
Diplomarbeit

Stochastic Projectmanagement

Applying dynamic programming and CRRA utility to projects subject to

cost uncertainty

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Diplom-Ingenieurs unter der Leitung von

Ao.Univ.Prof. Mag.rer.nat.

Dr.rer.soc.oec. Dr.techn. Thomas Dangl

am Institut für Managementwissenschaften - E330

Forschungsbereich Finanzwirtschaft und Controlling

eingereicht an der Technischen Universität Wien

Fakultät für Maschinenwesen und Betriebswissenschaften

von

Sebastian Rötzer, BSc

e0726857

Weinbergsiedlung 1

A-2465 Hö�ein

Wien, October 10, 2013

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Kurzfassung

Die vorliegende Arbeit befasst sich mit der Behandlung von Projekten mit unsicheren
Kosten bei vergleichsweise bekannt angenommen Erträgen als Investitionsproblem. Dazu
wird auf die Bellman Methode, auch Dynamische Programmierung genannt, zurückge-
gri�en und die Entwicklung der Projektkosten als geometrisch Brownsche Bewegung auf
einem diskreten Gitternetz modelliert.
Dabei wird, in einem ersten Beispiel, ein Investment-Modell auf dem Gitter aufgesetzt,
welches nach dem 'Alles-oder-Nichts' Prinzip agiert. Diese grundlegende, erste Imple-
mentierung wurde für ausführlich Untersuchungen zum korrekten Verhalten des Gitters
genutzt und anschlieÿend um eine Nutzenfunktion erweitert. Diese sogenannte CRRA
Nutzenfunktion wiederum dient dem Zweck menschliches Verhalten der Risikovermei-
dung in beliebiger Ausprägung in das Modell ein�ieÿen zu lassen und ermöglichte erstmal
das Vorkommen von internen Maxima d.h. Extremstellen.
Abschlieÿend wurde untersucht ob die Vorgehensweise, die sich zur Evaluierung eines
Einzelprojekts mit unsicheren Kosten eignet, auch zur Bewertung und Risikominimierung
eines Projektportfolios verwendet werden kann.
Zur Umsetzung des Rechenmodells auf einem Rechner wird die freie Programmiersprache
R herangezogen. Die entsprechend verwendeten Programmcodes sind im Appendix C
zu �nden.

i

Abstract

The thesis work at hand is concerned with the treatment of projects of uncertain cost
and comparatively known revenues as investment-problem. Therefore we resort to the
Bellman method also referred to as dynamic programming and model the development of
expected project cost as geometric Brownian motion on a discrete computation lattice.
In the process we set up an investment-model as �rst example that operates as 'make-or-
break' solution. This fundamental, �rst implementation was used for extensive investiga-
tion on the correct behaviour of the grid and was complemented with an utility function
afterwards. The so called CRRA (constant relative risk aversion) utility function serves
the purpose of simulating human risk-avoiding behaviour in arbitrary peculiarity within
the model and enables the occurrence of internal extrema for the �rst time.
Concluding we investigated whether the approach that suits the assessment of an in-
dividual project of uncertain cost could also be extended to the evaluation and risk-
minimisation of project portfolios.
For the implementation of the calculation model on a personal computer the free pro-
gramming language R was utilized. The respectively developed source codes can be
found in appendix C.

ii

Acknowledgement

I want to thank Ao.Univ.-Prof. Mag. DDr. Thomas Dangl for the supervision of
my thesis and the good collaboration not only in the development of this project but
also in the conduction of the course 'Betriebswirtschaftliche Optimierung' where I got
the opportunity to accompany the course as tutor. With my leave from the Vienna
University of Technology I wish him all the best for his future endeavours.
Furthermore I would like to express my appreciation to my family who encouraged me
to pursue university studies and kept supporting me throughout the past six years.
Last but not least I want to thank my friends, especially Gernot, Klemens, Daniel and
Markus, who made me who I am and Bianca who always succeeds in making me smile.

iii

'Mehr als die Vergangenheit interessiert mich die Zukunft, denn in ihr gedenke ich zu
leben.'

Albert Einstein

iv

Contents

1. Introduction 1

2. Fundamentals on dynamic programming 5

2.1. Aim and references . 5
2.2. Dynamic programming of deterministic target functions 5

2.2.1. An introduction based on Rangarajan K. Sundaram's A First
Course In Optimization Theory 6

2.2.2. A deterministic allocation process example from Richard E. Bell-
man's Dynamic Programming . 10

2.3. Dynamic programming of stochastic target functions 13
2.3.1. A stochastic decision process example from Richard E. Bellman's

Dynamic Programming . 14
2.3.2. Some thoughts on dynamic programming in stochastic processes

following Dixit's and Pindyck's Investment Under Uncertainty . . 16

3. Example A1 - Dynamic programming of project investment under uncer-

tainty 21

3.1. Project representation and variables . 21
3.2. Modelling of a project under uncertainty 22

3.2.1. Geometric random walk of estimated cost 22
3.2.2. Introducing investment activity 24
3.2.3. Concerning variable constraints 25

3.3. Applying the Bellman principle . 27
3.4. Strategy A1-0 - non-investment . 29

3.4.1. Investment considerations . 29
3.4.2. Dynamic programming of investment 29

3.5. Strategy A1-1 - constant relative investment rates 30
3.5.1. Investment considerations . 30
3.5.2. Dynamic programming of investment 31

3.6. Strategy A1-2 - constant absolute investment rates 33
3.6.1. Investment considerations . 33
3.6.2. Dynamic programming of investment 35

3.7. Monte Carlo method and comparison of project turnouts 36

4. Example A2 - dynamic programming of risk-averse project investment 40

4.1. Introducing the CRRA utility function 41

v

Contents

4.2. Modelling with risk-aversion . 43
4.3. Adjusting the Bellman equations . 46
4.4. Dynamic programming of investment . 48

4.4.1. Experiment A2-1, risk-aversion(γ = 1) 50
4.4.2. Experiment A2-2, risk-aversion (γ = 3) 50
4.4.3. Experiment A2-3, risk-aversion (γ = 6) 52

4.5. Monte Carlo simulation and comparison 55

5. Example B - dynamic programming of portfolio investment under uncer-

tainty 57

5.1. Modelling of portfolio investment . 57
5.2. Application of the CRRA utility function 59
5.3. Derivation of probabilities and Bellman principle 60
5.4. Dynamic programming results of portfolio investment 65
5.5. Monte Carlo study of portfolio investment 66

6. Conclusion 76

A. Appendix - Monte Carlo simulation and distribution analysis 78

A.1. Parameter estimation for continuous distributions 78
A.1.1. Logarithmic normal distribution 79
A.1.2. Gamma distribution . 79

A.2. Cash-�ow analysis of actually launched projects 80
A.2.1. Logarithmic normal distribution of cash-�ows 80
A.2.2. Normal distribution of logarithm of cash-�ows 81
A.2.3. Gamma distribution of cash-�ows 82

A.3. Analysis of remaining cost at t = T . 85
A.3.1. Logarithmic normal distribution of end remaining cost 85
A.3.2. Normal distribution of logarithm of end remaining cost 87
A.3.3. Gamma distribution of end remaining cost 91

B. Appendix - Derivation of bounding factor ψ 92

B.1. Probability p1 . 92
B.2. Probability p2 . 93
B.3. Probability p3 . 94
B.4. Probability p4 . 94
B.5. Evaluation of extrema . 95

C. Appendix - R Code 97

C.1. De�nitions . 97
C.2. 1-dimensional dynamic programming . 98
C.3. 2-dimensional dynamic programming . 101

vi

1. Introduction

Let us de�ne a project as any temporary and unique (social) system whose purpose is to
achieve a certain set of given objectives in a speci�c period of time while subject to a de-
�ned number of constraints. These constraints originate from the limitation of resources
be it monetary, temporal, social, environmental or quality-wise. An endeavour can be
labeled project if it has distinct start- and termination-deadlines, the problem looking
for solution appears relatively complex and that the approach is initially unknown.
The afore-mentioned complexity can accrue from

• the large number of possible approaches to �nd a solution whose e�ectiveness is
not yet assessable

• con�icts of aims

• reciprocity of measures taken to achieve the projects goal

• discrepancy in project understanding of involved parties.

All e�orts undertaken to successfully operate such an enterprise can be subsumed as
feedback control system of the project. This thesis work is the authors contribution to
such control systems by developing a mathematical model that represents projects of
uncertain cost and implementing it by application of the free programming language R.
Any particular project concept pursued is subject to one of the three di�erent cases
illustrated by �gures 1.1, 1.2 and 1.3. First there is �gure 1.1 where project �nancing
is not even initiated. We see a grey chart with quasi-random behaviour of the projects
estimated cost to completion whereupon the colour grey represents the activity of 'wait-
ing' i.e. non-investment. With the passing of time additional information unfolds that
can change the projects estimated remaining cost in both directions either up- or down-
wards. As we will learn later on this can only occur if the expected revenues are to low
or vice-versa the assessed project cost estimation is to high for any point in time to form
a reasonable investment. Note that the project diagrammed will be terminated at t =
10 regardless of its state of completion.
Heading on to �gure 1.2 we observe a project that was kicked-o� when the economic
environment seemed bene�cial and that was on its way to completion when a small
disturbance caused it to slip out of the pro�table area whereby it was dragged on for
some time but eventually terminated unsuccessfully at the deadline.
Lastly we have a prosperous project shown in diagram 1.3. In the strictly mathemat-
ical representation chosen for this work a project meets its goals when the estimated
remaining cost falls beneath a critical margin for instance one monetary unit. Only if

1

1. Introduction

Figure 1.1.: Time horizon expired without project kick-o�

Figure 1.2.: Project cost development outside of pro�table area

2

1. Introduction

Figure 1.3.: Successful project �nish within time horizon

this aim is met within the pre-speci�ed time horizon the project organisation earns itself
a �nancial reward to compensate its prior expenses.
It is now time to switch to a short introduction of this thesis and its contents. In chapter
2 we start out with the basic ideas proposed by Richard E. Bellman in 1957 when he
published his book named 'Dynamic programming'[1] . Essentially this is an approach of
solving large-scale i.e. high-dimensional optimization problems by breaking them down
into a sequence of familiar low-dimensional tasks. We exemplify dynamic programming
for a deterministic function �rst and move on to stochastic systems afterwards.
Following this short theoretical discussion three chapters containing examples of dy-
namic programming in project investment with increasing complexity await the inter-
ested reader. To begin with we establish a general way of representing a project's cost
development over time by the application of a geometric Brownian motion in chapter
3. Furthermore we introduce a simple investment model based on the relation of cost
to expected gains of investing. Whenever the algorithm �nds that the gradient of this
relation is positive it will allocate money to the project at the maximum allowable rate.
Chapter 4 is an evolution of the preceding one and marks the introduction of the CRRA
(constant relative risk aversion) utility function to the investment model. By the em-
ployment of this utility function it is possible to simulate a real investors decision more
precisely and obtain internal solutions i.e. abandon the initial 'make-or-break' tactics.
Therefore it was however necessary to completely revise the model as the CRRA utility
is a consumption based concept, i.e., it assigns strictly positive levels of consumption

3

1. Introduction

the utility realized by the decision maker.
The last example found in chapter 5 tries to expand the evaluation of individual in-
vestment projects to a portfolio of several (in our case two) projects. With the insights
gathered from the one-dimensional case and the studies of Boyle, Evnine and Gibbs [2]
a new model is constructed that merges the two correlated random walks into movement
described by a single probability value. While initial attempts to �nd a numeric solution
to the portfolio optimization problem were not successful and quite resource demanding
for the executing personal computer a later analytic approach turned out to work like a
charm.
After concluding the last example a short conclusion follows. An appendix concludes the
thesis. This last section of the work is again divided in three parts containing extensive
Monte Carlo studies on the results of example A1, a method of determining additional
constraints for example B in order to retain real probabilities and �nally the source
code employed to generate all results present in this book. On the very last page the
bibliography with suggestions for further reading is located.

4

2. Fundamentals on dynamic

programming

2.1. Aim and references

Before starting out with the investment optimization problem brie�y mentioned in the
introductory chapter we will discuss the prospective methods employed. Our starting
point will be a chapter in Rangarajan K. Sundaram's 'A First Course In Optimization
Theory' [14] that is focused on the description and solution of �nite horizon dynamic
programming problems. This reference that was chosen for its clearness will give us a �rst
intuition of dynamic programming in deterministic scenarios and lead us to examples
from the classical work 'Dynamic Programming' [1] presented by Richard E. Bellman
in 1957. To further our goal of achieving an insight into dynamic programming the
examples described in equations 2.16 to 2.31 are directly taken from Bellman's book. If
interested in a mathematical proof please refer to the original publication [1] chapter I -
III. Also Bellman's examples will draw a bow from deterministic to stochastic scenarios
which are the focus of this thesis' practical part. In addition a reference to Avinash
Dixit's and Robert S. Pindyck's book [5] concludes this chapter. This book and an
earlier working paper published by Pindyck served as main inspirations for the models
that are to be constructed and discussed in later chapters.

2.2. Dynamic programming of deterministic target

functions

In this section we focus on problems whose target function is determined by the current
state and the action chosen by a decision-maker. The term deterministic connotes that
the same combination of state and action will at any time produce the same result. This
is di�erent from stochastic target functions which will be discussed afterwards where
the result is given as distribution over a probability space. Since the class of problems
undergoing investigation share the feature of distinct termination dates their study is
named Finite Horizon Dynamic Programming.

5

2. Fundamentals on dynamic programming

2.2.1. An introduction based on Rangarajan K. Sundaram's A
First Course In Optimization Theory

We de�ne a Finite Horizon (Markovian) Dynamic Programming Problem (henceforth
referred to as FHDP) as a tuple consisting of the elements {S,A, T, (rt, ft,Φt)

T
t=1}.

Whereat

• S is the state space of the problem, with generic element s.

• A is the action space of the problem, with generic element a.

• T, a positive integer, is the horizon of the problem.

For each t ∈ {1, . . . , T},

• rt : S × A→ R is the period-t reward function,

• ft : S × A→ S is the period-t transition function, and

• Φt : S → P (A) is the period-t feasible action correspondence.

An interpretation of the FHDP could read as follows. In the beginning the problem is
found in some initial state s1 = s ∈ S and the decision-maker is faced with a set of
possible action alternatives denoted Φ1(s1) ⊂ A. Once the decision-maker chooses an
action a1 ∈ Φ1(s1) to proceed an immediate reward r1(s1, a1) is allocated and a state-
transformation to s2 = f1(s1, a1) takes place. This cycle of state analysis, selection of
appropriate measures, reward distribution and transformation can be continued all the
way to the terminal date T. So far the problem appears rather simple the tricky task of
the operator though is to maximize the sum of all rewards accumulated over the problem
horizon. This is synonymous to

Maximize
T∑
t=1

rt(st, at) (2.1)

subject to s1 = s ∈ S
st = ft−1(st−1, at−1), t = 2, . . . , T

at ∈ Φt(st), t = 1, . . . , T

While this approach catches with its simplicity Sundaram points out that there are bet-
ter ways to represent the FHDP as well as the objective if assigned with the analytical
solution of such a problem. This leads us to the modelling as histories, strategies and
the value function.

One can think of a FHDP problem's solution as an interactive map that describes the ex-
actly best possible way i.e. decisions to be made depending on where the decision-maker

6

2. Fundamentals on dynamic programming

stands i.e. the state of the problem and how it was reached. As mathematical expression
of the decision-makers current location would be the history ηt = {s1, a1, . . . , st−1, at−1, st}
that consists of the current (st) and all preceding (s1, . . . , st−1) states as well as the cor-
responding actions (a1, . . . , at−1) taken. Furthermore we can think of H1 = S and Ht as
the set of all possible histories ηt for t > 1. Provided with anyone history ηt we identify
st[ηt] as the period-t state under the history ηt. Until now we have concerned ourselves
with the description of the decision-makers problem but now we will turn towards pos-
sible solutions for the entire problem horizon. Let us de�ne a strategy σ as a sequence
of decisions {σ}Tt=1 where for each t σt : Ht → A speci�es the action σt(ηt) ∈ Φt(st[ηt])
for period t as function of ηt ∈ Ht. Consider σt(ηt) ∈ Φt(st[ηt]) a built-in feasibility
requirement that secures the strategies validity. Also let us denote a set of all possible
σ for the problem which we name Σ.
Returning to our objective from the preceding section we denote the total reward under
strategy σ with starting condition s as

W (σ)(s) =
T∑
t=1

rt(σ)(s) (2.2)

We de�ne the value function V : S → R by

V (s) = sup
σ∈Σ

W (σ)(s) (2.3)

and deem a strategy σ∗ an optimal if and only if its eventual total reward from any state
s1 equals the supremum of possible pay-o�s from that state. Note that there might be
more than one optimal strategy.

W (σ∗)(s) = V (s), for all s ∈ S (2.4)

In a given FHDP (eq. 2.5) there any τ -history ητ can be taken as sample that leads to
a new FHDP which we refer to as the T − τ - period continuation problem described
by equation 2.6. For the purpose of notational simplicity the new problem will also be
denoted by {S,A, T − τ, (rt, ft,Φt)

T
t=τ+1}.

{S,A, T, (rt, ft,Φt)
T
t=1} (2.5)

{S,A, T − τ, (r∗t , f ∗t ,Φ∗t)T−τt=1 } (2.6)

The new problem originates from state s = sτ and is subject to the conditions 2.7.

r∗t (s, a) =rt+τ (s, a), (s, a) ∈ S × A (2.7)

Φ∗t (s) =Φt+τ (s), s ∈ S
f ∗t (s, a) =ft+τ (s, a), (s, a) ∈ S × A

7

2. Fundamentals on dynamic programming

Let us now state a bold assumption: All τ -histories ητ that end in sτ result in the same
continuation (T − τ) -period problem. This means that the current state st and the
time period in which this state was reached contain all relevant information regarding
continuation possibilities i.e. feasible strategies and attainable rewards. This also in-
corporates that is it not important how one arrives at a certain state i.e. the problems
solution is path independent. We call this feature Markovian behaviour. Let us denote
a Markovian strategy as sequence {g1 . . . , gT} where an action gt(st) ∈ Φt(st) selected
for each t is subject to gt : S → A. A Markovian strategy that is found to be optimal
is called an Markovian optimal strategy and is superior not only to other Markovian
approaches but to all other decision sequences.
To verify the existence of an (Markovian) optimal strategy we use a sequence of decisions
seen in eq. 2.8 that follows the recommendations of a strategy σ for the initial (t - 1)
periods and switches to the command of a Markovian strategy afterwards. Note that
the procedure {σ1, . . . , σt−1, gt, . . . , gT} is replaced by γ for notational simplicity in the
proof paragraph.

{σ1, . . . , σt−1, gt, . . . , gT} (2.8)

Furthermore we incorporate Lemma 2.2.1 quoted from A First Course in Optimization
Theory [14] for this purpose.

Lemma 2.2.1 Let σ = (σ1, . . . , σT) be an optimal strategy for the FHDP

{S,A, T, (rt, ft,Φt)
T
t=1}

Suppose that for some τ ∈ {1, . . . , T}, the (T − τ + 1) - period continuation problem

{S,A, T − τ + 1, (rt, ft,Φt)
T
t=τ}

admits a Markovian optimal strategy {gτ , . . . , gT}. Then, the strategy

{σ1, . . . , σt−1, gt, . . . , gT}

is an optimal strategy for the original problem.

Proof Should the Lemma presented afore turn out to be incorrect, then it would be
possible that the optimal strategy σ produces results superior to the rewards attainable
under approach γ for any initial state s. So that equation 2.9 becomes true.

W (σ)(s) > W (γ)(s) (2.9)

If the declaration in equation 2.9 is to hold we must require the relationship shown in eq.
2.10 since the sum of the (τ −1) period rewards are equal to each other by construction.

T∑
t=τ

rt(σ)(s) >
T∑
t=τ

rt(γ)(s) (2.10)

8

2. Fundamentals on dynamic programming

Once we let denote s∗τ the common period τ state of both strategies and let inequality
2.10 postulates the superiority of σ over γ we run into a contradiction of the optimality
of γ for the T − τ period continuation problem. The correctness of Lemma 2.2.1 is of
major importance for our application as it will enable us to solve dynamic programming
problems by the method of backward induction. That means one can start from the
one-period problem with any s ∈ S as in eq. 2.11. According to Lemma 2.2.1 we are
able to use a Markovian strategy g∗T without a�ecting the total rewards in comparison
to σ∗T . No we could go ahead and �nd the optimal solution for the two period problem
constituted by T and (T - 1). This results in a decision sequence (g∗T−1, g

∗
T). By inclusion

of an induction argument the construction of an optimal strategy can be concluded.

Maximize rT (s, a) subject to a ∈ ΦT (s) (2.11)

To ensure validity of the solution a couple of conditions must be met that enforce minimal
continuity and compactness of the problems target and transformation functions.

1. For each t, rt is continuous and bounded on S × A.

2. For each t, ft is continuous on S × A.

3. For each t, Φt is a continuous, compact-valued correspondence on S.

Theorem 2.2.1 Under 1 - 3, the dynamic programming problem admits a Markovian
optimal strategy. The value function Vt of the (T − τ + 1) period continuation problem
satis�es for each t ∈ {1, . . . , T} and s ∈ S, the following condition, known as the
'Bellman Equation', or the 'Bellman Principle of Optimality':

Vt(s) = max
a∈Φt(s)

{rt(s, a) + Vt+1[ft(s, a)]}

Proof We will start with the one-period case and develop the two-period example from
there. Afterwards a simple induction argument su�ces to prove 'Bellman Principle of
Optimality' correct. Any strategy gT can only be optimal for the one-period case if it
solves equation 2.12.

max{rT (s, a)|a ∈ ΦT (s)} (2.12)

With our assumptions concerning continuity and compact-valued-ness the maximized
value turns out to be simply VT (s). If we no choose an function g∗T : S → A in a way
that g∗T (s) ∈ Φ∗T (s) for all s ∈ S i.e. carry out a selection, g∗T will advise us an optimal
decision for any initial state s. There may exist more than one optimal strategy however
the resulting pay-o� will always be VT (s). Should we now take our optimal strategy g∗T
and face a two-period problem and additional decision for the period (T-1) is necessary.
Once we decide for any action a ∈ ΦT1(s) an immediate reward rT1(s, a) is distributed
and the problem undergoes a transformation fT−1(s, a) so that a new state sT is realized.

9

2. Fundamentals on dynamic programming

The maximum reward of this continuation problem is by de�nition VT [fT1(s, a)] attained
by implementation of g∗T . Thus the maximum reward of a two-period example subject
to activity a in the �rst period is given by equation 2.13.

rT−1(s, a) + VT [fT1(s, a)] (2.13)

Under this assumption we can state that {g∗T−1, g
∗
T} is an optimal strategy for two-period

cases if it solves equation 2.14.

max
a∈ΦT−1(s)

{rT−1(s, a) + VT [fT−1(s, a)]} (2.14)

Under the supposition that we established and veri�ed the following two statements a
skilled mathematician can easily prove the correctness of the Bellman equation 2.15 by
induction.

1. A Markovian optimal strategy i.e. a decision sequence {g∗t+1, . . . , g
∗
T} can be found

for the (T - t) period problem,

2. and said problem's value function Vt+1 is continuous on S.

Vt(s) = max
a∈Φt(s)

{rt(s, a) + Vt+1[ft(s, a)]} (2.15)

2.2.2. A deterministic allocation process example from Richard
E. Bellman's Dynamic Programming

f(x) = max
0≤y≤x

[g(y) + h(x− y) + f(ay + b(x− y))] (2.16)

Consider a process from any application �eld whose input is denoted by the quantity
x which can be divided into two non-negative parts y and (x − y) and subsequently
spent on the two continuous return functions g(y) and h(x − y). If assigned with the
optimization of the process's output one would go about to search for the maximum of
the analytic equation 2.17 with constraints 2.18.

R1(x, y) = g(y) + h(x− y) (2.17)

0 ≤ y ≤ x (2.18)

x ≥ 0

Now imagine that employing our process doesn't entirely consume the input resources
yet their initial quantities shrink to ay and b(x − y) where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1.
Since there are unspent resources (quanti�ed by the value x1 as seen in 2.19) we continue
utilizing the process and claim another round of returns.

ay + b(x− y) = x1 = y1 + (x1 − y1) (2.19)

10

2. Fundamentals on dynamic programming

As we already possess returns from the �rst application we add them up to the sec-
ond application's output and hence have a total two stage yield denoted by equation
2.20. Extended to two allocation stages the process's maximum return can be found be
optimizing the function in y and y1 whilst maintaining the constraints in 2.21.

R2(x, y) = g(y) + h(x− y) + g(y1) + h(x1 − y1) (2.20)

0 ≤ y ≤x (2.21)

0 ≤ y1≤x1

Turning toward an N-stage allocation process the structure of the total return would
look like equation 2.22 with user distributable resources quanti�ed by the 2.23 set of
equations.

RN(x, y, y1, . . . , yN−1) = g(y)+h(x−y)+g(y1)+h(x1−y1)+. . .+g(yN−1)+h(xN−1+yN−1)
(2.22)

x1 =ay + b(x− y), 0 ≤ y ≤x (2.23)

x2 =ay1 + b(x1 − y1), 0 ≤ y1 ≤x1

...

xN−1=ayN−2 + b(xN−2 − yN−2),0 ≤ yN−2≤xN−2

0 ≤ yN−1≤xN−1

Common numerical approaches and calculus

For the purpose of better understanding the bene�ts of dynamic programming compared
to ordinary methods we will walk down the paths of a 'brute-force' numerical solution
and calculus to evaluate and comment on the problems arising.
If for example the operator refuses the application of any analytic tools and instead
insists to compute the maximum in a strictly numerical way he might partition each
decision space xi in a suitable number of lattice points, say 10. Trying to calculate the
maximum result of a 10-stage allocation process R10(y, y1, . . . , y9) he would run into a
dimension of 1010 operations since every lattice point spawns a new decision space again
segmented by 10 lattice points. So the order of the problem is given by 2.24 with N the
number of allocation stages and m the lattice density.

Θ(mN) (2.24)

Note that for a 20-stage process the number of operations becomes 1010 · 1010. Imagine
now that computation, comparison, storage and all processing of one lattice point took
one millisecond. Then the numerical solution would require 2.77 · 103 hours. For a

11

2. Fundamentals on dynamic programming

microsecond however the number is 2.77 hours which already sounds fairly reasonable.
Unfortunately this approach doesn't yield any information on the underlying structure
of the solution, thus if stability or sensitivity analysis' are to be carried out (i.e. set of
variables for a,b and x as well as sets of functions for g and h) the problem will run out of
hand fairly quick. Even more so if the simple process is to be expanded to more realism
which could mean increases in the number of resources or available process choices.
Hence we prospect for another approach and employ calculus as method of choice
i.e. consider the whole problem a single stage, multivariate allocation process of N-
interdependent variables whose maximum can be found by taking partial derivatives
and solving the resulting equation system 2.25. Note however that this approach ig-
nores the possibilities of maxima in the boundary values yi = 0 and yi = xi which need
to be reviewed additionally not mentioning the necessity of testing all possible combi-
nations yet. To make matters worse one has to ensure that the solution found is, if not
unique, a real absolute maximum and not a minimum or a simple local maximum or a
saddle point.

g′(yN−1) + h′(xN−1 − yN−1) = 0 (2.25)

g′(yN−2) + h′(xN−2 − yN−2) + (a− b)h′(xN−1 − yN−1) = 0

...

g′(y) + h′(x− y) + (a− b)h′(x1 − y1) + = 0

Again the approach is cluttered by the sheer number of calculations and possibilities that
have to be taken into consideration. Going back to our initial two-stage problem we can
rethink our results so far. Though one is naturally interested in receiving the point
(y, y1; . . . , yN) in policy space that yield the maximum return all that is of immediate
importance to the individual carrying out the decision is the single choice of y in terms of
the available x. Thus the former multivariate, single-stage problem transforms into a N-
stage process of one-dimensional choices. This is the basic idea of dynamic programming.

Dynamic programming

Assuming that the optimal decision for every stage of the process is known the resulting
maximum only depends on the initially available resource quantity x and the number of
allocation steps N. Pursuing our concept of one-dimensionality from the end of the last
section we are able to formulate equations 2.26 and the solution for the one-stage case
2.27.

fN(x) = max
y,yi

RN(x, y, . . . , yN−1), N = 2, 3, . . . (2.26)

f1(x) = max
0≤y≤x

[g(y) + h(x− y)] (2.27)

Next, we will proceed an try to formulate a function that yields the maximum return in
a two stage allocation process. In the one-stage process it was clear that the resource

12

2. Fundamentals on dynamic programming

has to be used in the best possible manner if a maximum return is to be achieved. How
about a two- or even N-stage allocation? Sure enough there is no di�erence. To receive
a maximum return of the two-stage process we simply take the spare resources x1 lead
them back to our initial allocation process (i.e allocating them as y1 and (x1− y1)) thus
gaining a total return posed by eq. 2.28. We can therefore write down the functional
equation as recurrence relation shown on eq. 2.29.

R2(x, y, y1) = g(y) + h(x− y) + f1(ay + b(x− y)) (2.28)

f2(x) = max
0≤y≤x

[g(y) + h(x− y) + f1(ay + b(x− y))] (2.29)

Consequently the upcoming and ultimate task is to �nd the allocation function for
a N-stage process. Interpreting the structure we found above we denote the N-stage
allocation as eq. 2.30. So if beginning with the initial allocation f1(x) and thus gaining
the �rst return and spare resources we can employ 2.30 to �nd f2(x), then f3(x) and so
on. Note that this approach does not only yield the quantity of the return fN(x) yet
even produces the sequence of decisions labelled yN(x) for the N-stage allocation.

fN(x) = max
0≤y≤x

[g(y) + h(x− y) + fN−1(ay + b(x− y))] (2.30)

ȳ =yN(x) (2.31)

ȳ1 =yN−1(aȳ + b(x− ȳ))

ȳ2 =yN−2(aȳ1 + b(x1 − ȳ1))

...

ȳN1=y1(aȳN−2 + b(xN−2 − ȳN−2))

Once the sequence of functions denoted by yN(x) for a speci�c application is known
the sequence of optimal allocation (ȳ, ȳ1, . . . , ȳN−1) can be computed by means of 2.31
provided that N and x are known.
Let's recapitulate. We started out with an single N-stage allocation problem and con-
cluded with the transformation into a sequence of N one-dimensional problems. Further-
more as promised in the introduction we succeeded in embedding the initial problem for
speci�c values of N and x within a family of related problems (i.e. arbitrary quantities of
N and x). Likewise the obvious advantages concerning computational e�ort of dynamic
programming compared to the common numeric approach should not go unmentioned.

2.3. Dynamic programming of stochastic target

functions

We will now turn our introductory discussion of the dynamic programming method to a
class of functions more suitable to represent projects under uncertainty - the stochastic

13

2. Fundamentals on dynamic programming

multi-stage decision process.
In contrary to the deterministic case the outcome of stochastic processes is not solely
dependent from the operators decision but also in�uenced by chance in a varying degree.
Instead of resulting in a predetermined outcome a decision constitutes or biases a distri-
bution of possible outcomes. This leads to a core-question of optimum decision-making
in stochastic processes that is: 'Which mathematical property is chosen as indicator of
the results optimality? Since the lack of full control over the process e�ectively prevents
the guaranteed receipt of a maximum return even for optimal policies. The question of
decision-making criteria is, for this case, rather philosophical than mathematical. One
could select the policy with the maximum expected-value (commonly adapted) as well
as choose a strategy with the highest minimum return (far less widespread). These are
referred to as so called mini-max or maxi-min strategies.

2.3.1. A stochastic decision process example from Richard E.
Bellman's Dynamic Programming

Let us now turn towards an example designed by Richard E. Bellman to introduce
dynamic programming to processes of partially random nature. Imagine a gold-mining-
procedure taking place in two di�erent claims A and B containing the distinct amounts
of gold x and y. Yet the owner of the mine only possesses one rather delicate prospecting-
machine. Whenever the machine is put to use in mine A it has a chance of p1 to excavate
an relative amount r1 of gold (resulting in a total of r1 ·x) while on the other hand being
faced with a probability 1 − p1 to be damaged beyond repair. The same principle is
applied for mine B with probability p2 and ratio r2. The decision-makers task in this
problem would be to determine the sequence of choices that maximized the (expected)
amount of gold mined before the machine su�ers a total loss.
While the problem might occur trivial for the one-period example seen in equation 2.32
the pro�ts of mining are beyond any deterministic statement for the multi-period case
since the remaining gold quantities x and y have to be readjusted after each successful
mining step. Therefore and because of the immanent danger of machine destruction we
will utilize the expected-value of pro�ts to evaluate our policies. The optimum strategy
will provide us with a return given by maxE(r1, r2) before any damage to our machine
occurs.

f1(x, y) = max[p1 · r1 · x, p2 · r2 · y] (2.32)

To begin our investigation we assume that our mining process is terminated in any
case after N-steps. This allows us to theoretically calculate and compare all possible
decision sequences. This approach however doesn't yield us any information about
the structure of the solution and is not that smart from a mathematical viewpoint.
Considering a process with two decision alternatives over a ten-stage period we end up
with 210 = 1024 possible strategies; if we, by chance, own a third mine this number
explodes to 310 = 59049. With these thoughts in mind we can draw up two simple

14

2. Fundamentals on dynamic programming

estimations for the N+1 stage process. These are equation 2.33 as expected gold return
for continued prospecting in mine A, and 2.34 as correspondence for claim B.

fA(x, y) = p1 · (r1 · x+ fN((1− r1) · x, y)) (2.33)

fB(x, y) = p2 · (r2 · y + fN(x, (1− r2) · y)) (2.34)

This leads us to a basic N+1 stage approximation given by equation 2.35 and an in�nite
stage estimation described by eq. 2.36 for the unbound process.

fN+1(x, y) = max[fA(x, y), fB(x, y)] = max[r1·x+fN((1−r1)·x, y), r2·y+fN(x, (1−r2)·y)]
(2.35)

f(x, y) = max[r1 · x+ f((1− r1) · x, y), r2 · y + f(x, (1− r2) · y)] (2.36)

As before the in�nite process is only an approximation towards �nite solutions with
large N. This is due to diminishing returns that lead to a convergence of the �nal result.
Two rather simple estimations contained within our policy space are those for an in�nite
series of decisions either for mine A or B. In the case of P1 · p2 > 0 both strategies show
monotone convergence and lead to the results given in equation 2.37 for mine A and eq.
2.38 for mine B. These are the gold pro�ts if the decision maker chooses mine A or B
and sticks to his or her decision forever.

fA(x, y) =
p1 · r1 · x

(1− p1 · (1− r1))
(2.37)

fB(x, y) =
p2 · r2 · y

(1− p2 · (1− r2))
(2.38)

But how should we proceed and evaluate other approaches? A graphical illustration of
the problem can provide us with some intuition towards a possible solution. But �rst
let us state anyone will prefer prospecting of mine A so long x

y
>> 1 and vice versa

stick to mine B if y
x
>> 1 holds (Of course under the precondition that 0 ≤ p1, p2 ≤ 1).

Therefore we could argue that the strategic decision depends solely on the ratio of x
y
since

f(kx, ky) = kf(x, y) for k > 0. If we imagine the amounts of gold x and y located within
the mines as coordinates in a coordinate systems positive quadrant we could establish
regions (subsets) where a decision for mine A or B is preferable as well as (at least) one
border line where none of both options is superior. Let us assume that only two regions
exist and that equations 2.39 and 2.40 provide us with the knowledge of the returns of
a �rst decision for either case A or B. The �rst term is the expected immediate pro�t
whereas the second term indicates the amounts of gold still to be mined presupposed
that the machine is still undamaged.

fA(x, y) = p1 · r1 · x+ p1 · f((1− r1) · x, y) (2.39)

fB(x, y) = p2 · r2 · y + p2 · f(x, (1− r2) · y) (2.40)

15

2. Fundamentals on dynamic programming

When equating these to equations as seen in 2.41 we obtain the exact mathematical
description fo the bordering line which we will denote L. Unfortunately it still contains
a functional term that can neither be ignored nor simple circumvented. Yet we can
resolve this problem by adding another pair of observations to or repertoire of formulas.
Consider that a decision for mine A while located on the border will decrease the amount
of gold x stored within A while y for B remains constant and thus putting us in region
B for the second decision. The same principle is true for the inverse case i.e. a �rst
decision for B will lead to an A in the second stage if started from the border L.

fA(x, y) = fB(x, y) (2.41)

With this insight gained we will try to construct the equations for the two-stage process
and hopefully be able to eliminate the functional terms from these. Equations 2.42 and
2.43 show the to two-stage gold yields and to our relief we can equate them without
obstacles (eq. 2.44).

fAB(x, y) = p1r1x+ p1p2r2y + p1p2f((1− r1)x, (1− r2)y) (2.42)

fBA(x, y) = p2r2y + p2p1r1x+ p2p1f((1− r1)x, (1− r2)y) (2.43)

fAB(x, y) = fBA(x, y) (2.44)

From there it is only a stone's throw to the mathematical description of the bordering line
L given by equation 2.45. This border however leads us to an interesting interpretation.
Observe that these fractions directly compare the immediate gains p1r1x of a decision
versus the instantaneous losses (1− p1). Obviously any rational investor will then settle
for the option that maximizes the value of possible pro�ts against corresponding losses
i.e. the investor will choose claim A if p1r1x

(1−p1)
> p2r2y

(1−p2)
and mine B otherwise. Assuming

for instance that p1 = p2 = p and r1 = r2 = r the sequence of decisions is solely
determined by the remaining amounts of gold in each mine. This intriguingly simple
criterion tends to occasionally turn up in the dynamic programming theory.

L =
p1r1x

(1− p1)
=

p2r2y

(1− p2)
(2.45)

2.3.2. Some thoughts on dynamic programming in stochastic
processes following Dixit's and Pindyck's Investment

Under Uncertainty

The book of Avinash K. Dixit and Robert S. Pindyck [5] is concerned with investment
considerations in uncertain environments. They stress that time plays an important role
for investment decisions. Due to its very nature. An investment constitutes a future
stream of revenues that accumulate to a monetary amount that ideally should exceed
the initial cost. These streams however are in�uenced by random events and future

16

2. Fundamentals on dynamic programming

actions of rival as well as the investor himself. To secure a decision's desired result the
possible developments need to be estimated and evaluated whereupon the possibility of
postponing a decision is of special interest. Dixit and Pindyck feature two alternate
methods suitable for such an evaluation; the already well known dynamic programming
approach and the contingent claims analysis which is not in the scope of this work.
According to their description, dynamic programming is the decomposition of a (possibly
large) sequence of decisions into just two components: the immediate decision's reward
and a value function that contains the information about all subsequent decisions and
their consequences. If the planning horizon is �nite i.e. the problem has a de�nite
terminal date we have the option to start with the very last sub-problem and apply it to
standard static optimization methods. Afterwards the last period's result can be utilized
to optimize the penultimate problem and so on. Obviously it is not possible to relocate
the same approach to in�nite stage processes. Yet the recursive nature of these problems
helps to keep even these tasks relatively simple since solving the one period optimization
leads to the exactly same problem again with just di�erent starting conditions. Hence
we are looking for a stationary solution. This not only facilitates e�cient computing
but also enables the decision maker to �nd and establish analytic solutions. We will now
start with a two period example and from there develop a multi-period and afterwards
an in�nite stage dynamic programming method for stochastic processes.
Suppose that an investor has the opportunity to invest into the construction of a factory
for a not further speci�ed good. This production site whose price will be denoted by
the sunk cost of investment I will produce one piece of its product for evermore upon
completion. This item can be sold for a price P0 in period 0. In the second time-
step i.e. period 1 however the price will either rise or fall to a new level P1 due to a
stochastic market shift and will remain the same from there on. Equation 2.46 indicates
the possible expected revenues.

P1 =

{
(1 + u)P0 with probability q

(1− d)P0 with probability (1− q)
(2.46)

Furthermore let us assume that all future revenues must be discounted with the risk-
less interest r and that the investment can only be carried out in period 0 and there
is no possibility to catch up afterwards. With these informations a decision-maker can
calculate the value of investment V0 as shown in equation 2.47.

V0 = P0 + [q(1 + u)P0 + (1− q)(1− d)P0]

[
1

1 + r
+

1

(1 + r)2
+ . . .

]
(2.47)

= P0 + 1 + q(u+ d)− dP0
1/(1 + r)

1− 1/(1 + r)

= P0[1 + r + q(u+ d)− d]/r

With V0 known computing the net-pay-o� of the project Ω0 to the �rm is done according
to equation 2.48. Remember though that an investor is only willing to allocate money

17

2. Fundamentals on dynamic programming

to the factor if V0 > I, otherwise the project will be abandoned.

Ω0 = max[V0 − I, 0] (2.48)

Let us now presume that the investment opportunity remains intact throughout period
0 and that an investor might wait for the markets development and choose whether
to buy the factory or not afterwards. If so we could put our dynamic programming
knowledge to use and calculate the value function in period 1 as seen in equation 2.49.
Note however that we just use generic variables and have not yet considered the random
behaviour of prices.

V1 = P1 +
P1

(1 + r)
+

P1

(1 + r)2
+ . . . (2.49)

= P1
1 + r

r

According to our earlier investigations the value of the option to invest in stage 1 will
therefore equal 2.50. Since P1 can take on two di�erent values the same holds true for
V1 and F1. Therefore we need to compute an expected value of F1 as shown in eq. 2.51
in order to reasonable compare the investment opportunities.

F1 = max[V1 − I, 0] (2.50)

E0[F1] = qmax[(1 + u)P0
1 + r

r
− I, 0] + (1− q) max[(1− d)P0

1 + r

r
− I, 0] (2.51)

With the results for period 1 we can proceed to investigate the options in stage 0. All
we need to do is take our expected value for waiting, apply the discount rate since it
comes into e�ect one period later and put it in place of the former waiting revenue which
was zero. The value of F0 calculated in eq. 2.52 might di�er from the initial Ω0 if the
possibility to wait yield larger pro�ts than an immediate investment. This di�erence
can be referred to as the value of the opportunity to wait.

F0 = max

{
V0 − I,

1

1 + r
E0[F1]

}
(2.52)

Let us now generalize the two-period example into a method for an unspeci�ed �nite
number of periods. We will stick to the discrete time setting and use Markov processes
as source of stochastic behaviour. The current status of the investment, project, process
or any other subject to investigation is indicated by the state variable x that is known
for any period or time-step t up to the present one. Future states xt+1, xt+2, . . . are
considered random variables under our assumption of Markovian behaviour. There is
however one or more control variable(s) i to be chosen be the decision-maker that do
not only a�ect the immediate pro�t �ow πt(xt, it) but also the cumulative probability
distribution of future states Φt(xt+1|xt, it). Again we let a discount factor 1/(1+r) a�ect

18

2. Fundamentals on dynamic programming

decisions in later periods, with r indicating the risk-less interest rate. Also the whole
project or process is ended at an speci�c termination date T where a �nal pay-o� ΩT (xT)
is distributed. As before our aim is to maximize the total revenue over the whole time
horizon.
Similar to the two-period example the dynamic programming algorithm starts at the
very end of the time span and the two-part structure of the solution i.e. immediate
reward and value function of future decisions in a node remains intact as seen in eq.
2.53.

πt(xt, it) +
1

1 + r
Et[Ft+1(xt+1)] (2.53)

A decision-maker will strive to maximize the value of his opportunities. Therefore Ft(xt)
denotes the net-present-value of all cash-�ows provided that the operator selects all
decisions optimally from period t onwards. Equation 2.54 shows the general Bellman
Principle of Optimality for all nodes except for the last decision. In words: An optimal
policy has the property that, whatever the initial action, the remaining choices constitute
an optimal policy with respect to the subproblem starting at the state that results from
the initial actions.[5]

Ft(xt) = max
it

{
πt(xt, it) +

1

1 + r
Et[Ft+1(xt+1)]

}
(2.54)

We demanded earlier that a termination pay-o� will be allocated in the �nal period.
Thus we need to establish a slightly di�erent Bellman equation for the penultimate stage
given in eq. 2.55. Here the investor's goal is to maximize the pro�ts from immediate
rewards and discounted expected terminal pay-o�.

FT−1(xT−1) = max
iT−1

{
π(xT−1, iT−1) +

1

1 + r
ET−1[ΩT (xT)]

}
(2.55)

In dynamic optimization tasks with in�nite horizon we face a new problem. Since there is
no �nal stage to work backward from one cannot easily determine a value function for the
penultimate stage. While this may seem hugely impractical it is not that troublesome in
reality since the problem takes on a recursive structure that facilitates both theoretical
as well as numerical analysis. Let us boldly state that an in�nite problem horizon leads
to nothing else than independence from time as such provided that there are no explicit
time dependencies e.g. seasonality. The importance of state variable(s) xt remains intact
though but it does not matter when they occur any more. Assume that we already found
a value function common to all periods that is only evaluated at di�erent points xt. Then
we are able to postulate the general in�nite horizon Bellman equation in 2.56. Note how
we are able to strip the time label from the value function since it is commonly shared
for all periods.

F (xt) = max
it

{
π(xt, it) +

1

1 + r
Et[F (xt+1)]

}
(2.56)

19

2. Fundamentals on dynamic programming

We could generalize this equation even more by removing all time labels and replace xt
and xt+1 with x and x′ since time as such is not of concern any more. Let us refer to
this as in�nitely, repeating or recursive bellman problem (Eq. 2.57).

F (x) = max
i

{
π(x, i) +

1

1 + r
E [F (x′)|x, i]

}
(2.57)

This measure leaves us with only one problem that is where to start, i.e., which value
function to use. Luckily though, the whole complex can be regarded as functional
equation with the function F as its unknown. It can be mathematically proven that one
could start with any guess of the right function and the discount term lets all wrong
components vanish over time and therefore convergence is guaranteed no matter how
bad the initial guess was. Therefore only the correct solution will be left after a number
of iterations dependent on the scale of the (positive) discount factor. Note however that
this method requires the boundedness of pro�t �ows in order to force the contraction
of wrong solution candidates. F can therefore be considered a �xed point of the overall
problem. A short, intuitive proof can be found in [5] chapter 4 appendix A.
With this general introduction on dynamic programming being said let us proceed to
the examples that were developed to verify the suitability of the method for evaluation
of projects under cost uncertainty.

20

3. Example A1 - Dynamic

programming of project

investment under uncertainty

3.1. Project representation and variables

Consider a �rm with a single development project with an estimated cost to completion
of Pt. At any point in time t = 0, 1, . . . , T the �rm decides about the �ow of investment
It which allocates an amount of It∆t to the project over the next time interval. While
investing the amount It∆t reduces the required costs to completion in expectation by
It∆t, development costs are subject to random shocks which are assumed to follow a
geometric Brownian motion modelled on a binomial tree. Thus, the transition equation
satis�es E(P (t+ 1)) = P (t)− It with lim

∆t→0

var(Pt+1)
∆t

= β2Pt.

Furthermore the discussed project is represented by a number of inherent model param-
eters shown in table 3.1 and control variables seen in 3.2. The di�erence between these
two kinds of values is that control variables can, within certain limits, be chosen by the
operator according to strategic decisions while the inherent type is predetermined by the
project itself or its environment and stays �xed throughout the optimization process.

formula source code value unit

P0 priceGuess0 2000 [monetary units]
PR rewardMargin 1 [monetary units]
λ lambda PR

P0
[-]

ϕ shift 0 [-]
β beta 0.20 [-]
r r 0.05 [-]
T Tmax 10 [time units]
R reward 3000 [monetary units]

Table 3.1.: Project inherent variables

Model parameters P0 is the initial estimation of the projects realization cost. If the
cost cannot be assessed in a single number of monetary units the variable ϕ can be used
to build a tree that starts not from a single node P0 but from a whole range of ϕ + 1
nodes centered around P0. PR represents a speci�c cost margin below which a reward

21

3. Example A1 - Dynamic programming of project investment under uncertainty

formula source code value unit

I invest {user} [monetary units / time unit]
I

P (t)
investQprice I

P (t)
[1 / time unit]

∆t dt {user} [time units]
tCount tCount T

∆t
[-]

Table 3.2.: Project control variables

R is to be allocated i.e., if the remaining project cost to completion is at or below PR,
the project is regarded as completed and the �nal reward is awarded. λ is a quotient
of PR and P0 necessary to �nd a suitable grid interval for the computation (see sec.
3.2.3). T marks the allowable time horizon within which the project has to be �nished
if a reward is to be distributed. To conclude, there are r, which is the risk-less rate of
interest by which future earnings and expenses are discounted alike, and β, that comes
from the projects risk assessment and acts as the variance parameter of the Brownian
motion underlying the model.

Control variables The outcome of our model can be in�uenced by selecting values for
two control variables. First, there is I which is the amount of money an investor is willing
to spend on the project when faced with a distinct cost P (t). The quotient of these two
is I

P (t)
. Second there is ∆t which de�nes the spacing of the computational lattice and

therefore determines the number of discrete time-steps tCount and in conjunction with ϕ
the amount of nodes to be optimized. The variable ∆t has to ful�l certain requirements
discussed in sec. 3.2.3 for the model to work properly. Furthermore the product of
I ×∆t is the speci�c amount of monetary units invested at a given node in the models
grid.

3.2. Modelling of a project under uncertainty

3.2.1. Geometric random walk of estimated cost

We begin our study with the single variable P0 which is the assessed cost (or base for
an estimated range of possible prices) of the project at time t = 0. At every subsequent
point in time this initial price guess (and the price guesses that have forked from it) can
either rise or fall to a new estimation of remaining cost P (t). This is due to stochastic
events that can't be directly in�uenced by the project management and modelled by a
geometric random walk with an underlying Wiener process. The mentioned stochastic
behaviour is represented by the probabilities π for an up-move (i.e. a rise in expected
costs to completion) and 1 − π for a down-move (i.e. a decline in expected costs to
completion), both depending on the individual project's risk evaluation (β factor) and
the management's investment decisions (I∆t). Equation 3.1 indicates the calculation of
the up- and down- multiplier. These factors are then multiplied with the existing cost

22

3. Example A1 - Dynamic programming of project investment under uncertainty

P0

P0 × d

P0 × u

1− π

π

Figure 3.1.: Basic bifurcation of P0 into two price possibilities

estimation P (t) and generate to new guesses of expected cost to completion P (t+ 1) =
P (t)× u and P (t+ 1) = P (t)× d. See �gure 3.1 for the basic bifurcation model.

u = eβ×
√

∆t (3.1)

d = u−1 = e−β×
√

∆t

Since cost after the up- or down-moves is only dependent on current expected cost to
completion, assessed project risk and amount of time spent between the review points
and the formulas contain only multiplications, the commutative property applies and all
forks of expected cost in the geometric random walk form a recombining tree (�g. 3.2)
similar to those described by Cox, Ross and Rubinstein in their Binomial options pricing
model [3]. Our investment problem can furthermore be labelled a Markov decision
process since it is is not of concern how a speci�c node was reached but only if it is
pro�table to invest at the node's expected cost to completion or not. Therefore an
important requirement for the dynamic programming method's backward induction is
met.
For a geometric random walk una�ected by investment the probabilities π and 1 − π
are de�ned solely by the step-sizes u and d. This can be proven by solving P (t) =
π × P (t)u + (1− π)× P (t)d for π under the assumption that P (t) = E(P (t + 1)). For
the driftless geometric random walk it turns out that π = 1−d

u−d . Figure 3.1 illustrates the
split of a single node into two successor nodes whose expected value remains just equal
to their origin.
The dashed orange line in �g. 3.2 that originates in P0 divides probability spaces of the

23

3. Example A1 - Dynamic programming of project investment under uncertainty

P0 × u0
P0 × u0

P0 × u1

P0 × u−1

P0 × u2

P0 × u−2 P0 × u−(t+ϕ)

P0 × u−(t+ϕ−2)

P0 × ut+ϕ−2

P0 × ut+ϕ

Figure 3.2.: Discrete geometric random walk of P0 compared to an continuous exponen-
tial function of P0

resulting log-normal distribution in two parts. In the limit of ∆t → 0 these will both
converge to a probability of 0.5. In a discrete setting however the chance π for an up-
move will recede but the same number of lattice nodes will sprout above and below that
centreline. While the lower half converges against 0 and thus concentrates its probability
density, the upper part end strives for +∞ and therefore spreads its probability density
over a wide range of possible values. For discrete values of ∆t the expected value of the
remaining cost to completion distribution will thus shift slightly.
Note how the number and value of the expected cost forks is tied to the time-step they
correspond to, i.e., the power of u is represented by a sequence ranging from -(t+ϕ) to
+(t+ϕ) in increments of 2. For instance for the third time-step with ϕ = 0 there are
four forks whose powers are -3,-1,+1,+3. The parameter ϕ can be used to build a tree
that starts not from a single node P0 but from a whole range of ϕ + 1 nodes centered
around P0.

3.2.2. Introducing investment activity

Now that the binomial tree's cost values can be calculated in every node we turn toward
the modelling of our investment problem. The selection of the control variable I × ∆t
should reduce the expected remaining project cost for the next time step by exactly
the amount spent. Let P (t) denote the current estimated project cost and I × ∆t the
investment at a discrete step in time. After the passing of a time ∆t the price of the
project should be P (t) × u with probability π and P (t) × d with probability 1 − π.
We equate these two statements into the single equation 3.2 which will be the basis for

24

3. Example A1 - Dynamic programming of project investment under uncertainty

our investment decisions. Since the cost values of the geometric random nodes cannot
be in�uenced directly our investment activity a�ects the values of π and 1 − π so that
P (t) − I ×∆t = E(P (t + 1)) holds. Thus investment imposes a drift in the stochastic
Wiener process.

P (t)− I ×∆t = π × P (t)× u+ (1− π)× P (t)× d = E(P (t+ 1)) (3.2)

Solved for π equation 3.2 yields the relationship of investment and stochastic behaviour
we have been looking for, as seen in equation 3.3. If the investor decides to wait (and
∆t is su�ciently small) chances for an up- or down-move of the expected cost should
converge towards 0.50 : 0.50. Should we on the other hand want to invest, the probability
π can assume any value < 0.5 including negative values. Therefore it is important to
ensure within the program that π must not become smaller than 0 in order to correspond
with real probabilities (i.e π = max[π, 0]).

π

(
I

P (t)

)
=

1− I
P (t)
×∆t− d

u− d
(3.3)

3.2.3. Concerning variable constraints

In order to carry out the dynamic programming of investment behavior, two variables
must be chosen by human beings. First, the grid resolution represented by the discrete
time interval ∆t needs to be chosen by the analyst and in order to minimize the impact
on the optimization results. Second the investor decides the relation of money invested
to the proposed project cost namely I

P (t)
. Although these variables are user selected

they have widespread e�ects on the whole system of equations and therefore precautions
have to be applied. Starting with ∆t the requirements in the resolution of the geometric
random walk will be discussed before we conclude with the relationship of I

P (t)
, π and

real probabilities.

Lattice spacing ∆t

Naturally every project has a �nite time horizon, in this case given by T. The discrete
dynamic optimization at hand allows the selection of a variable ∆t which represents
the spacing in the computational grid and thereby dictates the quantity of nodes. The
number of available nodes tCountAv(ailable) on the time axis is given by equation 3.4.

T

∆t
= tCountAv (3.4)

z ·
tCountAv∑
k=1

k = z · tCountAv · (tCountAv + 1)

2
(3.5)

Due to the structure of the recombining tree, the number of operations scales with the
(small) Gaussian sum formula eq. 3.5 and is of the order O(t2CountAv). The value of z is

25

3. Example A1 - Dynamic programming of project investment under uncertainty

the count of operations within a single node and thus dependent on the complexity of the
investment decision. Considering this possibly large number of optimization problems,
it appears desirable to choose ∆t as large as possible in order to keep the computing
cost low. Yet there is another condition that ∆t has to ful�l.
To be more speci�c: In order to allow the distribution of the project reward R, a certain
critical remaining cost level > 0 must be within reach of the lattice. Let λ denote
the quotient of the critical value against the initial cost estimation and equal it to an
unknown number of consecutive exponential contraction steps (down-moves). Solving
equation 3.6 for tCountReq(uired) yields the minimum number of nodes on the time axis to
get � at the tree � a positive overall probability that the project can be completed.

λ =
PR
P0

≡ e−β
√

∆t·tCountReq (3.6)

− lnλ

β
√

∆t
= tCountReq (3.7)

The formulas 3.4 and 3.7 can be used to construct an analytical function which, when
solved for ∆t leads to the exact largest tolerable ∆tMax. For this purpose we subtract
the required from the available nodes and let the whole term equal null. Eventually
∆tMax is given by eq. 3.9. The functions for tCountAv given in eq. 3.4 and tCountReq seen
in 3.7 are illustrated in �g. 3.3. While the left diagram illustrates all possible values of
∆t from 0 to T , the right �gure is centred around and highlighting the intersection of
the two functions. The model parameter ∆t has to be chosen smaller or at most equal
to ∆tMax if the model shall produce valuable results.

T/∆tMax − (−lnλ/β
√

∆tmax) ≡ 0 (3.8)

∆tmax =

(
−T · β
lnλ

)2

(3.9)

Investment ratio I
P (t)

and real probabilities in π

The policy variable I
P (t)

is the mathematical expression of the operators investment
strategy. It can be kept stable at the same value as project cost information unfolds
or changes if for instance investments are carried out at a constant rate. The purpose
I

P (t)
is to a�ect the random walk's stochastic behaviour by manipulating the probability

π. Starting from π ∼ 0.5 for I
P (t)

= 0 the probability dwindles as investments rise
and unfortunately without any measures taken π can adopt values beyond the real
probability space ε[0, 1] and thus lead to deceptive NPV results. Here, two approaches
are possible. Both are employed at di�erent stages throughout the development of this
work. In this chapter we chose to coerce π to 0 if it stretches to far (see eq. 3.11)
and regard the overspending as diminishing returns to investment. When switching to
dynamic programming of net utility in chapters 4 and 5 we will limit I

P (t)
to a number

26

3. Example A1 - Dynamic programming of project investment under uncertainty

Figure 3.3.: intersection tCountAv and tCountRe

given by eq. 3.10 in order to attain well behaved functions for the optimization function,
i.e., prevent the �nal reward from ramping up due to negative probabilities and keep
the number of boundary conditions small. With the model parameters of our showcase
the limit for I

P (t)
would be ∼ 2. Figure 3.4 diagrams the development of π over the

investment ratio I
P (t)

with the mentioned root at ∼ 2 and the origin at ∼ 0.5.

0 ≡
1− I∗

P (t)
×∆t− d

u− d
(3.10)

I∗

P (t)
=

1− d
∆t

π(
I

P
) =

1− I
P (t)

∆t− d
u− d

, π(
I

P
) ∈ [0, 1] (3.11)

3.3. Applying the Bellman principle

After setting up all inherent project parameters and control variables according to real
world and mathematical constraints we are now able �nd a number of nodes that satisfy
one of the following two conditions

• Projects not �nished on deadline must not yield any pro�ts. Therefore the value
of any node at t = T whose estimated cost is above the reward margin Pr is
V {P, T} = 0

27

3. Example A1 - Dynamic programming of project investment under uncertainty

π
(I P

(t
)

)

I
P (t)

π

max{0, π}

Figure 3.4.: value of probability π linearly dependent on I
P (t)

• Projects whose estimated cost to completion is below the reward margin regardless
of the time step reviewed allocate their reward. Thus it is possible to �nish the
project precociously. The value of the option to invest in such a project is equal
to the reward i.e. V {Pr, t} = R

For all other nodes in the discrete computation lattice a basic Bellman equation (3.12)
has to be set up that will be used to optimize investment behaviour by backward induc-
tion starting from t = T.

V {P, t−1} = max
I∈R+

[−I∆t+
1

(1 + r)∆t
×[π(

I

P
)V {P×u, t}+(1−π(

I

P
))V {P×d, t}]] (3.12)

As the value of the option to invest V {P, t−1} pro�ts linearly from investment I (equa-
tion 3.11) until π is coerced, maximizing the value of V {P, t− 1} becomes a decision of
whether to wait or invest at the full rate the currently employed strategy allows. This
can be observed in equation 3.13 as the Bellman equation's gradient is not dependent
on the invested sum I. In the underlying implementation the decision is made by com-
paring the functional values for waiting and full-rate investment. Another possibility
is to evaluate eq. 3.13 at 0 and, if positive, assign the maximum tolerable investment,
otherwise wait. In consequence of the three di�erent states that have to be considered
a case structure is used to aid the net-present-value (NPV) calculation by extending the
basic Bellman equation. Formula 3.14 shows the extended dynamic programming model
used within the R program. In the upcoming sections three di�erent strategies, their
e�ects on the optimization and their overall turnouts will be discussed. The strategies

28

3. Example A1 - Dynamic programming of project investment under uncertainty

are labeled A1-0 for the case of permanent waiting, A1-1 for constant relative and A1-2
for constant absolute investment rates.

∇V =
δV

δI
= −∆t+

1

(1 + r)∆t
× ∆t

P (u− d)
× [V {P × d, t} − V {P × u, t}] (3.13)

V {P, t− 1} =

0 , t = T ∧ P (t) > PR

R , t ≤ T ∧ P (t) ≤ PR

max
I∈R+

[−I∆t+ 1
(1+r)∆t × . . .

[π(I
P

)V {P × u, t}+ (1− π(I
P

))V {P × d, t}]] , t < T ∧ P (t) > PR
(3.14)

3.4. Strategy A1-0 - non-investment

3.4.1. Investment considerations

Strategy A1-0 is only elaborated for explanatory reasons. The intent of this section is
to introduce some useful concepts for the evaluation of the strategies A1-1 and A1-2.
Thus we set the investment values to null as shown in eq. 3.15.

I(t) = const. = {0} (3.15)

I

P (t)
= const. = {0}

Furthermore we will generate a discontinue curve above which the project has no chance
to be �nished successfully. Thus for P(t) exceeding this critical cost, it is optimal not to
invest at all. To achieve this eq. 3.6 respectively 3.16 are slightly altered to equation 3.17.
This yields a critical cost for each time-step that is represented by a red line within the
dynamic optimization graphs. We will refer to this as the technical border.

P (t)

PR
= e(tCountAv− t

∆t
)×β×

√
∆t (3.16)

Pdis(t) = PR × e(tCountAv− t
∆t

)×β×
√

∆t (3.17)

3.4.2. Dynamic programming of investment

Running a dynamic programming process without any decisions yields the results illus-
trated in �gures 3.5 and 3.6. Figure 3.5 con�rms that no investment activity is taking
place, while 3.6 indicates that the odds of attaining a reward is between 0% and 25

29

3. Example A1 - Dynamic programming of project investment under uncertainty

Figure 3.5.: Dynamic programming instruction results without any investments (A1-0)

%. While these graphs of A1-0 seem not very helpful, their computation provides re-
sults necessary for the Monte Carlo method simulation of cost-development and project
turnout of non-investment i.e. waiting. The NPV (net-present-value) of the project
on a time-interval of ∆t = 0.01 without any investment considerations (I

P (t)
= 0) is

VA1−0(0) = 2.4393 ·10−29 with a probability of successful project completion of ΠA1−0(0)
= 1.3164 · 10−32. As intended the chance of attaining a reward without preceding in-
vestment is negligible small.

3.5. Strategy A1-1 - constant relative investment

rates

3.5.1. Investment considerations

For strategy A1-1 we decide to keep the ratio of I
P (t)

constant at any arbitrary value
larger than 0 for the investment and 0 for the waiting nodes. Waiting nodes are points
in the geometric random-walk's lattice where, depending on individual remaining cost
estimation and time, waiting appears �nancially more attractive than waiting. Because
of the constant I

P (t)
we receive the same probabilities πact and 1−πact in any lattice node

where investment takes place. The probabilities for waiting remain the same as in the
previous case and are close to πwait ∼ 0.5 and 1−πwait ∼ 0.5 with growing deviations for
large ∆t. Since we decided for a constant relative investment ratio, the absolute value
has to be computed for every node in the grid (eq. 3.18). Also remember that either
πact must be coerced to a value ≥ 0 or I

P (t)
must be forced to ≤ 1−d

∆t
in order to compute

30

3. Example A1 - Dynamic programming of project investment under uncertainty

Figure 3.6.: Dynamic programming probability results without any investments (A1-0)

reasonable results. Figure 3.7 shows the development of I
P (t)

(investQprice) and I(t)

(investment) assuming β = 0, i.e., a motion without random shocks.

I

P (t)
=const. ={0, 1} (3.18)

I(t) =var. ={0, P0 × un ×
I

P (t)
×∆t}

3.5.2. Dynamic programming of investment

The NPV (net-present-value) of the project incorporating strategy A1-1, under param-
eters I

P (t)
= 1,∆t = 0.01, is VA1−1(0) = 297.20 with a probability of successful project

completion of ΠA1−1(0) = 0.6545. With constant relative investment rates �gure 3.8
exhibits two distinct areas. On the one hand there are the waiting nodes, already seen
before, colored in grey. On the other hand there is continuous blue zone that consists
of nodes where investment appears optimal. Note the blue area's distinct bulge before
it starts to decline towards the horizontal time axis. This is due to an endgame e�ect
where the investor faces a make-or-break decision and may be willing to accept higher
estimated remaining costs to completion than before. It turns out that the position and
form of the hump is determined by a single parameter. It is the ratio of I

P (t)
which is

directly related to the geometric random-walk's drift. It appears that for smaller i.e.
less favourable downward movements investors prefer to transact the bigger investment

31

3. Example A1 - Dynamic programming of project investment under uncertainty

I
P

(t
)

t

I
(t

)

Figure 3.7.: Diagram of strategy parameters in A1: I
P (t)

= const., I(t) = var.

chunks early on rather than wait and gamble the technical border. If however the im-
posed drift is large enough i.e. the investment can be considered quite 'secure' decision
makers may be willing to invest on the edge of the technical feasibility. Additionally
there are factors that may in�uence the visual appearance of the investment bump within
the graph. Investigation shows that we also have to consider the computational grid's
resolution ∆t. While the time-step's size does neither a�ect the location nor the ampli-
tude of the bulge it determines the nodes that lie on the technical frontier and thus the
border may appear closer to or further away from the investment peak. This is a direct
side e�ect of operating in a discrete calculation space. Figure 3.9 indicates the cumula-
tive chance of actually �nishing the project for every node in the lattice. We denote this
probability Π(t) and observe that even for costs larger than our initial estimate P0 there
is a realistic chance to complete the project. In �g. 3.10 we see ten slices through the
value ridge. The horizontal axis shows the movement within the discrete random-walk as
remaining cost to completion of the project P(t). The location of points on the vertical
axis represents the net present value of the option to invest in the project at any given
time and cost to completion whereupon the point in time is visualized through distinct
colouring. Slice t = 9.95 visualizes a sharp skip from an option value of zero to a peak
of height R at the remaining cost where the payout margin PR is located. The adjacent
two slices for t = 8.95 and t = 7.95 also show extreme slopes while at the same time a
�rst sign of smooth pasting into the coordinate axis is observed. Reaching out rightward
from the a gentle curve below the peak there is a trailing edge. This edge indicates
nodes where investment takes place and which are linked to two successor nodes that
also recommend investment. Thus such a nodes value is only a�ected by discount and

32

3. Example A1 - Dynamic programming of project investment under uncertainty

Figure 3.8.: Dynamic programming instruction results with constant relative investment
(A1-1)

its individual cost while the probability of missing the reward is neglected. The value of
nodes that don't have a successor inside of the investment area quickly dwindles into the
zero plane as the curve bows downward and an unrewarded project must be taken into
consideration. Note that while the nodes in slice t = 0.95 might not have investment
successors directly they can maintain their only slight slope since the endgame bulge is
still ahead.

3.6. Strategy A1-2 - constant absolute investment

rates

3.6.1. Investment considerations

In strategy A1-2 we choose to settle for an absolute investment value per time-step I(t)
(investment) and keep it constant throughout the dynamic programming process (eq.
3.19). Therefore the probabilities πact and 1− πact need to be re-evaluated at each and
every node. From �gure 3.11 we can deduce that this modus operandi quickly ends up
in signi�cant overspending. Less than two periods in the future, the ratio of investment
to remaining cost I

P (t)
(investQprice) will exceed the maximum possible value that still

results in real probabilities and will thus, as a consequence of our decision to limit the
chances rather than the investment sum, for the most part vanish into thin air.

33

3. Example A1 - Dynamic programming of project investment under uncertainty

Figure 3.9.: Dynamic programming probability results with constant relative investment
(A1-1)

Figure 3.10.: Slices through the value ridge generated with constant relative investment
(A1-1)

34

3. Example A1 - Dynamic programming of project investment under uncertainty

I
P

(t
)

t

I
(t

)

Figure 3.11.: Diagram of strategy parameters in A1-2: I(t) = const., I
P (t)

= var.

I(t) =const. ={0, P0

T
} (3.19)

I

P (t)
=var. ={0, I(t)

P0 × un
}

3.6.2. Dynamic programming of investment

The NPV (net-present-value) of a project receiving constant payment rates as suggested
by strategy A1-2, under parameters I

P (t)
= 1,∆t = 0.01, is VA1−2(0) = 83.23 with a prob-

ability of successful project completion of ΠA1−2(0) = 0.1429. Incorporating constant
absolute investment rates, the (blue colored) invest area of �gure 3.12 is way smoother
than seen in strategy A1-2. Intuition suggests that the time horizon investigated al-
lows only the expression of the end-game decline and deprives us of the tolerable peak
in remaining cost as well as the probably lower threshold earlier on the time horizon.
Concerning cumulative probabilities of project completion Π �gure 3.13 indicates that
chances to complete the project are quite limited to the area where investment takes
place. In �g. 3.14 we see ten slices through the value ridge. This time more sharp skips
from zero value to the reward peak or the trailing edge after the curve can be identi�ed.
Due to over-spending in the lower (left) areas there's a sharp edge between nodes that
lead to a reward and those that don't. The nodes which don't carry a chance of reward
are identical to those that lie above the technical border in �g. 3.12. Smoothing occurs
for t = 6.95 where the �rst waiting nodes appear inside the feasible area. With constant

35

3. Example A1 - Dynamic programming of project investment under uncertainty

Figure 3.12.: Dynamic programming instruction results with constant absolute invest-
ment (A1-2)

rates of investment, at the value investigated the decline of the slope is slower and thus
a larger time horizon T might result in a slightly higher option value VA1−2(0).

3.7. Monte Carlo method and comparison of project

turnouts

In order to obtain an insight in the distributions of remaining costs to completion and
cash-�ows, i.e., �nancial turnouts of the project, a Monte Carlo simulation with sample
size n = 20000 was carried out for each of the three strategies. Based on the result
matrices for investment decisions and the deterministic probabilities for up- and down-
movements of remaining cost, a Brownian motion of cost and cash-�ow is simulated for
every sample. Afterwards several statistical tests based on the produced samples were
conducted on cash-�ows and cost outcomes which can be found in appendix A. It could
be proven that the unin�uenced geometric random walk strives towards an logarithmic
normal distribution (�g. 3.15). In this short summary, however, we will limit ourselves
to a short comparison and discussion of the results from dynamic programming and
Monte Carlo simulation of risk-neutral investment.
Starting out with NPV and success probabilities, seen in table 3.3, we �nd that constant
relative investment (A1-1) produces the highest expected net-present value and has a
signi�cantly higher chance of actually �nishing a project. Constant absolute investment
(A1-2) already marks a signi�cant drop in value as well as conclusion likelihood. Success

36

3. Example A1 - Dynamic programming of project investment under uncertainty

Figure 3.13.: Dynamic programming probability results with constant absolute invest-
ment (A1-2)

Figure 3.14.: Slices through the value ridge generated with constant absolute investment
(A1-2)

37

3. Example A1 - Dynamic programming of project investment under uncertainty

Figure 3.15.: Histogram of simulated remaining cost at t = T for A1-0 (n = 20000)

formula A1-0 A1-1 A1-2

Net-present-value V(0) = 2.439 e-29 297.202 83.231
Success probability Π(0) = 1.316 e-32 0.655 0.143

Table 3.3.: Dynamic programming comparison by strategy

probability and net-present-value of the non-investment strategy (A1-0) are negligible.
These initial statements are substantiated by table 3.4. We �nd that for a sample size
of n = 20000 constant relative investment is more successful in actually launching the
project within a simulation run than a strategy of �xed payments (A1-3) (67.55 % vs.
34.49%) since pro�tability can be preserved through higher levels of expected cost to
completion.
Turning towards cash-�ows, i.e., the sum of the money invested plus possible rewards,
seen in table 3.5, it is clear that waiting over the whole project horizon won't result in
any exchange of wealth between the project and it's investor. We de�ne a samples pro�t
as −

∑T
t=0 I(t) + R(P (T)). Note that while strategy A1-1 has a higher expected value,

formula A1-0 A1-1 A1-2

simulations total N = 20000 20000 20000
projects simulated n = 0 13510 6899
% projects started n

N
= 0.0000 0.6755 0.3449

Table 3.4.: Monte Carlo comparison by strategy

38

3. Example A1 - Dynamic programming of project investment under uncertainty

A1-0 A1-1 A1-2

mean - 374.75 124.78
std dev - 382.79 522.68
median - 416.92 - 10.00
max - 1250.74 1372.92
min - -2754.99 -1412.00
range - 4005.74 2784.92

Table 3.5.: Project turnout comparison by strategy

A1-0 A1-1 A1-2

mean 2007.07 896.43 1838.38
std dev 1409.41 1576.83 1556.50
median 1637.46 0.98 1573.26
max 18786.66 16008.94 18786.66
min 95.67 0.98 0.98
range 18690.99 16007.96 18785.68

Table 3.6.: End remaining cost comparison by strategy

it also bears the risk of larger losses and is humbled by inferior maximum pro�t. On
the other side A1-2 usability su�ers heavily from the negative median value and a large
spread of outcomes indicated by the standard deviation. Mentioning remaining cost to
completion at the terminal date, table 3.6, constant relative investment is more e�ective
in generating the necessary drift towards the critical reward cost than constant absolute
investment. Special attention is deserved by the median which is exactly the price node
below the reward margin while A1-2 median is far higher. As we would expect the mean
of remaining cost to completion in the strategy of non-investment (A1-0) stays very
close to the initial value P0 of the continuous log-normal distribution. The deviation is
caused by numerical e�ects due to discretization and simulation. From our preceding
investigations we can deduce that investment at relative rates is superior to constant
rates. Also, a long project horizon may turn out as a bene�t since the investor might,
due to random shocks, be able to avoid the end-game area where the entry to the project
is most expensive (in A1-1) or least e�ective (in A1-2). The location of this end-game
phase on the time axis, however, is dependant on the operator's strategic decisions i.e.
investment ratio itself.

39

4. Example A2 - dynamic

programming of risk-averse

project investment

The example presented in the preceding chapter 3 assumes a risk neutral decision maker,
i.e., a decision maker who seeks to maximize expected pro�t but is not concerned about
higher moments of the pro�t distribution (the riskiness of pro�ts). In this chapter,
we model risk averse decision makers who seek to maximize expected utility. For ad-
vanced studies of risk-aversion Ingersoll's 'Theory of Financial Decision Making' [9] or
Ljungqvist's Recursive Macroeconomic Theory [10] may provide a good starting point.
Before, we boldly supposed that an individual is willing to spend any amount of monetary
units in return for a chance of pro�t whose net present value lies above the investment
(even with long odds). Unfortunately this presupposition is incorrect for the majority of
economic subjects as most of these are considered risk-averse (in contrary to our previous
model which can be deemed risk-neutral). From now on we will try to incorporate risk
avoiding behaviour into our model starting out with a de�nition of risk aversion as the
reluctance of a person to accept a bargain with an uncertain payo� rather than another
bargain with a more certain, but possibly lower, expected payo� 1. In mathematical terms
an individual is considered risk-averse if the expected utility of a consumption is smaller
than the utility of an expected consumption as seen in equation 4.1. This relation is
commonly referred to as Jensen's inequality (for expected values).

E(u(c)) < u(E(c)) (4.1)

Let us assume that the overall utility of a series of consumptions is time separable and
can be modelled as discounted sum of the consumption's utilities over the time-horizon
T as seen in equation 4.2. A thorough discussion on this topic can be found in vol. 40
of the 'Journal of Economic Literature'[6].

U = U(ct=0, c1, . . .) =
T∑
t=0

u(ct)

1 + κ

t

(4.2)

To carry out our intention we will have to choose a suitable utility function that satis�es
a small set of criteria commonly adopted in economics and especially utility theory.
These so called Inada conditions are referred to in [13].

1http://en.wikipedia.org/wiki/Risk_aversion#Relative_risk_aversion

40

4. Example A2 - dynamic programming of risk-averse project investment

Inada conditions In the neoclassical growth model the Inada conditions ensure the
stability of an economic growth2 path by presupposing a set of six conditions. A thorough
discussion on these can be found in [8] and [7].
The conditions are

• the function is continuously di�erentiable

• the function is strictly increasing δf(x)/δx > 0

• the second derivative of the function is decreasing (i.e. the function is concave);
δ2f(x)/δx2 < 0

• for x equal to 0 the limit of the �rst derivative is in�nity; lim
x→0

δf(x)/δx = +∞

• for x striving to in�nity the limit of the �rst derivative is zero; lim
x→+∞

δf(x)/δx = 0

4.1. Introducing the CRRA utility function

The constant relative risk aversion (CRRA) utility function satis�es all of these condi-
tions. It is de�ned as shown in equation 4.3 and can be found in [9] on page 40. Yet, it
de�nes utility in terms of consumption and will therefore require us to revise or model
towards an consumption oriented approach. We will return to this point later on.
Figures 4.1 and 4.2 show the trend of the function value. For γ values beneath 1 the
result is has no upper bound i.e. the function strives for +∞ while it has no lower bound
for γ larger than 1 and converges against an upper border. For γ equal to 1 the CRRA
utility function behaves as natural logarithm and is therefore not bounded at both ends.
Regardless of the risk-aversion coe�cient a �xed point exists at u(c = 1) = 0.

u(c) =

{
c1−γ−1

1−γ , γ > 0, γ 6= 1

ln(c) , γ = 1
(4.3)

A gradient of the function is easily derived (eq. 4.4) and illustrated in diagrams 4.3
and 4.4. The gradients development is experienced steep between 0 and 1 and plane
afterwards with a �xed point of u′(c = 1) = 1.

u′(c) =

{
c−γ , γ > 0, γ 6= 1
1
c

, γ = 1
(4.4)

u”(c) =

{
−γc−(γ+1) , γ > 0, γ 6= 1

− 1
c2

, γ = 1
(4.5)

Let us de�ne the Arrow-Pratt-De Finetti measure of relative risk-aversion as seen in
equation 4.6. With the utility functions gradient (equation 4.4) and second derivative

2http://en.wikipedia.org/wiki/Inada_conditions

41

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.1.: CRRA utility function value (interval 0 to +3)

Figure 4.2.: CRRA utility function value (interval 0 to +30)

42

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.3.: CRRA utility function gradient (interval 0 to +3)

(eq. 4.5) it is easy to prove that the utility function's relative risk aversion is indeed
constant and of value γ. Refer to equation 4.7 for the calculation.

R(c) =
−cu”(c)

u′(c)
(4.6)

RCRRA(c) =
(−c)(−γ)c−(γ+1)

c−γ
= γ (4.7)

Typical γ coe�cients for the CRRA utility function commonly adopted in literature are
somewhat between 3 and 10. For our evaluation we chose the value 1,3 and 6.

4.2. Modelling with risk-aversion

Since the CRRA utility function originates from the consumption theory it is designed
with positive values in mind. Therefore we could not simply feed our investment expenses
−It to the utility function and receive reasonable results. The solution of choice was
to set any arbitrary amount of monetary units that an investor is willing to spend per
time-step as available capital and subtract the investment from there. In other words,
if the investor decides to wait, all reserved capital is ready for consumption, if on the
other hand an investment is to be made, its returns must allow for higher consumption
later, which must compensate for the loss in utility today Since the immediate losses
are weighed higher than the future earning we can achieve any grade of risk-aversion
desired by simply altering the value of the utility functions γ coe�cient. Equation 4.8

43

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.4.: CRRA utility function gradient (interval 0 to +30)

shows the basic function used to model the evaluation of the money invested. While the

normalization
Imaxf

−I
Imaxf

may seem unusual for consumption theory it �ts our investment

purpose perfectly. This representation assumes that an investor does not gain any utility
from clinging to the funds he already possesses i.e. the maximum for the immediate
consumption term is always 0 (except for nodes where the a reward is distributed). If the
decision maker decides to invest his immediate utility reward is negative (between −∞
and 0) and he expects the asset to compensate for this in the future. An illustration can
be found in diagram 4.5. The term Imaxf(inancial)

represents the afore mentioned available
amount of monetary units from which the invested capital is subtracted. Note that the
remaining amount is again scaled by Imaxf so that the variable fed to the CRRA function
can only take values between 0 and 1.

u

(
Imaxf − I
Imaxf

)
=

(
Imaxf

−I
Imaxf

)1−γ
− 1

1− γ
=

(Imaxf − I)1−γ

(1− γ)(Imaxf)
1−γ −

1

1− γ
(4.8)

As said the parameter Imaxf is the �nancially tolerable amount an investor is willing to
spend. For our example we decided to determine this value by discounting the project
reward over the full time horizon i.e. from the terminal date t = T to the initial point
in time t = 0. Thus Imaxf is given by eq. 4.9. We will see later that Imaxf does not only
serve in the utility function but also as boundary condition.

Imaxf = R× 1

(1 + r)T
(4.9)

44

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.5.: Utility contribution of investment activity scaled with Imaxf (interval 0 to

Imaxf)

Aside from Imaxf another kind of maximum tolerable investment has to be de�ned. The
variable Imaxt(echnical) is the highest amount of monetary units a lattice node can absorb
while keeping the probabilities real i.e. π = 0 and (1− π) = 1. The calculation of Imaxt

which must be repeated for every node is seen in 4.10.

Imaxt =
P (t)

∆t
× (1− d) (4.10)

The application of Imaxf enables a reasonable consumption for the nodes in every time-
step where no investment is taking place i.e. the utility results from the unspent mone-

tary units. In our example this consumption is
Imaxf

Imaxf
= 1 thus making u(1) = 0 for every

possible level of risk aversion. This measure is especially important for the termination
time-step where a zero value would lead to a utility of −∞ which mathematically domi-
nates the whole random walk. Equation 4.11 deducts the gradient of the utility function
and �gure 4.5 diagrams the function's and its gradient's development over the invested
monetary units under the parameters, R = 6000, γ = 1

u′
(
Imaxf − I
Imaxf

)
=

(
Imaxf − I
Imaxf

)−γ
·
(
− 1

Imaxf

)
(4.11)

45

4. Example A2 - dynamic programming of risk-averse project investment

4.3. Adjusting the Bellman equations

The Bellman equation from chapter 3 can be reused almost without changes. Only
two minor adjustments need to be made. First we exchange −I for our new found
CRRA utility function. Second we switch r for κ which is the inter-temporal discounting
factor of utility and can be chosen arbitrarily. In our examples we will let it equal r.
Equation 4.12 depicts the adapted Bellman equation. Note that π(I

P
) is still determined

by equation 3.11.

V {P, t−1} = max
I∈R+

[u

(
Imaxf − I
Imaxf

)
∆t+

1

(1 + κ)∆t
(π(

I

P
)V {Pu, t}+(1−π(

I

P
))V {Pd, t})]

(4.12)
As before not every node in the lattice requires an optimization process. For those points
in the grid whose time t = T let the utility equal to u(1)∆t = 0. Nodes that lie beyond
the reward margin PR on the other hand shall receive the utility of the consumption of
the money available to invest plus the utility of the reward regardless of their time value
t. All other points are subject to the dynamic programming process as can be seen in
eq. 4.12. The case structure in 4.13 illustrates the complete algorithm.

V {P, t− 1} =

u
(
Imaxf

Imaxf

)
×∆t = 0 , t = T ∧ P (t) > PR

u
(
Imaxf

Imaxf

)
×∆t+ u

(
R
P0

)
, t ≤ T ∧ P (t) ≤ PR

max
I∈R+

[u
(
Imaxf

−I
Imaxf

)
×∆t+ 1

(1+κ)∆t × . . .

(π(I
P

)V {P × u, t}+ (1− π(I
P

))V {P × d, t})] , t < T ∧ P (t) > PR
(4.13)

Turning towards the optimization of an individual node the introduction of the CRRA
function facilitates the existence of internal solutions. Yet these solution does not neces-
sarily occur within the admissible range of values which we specify as in 4.14. Therefore
the investment value I has to be chosen within the space of ε[0, Imax]. To �nd the optimal
value for I the gradient of the Bellman equation 4.12 is derived (eq. 4.15) and analysed
in speci�c points. This is possible as the second derivative of the Bellman equation
(4.16) retains only the term from the investment function which is ≤ 0. The gradient
can hence be considered strictly monotonic decreasing and allows us to �nd a maximum
by application of the �rst order condition.

0 ≤ I ≤ Imax = min[Imaxf , Imaxt] (4.14)

∇V =
δV

δI
=

(
−1

Imaxf

)(
Imaxf − I
Imaxf

)−γ
∆t+

1

(1 + κ)∆t
× 1

u− d
×∆t

P
×[V {Pd, t}−V {Pu, t}]

(4.15)

46

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.6.: Optimization of a single node - negative gradient at zero - wait

δ2V

δI2
=

−γ
(Imaxf)

2

(
Imaxf − I
Imaxf

)−γ−1

∆t ≤ 0 (4.16)

To �nd the optimal solution for each node, the gradient of the Bellman equation has
to be computed in two known points. Depending on the computation results we can
determine three cases of possible decisions. In two of these the optimum strategy is
immediately known i.e. waiting or investment at full rate. In the third case an internal
maximum exists and its location needs to be calculated.

Case 1: ∇V ≤ 0 for I = 0

Should the gradient 4.15 of the investment function be less than 0 for I = 0 the allowable
maximum of V {P, t−1} is to be found exactly there, i.e., the allocation of money to the
project is not recommended. This is possible as the Bellman equation's second-order
derivative is strictly ≤ 0. Figure 4.6 illustrates the case with both functions (utility and
its gradient) strictly declining for a waiting node in the random-walk's grid. The CRRA
utility is represented as continuous, blue line whil its gradient is drawn in dashed blue.
The grey vertical line marks the technical tolerable amount of investment, i.e., Imaxt .
The black line indicates that the maximum utility is to be found at I(t) = 0.

Case 2: ∇V > 0 for I = 0 & ∇V ≥ 0 for I = Imax

If however the gradient at the origin is positive and does not drop below zero for Imax

then investment at maximum rates is preferred. This case can only occur if ImaxT < Imaxf

47

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.7.: Optimization of a single node - positive gradient at barrier - full invest

since the gradient and function value of Imaxf equal −∞. The invested value is then set
to I = ImaxT . For better perception diagram 4.7 is included. Note that the technical
barrier is far to the left while the internal maximum would occur close to Imaxf .

Case 3: ∇V > 0 for I = 0 & ∇V < 0 for I = Imax

Finally if the two extrema of I have di�erent leading signs the intermediate value theorem
applies and an internal solution must exist. The optimal value can be calculated by
means of equation 4.17. This analytic three step solution is preferable over numeric
attempts to �nd the optimum since it is not only faster but also way more reliable.
While the Brent algorithm performed quite well in locating the optima, gradient based
methods as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm had substantial
di�culties with the extreme �atness of the gradient function.

δV

δI
= 0→ I = Imaxf−

{
I1−γ

maxf

1

(1 + κ)∆t
× 1

u− d
× 1

P
× [V {P × d, t} − V {P × u, t}]

}− 1
γ

(4.17)

4.4. Dynamic programming of investment

For the dynamic programming process most of the variables stay as they were in chap-
ter 3. The only alterations are the introduction of an inter-temporal utility discount
factor κ which we let equal to 0.05 and the alteration of the reward to R = 6000. This

48

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.8.: Optimization of a single node - inner solution - partial invest

second change is due to better visibility of the optimization instruction graphs as with
a reward of 3000 the coloured areas would have lingered in the low lying areas of the
diagram. Observe that therefore the Monte Carlo methods results are NOT quantita-
tively comparable to the �ndings from before. Also note that the slice diagrams of the
NPV ridges exhibit a di�erent scaling on the y-axis and that the utility values in the
upcoming examples are not inter-comparable as the risk-aversion coe�cient is altered
between the experiments. Table 4.1 shows the extended project model parameters.

formula source code value unit

P0 priceGuess0 2000 [monetary units]
PR rewardMargin 1 [monetary units]
λ lambda PR

P0
[-]

ϕ shift 0 [-]
β beta 0.20 [-]
κ kappa 0.05 [-]
r r 0.05 [-]
T Tmax 10 [time units]
R reward 6000 [monetary units]

Table 4.1.: Project inherent variables

49

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.9.: Dynamic programming instruction results with γ = 1

4.4.1. Experiment A2-1, risk-aversion(γ = 1)

Dynamic programming of investment under the assumption of risk-aversion results in
a net-present-value of utility V(0) = 0.3057 with a project success probability of Π(0)
= 0.9142. A risk-averse investor with γ = 1 is called myopic, since the income e�ect
and the substitution e�ect of di�erent return expectations completely cancel out. The
instruction graphs in this chapter distinguish between 'invest max', which is synonymous
to investment of the full technically allowable amount Imaxt , and 'invest partial', that
highlights an internal solution between zero and Imax. The 'invest max' area is sharply
con�ned somewhere around P (t) ∼ 500 and shows a signi�cant end-game e�ect between
t = 5 and 6. Figure 4.9 diagrams the instruction graph for risk-aversion while 4.10 adds
a review of success chances and 4.11 contributes the slices of the utility ridge. We state
that risk-aversion under current parameters has a quite low threshold for investment
and more or less immediately starts to dispense monetary units to the project. In the
comparison section we will �nd that this results in the highest number of launched
projects but also that myopic investors su�er the largest losses.

4.4.2. Experiment A2-2, risk-aversion (γ = 3)

With a risk-aversion coe�cient of γ = 3 we experience a signi�cant drop in both the
net-present-value and the �nishing probability. While the present value of utility V(0) =
0.0128 is not comparable to the experiment conducted before the chance of success Π(0)
= 0.1806 shrinks by roughly 80% stacked up against experiment A2-1. A γ-factor of 3
implies in a utility cap of u(c) = 0.5 for a consumption of c = +∞. Therefore the utility

50

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.10.: Dynamic programming probability results with γ = 1

Figure 4.11.: Slices through the utility ridge generated with γ = 1

51

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.12.: Dynamic programming instruction results with γ = 3

of consumption of the reward is considerably smaller than in dynamic programming
with risk-neutrality (0.4444444 versus 1.098612). Also the actually required amounts of
money to �nance the project are valued higher as they have a larger (negative) e�ect on
immediate consumption. Both these e�ects cause the coloured areas in the instruction
graph 4.12 and the probabilities diagram 4.13 to appear somewhat compressed. The
domain of 'invest max' also shrinks to a border around P (t) ∼ 250. In the utility
�gure 4.14 the di�erence is seen by a slight shift to the left of the whole �gure. Also
remember the di�erent scale of the y-axis that originates from the boundedness of the
utility function.

4.4.3. Experiment A2-3, risk-aversion (γ = 6)

Π(0) = 0.00789338843501965
The last experiment is carried out with a γ-factor of 6, a value approximately in the
middle of the commonly assumed risk-aversion area of 3 to 10. The dynamic program-
ming process results in Π(0) = 0.0079 with a net utility value of V(0) = 0.0002. We
will �nd in the Monte Carlo section that only a almost negligible number of cases the
project is actually launched under these circumstances. Thus the hazard of �nancial
losses is hardly present. The utility of the un-discounted reward is 0.199177 (compared
to 1.098612 with myopic risk-averse investment). With the even steeper (negative) tra-
jectory for allocated monetary units this results in even more compressed 'invest max'
and 'invest partial' areas. Figures 4.15 and 4.16 illustrate the dynamic programming
results. In diagram 4.17 the utility ridge is shown; again shifted to the left i.e. a number
of lattice nodes downwards.

52

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.13.: Dynamic programming probability results with γ = 3

Figure 4.14.: Slices through the utility ridge generated with γ = 3

53

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.15.: Dynamic programming instruction results with γ = 6

Figure 4.16.: Dynamic programming probability results with γ = 6

54

4. Example A2 - dynamic programming of risk-averse project investment

Figure 4.17.: Slices through the utility ridge generated with γ = 6

4.5. Monte Carlo simulation and comparison

Here we reiterate our Monte Carlo method with the matrices obtained from dynamic
programming in experiments A2-1 to A2-3. Subsequently the projects cash-�ow turnouts
and remaining cost to completion are evaluated. Table 4.2 repeats the values already
showcased while table 4.3 poses the numbers gained from the simulation results. The
percentage of cases where project �nancing is started corresponds roughly to the prob-
ability of successful completion calculated earlier. Thus in most of the simulations run
where the project is initiated it is also concluded satisfactory below the reward margin.

formula A2-1 A2-2 A2-3

Net-present-value V(0) = 0.306 0.013 0.0002
Success probability Π(0) = 0.914 0.181 0.0079

Table 4.2.: Dynamic programming comparison by strategy

Reviewing the cash-�ows in table 4.4 from the di�erent experiments only minor dif-
ferences can be found in the maximum outputs. Yet in the minima there is a factor
−1179.59
−39.72

= 29.69763 between the highest and the lowest computed loss. Hence the risk-
aversion introduced through the CRRA utility function is remarkably eligible to reduce
possible losses of an investor. Of course there is also a down-side to risk-averse be-
haviour. The number of simulation runs where the project is started by an investor with
γ = 6 is very small with a percentage range somewhere around 1%. This can be seen

55

4. Example A2 - dynamic programming of risk-averse project investment

formula A2-1 A2-2 A2-3

simulations total N = 20000 20000 20000
projects simulated n = 19487 4500 202
% projects started n

N
= 0.974 0.225 0.010

Table 4.3.: Monte Carlo comparison by strategy

in table 4.3 as well as in the remaining costs to completion, seen in table 4.5, which are
hardly a�ected by the investment strategy. Remember that the expected value without
any intervention is 2000 monetary units for the cost at t = T.
We end this section here and move on to optimization of portfolio investment under
uncertainty.

A2-1 A2-2 A2-3

mean 2688.26 2511.20 2852.23
std dev 915.68 1248.69 1340.34
median 2957.57 2964.65 3425.80
max 4026.35 4200.19 3953.04
min -1179.59 - 336.05 - 39.72
range 5205.95 4536.24 3992.76

Table 4.4.: project turnout comparison by strategy

A2-1 A2-2 A2-3

mean 327.17 1847.89 1990.96
std dev 1218.97 1562.49 1407.32
median 0.98 1637.46 1637.46
max 17342.28 28026.41 18786.66
min 0.98 0.98 0.98
range 17341.30 28025.43 18785.68

Table 4.5.: End remaining cost comparison by strategy

56

5. Example B - dynamic

programming of portfolio

investment under uncertainty

In the concluding chapter of this work we turn towards optimization of investment in a
portfolio of possibly correlated projects. This correlation of random shocks a�ecting the
remaining R&D expenditures is denoted by the variable ρ and can take on values from -1
e.g. cases where a positive development for one project immediately implies a negative
shock for the other to +1 where positive results complement each other. However as
long as ρ < 1, the projects in the portfolio compete for resources e.g. �nancing. A paper
from Boyle, Evnine and Gibbs titled 'Numerical Evaluation of Multivariate Contingent
Claims' [2] acts as starting point for our research. Slightly altering their probability
model for multivariate distributions on discrete lattices we can expand our dynamic
programming e�ort to a two dimensional portfolio of projects.

5.1. Modelling of portfolio investment

Our �rst task is to adapt the probability model's drift parameters to the investment
model. Therefore we develop the relationship between a general Geometric Brownian
motion (eq. 5.1) and our special investment case with induced drift. Let dx in equation
5.1 be the alteration of x over an in�nitesimal time interval.

dx = axdt+ σxdz (5.1)

Then the change of the estimated project cost dP for continuous time is given by eq.
5.2.

dP = −Idt+ βPdz (5.2)

Expanding the equation's drift term by P (t)
P (t)

the parameters of our investment model can

be identi�ed as drift of − I
P (t)

and β as variance of the geometric Brownian motion. This
is coherent with our �rst example's assumptions for investment strategies. Moving from
continuous time to a discrete setting we can establish an iterative pattern. Let P (t+ 1)
be the sum of P (t) and the alteration of estimated cost over a discrete time interval ∆P
(= βP − I). The iterative scheme is given in equation 5.3.

P (t+ 1) = P (t)× (1 + β) + (−I) = P (t)×
(

1 +

(
− I

P (t)

)
+ β

)
(5.3)

57

5. Example B - dynamic programming of portfolio investment under uncertainty

(P1, P2)

(P1u1, P2u2)(P1d1, P2u2)

(P1d1, P2d2) (P1u1, P2d2)

d1 u1

d2

u2

p1

p4 p2

p3

Figure 5.1.: Possible development of expected cost in a two project portfolio

Equipped with the new found drift and variance parameters we are able to manipulate
the probability equations derived by Boyle, Evnine and Gibbs in [2] p 246 (11a) - (11d)
for our cause. The four probabilities which model the development of estimated project
cost (one case for decline of cost in both, one for rise of cost in both, two for decline in
one and rise in the respective other) are shown in eq. 5.4 and visualized in diagram 5.1.
For the purpose of clarity Pi(t) is simpli�ed to Pi.

p1 =
1

4

{
1 + ρ+

√
η

(
µ1

σ1

+
µ2

σ2

)}
=

1

4

{
1 + ρ+

√
∆t

(
− I1

P1

1

β1

− I2

P2

1

β2

)}
(5.4)

p2 =
1

4

{
1− ρ+

√
η

(
µ1

σ1

− µ2

σ2

)}
=

1

4

{
1− ρ+

√
∆t

(
− I1

P1

1

β1

+
I2

P2

1

β2

)}
p3 =

1

4

{
1− ρ+

√
η

(
−µ1

σ1

+
µ2

σ2

)}
=

1

4

{
1− ρ+

√
∆t

(
I1

P1

1

β1

− I2

P2

1

β2

)}
p4 =

1

4

{
1 + ρ+

√
η

(
−µ1

σ1

− µ2

σ2

)}
=

1

4

{
1 + ρ+

√
∆t

(
I1

P1

1

β1

+
I2

P2

1

β2

)}
To ensure convergence of the model we demand that all probabilities lie within the real
probability space piε[0, 1] as indicated by equation 5.5.

0 ≤ pi ≤ 1 (5.5)

58

5. Example B - dynamic programming of portfolio investment under uncertainty

Since all parameters except the drift term are inherent to the model or at least subject
to a minimum requirement in the case of ∆t we will have to stick with − I

P (t)
in order to

keep probabilities real. This is a clear contradiction to the base model from the literature
which suggested small ∆t values to control probabilities. While in our representation a
certain minimum number of time-steps is necessary it is not recommendable to boost
the lattice resolution to far beyond that magnitude since the amount of lattice nodes(
T
∆t

)1+N
scales exponentially with the number of projects N .

To reduce the solution space to real probabilities we introduce the bounding factor ψ
that restricts investment to a maximum technically tolerable value Imaxt . .

0 ≤
I1maxt

P1

,
I2maxt

P2

, . . . ,
Imaxt

P
≤ ψ (5.6)

See equation 5.6 for the general form whereupon ψ is given by eq. 5.7. An elaborate
discussion on the derivation of ψ can be found in Appendix B.

ψ = min[1, ψ0
1, ψ

0
2, ψ

0
3] = min[1,

1 + ρ√
dt
× β1β2

β1 + β2

,
1− ρ√
dt
β1,

1− ρ√
dt
β2] (5.7)

5.2. Application of the CRRA utility function

With the experience earned in chapter 4 we have no di�culties in drawing up an utility
function for the momentary consumption i.e. investment (eq. 5.8). Both �nancial asset
opportunities add up to a cumulative negative consumption which has to be made up
by the future earnings (under the assumption of risk-aversion). Diversi�cation arises
if su�cient capital is available for both projects and the gradient is still positive after
the �rst enterprise is fully �nanced. We will prove this theorem later on. Equation 5.9
points the utility function for an n-dimensional investment portfolio.

u

(
Imaxf − I1 − I2

Imaxf

)
(5.8)

u

(
Imaxf − I1 − I2 − . . .− In

Imaxf

)
(5.9)

The constructed utility function is subject to a couple of constraints. In this work we
will limit ourselves to the two-dimensional case thus the invested capital is restricted to
values allowed by equations 5.10.

I1 + I2≤Imaxf (5.10)

I1 ≤I1maxt
= ψ × P1

I2 ≤I2maxt
= ψ × P2

I1 ≥0

I2 ≥0

59

5. Example B - dynamic programming of portfolio investment under uncertainty

Whereupon Imaxf is denoted by eq. 5.11. In principle the calculation of Imaxf is an
arbitrary task in the sense that an investor is free to choose how to calculate that value
or name it directly. A way of computing a reasonable value for Imaxf was shown in
chapter 4.

Imaxf = min[I1maxf
, I2maxf

] (5.11)

Equation 5.12 reveals the extension of constraints to the n-dimensional case.

I1 + I2 + . . .+ In≤min[I1maxf
, . . . , Inmaxf] (5.12)

I1 ≤I1maxt
= ψ × P1

...
...

In ≤Inmaxt
= ψ × Pn

I1 ≥0

...
...

In ≥0

5.3. Derivation of probabilities and Bellman principle

The four possible cases that can develop from the current state of the project portfolio
can be merged into a single vector ~p (eq.5.13) whose sum

∑
~p = 1. Di�erentiating

this vector with respect to I1 and I2 the probabilities gradient is obtained. In our two
dimensional case it is represented by a 4× 2 matrix (eq. 5.14).

~p =

p1

p2

p3

p4

 (5.13)

∇~p =

δp1

δI1

δp1

δI2
δp2

δI2

δp2

δI2
δp3

δI3

δp3

δI3
δp4

δI4

δp4

δI4

 =
1

4

√
∆t

−1
P1β1

−1
P2β2

−1
P1β1

1
P2β2

1
P1β1

−1
P2β2

1
P1β1

1
P2β2

 (5.14)

With the understanding acquired in chapter 4 the Bellman equation 5.15 for the two-
dimensional case is easily constructed. Again this model is only applied if all other cases
shown in equation 5.16 are dormant. A graphical illustration can be found in �gure 5.2.

60

5. Example B - dynamic programming of portfolio investment under uncertainty

V {P1, P2, t}

V {P1u1, P2u2, t+ 1}V {P1d1, P2u2, t+ 1}

V {P1d1, P2d2, t+ 1} V {P1u1, P2d2, t+ 1}

d1 u1

d2

u2

p1

p4 p2

p3

Figure 5.2.: Backward induction of option value from four subsequent lattice nodes

V {P1, P2, t− 1} = max
Ii∈R+

[u

(
Imaxf − I1 − I2

Imaxf

)
×∆t+ +

1

(1 + κ)∆t
× . . . (5.15)

×(p1 × V {P1u1, P2u2, t}+ p2 × V {P1u1, P2d2, t}
+p3 × V {P1d1, P2u2, t}+ p4 × V {P1d1, P2d2, t})]

V {P1, P2, t−1} =

u
(
Imaxf

Imaxf

)
×∆t , t = T ∧ P1 > P1R

∧P2 > P2R

u
(
Imaxf

Imaxf

)
×∆t+ u

(
R1

P01

)
, t ≤ T ∧ P1 ≤ P1R

u
(
Imaxf

Imaxf

)
×∆t+ u

(
R2

P02

)
, t ≤ T ∧ P2 ≤ P2R

max
Ii∈R+

[u
(
Imaxf

−I1−I2
Imaxf

)
×∆t+ + 1

(1+κ)∆t × . . .

×(p1 × V {P1u1, P2u2, t}+ p2 × V {P1u1, P2d2, t}
+p3 × V {P1d1, P2u2, t}+ p4 × V {P1d1, P2d2, t})] , t < T ∧ P1 > P1R

∧P2 > P2R

(5.16)
If the Bellman equation is di�erentiated with respect to I1 and I2 we receive a gradient
for the portfolio given in equations 5.17 and 5.18. Let us then establish that these di�er

61

5. Example B - dynamic programming of portfolio investment under uncertainty

only in the algebraic sign of the contributing subsequent lattice nodes. Furthermore this
optimization problem cannot be solved directly by calculus as the equation system is
under-determined. Instead an iterative scheme as seen in chapter 4 has to be applied.
The three point analysis introduced before is extended to an investigation of maximum
�ve points. Three of those are inherent by the �nancial and technical constraints while
the other two represent possible internal solutions.

δV

δI1

=

(
−1

Imaxf

)(
Imaxf − I1 − I2

Imaxf

)−γ
∆t+

1

(1 + κ)∆t
× 1

4
×
√

∆t× . . . (5.17)

(− 1

P1β1

× V {P1u1, P2u2, t} −
1

P1β1

× V {P1u1, P2d2, t}+ . . .

. . .
1

P1β1

× V {P1d1, P2u2, t}+
1

P1β1

× V {P1d1, P2d2, t})

δV

δI2

=

(
−1

Imaxf

)(
Imaxf − I1 − I2

Imaxf

)−γ
∆t+

1

(1 + κ)∆t
× 1

4
×
√

∆t× . . . (5.18)

(− 1

P1β1

× V {P1u1, P2u2, t}+
1

P1β1

× V {P1u1, P2d2, t} − . . .

. . .
1

P1β1

× V {P1d1, P2u2, t}+
1

P1β1

× V {P1d1, P2d2, t})

Obviously the �rst point undergoing research will be zero i.e. no investment in neither
project. But where should an investor proceed afterwards? The Hessian matrix shown
in equation 5.19 provides us an helpful answer. In contrary to the linear problem seen
in risk-neutral optimization, HV 6= 0. Also the Hessian matrix is inde�nite which tells
us that the optimum is to be found on the edges of the solution space. Since the
second derivative or the 'gradients gradient' has the same value ≤ 0 for every possible
direction the gradients components develop in the same manner and the di�erence in
values accrues exclusively from the follow-up nodes contribution. The original function
may thus be optimized by following the strongest gradient.

HV =

(
−1

Imaxf

)2

(−γ)

(
Imaxf − I1 − I2

Imaxf

)−γ−1

×
(

1 1
1 1

)
≤
(

0 0
0 0

)
(5.19)

Before pursuing our search for the function's optimum we de�ne V. Its purpose is
represent the elements of the vector-like gradient function sorted by their numeric value.
Let the elements of V be equal to those of the Bellman equations gradient δV with
V1 = max[δV], V2 holds the second largest element and so on. Note that this order
need to be established only once e.g. at I1(t) = I2(t) = 0 and stays the same from
there on since the Hessian matrix has the same numeric value in every direction for any
combination of I1 and I2. Additionally we de�ne I

1 and I2 as investments in the projects
with strongest or second-strongest gradient. For the purpose of clarity an illustration
can be found in diagram 5.3. The �gure shows only the linear portion of the gradient

62

5. Example B - dynamic programming of portfolio investment under uncertainty

S1

S4

S5

S3

S2

I1
max I2

max

V1
lin.

V2
lin.

Figure 5.3.: Linear contribution of subsequent lattice points

resulting from subsequent grid points. Inner solution points occur where the tangent
on the CRRA utility functions curve is parallel to the straight line obtained from the
follow-up nodes.

S1 : V1 ≤ 0 for
∑2

n=1 I
n = 0 If the maximum element of the Bellman functions gradient

δV denoted by V1 is less than or equal to zero for an investment of zero monetary units
in the corresponding project waiting i.e. non-investment is recommended as within the
constraints no other maximum can be found.

S2 : V1 > 0 for
∑2

n=1 I
n = 0 & V1 < 0 for

∑2
n=1 I

n = I1
max Once the gradient in the

origin is positive the highest possible value for the according asset is tested. This can
be either given by Imaxf or Imaxt . If the gradient is less than zero at the boundary the
optimum must lie on the I1 axis. Since the investment value in the project with the
second largest gradient I2 is still zero the optimum number of monetary units for the
most promising project can be directly calculated by equation 5.20. Note how 1

P 1β1 and
its algebraic sign ± is determined by the gradient itself.

63

5. Example B - dynamic programming of portfolio investment under uncertainty

V1 = 0→ I1 = Imaxf − {I1−γ
maxf

1

(1 + κ)∆t
× 1

4
× 1√

∆t
× . . . (5.20)

(− 1

P 1β1
× V {P1u1, P2u2, t} ±

1

P 1β1
× V {P1u1, P2d2, t} . . .

± 1

P 1β1
× V {P1d1, P2u2, t}+

1

P 1β1
× V {P1d1, P2d2, t})}−

1
γ

S3 : V1 > 0 for
∑2

n=1 I
n = 0 & V1 ≥ 0 & V2 ≤ 0 for

∑2
n=1 I

n = I1
max In case that

the maximum gradient is positive at I1 = 0 and still is at I1 = I1
max we need to evaluate

the second largest gradient since further extension in the �rst direction is prohibited. If
this second largest gradient is already less than null at the given amount invested the
optimization process is stopped with I1 = I1

max and I
2 = 0 as best possible achievement.

This point lies at a corner point of the solution space.

S4 : V1 > 0 for
∑2

n=1 I
n = 0 & V1,V2 > 0 for

∑2
n=1 I

n = I1
max & V2 < 0 for∑2

n=1 I
n = I2

max If however the gradient V2 is greater than 0 for I1 = I1
max testing

of the function at the point
∑2

n=1 I
n = I2

max is necessary. To perform this test we
set I1 = I1

max and I2 = min[I2
maxt , Imaxf −

∑1
n=1 I

n(= I1)]. When the gradient turns
out to be negative at the point of interest we proclaim that an optimum on an edge
with a I2 coordinate < I2

max exists. We stated earlier that the system of equations
was under-determined and could not be solved for two unknown variables under current
circumstances. With the successive approach tough it is possible since we already set
I1 = I1

max one variable is already �xed and we can use it in the function of V2 to �nd
the optimum value for I2 as seen in equation 5.21.

V2 = 0→ I2 = Imaxf − I1
(max) − {I1−γ

maxf

1

(1 + κ)∆t
× 1

4
× 1√

∆t
× . . . (5.21)

(− 1

P 2β2
× V {P1u1, P2u2, t} ±

1

P 2β2
× V {P1u1, P2d2, t} . . .

± 1

P 2β2
× V {P1d1, P2u2, t}+

1

P 2β2
× V {P1d1, P2d2, t})}−

1
γ

S5 : V1 > 0 for
∑2

n=1 I
n = 0 & V1,V2 > 0 for

∑2
n=1 I

n = I1
max & V2 ≥ 0 for∑2

n=1 I
n = I2

max The last case worth mentioning is the one where both gradients are
positive at null and the respective end points i.e. V1 > 0 for I1 = I1

max(t)
and V2 > 0

for I2 = I2
max(t)

. As indicated by the parentheses this can only occur if the maximum
tolerable investment is appointed by the technical values Inmaxt rather than the �nancial

limit Imaxf . Thus it must satisfy
∑2

n=1 I
n
maxt < Imaxf .

Note: If all i.e both gradients return the same value for a testing point one is indi�erent
an can chose either one. In the underlying R implementation in such cases the gradient
is chosen at random.

64

5. Example B - dynamic programming of portfolio investment under uncertainty

formula source code value unit

P0 priceGuess0 1000, 1000 [monetary units]
PR rewardMargin 10, 10 [monetary units]
λ lambda PR

P0
[-]

ϕ shift 0 [-]
β beta 0.20, 0.20 [-]
ρ rho +0.50 [-]
κ kappa 0.05 [-]
r r 0.05 [-]
T Tmax 10 [time units]
R reward 5000, 6000 [monetary units]

Table 5.1.: Project inherent variables

5.4. Dynamic programming results of portfolio

investment

We are now eligible to perform a dynamic programming process of a portfolio con-
sisting of two correlated projects. Therefore we extend all project-speci�c parameters
(P0, PR, β, R) to a vector consisting of two values each. Furthermore we introduce the
correlation factor ρ that incorporates the mathematical relation between the projects
geometric random walks. We decide to settle ρ = +0.50 which indicates a light positive
interrelationship of the projects compromising the portfolio. Also the value for project
2's reward is chosen slightly higher in order to avoid the arising of confusion by the
random number generator if the gradients where equal to each other.
Concerning the selection of ∆t this value is set to 0.05. This results in an overall time-
step resolution of 200 which means that 201 nodes are to be found on the X-axis. We
take this measure in order to keep computing time and, of even greater importance,
memory consumption low. Since the number of lattice nodes is of the order O(t3Count)
we already look at a pile of ∼ 8e+ 06 points to calculate. Not to mention the ∼ 1e+ 09
nodes if tCount was kept at 1000. Calculations where performed with a risk-aversion
coe�cient of γ = 1.
The dynamic programming process results in a net-present-value of V(0) = 0.1953 with
an overall chance of �nishing any one project Π(0) = 0.4359. For the individual projects
the success probabilities are Π1(0) = 0.0577 and Π2(0) = 0.3872. We note that the
likelihood of completing project 2 dominates the chances of enterprise 1 because the
optimization algorithm prefers the higher reward to estimated cost ratio and even more
important suggests investing in project 2 right from the start.
Similar to previous chapters we continue to illustrate the optimized investment behaviour
by the application of diagrams. First �gures 5.4 and 5.5 are three dimensional scatter
plots that present the suggested investors behaviour. On the t-axis we have the port-
folio's time span (from zero to the terminal date t = T = 10) while the P1(t)- and

65

5. Example B - dynamic programming of portfolio investment under uncertainty

P2(t)-axes expand the �eld of possible random shock developments by one dimension
each. So the P1(t)-axis corresponds to the remaining costs to completion of project 1 and
reaches from P 1

0 u
−
1 200 ∼ 0.13 to P 1

0 u
+
1 200 ∼ 7.68e+ 06. The side area of the P1(t)-axis

contains point coloured in red. Those are the lattice nodes in which it is advised to invest
into project 1. The same statements can be applied to project 2 and the P2(t)-axis i.e.
a range of 400 steps that translates into an interval from 0.13 to 7.68e + 06 and yellow
investment nodes. The three colours not mentioned yet represent the cases of waiting
for a better opportunity to invest denoted by grey, transparent points, the suggestion
of investment in both projects indicated by a purple, bluish coloring and the claim of
reward in turquoise color. Note that only a subset of 20 out of the 200 time-steps is
visualized in the pyramid graphs.
Diagrams 5.6 to 5.15 show nine pro�les of the pyramid for di�erent points in time.
Obviously project 2 is preferred whenever possible due to its higher attainable reward.
Figure 5.12 is an augmented view on the investment area for t = 6.25 and reveals the
inversion of investment preferences for nearly �nished portfolios. This is due to the
fact that the dynamic programming algorithm is allowed to cash the reward from both
projects but only from one point in the grid per time-step.

5.5. Monte Carlo study of portfolio investment

To conclude our short investigation of portfolio investment a Monte Carlo study is per-
formed. Thanks to [2] we are able to operate with a single uniformly distributed random
number. The dynamic programming procedure earned us a matrix containing probabil-
ities for the movement in four di�erent directions corresponding to the possible cases of
up- and down-moves for two correlated projects. All that needs to be done is dividing
up the uniform probability space ∈ [0, 1] to intervals representing the desired odds. Let
ω be a uniformly distributed random number and p1, p2, p3 and p4 the probabilities of
the di�erent cases. Then the stochastic behaviour of the remaining costs to completion
of the correlated projects is determined by the cases shown in equation 5.22.

P1u1, P2u2 : 0 ≤ ω <

1∑
i=1

pi (5.22)

P1u1, P2d2 :
1∑
i=1

pi ≤ ω <
2∑
i=1

pi

P1d1, P2u2 :
2∑
i=1

pi ≤ ω <
3∑
i=1

pi

P1d1, P2d2 :
3∑
i=1

pi ≤ ω ≤
4∑
i=1

pi = 1

With this random number generation approach our Monte Carlo simulation was per-
formed with results shown in tables 5.2 to 5.5.

66

5. Example B - dynamic programming of portfolio investment under uncertainty

Figure 5.4.: Dynamic programming instruction results (tree illustration 1)

67

5. Example B - dynamic programming of portfolio investment under uncertainty

Figure 5.5.: Dynamic programming instruction results (tree illustration 2)

68

5. Example B - dynamic programming of portfolio investment under uncertainty

Figure 5.6.: Dynamic programming instruction results (t = 0)

Figure 5.7.: Dynamic programming instruction results (t = 25)

69

5. Example B - dynamic programming of portfolio investment under uncertainty

Figure 5.8.: Dynamic programming instruction results (t = 50)

Figure 5.9.: Dynamic programming instruction results (t = 75)

70

5. Example B - dynamic programming of portfolio investment under uncertainty

Figure 5.10.: Dynamic programming instruction results (t = 100)

Figure 5.11.: Dynamic programming instruction results (t = 125)

71

5. Example B - dynamic programming of portfolio investment under uncertainty

Figure 5.12.: Augmented view of investment area (t = 125)

Figure 5.13.: Dynamic programming instruction results (t = 150)

72

5. Example B - dynamic programming of portfolio investment under uncertainty

Figure 5.14.: Dynamic programming instruction results (t = 175)

Figure 5.15.: Dynamic programming instruction results (t = 199)

73

5. Example B - dynamic programming of portfolio investment under uncertainty

formula value

Net-present-value V(0) = 0.1953
Success probability Π(0) = 0.4359
Success prob. proj. 1 Π1(0) = 0.0577
Success prob. proj. 2 Π2(0) = 0.3872

Table 5.2.: Dynamic programming results for portfolio investment

formula value

simulations total N = 20000
projects simulated n = 20000
% projects started n

N
= 1.00

Table 5.3.: Monte Carlo results for portfolio investment

With the suggestion of investing in project 2 from the very starting point of the dynamic
optimization it is clear that the percentage of simulated projects equals 100%. The
examination of project turnouts shows an ambivalent picture. While the cash-�ow's
mean is positive the median still indicates a loss and that more than half of the projects
don't meet the reward margin in time. Also the standard deviation is quite high. A
look at the remaining costs to completion reveals that while both projects are capable of
reaching the reward distribution state (min value), project 2 is far more likely to achieve
this (median). Supposedly this is due to its higher reward that permits the dynamic
programming algorithm to carry the investment area to higher levels of remaining cost.

value

mean 736.69
std dev 1997.82
median - 568.08
max 6434.79
min -2075.09
range 8509.89

Table 5.4.: project turnouts for portfolio investment

74

5. Example B - dynamic programming of portfolio investment under uncertainty

project 1 project 2

mean 1082.79 200.27
std dev 891.02 487.60
median 914.44 14.94
max 10231.91 10231.91
min 9.99 9.99
range 10221.92 10221.92

Table 5.5.: End remaining cost for portfolio investment

75

6. Conclusion

Eventually it is time to close and recapitulate the �ndings of this work. First and
most important is that time discrete dynamic programming models can act as a valid
tool of evaluating projects or even portfolios of projects. The quality of the obtained
predictions is however largely dependant on the foregoing modelling process. While
example A1 shown in chapter 3 quickly returned reasonable results, the approach was
rather simplistic and ignored the risk-avoiding aspect of human behaviour. It could
however be proven that project funding with constant investment rates is, in terms of
e�ciency, inferior to relative funding. Also we could show that in a risk-neutral setting
the optimum point in time to invest in a project is dependent on the intended rate of
investment itself.
In the following section 4 a utility model, namely the CRRA function, was introduced to
regard for risk aversion in decision making. Though this is a very promising approach it
raised a few obstacles on its own. These sprouted from the newly accrued possibility of
internal solutions since in the former model the only points of interest were waiting and
investment at full rates. Finding these internal extrema turned out more complex than
anticipated due to, at least in the beginning, poor modelling and issues with numeric
optimization algorithms. Finally a revised mathematical model and a move from numeric
to an analytic solution could overcome the problems. The techniques provide a method
for evaluating future projects that is both simple in handling and a source of valuable
information.
Lastly with example B found in chapter 5 an implementation of dynamic programming
for portfolios of projects was discussed. This optimization problem is a logical exten-
sion of the single dimensional investment considerations shown in example A1 and A2.
Figures 5.4 and 5.5 illustrate that there is a number of nodes where investment in both
projects takes place. Furthermore we observed areas (�gures 5.12) where the algorithm
modi�ed its investment pattern in order to claim the reward for both projects. While
this outcome appears quite exciting one has to trade o� the additional information in
exchange for increased modelling and calculation e�ort.
Concerning future enhancement of the model let us state that there is plenty of room
for further improvement. As for now the project representation in the models covers the
aspect that Pindyck referred to as 'input cost uncertainty' in his 1993 publication [11]
in the 'Journal of Financial Economics'. 'Technical uncertainty' and unknown project
duration are not yet implemented in the model and will raise considerable amount of new
questions upon their introduction. One of these would for instance be the abolishment
of the Markov property i.e. path dependency by adoption of 'technical uncertainty' .
For now though let us conclude the discussion with the statement that the dynamic
programming approach can be a very suitable tool for reviewing ventures of uncertain

76

6. Conclusion

cost and that this �eld of study still o�ers a vast jungle of unexplored possibilities for
further investigation.

77

A. Appendix - Monte Carlo

simulation and distribution

analysis

In this chapter we employ the result matrices from dynamic programming to compute
extensive Monte Carlo simulations ([4] sec. 12) with a sample size of n = 20000. Both the
end remaining project cost at t = T and the overall cash-�ows are analysed to evaluate
the strategies. Moreover there will be statistical tests on the simulation outcomes to
�nd out whether prices and/or cash-�ows follow a certain statistical pattern (in our case
logarithmic normal or gamma distribution). For this purpose we will conduct test with
mathematical methods as well as use visualization techniques to judge the outcomes of
the simulation.

Instruments of analysis

• Shapiro-Wilk test [12] for normality (i.e. normal distribution of the logarithm of
remaining cost or cash-�ows),

• Kolmogorov-Smirnov test ([4] section 10.6) used for logarithmic normal and gamma
distribution,

• Q-Q plots ([4] section 11.3) as means of diagramming for normal distribution of
the logarithm of remaining cost or cash-�ows,

• Histograms ([4] sec. 3.7 and 6.2) for gamma, log-normal distribution plus normal
distributions of the logarithm of the values.

A.1. Parameter estimation for continuous

distributions

In order to test the obtained simulation samples for certain kinds of distributions the
parameters of the generalised continuous density functions need to be estimated. Utiliz-
ing the maximum-likelihood estimator and the method of moments we can produce two
sets of values for the log-normal distribution for each simulation sample. Parameters
for a gamma function can also be computed. A comprehensive discussion of the tested
distribution can be found in [4] chapter 5.

78

A. Appendix - Monte Carlo simulation and distribution analysis

A.1.1. Logarithmic normal distribution

Maximum-likelihood Estimator

Found in [4] section 7.5.

µmlh =
1

N
×

N∑
n=1

ln{xi} (A.1)

σ2
mlh =

1

N
×

N∑
n=1

(ln{xi} − µmlh)2

Method of moments

Detailed in [4] section 7.6.

E =
1

N
×

N∑
n=1

{xi} (A.2)

V ar =
1

N
×

N∑
n=1

({xi} − E)2

µmom = ln

(
E2 1√

V ar + E2

)
σ2
mom =

√
ln

(
V ar

E2
+ 1

)

A.1.2. Gamma distribution

Equations A.3 for the computation of the distribution parameters are derived from
theorem 5.7.5 in [4].

E =
1

N
×

N∑
n=1

{xi} (A.3)

V ar =
1

N
×

N∑
n=1

({xi} − E)2

p =
E2

V ar

b =
E

V ar

79

A. Appendix - Monte Carlo simulation and distribution analysis

A.2. Cash-�ow analysis of actually launched projects

Now we will devote some time to the investigation of cash-�ows in actual projects. For
strategy A1-0 cash-�ow analysis is omitted as no investments are undertaken and there-
fore no projects are �nished. The possibility of earning the reward without investment
is neglected.

A.2.1. Logarithmic normal distribution of cash-�ows

Hypothesis

• H0 : The random variable cfx is LN (µ, σ2) distributed, w. µ ∈ R and σ2 > 0

• H1 : The random variable cfx is not LN (µ, σ2) distributed

Maximum-likelihood method formula A1-0 A1-1 A1-2

mean µmlh - 6.696131 7.018453
standard deviation σmlh - 0.399790 0.511219
variance σ2

mlh - 0.159832 0.261345

Table A.1.: Cash-�ow parameters for log-norm distribution by strategy

Maximum-likelihood method formula A1-0 A1-1 A1-2

mean µmom - 6.688090 7.048836
standard deviation σmom - 0.417944 0.401789
variance σ2

mom - 0.174677 0.161434

Table A.2.: Cash-�ow parameters for log-norm distribution by strategy

Logarithmic normal distribution formula A1-0 A1-1 A1-2

p - value pmlh - 2.2 e-16 2.2 e-16
pmom - 2.2 e-16 2.2 e-16

Table A.3.: p - value for log-norm distribution of cash-�ows by strategy

Viewing at histogram A.1 we look at a well behaved distribution of pro�ts with a minor
risk of loosing the monetary units invested. One might be tempted to consider the
spreading of results as some kind of inverted log-normal distribution, yet it has to be
proven mathematically. The histogram diagrammed in �gure A.2 on the other hand
is far of from a log-normal or gamma distribution. The Kolmogorov-Smirnov method
corroborates our notion that neither of the strategies cash-�ow follow a logarithmic
normal distribution. Due to the relatively small arti�cial drift for high price ranges

80

A. Appendix - Monte Carlo simulation and distribution analysis

Figure A.1.: Histogram of simulated project cash-�ow for A1-1 (n = 20000)

there is a signi�cant chance of loosing the invested amount of monetary units. Also the
frequency of losses is as big or even higher than the occurrence of pro�ts. Concluding the
investigation on histograms of project turnouts we state that constant absolute rates of
investment are less useful the relative investments. This is due to over-investment in the
areas where the project is nearly �nished and to little activity in the beginning, which
is crucial for project success. Especially the peak of the histogram shortly below zero is
an indicator of poorly dimensioned investment volume.

A.2.2. Normal distribution of logarithm of cash-�ows

Hypothesis

• H0 : The random variable log{cfx} is N (µ, σ2) distributed, with µ ∈ R and σ2 > 0

• H1 : The random variable log{cfx} is not N (µ, σ2) distributed

Normal distribution formula A1-0 A1-1 A1-2

p - value p - 2.2 e-16 2.2 e-16

Table A.4.: p - value for normal distribution of log{cash-�ows} by strategy

As the R implementation of the Shapiro-Wilk test runs without precomputed values
calculation of µ and σ2 is neglected. The tests result for N (µ, σ2) are carried out with
a sample size of n = 2000 with replacement. The p value is 2.2 e-16 for all tested

81

A. Appendix - Monte Carlo simulation and distribution analysis

Figure A.2.: Histogram of simulated project cash-�ow for A1-2 (n = 20000)

strategies → H0 is discarded and H1 accepted. The accompanying �gures A.3 and A.5
give rise to ambivalent thoughts. While the histogram again may be misleading towards
an assumption of normal distribution of the values the Q-Q plot clearly indicates that
the logarithm of the simulated cash �ow is not normally distributed. Figures A.4 and A.6
convey the same information on strategy A1-2. Both, the Q-Q plot and the histogram,
indicate that the resulting distribution of cash-�ows is certainly not normal distributed.

A.2.3. Gamma distribution of cash-�ows

Hypothesis

• H0 : The random variable cfx is γ(p, b) distributed, with p > 0 and b > 0

• H1 : The random variable cfx is not γ(p, b) distributed

The Kolmogorov-Smirnov tests for γ(p, b) result in p = 2.2e−16 and therefore could not
yield a signi�cant evidence for gamma distribution → H0 discarded and H1 accepted.

parameter formula A1-0 A1-1 A1-2

p - value p - 5.239394 5.707914
b - value b - 0.005980 0.004572

Table A.5.: Cash-�ow parameters for log-norm distribution by strategy

82

A. Appendix - Monte Carlo simulation and distribution analysis

Figure A.3.: Histogram of logarithm of simulated project cash-�ow for A1-1 (n = 20000)

Figure A.4.: Histogram of logarithm of simulated project cash-�ow for A1-2 (n = 20000)

83

A. Appendix - Monte Carlo simulation and distribution analysis

Figure A.5.: Histogram of logarithm of simulated project cash-�ow for A1-1 (n = 20000)

Figure A.6.: Histogram of logarithm of simulated project cash-�ow for A1-2 (n = 20000)

84

A. Appendix - Monte Carlo simulation and distribution analysis

Gamma distribution formula A1-0 A1-1 A1-2

p - value p - 2.2 e-16 2.2 e-16

Table A.6.: p - value for normal distribution of log{cash-�ows} by strategy

A.3. Analysis of remaining cost at t = T

In the following section the simulated remaining cost at t = T will undergo di�erent test
procedures in order to allow us a review of the behaviour of the geometric random walk
with and without management interference. Tests for logarithmic normal distribution
(direct and indirect as test for normality of the logarithm of the simulated values) as
well as tests for gamma distribution are conducted.

A.3.1. Logarithmic normal distribution of end remaining cost

Hypothesis

• H0 : The random variable P (T)x is LN (µ, σ2) distributed, w. µ ∈ R and σ2 > 0

• H1 : The random variable P (T)x is not LN (µ, σ2) distributed

Figures A.7 to A.9 illustrate the simulated cost values as histograms and also display the
continuous distributions the obtained samples are tested for. Parameters for the contin-
uous functions are derived from the samples by means of maximum-likelihood-method
and method of moments as introduced above. Graphs for the gamma distribution which
we will test later on are also present in this graph. For A.7 we are able to state that all
three continuous distributions follow the histogram quite well with the gamma distribu-
tion being most deviant. Concerning diagram A.8 it is obvious that our intervention by
�nancing the project warped the initial log-normal distribution of end remaining cost
values seen in A.7 beyond recognition. Figure A.9 is kind of in the middle between
the former two histograms. The deviations are not as distinct as with constant relative
investment, yet the distribution can't be regarded as logarithmic normal any more.

Maximum-likelihood method formula A1-0 A1-1 A1-2

mean µmlh 7.405894 2.616356 6.437208
standard deviation σmlh 0.629455 3.675115 2.637931
variance σ2

mlh 0.396214 13.506470 6.958678

Table A.7.: End remaining cost parameters for log-norm distribution by strategy

From the simulation results we conclude that the unin�uenced geometric random walks
strives towards a logarithmic normal distribution provided the numbers of samples and
time-steps per simulation are large enough. Financial intervention by the project man-
agement on the other hand had a huge impact on the simulated outcomes of remaining

85

A. Appendix - Monte Carlo simulation and distribution analysis

Figure A.7.: Histogram of simulated remaining cost at t = T for A1-0 (n = 20000)

Figure A.8.: Histogram of simulated remaining cost at t = T for A1-1 (n = 20000)

86

A. Appendix - Monte Carlo simulation and distribution analysis

Maximum-likelihood method formula A1-0 A1-1 A1-2

mean µmom 7.403997 6.093647 7.246390
standard deviation σmom 0.633139 1.187244 0.735184
variance σ2

mom 0.400865 1.409548 0.540494

Table A.8.: End remaining cost parameters for log-norm distribution by strategy

Logarithmic normal distribution formula A1-0 A1-1 A1-2

p - value pmlh 0.0001062 2.2 e-16 2.2 e-16
pmom 4.003 e-05 2.2 e-16 2.2 e-16

Table A.9.: p - value for log-norm distribution of end remaining cost by strategy

cost at t = T. The resulting distribution is far o� from random and thus the arti�cially
imposed drift of the Wiener-Process appears to have worked quite well. We note that
the e�ects of constant absolute investments are not as distinct as with relative rates
while they still invoke the desired drift of the process.

A.3.2. Normal distribution of logarithm of end remaining cost

Hypothesis

• H0 : The random variable log{P (T)x} is N (µ, σ2) distributed, with µ ∈ R and
σ2 > 0

• H1 : The random variable log{P (T)x} is not N (µ, σ2) distributed

Since the R implementation of the Shapiro-Wilk test doesn't require precomputed pa-
rameters the calculation of µ and σ2 is omitted. The test result of strategy A1-0 for
N (µ, σ2) with a sample size of n = 2000 with replacement is p = 0.1572 → H0 can-
not be discarded. Diagrams A.10 to A.12 present histograms of the logarithm of the
simulated data while A.13 to A.15 add easily assessable Q-Q plots. Figures A.10 and
A.13 show that the logarithm of the simulated cost follows a normal distribution quite
well. Again strategy A1-1 appears to be very much distorted from the initial normal
distribution while investment with constant absolute rates is the compromise between
the two extremes.

Normal distribution formula A1-0 A1-1 A1-2

p - value p 0.1572 2.2 e-16 2.2 e-16

Table A.10.: p - value for normal distribution of log{cash-�ows} by strategy

87

A. Appendix - Monte Carlo simulation and distribution analysis

Figure A.9.: Histogram of simulated remaining cost at t = T for A1-2 (n = 20000)

Figure A.10.: Histogram of logarithm of simulated remaining cost at t = T for A1-0 (n
= 20000)

88

A. Appendix - Monte Carlo simulation and distribution analysis

Figure A.11.: Histogram of logarithm of simulated remaining cost at t = T for A1-1 (n
= 20000)

Figure A.12.: Histogram of logarithm of simulated remaining cost at t = T for A1-2 (n
= 20000)

89

A. Appendix - Monte Carlo simulation and distribution analysis

Figure A.13.: Q-Q plot of logarithm of simulated remaining cost at t = T for A1-0 (n =
20000)

Figure A.14.: Q-Q plot of logarithm of simulated remaining cost at t = T for A1-1 (n =
20000)

90

A. Appendix - Monte Carlo simulation and distribution analysis

Figure A.15.: Q-Q plot of logarithm of simulated remaining cost at t = T for A1-2 (n =
20000)

A.3.3. Gamma distribution of end remaining cost

Hypothesis

• H0 : The random variable P (T)x is γ(p, b) distributed, with p > 0 and b > 0

• H1 : The random variable P (T)x is not γ(p, b) distributed

The Kolmogorov-Smirnov tests for γ(p, b) result in p = 2.2e − 16 for each and every
strategy employed. Thus we refuse the assumption that the remaining cost at t = T
might be gamma distributed → H0 discarded and H1 accepted.

parameter formula A1-0 A1-1 A1-2

p - value p 2.027921 0.323195 1.394980
b - value b 0.001010 0.000360 0.000759

Table A.11.: Cash-�ow parameters for log-norm distribution by strategy

Gamma distribution formula A1-0 A1-1 A1-2

p - value p 2.2 e-16 2.2 e-16 2.2 e-16

Table A.12.: p - value for normal distribution of log{cash-�ows} by strategy

91

B. Appendix - Derivation of

bounding factor ψ

In chapter 5 we raised the demand that the probabilities of all four knots subsequent to
the currently investigated must be real and thus satisfy B.1.

0 ≤ pi ≤ 1 (B.1)

We will now solve all four probabilities for they invested cash-�ows I1 and I2 and in a
second step derive a bounding factor ψ, which purpose is to limit the solution space to
an area where only chances that meet B.1 can arise.

B.1. Probability p1

Basic equation found in [2] [11.a]

p1 =
1

4

{
1 + ρ+

√
η

(
µ1

σ1

+
µ2

σ2

)}
=

1

4

{
1 + ρ+

√
∆t

(
− I1

P1

1

β1

− I2

P2

1

β2

)}
(B.2)

Solved for p1 ≤ 1

1

4

{
1 + ρ+

√
∆t

(
− I1

P1

1

β1

− I2

P2

1

β2

)}
≤ 1 | × (4) (B.3){

1 + ρ+
√

∆t

(
− I1

P1

1

β1

− I2

P2

1

β2

)}
≤ 4 | − 1− ρ

√
∆t

(
− I1

P1

1

β1

− I2

P2

1

β2

)
≤ 3− ρ |/

√
∆t(

− I1

P1

1

β1

− I2

P2

1

β2

)
≤ 3− ρ√

∆t

92

B. Appendix - Derivation of bounding factor ψ

Solved for p1 ≥ 0

1

4

{
1 + ρ+

√
∆t

(
− I1

P1

1

β1

− I2

P2

1

β2

)}
≥ 0 | × (4) (B.4){

1 + ρ+
√

∆t

(
− I1

P1

1

β1

− I2

P2

1

β2

)}
≥ 0 | − 1− ρ

√
∆t

(
− I1

P1

1

β1

− I2

P2

1

β2

)
≥ −1− ρ |/

√
∆t(

− I1

P1

1

β1

− I2

P2

1

β2

)
≥ −1− ρ√

∆t

B.2. Probability p2

Basic equation found in [2] [11.b]

p2 =
1

4

{
1− ρ+

√
η

(
µ1

σ1

− µ2

σ2

)}
=

1

4

{
1− ρ+

√
∆t

(
− I1

P1

1

β1

+
I2

P2

1

β2

)}
(B.5)

Solved for p2 ≤ 1

1

4

{
1− ρ+

√
∆t

(
− I1

P1

1

β1

+
I2

P2

1

β2

)}
≤ 1 | × (4) (B.6){

1− ρ+
√

∆t

(
− I1

P1

1

β1

+
I2

P2

1

β2

)}
≤ 4 | − 1 + ρ

√
∆t

(
− I1

P1

1

β1

+
I2

P2

1

β2

)
≤ 3 + ρ |/

√
∆t(

− I1

P1

1

β1

+
I2

P2

1

β2

)
≤ 3 + ρ√

∆t

Solved for p2 ≥ 0

1

4

{
1− ρ+

√
∆t

(
− I1

P1

1

β1

+
I2

P2

1

β2

)}
≥ 0 | × (4) (B.7){

1− ρ+
√

∆t

(
− I1

P1

1

β1

+
I2

P2

1

β2

)}
≥ 0 | − 1 + ρ

√
∆t

(
− I1

P1

1

β1

+
I2

P2

1

β2

)
≥ −1 + ρ |/

√
∆t(

− I1

P1

1

β1

+
I2

P2

1

β2

)
≥ −1 + ρ√

∆t

93

B. Appendix - Derivation of bounding factor ψ

B.3. Probability p3

Basic equation found in [2] [11.c]

p3 =
1

4

{
1− ρ+

√
η

(
−µ1

σ1

+
µ2

σ2

)}
=

1

4

{
1− ρ+

√
∆t

(
I1

P1

1

β1

− I2

P2

1

β2

)}
(B.8)

Solved for p3 ≤ 1

1

4

{
1− ρ+

√
∆t

(
I1

P1

1

β1

− I2

P2

1

β2

)}
≤ 1 | × (4) (B.9){

1− ρ+
√

∆t

(
I1

P1

1

β1

− I2

P2

1

β2

)}
≤ 4 | − 1 + ρ

√
∆t

(
I1

P1

1

β1

− I2

P2

1

β2

)
≤ 3 + ρ |/

√
∆t(

I1

P1

1

β1

− I2

P2

1

β2

)
≤ 3 + ρ√

∆t

Solved for p3 ≥ 0

1

4

{
1− ρ+

√
∆t

(
I1

P1

1

β1

− I2

P2

1

β2

)}
≥ 0 | × (4) (B.10){

1− ρ+
√

∆t

(
I1

P1

1

β1

− I2

P2

1

β2

)}
≥ 0 | − 1 + ρ

√
∆t

(
I1

P1

1

β1

− I2

P2

1

β2

)
≥ −1 + ρ |/

√
∆t(

I1

P1

1

β1

− I2

P2

1

β2

)
≥ −1 + ρ√

∆t

B.4. Probability p4

Basic equation found in [2] [11.d]

p4 =
1

4

{
1 + ρ+

√
η

(
−µ1

σ1

− µ2

σ2

)}
=

1

4

{
1 + ρ+

√
∆t

(
I1

P1

1

β1

+
I2

P2

1

β2

)}
(B.11)

94

B. Appendix - Derivation of bounding factor ψ

Solved for p4 ≤ 1

1

4

{
1 + ρ+

√
∆t

(
I1

P1

1

β1

+
I2

P2

1

β2

)}
≤ 1 | × (4) (B.12){

1 + ρ+
√

∆t

(
I1

P1

1

β1

+
I2

P2

1

β2

)}
≤ 4 | − 1− ρ

√
∆t

(
I1

P1

1

β1

+
I2

P2

1

β2

)
≤ 3− ρ |/

√
∆t(

+
I1

P1

1

β1

+
I2

P2

1

β2

)
≤ 3− ρ√

∆t

Solved for p4 ≥ 0

1

4

{
1 + ρ+

√
∆t

(
I1

P1

1

β1

+
I2

P2

1

β2

)}
≥ 0 | × (4) (B.13){

1 + ρ+
√

∆t

(
I1

P1

1

β1

+
I2

P2

1

β2

)}
≥ 0 | − 1− ρ

√
∆t

(
I1

P1

1

β1

+
I2

P2

1

β2

)
≥ −1− ρ |/

√
∆t(

I1

P1

1

β1

+
I2

P2

1

β2

)
≥ −1− ρ√

∆t

B.5. Evaluation of extrema

Let the ratio of the technically allowable investment in a project Iimaxt
against it's esti-

mated cost Pi be subject to the following constraint B.14.

0 ≤
I1maxt

P1

,
I2maxt

P2

, . . . ,
Imaxt

P
≤ 1 (B.14)

Then we will solve the inequalities given in B.1 to B.4 for the worst-case scenarios that
still must satisfy the conditions. This is done by either setting Ii

Pi
to zero or one in order to

achieve a maximum for the lesser-equal relations (and vice-versa a minimum for greater-
equal constraints). Hence we will deduce a bounding factor ψ that further constrains
the tolerable solution space and thus ensure that only non-negative probabilities smaller
than one occur.

95

B. Appendix - Derivation of bounding factor ψ

Derived from pi <= 1

max

[
− I1

P1

1

β1

− I2

P2

1

β2

]
= 0 ≤ 3− ρ√

∆t
→ ψ1

1 ≤ ∞ (B.15)

max

[
− I1

P1

1

β1

+
I2

P2

1

β2

]
=

1

β2

≤ 3 + ρ√
∆t
→ ψ1

2 ≤
3 + ρ√

∆t
β2

max

[
+
I1

P1

1

β1

− I2

P2

1

β2

]
=

1

β1

≤ 3 + ρ√
∆t
→ ψ1

3 ≤
3 + ρ√

∆t
β1

max

[
+
I1

P1

1

β1

+
I2

P2

1

β2

]
=

β2 + β1

β1β2

≤ 3− ρ√
∆t
→ ψ1

4 ≤
3− ρ√

∆t

β1β2

β2 + β1

Derived from pi >= 0

min

[
− I1

P1

1

β1

− I2

P2

1

β2

]
= −β2 + β1

β1β2

≥ −1− ρ√
∆t

→ ψ0
1 ≤

1 + ρ√
∆t

β1β2

β2 + β1

(B.16)

min

[
− I1

P1

1

β1

+
I2

P2

1

β2

]
= − 1

β1

≥ +1− ρ√
∆t

→ ψ0
2 ≤

1− ρ√
∆t

β1

min

[
+
I1

P1

1

β1

− I2

P2

1

β2

]
= − 1

β2

≥ +1− ρ√
∆t

→ ψ0
3 ≤

1− ρ√
∆t

β2

min

[
+
I1

P1

1

β1

+
I2

P2

1

β2

]
= 0 ≥ −1− ρ√

∆t
→ ψ0

4 ≥ −∞

Conclusion

Since the coe�cient of correlation ρ is restricted to values between or equal to +1 and −1
the inequalities given in the lower section will be determining for the bounding factor ψ.
This is also due to the sum of p1, p2, p3 and p4 must always equal one and therefore the
more closeness of all probabilities to zero than to one. As we don't wish to invest more
than necessary we will also consider one as bounding factor and chose the minimum of
the available factors. For simplicity we omit the upper section. Equation B.17 illustrates
the selection of a suitable bounding factor ψ.

ψ = min[1, ψ0
1, ψ

0
2, ψ

0
3] = min[1,

1 + ρ√
dt

β1β2

β1 + β2

,
1− ρ√
dt
β1,

1− ρ√
dt
β2] (B.17)

96

C. Appendix - R Code

Below the R scripts for parameter de�nition and the dynamic programming routines are
provided. These and all program codes utilized to create simulations and �gures are also
available on the author's public SVN repository https://riouxsvn.com/svn/projectspublic.
Interested readers might also receive the codes upon request from the author Sebas-
tian Rötzer, BSc. (roetzer.sebastian@gmail.com) or his supervisor Prof. Dr. Dangl
(thomas.dangl@tuwien.ac.at).

C.1. De�nitions

R/000�de�nitions.R
1 #−−
#stochas t ic projectmanagement − dynamic optimization of investment under cost−uncertainty

3 #−−
#program 0 − de f in i t ions of g loba l var iab les

5 #Sebastian Roetzer
#e0726857

7 #05−04−2013
#Vienna University of Technology

9
#def in i t ion of g loba l functions

11 #−−

13
CRRA − Constant Relative Risk Aversion − Function de f in i t ion

15
u t i l i t yFunc <− function (consumption ,gamma)

17 {
i f (gamma == 1)

19 {
uc <− log (consumption)

21 }
else

23 {
uc <− ((consumption) ^(1 − gamma) − 1)/ (1 − gamma)

25 }
return (uc)

27 }

29 ## CRRA − Gradient function de f in i t ion

31 ut i l i t yGrad <− function (consumption ,gamma)
{

33 i f (gamma == 1)
{

35 ucg <− 1/consumption
}

37 else
{

39 ucg <− (consumption)^(−gamma)
}

41 return (ucg)
}

43
#def in i t ion of g loba l var iab les

45 #−−

47 ##inherent var iab les
#−−

49
#in i t i a l price estimation from which the geometric random walk i s unfolded

51 pr iceGuess0 <− c (1000 ,1000)

97

C. Appendix - R Code

53 #reward i s d i s t r i bu ted as the margin of remaining cost i s reached
rewardMargin <− c (10 ,10)#,1)#0.05 ∗ priceGuess0

55
#rela t ion of rewardMargin to the i n i t i a l priceGuess0

57 lambda <− rewardMargin/pr iceGuess0

59 #allow the a l e f t s h i f t of the whole cost−grid −> a bandwidth of i n i t i a l price guesses w i l l be
ca lcu lated

s h i f t <− 0
61 s h i f t <− max(0 , s h i f t)

63 #vo l a t i l i t y (per time−unit) of the examined project
beta <− c (0 . 2 0 , 0 . 2 0)

65
#discount rate

67 r <− 0 .05

69 #u t i l i t y discount rate (intertemporal e l a s t i c i t y of subs t i tu t ion)
kappa <− 0 .05

71
#maximum ava i lab l e time for completion

73 Tmax <− 10

75 #reward for project completion
reward <− c (5000 ,6000)

77
#risk aversion parameter for the u t i l i t y function

79 gamma <− 1

81
##arbi trary var iab les

83 #−−−

85 #desired time in terva l for the computational grid
dt <− 1/20#1/100

87
#maximal f e a s i b l e time reso lut ion in order to reach the reward margin within Tmax (dt < dtmax i s

pre ferab le)
89 dtMax <− (−Tmax∗beta/log (rewardMargin/priceGuess0 ,))^2

91 #shoud dt exceed dtMax −> coerce to dtMax , send a warning message
i f (dt > min(dtMax))

93 {
dt <− min(dtMax)

95 print (paste ("WARNING! dt coerced to : " ,dt , sep=""))
}

97
#resolut ion of the computational gr ids time−axis

99 tCount <− Tmax/dt

101
##derived var iab les

103 #−−

105 #preparation of the u(p−) and d(own−ward) movements in the geometric random walk
#the standard dev of p becomes beta whi l s t the expected value stays E[p(t+1)] = p(t)

107 u <− exp(beta ∗ sqrt (dt))
d <− 1/u

109

111 uti lReward <− ut i l i t yFunc (reward/priceGuess0 ,gamma)

C.2. 1-dimensional dynamic programming

R/101�optimization�of�investment�behavior.R
1 #−−
#stochas t ic projectmanagement − dynamic optimization of investment under cost−uncertainty

3 #−−
#program 1 − dynamic optimization of investment in a s ing l e project

5 #
#Sebastian Roetzer

7 #e0726857
#03−01−2013

9 #Vienna University of Technology

11
#def in i t ion of l oca l functions

13 #−−

15 ## pi Probabi l i ty

17 pi1DFunc <− function (I , pF , dt)
{

19 return (max(0 , (1 − d − (I/pF) ∗ dt)/ (u − d)))

98

C. Appendix - R Code

}
21

23
function of investment u t i l i t y

25
invest1DFunc <− function (I , ImaxF , t i , fo , pF)

27 {
uVFunc <− ut i l i t yFunc ((ImaxF − I)/sc ,gamma) ∗ dt +

29 1/ (1 + kappa)^dt ∗ (((1 − d [1] − (I/pF) ∗ dt)/ (u [1] − d [1])) ∗ V[pOf f s e t+fo+1, tO f f s e t+t i
+1] +

(1 − ((1 − d [1] − (I/pF) ∗ dt)/ (u [1] − d [1]))) ∗ V[pOf f se t+fo −1, tO f f s e t+t i +1])
31

return (uVFunc)
33 }

35
gradient of investment u t i l i t y

37
invest1DGrad <− function (I , ImaxF , t i , fo , pF)

39 {
uVGrad <− ut i l i t yGrad ((ImaxF − I)/sc ,gamma) ∗ dt ∗ (−1/ sc) +

41 1/ (1 + kappa)^dt ∗ 1/ (u [1] − d [1]) ∗ (dt/pF) ∗ (V[pOf f s e t+fo −1, tO f f s e t+t i +1] −
V[pOf f se t+fo+1, tO f f s e t+t i +1])

43
return (uVGrad)

45 }

47 ## gradient inner so lut ion

49 inves t1DSo l Int <− function (ImaxF , t i , fo , pF)
{

51 I <− ImaxF − ((sc)^(1−gamma) ∗ (1/ (1 + kappa)^dt) ∗ (1/ (u [1] − d [1])) ∗ (1/pF) ∗
((V[pOf f s e t+fo −1, tO f f s e t+t i +1] − V[pOf f se t+fo+1, tO f f s e t+t i +1])))^(−1/gamma)

53 I <− max(0 , I)

55 return (I)
}

57

59 #def in i t ion of l oca l var iab les
#−−

61
#strategy case se l ec tor

63 s t r a t egy <− 3
#0: no investment ac t i v i t y

65 #1: constant r e l a t i v e investment ac t i v i t y
#2: constant absolute investment ac t i v i t y

67 #3: use CRRA u t i l i t y function and gradient based optimization

69 #boolean strategy se l ec tor var iab le (a f fec ted by strategy 3)
useOptim <− FALSE

71
switch (s t r a t egy+1,

73 { investment <− 0} ,
{ inves tQpr i c e <− 1} ,#to l e rab l e maximum is (1−d)/dt) , larger iQp has no e f f e c t

75 { investment <− pr iceGuess0 [1] /Tmax} ,
{useOptim <− TRUE}

77)

79 #calcu lat ion of probab i l i t y pi for the waiting case
piWait <− (1 − d [1]) / (u [1] − d [1])

81
#calcu la te the maximum to l e rab l e investment

83 ImaxF <− reward [1] / (1 + r)^Tmax

85 #set the sca l ing factor for the CRRA u t i l i t y function of investment
sc <− ImaxF

87
#the u t i l i t y of unspent monetary units in a timestep (i . e . consumation)

89 ut i lWait <− ut i l i t yFunc (ImaxF/sc ,gamma) ∗ dt # = 0

91
#necessary o f f s e t for the matrix ca lcu la t ion (set the price pointer to the grids centre)

93 pOf f s e t <− tCount+s h i f t+1
tO f f s e t <− 1

95
#create matrices for the value function [V] and suggested behavior [a]

97 #also create matrices for the up−move probab i l i t y [p] and accumulated success probab i l i t y [P]
V <− matrix (NA,nrow=2∗(tCount+s h i f t)+1,ncol=tCount+1)

99 a <− matrix (NA,nrow=2∗(tCount+s h i f t)+1,ncol=tCount+1)
pi <− matrix (NA,nrow=2∗(tCount+s h i f t)+1,ncol=tCount+1)

101 PI <− matrix (NA,nrow=2∗(tCount+s h i f t)+1,ncol=tCount+1)

103 #f i l l the l a s t column as preparation for dynamic programming
#as the time−border i s reached without passing the reward margin

105 #the value function becomes 0; in case of s trategy 3 the ava i lab l e cash i s consumed
V[, tO f f s e t+tCount] <− switch (1 + useOptim , 0 , ut i lWait)

107 a [, tO f f s e t+tCount] <− 0
pi [, tO f f s e t+tCount] <− 0

99

C. Appendix - R Code

109 PI [, tO f f s e t+tCount] <− 0

111 #in i t i a l i z e with zeor errors
e r r o r <− 0

113
#dynamic optimization of investment behavior

115 #−−

117 #backward induction from Tmax to t = 0
for (t in (tCount−1) : (0))

119 {
#disp lay the time−step current ly under ca lcu la t ion

121 print (t∗dt)

123 #number of d i f f e r en t price−forks in the current time−step
f o r k s <− seq (from = −(t+s h i f t) , to = (t+s h i f t) , by = 2)

125
#compute the values for a l l price−forks

127 for (f in f o r k s)
{

129 #calcu la te the estimated remaining project cost in the fork
pr iceFork <− pr iceGuess0 [1] ∗ u [1]^ f

131
#should the reward margin exceed the remaining estimated cost set the value function to reward

133 i f (pr iceFork <= rewardMargin [1])
{

135 i f (useOptim == FALSE)
{

137 V[pOf f se t+f , tO f f s e t+t] <− reward [1]
}

139 else
{

141 V[pOf f se t+f , tO f f s e t+t] <− ut i lWait + uti lReward [1]
}

143
a [pOf f s e t+f , tO f f s e t+t] <− 0

145 pi [pOf f s e t+f , tO f f s e t+t] <− 0
PI [pOf f s e t+f , tO f f s e t+t] <− 1

147 }
#i f no reward i s d i s t r i bu ted to as fo l lows

149 else
{

151 i f (useOptim == FALSE)
{

153 #dynamic programming using pol icy guided decisions

155 #compute the value of waiting for the next fork to unfold without any investment ac t i v i t y
wait ingValue <− 0 + 1/(1+r)^dt ∗ (piWait ∗ V[pOf f se t+f +1, tO f f s e t+t+1] +

157 (1−piWait) ∗ V[pOf f se t+f −1, tO f f s e t+t+1])

159 #chose depending on strategy se l ec tor
switch (s t r a t egy+1,

161 {} ,
{ investment <− pr iceFork∗ i nve s tQpr i c e } ,

163 {} ,
{})

165
#due to investment ac t i v i t y a new probab i l i t y pi has to be computed

167 piAct <− pi1DFunc (investment , pr iceFork , dt)

169 #compute the value of th i s fork with respect to the investment ac t i v i t y undertaken
act ingValue <− −investment ∗ dt + 1/(1+r)^dt ∗ (piAct ∗ V[pOf f se t+f +1, tO f f s e t+t+1] +

171 (1−piAct) ∗ V[pOf f se t+f −1, tO f f s e t+t+1])

173 #determine whether to wait or to invest in th i s node
i f (wait ingValue > act ingValue)

175 { #set the value function to the value of waiting , p lo t a grey coloured l ine to the over lying
node

V[pOf f se t+f , tO f f s e t+t] <− wait ingValue
177 a [pOf f s e t+f , tO f f s e t+t] <− 0

pi [pOf f se t+f , tO f f s e t+t] <− piWait
179 PI [pOf f se t+f , tO f f s e t+t] <− piWait ∗ PI [pOf f s e t+f +1, tO f f s e t+t+1] +

(1−piWait) ∗ PI [pOf f s e t+f −1, tO f f s e t+t+1]
181 }

else
183 { #set the value function to th value of investing , p lo t a blue coloured l ine to the

over lying node
V[pOf f se t+f , tO f f s e t+t] <− act ingValue

185 a [pOf f s e t+f , tO f f s e t+t] <− −investment ∗ dt
pi [pOf f se t+f , tO f f s e t+t] <− piAct

187 PI [pOf f se t+f , tO f f s e t+t] <− piAct ∗ PI [pOf f s e t+f +1, tO f f s e t+t+1] +
(1−piAct) ∗ PI [pOf f s e t+f −1, tO f f s e t+t+1]

189 }
}

191 else
{

193 #dynamic programming using an u t i l i t y function and gradient based optimization

195 #calcu la te ImaxT
ImaxT <− pr iceFork ∗ ((1−d [1]) /dt)

100

C. Appendix - R Code

197
Imax <− min(ImaxF , ImaxT)

199
#i f (invest1DGrad (0 ,ImaxF, t , f , priceFork)>0){print (paste("+0 :" , f , sep=""))}

201 #i f (invest1DGrad(Imax , ImaxF, t , f , priceFork)>0){print (paste("+max :" , f , sep=""))}

203 gr0 <− invest1DGrad (0 , ImaxF , t , f , pr i ceFork)
grm <− invest1DGrad (Imax , ImaxF , t , f , pr i ceFork)

205
i f (gr0 < 0)

207 {
#print ("wait ")

209
#compute the value of waiting for the next fork to unfold without any investment ac t i v i t y

211 wait ingValue <− ut i lWait + 1/(1+kappa)^dt ∗ (piWait ∗ V[pOf f se t+f +1, tO f f s e t+t+1] +
(1−piWait) ∗ V[pOf f se t+f −1, tO f f s e t+t+1])

213
V[pOf f s e t+f , tO f f s e t+t] <− wait ingValue

215 a [pOf f s e t+f , tO f f s e t+t] <− 0
pi [pOf f se t+f , tO f f s e t+t] <− piWait

217 PI [pOf f se t+f , tO f f s e t+t] <− piWait ∗ PI [pOf f s e t+f +1, tO f f s e t+t+1] +
(1−piWait) ∗ PI [pOf f s e t+f −1, tO f f s e t+t+1]

219 }
else

221 {
i f (grm > 0)

223 {
#print (" invest_max")

225
piAct <− pi1DFunc (Imax , pr iceFork , dt)

227
V[pOf f se t+f , tO f f s e t+t] <− invest1DFunc (Imax , ImaxF , t , f , pr i ceFork)

229 a [pOf f se t+f , tO f f s e t+t] <− −Imax ∗ dt
pi [pOf f se t+f , tO f f s e t+t] <− piAct

231 PI [pOf f s e t+f , tO f f s e t+t] <− piAct ∗ PI [pOf f s e t+f +1, tO f f s e t+t+1] +
(1−piAct) ∗ PI [pOf f s e t+f −1, tO f f s e t+t+1]

233 }
else

235 {
#print (" invest_par t ia l ")

237
investment <− inves t1DSo l Int (ImaxF , t , f , pr i ceFork)

239
act ingValue <− uniroot (invest1DGrad , i n t e r v a l = c (0 , Imax) , ImaxF = ImaxF , t i = t , f o = f , pF =

pr iceFork)
241 investmentAlt <− act ingValue$ root

243 i f (abs (investment − investmentAlt)>1e−03)
{

245 print ("ERROR")
e r r o r <− e r r o r + 1

247 }

249 piAct <− pi1DFunc (investment , pr iceFork , dt)

251
V[pOf f s e t+f , tO f f s e t+t] <− invest1DFunc (investment , ImaxF , t , f , pr i ceFork)

253 a [pOf f se t+f , tO f f s e t+t] <− +investment ∗ dt
pi [pOf f se t+f , tO f f s e t+t] <− piAct

255 PI [pOf f s e t+f , tO f f s e t+t] <− piAct ∗ PI [pOf f s e t+f +1, tO f f s e t+t+1] +
(1−piAct) ∗ PI [pOf f s e t+f −1, tO f f s e t+t+1]

257 }
}

259
}

261

263 }
}

265 }

267
print (paste ("V.0 = " ,max(V[, 1] ,na .rm=TRUE) , sep=""))

269
print (paste ("PI . 0 = " ,max(PI [, 1] ,na .rm=TRUE) , sep=""))

271
e r r o r

C.3. 2-dimensional dynamic programming

R/211�portfolio�optim.R
#−−

2 #stochas t ic projectmanagement − dynamic optimization of investment under cost−uncertainty
#−−

101

C. Appendix - R Code

4 #program 1 − dynamic optimization of investment in a s ing l e project
#

6 #Sebastian Roetzer
#e0726857

8 #03−01−2013
#Vienna University of Technology

10
#def in i t ions of l oca l var iab les

12 #−−

14
#l ibrary (rg l)

16
#FALSE to skip diagram t i t l e (for export) , TRUE to disp lay i t

18 d i s p l a yT i t l e <− FALSE

20
#reward i s d i s t r i bu ted as the margin of remaining cost i s reached

22 #rewardMargin <− priceGuess0 ∗ 0.1

24 #discount rate
#r <− 0.05

26
#vo l a t i l i t y (per time−unit) of the examined project

28 #beta <− c (0.20 ,0.20)

30 rho <− 0 .5

32 #maximum ava i lab l e time for completion
#T <− 5

34
#desired time in terva l for the computational grid

36 #dt <− 1/40#100

38 #maximal f e a s i b l e time reso lut ion in order to reach the reward margin within T (dt < dtmax i s
pre ferab le)

#dtMax <− (−T∗beta/ log (rewardMargin/priceGuess0 ,))^2
40

#shoud dt exceed dtMax −> coerce to dtMax , send a warning message
42 #i f (dt>dtMax)

#{
44 # dt <− dtMax

print (paste ("WARNING! dt coerced to :" , dt , sep=""))
46 #}

48 #resolut ion of the computational gr ids time−axis
#tCount <− T/dt

50
#preparation of the u(p−) and d(own−ward) movements in the geometric random walk

52 #the standard dev of p becomes beta whi l s t the expected value stays E[p(t+1)] = p(t)
#u <− exp(beta ∗ sqr t (dt))

54 #d <− 1/u

56
#bounding factor psi

58 p s i <− min (1 , ((1 + rho)/sqrt (dt))∗ ((beta [1] ∗beta [2]) / (beta [1] + beta [2])) ,beta [1] ∗ ((1 − rho)/sqrt (dt)
) ,beta [2] ∗ ((1 − rho)/sqrt (dt)))

60 #ImaxF
ImaxF <− min(reward/ (1 + r)^Tmax)

62
sc <− ImaxF

64
ut i lWait <− ut i l i t yFunc (ImaxF/sc ,gamma) ∗ dt # = 0

66
#####inser t######

68 #strategy <− 1
#ca lcu la te the quotient of investment against remaining price that ensures a down−move (i . e .

remaining price
70 #is reduced) ; the p o s s i b i l i t y to pay more than estimated i s neglected , thus for dt−>0 a down−move

cannot be assured
#investQprice <− min(1,(1−d)/dt)

72

74
#allow the a l e f t s h i f t of the whole cost−grid −> a bandwidth of i n i t i a l price guesses w i l l be

ca lcu lated
76 #sh i f t <− 0

#sh i f t <− max(0 , s h i f t)
78

#necessary o f f s e t for the matrix ca lcu la t ion (set the price pointer to the grids centre)
80 pOf f s e t <− tCount+s h i f t+1

tO f f s e t <− 1
82

84 fO f f s e t <− 2

86 #create matrices for the value function [V] and suggested behavior [a]
V <− array (c (NA,NA,NA) ,c (tCount+1,2∗(tCount+s h i f t)+1,2∗(tCount+s h i f t)+1))

88

102

C. Appendix - R Code

a <− array (c (NA,NA,NA,NA) ,c (tCount+1,2∗(tCount+s h i f t)+1,2∗(tCount+s h i f t) +1 ,2))
90 #also create matrices for the up−move probab i l i t y [pi] and accumulated success probab i l i t y [PI]

pi <− array (c (NA,NA,NA,NA) ,c (tCount+1,2∗(tCount+s h i f t)+1,2∗(tCount+s h i f t) +1 ,4))
92

PI <− array (c (NA,NA,NA,NA) ,c (tCount+1,2∗(tCount+s h i f t)+1,2∗(tCount+s h i f t) +1 ,3))
94

#break
96

#f i l l the l a s t column −> as the time−border i s reached without passing the reward margin the value
function becomes 0

98 V[tO f f s e t+tCount , ,] <− ut i lWait
a [tO f f s e t+tCount , , ,] <− c (0 , 0)

100 pi [tO f f s e t+tCount , , ,] <− c (0 , 0 , 0 , 0)
PI [tO f f s e t+tCount , , ,] <− c (0 , 0 , 0)

102

104 e r r o r <− FALSE
#d <− array (c(NA,NA,NA,NA) ,c (2 ,2 ,1 ,2))

106 #d[1 ,1 ,1 ,] <− c (1 ,2)

108 ## pi Probabi l i ty function de f in i t ion
#−−

110
pi2DFunc <− function (I , pF , beta , rho)

112 {
prob <− c (0 , 0 , 0 , 0)

114 prob [1] <− 0 .25 ∗ (1 + rho + sqrt (dt) ∗ ((− I [1] / (pF [1] ∗beta [1]))+(−I [2] / (pF [2] ∗beta [2]))))
prob [2] <− 0 .25 ∗ (1 − rho + sqrt (dt) ∗ ((− I [1] / (pF [1] ∗beta [1]))−(−I [2] / (pF [2] ∗beta [2]))))

116 prob [3] <− 0 .25 ∗ (1 − rho + sqrt (dt) ∗ ((+ I [1] / (pF [1] ∗beta [1]))+(−I [2] / (pF [2] ∗beta [2]))))
prob [4] <− 0 .25 ∗ (1 + rho + sqrt (dt) ∗ ((+ I [1] / (pF [1] ∗beta [1]))+(+I [2] / (pF [2] ∗beta [2]))))

118
#i f (sum(prob) != 1)

120 # {print (paste ("ERROR, pi = " ,prob ," sum = " ,sum(prob) , sep = ""))
#}

122 i f (max(prob) > 1) {print ("ERROR") }

124 return (prob)
}

126
#pi2DFunc <− function (I ,pF, beta , rho)

128 piWait <− pi2DFunc (c (0 , 0) ,c (1 , 1) ,beta , rho)

130 ## investment function de f in i t ion − dynamic programming of u t i l i t y function
#−−

132
invest2DFunc <− function (I , ImaxF , sc , t i , fo , br , pF)

134 {
pr <− pi2DFunc (I , pF , beta , rho)

136
UValue <− ut i l i t yFunc ((ImaxF − I [1] − I [2]) /sc ,gamma)∗dt + 1/ (1 + kappa)^dt ∗ (pr [1] ∗ V[tO f f s e t+t i

+1, pOf f s e t+fo+1, pOf f s e t+br+1] + pr [2] ∗ V[tO f f s e t+t i +1, pOf f s e t+fo+1, pOf f se t+br−1] + pr [3] ∗ V[
tO f f s e t+t i +1, pOf f s e t+fo −1, pOf f s e t+br+1] + pr [4] ∗ V[tO f f s e t+t i +1, pOf f s e t+fo −1, pOf f s e t+br−1])

138
return (UValue)

140 }

142
GRADIENT

144 #−−

146 invest2DGrad <− function (I , ImaxF , sc , br , pF , rho ,dt , beta ,gamma,kappa , Vold , fO f f s e t , pOffset , u t i l i tyFunc ,
u t i l i t yGrad)

{
148 UIgrad <− c (0 , 0)

150 UIgrad [1] <− ut i l i t yGrad ((ImaxF − I [1] − I [2]) /sc ,gamma) ∗ dt ∗ (−1/ sc) +
1/ (1 + kappa)^dt ∗ (0 . 25/ (pF [1] ∗beta [1])) ∗ sqrt (dt) ∗(−Vold [fO f f s e t +1, pOf f se t+br+1] − Vold [

fO f f s e t +1, pOf f s e t+br−1] + Vold [fO f f s e t −1, pOf f s e t+br+1] + Vold [fO f f s e t −1, pOf f s e t+br−1])
152

UIgrad [2] <− ut i l i t yGrad ((ImaxF − I [1] − I [2]) /sc ,gamma) ∗ dt ∗ (−1/ sc) +
154 1/ (1 + kappa)^dt ∗ (0 . 25/ (pF [2] ∗beta [2])) ∗ sqrt (dt) ∗(−Vold [fO f f s e t +1, pOf f se t+br+1] + Vold [

fO f f s e t +1, pOf f s e t+br−1] − Vold [fO f f s e t −1, pOf f s e t+br+1] + Vold [fO f f s e t −1, pOf f s e t+br−1])

156 return (UIgrad)
}

158
GRADIENT inner so lut ion

160 #−−

162 inves t2DIntSo l <− function (I , ImaxF , sc , br , pF , rho ,dt , beta ,gamma,kappa , Vold , fO f f s e t , pOff , u t i l i tyFunc ,
u t i l i t yGrad)

{
164 Inner <− c (0 , 0)

166 Inner [1] <− ImaxF − I [2] − sc ∗ ((sc/ (1 + kappa)^dt) ∗ (0 . 25/ (pF [1] ∗beta [1])) ∗ (1/sqrt (dt)) ∗(−
Vold [fO f f s e t +1, pOf f se t+br+1] − Vold [fO f f s e t +1, pOf f se t+br−1] + Vold [fO f f s e t −1, pOf f s e t+br+1] +
Vold [fO f f s e t −1, pOf f s e t+br−1]))^(−1/gamma)

168 Inner [2] <− ImaxF − I [1] − sc ∗ ((sc/ (1 + kappa)^dt) ∗ (0 . 25/ (pF [2] ∗beta [2])) ∗ (1/sqrt (dt)) ∗(−
Vold [fO f f s e t +1, pOf f se t+br+1] + Vold [fO f f s e t +1, pOf f s e t+br−1] − Vold [fO f f s e t −1, pOf f s e t+br+1] +

103

C. Appendix - R Code

Vold [fO f f s e t −1, pOf f s e t+br−1]))^(−1/gamma)

170 return (Inner)
}

172

174
Five−point optimization

176 #−−

178 optimMultiDim <− function (ImaxT , ImaxF , sc , br , pF , rho ,dt , beta ,gamma, Vold , fO f f s e t , pOffset , u t i l i tyFunc ,
ut i l i tyGrad , invest2Dgrad , inves t2DIntSo l)

{
180 gradDim <− length (ImaxT)

#gradDim
182 blockIndex <− NULL

#blockIndex
184 I <− rep (0 , gradDim)

#I
186 gIndex <− NULL

gStart <− NULL
188

190 for (i in 1 : gradDim)
{

192 gStart <−invest2DGrad (I , ImaxF , sc , br , pF , rho ,dt , beta ,gamma,kappa , Vold , fO f f s e t , pOffset , u t i l i tyFunc ,
u t i l i t yGrad)

194 #print (gStart)

196 i f (length (blockIndex) != 0)
{

198 #gStmp <− gStart [−blockIndex]
gStart [b lockIndex] <− −I n f

200 #ImTtmp <− ImaxT[−blockIndex]
ImaxT [blockIndex] <− 0

202 } else
{

204 #gStmp <− gStart
#ImTtmp <− ImaxT

206 }
#gStmp

208 #ImTtmp
#gStart

210 #ImaxT

212 #gIndex <− which(gStmp==max(gStmp))
gIndex <− which (gStart == max(gStart))

214
i f (length (gIndex) > 1)

216 {gIndex <− gIndex [1+round(runif (1)∗(length (gIndex)−1) ,0)] }
gIndex

218
#print (gStart [gIndex])

220 i f (gStart [gIndex] <= 0)
{

222 #gStart
return (I)

224 #break
} else

226 {
Itmp <− I

228 Itmp [gIndex] <− min(ImaxT [gIndex] , ImaxF − sum(I))

230 gEnd <− invest2DGrad (Itmp , ImaxF , sc , br , pF , rho ,dt , beta ,gamma,kappa , Vold , fO f f s e t , pOffset ,
u t i l i tyFunc , u t i l i t yGrad)

232 #gEtmp <− gEnd[−blockIndex]

234 i f (gEnd [gIndex] > 0)
{

236 #print (" f u l l invest ")

238 I [gIndex] <− Itmp [gIndex]

240 blockIndex <− c (blockIndex , gIndex)

242 #ImaxT <− ImaxT − sum(I)
}

244 else
{

246 #print (" par t ia l invest ")

248 Itmp <− inves t2DIntSo l (I , ImaxF , sc , br , pF , rho ,dt , beta ,gamma,kappa , Vold , fO f f s e t , pOffset ,
u t i l i tyFunc , u t i l i t yGrad)

250 I [gIndex] <− Itmp [gIndex]

252 blockIndex <− c (blockIndex , gIndex)

104

C. Appendix - R Code

254 break
}

256 }
}

258 #I
return (I)

260 }

262

264 #dynamic optimization of investment behavior
#−−

266
#backward induction from T to t = 0

268 for (t in (tCount−1) : (0))
{

270 #disp lay the time−step current ly under ca lcu la t ion
#print (t∗dt)

272
#number of d i f f e r en t price−forks in the current time−step

274 f o r k s <− seq (from = −(t+s h i f t) , to = (t+s h i f t) , by = 2)
branches <− f o r k s

276 #determine whether to p lo t a l ine in the so lut ion graph or not (based on t , T and dt)
#plotEnable <− round(t/plotDis t) == t/plotDis t | | t == (tCount−1)

278
#print (paste (forks , branches , sep=""))

280 i f (e r r o r == TRUE){break}

282 #compute the values for a l l price−forks
for (f in f o r k s)

284 {
#calcu la te the estimated remaining project cost in the fork

286 pr iceFork <− pr iceGuess0 [1] ∗u [1]^ f

288 print (paste (" (" , t∗dt , " | " , f , ") " , sep=""))

290 i f (e r r o r == TRUE){break}

292 Vold <− V[tO f f s e t+t+1 ,(pOf f s e t+f−1) : (pOf f s e t+f+1) ,]

294 for (b in branches)
{

296 priceBranch <− pr iceGuess0 [2] ∗u [2]^ b

298 #print (paste ("(" , t∗dt ," | " , f ," | " ,b ,") " , sep=""))

300 pF <− c (pr iceFork , pr iceBranch)

302

304 #should the reward margin exceed the remaining estimated cost set the value function to reward
i f (pr iceFork>rewardMargin [1] && priceBranch>rewardMargin [2])

306 {
ImaxT <− pF∗ps i

308

310 investment <− optimMultiDim (ImaxT , ImaxF , sc , br=b , pF=pF , rho ,dt , beta ,gamma, Vold , fO f f s e t , pOffset ,
u t i l i tyFunc , ut i l i tyGrad , invest2DGrad , inves t2DIntSo l)

312
V[tO f f s e t+t , pOf f s e t+f , pOf f s e t+b] <− invest2DFunc (investment , ImaxF , sc , t i=t , f o=f , br=b , pF)

314

316 a [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b ,] <− −investment∗dt

318
pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b ,] <− pi2DFunc (investment , pF , beta , rho)

320

322
PI [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 1] <− pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 1] ∗ PI [tO f f s e t+t+1,

pOf f s e t+f +1, pOf f s e t+b+1 ,1] + pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 2] ∗ PI [tO f f s e t+t+1, pOf f s e t
+f +1, pOf f se t+b−1 ,1] + pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 3] ∗ PI [tO f f s e t+t+1, pOf f s e t+f −1,
pOf f s e t+b+1 ,1] + pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 4] ∗ PI [tO f f s e t+t+1, pOf f s e t+f −1, pOf f s e t
+b−1 ,1]

324
PI [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 2] <− pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 1] ∗ PI [tO f f s e t+t+1,

pOf f s e t+f +1, pOf f s e t+b+1 ,2] + pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 2] ∗ PI [tO f f s e t+t+1, pOf f s e t
+f +1, pOf f se t+b−1 ,2] + pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 3] ∗ PI [tO f f s e t+t+1, pOf f s e t+f −1,
pOf f s e t+b+1 ,2] + pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 4] ∗ PI [tO f f s e t+t+1, pOf f s e t+f −1, pOf f s e t
+b−1 ,2]

326
PI [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 3] <− pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 1] ∗ PI [tO f f s e t+t+1,

pOf f s e t+f +1, pOf f s e t+b+1 ,3] + pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 2] ∗ PI [tO f f s e t+t+1, pOf f s e t
+f +1, pOf f se t+b−1 ,3] + pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 3] ∗ PI [tO f f s e t+t+1, pOf f s e t+f −1,
pOf f s e t+b+1 ,3] + pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 4] ∗ PI [tO f f s e t+t+1, pOf f s e t+f −1, pOf f s e t
+b−1 ,3]

328

330 i f (abs (V[tO f f s e t+t , pOf f s e t+f , pOf f s e t+b]) > max(abs (V[tO f f s e t+t+1, pOf f s e t+f +1, pOf f s e t+b+1]) ,

105

C. Appendix - R Code

abs (V[tO f f s e t+t+1, pOf f s e t+f +1, pOf f s e t+b−1]) ,
332 abs (V[tO f f s e t+t+1, pOf f s e t+f −1, pOf f s e t+b+1]) ,

abs (V[tO f f s e t+t+1, pOf f s e t+f −1, pOf f s e t+b−1])))
334 {

e r r o r <− TRUE
336 print ("ERROR detected ")

print (paste (" t = " , t , " f = " , f , " b = " ,b , sep=""))
338 print (paste ("V(t) = " ,V[tO f f s e t+t , pOf f s e t+f , pOf f s e t+b] , sep=""))

print (paste ("V(t , f +,b+) = " ,V[tO f f s e t+t+1, pOf f s e t+f +1, pOf f s e t+b+1] , sep=""))
340 print (paste ("V(t , f +,b−) = " ,V[tO f f s e t+t+1, pOf f s e t+f +1, pOf f s e t+b−1] , sep=""))

print (paste ("V(t , f−,b+) = " ,V[tO f f s e t+t+1, pOf f s e t+f −1, pOf f s e t+b+1] , sep=""))
342 print (paste ("V(t , f−,b+) = " ,V[tO f f s e t+t+1, pOf f s e t+f −1, pOf f s e t+b−1] , sep=""))

344 print (paste (" i nv e s t = " , investment , sep=""))
print (paste ("piAct = " , pi2DFunc (investment , pF , beta , rho) , sep=""))

346 print (paste ("piWait = " , piWait , sep=""))

348 break
}

350
}

352 #i f no Bellman equation needs to be solved , the reward margin i s reached −> di s t r i bu t e a
renumeration

else
354 {

payout <− ut i lWait
356

PI [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 1] <− 0
358

PI [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 2] <− 0
360

i f (pr iceFork <= rewardMargin [1])
362 {

payout <− payout + uti lReward [1]
364

PI [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 1] <− 1
366 }

368 i f (pr iceBranch <= rewardMargin [2])
{

370 payout <− payout + uti lReward [2]

372 PI [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 2] <− 1
}

374

376 V[tO f f s e t+t , pOf f s e t+f , pOf f s e t+b] <− payout

378 a [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b ,] <− c (0 , 0)

380 pi [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b ,] <− c (0 , 0 , 0 , 0)

382 PI [tO f f s e t+t , pOf f s e t+f , pOf f s e t+b , 3] <− 1

384 }
}

386

388 }
}

390

392 print (paste ("V.0 = " ,max(V[1 , ,] ,na .rm=TRUE) , sep=""))

394 print (paste ("PI . 0 = " ,max(PI [1 , , , 3] ,na .rm=TRUE) , " (" ,max(PI [1 , , , 1] ,na .rm=TRUE) , " , " ,max(PI [1 , , , 2] ,na .
rm=TRUE) , ") " , sep=""))

106

Bibliography

[1] Richard E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[2] Phelim P. Boyle, Jeremy Evnine, and Stephen Gibbs. Numerical evaluation of
multivatiate contingent claims. The Review of Financial Studies, Vol. 2(Nr. 2):pp.
241 � 250, 1989.

[3] John C. Cox, Stephen Ross, and Mark Rubinstein. Option pricing: A simpli�ed
approach. Journal of Financial Economics, Vol. 7:pp. 229 � 263, 1979.

[4] Morris H. DeGroot and Mark j. Schervish. Probability and Statistics. Pearson, 2011.

[5] Avinash K. Dixit and Robert S. Pindyck. Investment Under Uncertainty. Princeton
University Press, 1994.

[6] Shane Frederick, George Loewenstein, and Ted O'Donoghue. Time discounting and
time preference: A critical review. Journal of Economic Literature, Vol. 40:pp. 351
� 401, 2002.

[7] Paolo Guasoni and Walter Schachermayer. Necessary conditions of the existence
of utility maximizing strategies under transaction costs. Working paper, Boston
University, University of Pisa and Vienna University of Technology, 2004.

[8] Ken-Ichi Inada. On a two-sector model of economic growth. The Review of Eco-
nomic Studies, Vol. 30(Nr. 2):pp. 119 � 127, 1963.

[9] Jonathan E. Ingersoll. Theory of Financial Decision Making. Rowman and Little-
�eld Pubslishers, 1987.

[10] Lars Ljungqvist. Theory of Financial Decision Making. Massachusetts Institute of
technology, 2000.

[11] Robert S. Pindyck. Investments of uncertain cost. Journal of Financial Economics,
Vol. 34(Nr. 1):pp. 53 � 76, 1993.

[12] Sam S. Shapiro and Martin Bradbury Wilk. An analysis of variance test for nor-
mality. Biometrika, 1965.

[13] Richard M. H. Suen. Bounding the crra utility functions. Mpra paper, University
Library of Munich, Germany, 2009.

[14] Rangarajan K. Sundaram. A First Course In Optimization Theory. Cambridge
University Press, 1996.

107

	Introduction
	Fundamentals on dynamic programming
	Aim and references
	Dynamic programming of deterministic target functions
	An introduction based on Rangarajan K. Sundaram's A First Course In Optimization Theory
	A deterministic allocation process example from Richard E. Bellman's Dynamic Programming

	Dynamic programming of stochastic target functions
	A stochastic decision process example from Richard E. Bellman's Dynamic Programming
	Some thoughts on dynamic programming in stochastic processes following Dixit's and Pindyck's Investment Under Uncertainty

	Example A1 - Dynamic programming of project investment under uncertainty
	Project representation and variables
	Modelling of a project under uncertainty
	Geometric random walk of estimated cost
	Introducing investment activity
	Concerning variable constraints

	Applying the Bellman principle
	Strategy A1-0 - non-investment
	Investment considerations
	Dynamic programming of investment

	Strategy A1-1 - constant relative investment rates
	Investment considerations
	Dynamic programming of investment

	Strategy A1-2 - constant absolute investment rates
	Investment considerations
	Dynamic programming of investment

	Monte Carlo method and comparison of project turnouts

	Example A2 - dynamic programming of risk-averse project investment
	Introducing the CRRA utility function
	Modelling with risk-aversion
	Adjusting the Bellman equations
	Dynamic programming of investment
	Experiment A2-1, risk-aversion(= 1)
	Experiment A2-2, risk-aversion (= 3)
	Experiment A2-3, risk-aversion (= 6)

	Monte Carlo simulation and comparison

	Example B - dynamic programming of portfolio investment under uncertainty
	Modelling of portfolio investment
	Application of the CRRA utility function
	Derivation of probabilities and Bellman principle
	Dynamic programming results of portfolio investment
	Monte Carlo study of portfolio investment

	Conclusion
	Appendix - Monte Carlo simulation and distribution analysis
	Parameter estimation for continuous distributions
	Logarithmic normal distribution
	Gamma distribution

	Cash-flow analysis of actually launched projects
	Logarithmic normal distribution of cash-flows
	Normal distribution of logarithm of cash-flows
	Gamma distribution of cash-flows

	Analysis of remaining cost at t = T
	Logarithmic normal distribution of end remaining cost
	Normal distribution of logarithm of end remaining cost
	Gamma distribution of end remaining cost

	Appendix - Derivation of bounding factor
	Probability p1
	Probability p2
	Probability p3
	Probability p4
	Evaluation of extrema

	Appendix - R Code
	Definitions
	1-dimensional dynamic programming
	2-dimensional dynamic programming

