correlated to distinct phases of rhythmicity. The analysis was per-
formed with the aim of formulating a model of the underlying neural circuits
that can reproduce, both the overall patterns and their constituent units, the
synchronous motoneuron firing.
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Chapter Two

Methods

2.1 Subjects

Ten subjects (mean age 28.2 ± 11.8 years; 3 females) with post-traumatic,
clinically motor complete SCI were studied (table 2.1). The participants were
otherwise healthy adults with closed spinal cord lesions in a chronic (4.2 ±
3.6 years post-onset) and stable condition. All subjects had preserved stretch
and cutaneomuscular reflexes of the lower limbs. Neurologic status was eval-
uated according to the American Spinal Injury Association (ASIA) standard
neurological classification and the ASIA Impairment Scale (AIS; table 2.1).
Seven subjects were classified as AIS A, and three as AIS B. Additionally,
a surface EMG-based neurophysiological method was applied for the iden-
tification of sub-clinical, translesional activation of motor units (Sherwood,
McKay, & Dimitrijevic, 1996). Here, two markers for the presence of such
residual, supraspinal influence were used, first, the ability to induce task-
related traces of EMG activity by the attempt of isolated ankle dorsi- and
plantar-flexion (even in the absence of muscle contractions), and secondly,
the ability to diffusely activate muscles below the lesion in response to rein-
forcement maneuvers, including forceful neck flexion against resistance and
the Jendrassik maneuver (table 2.2). None of the subjects produced EMG
activities in the lower limb muscles by the volitional attempt of performing
left and right ankle movements (vlak, vrak). Six subjects generated EMG ac-
tivity in the lower limb muscles in responses to reinforcement maneuvers and
were thus classified as having a discomplete SCI (a lesion which is clinically
complete but which is accompanied by neurophysiological evidence of resid-
ual supraspinal influence on spinal cord function below the lesion; Sherwood,
McKay, & Dimitrijevic, 1996). The maximum number of recruited muscle
groups (adductors, quadriceps (Q), hamstrings (Ham), tibialis anterior (TA),
triceps surae (TS) bilaterally) in response to various types of reinforcement
maneuvers is given in table 2.2. Subject 6 did not demonstrate translesional
EMG generation during this neurophysiological evaluation, but had the ability
to voluntarily enhance SCS-induced rhythmic activity and thus retained some
preservation of distal brain influence. The remaining three subjects (subjects
1, 4, 8) showed neither clinical or subclinical signs of suprasegmental influence
upon the lower limb muscles. All subjects had SCS systems implanted for the
control of spinal spasticity affecting the lower limbs (Pinter, Gerstenbrand, &

5



2. Methods

Dimitrijevic, 2000). SCS system implantation and stimulation protocols were
approved by the local ethics committee. All subjects signed written informed
consent to participate.

2.2 Stimulation and recording

The stimulation system consisted of a cylindrically-shaped percutaneous lead
(Pisces-Quad electrode, Model 3487A, Medtronic Inc, Minneapolis, MN, USA)
connected to an implanted pulse generator (Itrel 3, Model 7425, Medtronic).
The lead had four independent contacts, each 1.27 mm in diameter and 3
mm long, with an inter-contact spacing of 6 mm. For their identification,
the contacts were labeled as 0 to 3, 0 being the most rostral one. The lead
was located in the dorso-medial epidural space, i.e. inside the vertebral canal
but outside of the meninges covering the spinal cord. Rostro-caudal positions
of the 4 epidural contacts ranged from vertebral levels T11–L1 (see table
2.3). Stimulation was thus applied to the posterior aspect of the lumbosacral
spinal cord from a close distance, approximately 1.5 mm–4.5 mm for electrodes
at T12-vertebral levels in supine individuals (Holsheimer, den Boer, Struijk,
& Rozeboom, 1994). The pulse generator, located subcutaneously in the
abdominal wall, delivered quasi-monophasic, charge balanced stimuli. The
pulse shape was approximately a rectangular pulse set at a width of 210 µs
that was followed by a long second phase of small amplitude which prevented
charge accumulation, but was irrelevant for the stimulation process. Stimulus
intensities of up to 10.5 V, and frequencies of 2.1 Hz–130 Hz at steps given
by the pulse generator were programmable. Each lead contact could be set
as cathodes, anodes or inactive, allowing for various bipolar or multi-polar
stimulation modes. Monopolar stimulation was applied with one of the lead
contacts selected as cathode and the active area of the pulse generator case
as anode.
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2.2. Stimulation and recording
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2. Methods

Table 2.2: Neurophysiological evaluation of translesional EMG generation

Number of activated
muscles (max = 10)

Subject Vlak Vrak Reinforce-
ment

1 0 0 0
2 0 0 10
3 0 0 10
4 0 0 0
5 0 0 10
6 0 0 0
7 0 0 4
8 0 0 0
9 0 0 5
10 0 0 7

Vlak, vrak, volitional attempt of left

and right ankle movements, respectively.

2.2.1 Stimulation protocol

The study protocol was conducted for assessment of the SCS effect on the
excitability of spinal motoneurons associated with the lower limbs (Pinter
et al., 2000). Subjects assumed a comfortable supine position. For a given
selection of active electrodes, stimulation was initially applied at 2.1 Hz, and
the stimulus intensity was increased in 1-V increments until muscle twitch
responses (Murg, Binder, & Dimitrijevic, 2000) were detected in all lower
limb muscles studied. At this stimulus intensity, the stimulation frequency
was gradually increased up to 100 Hz, with steps given by the pulse generator.
Frequency variation from 2.1 Hz to 100 Hz was repeated for graded stimulus
intensities up to a maximum of 10 V.

2.3 Data analysis

2.3.1 Data selection

Data segments of rhythmic activities with 10-s duration were selected semi-
automatically from the data pool. Both lower limbs were treated indepen-
dently, rhythmic activity had to be constantly present in all four ipsilateral
muscle groups. The maximum stimulation frequency that allows analysis
based on individual CMAPs is ≈40 Hz, thus higher frequencies were excluded

8



2.3. Data analysis

Table 2.3: Electrode array position

Vertebral position (X ray) Muscle twitch thresholds
for 0+3- configuration

Subject Electr. 0 Electr. 3 RQ RTS LQ LTS

1 middle T12 middle L1 6 6 6 10
2 upper L1 L1/L2 disc 2 4 3 6
3 upper T11 T11/T12 disc 4 8 3 7
4 lower T11 lower T12 2 4 2 4
5 T11/T12 disc upper L1 2 3 3 3
6 middle T11 upper T12 3 4 4 4
7 T11/T12 disc T12/L1 disc 3 3 3 4
8 upper T12 upper L1 2 2 3 3
9 lower T12 middle L1 1 1 2 1
10 lower T12 lower L1 5 5 3 5

Electr., electrode, RQ, LQ, right and left quadriceps, RTS, LTS, right and

left triceps surae.

(maximal included frequency was 41.8 Hz). All possible 10-s data segments
containing a unique set of consecutive CMAPs were extracted from all data
segments with constant stimulation conditions (i.e. frequency, intensity and
electrode configuration) and ranked for every recording session. The ranking
parameter r was calculated for both lower limbs independently as follows:

r =
4

i=1

max fi (2.1)

where i is the index of the muscle group and f is the frequency spectrum
between 0.2 Hz and 3 Hz as calculated by a Fast Fourier transform based on the
peak-to-peak amplitudes of the CMAPs. Afterwards all 10-s windows of one
recording session were sorted in descending order of r, sighted by the author
and visually confirmed. Samples for further analysis were selected based on
the value r with the constraint that only one example with the same pattern
of co-activation and reciprocity between the muscle groups was selected from
a recording segment where the stimulation conditions were constant.

2.3.2 Analysis of the overall rhythm pattern

For all samples of rhythmic activities an envelope was calculated (the process
of calculating the rhythm cycles and phases is summarized in figure 2.1). This
envelope was created by lowpass filtering the series of peak-to-peak amplitudes
of the constituent CMAPs. For filtering a zero-phase Equiripple filter with
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2. Methods

Figure 2.1: Identification and definition of rhythm cycles, and extension and
flexion phases. A. A trace of electromyographic (EMG) activity of the tibialis
anterior (TA). Note that the rhythm cycle as well as the extension and flexion
phases are defined for all muscle groups based on the TA activity. B. The
peak-to-peak amplitudes of the compound muscle action potentials, compris-
ing the EMG activity, were calculated in the next step (black line). C. The
signal of the peak-to-peak amplitudes were lowpass filtered with a zero-phase
Equiripple filter. D. Bursting and silent phases were defined depending on
the half-maximum of the individual peaks of the lowpass filtered signal of
the peak-to-peak amplitudes. The extension phase was defined as the phase
between two consecutive half-maxima with lower activity than the two neigh-
boring phases, which were defined as the flexion phase. Thus, the flexion
phase was the phase where TA is bursting and the extension phase when TA
is in a silent period or exhibits relative to the flexion phase a low amplitude
EMG activity.

following parameters was applied: Fpass = 0.125, Fstop = 0.167 in normalized
frequency units and Apass = 2, Astop = 5 in dB. Peaks and valleys of the
filtered data of TA were identified and the onset of the burst or active phase
tTA−act−start was defined as the time between a valley and the following peak
when the value of the filtered data exceeds 50% of their relative difference.
Similarly, the end of the burst or active phase tTA−act−end was defined as
the time between a peak and valley were the filtered value deceeds 50% of
their relative difference. A rhythm cycle was defined as the time between two
successive tTA−act−end.

In order to identify underlying primitives of the rhythmic activities sur-

10



2.3. Data analysis
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Figure 2.2: Processing of the rhythm cycles of a recording for the non-negative
matrix factorization (NMF). A. All (here three) filtered envelopes of the elec-
tromyographic activity of individual rhythm cycles in one muscle group of
one sample. These data form the basis for the further calculation. B. The
duration of the rhythm cycles was normalized. C. The phase duration of the
extension and flexion phases, respectively, were normalized. D. Finally the
individual signals were averaged and normalized. This signal forms the basis
for the NMF calculation.

passing all muscle groups a non-negative matrix factorization (NMF; D. D. Lee
& Seung, 1999) was applied (cf. Dominici et al., 2011). The filtered data of all
four ipsilateral muscle groups was split into rhythm cycles, interpolated to 200
samples per cycle, so that the phases between tTA−act−end and tTA−act−start

as well as between tTA−act−start and tTA−act−end both account for 100 data
points and averaged for every muscle group and data sample.

Thus resulting in 4 averaged rhythm cycles per data sample. All rhythm
cycles were normalized to their maximum amplitude. These data were assem-
bled into a matrix X, where a column is an observation (i.e. averaged gait
cycle), is the input for the NMF (see figure 2.2).
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2. Methods

NMF is a method were X is factorized into two matrices, W and H:

NMF(X, k) → WH (2.2)

so that

X = WH (2.3)

where X is an n-by-m, W an n-by-k and H a k-by-m matrix; k is the num-
ber/index of basic activation patterns, m is the number of EMG profiles, n
are the 200 data points (time samples) of each EMG profiles over the rhythm
cycle.

All matrices are strictly non-negative. Since there is generally no exact
solution to equation 2.3 the problem has to be formalized as

X = WH + U (2.4)

U → min (2.5)

where U is the residual and is minimized. Here an NMF algorithm is applied
that minimizes the function

F (W,H) = ∥X −WH∥2F (2.6)

where the norm is calculated as the Frobenius norm

∥A∥F =

 m
i=1

n
j=1

|aij |2. (2.7)

For the purpose of interpretation,W will represent k primitives that multiplied
with their respective loadings inH will best reproduce the dataX with respect
to the optimization criterion.

Several models with different values for k were calculated (k=1–8). In
order to assess how well one model describes the data, two values were cal-
culated, the coefficient of determination (R2) and the Akaike Information
Criterion (AIC; Akaike, 1974). The R2 is simply calculated as the relation
between the explained variance of the model and the total variance and can
be written as a function of the total (SST ) and the residual sum of squares
(SSR)

R2 = 1− SSR

SST
(2.8)

since

SSR + SSM = SST (2.9)
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2.3. Data analysis

where SSM is the sum of squares explained by the model. The three sums of
squares are defined as follows:

SST =

i

(xi − x̄)2 (2.10)

SSM =

i

(fi − x̄)2 (2.11)

SSR =

i

(xi − fi)
2 (2.12)

where f are the values predicted by the model and x the values of the real data.
In the present case the averaged rhythmic cycles can be interpreted as data
points in a 200-dimensional space, while the sum of squares are derived from
the euclidian distance between two points. Thus, the minus in the equations
above have to be seen as operator for the euclidian distance. This geometric
interpretation is also fulfilled by the optimisation criterion (eqn. 2.6). Let

U = X −WH (2.13)

be the difference between the data and the reproduced data of the model.
Then

∥U∥F =

 m
i=1

n
j=1

|rij |2 (2.14)

=

 m
j=1

n
i=1

|rij |2 (2.15)

=

 m
j=1

 n
i=1

|rij |2
2

(2.16)

and under assumption that all elements of U are real

∥U∥F =

 m
j=1

 n
i=1

r2ij

2

(2.17)

and since  n
i=1

r2i,j=c (2.18)

is the euclidian distance between the the c-th column of X and WH, and

ui,j = xi,j − (WH)i,j (2.19)
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2. Methods

the NMF can be also be interpreted as minimizing the sum of squares of the
euclidian distance, or more accurately its square root, of the real data X and
the data reproduced by the factorization into W and H.

This leads to the second criterion for the goodness of fit of the proposed
NMF models, the AIC. The AIC is a criterion rooted in information theory
and represents an estimate of the relative information loss by representing the
reality with a given model (Burnham & Anderson, 2002). The AIC is defined
by

AIC = 2K − 2ln(L(θ̂)) (2.20)

where K is the number of parameters in the statistical model and L(θ̂) is
the maximized value of the likelihood function and θ̂ is the vector of param-
eters that maximizes the function with respect to the model the data. The
maximum of the likelihood function for least-square approaches is

L(θ̂) =


1√
2πσ̂

n
e−

1
2
n, (2.21)

or

ln(L(θ̂)) = −1

2
n ln(σ̂2)− n

2
ln(2π)− n

2
(2.22)

where σ̂2 is the maximum likelihood estimator,

σ̂2 = SSR/n, (2.23)

and n the sample size. Additive constants are often discarded since they do
not influence likelihood based inference, thus for all standard linear models
equation 2.22 can be simplified to

ln(L) ≈ −1

2
n ln(σ̂2). (2.24)

For small values of K the second order information criterion or AIC with
correction (AICc) was proposed (Hurvich & Tsai, 1989).

AICc = AIC +
2K(K + 1)

n−K − 1
. (2.25)

The AICc should be always used unless the sample size is large with respect
to the number of estimated parameters (Burnham & Anderson, 2002). A
single value of the AIC (or AICc; note that from now on both values can
be used interchangeably) has little meaning, but it is helpful for comparing
several a priori specified models. The model with the lowest AIC value can
be interpreted as the best one of the proposed models according to the data.
Note that if all models are poor the AIC criterion only helps to identify the
best of the poor models, it does not offer any information on the overall,
objective quality of the model. There are two generally accepted measures
based on the AIC for comparing several models, the ∆AIC and the Akaike
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2.3. Data analysis

weights (wi). The ∆AIC is simply the difference between the AIC of a model
and the minimum AIC of all investigated models or for the i-th model

∆AICi = AICi −minAIC. (2.26)

As a rule of thumb values of ∆AIC smaller than 2 indicate substantial evidence
for the model and values higher than 10 suggest that the model is very unlikely
to be the true model. Alternatively, the Akaike weight wi is a measure of how
likely a given model is the best of all models. In other words, wi is the weight
of evidence in favor of model i being the actual best model (according to the
K-L distance) of all investigated models (Burnham & Anderson, 2002). The
Akaike weight is defined as:

wi =
e−

1
2
∆AICiN

r=1 e
− 1

2
∆AICr

, (2.27)

where N is the number of models.
Here, both criteria, the AICc and the R2, were calculated for the 8 different

NMF models with k, the number of primitives, ranging from 1 to 8. The
Akaike weight was used to choose the best model and the R2 was used in
addition to describe the fit, according to the explained variance, of all models.

Furthermore, all rhythmic samples were categorized based on the co- and
reciprocal activity between tibialis anterior and any other muscle group. There-
fore the lowpass filtered signals were correlated and the categorization was
based on the sign of the correlation (if significant). In case any correlation
was not significant the pattern was called -1, 1 if all muscle groups were cor-
related positively with tibialis anterior, 2 if quadriceps and hamstrings were
correlated positively and triceps surae negatively with tibialis anterior, 3 if
all muscle groups except hamstrings were correlated positively with tibialis
anterior, 4 if only quadriceps was correlated positively with tibialis anterior,
5 if only quadriceps was correlated negatively with tibialis anterior, 6 if only
hamstrings was correlated positively with tibialis anterior, 7 if only triceps
surae was correlated positively with triceps surae and 8 if all correlations with
tibialis anterior were negative.

2.3.3 Analysis of phase relations

Phase relations between co-active muscle groups were calculated using cross
correlations, which is defined for two discrete functions f and g as:

(f ∗ g)[n] =
∞

m=−∞
f∗[m]g[n+m], (2.28)

where f∗ denotes the complex conjugate of f . The cross correlations were
calculated for every pair of muscle groups of one recording using the lowpass
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filtered signal. If the correlation between any two muscle groups was negative
the pair was excluded, since it indicates that they are reciprocally active. The
phase lags were defined as the value n relative to the cycle period of the same
recording where the cross correlation (f ∗ g) is maximal. These phase lags
were pooled by muscle group and reported as histograms. Furthermore, the
relation of the pairwise co-active muscle groups of the subjects with phase
lags larger than 15% of the cycle period were reported.

2.3.4 Analysis of single CMAPs

Control PRM reflexes responses were obtained from the PRM response elicited
by the first pulse of the stimulation train that eventually lead to the generation
of the rhythmic activities analyzed here. Alternatively, when data were not
available from the same recording session as well as with same lead polarity
and stimulus intensity, control PRM reflexes were also derived from a series of
single pulses at the lowest available stimulation frequency (Minassian, Jilge, et
al., 2004), i.e. 2.1-Hz stimulation, in order to build a large enough distribution
of control responses to be compared statistically with PRM responses during
rhythmic activity.

Peak-to-peak amplitude, onset and offset latencies, and widths of the
CMAPs associated with these PRM reflexes were calculated. All these pa-
rameters were calculated for a time window that started 7 ms and 15 ms after
the stimulus artifact for the thigh and leg muscle groups, respectively, and had
a duration equal to the inter-stimulus interval. The time offsets were chosen
to neglect responses that were clearly not related to the stimulus that is being
analyzed and to capitalize on the whole response time where the responses can
be traced back to a given stimulus. The onset latency was defined as the time
between the preceding stimulus and the first EMG deflection from baseline
larger than 25% of the largest deflection of the CMAP from zero of the same
sign. Accordingly, the CMAP offset was defined as the last deflection from
baseline larger than 25% of the largest deflection of the CMAP from zero of
the same sign. The CMAP width was the duration between the onset latency
and the offset. Additionally, the ”weighted latency” or ”center of gravity” cg
of the response was calculated. This value, cg, was defined by the first time
point where the cumulative sum of the absolute value of the EMG signal in the
time window from the beginning to this time point is bigger or equal to 50%
of the respective cumulative sum of the total time window to be analyzed.

All CMAP latency parameters were visually confirmed. This was done by
a MATLAB application (see figure 2.3). Manual conformation followed follow-
ing rules. i) In order to determine the onset latency there should have been a
clear separation of the CMAP related to the previous stimulus and the CMAP
under investigation and ii) noise or other artifacts did not interfere with the
the latency detection. iii) If (i) and (ii) were given but the onset latency was
calculated wrongly due to a too short offset for latency detection (e.g. during
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A.

B.

Figure 2.3: Semi-automatic detection of latency parameters. The application
window of the semi-automatic detection of the compound motor action po-
tential (CMAP) specific latency parameters. The left side shows a stimulus
triggered time window with the electromyographic activity as the blue (non-
vertical) line. The blue vertical lines illustrate the calculated onset, weighted
(cg) and offset latencies (from left to right). Each value was visually confirmed
and if not clearly correct rejected or if possible corrected by changing the off-
set (see text to B.). A. Shows a case where all parameters were calculated
correctly. B. Shows a case were it was necessary to increase the offset that
specifies how long after the stimulus the deflections will be ignored by the cal-
culation. Note that the deflections from zero before the 10 ms post stimulus
clearly correspond to the previous response.
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prolonged latency response the previous response can be well present in the
normal identification window but there is still a clear separation between pre-
vious and current response) the offset was shifted until the previous response
did not influence the latency detection any more. iv) The detection of the
weighted latency or center of gravity cg should not be obviously influenced
by the previous response. v) Off-set latencies were selected according rules
(i) and (ii) but not (iii). vi) If the latency parameters did not match they
were removed from the analysis and declared as missing values. For statistical
comparisons between the flexion and extension phases, only the parameters
of the central 50% of the CMAPs in every phase were used.

2.3.5 Statistical analysis

Mean values were compared using Student’s t-tests or analyses of variance
or their non-parametric equivalents, i.e. Whitney-Mann U test and Kruskal-
Wallis test. Categorial data was analyzed using Pearson’s χ2-test and if the
expected count was lower than 5 in any one cell, Fisher’s exact test was used
instead. Correlations were calculated to investigate the relation of two scalar
values and linear regressions were calculated to investigate whether one scalar
value predicts the outcome of another one. Similarly, logistic regressions were
used to analyze scalar predictors on categorial values. Furthermore, analyses
of covariances were used to compare mean values while controlling for the
effects of scalar variables, as well as to investigate their effect. In order to
counteract the problem of multiple comparisons all post-hoc tests were Bon-
ferroni corrected. An α error of p < .05 was regarded as significant.
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Chapter Three

Results

The semi-automatic selection of the data yielded in 39 10-s windows of rhyth-
mic activities of one limb (3.1) in 7 out of 10 subjects. In all subjects except in
subjects 3 and 6, rhythmic EMG segments were discovered in both limbs. Four
to nine EMG segments were identified in the different subjects. The patterns
and stimulation parameters of the samples are listed in table 3.1. The effective
stimulation frequency was 29.5 ± 4.85 Hz, with a range of 22.5 Hz–41.8 Hz
(the latter being the highest singular frequencies considered). The stimulation
voltage and electrode configuration and position varied considerably (see table
2.3).

The frequency of rhythmic activity was identical across all muscle groups
in a given EMG segment. The rhythm frequency of the selected samples
was in mean 0.71 Hz ± 0.41 Hz and varied considerably across the samples
(min=0.27, max=1.84). Furthermore, an analysis of variances revealed that
the burst frequency varied significantly between the subjects (S1: M=0.63
Hz, SD=0.25 Hz; S2: M=0.59 Hz, SD=0.26 Hz; S3: M=0.48 Hz, SD=0.95
Hz; S4: M=0.44 Hz, SD=0.33 Hz; S5: M=1.31 Hz, SD=0.40 Hz; S6: M=0.80
Hz, SD=0.25 Hz; S7: M=0.94 Hz, SD=0.28 Hz; F(6,32)=6.551, p<.001).
Bonferroni corrected post-hoc tests revealed that subject 5 had significantly
higher burst frequencies than subjects 1–4. All other post-hoc tests did not
yield significant results.

The stimulation frequency was not significantly correlated with the burst
frequency (Pearson’s r = .125, p = .450). The duration of the extension
phase was 1.29 s ± 0.75 s (min=0.28 s, max=2.94 s) and was not significantly
correlated to the stimulation frequency (r = −.069, p = .677). The duration
of the flexion phase was in 0.59 s ± 0.27 s (min=0.26 s, max=1.44 s) and was,
although not significantly, negatively correlated to the stimulation frequency
(r = −.291, p = .072). The extension phase amounted in mean to 65.6% ±
10.4% (min=45%, max=84%) of the total cycle duration.

A linear regression showed that the rhythm frequency significantly pre-
dicted the relative extension phase duration with respect to the rhythm cy-
cle duration (constant: B=0.780, SE=0.025; rhythm frequency: B=-0.174,
SE=0.031, β = −.684, t(37) = −5.698, p < .001; R2=.467, F(1,37)=32.466,
p < .001). The rhythm frequency also predicted the absolute flexion phase
duration (constant: B=0.908, SE=0.065; rhythm frequency: B=-0.453, SE=-
0.080, β = −.682, t(37) = −5.677, p < .001; R2=.466, F(1,37)=32.230,
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Table 3.1: Selected 10-s windows of rhythmic activity

SID RID Elect.† Fq. V Leg Pat. Burst
[Hz] fq. [Hz]

1 1 0+3– 22.5 10 L 1 0.27
2 0+3– 33.6 10 R 1 0.47
3 0+3– 33.6 10 R 1 0.59
4 0+3– 27.0 10 L 1 0.48

2 5 0+1– 30.1 7 R 1 1.00
6 0+1– 30.1 8 R 1 0.93
7 0+1– 30.1 9 R 4 0.88
8 1+3– 27.7 9 R 1 0.33
9 1+3– 27.7 10 R 1 0.40
10 1+3– 27.7 10 L 1 0.44

3 11 0+3– 22.5 10 L 4 0.54
12 0+3– 22.5 10 L 4 0.53
13 0–2+ 24.1 10 L 8 0.47
14 2+3– 24.1 10 L 8 0.56

4 15 0+3– 28.3 6.5 L 1 0.35
16 0+3– 28.4 6 L 6 0.33
17 0+3– 28.4 6 L 8 0.36
18 0+3– 28.4 7.5 R -1 0.36
19 0+3– 28.4 7 L -1 0.35
20 0+3– 28.4 7 L 1 0.30
21 0+3– 28.4 7 R 1 0.33
22 0+3– 31.5 6 L 6 0.28
23 0+3– 33.6 8 R 2 0.30

5 24 0+3– 22.5 9 R 4 1.32
25 0+3– 33.6 9 R 2 1.40
26 0+3– 22.5 10 R 2 1.41
27 0+3– 33.6 10 L 2 1.31
28 0+3– 33.6 10 R 2 1.32
29 2–3+ 33.6 10 R 1 1.84

6 30 3–c+ 27.0 3 R 7 0.61
31 0+3– 27.0 5 R -1 0.80
32 0+3– 33.6 5 R 7 0.74
33 1+3– 27.0 5 R 7 0.80
34 2+3– 41.8 5 R 8 0.49

7 35 0–3+ 23.0 10 L 1 1.19
36 0–3+ 34.1 10 L 3 1.16
37 0–3+ 34.1 10 R 1 0.94
38 0–3+ 34.1 10 R 3 1.09
39 0–3+ 41.8 9 R 3 0.54

†contact acting as cathodes (-) and anodes (+), c stands for case;

SID/RID subject/recording identification number
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Figure 3.1: Ten seconds-EMG segments of rhythmic activity with stable pat-
tern evoked by non-patterned epidural SCS in quadriceps (Q), hamstrings
(Ham), tibialis anterior (TA), and triceps surae (TS). Exemplary results with
a variety of rhythm frequencies and patterns, (i) subject 3, l, 0+3-, 10 V, 22.5
Hz (ii) subject 2, r, 0+1-, 7 V, 30.1 Hz; (iii) subject 4, l, 0+3-, 6 V, 31.5 Hz;
(iv) subject 2, r, 1+3-, 10 V, 27.7 Hz. Vertical Scale bars are in mV.

p < .001). Thus both, the absolute flexion and extension phase duration
became shorter with higher rhythm frequency, while relatively, there is a de-
crease in the extension phase duration.

All the observed rhythmic activity of each single muscle group was phase
locked with any other rhythmically active muscle group. There where, how-
ever, various phase relations in-between the activities of different muscles.
The most common occurrences of phase shifting were that one muscle group
was either actively bursting at the same time when another muscle group
was also bursting or was in its silent phases. The categorization of each 10-s
segment based on the co-activities of every muscle group to tibialis anterior
are listed in table 3.1. Three samples did not clearly follow this clear reci-
procity. The most common pattern observed was the co-activation pattern
with all ipsilateral muscle groups being activated in-phase (Pattern 1; n =
15), while Pattern 5, with TA and Ham active in-phase with TA, and Q be-
ing active reciprocally, did not occur at all. The number of observations of
the remaining patterns ranged from 2 to 5. Locomotor-like EMG activity
with reciprocal activity in antagonistic muscles (Pattern 4) was observed 4
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3. Results

Table 3.2: NMF solutions

k R2 AIC ∆AIC w

1 .261 831.884 818.019 .000
2 .832 111.085 97.221 .000
3 .908 13.864 0.000 .998
4 .944 19.922 6.058 .002
5 .968 121.588 107.724 .000
6 .979 251.915 238.051 .000
7 .985 407.198 393.334 .000
8 .987 468.902 455.037 .000

NMF: non-negative matrix factorization

times in three subjects. In 27 cases quadriceps was co-active with tibialis an-
terior, hamstring in 14 cases and triceps surae in 15 cases. Using a logistic
regression model, stimulation frequency did not predict whether quadriceps
was co-active with tibialis anterior or not (constant: B=0.165, SE=2.180; fre-
quency: B=0.022, SE=0.073, p=.765, Cox & Snell R2=0.002), similarly it did
not significantly predict whether hamstrings (constant: B=-0.255, SE=2.022;
frequency: B=0.17, SE=0.068, p=.797, Cox & Snell R2=0.002) or triceps
surae were co-active with tibialis anterior (constant: B=-1.766, SE=2.078;
frequency: B=0.065, SE=0.070, p=.351, Cox & Snell R2=0.023).

3.1 Identification of primitives

The NMF performed on the per recording and muscle group averaged lowpass
filtered envelopes of the EMG activities (N=156; i.e. 4 muscle groups x 39
recordings) yielded the results presented in figure 3.2 and table 3.2.

According to the Akaike weights w presented in table 3.2 a solution with
3 basic patterns was most likely. The second best solution was with k = 4,
all other solutions, judged by the ∆AIC and Akaike weights w were very
unlikely. Nonetheless the two basic pattern solution already explained 83%
of the total variance. As can be seen from figure 3.2 the two factor solution
consisted of almost sinusoid factors with a period equal to that of the rhythmic
cycle. Furthermore, one factor had the strongest contribution during the phase
where tibialis anterior was active, the flexion phase, and the other one during
the phase where tibialis anterior was not active, the extension phase. The
three basic pattern solution pertained the factor mainly contributing to the
extension phase but introducing two patterns that mainly contributed to the
flexion phase, one with an early contribution (peak at 15% of the flexion
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3.1. Identification of primitives

Figure 3.2: Presentation of the multiple solutions of the non-negative matrix
factorization (NMF) performed on the per muscle group and sample averaged
lowpass filtered posterior root-muscle reflex envelopes. Left: The primitives or
basic patterns (F1–8) selected by the NMF depending on the specified k. Note
that the three basic pattern (primitive) solution was the optimal one according
to the Akaike information criterion. Right: Factor loading for all muscle
groups and specified k (up to 6). The two-factor solution was characterized
by almost sinusoid basic patterns, where one was predominately active during
the flexion and the other one during the extension phase. Their loadings
showed that when one of the patterns had a high loading that the loading
of the other primitive was usually low. The three-factor solution introduced
an early component in the flexion phase (red line) while still retaining the
reciprocity between the first two factors (blue and green lines). Similarly, the
four-factor solution splits the in the extension phase active component into
two factors, one with an earlier and one with an later peak.
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3. Results

Table 3.3: Correlations between the different factor loadings (H)

H 1 H 2 H 3 H 4

Two basic pattern solution H1 1
H2 −.566∗∗∗ 1

Three basic pattern solution H1 1
H2 −.728∗∗∗ 1
H3 −.104 .146 1

Four basic pattern solution H1 1
H2 .062 1
H3 −.856∗∗∗ −.024 1
H4 −.438∗∗∗ .152 .473∗∗∗ 1

∗∗∗p < .001, all values are Pearson’s correlation coefficients

phase) and one with an late contribution (peak at 75% of the flexion phase)
to the flexion phase. Similarly, the four basic pattern solution introduced a
second factor in the extension phase. The first one peaked early (at about 17%
of the extension phase) and the second one later (at 60% of the extension
phase). The basic patterns contributing to the flexion phase were almost
identically retained.
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3. Results

Table 3.3 shows the correlation coefficients of the factor loadings for the
2 to 4-factor solutions. The two basic patterns of the k = 2 solution had a
highly significant negative correlation, thus, when one factor had a strong con-
tribution to the EMG pattern the other one usually had a minor contribution.
This finding is in accordance with the aforementioned categorization in pat-
terns depending on co-activation of the muscle groups with tibialis anterior.
The same highly significant negative correlation between the loadings of the
basic pattern contributing to extension phase and the late pattern contribut-
ing to flexion phase was evident in the three pattern solution. Interestingly,
the loadings of the third one was not correlated with those of any of the oth-
ers. Again the correlations with the loadings of the four pattern solution was
similar (note that factor 2 and 3 are swapped), with highly significant corre-
lations of the loadings of the two patterns occurring late during the extension
and flexion phases, respectively. Additionally the fourth basic pattern (the
one occurring early on in the extension phase) has a highly significant posi-
tive correlation with the basic pattern present later on in the extension phase
and a highly significant negative correlation with the one present late in the
flexion phase. The loadings of the early pattern in the flexion phase were not
significantly correlated to any patterns’ loadings.

Table 3.4 summarizes multiple analyses of covariances with factor loadings
and the euclidian distances between original and reconstructed rhythmic pat-
terns as dependent variables, the muscle group as a fixed factor independent
variable and the burst and stimulation frequencies as covariates. Notable re-
sults are summarized in the following text. Increased stimulation frequency
significantly reduces the factor loadings of the basic pattern of the k = 1 so-
lution, the second basic pattern of the two and three pattern solution and the
fourth of the three pattern solution. Whereas, an increased burst frequency
increases almost any factor loadings, but most notable the one of the 1 pat-
tern solution, the third of the three pattern solution and the second of the four
pattern solution. The latter two were the early responses in the flexion phase.
For all factor loadings there were highly significant differences between the
muscle groups. Most of them involve the tibialis anterior, which was the mus-
cle group the categorization into the flexion and extension phases were based
on and thus the burst were well aligned. The post-hoc test of the second
basic pattern of the k = 1 solution as well as the second and the third of the
three and four basic pattern solutions, respectively, showed that hamstrings
were more active during the extension phase then most other muscle groups.
Furthermore, the hamstrings had heightened factor loadings in comparison to
quadriceps and triceps surae for the early flexion phase factor loadings in the
three and four factor solution.

The reconstruction error as measured by the euclidian distance between
the reconstructed and original data was related to various parameters. There
was no significant influence of the stimulation frequency on the reconstruction
error for the one to three factor solution and a slight positive influence on the
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3.1. Identification of primitives
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Figure 3.3: Reconstruction of signals with the two basic pattern model. The
shaded gray area signifies the original data, the solid line the reconstruction
with the two basic pattern model and the dashed line the reconstruction with
the three basic pattern model. The top half shows ten rhythm cycles with the
smallest reconstruction error with the model incorporating two basic patterns
(dF2) of each muscle group and the bottom half shows the rhythm cycles with
the biggest reconstruction error for each muscle group. The biggest deviations
from the original data accumulated in the flexion phase and were somewhat
better represented by the three factor model. Q: quadriceps, H: hamstrings,
TA: tibialis anterior, TS: triceps surae.
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3. Results
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Figure 3.4: Reconstruction of signals with the three basic pattern model. The
shaded gray area signifies the original data, the solid line the reconstruction
with the three basic pattern model and the dashed line the reconstruction
with the four basic pattern model. The top half shows ten rhythm cycles with
the smallest reconstruction error with the model incorporating three basic
patterns (dF3; based on the three factor model) of each muscle group and the
bottom half shows the rhythm cycles with the biggest reconstruction error for
each muscle group. The biggest deviations from the original data accumulated
in the extension phase and are somewhat better represented by the four factor
model. Q: quadriceps, H: hamstrings, TA: tibialis anterior, TS: triceps surae.
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3.2. Phase lags

four factor solution, indicating a higher reconstruction error with higher stim-
ulation frequencies. The burst frequency, on the other hand, was significantly
negatively related with the reconstruction error of all investigated solutions
(one to four factors). Thus, indicating that the envelopes of the rhythm cycles
were better described when the burst rate was higher. The strength of this
observed relation between reconstruction error and burst frequency increased
with the number of factors in the model. The reconstruction error of tibialis
anterior was always the smallest compared to the other muscle groups but only
significant for the comparison with TS in the one factor solution, all muscle
groups in the two factor solution, quadriceps and tibialis anterior in the three
factor solution and not significant in the four factor solution, although there
was a significant total effect.

Figures 3.3 and 3.4 shows the ten best and worst reconstructed envelopes of
each muscle group with the two and three basic pattern models, respectively.
For all examples the underlying data and the reconstruction with the model
with one more basic patterns are shown. The comparison of the data and its
reconstruction with the model consisting of two basic patterns showed that
many distributions of EMG activity during the rhythm cycle in all muscle
groups can be approximated well. The comparison with the model using
three patterns showed that differently timed responses in the flexion phase
were better reproduced. Furthermore, it can be seen that tibialis anterior had
the smallest reconstruction errors. In the four patter model (figure 3.4) the
majority of the deviation from original data happened in the extension phase.
The additional basic pattern in the extension phase of the four pattern model
helped to approximate most of the deviating data. Nonetheless, differently
timed peaks remained that could not be described by the additional factor.
On the other hand, it is noteworthy that all peaks clearly occur in either the
flexion or extension phase and there were no peaks that were in the transition
phase. Furthermore, in all investigated models, i.e. k = 1–8, there was no
identified factor or primitive that peaked between the two phases (see figure
3.2).

3.2 Phase lags

The phase relation between two pairs of co-active muscle groups was calculated
using cross-correlations. The phase lags to the maximal value of the cross-
correlation normalized to the rhythm cycle duration are illustrated in figure
3.5. It can be seen that that most phase lags were close to zero. A total of 50%
of all samples had a phase lag smaller or equal to 1.67% of the rhythm cycle.
Similarly, 75%, 90% and 95% of all samples had a phase lag smaller or equal to
5.81%, 11.71% and 15.69% of the the rhythm cycle duration, respectively. The
mean values of the phase lags for all muscle group pairs were close to zero and
have similar standard deviations. Likewise, the median of the distributions
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3. Results
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Figure 3.5: Histograms of the phase lags to the maximal cross-correlations.
The phase lags are shown for pairs of co-active muscle groups on a per pair ba-
sis. The phase lag values were normalized to the duration of the rhythm cycle
of the the corresponding sample. For all histograms the sample characteristics
are depicted above, i.e. the mean value, followed by the standard deviation,
the skewness (g1) and the sample size n. Q: quadriceps, H: hamstrings, TA:
tibialis anterior, TS: triceps surae.
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3.2. Phase lags

was zero for all pairs except for ’Q vs. TS’ and ’H vs. TS’ where the median was
-1.17% and -0.44% of the rhythm cycle duration, respectively. The skewness
(g1), on the other hand, differed in sign and magnitude between the muscle
group pairs, indicating differences in the distribution of the phase lags.
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Figure 3.6: The relation of the phase lags between all co-active muscle groups
of the samples with phase lag values above 15% of the rhythm cycle duration.
Q: quadriceps, H: hamstrings, TA: tibialis anterior, TS: triceps surae.

Seven cases had phase lags that were larger than 15% of the rhythm cycle
duration. For those samples phase lags for all muscle group pairs are depicted
in figure 3.6. There the various phase lag distributions are illustrated.

There was a difference between the absolute values of the phase lag be-
tween the subjects (S1: M=0.029, SD=0.037; S2: M=0.046, SD=0.055; S3:
M=0.008, SD=0.019; S4: M=0.023, SD=0.038; S5: M=0.064, SD=0.059;
S6: M=0.086, SD=0.074; S7: M=0.086, SD=0.074; F(6,143)=5.520, p<.001).
Bonferroni corrected post-hoc tests revealed that subject number 5 and 6 had
larger phase lags than subjects 3, 4 and 7, and subject 6 additionally had
larger phase lags than subject 1. All other post-hoc tests yielded not signif-
icant results. Furthermore, there was no significant differences between the
muscle group pairs on the absolute values of the phase lag, F(5,155)=0.563,
p=.728. Finally, there was no correlation between the stimulation frequency

31



3. Results

and the absolute value of phase lag (r=-.042, p=.606).

3.3 CMAP parameters

A total of 45,880 CMAPs were investigated, and of those onset latencies for
28,927 (63.1%) and centers of gravity (cg) for 44,913 (97.9%) could be cal-
culated. Eight-thousand-three-hundred-forty-four (60.1%) and 4,946 (66.8%)
onset latencies corresponded to the extension and flexion phases, respectively.
Similarly, 13,655 (98.3%) and 7,352 (99.2%) weighted latencies corresponded
to the extension and flexion phases, respectively. A histogram of all onset
latencies subtracted by the latencies of the respective controls are illustrated
in figures 3.7 and 3.8. Note that due to the absence of some responses in the
control recordings relative values of the latencies could not be calculated for
all muscle groups in all recordings. There were 26,215 (90.6%) and 39,342
(87.6%) relatively adjusted onset latencies and centers of gravity, respectively.

0 2.5 5 7.5 10 12.5 15 17.5 20 ms
0

1000

2000

3000

4000

5000

6000

7000

8000

[n]

prolonged latencyshort latency

categorization

Figure 3.7: Histogram of the onset-latencies of all compound motor action
potentials of all rhythmic samples that were classified as belonging to one of
the phases, i.e. extension or flexion phase. The onset latencies were subtracted
by the mean of the control latencies. Various degrees of prolonged latencies
can be seen. The categorization threshold (≥ 5 ms) for prolonged responses
is illustrated.

There, were 7,332 (87.9% of the available onset latencies) and 4,498 (90.9%)
validly assigned relative onset latency values for the extension and flexion
phases, respectively. An independent-samples Mann-Whitney U test showed
that the distributions of onset latencies differed between the phases with rel-
atively longer latencies in the flexion phases; extension phase: mean rank=-
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Figure 3.8: Histogram of the onset-latencies of all compound motor action po-
tentials of all rhythmic samples split into their corresponding phases, i.e. ex-
tension or flexion phase. The onset latencies were subtracted by the mean of
the control latencies. Various degrees of prolonged latencies can be seen. The
categorization threshold (≥ 5 ms) for prolonged responses is illustrated.

5,556.55; flexion phase: mean rank=6,500.61, U(11,830)=19,121,485; z=
14.596; p < .001. A χ2-test confirmed that prolonged latencies (≥ 5 ms pro-
longed in comparison to the onset latencies of the controls) occurred relatively
more often during the flexion (N=1336, 29.7%) than during the extension
phases (N=610, 8.3%, χ2(1)=927.393, p < .001, OR=4.667).

Similarly, the centers of gravities were later in the flexion than in the ex-
tension phases; extension phase: mean rank=8,482.46; flexion phase: mean
rank=10,507.61, U(18,408)=47,441,395.5; z=24.769; p < .001. A χ2-test also
confirmed that prolonged centers of gravities occurred relatively more of-
ten during the flexion (N=2,086, 28.2%) than during the extension phases
(N=1,394, 10.0%, χ2(1)=1161.117, p < .001, OR=3.535).

Furthermore, prolonged onset latencies were strongly related to the muscle
group (see figure 3.9; χ2(3)=1,124.522, p < .001). Tibialis anterior was most
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Figure 3.9: Relative frequencies of prolonged and short latencies depending
on the muscle group. Q: quadriceps, H: hamstrings, TA: tibialis anterior, TS:
triceps surae.

likely (N=942 of 2,731, 34.5%, Standarized Residual SRES=23.2) and ham-
strings least likely (N=116 of 3,628, 3.2%, SRES=-19.7) to show prolonged
latencies. Quadriceps (N=524 of 2,915, 18.0%, SRES=2.0) and triceps surae
(N=364 of 2,556, 14.2%, SRES=-2.8) had relative frequencies of prolonged
latencies around the grand mean (1,946 of 9,884, 16.4%). As for the case
of prolonged centers of gravities more pronounced results could be observed,
χ2(3)=9,537.660, p < .001. Tibialis anterior was most likely (N=4,251 of
7,571, 53.0%, SRES=69.9) and hamstrings least likely (N=360 of 10,374, 3.5%,
SRES=-38.2) to show prolonged latencies. Triceps surae (N=2,741 of 10,080,
27.2%, SRES=15.1) had relative frequencies of prolonged latencies slightly
above the grand mean (8,023 of 39,342, 20.4%) and quadriceps showed rela-
tively few prolonged centers of gravities (671 of 11,317, 5.9%, SRES=-34.1).

In mean the response amplitudes were 50.4% ± 186% of the amplitudes
of the controls (note that in this section only the responses are described for
which controls have a definite response). Depending on the muscle groups the
mean varied substantially, Kruskal-Wallis H(3)=5,407.550, p < .001. Quadri-
ceps’ (18.7% ± 41.3%) and hamstrings’ (18.7% ± 21.3%) amplitudes were well
below the grand mean whereas tibialis anterior (164.6% ± 278.3%) and triceps
surae (109.1% ± 338.5%) had the highest relative response amplitudes. All
pairwise post-hoc tests were highly significant. Judging from the standard
deviations it can be seen that response amplitudes can be increased over the
unconditioned controls.

Prolonged latency responses were more likely (N=626 of 4,875, 12.8%)
than short latency responses (N=1242 of 21,340, 5.8%) to be subject to in-
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Figure 3.10: Increased response amplitude (amplitude >1.2 times the control’s
amplitude) and its dependence from the muscle group. ext: extension phase,
flex: flexion phase. Q: quadriceps, H: hamstrings, TA: tibialis anterior, TS:
triceps surae.

creased amplitude in comparison to the controls (> 120% of the control’s mean
amplitude) during rhythmically modulated output, χ2(1)=292.591, p < .001,
OR=2.384. The occurrence of amplified response amplitudes depending from
muscle group and phase is depicted in figure 3.10. It can be seen that in
the flexion phase there were relatively more amplified responses (911, 12.3%)
than in the extension phase (339, 2.4%), χ2(1)=849.833, p < .001, OR=5.704.
Furthermore, tibialis anterior showed most frequently amplified responses, es-
pecially in the flexion phase (28.8%).

Moreover, prolonged onset latency responses occurred more often in the
phases that constitute bursts (1,402, 72.1%) then those in silent periods (544,
13.7%) in the same muscle group. In the phases that showed relatively stronger
EMG output the flexion phase (1,297, 38.2%) was more likely to show pro-
longed onset latencies than the extension phase (105, 7.5%, χ2(1)=1,280.408,
p < .001, OR=7.624). Conversely, when the phases were of relatively smaller
amplitude the flexion phase (39, 3.5%) was less likely than the extension
phase (505, 12.7%) to show prolonged onset latencies, χ2(1)=76.160, p < .001,
OR=0.249.

Any recording of rhythmic activities in one muscle group can be grouped
into four different cases depending on the phase relation of long latency re-
sponses. Only recordings with 10 and more relative onset latencies available
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Figure 3.11: Example of rhythmically modulated onset latencies. A. Elec-
tromyographic activity in tibialis anterior of subject 4, recording 18. B. Onset
latencies of the compound muscle action potentials (CMAPs) comprising the
signal of A. It can be seen that during the bursts of high activity (flexion
phases) the onset latencies of the reflexes was increased in comparison the
controls (horizontal lines; mean and standard deviation) as well as to the
phases with low activities (extension phases, cf. table A.1). The same is true
for the centers of gravity (cgs; cf. table A.2). C. Stimulus triggered drawings of
the CMAPs. Each row represents one CMAP and the normalized amplitudes
are color coded.
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for both the extension and flexion phase were included—in total 97 of 156
(62.2%). Following cases were identified: i) predominately long latencies in
the flexion and ii) extension phase (defined by 0.2 greater relative frequency
of long latency responses of one in comparison to the other phase). iii) neither
phase was subject to long latency responses (i.e. relative frequency of long
latency responses smaller than 0.2) or iv) both phases respond with long la-
tency responses (i.e. relative frequency of long latency responses greater than
0.2). Twenty (20.6%) of the muscle groups showed predominantly long la-
tency responses during the flexor phase (i), 2 (2.1%) during the extension
phase (ii), 68 (70.1%) during neither (iii) and 7 (7.2%) during both phases
(iv). In total there were 43 (36.1%) muscle group recordings that showed
relative frequencies of long latency responses greater than 0.2 times in the
flexion phase and 14 (12.8%) in the extension phase. Long latency responses
in the flexion phase (again more than 20% of the respecitve phase) were most
frequently recorded in tibialis anterior (20 of 29, 70.0%), followed by triceps
surae (10 of 16, 38.5%), quardiceps (11 of 19, 36.7%) and hamstrings (2 of
34, 5.9%) with very few prolonged latency responses, χ2(3)=27.093, p < .001.
Similarly, in the extension phase tibialis anterior showed most long latencies
(7 of 27, 25.9%) followed by quadriceps (5 of 25, 20.0%), triceps surae (2 of 25,
7.4%) and hamstrings (0 of 30, 0.0%, χ2(3)=10.405, p = .015). Examples of
different cases of modulated latencies can be seen in figures 3.11, 3.12 and 3.13.
Figure 3.11 shows phase-dependent rhythmic alternation of long and short la-
tency responses, figure 3.12 shows constantly long but slightly rhythmically
modulated responses and figure 3.13 shows rhythmic activity with only short
monosynaptic onset latencies. Yet, in the latter example the centers of gravity
were later for the flexion phase, indicating two components of responses, an
early and late one, that were simultaneously present.

The grouping of the rhythmic activities of every single muscle group into
the same four categories as in the above paragraph depending on the center
of gravity cg instead of the onset latencies yielded following results. One-
hundred-thirty-seven of the 156 samples (87.8%) were included due to the
restraint that every phase of every sample needs to have at least 10 validly
assigned values. Forty-four (32.1%) showed predominantly prolonged cg re-
sponses in the flexion phase (i), 5 (3.5%) cases had predominantly prolonged
cg responses during the extension phase (ii), 75 (54.7%) samples had almost
no prolonged cg in either phase (iii) and 13 (9.5%) cases had prolonged cgs
in both phases (iv). Split up into the different muscle groups it can be seen
that tibialis anterior (26 of 27, 96.3%) had most cases of prolonged cgs during
flexion phase, followed by triceps surae (21 of 35, 60.0%), quadriceps (8 of
39, 20.5%) and hamstrings (2 of 36, 5.6%, χ2(3)=64.514, p < .001). Simi-
larly, during extension phase tibialis anterior was subject to most prolonged
responses (16 of 37, 59.3%), followed by triceps surae (8 of 35, 22.9%), quadri-
ceps (4 of 39, 10.3%) and hamstrings (2 of 36, 5.6%, χ2(3)=30.768, p < .001).

Table A.1 shows for every subject, session and muscle group the mean
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Figure 3.12: Example of tonically prolonged onset latencies with a slight rhyht-
mic modulation. This sample shows the electromyographic activity, latencies
and response shapes of subject 7, recording 39 in tibialis anterior. There was
a significant difference between the onset latencies and the centers of gravity
of the flexion (high activity) and extension (low activity) phases (cf. tables
A.1 and A.2). For both measures the extension phase shows higher values.
A–C. See figure 3.11 for the technical description of the figure.

values, standard deviations and counts of all validly assessed onset latencies
as well as the significance level of the pairwise comparisons using Whitney-
Mann-U tests. In summary, 88 (56.4%) samples showed a significant increase
and 19 (12.2%) a significant decrease of the onset latency during the flex-
ion phase. Eighty-two (52.6%) and 19 (12.2%) samples were subject to sig-
nificantly increased and decreased onset latencies, respectively, during the
extension phases. Furthermore, in 41 (26.3%) cases the flexion phase showed
significantly longer onset latencies than the extension phase and in 42 (26.9%)
cases the opposite was the case. The standard deviations of the onset latencies
of the controls were in mean 0.37 ms, of those of the flexion phase 1.68 ms and
of the extension phase 1.40 ms. Thus, a much greater variability of the re-
sponses is observed during rhythmic activity in comparison to unconditioned
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Figure 3.13: Example of tonically not-prolonged onset latencies with a slight
rhyhtmic modulation. This sample shows the electromyographic activity, la-
tencies and response shapes of subject 2, recording 8 in tibialis anterior. There
was no significant difference between the onset latencies of the flexion (high
activity) and extension (low activity) phases (cf. table A.1). When investi-
gating the compound motor action potentials in C it becomes evident that
during the flexion phase (high activity phase) later components existed that
were not, or less often, present during the extension phase. The compari-
son of the centers of gravity (cgs) showed that they were indeed significantly
prolonged in the flexion phase (in comparison to the controls as well as the
responses in the extension phase; cf. table A.2). A–C. See figure 3.11 for the
technical description of the figure.
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responses. When the flexion phase was significantly prolonged in compari-
son to the controls the prolongation amounted in mean to 4.5 ms ± 3.5 ms
(max=21.0 ms, g1=3.7 ms). When the onset latencies of the extension phase
was significantly later than those of the controls the prolongation was in in
mean 3.0 ms ± 2.7 ms (max=12.8 ms, g1=1.7 ms). In case of significantly
earlier onset latencies of the CMAPs comprising rhythmic activity the differ-
ence was 0.8 ms ± 0.3 ms (max=1.45 ms, g1=1.2 ms) and 0.9 ms ± 0.4 ms
(max=2.1 ms, g1=0.7 ms) for the flexion and extension phases, respectively.
For the direct comparison of the onset latencies of the CMAPs comprising
the flexion and extension phases, the latencies of the flexion phase CMAPs
were prolonged by 3.6 ms ± 2.1 ms (max=8.8 ms, g1=-1.3) in comparison
to those of the extension phase if they are significantly later. Vice-versa the
difference when the extension phase showed longer latencies than the flexion
phase amounted to 2.7 ms ± 1.9 ms (max=8.8 ms, g1=-4.3 ms). When just
counting significant results where the difference of the means was larger than
a certain threshold th following frequencies were obtained: 60 (68.2% of all
significant results; th = 2 ms) and 34 (38.6%; th = 5 ms) cases showed an
increased onset latency in the flexion phase in comparison to the controls,
24 (58.5%; th = 2 ms) and 15 (36.6%; th = 5 ms) cases showed increased
latency during the flexion in comparison to the extension phase, in 41 (50%;
th = 2 ms) and 15 (18.3%; th = 5 ms) cases the extension phase was subject
to prolonged latencies in comparison to the controls, 21 (50%; th = 2 ms) and
6 (14.3%; th = 5 ms) times the extension phase had longer latency times than
the flexion phase and in 1 (5.2%; th = 2 ms) and 0 (0%; th = 5 ms) case the
latency times of the CMAPs in the extension phase were lower than those of
the controls.

In the same way the center of gravity (cg) values are listed for every sub-
ject, session and muscle group in table A.2. In summary, 75 (48.1%) cases
showed significantly later centers of gravities during the flexion phase in com-
parison to the controls and in 32 (20.5%) cases the centers of gravities were
significantly earlier. During the extension phase in 65 (41.7%) cases the cen-
ters of gravities were prolonged and in 52 (33.3%) cases they were significantly
earlier in comparison to the controls. The comparison of the two phases
showed that the flexion phase showed significantly later centers of gravities in
83 (53.2%) and significantly earlier ones in 43 (27.6%) than in the extension
phase. The standard deviations of the cgs of the controls were in mean 0.92
ms, of those of the flexion phase 2.15 ms and of the extension phase 2.07 ms.
For the above listed 6 cases of significant results descriptive parameters of the
relative changes of the centers of gravity were calculated. When the cgs were
significantly later in the flexion phase in comparison to the controls the mean
increase was 5.5 ms ± 3.5 ms (max=12.9 ms, g1=-0.8 ms). In the case of sig-
nificantly earlier latencies the cgs were lower by 2.6 ms ± 1.4 ms (max=9.7,
g1=-3.3 ms). The increased cgs of the extension phase were in mean 3.4 ms
± 2.6 ms (max=12.3 ms, g1=0.9 ms) later than those of the controls and the
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earlier responses in the extension phase had cgs that were smaller by 2.1 ms
± 1.3 ms (max=-5.9 ms, g1=0.2 ms). Furthermore, if the flexion phase had
significantly later cgs than the extension phase, the difference was 4.4 ms ±
2.9 ms (max=10.8 ms, g1=-0.7 ms) and if the extension phase’s cgs were later
the difference amounted to 2.7 ms ± 1.6 ms (max=8.4 ms, g1=-0.6 ms). When
counting all significant differences that exceeded a certain threshold (th) fol-
lowing results were found: the flexion phase was subject to later than the
controls cgs than the controls in 64 (85.3% of all significant differences) and
42 (56.0%) cases by th = 2 ms and th = 5 ms, respectively. In 14 (43.8%) and
3 (9.4%) cases the significant differences between flexion phase and control
were in mean smaller by 2 ms and 5 ms (th). For the comparison between
the flexion and extension phases in 61 (73.5%) and 34 (41.0%) cases the cgs
in the flexion phase were later than in the extension phase by 2 ms and 5
ms, respectively and in 19 (44.2%) and 7 (16.3%) cases the extension phase
had longer cgs then the flexion phase by 2 ms and 5 ms, respectively. In 38
(58.5%) and 14 (21.5%) cases the extension phase was later than the controls
by 2 ms and 5 ms, respectively, and in 21 (40.4%) and 2 (3.8%)t he extension
phase was earlier than the controls by 2 ms and 5 ms, respectively.
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Chapter Four

Discussion

The human lumbosacral spinal cord isolated from descending modulations
can generate a variety of stable rhythmic EMG patterns in the lower limbs in
response to non-patterned, tonic posterior root stimulation. Dimensionality
reduction by non-negative matrix factorization of the EMG activities across
muscles and subjects revealed that the rich repertoire of rhythmic behavior
could be explained by the combination of a small set of common stereotyped
rhythmic activation patterns. The EMG profiles across all analyzed segments
of rhythmic activity were best reproduced by a linear combination of 3 to
4 simple basic patterns. Even a two factor model with two sinusoidal-like
basic activation patterns with a reciprocal relation of their temporal struc-
ture could explain a substantial amount of the total variance of the EMG
data. The basic activation patterns peaked during either of two alternating
phases of the rhythm cycle resembling extension and flexion phases. The
third and fourth pattern would split the flexion and extension phases, respec-
tively, into two basic patterns. Differences in the neural control of the flexion
and extension phases comprising rhythmic activity was found by the second
step of analysis, that was made possible due to the characteristic stimulus-
triggered mechanisms of motor output generation. Analysis of latencies of
series of stimulus-time related CMAPs constituting the rhythmic EMG ac-
tivities demonstrated that the central spinal processing of the input signals
provided by SCS were statistically associated with a longer delay during the
flexion than the extension phases.

The research model was the human lumbosacral spinal cord chronically iso-
lated from volitional motor control by traumatic spinal cord injury. Clinical
and neurophysiological assessments were conducted to identify and character-
ize potential supraspinal contribution to the central state of excitability of
lumbosacral spinal cord circuitries. None of the subjects demonstrated clin-
ically evident voluntary muscle contractions below the lesion level and none
of them had the ability to volitionally induce task-appropriate EMG activity
by the volitional attempt of performing single-joint motor tasks. In 4 of the
7 subjects that showed rhythmic EMG activities for 10 seconds or longer in 4
ipsilateral muscle groups there was detectable EMG activity below the level
of lesion in response to reinforcement maneuvers (Sherwood, Dimitrijevic, &
McKay, 1992; Sherwood, McKay, & Dimitrijevic, 1996), the other 3 did not
respond with EMG activity in the lower limbs to reinforcement maneuvers.
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Thus, the sample includes also neurophysiologically motor complete SCI sub-
jects. This means that it is not necessary that supraspinal influence is present
for the lumbar spinal cord to respond with rhythmic EMG activity to posterior
root stimulation.

4.1 Rhythms and patterns

In this first part it was shown that the human lumbar spinal cord can generate
a variety of rhythms and patterns of motor outputs to the otherwise paralyzed
lower limbs. The rhythm frequencies were identical across all muscle groups in
a given EMG segment. Locomotor-like patterns defined by reciprocal relation
between agonists and antagonists were rare, while co-activation between all
muscle groups occurred most frequently. Different mixed-synergy patterns
made up the remaining cases. The variety of rhythmic patterns could be
reproduced by a linear combination of 3–4 basic components with appropriate
weights. The model with 2 reciprocal sinusoidal-like components, one peaking
in the extension and one in the flexion phase, accounted for 83.2% of variance
across all muscles and EMG samples. Three basic components, one in the
extension, and two in the flexion phase (peaking at 15% and 75% of the
flexion phase, respectively) explained 90.8% of the variance and were favored
by the Akaike Information Criterion. A 4-component solution introduced a
similar decomposition of the extension-phase activity, accounted for 94.4% of
variance.

Rhythmic involuntary contractions of multiple lower limb muscles bilater-
ally called spinal myoclonus can occur in a very small number of people with
traumatic chronic SCI under certain conditions (Calancie et al., 1994; Calan-
cie, 2006). The patterns are characterized by individually highly reproducible
period and rate of rhythmicity (very stereotyped). The contraction rates are
between 0.3 Hz–0.5 Hz. Involuntary contractions with reciprocity between
agonists and antagonists have been observed only in motor incomplete spinal
cord injured subjects, while co-activations dominated also in these subjects.
The involuntary activities were initiated by extending the hips of the subjects
in a supine position and were thus triggered by ‘externally induced’ peripheral
input. They all had injuries to the cervical spinal cord and nociceptor input
to the lumbosacral enlargement due to some other pathology, most probably
increasing spinal cord excitability. Here we have shown that the lumbar spinal
cord networks, when activated by SCS, can produce co-activation patterns as
well as a variety of patterns with reciprocity between pairs of muscles in mo-
tor complete SCI people. Slow (2.6 km/h) and fast (6.0 km/h) gate of adults
with intact CNS involve rhythm cycle frequencies of 0.77 Hz to 1.31 Hz (1.54
to 2.61 steps per second; Oberg, Karsznia, & Oberg, 1993). All the analyzed
data fall into these rhythm cycle ranges.

The constant phase relation of rhythmic outputs to one lower limb sug-
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gests a common, plurisegmental rhythm generator, and the various EMG pat-
terns indicate separate stereotypic pattern formation modules. These neural
circuitries possess many of the necessary components to generate functional
locomotor activity (Grillner, 2011). A similar method for the decomposition
of rhythmic activities was applied to EMG patterns generated during walking
of humans of different ages (Dominici et al., 2011). They identified 2 basic
patterns that explained neonatal stepping (when an infant is held upright,
coordinated walking movements are elicited by tactile stimuli to the plantar
surface; McGraw, 1940; Zelazo, Zelazo, & Kolb, 1972; Okamoto, Okamoto,
& Andrew, 2001). These two basic patterns are arguably similar to the here
presented two pattern model. From toddler up to adult human walking, four
basic patterns were needed to explain the resulting EMG patterns (Dominici
et al., 2011). The peaks of the basic patterns are similarly distributed as in
the here presented four factor model. The basic patterns of the adult human
have specific shapes that were not observed in rhythmic activities of motor
complete spinal cord injury subjects under epidural posterior root stimulation.
Thus, it might be hypothesized that the lumbar spinal cord disconnected from
suprasegmental (brain, brainstem, cervical lumbar cord) input possesses sim-
ilar capabilities to express motor patterns as toddlers (the patterns of the
toddlers were shown to be similar to those of monkeys, cats and rats). Yet,
there is a lack of coordination between the muscles. Numerous counts of co-
activation of flexor and extensor muscles were observed as well as expressions
of rather ‘unphysiological’ combination of patterns. Such coordination may
require inputs from supraspinal centers as well as movement related feedback
from periphery.

4.2 Reflex latencies

PRM reflexes that constituted locomotor-like lower limb muscle activity gen-
erated by sustained SCS in motor complete (ASIA A and B) SCI subjects have
been explored. The motor patterns were shaped by amplitude modulations
of the successive PRM reflexes, i.e., by rhythmic variations of the size of mo-
toneuron populations responding to the invariant stimulation. Bursts of short-
latency PRM reflexes characterized extension-like phases. During flexion-like
phases of rhythmic activities, the short-latency PRM reflexes were replaced by
PRM reflexes with increased latency that were otherwise not present. Similar
prolonged latencies were also observed during the extension phase but less
frequently.

Previously, it has been shown that epidural stimulation of the lumbar
spinal cord with low stimulation frequencies (2 Hz–5 Hz) evokes monosynap-
tic PRM reflexes in the lower limb muscle groups of SCI subjects (Rattay
et al., 2000; Minassian, Jilge, et al., 2004; Minassian, Persy, Rattay, Pinter,
et al., 2007). The same posterior root afferents are also directly activated with
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higher stimulation frequencies (10 Hz and higher), although the CMAPs of
the responses are modulated in their amplitude, shape and/or latency. This
modulation is caused by neural networks, transynaptically activated by the
posterior root stimulation. Two different types of functional motor outputs
were observed that were dependent on the stimulation frequency. Stimulation
of 5 Hz–16 Hz produced a bilateral extension movement with a characteristic
motor patterns (Jilge, Minassian, Rattay, & Dimitrijevic, 2004). The PRM
reflexes constituting the extension like patterns were amplitude-modulated
and of short latency, comparable with latencies of PRM reflexes in response
to 2 Hz stimulation. The width of the CMAPs was reduced. With higher
stimulation frequencies of 20 Hz and more reciprocal, rhythmic activation of
lower limb muscle groups, i.e. locomotor like activity, can be observed (Dim-
itrijevic et al., 1998b; Minassian, Jilge, et al., 2004). It has been reported that
during rhythmic locomotor like activity the tibialis anterior muscle group can
exhibit prolonged latency responses (Minassian, Jilge, et al., 2004; Minassian,
Persy, Rattay, Pinter, et al., 2007). Furthermore, Gerasimenko, Daniel, et al.
(2001) described a similar finding in tibialis anterior, when eliciting rhythmic
activity of ankle flexors and extensors in chronic paraplegic persons by SCS
with 25 Hz–40 Hz. Recent studies investigated SCS-facilitated locomotion
on a moving treadmill in spinal rats (Gerasimenko, Ichiyama, et al., 2007;
Gerasimenko, Roy, & Edgerton, 2008; Lavrov et al., 2008). These exper-
iments revealed differences in the EMG characteristics between the medial
gastrocnemius and TA during stepping. Monosynaptic responses were promi-
nent in medial gastrocnemius, whereas the TA motor pools were activated
predominantly polysynaptically in response to epidural SCS. Moreover, when
the semitendinosus muscle was bifunctionally activated in the spinal rat, the
extensor bursts during stepping were composed of monosynaptic responses to
SCS, while the flexor bursts of the same muscle were associated with a predom-
inance of polysynaptically evoked responses (Gerasimenko, Roy, & Edgerton,
2008). These results demonstrate a striking similarity to the data presented
here. Lavrov et al. (2008) suggested that the delayed responses to SCS re-
flected synaptic events of spinal locomotor networks.

Here, all identifiable latencies of CMAP responses constituting the bursts
as well as occurring in-between the bursts of all muscle groups were ana-
lyzed. Prolonged latency CMAP responses occurred most frequently during
the flexion phase across all muscles. Tibialis anterior had the highest number
of prolonged responses whereas there were very few occurrences of prolonged
latencies in the hamstring muscle group.

The occurrence of these reflexes has to be due to the reorganization of reflex
systems during rhythmicity, since the stimulation site and intensity was kept
constant, the stimulated structures and amount of input was invariable. This
reorganization involves several mechanisms including the emergence of phase-
dependent polysynaptic excitation of flexor motoneurones and concomitant
phase-dependent suppression of short-latency reflex pathways.
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Candidate interneurons for mediating these effects are chains of excitatory
interneurons interposed between the directly, electrically stimulated afferents
and the motoneurons, and interneurones mediating presynaptic inhibition of
group I afferents, respectively. Both types of interneuronal populations are
activated in phase mainly during the flexor-mode of lumbar cord network
oscillations. According to Jankowska (2001), their activation in a specific
phase of the rhythmic cycle distinguishes them as locomotion-related neurons.

The patterned amplitude modulations of the PRM reflexes that resulted in
the burst-like shapes of the EMG activity alternating with phases of low activ-
ity or silent periods were discussed previously (Minassian, Jilge, et al., 2004;
Minassian, Persy, Rattay, Pinter, et al., 2007). A postsynaptic inhibitory
mechanism could account for such modulations of the overall motoneuron
excitability thereby sculpting their firing patterns. Candidate last-order in-
terneurons that can provide the rhythmic inhibition of individual motoneu-
ron populations during the inactive phase of rhythmicity are Ia inhibitory
interneurones (Jankowska, 2001; Rybak, Shevtsova, Lafreniere-Roula, & Mc-
Crea, 2006). However, inhibitory mechanisms alone can not account for the
formation of the patterns, since PRM reflexes within bursts could attain larger
amplitudes than the unconditioned control response to the first stimulus of
the tonic train of stimuli. The controls were monosynaptic PRM reflexes
with their amplitudes depending on the applied stimulus intensity determin-
ing the population size of depolarized Ia afferents (Lloyd, 1943; Minassian,
Jilge, et al., 2004). PRM reflexes with amplitudes larger than these controls
must have been subject to some additional excitatory sources that provided
rhythmic drive to the motoneurons.

Single elements of the potential mechanisms controlling the state and phase
dependent reorganization of reflex systems as well as the motoneurone ex-
citability can be in principle explained by segmental effects at multiple levels
of the lumbosacral cord. On the other hand, the observation that EMG bursts
of all muscles occurred with the same rhythm within a given pattern, inde-
pendently whether the pattern was locomotor or non-locomotor-like, clearly
suggests a plurisegmental control mechanism. It was previously documented
that the oscillating lumbar cord networks have the capacity of generating a
variety of cycle frequencies (Dimitrijevic et al., 1998b). The same finding was
reproduced here. Despite of this, the different muscle groups did not show
independent cycle periods during a given rhythmic pattern. Neurons project-
ing over several segments like propriospinal tract neurons could account for
coordinating activity at different levels of the lumbosacral cord.

4.3 Clues to the human locomotor networks

The question arises of what functional structures control the reorganization
of reflex systems, sculpt the motoneuron firing patterns, and provid coordi-
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nation at different segmental levels to generate complex rhythmic motor pat-
terns. A consideration of the above mentioned characteristics of the putative
functional control structures leads to suggest the activation of pattern gen-
erating locomotor-related neural circuits intrinsic to the human lumbar cord.
These putative functional circuits were termed the lumbar locomotor pattern
generator (LLPG) in previous work (Minassian, Jilge, et al., 2004; Minassian,
Persy, Rattay, Pinter, et al., 2007). The LLPG must have been activated by
relatively simple tonic signals initiated in large diameter afferents, probably of
group I and II large diameter afferents within the posterior roots. Thus, one
pre-condition of the hypothesis is that group I and II afferents have access to
the locomotor-related interneuronal structures and can activate them.

Group I and II afferents make direct synaptic contacts with a variety of
functionally identified and recognizable spinal interneurons, like inhibitory in-
terneurons, interneuons within di-, oligo-, and polysynaptic excitatory path-
ways, as well as with interneurons mediating presynaptic inhibition (Jankow-
ska, 1992; Jankowska, 2001; Jankowska & Hammar, 2002). Thereby, nerve
impulses from a given fiber type reach interneurons of several pathways, and
several types of fibers co-excite common interneurons (Jankowska, 1992). It
can be expected that excitation of the various afferents by spinal cord stim-
ulation can—due to the axonal projections and connectivity—exert excita-
tory action on these spinal interneurons by synaptically evoked depolarization
(Guru, Mailis, Ashby, & Vanderlinden, 1987; Hunter & Ashby, 1994). Dur-
ing 2 Hz-stimulation, the low rate of synchronized afferent input was probably
not efficient to trans-synaptically depolarize neurons other than motoneurons.
Another explanation of the detection of a resting state of the central lumbar
structures at 2 Hz might be the long inter-stimulus interval, with most of
the effects of a preceding stimulus decayed entirely. When the stimulation
frequency is increased, the effectiveness of elicited nerve impulses from affer-
ents to activate interneurons increases due to temporal summation, especially
when they act together with delayed nerve impulses from various longer cen-
tral spinal pathways that co-excite common interneurons.

A well established evidence demonstrating that afferents are projecting to
spinal locomotor networks comes from an experimental paradigm investigating
the ability of afferents to perturb (reset) the locomotor cycle during induced
fictive locomotion. In these experiments, locomotion is generated either by
intravenous administration of L-dopa to the acute spinal cat or by stimula-
tion of the mesencephalic locomotor region in the decerebrate cat (Hultborn,
Conway, et al., 1998). At specific times of the locomotor cycle, brief stimulus
trains are delivered to a peripheral nerve. If a stimulus leads to an interruption
of the regular locomotor rhythm that subsequently restarts in a coordinated
fashion, then the activated afferents must have access to the locomotor net-
works. The ability of afferents within a given peripheral nerve to affect flexor
and extensor activity throughout the limb and to influence the locomotor cy-
cle timing is strong evidence for afferent actions exerted through a common
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network (Rybak, Stecina, Shevtsova, & McCrea, 2006). Based on this experi-
mental paradigm of resetting, various afferent systems like group I and group
II muscle afferents and cutaneous afferents from extensor and flexor muscles
have been shown to have direct access to the spinal rhythm-generating cir-
cuitry (Rybak, Stecina, et al., 2006). Effective locomotor behavior requires
sensory feedback from the moving limb to adapt to the environment. The
interaction of sensory input with human spinal networks in the generation of
locomotor patterns was studied in clinically complete and incomplete spinal
cord injured subjects during supported treadmill stepping. It was shown that
locomotor-related spinal neural circuits exhibit adaptive capacities by utilizing
input from load receptors as well as from velocity-dependent afferents during
stepping (Harkema et al., 1997; Beres-Jones & Harkema, 2004).

It can be concluded that there is evidence in the experimental animal that
large-diameter afferents from extensors and flexors project to the spinal central
pattern generator for locomotion. One might assume that also in humans,
afferent systems and spinal rhythm-generating networks are integrated within
the lumbar cord and can influence and modify the performance of each other
(Hultborn & Nielsen, 2007).

To interpret this fact in the context of the present study, it can be sug-
gested that the large-diameter afferents within the lumbar posterior roots
depolarized by the tonic spinal cord stimulation do have access to the LLPG.
Assuming a half-center architecture of the LLPG, such stimulation would pro-
vide a common excitatory tonic drive to the flexor and extensor half centers,
due to the axonal projections and connectivity of the various afferents of mul-
tiple cord segments coming from flexors and extensors. There is a general
agreement that such relatively simple tonic signals can activate the central
pattern generator for locomotion (Pearson & Gordon, 2000; Parker, 2009).
The input provided to the different half-centers and levels of the LLPG will
be a rather synchronized tonic input with frequencies corresponding to the
spinal cord stimulation frequencies. All rhythmic activities analyzed in the
present study were elicited with frequencies of < 42.5 Hz. These frequencies
are in a similar range as shown for descending drive signals from suraspinal
motor structures which can act to initiate stepping by exerting an energizing
action on the relevant spinal circuits (Armstrong, 1988).

The assumption of a half-center architecture of the LLPG helps to ex-
plain the asymmetrical organization of central spinal pathways mediating the
rhythmic activity in the extensor and flexor muscles as described in the present
manuscript. The extensor mode of the oscillating state of lumbar cord net-
works based on the direct, most probably monosynaptic, drive from afferents
to extensor motoneurons. The firing patterns were sculpted by additional in-
hibitory and excitatory influence governed by the LLPG and converging on
the extensor motoneurons. Thereby, the LLPG was activated by axonal col-
laterals of the afferents providing the direct drive to the motoneurons, or of
concomitantly stimulated fibers of other afferents types.

49



4. Discussion

The flexor mode was characterized by a polysynaptic drive of the flexor
motoneurons, that was accompanied by presynaptic inhibition acting on the
axonal branches of group-Ia afferents directly synapsing on flexor motoneu-
rons. There are two hypothetical excitatory interneurone populations that
could have mediated the polysynaptic drive. The mediating interneurones
could be part of polysynaptic reflexes outside of the LLPG that were disin-
hibited/facilitated by the flexor half center. In this case, such reflex path-
ways should exist for each of the studied muscles and they must have been
simultaneously opened during the flexor mode for all muscles being active.
Another possible explanation for the polysynaptic drive is that the delayed
afferent-evoked excitation of flexor motoneurones was mediated by the flexor
half center of the LLPG. The stimulated afferents were thus acting on flexor
motoneurones through the human spinal rhythm generators. A similar ex-
planation was suggested for the reflex actions of extensor group I afferents
during induced locomotion in cat preparations. Stimulation of these afferents
can evoke extension enhancement during locomotion via at least two types
of excitatory reflex pathways that cannot be detected in the absence of lo-
comotion. In addition to a disynaptic excitation, extensor group I afferents
also evoke a longer latency depolarization of extensor motoneurones. This de-
layed excitation is transmitted through the spinal rhythm generator and more
particularly, through the extensor half-center (Gossard, Brownstone, Bara-
jon, & Hultborn, 1994; Hultborn, Conway, et al., 1998; McCrea, 1998, 2001;
Hultborn & Nielsen, 2007). One should consider that the latter cited results
were obtained in experimental animal models utilizing different methods and
paradigms than in the present manuscript. Actually, these studies revealed
reflex pathways through the the extensor half-center of the CPG, while it is
suggested that the polysynaptic PRM reflexes were mediated via the flexor
half-center of the LLPG. However, these experimental studies stress that it
is plausible to assume the direct involvement of locomotor pattern generating
networks in afferent-evoked responses under appropriate conditions.

The human LLPG activated by tonic spinal cord stimulation exhibits dif-
ferences in the organizations of the putative extensor and flexor half centers.
Analogous differences in the circuitry that generates extension and flexion
during spinal cord stimulation-induced locomotion were found in spinal rat.
It was suggested that this system is based on the direct driving of the extensor
motoneurons, while for driving the flexors the activation of polysynaptic net-
works is necessary (Gerasimenko, Ichiyama, et al., 2007; Gerasimenko, Roy,
& Edgerton, 2008).

4.4 Significance

During spinal cord stimulation-induced rhythmic activity, locomotor-related
polysynaptic PRM reflexes were identified that could not be detected in a
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resting state of the lumbar cord networks. It can be suggested that their
occurrence was due to the reorganization of reflex systems, including phase-
dependent opening of new reflex pathways and suppression of reflexes operat-
ing at rest. During the induced rhythmic activities, a plurisegmental control
mechanism for coordinating activity at different levels of the lumbosacral cord
was proposed. These modifications hint on the existence and the activity of
pattern generating locomotor-related neural circuits intrinsic to the human
lumbar cord. In the attempt to understand the origin of the PRM reflexes,
some insight could be gained into internal organization of the human loco-
motor circuitries. The polysynaptic PRM reflexes could have been mediated
through or controlled by the flexor half center of the pattern formation net-
works, thus the interneurones interposed in these reflex pathways might be
part of the human locomotor circuits. The relatively short latency of these
reflexes might facilitate the identification of the responsible interneurones in
future studies. The change of the central lumbar cord function from a resting
to a rhythmic state required the increase of stimulation frequency. Further-
more, the identification of basic patterns that can reproduce the EMG pat-
terns of all muscle groups, in combination with equal rhythm frequencies over
all muscle groups hint at a organization with a common rhythm generating
network, at least per leg, and multiple pattern formation networks. It can
be hypothesized that the human lumbar spinal cord possesses many capabil-
ities, beyond rhythm generation, necessary for walking, but lacks the ability
to coordinate them. In order to achieve functional recovery of locomotion
by biological repair, knowledge on the function of lumbar cord networks is
essential, since they processes arriving excitation into motor unit firing. It is
conceivable that this methodology will not only help to understand how the
human spinal machinery functions, but could be crucially important to deter-
mine how to design interventions that may help restore function. Furthermore,
the fact that the EMG activities can be reproduced by a set of rhythmically
activated basic patterns that are similar (at the very least in their amount) to
those comprising EMG activities of gait in healthy people suggests that the
lumbar spinal cord harbors circuitries that are capable of generating move-
ments beyond those ascribed to a CPG. Thus, there is additional evidence that
the lumbar cord is a viable target for SCI rehabilitation, which with recent
methods can be accessed transcutaneously (Minassian, Persy, Rattay, Dim-
itrijevic, et al., 2007; Danner, Hofstoetter, Ladenbauer, Rattay, & Minassian,
2011; Minassian, Hofstoetter, Tansey, & Mayr, 2012; Danner, Hofstoetter, &
Minassian, in-press).
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Computer simulation
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Chapter Five

Introduction

Spinal interneurons provide the large majority of inputs to motoneurons (Ed-
gley, 2001). They process the neural signals arriving from brain structures
to the spinal cord, and integrate sensory feedback information when motor
outputs are generated. To reveal intrinsic functional capacities of interneu-
ronal systems, they can be isolated from supraspinal and peripheral inputs
under experimental conditions in animals. They are then artificially activated
by simple tonic, i.e. non-oscillating, electric or pharmacological stimulation
to form functional circuitries. Organizations of neuronal populations with so-
phisticated locomotor control capacities have been demonstrated under such
conditions. These central pattern generators (CPGs) can produce rhythmic
alternating flexion and extension between the different muscles of a limb to
generate locomotion, even if the spinal cord is disconnected from the brain as
well as isolated from sensory feedback (Grillner, 1981; Guertin, 2009, 2013).

Spinal locomotor CPGs have been identified in a large number of species
including invertebrates (Marder & Calabrese, 1996), primitive vertebrates
(Roberts, Soffee, Wolf, Yoshida, & Zhao, 1998; Grillner, 2003), mammals like
cats (Grillner, 1981; Rossignol, 1996), as well as nonhuman primates (Hult-
born, Petersen, Prownstone, & Nielsen, 1993; Fedirchuk, Nielsen, Petersen, &
Hultborn, 1998; Vilensky & O’Connor, 1998).

The locomotor networks in invertebrates and primitive vertebrates have
been revealed in detail through systematic studies, due to the relatively low
complexity of the model’s nervous system. In the lamprey, the neurons com-
prising the locomotor CPG as well as their synaptic interactions have been
identified, and the involved transmitters and receptors, membrane properties
and different types of ion channels have been analyzed (Grillner, 2003). In
this prototypical vertebrate model system it is possible to understand CPG
mechanisms from the cellular basis to the network level. In higher verte-
brates, classical anatomical and electrophysiological techniques and systematic
recordings of identified interneurons and their target neurons become increas-
ingly complex. In mammals, many details of the basic structure of spinal
CPGs, the interneurons constituting the networks as well as the interactions
between these neuronal populations, are thus not known (Hultborn, Conway,
et al., 1998; Kiehn, 2006). The understanding of the mammalian CPG is
rather based on conceptual schemes. These models reproduce observed ex-
perimental phenomena and give explanations for some CPG features. The
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half-center model was proposed by Brown (1914) following the early finding
that the isolated cat spinal cord can generate rhythmic bursts of reciprocal
activity in flexor and extensor motoneurons of the hind limb (Brown, 1911).
The half-center model assumes an intrinsic organization of two populations of
excitatory interneurons, an extensor and a flexor half-center, with mutual in-
hibition between them. Alternating activity in the half-center populations of
interneurons results in respective activity in flexor and extensor motoneurons
through direct projections (Rybak, Shevtsova, et al., 2006; McCrea & Rybak,
2008).

An indirect approach to investigate the intrinsic organization of the mam-
malian CPG relies on the fact that stimulation of a number of sensory path-
ways influence (‘reset’) the locomotor cycle during induced fictive locomotion
(Hultborn, Conway, et al., 1998). Locomotor CPGs and reflex circuits appear
to be closely integrated within the spinal cord and can modify the operation of
each other (McCrea, 2001). In fact, there is a reorganization of spinal reflexes
during locomotion in animal preparations. These changes involve the sup-
pression of reflex pathways that are active at a resting, non-locomotor state
of spinal cord circuits and the recruitment of otherwise inactive, polysynaptic
spinal reflexes that are directly linked to the operation of the locomotor CPG
(Gossard et al., 1994; Hultborn, Conway, et al., 1998). Insight from the effects
of afferent stimulation together with the alteration of spinal reflexes can thus
contribute to the understanding of the mammalian locomotor CPG (Rybak,
Shevtsova, et al., 2006; Rybak, Stecina, et al., 2006; McCrea & Rybak, 2008).

In humans, the existence of spinal locomotor CPGs cannot be demon-
strated with the same clarity as in animal experiments. The human spinal
cord cannot be studied in complete isolation from descending as well as from
afferent feedback input. Yet, some elements of locomotor pattern generating
circuits in the human spinal cord have been identified (Roby-Brami & Bussel,
1987; Bussel et al., 1988; Calancie et al., 1994; Calancie, 2006).

When epidural spinal cord stimulation (SCS) became a clinical method for
the control of spasticity in the lower limbs of spinal cord injured individuals
(Dimitrijevic, Gerasimenko, & Pinter, 1998a; Pinter et al., 2000), it provided a
means of applying continuous stimulation of the posterior structures of the up-
per lumbar cord segments (Rattay et al., 2000). These spinal levels correspond
to the respective lumbar segments in the rat (Gerasimenko, Roy, & Edgerton,
2008) and cat spinal cord (Barthélemy, Leblond, & Rossignol, 2007), which
are critical for hind limb locomotion. Indeed when tonic epidural stimulation
was applied to the lumbar spinal cord in humans with complete spinal cord
injury, stepping-like activity could be generated in the paralyzed lower limbs
(Dimitrijevic et al., 1998b). The characteristic feature of a pattern generator
was thus demonstrated in the human lumbar spinal cord—the processing of
tonic neural signals into coordinated oscillating motor outputs (Pearson &
Gordon, 2000).
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Subsequent studies showed that the locomotor-like EMG activities in-
duced by SCS were composed of series of compound muscle action potentials
(CMAPs; Minassian, Jilge, et al., 2004). To be clearer, within the EMG
activity induced by SCS, individual synchronous events can be clearly dis-
tinguished and can be unequivocally related to stimulus that triggered them
(see figure 5.1). In the intact nervous system on the other hand, volition-
ally induced motor-outputs recorded from the muscles, display a so-called in-
terference pattern reflecting various overlapping frequency components. The
single responses within the locomotor-like EMG activities induced by SCS
were identified as posterior root-muscle (PRM) reflexes—responses elicited in
large-diameter posterior root afferents and detected from the muscles to which
the responses were directed (Minassian, Jilge, et al., 2004; Minassian, Persy,
Rattay, Pinter, et al., 2007). Series of PRM reflexes were subject to rhythmic
modulation processes in response to the constant stimulus trains.

It is hypothesized that the repetitive, electrically induced, inputs via mul-
tiple posterior roots evokes PRM reflexes and concomitantly activated lumbar
locomotor circuits via collateral branchings of the stimulated afferents. When
set into action, the locomotor networks in turn modify the PRM reflex activ-
ity. With other words, the variation in CMAP shape, amplitude and latency
of successively elicited PRM reflexes in response to the constant input train,
reflects the influence of interneuronal systems with intrinsic locomotor capac-
ities.

EMG recordings induced by spinal cord stimulation help to deduce struc-
tural as well as functional information of locomotion pattern generation system
in the human (see figure 5.1). Rhythmic activities of motorpools, resulting
from a direct drive of a pattern generator should include firing frequencies
that depend on the system properties of the oscillating interneural popula-
tions. Within the data of rhythmic activities, the motor outputs instead reflect
the externally imposed frequencies of the spinal cord stimulation (by the rate
of successively elicited CMAPs). An interpretation of this fact can be that
the excitatory actions of the CPG are at a subliminal level. CPG-excitatory
actions might periodically increase the excitability of the immediate target
neurons without bringing them to firing threshold level. These neurons in the
subliminal fringe are then forced to discharge by the action of the electrically
stimulated afferents due to spatial facilitation. This assumption is illustrated
in figure 5.2.

It is proposed that the pattern generator in humans, activated by spinal
cord stimulation, modulates the PRM-reflex pathway and produces sub-thres-
hold postsynaptic potentials, instead of generating motor output by itself like
in the classical ‘half center’ model. Such a mechanism has also been shown in
animals (Degtyarenko, Simon, & Burke, 1998). With intracellular recordings
Kinoshita and Yamaguchi (2001) showed time-locked, spike like activity of
motoneurons that were rhythmically modulated in decerebrated cats during
fictive locomotion. Intracellular recordings during stimulation of the mesen-
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Figure 5.2: Illustration of the assumed effects of the operation of the pattern
generator. A: two separate effects are proposed to be involved:(blue) resting
membrane potential oscillations of the motoneurons, due to the excitatory and
inhibitory influence of a various last-order interneurons driven rhythmically
by the CPG or by direct CPG influence and (red) concomitant modulation
of the stimulus locked excitatory post synaptic potentials (EPSPs) produced
by the incoming volleys via posterior root afferents. B and C show how those
to influences sum up at the motoneuronal level and produce stimulus locked
action potentials only during one phase of the oscillations.
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cephalic locomotor region (MLR) of the decerebrated cat showed that the
motoneurons are rhythmically depolarized and hyperpolarized due to exci-
tatory and inhibitory input during the step cycle (Noga, Kriellaars, Brown-
stone, & Jordan, 2003). During the depolarization phase action potentials
were recorded after every MLR-stimulation pulse. Hyperpolarization mostly
inhibited the action potential generation. Thus the excitatory postsynaptic
potentials, produced by tonic MLR-stimulation, are stimulus locked responses
that are rhythmically modulated in amplitude.

Independently, it is well described that with the onset of fictive locomotion
in cats there is a presynaptic suppression of excitatory postsynaptic potentials
produced by primary afferents (Gosgnach, Quevedo, Fedirchuk, & McCrea,
2000). Particularly a tonic excitatory postsynaptic potentials suppression
(generating decreased efficacy) as well as phasic modulation (generating rhyth-
micity) has been observed. Further presynaptic mechanisms, which influence
synaptic transmission from primary afferent neurons, have been shown to in-
fluence various voluntary and reflex movement tasks (Nusbaum, El Manira,
Gossard, & Rossignol, 1999; Rudomin & Schmidt, 1999). Such mechanisms of
presynaptic inhibition are most likely to account for the decrease of amplitude
in the single responses when the pattern generator is active.

Another distinct feature of the pattern recorded with the EMG is that
once the pattern generator is active the latency of the flexor PRM-reflexes
increases up to 10 ms whereas the latency of the extensor muscle stays the
same (part I; Minassian, Jilge, et al., 2004; Minassian, Persy, Rattay, Pinter,
et al., 2007). The data suggest an asymmetrical circuitry with the flexor side
being more complex and including the facilitation/disinhibition of alternative
polysynaptic PRM reflex pathways.

According to De Schutter, Ekeberg, Kotaleski, Achard, and Lansner (2005)
the central role of modeling small neural structures with biologically based
models is to promote synthesis of experimental data from different sources
into a coherent picture of the system under study. The resulting model can
then, for instance, demonstrate how seemingly unexplained phenomena are in
fact a consequence of what is already known. Further the exploration of the
model can lead to unexpected findings and thus can provide important input
for further experiments. Therefore, modeling is an important method for
extracting knowledge from existing data and helps to find the most promising
way for further research (Calabrese & Prinz, 2010).

Simulations are ultimately essential to explore whether a given set of data
actually can account for a given function (De Schutter et al., 2005; Grillner,
Markram, De Schutter, Silberberg, & LeBeau, 2005; Calabrese & Prinz, 2010).
This leads to the necessity of a computer model of the neural structure of the
locomotor pattern generator in humans that incorporates the newly available
data.

Furthermore, the aforementioned human EMG data is ideal for creating
a computer model. It supplies information on the operation of neural cir-
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cuits within the lower spinal cord in isolation from more complex, brain and
brainstem originated signals. Especially the artificial synchronous pulses and
the respective discrete responses grant insight into the workings of the neu-
ral system in between. With pharmacological or more natural activation of
spinal cord structures as on a moving treadmill, only the output is specified
and the input is complex, but with artificial stimulation of the afferent fibers
the input can be tightly controlled. It should be noted that the proposed
modeling is not a “black box” approach, since there is extensive information
of structures and function, responsible for the observed behavior that were
thoroughly investigated in animals.

5.1 Aims

The main goal of this part is to gain insight into the motor repertoire of
the human lumbar cord independent from brain control. This shall be done
using computer modeling to simulate the neural circuits of the locomotion
pattern generator activated by spinal cord stimulation. The model shall test
the hypotheses on the function and structure of the pattern generating circuits
described above.

The complete network model shall contain interconnected neuronal popu-
lations, each simulated with Hodgkin and Huxley (1952)-like formulations and
including realistic firing properties and spike conduction delays. The system
shall be set into action by specific sequences of action potentials transmit-
ted via afferent pathways, representing epidural electrical stimulation. The
time-dependent model behavior shall provide insight into the population sizes
of active neurons in every pool. The system output shall mimic the mea-
sured multichannel electromyographic activity. The model shall test general
principles of formation of interneuronal systems in the isolated spinal cord
and characterize similarities and differences of these principles in human and
animal models.

The specific features that the model should be able to reproduce are the
following:

1. The motor output consists of stimulus triggered responses.

2. Repetitive afferent input produced by SCS at frequency ranges from
20 to 50 Hz evoke rhythmic activity within the motor pools with two
alternating phases (‘flexion’ and ‘extension’; part I; Dimitrijevic et al.,
1998b; Minassian, Jilge, et al., 2004).

3. Frequency ranges from 5 to 15 Hz induce a sustained extension of the
lower limbs, i.e. tonic motor output (Jilge, Minassian, Rattay, Pinter,
et al., 2004).
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4. Single stimuli and frequencies below 5 Hz do not activate the pattern
generator in a manner that it generates rhythmic activity and solely
result in activation of monosynaptic PRM-reflexes (Minassian, Jilge, et
al., 2004; Danner, Rattay, et al., 2011).

5. The model replicates the mechanisms of sub-threshold modification of
the postsynaptic potentials of the motoneurons in cats to test whether
this can also account for the locomotor pattern generation in humans
and what modifications from the classical ‘half center’ model are needed
to reproduce the behavior seen in human studies.

6. The model reproduces the selection of alternative pathways of PRM
reflexes of flexor motoneurons during the locomotor state of the spinal
circuits, i.e. when the pattern generator network is active. It should give
insight in the complexity and properties of the additional pathways.
When the alternative pathway is activated, the flexor side exhibits a
prolongation of the response latencies.

A model shall be developed that captures a description that can be used
to generate experimentally testable hypotheses about the network and not a
model that represents the optimal description of the living network; indeed
such a single description may not exist (Calabrese & Prinz, 2010).
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Methods

The design of the network model is similar to the modeling of spinal circuitry
involved in mammalian locomotor pattern generation from the Rybak and
McCrea group (Rybak, Shevtsova, et al., 2006; Rybak, Stecina, et al., 2006).
The network model is implemented using Brian, a simulator for spiking neural
networks based on python (Goodman & Brette, 2008, 2009) and uses conduc-
tance based models of individual neurons grouped into populations. Small
networks of neurons are attractive objects for modeling using such conduc-
tance based neuron models (De Schutter et al., 2005; Grillner et al., 2005;
Marder, Bucher, Schulz, & Taylor, 2005; Calabrese & Prinz, 2010). Addi-
tional circuits are added to account for the observation in human studies (see
part I). The code used to simulate all models can be found in the appendix.

6.1 Neuron models

Here the models of single neurons are described. All neurons are modeled
using Hodgkin and Huxley (1952)-like formulations for ion channel dynamics.
Each of the interneurons consisted of a single compartment. Motoneurons
include two compartments, one for the soma and one for the dendrite. The
actual surface are of the cells are neglected, thus all conductances are actu-
ally calculated as electrical conductances per area with the unit of siemens
per square meter, currents are calculated as currents per area with the units
ampere per square meter and the capacitance is also given per meter. Due
to the similarity with the Rybak, Shevtsova, et al. (2006)-model the same
nomenclature/model description is used. The motoneurons are modeled after
Booth, Rinzel, and Kiehn (1997). Accordingly, following ionic currents were
incorporated:

1. fast sodium (current: INa, maximal conductance: ḡNa),

2. slowly inactivating (persistent) sodium (current: INaP , maximal con-
ductance: ḡNaP ),

3. delayed-rectifier potassium (current: IK , maximal conductance: ḡK),

4. calcium-N (current: ICaN , maximal conductance: ḡCaN ),

5. calcium-L (current: ICaL, maximal conductance: ḡCaL),
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6. calcium-dependent potassium (current: IK,Ca, maximal conductance:
ḡK,Ca) and

7. leakage (current: IL, constant conductance: ḡK).

The above listed currents were modeled using following equations:

INa = ḡNa ·m3
Na · hNa · (V − ENa), (6.1)

INaP = ḡNaP ·mNaP · hNaP · (V − ENa), (6.2)

IK = ḡK ·m4
K · (V − EK), (6.3)

ICaN = ḡCaN ·m2
CaN · hCaN · (V − ECa), (6.4)

ICaL = ḡCaL ·mCaL · (V − ECa), (6.5)

IKa,Ca = ḡKa,Ca ·mKa,Ca · (V − EK), (6.6)

IL = gL · (V − EL), (6.7)

where Ex is the reversal potential of ionic currents x (i.e. Na sodium, K
potassium, Ca calcium, L leakage), V the membrane potential of the respec-
tive compartment (subscripts “(S)” and “(D)” will be used to denote the
soma and dendrite, respectively) and m and h with the respective indices
corresponding to the ion channel, are the corresponding activation and inac-
tivation variables.

The currents coupling the soma and dendrite compartments of the Booth
et al. (1997)-motoneuron model for the soma (IC(S)) and dendrite (IC(D)) are
given by:

IC(S) =
gC
p

· (V(S) − V(D)), (6.8)

IC(D) =
gC

1− p
· (V(D) − V(S)), (6.9)

where gC is the coupling conductance and p a parameter defining the ratio of
somatic to total surface area.

To model network activity excitatory and inhibitory synaptic currents were
also included into the model with following equations:

ISynE = gSynE · (V − ESynE), (6.10)

ISynI = gSynI · (V − ESynI), (6.11)

where ESynE/−I are the reversal potentials ISynE/−I the currents and gSynE/−I

the conductances of the excitatory and inhibitory synapses, respectively.
The Booth et al. (1997)-motoneuron model includes intracellular Ca2+

kinetics that are described for every compartment separately and are modeled
by following differential equation:

dCa

dt
= f · (−α · ICa − kCa · Ca), (6.12)
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where Ca is the intracellular Ca2+ concentration, f is the fraction of free (to
total) Ca2+, α is a constant that converts the Ca2+ current, ICa, to a Ca2+

concentration, kCa is the the Ca2+ removal rate and t the time.
Rybak, Shevtsova, et al. (2006) added the slowly inactivating, persistent

sodium current (INaP ) to the motoneuron’s dendrite. This addition to the
Booth et al. (1997)-motoneuron model was also included in the present model.
Thus, the differential equations for the membrane potentials of the soma (V(S))
and of the dendrite (V(D)) read as follows:

dV(S)

dt
= −(INa(S) + IK(S) + ICaN(S) + IK,Ca(S) + IL(S) +

IC(S))/C, (6.13)

dV(D)

dt
= −(INaP (D) + ICaN(D) + ICaL(D) + IK,Ca(D) + IL(D) +

IC(D) + ISynE + ISynI)/C, (6.14)

where C is the membrane capacitance.
All interneurons except the excitatory interneurons of the rhythm gener-

ation and pattern formation networks (i.e. RG and PF neuron populations,
respectively) were modeled with only sodium and potassium currents. Thus,
their membrane potentials are described by following differential equation:

dV

dt
= −(INa + IK + IL + ISynE + ISynI)/C. (6.15)

The RG and PF neuron population of the CPG are equal to the other neu-
rons except the addition of the persistent (slowly inactivating) sodium current
(INaP ). This current is an integral part for rhythm genesis in the model (Ry-
bak, Shevtsova, et al., 2006). The membrane potential is characterized by
following differential equation:

dV

dt
= −(INa + INaP + IK + IL + ISynE + ISynI)/C. (6.16)

Injection of current is simulated by adding

Iapp/C (6.17)

to the right side of equations 6.13, 6.15 or 6.16, where Iapp is a time dependent
function of the injected current density (unit µA cm−2).

The activation (m) and inactivation (h) variables of the voltage-dependent
ion channels are given by the following differential equations:

dmx

dt
= (m∞,x(V )−mx)/τm,x(V ), (6.18)

dhx
dt

= (m∞,x(V )− hx)/τh,x(V ), (6.19)
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where i denotes the ion channel name, m∞,x(V ) and h∞,x(V ) are the voltage-
dependent steady-states of the respective variable and τm,x(V ) and τh,x(V )
are the voltage dependent time constants of the respective activation and
inactivation variables. Both τm/h,x(V ) and m/h∞,x(V ) can be written as a
function of the transition rates of the gates of the ion channels α(V ) and β(V ),
with following relations:

τm/h,x(V ) =
1

αm/h,x(V ) + βm/h,x(V )
, (6.20)

m/h∞,x(V ) =
αm/h,x(V )

αm/h,x(V ) + +βm/h,x(V )
. (6.21)

The activation of the two sodium channels is instantaneous, i.e. τm,Na = 0
and τm,NaP = 0. This reduces 6.18 to:

mx = m∞,x(V ), (6.22)

where x is Na or NaP. As a side-note, due to specifics of the integration mecha-
nism and simulation software used equation 6.18 with τm,Na = τm,NaP = 0.001
ms was used for the actual calculation. Furthermore, the activation of the
Ca2+-dependent potassium channels (IK,Ca) is also instantaneous and de-
pends from the Ca2+ concentration Ca of the corresponding compartment:

mK,Ca =
Ca

Ca+Kd
, (6.23)

where Kd is the half-saturation level of the very conductance.

The post-synaptic potentials, as modeled by exponential synapses (for the
verification of the model implementation) and alpha synapses (in the final
model, for everything except the afferent inputs to the motoneurons, which
are modeled as exponential synapses). The conductances of the excitatory
and inhibitory synapses in case of exponential synapses are given by following
differential equations:

dgSynE
dt

= −gSynE/τSynE (6.24)

dgSynI
dt

= −gSynI/τSynI , (6.25)

where gSynE and gSynI are increased by ḡE · wi,j and ḡI · wi,j , respectively,
every time, when a presynaptic spike is arriving at the synapse, where ḡE/I

are conductances that are the same over all connections and wi,j is a specific,
dimensionless weight specific to the connection of the i-th to the j-th neuron.

For the alpha synapses an additional helper variable is introduced for each
type of synapse ghE and ghI . Following differential equations describe the
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alpha synapses:

dgSynE
dt

= −gSynE ∗ 1/τSynE , (6.26)

dgSynI
dt

= −gSynI ∗ 1/τSynI , (6.27)

dghE
dt

= (gSynE − ghE) ∗ 1/τSynE , (6.28)

dghI
dt

= (gSynI − ghI) ∗ 1/τSynE . (6.29)

This time ghE and ghI are increased with the same value when a presynaptic
spike arrives.

In addition, to model the constant drive from the brainstem to the CPG
as described in the model of Rybak, Shevtsova, et al. (2006) equations 6.10
and 6.11 are extended to incorporate an additional constant conductance as
follows:

ISynE = (gSynE + gdriveE) · (V − ESynE), (6.30)

ISynI = (gSynI + gdriveI) · (V − ESynI), (6.31)

where

gdriveE = ḡEd · S(wdmi) · dmi (6.32)

gdriveI = ḡEd · S(−wdmi) · dmi (6.33)

and

S(x) =


x, if x ≥ 0.

0, otherwise
(6.34)

where ḡEd and ḡId are the parameters that define the increase of excitatory
or inhibitory synaptic conductances, respectively, dmi the external input drive
and wdmi its weight.

Presynaptic inhibition is modeled similar to normal exponential synapses
but with additional non-linearity that scales the sum of the synaptic weights
of the synapses influenced by presynaptic inhibition. For every presynaptic
spike that acts on the axons as presynaptic inhibition a helper variable xpre is
increased by a given factor wprei,j and follows following differential equation:

dxpre
dt

= −xpre/τpre (6.35)

the non-linearity Ppre(xpre) transform x into the into the interval [0, 1] with
following equation:

Ppre(xpre) =
1

1 + e6−xpre
. (6.36)

67



6. Methods

Due to the inability of the used simulation software to calculate this equation
it is rewritten as following differential equation:

dPpre(xpre)

dt
=


1

1 + e6−xpre
− Ppre(xpre)


/τPre (6.37)

with a small τPre (0.01 ms). Now the total current of the excitatory synapses
(eq. 6.30) can be written as

ISynE = (gSynE + gdriveE + gSynEPreI ∗ (1− Ppre ∗ f̄pre)) ·
(V − ESynE), (6.38)

where gSynEPreI is the the same as gSynE but only of the synapses under
influence of presynaptic inhibition, while gSynE summarizes all synapses not
influences by the presynaptic inhibition and f̄pre is a factor indicating the
maximal influence of the presynaptic inhibition on the postsynaptic excitatory
potentials.

6.2 Population and network model

Every type of neuron depicted in figure 6.1 is modeled as group of 20 neurons.
Connections between two neuron groups were established in a manner that
if group A has an excitatory or inhibitory connection to group B all neurons
from group A have synaptic connections to all neurons in group B. Two
cases of connections were implemented: i) instantaneous connection, i.e. if
a spike is generated in neuron A1 post synaptic potentials are generated in
all neurons of group B in the next integration step. This was done in order
to be consistent with the model of Rybak, Shevtsova, et al. (2006) and to
prove the correctness of the implementation. ii) an conduction delay (tcdi,j)
was added to all connections from neuron i to j. The conduction delay tcdi,j
was defined for every run by a random gaussian distribution with a defined
mean value and standard deviation as well as cutoffs for minimum (0 ms) and
maximum (10 ms) values. The heterogeneity of the population was modeled
by randomizing the leakage reversal potential (EL) of the individual neuron
groups, again with a gaussian distribution defined by a mean and a standard
deviation. Furthermore, every group of neurons was defined by its individual
set of parameters.

The central part of the model were two half centers (see Brown, 1911,
1914) that generate the rhythmic pattern. Two populations of interneuron
(RG-E for the extensor muscle and RG-F for the flexor muscle) have excitatory
connections to themselves and reciprocally inhibit each other through the path
of inhibitory interneurons (InRG-E and InRG-F). The neurons from the RG-
E/F populations include a slowly inactivating, persistent sodium current that
inhibits the bursting behavior of the neurons after some time and thus the
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other population starts to burst (due to the missing inhibition), resulting in
a rhythmic, alternating bursting behavior of RG-E and RG-F. The RG half
center level is connected to the pattern formation (PF) layer that is similarly
structured but is strongly influence, through excitation and inhibition by the
RG layer and if not otherwise disturbed (externally stimulated, i.e. due to
afferent stimulation or different intensities of MLR drive) the PF layer follows
the rhythm of the RG layer.

The PF populations transmit alternating rhythmic activation to exten-
sor (Mn-E) and flexor (Mn-F) motoneurons and to inhibitory extensor (Ia-E)
and flexor (Ia-F) interneurons. These Ia populations form the second level
of reciprocal inhibition in the system. They provide the rhythmic inhibition
of motoneuron populations during the inactive phase of the step cycle (Mc-
Crea, Pratt, & Jordan, 1980). Further the model also includes extensor (R-E)
and flexor (R-F) Renshaw cells, which receive collateral excitatory input from
the corresponding motoneuron populations and provide feedback inhibition
to the homonymous motoneurons (McCrea, Pratt, & Jordan, 1980; Rybak,
Shevtsova, et al., 2006). The structure of the Renshaw cells (R-E and R-F),
the motoneurons (Mn-E and Mn-F) and the inhibiting interneurons (Ia-E and
Ia-F) are in accordance with extensive work done in anesthetized preparations
(Jankowska, 1992; Rybak, Shevtsova, et al., 2006).

For monitoring of the modulation of the membrane potentials of the mo-
toneurons one additional motoneuron has been introduced in each of the mo-
toneuron groups. This additional motoneuron is equivalent to the others with
the exception that the influence of all ionic currents were neglected. This was
modeled by setting all maximal conductances of the ionic currents to 0. Thus
only leakage and synaptic currents remain.

Afferent input is modeled by 20 metronomes that generate a spike with a
constant frequency (fq). The offset (off) is modeled by a random gaussian
distribution with a mean and a standard deviation.

The drive to the InPath neuron group is modeled as a group of neurons
that generate independent Poisson spike trains with a frequency of fpois.

Spikes were detected when the membrane potential V or V(S) reached a
threshold value of 0 mV (for the reproduction of the Rybak, Shevtsova, et al.,
2006-model with -20 mV). After the detection of a spike new spikes were only
detected if the threshold is exceeded more then 3 milliseconds later1.

Model stability was tested by randomizing initial conditions and repeating
the simulation several times. Stability was judged if in every run, after an
allowed setting period of 20s, the results were qualitatively similar.

1This value was independently assumed since it is not specified in Rybak, Shevtsova,
et al. (2006).
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Figure 6.1: Design of the network model. Every node represents a class pop-
ulation of 20 neurons. All edges represent directed synaptic connections be-
tween all neurons of the source and all neurons of the target population.
Arrows denote excitatory and dots inhibitory synapses. Black lines represent
features present in all simulated models; gray lines features only present in
the Rybak, Shevtsova, et al. (2006) model and colored lines, features that
expand upon the latter. Abbreviations: Mn: motoneurons, R: Renshaw cells,
Ia: Ia inhibitory neurons, InPs: inhibitory neurons of presynaptic inhibition,
RG: rhythm generation neurons, PF,: pattern formation neurons, InRg: in-
hibitory neurons of the rhythm generation network, InPf: inhibitory neurons
of pattern formation network, InPath: inhibitory neurons of the inhibition
of the polysynaptic flexor pathway, -E/-F: neurons part of the extensor and
flexor half, respectively. To reduce computation complexity, InPs neurons
were not modeled, presynaptic inhibition was modeled as originating from the
InPf populations.
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6.3 Simulation

The model was implemented using the simulation software Brian Version 1.4.1
(Goodman & Brette, 2008, 2009, 2013), which bases on Python (http:\\www.
python.org). The utilized Python version was 2.7.5 (64 bit for Mac OS X
10.8.8). An exponential Euler integration mechanism with a time step of 0.1
ms was applied.

6.4 Parameters

In the following the model parameters are listed, beginning with the reproduc-
tion of the Rybak, Shevtsova, et al. (2006) model for validation. All following
model descriptions only list the values that differ from this model.

6.4.1 Replication of Rybak’s model

Table 6.1: Variables of the ion channel dynamics

Ion channel Steady-state (in-)activation variables and time constants

Na+ m∞Na = (1 + exp(−(V + 35)/7.8))−1

τmNa = 0
h∞Na = (1 + exp((V + 55)/7))−1

τhNa = 30/(exp((V + 50)/15) + exp(−(V + 50)/16))

NaP+ m∞NaP = (1 + exp(−(V + 47.1)/3.1))−1

τmNaP = 0
h∞NaP = (1 + exp((V + 59)/8))−1

τhNap = τhNaP,max/cosh((V + 59)/16), τhNaP,max = 1200

K+ m∞K = (1 + exp(−(V + 28)/15))−1

τmK = 7/(exp((V + 40)/40) + exp((−V + 40)/50))

CaN2+ m∞CaN = (1 + exp(−(V + 30)/5))−1

τmCaN = 4
h∞CaN = (1 + exp((V + 45)/5))−1

τhCaN = 40

CaL2+ m∞CaL = (1 + exp(−(V + 40)/7))−1

τmCaL = 40

V is measured in mV, τ in ms

Table 6.1 lists all steady-state activation and inactivation variables as well
as the time constants of all ionic currents, table 6.2 lists all connection weights
and in the following all other parameters are listed.
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Table 6.2: Weights of synaptic connections

Target Source population (weights of synaptic input or drive)

RG-E MLR (1); RG-E (0.0125); RG-F (0.0125); Inrg-E (-0.115)
RG-F MLR (1); RG-F (0.0125); RG-E (0.0125); Inrg-F (-0.115)
Inrg-E RG-F (0.45)
Inrg-F RG-E (0.45)
PF-E MLR(1); RG-E (0.0075); Inrg-E (-0.05); Inpf-E (-0.35)
PF-F MLR(1); RG-F (0.0075); Inrg-F (-0.05); Inpf-F (-0.35)
Inpf-E PF-F (0.2)
Inpf-F PF-E (0.2)
Ia-E PF-E (0.4); Ia-F (-0.1); R-E (-0.1)
Ia-F PF-F (0.4); Ia-E (-0.1); R-F (-0.1)
R-E Mn-E (0.25); R-F (-0.1)
R-F Mn-F (0.25); R-E (-0.1)
Mn-E PF-E (0.5); Ia-F (-0.6); R-E (-0.2)
Mn-E PF-F (0.5); Ia-E (-0.6); R-F (-0.2)

Weights are wij for synaptic input or wdmi for MLR drive. All abbreviations are

explained elsewhere in the text; see also figure 6.1.

General model parameters

• ENa = 55 mV

• Ek = −80 mV

• ECa = 80 mV

• C = 1 µF cm−2

Parameters of synapses

• ESynE = −10 mV

• ESynI = −70 mV

• ḡE = 0.05 mS cm−2

• ḡI = 0.05 mS cm−2

• ḡEd = 0.05 mS cm−2

• ḡId = 0.05 mS cm−2

• τSynE = 5 ms

• τSynI = 5 ms

Neuron parameters
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RG neurons

• ḡNa = 30 mS cm−2

• ḡNaP = 0.25 mS cm−2

• ḡK = 1 mS cm−2

• gL = 0.1 mS cm−2

• EL = −64.0± 0.64 mV

PF neurons

• ḡNa = 30 mS cm−2

• ḡNaP = 0.1 mS cm−2

• ḡK = 1.2 mS cm−2

• gL = 0.1 mS cm−2

• EL = −64.0± 0.64 mV

Motoneurons

• ḡNa(S) = 120 mS cm−2

• ḡK(S) = 100 mS cm−2

• ḡCaN(S) = 14 mS cm−2

• ḡK,Ca(S) = 5 mS cm−2

• gL(S) = 0.51 mS cm−2

• EL(S) = −65.0± 6.5 mV

• ḡCaN(D) = 0.3 mS cm−2

• ḡCaL(D) = 0.33 mS cm−2

• ḡK,Ca(D) = 1.1 mS cm−2

• ḡNaP (D) = 0.1 mS cm−2

• gL(D) = 0.51 mS cm−2

• EL(D) = −65.0± 3.25 mV

• gC = 0.1 mS cm−2

• p = 0.1

• f = 0.01

• α = 0.009 mol C−1 µm−1

• kCa = 2 ms−1

• Kd = 0.2 µM

Other interneurons

• ḡNa = 120 mS cm−2

• ḡK = 100 mS cm−2

• gL = 0.51 mS cm−2
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• EL = −64.0± 3.2 mV (for all interneurons except Inrg)

• EL = −57.52 ± 2.875 mV (for Inrg)

Other parameters

• Iapp = 0 µA cm−2

• dpf−e = 0.5

• dpf−f = 0.5

• drg−e/f = (see text/figure legends)

• f̄pre = 0

All parameters are taken from Rybak, Shevtsova, et al. (2006). The param-
eters for the motoneuron model of Booth et al. (1997) were cross-checked—the
value α was reproduced from Booth et al. (1997). It is assumed that the pre-
sentation in Rybak, Shevtsova, et al. (2006) as α = 0.0009 mol C−1 µm−1

must have been a typing error. Furthermore, it is not specified in the paper
with what method a spike is detected.

6.4.2 Model A

Model A is a derivation of the Rybak, Shevtsova, et al. (2006) model that
replaces the MLR drive by afferent input of variable frequencies. The up-
dated synaptic connections can be found in table 6.3. The activation and
inactivation variables as well as the time constants of the ion channels were
left untouched and in the following the changed parameters are listed, all
non-listed parameters are equal to the previous model.

Afferent input

• fq = 5− 60 Hz

• off = 0 ms± 0 ms

Neuron parameters

RG neurons

• ḡK = 2 mS cm−2

• arg−e = 1

• arg−f = 15
16

PF neurons

• ḡK = 2 mS cm−2

2Rybak, Shevtsova, et al. (2006) reported EL to be 57.5 mV (without the negative sign)
which is most likely a typing error.
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Table 6.3: Weights of synaptic connections: Model A, B and C

Target Source population (weights of synaptic input or drive)

RG-E RG-E (0.0125); RG-F (0.0125); Inrg-E (-0.115); Aff (0.064·arg−e)
RG-F RG-F (0.0125); RG-E (0.0125); Inrg-F (-0.115); Aff (0.064·arg−f)
Inrg-E RG-F (0.45)
Inrg-F RG-E (0.45)
PF-E RG-E (0.0075); Inrg-E (-0.05); Inpf-E (-0.35); Aff (0.064)
PF-F RG-F (0.0075); Inrg-F (-0.05); Inpf-F (-0.35); Aff (0.064)
Inpf-E PF-F (0.6)
Inpf-F PF-E (0.6)
Ia-E PF-E (0.4); Ia-F (-0.1); R-E (-0.1)
Ia-F PF-F (0.4); Ia-E (-0.1); R-F (-0.1)
R-E Mn-E (0.25); R-F (-0.1)
R-F Mn-F (0.25); R-E (-0.1)
Mn-E PF-E (0.5); Ia-F (-0.8); R-E (-0.2); Aff (0.4·amn−e); MnE (pre -0.8)
Mn-F PF-F (0.5); Ia-E (-0.8); R-F (-0.2); Aff (0.4·amn−f); MnF (pre -0.8);

AP2 (0.75); AP2in (pre -0.8)

InPath Poisson (0.5); InPF-E (-2)

AP1 InPath (-2); Aff (0.75)

AP2 AP1 (0.75)

AP2in AP1 (0.75)

Weights are wij for synaptic input. All abbreviations are explained elsewhere in the text.

The arg−e/f s are used to adjust the input to the RG population. Later models incorporate

all features parameters from the previous ones.

Mn neurons

• amn−e = 0.5 or 0.75

• amn−f = 0.5 or 0.75

Other parameters

• tcd = 2 ms± 0.5 ms

6.4.3 Model B

Model B builds upon model A and adds phasic, rhythmically modulated presy-
naptic inhibition to the afferents synapsing to the motoneurons. Furthermore
the input weights from the afferents to the motoneurons are increased. All
parameters are listed in table 6.3 and below.

Mn neurons
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• amn−e = 1.5

• amn−f = 1.5

• f̄pre = 0.65

6.4.4 Model C

Model C builds upon model B and adds an additional pathway from the af-
ferent input to the motoneuron on the flexor side that is desinhibited by the
pattern formation network when the CPG is active at the flexor side. This
pathway is quiescent during the non-locomotor states. To reproduce this be-
havior a similar approach of disinhibition of alternative reflex pathways as in
Rybak, Stecina, et al. (2006) is applied. The hypothetical InPath population,
which inhibits the interneurons along the polysynaptic path, has been included
in the model. Under non-locomoting conditions, excitatory external drive pro-
duces tonic activity of this population that prevents signal transmission along
the polysynaptic pathway. However during the flexor phase of locomotion
(i.e. when the RG-F, PF-F populations and the inhibitory InPf-E population
are active), the InPf-E population inhibits InPath thereby removing the In-
Path inhibition of the polysynaptic pathway. This disinhibition permits the
selection of the polysynaptic pathway that produces the higher delay of flexor
muscle responses. This pathway has several synapses in between is modeled
as two neural populations with feed forward connections. The monosynaptic
pathway is inactivated by presynaptic inhibition of inhibitory interneurons
along the polysynaptic pathway when the disinhibition is active. The connec-
tivities are described in table 6.3 and additional parameters are listed below.

Mn neurons

• f̄pre = 0.65 (for the extensor side)

• f̄pre = 0.95 (for the flexor side)

Poisson neuron group (tonic drive)

• fpois = 75 Hz
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Chapter Seven

Results

First, the implementation was verified by replicating simulations of Booth et
al. (1997) and Rybak, Shevtsova, et al. (2006). Figure 7.1 shows the sim-
ulation of a bistable firing pattern in response to an injected current ramp
that should simulate apamine or 5-HT stimulation of the motoneuron as pre-
sented in figure 5 of Booth et al. (1997). The results are qualitatively identical
and quantitatively within the margins of error that arise from using different
integration mechanisms and spike detection algorithms.

The main properties of the model of Rybak, Shevtsova, et al. (2006) were
replicated. Figures 7.2 and 7.3 illustrate the ability of the model to replicate
resetting and non-resetting deletions. Resetting deletions occur when the pop-
ulation of rhythm generating neurons (RG-E and RG-F) are disturbed so that
they stop firing in a reciprocal manner. In figure 7.2 this has been simulated
by changing the drive to one side of the rhythm generating neurons. The
drive to both RG pools (drg−e/f ) was set to 0.5. After the rhythmicity was
established the drive to the extensor part of the rhythm generating network
(drg−e) was set to zero for four seconds. In this time period the extensor half
of the excitatory rhythm generating neurons stopped firing and the flexor half
started to fire tonically. Tonic and sporadic firing patterns were observed in
all neurons of the pattern formation networks (PF-E/F) and in the motoneu-
ron pools (MN-E/F). After the drive was reset to its normal value and a short
initial phase the network started again to produce rhythmicity.

Figures 7.3 shows a simulated example of a non-resetting deletion. This
was accomplished by changing the drive to the population of excitatory pattern
formation neurons of the flexor side (PF-F) to the double of its initial value
(dpf−f = 1) for four seconds. In this time the flexor pattern formation neurons
started to fired tonically, the extensor pattern formation neurons fired only
sporadically and the rhythm generation neurons were uninfluenced by this
change and remained in their rhythmically firing state. The motoneuron pools
strongly follow the behavior of the pattern formation neural pools. When the
drive to the flexor pattern formation neurons was restored to its previous value
(dpf−f = 0.5) they again started to fire rhythmically and assumed the rhythm
phase and period from the rhythm generation networks (RG-E/-F).

The influence of relatively smaller changes to the drive of the rhythm
generating neuron pools was tested in figure 7.4. Figure 7.4A and B shows
equal drive values for the flexor and extensor sides. It can be observed that
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7. Results

Figure 7.1: Motoneuron model under simulated influence of 5-HT or apamin.
A bistable firing pattern can be observed. From to bottom: i) membrane
potential of the soma and ii) dendrite in response to the iii) injected cur-
rent (peak Iapp = 25µA cm−2 reached after 4 s). Firing frequency computed
depending on iv) the applied injected current Iapp. The time course is illus-
trated by the arrows. ḡK,Ca(S) = 3.136 mS cm−2, ḡK,Ca(D) = 0.69 mS cm−2,

EL(D) = EL(D) = −60.0 mV and ḡNaP (D) = 0 mS cm−2.
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Figure 7.2: Example of the simulation of a resetting deletion. The drive to the
rhythm generating neurons of the extensor half was removed for four seconds
(drg−e = 0). The established rhythm seized and was newly developed after the
drive to the rhythm generating neurons was set back to 0.5, its initial value.
For each population of neurons a superposition of the membrane potentials of
five neurons (top) and a raster plot of the spikes (bottom) are depicted.
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7. Results

Figure 7.3: Example of the simulation of a non-resetting deletion. The drive
to the pattern formation neurons of the flexor half was increased for four sec-
onds (dpf−f = 1). The established rhythm of the pattern generating network
persisted but did not reach the motoneurons. After the drive to the pattern
generating neurons was set back to 0.5, its initial value, the motoneurons con-
tinued to fire in a rhythmic fashion. Note that the overlap of the motoneuronal
activity between flexor and extensor half is due to one highly excitable mo-
toneuron. For each population of neurons a superposition of the membrane
potentials of five neurons (top) and a raster plot of the spikes (bottom) are
depicted.
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Figure 7.4: The influence of drive on the burst rate of the network’s half-
centers. For each population of neurons a superposition of the membrane
potentials of five neurons (top) and a raster plot of the spikes (bottom) are
depicted.
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7. Results

periods of activity were the same, for the flexor and for the extensor sides,
in both cases. With the heightened value of the drive the rhythm frequency
slightly increased. Furthermore, it can be seen that slight perturbation of the
rhythmic activity can occur. In the lower traces of the figure, i.e. 7.4C and
D, the values of the drive were changed asymmetrically, once in favor of the
extensor and once of the flexor side. In both cases the side with the relatively
higher value of the drive was subject to longer times of activity and shorter
times of inactivity, while the reciprocity was preserved. Thus, the influence of
the drive, including the ability to trigger deletions (both resetting and non-
resetting) as well as the general ability of the model to produce rhythmic
reciprocal activity was shown.

7.1 Model A

In model A the MLR drive is removed and instead pulsed stimulation of the
afferent fibers was simulated by volleys of afferent spikes with a certain fre-
quency. Such a stimulation was effective to activate the RG, PF and ulti-
mately the motoneuron (Mn) populations to be reciprocally active in a cycle
period similar to that of MLR stimulation. The effectiveness of the stimu-
lation strongly depended on the input frequency. By varying the frequency
of synchronous firing of the afferents in 5 Hz steps it can be observed that
rhythmic, reciprocal activation of the flexor and extensor sides occurred with
stimulation frequencies from 25 Hz–45 Hz (see figures 7.5 and 7.6). With
frequencies above 45 Hz sudden, sporadic and short patterns of periodic fir-
ing can occur. These patterns were followed (and proceeded) by longer tonic
activation of the RG, PF and Mn populations.

The weight of the afferent input to the motoneurons (amn−e/f ) strongly
influenced the behavior of the motoneuron output. Relatively higher values
showed activation of the motoneurons in the silent phases of the RG and
PF populations and lower values caused the motoneurons to fire seldomly.
Whereas in the normal condition the motoneurons fired in the phase their
side is active in and were not or sporadically (depending on their reversal
potential) active in the other phase.
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7.1. Model A
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Figure 7.7: Model A: response of the membrane potential of a passive mo-
toneuron to a single stimulation volley (top trace) and to 40 Hz repet-
itive stimulation (bottom trace). Both simulations were conducted with
amn−e/f = 0.75. Each stimulation volley generated two peaks of the membrane
potential of the passive motoneuron. One generated directly by the excitatory
post synaptic potentials of the afferent input and the other by disynaptic exci-
tatory post synaptic potentials originating from the pattern formation neuron
population. Note that the lateness of the second spike was due to the time the
pattern formation neurons need to generate an action potential in response
to a stimulation volley. The lower trace shows the interplay of all excitatory
and inhibitory mechanisms acting on the motoneurons when the network is
rhythmically active. The effect of single afferent volleys on the motoneurons
is rhythmically modulated.

Figure 7.7 shows a response of a passive motoneuron (i.e. without any
ion channels) to a single afferent volley and to 40 Hz stimulation. It can
be seen that the afferent stimulation generated large, fast, stimulus triggered
changes in the membrane potential that were rhythmically modulated. This
rhythmic modulation, influenced from PF, Ia and R neuron pools, was of a
lower amplitude than the oscillations produced by the afferent stimulation
and yet, the motoneurons might fire multiple times in response to a stimulus.
Furthermore, the post-stimulus time histogram (figure 7.8) of motoneuron
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Figure 7.8: Model A: post-stimulus time histogram of motoneuron firing with
stimulation frequencies of 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60
Hz and amn−e/f = 0.75. The main peak shows that action potential fired in
response to excitatory post-synaptic potentials directly from afferents (median
4.2 ms, mean 5.7 ms). The second accumulation for spikes show activation
in response to excitatory post-synaptic potentials from the pattern formation
networks, these spikes mostly occurred with low stimulation frequencies (2 Hz
and 5 Hz). Furthermore, there were spikes that were not stimulus time-locked
and occurred with a latency of 50 ms and later (last bar summarizes these;
stimulation frequency < 20 Hz).
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40 Hz stimulation, without direct a�erent connections to the motoneuron

Figure 7.9: Model A: the reaction of a passive motoneuron to afferent stim-
ulation (40 Hz) only of the rhythm generation (RG) and pattern formation
(PF) networks but not to the motoneurons itself. In comparison to the pas-
sive motoneuron with afferent synapses modeled (see figure 7.7) the amount
of depolarization was much smaller, there was no clear stimulus time-locked
depolarization and in the ‘silent periods’ no depolarization was occurring.
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7.2. Model B

spikes in response to the frequency range of 2 Hz–60 Hz show that most
motoneurons fire within 10 ms after the stimulation volley; mean latency is 5.7
ms (median 4.2 ms). There is an accumulation of action potentials occurring
at around 35 ms post stimulus.

When afferent stimulation to the motoneurons was removed fewer spikes
were elicited in the motoneurons with no clear stimulus time relation. Figure
7.9 shows the membrane potential of a passive motoneuron only influenced by
the PF, Ia and R neural populations and without afferent excitatory postsy-
naptic potentials under 40 Hz stimulation. Clear phases of depolarization can
be observed, the amount of depolarization was clearly reduced in comparison
to the one with afferent influence (see figure 7.7). The sum of the total occur-
ring spikes in the 40 neurons comprising the two motoneuron pools during 20
s simulations for each, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 Hz
afferent stimulation was 21,331 and 118,838 for the simulations without and
with afferent input to the motoneurons. Thus, without afferent stimulation to
the motoneurons only 17.9% of the counts of spikes with afferent stimulation
to the motoneurons were elicited in the motoneuron pools.

7.2 Model B

Model B builds upon model A and introduces presynaptic inhibition that
is rhythmically modulated and gates the afferent input to the motoneurons.
The rhythmic modulation originates from the PF motoneuron groups. This
presynaptic gating mechanism suppresses the afferent input in the phase where
the corresponding side is in its inactive phase and allows the full afferent
effect on the motoneurons in the active phase. This allowed for higher values
of amn−e/f while still allowing for a true ‘silent period’ thus resulting in two
main effects i) the synchronicity of the motoneuron firing was increased, i.e. the
mean latency of action potentials was reduced as well as its standard deviation
and ii) the “silent period” was retained without motoneuron firing. Figure 7.10
shows the models response to 40 Hz stimulation. The membrane potential
changes of a passive motoneuron for each side (flexor and extensor) in a 2
seconds window of figure 7.10 are illustrated in figure 7.11. Furthermore,
figure 7.12 shows a post-stimulus time histogram of motoneuron firing.

7.3 Model C

Model C builds upon model B and added the phase dependent disinhibition
of an alternative pathway from the afferent input to the motoneuron on the
flexor side. The results are presented in two figures, figure 7.13 shows the effect
of the simulation on passive motoneurons on both, the extensor and flexor
sides, under continuous 25 Hz afferent stimulation and figure 7.14 illustrates
post-stimulus time histograms of motoneuron firing in response to afferent
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Figure 7.10: Model B: response to 40 Hz continuous afferent stimulation.
Rhythmicity was produced similarly as in model A. The influence of the presy-
naptic inhibition on the afferents can be seen in the motoneuron’s firing pat-
terns. During their “active phase” almost all motoneurons fired while very
few were active during the ‘silent period’ of the respective side. RG: rhythm
generation, PF: pattern formation and Mn: motoneuron pools. E: extensor
and F: flexor side.

stimulation of different frequencies. The model exhibited following behavior,
under low frequencies (i.e. < 15 Hz) only the monosynaptic pathway from the
afferents to the motoneurons was active, thus only short latency responses
(i.e. latencies similar to those of model B) occurred both on the extensor and
on the flexor side. When the frequency was increased the inhibiting influence
of the CPG to the InPath motoneuron pool became stronger, thus disinhibiting
the alternative pathway. This had the consequence of increasing the latency
of the spikes occurring in the motoneuron pools of the flexor side in response
to the afferent stimulation. Under these frequencies only the flexor side was
influenced and the extensor side retained the same, low latency spike patterns
of the motoneuron pools. The spike latencies were not only later but also

88



7.3. Model C

0.2 s
-66

-50

60

[mV]
-48

-66

-50

60

[mV]
-48

extensor motoneuron

�exor motoneuron

m
em

br
an

e 
po

te
nt

ia
l (

pa
ss

iv
e 

M
n)

Figure 7.11: Model B: passive motoneurons of the flexor and extensor sides
under 40 Hz continuos afferent stimulation and the network currently being in
a rhythmic state. The top trace shows a passive motoneuron in the extensor
and the bottom trace in the flexor motoneuron pool. The afferent stimula-
tion volleys were the main visible influence on the membrane potential. They
were offset, modulated by the excitatory influence of the pattern generator
networks, from the pattern formation neuron pools and from reciprocal and
recurrent inhibition of the Ia and Renshaw interneuronal pools. During the
‘silent period’ or phase of inactivity of the respective side the influence from
the presynaptic inhibition can be seen. The afferent volleys generated smaller
compound effects on the passive membrane potential, since their individual
excitatory post synaptic potentials were reduced in size by the presynaptic
inhibition. Furthermore, when compared to model B (see figure 7.7) the max-
imal depolarization during the ‘active phase’ was increased while the maximal
depolarization during the ‘silent period’ was lowered.
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Figure 7.12: Model B: post-stimulus time histogram of motoneuron firing with
stimulation frequencies of 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60
Hz. The mean latency was 4.2 ms with a standard deviation of 4.4 ms and a
median of 3.3 ms. The spike timing was more synchronous than in model A
(see figure 7.8), of shorter latency and with fewer long latency responses.

more spread when the alternative pathway was active. With the help of the
illustration of the membrane potential of the passive motoneurons it can be
seen that the stimulus time-locked effect of the afferent stimulation was less
focused, later and longer on the flexor side with active alternative pathway
than on the extensor side (see figure 7.14).
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Figure 7.13: Model C: passive motoneuron under 25 Hz stimulation. The
volleys of afferent input were affecting the passive motoneurons in a stimulus
time-locked manner. On the extensor side, similar to the previous models,
the main influence appeared immediately after the stimulation (dashed lines),
whereas on the flexor side the deflections due to the afferent stimulation oc-
curred later after the respective stimulation pulse, but still in a time-locked
manner.
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Figure 7.14: Model C: post-stimulus time histogram of extensor and flexor
motor pools during stimulation frequencies of 2, 5, 10, 15, 20, 25, 30, 35, 40, 45,
50, 55 and 60 Hz. The distribution of spike latencies on the extensor side was
similar to that of model B. The flexor side, on the other hand, had two peaks,
an early one and a late one. The latter was due to the alternative pathway
and peaked around 20 ms. The former had two origins partially the spikes
occurred early at low stimulation frequencies over the monosynaptic afferent
pathway and partially the spikes were elicited in response to the previous
stimulation pulse, when the latency was longer than the post-stimulus time
window (occurred mainly during high frequency afferent stimulation, i.e. > 30
Hz).
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Chapter Eight

Discussion

The presented computer simulation modeled the effect of epidural posterior
root (afferent) stimulation of the human lumbar spinal cord segments at dif-
ferent frequencies on the modulation of the stimulus time-locked CMAP re-
sponses. This was accomplished by translating a well established CPG model
of the mammalian spinal cord (Rybak, Shevtsova, et al., 2006). This model
consisted of several populations of neurons with Hodgkin and Huxley (1952)-
like membrane dynamics and a two level CPG as well as first-order interneu-
rons. To model the lumbar locomotor pattern generating circuits of motor
complete spinal cord injured people under afferent stimulation involved the
introduction of pulsed afferent input, phasic presynaptic inhibition and state-
dependent disinhibition of an additional, polysynaptic pathway of the afferents
to the motoneurons.

Following results were found. Pulsed stimulation can activate the pat-
tern generating centers. This activation of the pattern generating circuits
to generate rhythmicity is frequency dependent, occurs only after a certain
threshold frequency and dimishes again when stimulation frequency is increase
over another threshold. Rhythmic activity can be produced by non-bursting
neurons, i.e. the excitatory interneurons could be presumably of bursting or
non-bursting nature. In the presented simulation the excitatory interneu-
rons of the rhythm and pattern formation network were firing with the same
frequency as the input and a certain probability to skip a response to a stimu-
lation volley. Stimulus-coupled responses as the only components comprising
the rhythmic activity were explained by the interneuronal network is mainly
exerting subthreshold modifications to the motoneurons membrane potential
when activated by pulsed epidural stimulation, thus only modifying their ex-
citability. In the extension half-center, direct afferent connections play a dom-
inant role in exciting motoneurons as suggested by constant CMAP latencies.
The existence of a mono- and a separate oligosynaptic pathway with presy-
naptic inhibition of the afferent fibers to the flexor motoneurons explained the
substitution of the short latency CMAPs by prolonged ones. Furthermore,
phasic presynaptic inhibition was shown to play a major role in reducing the
motoneuron pool activity in the inactivity periods of the respective side while
retaining and/or allowing for very synchronized, short latency responses of
the motoneurons in response to the afferent volleys when the side is active.

The model from Rybak, Shevtsova, et al. (2006) represents to-date one of
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8. Discussion

the most detailed models of the mammalian CPG. It is accepted and was used
here as a basis to model the influence of epidural spinal cord stimulation of
different frequencies to the human spinal cord motor networks. The reimple-
mentation was thoroughly tested and has been shown to reproduce, although
with some minor deviations, the main model features.

A slowly inactivating (persistent) sodium current was modeled into the
interneurons and motoneurons involved in pattern generation, because there
exists indirect evidence for its involvement in rhythm genesis (McCrea & Ry-
bak, 2008). Such sodium currents have been found in spinal interneurons and
motoneurons (e.g., R. H. Lee & Heckman, 2001, Darbon, Yvon, Legrand, &
Streit, 2004, Streit, Tscherter, & Darbon, 2005, Brocard, Tazerart, Viermari,
Darbon, & Vinay, 2006, Dai & Jordan, 2006, Theiss, Kuo, & Heckman, 2007
after McCrea & Rybak, 2007), and their blockade abolishes the intrinsic cel-
lular oscillations and rhythm generation in cultured rat spinal cord neurons
(Darbon et al., 2004, Streit et al., 2005 after McCrea & Rybak, 2007). Further-
more, there is evidence of the existence of persistent sodium currents in subic-
ular neurons in man (Vreugdenhil, Hoogland, van Veelen, & Wadman, 2004)
and tuberomammillary neurons (Taddese & Bean, 2002). Recently Brocard,
Shevtsova, et al. (2013) presented a concept of locomotor rhythm generation
in the neonatal rodent rat in which persistent sodium current-dependent pace-
maker properties are switched on and modified by activity dependent changes
of extracellular Ca2+ and K+ concentration changes. Nonetheless, there is no
conclusive evidence of such a current being part of excitatory interneurons of
the CPG in man. The persistent sodium current, thus was hypothesized to
be the main source of rhythm genesis and all results, except the frequency
dependence of the functional activation of the rhythm and pattern generat-
ing networks do not depend on this assumption. Any other source of rhythm
genesis would equally well describe all other findings as long as its influence
upon the motoneurons is with a similar amount of excitation and inhibition.

The results of replacing the constant MLR drive with pulsed volleys of af-
ferent spikes with different frequencies to the rhythm and pattern generating
networks, showed a clear frequency dependence. Rhythmic firing is produced
only with frequencies above 20 Hz, which is in accordance with the data of
part I and the literature (Dimitrijevic et al., 1998b; Minassian, Jilge, et al.,
2004; Minassian, Persy, Rattay, Pinter, et al., 2007). This matching frequency
dependence of the functional activation of the rhythm and pattern generating
networks to produce rhythmicity suggests that slowly-inactivating persistent
sodium currents might be the source of rhythm genesis also in man. Further-
more, low frequency stimulation (below 20 Hz) produces tonic output, i.e. the
count of motoneuron spikes per stimulation volley is not rhythmically mod-
ulated and remains rather constant. This has been also observed in human
measurements, where stimulation frequencies of the range 5 Hz–16 Hz pro-
duce tonic CMAP modulations of the motor nuclei outputs that functionally
induces the extension of the lower limbs (Jilge, Minassian, Rattay, Pinter,
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et al., 2004). Similarly, the phenomenon that under 5 Hz afferent stimulation
almost the same number of motoneurons fire in response to a stimulation vol-
ley while with gradually higher stimulation frequencies the response patterns
become less stable has also been observed in measurements of motor complete
spinal cord injury patients during epidural afferent stimulation (Danner, Rat-
tay, et al., 2011; Danner, Hofstoetter, Minassian, et al., 2012). Furthermore,
simple alternating patterns of high and low counts of motoneurons firing in
one pool to individual consecutive afferent stimulation volleys were observed
in the model output as well as in human measurements (Hofstoetter, 2009;
Danner, Hofstoetter, Minassian, et al., 2012). The latter two phenomena were
not explicitly modeled but emerged from the set of posed model assumptions.

The model incorporates the assumption that the output is predominately
stimulus time-locked to the afferent stimulation and that the sum of the ex-
citatory (from PF-E/F) and inhibitory (from R and Ia) input is modulating
the amount of motoneurons firing in response to the afferent stimulation and
is itself not the direct cause of action potential generation in the motoneurons
(Degtyarenko et al., 1998; Kinoshita & Yamaguchi, 2001; Noga et al., 2003).
The simulations have shown that a clear stimulus time relation between the
afferent volleys and the motoneuron firing is evident by synchronous afferent
stimulation even when the interneurons would, without afferent stimulation,
excite the motoneurons themselves. In this case the afferent input was rela-
tively stronger and directly induced action potentials in the motoneurons that
afterwards became refractory, and thus the sum of the interneuronal effects
was reduced to being modulatory. This result reveals that the assumption of
subthreshold manipulation of the motoneurons’ membrane potentials was too
strong. To produce the observed results of human measurements it is suffi-
cient that the excitatory influence of the interneurons on the motoreurons is
comparably small to the afferent input acting upon the motoneurons.

The investigation of presynaptic inhibition that is phasically modulated
(Nusbaum et al., 1999; Gosgnach et al., 2000; Rudomin & Schmidt, 1999)
showed that rhythmic presynaptic inhibition allows for very synchronous acti-
vation of the motoneurons in response to afferent volleys while concomitantly
reducing the activity in the ‘silent periods’. Similar effects would be conceiv-
able without presynaptic but with strong reciprocal Ia inhibition, but since
there are evidences for both mechanisms it is more probable to hypothesize
that they synergistically produce the necessary inhibition during the phases
when the respective motoneurons are inactive. At the very least, rhythmic
presynaptic inhibition was shown to widen the range of input intensities to
the afferents that would produce reciprocal, alternating activity and inactiv-
ity phases of the motoneuron pools when the rhythm and pattern generating
networks are active.

An essential difference to previous models of the mammalian CPG (Ry-
bak, Shevtsova, et al., 2006; Rybak, Stecina, et al., 2006; Markin et al., 2010;
Zhong, Shevtsova, Rybak, & Harris-Warrick, 2012) is the inclusion of axonal
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delays. Connection delays can strongly influence network dynamics (Izhike-
vich, 2006). Furthermore, the experimental results this model based on deeply
rely on the synchronicity of the input and thus delays are subject to play a
very important role (e.g. delayed responses from the flexor muscles cannot be
modeled without the addition of delays, and there is also evidence that the
frequency dependency of the responses rely on the delay of the axons Jilge,
Minassian, Rattay, & Dimitrijevic, 2004). An action potential of a neuron
will generate a post synaptic potential on every synaptically connected neu-
ron that is delayed by a certain amount and thus the introduction of the delays
was necessary.

The model successfully demonstrated that an asymmetric organization of
the reflex pathways that is modified, disinhibited depending on the state of
the pattern formation networks viably reproduces the observation of prolonged
latency reflex responses when the flexion side is active during CPG activity
induced by pulsed afferent stimulation. Recently the idea of an asymmet-
ric organization of the locomotor rhythm and/or pattern generating networks
was revisited and differences between flexor and extensor side of the networks
were suggested (Brownstone & Wilson, 2008; Duysens, De Groote, & Jonkers,
2013). McCrea and Rybak (2008) proposed that asymmetries of the CPG ar-
chitecture most likely will involve the pattern formation and not the rhythm
generation networks. S. Dietz, Shevtsova, Rybak, and Harris-Warrick (2013)
suggest that the asymmetries are located in the rhythm generation layer. In
the here presented model the asymmetries are hierarchically lower and are lim-
ited to the reflex pathways. It remains to be clarified whether there are similar
circuits on the extensor side, since long latency responses were also recorded
during the extension phase (see part I). It is not clear whether these were
recorded due to imperfect classification of the phases, since all recorded muscle
groups that are responsible for extension also include flexor muscles. The phe-
nomenon seen in part I that there are cases where flexor muscle groups show
tonically rather than rhythmically prolonged responses might be explained by
a malfunction in the cessation of the disinhibition.

8.1 Conclusion

A first model of central locomotor rhythm and pattern generating networks in
the lumbar spinal cord has been presented that reproduces numerous proper-
ties seen in measurements of humans with motor complete spinal cord injury
under epidural posterior root stimulation. Stimulus time-locked responses
were explained by relatively strong and highly synchronized depolarization of
the motoneurons by the excitatory post synaptic potentials originating from
afferents and relatively smaller depolarization due to the interneurons of the
pattern formation networks. The main role of the interneurons was the mod-
ulation of the motoneuron excitability in response to the afferent stimulation.
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8.2. Model limitations

The activation of the rhythm and pattern generating model was shown to
be frequency dependent. Slowly-inactivating persistent sodium currents have
been shown to be a viable candidate of rhythm genesis in the human lumbar
cord. The role of presynaptic inhibition was investigated and an asymmetric
model was proposed. Unraveling some of the tentative components of the
human lumbar cord networks not only answered several questions but raised
many more that previously could not have been posed.

8.2 Model limitations

The model presented here bases on the model by Rybak, Shevtsova, et al.
(2006). Even after multiply crosschecking all parameters the behavior of the
in the text presented model differs from the reference. Rybak, Shevtsova, et
al. (2006) misses a clarification of how action potentials were detected and the
INRG neuron population is intrinsically firing when replicated as presented in
the text, even when the presumably missing negative sign of the leakage rever-
sal potential was introduced. Following the illustrations in Rybak, Shevtsova,
et al. (2006) these neurons should not fire if there is no input. The detection
of action potentials greatly influences the amount of excitatory and inhibitory
post-synaptic potentials generated. Especially, regarding the RG neural pop-
ulation that has a low maximal potassium conductance and is easily put into a
resonating state, where depending on the detection algorithm bursts of spikes
or even no spikes at all are detected. The maximal sodium conductance was
increased for models A–C which removes the resonating property of the RG
and PF neurons (Zhong et al., 2012). The MLR drive was modeled to include
excitatory as well as inhibitory components instead of only excitatory ones.
Nonetheless, model results suggest that the overall behavior can be replicated.
Rhythmicity is generated through MLR input, asymmetric input lengthens the
active period of the side with more input and shortens the active period of
the other side and the two-layer CPG model can exhibit resetting as well as
non-resetting deletions when introducing perturbation to one side of the PF
or RG neuron populations.

Furthermore, there is evidence of tonic presynaptic inhibition, i.e. not in-
fluenced by the the CPG, that operates with three or more synapses, but
has not been modeled here (Rudomin, 1990; Rudomin, Quevedo, & Eguibar,
1993; Rudomin & Schmidt, 1999; Rudomin, 2009; Hochman, Shreckengost,
Kimura, & Quevedo, 2010). The underlying assumption is that tonic presy-
naptic inhibition is activated shortly after the first afferent volley arrived at
the motoneuron and then reaches a plateau and has a constant influence on
the post-synaptic potentials arriving through the Ia afferents at the motoneu-
rons. Thus, under this assumption, the modeled afferent input can be seen
as already affected by the tonic afferent stimulation and it is assumed that
when investigating afferent input of sufficiently high frequency the effect is
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negligible.
The structure and organization of the lumbar neural network involved in

rhythm generation as well as the involved ion-channels are largely unknown
for the human or even generally for vertebrates. Here, I followed the as-
sumptions made by Rybak, Shevtsova, et al. (2006). Slowly inactivating,
persistent sodium channels were assumed—in the interplay with a half-center
organization—to be the source of rhythm genesis and the two-layer organi-
zation was preserved. In order to assess the generation stimulus time-locked
rhythmically modulated responses, the influence of presynaptic inhibition and
the involvement of disinhibition in prolonging the response latencies in a phase
depending manner, the source of the rhythm genesis is not of importance. The
modeled mechanism is activated in dependence of the phase the rhythm gen-
erating process is in and is not depending on any assumptions of their origin.
On the other hand, the influence of the stimulation frequency on the rhythm
generation is very much depending on these assumptions and can only be seen
in the light of the specific implementation of the rhythm generating process.
Nonetheless, the results of the model show the same preferred input frequen-
cies as seen in human electrophysiological recordings (see part I; Dimitrijevic
et al., 1998b; Minassian, Jilge, et al., 2004).

Moreover, the modeled interneurons are reacting rather slow to volleys of
synchronized stimulation. The disinhibition of the alternative pathway that
introduces two additional interneurons between the afferents and the motoneu-
rons prolonged the latency by over 15 ms, while electrophysiological studies
showed that the post synaptic potentials of disynaptic Ia reciprocal inhibi-
tion (one additional interneuron in comparison to the monosynatic pathway
of the afferents to the motoneurons) arrive only about 0.8 ms later to the
motoneurons than those of the monosynaptic afferent synapses (Matthews,
1972; Pierrot-Desseilligny & Burke, 2005). This is a substantial difference
that is caused by the ion channel configuration of the chosen interneurons.
Due to the importance of spike timing no connections of the afferents to the
Ia inhibitory interneurons were modeled, thus there is no disynaptic reciprocal
inhibition in the model. Furthermore, interpretations of results depending on
the spike-timing of interneurons need to be made under consideration of this
limitation. Nonetheless, the disinhibition resulted in the observed prolonged
latencies with the mere difference being in absolute numbers, thus the overall
interpretation is not limited.
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Appendix

A.1 Tables

Table A.1: Onset latency of every subject and muscle group

Controls Extension Flexion sig. post-hoc
RID MG n M(SD) n M(SD) n M(SD) c-f e-f c-e

1 1 46 10.12 (0.22) 1 20.51 (0.00) 35 12.03 (2.61) ***
1 2 46 11.24 (0.13) 57 13.74 (1.03) 47 12.81 (0.62) *** *** ***
1 3 46 18.95 (0.49) 19 20.71 (1.50) 41 18.45 (0.92) ** *** ***
1 4 46 18.91 (0.22) 11 19.09 (0.83) 46 18.76 (0.51)
2 1 38 10.11 (0.22) 4 9.28 (0.00) 22 11.45 (0.86) *** ** ***
2 2 38 10.33 (0.21) 0 13 12.32 (1.95) ***
2 3 0 2 32.96 (1.73) 20 20.95 (1.86)
2 4 0 1 18.07 (0.00) 10 22.61 (3.34)
3 1 38 10.11 (0.22) 6 9.68 (0.20) 29 11.16 (0.52) *** *** **
3 2 38 10.33 (0.21) 0 22 12.98 (2.47) ***
3 3 0 23 33.39 (5.34) 28 20.35 (2.11) ***
3 4 0 23 31.36 (6.63) 24 21.44 (1.80) ***
4 1 38 9.71 (0.15) 48 10.18 (0.93) 1 30.76 (0.00) * ***
4 2 38 10.36 (0.20) 0 0
4 3 0 2 17.82 (3.11) 23 17.68 (1.06)
4 4 0 0 6 18.96 (0.78)
5 1 26 10.31 (0.42) 2 10.50 (0.35) 60 9.38 (0.72) ***
5 2 25 11.39 (0.74) 7 19.60 (2.48) 18 11.18 (1.13) *** ***
5 3 0 71 27.93 (1.63) 31 23.56 (3.96) ***
5 4 0 0 1 15.14 (0.00)
6 1 46 10.12 (0.22) 11 10.92 (0.82) 72 9.02 (0.80) *** *** **
6 2 46 11.24 (0.13) 3 16.28 (8.31) 21 12.72 (4.16)
6 3 46 18.95 (0.49) 58 27.61 (2.27) 29 22.06 (3.67) *** *** ***
6 4 46 18.91 (0.22) 0 14 21.66 (2.45) ***
7 1 29 10.69 (0.53) 84 10.90 (1.15) 57 10.43 (0.46) ** ***
7 2 29 11.43 (0.28) 60 13.40 (2.88) 39 10.98 (1.95) *** ***
7 3 0 38 25.67 (3.22) 23 24.27 (5.37)
7 4 14 21.10 (1.05) 32 19.58 (1.79) 14 27.73 (3.73) *** *** **
8 1 23 10.64 (0.36) 72 10.96 (0.50) 30 10.91 (0.47) *
8 2 23 11.00 (0.32) 72 11.56 (0.41) 30 11.44 (0.44) ** ***
8 3 18 22.11 (1.39) 64 21.75 (1.75) 21 22.02 (2.16)
8 4 23 21.19 (0.46) 72 21.62 (0.97) 29 20.98 (1.51) *
9 1 23 10.64 (0.36) 77 11.09 (0.51) 48 10.49 (0.35) *** ***
9 2 23 11.00 (0.32) 77 11.77 (0.65) 48 11.32 (0.37) ** *** ***
9 3 18 22.11 (1.39) 57 21.92 (1.38) 47 25.99 (2.75) *** ***
9 4 23 21.19 (0.46) 77 21.66 (0.85) 48 21.42 (1.64) * **
10 1 23 9.83 (0.34) 66 10.86 (1.02) 59 10.68 (0.66) *** ***
10 2 23 10.98 (0.39) 66 11.38 (0.77) 58 10.83 (0.63) *** **
10 3 0 19 23.23 (2.20) 41 21.47 (1.72) *
10 4 4 22.83 (1.28) 41 24.57 (1.91) 14 22.57 (2.21) **

Continued on next page
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Table A.1 Onset latency of every subject and muscle group (continued)

Controls Extension Flexion sig. post-hoc
RID MG n M(SD) n M(SD) n M(SD) c-f e-f c-e

11 1 102 12.15 (0.16) 78 11.79 (1.20) 46 10.70 (0.41) *** *** ***
11 2 102 13.78 (0.21) 79 12.96 (0.28) 46 13.09 (1.35) *** *** ***
11 3 102 22.69 (0.24) 79 21.08 (0.58) 31 22.11 (1.82) *** *** ***
11 4 102 21.84 (0.61) 79 20.79 (0.82) 42 20.71 (1.74) *** ***
12 1 32 11.75 (0.12) 66 13.27 (2.28) 35 10.67 (0.45) *** *** ***
12 2 32 13.31 (0.21) 66 13.27 (1.06) 35 13.31 (0.92) ***
12 3 32 20.57 (0.21) 66 21.32 (0.50) 26 21.67 (1.50) *** ***
12 4 32 21.23 (0.57) 66 20.85 (0.74) 22 21.35 (0.97) * ***
13 1 32 11.75 (0.12) 78 11.39 (0.37) 24 11.23 (0.63) *** ***
13 2 32 13.31 (0.21) 78 13.62 (0.52) 36 13.66 (1.07) ***
13 3 32 20.57 (0.21) 78 21.28 (0.48) 36 24.74 (3.88) *** *** ***
13 4 32 21.23 (0.57) 78 21.10 (0.66) 36 20.78 (0.75) * *
14 1 70 11.47 (0.25) 74 11.26 (0.30) 17 11.14 (0.50) ** ***
14 2 70 12.86 (0.23) 74 13.85 (0.94) 48 13.80 (1.13) *** ***
14 3 70 20.12 (0.28) 74 21.29 (0.40) 48 22.52 (2.61) *** *** ***
14 4 70 22.17 (0.44) 74 21.31 (0.65) 48 21.43 (0.79) *** ***
15 1 76 10.52 (0.25) 1 13.67 (0.00) 46 13.77 (1.73) ***
15 2 76 10.92 (0.24) 87 13.58 (1.34) 46 13.06 (0.24) *** ***
15 3 15 19.08 (0.47) 18 20.35 (0.84) 46 19.98 (0.31) *** * ***
15 4 72 20.14 (0.82) 17 20.22 (1.67) 46 20.81 (0.63) ***
16 1 75 11.06 (0.26) 90 13.72 (1.85) 13 11.34 (2.35) *** ***
16 2 0 106 13.55 (1.18) 27 14.78 (1.00) ***
16 3 0 101 19.56 (0.67) 27 25.59 (1.41) ***
16 4 0 104 19.64 (1.00) 12 19.90 (2.68)
17 1 75 11.06 (0.26) 66 13.73 (1.91) 22 10.85 (1.46) ** *** ***
17 2 0 66 13.61 (1.14) 45 14.92 (0.91) ***
17 3 0 66 19.48 (0.48) 44 24.75 (1.77) ***
17 4 0 65 19.97 (0.73) 24 19.67 (1.13) *
18 1 76 10.69 (0.17) 8 13.55 (2.33) 8 15.69 (4.89) ** ***
18 2 76 11.42 (0.24) 66 14.58 (1.51) 37 15.35 (1.98) *** ***
18 3 70 18.67 (0.46) 62 19.83 (0.87) 37 27.59 (1.30) *** *** ***
18 4 75 18.49 (0.66) 64 20.86 (0.80) 35 21.85 (2.69) *** ***
19 1 76 10.52 (0.25) 101 13.64 (1.91) 5 10.94 (1.88) * ***
19 2 76 10.92 (0.24) 109 13.21 (0.75) 30 13.80 (1.75) *** ***
19 3 15 19.08 (0.47) 107 19.83 (0.73) 30 26.35 (0.68) *** *** ***
19 4 72 20.14 (0.82) 94 20.50 (0.95) 3 21.48 (4.96)
20 1 76 10.52 (0.25) 0 46 14.04 (2.11) ***
20 2 76 10.92 (0.24) 53 14.48 (1.76) 46 12.94 (0.29) *** *** ***
20 3 15 19.08 (0.47) 7 28.60 (3.65) 46 19.88 (0.39) *** *** ***
20 4 72 20.14 (0.82) 0 46 20.73 (0.49) ***
21 1 76 10.69 (0.17) 54 12.45 (1.98) 16 13.00 (3.83) ***
21 2 76 11.42 (0.24) 126 14.42 (1.43) 22 15.54 (2.06) *** *** ***
21 3 70 18.67 (0.46) 112 20.03 (0.93) 22 26.15 (1.34) *** *** ***
21 4 75 18.49 (0.66) 121 20.55 (1.33) 8 24.41 (4.44) *** ***
22 1 75 11.06 (0.26) 101 14.03 (2.33) 9 12.42 (1.64) ** ***
22 2 0 109 13.46 (1.03) 30 15.17 (1.34) ***
22 3 0 107 19.57 (1.08) 29 25.36 (1.62) ***
22 4 0 109 20.23 (0.62) 3 23.93 (6.78)
23 1 4 11.84 (0.24) 24 17.01 (1.96) 33 14.43 (3.42) ** **
23 2 4 11.96 (0.28) 100 13.83 (2.20) 33 11.30 (0.18) *** ***
23 3 4 19.65 (0.24) 50 20.14 (1.07) 26 27.87 (3.86) * ***
23 4 4 20.63 (0.47) 74 19.63 (0.90) 0 *
24 1 22 11.10 (1.68) 4 15.02 (3.99) 13 12.21 (3.44)
24 2 22 12.23 (0.24) 57 12.90 (0.36) 46 12.69 (0.82) *** ***
24 3 22 18.42 (0.66) 56 20.64 (1.15) 40 20.04 (1.82) *** *** ***
24 4 22 19.07 (0.35) 57 19.30 (0.40) 43 20.11 (0.82) *** *** *
25 1 33 10.45 (0.27) 1 11.23 (0.00) 4 11.72 (2.67)

Continued on next page
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Table A.1 Onset latency of every subject and muscle group (continued)

Controls Extension Flexion sig. post-hoc
RID MG n M(SD) n M(SD) n M(SD) c-f e-f c-e

25 2 33 11.62 (0.24) 89 13.63 (0.97) 39 13.15 (2.13) *** ***
25 3 33 19.25 (1.06) 90 21.34 (1.27) 14 24.48 (4.05) *** * ***
25 4 33 17.67 (0.26) 97 19.56 (0.33) 22 20.09 (3.25) *** ***
26 1 33 10.45 (0.27) 36 13.51 (2.58) 42 12.27 (2.67) *** ** ***
26 2 33 11.62 (0.24) 53 13.17 (0.92) 45 13.12 (0.89) *** ***
26 3 33 19.25 (1.06) 51 21.64 (0.77) 43 21.73 (2.62) *** *** ***
26 4 33 17.67 (0.26) 53 20.00 (0.25) 45 20.17 (0.37) *** ***
27 1 33 10.45 (0.27) 3 11.88 (1.13) 17 14.59 (2.18) *** **
27 2 33 11.62 (0.24) 90 13.38 (1.12) 33 13.21 (1.53) *** ***
27 3 33 19.25 (1.06) 89 21.02 (1.30) 29 27.18 (3.62) *** *** ***
27 4 33 17.67 (0.26) 98 19.80 (0.26) 28 20.16 (1.12) *** ** ***
28 1 33 10.14 (0.25) 6 15.14 (1.16) 4 8.91 (0.73) *** * ***
28 2 33 12.73 (0.21) 96 13.16 (0.42) 25 13.03 (1.21) ***
28 3 33 19.38 (0.33) 78 21.20 (1.63) 3 27.67 (3.66) ** ** ***
28 4 33 19.04 (0.27) 98 19.46 (0.27) 7 20.93 (1.34) *** *** ***
29 1 33 10.45 (0.27) 56 14.87 (1.43) 75 17.39 (1.19) *** *** ***
29 2 33 11.62 (0.24) 74 13.71 (0.98) 79 12.69 (1.23) *** *** ***
29 3 33 19.25 (1.06) 41 22.25 (2.08) 56 25.77 (2.81) *** *** ***
29 4 33 17.67 (0.26) 72 18.87 (0.74) 47 18.10 (0.93) ** *** ***
30 1 16 10.77 (0.22) 79 11.22 (1.07) 11 11.41 (2.45)
30 2 16 14.47 (0.30) 83 12.83 (0.47) 32 13.12 (0.44) *** * ***
30 3 16 20.72 (0.31) 23 23.42 (6.03) 33 27.24 (1.56) ***
30 4 16 21.09 (0.27) 17 20.08 (1.14) 32 23.94 (1.76) *** *** ***
31 1 16 10.77 (0.22) 84 11.67 (0.80) 18 12.42 (2.13) * ***
31 2 16 14.47 (0.30) 78 13.70 (1.04) 36 13.78 (0.55) *** ***
31 3 16 20.72 (0.31) 14 21.80 (5.51) 36 27.83 (1.57) *** ***
31 4 16 21.09 (0.27) 10 22.61 (5.72) 30 25.81 (2.38) ***
32 1 23 10.95 (0.38) 109 11.65 (0.83) 6 11.31 (2.40) ***
32 2 23 14.39 (0.36) 106 14.25 (0.96) 42 14.79 (1.12) ** *
32 3 23 21.68 (0.32) 28 19.69 (1.82) 41 26.93 (1.73) *** *** ***
32 4 23 21.78 (0.35) 38 21.32 (3.28) 9 28.70 (2.53) *** ***
33 1 23 10.83 (0.32) 80 11.49 (0.69) 8 14.22 (1.26) *** *** ***
33 2 23 16.26 (1.08) 81 14.12 (0.72) 41 14.93 (1.46) ** ** ***
33 3 23 20.42 (0.28) 21 20.60 (4.83) 41 29.05 (1.00) *** ***
33 4 23 21.00 (0.36) 10 22.85 (5.02) 34 25.98 (2.76) *** *
34 1 24 11.05 (0.24) 161 11.58 (0.53) 11 10.88 (0.69) *** ***
34 2 24 13.02 (0.24) 163 13.87 (1.03) 47 14.68 (1.03) *** *** ***
34 3 24 18.41 (0.49) 58 20.35 (1.47) 34 29.11 (2.32) *** *** ***
34 4 24 18.31 (0.25) 76 21.30 (2.88) 1 28.81 (0.00) ***
35 1 21 8.86 (0.18) 20 16.58 (0.56) 28 15.70 (1.13) *** *** ***
35 2 21 11.30 (0.18) 0 22 17.93 (1.70) ***
35 3 21 18.11 (0.15) 26 26.99 (2.24) 28 26.72 (1.66) *** ***
35 4 21 17.23 (0.23) 1 27.34 (0.00) 26 27.61 (1.90) ***
36 1 21 8.86 (0.18) 0 92 18.54 (0.62) ***
36 2 21 11.30 (0.18) 74 12.05 (0.30) 21 11.88 (0.45) *** ***
36 3 21 18.11 (0.15) 3 27.67 (1.02) 87 27.56 (1.38) *** ***
36 4 21 17.23 (0.23) 0 49 29.62 (3.07) ***
37 1 21 9.14 (0.23) 43 16.95 (0.68) 19 15.75 (0.81) *** *** ***
37 2 21 10.51 (0.25) 1 18.07 (0.00) 0
37 3 21 18.16 (0.20) 60 25.59 (1.46) 51 25.21 (1.54) *** ***
37 4 21 16.97 (0.21) 33 29.82 (2.04) 67 25.19 (1.52) *** *** ***
38 1 21 9.14 (0.23) 0 8 17.52 (0.96) ***
38 2 21 10.51 (0.25) 89 13.61 (1.13) 51 12.98 (1.32) *** * ***
38 3 21 18.16 (0.20) 4 28.44 (1.46) 82 26.13 (1.08) *** * ***
38 4 21 16.97 (0.21) 1 19.04 (0.00) 58 26.70 (1.67) ***
39 1 12 8.71 (0.35) 9 20.29 (0.85) 23 18.19 (0.81) *** *** ***
39 2 12 10.25 (0.29) 63 13.10 (0.39) 17 13.16 (0.53) *** ***

Continued on next page
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Table A.1 Onset latency of every subject and muscle group (continued)

Controls Extension Flexion sig. post-hoc
RID MG n M(SD) n M(SD) n M(SD) c-f e-f c-e

39 3 12 18.31 (0.39) 79 27.35 (1.42) 55 25.25 (1.05) *** *** ***
39 4 12 17.54 (0.44) 19 28.24 (1.06) 27 25.35 (1.00) *** *** ***
RID: recording identification number, MG: muscle group (1: quadriceps, 2: hamstrings,
3: tibialis anterior, 4: triceps surae), *: p < .05, **: p < .01, ***: p < .001 (of pairwise
Whitney-Mann-U tests, Bonferroni corrected).
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Table A.2: Center of gravity of every subject and muscle group

Controls Extension Flexion sig. post-hoc
RID MG n M(SD) n M(SD) n M(SD) c-f e-f c-e

1 1 46 23.03 (0.21) 54 27.93 (3.64) 47 23.82 (2.61) *** ***
1 2 46 22.81 (0.22) 60 20.83 (1.54) 47 20.86 (2.99) *** ***
1 3 46 24.48 (0.35) 60 29.94 (4.06) 47 26.75 (3.43) ** *** ***
1 4 46 22.75 (0.24) 60 31.16 (4.18) 47 22.74 (1.50) *** *** ***
2 1 38 23.99 (0.34) 160 21.44 (1.91) 37 23.00 (1.60) * *** ***
2 2 38 23.78 (0.28) 101 22.94 (2.26) 29 22.93 (2.55) **
2 3 0 159 29.14 (5.22) 37 27.83 (2.34)
2 4 34 34.42 (2.15) 160 29.54 (4.19) 37 30.41 (3.20) *** ***
3 1 38 23.99 (0.34) 133 21.10 (1.54) 30 22.40 (0.73) *** *** ***
3 2 38 23.78 (0.28) 133 22.02 (1.93) 30 23.75 (1.77) *** ***
3 3 0 122 30.95 (5.99) 30 27.49 (1.40) *
3 4 34 34.42 (2.15) 125 31.41 (4.72) 30 29.64 (1.92) *** ***
4 1 38 23.53 (0.32) 126 22.16 (2.82) 34 28.35 (4.10) *** *** *
4 2 38 23.72 (0.33) 126 25.34 (2.55) 34 27.78 (3.05) *** *** ***
4 3 0 126 31.89 (4.04) 34 24.20 (1.27) ***
4 4 35 37.70 (3.11) 126 33.31 (2.61) 34 28.03 (4.00) *** *** ***
5 1 29 24.09 (8.32) 81 23.58 (1.96) 69 18.27 (1.02) *** *** **
5 2 26 23.01 (9.64) 81 25.52 (2.96) 69 21.44 (3.26) *** ***
5 3 0 81 36.10 (2.05) 69 34.13 (3.55) *
5 4 0 81 32.75 (2.11) 69 32.80 (2.91)
6 1 46 23.03 (0.21) 76 23.94 (1.78) 72 17.84 (0.97) *** *** ***
6 2 46 22.81 (0.22) 75 24.64 (3.57) 72 21.30 (3.62) * *** ***
6 3 46 24.48 (0.35) 73 36.81 (1.35) 72 33.73 (3.96) *** *** ***
6 4 46 22.75 (0.24) 76 33.05 (2.54) 72 31.32 (2.95) *** *** ***
7 1 29 20.79 (2.51) 87 21.88 (2.40) 58 17.87 (2.22) *** *** *
7 2 29 21.18 (1.20) 87 24.95 (3.15) 58 24.06 (4.74) * ***
7 3 0 87 34.66 (2.76) 58 31.67 (5.49) *
7 4 12 53.06 (39.34) 87 29.67 (4.07) 58 33.56 (3.65) ***
8 1 23 19.55 (0.74) 72 19.31 (1.71) 30 19.50 (1.81)
8 2 23 21.76 (1.17) 72 20.60 (1.07) 30 20.12 (0.65) *** * ***
8 3 18 28.02 (0.65) 70 28.53 (3.91) 30 34.47 (3.74) *** ***
8 4 23 25.45 (0.40) 72 26.23 (0.92) 30 26.04 (1.35) * ***
9 1 23 19.55 (0.74) 77 19.40 (1.65) 48 17.78 (2.00) ** ***
9 2 23 21.76 (1.17) 77 21.18 (1.45) 48 20.42 (0.68) *** * *
9 3 18 28.02 (0.65) 77 30.56 (4.43) 48 36.41 (1.59) *** ***
9 4 23 25.45 (0.40) 77 26.37 (1.77) 48 28.63 (2.83) *** *** ***
10 1 23 17.66 (0.32) 66 19.87 (3.26) 59 19.73 (3.38) *
10 2 23 17.92 (0.34) 66 20.15 (1.50) 58 19.86 (1.67) *** ***
10 3 0 66 31.57 (1.70) 59 31.77 (2.02)
10 4 17 35.24 (4.91) 66 31.35 (2.21) 58 32.61 (4.90) *
11 1 102 22.69 (0.25) 79 24.32 (1.40) 46 22.54 (2.19) *** ***
11 2 102 19.49 (0.20) 79 19.88 (0.70) 46 21.27 (1.74) *** *** ***
11 3 102 26.77 (0.22) 79 29.80 (4.46) 46 34.86 (3.23) *** *** ***
11 4 102 26.99 (0.44) 79 26.53 (1.23) 46 32.12 (3.53) *** *** ***
12 1 32 22.46 (0.00) 66 24.34 (1.52) 35 21.97 (1.69) * *** ***
12 2 32 19.85 (0.24) 66 20.18 (0.99) 35 21.64 (2.10) *** ***
12 3 32 26.11 (0.25) 66 29.13 (3.30) 35 33.72 (3.38) *** *** ***
12 4 32 27.65 (0.24) 66 26.50 (1.03) 35 30.47 (2.52) *** *** ***
13 1 32 22.46 (0.00) 78 22.47 (0.50) 36 27.63 (3.39) *** ***
13 2 32 19.85 (0.24) 78 18.71 (1.11) 36 20.49 (1.64) *** ***
13 3 32 26.11 (0.25) 78 28.67 (3.82) 36 38.56 (2.28) *** *** ***
13 4 32 27.65 (0.24) 78 26.26 (0.84) 36 29.19 (3.15) *** ***
14 1 70 21.82 (0.23) 74 22.63 (0.44) 48 27.38 (3.57) *** *** ***
14 2 70 19.50 (0.14) 74 19.53 (1.61) 48 20.42 (1.48) *** **
14 3 70 25.61 (0.32) 74 27.88 (2.87) 48 38.55 (2.93) *** *** ***
14 4 70 26.35 (0.36) 74 25.53 (0.50) 48 26.89 (1.07) *** ***
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Table A.2 Center of gravity of every subject and muscle group (continued)

Controls Extension Flexion sig. post-hoc
RID MG n M(SD) n M(SD) n M(SD) c-f e-f c-e

15 1 76 20.68 (0.27) 88 23.53 (2.00) 46 22.14 (1.02) *** *** ***
15 2 76 20.64 (0.22) 88 21.52 (1.47) 46 19.72 (0.47) *** *** **
15 3 0 88 32.26 (4.74) 46 25.76 (0.31) ***
15 4 2 25.64 (1.04) 88 28.61 (2.50) 46 26.97 (1.00) ***
16 1 75 22.25 (0.31) 106 22.59 (1.34) 27 22.14 (2.18) * **
16 2 0 106 21.96 (1.61) 27 23.66 (0.63) ***
16 3 0 106 25.74 (0.52) 27 33.76 (2.02) ***
16 4 0 106 26.20 (1.42) 27 32.30 (4.29) ***
17 1 75 22.25 (0.31) 66 22.32 (1.38) 45 22.47 (1.82) *
17 2 0 66 22.16 (1.55) 45 23.98 (0.54) ***
17 3 0 66 25.52 (0.46) 45 34.19 (1.70) ***
17 4 0 66 26.37 (1.35) 45 29.81 (4.06) ***
18 1 76 21.47 (0.22) 66 22.95 (1.96) 37 26.58 (2.32) *** *** ***
18 2 76 20.55 (0.18) 66 21.94 (1.57) 37 22.73 (1.61) *** ** ***
18 3 6 28.00 (0.86) 66 26.23 (0.84) 37 35.43 (1.18) *** *** ***
18 4 76 27.01 (0.91) 65 26.04 (1.47) 37 34.01 (2.01) *** *** ***
19 1 76 20.68 (0.27) 109 23.23 (1.39) 29 22.93 (2.39) *** ***
19 2 76 20.64 (0.22) 109 20.64 (1.01) 30 22.01 (1.35) *** *** ***
19 3 0 109 25.85 (0.67) 30 34.95 (1.50) ***
19 4 2 25.64 (1.04) 109 27.17 (1.64) 30 35.30 (2.50) ***
20 1 76 20.68 (0.27) 53 23.34 (2.64) 46 21.47 (1.28) *** *** ***
20 2 76 20.64 (0.22) 53 22.91 (1.39) 46 19.51 (0.83) *** *** ***
20 3 0 53 32.99 (4.71) 46 25.52 (0.39) ***
20 4 2 25.64 (1.04) 53 28.38 (3.53) 46 26.88 (0.78)
21 1 76 21.47 (0.22) 125 23.22 (1.85) 22 25.19 (2.60) *** ** ***
21 2 76 20.55 (0.18) 126 21.39 (1.71) 22 22.35 (1.22) *** ** *
21 3 6 28.00 (0.86) 126 26.62 (1.50) 22 36.29 (1.49) *** *** **
21 4 76 27.01 (0.91) 123 25.77 (2.28) 22 36.53 (1.13) *** *** ***
22 1 75 22.25 (0.31) 109 21.70 (1.40) 30 23.29 (1.77) * *** ***
22 2 0 109 21.42 (1.45) 30 24.20 (1.23) ***
22 3 0 108 25.96 (1.49) 30 33.55 (1.61) ***
22 4 0 109 26.53 (0.97) 30 32.41 (4.16) ***
23 1 4 22.95 (0.40) 100 21.92 (1.26) 33 23.01 (1.09) ***
23 2 4 24.54 (1.08) 100 20.70 (0.93) 33 19.92 (0.29) ** *** **
23 3 4 26.00 (0.24) 99 26.54 (2.17) 28 35.02 (3.81) ** ***
23 4 4 25.39 (0.40) 100 25.32 (1.47) 33 27.65 (3.35) ***
24 1 22 23.28 (0.57) 57 30.92 (2.89) 47 26.58 (3.17) *** *** ***
24 2 22 19.98 (0.58) 57 16.97 (0.56) 47 22.28 (3.21) *** *** ***
24 3 22 26.59 (0.33) 57 28.99 (3.07) 47 35.15 (3.55) *** *** ***
24 4 22 23.93 (0.21) 57 24.04 (0.47) 47 27.02 (3.73) *** ***
25 1 33 23.29 (0.31) 100 22.05 (2.64) 58 22.85 (2.98) **
25 2 33 21.71 (0.30) 100 19.64 (1.56) 58 21.43 (2.31) *** ***
25 3 33 28.37 (1.05) 100 26.87 (1.19) 57 32.31 (2.86) *** *** ***
25 4 33 22.98 (0.21) 100 25.03 (1.16) 57 30.41 (3.89) *** *** ***
26 1 33 23.29 (0.31) 53 26.36 (2.79) 45 23.31 (2.69) *** ***
26 2 33 21.71 (0.30) 53 19.90 (1.94) 45 21.50 (3.18) * ***
26 3 33 28.37 (1.05) 53 26.52 (2.17) 45 34.36 (5.99) *** *** ***
26 4 33 22.98 (0.21) 53 24.67 (0.31) 45 25.30 (2.51) *** ***
27 1 33 23.29 (0.31) 98 23.58 (2.08) 57 22.24 (2.78) **
27 2 33 21.71 (0.30) 98 19.83 (2.26) 57 21.84 (2.77) *** ***
27 3 33 28.37 (1.05) 98 25.99 (0.99) 56 34.15 (3.89) *** *** ***
27 4 33 22.98 (0.21) 98 24.75 (0.51) 56 28.01 (3.43) *** *** ***
28 1 33 24.12 (0.30) 94 21.75 (2.35) 55 21.78 (3.48) ** ***
28 2 33 18.24 (0.29) 98 17.82 (0.97) 55 20.61 (2.43) *** *** ***
28 3 33 23.82 (0.27) 95 29.10 (2.53) 54 31.96 (2.99) *** *** ***
28 4 33 24.21 (0.27) 98 25.27 (0.67) 56 31.80 (2.67) *** *** ***
29 1 33 23.29 (0.31) 74 19.78 (1.75) 79 23.88 (1.47) *** ***
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Table A.2 Center of gravity of every subject and muscle group (continued)

Controls Extension Flexion sig. post-hoc
RID MG n M(SD) n M(SD) n M(SD) c-f e-f c-e

29 2 33 21.71 (0.30) 74 19.44 (1.37) 79 20.54 (0.83) *** *** ***
29 3 33 28.37 (1.05) 65 30.50 (3.80) 78 33.15 (2.28) *** ***
29 4 33 22.98 (0.21) 74 24.33 (1.02) 79 26.63 (2.85) *** *** ***
30 1 16 20.36 (0.29) 86 21.41 (1.45) 33 23.90 (1.66) *** *** **
30 2 16 22.10 (0.38) 86 18.59 (1.69) 33 18.26 (0.74) *** ***
30 3 16 27.80 (0.22) 81 30.71 (3.99) 33 33.87 (1.56) *** *** **
30 4 16 27.10 (0.31) 85 31.47 (5.18) 33 32.72 (0.83) *** **
31 1 16 20.36 (0.29) 88 21.50 (1.11) 36 23.00 (1.27) *** *** ***
31 2 16 22.10 (0.38) 88 21.58 (1.58) 36 20.83 (0.33) *** *** ***
31 3 16 27.80 (0.22) 83 32.06 (4.87) 36 35.83 (1.53) *** *** ***
31 4 16 27.10 (0.31) 85 31.27 (5.37) 34 35.47 (2.17) *** *** ***
32 1 23 21.51 (0.40) 111 20.83 (0.63) 42 22.38 (1.79) ** *** ***
32 2 23 21.61 (0.45) 108 21.36 (0.63) 42 20.64 (0.76) *** *** *
32 3 23 29.02 (0.53) 109 28.06 (2.84) 42 34.96 (1.30) *** *** **
32 4 23 28.70 (1.06) 109 27.84 (3.20) 42 33.67 (2.86) *** *** **
33 1 23 20.19 (0.32) 86 21.18 (0.82) 41 24.56 (1.08) *** *** ***
33 2 23 22.12 (0.34) 86 21.47 (0.71) 41 21.21 (0.50) *** ** ***
33 3 23 27.28 (0.34) 86 30.97 (4.30) 41 37.07 (1.34) *** *** ***
33 4 23 26.86 (0.42) 83 31.64 (5.34) 41 36.76 (1.69) *** *** ***
34 1 24 21.53 (0.14) 163 20.23 (0.51) 47 19.55 (2.06) *** * ***
34 2 24 19.76 (0.25) 163 20.37 (0.70) 47 19.82 (0.97) *** ***
34 3 24 26.29 (0.28) 161 26.13 (2.00) 31 32.59 (2.39) *** ***
34 4 24 24.74 (0.28) 154 26.61 (2.52) 43 26.73 (3.79) * ***
35 1 21 26.90 (0.46) 26 24.10 (0.52) 28 23.14 (0.50) *** *** ***
35 2 21 22.65 (0.24) 26 27.42 (0.94) 28 26.14 (0.63) *** *** ***
35 3 21 24.28 (0.23) 26 35.66 (1.13) 28 34.09 (1.44) *** *** ***
35 4 21 26.09 (0.25) 26 35.65 (0.90) 28 33.83 (0.89) *** *** ***
36 1 21 26.90 (0.46) 83 21.03 (2.32) 93 24.48 (1.42) *** *** ***
36 2 21 22.65 (0.24) 83 18.88 (0.45) 94 21.78 (2.64) *** ***
36 3 21 24.28 (0.23) 82 33.88 (3.88) 89 34.76 (1.72) *** ***
36 4 21 26.09 (0.25) 83 29.39 (1.55) 94 35.23 (2.58) *** *** ***
37 1 21 24.21 (1.09) 85 23.66 (0.99) 70 22.50 (1.17) *** ***
37 2 21 24.39 (0.19) 85 24.53 (1.24) 70 24.30 (1.28)
37 3 21 24.60 (0.24) 85 33.13 (1.72) 70 33.15 (1.92) *** ***
37 4 21 26.51 (0.23) 85 33.84 (0.67) 70 32.92 (0.48) *** *** ***
38 1 21 24.21 (1.09) 89 20.08 (1.97) 97 23.75 (1.42) *** ***
38 2 21 24.39 (0.19) 89 19.38 (0.93) 97 20.06 (1.66) *** *** ***
38 3 21 24.60 (0.24) 83 32.80 (3.70) 97 33.62 (1.43) *** ***
38 4 21 26.51 (0.23) 89 26.80 (2.71) 97 34.98 (1.13) *** ***
39 1 12 24.13 (1.63) 112 20.69 (2.46) 57 21.42 (0.83) *** ***
39 2 12 25.27 (0.37) 118 20.50 (1.63) 56 20.92 (1.26) *** ***
39 3 12 24.94 (0.44) 100 32.47 (1.99) 56 31.36 (1.24) *** *** ***
39 4 12 25.07 (0.56) 61 30.50 (2.93) 56 31.04 (1.93) *** ***
RID: recording identification number, MG: muscle group (1: quadriceps, 2: hamstrings,
3: tibialis anterior, 4: triceps surae), *: p < .05, **: p < .01, ***: p < .001 (of pairwise
Whitney-Mann-U tests, Bonferroni corrected).
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A.2 Source code

Listing A.1: SuperNeuron.py
1 from br ian import ∗
2 from br ian . l i b r a r y . random processes import ∗
3 from br ian . l i b r a r y . synapses import ∗
4 from MyConstants import ∗
5
6 class SuperNeuron :
7 def i n i t ( s e l f ) :
8 return
9 def add rand curr ( s e l f , rand ) :

10 i f rand :
11 s e l f . eqs+= ' ' ' dIrand/dt = (mu−Irand )∗ invtau rand+sigma ∗((2.∗

invtau rand ) ∗∗ .5)∗ x i : uA∗cm∗∗−2
12 ' ' '
13 else :
14 s e l f . eqs+= ' ' ' Irand : uA∗cm∗∗−2
15 ' ' '
16 Irand=0∗uA∗cm∗∗−2
17
18 def add synapses ( s e l f , synapse , tau1 , tau2=1∗ms) :
19 i f ( synapse== ' alpha ' ) :
20 s e l f . eqs+=Equations ( ' ' ' dge/dt = −ge∗ invtau : siemens∗metre∗∗−2
21 dgi /dt = −g i ∗ invtau : siemens∗metre∗∗−2
22 dipsp/dt = ( gi−ipsp )∗ invtau : siemens∗metre∗∗−2
23 depsp/dt = (ge−epsp )∗ invtau : siemens∗metre∗∗−2
24 ' ' ' , invtau=1/tau1 )
25 e l i f ( synapse== ' exp ' ) :
26 s e l f . eqs+=Equations ( ' ' '
27 dipsp/dt = −ipsp∗ invtau : siemens∗metre∗∗−2
28 depsp/dt = −epsp∗ invtau : siemens∗metre∗∗−2
29 ge = epsp
30 g i = ipsp
31 ' ' ' , invtau=1/tau1 )
32 e l i f ( synapse== ' biexp ' ) :
33 s e l f . eqs+=Equations ( ' ' ' dge/dt = −ge∗ invtau2 : siemens∗metre∗∗−2
34 depsp/dt = ( invpeak∗ge−epsp )∗ invtau1 : siemens∗metre∗∗−2
35 dgi /dt = −g i ∗ invtau2 : siemens∗metre∗∗−2
36 dipsp/dt = ( invpeak∗gi−ipsp )∗ invtau1 : siemens∗metre∗∗−2
37 ' ' ' , invtau1=1/tau1 , invtau2=1/tau2 , invpeak = ( tau2 / tau1 ) ∗∗

( tau1 / ( tau2 − tau1 ) ) )
38 else :
39 s e l f . eqs+= ' ' ' ipsp = 0 ∗siemens∗metre∗∗−2:siemens∗metre∗∗−2
40 epsp = 0 ∗siemens∗metre∗∗−2:siemens∗metre∗∗−2
41 ' ' '

Listing A.2: MoNeuron.py
1 from br ian import ∗
2 from br ian . l i b r a r y . random processes import ∗
3 from br ian . l i b r a r y . synapses import ∗
4 import SuperNeuron as SuperNeuronCl
5 from MyConstants import ∗
6
7 mS = msiemens
8
9 # Conductances (mS/cmˆ2)

10 GNa = 120 ∗ mS/cm∗∗2
11 GK dr = 100 ∗ mS/cm∗∗2
12 GCa NS = 14 ∗ mS/cm∗∗2
13 GCa ND = .3 ∗ mS/cm∗∗2
14 GK CaS = 5 ∗ mS/cm∗∗2 # 3.136
15 GK CaD = 1.1 ∗ mS/cm∗∗2 # 0.69
16 GCa L = 0.33 ∗ mS/cm∗∗2
17 g leak = 0.51 ∗ mS/cm∗∗2
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18 GNapD = 0.1 ∗mS/cm∗∗2###############
19
20 # Sta t i c parameters
21 gc = 0 .1 ∗ mS/cm∗∗2 # coupl ing conductance (mS/cmˆ2)
22 p = 0 .1
23 Kd = 0.2 ∗ 10∗∗−2∗mole∗dmetre∗∗−3 # uM
24 f = 0.01 # percent f r ee to bound Ca
25 alpha = 0.009 ∗mole /(amp∗ second ) ∗um∗∗−1# mol/C/um
26 kca = 2 ∗ ms∗∗−1 # Ca removal rate
27 base eqs=Equations ( ' ' '
28 dh/dt= ( hinf−h)/Tauh : 1
29 dn/dt= ( ninf−n)/Taun : 1
30 dmnS/dt = (mnSinf−mnS)/TaumN : 1
31 dhnS/dt = ( hnSinf−hnS)/TauhN : 1
32 dmnD/dt = (mnDinf−mnD)/TaumN : 1
33 dhnD/dt = (hnDinf−hnD)/TauhN : 1
34 dmnap/dt = (mnapinf−mnap)/Taumnap : 1
35 dhnap/dt = ( hnapinf−hnap)/Tauhnap : 1
36 dm/dt = (minf−m)/Taum : 1
37 dml/dt = (mlinf−ml)/TaumL : 1
38 dCaS/dt = f∗(−alpha∗ICaS−kca∗CaS) : mole∗dmetre∗∗−3
39 dCaD/dt = f∗(−alpha∗ICaD−kca∗CaD) : mole∗dmetre∗∗−3
40 dvm/dt = 1/C∗(−INaS−IKS−ICaS−I leakS−IcouplingS−Irand ) : mV
41 dvd/dt = 1/C∗(−INapD−IKD−ICaD−IleakD−IcouplingD−ISynI−ISynE) : mV
42
43 Tauh = 30/( exp ((vm/mV+50)/15)+exp(−(vm/mV+50)/16) )∗ms : ms
44 Taun = 7/( exp ((vm/mV+40)/40)+exp(−(vm/mV+40)/50) )∗ms : ms
45 Tauhnap = 1200/( cosh ((vm/mV + 59)/16) )∗ms :ms
46 minf = 1/(1+exp ((vm−Vhm)/Sm) ) : 1
47 h in f = 1/(1+exp ((vm−Vhh)/Sh) ) : 1
48 ninf = 1/(1+exp ((vm−Vhn)/Sn) ) : 1
49 mnapinf = 1/(1+exp (( vd−Vhmnap)/Smnap) ) : 1
50 hnapinf = 1/(1+exp (( vd−Vhhnap)/Shnap) ) : 1
51 mnSinf = 1/(1+exp ((vm−VhmN)/SmN) ) : 1
52 hnSinf = 1/(1+exp ((vm−VhhN)/ShN) ) : 1
53 mnDinf = 1/(1+exp (( vd−VhmN)/SmN) ) : 1
54 hnDinf = 1/(1+exp (( vd−VhhN)/ShN) ) : 1
55 mlinf = 1/(1+exp (( vd−VhmL)/SmL) ) : 1
56
57 INapD = dyn∗GNapD∗mnap∗hnap∗(vd−ENa) : mA∗umetre∗∗−2
58 INaS = dyn∗GNa∗m∗∗3∗h∗(vm−ENa) : mA∗umetre∗∗−2
59 IKS = dyn∗(GK dr∗n∗∗4 + GK CaS∗CaS/(CaS+Kd) ) ∗(vm−EK) : mA∗umetre∗∗−2
60 ICaS = dyn∗GCa NS∗mnS∗∗2∗hnS∗ (vm−ECa) : mA∗umetre∗∗−2
61 I l eakS = g leak ∗(vm−EleakS ) : mA∗umetre∗∗−2
62 Icoupl ingS = gc/p∗(vm−vd ) : mA∗umetre∗∗−2
63 IKD = dyn∗(GK CaD∗CaD/(CaD+Kd) ) ∗(vd−EK) : mA∗umetre∗∗−2
64 ICaD = dyn∗(GCa ND∗mnD∗∗2∗hnD+GCa L∗ml) ∗(vd−ECa) : mA∗umetre∗∗−2
65 IleakD = gleak ∗(vd−EleakD) : mA∗umetre∗∗−2
66 IcouplingD = gc/(1−p) ∗(vd−vm) : mA∗umetre∗∗−2
67
68 ISynI = ipsp ∗(vd−Ei ) : amp∗umetre∗∗−2
69 ISynE = ( epsp+epsp Aff∗(1−Prsyn∗ f presyn ) ) ∗(vd−Ee) : amp∗umetre∗∗−2
70
71 depsp Aff /dt = −epsp Aff / tausyn : siemens∗metre∗∗−2
72
73 dPrsyn/dt=(Prinf−Prsyn) /(0.00001∗ second ) : 1
74 Prinf=1/(1+exp(6−xprsyn ) ) : 1
75 dxprsyn/dt=−xprsyn /(0.05∗ second ) : 1
76
77 EleakS : mV
78 EleakD : mV
79
80 dyn : 1
81 f presyn : 1
82 ' ' ' )
83
84 class MnNeuronFactory ( SuperNeuronCl . SuperNeuron ) :
85 def i n i t ( s e l f , s i z e , synapse= ' exp ' , Evar iab le=1, rand=False ) :
86 s e l f . s i z e = s i z e
87 s e l f . eqs = base eqs
88 s e l f . rand = rand
89 s e l f . Evar iab le = Evar iab le
90 s e l f . add synapses ( synapse , tau1=tausyn )
91 s e l f . add rand curr ( rand )
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92
93 s e l f . Group=NeuronGroup ( s e l f . s i z e , model=s e l f . eqs ,
94 th re sho ld=Empir ica lThreshold ( th r e sho ld=−20∗mV,

r e f r a c t o r y=2∗ms) ,
95 imp l i c i t=True )
96 s e l f . r e i n i t ( )
97
98 return s e l f . Group
99

100 def r e i n i t ( s e l f ) :
101 MnNeuronFactory . reinitNG ( s e l f . Group , s e l f . Evar iab le )
102
103 @staticmethod
104 def reinitNG (Group , var ) :
105 s i z e = len (Group )
106 i v s= −60∗mV
107 ivd= −60∗mV
108 Group .vm= iv s
109 Group . vd= ivd
110 Group . dyn = 1
111 Group . h = 1/(1+exp ( ( ivs−Vhh) /Sh) )
112 Group . n = 1/(1+exp ( ( ivs−Vhn) /Sn) )
113 Group .mnS = 1/(1+exp ( ( ivs−VhmN)/SmN) )
114 Group . hnS = 1/(1+exp ( ( ivs−VhhN)/ShN) )
115 Group .mnD = 1/(1+exp ( ( ivd−VhmN)/SmN) )
116 Group .hnD = 1/(1+exp ( ( ivd−VhhN)/ShN) )
117 Group . ml = 1/(1+exp ( ( ivd−VhmL)/SmL) )
118 Group .m = 1/(1+exp ( ( ivs−Vhm)/Sm) )
119 Group .mnap = 1/(1+exp ( ( ivd−Vhmnap) /Smnap) )
120 Group . hnap = 1/(1+exp ( ( ivd−Vhhnap) /Shnap ) )
121 Group .CaS = 0
122 Group .CaD = 0
123 Group . EleakS = (−65.0+randn ( s i z e ) ∗6 .5∗ var ) ∗mV
124 Group . EleakD = (−65.0+randn ( s i z e ) ∗3.25∗ var ) ∗mV
125 Group . Prsyn = 0
126 Group . xprysn = 0
127 Group . f p r e syn = 0

Listing A.3: InNeuron.py
1 from br ian import ∗
2 from br ian . l i b r a r y . random processes import ∗
3 from br ian . l i b r a r y . synapses import ∗
4 import SuperNeuron as SuperNeuronCl
5 from MyConstants import ∗
6
7 class InNeuronFactory ( SuperNeuronCl . SuperNeuron ) :
8 eqs=Equations ( ' ' '
9 dh/dt= ( hinf−h)/Tauh : 1

10 dn/dt= ( ninf−n)/Taun : 1
11 dmnap/dt = (mnapinf−mnap)/Taumnap : 1
12 dhnap/dt = ( hnapinf−hnap)/Tauhnap : 1
13 dm/dt = (minf−m)/Taum : 1
14 dvm/dt = 1/C∗(−INa−INap−IK−I leak−ISynI−ISynE−Irand ) : mV
15
16 Tauh = 30/( exp ((vm/mV+50)/15)+exp(−(vm/mV+50)/16) )∗ms : ms
17 Taun = 7/( exp ((vm/mV+40)/40)+exp(−(vm/mV+40)/50) )∗ms : ms
18 Tauhnap = 1200/( cosh ((vm/mV + 59) /16) )∗ms :ms
19
20 minf = 1/(1+exp ((vm−Vhm)/Sm) ) : 1
21 h in f = 1/(1+exp ((vm−Vhh)/Sh) ) : 1
22 ninf = 1/(1+exp ((vm−Vhn)/Sn) ) : 1
23 mnapinf = 1/(1+exp ((vm−Vhmnap)/Smnap) ) : 1
24 hnapinf = 1/(1+exp ((vm−Vhhnap)/Shnap) ) : 1
25
26 INap = GNap∗mnap∗hnap∗(vm−ENa) : mA∗umetre∗∗−2
27 INa = GNa∗m∗∗3∗h∗(vm−ENa) : mA∗umetre∗∗−2
28 IK = GK∗n∗∗4∗(vm−EK) : mA∗umetre∗∗−2
29 I l e ak = g leak ∗(vm−Eleak ) : mA∗umetre∗∗−2
30
31 gMlr = gEd ∗ dr ive : siemens∗metre∗∗−2
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32
33
34 ISynI = (gMlr+ipsp ) ∗(vm−Ei ) : amp∗metre∗∗−2
35 ISynE = (gMlr+epsp ) ∗(vm−Ee) : amp∗metre∗∗−2
36
37 GNa : msiemens∗cm∗∗−2
38 GNap : msiemens∗cm∗∗−2
39 GK : msiemens∗cm∗∗−2
40 g leak : msiemens∗cm∗∗−2
41 Eleak : mV
42
43 dr ive : 1
44 ' ' ' )
45 def i n i t ( s e l f , N RG=0,N PF=0,N IN=0,N INRG=0, synapse= ' exp ' , Evar iab le=1,

rand=False ) :
46 s e l f . add synapses ( synapse , tau1=tausyn )
47 s e l f . add rand curr ( rand )
48 s e l f . rand=rand
49 s e l f . Evar iab le = Evar iab le
50 s e l f .N RG = N RG
51 s e l f .N PF = N PF
52 s e l f . N IN = N IN
53 s e l f .N INRG = N INRG
54 s e l f . Group=NeuronGroup ( s e l f .N RG+s e l f .N PF+s e l f . N IN+s e l f .N INRG,

model=s e l f . eqs ,
55 th re sho ld=Empir ica lThreshold ( th r e sho ld=0∗mV, r e f r a c t o r y=3∗ms) ,
56 imp l i c i t=True )
57 s e l f .SG RG = s e l f . Group . subgroup ( s e l f .N RG)
58 s e l f . SG PF = s e l f . Group . subgroup ( s e l f .N PF)
59 s e l f . SG IN = s e l f . Group . subgroup ( s e l f . N IN)
60 s e l f . SG INRG = s e l f . Group . subgroup ( s e l f .N INRG)
61 #prin t s e l f . eqs
62 s e l f . r e i n i t ( )
63 return s e l f . Group
64
65 def r e i n i t ( s e l f ) :
66 i f s e l f .N RG != 0 :
67
68 s e l f .SG RG.GNa = 30 ∗ msiemens∗cm∗∗−2
69 s e l f .SG RG.GNap = 0.25 ∗ msiemens∗cm∗∗−2
70 s e l f .SG RG.GK = 1 ∗ msiemens∗cm∗∗−2
71 s e l f .SG RG. g leak = 0 .1 ∗ msiemens∗cm∗∗−2
72 s e l f .SG RG. Eleak = (−64+randn ( s e l f .N RG) ∗0.64∗ s e l f . Evar iab le ) ∗

mV
73
74 s e l f .SG RG. dr ive = 0 .5
75
76 i f s e l f .N PF != 0 :
77
78 s e l f . SG PF .GNa = 30 ∗ msiemens∗cm∗∗−2
79 s e l f . SG PF .GNap = 0.1 ∗ msiemens∗cm∗∗−2
80 s e l f . SG PF .GK = 1.2 ∗ msiemens∗cm∗∗−2
81 s e l f . SG PF . g leak = 0 .1 ∗ msiemens∗cm∗∗−2
82 s e l f . SG PF . Eleak = (−64+randn ( s e l f .N PF) ∗0.64∗ s e l f . Evar iab le ) ∗

mV
83
84 s e l f . SG PF . dr ive = 0 .5
85
86 i f s e l f . N IN != 0 :
87
88 s e l f . SG IN .GNa = 120 ∗ msiemens∗cm∗∗−2
89 s e l f . SG IN .GNap = 0 ∗ msiemens∗cm∗∗−2
90 s e l f . SG IN .GK = 100 ∗ msiemens∗cm∗∗−2
91 s e l f . SG IN . g l eak = 0.51 ∗ msiemens∗cm∗∗−2
92 s e l f . SG IN . Eleak = (−64+randn ( s e l f . N IN) ∗3 .2∗ s e l f . Evar iab le ) ∗ mV
93
94 s e l f . SG IN . dr ive = 0
95
96 i f s e l f .N INRG != 0 :
97
98 s e l f . SG INRG.GNa = 120 ∗ msiemens∗cm∗∗−2
99 s e l f . SG INRG.GNap = 0 ∗ msiemens∗cm∗∗−2

100 s e l f . SG INRG.GK = 100 ∗ msiemens∗cm∗∗−2
101 s e l f . SG INRG. g leak = 0.51 ∗ msiemens∗cm∗∗−2
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102 s e l f . SG INRG. Eleak = (−57.5+randn ( s e l f .N INRG) ∗2.875∗ s e l f .
Evar iab le ) ∗ mV

103 s e l f . SG INRG. dr ive = 0
104
105 s e l f . Group .vm = −70∗mV
106 s e l f . Group .mnap = 1/(1+exp ( ( s e l f . Group .vm−Vhmnap) /Smnap) )
107 s e l f . Group . hnap = 1/(1+exp ( ( s e l f . Group .vm−Vhhnap) /Shnap ) )
108 s e l f . Group .m = 1/(1+exp ( ( s e l f . Group .vm−Vhm)/Sm) )
109 s e l f . Group . h = 1/(1+exp ( ( s e l f . Group .vm−Vhh) /Sh) )
110 s e l f . Group . n = 1/(1+exp ( ( s e l f . Group .vm−Vhn) /Sn) )

Listing A.4: MyConstants.py
1 from br ian import ∗
2
3 # Half Act ivat ion Vh, Slopes S , Time Constants Tau
4 Vhm = −35∗mV
5 Sm = −7.8∗mV
6 Vhh = −55∗mV
7 Sh = 7∗mV
8 Vhn = −28∗mV
9 Sn = −15∗mV

10 VhmN = −30∗mV
11 SmN = −5∗mV
12 VhhN = −45∗mV
13 ShN = 5∗mV
14 VhmL = −40∗mV
15 SmL = −7∗mV
16 Vhmnap = −47.1∗mV
17 Smnap = −3.1∗mV
18 Vhhnap = −59∗mV
19 Shnap = 8∗mV
20 TaumN = 4 ∗ms
21 TauhN = 40∗ms
22 TaumL = 40∗ms
23 Taum = 0.00001∗ms
24 Taumnap = Taum
25 C = 1 ∗ uF/cm∗∗2
26
27 tausyn = 5∗ms
28
29 # Reversal p o t en t i a l s in mV
30 ENa = 55 ∗ mV
31 EK = −80 ∗ mV
32 ECa = 80 ∗ mV
33 Ee=−10∗mV
34 Ei=−70∗mV
35
36 gId = 0.05∗msiemens∗cm∗∗−2
37 gEd = 0.05∗msiemens∗cm∗∗−2
38 gSynE = 0.05∗msiemens∗cm∗∗−2
39 gSynI = 0.05∗msiemens∗cm∗∗−2
40
41
42 mu = 0∗uA∗cm∗∗−2
43 sigma = .08∗uA∗cm∗∗−2
44 invtau rand = 1/(20∗ms)

Listing A.5: Rybak.py
1 from br ian import ∗
2 from br ian . l i b r a r y . random processes import ∗
3 from br ian . l i b r a r y . synapses import ∗
4 import random
5 import MoNeuron as Moto
6 import InNeuron as IN
7 import time
8 from MyConstants import gSynE , gSynI
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9 from matp lo t l ib . backends . backend pdf import PdfPages , new f igure manager
10 import h5py
11 import os
12
13 class rybak ( ob j e c t ) :
14 a dd i t i o n a l i n=0
15 b i n s i z e = 30∗ms
16 stype = ' exp '
17 Mstype = ' exp '
18 def p l o t h i s t ( s e l f , ratemonitor ) :
19 bar ( ratemonitor . t imes /ms , ratemonitor . rate , width=s e l f . b i n s i z e /ms , c o l o r

= 'w ' )
20
21 def p l o t s p i k e ( s e l f , spikemon ) :
22 r a s t e r p l o t ( spikemon )
23
24 def p l o t s imp l e ( s e l f , t r a c e ) :
25 p lo t ( t r a c e . t imes /ms , t r a c e [ 0 ] /mV)
26
27 def p l o t a l l ( s e l f , n , fun , l s t ) :
28 f i g=f i g u r e (n)
29 for i in xrange (0 , l s t . l e n ( ) ) :
30 subplot ( l s t . l e n ( ) ,1 , i +1)
31 fun ( l s t [ i ] )
32 f i g . axes [ i ] . s e t x l im (0 , s e l f .DUR/ms)
33
34 return f i g
35
36 def r e i n i t mon i t o r s ( s e l f , l s t ) :
37 for i in xrange (0 , l s t . l e n ( ) ) :
38 l s t [ i ] . r e i n i t ( )
39
40 def i n i t ( s e l f , Evar=1, rand=False ) :
41 random . seed ( os . getp id ( )+in t ( round ( time . time ( ) ∗ 1e6 ) ) )
42 s e l f . Evar=Evar
43 s e l f . rand=rand
44 s e l f . s e tup neurons ( )
45 s e l f . s e tup connec t i on s ( )
46 s e l f . s e tup moni tor s ( )
47 s e l f . s e tup network ope ra t i ons ( )
48
49
50 def se tup neurons ( s e l f ) :
51 s e l f . MNFactory=Moto . MnNeuronFactory ( )
52 s e l f .MN=s e l f . MNFactory . i n i t (42 , s e l f . Mstype , s e l f . Evar , s e l f . rand )
53 s e l f . INFactory=IN . InNeuronFactory ( )
54 s e l f .P=s e l f . INFactory . i n i t (40 ,40 ,120+ s e l f . a dd i t i o na l i n , 40 , s e l f . stype

, s e l f . Evar , s e l f . rand )
55 print ' i n i t '
56 s e l f .RG E = s e l f . INFactory .SG RG. subgroup (20)
57 s e l f .RG F = s e l f . INFactory .SG RG. subgroup (20)
58
59
60 s e l f . PF E = s e l f . INFactory . SG PF . subgroup (20)
61 s e l f . PF F = s e l f . INFactory . SG PF . subgroup (20)
62
63 #uncomment one of those l i n e s to simulate r e s e t t i n g or non−r e s e t t i n g

de l e t i on s
64 #s e l f .PF F. dr ive = TimedArray ( [ 0 . 5 , 0.95 , 0 .5 ] , s t a r t=0∗ms, dt=5∗second

)
65 #s e l f .PF F. dr ive = TimedArray ( [ 0 . 5 , 0 . 5 , 0.5 , 0 .5 ,0 .0 ,0 .5 ,0 .95 ,0 .5 ] ,

s t a r t=0∗ms, dt=4∗second )
66 #s e l f .PF F. dr ive = TimedArray ( [ 0 . 5 , 0 . 5 , 0 , 0 . 5 , 1 . 5 , 0 . 5 , 1 . 0 , 0 . 5 ] , s t a r t

=0∗ms, dt=4∗second )
67
68 s e l f . INRG E = s e l f . INFactory . SG INRG. subgroup (20)
69 s e l f . INRG F = s e l f . INFactory . SG INRG. subgroup (20)
70
71 s e l f . INPF E = s e l f . INFactory . SG IN . subgroup (20)
72 s e l f . INPF F = s e l f . INFactory . SG IN . subgroup (20)
73
74 s e l f . IA E = s e l f . INFactory . SG IN . subgroup (20)
75 s e l f . IA F = s e l f . INFactory . SG IN . subgroup (20)
76
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77 s e l f . R E = s e l f . INFactory . SG IN . subgroup (20)
78 s e l f . R F = s e l f . INFactory . SG IN . subgroup (20)
79
80 s e l f .MN E = s e l f .MN. subgroup (21)
81 s e l f .MN F = s e l f .MN. subgroup (21)
82
83 s e l f . realMN E = s e l f .MN E. subgroup (20)
84 s e l f . fakeMN E = s e l f .MN E. subgroup (1)
85
86 s e l f . realMN F = s e l f .MN F. subgroup (20)
87 s e l f . fakeMN F = s e l f .MN F. subgroup (1)
88
89 s e l f . net = Network ( s e l f .P, s e l f .MN)
90
91 def s e tup connec t i on s ( s e l f , u s e de l ay=False ) :
92 #Connections
93 delay mean=2∗ms
94 de l ay s td =0.5∗ms
95 s e l f . RG E INRG F=Connection ( s e l f .RG E, s e l f . INRG F , ' ge ' , weight=gSynE

∗0 .45 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

96 s e l f . RG F INRG E=Connection ( s e l f .RG F, s e l f . INRG E , ' ge ' , weight=gSynE
∗0 .45 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

97 s e l f . net . add ( s e l f . RG E INRG F , s e l f . RG F INRG E)
98
99 s e l f . RG E sel f=Connection ( s e l f .RG E, s e l f .RG E, ' ge ' , weight=gSynE

∗0 .0125 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

100 s e l f . RG F sel f=Connection ( s e l f .RG F, s e l f .RG F, ' ge ' , weight=gSynE
∗0 .0125 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

101 s e l f . net . add ( s e l f . RG E self , s e l f . RG F sel f )
102
103 s e l f . RG E RG F=Connection ( s e l f .RG E, s e l f .RG F, ' ge ' , weight=gSynE

∗0 .0125 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

104 s e l f . RG F RG E=Connection ( s e l f .RG F, s e l f .RG E, ' ge ' , weight=gSynE
∗0 .0125 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

105 s e l f . net . add ( s e l f . RG E RG F , s e l f . RG F RG E)
106
107 s e l f . INRG E RG E=Connection ( s e l f . INRG E , s e l f .RG E, ' g i ' , weight=gSynI

∗0 .115 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

108 s e l f . INRG F RG E=Connection ( s e l f . INRG F , s e l f .RG F, ' g i ' , weight=gSynI
∗0 .115 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

109 s e l f . net . add ( s e l f . INRG E RG E , s e l f . INRG F RG E)
110
111 s e l f . RG E PF E=Connection ( s e l f .RG E, s e l f . PF E , ' ge ' , weight=gSynE

∗0 .0075 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

112 s e l f . RG F PF F=Connection ( s e l f .RG F, s e l f . PF F , ' ge ' , weight=gSynE
∗0 .0075 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

113 s e l f . net . add ( s e l f . RG E PF E , s e l f . RG F PF F)
114
115 s e l f . INRG E PF E=Connection ( s e l f . INRG E , s e l f . PF E , ' g i ' , weight=gSynI

∗0 .05 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

116 s e l f . INRG F PF E=Connection ( s e l f . INRG F , s e l f . PF F , ' g i ' , weight=gSynI
∗0 .05 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
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use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

117 s e l f . net . add ( s e l f . INRG E PF E , s e l f . INRG F PF E)
118
119 s e l f . INPF E PF E=Connection ( s e l f . INPF E , s e l f . PF E , ' g i ' , weight=gSynI

∗0 .35 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

120 s e l f . INPF F PF F=Connection ( s e l f . INPF F , s e l f . PF F , ' g i ' , weight=gSynI
∗0 .35 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

121 s e l f . net . add ( s e l f . INPF E PF E , s e l f . INPF F PF F)
122
123 s e l f . PF E INPF F=Connection ( s e l f . PF E , s e l f . INPF F , ' ge ' , weight=gSynE

∗0 .2 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay
else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
124 s e l f . PF F INPF E=Connection ( s e l f . PF F , s e l f . INPF E , ' ge ' , weight=gSynE

∗0 .2 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay
else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
125 s e l f . net . add ( s e l f . PF E INPF F , s e l f . PF F INPF E)
126
127 s e l f . PF E IA E=Connection ( s e l f . PF E , s e l f . IA E , ' ge ' , weight=gSynE ∗0 .4 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
128 s e l f . PF F IA F=Connection ( s e l f . PF F , s e l f . IA F , ' ge ' , weight=gSynE ∗0 .4 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
129 s e l f . net . add ( s e l f . PF E IA E , s e l f . PF F IA F )
130
131 s e l f . IA F IA E=Connection ( s e l f . IA F , s e l f . IA E , ' g i ' , weight=gSynI ∗0 .1 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
132 s e l f . IA E IA F=Connection ( s e l f . IA E , s e l f . IA F , ' g i ' , weight=gSynI ∗0 .1 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
133 s e l f . net . add ( s e l f . IA F IA E , s e l f . IA E IA F )
134
135 s e l f . R E IA E=Connection ( s e l f . R E , s e l f . IA E , ' g i ' , weight=gSynI ∗0 .1 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
136 s e l f . R F IA F=Connection ( s e l f . R F , s e l f . IA F , ' g i ' , weight=gSynI ∗0 .1 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
137 s e l f . net . add ( s e l f . IA F IA E , s e l f . IA E IA F )
138
139 s e l f .MN E R E=Connection ( s e l f .MN E, s e l f . R E , ' ge ' , weight=gSynE ∗0 .25 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
140 s e l f .MN F R F=Connection ( s e l f .MN F, s e l f . R F , ' ge ' , weight=gSynE ∗0 .25 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
141 s e l f . net . add ( s e l f .MN E R E , s e l f .MN F R F)
142
143 s e l f . R F R E=Connection ( s e l f . R F , s e l f . R E , ' g i ' , weight=gSynI ∗0 .1 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
144 s e l f . R E R F=Connection ( s e l f . R E , s e l f . R F , ' g i ' , weight=gSynI ∗0 .1 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
145 s e l f . net . add ( s e l f . R F R E , s e l f . R E R F)
146
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147 s e l f . PF E MN E=Connection ( s e l f . PF E , s e l f .MN E, ' ge ' , weight=gSynE ∗0 .5 ,
spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (21) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
148 s e l f . PF F MN F=Connection ( s e l f . PF F , s e l f .MN F, ' ge ' , weight=gSynE ∗0 .5 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (21) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
149 s e l f . net . add ( s e l f . PF E MN E , s e l f . PF F MN F)
150
151 s e l f . R E MN E=Connection ( s e l f . R E , s e l f .MN E, ' g i ' , weight=gSynI ∗0 .2 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (21) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
152 s e l f . R F MN F=Connection ( s e l f . R F , s e l f .MN F, ' g i ' , weight=gSynI ∗0 .2 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (21) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
153 s e l f . net . add ( s e l f . R E MN E , s e l f . R F MN F)
154
155 s e l f . IA F MN E=Connection ( s e l f . IA F , s e l f .MN E, ' g i ' , weight=gSynI ∗0 .6 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (21) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
156 s e l f . IA E MN F=Connection ( s e l f . IA E , s e l f .MN F, ' g i ' , weight=gSynI ∗0 .6 ,

spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay else
0 ∗ms , de lay= lambda i , j : delay mean+randn (21) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
157 s e l f . net . add ( s e l f . IA F MN E , s e l f . IA E MN F)
158
159 def se tup moni tor s ( s e l f ) :
160 s e l f . traceRGE=StateMonitor ( s e l f .RG E, 'vm ' , r ecord=True )
161 s e l f . traceRGF=StateMonitor ( s e l f .RG F, 'vm ' , r ecord=True )
162 s e l f . spikesRGE=SpikeMonitor ( s e l f .RG E)
163 s e l f . spikesRGF=SpikeMonitor ( s e l f .RG F)
164
165 s e l f . traceINRGE=StateMonitor ( s e l f . INRG E , 'vm ' , r ecord=True )
166 s e l f . traceINRGF=StateMonitor ( s e l f . INRG F , 'vm ' , r ecord=True )
167 s e l f . spikesINRGE=SpikeMonitor ( s e l f . INRG E)
168 s e l f . spikesINRGF=SpikeMonitor ( s e l f . INRG F)
169
170
171 s e l f . tracePFE=StateMonitor ( s e l f . PF E , 'vm ' , r ecord=True )
172 s e l f . tracePFF=StateMonitor ( s e l f . PF F , 'vm ' , r ecord=True )
173 s e l f . spikesPFE=SpikeMonitor ( s e l f . PF E)
174 s e l f . spikesPFF=SpikeMonitor ( s e l f . PF F)
175
176 s e l f . traceMNE=StateMonitor ( s e l f .MN E, 'vm ' , r ecord=True )
177 s e l f . traceMNF=StateMonitor ( s e l f .MN F, 'vm ' , r ecord=True )
178 s e l f . spikesMNE=SpikeMonitor ( s e l f .MN E)
179 s e l f . spikesMNF=SpikeMonitor ( s e l f .MN F)
180
181
182 s e l f .PRRGE=PopulationRateMonitor ( s e l f .RG E, s e l f . b i n s i z e )
183 s e l f .PRRGF=PopulationRateMonitor ( s e l f .RG F, s e l f . b i n s i z e )
184
185 s e l f .PRPFE=PopulationRateMonitor ( s e l f . PF E , s e l f . b i n s i z e )
186 s e l f .PRPFF=PopulationRateMonitor ( s e l f . PF F , s e l f . b i n s i z e )
187
188 s e l f .PRMNE=PopulationRateMonitor ( s e l f .MN E, s e l f . b i n s i z e )
189 s e l f .PRMNF=PopulationRateMonitor ( s e l f .MN F, s e l f . b i n s i z e )
190
191 s e l f . net . add ( s e l f .PRRGE, s e l f .PRRGF, s e l f .PRPFE, s e l f .PRPFF, s e l f .PRMNE,

s e l f .PRMNF, s e l f . traceINRGE , s e l f . traceINRGF , s e l f . spikesINRGE , s e l f
. spikesINRGF , s e l f . traceRGE , s e l f . traceRGF , s e l f . spikesRGE , s e l f .
spikesRGF , s e l f . spikesPFE , s e l f . spikesPFF , s e l f . traceMNE , s e l f .
traceMNF , s e l f . spikesMNE , s e l f . spikesMNF , s e l f . tracePFE , s e l f .
tracePFF )

192
193 s e l f . SPMonitorNames = l i s t ( )
194 s e l f . SPMonitorNames . append ( ”RGE” )
195 s e l f . SPMonitorNames . append ( ”RGF” )
196 s e l f . SPMonitorNames . append ( ”PFE” )
197 s e l f . SPMonitorNames . append ( ”PFF” )
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198 s e l f . SPMonitorNames . append ( ”MNE” )
199 s e l f . SPMonitorNames . append ( ”MNF” )
200
201 s e l f . TrMonitorNames = l i s t ( )
202 s e l f . TrMonitorNames . append ( ”RGE” )
203 s e l f . TrMonitorNames . append ( ”RGF” )
204 s e l f . TrMonitorNames . append ( ”PFE” )
205 s e l f . TrMonitorNames . append ( ”PFF” )
206 s e l f . TrMonitorNames . append ( ”MNE” )
207 s e l f . TrMonitorNames . append ( ”MNF” )
208
209 s e l f . T r a c e l i s t = l i s t ( )
210 s e l f . T r a c e l i s t . append ( s e l f . traceRGE)
211 s e l f . T r a c e l i s t . append ( s e l f . traceRGF)
212 s e l f . T r a c e l i s t . append ( s e l f . tracePFE )
213 s e l f . T r a c e l i s t . append ( s e l f . tracePFF )
214 s e l f . T r a c e l i s t . append ( s e l f . traceMNE)
215 s e l f . T r a c e l i s t . append ( s e l f . traceMNF)
216
217 s e l f . PRl i s t = l i s t ( )
218 s e l f . PRl i s t . append ( s e l f .PRRGE)
219 s e l f . PRl i s t . append ( s e l f .PRRGF)
220 s e l f . PRl i s t . append ( s e l f .PRPFE)
221 s e l f . PRl i s t . append ( s e l f .PRPFF)
222 s e l f . PRl i s t . append ( s e l f .PRMNE)
223 s e l f . PRl i s t . append ( s e l f .PRMNF)
224
225 s e l f . S p i k e l i s t = l i s t ( )
226 s e l f . S p i k e l i s t . append ( s e l f . spikesRGE )
227 s e l f . S p i k e l i s t . append ( s e l f . spikesRGF )
228 s e l f . S p i k e l i s t . append ( s e l f . spikesPFE )
229 s e l f . S p i k e l i s t . append ( s e l f . spikesPFF )
230 s e l f . S p i k e l i s t . append ( s e l f . spikesMNE)
231 s e l f . S p i k e l i s t . append ( s e l f . spikesMNF)
232
233 s e l f . trace MNE ipsp=StateMonitor ( s e l f .MN E, ' epsp Af f ' , r ecord=True )
234 s e l f . trace MNE epsp=StateMonitor ( s e l f .MN E, ' epsp ' , r ecord=True )
235 s e l f . trace MNF ipsp=StateMonitor ( s e l f .MN F, ' epsp Af f ' , r ecord=True )
236 s e l f . trace MNF epsp=StateMonitor ( s e l f .MN F, ' epsp ' , r ecord=True )
237 s e l f . net . add ( s e l f . trace MNE epsp , s e l f . trace MNE ipsp , s e l f .

trace MNF epsp , s e l f . trace MNF ipsp )
238
239 s e l f . MN PSPlist = l i s t ( )
240 s e l f . MN PSPlist . append ( s e l f . trace MNE ipsp )
241 s e l f . MN PSPlist . append ( s e l f . trace MNE epsp )
242 s e l f . MN PSPlist . append ( s e l f . trace MNF ipsp )
243 s e l f . MN PSPlist . append ( s e l f . trace MNF epsp )
244
245 #trace fake (no ion dynamics ) MN
246 s e l f . trace fakeMNE = StateMonitor ( s e l f . fakeMN E , 'vm ' , r ecord=True )
247 s e l f . trace fakeMNF = StateMonitor ( s e l f . fakeMN F , 'vm ' , r ecord=True )
248 s e l f . net . add ( s e l f . trace fakeMNE , s e l f . trace fakeMNF )
249
250 s e l f . fakeMNlist=l i s t ( )
251 s e l f . fakeMNlist . append ( s e l f . trace fakeMNE )
252 s e l f . fakeMNlist . append ( s e l f . trace fakeMNF )
253
254 def s e tup network ope ra t i ons ( s e l f ) :
255 @network operation ( c l o ck=EventClock ( dt=200∗ms) )
256 def prog r e s s ( c l k ) :
257 print c l k . t
258 return
259 s e l f . net . add ( p rog r e s s )
260
261 def c a l l ( s e l f , para , value ,DUR=20∗second , r epor t =0, d i sp l ay=False ,

f i l ename= ' run ' , run=True ) :
262 s e l f . net . r e i n i t ( s t a t e s=True )
263 s e l f . MNFactory . r e i n i t ( )
264 s e l f . INFactory . r e i n i t ( )
265 s e l f . r e i n i t mon i t o r s ( s e l f . S p i k e l i s t + s e l f . PRl i s t + s e l f . T r a c e l i s t )
266
267 Moto . MnNeuronFactory . reinitNG ( s e l f . fakeMN E , 0 )
268 Moto . MnNeuronFactory . reinitNG ( s e l f . fakeMN F , 0 )
269 s e l f . fakeMN E . dyn = 0
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270 s e l f . fakeMN F . dyn = 0
271
272 s e l f . f i l ename = f i l ename + s t r ( i n t ( round ( time . time ( ) ∗ 1000) ) )
273 for i in range (0 , l en ( para ) ) :
274 s e l f . f i l ename = s e l f . f i l ename + ' − ' + para [ i ] + ' = '+ value [ i ]
275 s e l f . f i l ename = s e l f . f i l ename + ' . pdf '
276 s e l f .DUR = DUR
277 s e l f . r epor t = repor t
278 s e l f . d i sp l ay = d i sp l ay
279 #s e l f .RG E. dr ive = TimedArray ( [0 , 0.5 , 0.5 , 0 . 9 ] , dt=1∗second )
280 i f run :
281 s e l f . i n j e c t a s s i gnmen t s ( para , va lue )
282 s e l f . run ( )
283 #return s e l f
284
285 def i n j e c t a s s i gnmen t s ( s e l f , para , va lue ) :
286 i f l en ( para )==len ( value ) :
287 for i in range (0 , l en ( para ) ) :
288 exec ' s e l f . ' + para [ i ] + '= ' + value [ i ]
289 print ' s e l f . ' + para [ i ] + '= ' + value [ i ]
290
291 def run ( s e l f ) :
292 s t a r t = time . c l o ck ( )
293 i f s e l f . r epor t == 0 :
294 s e l f . net . run ( s e l f .DUR)
295 else :
296 s e l f . net . run ( s e l f .DUR, repor t=s e l f . r epor t )
297 stop = time . c l o ck ( )
298 print ' Duration : ' + s t r ( stop−s t a r t )
299 print 'Time to s imulate 1 s : '+ s t r ( ( stop−s t a r t ) /( s e l f .DUR/ second ) )
300 s e l f . p l o t ( s e l f . d i sp l ay )
301
302 def p lo t ( s e l f , d i sp l ay=False ) :
303 s e l f . f i l ename=s e l f . f i l ename . r ep l a c e ( ' ∗ ' , ' . ' )
304 s e l f . f i l ename=s e l f . f i l ename . r ep l a c e ( ' / ' , ' . ' )
305 l t = time . l o c a l t ime ( time . time ( ) )
306 s e l f . path = ' . / output / ' + s t r ( l t [ 0 ] ) + ( ”%02d” % l t [ 1 ] )+ ( ”%02d” % l t

[ 2 ] )
307 i f not os . path . i s d i r ( s e l f . path ) :
308 os . makedirs ( s e l f . path )
309 s e l f . f i l ename=s e l f . path + ' / ' +s e l f . f i l ename
310 pp = PdfPages ( s e l f . f i l ename )
311
312 f i g 1 = s e l f . p l o t a l l (1 , s e l f . p l o t s imp l e , s e l f . T r a c e l i s t )
313 f i g 2 = s e l f . p l o t a l l (2 , s e l f . p l o t sp i k e , s e l f . S p i k e l i s t )
314 f i g 3 = s e l f . p l o t a l l (3 , s e l f . p l o t h i s t , s e l f . PRl i s t )
315 f i g 4 = s e l f . p l o t a l l (4 , s e l f . p l o t s imp l e , s e l f . MN PSPlist )
316 f i g 5 = s e l f . p l o t a l l (5 , s e l f . p l o t s imp l e , s e l f . fakeMNlist )
317
318 f i g 1 . s e t s i z e i n c h e s (40 ,20)
319 f i g 2 . s e t s i z e i n c h e s (40 ,20)
320 f i g 3 . s e t s i z e i n c h e s (40 ,20)
321 f i g 4 . s e t s i z e i n c h e s (40 ,20)
322 f i g 5 . s e t s i z e i n c h e s (40 ,20)
323
324 f=h5py . F i l e ( s e l f . f i l ename+” . hdf5 ” , 'w ' )
325 f . f i l ename
326 for i in xrange (0 , s e l f . TrMonitorNames . l e n ( ) ) :
327 i f l en ( s e l f . T r a c e l i s t )> i :
328 i f i <6:
329 nsp ike s=ze ro s ( ( s e l f . T r a c e l i s t [ i ] . va lues . shape [ 0 ] , 1 ) )
330 for j in xrange (0 , s e l f . T r a c e l i s t [ i ] . va lues . shape [0]−1) :
331 nsp ike s [ j ]= s i z e ( s e l f . S p i k e l i s t [ i ] . sp ike t imes [ j ] )
332
333 f . c r e a t e d a t a s e t ( ' t r a c e '+s e l f . TrMonitorNames [ i ] ,
334 data=s e l f . T r a c e l i s t [ i ] . va lues [ [

argmax ( nsp ike s ) , a r g s o r t (
nspikes , 0 ) [ 1 0 ] [ 0 ] , argmin (
nsp ike s ) ] ] . astype ( f l o a t 3 2 ) ,

335 compress ion=” gz ip ” ,
compress ion opts=9)

336 else :
337 f . c r e a t e d a t a s e t ( ' t r a c e '+s e l f . TrMonitorNames [ i ] ,
338 data=s e l f . T r a c e l i s t [ i ] . va lues
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. astype ( f l o a t 3 2 ) ,
339 compress ion=” gz ip ” ,

compress ion opts=9)
340 for i in xrange (0 , s e l f . SPMonitorNames . l e n ( ) ) :
341 i f l en ( s e l f . S p i k e l i s t )> i :
342 f . c r e a t e d a t a s e t ( ' sp i k e s '+s e l f . SPMonitorNames [ i ] ,
343 data=s e l f . S p i k e l i s t [ i ] . sp ikes ,
344 compress ion=” gz ip ” , compress ion opts

=9)
345
346 f . c r e a t e d a t a s e t ( ' traceFakeMNE ' , data=s e l f . trace fakeMNE . va lues . astype

( f l o a t 3 2 ) ,
347 compress ion=” gz ip ” , compress ion opts=9)
348 f . c r e a t e d a t a s e t ( ' traceFakeMNF ' , data=s e l f . trace fakeMNF . va lues . astype

( f l o a t 3 2 ) ,
349 compress ion=” gz ip ” , compress ion opts=9)
350 f . f l u s h ( )
351 f . c l o s e ( )
352
353 pp . s a v e f i g ( f i g 1 )
354 pp . s a v e f i g ( f i g 2 )
355 pp . s a v e f i g ( f i g 3 )
356 pp . s a v e f i g ( f i g 4 )
357 pp . s a v e f i g ( f i g 5 )
358 pp . c l o s e ( )
359 i f d i sp l ay==True :
360 show ( )
361 else :
362 c l o s e ( ' a l l ' )
363
364 @staticmethod
365 def showarraysmem ( obj , name= ' ' , n=0) :
366 i f n>30:
367 return
368 i f i s i n s t a n c e ( obj , ndarray ) :
369 size MB = obj . nbytes /1024.∗∗2
370 i f size MB >1.0:
371 print name , i n t ( size MB ) , 'MB'
372 else :
373 i f hasa t t r ( obj , ' d i c t ' ) :
374 for x , y in obj . d i c t . i t e r i t em s ( ) :
375 i f l en (name) :
376 namex = name+ ' . '+x
377 else :
378 namex = x
379 rybak . showarraysmem (y , namex , n+1)

Listing A.6: ModelA.py
1 from br ian import ∗
2 from br ian . l i b r a r y . random processes import ∗
3 from br ian . l i b r a r y . synapses import ∗
4 import MoNeuron as Moto
5 import InNeuron as IN
6 from time import c l o ck
7 from MyConstants import gSynE , gSynI
8 from matp lo t l ib . backends . backend pdf import PdfPages
9 from Rybak import ∗

10
11 use de l ay = True
12 delay mean = 2 ∗ ms
13 de l ay s td = 0 .5 ∗ ms
14
15 class modelA( rybak ) :
16 def i n i t ( s e l f ) :
17 s e l f . s type = ' alpha '
18 s e l f . Mstype = ' alpha '
19 super (modelA , s e l f ) . i n i t (1 , Fa l se )
20
21 def s e tup connec t i on s ( s e l f ) :
22 s e l f . i npu t f r eq = 30 ∗ Hz
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23
24 s e l f . sp ike t imes = [ ]
25 for i in xrange (0 , 20) :
26 s e l f . sp ike t imes . append ( ( i , 5 ∗ ms) )
27
28 s e l f . A f f e r ent Input = SpikeGeneratorGroup (20 , s e l f . sp iket imes , per iod

=1 / s e l f . i npu t f r eq )
29
30 s e l f .CIN RGE = Connection ( s e l f . Af ferentInput , s e l f .RG E, ' ge ' , weight

=gSynE ∗ 0 .08 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10 ∗
ms i f use de l ay else 0 ∗ ms , de lay=lambda i , j : delay mean +
randn (20) ∗ de l ay s td i f use de l ay else 0 ∗ ms)

31 s e l f .CIN RGF = Connection ( s e l f . Af ferentInput , s e l f .RG F, ' ge ' , weight
=gSynE ∗ 0 .075 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10 ∗
ms i f use de l ay else 0 ∗ ms , de lay=lambda i , j : delay mean +
randn (20) ∗ de l ay s td i f use de l ay else 0 ∗ ms)

32
33 s e l f . CIN PFE = Connection ( s e l f . Af ferentInput , s e l f . PF E , ' ge ' , weight

=gSynE ∗ 0 .08 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10 ∗
ms i f use de l ay else 0 ∗ ms , de lay=lambda i , j : delay mean +
randn (20) ∗ de l ay s td i f use de l ay else 0 ∗ ms)

34 s e l f . CIN PFF = Connection ( s e l f . Af ferentInput , s e l f . PF F , ' ge ' , weight
=gSynE ∗ 0 .08 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10 ∗
ms i f use de l ay else 0 ∗ ms , de lay=lambda i , j : delay mean +
randn (20) ∗ de l ay s td i f use de l ay else 0 ∗ ms)

35
36 s e l f .CIN MNE = Connection ( s e l f . Af ferentInput , s e l f .MN E, ' epsp Af f ' ,

weight=gSynE ∗ 0 . 4 , spa r s ene s s=1)
37 s e l f .CIN MNF = Connection ( s e l f . Af ferentInput , s e l f .MN F, ' epsp Af f ' ,

weight=gSynE ∗ 0 . 4 , spa r s ene s s=1)
38
39 s e l f . net . add ( s e l f . Af ferentInput , s e l f .CIN RGE, s e l f .CIN RGF, s e l f .

CIN PFE , s e l f . CIN PFF , s e l f .CIN MNE, s e l f .CIN MNF)
40 super (modelA , s e l f ) . s e tup connec t i on s ( u se de l ay=use de l ay )
41 s e l f . IA F MN E . i n i t ( s e l f . IA F , s e l f .MN E, ' g i ' , weight=gSynI ∗

0 . 8 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10 ∗ ms i f
use de l ay else 0 ∗ ms , de lay=lambda i , j : delay mean + randn (21)
∗ de l ay s td i f use de l ay else 0 ∗ ms) ;

42 s e l f . IA E MN F . i n i t ( s e l f . IA E , s e l f .MN F, ' g i ' , weight=gSynI ∗
0 . 8 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10 ∗ ms i f
use de l ay else 0 ∗ ms , de lay=lambda i , j : delay mean + randn (21)
∗ de l ay s td i f use de l ay else 0 ∗ ms) ;

43 s e l f . PF E INPF F . i n i t ( s e l f . PF E , s e l f . INPF F , ' ge ' , weight=gSynE
∗ 0 . 6 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10 ∗ ms i f
use de l ay else 0 ∗ ms , de lay=lambda i , j : delay mean + randn (20)
∗ de l ay s td i f use de l ay else 0 ∗ ms) ;

44 s e l f . PF F INPF E . i n i t ( s e l f . PF F , s e l f . INPF E , ' ge ' , weight=gSynE
∗ 0 . 6 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10 ∗ ms i f
use de l ay else 0 ∗ ms , de lay=lambda i , j : delay mean + randn (20)
∗ de l ay s td i f use de l ay else 0 ∗ ms) ;

45
46
47 def se tup moni tor s ( s e l f ) :
48 super (modelA , s e l f ) . s e tup moni tor s ( )
49 s e l f . s p i k e sA f f I n = SpikeMonitor ( s e l f . Af ferentInput , r ecord=True )
50 s e l f . S p i k e l i s t . append ( s e l f . s p i k e sA f f I n )
51 s e l f . SPMonitorNames . append ( ”Af f In ” )
52 s e l f . net . add ( s e l f . s p i k e sA f f I n )
53
54 def c a l l ( s e l f , f i l ename= ' rand run ' , i n f r q=30 ∗ Hz , j =0.75 , k=1, l

=0.8 , para =[ ] , va lue =[ ] , DUR=20 ∗ second , d i sp l ay=False , r epor t =0,
run=True ) :

55 s e l f . i npu t f r eq = i n f r q
56 f i l ename = f i l ename + ' , GK = 2 , ' + s t r ( i n f r q ) + ' , j = ' + s t r ( j ) +

' , k = ' + s t r (k ) + ' , l = ' + s t r ( l ) + ' exp '
57 s e l f . A f f e r ent Input . i n i t (20 , s e l f . sp iket imes , per iod=1 / s e l f .

i npu t f r eq )
58
59
60 # increas ing a f f e r en t input to motoneurons
61 s e l f .CIN MNE. i n i t ( s e l f . Af ferentInput , s e l f .MN E, ' epsp Af f ' ,

weight=gSynE ∗ 0 .4 ∗ j , s pa r s ene s s=1)
62 s e l f .CIN MNF. i n i t ( s e l f . Af ferentInput , s e l f .MN F, ' epsp Af f ' ,

weight=gSynE ∗ 0 .4 ∗ j , s pa r s ene s s=1)
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63
64 # changing a f f e r en t input to RG/PF
65 s e l f .CIN RGE. i n i t ( s e l f . Af ferentInput , s e l f .RG E, ' ge ' , weight=

gSynE ∗ 0 .08 ∗ l , s pa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10
∗ ms i f use de l ay else 0 ∗ ms , de lay=lambda i , j : delay mean +
randn (20) ∗ de l ay s td i f use de l ay else 0 ∗ ms)

66 s e l f .CIN RGF. i n i t ( s e l f . Af ferentInput , s e l f .RG F, ' ge ' , weight=
gSynE ∗ 0 .075 ∗ l , s pa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10
∗ ms i f use de l ay else 0 ∗ ms , de lay=lambda i , j : delay mean +

randn (20) ∗ de l ay s td i f use de l ay else 0 ∗ ms)
67
68 s e l f . CIN PFE . i n i t ( s e l f . Af ferentInput , s e l f . PF E , ' ge ' , weight=

gSynE ∗ 0 .08 ∗ l , s pa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10
∗ ms i f use de l ay else 0 ∗ ms , de lay=lambda i , j : delay mean +
randn (20) ∗ de l ay s td i f use de l ay else 0 ∗ ms)

69 s e l f . CIN PFF . i n i t ( s e l f . Af ferentInput , s e l f . PF F , ' ge ' , weight=
gSynE ∗ 0 .08 ∗ l , s pa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10
∗ ms i f use de l ay else 0 ∗ ms , de lay=lambda i , j : delay mean +
randn (20) ∗ de l ay s td i f use de l ay else 0 ∗ ms)

70
71
72 super (modelA , s e l f ) . c a l l ( para , value , DUR=DUR, repor t=report ,

d i sp l ay=disp lay , f i l ename=fi lename , run=False )
73 # s e l f .MN. dyn = 0
74
75 s e l f . INFactory .SG RG. dr ive = 0
76 s e l f . INFactory . SG PF . dr ive = 0
77 s e l f . INFactory .SG RG.GK = 2 ∗ msiemens ∗ cm ∗∗ −2
78 s e l f . INFactory . SG PF .GK = 2 ∗ msiemens ∗ cm ∗∗ −2
79 # s e l f . INFactory .SG INRG. Eleak = (−60+randn( s e l f . INFactory .N INRG)

∗2.875∗0) ∗ mV
80
81 s e l f . i n j e c t a s s i gnmen t s ( para , va lue )
82 i f run :
83 s e l f . run ( )

Listing A.7: ModelB.py
1 from br ian import ∗
2 from br ian . l i b r a r y . random processes import ∗
3 from br ian . l i b r a r y . synapses import ∗
4 import MoNeuron as Moto
5 import InNeuron as IN
6 from time import c l o ck
7 from MyConstants import gSynE , gSynI
8 from matp lo t l ib . backends . backend pdf import PdfPages
9 from ModelA import ∗

10
11 use de l ay=True
12
13 class modelB (modelA) :
14 def se tup neurons ( s e l f ) :
15 super (modelB , s e l f ) . s e tup neurons ( )
16
17 def s e tup connec t i on s ( s e l f ) :
18 delay mean=2∗ms
19 de l ay s td =0.5∗ms
20
21 s e l f . INPF E preMN E=Connection ( s e l f . INPF E , s e l f .MN E, ' xprsyn ' , weight

=0.8 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay
else 0 ∗ms , de lay= lambda i , j : delay mean+randn (21) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
22 s e l f . INPF F preMN F=Connection ( s e l f . INPF F , s e l f .MN F, ' xprsyn ' , weight

=0.8 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay
else 0 ∗ms , de lay= lambda i , j : delay mean+randn (21) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
23 s e l f . net . add ( s e l f . INPF E preMN E , s e l f . INPF F preMN F)
24 super (modelB , s e l f ) . s e tup connec t i on s ( )
25
26
27 def se tup moni tor s ( s e l f ) :
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28 super (modelB , s e l f ) . s e tup moni tor s ( )
29
30 s e l f . tracePresynMNE=StateMonitor ( s e l f .MN E, 'Prsyn ' , r ecord =[0 ] )
31 s e l f . traceXprsynMNE=StateMonitor ( s e l f .MN F, 'Prsyn ' , r ecord =[0 ] )
32 s e l f . traceHnapRGE=StateMonitor ( s e l f .RG E, 'hnap ' , r ecord=True )
33 s e l f . traceHnapRGF=StateMonitor ( s e l f .RG F, 'hnap ' , r ecord=True )
34 s e l f . spikeINPF F=SpikeMonitor ( s e l f . INPF F , record=True )
35 s e l f . spikeINPF E=SpikeMonitor ( s e l f . INPF E , record=True )
36 s e l f . spikeINRG F=SpikeMonitor ( s e l f . INRG F , record=True )
37 s e l f . spikeINRG E=SpikeMonitor ( s e l f . INRG E , record=True )
38
39 s e l f . T r a c e l i s t . append ( s e l f . tracePresynMNE )
40 s e l f . T r a c e l i s t . append ( s e l f . traceXprsynMNE)
41 s e l f . T r a c e l i s t . append ( s e l f . traceHnapRGE)
42 s e l f . T r a c e l i s t . append ( s e l f . traceHnapRGF)
43 s e l f . S p i k e l i s t . append ( s e l f . spikeINPF E )
44 s e l f . S p i k e l i s t . append ( s e l f . spikeINPF F )
45 s e l f . S p i k e l i s t . append ( s e l f . spikeINRG E )
46 s e l f . S p i k e l i s t . append ( s e l f . spikeINRG F )
47 s e l f . TrMonitorNames . append ( ”PrsynMNE” )
48 s e l f . TrMonitorNames . append ( ”PrsynMNF” )
49 s e l f . TrMonitorNames . append ( ”HnapRGE” )
50 s e l f . TrMonitorNames . append ( ”HnapRGF” )
51 s e l f . SPMonitorNames . append ( ”INPFE” )
52 s e l f . SPMonitorNames . append ( ”INPFF” )
53 s e l f . SPMonitorNames . append ( ”INRGE” )
54 s e l f . SPMonitorNames . append ( ”INRGF” )
55 s e l f . net . add ( s e l f . tracePresynMNE , s e l f . traceXprsynMNE , s e l f . spikeINPF E

, s e l f . spikeINPF F , s e l f . spikeINRG E , s e l f . spikeINRG F , s e l f .
traceHnapRGE , s e l f . traceHnapRGF)

56
57 def c a l l ( s e l f , f i l ename= 'modelB ' , i n f r q=30∗Hz , j =1.5 ,k=1, l =0.8 , para =[ ] ,

va lue =[ ] ,DUR=20∗second , d i sp l ay=False , r epo r t =0, run=True ) :
58 super (modelB , s e l f ) . c a l l ( f i l ename , in f rq , j , k , l , para , value ,DUR,

repor t=report , d i sp l ay=disp lay , run=False )
59
60 s e l f .MN E. f p r e syn =0.65
61 s e l f .MN F. f p r e syn =0.65
62 i f run :
63 s e l f . run ( )

Listing A.8: ModelC.py
1 from br ian import ∗
2 from br ian . l i b r a r y . random processes import ∗
3 from br ian . l i b r a r y . synapses import ∗
4 import MoNeuron as Moto
5 import InNeuron as IN
6 from time import c l o ck
7 from MyConstants import gSynE , gSynI
8 from matp lo t l ib . backends . backend pdf import PdfPages
9 from ModelB import ∗

10
11 use de l ay=True
12
13 class modelC (modelB ) :
14 def se tup neurons ( s e l f ) :
15 s e l f . a d d i t i o n a l i n =100
16 super (modelC , s e l f ) . s e tup neurons ( )
17 s e l f . APath1 = s e l f . INFactory . SG IN . subgroup (20)
18 s e l f . APath2 = s e l f . INFactory . SG IN . subgroup (20)
19 s e l f . InPath = s e l f . INFactory . SG IN . subgroup (20)
20 s e l f . APath2in = s e l f . INFactory . SG IN . subgroup (20)
21 s e l f . Pois = PoissonGroup (20 , r a t e s=75 ∗ her tz )
22 s e l f . net . add ( s e l f . Pois )
23
24 def s e tup connec t i on s ( s e l f ) :
25 delay mean=2∗ms
26 de l ay s td =0.5∗ms
27 super (modelC , s e l f ) . s e tup connec t i on s ( )
28 s e l f . Pois InPath=Connection ( s e l f . Pois , s e l f . InPath , ' ge ' , weight=gSynE
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∗0 .5 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay
else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
29 s e l f . InPath APath1=Connection ( s e l f . InPath , s e l f . APath1 , ' g i ' , weight=

gSynI ∗2 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

30 s e l f . InPfE InPath=Connection ( s e l f . INPF E , s e l f . InPath , ' g i ' , weight=
gSynI ∗2 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : 5∗ms+randn (20) ∗2∗ms i f
use de l ay else 0∗ms) ;

31 s e l f . CIN APath1=Connection ( s e l f . Af ferentInput , s e l f . APath1 , ' ge ' , weight
=gSynE ∗0 .75 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

32 s e l f . APath1 APath2=Connection ( s e l f . APath1 , s e l f . APath2 , ' ge ' , weight=
gSynE ∗0 .75 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

33 s e l f . APath2 APath2in=Connection ( s e l f . APath1 , s e l f . APath2in , ' ge ' , weight
=gSynE ∗0 .75 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (20) ∗
de l ay s td i f use de l ay else 0∗ms) ;

34 s e l f .APath2 MNF=Connection ( s e l f . APath2 , s e l f .MN F, ' ge ' , weight=gSynE
∗0 .75 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f
use de l ay else 0 ∗ms , de lay= lambda i , j : delay mean+randn (21) ∗
de l ay s td i f use de l ay else 0∗ms) ;

35 s e l f . APath2in MNF=Connection ( s e l f . APath2in , s e l f .MN F, ' xprsyn ' , weight
=0.8 , spa r s ene s s =1, s t r u c tu r e= ' dense ' , max delay=10∗ms i f use de l ay
else 0 ∗ms , de lay= lambda i , j : delay mean+randn (21) ∗ de l ay s td i f

use de l ay else 0∗ms) ;
36
37 s e l f . net . add ( s e l f . Pois InPath , s e l f . InPath APath1 , s e l f . InPfE InPath ,

s e l f . CIN APath1 , s e l f . APath1 APath2 , s e l f . APath2 APath2in , s e l f .
APath2 MNF , s e l f . APath2in MNF)

38
39 def se tup moni tor s ( s e l f ) :
40 super (modelC , s e l f ) . s e tup moni tor s ( )
41
42 s e l f . sp ikePo i s=SpikeMonitor ( s e l f . Pois , r ecord=True )
43 s e l f . spikeAPath1=SpikeMonitor ( s e l f . APath1 , record=True )
44 s e l f . spikeAPath2=SpikeMonitor ( s e l f . APath2 , record=True )
45 s e l f . sp ikeInPath=SpikeMonitor ( s e l f . InPath , record=True )
46
47 s e l f . S p i k e l i s t . append ( s e l f . sp ikePo i s )
48 s e l f . S p i k e l i s t . append ( s e l f . spikeAPath1 )
49 s e l f . S p i k e l i s t . append ( s e l f . spikeAPath2 )
50 s e l f . S p i k e l i s t . append ( s e l f . sp ikeInPath )
51
52 s e l f . SPMonitorNames . append ( ”Pois ” )
53 s e l f . SPMonitorNames . append ( ”APath1” )
54 s e l f . SPMonitorNames . append ( ”APath2” )
55 s e l f . SPMonitorNames . append ( ” InPath” )
56
57 s e l f . net . add ( s e l f . sp ikePoi s , s e l f . spikeAPath1 , s e l f . spikeAPath2 , s e l f .

sp ikeInPath )
58
59 def c a l l ( s e l f , f i l ename= 'modelC ' , i n f r q=30∗Hz , j =1.5 ,k=1, l =0.8 , para =[ ] ,

va lue =[ ] ,DUR=20∗second , d i sp l ay=False , r epo r t =0, run=True ) :
60 super (modelC , s e l f ) . c a l l ( f i l ename , in f rq , j , k , l , para , value ,DUR,

repor t=report , d i sp l ay=disp lay , run=False )
61 s e l f .MN F. f p r e syn =0.95
62 i f run :
63 s e l f . run ( )

Listing A.9: sampleRun.py
1 import matp lo t l ib
2 matp lo t l ib . use ( 'Agg ' )
3
4 from ModelC import ∗
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5 from br ian . t o o l s . datamanager import ∗
6 from br ian . t o o l s . taskfarm import ∗
7
8 i f name == ' main ' :
9

10 l s t = l i s t ( )
11
12 for i in [ 2 , 5 , 10 , 20 , 25 , 30 , 35 , 40 , 45 , 50 , 55 , 60 ] :
13 l s t . append ( ( 'modelC ' , i ∗Hz , 1 . 5 , 1 , 0 . 8 ) )
14
15 print l s t
16
17 dataman = DataManager ( 'modelC ' )
18 run ta sk s ( dataman , modelC , l s t , True , 4)
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