
DISSERTATION

Attention-driven Object Detection and
Segmentation for Robotics

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze
E376

Institut für Automatisierungs- und Regelungstechnik

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

Dipl.-Ing. Ekaterina Potapova
geb. am 16.01.1988
Matr. Nr.: 1028784

Wien, im Oktober 2014

Ekaterina Potapova

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 





Abstract
Vision is an essential part of any robotic system and plays an important role in such typical
robotic tasks for domestic environments as searching and grasping objects in cluttered
scenes. To be efficient, vision systems are required to provide fast object detection and
segmentation mechanisms. In the past, attention mechanisms have been proposed to cope
with the complexity of the real world by detecting and prioritizing the processing of objects
of interest, and therefore guide the search and segmentation of objects. The goal of this
thesis is to create an attention-based visual system, consisting of attention-based object
detection and attention-driven object segmentation for a robot.

Many models of visual attention have been proposed and proven to be very useful in
robotic applications. We address the problem of obtaining meaningful saliency measures
based on such characteristics as the object height and surface orientations that appear to be
qualitatively better than traditional saliency maps. Moreover, recently it has been shown
in the literature that not only single visual features, based on color, orientation or curva-
ture attract attention, but complete objects do. Symmetry is a feature of many man-made
and also natural objects and has thus been identified as a candidate for attentional oper-
ators. However, not many techniques exist to date that exploit symmetry-based saliency.
In this thesis, a novel symmetry-based saliency operator that works on 3D data and does
not assume any object model is presented. We show that the proposed saliency maps are
better suited for the task of object detection. Object detection was implemented by means
of extracting fixation points from saliency maps. The evaluation in terms of the quality
of fixation points showed that the proposed algorithms outperform current state-of-the-art
saliency operators. The quality of attention points was defined in terms of their location
within the object and the number of attended objects.

Segmentation of highly cluttered indoor scenes is a challenging task and traditional
segmentation methods are often overwhelmed by the complexity of the scene and require a
significant amount of processing time. To tackle this problem we propose to use attention-
driven and incremental segmentation, where attention mechanisms are used to prioritize
parts of the scene to be handled first. In this work, we combined a saliency operator
based on 3D symmetry with three segmentation methods. The first one is based on clus-
tering locally planar surface patches. The second method segments attended objects using
an edge map based on color, depth and curvature within a probabilistic framework. We
also proposed a third method, an incremental attention-driven mechanism, that outputs ob-
ject hypotheses composed of parametric surface models. We evaluated our approaches on
two publicly available datasets of cluttered indoor scenes containing man-made objects.
We showed that the proposed methods outperform existing state-of-the-art attention-driven
segmentation algorithms in terms of segmentation quality and computational performance.

This manuscript is best to read in color.
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Chapter 1

Introduction

Over the last 20 years, robotics has become increasingly widespread, aiming to assist,
protect and simplify the everyday life of people. The first robots were built for industry as
a tool to automate production. Nowadays, robots are intended to help and serve humans.
The growing number of robots, and areas they are used in, raise multiple questions and
problems for researchers developing robotic systems.

Robots find increasing use in domestic environments and are currently being introduces
to perform a wide variety of assistance tasks. Examples of scenarios for domestic robots
reach from assistance in the kitchen, such as sorting dishes and loading a dishwasher, to
searching for and bringing a specific object from the living room to the human. When
placed in a domestic environment, robots face challenges that are significantly different
from laboratory conditions. In particular, robots in such environments have to deal with
a significant amount of clutter and increased world complexity. This complexity is partly
caused by the variety of objects a robot has to deal with. These objects can be multi-
colored, textured, partly occluded, etc. Some objects do not even have a corresponding
a-priori model available for the system. A robot is often issued a task that requires not only
to find such objects, but also interact with them. Such tasks include, but are not limited to:

• searching for a known object: “Bring my cup!”

• searching for an unknown object: “Bring me the yellow book over there!”

• searching for general objects: “Clean up the table!”

For example, let us have a look at the robot shown in Fig. 1.1. It was specifically
designed to be placed in households to help people. One simple task the robot can be
asked to perform by a human is “Bring my cup!”. To fulfill this task the robot hast to
(1) find the cup, (2) grasp it, and (3) bring it to the user. To successfully complete the
first step – finding the cup – the robot has to be able to search and localize the required
object. In other words the robot has to detect the object. By definition, “object detection”
is a technique in computer vision and image processing that deals with detecting, in digital
images and videos, instances of objects of a certain or a generic class. There exist two
main groups of approaches for object detection: top-down and bottom-up.
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Figure 1.1: A general pipeline of the proposed attention-driven robot perception strategy
when the user demands the robot: “Bring my cup!”

Top-down approaches for object detection typically include sliding window detectors
[Viola 04, Alexe 12, Manén 13, Rahtu 11, Feng 11]. The sliding window detectors are con-
ceptually simple: independently classify all image patches as being object or non-object.
Sliding window detection is a very popular concept for object detection in computer vision.
Such detectors usually operate on color images and detect object candidates based on a set
of matched image features combined with machine learning. Some of these features were
trained to detect specific categories of objects, e.g. faces such as in [Viola 04]. Others were
specifically designed to detect generic objects [Alexe 12, Rahtu 11, Feng 11]. Because all
image patches have to be verified against all known object categories, such approaches are
usually computationally inefficient. Moreover, the typical number of generated object pro-
posals is usually very high, while the detection quality is low. This means that the object
proposals have to be verified and filtered at later stages to select only those that really rep-
resent objects. Additionally, each specific object type should have its own detector, or in
case of generic object detectors each object candidate should be run through the recogni-
tion process. The size of detected objects is tightly linked to the size of the sliding window.
Therefore more image patches have to be checked when the object size is unknown.

Bottom-up approaches for object detection are based on the full scene segmentation.
Scene segmentation [Arbelaez 12, Comaniciu 02, Felzenszwalb 04] is the process of par-
titioning the scene into object candidates. Then those segmented object candidates are
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checked against known object models. Segmentation itself is an ill-defined problem, be-
cause for different tasks correct segmentation of the same scene can be different. The
complexity and required computational resources increase, when the scene is cluttered,
multi-textured and multi-colored. Object candidates have to be run through the recognition
process after segmentation, which also slows down the speed of the object detection.

Taking into consideration that multiple modules, such as navigation and localization,
categorization and recognition, speech understanding, human-robot interaction and many
others, have to run on the robot at the same time, traditional object detection approaches
are not suitable for use in robotics.

1.1 Problem Statement

Searching exhaustively through every image for a required object, as is done in traditional
object detection approaches, is very computationally expensive. Moreover, with such an
approach, a lot of false object candidates are detected. The reason for multiple false posi-
tives lies in the way those approaches are designed and tested. Usually they work very well
on the databases they were trained on. However, when they are used in real world envi-
ronments with changing illumination, pose and appearance, and previously unseen objects,
they may result in identifying non-objects as target objects. Another problem with using
classical approaches is that they typically output a lot of object proposals and those propos-
als have to be checked against being the object of interest. This is a very costly operation.
What we would like to have in robotics is a small number of good object proposals.

The inspiration to overcome those problems can be drawn from underlying processes
in the human visual perception system, which solves tasks such as object detection so ef-
fortlessly. One of the capabilities that humans possess making us efficient in processing
visual stimulus is called the visual attention system. The human visual attention system
is an efficient mechanism for prioritizing visual information about the surroundings and
selecting important regions. Attention, as well as computational models of attention pro-
ducing saliency maps, gain significance especially in cluttered scenarios and are essential
in dealing with the uncertainty, as well as increased complexity, coming from the real
world. Potential objects are detected as areas of highest attention.

Research on human visual attention is traditionally done using color images [Itti 98,
Frintrop 05a]. Computational visual attention models output saliency maps. Object detec-
tion is usually implemented as extraction of fixation points, also called attention points,
from the saliency map. One well-known extraction algorithms is the Winner-Take-All neu-
ral network of [Lee 99], which outputs locations of locally highest saliency values.

However, there are several problems with using standard color-based saliency maps and
extraction algorithms when applied to robotics. For example, color-based saliency maps
detect regions of high contrast with respect to the surroundings. In cluttered and multi-
colored scenes, such an approach results in a huge number of false detections. Moreover,
for robotic applications, meaningful saliency measures are required to be connected to the
task a robot has to execute. For example, salient objects for the task of grasping do not
necessarily correspond to regions of high color contrast.
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Another problem lies in the re-detection of the same object several times. One of the
reasons for that lies in the nature of saliency maps, that were not designed to detect separate
objects. Another reason for re-detection is because of the used extraction strategies. These
are typically designed to detect locations of the highest local saliency values. If a big part
of an object is salient, the extraction strategy will detect several fixation points on the same
object.

Recently, it has been shown in the literature on visual attention that not only single
visual features, such as color, orientation or curvature attract attention, but also complete
objects do [Einhäuser 08]. For example, symmetry is a feature of many man-made and nat-
ural objects, and has thus been identified as a candidate for attentional operators. However,
not many techniques exist to date that exploit symmetry-based saliency. So far these tech-
niques work mainly on 2D data. Furthermore, methods, which work on 3D data, assume
complete object views, which are not available when robot is browsing a search space. This
limits the usage of such operators as bottom-up attentional operators working on RGB-D
images, which only provide partial views of objects.

In robotics, detection of object for a specific task, or generic objects with minimal num-
ber of repetitive detections, is of high importance. Moreover, developing a new extraction
strategy, that results in an increased number of correctly detected objects is also necessary
to improve the overall performance.

Detected objects are then used in further tasks, such as recognition or manipulation.
For many of those tasks the shape of the object is required, e.g. for grasping, to calculate
grasping points. Therefore, after an object is detected it should be segmented.

Common approaches in computer vision segment the complete scene, as described be-
fore. However, in robotic tasks it is sufficient to segment only the object of interest. For
example, for the task of grasping it is enough to detect and grasp the first suitable ob-
ject and then observe the scene again and make a subsequent decision step. What we
essentially want is a fast and reliable segmentation only of the detected object. Moreover,
in cluttered environments it is more preferable to concentrate on the local properties to
separate a specific object from the background and other objects. Segmentation methods
that successfully solve the above given tasks are attention-driven segmentation techniques
[Mishra 11, Kootstra 10a]. Attention-driven segmentation approaches take as input a fix-
ation point, belonging to the object. Starting from this point they identify parts of the
scene that belong to the required object. This class of segmentation methods are imple-
mented in a very efficient manner. However, even current state-of-the-art attention-driven
segmentation approaches have some significant drawbacks. The most important of which
is imprecise segmentation – in the form of over or under segmentation. Ideally, the object
should be segmented precisely, because the precision of the segment influences the quality
of recognition and manipulation.

1.2 Proposed Approach

To solve the above described problems concerned with object detection and segmentation
in robotics, we propose to view detection and segmentation as a fundamentally attention-
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driven problem.
The system consists of two parts: attention-driven object detection and attention-driven

object segmentation. We argue that this attention-driven perception strategy is a way to
successfully resolve increasing complexity which appears when robots have to deal with
complicated real world situations. Each of the tasks of object detection and further seg-
mentation is a very challenging research problem on its own.

An example of how the proposed system can be used in real world situations is ex-
plained using scenario shown in Fig. 1.1, where a robot is asked to “Bring my cup!”. At
the first stage, the proposed visual system detects the potential locations of of all hypothet-
ical proto-objects using attention. Those regions may potentially represent objects, when
the proper attention mechanism is used. Such locations are shown as red blobs in the im-
age. We propose to detect those locations as fixation points representing the regions of
highest attention in the scene. At the second stage, given fixation points, that belong to
objects, attention-driven segmentation is performed. Segmented objects are indicated with
bounding boxes in the picture. The segmented objects can be sent to other modules, such
as recognition, manipulation, etc.

1.3 Contributions & Publications

The main novelties and contributions presented in this thesis with respect to attention-
driven object detection for robotics are the following:

• To investigate the importance of 3D visual information for humans we conducted
a deep and comprehensive analysis of findings and conclusions from eye-tracking
experiments in 3D. Based on the analysis we conclude that 3D information plays an
important role in human vision. This means that ways to integrate it into the robotic
vision system should be investigated. To our knowledge this is the first systematic
analysis of eye-tracking experiments performed in 3D environments.

• To understand the usability for robotics of existing attentional models, we conducted
their systematic comparison. Attentional models are compared with each other in
terms of the scope they were designed for and principles they were built on. To the
best of our knowledge, this is the first systematic comparative analysis of existing
attentional models that involve 3D information.

• To detect objects for robotic tasks, such as grasping, we propose a set of saliency
cues, based on such properties as height and surface orientation. We show that
fusion of those saliency cues into saliency maps, while appearing to be similar to
traditional saliency maps, represents better object detection abilities. Parts of this
research have been published in the Proceedings of the International Conference on
Computer Vision Systems (ICVS) [Potapova 11].

• To detect generic objects in cluttered scenes, we propose a novel 3D symmetry-based
saliency operator that works on partial object views. To improve object detection
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quality we designed a new extraction strategy specifically for the 3D symmetry-
based saliency operator. Results show increase in detection quality of generic ob-
jects, compared to existing state-of-the-art saliency maps and extraction strategies.
Parts of this research have been published in the Proceedings of the Asian Confer-
ence on Computer Vision (ACCV) [Potapova 12b].

• To show benefits of different multi-level strategies, combination methods and nor-
malization operators, that are used to create saliency maps, for the task of object
detection, we perform exhaustive evaluation of the proposed saliency cues against
state-of-the-art saliency operators. Our detailed analysis shows that more compli-
cated, and therefore more computationally expensive, methods do not improve de-
tection performance.

The main novelties and contributions presented in this thesis with respect to attention-
driven object segmentation for robotics are the following:

• To segment detected objects in highly cluttered scenes, we propose two novel attention-
driven segmentation algorithms. The first algorithm segments objects using an edge
map based on color, depth and curvature within a probabilistic framework. The sec-
ond segmentation algorithm is based on clustering locally planar surface patches.
The evaluation on indoor table-top scenes containing man-made objects clustered
in piles and dumped in a box shows that proposed algorithms lead to a significant
improvement compared to state-of-the-art methods of active segmentation. Parts of
this research have been published in the Proceedings of the International Conference
on Pattern Recognition (ICPR) [Potapova 12a] and in the Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA) [Potapova 14b].

• To extend attention-driven segmentation to be able to segment as many objects as
necessary, in comparison to only one object indicated by the baseline attention-
driven segmentation, we develop an incremental segmentation method. Incremen-
tal segmentation uses attentional mechanisms to detect and prioritize processing of
objects of interest. This basically means that segmentation starts from the object
of the highest importance and incrementally explores the scenes based on the im-
portance of each region. Eventually, given enough time, incremental segmentation
segments the complete scene. Evaluation on cluttered indoor scenes shows that the
proposed method outperforms existing methods of attention-driven segmentation in
terms of segmentation quality and computational performance. Parts of this research
have been published in the Proceedings of the IEEE/RAS International Conference
on Humanoid Robots (HUMANOIDS) [Potapova 14a].

1.4 Outline
This thesis consists of two main chapters. In Chapter 2, we give an exhaustive overview
of existing attention operators and attention-based object detection strategies. The contri-
butions of this chapter are: (1) a deep and comprehensive analysis of existing eye-tracking
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experiments in 3D and attention models for RGB-D data from the perspective of a robotic
visual system; (2) the development of a set of novel attentional operators based on RGB-D
data that result in saliency maps; (3) an investigation and evaluation of different combina-
tion and normalization strategies for plausible saliency cues; (4) the development of novel
algorithms, that reliably detect objects in indoor cluttered environments, by means of ex-
tracting fixation points, or so-called attention points, from saliency maps; (5) an exhaustive
evaluation of several existing attention point extraction strategies against different types of
state-of-the-art saliency maps and proposed approaches in terms of uniqueness and prox-
imity of fixations to the center of the detected object. Results show that our proposed
3D-based saliency operators and extraction strategy reflect the notion of objectness better
than the currently existing state-of-art 2D-based and 3D-based saliency operators.

In Chapter 3, we continue with a discussion of attention-driven segmentation and its
benefits when applied to real world robotic tasks. Three novel methods for attention-
driven segmentation for cluttered table scenes are proposed: (1) attention-driven segmen-
tation with object detection based on attention points from 3D symmetry saliency maps
[Potapova 12b], (2) attention-driven segmentation based on probabilistic edges, and (3) in-
cremental attention-driven segmentation based on complete-scene segmentation proposed
by Richtsfeld et al. [Richtsfeld 12]. All proposed methods are evaluated against current
state-of-the-art algorithms and it is shown that obtained results outperform existing ap-
proaches.

The thesis is concluded with Chapter 4 and possible directions of future research are
discussed.
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Chapter 2

Attention-driven Object Detection

Human visual attention is a cognitive phenomenon serving as a mediator in the selective
process of identifying valuable parts in the environment. The amount of visual information
received by the retina in every single moment of time is too large to process and visual
attention is a natural mechanism that prioritizes visual space by concentrating on specific
parts while ignoring others. Attention has become an important topic in the computer vi-
sion and robotics communities, since the attention paradigm was proven to be extremely
useful when dealing with complex real world scenarios. The purpose of visual attention is
seen to be as reduction of the scene complexity and hence resulting in savings in compu-
tational resources. First theories of visual attention appeared in the second half of the 20th
century and tried to explain human visual behavior by means of simplified psychological
experiments [Treisman 80, Koch 85, Wolfe 89, Tsotsos 90]. Later, computer vision and
image processing started exploiting visual attention to the benefit of artificial vision sys-
tems: object recognition [Walther 04], image retargeting [Achanta 09b], image compres-
sion [Yu 09], scene classification [Borji 11], visual tracking [Mahadevan 12], and many
others, showed how to deploy visual attention to increase the performance and the quality
of results. One of the first papers that argued about and demonstrated the significance of
visual attention for robotic systems was published by Aloimonos et al. [Aloimonos 88].
Almost 20 years later, Tsotsos and Shubina [Tsotsos 07] discussed importance of attention
for robotics and demonstrated how object search in a 3D space greatly benefits by integrat-
ing it. One of the landmark examples that show how attention can be efficiently utilized in
robotics is active segmentation [Mishra 09, Björkman 10], where visual attention is used
as a first step to detect objects for tasks such as manipulation.

Research on attention distinguishes between two mechanisms of visual attention: bottom-
up and top-down [Yarbus 67]. Bottom-up visual attention is a signal-driven mechanism
that operates on raw sensory data and involuntarily shifts attention towards salient visual
features of the observed scene. Top-down visual attention [Navalpakkam 06, Frintrop 05a]
is a voluntary mechanism that strongly depends on the viewing task and prior information
about the environment. It was shown that these two mechanisms strongly interact with
each other and affect human visual behavior [Wolfe 03]. The majority of computational
models for visual attention were developed to explain bottom-up attentional mechanism
[Itti 98, Harel 06, Hou 07, Achanta 08]. These computational models produce saliency
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maps, where higher the saliency value of the region, the more attention it attracts.
For bottom-up saliency there are two prevalent models: contrast-based and information-

based. Contrast-based models calculate saliency by analyzing spatial contrast. These mod-
els primarily concentrate on low-level visual features, such as luminance, color, and orien-
tation. An example of contrast-based models is the model proposed by Itti et al. [Itti 98],
which exploits a center-surround mechanism to define saliency across scales and was in-
spired by the neural mechanism. The model has established itself as the de-facto bench-
mark for saliency detection and is often used for comparison in literature. Information-
based models calculate saliency in terms of information maximization or frequency domain
analysis [Hou 07, Bruce 09, Zhang 08]. These models concentrate on detecting salient re-
gions based on their rareness and uniqueness in the scene and possibly include the notion
of surprise [Itti 06].

Einhäuser et al. [Einhäuser 08] have shown that not only single popping out salient
features or unique scene regions attract visual attention, but also complete objects. Fol-
lowing the idea of object-based saliency, Kootstra et al. [Kootstra 08] proposed to use
symmetry as a feature to identify potentially attractive objects in the scene. The authors
argued that for symmetrical objects, a symmetry-based saliency map corresponds better to
human visual attention than contrast-based saliency maps.

Almost for two decades, computational models of visual attention were concerned only
with processing color images. However, the increasing amount of 3DTV displays, appear-
ance of cheap 3D sensors such as Kinect and Time-of-Flight cameras forced the commu-
nity to investigate how depth information may influence human visual perception. Over
the last 10 years a number of publications proved that the presence of depth informa-
tion changes the behavior of the human attentional mechanism [Jansen 09, Häkkinen 10,
Huynh-Thu 11]. This discovery is of particular interest for robotics, where depth informa-
tion plays a crucial role for navigation and localization and typically robots are equipped
with RGB-D sensors. Even before the first eye-tracking experiments in 3D were reported,
the robotics community has started exploiting depth as an additional channel for saliency
map computation [Frintrop 05b, Maki 96, Ouerhani 00, Akman 10].

Robotic systems have multiple tasks to solve in parallel, including localization and nav-
igation, manipulation, segmentation and recognition, and many others. Therefore, vision
for a robot is the only one fraction of a larger system. Because of several concurrent pro-
cesses running on the robot, the size of visual search space, and such essential requirements
as robustness and real-time performance, integrating visual attention is a necessary prereq-
uisite for any successfully operating vision-based robotic system. Integrating attention as
a part of the vision system means that instead of processing the complete scene, the robot
will concentrate its resources only on the most attractive and relevant regions in the scene.

In this thesis, the focus is on investigating bottom-up computational models of visual
attention that involve depth processing with application to robotic visual systems. We in-
vestigate attention for the task of object detection, where objects can appear in various
locations and configurations, partly occluded and surrounded by clutter. To solve the de-
tection problem, we propose a set of attentional operators based on RGB-D data. Given a
set of plausible saliency cues, we also aim at investigating strategies for combining these
cues.



2.1. Related Work 11

As will be described in the related work section (see 2.1) there are several ways to
evaluate the performance of a visual attention model. In this thesis, the focus is on the
goal of reliably detecting objects in indoor cluttered environments, and therefore we pro-
pose to extract fixation points [Lee 99], or so-called attention points, from saliency maps.
We evaluate several existing attention point extraction strategies against different types of
state-of-the-art saliency maps in terms of uniqueness and proximity of fixations to the cen-
ter of the detected object. We also propose a novel approach to extract attention points
from saliency maps and show that it outperforms existing strategies. Our results show that
our proposed 3D-based saliency operators reflect the notion of objectness better than the
currently existing state-of-art 2D-based and 3D-based saliency operators.

The chapter is structured as follows: In the next section 2.1, we describe related work on
saliency map calculation, subsequently, attention operators and attention point extraction
strategies are discussed in detail (2.3–2.5). The following evaluation in section 2.6 shows
comparison of different attention operators and attention point extraction strategies.

2.1 Related Work
In this Section, we focus on the description of existing algorithms for bottom-up saliency
computation. We start with an overview of the best known saliency algorithms for color
images and continue with a detailed description of eye-tracking experiments in 3D and
existing algorithms developed for RGB-D data. The purpose of this section is to give the
reader an understanding of the field of computational visual attention, its applicability and
limitations for robotic vision systems in real world scenarios.

2.1.1 Attention Operators for Color Images
In the following Section, we give an overview of the best known bottom-up visual attention
models to generate saliency maps from color images that are used for further evaluation.
We also discuss the scope of their usability and relation to robotics. A detailed overview
of the state-of-the-art saliency algorithms for color images can be found in [Borji 13].

In 1998 Itti et al. [Itti 98] published their influential paper on the model of saliency-
based visual attention. Over the next 15 years, this work has been cited more than 5000
times and still serves as a comparison model for many saliency algorithms. The model of
saliency-based visual attention was inspired by the neural network similar to the one found
in human brains and exploits ideas of the feature integration theory proposed by Treisman
and Gelade [Treisman 80]. The core idea of the model is to hierarchically decompose
the image based on three low-level visual features (intensity, color and orientation) and
to compute the center-surround difference. The center-surround mechanism responds to
image differences between a small central region and a broader concentric surround region.
At a later stage, these feature maps are fused together to obtain a saliency map. Over
the next several years, the proposed algorithm was extended with different normalization
operators and features [Itti 99, Itti 00, Itti 01]. Later, Frintrop [Frintrop 06a] proposed to
use center-off as well as center-on mechanism to detect interesting locations in images and
showed how beneficial it is for a robotic vision system to use both.
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In 2006, Harel et al. [Harel 06] described a simple and biologically plausible model for
bottom-up saliency. The introduced model computes activation maps, similar to [Itti 98],
formed on certain feature channels, such as color and orientation, which are then combined
into the master saliency map. The main difference to [Itti 98] is that instead of using a hier-
archical structure, a fully-connected directed graph where weights of the edges depend on
the similarity between pixels they connect, is constructed and used to calculate activation
maps. The graph is treated as a Markov chain and the activation map is considered to be an
equilibrium state. The Markov chain is further used to concentrate intensity of activation
maps in order to normalize them.

In 2007, Hou et al. [Hou 07] proposed a simple and efficient method independent of
features, categories and other forms of prior knowledge to detect saliencies in the image.
This was one of the first algorithms that proposed to detect saliency in the spectral domain
using Fourier transform and argued that visual saliency appears in regions that are globally
different to the image content. As a result, the algorithm analyzes the log-spectrum of an
input image and calculates saliency as the spectral residual.

In 2009 Bruce et al. [Bruce 09] proposed a model of bottom-up attention based on the
principle of maximizing information sampled from the scene. The model defines saliency
by quantifying the self-information of each local image patch. Independent Component
Analysis is performed on a large number of patches sampled from an image set to de-
termine a suitable basis. The probability of observing a specific patch is evaluated by
independently considering the likelihood of each corresponding basis coefficient. Shan-
non’s self-information measure, applied to the joint likelihood of patch statistics, provides
an appropriate transformation between probability and the degree of information inherent
in the local statistics. Therefore, saliency is determined as the self-information of each
local image patch.

In 2010 Kootstra et al. [Kootstra 10b] proposed to use symmetry, one of the Gestalt
principles for figure-ground segregation, to calculate saliency maps. A symmetry-based
saliency map [Kootstra 10b] is built upon the local context free symmetry operator of Re-
isfeld et al. [Reisfeld 95] and is extended to a multi-scale model similar to [Itti 98]. The
amount of local symmetry at a point is calculated as the sum of similarity measures be-
tween pixel pairs in the symmetric kernel centered at the point. The similarity measure
takes into consideration gradient directions and magnitudes, as well as distances between
points.

The idea behind the algorithm is that saliency appears not only based on independent
features, but is rather located on objects, as it was discussed in [Scholl 01, Einhäuser 08].
This finding is supported by experiments conducted by Vishwanath and Kowler
[Vishwanath 04] who tested the sensitivity of saccadic localization to perceived 3D struc-
ture using computer-generated perspective images of simulated 3D objects. They found
out that saccades made to 2D perspective images of a capsule-shaped 3D object landed
near the 2D Center of Gravity (COG), while saccades made to 3D objects were shifted to
the 3D COG. They also compared landing positions for 3D shapes that had identical 2D
images, but different 3D interpretations and found that different participants landed either
closer to 2D or 3D COG. They have also found that when more 3D cues are involved there
was a displacement towards 3D COG. The pattern results obtained with the 3D shape sug-
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gests that landing positions were based on pooling of information across the shape, rather
than selection of a distinct position. In the light of these findings building saliency models
based on object properties such as 3D symmetry is completely justified.

All of the described algorithms were developed with the purpose of mimicking human
visual attention and were evaluated on natural scenes against human eye-tracking data.
While such models can be and are successfully applied in the field of robotic vision, as
described in [Begum 11], the primary goal of attention system for a robot is not to act in a
way similar to humans, but rather to detect important and relevant parts of a scene in order
to make the robot operate smoothly and efficiently. Many robots operate in human-made
environments, where they face typical indoor scenes with variety of occlusions, colors and
textures. These occlusions, colors and textures will eventually attract attention according to
the color-based saliency models, while the goal is to detect object instances instead. This
limits the application of color-based attention algorithms that were developed to detect
saliencies in natural outdoor scenes. In our evaluation section, we will discuss performance
of the above described algorithms in indoor environments and show examples where they
do not show as good results as saliency operators proposed in this thesis.

2.1.2 Eye-tracking in 3D

As it was mentioned earlier the majority of computational attention algorithms were devel-
oped for color images and evaluated against human eye-tracking data. The increase in the
popularity of stereoscopic displays and 3DTV in recent years has boosted research on atten-
tion and eye-tracking in 3D. Multiple researchers have reported that depth matters when it
comes to scene exploration ([Hügli 05, Wexler 08, Jansen 09, Ramasamy 09, Häkkinen 10,
Wismeijer 10, Liu 10, Huynh-Thu 11, Wang 12, Lang 12b, Gautier 12, Wang 12] and
[Khaustova 13]). Robotics has a long history of using laser scanners to obtain depth to be
used in such tasks as navigation [Biswas 12, Cunha 11, González-Jiménez 13]. With the
emergence of cheap and ready to use 3D sensors such as the Microsoft Kinect, use of depth
has increased for tasks of segmentation [Ückermann 12], object recognition [Aldoma 13],
human tracking and pose recognition [Shotton 11], etc.

This Section is structured as follows: first, we discuss related work on eye-tracking
experiments in 3D and explain how depth information influences human visual behavior;
then we present insights on how those findings can be utilized for a robotic attention sys-
tem. The overview of all eye-tracking experiments and their findings that involved depth
information is presented in Table 2.1.

First eye-tracking experiments in 3D date back to the first decade of the 21st century.
In 2005, Jost et. al [Jost 05] used random dot stereograms to investigate effects of “pure”
depth information. Each random dot stereogram consisted of 4 objects, which were drawn
with different disparities. It was found that the density of fixations was clearly higher in
regions, where the disparity values were higher. It suggested that closer objects attract
earlier fixations and therefore are often more salient than those situated further away.

In 2008, Wexler and Ouarti [Wexler 08] investigated the effect of 3D plane orientation
on spontaneous eye movements, as well as, various aspects of 3D scenes that potentially
affect visual behavior. In the experiments, subjects were looking at planar surfaces inclined
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STEREOGRAMS • – – – – – – – • – – – –
PLANES – • – – – • – – – – – – –

LANDSCAPES – – • – – – • – – – •11 – –
INDOOR – – – – – – – – – • – • •13

VIDEO – – – • • – – • – – – – –

FI
X

A
T

IO
N

S

DURATION – – ↗2D3 – – – – ↗2D – – – – –
DISTANCE1 ↘3D – ↘3D4 – – – – – ↘3D ↘3D ↘3D – ↘3D

AMMOUNT – – ↗3D – – – – – – – – – –
SPATIAL EXTENT – – ↗3D ↗2D7 ↗3D – – ↗3D9 – ↗3D – – –

FREQUENCY – – – – – – – ↗2D10 – – – – –

S
A

C
C

A
D

E
S

VELOCITY – – – – – – – ↗3D – – – – –
LENGTH – – ↘3D5 – – – – – – – – ↘3D –

S
A

L
IE

N
T

F
E

A
T

U
R

E
S

DEPTH GRADIENT – • •3 – – • •8 – – – – – –
MEAN LUMINANCE – – 3D6 – – – – – – – – – –

LUMINANCE CONTRAST – – 2D/3D6 – – – • – – – – – –
TEXTURE CONTRAST – – 2D/3D6 – – – – – – – – – –

LUMINANCE GRADIENT – – – – – – • – – – – – –
DEPTH CONTRAST – – – – – – •8 – – – – – –

COGNITIVE INFORM.2 – – – – – – – • – • – – –
CENTER BIAS – – – – – – – – •12 •1 •

OBJECTS – • – – – – • – – – – • •14
Notes:

1only in the beginning of viewing 8lower values were more salient
2such as text and faces 9only for videos with a single scene and static camera view
3except for pink and white noise images 10sometimes similar in 2D and 3D
4also present in 2D 11used eye-tracking data from [Jansen 09]
5over time 12for 3D is much lower with time
6only in natural images 13region-based method similar to [Li 13] instead of eye-tracking
7analyzed only one video containing a long deep hallway 14for objects in the focus

Table 2.1: The table shows comparison of different 3D eye-tracking strategies.

in depth simulated on a computer screen. Three types of inclined surfaces (grid, texture
and dots) were used. Spontaneous exploratory eye movements of the participants were
recorded during the visual task. As part of the experiment, subjects were required to report
perceived 3D orientation of the plane. Experimental results revealed that three-dimensional
surface orientation has an impact on human visual, because eye movements in the begin-
ning show a tendency to follow the axis of the 3D plane tilt and surface depth gradients,
while binocular disparity dominates the vergence. Interestingly, it was also found that this
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effect holds in with and without given task. Authors speculated on two hypotheses to ex-
plain the discovered effect: (1) the depth gradient hypothesis, meaning that gaze moves
back and forth along the depth gradient axis; and (2) the 3D-shape hypothesis, meaning
that gaze moves along the principal axis of the perceived three-dimensional object.

In 2009, Jansen et. al [Jansen 09] studied how disparity information influences fixa-
tions and saccades. Visual stimuli with natural landscapes without any man-made objects
were selected to understand what role disparity plays in a bottom-up visual attention. The
analysis was conducted on the data from the left eye. The data from the left eye was used
because 2D images were created using two copies of the left image. They investigated the
saliency of several image features: mean luminance, luminance contrast, texture contrast,
mean disparity (distance), and disparity contrast (depth discontinuity). It was figured out
that disparity influences basic eye movements. As a result (1) the number of fixations in-
creases, (2) the fixation duration decreases with time (only for pink and white noise), (3)
the saccade length shortens over time, and (4) the spatial extent of exploration increases.
The duration of fixations was not prolonged when specific tasks were given. The mean dis-
parity changed viewing behavior in the beginning, meaning closer locations were observed
at first. Later, attention was shifted to more distant locations. However, this behavior was
also observed in 2D natural images. This means that neither the disparity nor the center-
bias cannot explain eye-tracking results. In 3D noise images participants tend to look more
at depth discontinuities rather than planar surfaces. In general, the mean luminance, the
luminance contrast, and the texture contrast showed comparable saliency both in 2D and
3D. Texture contrast was a salient feature in natural, but not in noise images. Only in 3D
natural images the mean luminance was correlated with fixations. The luminance contrast
appeared to be salient in 2D and 3D natural images in the beginning of viewing. Authors
could have concluded from the results that (1) 2D visual feature are important to design a
3D visual attention model 2) existing 2D visual attention models could be adapted to 3D
visual attention.

In 2009, Ramasamy et. al [Ramasamy 09] presented work about using eye-tracking
for stereoscopic film-making. The goal was to detect elements distracting people from the
movie. The fixation patterns of one scene were analyzed to identify regions of interest. In
a specific scene, it was found that in the non-stereoscopic version, the gaze data was more
spread out across the frame and is not as highly focused into a long deep hallway at the
other end of the doorway. Rephrasing, obtained results show that fixation spread could be
potentially more concentrated while viewing 3D videos (for example for video filming long
deep hallway). This opposes conclusions made by Jansen et. al [Jansen 09] and Häkkinen
et. al [Häkkinen 10].

In 2010 Häkkinen, et. al [Häkkinen 10] studied the how fixation patterns differ from
each other for 2D and 3D videos. Four short videos were selected to perform the study.
Eye-tracking results have been analyzed by examining fixations in the image regardless the
gaze depth. The results showed that fixations for 3D videos are more widely distributed,
which supports findings by Jansen et. al [Jansen 09] and contradicts the conclusion made
by Ramasamy et. al [Ramasamy 09]. They also reported that in 3D observers did not only
pay attention to main characters of the video, but fixations were also on other objects. This
shows that depth gives humans supplementary information, which results in new salient
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areas. Potentially a saliency map from depth exists, as well as a mechanism that integrates
2D and 3D saliency information. Moreover, because in the study, participants were asked
to compare 2D vs. 3D versions of videos, it can be argued that experiments had some
top-down influence.

Following the work of Wexler and Ouarti [Wexler 08], Wismeijer et. al [Wismeijer 10]
studied the correlation between perception and spontaneous eye movements and inves-
tigated if saccades are correlated with single depth cues or with a their combination.
Observers viewed inclined surfaces where monocular perspective and binocular disparity
showed different plane orientations and the degree of the conflict was varying from small
to large. Three different response measures were used: (1) explicit reports of perceived
surface tilt, (2) the directions of spontaneous saccades when scanning the stimulus, and (3)
the orientation of the plane defined by the vergence of spontaneous eye movements. They
showed that spontaneous saccade directions tend to follow depth gradients (surface tilts)
and have the same combination pattern as perceived surface orientation. For small conflicts
the combination is a weighted linear, while for large conflicts there is a cue dominance.
Authors could have concluded from the experiments that binocular disparity dominates
vergence. The results implied that the interocular distance should be compensated by the
local disparity value.

In 2010, Liu et. al [Liu 10] studied fixated positions with respect to visual features.
Stereo images with natural scenes were used in the experiment. The focus of the study
was on examining visual features extracted at random fixation locations while looking at
3D static images. They used (1) the luminance gradient, (2) the disparity gradient, (3)
the luminance contrast and (4) the disparity contrast maps and tried to figure out if human
fixations correlate with those maps. They showed that the luminance gradient and the lumi-
nance contrast were overall had higher values at fixated locations. However, the disparity
contrast and the disparity gradient at fixations were in generally lower than at random lo-
cations. The reported results are opposite to the results of Jansen et. al [Jansen 09], where
it was found that humans look more consistently at depth discontinuities instead of planar
surfaces. Liu et. al
[Liu 10] suggested that the binocular visual system, if not directed otherwise by a top-down
task, fixates on areas that help to simplify the process of depth calculation. Therefore it pos-
sibly avoids, regions with missing information due to occlusions or disparity rapid changes
in disparity. It is possible, that observers fixated towards the object centers, instead of ob-
ject boundaries (where can be depth discontinuities). One limitation of the study might
be the ground truth quality of disparity maps. The disparity maps were computed using a
simple correspondence algorithm. Therefore, the noise in the disparity maps might have
affected final results.

The idea that depth can be estimated from a stereo image pair based on salient features
was discussed by Aziz et. al [Aziz 10]. They proposed biologically plausible stereo pro-
cessing leading to object-based disparity computation, where object borders were used as
salient features to estimate depth contrast. This idea contradicts findings of Liu et. al [Liu 10],
however those depth-wise saliency locations restrict depth analysis and therefore reduce the
computational complexity.

In 2011, Huynh-Thu et. al [Huynh-Thu 11] studied the differences in visual attention
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when viewing of 2D and 3D videos. In this experiment, twenty-one videos with a range
of disparity values and a wide variety scene changes were shown to observers both in 2D
and 3D version. Fixations were recorded in a free-viewing task. The data only from the
left eye was used for comparison and corresponding hitmaps were computed. Similarity
of fixations in 2D and 3D were compared and some differences in fixation patterns were
found. The average saccade velocity was higher for 3D videos. The average fixation
frequency was always similar or higher in 2D videos. The average fixation duration was
always higher in 2D videos. Furthermore, the observations reported did not indicate a wider
spread of fixations in 3D videos. No strong evidence of the opposite was found either. It
was found that similarity between two maps is highly content dependent. It was reported
that fixation spread was highly depended on the content and video flow. In a video with
a single static scene, viewers explored more areas and fixations were more widespread in
3D. However, in videos containing fast motions and rapid scene changes, the spatial extend
and fixation density were similar both in 2D and 3D and often biased toward the center of
the image. In some cases people were attracted by background areas in 3D but not in 2D.
This was especially true when sufficient time to explore the scene was given. It was also
found that high cognitive information (i.e. text and faces) attract human attention. In this
cases fixation patterns in 2D and 3D were similar. Finally, the authors reported that, even
for similar fixations in 2D and 3D, the temporal order was different.

Wang et. al [Wang 12] conducted binocular eye-tracking experiments by showing still
synthetic stimuli on a stereoscopic display and studied a so-called ‘depth-bias’ in the free-
viewing task. It was found that regardless of the number of objects contained in the scene,
the object closest to the observer always attracts most fixations, meaning that a clear ‘depth-
bias’ exists in the beginning of observation. The number of fixations on each object de-
creases as the depth increases. However, the furthest object received a couple of more
fixations than several objects in front of it. As the observation time increases, the number
of fixations located on the closest object becomes smaller and the distribution of fixations
on all the objects in a scene becomes more uniform. These results are consistent with the
result of Jansen et. al [Jansen 09] and indicate the existence of an additional depth prior
when viewing 3D content. This location prior possibly means that depth should be inte-
grated as an additional function.

Lang et. al [Lang 12b] conducted a comparative and systematic study of visual saliency
in 2D and 3D scenes. Eye-tracking data was collected to create hitmaps. Those hitmaps
globally represent the spatial distribution of human fixations in 2D and 3D versions. It
was found that depth cues modulate visual saliency to a greater extent at farther depth
ranges (spatial extent). Furthermore, humans fixate preferentially at closer depth ranges.
A few interesting objects account for the majority of the fixations and this behavior is
consistent across both 2D and 3D. They also found out that the relationship between
depth and saliency is non-linear and is a characteristic for low and high depth-of-field
scenes. Those results are consistent with those from Jansen et. al [Jansen 09], Huynh-Thu
et. al [Huynh-Thu 11] and Wang et. al [Wang 12]. The additional depth information led
to an increased difference of fixation distribution between 2D and 3D version, especially,
when there are multiple salient stimuli located in different depth planes.

Gautier et. al [Gautier 12] studied how the disparity, the center and the depth biases
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influence saliency. They used the eye-tracking dataset from Jansen et. al [Jansen 09]. They
suggested a time-dependent computational model, which predicts saliency on static pic-
tures. The model combines low-level visual features, center and depth bias. In their study
they answered 4 questions: (1) Does binocular disparity affect spatial locations of fix-
ated areas, center and depth biases? (2) Is the predictability of state-of-the-art bottom-up
saliency models affected by stereo disparity? (3) How to model the center and depth bi-
ases effects as individual features? (4) How to include these features into a time-dependent
model to predict salient regions over time? Regarding question (1) they have found that
(a) the presence of disparity has a time-dependent effect (first attend to closest location);
(b) the central bias is observed for both 2D and 3D, but for 3D it is much lower with
time; (c) disparity influences the beginning of the viewing; To answer question (2) they
checked several state-of-art saliency models ([Itti 98], [Le Meur 06], [Bruce 09]) against
2D and 3D fixation data. They found that none of the models represents a mean saliency
estimation in 2D significantly different than in 3D. Center and depth bias effects (ques-
tion (3)) were modeled by a linear combination of low-level visual features, center and
depth biases, where weights are time-dependent and learned from fixation data. To answer
question (4) they compared results by combining equally different features, based on the
learned weights and just a static model and came to the conclusion that a combination of
learned weights over time gives the best results. Results claim that attention is influenced
when binocular disparity is introduced, i.e. humans tend to look at first at closer locations
(in terms of depth) and then move their gaze widespread.

Khaustova et. al [Khaustova 13] studied how textures with different complexity and
different disparities influence attention when viewing static images. Hitmaps from fixation
data were created. Basic properties were analyzed: the length of saccades and the duration
of fixations. They found that the saccade length shortens over time and and also when dis-
parity is introduced. These results are consistent with the study of Jansen et. al [Jansen 09]
who reported reduced saccade length in 3D and overall shortened saccades over time. No
proof was found that texture influences saccade length. The analysis revealed no correla-
tion between depth levels and fixation durations. These results neither support findings of
Huynh-Thu et. al [Huynh-Thu 11] nor Jansen et. al [Jansen 09] who reported that a dis-
parity cue shortened the median fixation duration. There was no significant influence of
texture complexity on fixation duration as well. Analysis of the heat maps for first 20 sec-
onds did not indicate any significant differences in fixation patterns for different disparities
or for different texture complexities. This means that depth levels did not have an obvious
influence on the spread of gaze points and depth levels did not influence the selection of
salient features in a scene. In general, fixations were centered in the middle and denser
during the first 4 seconds, but were spread later over the entire scene. Authors came to the
conclusion that object saliency plays a more important role than the depth. Moreover, ar-
eas of interest depend on the texture. This finding is supported by Vishwanath and Kowler
[Vishwanath 04], who came to the conclusion that saccades tend to land closer to the object
center of gravity.

Desingh et. al [Desingh 13] investigated the role of depth in saliency detection in the
presence of (1) competing saliencies due to appearance, (2) depth blur and (3) center-bias
for indoor images. Instead of using eye-tracking data they created a ground truth using a
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region based method similar to [Li 13]. Eight subjects were requested to draw bounding
borders around objects/regions that attracted them in the image. The ground truth value of
the pixel was set to 1 if at least 2 subjects agreed that the pixel belongs to a salient region
and zero otherwise. Experiments supported the hypothesis that depth influences attention
in the presence of blur and center-bias. In particular, it was shown that low contrast objects
at closer depth get more attention in the initial couple of seconds, which supports the
hypothesis of the temporal characteristics of visual attention. It was also found that humans
fixated on objects that are focused irrespectively of whether those objects have low contrast
with respect to the surroundings or not. Low contrast objects placed at the center of the
field of view also get more attention compared to other locations. Therefore, the notion of
center bias is also applicable in large depth-of-field scenes.

As can be seen from the description above and the comparison Table 2.1 there are still
many open research questions related to eye-tracking in 3D. It is clear, that the gaze is
attracted not only by 2D features, such as the mean luminance, the luminance contrast and
the luminance gradient, but also such features as the depth gradient and the depth contrast
may influence human fixations. A significant number of researchers agree that people tend
to fixate at first on closer objects and then gradually shift their gaze to objects situated
further away. The majority of researchers agree, that when 3D information is involved,
fixations are spread widely, especially for static scenes. There is also evidence that center
bias exists not only when viewing 2D images, but also 3D. Some researchers report that
humans tend to fixate on objects, and not on specific features in the scene. Also, high level
cognitive information, such as texts and faces, attract human attention. There are still many
unclear details concerning eye-tracking in 3D. Different researchers used different data and
metrics to report their results. This potentially can mean that those results cannot be fully
compared and more experiments are needed to make certain conclusions before human
eye-tracking patterns tend to be different in indoor and outdoor environments. However,
up to this point it is obvious that depth is involved in the human attentional process and
therefore should be considered when computational attention models are designed.

The above findings can be efficiently utilized in robotics, for example by bringing at-
tention to closer objects first in order to avoid obstacles and to start visual processing from
the nearest parts of the scene. Also, the evidence that humans attend to complete objects in
3D is of a high interest for robotics, because identifying objects is a part of many robotic
tasks.

It is worth mentioning that to the best of our knowledge there are no eye-tracking exper-
iments conducted in real 3D environments, rather much of it is done in front of a monitor
with 3D images. One of the first attempts to investigate attention in real environments was
implemented by Pirri et. al [Pirri 11]. They described a novel approach to online 3D gaze
estimation and their proposed approach uses a general gaze model to calculate the Point
of Regard in the 3D world. They showed how this approach can be applied effectively to
examine visual attention by estimating gaze in experiments that involve people performing
every day tasks in natural environments.

Later, Paletta et. al [Paletta 13] described a vision system that is capable of mapping
human attention onto a previously 3D reconstructed real-world environment. The proposed
methodology enabled offline full 3D recovery of the gaze directly into an automatically
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computed 3D model. This approach brings new potential into research on eye-tracking in
3D, opening new possibilities for attention studies.

However, no statistically valuable eye-tracking experiments were performed using the
two described approaches. Conducting such experiments will bring significant contribu-
tion into research on visual attention, as well as open new perspectives for robotic visual
systems.

2.1.3 Attention Operators for RGB-D Images

We continue with the discussion of existing models for 3D visual attention and explain
their merits and limitations for robotic vision. The overview of all described methods that
use 3D information to calculate saliency map is given in Table 2.2. We conclude with a
brief description of methods proposed in this thesis to solve existing problems in robotic
attention systems.

In general all saliency models for RGB-D images can be divided into three categories
based on the way depth information is integrated into the attentional model: (1) models
that use depth weighting, (2) models that extract features from depth, and (3) models based
on the human eye-tracking data in 3D. We will start our discussion from the first type
of models – depth-weighting models, simply because they are more straightforward than
others and appeared first in literature.

However, before we go deep into details of attention models, we would like to explain
how those models are typically evaluated. Probably, the best way to evaluate visual atten-
tion models is to compare the produced saliency maps against human fixation maps. There
is no standardized measure to compute the similarity, however the most common metrics
include: 1) Pearson linear correlation coefficient (PLCC) [Le Meur 06], 2) the area under
the receiver operating characteristics curve (AUC) [Zhang 08], 3) Kullback-Leibler diver-
gence metric (KLD) [Bruce 05]. PLCC and KLD metrics can be directly used to compare
fixation maps and saliency maps, while AUC can be applied to compare fixation points
to saliency maps. These comparison methods have several significant drawbacks. The
first, and probably the most obvious problem, one may face is the lack of eye-tracking
data. This problem is especially relevant in cases when saliency map computation involves
depth information, because until the time of research there exist only a few eye-tracking
datasets for 3D images (see 2.1.2). The second problem is concerned with the fact that
algorithms for computational saliency developed for domestic robotics intend to operate
in man-made indoor environments, while eye-tracking experiments are mostly performed
on natural scenes. This becomes a problem because gaze patterns can significantly differ
between natural scenes and indoor environments. The last, but not the least, an attention
system for robotics does not necessarily need to mimic the human visual system, but rather
concentrate on solving visual tasks such as detecting objects and obstacles. The ideal so-
lution will be to have a system that solves detection tasks accurately and is comparable to
the performance of a human.

Due to the above mentioned problems in evaluating attention models against eye-
tracking data, researchers in visual attention tend to evaluate proposed saliency maps using
different metrics. One of these metrics is the number of correctly detected objects in the
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AB – – – – – – – – – – – • – – –
DG – – – – – – – • – – – – – – –
B • • • – – • – – • • • • – • •

C/N – – – – • – – – – • – – – – •
M/IF • – – – – – – – • – • – – – –
CB – – • – – – – – – – – – – – –

MULTI-LEVEL – – – • • – • • • • • – – – –
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NN – • – – – • – – • – – – – – –
⊕ – – • • • – • • • • • • • • –
⊗ – – – – – – – – • – • • • • –

SVM – – – – – – – – – – – – – – •5
REMARKS 1 – – – – – – – 2 – 3 4 – – 4

COMB./W – – – – – – – – – – T.2.3 – T.2.3 T.2.3 T.2.3

DB T.2.3 T.2.3 T.2.3 T.2.3 T.2.3 T.2.3 T.2.3 T.2.3 T.2.3 T.2.3 T.2.3 T.2.3 T.2.3 T.2.3 T.2.3
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ET – – – – – – • – – – – – • • •6
SM – – – T.2.3 – – T.2.3 – T.2.3 T.2.3 T.2.3 T.2.3 T.2.3 T.2.3 T.2.3

O|CC/IC/OC/DC|DG Orientation|Color/Intensity/Orientation/Depth Contrast|Depth Gradient

SYM/EC/M/IF/CB/B/AB/PR|C/N SYMmetry/ECcentricity/Motion and Dynamics/Image Flow/Central Bias/Depth Bias,Weighting,Value/ABruptness/PRiors|Curvature/Normals

NN/⊕/⊗/SVM Neural Network/accross-scale addition/multiplication/Support Vector Machine

Q/PR/OD/ET/SM Qualitive/Precision–Recall curve/Object–Detection/Saliency Models

1target masks are produced from features 4region-based saliency

2ICA to integrate features 5there are multiple features in the feature vector, see text for details

3correlation between channels is taken into account 6region-based method similar to [Li 13] instead of eye-tracking

Table 2.2: The table shows comparison of different attention algorithms developed to be
used with RGB-D data.
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[Maki 96] STEREO VIDEO SEQUENCES – – – – – – – – – – –
[Backer 00] VIRTUAL RENDERED SEQUENCES – – – – – – – – – – –
[Courty 03] VIRTUAL RENDERED SEQUENCES – – – – – – – – – – –

[Frintrop 05b] LASER SCAN IMAGES E – – – – – – – – – –
[Lee 05] MESH MODELS – – – – – – – – – – –

[Bruce 05] STEREO PAIRS – – – – – – – – – – –
[Hügli 05] 3D IMAGES E – – – – – – – – – –

[Deville 08] STEREOSCOPIC VIDEO SEQUENCES – – – – – – – – – – –
[Y.-M. 07] VIDEO SEQUENCES E – – – – – – – – – –

[Akman 10] POINT CLOUDS FROM TOF CAMERA – – – E E – – – – – –
[Zhang 10] MULTI-VIEW VIDEO SEQUENCES C/E – – – – – – – – – –

[Niu 12] STEREOSCOPIC IMAGES – – E E E – – E E E –
[Lang 12b] NUS-3DSALIENCY C/E – C/E C/E C/E C/E C/E – – – C/E

[Wang 13] MIDDLEBURY; IVC 3D IMAGE C/E – – C/E – C/E – – – – –
[Desingh 13] UW DB, BERKLEY DB – C/E – C/E – – – – – C/E –

C – Combination E – Evaluation

Table 2.3: The table shows how different state-of-the-art attention operators, developed
for RGB-D data were evaluated and/or combinated with state-of-the-art 2D saliency algo-
rithms.

scene. Given a saliency map, a set of so-called fixation points or regions is extracted. These
fixation points or regions are then compared to the ground truth objects and the conclusion
about the model performance can be made. This approach is especially popular in robotics,
due to its simplicity and practical motivation. Moreover, this approach allows to evaluate
the robustness of the attention system under different environments and conditions.

In the field of computer vision, saliency maps are usually evaluated by means of a PR-
curve (Precision-Recall curve). This approach is used when saliency maps are designed to
detect the most attractive object in the scene. Given a saliency map and the ground truth
segmentation of the object of interest, the saliency map is thresholded and precision and
recall metrics of the resultant segmentation are calculated. By varying the threshold value,
a PR-curve can be built. One of the drawbacks of this evaluation method is that it can be
efficiently used only when there is only one attractive object in the scene. This approach is
not very popular in robotics, because in typical robotics applications the number of objects
of interest can be unlimited.

Depth-Weighting Saliency Maps

One of the first attention models that used a depth-weighting scheme was proposed in 1996
by Maki et. al [Maki 96]. The architecture is based on a parallel detection of pre-attentive
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cues (image flow, stereo disparity, and motion detection), followed by a cue integration
mechanism based on the selection criteria using nearness and motion. Two masks based on
the pursuit and saccade modes are computed then. Depth is applied as a priority criterion to
select the mask. The hypothesis assumed by Maki et. al [Maki 96] is that closer target has
higher priority. As explained by the authors, this hypothesis is valid in scenarios where the
observer has to avoid obstacles. Indeed, they demonstrated the application of the model
for a scenario with moving or stationary stereo-camera. The camera selectively focuses
(masks) on different moving objects and holds focus on them for several frames. It was
shown that the model kept fixating on the moving object closest to the camera. For the
evaluation they did not provide any database with ground truth, but merely demonstrated
results on some video sequences with moving people.

Backer et. al [Backer 00] introduced the Neural Active VISion system (NAVIS). The
system contained a bottom-up component, which took into consideration such pre-attentive
cues as eccentricity, color contrast and symmetry. It also integrated depth and time to get a
3D saliency representation for appropriate behavior in a three-dimensional dynamic world.
In the paper authors focused mostly on the mechanism of attentional control itself and did
not give any evidence that the system can be used in the real world environment. To show
how the proposed system works they applied it on a series of rendered sequences consisting
of a number of disjoint objects.

In 2003, Courty et. al [Courty 03] showed how saliency maps can be used for image
rendering purposes. The hypothesis that was explored is that close objects should be more
salient for humans. The saliency map was based on a set of response maps from Gabor
filters and a depth image. A Gaussian image was subtracted from the saliency map to
simulate the center bias. A list of fixations was extracted from the saliency map and then
used as input to the animation engine. They tested the proposed algorithm for saliency
computation on a virtual character wandering along the street in a virtual city.

Jang et. al [Y.-M. 07] based their attention model on static and dynamic saliency maps.
To obtain the static map intensity, orientation, color and symmetry feature maps are calcu-
lated. The symmetry feature map is obtained from orientation maps. All feature maps are
then integrated into the static saliency map by an independent component analysis (ICA)
algorithm based on entropy maximization. The dynamic saliency map is based on the
dynamic analysis of successive static saliency maps. The authors proposed to use depth
information in a decaying exponential function meaning that closer objects attract more
attention than those situated far away. Evaluation was carried qualitatively to show that the
proposed attention model performs better than a classical model of Itti et. al [Itti 98].

Zhang et. al [Zhang 10] proposed a bottom-up visual attention model for stereoscopic
content. They extended a hierarchical model by Itti et. al [Itti 98] for stereoscopic vision
by using the depth map and motion as an additional cue. Optical flow is utilized to estimate
motion of image objects between consecutive frames. The motion map is decomposed with
a dyadic pyramid into nine levels and center-surround difference is adopted to separate the
attentive object motion from background motion. Near objects are considered more impor-
tant than far objects. All maps are then added together, while the correlation between chan-
nels is subtracted, and then the final saliency map is multiplied with the depth saliency. As
evaluation, they performed attention detection experiments on multi-view video sequences.
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However, no quantitative evaluation was performed.
We can raise two main criticisms concerning the above described works by Maki

et. al [Maki 96], Backer et. al [Backer 00], Courty et. al [Courty 03], Jang et. al [Y.-M. 07],
Zhang et. al [Zhang 10]. Firstly, the proposed approaches were designed either for ren-
dering purposes or for detecting closer objects as more salient. These systems can be
efficiently used in the task of autonomous driving or obstacle avoidance. However, the hy-
pothesis that closer objects attract more attention may not necessarily hold in a scenario of
viewing complex scenes where the closest object may not be the only or main object of in-
terest. These approaches internally assume that objects in the scene are disjoint and are not
situated in clutter, while robots have to face cluttered environments with multiple occluded
objects. In the case of a clutter, attention in these systems will be driven to the closest
regions of the clutter and those areas do not yield any information regarding object bound-
aries and hence cannot localize objects. Therefore, these approaches cannot be directly
applied to robotics applications for detecting objects in cluttered environments. Secondly,
while the hypothesis that closer objects are more salient has been proven to be biologically
plausible, it still cannot serve as the only one depth feature when building attention systems
for a robot. A more complicated scheme must be involved to extract attention features from
the depth channel in order to prioritize objects relevant to the task at hand.

Saliency Maps from Depth-Extracted Features

The second group of attentional models extracts features directly from depth and uses them
in the process of saliency computation. In 2005, Frintrop et. al [Frintrop 05b] proposed to
extend the hierarchical model described by Itti et. al [Itti 98] to be used with depth and re-
flectance images from laser scans. In this model image pyramids with five levels each, were
created from depth and reflection. Intensity and orientation feature maps were calculated
using on-center-off-surround and off-center-on-surround operators. Those feature maps
were fused together to obtain a master saliency map. The qualitative evaluation showed
that the proposed model solves the task of detecting salient objects better than the model
of Itti et. al [Itti 98].

Lee et. al [Lee 05] applied the idea of Itti et. al [Itti 98] to 3D meshes. The mean
curvature at each vertex is used as the feature to measure saliency. The scale space is
defined as the size of the neighborhood of the vertex in the mesh. The saliency model was
applied to the task of mesh simplification and salient viewpoint selection. For qualitative
evaluation, they used five mesh models.

Hügli et. al [Hügli 05] (also Jost et. al [Jost 05] and Ouerhani et. al [Ouerhani 00]) ex-
tended the model proposed by Itti et. al [Itti 98] with depth features. They hypothesized
that the depth contrast contributes to visual attention similarly to intensity contrast, there-
fore a model with depth features predicts human fixations better than a model without. In
the proposed model a number of conspicuity maps are built from intensity, color and depth
low-level features using a multi-resolution center-surround mechanism. A linear combi-
nation of conspicuity maps is used to produce an overall saliency map for the image. To
evaluate the proposed model they recorded eye movements for 12 stereo images contain-
ing natural indoor and outdoor scenes. They calculated similarity between human fixations
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and produced saliency maps. The usefulness of integrating depth information in a com-
putational model was proven by increase in the similarity with human fixations up to 10%
when the depth feature was involved.

In a way similar to Hügli et. al [Hügli 05], Deville et. al [Deville 08] used intensity,
color, depth and depth gradient features to create a saliency map using a multi-resolution
center-surround mechanism. However, coefficients for linear combination of conspicuity
maps were based on the size of regions of conspicuity, i.e. as a function of the mean
size of conspicuous regions. They carried out experiments in two different situations: (1)
indoor scenes with obstacles (like furniture and people), and (2) outdoor street scenes (with
outdoor object and pedestrians). The ground truth for objects that are desired to be detected
was determined manually. As a quantitative measure they evaluated the success rate of
detecting ground truth obstacles.

Akman et. al [Akman 10] proposed a novel saliency detection mechanism based on
the combination of geometric and spatial information from the 3D point cloud data. They
utilized local surface properties to detect non-trivial regions in a scene. At first, five spatial
scales of the input point cloud are generated using dyadic Gaussian pyramids with bilin-
ear interpolation. Non-trivial regions or spatial irregularities are detected at each point on
every scale by means of a residual, the minimum eigenvalue of a covariance matrix for
plane fitting at each point. Calculated residual values at each scale are averaged to cre-
ate a saliency map. This saliency map is linearly combined with a second saliency map
based on the exponential decay of depth values to obtain a master saliency map. They
visually compared the proposed saliency map on 3D point clouds with saliency maps by
Hou et. al [Hou 07] and Achanta et. al [Achanta 09a].

The above described methods by Frintrop et. al [Frintrop 05b], Lee et. al [Lee 05],
Hügli et. al [Hügli 05], Deville et. al [Deville 08] and Akman et. al [Akman 10] propagated
the idea of detecting saliency by finding irregularities, such as depth or curvature contrasts,
in the scene. It means that regions that have different depth characteristics compared to
their environment will become salient. However, this approach only works if objects are
separated from each other in space or some objects have significantly different shape char-
acteristics compared to their neighborhood. In cases of severe clutter with multiple similar
objects, the saliency will yet again be defined only by object color properties.

Bruce and Tsotsos et. al [Bruce 05] described the problem of binocular rivalry ap-
pearing in stereo-based vision and the expansion of attention to 3D. They described the
difficulty in biologically plausible translation of 2D visual attention models to the stereo-
based vision. In detail, they demonstrated how hierarchical models can be used to extract
features to create saliency maps. Those saliency maps are then used to predict fixations.
Authors pointed out that it is not completely biologically plausible to extract features in-
dependently. Moreover, it is significantly more complicated to prove independent feature
extraction to model stereo-based attention. It is mentioned that stereo-based attention mod-
els should consider conflicts between the two eyes that often result in occlusions or higher
disparity values. Therefore, two eyes and it corresponding fixations should be coupled.
Moreover, 2D saliency map eliminates the correspondence between the eyes. Following
above given arguments, they suggested a stereo-based attention approach following 2D
visual attention model that uses an architecture based on the pyramid processing. Inter-
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pretive neuronal units were added to the pyramid to achieving stereo-vision. The study
showed several synthetic images with structural objects, but did not suggest any results in
more complex scenarios. Unfortunately, results are not compared with ground-truth data
from eye-tracking experiments.

In 2012, Niu et. al [Niu 12] described an algorithm for stereo saliency using disparity
information. In the proposed algorithm, an RGB-D image is first segmented into uniform
regions based on color and disparity. The saliency value of each region is then calcu-
lated. The authors proposed two different types of saliency: (1) saliency based on global
disparity contrast and (2) saliency based on domain knowledge. Global disparity contrast-
based saliency was extended from the color contrast-based saliency proposed by Cheng
et. al [Cheng 11]. In the algorithm, disparity difference between regions is computed in-
stead of color-based difference; abruptness of disparity change, i.e. maximal disparity
change along the path between two pixels, is considered as an additional feature. The do-
main knowledge saliency map consists of two maps: (a) saliency map where objects with
small disparity magnitudes (comfort zone) tend to be more salient and (b) saliency map
where objects popping out from the screen tend to be more salient. Then those two maps
are linearly combined and modulated using the local disparity contrast in each row to ob-
tain the domain knowledge saliency map. Final stereo saliency is obtained by multiplying
Domain knowledge saliency map and global disparity contrast-based saliency map. The
authors evaluated their algorithm on a collection of 1000 stereoscopic images, where the
most salient object in each image was labeled manually by three users. They showed that
the proposed stereo saliency map performs better in terms of PR compared to existing state-
of-the-art attention models ([Harel 06, Hou 07, Achanta 09a, Achanta 10, Goferman 10,
Cheng 11]). The approach was designed for the task of automatic object segmentation by
taking binarized saliency map as input and can be efficiently used when there is only one
object of interest in the image. This limits the application of the algorithm in robotics,
where several objects can be objects of interest simultaneously.

Saliency Maps based on Eye-Tracking

The last group of attentional models uses eye-tracking data to learn depth-priors for saliency
computation. Lang et. al [Lang 12b], based on eye-tracking experiments (see 2.1.2), pro-
posed to model the relationship between depth and saliency by approximating the joint
density with a Mixture of Gaussians. The model parameters were obtained from a training
dataset and the Expectation-Maximization (EM) algorithm was applied for fitting Gaussian
mixtures. They extended seven existing methods ([Itti 98, Harel 06, Hou 07, Achanta 09a,
Bruce 05, Seo 09, Lang 12a]) to include the learned depth prior using addition and multi-
plication operators. The evaluation was carried on the collected fixation dataset in terms
of ROC and AUC metrics, as well as the correlation coefficient (CC) between the fixation
map and the predicted saliency map. The evaluation showed that models with predicted
depth priors perform significantly better than those without such depth priors. It was found
that multiplicative modulating effect explains the influence of depth on saliency better than
a linear weighted summation model. The predicted depth saliency maps are similar in their
spatial distribution between 2D and 3D versions when there is one conspicuous area or
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object clearly standing out from others, but when the scenes include multiple objects or no
conspicuous objects, there is a noticeable difference between the predicted depth saliency
maps in 2D and 3D cases. The authors came to the conclusion that extending the saliency
models to include the proposed depth priors consistently improves the performance of cur-
rent state-of-the-art saliency models.

Wang et. al [Wang 13] proposed a depth-based saliency model of 3D visual attention.
They applied Bayes theory on the result of their eye-tracking experiments using synthetic
stimuli et. al [Wang 12] (see Sec. 2.1.2) to model the correlation between depth features
and the levels of depth saliency. Their framework can combine the obtained depth saliency
map with existing 2D visual attention models. They used only depth contrast as a fea-
ture and only one scale because they claimed there is no proof that there exists multi-scale
depth perception. Three bottom-up visual attention models ([Itti 98, Hou 07, Bruce 05])
were used as 2D saliency predictors and then combined with depth saliency map. The final
saliency map was obtained by addition or multiplication of 2D saliency map and depth
saliency map. To evaluate the proposed model the authors created a new eye-tracking
database containing 18 stereoscopic natural content images. They evaluated each 2D
model, the proposed model, combinations of 2D models with addition and multiplication
of the proposed model, and 2D models with multiplication by depth, in terms of corre-
lation between ground-truth eye-tracking data and resulting saliency maps. Experiments
supported the suggestion to consider depth information as an individual cue to model vi-
sual attention. Combining the depth saliency map with the 2D models showed good results
for prediction of salient areas.

Desingh et. al [Desingh 13] developed a 3D-based saliency model that integrates depth
and geometric features of object surfaces in indoor scenes. Their approach consists of cre-
ating two types of saliency maps: (1) color-based and (2) depth-based. Those two saliency
maps are later fused together into a master saliency map. To create the depth-based saliency
map they segment the input point cloud using a region growing technique with curvature
and smoothness of the surface as features. The saliency of each region is computed using
contrast score based histograms of surface normals, taking into consideration the number
of points in the region. For the color-based saliency map, they used several state-of-the-
art algorithms ([Zhai 06, Hou 07, Achanta 09a, Cheng 11]). Fusion of color-based and
depth-based saliencies was done through non-linear regression using a Support Vector Ma-
chine (SVM). Given the saliency values in color-based and depth-based maps, the SVM
predicted the saliency value in the final map. They also used additional features of re-
gions, such as color histogram, contour compactness, dimensionality, perspective score,
discontinuity, size and location, verticality. The ground truth for learning was obtained by
a region-based method, similar to [Li 13] instead of eye-tracking. For evaluation images
from the University of Washington RGB-D dataset, the Berkeley 3D object dataset, and
their own dataset were used. It was shown that the proposed saliency model outperforms
existing attention models in terms of Receiver-Operator-Characteristics.

The above described models of Lang et. al [Lang 12b], Wang et. al [Wang 13] and
Desingh et. al [Desingh 13] were based on eye-tracking data. Moreover, the depth-based
saliency map was always considered as a complimentary feature to existing color-based
saliency models. While the human visual system is significantly superior to any existing
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Figure 2.1: A general scheme to create saliency maps from an input point cloud. At first
point cloud is diffused to obtain missing depth data. Then a Gaussian pyramid of the point
cloud is created to enable computations on different scales. Attentional operator is applied
on the pyramid to create a saliency map. Finally fixations points that represent object
candidates are extracted from a saliency map.

artificial visual system, still these systems are intended to solve different tasks. This means
that what can be salient for humans does not necessarily need to be salient for a robot.
Therefore, attentional operators based on eye-tracking data may be good in predicting hu-
man fixations, but do not always serve as good predictors for objects, as will be shown in
our evaluation Section.

The goal of this thesis is to create attentional operators for a robotic system that are
capable of reliably detecting objects in highly cluttered indoor environments. We show
that the proposed approach works better compared to existing state-of-the-art algorithms
in terms of the quality and precision of object detection. In the next Section we describe in
detail the proposed attentional models and later continue with the evaluation showing the
benefits of the proposed algorithms.

2.2 Object Detection using Saliency Maps
A general scheme to detect objects using saliency maps is presented in Fig. 2.1.

As input, each saliency operator takes an organized RGB-D point cloud P. Each point
ri ∈ P is represented using a set of coordinates

ri = (ri, ci,pi,ni) (2.1)

where (ri, ci) are row-column coordinates in the image, pi = (x, y, z) the 3D point coor-
dinates, and ni the unit normal. For each point pi, the unit normal ni = (nix, niy, niz) is
estimated as the normal of a plane tangent to the neighboring surface [Rusu 09].
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We create a depth image D from the point cloud P, so that ∀ri ∈ P:

D (ri, ci) = z (2.2)

Because of missing depth values in the depth image acquired by Kinect, due to shad-
ows, black regions, shiny surfaces, transparent materials and many others, we first perform
Markov Random Field (MRF) guided anisotropic depth diffusion [Varadarajan 12].

After that a Gaussian pyramid is created to enable calculation of multi-level saliency
map. This process is described in Section 2.4. We propose a set of different saliency
operators for RGB-D data, which are described in Section 2.3. Object detection is im-
plemented by means of extracting fixation points (they are also called attention points),
from a saliency map. Extraction strategies that are proposed to be used in this thesis are
described in Section 2.5. Finally, in Section 2.6 we evaluate the proposed saliency maps in
combination with different extraction strategies against existing state-of-the-art attentional
operators.

2.3 Saliency Maps for RGB-D
In this Section, we are going to discuss our proposed saliency operators:

• Point-based Height Saliency Map (PH) (2.3.1)

• Surface-based Height Saliency Map (SH) (2.3.2)

• Relative Surface Orientation Saliency Map (RSO) (2.3.3)

• 3D Symmetry-based Saliency Map (SYM3D) (2.3.4)

2.3.1 Point-based Height Saliency Map
In this Section, we describe the point-based height saliency map SPH . Height above the
supporting plane is considered to be one of the attention cues that grasps humans visual
attention. Moreover, object height can be a useful feature in such tasks as picking up
objects, since the simplest way to start grasping is to pick up at first objects standing out
from the clutter. Tall objects can be detected by attention points derived from the point
height saliency map (Fig. 2.10).

Given a point cloud P, we want to detect the height of each point ri ∈ P. To calculate
height, we need to determine a reference, i.e. the supporting plane χ on which objects rest
(e.g. a table). From the task context, such as grasping objects from a table we can assume
that such supporting plane exists. The plane χ with the equation in the Hesse normal form
nχp − ρ = 0 is determined using RANSAC [Fischler 81] algorithm, where nχ is the unit
plane normal. Only points whose projections on the table are situated inside the table
convex hull are used to create a saliency map.

For every point ri its unsigned Euclidean distance dχ (ri) to the supporting plane χ is
calculated according to:

dχ (ri) = |nχpi + ρ| (2.3)
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The point-based height saliency value of the point ri is equal to:

SPH (ri, ci) = κdχ
2 (ri) (2.4)

A squared distance from the plane is used to obtain more pronounced saliency maps,
and κ is chosen such that SPH (ri∗ , ci∗) = 1, where i∗ = argmax

i:ri∈P
dχ (ri).

2.3.2 Surface-based Height Saliency Map
In the Section, 2.3.1 we have described the point-based height saliency map. In this Section
we are going to describe the surface-based height saliency map SSH . While the point-based
height saliency map assigns a saliency value to each point independently, surface-based
saliency map assigns saliency values based on the highest point of the local neighborhood
around the point (Fig. 2.10). The motivation for this type of saliency map comes from the
idea to assign the saliency value to a given point based on the saliency value of the highest
point above the given one. This allows to detect “short” and “tall” objects.

To calculate height we again need to determine a reference, i.e. the supporting plane.
The support plane χwith the equation in the Hesse normal form nχp−ρ = 0 is determined
using RANSAC [Fischler 81] algorithm, where nχ is a unit plane normal. Only points
whose projections on the table are situated inside the table convex hull are used to create a
saliency map.

For every point ri its unsigned Euclidean distance dχ (ri) to the supporting plane χ is
calculated according to:

dχ (ri) = |nχpi + ρ| (2.5)

We project each point in the point cloud ri ∈ P on the support plane χ to obtain the pro-
jected version of the point r′i. For every point r′i we define its neighborhoodN(r′i) as points
in a 5 mm radius around the point r′i. The surface-based height saliency value SH(ri, ci)
of the point ri is defined as the maximum point-plane distance within the neighborhood (to
the support plane χ):

SH(ri, ci) = max
j:r′j∈N(r′i)

|dχ (rj)| (2.6)

The surface-based saliency map SSH is linearly normalized to be in the range [0, 1].

2.3.3 Relative Surface Orientation Saliency Map
Objects with surfaces parallel to the supporting plane often represent good object candi-
dates for grasping, especially in the clutter. In this Section we describe the attentional oper-
ator SRSO that aims to identify top-surfaces based on relative surface orientation. Fig. 2.10
shows the example of the relative surface orientation saliency map.

To calculate relative surface orientation we determine the support plane χ with the
equation in the Hesse normal form nχp− ρ = 0 using RANSAC [Fischler 81] algorithm,
where nχ is a unit plane normal.
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The saliency value of the point ri is defined as the cosine between unit point normal ni
and unit plane normal nχ:

SRSO (ri, ci) = |ni · nχ| (2.7)

The relative surface orientation saliency map SRSO is linearly normalized to be in the
range [0, 1].

2.3.4 3D Symmetry-based Saliency Map
Symmetry is one of the characteristics of human-made and natural objects, and thus can be
seen as an objectness measure. Kootstra et al. [Kootstra 08] showed that human eye fixa-
tions can be predicted well by symmetry. Many symmetry operators exist [Reisfeld 95,
Heidemann 04, Loy 03, Chertok 10, Berner 11], which can be divided into two major
groups: operators working on 2D data, and operators working on 3D data. Among the 2D
operators one well-known operator was developed by Reisfeld et al. [Reisfeld 95] which
detects context-free generalized symmetry based on magnitude orientations of image gradi-
ents. This symmetry operator was extended by Heidemann [Heidemann 04] to a local color
symmetry operator. Loy and Zelinsky [Loy 03] proposed to detect local radial symmetries
in an image using a special transform. Kootstra et al. [Kootstra 08] proposed a 2D symme-
try saliency operator based on the symmetry operator by Reisfeld et al. [Reisfeld 95]. This
saliency operator is able to detect symmetrical regions at different scales. The basic idea
is that symmetries are computed over multiple scales and then summed in an across-scale
addition manner to obtain a master saliency map. Kootstra et al. [Kootstra 08] showed
that this approach works better than the classical contrast-based saliency model by Itti et
al. [Itti 98] for scenes that contain symmetrical objects. Mitra et al. [Mitra 12] gave an
extensive overview of the existing methods to detect different types of symmetries in 3D
geometries. Methods based on search in oriented histograms [Sun 97], spectral analysis
[Chertok 10], feature-graph matching [Berner 11] and many others were explored. The
majority of 3D algorithms work on a complete 3D model of an object to detect symme-
tries. This property limits their use as bottom-up attentional operators working on RGB-D
images, i.e. partial views of objects.

In this thesis, a new 3D symmetry-based saliency operator, calculating a measure of
context-free local symmetry from a 3D point cloud, is proposed. The proposed symme-
try operator is used to predict fixation points for further attention-driven segmentation or
detailed exploration of the scene.

Our method for calculating saliency map SSYM3D is based on local symmetries in 3D.
The algorithm detects reflective symmetries using principal axes of Extended Gaussian Im-
ages built from normals of surface patches. The 3D reflective symmetry can be calculated
from a depth image D (Fig. 2.2). Φ(ri) defines the symmetry kernel as a square patch with
side length k, centered around D (ri, ci) (Fig. 2.2). The amount of 3D symmetry at the
given location D (ri, ci) is estimated on the subset of points {r′i} = Φ(ri)

⋂
P .

Sun et al. [Sun 97] proposed to use an Extended Gaussian Image built from point
normals to detect symmetries of a model. Minovic et al. [Minovic 93] proved that planes
of reflective symmetries are perpendicular to the directions of the principal axes. Thus, to
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(a) (b)

Figure 2.2: The depth image of a cylinder (artificial data) is shown in Figure 2.2(a), with
the point ri for which the symmetry is calculated (highlighted in red), and the kernel Φ(ri)
shown as a black square. The subset of points {r′i} = Φ(ri)

⋂
P is shown in 3D on the

right side. Subsets
{
r′1ij
}

and
{
r′2ij
}

are shown in yellow and blue respectively, with the
reflective plane χj between the two point subsets. Normals {ni} are shown as black lines.
In Figure 2.2(b) examples of p′1ij,n

′1
ij and p′2ij,n

′2
ij are shown in yellow and blue respectively.

detect planes of reflective symmetries from the patch we build an Extended Gaussian Image
from the patch’s point normals, and calculate the principal axes γ = {γ1, γ2.γ3} of the
Extended Gaussian Image using Principal Component Analysis (PCA). The corresponding
symmetry reflective planes χj (j = 1, 2, 3) are defined as planes going through the point ri
with the plane normal equal to the corresponding principal axis γj .

For a given reflective plane χj the point set {r′i} is divided into two subsets
{
r′1ij
}

and{
r′2ij
}

, so that ∀r′ ∈ {r′i}:

r′ ∈

{{
r′1ij
}

if dχj
(r′) > 0{

r′2ij
}

if dχj
(r′) < 0

(2.8)

where dχj
(r) is the signed Euclidean distance from point r to the plane χj (Fig. 2.2).

The amount of 3D reflective symmetry Ωj relative to a given plane χj for a given point
ri is defined as:

Ωj (ri) = exp (−4Dij) · exp (−4 dij) · ω1 · ω2 (2.9)

The multiplication of all four components reflects the fact, that we are searching for
patches that are symmetrical in all four aspects (see below).
4Dij represents the difference in depth values between mean points r′1ij and r′2ij:

p′mij =
1

N ′mij

∑
rl∈{r′mij }

pl (2.10)

n′mij =
1

N ′mij

∑
rl∈{r′mij }

nl (2.11)

where m = 1, 2; N ′mij is the number of points in the subset
{
r′mij
}

.
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Figure 2.3: Visual illustration for the calculation of angles α′i and α′′i . l is the line connect-
ing the two mean points p′1ij and p′2ij . α

′ is the angle between mean normal n′1ij and l, and
α′′ is the angle between mean normal n′wij and l.

4Dij = |z′1ij − z
′2
ij | (2.12)

where z′1ij and z′2ij are mean depth values of the respective subsets. 4Dij reflects the fact,
that we are only interested in symmetries, that are facing our view point.
4dij represents the difference in distances from mean points r′1ij and r′2ij to the reflective

plane χj:
4 dij = || dχj

(
r′1ij
)
| − | dχj

(
r′2ij
)
|| (2.13)

where | dχj
(r)| is the unsigned Euclidean distance from the point r to the plane χj . 4dij

reflects the fact that we are not only searching for patches with symmetrical orientations,
but also for patches that can be divided into two subpatches, which are equally sized and
symmetrically positioned in 3D space.

ω1 is a coefficient measuring the co-planarity between the line l connecting p′1ij and p′2ij
and the two mean normals n′1ij and n′2ij (Fig. 2.3):

ω1 = |[n′1ij × n′2ij]× l| (2.14)

l =
p′1ij − p′2ij
‖p′1ij − p′2ij‖

(2.15)

ω2 shows the similarity between mean normal directions based on the symmetry oper-
ator from Reisfeld et al. [Reisfeld 95] and is calculated as following (Fig. 2.3):

ω2 = (1− cos (α′ + α′′)) · (1− cos (α′ − α′′)) (2.16)

where α′ is the angle between mean normal n′1ij and l, and α′′ is the angle between mean
normal n′2ij and l. Basically this operator gives the largest value to regions, where normals
are oriented completely opposite to each other and the smallest value to regions, where
normals have the same orientation (i.e. flat surfaces).

Ideally the factors4Dij , ω2 and ω2 should be calculated on each pair of opposite points
and then summed up after multiplication. Due to small errors in the calculation of normals
this approach is not very robust. Moreover, it is computationally expensive. Using only
the mean points and normals to represent subpatches is a common approximation which
proved to be accurate enough for our computations.
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(a) (b) (c) (d)

Figure 2.4: Examples of 3D symmetry-based saliency maps calculated on artificial data.
In the first row artificially created depth images of a cone, a rotated cube, a rotated cylinder
and a sphere are shown in columns (a), (b), (c), (d) respectively. The second row shows the
corresponding 3D symmetry-based maps calculated using kernel size k = 30.

The amount of 3D symmetry SSYM3D (ri, ci) at a given pixel ri is equal to:

SSYM3D (ri, ci) =

{
0 if D (ri, ci) = 0

maxi=1,2,3{Ωi (ri)} if D (ri, ci) > 0
(2.17)

where D (ri, ci) = 0 means that no depth information is available at this point.
Due to the nature of the 3D symmetry operator, convex and concave regions will obtain

the same symmetry values. While in everyday scenarios the majority of objects that are
claimed to be symmetric by humans, are rarely concave. To eliminate concave regions the
following equation is applied:

SSYM3D (ri, ci) =

{
0 if cos(α′)cos(α′′) < 0

SSYM3D (ri, ci) otherwise
(2.18)

The 3D symmetry-based saliency map SYM3D is linearly normalized to be in the
range [0, 1].

3D Symmetry-based Saliency Map on Artificial Data

To prove that our 3D symmetry operator is performing as expected, we have tested it on
artificially created data. Artificially created data was produced from rendering mathemat-
ical models of different objects with known shape (i.e. cylinders, cubes, spheres, cones).
Results of the symmetry operator are shown in Fig. 2.4.

From the presented results it is clearly visible that the proposed method works very
accurately for synthetic examples. However, the result for the sphere (Fig. 2.4, (d)) visually
does not look perfect, due to artifacts of the visualization process. Symmetry values for the
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sphere are quite small (note that, as explained above, surface patches, that are rather flat
locally, result in small values of ω2). For visualization in Fig. 2.4, values were normalized
to a visible range, which in this case led to an amplification of small errors from the normal
calculation step.

2.4 Multi-Scale Saliency Maps
Operations involved in saliency calculation, such as normal estimation, depend on the size
of the neighborhood or the kernel size and therefore are scale dependent. To avoid this
scale dependency the saliency map is typically calculated on a multiple-scale Gaussian
pyramid. The calculation on different scales allows to detect salient objects in different
sizes in a computationally effective manner. In this Section, we describe how the Gaus-
sian pyramid for the point cloud is created and then follow with a discussion of different
approaches to calculate feature maps and across-scale combinations to create conspicuity
maps, and conclude with a discussion of how master saliency maps can be obtained from
those conspicuity maps.

2.4.1 Gaussian Pyramid for Point Clouds
Given a point cloud P we create X, Y, Z,Nx, Ny, Nz, so that ∀ri ∈ P:

X (ri, ci) = xi (2.19)

Y (ri, ci) = yi (2.20)

Z (ri, ci) = zi (2.21)

Nx (ri, ci) = nix (2.22)

Ny (ri, ci) = niy (2.23)

Nz (ri, ci) = niz (2.24)

If the point ri does not have a valid depth value the corresponding value of images I ∈
{X, Y, Z,Nx, Ny, Nz} equals to zero I (ri, ci) = 0.

To create a Gaussian Pyramid with L levels from the image I , the image is recursively
convolved with a Gaussian kernel and downsampled by skipping even rows and columns.
Only points that contain valid depth information are smoothed.

To obtain the image at the next level Ij+1 we apply a Gaussian filter with a ker-
nel g = [1, 4, 6, 4, 1] · [1, 4, 6, 4, 1]T to the image at the current level Ij , where I ∈
{X, Y, Z,Nx, Ny, Nz}:

I ′j+1(ri, ci) =
2∑

m=−2

2∑
n=−2

g(m+ 2, n+ 2)Ij(ri−m, ci−n) ∗ sign(Zj(ri−m, ci−n) > 0)

(2.25)
where Z(ri, ci) > 0 means that the point has a valid depth value (the filter is implemented
as a separable filter).
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The filtered result I ′j+1(ri, ci) is then normalized with the normalization factor:

NI′j
(ri, ci) =

2∑
m=−2

2∑
n=−2

g(m+ 2, n+ 2) ∗ sign(Zj(ri −m, ci − n) > 0) (2.26)

Image I ′j+1 is then downsampled by skipping even rows and columns to obtain pyramid
level Ij+1.

Gaussian pyramid from the point cloud Pl consists of L levels, and ∀rli ∈ Pl:

rli =
(
rli, c

l
i,p

l
i,n

l
i

)
(2.27)

where
pli =

(
Xl

(
rli, c

l
i

)
, Yl
(
rli, c

l
i

)
, Zl
(
rli, c

l
i

))
(2.28)

nli =
(
Nxl

(
rli, c

l
i

)
, Nyl

(
rli, c

l
i

)
, Nzl

(
rli, c

l
i

))
(2.29)

and
(
rli, c

l
i

)
are row and column coordinates of point rli in level l.

2.4.2 Feature Pyramid from Gaussian Pyramid
Several approaches to calculate feature pyramids from a Gaussian pyramid have been pro-
posed in literature. One of the approaches proposed by Itti et al. [Itti 98] involved center-
surround difference. Center-surround difference 	 between a “center” fine scale c and a
“surround” coarser scale s reflects the fact, that salient regions are those that are different
from its surrounding. Given a Gaussian pyramid with response maps {Ij} (such as inten-
sity or color opponency) feature maps {Fc,s} at different levels are computed according
to:

Fc,s = |Ic 	 Is| (2.30)

where c ∈ {2, 3, 4}, s = c + δ, and δ ∈ {3, 4} as was proposed by Itti et al. [Itti 98]. It is
worth mentioning that values of c and s can be modified according to the task at hand and
the original image size.

Frintrop et al. [Frintrop 05b] argued that approximation of on-center-off-surround,
responding strongly to bright regions on a dark background and off-center-on-surround
difference, responding strongly to dark regions on a bright background with simple center-
surround difference as proposed by Itti et al. [Itti 98] yields problems when many peaks
of one type and only few of the other exist. In that case attention should be guided towards
those few peaks, while in the model of Itti et al. [Itti 98] those two types of peaks are
equivalent. Therefore, Frintrop et al. [Frintrop 05b] proposed to create two types of feature
pyramids {F on−off

c,s } and {F off−on
c,s } from the same Gaussian pyramid with response maps

{Ij}:
F on−off
c,s = Ic −mean (I, s) (2.31)

F off−on
c,s = mean (I, s)− Ic (2.32)

where c ∈ {2, 3, 4}, mean(I, s) represents the average of the surrounding pixels for two
different sizes of the surround s ∈ {3, 7} pixels.
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Another approach to create a feature pyramid is to directly extract features from each
level of the Gaussian pyramid:

Fl = f (Il) (2.33)

where f (·) is a specific function to create feature map from the response.
This approach was used by Kootstra et al. [Kootstra 08], where symmetry feature maps

were calculated for each level of the Gaussian pyramid. Frintrop et al. [Frintrop 05b] also
suggested that orientation maps obtained from intensity images after applying Gabor filters
can serve themselves as feature maps.

On the contrary, Itti et al. [Itti 98] used those orientation maps to create a Gaussian
pyramid and then applied center-surround operator to calculate feature maps:

Fc,s = |O (Ic)	O (Is)| (2.34)

where O (·) is a Gabor filter at a specific orientation.
In this thesis we exploit two types of feature pyramids: feature pyramid {Fl} built di-

rectly on the Gaussian pyramid of the point cloud and feature pyramid {Fc,s} built using
center-surround operator applied to the Gaussian pyramid from saliency maps. We build a
Gaussian pyramid {Pl}with L = 8 levels from point cloud P . Given a set of saliency oper-
ators STY PE ∈ {SPH , SSH , SRSO, SSYM3D} the feature pyramid {F TY PE

l } is constructed
as:

F TY PE
l = STY PE(Pl) (2.35)

To build the feature pyramid {F TY PE
c,s } we use the previously built pyramid {F TY PE

l }:

F TY PE
c,s = |Fc 	 Fs| (2.36)

where c ∈ {2, 3, 4}, s = c+ δ, and δ ∈ {3, 4} as was proposed by Itti et al. [Itti 98].

2.4.3 Normalization of Feature maps
Before feature maps from the pyramid can be combined together to form a conspicuity
map, those feature maps should be normalized. In this Section we describe different nor-
malization operators.

The simplest way to get normalized feature map FN
l is to apply linear normalization to

the range [0, 1]:

NLIN (Fl (ri, ci)) =
Fl (ri, ci)− Fmin

l

Fmax
l − Fmin

l

(2.37)

where Fmin
l and Fmax

l are global minimum and global maximum values of the map Fl
respectively.

Itti et al. [Itti 98] proposed to normalize feature maps in a way that a small number of
strong peaks of activity is locally promoted, while numerous comparable peak responses
are globally suppressed. This idea is similar to non-maxima suppression scheme and con-
sists of several steps. At first, the linearly normalized saliency map FN

l is produced. Then,
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the global maximum Fmax
l and the average of its other local maxima F

max

l of the feature
map are found. The normalized feature map FNMS

l is finally obtained according to:

NNMS (Fl (ri, ci)) = Fl (ri, ci)
(
Fmax
l − Fmax

l

)2
(2.38)

Later, Itti et al. [Itti 99] argued that the above mentioned scheme is not biologically
plausible and is not robust to noise. Instead an iterative scheme based on convolution
with Gaussian filter was proposed. We leave out the details of this normalization operator,
because iterative normalization is time consuming and is not suitable for robotics applica-
tions.

Frintrop et al. [Frintrop 05b] proposed a different normalization scheme, where the
feature map is divided by the square root of the number of the local maxima NLM in a
pre-specified range from the global maximum:

NNLM (Fl (ri, ci)) =
Fl (ri, ci)√
NLM

(2.39)

Please note, that there exist many other normalization operators, and in this Section we
concentrated only on those that are used for further evaluation.

2.4.4 Conspicuity Map from Feature Pyramid
After feature pyramids Fl with L levels are computed and normalized they are combined
together into a conspicuity map C. There exist different ways to create a conspicuity map
such as across-scale addition:

CSUM = N

(
l=C⊕
l=2

N (Fl)

)
(2.40)

and maximum value over all levels:

CMAX = N

(
max
l=1..L

N (Fl)

)
(2.41)

where N(·) ∈ {NLIN , NNMS, NNLM} is a normalization operator.

2.4.5 Master Saliency Map from Conspicuity Maps
Given a set of conspicuity maps, in our case CTY PE ∈ {CPH , CSH , CRSO, CCOL} a master
saliency map is created. CCOL is a 2D color-based saliency map. In our experiments, we
used the saliency map proposed by Harel et al. [Harel 06], because it showed the best
performance among different evaluated color-based saliency maps. We investigate two
different ways to combine those conspicuity maps: linear combination and maximization.

Master saliency map SSUM obtained by linear combination:

SSUM = N

 ∑
type∈{PH,SH,RSO,COL}

ωtype Ctype

 (2.42)
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where ωtype is the weight of the conspicuity map Ctype. The sum of all weight must be
equal to 1: ∑

type∈{PH,SH,RSO,COL}

ωtype = 1 (2.43)

and in our case all weight are equal.
Master saliency map SMAX obtained by maximization:

SMAX = N

(
max

type∈{PH,SH,RSO,COL}
Ctype

)
(2.44)

2.5 Attention Points Extraction Strategies
As was mentioned in Sec. 2.1.3 there are several ways to evaluate saliency maps. In this
thesis, we follow the idea of evaluating saliency maps based on the number of correctly
detected objects of interest in the scene. To do this, we extract attention points, sometimes
also called fixation points.

One of the main challenges of attention points extraction mechanisms is the inability
to guarantee their uniqueness. What we essentially want is a system to detect objects, or if
that is not possible due to clutter or occlusion, we want to at least detect good initial object
candidates. Therefore, attention points can be used as seed points for attention-driven
segmentation [Mishra 11] or as fixations for further investigation of the region like zooming
in or foveation. This approach for scene investigation is highly useful in such applications
as robot navigation, robot localization and object classification. It can significantly reduce
the search space and automatically point to interesting objects or areas, without exhaustive
and computationally expensive exploration of the whole scene. We concentrate here on the
area of understanding how and what attention points should be extracted from the saliency
map to obtain good object candidates.

In this Section, we will describe different strategies employed to extract attention points
from saliency maps. We are going to discuss the following strategies: Winner-Take-All
(WTA [Lee 99]), Maximum Salient Region (MSR [Frintrop 06a]), and a novel approach
called T-Junctions. The saliency map S is used as input to calculate attention points.

2.5.1 Winner-Take-All
Lee et al. [Lee 99] showed that a Winner-Take-All (WTA) neural network can be used
to simulate humans’ behavior of scene components prioritization while observing a scene.
Excitatory neurons in the network are independent and receive input from a saliency map
and each neuron excites its corresponding WTA neuron. All WTA neurons evolve inde-
pendently of each other. The “winner” is the one that fires first (i. e. reaches threshold).
This triggers a complete reset of all other WTA neurons. Attention points can be defined
as points of location of the “winner” neuron.

Firing of the “winner” neuron is followed by a shift of the Focus of Attention (FOA) and
a local inhibition. FOA is shifted to be at the location of the “winner” neuron. Input neurons
are inhibited at the new location of the FOA. Local inhibition prevents returning the FOA to
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the just attended location and allows the next most salient location to become the winner.
This process is called “Inhibition of Return” (IOR) and is described in [Posner 84]. All
time constants, conductances, and firing thresholds used in the WTA model implemented
are the same as in [Itti 98]. Attention points are extracted from down-sampled saliency
maps.

2.5.2 Most Salient Region
Frintrop [Frintrop 06a] proposed the detection of the Most Salient Region (MSR) for object
detection. The most salient point (attention point) determines the most salient region and
is the point with the maximum saliency value. Starting from the attention point (seed), the
surrounding salient region is extracted by means of seeded region growing. MSR consists of
all neighbors of the seed with saliency values that differ by at most 25% from the saliency
value of the attention point.

The focus of attention (FOA) is directed to the MSR. After that the MSR is inhibited and
the next MSR is computed. Though this way of attention point detection is less biologically
plausible than one proposed by Lee et al. [Lee 99], Frintrop [Frintrop 06a] argued that
equivalent results are achieved with fewer computational resources.

2.5.3 T-Junction Attention Points
We propose a new T-Junction (TJ) attention points extraction strategy for 3D symmetry-
based saliency maps. The intuition behind this strategy is to detect essential points on
the object, i. e. those that are intersection points for visible surfaces composing the ob-
ject. This strategy requires saliency maps in which each object is detected as an individual
connected component ( i. e. SSYM3D Fig. 2.3.4, 2.29).

To extract an attention point we first extract connected components {Ck} from saliency
map S. Then we calculate skeletons {Tk} of these connected components {Ck}. Attention
points are defined as T-junction points of multi-segment skeletons, or as mid-points in the
case of simple skeletal line segments.

2.6 Evaluation and Results

We have two primary goals of the evaluation described in this Section. The first goal is to
compare the performance of the proposed saliency maps and state-of-the-art methods with
respect to the task of object detection. The second goal is to understand how different multi-
level strategies, across-scale combination methods, normalization algorithms, and different
extraction strategies influence the performance of the detection. What we essentially want
to know is if more complicated and therefore more computationally expensive approaches
result in a better performance than simpler ones. It has a significant importance for robotic
systems, where algorithms have to be not only reliable, but also fast.

Evaluation was done with respect to two metrics described in Section 2.6.1: Hit Ratio
and Distance to Center.



2.6. Evaluation and Results 41

We evaluated several start-of-the-art saliency maps to understand how different oper-
ators perform with respect to the task of object detection. The following state-of-the-art
saliency operators were evaluated (Sec. 2.6.2):

• Itti et al. (ITTI, [Itti 98])

• Harel et al. (HAREL, [Harel 06])

• Hou et al. (HOU, [Hou 07])

• Bruce et al. (BRUCE, [Bruce 09])

• Kootstra et al. (KOOTSTRA, [Kootstra 10b])

• Wang et al. (WANG; WANG+ITTI; WANG+HOU; WANG+BRUCE, [Wang 13])

We evaluated the proposed saliency operators to understand which of them are the
most suitable for our task of object detection. We also evaluated different multi-level,
combination, normalization and extraction strategies to see which of them are best to be
used for our task. The following proposed saliency operators were evaluated:

• Point-based Height Saliency Map (PH) (Sec. 2.6.3)

• Surface-based Height Saliency Map (SH) (Sec. 2.6.4)

• Relative Surface Orientation Saliency Map (RSO) (Sec. 2.6.5)

• 3D Symmetry-based Saliency Map (SYM3D) (Sec. 2.6.6)

We also evaluated the combination (Sec. (2.4.5)) of the proposed saliency operators
(Sec. 2.6.7) to understand if their combination leads to a better detection performance.
Moreover, HAREL saliency map [Harel 06] was also used as an additional channel to
create a master saliency map.

In total, 159 combinations between different saliency maps and extraction strategies
were evaluated.

The experiments were performed on the Object Segmentation Database (OSD)
[Richtsfeld 13]. The database consists of different table scenes including free-standing
objects, multiple occluded objects and piles of objects. Objects in the database were hand-
labeled with polygon masks. Examples of images from the database and different saliency
maps are shown in Sec. 2.6.2 – Sec. 2.6.7.

Complete evaluation results are shown in Tables 2.4 and 2.5.

2.6.1 Evaluation Metrics
The comparison of different strategies to extract attention points applied to different types
of saliency maps was done with respect to two metrics. The first metric is the Hit Ratio
(HR), and the second metric is the Distance to Center (DC).
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Hit Ratio

Hit Ratio (HR) shows how many different objects were covered by a given number of at-
tention points, and is calculated as the percentage of unique attention points being situated
inside different objects:

HR =
n

N
(2.45)

whereN is the number of attention points and n is the number of different attended objects.
The higher (HR) the better is the attention mechanism.

Distance to Center

The distance between the extracted attention point (fixation point) f and the center of the
respective object c is defined as:

DC(f, c) =
‖ f − c ‖

max
p∈object

‖ p− c ‖
(2.46)

The centers of the respective objects represent physical centers of the visible parts of
the objects. The DC shows the accuracy of attention points. The smaller the distance, the
better is the detection quality of attention points. A good attention point for an object is the
one that is situated closer to the center of the object.

A perfect attention mechanism will hit every object exactly once, resulting in HR
equaled to one and directly at the center, resulting in DC equaled to zero.
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2.6.2 State-of-the-art Saliency Maps

In this Section we present evaluation results of the state-of-the-art saliency algorithms. For
each type of the saliency map attention points for object detection were extracted using two
different strategies: (1) Winner-Take-All (WTA, Sec. 2.5.1) and (2) Most Salient Region
(MSR, Sec. 2.5.2).

The primary goal of the evaluation is to understand which type of saliency map and
which extraction strategy is the most suitable for the task of object detection. This is
also needed for the further evaluation of the proposed saliency maps, to understand if 3D
information improves detection performance.

Hit Ratio

The evaluation (Fig. 2.5) shows that the best performance in terms of the Hit Ratio is
achieved by the HAREL saliency map [Harel 06] both when MSR or WTA extraction
strategies are applied. The worst performance in terms of the Hit Ratio is shown by HOU
saliency map [Hou 07]. This means that saliency maps based on Feature Integration Theory
(FIT) by Treisman et al. [Treisman 80] are more preferable for object detection, than
information-based attentional models. This conclusion is also supported by low detection
results for BRUCE saliency maps ([Bruce 09]).

ITTI saliency map [Itti 98] has worse performance than HAREL saliency map, despite
the same underlaying principles. This finding can be explained by the fact that the two
algorithms have different strategies for feature combination and normalization. It means
that for color-based saliency maps the internal mechanism of saliency map computation is
of high importance.

The performance of the KOOTSTRA saliency map [Kootstra 10b] is comparable with
HAREL saliency map, however, is still lower. This shows that only 2D symmetry is not
sufficient enough to detect objects in cluttered environments.

The saliency maps proposed by Wang et al. (WANG, WANG+HOU, WANG+ITTI,
WANG+BRUCE) [Wang 13] and created using findings from human eye-tracking experi-
ments in 3D, did not result in a boost of a performance in terms of object detection. At best,
its performance (WANG+BRUCE) is similar to the HAREL saliency map, when WTA ex-
traction strategy is used. This clearly shows, that there is a long way to go before research
on visual attention can completely explain how humans search for objects in 3D space and
obtained eye-tracking results can be successfully used in robotics applications.

The fact that the performance of all saliency maps drops significantly with the number
of extracted attention points, means that multiple attention points discover the same object.
However, our ultimate goal is to discover each object precisely once. Therefore, a better
attentional operator and extraction mechanism must be employed. Evaluation results of
the proposed saliency maps, that are described below, show the benefits of the proposed
saliency maps with respect to the detection task.
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Distance to Center

In terms of the Distance to Center, symmetry-based saliency map KOOTSTRA shows the
best performance when WTA extraction strategy is used. HAREL saliency map shows the
worst performance with MSR extraction strategy. Distance to the Center does not change
significantly neither with the increase of the number of attention points, nor when different
saliency maps or extraction mechanisms are used.

Results

In general the performance of all state-of-the-art saliency operators are comparable, within
standard deviations and there is no clear benefit of using one preferred saliency map or
extraction strategy. Examples of different types of saliency maps and extracted attention
points can be seen in Fig. 2.6, Fig. 2.7, Fig. 2.8.
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Figure 2.5: Column 1 and column 2 show respectively averaged Hit Ratio (HR) and av-
eraged Distance to the Center (DC) against the number of extracted attention points for
state-of-the-art saliency maps. Row 1 shows results for MSR (Sec. 2.5.2) extraction strat-
egy and row 2 for WTA (Sec. 2.5.1) extraction strategy. Please note that pictures are best
seen in color. (Numbers in brackets represent average values and standard deviation.)
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ITTI ([Itti 98]) HAREL ([Harel 06]) HOU ([Hou 07])

Figure 2.6: Row 1 shows examples of ITTI ([Itti 98]), HAREL ([Harel 06]) and HOU
([Hou 07]) saliency maps respectively overlaid with images from the Object Segmenta-
tion Database (OSD). Row 2 and 3 show first ten attention points extracted using MSR
(Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction strategies respectively. Please note that pic-
tures are best seen in color.
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BRUCE ([Bruce 09]) KOOTSTRA ([Kootstra 10b]) WANG ([Wang 13])

Figure 2.7: Row 1 shows examples of BRUCE ([Bruce 09]), KOOTSTRA ([Kootstra 10b])
and WANG ([Wang 13]) saliency maps respectively overlaid with images from the Object
Segmentation Database (OSD). Row 2 and 3 show first ten attention points extracted using
MSR (Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction strategies respectively. Please note that
pictures are best seen in color.



48 2. Attention-driven Object Detection

WANG+ITTI ([Wang 13]) WANG+HOU ([Wang 13]) WANG+BRUCE ([Wang 13])

Figure 2.8: Row 1 shows examples of WANG+ITTI, WANG+HOU and WANG+BRUCE
([Wang 13]) saliency maps respectively overlaid with images from the Object Segmenta-
tion Database (OSD). Row 2 and 3 show first ten attention points extracted using MSR
(Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction strategies respectively. Please note, that pic-
tures are best seen in color.
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2.6.3 Point-based Height Saliency Maps
In this Section we present evaluation results for Point-based Height saliency maps (PH,
Sec. 2.3.1). We used the following multi-level approaches to create feature maps (Sec. 2.4.2):
(1) Simple Feature Pyramid {Fl} (SIMPLE) and (2) Itti-based Feature Pyramid {Fc,s}
(ITTI).

Combination of levels in the feature pyramid was done using two types of techniques
(Sec. 2.4.4): (1) across-scale addition (SUM) and (2) maximization (MAX).

Normalization of saliency maps was done using the following normalization operators
(Sec. 2.4.3): (1) linear normalization (LIN), (2) non-maxima suppression (NMS) and (3)
non-linear maximization (NLM).

Attention points for object detection were extracted using two different methods: (1)
Winner-Take-All (WTA, Sec. 2.5.1), (2) Most Salient Region (MSR, Sec. 2.5.2).

Our goal in this Section is to understand which multi-level approach, combination and
normalization methods along with extraction strategy are the most suitable for Point-based
Height saliency maps to be used in object detection. We also want to understand if more
complicated strategies result in increased performance.

Multi-level Point-based Height Saliency Maps using Simple Feature Pyramid

Hit Ratio

The evaluation of multi-level Point-based Height saliency maps (Fig. 2.9) using Simple
Feature Pyramid (SIMPLE) shows that the best performance in terms of the Hit Ratio
is achieved when conspicuity maps on different levels are combined using across-scale
addition (SUM) with linear normalization (LIN) and MSR extraction strategy are applied.
The worst performance in terms of the Hit Ratio was shown when MSR extraction strategy
is applied to saliency map based on maximization (MAX) with linear normalization (LIN).

In general, when MSR extraction strategy is used, across-scale combination (SUM)
gives better results than combination by maximization (MAX) with no respect to a nor-
malization method. WTA extraction strategy resulted in lower performance compared to
MSR, regardless of which combination and normalization types were used.

Distance to Center

The Distance to Center metric gives the best result and the worst results when MSR and
WTA extraction strategies are applied respectively to the saliency map obtained using com-
bination by maximization (MAX) and linear normalization (LIN). Moreover, the overall
performance of different variants of Point Height saliency maps is better when MSR ex-
traction strategy is used. This potentially means that for robotics applications the simplest,
and therefore the fastest, strategy must be selected, since there is no apparent improvements
when more sophisticated mechanisms are used.

Examples of different types of saliency maps and extracted attention points can be seen
in Fig. 2.10, Fig. 2.11, Fig. 2.12.
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PH      (0.70,0.14)
MAX+LIN (0.71,0.14)
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SUM+LIN (0.66,0.13)
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Figure 2.9: Column 1 and column 2 show respectively averaged Hit Ratio (HR) and av-
eraged Distance to the Center (DC) against the number of extracted attention points for
Point Height saliency map (PH, Sec. 2.3.1) calculated using {Fl} pyramid (SIMPLE,
Sec. 2.4.2). Row 1 shows results for MSR (Sec. 2.5.2) extraction strategy and row 2 for
WTA (Sec. 2.5.1) extraction strategy. Please note that pictures are best seen in color. (Num-
bers in brackets represent average values and standard deviation.)
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PH SH RSO

Figure 2.10: Row 1 shows examples of one level (SINGLE) Point Height saliency map
(PH, Sec. 2.3.1), one level (SINGLE) Surface Height saliency map (SH, Sec. 2.3.2), and
one level (SINGLE) Relative Surface Orientation saliency map (RSO, Sec. 2.3.3) overlaid
with images from the Object Segmentation Database (OSD). Row 2 and 3 show first ten at-
tention points extracted using MSR (Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction strategies
respectively. Please note that pictures are best seen in color.
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SIMPLE + SUM + LIN SIMPLE + SUM + NMS SIMPLE + SUM + NLM

Figure 2.11: Row 1 shows examples of Point Height saliency map (PH, Sec. 2.3.1) calcu-
lated using across-scale addition (SUM, Sec. 2.4.4) of {Fl} pyramid (SIMPLE, Sec. 2.4.2)
overlaid with images from the Object Segmentation Database (OSD). Columns 1-3 repre-
sent linear normalization (LIN), non-maxima suppression normalization (NMS) and non-
linear maximization normalization (NLM) respectively (Sec. 2.4.3). Row 2 and 3 show
first ten attention points extracted using MSR (Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction
strategies respectively. Please note that pictures are best seen in color.
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SIMPLE + MAX + LIN SIMPLE + MAX + NMS SIMPLE + MAX + NLM

Figure 2.12: Row 1 shows examples of Point Height saliency map (PH, Sec. 2.3.1) calcu-
lated using across-scale addition (MAX, Sec. 2.4.4) of {Fl} pyramid (SIMPLE, Sec. 2.4.2)
overlaid with images from the Object Segmentation Database (OSD). Columns 1-3 repre-
sent linear normalization (LIN), non-maxima suppression normalization (NMS) and non-
linear maximization normalization (NLM) respectively (Sec. 2.4.3). Row 2 and 3 show
first ten attention points extracted using MSR (Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction
strategies respectively. Please note that pictures are best seen in color.
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Multi-level Point-based Height Saliency Maps using Itti-based Feature Pyramid

Hit Ratio

The evaluation of multi-level Point-based Height saliency maps (Fig. 2.13) using Itti-
based Feature Pyramid (ITTI) shows that the best performance in terms of the Hit Ratio
is achieved when conspicuity maps on different levels are combined using maximization
(MAX) with linear normalization (LIN), and MSR extraction strategy is applied. However,
if normalization is changed to non-maxima suppression (NMS), the performance drops to
the worst. This shows that for Itti-based feature pyramid, normalization is an essential part
and must be carefully considered. In general there are no clear benefits of using one or
the other combination or normalization type, except that when WTA strategy is applied,
combination by across-scale addition gives better results on an average.

Distance to Center

The Distance to Center metric shows better performance, when MSR extraction strategy is
applied. Moreover, a one level Point Height saliency map gives better detection accuracy,
than any other variation. The worst results are shown when across-scale summation (SUM)
with non-linear maximization normalization (NLM) and WTA extraction strategy are used.
In general, all different combination types give similar results within the standard deviation.

Examples of different types of saliency maps and extracted attention points can be seen
in Fig. 2.14, Fig. 2.15.

Results

Comparing evaluation results obtained using SIMPLE and ITTI pyramids, we can con-
clude that no clear improvements in detection quality were found when a more compli-
cated scheme is involved. This means that for Point-based Height saliency maps a simpler
approach can be used without any loss in detection results.
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Figure 2.13: Column 1 and column 2 show respectively averaged Hit Ratio (HR) and
averaged Distance to the Center (DC) against the number of extracted attention points
for Point Height saliency map (PH, Sec. 2.3.1) calculated using {Fc,s} pyramid (ITTI,
Sec. 2.4.2). Row 1 shows results for MSR (Sec. 2.5.2) extraction strategy and row 2 for
WTA (Sec. 2.5.1) extraction strategy. Please note that pictures are best seen in color.
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ITTI + SUM + LIN ITTI + SUM + NMS ITTI + SUM + NLM

Figure 2.14: Row 1 shows examples of Point Height saliency map (PH, Sec. 2.3.1) calcu-
lated using across-scale addition (SUM, Sec. 2.4.4) of {Fc,s} pyramid (ITTI, Sec. 2.4.2)
overlaid with images from the Object Segmentation Database (OSD). Columns 1-3 repre-
sent linear normalization (LIN), non-maxima suppression normalization (NMS) and non-
linear maximization normalization (NLM) respectively (Sec. 2.4.3). Row 2 and 3 show
first ten attention points extracted using MSR (Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction
strategies respectively. Please note that pictures are best seen in color.
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ITTI + MAX + LIN ITTI + MAX + NMS ITTI + MAX + NLM

Figure 2.15: Row 1 shows examples of Point Height saliency map (PH, Sec. 2.3.1) calcu-
lated using across-scale addition (MAX, Sec. 2.4.4) of {Fc,s} pyramid (ITTI, Sec. 2.4.2)
overlaid with images from the Object Segmentation Database (OSD). Columns 1-3 repre-
sent linear normalization (LIN), non-maxima suppression normalization (NMS) and non-
linear maximization normalization (NLM) respectively (Sec. 2.4.3). Row 2 and 3 show
first ten attention points extracted using MSR (Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction
strategies respectively. Please note that pictures are best seen in color.
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2.6.4 Surface-based Height Saliency Maps
In this Section we present evaluation results for Surface-based Height saliency maps (SH,
Sec. 2.3.2). We used the following multi-level approaches to create feature maps (Sec. 2.4.2):
(1) Simple Feature Pyramid {Fl} (SIMPLE) and (2) Itti-based Feature Pyramid {Fc,s}
(ITTI).

Combination of levels in the feature pyramid was done using two types of techniques
(Sec. 2.4.4): (1) across-scale addition (SUM) and (2) maximization (MAX).

Normalization of saliency maps was done using the following normalization operators
(Sec. 2.4.3): (1) linear normalization (LIN), (2) non-maxima suppression (NMS) and (3)
non-linear maximization (NLM).

Attention points for object detection were extracted using two different methods: (1)
Winner-Take-All (WTA, Sec. 2.5.1), (2) Most Salient Region (MSR, Sec. 2.5.2).

Our goal in this Section is to understand what multi-level approach, combination and
normalization methods along with extraction strategy are the most suitable for Surface-
based Height saliency map when used for the object detection. We also want to understand
if the usage of more sophisticated strategies results in increased performance.

Multi-level Surface-based Height Saliency using Simple Feature Pyramid

Hit Ratio

The evaluation of multi-level Surface-based Height saliency maps (Fig. 2.16) using Sim-
ple Feature Pyramid (SIMPLE) shows that the best performance in terms of Hit Ratio is
achieved when conspicuity maps on different levels are combined using across-scale addi-
tion (SUM) with linear normalization (LIN), and MSR extraction strategy is applied. The
worst performance in terms of the Hit Ratio is shown when WTA extraction strategy is
applied to saliency maps created using combination by maximization (MAX) and either
linear normalization (LIN) or non-maxima suppression normalization (NMS). Overall, the
performance of MSR extraction strategy is better on an average by 30%–40% than WTA
extraction strategy.

Distance to Center

In terms of the Distance to Center metric, maximization (MAX) with non-maxima sup-
pression normalization (NMS) and MSR strategy gives the best result. If maximization
(MAX) with linear normalization (LIN) and WTA extraction are used, then the Distance
to Center metric shows the worst performance. In general, MSR shows better performance
than WTA with respect to Distance to Center metric.

Overall, the performance of different modifications of Surface Height saliency map cal-
culated using {Fl} pyramid (SIMPLE) shows better detection performance when MSR ex-
traction strategy is applied. Moreover, using across-scale summation of different pyramid
levels with MSR extraction strategy gives better results than any other type of combination.

Examples of different types of saliency maps and extracted attention points can be seen
in Fig. 2.10, Fig. 2.17, Fig. 2.18.
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Figure 2.16: Column 1 and column 2 show respectively averaged Hit Ratio (HR) and av-
eraged Distance to the Center (DC) against the number of extracted attention points for
Surface Height saliency map (SH, Sec. 2.3.2) calculated using {Fl} pyramid (SIMPLE,
Sec. 2.4.2). Row 1 shows results for MSR (Sec. 2.5.2) extraction strategy and row 2 for
WTA (Sec. 2.5.1) extraction strategy. Please note that pictures are best seen in color. (Num-
bers in brackets represent average values and standard deviation.)
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SIMPLE + SUM + LIN SIMPLE + SUM + NMS SIMPLE + SUM + NLM

Figure 2.17: Row 1 shows examples of Surface Height saliency map (SH, Sec. 2.3.2) calcu-
lated using across-scale addition (SUM, Sec. 2.4.4) of {Fl} pyramid (SIMPLE, Sec. 2.4.2)
overlaid with images from the Object Segmentation Database (OSD). Columns 1-3 repre-
sent linear normalization (LIN), non-maxima suppression normalization (NMS) and non-
linear maximization normalization (NLM) respectively (Sec. 2.4.3). Row 2 and 3 show
first ten attention points extracted using MSR (Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction
strategies respectively. Please note that pictures are best seen in color.
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SIMPLE + MAX + LIN SIMPLE + MAX + NMS SIMPLE + MAX + NLM

Figure 2.18: Row 1 shows examples of Surface Height saliency map (SH, Sec. 2.3.2) calcu-
lated using across-scale addition (MAX, Sec. 2.4.4) of {Fl} pyramid (SIMPLE, Sec. 2.4.2)
overlaid with images from the Object Segmentation Database (OSD). Columns 1-3 repre-
sent linear normalization (LIN), non-maxima suppression normalization (NMS) and non-
linear maximization normalization (NLM) respectively (Sec. 2.4.3). Row 2 and 3 show
first ten attention points extracted using MSR (Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction
strategies respectively. Please note that pictures are best seen in color.
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Multi-level Surface-based Height Saliency Maps using Itti-based Feature Pyramid

Hit Ratio

The evaluation of multi-level Surface-based Height saliency maps (Fig. 2.19) using Itti-
based Feature Pyramid (ITTI) shows that the best performance in terms of the Hit Ratio
is achieved when conspicuity maps on different levels are combined using maximization
(MAX) with linear normalization (LIN), and MSR extraction strategy is used. However, if
normalization is changed to non-maxima suppression (NMS), then the performance drops
to the worst. It worth mentioning that the performance of one-level saliency maps was
almost identical to the best possible. This means that for this type of saliency maps using
multi-level approach does not bring any improvements.

Distance to Center

For Surface-based Height saliency maps when combination using maximization (MAX)
with non-linear maximization normalization (NLM), and MSR extraction strategy is used
the Distance to the Center metric gives the best result. The worst result is achieved when
across-scale summation (SUM) with non-maxima suppression (NMS) and WTA extrac-
tion strategy is used. Overall, evaluation results for Distance to Center metric are similar
between different combination, normalization and extraction types.

Results

In general, results showed that different combination types showed similar results within
standard deviations. No obvious benefits of using one specific type of combination, nor-
malization or extraction strategy was found. Moreover, using ITTI feature pyramid type
did not bring any improvements in detection performance. Therefore, the strategy of using
the simplest possible combination, normalization and extraction are preferable.

Examples of different types of saliency maps and extracted attention points can be seen
in Fig. 2.20, Fig. 2.21.
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Figure 2.19: Column 1 and column 2 show respectively averaged Hit Ratio (HR) and
averaged Distance to the Center (DC) against the number of extracted attention points
for Surface Height saliency map (SH, Sec. 2.3.2) calculated using {Fc,s} pyramid (ITTI,
Sec. 2.4.2). Row 1 shows results for MSR (Sec. 2.5.2) extraction strategy and row 2 for
WTA (Sec. 2.5.1) extraction strategy. Please note that pictures are best seen in color.
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ITTI + SUM + LIN ITTI + SUM + NMS ITTI + SUM + NLM

Figure 2.20: Row 1 shows examples of Surface Height saliency map (SH, Sec. 2.3.2) cal-
culated using across-scale addition (SUM, Sec. 2.4.4) of {Fc,s} pyramid (ITTI, Sec. 2.4.2)
overlaid with images from the Object Segmentation Database (OSD). Columns 1-3 repre-
sent linear normalization (LIN), non-maxima suppression normalization (NMS) and non-
linear maximization normalization (NLM) respectively (Sec. 2.4.3). Row 2 and 3 show
first ten attention points extracted using MSR (Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction
strategies respectively. Please note that pictures are best seen in color.
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ITTI + MAX + LIN ITTI + MAX + NMS ITTI + MAX + NLM

Figure 2.21: Row 1 shows examples of Surface Height saliency map (SH, Sec. 2.3.2) cal-
culated using across-scale addition (MAX, Sec. 2.4.4) of {Fc,s} pyramid (ITTI, Sec. 2.4.2)
overlaid with images from the Object Segmentation Database (OSD). Columns 1-3 repre-
sent linear normalization (LIN), non-maxima suppression normalization (NMS) and non-
linear maximization normalization (NLM) respectively (Sec. 2.4.3). Row 2 and 3 show
first ten attention points extracted using MSR (Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction
strategies respectively. Please note that pictures are best seen in color.
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2.6.5 Relative Surface Orientation Saliency Maps
In this section we present evaluation results for Relative Surface Orientation saliency maps
(RSO, Sec. 2.3.3). We used the following multi-level approaches to create feature maps
(Sec. 2.4.2): (1) Simple Feature Pyramid {Fl} (SIMPLE) and (2) Itti-based Feature Pyra-
mid {Fc,s} (ITTI).

Combination of levels in the feature pyramid was done using two types of techniques
(Sec. 2.4.4): (1) across-scale addition (SUM) and (2) maximization (MAX).

Normalization of saliency maps was done using the following normalization operators
(Sec. 2.4.3): (1) linear normalization (LIN), (2) non-maxima suppression (NMS) and (3)
non-linear maximization (NLM).

Attention points for object detection were extracted using two different methods: (1)
Winner-Take-All (WTA, Sec. 2.5.1), (2) Most Salient Region (MSR, Sec. 2.5.2).

Our goal in this Section is to understand what multi-level approach, combination and
normalization methods along with extraction strategy are the most suitable for Relative
Surface Orientation saliency maps to be used in object detection. We also want to under-
stand if the usage of more complicated strategies results in increased performance.

Multi-level Relative Surface Orientation Saliency Maps using Simple Feature Pyra-
mid

Hit Ratio

The evaluation of multi-level Relative Surface Orientation saliency maps (Fig. 2.22) using
Simple Feature Pyramid shows that the best performance in terms of Hit Ratio is achieved
when conspicuity maps on different levels are combined using across-scale addition (SUM)
with linear normalization (LIN), and MSR extraction strategy is applied. The worst per-
formance in terms of the Hit Ratio is shown when WTA extraction strategy is applied to
saliency map based on maximization (MAX) with linear normalization (LIN). In general,
MSR extraction strategy showed better performance than WTA extraction strategy regard-
less of the type of combination and normalization.

Distance to Center

In terms of the Distance to Center metric, across-scale addition (SUM) both with linear
(LIN) or non-maxima suppression (NMS) normalizations and WTA strategy gives the best
result. If maximization (MAX) with linear normalization (LIN) and WTA extraction is
used, the Distance to Center metric shows the worst performance.

In general no specific combination or normalization type was superior to all others.
Examples of different types of saliency maps and extracted attention points can be seen

in Fig. 2.10, Fig. 2.23, Fig. 2.24.



2.6. Evaluation and Results 67

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of attention points

H
it 

R
at

io
Hit Ratio for RSO Saliency Map using SIMPLE Pyramid and MSR Extraction

 

 
RSO      (0.57,0.22)
MAX+LIN (0.52,0.22)
MAX+NMS (0.58,0.22)
MAX+NLM (0.60,0.20)
SUM+LIN (0.62,0.22)
SUM+NMS (0.61,0.22)
SUM+NLM (0.61,0.22)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of attention points

D
is

ta
nc

e 
to

 th
e 

O
bj

ec
t C

en
te

r

Distances to Object Centers for RSO Saliency Map using SIMPLE Pyramid and MSR Extraction

 

 

RSO      (0.61,0.14)
MAX+LIN (0.63,0.17)
MAX+NMS (0.61,0.15)
MAX+NLM (0.59,0.13)
SUM+LIN (0.58,0.14)
SUM+NMS (0.59,0.15)
SUM+NLM (0.59,0.13)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of attention points

H
it 

R
at

io

Hit Ratio for RSO Saliency Map using SIMPLE Pyramid and WTA Extraction

 

 
RSO      (0.51,0.17)
MAX+LIN (0.48,0.17)
MAX+NMS (0.49,0.16)
MAX+NLM (0.52,0.17)
SUM+LIN (0.52,0.17)
SUM+NMS (0.51,0.17)
SUM+NLM (0.52,0.17)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of attention points

D
is

ta
nc

e 
to

 th
e 

O
bj

ec
t C

en
te

r

Distances to Object Centers for RSO Saliency Map using SIMPLE Pyramid and WTA Extraction

 

 

RSO      (0.62,0.15)
MAX+LIN (0.66,0.15)
MAX+NMS (0.61,0.15)
MAX+NLM (0.59,0.12)
SUM+LIN (0.57,0.14)
SUM+NMS (0.57,0.15)
SUM+NLM (0.58,0.14)

Figure 2.22: Column 1 and column 2 show respectively averaged Hit Ratio (HR) and
averaged Distance to the Center (DC) against the number of extracted attention points for
Relative Surface Orientation saliency map (RSO, Sec. 2.3.3) calculated using {Fl} pyramid
(SIMPLE, Sec. 2.4.2). Row 1 shows results for MSR (Sec. 2.5.2) extraction strategy and
row 2 for WTA (Sec. 2.5.1) extraction strategy. Please note that pictures are best seen in
color. (Numbers in brackets represent average values and standard deviation.)
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SIMPLE + SUM + LIN SIMPLE + SUM + NMS SIMPLE + SUM + NLM

Figure 2.23: Row 1 shows examples of Relative Surface Orientation saliency map (RSO,
Sec. 2.3.3) calculated using across-scale addition (SUM, Sec. 2.4.4) of {Fl} pyramid (SIM-
PLE, Sec. 2.4.2) overlaid with images from the Object Segmentation Database (OSD).
Columns 1-3 represent linear normalization (LIN), non-maxima suppression normaliza-
tion (NMS) and non-linear maximization normalization (NLM) respectively (Sec. 2.4.3).
Row 2 and 3 show first ten attention points extracted using MSR (Sec. 2.5.2) and WTA
(Sec. 2.5.1) extraction strategies respectively. Please note that pictures are best seen in
color.
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SIMPLE + MAX + LIN SIMPLE + MAX + NMS SIMPLE + MAX + NLM

Figure 2.24: Row 1 shows examples of Relative Surface Orientation saliency map (RSO,
Sec. 2.3.3) calculated using across-scale addition (MAX, Sec. 2.4.4) of {Fl} pyramid
(SIMPLE, Sec. 2.4.2) overlaid with images from the Object Segmentation Database (OSD).
Columns 1-3 represent linear normalization (LIN), non-maxima suppression normaliza-
tion (NMS) and non-linear maximization normalization (NLM) respectively (Sec. 2.4.3).
Row 2 and 3 show first ten attention points extracted using MSR (Sec. 2.5.2) and WTA
(Sec. 2.5.1) extraction strategies respectively. Please note that pictures are best seen in
color.
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Multi-level Relative Surface Orientation Saliency Maps using Itti-based Feature Pyra-
mid

Hit Ration

The evaluation of multi-level Relative Surface Orientation saliency maps (Fig. 2.25) using
Itti-based Feature Pyramid (ITTI) shows that the best performance in terms of the Hit Ratio
is achieved when conspicuity maps on different levels are combined using across-scale
summation (SUM) or maximization (MAX) with non-linear maximization normalization
(NLM), and MSR extraction strategy is used. However, if normalization is changed to non-
maxima suppression (NMS), then the performance drops to the worst. On average, MSR
extraction strategy showed better results that WTA, except when non-maxima suppression
normalization (NMS) was used.

Distance to Center

Relative Surface Orientation saliency map calculated using maximization (MAX), non-
linear maximization normalization (NLM) and WTA strategy gives the best result for the
Distance to Center metric. The worst result is achieved when across-scale summation
(SUM) with non-maxima suppression (NMS) and WTA extraction are used. No obvious
benefits of using one or the other type of combination, normalization or extraction were
found.

Results

In general, MSR extraction strategy shows better performance than WTA extraction strat-
egy. No benefits of using a more complicated scheme that involves ITTI pyramid were
reported compared to a simpler scheme that uses SIMPLE pyramid.

Examples of different types of saliency maps and extracted attention points can be seen
in Fig. 2.26, Fig. 2.27.
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Figure 2.25: Column 1 and column 2 show respectively averaged Hit Ratio (HR) and
averaged Distance to the Center (DC) against the number of extracted attention points
for Relative Surface Orientation saliency map (RSO, Sec. 2.3.3) calculated using {Fc,s}
pyramid (ITTI, Sec. 2.4.2). Row 1 shows results for MSR (Sec. 2.5.2) extraction strategy
and row 2 for WTA (Sec. 2.5.1) extraction strategy. Please note that pictures are best seen
in color.
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ITTI + SUM + LIN ITTI + SUM + NMS ITTI + SUM + NLM

Figure 2.26: Row 1 shows examples of Relative Surface Orientation saliency map (RSO,
Sec. 2.3.3) calculated using across-scale addition (SUM, Sec. 2.4.4) of {Fc,s} pyramid
(ITTI, Sec. 2.4.2) overlaid with images from the Object Segmentation Database (OSD).
Columns 1-3 represent linear normalization (LIN), non-maxima suppression normaliza-
tion (NMS) and non-linear maximization normalization (NLM) respectively (Sec. 2.4.3).
Row 2 and 3 show first ten attention points extracted using MSR (Sec. 2.5.2) and WTA
(Sec. 2.5.1) extraction strategies respectively. Please note that pictures are best seen in
color.
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ITTI + MAX + LIN ITTI + MAX + NMS ITTI + MAX + NLM

Figure 2.27: Row 1 shows examples of Relative Surface Orientation saliency map (RSO,
Sec. 2.3.3) calculated using across-scale addition (MAX, Sec. 2.4.4) of {Fc,s} pyramid
(ITTI, Sec. 2.4.2) overlaid with images from the Object Segmentation Database (OSD).
Columns 1-3 represent linear normalization (LIN), non-maxima suppression normaliza-
tion (NMS) and non-linear maximization normalization (NLM) respectively (Sec. 2.4.3).
Row 2 and 3 show first ten attention points extracted using MSR (Sec. 2.5.2) and WTA
(Sec. 2.5.1) extraction strategies respectively. Please note that pictures are best seen in
color.
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2.6.6 3D Symmetry-based Saliency Maps

In this Section we present evaluation results for 3D Symmetry-based saliency maps (SYM3D,
Sec. 2.3.4). We used the following multi-level approaches to create feature maps (Sec. 2.4.2):
(1) Simple Feature Pyramid {Fl} (SIMPLE) and (2) Itti-based Feature Pyramid {Fc,s}
(ITTI).

Combination of levels in the feature pyramid was done using two types of techniques
(Sec. 2.4.4): (1) across-scale addition (SUM) and (2) maximization (MAX).

Normalization of saliency maps was done using the following normalization operators
(Sec. 2.4.3): (1) linear normalization (LIN), (2) non-maxima suppression (NMS) and (3)
non-linear maximization (NLM).

Attention points for object detection were extracted using three different methods: (1)
Winner-Take-All (WTA, Sec. 2.5.1), (2) Most Salient Region (MSR, Sec. 2.5.2) and (3)
T-junctions (TJ, Sec. 2.5.3).

Our goal in this Section is to understand what multi-level approach, combination and
normalization methods along with extraction strategy are the most suitable for 3D Symmetry-
based saliency maps when used for object detection. We also want to understand if the
usage of more complicated strategies results in increased performance.

Multi-level 3D Symmetry-based Saliency Maps using Simple Feature Pyramid

Hit Ratio

The evaluation of multi-level 3D Symmetry-based saliency maps (Fig. 2.28) using Sim-
ple Feature Pyramid (SIMPLE) shows that the best performance in terms of Hit Ratio
is achieved when conspicuity maps on different levels are combined using across-scale
addition (SUM) with linear normalization (LIN) and TJ extraction strategy. The worst per-
formance in terms of the Hit Ratio is shown when MSR extraction strategy is applied to
saliency maps based on combination by maximization (MAX) with non-linear maximiza-
tion normalization (NLM). For MSR and WTA extraction strategies normalization did not
play a significant role for the performance. This can be explained by the nature of the
3D Symmetry-based saliency map, i. e. it consists of a number of disjoint components,
each having one or several strong local maxima which will be detected by MSR or WTA
algorithms. However, normalization plays more important role for TJ extraction strategy,
because different normalizations may result in different number of connected components
and therefore different TJ points are calculated. In general, when TJ extraction strategy
is applied, combination of the pyramid by across-scale addition result in better detection
performance, than combination by maximization.

Distance to Center

In terms of the Distance to Center metric, across-scale summation (SUM) with non-linear
normalization (NLM) and TJ strategy gives the best result. The worst results are achieved
when one-level 3D Symmetry-based saliency map is used either with MSR or WTA extrac-
tion strategies. Overall, for a given extraction strategy there are no preferences in selecting
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a specific type of pyramid combination and normalization method. The choice of extraction
strategy is more important, and TJ strategy clearly outperforms MSR and WTA algorithms.

Examples of different types of saliency maps and extracted attention points can be seen
in Fig. 2.29, Fig. 2.30.
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Figure 2.28: Column 1 and column 2 show respectively averaged Hit Ratio (HR) and averaged
Distance to the Center (DC) against the number of extracted attention points for 3D Symmetry-
based saliency map (SYM3D, Sec. 2.3.4) calculated using {Fl} pyramid (SIMPLE, Sec. 2.4.2).
Row 1 shows results for MSR (Sec. 2.5.2) extraction strategy, row 2 for WTA (Sec. 2.5.1) and row
3 for TJ (Sec. 2.5.3) extraction strategy. Please note that pictures are best seen in color. (Numbers
in brackets represent average values and standard deviation.)
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SIMPLE + SUM + LIN SIMPLE + SUM + NMS SIMPLE + SUM + NLM

Figure 2.29: Row 1 shows examples of 3D Symmetry-based saliency map (SYM3D,
Sec. 2.3.4) calculated using across-scale addition (SUM, Sec. 2.4.4) of {Fl} pyramid (SIM-
PLE, Sec. 2.4.2) overlaid with images from the Object Segmentation Database (OSD).
Columns 1-3 represent linear normalization (LIN), non-maxima suppression normaliza-
tion (NMS) and non-linear maximization normalization (NLM) respectively (Sec. 2.4.3).
Row 2, 3 and 4 show first ten attention points extracted using MSR (Sec. 2.5.2), WTA
(Sec. 2.5.1) and TJ (Sec. 2.5.3) extraction strategies respectively. Please note that pictures
are best seen in color.
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SIMPLE + MAX + LIN SIMPLE + MAX + NMS SIMPLE + MAX + NLM

Figure 2.30: Row 1 shows examples of 3D Symmetry-based saliency map (SYM3D,
Sec. 2.3.4) calculated using across-scale addition (MAX, Sec. 2.4.4) of {Fl} pyramid
(SIMPLE, Sec. 2.4.2) overlaid with images from the Object Segmentation Database (OSD).
Columns 1-3 represent linear normalization (LIN), non-maxima suppression normaliza-
tion (NMS) and non-linear maximization normalization (NLM) respectively (Sec. 2.4.3).
Row 2, 3 and 4 show first ten attention points extracted using MSR (Sec. 2.5.2), WTA
(Sec. 2.5.1) and TJ (Sec. 2.5.3) extraction strategies respectively. Please note that pictures
are best seen in color.
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Multi-level 3D Symmetry-based Saliency Maps using Itti-based Feature Pyramid

Hit Ratio

The evaluation of multi-level 3D Symmetry-based saliency maps (Fig. 2.31) using Itti-
based Feature Pyramid (ITTI) shows that the best performance in terms of the Hit Ratio
is achieved when conspicuity maps on different levels are combined using across-scale
summation (SUM) with non-linear maximization normalization (NLM) and TJ extraction
strategy. When combination by maximization (MAX) is used with non-maxima suppres-
sion (NMS) and MSR extraction strategy , the performance drops to the worst. In general,
TJ strategy results in up to 100% better performance than other strategies. It is worth men-
tioning that when TJ strategy is used, the Hit Ratio slightly drops after several first attention
points and then maintains at the constant level. This means that there is a small number of
repetitive detection of the same object.

Distance to Center

In terms of Distance to Center metric, maximization (MAX) with non-maxima suppression
normalization (NMS) and TJ strategy gives the best result. If one-level saliency map with
MSR or WTA extraction strategy is used the Distance to the Center metric shows the worst
performance. TJ extraction strategy results in overall better precision during the detection.

Examples of different types of saliency maps and extracted attention points can be seen
in Fig. 2.32, Fig. 2.33.

Results

Evaluation showed that for 3D Symmetry-based saliency maps TJ extraction strategy sig-
nificantly improves detection results both in terms of Hit Ratio and Distance to Center
metrics. Moreover, for this particular type of saliency maps, the usage of more compli-
cated pyramid type, i. e. Itti-based Feature Pyramid (ITTI), resulted in the performance
increase up to 10%.



80 2. Attention-driven Object Detection

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of attention points

H
it 

R
at

io

Hit Ratio for SYM3D Saliency Map using ITTI Pyramid and MSR Extraction

 

 
SYM3D      (0.53,0.22)
MAX+LIN (0.48,0.20)
MAX+NMS (0.37,0.21)
MAX+NLM (0.50,0.16)
SUM+LIN (0.46,0.14)
SUM+NMS (0.39,0.19)
SUM+NLM (0.47,0.15)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of attention points

D
is

ta
nc

e 
to

 th
e 

O
bj

ec
t C

en
te

r

Distances to Object Centers for SYM3D Saliency Map using ITTI Pyramid and MSR Extraction

 

 

SYM3D      (0.46,0.16)
MAX+LIN (0.42,0.17)
MAX+NMS (0.43,0.21)
MAX+NLM (0.40,0.16)
SUM+LIN (0.40,0.17)
SUM+NMS (0.40,0.20)
SUM+NLM (0.39,0.16)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of attention points

H
it 

R
at

io

Hit Ratio for SYM3D Saliency Map using ITTI Pyramid and WTA Extraction

 

 
SYM3D      (0.56,0.24)
MAX+LIN (0.46,0.22)
MAX+NMS (0.41,0.22)
MAX+NLM (0.59,0.20)
SUM+LIN (0.54,0.18)
SUM+NMS (0.45,0.21)
SUM+NLM (0.59,0.19)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of attention points

D
is

ta
nc

e 
to

 th
e 

O
bj

ec
t C

en
te

r
Distances to Object Centers for SYM3D Saliency Map using ITTI Pyramid and WTA Extraction

 

 

SYM3D      (0.45,0.16)
MAX+LIN (0.42,0.19)
MAX+NMS (0.41,0.19)
MAX+NLM (0.40,0.14)
SUM+LIN (0.41,0.15)
SUM+NMS (0.38,0.18)
SUM+NLM (0.40,0.14)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of attention points

H
it 

R
at

io

Hit Ratio for SYM3D Saliency Map using ITTI Pyramid and TJ Extraction

 

 

SYM3D      (0.67,0.22)
MAX+LIN (0.76,0.27)
MAX+NMS (0.71,0.34)
MAX+NLM (0.82,0.23)
SUM+LIN (0.84,0.23)
SUM+NMS (0.76,0.33)
SUM+NLM (0.86,0.21)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of attention points

D
is

ta
nc

e 
to

 th
e 

O
bj

ec
t C

en
te

r

Distances to Object Centers for SYM3D Saliency Map using ITTI Pyramid and TJ Extraction

 

 
SYM3D      (0.39,0.13)
MAX+LIN (0.39,0.18)
MAX+NMS (0.35,0.22)
MAX+NLM (0.37,0.15)
SUM+LIN (0.40,0.19)
SUM+NMS (0.37,0.22)
SUM+NLM (0.36,0.14)

Figure 2.31: Column 1 and column 2 show respectively averaged Hit Ratio (HR) and averaged
Distance to the Center (DC) against the number of extracted attention points for Relative Surface
Orientation saliency map (RSO, Sec. 2.3.3) calculated using {Fc,s} pyramid (ITTI, Sec. 2.4.2).
Row 1, row 2 and row 3 show results for MSR (Sec. 2.5.2), WTA (Sec. 2.5.1) and TJ (Sec. 2.5.3)
extraction strategies. Please note that pictures are best seen in color.
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ITTI + SUM + LIN ITTI + SUM + NMS ITTI + SUM + NLM

Figure 2.32: Row 1 shows examples of 3D Symmetry-based saliency map (SYM3D,
Sec. 2.3.4) calculated using across-scale addition (SUM, Sec. 2.4.4) of {Fc,s} pyramid
(ITTI, Sec. 2.4.2) overlaid with images from the Object Segmentation Database (OSD).
Columns 1-3 represent linear normalization (LIN), non-maxima suppression normaliza-
tion (NMS) and non-linear maximization normalization (NLM) respectively (Sec. 2.4.3).
Row 2, 3 and 4 show first ten attention points extracted using MSR (Sec. 2.5.2), WTA
(Sec. 2.5.1) and TJ (Sec. 2.5.3) extraction strategies respectively. Please note that pictures
are best seen in color.
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ITTI + MAX + LIN ITTI + MAX + NMS ITTI + MAX + NLM

Figure 2.33: Row 1 shows examples of 3D Symmetry-based saliency map (SYM3D,
Sec. 2.3.4) calculated using across-scale addition (MAX, Sec. 2.4.4) of {Fc,s} pyramid
(ITTI, Sec. 2.4.2) overlaid with images from the Object Segmentation Database (OSD).
Columns 1-3 represent linear normalization (LIN), non-maxima suppression normaliza-
tion (NMS) and non-linear maximization normalization (NLM) respectively (Sec. 2.4.3).
Row 2, 3 and 4 show first ten attention points extracted using MSR (Sec. 2.5.2) WTA
(Sec. 2.5.1) and TJ (Sec. 2.5.3) extraction strategies respectively. Please note that pictures
are best seen in color.
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2.6.7 Combinations of Proposed Saliency Maps
In this Section we evaluate the performance of different combinations (Sec. 2.4.5) of the
proposed saliency maps. We use the following saliency maps to create a master map:

• Point-based Height Saliency Map (PH, Sec. 2.3.1)

• Surface-based Height Saliency Map (SH, Sec. 2.3.2)

• Relative Surface Orientation Saliency Map (RSO, Sec. 2.3.3)

• Harel et al. (HAREL, [Harel 06])

Combination of saliency maps was done using two types of techniques (Sec. 2.4.4): (1)
linear combination (SUM) and (2) maximization (MAX).

Normalization of saliency maps was done using the following normalization operators
(Sec. 2.4.3): (1) linear normalization (LIN), (2) non-maxima suppression (NMS) and (3)
non-linear maximization (NLM).

Attention points for object detection were extracted using two different methods: (1)
Winner-Take-All (WTA, Sec. 2.5.1), (2) Most Salient Region (MSR, Sec. 2.5.2).

Our goal in this Section is to understand if a combination of proposed saliency maps
increases the performance of object detection. We also want to investigate, if combining
color-based saliency maps with 3D-based saliency maps will result in better object detec-
tion.

Hit Ratio

The evaluation (Fig. 2.34) shows that the best performance in terms of the Hit Ratio is
shown for a master saliency map calculated both using 3D-based and color-based saliency
maps, when linear combination with non-linear maximization (NLM) is used together with
MSR strategy. The worst performance in terms of the Hit Ratio is shown when MSR ex-
traction strategy is applied to master saliency map calculated only using pure 3D-based
saliency maps by means of linear combination (SUM) with linear normalization (LIN). In
general, evaluation showed that using color information improves detection results. More-
over, this combination is preferably to be done using linear combinations. No significant
differences or trends in performance were discovered between MSR and WTA extraction
strategies.

Distance to Center

In terms of the Distance to Center metric the best performance is shown when 3D-based
saliency maps are linearly (SUM) combined with color-based saliency map using non-
linear maximization (NLM) and attention points are extracted by MSR strategy. Please
note that for this type of combination, performance of Hit Ratio was also the best. The
worst performance is shown when saliency maps are combined with or without color-based
saliency map using maximization (MAX) and non-maxima suppression (NMS) or non-
local maximization (NLM) normalizations. Overall, evaluation did not find any significant
preferences in combination, normalization and extraction strategies.
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Results

Combinations of different types of saliency maps did not show significant improvement
compared to single saliency maps. Adding the color-based saliency map slightly improved
the object detection performance. Linear combination was found out to be a preferable
way to combine maps with different modalities.

Examples of different types of saliency maps and extracted attention points can be seen
in Fig. 2.35, Fig. 2.36, Fig. 2.37, Fig. 2.38.
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Figure 2.34: Column 1 and column 2 show respectively averaged Hit Ratio (HR) and
averaged Distance to the Center (DC) against the number of extracted attention points for
combined saliency map (Sec. 2.4.5) with and without color saliency map proposed by Harel
et al. [Harel 06] respectively. Row 1 shows results for MSR (Sec. 2.5.2) extraction strategy
and row 2 for WTA (Sec. 2.5.1) extraction strategy. Please note that pictures are best seen
in color. (Numbers in brackets represent average values and standard deviation.)
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SUM + LIN SUM + NMS SUM + NLM

Figure 2.35: Row 1 shows examples of combined saliency map calculated using lin-
ear combination (COMB, SUM, Sec. 2.4.5) overlaid with images from the Object Seg-
mentation Database (OSD). Column 1, 2 and 3 show linear normalization (LIN), non-
maxima suppression normalization (NMS) and non-linear normalization (NLM) respec-
tively (Sec. 2.4.3). Row 2 and 3 show first ten attention points extracted using MSR
(Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction strategies respectively. Please note that pic-
tures are best seen in color.
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MAX + LIN MAX + NMS MAX + NLM

Figure 2.36: Row 1 shows examples of combined saliency map calculated using max-
imization (COMB, MAX, Sec. 2.4.5) overlaid with images from the Object Segmen-
tation Database (OSD). Column 1, 2 and 3 show linear normalization (LIN), non-
maxima suppression normalization (NMS) and non-linear normalization (NLM) respec-
tively (Sec. 2.4.3). Row 2 and 3 show first ten attention points extracted using MSR
(Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction strategies respectively. Please note that pic-
tures are best seen in color.
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SUM + HAREL + LIN SUM + HAREL + NMS SUM + HAREL + NLM

Figure 2.37: Row 1 shows examples of combined saliency map including color
saliency map proposed by Harel et al. [Harel 06] calculated using linear combina-
tion (COMB+HAREL, SUM, Sec. 2.4.5) overlaid with images from the Object Seg-
mentation Database (OSD). Column 1, 2 and 3 show linear normalization (LIN), non-
maxima suppression normalization (NMS) and non-linear normalization (NLM) respec-
tively (Sec. 2.4.3). Row 2 and 3 show first ten attention points extracted using MSR
(Sec. 2.5.2) and WTA (Sec. 2.5.1) extraction strategies respectively. Please note that pic-
tures are best seen in color.
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MAX + HAREL + LIN MAX + HAREL + NMS MAX + HAREL + NLM

Figure 2.38: Row 1 shows examples of combined saliency map including color saliency
map proposed by Harel et al. [Harel 06] calculated using maximization (COMB+HAREL,
MAX, Sec. 2.4.5) overlaid with images from the Object Segmentation Database (OSD).
Column 1, 2 and 3 show linear normalization (LIN), non-maxima suppression normaliza-
tion (NMS) and non-linear normalization (NLM) respectively (Sec. 2.4.3). Row 2 and
3 show first ten attention points extracted using MSR (Sec. 2.5.2) and WTA (Sec. 2.5.1)
extraction strategies respectively. Please note that pictures are best seen in color.
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2.7 Discussion

We investigated the use of 3D cues to obtain attention points that can be used further for ob-
ject detection and as seed points for object segmentation. New attention algorithms based
on 3D data were proposed: Point-based Height saliency map (PH, Sec. 2.3.1), Surface-
based Height saliency map (SH, Sec. 2.3.2), Relative Surface Orientation saliency map
(RSO, Sec. 2.3.3) and 3D Symmetry-based saliency (SYM3D, Sec. 2.3.4). We investigated
two different strategies to build multi-level saliency maps (Sec. 2.4.2): Simple Feature
Pyramid (SIMPLE) and Itti-based Feature Pyramid (ITTI). Pyramid levels were combined
using two different approaches (Sec. 2.4.4): across-scale addition (SUM) and maximiza-
tion (MAX). Three different normalizations methods were used (Sec. 2.4.3): linear normal-
ization (LIN), non-maxima suppression (NMS) and non-linear maximum (NLM). Combi-
nations of PH, SH and RSO saliency maps into a master saliency map (Sec. 2.4.5) were
investigated with and without 2D-based state-of-the-art saliency map (HAREL [Harel 06]).

To extract attention points from saliency maps we used three different types of strate-
gies: Winner-Take-All (WTA, 2.5.1), Most Salient Region (MSR, 2.5.2) and a new pro-
posed strategy based on T-junctions (TJ, Sec. 2.5.3). The quality of attention points was
defined in terms of two metrics (Sec. 2.6.1): Hit Ratio (HR) and Distance to Center (DC).

Evaluation was carried out on the Object Segmentation Database (OSD). We compared
our approaches to the following state-of-the-art saliency algorithms: Itti et al. [Itti 98],
Harel et al. [Harel 06], Hou et al. [Hou 07], Bruce et al. [Bruce 09], Kootstra et al.
[Kootstra 10b], Wang et. al [Wang 13].

As can be seen from the Tables 2.4 and 2.5 the use of 3D-based saliency maps improves
object detection performance compared to color-based state-of-the-art saliency maps. The
best Hit Ratio (54%) for color-based saliency operators was shown by Harel attention
model [Harel 06], while 3D Symmetry-based saliency map together with the extraction
strategy based on T-Junctions resulted in a Hit Ratio of 86%. This basically means that the
number of correctly detected objects increased by 60%. Detection accuracy represented by
Distance to Center metric was improved by 10% when 3D Symmetry-based saliency map
was used, meaning that attention points are situated closer to object centers. These results
show that 3D symmetry-based saliency maps capture the main structure of table scenes
with man-made objects and direct attention to those objects.

Furthermore, we can conclude from plots (Fig. 2.5, Fig. 2.9, Fig. 2.13, Fig. 2.16,
Fig. 2.19, Fig. 2.22, Fig. 2.25, Fig. 2.28, Fig. 2.31, Fig. 2.34) that the WTA extraction
strategy does not show a significantly better performance, than the MSR extraction strat-
egy. No significant performance benefits were achieved when the ITTI pyramid was used
instead of the SIMPLE pyramid. With respect to normalization, we conclude that linear
normalization (LIN) shows the same results as non-maxima suppression (NMS) or non-
linear maximization (NLM). This means that the choice of normalization does not change
results significantly. Overall, for the proposed 3D-based saliency maps, using the SIMPLE
pyramid with linear normalization (LIN) is sufficient.

With respect to the Distance to Center metric, all detection methods, except for those
that used 3D Symmetry-based saliency map, resulted in similar performance. For the
3D Symmetry-based saliency map all extraction strategies showed improved performance.
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This effect can be explained by the nature of 3D Symmetry-based saliency in which salient
regions represent symmetry lines of objects. All described attention points extraction
strategies detect points on these symmetry lines. Therefore, attention points are located
closer to the object center.

No significant improvements were shown for the combination of the proposed saliency
maps with color-based saliency maps.

With all of the given results, we can conclude it is not sufficient to use only color-based
saliency maps to detect objects. Adding 3D information for saliency computation increases
the detection performance. We found that multi-level strategy and different types of com-
bination and normalization do not play an important role. It was also shown that there
is no benefit in using more sophisticated, and therefore more computationally expensive
extraction strategies.

The proposed method to detect objects using 3D Symmetry-based saliency maps and
T-Junction extraction strategy clearly outperforms all other methods. It was specifically
designed to detect objects in cluttered table scenes containing man-made objects. This
means that saliency maps involving 3D information should be developed and used to detect
objects in robotic tasks. Those saliency maps should specifically capture object properties,
instead of single features, to guide attention to objects.

After we detect objects we want to manipulate them. For this we need their shapes or
outlines. This problem is solved by segmenting them from the scene using attention-driven
segmentation.
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NORMALIZATION

SALIENCY MAP – LIN NMS NLM

WTA MSR TJ WTA MSR TJ WTA MSR TJ WTA MSR TJ
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N

C
Y ITTI [ITTI 98] 0.49 0.41 – – – – – – – – – –

HAREL [HAREL 06] 0.54 0.54 – – – – – – – – – –

HOU [HOU 07] 0.36 0.32 – – – – – – – – – –

BRUCE [BRUCE 09] 0.48 0.42 – – – – – – – – – –

KOOTSRA [KOOTSTRA 10B] 0.51 0.53 – – – – – – – – – –

WANG [WANG 13] 0.48 0.50 – – – – – – – – – –

WANG+ITTI [WANG 13] 0.53 0.50 – – – – – – – – – –

WANG+HOU [WANG 13] 0.53 0.50 – – – – – – – – – –

WANG+BRUCE[WANG 13] 0.54 0.51 – – – – – – – – – –

S
IN

G
L

E
M

A
P PH 0.45 0.44 – – – – – – – – – –

SH 0.40 0.49 – – – – – – – – – –

RSO 0.51 0.57 – – – – – – – – – –

SYM3D 0.56 0.53 0.67 – – – – – – – – –

S
IM

P
L

E
P

Y
R

A
M

ID
T

Y
P

E

S
U

M

PH – – – 0.46 0.58 – 0.45 0.57 – 0.46 0.55 –

SH – – – 0.41 0.56 – 0.40 0.55 – 0.41 0.54 –

RSO – – – 0.52 0.62 – 0.51 0.61 – 0.52 0.61 –

SYM3D – – – 0.61 0.56 0.78 0.61 0.55 0.76 0.61 0.54 0.77

M
A

X

PH – – – 0.45 0.41 – 0.44 0.43 – 0.46 0.55 –

SH – – – 0.39 0.46 – 0.39 0.48 – 0.41 0.51 –

RSO – – – 0.48 0.52 – 0.49 0.58 – 0.52 0.60 –

SYM3D – – – 0.61 0.56 0.66 0.59 0.54 0.66 0.60 0.52 0.69

IT
T

I
P

Y
R

A
M

ID
T

Y
P

E

S
U

M

PH – – – 0.52 0.44 – 0.53 0.35 – 0.51 0.49 –

SH – – – 0.47 0.43 – 0.47 0.41 – 0.45 0.47 –

RSO – – – 0.55 0.54 – 0.54 0.44 – 0.55 0.58 –

SYM3D – – – 0.54 0.46 0.84 0.45 0.39 0.76 0.59 0.47 0.86

M
A

X

PH – – – 0.45 0.56 – 0.52 0.33 – 0.46 0.55 –

SH – – – 0.43 0.50 – 0.47 0.39 – 0.43 0.48 –

RSO – – – 0.51 0.58 – 0.52 0.41 – 0.53 0.58 –

SYM3D – – – 0.46 0.48 0.76 0.41 0.37 0.71 0.59 0.50 0.82

C
O

M
B

IN
A

T
IO

N
S

S
U

M – – – – 0.51 0.49 – 0.50 0.49 – 0.49 0.48 –

+HAREL – – – 0.52 0.56 – 0.54 0.58 – 0.54 0.59 –

M
A

X – – – – 0.51 0.45 – 0.52 0.48 – 0.54 0.50 –

+HAREL – – – 0.57 0.53 – 0.52 0.48 – 0.54 0.50 –

Table 2.4: The table shows comparative results for Hit Ratio for all evaluated methods.
As can be seen from the table, 3D Symmetry-based Saliency map in combination with
{Fc,s} pyramid (ITTI, Sec. 2.4.2), across-scale summation (SUM, Sec. 2.4.4) and non-
linear maximization normalization (NLM, Sec. 2.4.3) gives up to 100% better performance
than other methods when TJ extraction strategy (Sec. 2.5.3) is applied. Bold numbers
represent the best Hit Ratio for each type of saliency map within a specific combination
type across different normalization and extraction strategies. The best and the worst Hit
Ratios for each type of saliency map regardless of combination type, normalization and
extraction strategies are highlighted in green and red respectively.
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NORMALIZATION

SALIENCY MAP – LIN NMS NLM

WTA MSR TJ WTA MSR TJ WTA MSR TJ WTA MSR TJ
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C
Y ITTI [ITTI 98] 0.48 0.47 – – – – – – – – – –

HAREL [HAREL 06] 0.52 0.53 – – – – – – – – – –

HOU [HOU 07] 0.47 0.46 – – – – – – – – – –

BRUCE [BRUCE 09] 0.47 0.48 – – – – – – – – – –

KOOTSRA [KOOTSTRA 10B] 0.41 0.40 – – – – – – – – – –

WANG [WANG 13] 0.42 0.41 – – – – – – – – – –

WANG+ITTI [WANG 13] 0.47 0.47 – – – – – – – – – –

WANG+HOU [WANG 13] 0.50 0.49 – – – – – – – – – –

WANG+BRUCE[WANG 13] 0.44 0.46 – – – – – – – – – –

S
IN

G
L

E
M

A
P PH 0.70 0.53 – – – – – – – – – –

SH 0.63 0.61 – – – – – – – – – –

RSO 0.62 0.61 – – – – – – – – – –

SYM3D 0.45 0.46 0.39 – – – – – – – – –

S
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L
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A
M
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T

Y
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E

S
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M

PH – – – 0.66 0.62 – 0.68 0.63 – 0.65 0.63 –

SH – – – 0.63 0.60 – 0.63 0.60 – 0.62 0.61 –

RSO – – – 0.57 0.58 – 0.57 0.59 – 0.58 0.59 –

SYM3D – – – 0.40 0.42 0.40 0.41 0.42 0.37 0.41 0.43 0.36

M
A

X

PH – – – 0.71 0.48 – 0.71 0.52 – 0.65 0.64 –

SH – – – 0.66 0.59 – 0.65 0.58 – 0.64 0.62 –

RSO – – – 0.66 0.63 – 0.61 0.61 – 0.59 0.59 –

SYM3D – – – 0.41 0.41 0.39 0.41 0.42 0.35 0.40 0.41 0.37

IT
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Y
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S
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M

PH – – – 0.68 0.65 – 0.71 0.63 – 0.65 0.66 –

SH – – – 0.66 0.66 – 0.69 0.66 – 0.63 0.63 –

RSO – – – 0.63 0.64 – 0.66 0.62 – 0.62 0.63 –

SYM3D – – – 0.41 0.40 0.40 0.38 0.40 0.37 0.40 0.39 0.36

M
A

X

PH – – – 0.66 0.62 – 0.70 0.61 – 0.64 0.63 –

SH – – – 0.65 0.61 – 0.66 0.64 – 0.61 0.60 –

RSO – – – 0.60 0.59 – 0.65 0.60 – 0.58 0.59 –

SYM3D – – – 0.42 0.42 0.39 0.41 0.43 0.35 0.40 0.40 0.37

C
O

M
B

IN
A

T
IO

N
S

S
U

M – – – – 0.64 0.61 – 0.63 0.61 – 0.65 0.60 –

+HAREL – – – 0.61 0.58 – 0.57 0.56 – 0.53 0.51 –

M
A

X – – – – 0.63 0.59 – 0.65 0.57 – 0.65 0.60 –

+HAREL – – – 0.58 0.57 – 0.65 0.57 – 0.65 0.60 –

Table 2.5: The table shows comparative results for the Distance to Center metric for
all evaluated methods. The best and the worst performances for each method are high-
lighted in green and red respectively. As can be seen from the table, 3D Symmetry-based
Saliency map in combination with {Fc,s} pyramid (ITTI, Sec. 2.4.2), maximization (MAX,
Sec. 2.4.4) and non-maximum suppression normalization (NMS, Sec. 2.4.3) gives up to
40% better performance than other methods when TJ extraction strategy (Sec. 2.5.3) is ap-
plied. Bold numbers represent the best Distance to Center for each type of saliency map
within a specific combination type across different normalization and extraction strategies.
The best and the worst Distance to Center for each type of saliency map regardless of
combination type, normalization and extraction strategies are highlighted in green and red
respectively.
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Chapter 3

Attention-driven Segmentations

Segmentation of objects from a static scene is a crucial step in many computer vision tasks,
such as learning object models, or identifying objects in a scene. Segmentation in cluttered
environments is particularly challenging, and yet it is one of the most practically useful
tasks for robotics, with the need to find relevant objects quickly amongst a possibly large
number of distractors [Katz 13].

Different approaches have been proposed to tackle the object segmentation problem,
which can be broadly classified into two groups: discriminative and agglomerative. Dis-
criminative segmentation algorithms tend to segment the complete scene at once and as-
sign a label to every pixel [Felzenszwalb 04, Shi 00, Arbelaez 12, Comaniciu 02, Malik 01,
Triebel 10, Ückermann 12, Richtsfeld 12]. The computational performance of such algo-
rithms tends to drop with increasing scene complexity. Agglomerative segmentation algo-
rithms grow regions from a seed point to segment the foreground object and agglomerative
segmentation can be generally divided into two sub-classes: interactive segmentation and
active segmentation.

Boykov et al. [Boykov 01] and Rother et al. [Rother 04] described interactive ap-
proaches for segmentation of color images that however require input from the user, which
is often not feasible in robotic applications.

Active segmentation, or attention-driven segmentation, is inspired by models of hu-
man visual attention, where the scene is first parsed to detect saliency regions and the
segmentation is then applied first to the most salient ones [Ko 06, Ouerhani 01, Mishra 09,
Mishra 11, Kootstra 10a]. Originally, active segmentation was proposed to tackle scene
complexity (Aloimonos et al. [Aloimonos 88]) by processing only relevant parts of the
scene. Moreover, in robotic applications it is often more efficient to segment precisely the
first most important object and leave the rest as a background.

In this thesis, we present three novel methods for attention-driven segmentation for
cluttered table scenes: (1) attention-driven segmentation with object detection based on at-
tention points from 3D symmetry saliency maps [Potapova 12b], (2) attention-driven seg-
mentation based on probabilistic edges, and (3) incremental attention-driven segmentation
based on complete-scene segmentation proposed by Richtsfeld et al. [Richtsfeld 12].

In this chapter the focus is on developing an attention-driven segmentation approach
that can be successfully used to segment objects in complex scenes. The chapter is orga-
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nized as follows: In Section 3.1, we review related work. Sections 3.2 and 3.3 describe
proposed algorithms as well as evaluation in detail.

3.1 Related Work

The focus of this thesis is segmentation of indoor table scenes typical for robotic task en-
vironments. Therefore, we primarily concentrate on the work developed for RGB-D data.
As was mentioned in the introduction, segmentation algorithms can be broadly classified
into two groups: (discriminative) those that segment the complete scene at once into multi-
ple objects and (agglomerative) attention-driven methods that segment only one or several
chosen objects. Complete scene segmentation algorithms need to go through all segmented
objects in order to detect their properties and decide on the object of interest. In contrast,
attention-driven segmentation focuses on one object at a time and can use its properties to
efficiently detect and segment it in the scene. A number of discriminative segmentation
algorithms use depth information to boost segmentation performance for complex indoor
scenarios. Such algorithms include those proposed in [Strom 10, Triebel 10, Collet 11,
Wan 12, Ückermann 12, Richtsfeld 12].

Strom et al. [Strom 10] extended the graph-based segmentation algorithm of Felzen-
szwalb et al. [Felzenszwalb 04] by using similarity of point normals additionally to color
similarity between points to extract uniform segments. The method however is not suited
for scenes containing textured objects. Triebel et al. [Triebel 10] described an unsuper-
vised technique to segment and detect objects in indoor environments. First the scene is
clustered both in feature and geometric spaces, a Conditional Random Field is used then
to assign labels to segmented clusters. Collet et al. [Collet 11] introduced a framework to
perform scene segmentation into physically meaningful parts, based on appearance and 3D
shape. Wan et al. [Wan 12] proposed to over-segment an image into superpixels based on
mixed intensity and depth values and then merge them into a set of planes according to
their co-planarity. The algorithm was designed to segment the room into specific planes
and will require a different set of thresholds for any new type of the data. Ueckermann
et al. [Ückermann 12] proposed to detect edges using surface normals and employed re-
gion growing to find regions of smooth surfaces, separated by the detected edges. An
adjacency-graph is built from the detected surfaces and heuristic rules are used to split the
graph and segment objects. The approach of Richtsfeld et al. [Richtsfeld 12] segments the
complete scene into parametrised surface models, which are then grouped together using
Gestalt principles. Those parametrised models can be used further for object reconstruction
and learning of new object models.

A number of segmentation algorithms [Campbell 07, Lai 12a, Karpathy 13, Garcı́a 13]
use multi-view scene representation to segment objects. Campbell et al. [Campbell 07]
introduced a volumetric graph-based algorithm, where a camera is fixated on the object of
interest during a sequence of movements and a color model of the object is learned. Lai
et al. [Lai 12a] utilized a sliding window detector trained from object views to label ob-
jects in the reconstructed 3D scene. Karpathy et al. [Karpathy 13] proposed to “discover
objects” by decomposing a scene into candidate segments. Each segment is ranked ac-
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cording to its “objectness” measure based on compactness, symmetry, smoothness, local
and global convexity. The algorithms requires a scene mesh which authors obtained using
Kinect Fusion [Newcombe 11]. Garcia et al. [Garcı́a 13] proposed a framework that detects
unknown proto-objects in a 3D scene model built using Kinect Fusion [Newcombe 11]. It
was shown that the framework can find and segment objects without prior knowledge. Ap-
proaches described in [Campbell 07, Lai 12a, Karpathy 13, Garcı́a 13] require a 3D scene
model, which is a costly operation and can be unavailable to an autonomous robot due to
multiple obstacles.

The concept of active segmentation or attention-driven segmentation was first presented
by Aloimonos et al. [Aloimonos 88]. It was argued that the human visual system inves-
tigates and observes the scene by a set of fixations that are followed by segmentation.
Attention-driven segmentation usually has two stages. During the first stage, a selec-
tion mechanism detects candidate object locations. During the second stage, the detected
objects are segmented. The attention-driven segmentation approaches in [Ouerhani 01,
Ko 06, Mishra 09, Björkman 10, Kootstra 10a, Bergström 11, Mishra 11] propose differ-
ent solutions for the two stages. Given that the selection mechanism is directed by a
specific search task (i. e. [Frintrop 06b]) in the case of robotic applications, attention-
driven segmentation finds greater use than discriminative segmentation approaches. In-
teractive segmentations can be considered as a subset of attention-driven segmentations
[Rother 04, Gulshan 10], with the attention mechanism performed by the user. Sedlacek
and Zara [Sedlacek 09] presented an interactive point cloud segmentation approach based
on minimizing Euclidean distance as energy function and employed user interactions to
improve segmentation of the object of interest.

Ko et al. [Ko 06] proposed to segment objects of interest based on the principles of
human attention and semantic region clustering. In [Ouerhani 01] Ouerhani et al. used a
“seeded region growing” technique to segment an image w.r.t. seed points. Algorithms of
[Ko 06, Ouerhani 01] are based on color images. However, since cheap and powerful active
range sensors became available, a renewed interest in 3D methods was sparked throughout
all areas of computer vision and robotics.

Mishra et al. [Mishra 09, Mishra 11] proposed an active segmentation algorithm based
on provided seed points situated on objects. At first, in [Mishra 09] a probabilistic edge
map, previously presented in [Martin 04], is calculated and improved using depth informa-
tion or motion cues. This probabilistic edge map is remapped from the Cartesian coordi-
nates to Polar coordinates with seed points (attention points) as poles, and the optimal cut
through the polar edge map is found using the principle of minimization of path energy.
This cut defines the border of an object. Though originally in the paper no strategy for de-
tection of fixation points was proposed, it was discussed that visual attention mechanisms
[Walther 06, Itti 98, Bruce 09] can be used for such a selection. The algorithm described in
[Mishra 11] calculates attention points based on the principle of the boundary pixel border
ownership. The idea of border ownership was described in detail by Zhou et al. [Zhou 00].
This means that each border knows to which object it belongs, and therefore a proper at-
tention point inside the object can be selected. Kootstra et al. [Kootstra 10a] proposed
an attention-driven graph-cut segmentation. Objects are localized with fixation points ex-
tracted from 2D symmetry saliency maps [Kootstra 08]. An energy minimization func-
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tion is applied to depth and color along with a support plane constraint for segmentation.
It is worth mentioning that the above segmentation algorithms [Kootstra 10a, Mishra 11]
were developed specifically for table top scenes and require information about the sup-
port plane, which significantly limits their usage in real world applications. Bjorkman
et al. [Björkman 10] presented an approach for attention-driven segmentation where fixa-
tion was used for unsupervised initialisation to generate object hypotheses using models
of appearance, 3D shape, and size. The algorithm requires a-priori knowledge about the
number of objects presented in the scene, which is not always possible in robotic scenarios.
Bergstrom et al. [Bergström 11] proposed a segmentation algorithm based on the genera-
tion of segmentation hypotheses from 2D and 3D cues. The key idea is to obtain proper
object segments through human-robot interaction. In our particular scenario, we want the
robot to be completely autonomous, which rules out any human intervention.

Fig. 3.7 and Fig. 3.9 show segmentation results using different state-of-the-art algo-
rithms. As can be seen, current state-of-the-art attention-driven segmentations fail to seg-
ment objects if the scene consists of multiple occluded and cluttered objects, having several
colors and textures. These types of scenes are common in domestic robotic tasks and need
to be resolved correctly to enable manipulation of objects.

3.2 Attention-driven Segmentation for Domestic Scenes

In this Section, we present two novel attention-driven segmentation algorithm for clut-
tered table scenes. Our segmentation methods consist of two stages: object detection and
segmentation. Object detection by extracting attention points from saliency maps was ex-
plained in Chapter 2. We introduce a novel selection of attention points algorithm from
3D symmetry-based saliency maps [Potapova 12b] to use them as fixations for the subse-
quent object segmentation. Furthermore, two novel segmentation algorithms are proposed.
The first approach is called Compact Object Segmentation (COS) [Potapova 14b] and uses
attention points to enable clustering of planar surface patches, similar to [Richtsfeld 12],
using color similarity and the notion of compactness. The second approach is called Edge-
based Segmentation (EBS) [Potapova 12a] and follows the idea proposed by Mishra et
al. [Mishra 09], but instead of using a probabilistic edge map [Martin 04], we introduce a
new type of edge map obtained by probabilistic learning.

We evaluated our approach on two publicly available datasets (Object Segmentation
Database (OSD) [Richtsfeld 13] and Washington RGB-D Object Dataset (WOD) [Lai 12b]).
The datasets contain different types of indoor scenes ranging from simple to complex sce-
narios. Our methods show improvements in terms of segmentation quality compared to
existing attention-driven segmentation algorithms [Mishra 09, Mishra 11, Gulshan 10]. As
can be seen from the picture (Fig. 3.7), the proposed approach successfully overcomes
difficulties that other state-of-the-art algorithms experience when segmenting colorful and
textured objects in highly cluttered scenes, commonly encountered in domestic environ-
ments .

The rest of the Section is organized as follows: In Section 3.2.1 we describe the pro-
posed algorithms in detail. Section 3.2.4 shows the comparison of the proposed algorithms
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(a) Original image (b) Saliency map (c) Attention points

(d) Surface patches (e) Segmentation result

Figure 3.1: Object detection process: starting from original image (a), 3D symmetry-
based saliency map is calculated (b) (shown in green color on the original image); (c)
shows attention points from symmetry (red) and skeletal line segments (green) (please
note that for visualization purposes both attention points and skeletons were dilated); (d)
shows planar surface patches and (e) shows segmentation result with respective attention
points.

to other attention-driven segmentation algorithms.

3.2.1 Object Detection and Segmentation
In this Section, we describe the detection of good object candidate locations in a cluttered
scene with further segmentation. Einhäuser et al. [Einhäuser 08] showed that objects at-
tract human attention better than early vision saliency features. Symmetry is one of the
characteristics of many natural as well as human-made objects and at the same time a
powerful attentional cue [Kootstra 08, Potapova 12b]. Therefore, we based our object de-
tection strategy on the calculation of a 3D symmetry-based saliency map. The algorithm
to calculate 3D symmetry-based saliency map and extract attention points {fk} by means
of T-junctions was described in Sections 2.3.4 and 2.5.3.

Particularly, for a given saliency map S we extract salient regions as 8-neighbor con-
nected components of pixels with saliency value larger than zero {Ck}. The average
saliency Sk of each salient region Ck is computed as

Sk =
1

nk

∑
p∈Ck

S (p) (3.1)

where nk is the number of pixels in the region, S (p) is the saliency value of the point p.
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Figure 3.2: A general scheme for Compact Object Segmentation (COS).

Small errors in normal calculation due to sensor noise accordingly introduce noise in
the saliency map. To this end we remove salient regions Ck where Sk < θsal. In our
experiments we set θsal to 10% of the maximum saliency value. A better noise model for
the sensor can be used to eliminate the need for this threshold.

The skeleton Tk is extracted from the connected component Ck. Symmetry attention
points {fk} are extracted from the skeleton Tk as junction points, if they exist, or as mid-
points for simple skeletal line segments. At the last stage attention points {fk} are sorted
according to the average saliency Sk of the connected component Ck they have been ex-
tracted from. Figure 3.1c shows examples of attention points {fk} and skeletons Tk.

Given attention points {fk}, we want to segment objects in the scene.

3.2.2 Compact Object Segmentation (COS)

The compact object segmentation algorithm was designed to segment compact objects that
are typically present in household environments. The algorithm consists of several steps
(Fig. 3.2). We first cluster points into planar patches based on their normals similar to
Richtsfeld et al. [Richtsfeld 12]. We then cluster these patches beginning from the attention
points by connecting similar patches as long as a given objectness measure is valid. The
algorithm pipeline is shown in Fig. 3.1

Clustering Normals

Neighboring points are clustered to uniform patches without discontinuities using point
normals. Normal clustering starts at the point with lowest curvature and greedily assigns
neighboring points as long as they fit to the initial plane model. The algorithm iteratively
creates planar surface patches until all points belong to some plane or are identified as
noise. After normal clustering we obtain a set of planar surface patches {ρt} (Figure 3.1d).
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Figure 3.3: Compactness measure: green points represent the object candidate µ and yel-
low points represent a new patch ρ′, that we want to add to the object candidate; pi, V ,
vj and d(pi, vj) represent respectively a point from {µ ∪ ρ′}, convex hull, visible face in
the convex hull and a distance from the point to the convex hull. In this particular case,
compactness measure will result in high value, meaning that object is not compact.

Clustering Patches

Patches {ρt} are now greedily clustered into object hypotheses {µk}. Object hypotheses
are initialized using symmetry attention points {fk}. Attention points are sorted in decreas-
ing order of saliency Sk. Given a symmetry point fk, all patches ρt bordering this point
(with a 5 pixel radius) form an initial cluster. Patches are then greedily added to the cluster
subject to a color and compactness constraint. Once a cluster cannot be extended further,
the next cluster is initiated from the next attention point.

Color Similarity

A new patch ρ′t is considered to be a part of the object only if its color model is similar
to the already existing model for the object. The color similarity CSin between a new
patch ρ′t and an object µk is computed as the correlation distance between their HSV color
histograms.

CSin(µk, ρ
′
t) = corr(H(µk), H(ρ′t)) (3.2)

Object Compactness

A new patch patch ρ′t is only added to an object, if its addition does not violate the com-
pactness measure κk of the object (Fig. 3.3). Compactness κk is calculated as the mean of
the shortest distances of the object points to the visible surfaces of the object’s 3D convex
hull. Let a set {pki} be object points, Vk be the corresponding object’s convex hull, and
{vj} be a set of faces facing the viewpoint. Compactness measure κk is then calculated as:

κk =
1

nk

∑
pki

dmin(pki, Vk) (3.3)
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Figure 3.4: A general scheme for Edge-based Segmentation (EBS).

where nk is the number of object points and dmin(pki, Vk) is the shortest distance from the
point to any visible face

dmin(pki, Vk) = min
j
d(pki, vj) (3.4)

Given two features, namely color similarity and object compactness, we train a support
vector machine (SVM) [Chang 11] using linear kernel on the training part of the OSD to
classify between new patches ρ′t that belong to the given object hypothesis µk, and those
that do not.

Examples of segmented objects using these constraints are shown in Fig. 3.1e and
Fig. 3.7.

3.2.3 Edge-based Segmentation (EBS)

Probabilistic Edges for Segmentation

In 2009, Mishra et al. [Mishra 09] proposed to segment an object by transferring the edge
map of the image from Cartesian coordinates to Polar coordinates with the attention point
on the object acting as a pole and finding the best cut (Fig. 3.4). Segmentation results
of the algorithm strongly depend on the quality of edges. The authors proposed to use
edges of [Martin 04] weighted accordingly to disparity or motion cue information. In our
scenarios, however, the segmentation approach did not show promising results (Fig. 3.7).
This can be explained by the complexity of the object configurations in the scenes. Prob-
ability edges computed using [Martin 04] are based on color, intensity and texture. The
algorithm is computationally expensive and 3D depth information is not explicitly used in
edge calculation.

To improve segmentation results and speed up the computation we incorporated avail-
able 3D and 2D cues to obtain edges more suitable for our scenario. In our approach, we
combine three different types of edges: Sobel Color Edges (SC) are calculated from color
images; Sobel Depth Edges (SD) are computed from depth images using the Sobel op-
erator, and indicate jump (occluding) edges; Curvature Edges (CE) are computed using
information about point normals, as curvature discontinuity is often an indicator for object
boundaries. Curvature discontinuities are calculated as the difference between a normal
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original image probabilistic edges [Martin 04] proposed edges

sobel color edges (SC) sobel depth edges (SD) curvature edges (CE)

Figure 3.5: Visual comparison of different types of edges. Row 1 shows original image,
probabilistic edges [Martin 04] and proposed edges respectively. Row 2 shows sobel color
edges (SC), sobel depth edges (SD) and curvature edges (CE). As can be seen, the proposed
algorithm to compute edges gives more visually pleasing results than probabilistic edges
[Martin 04].

of a point and the averaged normal over its neighborhood. Examples of different types of
edges are shown in Fig. 3.5.

To fuse the above types of edges into single edge map, we first learn the two probability
distributions p (c|E = edge) and p

(
c|E = edge

)
for each edge type c ∈ {SC,SD,CE}

(Fig. 3.6). The better the separation between the positive and negative distributions, the
better a given observation distinguishes between edges and non-edges. Assuming that all
three edge observations (SC, SD, CE) are conditionally independent, the probability of E
being an edge is then given by the Bayes rule as:

p (E = edge|SC, SD,CE) =

=
p (E)

∏
c∈{SC,SD,CE} p (c|E)∏

c∈{SC,SD,CE} p (c|E) +
∏

c∈{SC,SD,CE} p
(
c|E
) (3.5)

We assume that the a-priori probability of E being or not being an edge is equally likely
p (E) = p

(
E
)

= 0.5. Learning was done on the training part of the OSD [Richtsfeld 13].
An example of a final probabilistic edge map is shown in Fig. 3.5.

To segment an object using an attention point fk, the probabilistic map is transformed
from the Cartesian coordinate space to Polar coordinate space with fk as a pole, as in
[Mishra 09]. Object borders are found as the optimal cut of the edge map in the Polar
coordinate space. Segmentation examples are shown in Fig. 3.7.
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(a) Sobel Color Edges (SC) (b) Sobel Depth Edges (SD) (c) Curvature Edges (CE)

Figure 3.6: Probability density functions (PDFs) for different types of edges.

3.2.4 Results and Evaluation
We evaluated our segmentation algorithm on two publicly available databases: Object
Segmentation Database (OSD) [Richtsfeld 13] and Washington RGB-D Object Dataset
(WOD) [Lai 12b] Other databases as Caltech256, Pascal VOC, LabelMe, Berkeley’s B3DO,
NYU’s Depth Dataset, UW’s RGB-D Object Dataset do not cater to our specific task of
cluttered table scene segmentation.

OSD database is targeted towards segmentation evaluation and consists of scenes with
varied object configuration complexities. It is composed of images with complex and clut-
tered scenes, as well as scenes where only several boxes or other simple objects are pre-
sented, as shown in Fig. 3.7. The OSD database consists of training and testing parts, and
objects in the dataset were hand-labeled with polygon outliers.

WOD database consists of several sequences of scenes recorded in typical indoor sce-
narios. Ground truth in the dataset is offered by means of bounding boxes indicating object
presence. Since we are interested in segmentation in terms of object boundaries, bounding
boxes are not suitable for evaluation. Therefore we randomly selected 87 images from
WOD evenly distributed among all sequences. Image examples are shown in Fig. 3.7.
Objects in these 87 images were hand-labeled by approximating object boundaries with
polygons.

Evaluation was carried out by considering two specific aspects – namely, object detec-
tion (i. e. placing attention points on objects) and object segmentation. We do not attempt
to directly measure the quality of object detection, but instead present the effect of choices
in the object detection methodology on our object segmentation approach. In addition,
the evaluation was performed to compare the performance of our approach against several
state-of-the-art segmentation approaches.

Object Detection Strategies

In our work, we applied several strategies for object detection in order to estimate their
influence on the object segmentation. As described earlier, the primary object detection
strategy used in our pipeline involves the generation of saliency maps from 3D symme-
tries. In this strategy (TJ3D), attention points are selected as points of T-Junctions (or mid-
points for simple lines) in symmetry lines extracted from the 3D symmetry-based saliency
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Figure 3.7: Visual comparison of different segmentation algorithms. Column 1-2 show
segmentation results for OSD [Richtsfeld 13] dataset and columns 3 shows segmentation
results WOD [Lai 12b] dataset. Segmentation masks and attention points are shown in
different colors with respective numbering reflecting the order of attention shift. Results
for our COS and EBS algorithms are shown in the last two rows. As can be seen, all
algorithms except the proposed approach have difficulties handling cluttered table scenes.
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OSD [Richtsfeld 13]
Segmentation All Best First

Mean Std Mean Std Mean Std
G10 0.49 0.07 0.52 0.07 0.54 0.06

M09+TJ3D 0.56 0.07 0.57 0.07 0.59 0.06
M09+WTA2D 0.50 0.07 0.50 0.07 0.64 0.05
M09+WTA3D 0.53 0.07 0.54 0.07 0.64 0.05

M11 0.64 0.07 0.70 0.06 0.74 0.05
EBS 0.72 0.05 0.74 0.05 0.75 0.05
COS 0.89 0.02 0.90 0.02 0.91 0.01

WOD [Lai 12b]
Segmentation All Best First

Mean Std Mean Std Mean Std
G10 0.34 0.12 0.47 0.11 0.52 0.10

M09+TJ3D 0.61 0.09 0.64 0.09 0.69 0.07
M09+WTA2D 0.59 0.10 0.63 0.09 0.72 0.05
M09+WTA3D 0.60 0.10 0.63 0.09 0.71 0.06

M11 0.56 0.13 0.74 0.08 0.79 0.05
EBS 0.56 0.09 0.67 0.07 0.72 0.05
COS 0.63 0.08 0.72 0.06 0.74 0.05

Table 3.1: F -score for different segmentation algorithms evaluated on OSD [Richtsfeld 13]
and WOD [Lai 12b] datasets.

maps (Fig. 3.1c). The second strategy (WTA3D) employed, extracts attention points us-
ing Winner-Take-All (WTA) [Lee 99] from the 3D symmetry-based saliency maps. To
see how the use of 3D information improves the quality of a detection strategy, we also
include attention points using Winner-Take-All from 2D symmetry-based saliency maps
[Kootstra 08] (WTA2D).

Object Segmentation

To evaluate the attention-based aspect of the algorithm we performed comparison against
an attention-driven active segmentation algorithm proposed by Mishra et al. [Mishra 09]
(M09), as well as its extension which uses depth information as described in [Mishra 11]
(M11).

Though it is clearly not fair to compare our approach to algorithms that use only color
information, it is still interesting to see how the performance differs. Interactive segmen-
tation algorithms [Rother 04, Gulshan 10, Boykov 01] require user input (e. g. bounding
box as in [Rother 04]). In scenarios where it is not possible for a user to provide input, the
user behavior can be simulated by a computational model of the visual attention system
[Bruce 09, Borji 13]. Therefore, we selected a state-of-the-art interactive segmentation al-
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gorithm presented by Gulshan et al. [Gulshan 10] (G10) to compare with our algorithm.
The algorithm proposed in [Gulshan 10] requires strokes of foreground and background
as input. Foreground strokes in our evaluation were simulated as twice dilated skeleton
lines from saliency maps. Background strokes were simulated as rectangles near the image
border 10% smaller than the size of the original image.

The output segmentation masks are compared to the ground truth labeling in terms of
the F -measure defined as 2PR/(P + R). We calculated precision P as the fraction of the
segmentation mask overlapping with the ground truth and recall R as the fraction of the
ground truth overlapping with segmentation mask.

Segmentation algorithm M09 was evaluated using object detection strategies TJ, WTA2D
and WTA3D, mentioned earlier. Segmentation algorithm M11 was evaluated with its own
object detection strategy, because this strategy is an intrinsic part of the algorithm. Seg-
mentation algorithm G10 was evaluated using symmetry lines as foreground strokes. Eval-
uation results are presented in Table 3.1.

Note that the attention mechanism cannot rule out that several attention points come
to lie on the same object. In this case, each attention point leads to a possibly different
segmentation for an object. Therefore, we calculated three F -scores: the label first in
Table 3.1 refers to the segmentation from the first attention point, best refers to the best
segmentation w.r.t. ground truth, and all refers to the average score over all segmentations
for an object. If first is lower than best this means that the attention points are not optimal.
Ideally the first attention point leads to the best segmentation. If all is significantly lower
than best this means that the segmentation algorithm depends a lot on the position of the
attention point. All F -scores in Table 3.1 are averaged over all objects and all scenes.

As can be seen from Table 3.1, the primary object detection strategy (TJ3D) proposed
in this thesis results in improved performance for all types of segmentation algorithms
compared to other detection strategies. Evaluation results also show that our combined
approach of detection and segmentation performs better on both databases than state-of-
art segmentation algorithms. Results for G10 show that color-only segmentation cannot
handle complicated table scenarios without good user input. Fig. 3.7 shows visual segmen-
tation outputs for different segmentation strategies. Segmentation results show examples
when different attention points can give different segmentation results for the same object.
It can be seen that the good results achieved by the proposed approach also correspond to
visually pleasing segmentations compared to other attention-driven approaches.

3.3 Incremental Attention-driven Scene Segmentation

In this Section, we present an attention-driven incremental segmentation for RGB-D views
of highly cluttered scenes inspired by the approach described in [Richtsfeld 12]. In con-
trast to [Richtsfeld 12], where the complete scene is segmented, our approach segments at
first most salient objects. This strategy results in significant reduction of the computational
complexity of the algorithm. We show that the proposed approach can deal with clut-
tered scenes in a more efficient manner compared to other attention-driven segmentation
approaches, as well as output better segmentation results. The proposed attention-driven



108 3. Attention-driven Segmentations

Data: Point cloud P = {r1, ..., rN}, saliency map SM
Result: Object segmentation g
S ← SegmentLowLevelsurfaces(P);
S ← SortSurfaces(S, SM);
S ′ ← {s1}′;
g ← ∅;
while true do

S ′ ← ComputeSurfaceModels(S ′);
< ← ComputeSurfaceRelations(S ′);
W ← GetRelationWeights(<);
g′ ← GraphBasedSegmentation(S ′,W );
if g 6= g′ then

S ′ ← S ′
⋃
Neighbors(S ′);

g ← g′

else
return(g);

end
end

Algorithm 1: Attention-driven Segmentation

mechanism enables quick response and linear degradation in time performance with the
increase of the scene complexity. Scene complexity is defined as the degree of the object
clutter (Fig. 3.13). Incremental segmentation means the most relevant (salient for the given
task, i. e. having required color) objects are segmented first, and the segmentation pro-
ceeds in order of decreasing visual saliency. Starting with the most salient part, the method
successively modifies the current object hypothesis using perceptual grouping principles.
An object is considered to be segmented when no more additional information about the
object can be extracted from the scene. Up to our knowledge this is the first algorithm that
combines benefits of both attention-driven and incremental scene segmentation.

We evaluated our approach on two publicly available datasets (Object Segmentation
Database (OSD) [Richtsfeld 13] and RGB-D Object Dataset (WOD) [Lai 12b]). These
datasets contain different types of indoor scenes ranging from simple to complex sce-
narios. Our method shows improvements in terms of segmentation quality and compu-
tational performance compared to the existing attention-driven segmentation algorithms
[Mishra 09, Kootstra 10a, Mishra 11].

3.3.1 Overview of the Object Segmentation
In this Section, we give an overview of the proposed algorithm, with a subsequent detailed
description of each step of the algorithm as depicted in Alg. 1. The algorithm starts by
segmenting a point cloud into surfaces based on point normals similarity. Given a saliency
map of the scene, the saliency of each surface is computed. The object of interest seg-
mentation is initiated by selecting the most salient surface. The following steps are then
performed iteratively: selected surfaces are fitted with parametric models and grouped us-
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ing graph-based segmentation; neighboring surfaces are selected and the process repeats.
Segmentation stops when no more additional information about the object can be extracted,
i. e. adding new surfaces does not change the segmented object candidate obtained during
the previous iteration.

Low-Level Segmentation

The low-level segmentation is based on adaptive clustering of points in the point cloud
P, where a point ri ∈ P, ri = (ri, ci,pi,ni), (ri, ci) are image pixel coordinates, pi =
(x, y, z) are 3D space coordinates and ni = (nix, niy, niz) is the estimated normal vector
at this point. A point is added to a surface if (1) its normal deviation from the average
surface normal and (2) its distance to the surface are smaller than given thresholds (these
thresholds are adapted), based on the depth value of the respective point to take into account
noise behavior of the depth sensor [Mörwald 13]. Low-level segmentation outputs a set of
surfaces S = {s1, ...sn}.

Surface Sorting

Given a saliency map SM we calculate the saliency SMj of a surface sj:

SMj =

∑
ri∈sj SM(ri, ci)

|sj|
(3.6)

where |sj| is the size of the surface sj , i. e. the number of points. Surfaces are sorted
according to their saliency values. The most salient surface initializes the set of selected
surfaces S ′.

Surface Modeling

Given a set of selected surfaces S ′ = {s′k1 ...s
′
kn
}, S ′ ∈ S, we model each surface s′ki

using either a plane or a NURBS [Mörwald 13]. A surface s′ki is modeled with a NURBS
if the data is better explained using this higher-parametric model in terms of a minimum
description length (MDL) criterion, taking into account number of explained points, model
complexity, and fitting error. Neighboring surfaces (s′ki , s

′
kj

) are fused and modeled using
a single NURBS s′′ki = s′ki ∪ s

′
kj

if again the combined model is better in terms of MDL
than the two individual models.

Surface Relations

After modeling individual surfaces in the set S ′, we define a set of relations between pairs
of neighboring surfaces. These relations model perceptual grouping principles, such as
similarity or good continuation, and serve to identify groups of surfaces that together make
up a single object. This set of relations < defines a feature vector rij for each pair of
neighboring surfaces (s′i, s

′
j). The feature vector includes such relations as color similarity;

Gabor and Fourier texture similarities; relative size; color, curvature and depth similarities
and variations on the border; relation between 2D/3D borders. All features are normalized
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to be in the range 〈0, 1〉. A support vector machine (SVM) [Chang 11] was trained to
classify between same/different object given a feature vector. Training was done on the
ground truth annotated scenes in the learning part of the Object Segmentation Database
(OSD) [Richtsfeld 13] using 10 fold cross-validation. The best classification accuracy is
achieved using an RBF kernel with C = 512 and γ = 2. For every feature vector rij the
SVM then outputs the confidence score wij , which is further used as the weight between
surfaces s′i and s′j .

Graph-Based Segmentation

WRONG

CORRECT

a) graph before merging groups gi and gj b) graph after merging groups gi and gj
into group gij

Figure 3.8: Graph-based segmentation. a) shows a graph with three groups gi, gj and gk
before merging groups gi and gj . As shown in the drawing, groups gj and gk are weakly
connected, while groups gi and gk connected strongly. b) shows resulting graphs after
merging for two different strategies: the upper drawing shows the strategy that does not
take into consideration the number of actual points in the groups, and the lower drawing
shows the proposed strategy which takes into consideration the actual number of points in
the groups. As can be seen from the drawing the proposed strategy gives the correct result.
The other one will eventually lead to groups gij and gk being merged together.

Given a set of selected surfaces S ′ and their pairwise weightsW , we form an undirected
graph G = 〈V,E〉, where vertices V are selected surfaces S ′ and edges E with weights W .
To segment the graph we use the method proposed by Felzenszwalb et al. [Felzenszwalb 04].
The algorithm merges vertices of the graph into groups G = {gi}. In our case each surface
is counted as one element in the group.This means that when two groups gi and gj (with
edge weight eij) are going to be merged together and there exists a third group gk weakly
connected to gi (with weight eik) and strongly connected to gj (with weight ejk) then even-
tually gk will be merged with gij with no respect to the the actual number of points in each
group (Fig. 3.8). To prevent this we modify edge weights eijk between gk and new merged
group gij as follows:

eijk =
eik|gi|
|gi|+ |gj|

+
ejk|gj|
|gi|+ |gj|

(3.7)

where |gi| and |gj| are cardinalities of respective groups, i. e . number of actual points.
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Group g′ containing the most salient surface represents the segmentation of the object
of interest.

Object Creation

After graph-based segmentation, we check if the current segmentation g′ of the object of
interest has changed with respect to the segmentation g at the previous iteration. If the
segmentation g′ has not been changed, it is returned as a segmented object of interest.
Otherwise, all neighbors of S ′ are added to S ′ and the process continues. Surfaces forming
the segmented object of interest are not involved in segmentation of further objects. Please
note that the complete segmentation is a special case of the incremental attention-driven
segmentation, when all surfaces have been selected.

3.3.2 Evaluation
We have evaluated our algorithm on the two datasets: the Object Segmentation Database
(OSD) [Richtsfeld 13] and the Washington RGB-D Object Dataset (WOD) [Lai 12b]. Ob-
jects in the database were hand-labeled by approximating object outlines with polygons.
WOD consists of image sequences captured from 8 different scenes. We randomly selected
86 different images from all 8 scenes. All objects in each scene were also hand-labeled with
polygons. The SVM classifier [Chang 11] for predicting the weight between two surfaces
given their relations was trained on the training part of the OSD. Please note, that the SVM
classifier was not re-trained to be used with WOD. This together with good segmentation
quality show that the proposed approach generalizes well beyond its training set.

3.3.3 Segmentation Quality
To evaluate the robustness of the proposed approach against the location of attention points
on the object we generated a set of sequences of random attention points and simulated
saliency maps by placing a Gaussian at each attention point. For each object in each image
we created five sequences of attention points. Each sequence consists of five attention
points. The first attention point is always on the respective object in the image and the
other four are on randomly selected objects (objects were sampled without replacement).

We compared the proposed algorithm (INC) to three other attention-driven segmen-
tation algorithms: Mishra et al. [Mishra 09] (M09), Kootstra et al. [Kootstra 10a] (K10)
and Mishra et al. [Mishra 11] (M11). In the segmentation algorithm proposed by Mishra
et al. [Mishra 11], the choice of attention points is a significant part of the algorithm and
cannot be replaced. This limits the usage of this segmentation in scenarios where a partic-
ular object should be segmented. Note also that K10, M09 and M11 require knowledge of
the supporting plane, while the proposed approach does not. This significantly restricts the
applicability of algorithms K10, M09 and M11 in real world tasks.

To evaluate the quality of segmentation, we used precision P and recallR metrics. Pre-
cision was calculated as the fraction of the segmentation mask overlapping with the ground
truth and recall as the fraction of the ground truth overlapping with the segmentation mask.
We averaged P and R for each object over all appearances of the object in sequences. We
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Figure 3.9: Visual comparison of different segmentation algorithms. Column 1 and
columns 2-3 show segmentation results for OSD [Richtsfeld 13] and for WOD [Lai 12b]
respectively for different segmentation algorithms. Corresponding segmentation masks
and attention points are shown in the same color. As can be seen, existing algorithms have
difficulties handling cluttered table scenes, while the proposed algorithm clearly performs
well.

also provide the F -measure defined as 2PR/(P + R), averaged over all objects. The re-
sults are shown in Fig. 3.10 and Fig. 3.11. We compare the performance of attention-based
segmentation to the full scene segmentation. Full scene segmentation is a particular case of
attention-based segmentation, when all surfaces are selected. Please note, that the results
of these two segmentations are not necessarily equivalent, because of the merging proce-
dure. As can be seen, the proposed algorithm perfectly handles the complexity of the OSD,
while the other attention-driven segmentation algorithms show lower performance in terms
of F -score. The performance of the proposed algorithm visually looks slightly lower for
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Figure 3.10: Precision vs. Recall Cues. Column 1 and Column 2 show Precision vs. Recall
of the segmentation for K10 [Kootstra 10a] and M09 [Mishra 09] segmentation algorithms
for OSD [Richtsfeld 13] and WOD [Lai 12b] respectively. Each point in the plot represents
averaged values of Precision and Recall for each object instance appearing in images.

WOD than for OSD. The reason is missing depth data in some images in the WOD. The
proposed algorithm relies on the depth information and it is not possible to segment parts
of the object, where there is no data (like black shiny objects or transparent bottles). There-
fore, segmentation recall for these objects can be low. Performance of the K10 algorithm
seems to be inferior, which can be caused by the choice of parameters. We used standard
choice of parameters as set by the authors in their implementation.
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Figure 3.11: Precision vs. Recall Cues. Column 1 and Column 2 show Precision vs. Recall
of the segmentation for M11 [Mishra 11] and proposed segmentation algorithms for OSD
[Richtsfeld 13] and WOD [Lai 12b] respectively. Each point in the plot represents averaged
values of Precision and Recall for each object instance appearing in images. As can be seen
in combination with Fig. 3.10 the proposed algorithm outperforms other attention-driven
segmentation algorithms in terms of F − score.

Qualitative Results

To demonstrate that incremental attention-driven segmentation can be successfully used
in indoor environments with different types of saliency maps, we have run the proposed
segmentation on video filmed in an indoor environment. Saliency maps based on color
were used to direct segmentation.
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Red Objects Blue Objects Green Objects

Figure 3.12: Results of the proposed incremental attention-driven segmentation algorithm
for the indoor video sequence. Row 1 shows resulting segments in different colors. Row
2 shows saliency maps overlaid with original images where desired object are highlighted.
Columns 1-3 correspond to segmentation of first three red, blue and green objects.

3.3.4 Computational Complexity

We further evaluated the runtime behavior of our method in comparison to M09 and M11.
Note that as M11 is only available as a binary implementation, we could only measure the
accumulative time of the segmentation of all selected objects. We do not compare to the
time performance of K10 due to the inferior quality of the segmentation.

Time performance results are shown in Fig. 3.13. Images are ordered along the hori-
zontal axis in increasing scene complexity. Since providing an objective measure of com-
plexity is difficult, we defined complexity for the purpose of this evaluation as the time
it took the original approach in [Richtsfeld 12] to segment the complete scene (hence the
“complete” curve in the upper row of Fig. 3.13 is rising monotonically). This allows us
to clearly show the runtime behavior w.r.t. complexity. Note however that this notion of
complexity is tied to [Richtsfeld 12] and this ordering of images does not correspond to the
complexity of methods M09 and M11, although a similar trend can be observed. Runtimes
for each image are averaged over all runs over the images (i.e. all attention point sequences
for all objects in the image). The top row of Fig. 3.13 shows that runtime for incremental
attention-driven segmentation grows significantly slower with increasing complexity than
when segmenting the whole scene and remains almost constant for segmenting the first
object. Peaks and valleys in the plots stem from the complexity of the objects themselves
and NURBS fitting consumes the majority of runtime. Thus, images containing objects
with mainly flat surfaces, such that planes rather than NURBS are fitted, need significantly
less time and represent the valleys in the curves. The bottom row shows runtimes of M09
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Figure 3.13: Computational Complexity vs. Scene Complexity. Row 1 and row 2 show
time performance of different segmentation algorithms on OSD [Richtsfeld 13] and WOD
[Lai 12b] respectively. Note that images are ordered along the horizontal axis in increasing
scene complexity.

and M11. Both of these rely on a time-consuming 2D edge detection step, which explains
the high offset of over 50 s. While M09 and M11 are generally slower than the proposed
approach, they show the benefits of attention-driven segmentation too. Our algorithm is
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implemented in C++, as are M09 and M11. Tests were run on an Intel Core i7 CPU at
2.93GHz.

3.4 Discussion
In this chapter we presented two novel attention-driven algorithms for cluttered table scene
segmentation: Compact Object Segmentation (COS) and Edge-based Segmentation (EBS).
Both methods incorporate a novel object detection strategy using a saliency operator based
on 3D symmetry with attention point estimation based on symmetry lines and T-Junction
points. The first method (COS) is based on greedy clustering of planar surface patches
using the notion of compactness and color similarity The second method (EBS) utilizes a
probabilistic framework to calculate probabilistic edges, based on color, depth and curva-
ture. Our approach shows good results on typical cluttered table scenes containing human
made objects. We have shown that our selection of attention points improves performance
of attention based segmentation methods and that our combined attention and segmentation
approach improves over state-of-the-art attention-driven segmentation approaches.

We also presented an incremental segmentation approach and showed on two challeng-
ing datasets how the computational complexity of finding the first few relevant objects in
the scene is significantly reduced compared to complete scene segmentation. We found
that the first object can be found in almost constant time, irrespective of the scene com-
plexity. Furthermore, the proposed incremental approach outperformed existing attention-
based segmentation in terms of segmentation quality and time performance. These results
highlight the importance of providing the proper attention mechanisms, i.e. derived from
the task context the robot performs in and the role vision plays in it.

In summary, we argue that the system view is more important than tuning specific pro-
cessing routines in isolation. We argue that this is in general the only way forward: meeting
(soft) real time constraints using anytime algorithms that are able to output some result at
any time and more/better results with more time. Our approaches w.r.t. segmentation in
this direction are attention-driven and incremental segmentations, starting at the most task
relevant parts of the scene as highlighted by suitable attention mechanisms.
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Chapter 4

Conclusion

To recognize or manipulate objects, we need to have their precise localization. In this
thesis, to acquire precise location of objects we developed an attention-driven system for
object detection and segmentation. Objects are detected using novel 3D saliency opera-
tors by means of extracting attention points. Then a state-of-the-art technique to segment
detected objects using attention-driven algorithms is presented.

4.1 Summary

Object detection is a very important task and it plays a crucial role in robotics. In robotics
applications, objects often appear in cluttered environments; moreover, they can often be
occluded. Man-made objects are often multi-colored and multi-textured. All of this makes
the problem of object detection highly non-trivial. In this thesis we proposed to detect
object by means of extracting attention points from 3D saliency maps.

In robotics, 3D information is used in many areas such as navigation and grasping.
While traditional attention models are mostly color-based, in this thesis we investigated
the importance of 3D visual information for attention. To do that, we conducted a compre-
hensive analysis of eye-tracking experiments in 3D. We found that depth perception has a
valuable role in human visual attention and hence robots will also benefit from incorporat-
ing 3D-based visual attention. To understand what is still missing in the field of 3D-based
visual attention for robotics, we also studied existing attentional models. We found two
main problems: (1) there are no models that involve 3D attention and that aim at solving
such specific tasks as detecting suitable regions for grasping; (2) while research on eye-
tracking suggests that objects are more attractive than single features, such methods are
underrepresented in robotic vision.

To handle the first problem, we proposed a set of saliency cues, based on such properties
as height and surface orientation. We showed that their fusion results in better object
detection abilities.

To handle the second problem, we developed a novel 3D Symmetry-based saliency
operator that works on partial object views. This proposed attentional operator was specifi-
cally designed to detect generic objects by detecting object symmetries in cluttered scenes.
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Moreover, a new extraction strategy designed specifically for this 3D Symmetry-based
saliency operator was proposed. Evaluation results showed significant increase in detec-
tion quality for generic objects, compared to existing state-of-the-art saliency maps and
extraction strategies.

We exhaustively evaluated 159 different combinations of multi-level strategies, combi-
nation methods and normalization operators to create saliency maps for images in a pub-
licly available database with cluttered table-top scenes. The goal of the evaluation was to
understand if more sophisticated methods result in better performance in terms of object
detection. We came to the conclusion that more complicated, and therefore more computa-
tionally expensive methods, do not improve detection performance under most scenarios.

To be able to use detected objects in tasks such as manipulation, we proposed to seg-
ment them using two different novel attention-driven algorithms. The first algorithm seg-
ments objects using an edge map based on color, depth and curvature within a probabilistic
framework. The second segmentation algorithm is based on clustering locally planar sur-
face patches using the notion of compactness and color similarity.

Moreover, we extended attention-driven segmentation to be able to segment as many
objects as necessary, instead of only one, as in classical attention-driven segmentation al-
gorithms. We called this extension incremental segmentation. Incremental segmentation
detects and prioritizes the processing of objects of interest using attention, i.e. it segments
the object of the highest importance first and then incrementally explores the rest of the
scene based on the saliency of each region. Eventually, given enough time, incremental
segmentation segments the complete scene. The evaluation on cluttered indoor scenes, con-
taining man-made objects clustered in piles and dumped in a box, shows that our proposed
methods outperform state-of-the-art methods of attention-driven segmentation in terms of
segmentation quality and computational performance.

4.2 Outlook
In this thesis, we have seen how the proposed attention-driven framework increases the
performance and the quality of object detection and segmentation. These encouraging re-
sults open the way to solving remaining challenges in object understanding, localization
and representation that should be addressed in the near future. One of them is finding a
more elegant way to combine both 2D and 3D attention models to gain better results on a
variety of different types of scenes. The other one is in creating top-down attention opera-
tors that will lead to better detection results in specific scenarios such as finding unknown
objects with known characteristics. Another challenge is to create attentional models that
can direct attention to any object, regardless of its size or type. Attention-driven segmenta-
tion can be further improved by incorporating various shape cues, as well as developing a
better edge model. Segmentation of more task specific scenes will benefit by adding more
Gestalt-based features to increase the scope of categories of objects properly segmented.
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