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Abstract

Over the past few decades, the internet has grown to an enormous infrastructure connecting
millions of people world-wide. The large scale of the internet has offered unique economic op-
portunities by enabling the ability to reach a tremendous, global user base for businesses and
individuals alike. The great success and opportunities also open up overwhelming challenges
due to the drastic growth and increasing complexity of the internet in the last decade. The main
challenge for development and operations is to provide reliable and fast service, despite of fast
growth in both traffic and frequency of requests. When it comes to speed, internet users have
high demands on the performance of online services. Recent research has shown that 47% of
online consumers expect load times of two seconds or less. This puts high pressure on web ap-
plications and websites in terms of performance and reliability, when even minor changes in per-
formance can have significant effects on how users perceive an application and decide whether
or not to continue with their interaction. If the revenue of a business is generated through their
online presence, performance directly correlates with loss of sales, and damage of brand percep-
tion.
With the growth of the internet and its user base, the underlying infrastructure has drastically
transformed from single server systems to heterogeneous, distributed systems. Thus, the end
performance depends on diverse factors in different levels of server systems, networks and in-
frastructure, which makes providing a satisfying end-user experience and QoS a challenge for
large scale internet applications.
In this thesis, statistical methods are applied to deal with the management of web performance
issues. In order to properly manage performance, the timely observation and analysis of perfor-
mance degradation is of key importance. Statistical changepoint analysis and exploratory visual
analysis are applied to results obtained through synthetic monitoring of a simulation system to
identify and discuss how performance issues in web applications can be detected.
Web Performance Benchmarking of competitors is discussed as a way to establish a baseline
for an overall performance goal. A general methodology for web performance benchmarking
is developed based on statistical analysis of finite collections of observed data from production
systems. The presented approach is then applied in a case study for benchmarking search engine
providers.
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Kurzfassung

In den letzten Jahrezenten ist das Internet zu einer ernormen infrastruktur angewachsen, die
Millionen von Menschen auf der Welt vernetzt. Die weite Verbreitung des Internets hat einzi-
gartige wirtschaftliche Möglichkeiten eröffnet, welche jedoch auch mit üeberwältigenden Her-
ausforderungen durch das drastische Wachstum und der immer steigenden Komplexität, vor
allem in den letzten Jahren, verbunden sind. Die Herausforderung für Development und Op-
erations ist trotz dieses Wachstums ein zuverlässiges und performantes Service bereitzustellen.
Wenn es um Performance geht, haben Internetnutzer hoch Ansprüche an Online Services - ak-
tuelle Forschung zeigt, dass Ladezeiten von zwei Sekunden oder weniger erwartet werden. Diese
Erwartungen erhöhen den Druck auf Webapplikationen und Websites, da auch kleinste Änderun-
gen in der Performance die Wahrnehmung einer Applikation drastisch beeinflussen. Wenn der
Umsatz eines Unternehmens durch dessen Onlinepräsenz generiert wird, so korreliert mangel-
nde Performance direkt mit schlechten Verkaufszahlen und Markenwahrnemung.
Durch das zuvor erwähnte Wachstum hat sich die zugrunde liegende Infrastruktur des Internets
von Single Server Systemen zu heterogenen, verteilten Systemen entwickelt. Die resultierende
Performance des Gesamtsystems hängt somit von diversen Faktoren in verschiedenen Ebenen
der Serversysteme und Netzwerke ab, welche die Bereitstellung einer zufriedenstellenden Ser-
vicequalität eine Herausforderung in Large Scale Internet Applikationen macht.
In dieser Arbeit werden statistische Methoden vorgestellt, die sich mit dem Management von
Web Performance Problemen auseinandersetzen. Die ordentliche Verwaltung von Performance
hängt mit der zeitnahen Überwachung und Analyse der zugrunde liegenden Systeme zusammen.
Statistische Changepoint Analyse und explorative, visuelle Verfahren werden auf Performance
Daten angewandt, die durch synthethisches Monitoring innerhalb einer Simulation bezogen wer-
den. Es wird gezeigt und diskutiert wie Performance Probleme durch diese Methoden erkannt
werden können.
Web Performance Benchmarking von Wettbewerbern wird im zweiten Teil der Arbeit als Meth-
ode diskutiert um ein Performance Ziel zu definieren. Es wird eine allgemeine Methode zu Web
Performance Benchmarking vorgestellt, welche auf statistische Analyse von über Zeit hinweg
gemessenen Daten von Produktionssystemen basiert. Das präsentierte Vorgehen wird schließlich
in einer Case Study angewandt, bei der Performance von Suchmaschinenanbietern verglichen
wird.
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CHAPTER 1
Introduction

“Motivation is the art of getting
people to do what you want them to
do because they want to do it."

— Dwight D. Eisenhower,
34th President of the United States

The internet started out as a small-scale research network for scientists to share centralized
computing resources across different geographic locations. Over the past few decades, the in-
ternet has grown to an enormous infrastructure connecting millions of people world-wide. Its
usage spans over a variety of different areas ranging from communication and collaboration to
entertainment and commerce. The large scale of the internet has offered unique economic op-
portunities by enabling the ability to reach a tremendous, global user base for businesses and
individuals alike. The great success and opportunities also open up overwhelming challenges,
that will be addressed in the following. The internet is growing at a rapid pace; both average
transfer size and number of requests have been growing drastically in the last decade, especially
in recent years (as can be seen in Figure 1.1). The main challenge for development and opera-
tions is to provide reliable and fast service, despite of fast growth in both traffic and frequency
of requests.

Psychology of Performance

When it comes to speed, internet users have high demands on the performance of online services.
Early research in HCI shows that frustration increases with overall load times that exceed 8-10
seconds [17, 48]. More recent research has shown that faster internet connections and overall
improvements in web performance has made internet users even less patient over time: 47% of
online consumers expect load times of two seconds or less [2].
While time can be accurately measured in units, performance is based on human perception that

1



Figure 1.1: Average transfer size and number of requests over time [39]

depends on context and expectations. Table 1.1 shows how performance delays measured in
units of time correlate with user perception [39].

Delay User perception
0-100ms Instant
100-300ms Small perceptible delay
300-1000ms Machine is working
1000+ ms Likely mental context switch
10000+ ms Task is abandoned

Table 1.1: Time correlating with user perception [39]

These user-centric perceptions on time put high pressure on web applications and websites
in terms of performance and reliability. Even minor changes in performance can have significant
effects on how users perceive an application and decide whether or not to continue with their
interaction.

1.1 Motivation

From the perception internet users have on time spent on web applications and websites follow
drastic implications for e-commerce and other businesses operating over the internet. The advan-
tages that have enabled economic opportunities, such as a large scale, globalized user base, also
facilitate the emergence of more competition. The simple and effortless possibility of switching
to a competitive service through a mouse-click makes it all more important to avoid user frus-
tration and abandonment of the service.

2



If the revenue of a business is generated through their online presence, performance directly
correlates with loss of sales and revenue:

• If Amazon increased page load time by +100ms they lose 1% of sales [50]

• Google Maps reduced its initial page size by 25%, traffic went up 10% in the first week,
and an additional 25% in the following three weeks [33]

• 500ms of extra load time at Google decreased traffic and ad revenues by 20% [76]

• 400ms of extra load time caused 5-9% drop in full-page traffic, i.e., visitors leaving before
the site was fully loaded at Yahoo! [76]

While these statistics show direct correlation from performance to sales and revenue, [5]
suggests that the quality of experience on the internet reflect the company’s brand. Hence, poor
performance or unavailability can damage the overall brand perception and image of a company
and impact loyalty.

With the growth of the internet and its user base, the underlying infrastructure has drastically
grown from single server systems to heterogeneous distributed systems. Modern large scale
web services run on loosely coupled, complex systems, spanning multiple data centers and con-
tent distribution networks (as illustrated in Figure 1.2). The end performance depends on diverse
factors in different levels of server systems, networks and infrastructure. This makes providing a
satisfying end-user experience and Quality of Service (QoS) a challenge for large scale internet
applications and websites. Analysis and diagnosis of underlying causes of web performance
issues is a difficult and complicated endeavor: problems that cause performance bottlenecks can
be manifested in any parts and layers in the ecosystem of the application.
Performance monitoring provides a means of quality assessment and improvement. Monitoring
is the process of continually observing the state of a system and measuring its quality attributes
(e.g., performance). Web performance monitoring primarily aims at early detection of unavail-
ability and performance degradation, in order to avoid or minimize loss of revenue and brand
damage. Furthermore, the collected measurements over time enable more complex, statistical
analysis. This makes active performance monitoring an essential tool in maintaining a satisfy-
ing end-user experience and QoS, as well as learning from past observations through enabling
analysis on collected data.

3



Figure 1.2: Infrastructure of a large scale web service [72]

1.2 Contribution

In this thesis, we apply statistical analysis and methods to deal with the management of web
performance issues. It primarily aims to fill the gap between web performance monitoring and
the field of statistics. The following research questions are addressed:

1. How do performance issues manifest in performance data gathered through active mon-
itoring? How can these changes in performance be observed, both visually and through
statistical methods and algorithms?

2. How do we determine a performance goal? When a certain performance goal is deter-
mined, how can the progress of achieving this goal be actively tracked and communicated?

The performance data for this thesis is collected by the means of active performance monitor-
ing through synthetic agents, either within a data center or geographically distributed throughout
the world.

1.3 Organization

The topics of the thesis will be organized as follows:

• Chapter 2 provides an overview of the background, covering the basics of web perfor-
mance analysis. Further, it will give an introduction to basic statistical methods that are
used, as well as an introduction to time series analysis and changepoint analysis.

• Chapter 3 will present related research work, which is closely related to statistical methods
in web performance.

4



• The first research question will be examined in Chapter 4. It will present a simulation
design covering scenarios that will simulate root-causes in web performance degradation.
Furthermore, it will present and discuss the results of the defined simulations.

• Chapter 5 deals with the second research question, and will suggest a general methodology
for web performance benchmarking based on statistical analysis of finite collections of
observed data from production systems. It also suggests a process that visually assists the
pursuit of a performance goal by a development team.

• Concluding remarks and an outlook to possible future work will be found in Chapter 6.

5





CHAPTER 2
Background

In order to gain thorough understanding of this thesis’ topic, this chapter will work through the
background that provides all basics of web performance analysis and statistics based on literature
study of state-of-the-art publications, as well as current research on the topics.

2.1 Web Performance Monitoring

“If you can’t measure it,
you can’t improve it."

— Lord Kelvin,
18th Century Physicist

Web performance monitoring refers to the process of observing the state of web services or
web applications over time by employing either external or internal monitoring or measuring
artifacts. The aim of a monitoring process is the identification and detection of existing and
potential issues in the monitored system. Web performance monitoring activities are heavily
coupled with measurement activities of a certain set of performance metrics. In order to fully
understand the web performance monitoring process, the following sections aim on establishing
an understanding on how certain elements within the monitoring process work.

2.1.1 Availabilty, Performance and Reliability

When it comes to the state of a web service or web application, we distinguish between the QoS
attributes availability, performance, and reliability.

Availability

Availability is defined as the property that the system is ready to be used at any given point in
time [77]. Colloquially, the availability of a web service is referred to as up time. Conversely,
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the unavailability is refereed to as down time. Consequently, a web service is referred to as either
’up’ or ’down’, depending on whether it is available (i.e., ready to be used at the given time) or
not. Availability is used as a QoS attribute in contractual agreements (especially Service Level
Agreements (SLA)), and is usually given in percent. It is the relative relationship between up
time and down time as defined in [62]:

Availability =
System up time

System up time + System down time
(2.1)

When it comes to (external) monitoring and measurement of web services and web applica-
tions, availability is not a trivial matter. The state of availability (or, for that matter, unavailabil-
ity) cannot always be queried1. The question is, when is a service seen as unavailable? Usually,
in web performance monitors, a threshold is defined that a certain performance metric must not
exceed in order to be still seen as available. This threshold is known as a connection timeout.

Performance

Performance refers to how fast a system delivers its service with regard to a certain performance
metric. Performance is measured in the unit that follows from the collected metric through the
measurement system. Section Refsubsec:metrics lists and describes prevalent metrics that are
used in web performance monitoring. The presence of a performance measurement at a specific
point in time, already infers availability.

Reliability

Reliability is about continuous availability of a system without failure. It is defined in terms of
a time interval, as opposed to availability, that is defined in terms of a point in time [77].

1Sometimes the HTTP status does return a proper status code to indicate service unavailability, but this is not
always the case
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2.1.2 Anatomy of a Web Transaction

Communication in distributed systems happens through a series of protocols on different lay-
ers. In web services and web applications, communication between client and servers happens
through the HTTP protocol, which has a significant impact on performance. When dealing with
web performance monitoring, it is important to learn the fundamentals of the protocol. Under-
standing how HTTP works and what each component in an HTTP transaction means is key to
interpreting the data collected by any (external) monitoring service. In the following, we will
describe the basics of a web transaction over the HTTP protocol. This section is largely based
on [20, 34, 38, 58].
HTTP is an application layer protocol built on top of the Transfer Control Protocol (TCP) proto-
col. It guarantees reliability of delivery, and breaks down larger data requests and responses into
chunks that can be delivered over the network. TCP is a “connection” oriented protocol, which
means, whenever a client starts a dialogue with a server, the TCP protocol will open a connec-
tion, over which the HTTP data will be reliably transferred. When the dialogue is complete that
connection should be closed.

Simple HTTP transaction

A simple HTTP transaction is one where the client (either a web browser or another application
in case of a web service) makes a single request for HTTP content to the web server hosting
the web service or web application. Figure 2.1 depicts the workflow of such a simple HTTP
transaction. In the following, we describe the steps taken in this workflow from starting the
request to receiving the response.

Figure 2.1: Anatomy of a simple HTTP transaction

1. DNS Lookup

The Domain Name System (DNS) lookup resolves a domain name for the request. The client
sends a DNS query to the local Internet Service Provider (ISP) DNS server2. The DNS server

2The local ISP’s DNS Server is usually configured on the client, but can be configured to different DNS server
as well
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responds with the IP address for the requested host name.

2. Connect

Establishes a TCP connection with the IP address of the webserver (which has been retrieved
in the previous step). The client sends a SYN packet to server. The server sends a SYN-ACK
packet back to the client. The client responds with an ACK packet, which establishes the TCP
three-way handshake.

3. Send

The actual HTTP request is sent to the web server.

4. Wait

The client waits for the server to respond to the request. The web server processes the HTTP
request, generates a response, which is sent back from the server to the client. The client receives
the first byte of the first packet from the server (containing the HTTP Response headers and
content)

5. Load

The client loads the content of the response. The web server sends the second TCP segment with
a PSH flag. The PSH flag informs the server that the data should be pushed up to the receiving
application immediately. The client sends an ACK message (for every two TCP segments it
receives) and the web server sends third TCP segment with an HTTP_Continue status code
(which denotes that the client may continue with its request).

6. Close

The client sends a FIN packet to close the TCP connection.

Persistent HTTP Transactions

Persistent connections allow the client to utilize the same connection for different object requests
to the same host. They are supported natively in the HTTP 1.1 protocol. In HTTP 1.0, persistent
connections are controlled via the Keep-Alive HTTP header.

Figure 2.2 depicts the workflow of a persistent HTTP transaction. As opposed to the single
request, in the persistent transaction the subsequent workflow of SEND →WAIT → LOAD
is repeated for each different object resource that is loaded from the same host. Afterwards the
connection is closed. The remainder of the protocol follows the simple HTTP transaction, as
discussed before.
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Figure 2.2: Anatomy of a persistent HTTP transaction

Parallel HTTP Transactions

The HTTP 1.1 protocol provides clients with the ability to open multiple connections and per-
form HTTP requests in parallel.

In Figure 2.3, the browser loads a resource from hostname.com which contains two image re-
quests to hostname.com and two requests to adserver.com. Once the first request is completed,
the subsequent requests are performed in parallel, which results in performance improvements.

Figure 2.3: Anatomy of a parallel HTTP transaction
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2.1.3 Performance Monitoring

Figure 2.4: Different types of monitoring

Internal Monitoring

Internal monitoring, sometimes also referred to as traditional Application Performance and Re-
source Management (APM), allows the monitoring of health, availability and performance of
applications and underlying infrastructure from within the organization’s own datacenter. Inter-
nal monitoring for web services and web applications is comprised of tools and processes, which
are known from "classical" monitoring in distributed systems, such as

• Systems monitoring (CPU, I/O, Memory, Load, etc.)

• Network monitoring (Bandwidth, Throughput, etc.)

• Log analysis

• Middleware monitoring

Internal monitoring is referred to as a passive monitoring system. This means that monitor-
ing data is gathered only through actual interactions with the system itself, i.e., the monitoring
system does not trigger any action to actively obtain performance measurements. Internal moni-
toring provides deep insight and visibility into the application’s performance, as well as complete
understanding of internal infrastructure performance and resource utilization.
The downside of internal monitoring is the lack of insight and visibility on the performance expe-
rienced by end users. The overall user experience in terms of performance does not only depend
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on the internal applications and infrastructure, but also on external networks, third-parties, and
frontend performance. These are aspects that internal monitoring fails to capture.

Synthetic Web Performance Monitoring

Due to the complexity of modern distributed systems, the infrastructure powering web services
and web application - the internet - can encounter issues in many different ways, in the many
layers and components of systems. Some of these issues may reside within applications and
datacenters, and can thus be detected through internal monitoring. Other problems are of ex-
ternal nature: they reside beyond controlled environment, but also impact performance that is
perceived by the end-user.

Synthetic Monitoring simulates end-user experience by actively measuring performance metrics
through geographically distributed software-based agents. It is called synthetic because it does
not involve web traffic generated by real clients and end-users. In literature synthetic monitoring
is also referred to as active monitoring or active probing [25], because the agents are actively
trying to connect to the target system in order to collect performance data, whether the target sys-
tem is accessed by real end-users or not. Probing is usually performed in uniformly distributed
time intervals. The software-based agents are usually deployed in data centers throughout the
world, in order to obtain an objective view on latency experienced in different geographic re-
gions. Due to the emergence of mobile devices [55], the deployment of synthetic agents is not
limited to data centers that are connected through broadband internet-connectivity. Vendors have
expanded deployment to nodes that are connected through 3G or 4G connectivity from carriers
in the respective areas of probing. Thus, the measurements obtained through synthetic moni-
toring are representations of performance metrics by simulated clients that produce real world
results. This allows us to know the state of the target system at any given time as perceived
by end-users. This approach yields the advantage of knowing and acting on the information of
either unavailability or performance degradation as soon as these events occur, and preferably
before it is affecting any end-users.

Depending on the target system that needs to be monitored within the ecosystem of a web ap-
plication, different tools are used in the monitoring process. The simplest way to test basic
(network) connectivity is the method ping (also known as ICMP ECHO), which sends a single
packet to a webserver and receives a response. However, the capabilities to measure proper
performance metrics with ping are very limited. Synthetic monitoring agents use HTTP GET
to simulate user interaction with the target systems in order to verify functionality and measure
the timing of various milestones in request and response (see Section 2.1.2). There are several
possibilities to leverage the use of HTTP GET, from only requesting a single resource of an
application (e.g., only the products page of an e-commerce site) to measuring the performance
metrics of a whole transaction or process (e.g., checkout process of an e-commerce site), which
involves many steps that need to be scripted.
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Client Simulation

When looking at different synthetic monitoring solutions there is an important distinction to be
made in the way an end-user client is simulated. The software-based agent can either simulate
a browser (browser simulation) or run a real browser (browser puppetry) [30]. The difference
between these approaches is crucial and will be briefly described in the following.

In browser simulation a synthetic agents emulates the client through a series of HTTP com-
mands combined into a testing script. The responses are parsed and tested for the desired out-
come (e.g., HTTP status, containing certain contents, specific assertions, etc.). Figure 2.5 shows
the approach used in browser simulation. While this method is very easy to implement, it has
limitations that browser puppetry, that will be explained in the following, does not have.

Instead of simply setting up a script simulating HTTP requests, in browser puppetry, we run
tests by "manipulating an actual copy of a web browser" [30]. The script is now more advanced
and operates on the Document Object Model (DOM) of the returned HTML resource. This al-
lows for more complex and real world testing, as many modern web sites and applications work
with JavaScript, which otherwise would not be executed. Figure 2.6 displays the approach used
in browser puppetry.

Figure 2.5: Browser simulation through simple HTTP GET illustrated on the example of re-
trieving www.test.com [30]

14



Figure 2.6: Browser puppetry through emulating a real browser illustrated on the example of
retrieving www.test.com and performing actions on the DOM [30]

Real-User Monitoring (RUM)

Real-User Monitoring (RUM) tracks web page performance from the browser, measuring the
performance as experienced by the end users. Thus, with RUM, we obtain data on real users
when they access the application. It gathers the user experience across all active users, geogra-
phies, and devices, thus allowing not only for (near) real-time metrics, but also further statistics
on usage to correlate performance degradation. It is a form of passive monitoring, meaning that
it only measures if the system is actively used by its end users. Thus, if end users cannot access
the application, or there is a low/no traffic period, or not enough data captured.

Implementation

Real-user monitoring is usually implemented through a small JavaScript tag that imports an
external script to the page. This allows either an external service handling the monitoring or
an internal monitoring appliance to measure metrics from the moment a request was initiated
to the final loading of the whole page. The code in the snippet activates a ping-back of the
measured data to the desired monitoring server where the performance data is finally stored.
The specific performance metrics that are measured through RUM are described in Section 2.1.4.
Additionally, RUM also captures device information, operating system, browser information and
geographic origin.

2.1.4 Web Performance Metrics

The Oxford English Dictionary (OED) defines the term "metrics" as "a set of figures and statis-
tics that measure results" [60]. In [40], time is defined as "the basis of all computer performance
management" that all other metrics in performance measurement and analysis are build upon. In
the previous sections, we established the basic means of communication on the internet, as well
as the ways we are able to measure and monitor our internal and external systems by the means

15



of agents. Web performance metrics are the results we obtain by these measurement that yield a
specific meaning to the QoS and Quality of Experience (QoE) of the end users. In the following,
we introduce the main metrics employed in web performance analysis by synthetic agents and
real user monitoring. We divide the metrics into request component metrics and frontend metrics.

In order for the synthetic agent to measure the metrics, it requires the location of the web ap-
plication or web service to be examined. This will be referred to as the ’target URL’ in the
description of the metrics. If the target URL has a redirect chain, the specific metric should be
calculated as the sum of the time it took to for each step to be completed, i.e., for each domain
in the redirect chain. For DNS, it is the time it took to resolve the DNS for each URL in the
redirect chain.

Request Component Metrics

Request component metrics examine the communication involved in retrieving the target URL.
The metrics are derived from the transport components in HTTP (see Section 2.1.2). The fol-
lowing metrics can only be measured through synthetic node agents.

DNS

Time it took the agent to resolve the DNS for the target URL.

Connect

Time it took to establish a connection with the server for the target URL.

Send

Time it took to send the request to the server for the target URL.

Wait

Time from when the connection was established successfully and the request was sent to the
server, to the time we receive the first byte of response for the target URL.

SSL

Time it took to establish the SSL handshake with the target URL.

Time to First Byte (TTFB)

Time it took from the request being issued to receiving the first byte of data from the target URL.
It is calculated as follows

TTFB = DNS + Connect+ Send+Wait (2.2)
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Load

Time it took between loading the first byte to the last byte of target URL. It is also referred to as
Receive Time.

Response

Time it took from the request being issued to the primary host server responding with the last
byte of the target URL.

Server Response

Time it took from when the DNS was resolved to the server responding with the last byte of
the target URL. This shows the server’s response exclusive of DNS times. For tests where the
primary URL has a redirect chain, the ’Server Response’ metric is calculated as the response
time for each domain in the redirect chain minus the DNS time.

File Size

File size in bytes of the response received for the target URL.

Throughput

The numerical representation of how efficiently the system was able to retrieve the target URL
in KB/s. The throughput is calculated as follows

Throughput =
FileSize

Wait+ Load
(2.3)

Frontend Metrics

The metrics on the frontend additionally examine events that occur after the contents of the target
URL have been loaded, including additional elements that are referenced by the markup. These
type of metrics are only possible to measure if the synthetic agent employs browser puppetry
(see Section 2.1.3) and only target websites and applications that deliver markup (HTML).

DOM Load Time

Time it took to load the DOM on the page of the target URL.

Content Load

Time it took to load the entire content of the website after the connection was established with
the server for the target URL. This is the time elapsed between the end of Send until the final
element, or object, on the page is loaded. Content Load does not include the DNS, Connect,
Send, and SSL time on the target URL (or any redirects of the target URL).
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Render Start

Time it took the browser to start rendering the page.

Document Complete

Time it took for the JavaScript ’onLoad’ event to fire.

Time to Title

Time it took the browser to display the title of the page.

Webpage Response

Time it took to load every element of the webpage. This starts from the initial request and ends
at the last received byte of the final request on the page (including images, scripts, stylesheets,
third party services, etc.).
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2.2 Statistical Methods

“There are three kinds of lies:
lies, damned lies, and statistics."

— Benjamin Disraeli,
British prime minister and author

In this chapter, we discuss basic statistical methods for exploratory data analysis of numeric
attributes that are crucial in the analysis and management of web performance. We will focus on
the univariate analysis of measures of center or location, as well as of measures of dispersion.
Furthermore, we will briefly introduce time series analysis and methods of change detection in
time series. The following descriptions of basic statistical notions is largely based on [42, 68].

2.2.1 Measures of Central Tendency

Measures of central tendency or location of a distribution of data are single values that attempt
to describe what we deem to be typical or central within the set of data. The most common
measures are the statistics arithmetic mean (usually referred to as "average"), the median, and
the mode. On occasion, other statistics for mean values such as the geomtric mean or harmonic
mean are used for measures of center when appropriate. When referring to the "average" mostly
the arithmetic mean is meant.

The aforementioned statistics are all legitimate measures of central tendencies, but under cer-
tain circumstances, some measures are more appropriate than others. The following sections
will briefly outline the center statistics that are important and widely used in the world of web
performance data: arithmetic mean and median.

Arithmetic Mean

The arithmetic mean is probably the most popular and well known statistic for the measure of
central tendency, and it is often colloquially referred to as the "average". The mean can be
applied to both discrete and continuous data, although it is most often applied to the latter.
In mathematical terms, we assume that we are looking at a data set having n data points labeled
x1, x2, ... through xn. The data set can either be a statistical population (i.e., the entire collection
of data points that could be possibly observed) or a statistical sample (a subset of the statistical
population in question). Depending from what set the mean has to be calculated, it is either
specified as the population mean or the sample mean. It is mostly not feasible to observe the
entire statistical population, so most of the times the sample mean is calculated.
The sample mean x̄ is defined in Equation 2.4.

x̄ =

∑n
i=1 xi
n

(2.4)
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The arithmetic mean is simply defined as the sum of all data values in the data set divided
by the number of values. It can be essentially thought of as the value that is most common
or representative within the data. In the context of measurements of web performance metrics
(of any kind), the mean captures an approximate view of what all users included within the
measurement process have experienced.

Median

The median is another measure of central tendency that is less affected by skewness of data
and outliers within the data set. Again we differentiate between population median and sample
median. Given the order statistics [8] defined in Equation 2.5, we define the sample median x̃ in
Equation 2.6.

Y1 = minjXj , Y2, ..., Yn−1, YN = maxjXj (2.5)

x̃ =

{
Y(n+1)/2 if N is odd

1
2(YN

2
+ Y1+N

2
) if N is even (2.6)

x̃ is the middle value after all of the values are put in an ordered list. This means that at
least half of the values are less than or equal to the median and at least half of the values are
greater than or equal to the median. If the number of values in the list is even, the median is the
arithmetic mean of the two middle values.

For symmetric distributions, the median is equal to the mean. For skewed distributions (also
called asymmetric distributions), the median is preferred as a measure of central tendency. The
preference in these cases is given due to the median’s robustness. A sample statistic has the
property of robustness if the value of the property is not affected by outliers in the data or other
rather small deviations from model assumptions. The median is a highly robust statistical prop-
erty, because you can move almost all of the upper or lower half of the data values any distance
away from the median without changing its value. From a more practical point of view, a few
observation points that are significantly above or below the median usually have no effect on its
value.

2.2.2 Measures of Dispersion

Measures of dispersion express the properties of variation and spread or dispersion in the val-
ues of a random variable. There are also referred to as the measure of spread of a distribution.
Higher diversification in the examined data is expressed through in higher measures of statisti-
cal dispersion. Literature in the area performance measurements and statistics has been limited
with a focus on the (arithmetic) mean of performance metrics, such as the response time [9].
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However, as the performance experienced by the end user is highly affected by the variability in
response times and other metrics, measures of dispersion of performance metrics are crucial in
understanding end user experience. The most common measures of dispersion found in basic lit-
erature on descriptive statistics are the variance and standard deviation. The following sections
will briefly introduce these statistics.

Variance

The variance is a standard measure of dispersion (and similarly to measures of central tendency)
is calculated from a data set having n data points labeled x1, x2, ... through xn, which can either
be a statistical population or a statistical sample. It is the average squared distance between the
arithmetic mean and each item in the data set (Equation 2.7).

s2 =

∑n
i=1(xi − x̄)2

(n− 1)
(2.7)

The most commonly used symbol for the sample variance is s2; the population variance is
commonly σ2. When calculating the sample variance n − 1 is used as the denominator instead
of simply n in order to reduce the bias that was introduced through the already used statistic x̄
in the calculation.

Standard deviation

The standard deviation is simply the positive square root of the variance. Its advantage compared
to the variance is that it expresses spread in the same units as the originally observed values in
the data set, making the statistic more understandable.

2.2.3 Exploratory Data Analysis

Exploring and analyzing data that are produced through monitoring of large scale internet ap-
plications is becoming increasingly difficult, due to nature and the high volumes of data that
is observed. In exploratory data analysis, we analyze data sets in order to obtain a summary,
quick view and grasp of certain main characteristics of the data. This can either be done through
summary statistics or through visual data exploration, without using a specific statistical model.
Grasping interrelationships between multiple performance metrics and time within complex lay-
ers of various systems is a hard undertaking. It is difficult to analyze and derive conclusions of
this abstract collection of (multidimensional) performance data using traditional techniques that
do not employ visual representations of information. A potential solution is the use of visual-
ization techniques to convert high volume of data into an image that domain experts can use for
exploration, identification of patterns, and further diagnostics.
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Data Visualization

Data Visualization presents information in form of illustrations that aim to improve the under-
standing of data, or sometimes even establish understanding for underlying systems and pro-
cesses. Presentation of data in visual form allows humans to apply their perceptual abilities to
get insight into the data, derive a mental model in presence of domain knowledge and draw con-
clusions.

In [65] the visualization of information has been formalized:

• A data set D contains n data elements, ei, such that D = {e1, ..., en}

• A data set A representing a set of data attributes, aj , such that A = {A1, ...Am} where
m ≥ 13

• Data elements encode values for each attribute: ei = {ai,1, ...ai,m}, ai,j ∈ Aj .

• A function M(V,Φ) maps raw data to visual information, where

– V = {V1, ..., Vm} is a set of m visual features with Vj selected to represent each
attribute Aj , and

– Φj : Aj 7→ Vj maps the domain of Aj to the range of displayable values in Vj

This means that visualization is the process of selecting an appropriate transformation func-
tion M , creating images that enable proper exploration and analysis of the underlying processes
or data.

3m = 1 denotes univariate data, m > 1 denotes multivariate data
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2.2.4 Time Series Analysis

Time series analysis comprises methods and techniques for analyzing data and extracting mean-
ingful characteristics, which is largely employed throughout the sciences and engineering in a
variety of fields. This section on this prevalent topic is based mostly on [18, 57, 71].

A time series represents an ordered sequence of observations collected over time. The data
points are usually recorded at uniform temporal intervals. Data points recorded in an irregular
fashion are typically interpolated to form values at regular intervals before the time series is
analyzed. A data point may consist of a single observation (univariate time series) or multiple
observations (multivariate time series). More formally, we can represent a time series X as a
discrete function with value xi for every equally spaced point in time ti ,where ti ∈ T is a time
variable in a set of n points (Equation 2.8).

X = {x1, x2, ..., xn} (2.8)

Stochastic Processes

A process is a mathematical description of an underlying system and can be defined as a se-
quence of random variables. In this context, a system can be either deterministic or stochastic.
A process is said to be deterministic if its future states are completely determined by the present
state of the system. If there are different possibilities for transitions to other states, which are
not completely determined by the present state, the system is stochastic.

Stochastic processes are statistical models for time series. A stochastic process {Y (t), t ∈ T}
maps events of the process to real numbers, where T is an index set for time points. T in this
context is a set of times where the process is observed (i.e., sampled). This means that, at any
time t ∈ T , Y (t) is a random variable. The connection between time series and stochastic pro-
cesses, can be explained as follows: A time series X , t = 1, ..., T can be seen as a realization
(or the observations) from a stochastic process {Y (t), t ∈ T}.

In web performance, the underlying system driving the stochastic process is our web application,
which is clearly not deterministic.

Stationarity

Stationarity is a common assumption in many time series techniques. This means that many
time series models only yield meaningful results if the underlying process delivers stationary
data. However, many time series observed in practice (including time series in web performance
measurements) are non-stationary. Therefore, non-stationary time series should be transformed
to stationary time series before applying any further analysis. We distinguish between strict
stationarity and weak stationarity. In the literature, the terms stationarity and weak stationarity
are used synonymously, unless specified otherwise. In practice, strict stationarity is too limiting
of an assumption, and rarely holds true. In the following, we will provide a brief definition on
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weak stationarity.

A stationary process is a process where the statistical properties of mean, variance and au-
tocovariance do not change over time. In mathematical terms, we denote Equation 2.9 to be the
mean of Y (where E is the function calculating the expected value) and Equation 2.10 to be the
autocovariance of Y .

µ(t) = E(Y (t)) (2.9)

γ(s, t) = Cov(Y (s), Y (t)) (2.10)

If µ(t) is the same for each t ∈ T and γ(s, t) only depends on the distance |s − t| and not on
the point in time itself, then we say that Y has (weak) stationarity. In conclusion, a time series

is said to be stationary if there is

• No systematic change in the mean (i.e., no trend)

• If there is no systematic change in variance

• If strictly periodic variations have been removed (i.e., no seasonality)

There are different ways of obtaining a stationary time series from non-stationary processes.
For stochastic processes, this is done through differencing [71]. A more detailed explanation on
trend and seasonality can be found in [18].

The following sections briefly discuss additional ways and particular methods of dealing
with time series derived from time correlated stochastic processes.

Smoothing Techniques

Smoothing refers to a technique that attempts to reduce random fluctuations in time series data
in order to capture important behaviour of the underlying process (signal) and leave out data that
might impact the overall judgment of the process (noise). In the context of web performance data
in this thesis, smoothing is primarily used to filter out short-term spikes (outliers) that might
be caused by network phenomena and that are not associated with a fundamental shift in the
underlying process. Smoothing techniques are also used to reveal the underlying trend, seasonal
components and cyclic components of time series data. A very common way of smoothing is by
building the ’moving average’. There are several other methods, such as exponential smoothing,
which are further explained in [36].

24



Moving Average

A moving average is a method for smoothing time series by creating a new series contain-
ing the averages of fixed-sized subsets of the original series. More formally, given a time se-
ries X = {x1, ...xn}, a moving average with a window of w elements is a new time series
S = {s1, ...sn−w+1} defined by taking the arithmetic mean of subsequences of w data points
(Equation 2.11).

si =

∑i+w−1
j=1 xj

w
(2.11)

Figure 2.7 illustrates an example of a possible time series plot, displaying both the values
of the time series containing the observed values (black line), as well as the newly constructed
sequence with a moving average window size w = 10 (red line).

Figure 2.7: Example plot of a time series together with its moving average with window size 10
in red

In conclusion, a moving average is commonly used to smooth out short-term fluctuations
and emphasize long-term cycles or trends. However, when working with moving average, or
any smoothed data sets for that matter, we must be aware of the fact that this data has been
newly created from our observations and thus contains its own error.
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2.2.5 Changepoint Analysis

Changepoint analysis deals with the identification of points within a time series where the sta-
tistical properties change. For the context of observing changes in web performance data in
particular, we are looking for a fundamental shift in the underlying Probability density func-
tion (pdf). In a time series, we assume that the observations come from one specific distribution
initially, but at some point in time, this distribution may change. The aim of changepoint analy-
sis is to determine if such changes in distribution have occurred, as well as the estimation of the
points in time when these changes have taken place. In [46], the basic problem of changepoint
detection has been formalized as follows:

• Let us assume we have a sequence of observations y1:n = (y1, ..., yn).

• A changepoint is said to occur within this set when there exists a time, τ ∈ {1, ..., n− 1},
such that the statistical properties of {y1, ..., yτ} and {yτ+1, ..., yn} exhibit differences.

• If we extend the notion from single changepoints to multiple changepoints, we say we
have a number of points in time m in the set τ1:m = {τ1, ..., τm} where τi ∈ τ .

• We assume that the changepoints are an ordered set, such that τi < τj iff i < j.

• Thus, our m changepoints will split our initial data set y1:n into m+ 1 segments, with the
ith segment containing the range y(τi−1+1):τi .

• Now, each data segment will be summarized by a set of parameters, where the ith segment
will be denoted {θi, φi} where

– φi is a set of nuisance parameters that are not of immediate interest but must be
accounted for in the analysis

– θi is a set of parameters that may contain the (distribution) we are looking for

• Next step is to estimate the values of the parameters of each segment in order to know
how many changepoints are present in the data

Now we’ve introduced the notion of changepoints within an ordered sequence of data. The
detection of these points in time generally takes the form of hypothesis testing. The null hypoth-
esis, H0, represents no changepoint (i.e., m = 0) and the alternative hypothesis, H1, represents
changepoints exist (i.e., m > 0).
If we go from a general point of view (i.e., testing for a statistical property) to the more spe-
cific property we are looking for, namely changes in the distribution, we can formulate H0 as in
Equation 2.12.

H0 : F1 = F2 = ... = Fn (2.12)
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where F1, F2, ..., Fn are pdf associated with the random variables of our segments. The alterna-
tive hypothesis would then be defined as in Equation 2.13.

H1 : F1 = ... = Fk1 6= Fk1+1 = ... = Fk2 6= Fk2+1 = ... = Fkm 6= Fkm+1 = ... = Fn (2.13)

where 1 < k1 < k2 < ... < km < n. m is, as before, the number of changepoints. k1, k2, ...km
are the unknown positions of changepoints ki ∈ τ . As we constructed our parameter θ for each
segment before, we only need to test the changes in the parameters. Then the hypothesis testing
results to

H0 : θ1 = θ2 = ... = θn (2.14)

versus the alternative hypothesis

H1 : θ1 = ... = θk1 6= θk1+1 = ... = θk2 6= θk2+1 = ... = θkm 6= θkm+1 = ... = θn (2.15)

with the same meaning for ki as before and with θi being the parameter to be tested.

In order to test this hypothesis, a test statistic needs to be constructed which can decide whether
a change has occurred. A general likelihood-ratio based approach can be used. For further
information we refer to the original papers [22, 46], as well as to work providing a more com-
prehensive review [74].
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CHAPTER 3
Related Work

This chapter gives an overview over existing research work employing other approaches in sta-
tistical methods in a performance context, and performance benchmarking.

3.1 Statistical Approaches

This section discusses research work that employs statistical methods for performance analysis.
Analyzing performance data observed through continuous monitoring in distributed systems and
web services has produced a whole body of research dealing with statistical modeling of under-
lying systems, anomaly detection and other traditional methods in statistics to address problems
in performance monitoring and analysis.

Pinpoint [23] collects end-to-end traces of requests in large, dynamic systems and performs
statistical analysis over a large number of requests to identify components that are likely to
fail within the system. It uses a hierarchical statistical clustering method, using the arithmetic
mean to calculate the difference between components by employing the Jaccard similarity coef-
ficient [43], which is used to compare the diversity and similarity of sample sets.
[27] makes use of statistical modeling to derive signatures of systems state in order to enable
identification and quantification of recurrent performance problems through automated cluster-
ing and similarity-based comparisons of the signatures.
[3] proposes an approach which identifies root causes of latency in communication paths for
distributed systems using statistical techniques.
[26] proposes that the statistics geometric mean, geometric standard deviation and geometric
confidence intervals are superior to their arithmetic counterparts in web performance analysis.
Using empirical data they show that response times often follow a lognormal distribution [4].
An analysis framework to observe and differentiate systemic and anomalous variations in re-
sponse times through time series analysis was developed in [72].
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A whole body of research at WUT1 highlights the use of statistical methods in web perfor-
mance monitoring and analysis [10–16]. The research work spans from statistical approaches to
predict web performance, design of architectures for multiagent internet measurement systems
for monitoring, to empirical studies to assess web quality by employing statistical performance
models.

3.1.1 Statistical Process Control

Statistical Process Control (SPC) is a technique using statistical methods to monitor and control
the quality of a certain process [70]. SPC sets control limits that are within three standard
deviations from the mean. A measurement beyond these limits indicates that the process has
shifted or has become unstable. Figure 3.1 shows a control chart that has two measurements
that are beyond the limits. SPC was originally created for quality control in manufacturing
processes, but has been used for quality assurance in various fields of business, science and
engineering [56].

Figure 3.1: Control chart with 2 measurements beyond its limits - plotted with R package
’qcc’ [67]

[59] suggests an approach to automated detection of performance regressions using control
charts that is outlined in Figure 3.2. The lower and upper control limits for the control charts
are determined through load testing that establish a baseline for performance testing. The pre-
processing steps ’scale’ and ’filter’ in the approach are applied to satisfy the assumptions of
a non-varying process and normality of the measured data for SPC. In these steps, the base-
lines are scaled employing a linear regression model to minimize the effect of load differences.
Finally, a violation ratio is determined as an indicator of performance regression in the new
software release.

In [44] the basic idea of SPC is used to develop an improvement model to analyze end-user
experience in terms of performance, and make data-driven decisions in order to improve overall

1Wrocalaw University of Technology, Poland
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Figure 3.2: Outline of automated performance regression detection approach in [59]

QoS.
The open source project Skyline [73] is a near real time anomaly detection system for various
metrics, which uses the idea of control charts as its basic algorithm. It is described in more detail
in Section 3.1.2.

3.1.2 Anomaly Detection

Anomalies are defined as patterns in data that do not comply to expected normal behavior.
Anomaly detection can, subsequently, be seen as the definition of regions in data represent-
ing normal behavior and any observation that does not adhere to this notion of normality is seen
as an anomaly [21]. Figure 3.3 illustrates the idea of anomalies. The data sets N1 and N2 are
considered the regions representing normal behavior, as most observations are grouped in these
regions. The points o1 and o2, as well as the regions O3 are considered to be anomalous.

Figure 3.3: Example of anomalies in 2-dimensional data [21]
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Anomaly detection in a performance context is a widely used approach in current research
work. [19] applies statistical methods to detect anomalies in network communication. Specif-
ically, statistical characterization of TCP traffic was used and several stochastic models have
been compared.

[24] proposes an automated anomaly detection and performance modeling approach in large
scale enterprise applications. A framework is proposed that integrates a regression based trans-
action model reflecting resource consumption and an application performance signature that
provides a model of runtime behavior. The constructed application signature serves as a metric
to uniquely reflect application transactions and their CPU requirements. After software releases,
the application signatures are compared in order to detect changes in performance. Figure 3.4
illustrates a change in performance through comparison of signatures before and after new soft-
ware release.

Figure 3.4: Original application signature compared to the application signature of the new
software release [24]

As briefly discussed in Section 3.1.1, Skyline [73] is an open source tool developed by Etsy2

that aims on providing anomaly detection for various performance metrics in web applications.
As it is designed to deal with a variety of different metrics, non-parametric algorithms are em-
ployed for anomaly detection that do not need prior statistical modeling of the data. In order
to minimize the amount of false positives, Skyline applies many different algorithms, and only
classifies a metric to be anomalous if the majority of algorithms agree with the classification.
The amount of algorithms which are deemed to be the majority can be configured in the project.

2http://www.etsy.com
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3.2 Web Performance Benchmarking

Performance benchmarking in computing is a widely used concept to rate and compare the
efficiency and performance of the targeted systems. Benchmarking in the context of web appli-
cations and web services is a process used to compare the performance of hardware and software
systems under specific metrics and measurement procedures. We differentiate between two dif-
ferent kinds of benchmarks:

• Benchmarks that are used to evaluate the performance of a system under a well-defined
synthetic workload specification.

• Benchmarks that evaluate performance of systems already in production.

3.2.1 Load Testing Benchmarks

The aim of performance benchmarks for load testing is usually capacity planning, testing of
scalability, and proper sizing of systems that are not yet in production. The System Under
Test (SUT) is evaluated under a well-defined workload specification. This means the type of
requests and frequency of submission of requests is predefined and simulated. There are a few
organizations offering benchmark specifications for web systems, which will be briefly coverd
in the following.

Standard Performance Evaluation Corporation (SPEC) is an organization that develops stan-
dardized performance tests, such as SPECweb [28], which is designed to measure a system’s
ability to handle a maximum number of simultaneous connections, while still meeting specific
throughput and error rate requirements. Workload characteristics are drawn from statistics ana-
lyzed from web server logs.
Transaction Processing Performance Council (TPC) is a nonprofit organization that defines
transaction processing and database benchmarks. The TPC-W benchmark aims at evaluating
the performance of webservers for e-business and e-commerce applications [54]. The activities
that characterize the workload are driven by emulated browsers, which generate specific web
interactions.
[78] gives a comprehensive overview on benchmarking techniques used by both academic re-
searchers and practitioners for hardware and software systems.
[6] reviews benchmarking models, tools and techniques that are used to evaluate performance
and scalability of distributed web server systems. Furthermore, it describes common possibili-
ties and pitfalls for data collection and analysis of the benchmark results.
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3.2.2 Operational System Benchmarks

When it comes to benchmarks that evaluate live systems, in order to establish a proper perfor-
mance baseline for comparison, related work is limited to company whitepapers, presentations
or marketing ebooks.

Yottaa3 offers best practices and other recommendations on variables and metrics in web perfor-
mance [79].
In [64] Radware4 analyzed response times of the homepages of e-commerce sites. It ranks the
top 10 performing sites and compares the ranks with results from previous years. Furthermore,
the whitepaper provides interpretation on the results in the form of key findings.
Compuware5 published a whitepaper [29] with best practices for benchmarking web and mo-
bile site performance, which covers basic methods of conducting web performance benchmarks.
Additionally, the best performing response times for key business transactions across various
industries are presented. The differences in average response times are also compared across
different browsers and mobile devices.

3http://www.yottaa.com
4http://www.radware.com
5http:/www.compuware.com
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CHAPTER 4
Observing Changes in Web

Performance

“To acquire knowledge, one must
study; but to acquire wisdom, one
must observe."

— Marilyn vos Savant,
American columnist and author

The purpose of continually collecting data on web performance is to observe and track
changes in the desired performance metrics over time. Reasons to observe these changes are
different in their nature, and range from:

• Detecting anomalies

• Identifying patterns

• Ensuring reliability

• Measuring performance improvements after new software releases

• Discovering performance regressions

Whatever the reason may be, the measurements are only useful when we know how to properly
analyze them and turn our data into informed decisions.

This chapter provides ways of understanding performance data. It does so by analyzing how
common underlying root causes of web performance issues manifest themselves in data gathered
through synthetic monitoring. We introduce a taxonomy of root-causes in server performance
regressions, which serves as the basis for our experiments.
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Furthermore, we describe the methods and steps we take to obtain our results. It also explains
how the results will be examined and discussed. Following this, we will outline the design of
the simulations that will be conducted, as well as the physical experimental setup enabling the
simulations.
We conclude by providing interpretation of the simulation based results, explaining how we
can derive certain conclusions. Following this, the display of performance changes in data are
described and explored using both visual data analysis as well as statistical changepoint analysis.

Not that, in this thesis, we focus on server performance, i.e., the time it takes the server to
process a certain request and generate a response.

4.1 Taxonomy of Root-Causes in Server Performance Regression

The underlying causes of performance regressions in web application and web service backends
is diverse. They differ significantly in the way they manifest themselves in performance data
gathered through active monitoring. We propose a simple taxonomy of root-causes in web per-
formance regression. First, we divide a possible root cause in three main categories, which can
be determined through external monitoring:

• Global Delay

• Partial Delay

• Periodic Delay

Further classifications and proper assignment to the main categories in the taxonomy have been
derived through semi-structured interviews and discussions with domain experts [49, 75].

In the following, we provide a brief explanation of the general causes of performance delays
in computer systems. We then classify the main categories of our taxonomy by grouping the
root-causes by the distinguishable effect they have on our web service backend that is also man-
ifested in data that can be recorded by the means of external monitoring. The taxonomy is
depicted in Figure 4.1, and further explained in more detail the following.

4.1.1 General Cause of Performance Delays

In general, if we consider performance and computation power of a system, we must consider
resources that enable computation. These are usually hardware resources, such as processors,
memory, disk I/O, and network bandwidth. We also need to consider the the ways and methods
these resources are allocated and utilized.
The demand on resources of a computer system increases as the workload for the application of
interest increases. When the demand of the application is greater than the resources that can be
supplied by the underlying system, the system has hit its resource constraints. This means the
maximum workload of the application has been reached and, typically, the time taken for each
request to the application will increase, or with extreme oversaturation, result in system failure.
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Figure 4.1: Taxonomy of Root-Causes in Server Performance Regression

For web applications and web services, this translates into poor response times or (temporary)
unavailability.

A delay in performance as observed through active monitoring can be defined as a negative
change in response time at a certain point in time t. This means we look at two observations1 of
response times xt and xt+1 where

λ = |xt − xt+1| > c (4.1)

where c denotes a certain threshold accounting for possible volatility.

In the following, this simplified notion of performance delays λ over a threshold c will be used
in the description of the elements of the taxonomy.

4.1.2 Global Delay

A global delay means that a change in a new deployment or release of the backend system
introduced a significant difference in response time λ, which is higher than a defined threshold c
on all incoming requests. The following sections will briefly outline the causes that might induce

1An observation can be a single data point of our recording, the moving average or the moving median as already
described in Section 2.2.4
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such a global delay. We distinguish between global delays that are caused through resource
contention and code or configuration issues.

Resource Contention

I/O Bottleneck

In a database bottleneck the flow of data from the database to the application (usually referred
to as a database query) is contended. This means the query takes longer to perform and return
data which causes an overall performance delay.

Application Logic delay/Algorithmic Complexity

Delays in application logic refer to problems in performance due to increased code execution
time during a request. The performance problem in this case is induced in the development
of logical units and algorithms in the backend service that require higher time complexity than
previous releases.

Concurrency/Synchronization

The introduction of concurrency by the means of threads or processes may cause global delays
due to the need of synchronization. It may also cause temporary service outage when a deadlock
situation occurs that cannot be immediately resolved by the underlying operating system or
virtual machine.

(Temporary) Service Outage

Service outages are system failures that result into loss of availability. The failure can be either
temporary, i.e., through the lack of resources due to too high demand and the inability to scale.

4.1.3 Periodic Delay

In periodic delays, we differentiate between short-term periodicity and long-term periodicity.
They mostly differ in their time parameters, which are explained in the following.

Short-Term Periodicity

Short term periodicity usually happens in micro cycles of the processor and thus manifests itself
only in subseconds of time. This kind of periodicity usually happens on all virtual machines
with garbage collection.

Garbage Collection

The process of garbage collection tries to recover memory occupied by objects of a computer
program that are no longer used by the program. There are many strategies implemented for
garbage collection. When requests increase and local memory cannot meet this demand in re-
sources, it causes the garbage collector to work more often, using up other hardware resources,
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such as CPU for its processing and disk I/O for swapping, which in turn results in delays. If
the garbage collection process freezes the full Virtual Machine, and this freezing lasts too long,
the whole application stops its computation for that moment. Of course, the amount of time the
application is frozen due to this kind of issue always depends on your internal memory size.
When looking at web performance data that is collected through active external monitoring, de-
lays in subsecond area are often regarded as spikes and can rarely be detected by only looking at
the collected data. That means, they are not significant enough to be detected or not regarded as
a false positive, because it is too small of a performance change. Nevertheless, delays in subsec-
ond area increase when load increases, then it might even cause unavailability of the service as
the lack of memory might result into a memory leak, that in the long run causes the application
to fail.

Long-Term periodicity

Delays with long term periodicity last longer and usually happen a few times a day or even less
frequent. A periodic delay is mostly not induced through a new deployment or release, but rather
through a background process causing certain aspects of the system to use an increased amount
of resources, which introduce delays in periodic points in time.

Log rotation

Log rotation is an automated process in server systems administration, where log files that ex-
hibit certain characteristics are archived. The most common characteristics being the date of
certain log files, as well as the reach of a certain limit in size of the data or lines stored within
the log file. The process is usually configured to run as a periodic cronjob to be fully automated.
This process might or might not involve the transfer of the archived logs to a different storage
system, which might cause even further issues in performance.

4.1.4 Partial Delay

Partial delays are basically global delays that occur only for certain requests. This situation oc-
curs in an environment that employs any form of load balancing and only a subset of the servers
have a release deployed that introduced the performance regression.

This taxonomy does by no means raise the claim of completeness. It is rather an attempt
to give an overview of common pitfalls that cause slowness in performance. On its higher level,
it captures a certain granularity of issues in server performance that will be the basis of the
upcoming simulation design and experiments.

4.2 Simulation Design

We want to identify characteristics in performance data, when certain performance change events
occur. Furthermore, we want to focus on which statistical measures are well suited for identi-
fying such changes. To reflect the nature of performance regressions in server backends, we
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consider a simulation model of a simple web service environment for our experiments. The
model consists of the following components:

• Synthetic Agent Nodes

• Scenario Generation Component

• Dynamic Web Service Component

The simulation model and its communication channels are depicted in Figure 4.2.We con-
sider a system with this architecture where the requests that are incoming from our synthetic
nodes are governed by a stochastic process {Y (t), t ∈ T}, with T being an index set represent-
ing time.

The components are described in more detail in the following sections.

Figure 4.2: Simulation model

4.2.1 Synthetic Agent Nodes

We gather data from our ’Dynamic Web Service Component’ by utilizing active, periodic moni-
toring through synthetic agents. A synthetic monitoring agent acts as a client in order to measure
availability and performance metrics such as response time. Every synthetic agent is able to per-
form active measurements, or synthetic tests. An active measurement is a request to a target
URL, where subsequently all performance metrics that are available through the response are
obtained. When configuring a set of synthetic tests, we can configure the following parameters:

• Target URL: URL of the web service or web application that should be tested.

• Test interval: Frequency of the test, e.g., every n minutes, ever hour, etc.
This parameter is also called sampling interval in the literature, as it retrieves sample
measurements of the target system.
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• Test duration: Total length of the test in terms of time. This parameter could alternatively
be given as a test count or sample count.

4.2.2 Scenario Generation Component

Since only the main classifications of root-causes can be identified through synthetic monitor-
ing, it makes sense to induce changes following the notions of global delays, partial delays, and
periodic delays for the simulation.

We achieve this by introducing a scenario generation component into our model. It functions
as an intermediary between the request sent by the synthetic agent nodes and the web service.
Instead of manually injecting faults into our web server, we define a set of scenarios that, subse-
quently, reflect the desired scenario, i.e., the faults over time in our system. The scenarios need
to reflect performance degradation and performance volatility within a certain system, i.e., a sin-
gle web server. It also needs to take into account possible geographic distribution of the agents,
as well as load balancing mechanisms. The following section will introduce a formal model for
defining scenarios that reflects these notions that can be used to formally describe certain use
cases.

Scenario Definition

We consider certain parameters to compose a complete scenario within our simulation model.
Within a scenario, we need to able to specify how our performance metrics (i.e., response times)
develop over time, as well as synthetic agents that are actively probing our target system. In the
following, we will introduce a formal model and notation for the specification of these scenarios,
which is used throughout the thesis:

• On the top-level, we define a scenario S that describes how our target system that is
observed by each of our synthetic agents A = {a1, a2, ..., an}. Each agent observes a
development in performance Di ∈ D with D, being the set of all possible developments
(Equation 4.2).

S : A 7→ D (4.2)

• A development D ∈ D maps from a certain point in t ∈ T of the stochastic process
{Y (t), t ∈ T} (driving the requests of the synthetic agent nodes) to an independent ran-
dom variable Xi ∈ X , where X being the set of possible random variables (Equation
4.3).

D : T 7→ X (4.3)

where Xi ∈ X and ∀ Xi ∼ U(a, b)
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This formalization allows us to express any performance changes (either positive or negative)
as a classification of performance developments over time attributed to specific synthetic agents.
More accurately, it models a performance metric as a uniformly distributed random variable of
a system at any given time point t ∈ T . Specifying an assignment for every point in time is a
tedious and unnecessary exercise. In order to define scenarios in a more efficient and convenient
way, we introduce the following notation for developments D ∈ D:

Simple Developments

[X0, t1, X1, ..., tn, Xn] defines a simple development as a sequence of independent random vari-
ables Xi and points in time ti, further defined in Equation 4.4.

[X0, t1, X1, ..., tn, Xn](t) =


X0 0 ≤ t < t1

X1 t1 ≤ t < t2
...

Xn tn ≤ t

(4.4)

This allows us to easily define developments Xi in terms of time spans ti+1 − ti, i ≥ 0
within the total time of observation. The last development defined through Xn remains until the
observation of the system terminates.

Periodic Developments

A periodic development is essentially a simple development, which occurs in a periodic interval
p. It is preceded by a "normal phase" up until time point n. The "periodic phase" lasts for
p − n time units until the development returns to the "normal phase". A periodic development
[X0, n,X1, p]

∗ is defined in Equation 4.5.

[X0, n,X1, p]
∗(t) =

{
X1 for kp+ n ≤ t < (k + 1)p

X0 otherwise
(4.5)

where k ≥ 0.

Figure 4.3 depicts how a periodic development can be seen over time with given parameters
X0 as the "normal phase" random variable, X1 as the "periodic phase" random variable, n to
define the time span for a "normal phase", p as the periodic interval and (p−n) as the time span
for the "periodic phase".

These two defined functions allow us to conveniently define scenarios which adhere to our
notions of global, partial and periodic delays. We can now define changes in a declarative way
in response times at certain points in time, as well as define changes in periodic time intervals
that result in changes in response times for a specific amount of time.
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Figure 4.3: Depiction of the periodic development scheme defined in Equation 4.5

Example Scenario

Let us consider the following example to show in both formal and informal notation: Three syn-
thetic agent nodes measure response times on the target system. Node#1 observes 100-120ms,
up until 20 minutes, then observes 150-175ms in response time. Node#2 observes 110-150ms,
up until 45 minutes, then observes 190-210ms. Node#3 always observes 120-125ms.

This particular scenario can be defined as in Equation 4.6.

S = {a1 7→ [Xa1,0, 20, Xa1,1],

a2 7→ [Xa2,0, 20, Xa2,1],

a3 7→ [Xa3,0,∞]}
(4.6)

where Equation 4.7 holds.

Xa1,0 ∼ U(100, 120), Xa1,1 ∼ U(150, 175)

Xa2,0 ∼ U(110, 150), Xa2,1 ∼ U(190, 210)

Xa3,0 ∼ U(120, 125)

(4.7)

A more intuitive, informal description of the simulation scenario parameters can be given
using descriptive parameter names displaying them in tabular form (Table 4.2.2).

In the scenario definitions for the conducted experiments, we will categorize our scenarios in
global, partial, and periodic delay scenarios. We will use both the formal and informal approach
to describe the scenario, and also provide an example practical use case that adheres to the
theoretical parameters.

4.2.3 Dynamic Web Service Component

The dynamic web service component works together with the scenario generation component to
achieve the reflection of performance issues for the synthetic agent nodes. In order to do so, it
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Synthetic Node Agents a1, a2, a3
Initial response times
a1 response time range 100-120ms
a2 response time range 110-150ms
a3 response time range 120-125ms
Deferred response times
a1 after 20 minutes 150-175ms
a2 after 45 minutes 190-210ms

Table 4.1: Example of informal description of simulation parameters in tabular form

offers an endpoint that simulates delays over parameters passed from a specific scenario script.
This means that the declared scenarios are executed within the web service component and thus
simulate workload through the parameters given in the scenarios.

4.3 Experimental Setup

The experiments based on the described simulation model were executed in a local test-bed
consisting of 5 synthetic agent nodes and 1 dynamic web service component. The specific
setups are described in the paragraphs below.

4.3.1 Synthetic Agent Node Setup

The synthetic nodes operate in the local network as well, every of the 5 nodes sends out a request
every 5 minutes that is handled by a scheduler that uniformly distributes the requests over time.
This results into 1 request/minute that is being send out by a synthetic node agent that records
the data. The physical node setup is described in Table 4.2.

CPU Intel Pentium(R) 4, 3.4 GHz x 2 (Dual Core)
RAM 1.5 GB
OS Ubuntu 12.04 64-bit

Table 4.2: Synthetic node setup

4.3.2 Web Server Setup

The webservice running on the server has been implemented in Ruby and runs over the HTTP
server and reverse proxy nginx and Unicorn as the webserver for Ruby that runs on its own
proxy. The physical web server setup is described in Table 4.3.
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CPU Intel Pentium(R) 4, 3.4 GHz x 2 (Dual Core)
RAM 1.5 GB
OS Ubuntu 12.04 64-bit

Table 4.3: Web server setup

Random Number Generation

During simulation, a random number generator is applied to generate artificial user behavior as
specified in the distributions of our simulation scenario (see Section 4.2.2). Such user behavior
data can be represented efficiently with common random numbers [41]. However, as with de-
terministic load tests, replaying user behavior data may not always result into the same server
response. Even with the server state being the same, server actions may behave nondeterminis-
tically.
To adhere the production of independent random variables that are uniformly distributed (as
described in the formal specification of a scenario in Section4.2.2) the scenario generation com-
ponent uses MT19937, Mersenne twister [53] as a random number generator.

4.4 Methodology

In general, change in backend performance translates to the concept where the time it took
the server to process a certain request and generate the right response has become significantly
slower or faster. From a statistical point of view, we consider that the performance of a system
has changed if the underlying probability density function has experienced a fundamental shift.
In this research, we simulate web performance regressions induced by changes in the the back-
end of a web application. We periodically monitor the system within an experimental setup,
measuring response metrics of the application through synthetic agents and store the observed
data points as a time series. We then use time series analysis to examine the development of the
observations. The following sections briefly explain the employed analysis approaches.

4.4.1 Simulation Scenarios

We define simulation scenarios (according to our formal model) that induce delays that capture
the main categories of root causes that we have defined in our taxonomy. For each theoreti-
cal scenario, we describe a possible real life use case scenario in order to establish a point of
reference.

4.4.2 Data Collection

We collect data through active monitoring as described in the simulation design. The synthetic
agents send out HTTP GET requests every n minutes from m agents and collect all request
component metrics that have been described in the background section. As already described
in our physical experimental setup, the simulation will sample ever 1 minute resulting in 1
new observation of our system every minute. Each observation is stored in a database with the
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corresponding timestamp. This results into a time series for each of our simulation scenarios,
which in the following can be explored and analyzed.

4.4.3 Exploratory Data Analysis

Our first analysis approach is to examine the time series visually over graphs in order to explore
and gain further understanding on the effect specific underlying causes have on the resulting data.
We also determine what kind of statistical attributes are well suited to identify key characteristics
of the data sample and for humans to properly observe the performance change. For this initial
analysis we plot the raw time series data2 as line charts. This allows for visual exploratory
examination, which we further complement with proper interpretations of the data displayed in
the visualization that correlates with induced changes in the server backend.

4.4.4 Statistical Analysis

After manually inspecting the time series over visual charts, we evaluate the observation of
performance changes by the means of statistical changepoint analysis. Specifically, we evaluate
algorithms that are employed in the R [63] package changepoint.

We are not interested in the detection of spikes or other phenomena that can be considered as
outliers, but rather in the detection of fundamental shifts in our data that reflect a longer standing
performance degradation. We also want to keep false positives low, and determine whether a
change is actually a change that implies a root-cause that requires some kind of action. Thus,
we also need to determine the magnitude of the change.

Using statistical analysis, we evaluate the detection of the moment of the change as well as
the magnitude of the change (comparison of the changes in the mean). For this, we recall the
simplistic view on delays we introduced in our taxonomy: λ = |xt − xt+1| > c where xt and
xt+1 represent two consecutive measurements in time, λ is the absolute difference quantifying
the magnitude of the change and c denotes a certain threshold. We adapt this simplistic model of
change as follows. Instead of comparing two consecutive data points, we compare the changes
in mean at the time point where changes of variance occur. In other words, we compute the
difference between the mean of the distribution before the detected changepoint occurred, µ<τ ,
and the mean of the distribution after the detected changepoint occured, µ>τ , where τ denotes
the changepoint. This difference is then our new λ, and can be defined as in Equation 4.8 by
replacing two variables.

λ = |µ<τ − µ>τ | > c (4.8)

The threshold c is difficult to determine. When the threshold is set up too high, legitimate
changes in performance that were caused by problems may not be detected and the system is
in risk of performance degradation and, in the long run, may be in risk of unavailability. On

2Raw in this context means that we will not smooth the data by any means and will not apply statistical models
in any way.
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the other hand, the threshold can be set unnecessarily sensitive, leading to a higher likelihood of
detection of change in normal system operation, i.e., false positives. The value of the threshold
depends on the application and must be either set by a domain expert or be determined by statis-
tical learning methods through analysis of past data and patterns. If a SLA or other contractual
agreement is in place, then the threshold may be determined by agreed values (e.g., response
time mean always below 3 seconds). Sometimes it is useful to compare new metrics in relation
to old metrics, this is a very simple way of statistical learning through past data. In the conducted
experiments, we set the threshold as in Equation 4.9.

c = µ<τ · 0.4 (4.9)

This means that if the new metric after the changepoint µ>τ is 40% above or below the
compared to the old metric µ<τ , the change is considered a real change as opposed to a false
positive in the opposite case. If we want to consider positive changes as well, the calculation of
the threshold must be extended in a minor way to not yield into false negatives due to a baseline
that is too high (Equation 4.10).

c = min(µ<τ , µ<τ ) · 0.4 (4.10)

Note that the threshold 40% of the mean was chosen after discussions with a domain expert, as it
is seen as an empirically estimated baseline. In practice, a proper threshold depends on the type
of web application, service level agreements, and other factors and is most probably determined
by own empirical studies.

R Package ’changepoint’

The R package ’changepoint’ implemented by Killick and Eckley [46] offers multiple change-
point algorithms. In our experiments, we apply the algorithm Binary Segmentation on our
time series data for the evaluation. Binary Segmentation is the most widely used method
for changepoint detection noted in the literature on changepoint analysis. The method has its
roots from early works including [32, 66, 69], but is also discussed in more recent publications
in [31, 35, 47, 61]. The algorithm starts out by applying a single changepoint test statistic on the
entire data set. If a changepoint has been identified, the set is split into two sets at the estimated
changepoint location. This procedure is repeated and applied on each of the two new sets recur-
sively. The method continues until no changepoints are found in any parts of the remaining data
sets. Binary segmentation is an approximate algorithm, as it only considers a subset of the 2n−1

possible solutions for changepoints, and is, therefore, computationally fast with a computational
complexity of O(n log n). We are particularly interested to compare the results of the algorith-
mically detected changepoints (taking into consideration the defined threshold c) with the ones
we determined by visual inspection of raw performance charts.
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4.4.5 Threats to Validity

In this research, we employ a simplified simulation model in order to show how significant per-
fromance changes can be detected in continuously observed data of a constructed target system.
The creation and design of a simulation model comes with inherent risk concerning the validity
of the results when applied to real-life systems. The following sections will briefly outline the
concerns that have been considered to be a potential threat to validity, but nonetheless has been
addressed through the design of our model.

Workloads and Seasonality

In our simulation design, we do not actively inject the notion of web traffic workloads (as has
been, for instance, taken in consideration in [52]), but rather simulate the variability of workloads
(and therefore response times) in web services through specific scenarios parameters.

Network and Geography

The simulation bed is constructed in a local area network (LAN). Thus, the notions of network
traffic and network volatility in wide area networks (WAN) are completely omitted to limit the
interference of network noise in the recorded data. Of course, noise is still present even in
LANs, but is limited to very few factors within the data center, as opposed to the possible factors
in WANs. This also means that there is, for instance, no increased response time due to DNS
resolution. While network and DNS do play a major role in web performance, the focus of this
thesis lies within detecting changes in server performance.

Due to the mentioned locality, geographic location of the simulated users in synthetic moni-
toring is not implicitly incorporated in our results. However, due to the simulation design -
which contains many independent synthetic node agents - we explicitly simulate issues due to
higher response times in only certain geographic locations (i.e., certain agents) in our scenar-
ios. This makes the scenario more controllable as opposed to running it through synthetic node
agents in distant data centers due to the volatility of network latency.

4.5 Simulation Scenarios

In this section, we describe common scenarios that will be simulated within our presented ex-
perimental setup. First, we formally define the parameters that actually form a certain scenario.
The aim of each scenario is to properly represent one of the top levels of the root causes previ-
ously defined in our taxonomy. We evaluate the results and discuss possible interpretations of
the recorded data.

4.5.1 Global Delay

As already described in our taxonomy, a global delay is the introduction of a significant differ-
ence in response time on all incoming requests, i.e., it affects all users accessing the resource in
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question.
In the following, we provide a brief description of an example use case where this global delay
would take place to illustrate a connection in a real life software development process.

Scenario Use Case Example

• New feature needs to be implemented for a new release.

• Junior Developer in charge of the new feature introduces a new (slow) database query,
causing significantly higher overall response times.

• The slow query is not caught in QA and the new release is deployed to all users.

Scenario Parameters

The parameter for this global delay is defined in Equation 4.11.

SG = {ai 7→ [Xai,0, 420, Xa,1] | ai ∈ {a1, a2, a3, a4, a5}} (4.11)

For every index i, we define the initial response time range as in Equation 4.12.

Xa1,0 ∼ U(90, 115)

Xa2,0 ∼ U(100, 130)

Xa3,0 ∼ U(110, 140)

Xa4,0 ∼ U(95, 110)

Xa5,0 ∼ U(100, 110)

(4.12)

As well as the range for the global change over all agents in Equation 4.13.

Xa,1 ∼ U(150, 175) (4.13)

Informal Description

For the given formal parameters we also give an informal tabular description in Table 4.4.

4.5.2 Partial Delay

A partial delay scenario consists of requests that, at some point in time, cause a delay on a subset
of the incoming requests. In the following, we provide a brief description of two example use
cases where a partial delay would take place to illustrate a connection in a real life software
development process.

49



Synthetic Node Agents a1, a2, a3, a4, a5
Initial response times
a1 response time range 90-115ms
a2 response time range 100-130ms
a3 response time range 110-140ms
a4 response time range 95-110ms
a5 response time range 100-110ms
Deferred response times
a1 after 420 minutes 150-175ms
a2 after 420 minutes 150-175ms
a3 after 420 minutes 150-175ms
a4 after 420 minutes 150-175ms
a5 after 420 minutes 150-175ms

Table 4.4: Informal description of the global delay simulation scenario SG

Scenario Use Case Example

Example#1

• New feature needs to be implemented for new release.

• Junior Developer in charge of the new feature introduces a new (slow) database query.

• The slow query is not caught in QA.

• Due to the deployment strategy, the new release is only rolled out to 20% of all users.

Example#2

• A web application sits behind a load balancer handling 5 servers.

• One of the servers encounters unexpected hardware issues, which result in higher response
times.

• The balancer uses a ’Round Robin’ approach as its load balancing method. 20% of all
users perceive the application with higher response times.

Scenario Parameters

The parameter for this partial delay is defined in Equation 4.14.

SP = {ai 7→ [Xai,0,∞]|ai ∈ {a1, a2, a3, a4},
a5 7→ [Xa5,0, 360, Xa5,1

}
(4.14)
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For every index i we define the initial response time range as in Equation 4.15

Xa1,0 ∼ U(115, 125)

Xa2,0 ∼ U(115, 120)

Xa3,0 ∼ U(120, 145)

Xa4,0 ∼ U(105, 115)

Xa5,0 ∼ U(110, 120)

(4.15)

As well as the range for the partial change for agent a5 in Equation 4.16.

Xa5,1 ∼ U(140, 165) (4.16)

Informal Description

For the given formal parameters we also give an informal tabular description in Table 4.5.

Synthetic Node Agents a1, a2, a3, a4, a5
Initial response times
a1 response time range 115-125ms
a2 response time range 115-120ms
a3 response time range 120-145ms
a4 response time range 105-115ms
a5 response time range 110-120ms
Deferred response times
a5 after 360 minutes 140-165ms

Table 4.5: Informal description of partial delay simulation scenario SP

4.5.3 Periodic Delay

A periodic delay takes place when, due to a (background) process, resource contention occurs
and, subsequently, higher usage of hardware resources leads to higher response times for a
certain amount of time. This scenario addresses those processes that are (usually) planned ahead
and are executed within a specific interval.

Scenario Use Case Example

Example#1

• Log files of an application make up a large amount of the server’s disk space

• The system administrator creates a cron job to process older log files and move them over
the network
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• The process induces heavy load on CPU (processing) and I/O (moving over network),
which result into temporarily higher response times

• The cron job is configured to take place in periodic intervals to ensure the server has
enough disk space

Scenario Parameters

The parameter for this periodic delay is defined in Equation 4.17

SPD = {a1 7→ [X0, 45, X1, 65]∗} (4.17)

The response time ranges are defined as in Equation 4.18.

X0 ∼ U(95, 115)

X1 ∼ U(160, 175)
(4.18)

Informal Description

For the given formal parameters we also give an informal tabular description in Table 4.6.

Synthetic Node Agents a1
Initial response times
a1 response time range 95-115ms
Deferred response times
a1 every 45 minutes for 20 minutes 160-175ms

Table 4.6: Informal description of periodic delay simulation scenario SPD
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4.6 Results and Interpretation

The scenario simulations as defined in the previous section have been executed within the ex-
perimental setup following the described methodology. The resulting data has been analyzed
and will be presented and discussed thoroughly in this chapter. At first, we display a raw plot of
the resulting time series data without any filters and interpret its meaning. Further, we apply the
moving average smoothing filter (with a window size w = 5) to each resulting time series and
conduct a changepoint analysis with support of the methods and algorithms in the R package
’changepoint’ [46]. We discuss methods that analyze both changepoints in the mean and the
variance.

4.6.1 Global Delay

The global delay forms the basis of our assumptions on how performance changes can be per-
ceived on server backends. Both, the partial and periodic delay, are essentially variations in the
variables time, interval and location of a global delay. Hence, the findings and interpretations of
this section on global delays is the foundation for every further analysis and discussion.

Exploratory Visual Analysis

In Figure 4.4, we see a non-filtered time series plot for our global delay scenario. We can clearly
see the fundamental change in performance right after around 400 minutes of testing. The data
before this significant change does seem volatile. There are a large amount of spikes occurring,
though most of them seem to be outliers that might be caused in the network layer. None of
the spikes sustain for a longer period of time, in fact between the interval around 150 and 250
there seem to be no heavy spikes at all. The mean seems stable around 115ms in response time
and there is no steady increase over time that might suggest higher load variations. Thus, we
can conclude that the significant performance change has occurred due to a new global release
deployment of the application.

Statistical Changepoint Analysis

We apply changepoint analysis to the smoothed time series with a moving average window size
of 5. In Figure 4.5, we can immediately see how the smoothing affected the chart, compared to
the chart with the raw data in Figure 4.4: The spikes, i.e., the random noise, have been canceled
out to a certain extent, making the main signal stronger and easier to identify. This makes it easier
for our statistical analysis to focus on our signal and detect the proper underlying distributions.
While this is definitely a pleasant effect of every smoothing technique, we also need to keep in
mind that every model that we apply contains its own assumptions and own errors that need to
be considered. What can further be seen in Figure 4.5 is the changepoint in the variance, denoted
by a vertical red line at the changepoint location. Table 4.7 contains the numerical results of the
changepoint in variance analysis and indicates the estimation for the changepoint τ1 at 422. This
number coincides approximately with our own estimation we concluded in the previous section
for Figure 4.4.
Next, we look at Figure 4.6, where the change in the mean is indicated by horizontal lines
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Figure 4.4: Results of Global Delay – non-filtered time series plot

depicting the mean value for each segment that has been detected. This method has detected
more changepoints than the previous analysis, which can be not clearly seen in Figure 4.6 due
to the very small change in the mean. The estimated numerical values for the changepoints are
listed in Table 4.8. The table also lists the mean values, as well as the calculated threshold c =
µ<τ · 0.43 (see Section 4.4,). The last column also states whether or not a detected changepoint
in the mean is an actual changepoint as defined by our notion of significant change where λ =
|µ<τ − µ>τ | > c, or a false positive. As we can see only one of the estimated changepoints has
been identified as an actual changepoint, when considering the threshold c.
This shows that detecting a fundamental change is a difficult undertaking, especially considering
non-parametric statistical analysis, as in our case. Post-processing and analysis of the estimated
changepoints and its according mean values is important to avoid false positives.

τ σ2
<τ σ2

>τ

422 10.695 67.731

Table 4.7: Changepoint in the variance for global delay simulation scenario SG

3This is the first equation listed in the section of the methodology that does not take into account improvements
in performance
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Figure 4.5: Results of Global Delay – red vertical line indicates changepoint in variance

Figure 4.6: Results of Global Delay – red horizontal lines indicate the mean values for each
detected different distribution
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τ µ<τ µ>τ λ c Actual CP/False Positive
127 106.18 103.7 2.48 42.47 False Positive
241 103.7 105.32 1.62 41.48 False Positive
366 105.32 110.85 5.53 42.12 False Positive
374 110.8 103.62 7.23 44.32 False Positive
421 103.62 150.65 47.03 41.44 Actual Changepoint
427 150.65 165.62 14.97 60.62 False Positive

Table 4.8: Changepoint in the mean for global delay simulation scenario SG

4.6.2 Partial Delay

Partial delays are global delays that only occur on a certain subset of requests and, therefore,
need different techniques to properly examine the time series data and diagnose a performance
degradation. Experiments on simulating partial delays have found that detection of a change-
point in partial delays, or even the visual detection of performance change is not at all trivial. In
this section we introduce proper ways to handle this problem.

Exploratory Visual Analysis

As before, we plot the time series data and look for changes in our performance. In Figure 4.7,
we see a rather stable time series chart, relatively volatile, i.e., spiky, due to the higher amount of
conducted tests and probably random noise due to the network. Around the time points 460-500
and 1600-1900, we see a slight shift, but nothing alarming that would be considered a significant
change. From this first visual analysis, we would probably conclude that the system is running
stable enough to not be alerted.

However, that aggregation hides a significant performance change. The convenience, or
sometimes necessity, of computing summary statistics and grouping data to infer information
this time concealed important facts about the underlying system. In order to detect this perfor-
mance change, we have to look at additional charts and metrics.
In Figure 4.8, we plot the same aggregation as in Figure 4.7, but also plot the 90th percentile
of the data to come to a more profound conclusion: There actually has been a performance
change that is now very clear due to our new plot of the 90th percentile. While this can mean
that percentiles also show temporary spikes or noise, it also means that if we see a significant
and persisting shift in these percentiles, but not in our average or median, that a subset of our
data, i.e., a subset of our users, indeed has experienced issues in performance and we need to act
upon this information. Another way of detecting issues of this kind is to plot all data points in
a scatterplot. This allows us to have an overview of what is going on and to identify anomalies
and patterns more quickly. As we can see in Figure 4.9, a majority of data points is still gathered
around the lower response time mean. But we can also see clearly that there has been a move-
ment around the 400 time point mark that sustains over the whole course of the observation,
building its own anomaly pattern. The scatterplot is a useful tool to further examine a data set,
but might contain maybe too much information for a first glance, especially for users new to
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Figure 4.7: Partial delay scenario results time series plot

Figure 4.8: Partial delay scenario results time series plot, together with 90th percentile

performance analysis.

Statistical Changepoint Analysis

Analyzing both the changepoints in the variance in Table 4.9 and Figure 4.10, as well as the
changepoints in the mean in Table 4.10 and Figure 4.11 yields no surprise following our initial
exploratory visual analysis. The changes that have been identified are not significant enough to
be detected through the mean and the variance respectively. Although we need to point out that
both analyses actually detected the actual significant changepoint around the time point 374-
376, but are disregarded as false positives by our post-processing step of checking the threshold.
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Figure 4.9: Partial delay scenario results depicted as a scatterplot

τ σ2
<τ σ2

>τ

374 12.88 24.25
1731 24.25 12.43
1911 12.43 6.63

Table 4.9: Changepoint in the variance for partial delay simulation scenario SP

Thus, our post-process actually resulted into a false negative. This is usually a sign that an
indicator (in our case the threshold c) needs to be adjusted or rethought completely. However,
before this kind of decision can be made, more information has to gathered on how this indicator
has performed in general (i.e., more empirical evidence on false negatives, ratio between false
positives and false negatives, etc.).
In order for our regular statistical analysis process, as applied previously, to properly work
we need a further pre-processing step. Neither mean nor variance can detect the performance
change, therefore, we need to consider a different metric. In our exploratory analysis, we con-
cluded that the 90th percentile was able to detect the change. Thus, we need to apply our
changepoint analysis to percentiles in order to detect a significant shift for partial delays.
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τ µ<τ µ>τ λ c Actual CP/False Positive
376 114.74 121.92 7.18 45.88 False Positive
1710 121.92 118.91 3.01 48.76 False Positive
1756 118.91 124.1 5.19 47.56 False Positive
2035 124.1 122.27 1.83 49.64 False Positive

Table 4.10: Changepoint in the mean for partial delay simulation scenario SP

Figure 4.10: Results of the partial delay scenario – red vertical lines indicate changepoints in
variance

Figure 4.11: Results of partial delay scenario – red horizontal lines indicate the mean values for
each detected different distribution
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4.6.3 Periodic Delay

Periodic delays are either global or partial delays that occur in specific intervals, persist for a
certain amount of time, and then performance goes back to its initial, ’normal’ state.

Exploratory Visual Analysis

For this experiment we recorded enough values to result into three periods that indicate a per-
formance degradation for a certain amount of time before returning back the system returns to
its normal operation. The intuition we have on periodic delays can be clearly observed in Fig-
ure 4.12. Between the phases, we have usual performance operation with usual volatility, and
in between we see fundamental shifts that persist for approximately 20 minutes before another
shift occurs. Seeing periodic delays is fairly simple, as long as we are looking at a large enough
scale. If we would have observed the time series within the periodic phase, before the second
shift to the normal state occurred, we might have concluded it to be a simple global delay. Thus,
looking at time series at a larger scale might help to identify periodic delays that would have
otherwise been disregarded as short-term trends or spikes.

Figure 4.12: Periodic Delay scenario results as a time series plot

Statistical Changepoint Analysis

While the exploratory visual analysis in periodic delays was straight forward, the changepoint
analysis brings some interesting insights. Figure 4.13 and Table 4.11 show the analysis for the
changepoints in the variance, which mostly coincide with our visual assessment. Merely the first
detected changepoint in the variance is a false negative.
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τ σ2
<τ σ2

>τ

32 5.21 20.22
46 20.22 156.25
62 156.25 11.73
181 11.73 233.96
199 233.96 16.3
327 16.3 180.3
343 180.3 25.16

Table 4.11: Changepoint in the variance for periodic delay simulation scenario SPD

τ µ<τ µ>τ λ c Actual CP/False Positive
33 100.47 113.27 12.8 40.18 False Positive
47 113.27 168.11 54.84 45.31 Actual Changepoint
63 168.11 106.18 61.93 42.47 Actual Changepoint - improvement
180 106.18 169.35 63.17 42.46 Actual Changepoint
199 169.35 110.52 58.83 44.20 Actual Changepoint - improvement

Table 4.12: Changepoints in the mean for the periodic delay simulation scenario SPD

The changepoint in the mean yields more interesting results. First of all, we needed to adjust the
calculation of the threshold c (4.9), in order to also detect performance improvements as proper
changepoints. We recall Equation 4.10 defined in the methodology: c = min(µ<τ , µ<τ ) · 0.4,
which now allows us to examine both degradations and improvements in performance. In Table
4.12 on changepoints in the mean we indicate an improvement at a proper changepoint with
an additional adjective ’improvement’ in the last column. Contrary to the results in the other
experiments the number of false positives is very low at only one. When looking at the result
in Figure 4.14, we can observe another interesting phenomena we have not seen before, a false
negative. The third period was not detected as a changepoint in the mean by the algorithm,
although it was detected by the changepoint in the variance method. This means, in order to
avoid false negatives, we should apply both changepoint in the mean and variance analysis.
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Figure 4.13: Results of the periodic delay scenario - red lines indicate changepoints in the
variance

Figure 4.14: Results of the periodic delay scenario - red lines indicate changepoints in the mean
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CHAPTER 5
Web Performance Benchmarking

“No man is happy but
by comparison."

— Thomas Shadwell,
English poet

Benchmarking is a term used throughout multiple fields in science, engineering and busi-
ness, and in its basic form describes a way of comparing certain indicators. In the context of
computing, benchmarking is an essential method for performance evaluation on actual physical
machines [51]. Performance benchmarking refers to the execution of a set of tests on different
computing units and measuring the results that are used to evaluate the performance of a system.
We differentiate between benchmarks that evaluate systems under well-defined, synthetic work-
load and systems in production.
Web performance benchmarking, as described in this chapter, aims on comparing web appli-
cations and web services in production in order to conduct a comparative analysis between the
subjects of the benchmark. A definition in [1] captures the idea of benchmarking as we will
devise it in this thesis rather accurately:

"Benchmarking is the process of continuously measuring and comparing an or-
ganization against business leaders anywhere in the world to get information that
will help the organization take action to improve its performance"

It suggests a structured process in order to learn from competitors through evaluation of per-
formance metrics. Furthermore, it suggests that the results from the observation should derive
appropriate actions for improvement. While this quote is a definition for benchmarking from a
business perspective, it strongly correlates with the notion of benchmarking that we will use.
We develop a general methodology for web performance benchmarking based on statistical anal-
ysis of finite collections of observed data from production systems of immediate competitors
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through synthetic monitoring. Our approach is then applied in a case study conducted at Catch-
point Systems, Inc.1 to demonstrate the advantages of the method. Finally, the results of the
case study are presented and briefly discussed.

5.1 Methodology

We define a general methodology for benchmarking based on data sampling through synthetic
monitoring of target systems. The defined steps are illustrated in Figure 5.1, and are explained
in the following.

Figure 5.1: A methodology for web performance benchmarking

Define Benchmarking Goal

The most important step is to determine what the objective of performing the benchmark study
is. This decision has a strong influence on the whole process, as many of the following steps and
parameters depend on how the outcomes of the final analysis are used. Example of benchmark-
ing objectives are as follows:

• Analysis of direct competitors and industry leaders.

– Set baseline for performance metrics and analyze impact of optimization.
1http://www.catchpoint.com
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– Build business cases for strategic and operative decision-making.

• Performance Analysis of third-party services.

– Competitive analysis prior to a buying-decision.

– Monitoring and controlling of metrics defined in SLAs or other contractual. agree-
ments

• Identify bottlenecks and observe anomalies (see Chapter 4)

Determine Benchmarking Area

Depending on the overall goal of the benchmark, the area of the benchmarking must be consid-
ered carefully. Area in this context refers to the aspect of the application or system:

• Network/DNS – comparison of infrastructure

• Backend Performance – comparison of server processing times

• Frontend Performance – how fast is the site built as soon as the markup is fully loaded.
(Load times from third party services loaded through scripts or images are also taken into
account)

• Single web request vs. Process/Transaction (multiple successive requests)

Select Test Subjects

The type of test subjects is predetermined by the benchmarking goal. The tests either bench-
marks our own application against competition and industry leaders, third party services.

Specify Benchmarking Parameters

Based on the purpose of the benchmark, and benchmark areas, you can determine how and where
to test from. For instance, we can choose to benchmark DNS performance from key US states
that account for the majority of end users. We might decide to run the tests every 5 minutes, if
major changes are planned and detailed analysis is important, or every few hours if the results
are merely used for a business case. The specific parameters heavily depend on the decisions
that have been made in the previous steps. More generally, these are the parameters that should
be considered:

• Sampling frequency: how often to actively probe the target systems

• Geographic locations: where will the test will be conducted

• Duration: determines the length of the observation period of the target systems. Duration,
sampling frequency, and number of test subjects determine the number of total data items.

• Synthetic agent:
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– Browser emulation: determine what browser(s) to use for emulation

– Connectivity: the traditional option in terms of connectivity are software agents run-
ning within a data center with high speed internet connectivity (DSL or similar).
Depending on the benchmarking testing infrastructure, and due to the growing im-
portance of mobile devices, some vendors offer agents with 3G or 4G internet con-
nectivity to emulate mobile experience.

All parameters listed are usually constrained by matters of cost and feasibility.

Choose Metrics

The benchmarking area directly maps to the kind of metrics should be chosen in the data col-
lection phase to be analyzed in the following steps: network/DNS area requires basic metrics of
HTTP within a request (DNS, Connect, Send). Backend area requires all further request com-
ponent metrics (Wait, SSL, TTFB, Load, Response time). And the frontend area requires all
frontend metrics (DOM Load time, Content load, Render start, Document complete, Time to
title, Webpage response).

Run Benchmark/Data Collection

Running the benchmark is the process of data collection over the given duration and sampling
frequency, considering all parameters specified in the previous steps of the methodology. De-
pending on the metrics that are to be collected, we may employ two possible collection strategies
as defined in [7]: record storage and data set processing.
In the record storage approach every observation is stored. Further statistics and analysis on the
collection of data is delegated to the data analysis step. This approach requires high amounts of
storage in the data collection step, as well as computation power for the analysis of the data. It
is simple to implement, as it does not require any intermediary steps during collection.
The data set processing approach does not store the observations directly, but continually up-
dates a data set with statistics of interest. These statistics have to be chosen beforehand, since
their calculation is integrated in the data collection process. Hence, this approach requires less
storage. Some statistics, like the median or percentiles, need specific techniques in order to be
dynamically calculated without the presence of all observations [37, 45]. The downside of this
approach is that as soon as the benchmark study has been completed, only the predetermined
statistics are available for analysis. Whenever possible, it is recommended to store all observa-
tions in a repository in order to have all data available for further analysis.

Analyze Results

The collected data should now be properly analyzed and visualized in order to derive useful
conclusions and actions. Analysis can range from simple histograms and summary statistics to
sophisticated time series analysis.
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Set Goal and Follow up

After conducting the analysis, the resulting outcomes should be incorporated into goals and
should propose further action. This step is especially important when setting a baseline for
improvement of the own application’s performance. Benchmarking competition is usually done
to assess a status-quo, i.e., where is the application performance compared to competition and
industry leaders, and where should it be. In order to drive improvement within a development
team, we present a simple process in the following.

Process

A simple set-goal and follow-up process can be summarized as follows:

• Determine specific performance goal (benchmarking): The results of the benchmark de-
termines a rank between competitors. Set a mark within the benchmark to determine your
goal (i.e., performance should be in the top 20%)

• Set performance goal in specific metrics (response time, webpage response, etc.)

• Integrate the goal in the development process through visualization

• Follow up on the goal over time

The last to steps in the process concern the development team of the application and are
important for reaching the goal. A proper visualization technique in two-dimensional graphs has
been developed and is illustrated in Figure 5.2: The goal (as a specific metric) and the percent
of users that should reach that goal are fixed within the graph. The x-axis represents time, the
y-axis represents the percentage of users that have reached the fixed goal. In the example in
Figure 5.2 we can follow how performance has developed over time to reach our set goal.

Figure 5.2: Suggested graph for a follow up process - Goal is set at 600ms for 85% of users
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5.2 Case Study

During a research internship at Catchpoint Systems, Inc., a case study has been performed em-
ploying the previously described methodology. The benchmark in this case study will compare
search engine providers and provide a rank of specific metrics in the result section. The follow-
ing sections will go through all the steps of the methodology and set the proper parameters along
the way.

5.2.1 Goal and Area

The goal of this web performance benchmark is to obtain a current state on performance of
selected search engines throughout the US for a business case.
In this case study we are interested in backend performance and frontend performance of the
homepage of the search engines (i.e., a single web request).

5.2.2 Test subjects

The elected test subjects are the most popular search engines: AOL2, Ask3, Bing4, Google5,
Yahoo6

5.2.3 Parameters

The following benchmarking parameters have been set:

• Sampling frequency: Every 8 hours from each geographic location

• Geographic locations: 45 synthetic agent nodes throughout the US and Canada7

• Duration: 1 month

• Synthetic agent:

– Emulated Browser: Internet Explorer 9

– Connectivity: DSL Connectivity within data centers

5.2.4 Metrics

The chosen metrics for the defined area of frontend and backend performance are: response
time, render start, and webpage response. We recall the definition of these metrics:

2http://www.aol.com
3http://www.ask.com
4http://www.bing.com
5http://www.google.com
6http://www.yahoo.com
7The exact node locations can be found up in the appendix
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• Response time: Network time it takes to get the base HTML from the web server, starting
with the initial request and ending at the last received response packet.

• Render start: Time it takes the browser to start rendering objects on the page.

• Webpage response: Time it takes to load every element of the webpage. The whole appli-
cation is then fully loaded

5.2.5 Data Collection and Analysis

The defined metrics are to be observed over the defined time span and, should all be collected
within a data repository. The analysis will be narrowed to the median values of the desired
metrics, as the primary goal of the benchmark is to calculate a rank within the search engine
industry.

5.2.6 Results

The benchmark collected 25549 observations over 45 synthetic agent nodes throughout the US
and Canada within 1 month of 5 search engines. The results of the web performance benchmark
have been summarized as ranks on how these 5 sites have compared in the metrics response
time, render start time, and webpage response. The results are presented in the Figures 5.3, 5.4,
5.5, as well as in Table 5.1.
A brief interpretation of the results is outlined in the following.

Conclusion

Google ranks first across all metrics and can therefore be declared the ’winner’ of this web
performance benchmark. The ranks are pretty straight-forward and usually follow the same
order across all metrics, with one interesting exception. At the metric render start time Yahoo
(who ranks last in all other metrics) now ranks third after Google and Bing.
Render start time is important, as it gives the user visual feedback that the site is processing
and the site is still responsive. From this we can conclude that Yahoo’s server resources load
faster than those of Ask and AOL. When looking further at the results for webpage response,
we can see that Yahoo then loses to all the competitors in overall performance. This means that
Yahoo, although it had fast server responses, loses out in frontend performance. If we look at the
specific results it takes Yahoo 2833ms to render all objects on the homepage, from the moment
the HTML source was already loaded.
From this information, we can take away that Yahoo should restructure their frontend in order
to gain better overall performance. Ask and AOL should observe their server performance more
closely to identify potential bottlenecks or other ways to improve.
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Figure 5.3: Response times ranking Figure 5.4: Render start time ranking

Figure 5.5: Webpage response ranking
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Response time Render start ime Webpage response
Google 119ms 286ms 722ms
Bing 183ms 291ms 1733ms
Ask 334ms 746ms 2144ms
AOL 490ms 1518ms 2539ms
Yahoo 712ms 535ms 3368ms

Table 5.1: Results of median response time, render start time, and webpage response time
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CHAPTER 6
Conclusion

This chapter concludes this thesis with a brief summary of the methods and results that have
been presented and discussed. Moreover, the research questions, that have been introduced
in Section 1.2, will be revisited to answer how these questions were addressed throughout the
thesis. Finally, possible future work that we were not able to sufficiently address is summarized.

6.1 Summary

This thesis starts off with providing motivation for the importance of properly managing web
performance in large scale web applications. It is followed by summarizing background infor-
mation on web performance monitoring, as well as statistical methods employed in performance
analysis. Furthermore, it has presented research work related to the topics and methods of this
thesis.

A taxonomy of root-causes in performance regressions in web systems has been introduced,
which was further used to construct scenarios to simulate issues in web performance within an
experimental setup. In a series of simulations, we measured how performance metrics develop
over time and presented the results. Furthermore, we provided analysis and interpretation of the
results.

A general methodology for web performance benchmarking based on synthetic monitoring
of target systems has been outlined. A case study on benchmarking search engine providers was
performed by applying the presented methodology. Ultimately, the results of the benchmark
were presented and discussed.

6.2 Research Questions Revisited

We recapitulate the results of this thesis by returning to the research questions introduced in
Section 1.2, and summarize the work that has been accomplished to address them.
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How do performance issues manifest in performance data gathered through external synthetic
monitoring? How can these changes in performance be observed, both visually and through

statistical methods and algorithms?

The first research question was addressed in Chapter 4. The first step was to characterize
what kind of performance issues are we able to observe through external synthetic monitoring.
Therefore, we developed a taxonomy of root-causes in performance regressions in section 4.1.
The taxonomy serves as the basis to construct scenarios within a developed simulation model.
In the simulation model, we introduced a formal model for the specification of scenarios in
Section 4.2.2. The second part of the research question was addressed in the evaluation of the
results. We apply exploratory visual analysis and statistical changepoint analysis to the results.
Furthermore, we provide interpretation of the results in order to understand how the simulated
performance changes can be properly observed.

How do we determine a performance goal? When a certain performance goal is determined,
how can the progress of achieving this goal be actively tracked and communicated?

The second research question was addressed in Chapter 5. A possible way to determine
a performance goal is to establish a baseline metric that is obtained through web performance
benchmarking of immediate competition. We develop a more general approach to web perfor-
mance benchmarking in Section 5.1, which can also be applied to benchmark and compare third
party services. In the presented method, we introduce a feedback loop that describes how the
progress of a determined performance goal can be communicated. We suggest a specific form
of visualization, which tracks the progress of a performance goal over time.

6.3 Future Work

Following the work presented in this thesis, there are possible improvements and further work
we were not able to address sufficiently:

• Performance data gathered through external synthetic monitoring only allows for a black
box view of the system and is often not sufficient for in-depth root-cause analysis of
performance issues. Combining data from external monitoring and internal monitoring in
order to automate or assist in root-cause analysis and correlation of issues is a possible
approach that should be considered.

• The simulation and analysis in this thesis is limited to performance issues on the server.
Further work might include extending the taxonomy of root-causes and simulation scenar-
ios to also represent frontend performance issues. Furthermore, the presented statistical
methods could be applied and analyzed on frontend metrics as well.

• For statistical changepoint analysis, this thesis employed the Binary Segmentation algo-
rithm. An interesting addition would be an evaluation on different algorithms for change-
point analysis. A comprehensive review on further changepoint algorithms can be found
in [74].
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APPENDIX A
Acronyms

APM Application Performance and Resource Management

DNS Domain Name System

DOM Document Object Model

ISP Internet Service Provider

OED Oxford English Dictionary

QoE Quality of Experience

QoS Quality of Service

pdf Probability density function

SLA Service Level Agreements

SPC Statistical Process Control

SPEC Standard Performance Evaluation Corporation

SUT System Under Test

TCP Transfer Control Protocol

TPC Transaction Processing Performance Council
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APPENDIX B
List of Synthetic Agent Locations

Location Data Center
Las Vegas Level 3
New York Level 3
New York VZN
Toronto CA Bell Canada
Denver Level 3
Washington DC NTT
Washington DC AboveNet
Washington DC Cogent
Los Angeles GLC
Denver AboveNet
Atlanta Cogent
Atlanta Level 3
Atlanta NTT
Los Angeles Level 3
Atlanta AboveNet
Denver XO
Los Angeles VZN
Denver TWTC
Chicago Level 3
Phoenix AboveNet
Phoenix Internap
San Francisco TWTC
Seattle GTT

Location Data Center
Chicago AboveNet
Seattle Level 3
San Francisco NTT
Chicago NTT
Miami GTT
Miami GLC
Miami Level 3
San Francisco VZN
San Francisco Level 3
Washington DC Level 3
New York Savvis
Los Angeles Savvis
Seattle Savvis
Dallas Cogent
Dallas GLC
Dallas Telx
Dallas Level 3
New York GTT
Montreal Basic
Vancouver Level 3
Toronto Bell Canada
Montreal Bell Canada
Calgary Bell Canada
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