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Abstract

Since the publication of Codd’s paper, the relational databases have dominated the database
world and are still in wide use nowadays. With the advance of the Web technologies, the database
research community has oriented its focus on bridging the gap between the traditional ways of
storing data using relational databases and the novel techniques of transferring data on the Web.
XML has emerged as a standard for data transmission on the Web, by setting its main goal
to be providing a simple and efficient way of storing and transferring data. Problems such
as data integration, data exchange and answering queries using views have become a topic of
interest in recent years, and their formalization in an XML setting has received a significant
amount of attention. In this thesis, we propose a unified framework for analyzing and comparing
the features of a multitude of works that analyze these problems in the context of XML. We
introduce a query language for XML trees, called extended tree patterns, which allows us to
define XML mapping assertions that successfully capture the expressive power of the mapping
assertions used in a large subset of the works that we overview. We classify different approaches
based on the expressive power of their mapping assertions and point out the similarities and
differences along several criteria. Finally, we give an overview of the problems that have been
addressed so far, and identify which specific variants of the respective problems have not been
tackled yet.
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Kurzfassung

Seit der Veröffentlichung von Codd’s Artikel haben relationale Datenbanken die Welt der Daten-
banken dominiert und ihre Verwendung ist auch heute noch weit verbreitet. Mit dem Aufkom-
men von Internet-Technologien hat die Datenbankforschung ihren Fokus darauf gelegt, die
Lücke zwischen traditionellen Arten der Datenspeicherung mittels relationaler Datenbanken
und neuen Techniken des Datentransfers über das Internet zu überbrücken. XML hat sich hi-
erbei als ein Standard zur Übermittlung von Daten über das Internet etabliert, da das Hauptziel
von XML in der Bereitstellung einfacher und effizienter Methoden der Datenspeicherung und
-übertragung liegt. Probleme wie die Integration von Daten, der Datenaustausch und die Beant-
wortung von Abfragen mit Hilfe von Sichten haben in den vergangenen Jahren großes Inter-
esse erweckt, und die Formalisierung dieser Probleme in XML hat viel Aufmerksamkeit er-
langt. In dieser Masterarbeit schlagen wir ein vereinheitlichtes Gerüst zur Analyse und zum
Vergleich von Eigenschaften einer Vielzahl von Werken, welche diese Probleme im Kontext
von XML analysieren, vor. Wir führen eine Abfrage-Sprache für XML-Bäume ein, sogenan-
nte ’extended tree patterns’, welche es uns erlauben ’xml mapping assertions’ zu definieren,
die wiederum erfolgreich die Ausdruckskraft der ’mapping assertions’ charakterisieren, welche
in einem Großteil der Arbeiten, die wir aufführen, verwendet werden. Wir klassifizieren ver-
schiedene Herangehensweisen, basierend auf der Ausdruckskraft ihrer ’mapping assertions’,
und zeigen Ähnlichkeiten und Unterschiede in Bezug auf eine Reihe von Kriterien auf. Letz-
tendlich geben wir einen Überblick über die bisher gelösten Probleme und heben hervor, welche
spezifischen Varianten der jeweiligen Probleme bisher noch nicht gelöst worden sind.

vii





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Query Answering Under Schema Mappings in Relational Databases 5
2.1 Incomplete Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Query Answering Using Views . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Data Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 XML Data Model and Query Languages 13
3.1 XML Documents as Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 XML Query Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

XPath and XQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
An XPath Fragment and Tree Patterns . . . . . . . . . . . . . . . . . . . . . . 18
Tree Pattern Formulae and CT Qs . . . . . . . . . . . . . . . . . . . . . . . . 22
Prefix-selection Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 XML Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 XML Mapping Assertions 29
4.1 Extended Tree Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Expressive Power and Translations Into EP{/,//,[],∗} . . . . . . . . . . . . . . . 32
4.3 XML Mapping Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Data Integration, Data Exchange and Query Answering Using Views in an XML
Setting 45
5.1 XML With Incomplete Information . . . . . . . . . . . . . . . . . . . . . . . 45

Certain Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Data Integration, Data Exchange and Query Answering Using Views in an XML

Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
LAV mapping assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
GLAV Mapping Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ix



Nested GLAV Mapping Assertions . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Conclusion 73

Bibliography 75

x



CHAPTER 1
Introduction

We live in a world that is based on data. Our everyday activities involve tasks that rely on data
transmission, even if sometimes we are not aware of it. Whether we read our emails, take money
out from a cash machine or apply for a job or a university, our actions are driven by the data we
provide to the systems we are interacting with, and the system’s way of handling these data.
Over the years, a lot of research has been focused on finding good and efficient methods for data
management. As the contemporary information systems heavily depend on the data they get as
input, data management is a crucial ingredient in their design.

The data in the information systems are usually structured in databases. Databases are col-
lections of data organized in some particular way, such that the organization reflects a particular
state of the world. The data stored in a database is manipulated through a database management
system (DBMS). In the 1960s, a three-level architecture for database design was developed, and
it separates a database into three levels: a physical, a logical and an external level [3]. The
physical level is concerned with how the data is stored on the physical devices. The logical level
contains definitions of the logical structure of the data. The external level consists of views over
the data which allow the data in the database to be seen from a different angle. The logical
level is of particular interest in the database theory research. Over the years, different logical
data models have been developed, such as the hierarchical, network, relational, object oriented,
and post-relational. One of the most widely used and heavily researched is the relational model,
introduced by Codd in 1970 [17]. The relational model requires that the data are organized in
tuples, which are stored in relations. The relations can also be seen as tables, and their columns
as attributes. Each relation and attribute have their own names. It is also useful to distinguish
between the definition of the relations and their attributes (called a database schema) and the
actual data (called a database instance).

1.1 Motivation

In recent years, much attention has been oriented towards the post-relational data models. One
of the many models that are referred to as post-relational is the XML data model [48]. In this
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model, the data are stored in XML documents, and can be queried, accessed and exported in
a desired format. XML has been widely used recently because it was accepted as a standard
for data transmission on the Web. This has motivated the research community to revisit many
problems which are already well defined and researched for the relational databases and adapt
them in order to find suitable solutions in the XML setting. Such problems include, among
others, XML data integration, XML data exchange and answering XML queries using XML
views.

Given a setting with a large number of databases, it is not unnatural to think of a scenario
where some of them in fact contain information that refers to the same state of the world. Think
of a university that stores data about its students enrolled at different faculties. If the data are
stored at the faculty level, the university information system will need to manage several num-
ber of different databases, depending on the number of faculties in the university. Also, it is not
excluded that these databases might have different schemas. Therefore, in order to obtain infor-
mation for a particular student on the university level, one would need to write queries specific
for the database of the faculty the student is enrolled at.

Here is where data integration intervenes, and makes this querying process more convenient
for the end user. With a data integration system, the query for the student is posed over a global
schema, which is connected to the sources by means of mappings. In this way, the global schema
creates a virtual view over the data from the different sources (i.e. the faculty databases). The
mappings that are used to connect the sources to the global schema are in fact schema mappings
from the source schemas to the global schema. The main task of the data integration system is to
use these mappings to translate the query posed over the global schema into several queries over
the source schemas, extract the answers from the corresponding source databases and finally
combine these answers into a single answer of the query posed by the user. In other words, if
the university in our example decides to implement a data integration system and someone from
its administration asks for a student enrolled at some faculty, then the user just formulates the
desired query in the vocabulary of the global schema. The data integration system does all the
work; it rewrites the query into queries over the source schemas using the mappings, it finds the
particular student and it returns it as an answer to the user.

A special setting of data integration corresponds to another problem, namely the problem of
query answering using views [29]. The problem of query answering using views can be applied
in a setting where the data from the sources is not available explicitly, but through a set of views
defined over the sources. Given a set of views and a query, both defined in a certain query
language, the goal of query answering using views is to find a rewriting of the original query
such that the rewriting refers only to the views in the predefined set and returns the same answers
as the original query.

Another data management task that uses schema mappings in its core is data exchange.
Given two schemas called a source and a target schema, the task of data exchange is to restructure
the data stored in source databases that satisfy the source schema, such that they conform to the
target schema. The query posed over a data exchange setting is answered using the materialized
target instance. In the university domain described above, data exchange may come into play in
a scenario where a faculty needs to change the structure of the data it stores. This means that the
data already stored under the old database schema needs to be translated into data that conforms
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to the new schema. The queries posed to the faculty database after the translation has been made
would also return answers that were previously stored under the old database schema.

All of these problems have been already researched extensively in the context of relational
databases. With the expansion of the XML data model, a lot of interest has been directed to-
wards formally defining these problems and providing solutions for them in an XML context.
Throughout the literature, there are numerous works that have addressed these problems by try-
ing to adapt the existing formalisms for relational databases into formalisms for XML. Although
these works are related in their perspective and understanding of the respective problems, they
differ greatly in the way they represent and study them. Namely, different works use different
languages that have different expressive powers for querying XML documents and expressing
schema mapping assertions. Also, the formal definitions of XML documents vary from one
approach to another.

1.2 Goals and Methodology

To the best of our knowledge, a survey on data management in an XML setting has not been
written yet. The goal of this work is to provide a thorough overview of the works that address
problems in XML data management and to make a first step towards a comprehensive survey
on the topic. We aim at bringing together the different approaches and provide a uniform view
over their formalisms. We focus primarily on understanding the formalisms introduced in the
works that study several XML data management problems, such as XML data exchange, XML
data integration and XML query answering using XML views. Along this, another goal of this
work is proposing a framework for uniformly representing different works that revolve around
similar topics in XML data management.

In this thesis, we intend to compare different approaches on XML data management by using
a newly defined framework. This framework includes a definition of a query and a mapping
language for XML documents. By defining such a framework that unifies different approaches,
we point out the similarities and differences between them. Principally, our analysis is aiming at
showing which approaches are comparable w.r.t. the expressive power of the query and mapping
languages they use. Moreover, we plan to provide comparisons of the works along several
other dimensions, such as the number of data sources (i.e. XML documents) considered, the
type of query answering, the interpretation of the schema mappings as well as the presence of
constraints. We expect to gain a further insight into the problems that have already been tackled
for specific query and mapping languages, and into those that remain as open questions. This is
a valuable result, as it facilitates the understanding of the problems that have been solved so far,
and furthermore, since it provides directions for future research.

We analyze the approaches and compare them by means of two new formalisms that we
introduce. First, we introduce a query language for XML, called extended tree patterns. The
expressive power of this language matches the expressive powers of a large set of query lan-
guages used throughout the literature. We provide means to translate queries written in different
query languages into the uniform language of extended tree patterns. Based on the extended tree
patterns, we define the second formalism, called XML mapping assertions. Using this formal-
ism, we are able to formally and uniformly represent a multitude of approaches for XML data
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management. However, not all of the approaches considered in this thesis are expressible using
the XML mapping assertions that we define. We identify the works whose approaches are not
expressible using our formalisms and give explanations why this is the case.

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows. In Chapter 2 we give more details on the
problems that have been very well researched in the relational database setting, and to which
we focus our attention in the XML setting. Such problems include databases with incomplete
information, data integration, data exchange and query answering using views. In Chapter 3
we introduce formal definitions of XML documents as well as XML query languages that can
be encountered in the literature. In Chapter 4 we introduce the framework which we use to
compare the different approaches, namely the unifying query language and the XML mapping
assertions. Chapter 5 contains the main contributions of this thesis. In this section, we provide
the comparisons of the different approaches using the previously defined framework. We point
out three different classes of approaches, we identify which of them are expressible using the
formalisms we define and we identify which problems still remain as open in the context of
XML data management. Finally, Chapter 6 concludes this thesis.
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CHAPTER 2
Query Answering Under Schema

Mappings in Relational Databases

Schema mappings are logical expressions that are used to specify high-level relationships be-
tween two database schemas [32]. Many data management problems are based on schema map-
pings, such as data integration, data exchange, database management, peer-to-peer database
systems as well as metadata management. In this thesis, we mainly focus on schema mappings
used in data integration and data exchange, along with the closely related problems of databases
with incomplete information and query answering using views.

Given two database schemas, usually called a source and target schema (in the context of
data exchange), or a source and global schema (in the context of data integration), a schema
mapping is a set of assertions that specify the correspondence between the two schemas. Data
exchange focuses on transforming the data residing at a database that satisfies the source schema
into data that satisfies the target schema and the schema mapping assertions, which in a data
exchange setting are called dependencies. Very often, several target instances can be obtained
from a single source instance. Such target instances are called solutions. On the other hand, in
data integration, the goal is to uniformly view and query heterogeneous sources using a global
schema, which plays the role of a virtual database. The global database is not materialized, and
it is used as a unified vocabulary for posing queries. The schema mapping assertions specify
which data stored at the sources corresponds to which global schema element. More details on
data integration and data exchange can be found in Section 2.2 and Section 2.4 respectively.

Query answering in data exchange and data integration is performed in two different ways.
Namely, since in data exchange materialized target instances are present, the queries are an-
swered using the data stored in these instances. In data integration however, the global database
is virtual, hence the query posed over the global schema needs to be translated into one or more
queries over the sources. The process of translating the query is called query rewriting or query
reformulation. Although the two approaches of query answering are different, in both cases
the same semantics is adopted. This is because in both data integration and data exchange, the
query is not posed over a single database, but rather over a virtual global database that refers
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to multiple source databases in the former, and over multiple solutions in the latter. Thus, as
semantics for query answering, a concept that emerged from databases with incomplete infor-
mation, called certain answers, is used. The notion of certain answers is defined as a set of
tuples that is an intersection of the tuples occurring in the answer of the query over all available
databases. Intuitively, the certain answers are those tuples that are always returned as answers
to the query, regardless of the database used to extract them. The problem of finding the certain
answers given a set of databases D can be formulated as the following decision problem:

PROBLEM: CERTAINANSWERD(q, t)
shorthand: CAD(q, t)

INPUT: A query q and
a tuple t of the same arity as q

QUESTION: Is t a certain answer of q?

In data integration, the data is usually accessible through materialized views defined over
the sources. This is due to the form of the mapping assertions used in data integration, which
will be discussed in more detail in Section 2.2. Answering a query using a set of materialized
views is referred to as view based query processing or query answering using views. When
producing a rewriting of a query using a set of views, the goal is to obtain a rewriting that
returns exactly those answers that the original query would return. Such a rewriting is called
an equivalent rewriting. However, this may not always be the case, as an equivalent rewriting
may not exist. Hence, a computation of another rewriting that approximates best the original
query is of interest. A maximally contained rewriting is an expression that captures the original
query the best by returning the maximal number of tuples that are contained in the answer of
the original query. More details on the problem of answering queries using views can be found
in Section 2.3. The computation of a rewriting can be expressed as a decision problem, and
in fact we consider the two different flavors of rewriting. When defining the decision problem,
it is important to differentiate between the query language L1 in which the original query is
expressed, and the query language L2 of the rewritten query. Also, we need to take into account
a set of mapping assertionsM, which correspond to the mapping assertions in data integration
or the set of view definitions in the case of answering queries using views. The set of mapping
assertions can either be fixed or be considered as part of the input to the problem. Thus, if the
mapping assertions are not considered as part of the input, we define the following decision
problems:

PROBLEM: EQUIVALENTREWRITING
L1,L2
M (q)

shorthand: ERL1,L2M (q)

INPUT: A query q expressed in L1
QUESTION: Does there exist an equivalent rewriting

r expressed in L2 of q usingM?

PROBLEM: MAXIMALLYCONTAINEDREWRITING
L1,L2
M (q)

shorthand: MCRL1,L2M (q)

INPUT: A query q expressed in L1
QUESTION: Does there exist a maximally contained

rewriting r expressed in L2 of q usingM?
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In the case when the mapping assertions are part of the input, we have the following decision
problems:

PROBLEM: EQUIVALENTREWRITINGL1,L2(q,M)

shorthand: ERL1,L2(q,M)

INPUT: A query q expressed in L1
and a set of mapping assertionsM

QUESTION: Does there exist an equivalent
rewriting r expressed in L2 of q usingM?

PROBLEM: MAXIMALLYCONTAINEDREWRITINGL1,L2(q,M)

shorthand: MCRL1,L2(q,M)

INPUT: A query q expressed in L1
and a set of mapping assertionsM

QUESTION: Does there exist a maximally contained
rewriting r expressed in L2 of q usingM?

In the rest of the section, we give an introduction to some of the problems that use schema
mappings in a relational setting, which we are interested to analyze in an XML setting. Such
problems include databases with incomplete information, data integration, data exchange and
answering queries using views.

2.1 Incomplete Information

Very often, the data stored in a database might have missing values, and hence it does not pro-
vide a complete description of the application domain. The incompleteness of information is an
important problem that requires special attention and has motivated a high amount of research
in the database community. The research is mainly focused on finding ways of representing the
incomplete databases, as well as on answering queries over such databases. Incomplete infor-
mation in databases appears due to absence, irrelevance or fuzziness of the information. The
most common reason for incompleteness is the absence of information. In terms of relational
databases, absence of information is simply a missing value for an attribute in a record of some
relation. These missing values are referred to as null values (or nulls). The paper by Imeliński
and Lipski [30] provides the theoretical foundations of handling nulls in relational databases,
and formalizes a representation system for such incomplete relational databases. Other works
that address the problem of handling incomplete information in relational databases are [4, 45].
When handling database tables with nulls, a new semantics should be specified, since the nulls
are treated as variables, and therefore can obtain different values under different valuations. The
semantics of an incomplete database table can be defined w.r.t. the closed world assumption
(CWA) or open world assumption (OWA). The existence of multiple valuations of the null val-
ues in an incomplete database implies the existence of multiple ground instances of a single
database. When answering queries over such databases, it is important to consider only those
tuples that appear in the answer of the query in every database instance. Hence, the certain an-
swer semantics is taken into account when answering queries over incomplete databases. In fact,
certain answers are a notion that has been introduced first in query answering over incomplete
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databases, and later reused in query answering w.r.t. schema mappings. More precisely, the cer-
tain answers extract the maximum knowledge from a collection of ground database instances.
Thus, we can see that there is a tight relationship between handling incomplete information on
one side, and data integration and data exchange on the other. More on data integration and data
exchange can be found in Section 2.2 and Section 2.4.

2.2 Data Integration

As briefly mentioned in the introduction, data integration is the problem of creating a uni-
form query interface over data from multiple heterogenous sources, that conform to different
schemas [29]. This query interface allows the data stored in the different sources to be uni-
formly accessible through a virtual database that conforms to a schema, called global or me-
diated schema. In a data integration system, the user poses queries that use symbols from the
global schema. In order to obtain data from the sources, the user query over the global schema
is transformed into a set of queries over the sources. Once the answers are obtained, they are
combined and returned to the user. The data integration system facilitates the query answering
for the user. When posing queries over the global schema, the user does not need to know the
vocabularies of the source schemas. It is also not of the user’s concern how the data is stored in
the sources, and which data model is used to structure the data at each source. The data integra-
tion system acts like a black box and provides an answer to a query, which should be equal to
the union of the answers of the corresponding queries posed over the available sources.

A logical framework and a formal definition of a data integration system is given in [34].
This definition is a general one, i.e. it does not depend on the technique used in the design of the
data sources. Formally, a data integration system I is a triple 〈G,S,M〉, such that:

• G is the global or mediated schema, which provides a unified view over the data from the
sources;

• S is the source schema, which describes the sources where the actual data is stored;

• M is the mapping between the source and the global schema. It consists of mapping
assertions of the form qS  qG and qG  qS , where qS is a query over the source
schema S and qG is a query over the global schema G. The mapping assertions describe
the correspondence between the source and the global schema.

The semantics of a data integration system I is defined as follows. Let D be a source database,
i.e. a database that conforms to the source schema S and satisfies the constraints implied by it.
A global database is any database that satisfies the global schema G. A global database B is
legal w.r.t. D if B satisfies all the constraints imposed by G and B satisfies the mappingM w.r.t.
D. Hence, there might exist multiple legal global databases w.r.t. D and the need of a definition
of certain answers of a query posed to I emerges. Intuitively, certain answers are those tuples
that are answers to the query and appear in every legal global database. Suppose D is a source
database (i.e. an instance of the source schema) for the data integration system I, and q is a
query over I. The set of tuples t that are in the answer of q for every legal global database B is
called the set of certain answers of q over I w.r.t. D and is written as qI,D.
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Whether a global database B is legal w.r.t. a source databaseD depends on the interpretation
of the mapping assertions in M. There are three kinds of mapping assertions based on the
expressive power of qS and qG :

1. local as view (LAV) - In the LAV setting, each element of the source schema is associated
with a query (i.e. a view) over the global schema. Hence, the mapping assertions are of
the form s qG , where s is an element from S;

2. global as view (GAV) - On the other hand, the GAV mapping assertions describe the
elements of the global schema using a view over the sources. Thus, the mapping assertions
in a GAV setting have the following layout: g  qS ;

3. global-local as view (GLAV) - The GLAV setting is a generalization of both LAV and
GAV, where a view over the source schema is assigned a view over the global schema, and
therefore, the mapping assertions are of the form qS  qG . As a language for description
of the sources, GLAV is more expressive than LAV and GAV combined [28].

The three types of mapping assertions differ in the way they perform query processing. In
a LAV setting, query processing is a rather involved task. Since the sources in a LAV data inte-
gration system are represented as views over the global schema, the query processing amounts
to computing answers to the query based on the views. Two types of query processing using
views can be considered: query rewriting using views and query answering using views. The
former considers a query and a set of view definitions and as a result reformulates the original
query such that it refers only to the views. The latter is given the query, the view definitions
and the view extensions as input, and its goal is to compute answers to the query using the data
stored in the view extensions, regardless of the means used to process the query and extract the
answers. GAV query processing is slightly more straightforward than LAV query processing.
In this setting, each member of the global schema is described by a query (i.e. a view) over the
source schema. Hence, query processing in a GAV data integration system consists of replacing
each occurrence of an element of the global schema by the source query that defines it. Finally,
in GLAV query processing, one can perform query processing by splitting a GLAV mapping
assertion into two mapping assertions, one of which is a GAV and another one which is a LAV
mapping assertion [16, 28] in the following way:

• for each GLAV mapping assertion qS  qG , introduce an intermediate view symbol v that
has the same arity as qS and qG and conforms to an intermediate schema;

• split each GLAV mapping assertion qS  qG into a GAV mapping assertion qS  v and
a LAV mapping assertion v  qG ;

• materialize the intermediate view v for each GAV mapping assertion qS  qG ;

• perform LAV query processing using the LAV mapping assertion and the result of the
materialized intermediate view v.

In order to define the relationship between the source and the global schema more precisely,
each mapping assertion needs to be given a specification which further defines how the mapping
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assertion is interpreted. Thus, a mapping assertion qS  qG is assigned one of the following
specifications:

• sound, interpreted as ∀x (qS(x)→ qG(x));

• complete, interpreted as ∀x (qS(x)← qG(x));

• exact, interpreted as ∀x (qS(x)↔ qG(x)).

Sound and exact mapping assertions are the most commonly encountered ones in data inte-
gration systems.

2.3 Query Answering Using Views

From another perspective, data integration can be seen as the problem of answering queries over
materialized views [29]. This particularly corresponds to the one of the approaches of query
processing in a LAV data integration system, described above. The problem of query answering
using views, as well as its applications, is studied in [29], and is defined as follows. Let Q be
a query and V = {V1, . . . , Vn} a set of view definitions. A query Q′ that mentions only the
views V1, . . . , Vn is called a rewriting of Q using the views. When computing the rewritings,
one is interested in finding a rewriting that returns answers that approximate the original query
the best. In order to determine the relationship between the original query and a rewriting, the
concepts of query containment and equivalence are used. A queryQ1 is contained in a queryQ2

if for all database instances D it holds that the set of tuples corresponding to the answer of Q1

over D is a subset of the tuples in the answer of Q2 over D. Given two queries Q1 and Q2, Q1

is equivalent to Q2 if Q1 is contained in Q2 and Q2 is contained in Q1.
Depending on the answers obtained by the rewritten query, two different types of rewritings

can be distinguished:

• equivalent rewritings. A rewriting Q′ is said to be an equivalent rewriting of Q using the
views V1, . . . , Vn, if Q′ refers only to the views V1, . . . , Vn and is equivalent to Q, after
the view definitions have been unfolded in the rewriting;

• maximally-contained rewritings. It is not always possible to obtain a rewriting that is
equivalent to the original query. In such cases, it is of interest to obtain maximally-
contained rewritings. A rewriting Q′ is said to be a maximally-contained rewriting of
Q w.r.t. the views V1, . . . , Vn if Q′ mentions only the views, it is contained in Q after
the unfolding of the view definitions, and there is no other rewriting Q′′ such that Q′ is
contained in Q′′, Q′′ is contained in Q and Q′′ is not equivalent to Q.

As the purpose of queries is to extract answers, an important question is how to obtain all
the answers of a query given a set of views. A natural idea is to find a rewriting and to evaluate
this rewriting over the views. This evaluation will generate all the answers if the rewriting is
equivalent, but this is not always the case. The notion of certain answers describes what it
means to obtain all the answers of a query given a set of views and their extensions. Depending
on the contents of the view extensions (i.e. whether they are complete or partial), there are two
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different definitions for the certain answers. Suppose Q is a query and V = {V1, . . . , Vn} is
a set of views s.t. the sets of tuples v1, . . . , vn are the extensions of the views {V1, . . . , Vn}
respectively. The following two cases can be distinguished:

1. a tuple t is a certain answer of Q under the closed world assumption (CWA) given
v1, . . . , vn if for all database instances D, t is in the answer of Q over D, and additionally
the tuples contained in each extension vi are exactly those tuples obtained by evaluating
each view Vi over D, for 1 ≤ i ≤ n. In this case, we can also say that the views are
defined using the exact semantics, i.e. using exact LAV mapping assertions;

2. a tuple t is a certain answer ofQ under the open world assumption (OWA) given v1, . . . , vn
if for all database instances D, t is in the answer of Q over D, and additionally the tuples
contained in each extension vi are contained in the tuples obtained by evaluating each
view Vi over D, for 1 ≤ i ≤ n. The OWA setting coincides with the definition of a
LAV data integration system, where the mapping assertions are interpreted as sound LAV
mappings.

The number of possible rewritings that can be generated for a query and a set of views is
exponential in the size of the query [29]. However, usually, not all of the exponentially many
rewritings are relevant for obtaining the answers, as most of them are contained in or equivalent
to rewritings that are considered relevant (i.e. those that are equivalent or maximally-contained
rewritings). Many algorithms have been developed to efficiently compute rewritings of a query
using views in the context of data integration, such as the bucket algorithm [35] as well as its
improvement, the MiniCon algorithm [42], and the inverse rules algorithm [22].

Some issues that deserve attention in the theory of answering queries using views are: the
completeness of the query rewriting algorithms and the extraction of certain answers. A query
rewriting algorithm is said to be complete if it finds a rewriting of a query Q in a given language
using views V (often defined in the same language as the query) if one exists. The task of
extracting certain answers depends on whether the views are interpreted under the exact or sound
semantics (CWA vs. OWA) and whether the rewritings are equivalent or maximally contained.
Also, another very important question that needs to be answered when generating a rewriting
of a query using views is which views are relevant and should be considered in the rewriting
process.

2.4 Data Exchange

Data exchange is another problem which has been revisited recently and has been a topic of
interest in the research community, in both relational and XML settings. Given two schemas
called a source and a target schema, the task of data exchange is to restructure the data stored in
sources that satisfy the source schema, such that they conform to the target schema.

A formal framework for data exchange has been presented in [23, 24]. In the core of data
exchange again lie schema mappings, which are necessary to express the relationship between
the source and the target schema. A relational data exchange setting is represented by a triple
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〈S,T,Σ〉, where S,T are the source and the target schema respectively, and Σ is a set of de-
pendencies, which can be either source-to-target or target dependencies. The source-to-target
dependencies are of the form ∀x (∃ y ϕS(x, y) → ∃ z ψT(x, z)), where ϕS and ψT are con-
junctive queries over the source and target schema respectively. Their intuitive meaning is that
whenever the query ϕS is satisfied in the source instance, the query ψT has to be satisfied in
the target instance. The target dependencies are constraints imposed on the target schema. They
impose restrictions on the target data, in the sense that the newly obtained target instance needs
to satisfy each target dependency.

Suppose a data exchange setting 〈S,T,Σ〉 is fixed. The data exchange problem is defined
as follows. Given an instance I of the source schema S, materialize an instance J of the target
schema T such that I and J together satisfy the source-to-target dependencies and J satisfies
the target dependencies. If it exists, such materialized target instance J is called a solution for
I . Since in general there might exist more solutions for I , when answering queries over the
target schema w.r.t. the source instance, it is useful to define certain answers. The set of certain
answers of a query q is the intersection of the answers of q over each solution J for the source
instance I .

The difference between data exchange and data integration is that in data exchange the target
schema is materialized, i.e. the queries are posed over a materialized target instance, while in
data integration the global schema serves only as a unified vocabulary used for formulating
queries over multiple sources. Moreover, a data exchange setting 〈S,T,Σ〉 can be seen as a
data integration system 〈G,S,M〉, where S corresponds to the source schema S, T corresponds
to the global schema G and the source-to-target dependencies from Σ correspond to the set
of mapping assertions M. Given the form of the source-to-target dependencies, the mapping
assertions in the data integration system are interpreted as sound GLAV mappings.
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CHAPTER 3
XML Data Model and Query

Languages

With the advance in the Web technologies, a need for a standard for publishing data on the Web
has emerged. In its basic form, data publishing on the Web consists of several steps [2]. First,
a user creates a file that contains some data. Then, this file is published by sharing its URL
with other users. Finally, by accessing its URL, any user can reach and retrieve this file, at any
time. The type of files usually transmitted on the Web are HTML files, which have a predefined
structure that enables rendering of the contents of the file visually in a Web browser. On the
contrary, the task of data retrieval from a relational database follows different steps. When the
data is structured using a relational schema, one needs to pose queries in a given query language
designed for querying relational databases in order to extract the data. In order to bring the
power of database and Web technologies together, a new technology that would bridge the gap
between the two was needed.

XML (eXtensible Markup Language) is a markup language that is used for transferring
data on the Web, that has been accepted as a W3C Recommendation in 1998. Unlike HTML
documents, whose main purpose is to provide rendering of a text content in a Web browser, XML
documents are used to store data on the Web in a structured way. Their content is structured in
nested tags, each of which has to be opened and closed. The tags are defined by the user.
Furthermore, an additional document that specifies the allowed tags and their respective structure
in the XML document might be attached to it. The objective of the tags is to describe the meaning
of the part of the document that is enclosed within an opening and closing tag, rather than being
concerned with its visual display. The pair of opening and closing tag with the same name, along
with the embedded content, is called an element. The opening tag of the element can contain
a set of name-value pairs, called attributes. An example of an XML document can be seen in
Figure 3.1a.

In the rest of this section, we provide definitions of the basic notions that will be used
throughout this thesis. We will formally define an XML document as an XML tree and we
will give a definition of a DTD, which is used to specify the desired structure of the underlying
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<a>

<b @d="v1">
<e>
<h @j="v2" />

</e>
<f @i="v3" />

</b>
<b @d="v4">
<e>
<h @j="v5" />

</e>
<f @i="v6" />

</b>
<c @g="v7" />

</a>

(a) XML document

a

b b c

@d
"v1"

e f @d
"v4"

e f @g
"v7"

h @i
"v3"

h @i
"v6"

@j
"v2"

@j
"v5"

(b) XML tree

Figure 3.1: An XML document and its representation as an XML tree

XML document. We will also introduce and analyze different query languages for XML that
have been encountered in the literature.

3.1 XML Documents as Trees

XML documents have a nested structure, which is characterized by elements containing nested
subelements. Each element is assigned a label from a countably infinite set of element type
names. Additionally, element nodes may maintain a list of attribute-value pairs. Following the
formalization of XML documents in [9, 12], we assume that all the values (i.e. the data) in the
XML documents are actually stored in the attributes. This is not an unreasonable assumption,
since every document can be transformed into an equivalent one where all the values are stored
in the attributes. For example, if an XML document contains a text node, it is transformed into
an empty node with an attribute @value whose value is set to the value of the text node.

In its simplest form, an XML document can be seen as a labeled ordered tree [46]. In
accordance with the definitions in [9, 12], we proceed with defining XML trees as follows.
Consider a countably infinite set E of element type names, a countably infinite setA of attribute
names, a set S of strings, which is the domain of the attribute values, and a set ID of unique
identifiers. Let El ⊂ E and Att ⊂ A be finite proper subsets of E and A respectively.

Definition 3.1.1 (XML tree). An XML tree T over the finite sets El of elements and Att of
attributes is a finite ordered labeled tree (N,E, ↓,→, label, value@a, id, root) where

• N is the set of nodes, N = NEl ∪NAtt, where NEl is the set of element nodes and NAtt

is the set of attribute nodes;

• E is the edge relation, E ⊆ NEl × (NEl ∪NAtt);
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• ↓ is the child relation, which is a subset of the edge relation. For two nodes n1, n2 ∈ NEl,
n1 ↓ n2 if n2 appears immediately below n1 in the labeled ordered tree. Moreover, in this
case, n1 is said to be the parent of n2. The root of the tree is the only node that does not
have a parent, while the nodes with no children are called leaf nodes;

• → is the next sibling relation, which imposes an order on the children of a node. For two
nodes n1, n2 ∈ NEl it holds that n1 → n2 if n1 and n2 have the same parent (i.e. there
exists a node n ∈ NEl such that n ↓ n1 and n ↓ n2) and n2 is the next node after n1 in
the children order of their parent;

• label is a labeling function that assigns a label to each node, label : N → El ∪ Att, i.e.
for an element node ne ∈ NEl, if label(ne) = l, then l is the element type of ne, and for
an attribute node na ∈ NAtt, if label(na) = @l, then @l is the attribute name of na;

• for all attribute names @a, value@a is a partial function that assigns values to attributes,
value@a : NEl → S, i.e. for a node n ∈ NEl, if value@a(n) = v, then the element node
n has a value v for the attribute @a;

• id is an identification function that assigns a unique identifier to each node,
id : N → ID;

• root is the root of the tree.

We denote by T the set of all XML trees. �

Note that in our definition of XML documents as XML trees, we do not consider the docu-
ment node of the XML document as a root node of the XML tree. We rather call a root the node
that is the unique child of the document node, i.e. the element node that contains all other ele-
ment nodes. We implicitly assume its existence on top of the root node, which is its only child.
This is an important remark, as for some query languages the evaluation starts at the document
node, while for others, it starts at the node that we call the root node.

The XML trees are also unranked trees, meaning that there is no bound on the number
of children a node can have. Sometimes, the sibling ordering of the XML tree can impose
constraints and increase the complexity of many XML data management tasks. Thus, in these
cases it is useful to disregard the sibling ordering and consider the XML trees as unordered.
Also, it is often useful to consider the reflexive and transitive closure of both the child and next
sibling relation. These two relations are denoted by ↓∗ and→∗ and called the descendant and
following sibling relation respectively. Naturally, we can also distinguish the inverses of the
relations defined for the XML tree:

• parent, inverse to the child relation;

• previous sibling, inverse to the next sibling relation;

• ancestor, inverse to the descendant relation;

• preceding sibling, inverse to the following sibling relation.

15



Example 3.1.1. Consider the XML tree T from Figure 3.1b. It has 18 nodes, 10 of which are
element nodes, and the remaining ones are attribute nodes. The root of the tree is the node
labeled by a. Let nc ∈ N be the single node labeled by c, i.e. label(nc) = c. The pair of nodes
(root, nc) is in the child relation ↓. We can see that nc has an attribute named @g. The value
assigned to this attribute is value@g(nc) = "v7". 4

XML documents may be associated with a document that defines their structure, such as a
document type definition (DTD) [47] or an XML Schema (XSD) [50]. Hereafter, we focus on
XML documents that use DTD for defining their structure. Formally, a DTD can be seen as
an extended context free grammar, where the right-hand sides of the productions can contain
regular expressions.

Definition 3.1.2 (DTD). A DTD D over the finite sets El ⊂ E of elements and Att ⊂ A of
attributes is a triple (content, attlist, r) where:

• content : El→ ElR is a function that assigns to each element of El a regular expression
from the set ElR of regular expressions over El. The regular expressions in ElR are
defined as follows:

e ::= ε | l | (e|e) | e, e | e∗ | e+ | e?

where ε is the empty string, l ∈ El is an element name, (e|e) corresponds to a choice of
children, e, e is a sequence of children, e∗, e+ and e? stand for zero or more occurrences,
one or more occurrences and zero or one occurrences of e, respectively;

• attlist : El → 2Att is a function that assigns to every element of El a set of attribute
names;

• r is the element type of the root element node, which does not have a parent node and its
set of attribute names is empty. �

It is usual to write the content of an element like a production rule, rather than using the func-
tion content. For example, letEl = {a, b, c}, Att = ∅, and content(a) = (b∗|c+), content(b) =
ε, content(c) = ε. Then we can write the following production rules:

a→ (b∗|c+), b→ ε, c→ ε

When a DTD is specified, it is possible to check if the XML document indeed follows the
rules described by it, i.e. if it has the desired structure. Given a DTDD and an XML tree T ∈ T ,
we say that T conforms to D if:

• the label of the root of T is r;

• if an element node n ∈ NEl has children n1, . . . , nm, and label(n) = l, then the string
label(n1) . . . label(nm) is in the language defined by the regular expression content(l);

• for every element node n ∈ NEl with label(n) = l, value@a(n) is defined iff @a ∈
attlist(l).
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DTDs can come in many layouts and flavors. Suppose that a DTD D is modeled as a
connected directed graph G = (V,E) where the set of nodes is the set El of element names
and there exists an edge between two nodes n1, n2 if ñ2 appears in content(n1), where ñ2 is
one of the following: n2, n2?, n∗2 or n+2 . Depending on the form of ñ2, the edge between n1 and
n2 is labeled with 1, ?, ∗ or + respectively. The node representing the root r of D does not have
incoming edges, while all other nodes have an incoming degree of at least 1. The DTD D is said
to be recursive if the graph G contains a cycle, and is called non-recursive otherwise. A special
case of DTDs that reduces the complexity of many problems in the XML context and that is
used in practice is the class of nested-relational DTDs. Formally, a nested-relational DTD D is
a non-recursive DTD which contains productions of the form a→ b̃1, . . . , b̃n, where all bi’s are
different and each b̃i has one of the following forms: bi, bi?, b∗i or b+i .

3.2 XML Query Languages

After the definition of the first version of XML, the need for a query language for querying the
data stored in XML documents has arisen. [36] proposed a summary of the functionalities that
a query language for XML should support, from a database point of view. Some of the recom-
mended guidelines include: the query should have an XML representation and produce XML
output, the language should support basic query operations such as selection, extraction, re-
duction, restructuring and combination, an additional support for mutual embedding with XML
should be provided, etc. Over the years there have been many efforts of defining a suitable query
language for XML documents. Early works have tried to adapt query languages for semistruc-
tured data such as Lorel [5] and make them compatible for querying XML documents. Other
works have designed dedicated query languages for XML, including XQL [43], XML-QL [19],
XQuery [51] and XPath [49].

XPath and XQuery

XPath is a query language for extracting data from XML documents. It is a navigational and
declarative language, whose syntax is based on path expressions. It can be used for navigating
an XML document, selecting nodes or computing values from the data stored in the document.
Its expressions are in the core of the XML query language XQuery. Additionally, it is frequently
used by XSLT [52], which is a language for transforming XML documents. Each path expres-
sion contains multiple location steps. Each location step is comprised of:

• an axis, which defines the direction of navigation w.r.t. the current node. It also defines the
relationship between the current node and the selected nodes w.r.t. the XML tree. It can
have one of the following values: ancestor, ancestor-or-self, attribute,
child, descendant, descendant-or-self, following, following-
sibling, namespace, parent, preceding, preceding-sibling, self;

• a node test, which is used for filtering the nodes selected by the axis;

• a sequence of zero or more predicates, which is used to impose further constraints on the
selected nodes;
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and has the following syntax: axis::node-test[predicate].
The XPath syntax also defines shorthand notations for the axes. Furthermore, a library of

built-in functions is available and it should be supported by each implementation of XPath,
which, among others, includes functions for string, numeric, and Boolean value manipulation,
functions on nodes and sequences of nodes, etc.

XQuery is another query language for XML. It has been accepted as a W3C Recommenda-
tion in 2007, and since then it has been used as a standard query language for XML documents.
It is a functional language, and it is not wrong to say that it is to XML what SQL is to rela-
tional databases. It subsumes the XPath language, in the sense that every valid XPath expression
is a valid XQuery query. Additionally, it supports FLWOR (FOR, LET, WHERE, ORDER BY,
RETURN) expressions, which are used to extract, navigate and restructure data from a single
or multiple XML documents. As a result of an XQuery query, one can obtain a set of nodes,
an arbitrary subtree of the XML document being queried, as well as a whole XML document,
created in the RETURN clause. In order to navigate through the XML documents, XQuery uses
path expressions, which are indeed valid XPath expressions.

An XPath Fragment and Tree Patterns

A well studied fragment of XPath is XP{/,//,[],∗}, which contains expressions that allow the child
and descendant relations, branches using predicates and wildcards. Many works on optimization
and rewriting XPath queries consider this fragment [7, 8, 31, 38, 54]. It is also common to
investigate the properties of its subclasses:

• XP{/,//,[]}, containing expressions that support children, descendants and branches;

• XP{/,//,∗}, containing expressions that support children, descendants and wildcards;

• XP{/,[],∗}, containing expressions that support children, branches and wildcards;

Definition 3.2.1 (Syntax of XP{/,//,[],∗}). Given the finite sets El ⊂ E and Att ⊂ A, an XPath
expression q in XP{/,//,[],∗} over El ∪ Att ∪ {∗} is an expression that can be built using the
following grammar:

q ::= l | ∗ | q/q | q//q | q[q]

where l is a label of a node, ∗ is the wildcard symbol, / and // denote child and descendant
navigation respectively, and [] denotes a predicate. �

The semantics of an XP{/,//,[],∗} expression posed over an XML tree T is defined as a set of
nodes from T which are selected by it. XPath expressions, and therefore XP{/,//,[],∗} expressions
are evaluated w.r.t. a context node. When evaluating an XP{/,//,[],∗} expression over an XML
tree T , we take the document node of the XML document as a context node, i.e. we start the
evaluation of the expression from the document node [53].

Definition 3.2.2 (Semantics of XP{/,//,[],∗}). The result of applying an XPath expression q in
XP{/,//,[],∗} to an XML tree T = (N,E,→, ↓, label, valuea, id, root) is a set of nodes in T ,
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denoted by q(T ). The elements of q(T ) are the nodes from T that have been obtained by
applying q to the document node of T .

For a node n ∈ N of the tree T , the result of applying an expression q is defined inductively
as follows:

l(n) = {m | m ∈ N ∧ (n,m) ∈ E ∧ label(m) = l}
∗(n) = {m | m ∈ N ∧ (n,m) ∈ E}

(q1/q2)(n) = {m | m′ ∈ q1(x) ∧m ∈ q2(m′)}
(q1//q2)(n) = {m | n′ ∈ q1(n) ∧ (n′,m′) ∈ E∗ ∧m ∈ q2(m′)}
(q1[q2])(n) = {m | m ∈ q1(n) ∧ q2(m) 6= ∅}

where E∗ is the reflexive and transitive closure of the edge relation. �

Example 3.2.1. Recall the XML tree T from Figure 3.1b. The following XP{/,//,[],∗} expression

a/b[//@d]/e

searches for all nodes labeled with e, that are placed under a node labeled with b, which in turn
are placed under the root a, and moreover the node labeled with b has a descendant which has
an attribute labeled with @d. 4

The expressions in the XPath fragment XP{/,//,[],∗} can be represented by a formalism called
tree patterns. Consider again the finite sets El ⊂ E of elements and Att ⊂ A of attributes.
Arbitrary tree patterns can be defined as follows.

Definition 3.2.3 (Tree pattern). A tree pattern p over El ∪Att ∪ {∗} of arity k, k ≥ 0, is a tree
(Np, Ep, labelp, rootp, op) where:

• Np is the set of nodes;

• Ep is the edge relation. Note that tree patterns might have two types of edges - child and
descendant edges. Thus, Ep = E/ ∪ E// where E/ and E// are the sets of child and
descendant edges respectively;

• labelp : Np → El ∪ Att ∪ {∗} is a labeling function that assigns a label to each node of
the pattern;

• rootp is the root node of the tree pattern;

• op is a k-tuple of output nodes.

The set of all tree patterns is denoted by P{/,//,[],∗}. We also consider the three subclasses
P{/,//,[]}, P{/,//,∗} and P{/,[],∗}, that correspond to patterns without wildcards, predicates and
descendants respectively. �

Given the definition of a tree pattern, we can see that an expression from XP{/,//,[],∗} can
be represented by a tree pattern of arity 1 (that is, a tree pattern with one output node). Tree

19



patterns of arity 0 are called Boolean tree patterns. In [38], it is shown how the translation from
tree patterns to XPath expressions can be done, while maintaining the semantics.

In order to define the semantics of applying a tree pattern p to an XML tree T , we need to
define the notion of embedding.

Definition 3.2.4 (Embedding). Let p = (Np, Ep, labelp, rootp, op) be a tree pattern, p ∈ P{/,//,[],∗}

and T = (N,E, ↓,→, label, value@a, id, root) be an XML tree, T ∈ T . An embedding is a
function e : Np → N that satisfies the following conditions:

• e is root preserving, that is it holds that e(rootp) = root;

• e is label preserving, i.e. for all n ∈ Np it is the case that either labelp(n) = ∗ or
labelp(n) = label(e(n));

• e is child preserving, meaning that for all edges (n1, n2) ∈ E/ it holds that e(n2) is a
child of the node e(n1).

• e is descendant preserving, meaning that for all edges (n1, n2) ∈ E// it holds that e(n2)
is a proper descendant of the node e(n1). �

Note that the embedding function is only concerned with mapping the nodes from the tree
pattern into the nodes of the tree, such that the structure of the pattern is compatible with the
structure of the tree. The values stored in the tree do not have any influence on the way the nodes
from the pattern are mapped to the nodes of the tree.

The result of applying a tree pattern p to a tree T depends on the output nodes op of the tree
pattern. It is defined as the subset of Nk, where k is the arity of op = (o1, . . . , ok), as follows:

p(T ) = {(e(o1), . . . , e(ok)) | e is an embedding from p to T}

When the pattern p is Boolean, the result p(T ) is either {()}, corresponding to true, or ∅, corre-
sponding to false.

Example 3.2.2. Consider the XML tree in Figure 3.1b. A tree pattern posed over this tree is
given in Figure 3.2.
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Figure 3.2: Tree pattern p
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We can see that the left branch of the tree pattern p rooted at b can be mapped to two different
nodes in the XML tree T . Thus, we have two different embeddings from the tree pattern to the
XML tree, and hence two output tuples in the result p(T ). The two embeddings are shown in
Figure 3.3 and Figure 3.4.
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Figure 3.3: Embedding e1

Given the two embeddings, we get the following result of applying p to T :

p(T ) = {(e1(x1), e1(x2), e1(x3)), (e2(x1), e2(x2), e2(x3))}

4

It is also useful to define containment and equivalence between tree patterns, as most of the
works on XPath query rewriting are focused on computing equivalent rewritings.

Definition 3.2.5 (Containment and equivalence). A tree pattern p1 is contained in the tree pattern
p2, denoted by p1 ⊆ p2 if for all trees T ∈ T it holds that p1(T ) ⊆ p2(T ).

Two tree patterns p1 and p2 are equivalent if p1 ⊆ p2 and p2 ⊆ p1, i.e. for all trees T ∈ T it
holds that p1(T ) = p2(T ). �

[38] studies the complexity of tree pattern containment and equivalence. In their study, the
authors consider Boolean tree patterns, since they show that k-ary tree patterns can be translated
into Boolean ones, such that for any k-ary tree patterns p1, p2 and their Boolean translations
p′1, p

′
2 it holds that p1 ⊆ p2 iff p′1 ⊆ p′2. Thus, the containment in the Boolean case boils down

to logical implication, i.e. p′1 ⊆ p′2 if and only if ∀T (p′1(T ) → p′2(T )). It has been shown
that the containment problem for P{/,//,[],∗} (and hence for XP{/,//,[],∗}) is CONP-complete [38],
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Figure 3.4: Embedding e2

while it is in PTIME for the three subclasses [10, 39, 55]. The containment checking for the sub-
classes XP{/,//,[]} and XP{/,[],∗} is based on finding a homomorphism between two patterns. A
homomorphism between two tree patterns p1, p2 is a mapping from the nodes of p1 to the nodes
of p2 that preserves the root, the labels, the child and descendant relation and the output nodes.
In the remaining subclass containment checks are done using a relaxed form of homomorphism,
called adorned homomorphism [38].

Tree Pattern Formulae and CT Qs

The queries discussed so far return trees, either a subtree of the queried XML tree or a newly
defined tree structure. For the purpose of XML data exchange, [12, 9, 18] propose another query
language for XML documents, called conjunctive tree queries, CT Qs. This query language nav-
igates through the trees and returns tuples of values extracted from the attributes using variables.
In XML data exchange, the tuples are extracted from a source document and used to populate a
target document, which conforms to a target DTD. We discuss the works on XML data exchange
in more detail in Section 5.2. The expressions in CT Q are based on tree pattern formulae [9].

Definition 3.2.6 (Syntax of tree pattern formulae). Given the finite sets El ⊂ E of elements and
Att ⊂ A of attributes, a tree pattern formula ϕ is an expression whose syntax is given by the
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following grammar:

ϕ ::= π, α pattern formulae
π ::= l(t)[λ] pure pattern formulae
λ ::= ε | µ | //π | λ, λ sets
µ ::= π | π → µ | π →+ µ sequences

where l ∈ El ∪ {∗}, t is a tuple of terms that correspond to the attributes of the element labeled
by l, and α is a conjunction of equalities and inequalities over terms.

The terms are defined inductively over a set of variables Var and a set of Skolem function
symbols Fun:

1. every variable from Var is a term;

2. if f is an m-ary function symbol from Fun and t1, . . . , tm are terms, then f(t1, . . . , tm)
is also a term. �

The semantics of the tree pattern formulae is defined w.r.t. an XML tree T , a node n ∈ N of
the tree T and an interpretation F for the function symbols.

Definition 3.2.7 (Semantics of tree pattern formulae). Given a pattern ϕ(x), we denote that
ϕ(x) is satisfied in a node n of the tree T , such that its variables x are assigned values from the
tuple a and the function symbols are interpreted w.r.t. F as (T, n, F ) |= ϕ(a). The meaning of
the satisfaction relation is defined as follows:

(T, n, F ) |= l(t) if label(n) = l or l = ∗, and t is interpreted under F as the
tuple of attributes of n

(T, n, F ) |= l(t)[λ1, λ2] if (T, n, F ) |= l(t)[λ1] and (T, n, F ) |= l(t)[λ2];
(T, n, F ) |= l(t)[µ] if (T, n, F ) |= l(t) and there exists a node n′ such that n ↓ n′

and (T, n′, F ) |= µ;
(T, n, F ) |= l(t)[//π] if (T, n, F ) |= l(t) and there exists a node n′ such that n ↓+ n′

and (T, n′, F ) |= π;
(T, n, F ) |= π → µ if (T, n, F ) |= π and there exists a node n′ such that n→ n′

and (T, n′, F ) |= µ;
(T, n, F ) |= π →+ µ if (T, n, F ) |= π and there exists a node n′ such that n→+ n′

and (T, n′, F ) |= µ;
(T, n, F ) |= π, α if (T, n, F ) |= π and α holds under F. �

When the evaluation of the tree pattern formula starts from the root of the tree, we write
(T, F ) |= ϕ(a), and moreover, if there are no function symbols, we write T |= ϕ(a).

Note that in the tree pattern formulae, the square brackets denote vertical navigation. Unlike
in XPath, where the square brackets denote predicates which are expressions for filtering the re-
sults of the navigation, in the tree pattern formulae they are used for accessing multiple children
of a node at once. For filtering the results, the α part of the tree pattern formula is used.
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Example 3.2.3. Consider again the XML tree T from Figure 3.1b and the tree pattern formula

ϕ(xd, xj , xi, xg) = a[b(xd)[e[h(xj)], f(xi)], c(xg)]

The following two tuples satisfy this tree pattern formula, if the evaluation starts from the root
and there is no presence of function symbols:

("v1", "v2", "v3", "v7"), i.e. T |= ϕ("v1", "v2", "v3", "v7")
("v4", "v5", "v6", "v7"), i.e. T |= ϕ("v4", "v5", "v6", "v7")

4

On top of these tree pattern formulae, CT Q expressions additionally allow existential quan-
tification. Conjunction is supported implicitly, as the tree pattern formulae are closed under
conjunction. In fact, the conjunction of two tree pattern formulae is defined as follows. Con-
sider two tree pattern formulae l1(x)[λ1], α1 and l2(y)[λ2], α2. The conjunction (l1(x)[λ1], α1∧
l2(y)[λ2], α2) is defined as the following tree pattern formula:

l1(y)[λ1, λ2], α1 ∧ α2 ∧ x1 = y1 ∧ · · · ∧ xn = yn

only if l1 = l2 or either l1 or l2 is the wildcard symbol, and x and y have the same arity. If these
conditions are not met, the result of the conjunction is false, represented by a special element
type symbol ⊥, ⊥ 6∈ E .

Definition 3.2.8 (Syntax of CT Qs). A query in CT Q is an expression that has the following
syntax:

∃y ϕ(x, y)

where ϕ(x, y) is a tree pattern formula such that it does not contain any function symbols and its
free variables x fulfill the safety condition. The safety condition states that for a variable xi ∈ x,
either xi is used in the π part of ϕ, or there exists a chain xi = t1, t1 = t2, . . . , tk−1 = tk of
equality atoms in α such that t1, . . . , tk−1 are terms and tk is a variable used in π.

Unions of CT Qs are referred to as UCT Qs. �

Definition 3.2.9 (Semantics of CT Qs). Given a CT Q ∃y ϕ(x, y), we say that the CT Q is sat-
isfied in a tree T given a tuple of atomic values a iff its free variables x are interpreted as a and
there exists a tuple of atomic values b that corresponds to an interpretation of the existentially
quantified variables such that T |= ϕ(a, b). �

The result of applying a CT Q ∃y ϕ(x, y) to a tree T is a set of tuples of atomic values that
correspond to the values given to the free variables, such that the CT Q is satisfied in T , and is
denoted by:

ϕ(T ) = {a | ∃ b of the same arity as y such that T |= ϕ(a, b)}
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Example 3.2.4. Consider again the XML tree T from Figure 3.1b. If we pose the following
CT Q to it

∃yd ϕ(xi, xg, yd) = ∃yd a[b(yd)[f(xi)], c(xg)]

we will get the following answers in the result ϕ(T ):

ϕ(T ) = {("v3", "v7"), ("v6", "v7")}

since we have that there exist two values "v1" and "v7" for the variable yd corresponding to the
two valuations of the free variables such that

T |= ϕ("v3", "v7", "v1") and
T |= ϕ("v6", "v7", "v4")

4

Different classes of tree pattern formulae can be defined using the symbols
⇓,⇒,Fun,∼, where ⇓ stands for vertical navigation and wildcard (↓, ↓+, ∗), ⇒ for horizon-
tal navigation (→,→+), Fun for Skolem function symbols and ∼ for equalities and inequalities
(=, 6=). The different classes of tree pattern formulae are used for defining different classes of
schema mapping assertions. When defining different classes of (U)CT Qs, the symbols ⇓,⇒,=
are used. The use of inequalities is forbidden in the queries, since it makes the computation of
certain answers undecidable.

Prefix-selection Queries

Another simple query language for XML trees introduced in [6], and used in [41] is the language
of prefix-selection queries, or ps-queries for short. This query language is simple in the sense
that it allows selecting of prefixes of input trees based on selection conditions given for every
node. Specification of existential patterns in the trees is also allowed. A prefix of an XML tree
T is an XML tree T ′ such that there exists a homomorphism h from the nodes of T ′ to the nodes
of T that is root, child relation and label preserving, and for every node n′ from T ′ that stores
a value, its homomorphic image h(n′) stores the same value. We write that T ′ ≤ T , if T ′ is a
prefix of T . Two XML trees T and T ′ are isomorphic if both T ′ ≤ T and T ≤ T ′ hold, and we
write T ' T ′. The formal definition of ps-queries is given below.

Definition 3.2.10 (Ps-query). A ps-query over the sets El ⊂ E and Att ⊂ A is a quadruple
〈t, λ, cond, sel〉, where

• t is a rooted tree;

• λ is a labeling function, assigning to each node from the tree a label from El ∪ Att such
that sibling nodes have distinct labels;

• cond is a partial function that assigns to each node n from t a condition c, which is a
Boolean formula that has the following form: p0b0p1b1 . . . pm−1bmpm, where bi, 0 ≤ i ≤
m are logical connectives and pi, 0 ≤ i ≤ m are predicates that are applied to nodes that
store values. The predicates pi are of the form op v, where op ∈ {=, 6=,≤,≥, <,>}, and
v is a value;
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• sel is a total function that assigns a Boolean value to each node n from t. If sel(n) =
true, then the node n is selected by the query. On the other hand, if sel(n) = false, the
node is not selected by the query, and moreover, none of its descendants can be selected
by the query. �

The answer of a ps-query q = 〈t, λ, cond, del〉 over an XML tree T is a minimal tree that
is isomorphic to the positive subset of T , which is a subset of nodes from T selected by q. In
order to specify the positive subset, an auxiliary function called valuation is used. A valuation
γ from the query q to the tree T is a homomorphism from the nodes of q to the nodes of T such
that the root, the child relation and the labels are preserved. Moreover, for each node nq from
the query, if cond(nq) is defined, then γ(nq) stores a value, and this value satisfies the condition
specified for the node nq. A node n is in the positive subset of the XML tree T if there exists a
valuation γ such that sel(γ−1(n)) = true. Example 3.2.5 shows the graphical representation
of a ps-query and its answer over an XML tree.

Example 3.2.5. We take this example from [41]. Consider the XML tree T in Figure 3.5.
Figure 3.6a shows a ps-query q over this tree, and Figure 3.6b depicts the answer q(T ) of the
query q over the tree T .
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name
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Figure 3.5: XML tree T

Note that in the graphical notation of the ps-queries, we use arrows to represent the edges
between the nodes in the ps-query. We do this in order to distinguish the ps-queries from the
(extended) tree patterns. The attribute node @value of SSN has a specified condition on its
value, hence the query q selects only patients whose SSN is smaller than 100000. 4

3.3 XML Constraints

Constraints in XML documents can be specified as both type constraints and integrity con-
straints. The former are implied by the DTD that is defined along the XML document. These
type constraints are used for ensuring that the values stored in the respective nodes are from
the right data type. On the other hand, the integrity constraints, as in relational databases, are
used to identify certain elements in the document. Another type of constraints imposed by the
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Figure 3.6: A ps-query and its answer over the tree T from Figure 3.5

DTD attached to the XML document is the specification of the subelement order of a given el-
ement. These constraints define in which order the sibling elements at some level in the XML
tree should appear. They are implied by the regular expressions found on the right-hand side of
the production rules in a DTD.

There have been many attempts to formalize and define a framework for describing integrity
constraints for XML in order to provide the same services as the integrity constraints for rela-
tional databases, but in an XML setting. The most common kind of integrity constraints used
in relational databases are primary key and foreign key constraints, which are a special case of
functional and inclusion dependencies respectively. Some of the works that focus on XML con-
straints are [15, 25, 26, 27]. A natural way to define primary keys would be to use the built-in
specification of ID attributes in a DTD or an XML Schema. However, this has its drawbacks,
since the ID attributes need to have a unique value throughout the whole document, rather than
only in some specific part of the document. Hence, new formalisms are needed for capturing
the intended meaning of the XML constraints. In [25], different kinds of key constraints have
been examined, and problems such as consistency and implication have been analyzed. The con-
straints that are taken into account are the keys and foreign keys as introduced in [15], constraints
in XML Schema [50], functional dependencies defined in [11] and XML integrity constraints
(XICs), introduced in [21].

The work in [15] proposes a formalism for expressing key constraints in XML, by intro-
ducing a language for specifying key constraints that is based on path expressions, which can
be expressed by using regular expressions or XPath. A key specification is defined as a path
expression Q followed by a set of path expressions {P1, . . . , Pn}. A node n in an XML tree T
satisfies the key iff for any two nodes n1, n2 reachable from n through Q, if the values of the
nodes reached from both n1 and n2 through {P1, . . . , Pn} are equal, then n1 and n2 are the same
node. Sometimes, it is useful to define a key constraint w.r.t. a given node, rather than the root
of the tree. In this case, relative keys are used. They have an additional path expression in the
key specification that specifies the context nodes where the key constraint should be evaluated.
A foreign key constraint is defined as P1[L1] ⊆ P2[L2] where P1, P2 are path expressions and
L1, L2 are lists of path expressions. A node n in an XML tree T satisfies a foreign key iff for all
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nodes n1 reached from n through P1 there exists a node n2 reached from n through P2 such that
the list of values reached from n1 through L1 are equal to the values reached from n2 through
L2. In a similar way as for the keys, relative foreign key constraints can be defined.

In [11], functional dependencies for XML have been proposed. They are of the form S1 →
S2, where S1 and S2 are sets of path expressions. The semantics of these constraints is defined
in terms of a mapping t that maps path expressions into tuples of values from the tree. Hence,
an XML tree T satisfies a functional dependency S1 → S2 iff for any two mappings t1, t2, if
∀p1 ∈ S1 t1(p1) = t2(p1) and t1(p1) is well defined, then ∀p2 ∈ S2 t1(p2) = t2(p2). In
contrast to [15], relative functional dependencies of this form cannot be defined. However, these
functional dependencies are a generalization of the key constraints in [15].

In [21], the authors formalize relational embedded constraints for XML and call them XML
integrity constraints, XICs. For specifying the XICs, the authors use a fragment of XPath that al-
lows the use of variables, called Simple XPath. The XICs are of the form ∀x1, . . . , xn(B(x1, . . . , xn)→∨l
i=1 ∃yi,1, . . . , yi,ki Ci(x1, . . . , xn, yi,1, . . . , yi,ki)), whereB,Ci are conjunctions of atoms that

can be of the form: (1) v p w, where p is a Simple XPath expression and v, w are variables or
constants; (2) equality atoms on variables or constants, of the form v = w. An XIC is satis-
fied if for any binding of the variables x1, . . . , xn that satisfies all the atoms in B, there exists
i, 1 ≤ i ≤ l and an extension of the binding to the variables yi,1, . . . , yi,ki that satisfies all the
atoms in Ci. The binding of v to a node a and of w to a node b satisfies the atom v p w if b is in
the set of nodes returned by p starting from a as a context node. The equality atoms are satisfied
in a standard way. This type of constraints is more general than the ones we have seen before,
i.e. it subsumes both the key and foreign key constraints from [15], as well as the functional
dependencies from [11].

Integrity constraints in XML have many applications, as pointed out in [25]. As we will see
in the following sections, some approaches for XML data integration, XML data exchange and
answering XML queries using XML views take integrity constraints into account. Other areas
where such constraints are typically used include querying XML using an RDBMS, updating
XML documents and removing inconsistencies.

28



CHAPTER 4
XML Mapping Assertions

In Chapter 2, we have seen that relational schema mappings play a crucial role in defining
several relational data management problems. This also applies when the respective problems
are tackled in an XML setting. Thus, in this section, our aim is to define schema mapping
assertions for XML, which will provide a uniform framework for describing different approaches
in solving XML data management tasks that we have encountered in the literature. We define
the XML mapping assertions, based on a newly defined query language, called extended tree
patterns. We take inspiration from the different XML query language formalisms discussed so
far, and define a common query language which will be used throughout this thesis and that
subsumes several query languages w.r.t. the expressive power. We also provide algorithms for
translating expressions in these query languages into extended tree patterns. These translations
will then allow us to translate mapping assertions from different works into mapping assertions
that use extended tree patterns.

4.1 Extended Tree Patterns

The language of extended tree patterns is an extension of the k-ary tree patterns described before.
Rather than only allowing a query to return a subtree of the queried tree or a tuple of values stored
in its attribute nodes, we aim at bringing the two types of results together. Hence, when using
extended tree patterns, we return a tuple of either subtrees, or values, or both. We achieve this
by annotating each variable, such that in the evaluation of the extended tree pattern, it is bound
to the desired content depending on its annotation.

Definition 4.1.1 (Extended tree pattern). An extended tree pattern p overEl∪Att∪{∗} of arity
k, k ≥ 0 is a tree (Np, Ep, labelp, rootp, xp, yp, varp) where

• Np, Ep, labelp and rootp are defined as for tree patterns;

• xp is the tuple of output variables of arity k;
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• yp is the tuple of existentially quantified variables;

• varp : Np → xp ∪ yp is a partial surjective function that attaches variables from xp ∪ yp
to nodes from Np.

Additionally, each variable is annotated by an annotation a ∈ {val, sub}, denoted by za,
such that the following conditions are met:

attachment: if a = sub, then za is attached to exactly one node n ∈ Np, i.e. varp(n) = za.
Otherwise, if a = val, then za can be attached to multiple nodes, i.e. to a subset of nodes
{n1, . . . , nm} ⊆ Np, such that ∀ni varp(ni) = za, 1 ≤ i ≤ m;

binding: if a = sub, then za is bound to the subtree rooted at the selected element node.
Otherwise, if a = val, then za is bound to the string value stored at the selected attribute
node;

existential quantification: if za ∈ yp, then it can only be annotated by val;

We denote the set of extended tree patterns by EP{/,//,[],∗}.
The extended tree patterns use the following syntax:

p ::= l[b] extended tree pattern
l ::= el | ∗ | zsub : el element node labels
b ::= ε | l | zval : @att | b, b | p | //p branches

where el ∈ El is an element node label, zval : @att denotes a variable annotated by val
attached to an attribute node labeled by @att, zsub : el is a variable annotated by sub attached
to an element node labeled by el, ∗ is the wildcard label, //p denotes descendant navigation and
l[b] denotes branching. �

Note that when the branch does not contain an occurrence of a variable, it is considered as
a predicate. Otherwise, it is used to navigate through the tree and extract the variable value of
interest. Furthermore, by allowing a single variable annotated by val to be attached to multiple
different nodes in the tree, we implicitly allow specification of equalities between values. In the
syntax of the extended tree patterns, we omit the use of existential quantifiers, since we always
assume that the tuple of variables xp corresponds to the free variables and the tuple yp to the
existentially quantified variables. We may sometimes slightly abuse the notation, and refer to an
extended tree pattern as ∃yp p(xp, yp). We will do this in cases where it is important to spell out
the names of the variables that are free and those that are existentially quantified.

We also extend the notion of embedding, in order to be able to define the semantics of the
extended tree patterns. Given an extended tree pattern p = (Np, Ep, labelp, rootp, xp, yp, varp),
and an XML tree T = (N,E, ↓,→, label, value@a, id, root), an extended embedding is a func-
tion e : Np → N that satisfies the root, label, child and descendant preservation conditions from
Definition 3.2.4. Additionally, e is value equality preserving, in such a way that it must not allow
nodes fromNp that have the same variable zval attached to be mapped to attribute nodes fromN
that store different values. More formally, for a variable zval, let {n1, . . . , nm} ⊆ Np denote the
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set of nodes such that varp(ni) = zval, 1 ≤ i ≤ m. Then for each ni, with labelp(ni) = @ai,
there exists a node n′i in the tree T such that (n′i, e(ni)) ∈ E. Moreover, it holds that

value@a1(n′1) = · · · = value@am(n′m).

Using the extended embedding, we define the result of applying an extended tree pattern p
to an XML tree T . As for tree patterns from P{/,//,[],∗}, the result is a set of tuples of arity k,
which coincides with the arity of the output tuple xp of p.

Definition 4.1.2 (Semantics of extended tree patterns). The result of applying an extended tree
pattern p to an XML tree T is defined as follows:

p(T ) = {(b(e(n1), a1), . . . , b(e(nk), ak)) | e is an extended embedding from p to T,
b is a binding function and
ni ∈ Np, 1 ≤ i ≤ k, s.t. varp(ni) = xaii }

For an output variable xaii from the output tuple of the extended tree pattern p, the binding
function takes as parameters the result of the embedding e(ni) and the annotation ai, where
varp(ni) = xaii , labelp(ni) = li. As a result, it returns the following:

b(e(ni), ai) =

{
e(ni) if ai = sub and li ∈ El;
valueli(n

′
i) if ai = val, li ∈ Att and (n′i, e(ni)) ∈ E.

�

Example 4.1.1. Consider the XML tree T from Figure 3.1b. If we pose the extended tree pattern

p = a [ b [xval1 : @d, xsub2 : e ], xsub3 : c ]

over it, we obtain two tuples in the result p(T ), w.r.t. the two extended embeddings e1 and e2
depicted in Figure 4.1 with red and blue arrows respectively. The variables x1, x2 and x3 are
displayed in bold under the node they are attached to. The binding function binds xval1 to the
value of the attribute @d of the element node labeled with b, xsub2 and xsub3 to the subtrees rooted
at the element nodes labeled with e and c respectively. Hence, the result p(T ) is defined as
follows:

p(T ) = {("v1", e

h

@j
"v2"

, c

@g
"v7"

), ("v4", e

h

@j
"v5"

, c

@g
"v7"

)}

4

Example 4.1.2. This example describes how the extended embedding preserves values. Con-
sider the simple XML tree in Figure 4.2 (on the right) and the extended tree pattern

p = a [ b [xval : @d ], c [xval : @g ]]
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Figure 4.1: Extended embeddings e1 (red dashed arrows) and e2 (blue dotted arrows)

also shown in Figure 4.2 (on the left). Two embeddings e1, e2 are depicted with red dashed and
blue dotted arrows respectively. Yet, only one of them, namely e1, is an extended embedding.

Let n1, n2 denote the nodes of the extended tree pattern that have the variable xval attached to
them, i..e the attribute nodes labeled with @d and @f respectively. Thus we have the following:

labelp(n1) = @d, varp(n1) = xval, e1(n1) = n′1, e2(n1) = m′1
labelp(n2) = @f, varp(n2) = xval, e1(n2) = e2(n1) = n′2

We can see that e1 is an extended embedding, while e2 is not, since

value@d(n
′′
1) = value@f (n′′2) = "v1", where (n′′1, n

′
1) ∈ E, (n′′2, n′2) ∈ E, but

value@d(m
′′
1) = "v2" 6= "v1" = value@f (n′′2), where (m′′1,m

′
1) ∈ E, (n′′2, n′2) ∈ E

4

4.2 Expressive Power and Translations Into EP{/,//,[],∗}

Using the extended tree patterns, we can easily express tree patterns from P{/,//,[],∗} and
XP{/,//,[],∗}, as well as queries in CT Q(⇓,=). Namely, patterns from P{/,//,[],∗} are extended
tree patterns from EP{/,//,[],∗}, where each output variable xi ∈ x is annotated by sub. XPath
expressions from XP{/,//,[],∗} are a sublanguage of EP{/,//,[],∗}, where only one output vari-
able exists, and it is bound to the subtree rooted at the corresponding node. Finally, queries
from CT Q(⇓,=) are extended tree patterns from EP{/,//,[],∗}, where the output variables xi and
the free variables yj are bound to attribute nodes and annotated by val. The remaining XML
query languages mentioned in Section 3.2, such as ps-queries, full XPath and XQuery are not
expressible using the extended tree patterns.
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a

b c

@d n1
xval

@f
n2

xval

a

b
n′′1

b
m′′1

c
n′′2

@d
n′1"v1"

@d
m′1"v2"

@f
n′2"v1"

Figure 4.2: An extended tree pattern and an XML tree, with two embeddings e1 (red dashed
arrows), e2 (blue dotted arrows). Out of them, only e1 is an extended embedding

When translating an expression defined in P{/,//,[],∗}, XP{/,//,[],∗} or CT Q(⇓,=) into an ex-
tended tree pattern, our aim is to find an extended tree pattern that will return the same answers as
the original expressions. We provide two algorithms for translating tree patterns from P{/,//,[],∗}

and queries from CT Q(⇓,=) into extended tree patterns from EP{/,//,[],∗}. The translation of
XPath expressions from XP{/,//,[],∗} into extended tree patterns from EP{/,//,[],∗} can be done
by first translating the XP{/,//,[],∗} expression into a tree pattern from P{/,//,[],∗} (by using the
translation proposed by [38]), and then applying our translation algorithm to the newly obtained
tree pattern. Note that, as mentioned before, expressions in XP{/,//,[],∗} are evaluated starting
from the document node of the tree. On the other hand, tree patterns, extended tree patterns and
queries from CT Q(⇓,=) are evaluated starting from the root node, i.e. the document node is
ignored when computing an embedding, an extended embedding and evaluating the query from
CT Q(⇓,=) respectively.

First, we define the notions of translation of a tree pattern in P{/,//,[],∗}, an XPath expression
in XP{/,//,[],∗} and a query from CT Q(⇓,=) into an extended tree pattern.

Definition 4.2.1 (Translation of P{/,//,[],∗} into EP{/,//,[],∗}). Let q be a tree pattern in P{/,//,[],∗}

and p an extended tree pattern in EP{/,//,[],∗} whose output tuple has the same arity as the output
tuple of q. We call p a translation of q if for all trees T ∈ T it holds that q(T ) = p(T ). �

Definition 4.2.2 (Translation of XP{/,//,[],∗} into EP{/,//,[],∗}). Let q be an expression in
XP{/,//,[],∗} and p an extended tree pattern in EP{/,//,[],∗} whose output tuple has arity 1. We
call p a translation of q if for all trees T ∈ T it holds that q(T ) = p(T ). �

Definition 4.2.3 (Translation of CT Q(⇓,=) into EP{/,//,[],∗}). Let ∃y ϕ(x, y) be a query in
CT Q(⇓,=) and p an extended tree pattern in EP{/,//,[],∗}. We call p a translation of ∃y ϕ(x, y)
if for all trees T ∈ T it holds that ϕ(T ) = p(T ). �
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Note that by definition, queries in CT Q(⇓,=) do not contain function symbols. Since we
do not allow inequalities in the queries1, we assume that equalities between attribute values are
expressed by reusing variables [9]. Hence, we assume that expressions in CT Q(⇓,=) have the
form ∃y π(x, y), where π(x, y) does not use horizontal navigation and function symbols, and
contains multiple occurrences of variables. With the algorithm that we provide for translation of
queries in CT Q(⇓,=), we are also able to translate tree pattern formulae that do not use inequal-
ities, horizontal navigation and function symbols of arbitrary arity. The only function symbols
that we are able to support are those function symbols f that have the same arity as the output
tuple x and moreover have the output tuple x as an argument, i.e. are used to construct terms of
the form f(x). These tree pattern formulae can be translated into queries from CT Q(⇓,=) by
replacing each term of the form f(x) with a fresh existentially quantified variable y. Further-
more, tree pattern formulae without horizontal navigation, inequalities and function symbols are
expressions in CT Q that do not have existentially quantified variables.

We now proceed with the definition of the translation algorithms and proving that the ex-
tended tree pattern obtained by the respective algorithms is indeed a translation of the respective
input expressions.

Algorithm 1 Translation of a tree pattern into an extended tree pattern
1: function PTOEP(q)

Input a tree pattern q = (Nq, Eq, labelq, rootq, xq) from P{/,//,[],∗}

Output an extended tree pattern p = (Np, Ep, labelp, rootp, xp, yp, varp) from
EP{/,//,[],∗}

2: let q be a tree pattern (Nq, Eq, labelq, rootq, xq)
3: define Np ← Nq

4: define Ep ← Eq
5: define labelp : Np → El ∪Att ∪ {∗} such that ∀n ∈ Np, labelp(n) = labelq(n)
6: define rootp ← rootq
7: for all n in Nq do
8: if n = xi, for some 1 ≤ i ≤ k then /∗ if n is a node xi ∈ xq ∗/
9: add the variable xsubi to xp

10: define varp(n) = xsubi

11: end if
12: end for
13: define yp ← ∅ /∗ yp is empty ∗/
14: return p = (Np, Ep, labelp, rootp, xp, yp, varp)
15: end function

Proposition 4.2.1. Suppose that q is a tree pattern from P{/,//,[],∗} and p an extended tree
pattern from EP{/,//,[],∗} obtained by applying Algorithm 1 to q. Then, the extended tree pattern
p is a translation of the tree pattern q.

1As mentioned in Section 3.2, using inequalities in the queries makes the computation of answers undecidable.
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Proof. Let q = (Nq, Eq, labelq, rootq, xq) be a tree pattern from P{/,//,[],∗}. Suppose that p =

(Np, Ep, labelp, rootp, xp, yp, varp) is an extended tree pattern from EP{/,//,[],∗} obtained by
applying Algorithm 1 to q. We need to show that for all trees T ∈ T , q(T ) = p(T ).

Let T be an arbitrary tree from T . Since both q(T ) and p(T ) are defined as sets of tuples, we
need to show set equality between them. We show this by proving the two inclusion statements:
q(T ) ⊆ p(T ) and q(T ) ⊇ p(T ).

⊆ The result of applying the tree pattern q to the tree T is defined as the set of tuples

q(T ) = {(e(x1), . . . , e(xk)) | e is an embedding from q to T}

where x1, . . . xk are the output nodes xq of q.

We take an arbitrary tuple in the result q(T ), namely (e(x1), . . . , e(xk)), where e is an
arbitrary embedding from q to T . By the definition of an embedding, we have that e is a
mapping fromNq toN that preserves the root, the child and descendant relations between
the nodes and the labels of the nodes. The set of nodes, the root node, the set of edges and
the labeling function are equal for q and p. Thus we can define a function e′ : Np → N
such that for all nodes n′ ∈ Np we have e′(n′) = e(n′). The function e′ is an extended
embedding, since it is root, child, descendant and label preserving. Moreover, it satisfies
the value equality preservation condition trivially, since, according to the algorithm, in p
there are no variables annotated by val.

Let n1, . . . , nk be the nodes in the tree T such that e(xi) = ni, 1 ≤ i ≤ k. Let n′1, . . . , n
′
k

be the nodes of the extended pattern that have the variables xsub1 , . . . , xsubk attached, i.e.
where varp(n′i) = xsubi , 1 ≤ i ≤ k. Then, it holds that e′(n′i) = e(xi), 1 ≤ i ≤ k. Hence,
by the definition of the binding function we have that

(e(x1), . . . , e(xk)) = (n1, . . . , nk)
= (e′(n′1), . . . , e

′(n′k))
= (b(e′(n′1), sub), . . . , b(e

′(n′k), sub))

This yields that (e(x1), . . . , e(xk)) ∈ p(T ).

⊇ The result of applying p to T is defined as

p(T ) = {(b(e′(n′1), sub), . . . , b(e′(n′k), sub)) | e′ is an extended embedding
from p to T and b
is a binding function }

where n′1, . . . , n
′
k are the nodes that have the variables xsub1 , . . . , xsubk attached to them

respectively, i.e. varp(n′i) = xsubi , 1 ≤ i ≤ k.

We choose a tuple (b(e′(n′1), a1), . . . , b(e
′(n′k), ak)) from the result of applying p to T

where b is the binding function and e′ is an arbitrary extended embedding from p to T .
Since p is obtained by the translation algorithm, all the output variables are annotated by
sub. According to the algorithm, p and q have the same sets of nodes, roots, sets of edges
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and labeling functions. We define a function e : Nq → N such that for all nodes n ∈ Nq

we have e(n) = e′(n). The function e is an embedding from q to T , since e′ is root, child,
descendant and label preserving.

Let n1, . . . , nk be the nodes in the tree T such that b(e′(n′i), sub) = ni, 1 ≤ i ≤ k. Let
x1, . . . , xk be the output nodes of q. Then, it holds that e(xi) = e′(n′i), 1 ≤ i ≤ k.
Therefore, by expanding the definition of the binding function, we get the following:

(b(e′(n′1), sub), . . . , b(e
′(n′k), sub)) = (e′(n′1), . . . , e

′(n′k))
= (n1, . . . , nk)
= (e(x1), . . . , e(xk))

Thus, (b(e′(n′1), sub), . . . , b(e
′(n′k), sub)) ∈ q(T ).

Since the tree T was arbitrarily chosen, we conclude that q(T ) = p(T ) for all trees T ∈ T .
Hence, p is a translation of q.

Algorithm 2 Translation of an XPath expression from XP{/,//,[],∗} into an extended tree pattern
1: function XPTOEP(q)

Input an XPath expression q from XP{/,//,[],∗}

Output an extended tree pattern p = (Np, Ep, labelp, rootp, xp, yp, varp) from
EP{/,//,[],∗}

2: p′ ← XPTOP(q) /∗ translate q into a tree pattern p′ [38] ∗/
3: p← PTOEP(p′) /∗ translate p′ into an extended tree pattern p ∗/
4: return p
5: end function

Proposition 4.2.2. Let q be an XPath expression from XP{/,//,[],∗} and p an extended tree pattern
from EP{/,//,[],∗} obtained by applying Algorithm 2 to q. Then, p is a translation of q.

Proof. The fact that p is a translation of q follows from the fact that one can compute an in-
termediate tree pattern p′ from P{/,//,[],∗} that is a translation of q from XP{/,//,[],∗}, and then
translate this tree pattern into an extended tree patten using Algorithm 1. The intermediate tree
pattern p′ is obtained by a translation algorithm presented in [38], which translates expressions
from XP{/,//,[],∗} into 1-ary tree patterns from P{/,//,[],∗}.

Proposition 4.2.3. Let ∃y ϕ(x, y) be a query in CT Q(⇓,=) and p an extended tree pattern
from EP{/,//,[],∗} obtained by applying Algorithm 3 to ∃y ϕ(x, y). Then, p is a translation of
∃y ϕ(x, y).

Proof. Let ∃y ϕ(x, y) be a query in CT Q(⇓,=). Suppose that p is an extended tree pattern
obtained by applying Algorithm 3 to ∃y ϕ(x, y). We need to show that for all trees T ∈ T it
holds that ϕ(T ) = p(T ).
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Algorithm 3 Translation of a query in CT Q(⇓,=) into an extended tree pattern
1: function CTQTOEP(∃y ϕ(x, y))

Input a query ∃y ϕ(x, y) in CT Q(⇓,=)
Output an extended tree pattern p = (Np, Ep, labelp, rootp, xp, yp, varp) from
EP{/,//,[],∗}

2: let ∃y ϕ(x, y) be of the form ∃y π(x, y)
3: let π(x, y) be of the form l(x1, . . . , xm, ym+1, . . . , ym′)[λ]
4: if λ = ε then
5: p← l [xval1 : @att1, . . . , x

val
m : @attm, y

val
m+1 : @attm+1, . . . , y

val
m′ : @attm′ ]

6: else if λ = π then
7: p1 ←CTQTOEP(π)
8: p← l [xval1 : @att1, . . . , x

val
m : @attm, y

val
m+1 : @attm+1, . . . , y

val
m′ : @attm′ , p1 ]

9: else if λ = //π then
10: p1 ←CTQTOEP(π)
11: p← l [xval1 : @att1, . . . , x

val
m : @attm, y

val
m+1 : @attm+1, . . . , y

val
m′ : @attm′ , //p1 ]

12: else if λ = λ1, . . . , λm′′ then
13: for i = 1 to m′′ do
14: pi ←CTQTOEP(λi)
15: end for
16: p ← l [xval1 : @att1, . . . , x

val
m : @attm, y

val
m+1 : @attm+1, . . . , y

val
m′ : @attm′ ,

p1, . . . , pm′′ ]
17: end if
18: return p
19: end function

In order to prove this, we need to introduce the notion of homomorphism between a tree
pattern formula and an XML tree. The definition of a homomorphism between an arbitrary tree
pattern formula and a tree T has originally been defined in [9]. Here we present a definition of
a homomorphism between a tree pattern formula π(x, y) and a tree T , where the tree pattern
formula does not use horizontal navigation, inequalities, and does not contain occurrences of
function symbols. Also, for π(x, y), we assume that equalities are expressed by repetition of
variables. Let π(x, y) be such a tree pattern formula and a, b tuples of atomic values of the same
arity as x, y respectively. A homomorphism h : Sπ(a,b) → N from the set Sπ(a,b) of subformulae
of π(a, b) to the set of nodes N of the tree T is a function that assigns a node from the tree T to
each subformula of π(a, b) such that:

1. h(//π1) is an ancestor of h(π1);

2. if h(l(t)[µ1, . . . , µm]) = n then

a) either l = ∗ or label(n) = l;

b) t is the tuple of attributes of n;

c) if µi is of the form πi then h(πi) is a child of n.
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Moreover, it holds that T |= π(a, b) iff there exists a homomorphism h : Sπ(a,b) → N .
Let T be an arbitrary tree from T . We show the equality between the sets of tuples ϕ(T )

and p(T ) by showing the two set inclusions ϕ(T ) ⊆ p(T ) and ϕ(T ) ⊇ p(T ) separately.

⊆ Let a be an arbitrary tuple in the result ϕ(T ) of applying the CT Q(⇓,=) ∃y ϕ(x, y) to
T . This means that there exists a tuple b that corresponds to a valuation of the variables
y such that T |= ϕ(a, b). Recall that the CT Qs that we consider are from the fragment
CT Q(⇓,=), meaning that they are of the form ∃y π(x, y). Hence, we have that
T |= π(a, b). This implies that there exists a homomorphism h : Sπ(a,b) → N that
assigns nodes from T to subformulae of π(a, b). It remains to be shown that a is also
in the result of applying the extended tree pattern p to the tree T . We will prove this by
showing the existence of an extended embedding e from the nodes of p to the nodes of T
such that:

a = (b(e(n1), a1), . . . , b(e(nk), ak)), where varp(ni) = xvali and ai = val, 1 ≤ i ≤ k.

Recall that p is obtained from the CT Q(⇓,=) ∃y ϕ(x, y), which is of the form ∃y π(x, y),
where π(x, y) is a tree pattern formula that does not use horizontal navigation, inequalities
and function symbols, and is of the form

π(x, y) = l(x1, . . . , xm, y1, . . . , ym′)[λ1, . . . , λm′′ ]

and hence π(a, b) is of the form l(a1, . . . , am, b1, . . . , bm′)[λ1, . . . , λm′′ ]. Then, according
to the algorithm, p has the form

l[xval1 : @att1, . . . x
val
m : @attm, y

val
1 : @att1, . . . , y

val
m′ : @attm′ , p1, . . . , pm′′ ]

where @atti, 1 ≤ i ≤ m and @attj , 1 ≤ j ≤ m′ are the labels of the attributes of the
node labeled by l, and p1, . . . , pm′′ are the translations of λ1, . . . , λm′′ respectively, as
defined in lines 12-16 of Algorithm 3.

We have already stated that there exists a homomorphism h : Sπ(a,b) → N . Let n be a
node2 in the tree T such that h(π(a, b)) = n, and let n′ be the root of p, labeled by l, i.e.
labelp(n

′) = l. We define a function e : Np → N as follows:

1. e(n′) = n;

2. Let n1, . . . , nm+m′ and n′1, . . . , n
′
m+m′ be the attribute nodes of n and n′ respec-

tively. Then e(n′i) = ni, 1 ≤ i ≤ m+m′;

3. repeat steps 1 and 2 for each extended pattern pj , obtained as a translation of
λj , 1 ≤ j ≤ m′′.

The function e is child, descendant, root and label preserving, which follows from the
definition of the homomorphism h. Moreover, e satisfies the value equality preservation

2This is in fact the root node of the tree T , since π(a, b) is witnessed at the root.
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condition, because the homomorphism h satisfies the equalities between values, which are
enforced by repetition of variables. Hence, e is an extended embedding from p to T .

For each variable xi ∈ x, 1 ≤ i ≤ k from the query ∃y ϕ(x, y), the corresponding variable
in p according to the algorithm is xvali , 1 ≤ i ≤ k. Let ai be the value that xi has in π(a, b)
and let n′i ∈ Np be the node such that varp(n′i) = xvali . Then, we have that

b(e(n′i), val) = ai, 1 ≤ i ≤ k, and hence a ∈ p(T ).

⊇ Let a be an arbitrary tuple in the result p(T ) of applying p to T . This means that there ex-
ists an extended embedding e from the nodes of p to the nodes of T such that
a = (b(e(n1), val), . . . , b(e(nk), val)), where varp(ni) = xvali , 1 ≤ i ≤ k. We need
to show that a is also in the result of applying the query ∃y ϕ(x, y) over the tree T . Since
∃y ϕ(x, y) belongs to the fragment CT Q(⇓,=), we have that it is of the form ∃y π(x, y).
Thus, we need to show that a is a valuation of the free variables of ∃y π(x, y), such
that there exists a tuple of atomic values b that is a valuation of the variables y, such
that T |= π(a, b). In order to show this, we first define a tuple b, and then show that
T |= π(a, b) by showing that there exists a homomorphism h : Sπ(a,b) → N from the set
Sπ(a,b) of subformulae of π(a, b) to the set N of nodes of T .

We define a valuation for the existentially quantified variables y as follows:

b = (b(e(n1), val), . . . , b(e(nk′), val)), where varp(nj) = yvalj , 1 ≤ j ≤ k′

We define a function h : Sπ(a,b) → N as follows. For each subformula ρ(c, d) of π(a, b),
with c ⊆ a and d ⊆ b we have that ρ(c, d) is of the form

l(c1, . . . , cm, d1, . . . , dm′)[µ1, . . . , µm′′ ]

and hence ρ(u, v) is of the from l(u1, . . . , um, v1, . . . , vm′)[µ1, . . . , µm′′ ] with u ⊆ x,
v ⊆ y, and c (resp. d) is of the same arity as u (resp. v).

Since ρ(c, d) is a subformula of π(a, b), according to lines 12-16 of the algorithm, it holds
that ρ(u, v) has been translated into a subpattern p′ of p that has the form
l[uval1 : @att1, . . . , u

val
m : @attm, v

val
1 : @att1, . . . , v

val
m′ : @attm′ , p1, . . . , pm′′ ]. Let

n′ be the root node of the subpattern p′ of p with labelp′(n
′) = l. Let n ∈ N be a

node of the tree such that e(n′) = n. We define h(ρ(c, d)) = n. Let n1, . . . , nm+m′

and n′1, . . . , n
′
m+m′ be the attribute nodes of n and n′ respectively, such that e(n′i) = ni,

1 ≤ i ≤ m+m′. For the particular extended embedding e, we have that

ci = b(e(n′i), val) = b(ni, val) = value@atti(ni), 1 ≤ i ≤ m

and

dj = b(e(n′m+j), val) = b(nm+j , val) = value@attj (nm+j), 1 ≤ j ≤ m′

Thus the tuple (c, d) = (c1, . . . , cm, d1, . . . , dm′) is exactly the tuple of attribute values of
n = h(ρ(c, d)).
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The function h satisfies the condition 1 of the homomorphism definition, since e is de-
scendant preserving. Condition 2(a) is satisfied since e is label preserving. We have seen
that the tuple of atomic values (c, d) exactly corresponds to the attribute values of the node
h(ρ(c, d)), hence condition 2(b) is also satisfied. Condition 2(c) is satisfied due to the fact
that e is child preserving.

Thus, we have shown that there exists a homomorphism h : Sπ(a,b) → N , which yields
that T |= π(a, b). Hence, a ∈ (∃y ϕ(a, b))(T ).

Since the tree T was arbitrarily chosen, we conclude that for all XML trees T it holds that
ϕ(T ) = p(T ), i.e. p is a translation of ∃y ϕ(x, y).

Example 4.2.1. Consider again the XML tree T depicted in Figure 3.1b. We give the translations
of the XPath expressions in XP{/,//,[],∗} from Example 3.2.1, the tree pattern in P{/,//,[],∗} from
Example 3.2.2 and the tree pattern formula from Example 3.2.3 into extended tree patterns from
EP{/,//,[],∗}.

XP{/,//,[],∗}: The translation of the XP{/,//,[],∗} expression from Example 3.2.1, a/b[//@d]/e,
in the EP{/,//,[],∗} syntax is as follows:

p1 = a[b[//@d, xsub : e]]

P{/,//,[],∗}: The following extended tree pattern corresponds to the translation of the tree pattern
from Example 3.2.2, depicted in Figure 3.2:

p2 = a[b[@d, xsub1 : e, f [xval2 : @i]], c[xval3 : @g]]

CT Q(⇓,=): The tree pattern formula from Example 3.2.3,
a[b(xd)[e[h(xi)], f(xi)], c(xg)], is also a query in CT Q(⇓,=) without free variables.
Hence, it is translated into an EP{/,//,[],∗} expression as follows:

p3 = a[b[xval1 : @d, e[h[xval2 : @j]], f [xval3 : @i]], c[xval4 : @g]]

4

Table 4.1 summarizes the XML query languages we have discussed in this section. The table
shows the type of output returned by each class of queries along with the possibility to translate
a query expressed in one language into a query in another language.

4.3 XML Mapping Assertions

In Chapter 2, we have introduced several problems for relational databases whose foundations
are based on schema mappings. In this thesis, we focus on the same problems in an XML set-
ting, and give an overview of the works that have addressed these problems so far. In order
to describe the different types of schema mappings, in this section we define several kinds of
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Table 4.1: Comparison between the XML query languages

language output translates to

P{/,//,[],∗} tuples of subtrees EP{/,//,[],∗}

XP{/,//,[],∗} single subtree
P{/,//,[],∗},
EP{/,//,[],∗}

EP{/,//,[],∗}
tuples of subtrees

EP{/,//,[],∗}
and values

CT Q(⇓,=) tuples of values EP{/,//,[],∗}

ps-queries
prefix of the

/
queried tree

XQuery
single subtree or

/
newly created tree

mapping assertions, which differ both in the language and in the meaning of the relationship
between the queries over the two schemas. Throughout the literature, we have come across with
works that define XML data exchange settings using GLAV mappings expressed in different
classes of CT Q, approaches that perform XPath query rewriting using XPath views (that cor-
respond to LAV mapping assertions expressed in XP{/,//,[],∗}), XML data integration systems
that are based on both LAV and GLAV mapping assertions and rewriting of XQuery queries
using XQuery views which use mapping assertions whose expressive power goes beyond the
one of the GLAV mapping assertions. In this section, we will introduce these different kinds of
mapping assertions, and we will later use them when comparing the different approaches.

Another important feature of the mapping assertions is their granularity. The granularity
of a mapping assertion defines what kind of values are transferred from the left to the right-
hand side of the mapping assertion. It depends on the annotation of the output variables in the
mapping assertion. We can define the following different types of mapping assertions based on
the granularity:

1. mapping assertions that transfer atomic values. In these mapping assertions, all the output
variables are annotated by val, and none of them is annotated by sub;

2. mapping assertions that transfer subtrees. If at least one of the output variables is anno-
tated by sub, the mapping assertion transfers one or multiple subtrees bound to the output
variables annotated by sub;

3. mapping assertions that transfer subtrees and can further modify these subtrees. These
mapping assertions are an extension of the previous ones. The difference between the two
is that these mapping assertions do not only transfer the subtrees, but they also support
restructuring of the elements, their renaming, as well as introduction of new elements.
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Based on the extended tree patterns, we are able to define a new type of schema mapping
assertions for XML3, that essentially capture the expressive power of the mapping assertions
expressed in the languages that can be translated into the extended tree patterns. These mapping
assertions will then allow us to uniformly view all the related works and facilitate the compari-
son between the approaches. For this purpose, we define both XML LAV and GLAV mapping
assertions based on extended tree patterns. Moreover, we define XML LAV mapping assertions
based on ps-queries. As we will see in Section 5.2, we can use the XML LAV mapping as-
sertions to express XPath views used for XPath query rewriting. Since these XPath views are
materialized, on the left-hand side of the LAV mapping assertion we will have an extended tree
pattern that provides access to the data stored in the materialized view, while on the right-hand
side we will have the view definition expressed as an extended tree pattern. The query that needs
to be rewritten and the view definition agree on the vocabulary.

Definition 4.3.1 (XML mapping assertion based on EP{/,//,[],∗}). An XML mapping assertion
based on EP{/,//,[],∗} is an expression of the form

∀x (∃y qS(x, y) ∃z qG(x, z))

where ∃y qS(x, y) and ∃z qG(x, z)) are extended tree patterns from EP{/,//,[],∗} that share the
same tuple x of free variables and have y and z respectively as existentially quantified variables.

Depending on the layout of qS , we distinguish the following two types of XML mapping
assertions:

• XML LAV mapping assertion based on EP{/,//,[],∗}, where qS is an extended tree pattern
used to extract the data from the materialized view, which conforms to a simple schema,
and qG is an extended tree pattern over the global schema G that corresponds to the view
definition;

• XML GLAV mapping assertion based on EP{/,//,[],∗}, where qS is an extended tree pattern
over the source schema S , and qG is an extended tree pattern over the global schema
G. �

In the context of XML GLAV mapping assertions, we assume that the source and the global
schema are given in the form of a DTD. The tuple x is a tuple of output variables, each cor-
responding to an output node and annotated according to the type of the output (value or sub-
tree). Since the source and the global patterns share the same output tuple, x, we refer to it
as the output tuple of the mapping assertion. Depending on the interpretation of the relation-
ship between the two extended tree patterns, we say that the mapping assertion can be sound
(∀x (∃y qS(x, y)→ ∃z qG(x, z))) or exact (∀x (∃y qS(x, y)↔ ∃z qG(x, z))).

As we have already mentioned in Section 2.2, the query processing in the presence of GLAV
mapping assertions can be done by splitting each GLAV mapping assertion into a GAV and a
LAV mapping assertion, by means of an intermediate view. We follow the same approach for
query processing in the presence of XML GLAV mapping assertions. The intermediate view

3We refer to the schema mapping assertions for XML as XML mapping assertions. We omit the word schema in
order to avoid ambiguity with XML Schema.
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has the following schema. The root element is labeled with view, and has zero or more children
named tuple, where each tuple has k children labeled with t1, . . . , tk. Each ti corresponds to a
variable xaii , 1 ≤ i ≤ k in the k-ary output tuple x of the mapping assertion. More precisely:

• if the i-th variable in x is annotated by sub, then the node labeled by ti has a single child
labeled by li, same as the node to which xsubi is attached in the extended tree pattern qS ,
i.e. li = labelqS (ni), var(ni) = xsubi , where ni is a node in qS . Moreover, the variable
xsubi is also attached to the node labeled with li;

• if the i-th variable in x is annotated by val, then the node labeled by ti has a single attribute
node, that is labeled by li = @value, and that has the variable xvali attached to it.

The splitting of the XML GLAV mapping assertions is depicted in Figure 4.3. Note that,
the LAV part of the split XML GLAV mapping assertion in fact coincides with the definition of
the XML LAV mapping assertion, which on the left-hand side stores the result of a materialized
view, and on the right-hand side expresses the view definition using an extended tree pattern.

∃y qS(x, y) →

view

tuple

t1
. . .

tk

l1 lk
x1 xk

GAV part

view

tuple

t1
. . .

tk

l1 lk
x1 xk

→ ∃z qG(x, z)

LAV part

Figure 4.3: Split XML GLAV mapping assertion

Another type of schema mapping assertions that we have come across with in the literature
are XML LAV mapping assertions that use ps-queries [41]. As we have argued before, ps-
queries are not expressible using extended tree patterns. Also, the context in which these LAV
mapping assertions are used is a rather limited one, as it only allows the source schemas to be
portions of the global schema.

Definition 4.3.2 (XML mapping assertion in ps-queries). An XML LAV mapping assertion based
on ps-queries is a triple (S,M, as), where S is a source schema, M is a ps-query coherent
with the source schema S and as is a specification of the semantics of the mapping, such that
as ∈ {sound, exact}.

A ps-query M is coherent with a source schema S if for every XML tree D that conforms
to the schema S, there exists an XML tree T such that D ≤ T and M(T ) ' D. �

We will use the three different types of XML mapping assertions to describe the different
approaches that can be found in the literature on XML data management.
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CHAPTER 5
Data Integration, Data Exchange and

Query Answering Using Views in an
XML Setting

Lately, many problems that are already well studied in the case of relational databases, have
been revisited and dealt with in the case of XML databases. The research community has been
challenged to find definitions of the well known concepts in relational database theory and trans-
late them to fit the XML setting. The translation process is not as trivial as it may appear. This
is due to the structural difference between the relational databases (formally defined as n-ary
relations) and XML documents (represented as ordered labeled trees). Some of these problems
that are of interest to our work include XML with incomplete information, XML data exchange,
XML data integration and answering XML queries using XML views. In this section, we give
an overview of several works that address these problems and present results which reflect the
relational ones, and improve the understanding of which formalisms to use when doing research
in XML data management.

5.1 XML With Incomplete Information

We have already introduced the notion of relational databases with incomplete information in
Section 2.1. Here, we give an overview of some approaches that deal with incomplete informa-
tion in XML documents, as well as the definition of certain answers for query answering over
XML documents with incomplete information.

Incomplete information in XML documents may appear as null values, but also as missing
information about the structure of the document. In practice, incomplete information in XML
documents can be modeled by specifying optional elements or optional attributes in the DTD
associated with the XML document. The work in [6] proposes a way of dealing with incomplete
information in the form of nulls in the XML setting. They consider incomplete XML trees, sim-
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plified DTDs that ignore the order imposed by the production rules and queries that are prefixes
(i.e. subtrees starting from the root) of the incomplete XML tree. In this setting, they propose
a representation system for XML trees that follows the definition of c-tables [30]. The authors
define query answering over incomplete XML trees using the notion of certain prefix, which is
an analog of certain answers. In [14], a representation for incomplete trees is proposed. This
representation deals with different sources of incompleteness: both null values (missing attribute
values) and structural incompleteness (missing node identifiers, missing node labels replaced by
wildcards, absence of a precise specification of the vertical and horizontal relationships between
the nodes) are considered. The authors propose a formalism called incomplete tree descrip-
tions, that is used for describing XML trees with incomplete information and characterization
of classes of trees with the same parameters that cause incompleteness. Given these incomplete
tree descriptions, the authors study the computational tasks concerning incomplete information
in XML, such as consistency and query answering. They show that query answering using an
incomplete XML tree is in general intractable, but tractable results can be achieved by imposing
several restrictions on the query language (use unions of CT Qs) and on the incomplete trees
(use incomplete trees with missing data values and labels).

Certain Answers

We have introduced the notion of certain answers for relational databases in Chapter 2 as a
concept that emerged from databases with incomplete information. When querying incomplete
XML documents, one is also interested in getting certain answers from the XML documents.
The need of computing certain answers also arises when querying data that comes from different
documents, such as in data integration systems and data exchange settings. As we have seen,
many query languages are used for querying XML documents throughout the literature. The
existence of many query languages implies that for each query language, there exists a separate
definition of what a certain answer is. Thus, we have encountered definitions of notions such as
certain prefix for ps-queries, certain answers for queries returning tuples tuples of atomic values
and max-descriptions for queries returning trees. In this section, we give a brief overview of
the different characterizations of certain answers, and redefine the decision problem of finding
certain answers in terms of these characterizations.

Query languages such as tree pattern formulae and (U)CT Qs return tuples of atomic values
stored in the attribute nodes of the queried XML tree. Hence, since the answer to such queries is
a set of tuples, it is straightforward to define the set of certain answers. In fact, the definition of
certain answers for XML queries returning tuples of atomic values coincides with the definition
of certain answers in relational databases. The certain answers of a query q returning tuples
of atomic values given a set of XML trees T ⊆ T is defined as an intersection of the results
obtained by evaluating q over each tree T ∈ T.

Certain answers for ps-queries are defined in terms of the answer a ps-query returns, namely
a prefix of a tree, called certain prefix. The tree that is being queried to obtain the certain prefix
is an intersection of the trees in the set of trees T ⊆ T . In the setting of ps-query answering
and computing certain prefixes, an intersection between two trees T1 and T2 is defined as the
maximal common prefix of T1 and T2. More formally, the intersection T1 ∩ T2 of T1 and T2 is
a tree that satisfies the following conditions: (a) T1 ∩ T2 ≤ T1 and T1 ∩ T2 ≤ T2; (b) for all T ′
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such that T ′ is not isomorphic to T1 ∩ T2, if T ′ ≤ T1 and T ′ ≤ T2, then T ′ ≤ T1 ∩ T2. Recall
the definitions of a tree prefix and tree isomorphism presented in Section 3.2

A more recent work ([18]) proposes theoretical grounds for defining certain answers for
queries returning trees, such as XQuery. In the spirit of maximality of certain answers for the
relational case, the authors define max-descriptions for XML trees in terms of a restricted form
of tree pattern formulae defined in the previous section. These restricted tree pattern formulae
do not support the equality and inequality atoms, the next and following sibling relations and
the descendant relation, as well as the wildcard label. Moreover, they define a ground variant of
such restricted tree pattern formulae by assigning values from the set of strings S to the variables
in the tree pattern formula. The certain answers over an XML tree are thus defined w.r.t. max-
descriptions. Given a set T of XML trees, the theory of T is defined as the set of tree pattern
formulae that are satisfied by all the trees in T, i.e. Th(T) = {π | ∀T ∈ T : T |= π}. Note
that the satisfaction relation used does not consider function symbols, and starts the evaluation
from the root of the tree. A max-description of a set of XML trees T is a tree pattern formula
π such that the trees satisfying π are exactly those trees satisfying all the tree pattern formulae
in the theory of T. A tree pattern formula π is a certain answer to a query q over a set of trees
T ⊆ T if it is a max-description of q(T), where q(T) = {q(T ) | T ∈ T}. Note that, in this
case, XML queries returning trees (such as XQuery, XPath, tree patterns and fragments thereof)
need to be considered.

Now that we have seen the different definitions of certain answers for different kinds of
queries, we can revisit the problem of finding certain answers in an XML setting and propose
the following decision problems, given a set of trees T ⊆ T .

PROBLEM: CERTAINANSWER
tuple
T (q, t)

shorthand: CAtuple
T (q, t)

INPUT: A query q returning tuples of
atomic values and
a tuple t of the same arity as q

QUESTION: Is t a certain answer of q?

PROBLEM: CERTAINANSWER
ps
T (q, p)

shorthand: CAps
T (q, p)

INPUT: A ps-query q and
a prefix p

QUESTION: Is p a certain answer of q?

PROBLEM: CERTAINANSWERtreeT (q, π)
shorthand: CAtree

T (q, π)

INPUT: A query q returning trees and
a tree pattern formula π

QUESTION: Is π a certain answer of q?

In the following, we consider several works that compute certain answers of XML queries
based on schema mappings. Hence, for a given set of mapping assertionsMwe can analogously
define the problems CAtuple

M (q, t),CAps
M(q, p),CAtree

M (q, π). The mapping assertions are used
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to obtain a set of target trees T which are used in computing the certain answers as in the case
of CAtuple

T (q, t),CAps
T (q, p),CAtree

T (q, π).

5.2 Data Integration, Data Exchange and Query Answering Using
Views in an XML Setting

In Chapter 2 we have introduced several problems in a relational database setting, such as data
integration, data exchange and query answering using views. In the remainder of this section,
we will focus on various works that address these problems in an XML setting. We try to find
features that characterize each of the approaches, and propose several criteria along which we
compare them. In order to analyze the approaches and to match them accordingly, we will rep-
resent them using the XML mapping assertions, introduced in Section 3.2. All of the works
that we will consider use schema mappings in some manner, either for specifying the relation-
ship between two XML documents, or between an XML document and a view. For some of
the approaches, the expressive power of the LAV mapping assertions is enough to capture the
relationships between the documents. Others use the full expressive power of the XML GLAV
mapping assertions. Finally, there are also those which go beyond the expressive power of our
XML GLAV formalism. These works utilize nested mapping assertions and a procedural query
language (XQuery) as opposed to the XML GLAV mapping assertions which are flat (i.e. not
nested) and use a declarative query language (extended tree patterns).

Thus, the first classification of the approaches is done by the type of the schema mappings
used. Along each class of approaches, we further characterize each one of them, by using the
following criteria:

• granularity of the mapping assertions;

• interpretation of the mapping assertions;

• type of query answering;

• number of sources;

• use of constraints;

• preservation of order in the XML document.

The granularity of the mapping assertions is a crucial feature of each of the approaches and
is tightly connected with the choice of a mapping language. As discussed previously, we distin-
guish three types of mapping assertions based on granularity: mapping assertions that transfer
atomic (scalar) values, mapping assertions that transfer subtrees, and mapping assertions that
transfer scalar values, subtrees and additionally allow modification of the transferred subtrees,
as well as creation of new trees by renaming and restructuring the transferred subtrees. Another
feature that considers the mapping assertions is their interpretation, which is also known as view
semantics. In particular we are interested if the mapping assertions are interpreted as sound or
exact (i.e. if the view semantics is defined under the OWA or CWA, respectively). There are
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several different types of query answering under schema mappings which have been considered
throughout the literature. One of them performs query reformulation (or rewriting) of the query
over the global schema into a query over the source schema(s). Another approach is to use the
data in the sources and the mapping assertions to materialize a global instance, and to answer the
query over the global schema using this instance. No matter how the global query is answered,
the data can be provided either by a single source, or its answers can originate from multiple
different sources. When multiple sources are used, the answers to the query should be obtained
such that there are no clashes between them. That is why some approaches use constraints and
make sure that these constraints are not violated, if the data comes from multiple sources. Con-
straints can also be used if only a single source is available, especially if a materialized global
instance is built. These constraints are used in particular for making sure that there are no clashes
between the data in the new materialized instance. Finally, as we have defined XML documents
to be ordered labeled trees, we are interested in identifying which approaches respect the order
of an XML tree, and which ones do not. By order in an XML tree, we consider the horizon-
tal order, i.e. the next sibling order. As we will see, it is not uncommon that the approaches
tend to disregard the sibling order, since in some settings, the horizontal navigation makes query
answering intractable.

In the rest of this section, we proceed as follows. In Section 5.2, Section 5.2 and Section 5.2
we show which of the works can be expressed with LAV, GLAV and nested GLAV mapping
assertions respectively. We describe these works and compare them along the criteria we out-
lined above. We rephrase examples and adapt them to fit in our XML GLAV mapping assertion
formalism. Finally, in Section 5.3, we summarize the similarities and differences between the
approaches.

LAV mapping assertions

In this section we overview several approaches that use LAV mapping assertions. In particular,
we consider several works on XPath query rewriting using XPath views, as well as an XML
data integration system based on LAV mapping assertions. An example of a LAV mapping
assertion in the XML setting is presented in Example 5.2.1. An overview of the approaches that
we will compare in this section is given in Table 5.1. In the second column of the table, XP is a
shorthand notation for XP{/,//,[],∗}, XP1 for XP{/,//,∗}, UXP1 for union of XP{/,//,∗} and XP2

for XP{/,//,[]}.

Example 5.2.1. This example is taken from [54]. In Figure 5.1 we show the LAV mapping
assertion, consisting of a query over an intermediate view document on the left-hand side and
the view definition on the right-hand side.

The output node of both the intermediate view and the view definition is xsubb . Once a com-
pensation pattern (which will be defined below) has been computed using the view definition on
the right-hand side of the LAV mapping assertion, it can be applied to the materialized interme-
diate view in order to obtain the answers to the query. 4

XPath query rewriting using XPath views [7, 8, 33, 54] has received a lot of attention and
has been an active topic of research recently. Most of the works focus on an XPath fragment,
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Figure 5.1: XML LAV mapping assertion based on EP{/,//,[],∗} in XPath query rewriting using
views

Table 5.1: Works that use LAV mapping assertions

work problem mapping granu- number interpre- type of use of preser-
addressed language larity of tation of query con- vation

sources mappings answering straints of order

[7] ERXP,XP
M (q) XP{/,//,[],∗} subtrees single sound rewriting no no

[8] ERXP1,UXP1
M (q) XP{/,//,∗} subtrees single sound rewriting no no

[33] MCRXP2,XP2
M (q) XP{/,//,[]} subtrees multiple sound rewriting yes, yes

[41] complexity of ps-queries subtrees multiple sound, answering yes, key no

CAps
M(q, p) exact, over a constraints

mixed materialized

target

instance

[54] ERXP,XP
M (q), XP{/,//,[],∗} subtrees single sound rewriting no no

namely XP{/,//,[],∗}, as well as its subfragments, all of them defined in Section 3.2. In particular,
in [7, 54] the full fragment XP{/,//,[],∗} is considered. Additionally, [54] also considers the
three sublanguages. [8] considers only the subfragment XP{/,//,∗}, while [33] the subfragment
XP{/,//,[]}. Another different approach that uses LAV mappings is the XML data integration
described in [41]. The authors propose a system that uses LAV mappings and schemas (both
source and global) expressed in terms of DTD documents. The XML data integration system
also takes into account integrity constraints, and uses a node identity function in order to identify
nodes coming from different sources, but carrying the same information. The language used for
posing queries and expressing mapping assertions is the language of ps-queries.

Granularity of the Mapping Assertions The works on XPath query rewriting using XPath
views consider the fragment XP{/,//,[],∗} and its subfragments, and they all agree on the type
of mapping assertions w.r.t. the granularity. Namely, these approaches use mapping assertions
that transfer subtrees, in particular a single tree. For describing these mapping assertions using
the XML LAV mapping assertions based on EP{/,//,[],∗} we proceed as follows. For each view
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available for XPath rewriting, we have a single LAV mapping assertion. The LAV mapping
assertion is characterized by the view that stores the data on the left-hand side and the view
definition on the right-hand side, that provides the vocabulary for the queries. There is only
one output variable x in both the materialized view and the view definition, which is bound to a
subtree rooted at the single output node, and hence it is annotated by xsub. Example 5.2.1 shows
the translated version of the XPath query rewriting using views into our XML LAV mapping
formalism.

The XML data integration system from [41], defined as the triple I = 〈G,S,M〉, uses LAV
mapping assertions. In I, G stands for the global schema, S for the set of source schemas andM
for the set of mapping assertions. Each mapping assertion inM is given as (Si,Mi, asi), where
Si is a source schema, Mi is a ps-query that is used to describe the data stored in the source
that conforms to the schema Si, and asi is used for specifying the semantics of the mapping
assertion, i.e. whether it is sound or exact. In this work, the global schema is a generalization of
the source schemas, which yields that the ps-query over a source is also a query over the global
schema. Example 5.2.2 describes the LAV mapping assertions based on ps-queries.

Example 5.2.2. Consider the XML data integration system I = 〈G,S,M〉 given with the
following source (S = {S1, S2}) and global (G = 〈SG ,ΦK ,ΦFK〉, where ΦK and ΦFK are sets
of keys and foreign keys respectively) schemas:

S1:
hospital → patient∗

patient → name, SSN
attlist(name) = {@value}
attlist(SSN) = {@value}

S2:
hospital → patient∗

patient → SSN
attlist(SSN) = {@value}

SG :
hospital → patient+, treatment+

patient → SSN, name, cure∗, bill?
treatment → trID, procedure?
procedure → treatment+

attlist(name) = {@value}
attlist(SSN) = {@value}
attlist(cure) = {@value}
attlist(trID) = {@value}

ΦK : {patient.SSN.@value → patient;
treatment.trID.@value → treatment}

ΦFK : {patient.cure.@value ⊆ treatment.trID.@value}

The mappingM is a set of triples of the form (Si,Mi, asi), i ∈ {1, 2}, where M1 and M2 are
shown in Figure 5.2 and asi ∈ {sound, exact}.

Note that the underlined nodes in the ps-queryM2 in Figure 5.2b represent existential subtree
patterns in the query. 4

Interpretation of the Mapping Assertions The semantics of the views in the works on XPath
query rewriting using XPath views is defined under the OWA. In other words, the mapping
assertions are interpreted as sound. On the other hand, the mappings in the data integration
system from [41] can have three different interpretations: (1) sound, if all the mapping assertions
are interpreted as sound; (2) exact, if all the mapping assertions are interpreted as exact; and
(3) mixed, if some of the mapping assertions are interpreted as sound, and others as exact.
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hospital

patient

SSN name

@value
< 100000

(a) M1

hospital

patient

SSN cure bill

@value @value
< 35

(b) M2

Figure 5.2: Ps-queries that are a part of the mapping assertions fromM

Type of Query Answering As the name suggests, the works on XPath query rewriting using
XPath views perform query answering by reformulation. Given a view specified in XPath, the
goal of the rewriting algorithms is to compute another XPath expression, called compensation
pattern, which combined with the view, provides the same answers as the query. When speaking
about query rewriting, it is also interesting to identify whether the query rewriting algorithm
produces an equivalent or a maximally contained rewriting. In [7, 54] the problem of whether
an equivalent rewriting exists for a query using views in the respective languages is considered.
Moreover, in [7, 8, 54], the computation of an equivalent rewriting is addressed. The equivalent
rewriting produced in [54] is also a minimal one, in the sense that it is obtained by a minimiza-
tion algorithm proposed by the authors. A union rewriting based on the union of the views is
produced in [8]. The problem of computing a maximally contained rewriting is tackled in [33].

A data integration system, as defined for the relational case, should also perform query
answering by query reformulation. However, for the XML data integration system defined in
[41], this is not the case. The query answering in this data integration system is performed by
materializing a legal global XML tree from the data residing in the source trees. Note that this
XML data integration system captures a very restricted setting, since it assumes that the source
schemas are sub-schemas of the global schema. This is because the query answering algorithm
first expands the sources such that they conform to the global schema and then merges them in
a single materialized global instance.

Number of Sources Earlier works on XPath rewriting using XPath views address rewritings
using a single XPath view [7, 54]. More recent ones, however, try to extend the rewriting setting
and consider multiple (materialized) views [8, 33].

The data integration system from [41] works with multiple sources. In particular, the data
integration system considers a set of DTDs as a source schema. The actual data is stored in
XML trees, such that each XML tree conforms to some source DTD.

Use of Constraints The only work on XPath query rewriting using XPath views that we con-
sider in this section and that takes constraints into account is [33]. The constraints are imposed
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by a schema specified in a form of a DTD. Two flavors of query rewriting are considered: one
when the schema constraints are not taken into account, and one with the presence of schema
information. As schemas in the latter case, non-recursive DTDs are used.

The data integration system in [41] takes into account integrity constraints, namely unary
key and foreign key constraints, as discussed in Example 5.2.2. The sets of unary and foreign
key constrains are a part of the global schema together with the global DTD. Although [41]
defines a data integration system, the queries are answered over a materialized global instance.
Thus, the set of constraints from the global schema is later used for defining a node identity for
each node from the global instance in terms of an identification function. This function is used
to identify nodes from the source documents in such a way that nodes having same values for
their keys correspond to the same node in a global sense. The identification of the nodes starts
by first expanding the original data sources with new nodes, such that they conform to the global
schema. Skolem constants are used as values for nodes if a node that has to exist in the global
schema does not exist in the source schema. The identification function is then applied to such
extended sources. The identifier of each node is a concatenation of the identifier of its parent,
its node name and an optional value, which is either the value of its key (if one exists) or a fresh
Skolem constant. The root of the source document has an empty identifier.

Preservation of Order Given all the approaches that are expressible using LAV mapping
assertions that we have considered so far, the only one that respects the order of the elements is
[33]. They work with ordered trees, rather than [7, 8, 41, 54] who drop the order of the XML
document even in the definition of an XML tree.

Description of the Query Answering Algorithms Here we give a more detailed overview of
the query answering algorithms described in the works that are based on LAV mapping asser-
tions. As mentioned before, the works on XPath query rewriting using XPath views follow a
similar approach. They are based on computing a contained or equivalent rewriting of a pattern
p using a view v by generating a compensation pattern p′. A compensation pattern p′ is a pattern
which composed with a view v, produces a rewriting pattern r. The composition is performed
by merging of the two patterns. The merged pattern is obtained by collapsing the root node of
the compensation pattern with the output node of the view. Then, in order to check if r is a
contained or equivalent rewriting, a containment or equivalence check is applied respectively.
Consider again the translation presented in Example 5.2.1. We have seen that when a query is
posed, the goal of the algorithms is to compute a compensation pattern whose root is labeled as
the label of the output node of the view definition. When such a pattern is obtained (by some
algorithm for XPath rewriting), it can also be applied to the output node of the materialized view,
as they are equal. Thus, the answers to the query are obtained from the materialized view on
the left-hand side of the LAV mapping assertion. The XML data integration system from [41]
performs query answering by materializing a global tree using data stored at the sources. In the
following, we give details on some features of the query answering algorithms in the works we
consider in this section.

[7] The query answering algorithm in [7] is based on computing a compensation pattern. The
compensation pattern that yields an equivalent rewriting w.r.t. the views is chosen from
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a set of the natural rewriting candidates. The notion of natural rewriting candidates is
defined given an XP{/,//,[],∗} expression p and a view v. There are two natural candidates
w.r.t. p and v. The first natural candidate is the expression p≥k, which is a subexpression
of p that contains nodes of depth greater or equal to k, where k is the depth of the output
node of v. The second natural candidate is obtained from p≥k by forcing all the outgoing
edges from the root to be descendant edges. The authors also define the notion of po-
tential rewriting and show completeness of the approach, in the sense that if the potential
rewriting is not a rewriting, then one does not exist. Moreover, they give conditions under
which one of the two natural candidates is a potential rewriting.

[8] This work proposes an algorithm for producing an equivalent union rewriting based on the
union of multiple views. Given an expression p and a set V of views, all in XP{/,//,∗}, a
union rewriting of p using V is a setR of XP{/,//,∗} expressions such that for each r ∈ R
there is a subset Vr of V such that for all trees T ∈ T it holds that

⋃
r∈R r(Vr(T )) = p(T ).

The motivation behind using unions of view expressions is that there might not exist a
rewriting using a single view from a set of multiple views, but if these views are united, a
rewriting can be obtained. The proposed rewriting algorithm is sound, but not complete.

[33] The existence of a maximally contained rewriting is tackled in [33]. Two different algo-
rithms for computing a maximally contained rewriting are proposed: one that computes
a rewriting without a schema, and another that computes a rewriting in the presence of a
schema. For the former case, the algorithm for generating a maximally contained rewrit-
ing (which is a union of contained rewritings) runs in exponential time w.r.t. the size of
the query in the worst case. In the presence of a schema, it is possible to infer a set of
constraints Σ in time polynomial in the size of the schema, and to then apply the chase
procedure to the view expression v such that it satisfies the constraints in Σ. The query
expression does not need to be chased since the trees that it is posed over already satisfy
the schema, and therefore the inferred constraints. The proposed algorithm for checking
the existence of the maximally contained rewriting also returns a rewriting if one exists
and runs in polynomial time.

[41] In this work, the authors provide three algorithms for query answering and analyze their
complexity. The three different flavors of the query answering algorithm come from the
different interpretations of the mappings, which can be sound, exact or mixed, as discussed
above. The notion of certain answers of a query is defined as an intersection of the answers
of the query over the trees in the semantics of the data integration system.

The semantics of the data integration systems is a set of trees that satisfy the global
schema, and additionally, depending on the type of the mapping, have to fulfill the follow-
ing condition for all data sources:

• the data source is a prefix of the answer of the mapping query over the tree if the
mapping assertion is interpreted as sound;

• the data source is isomorphic to the answer of the mapping query over the tree if the
mapping assertion is interpreted as exact.
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The trees in the semantics of the XML data integration system are the legal trees, and their
representation as a weak representation system lies in the core of the query answering
algorithms. Once the weak representation system is known, the goal is to find a repre-
sentation for the answer of a query over it. The representation for the legal trees and the
representation for the answer have to satisfy the following condition: the intersection of
the trees in the semantics of the latter has to be equal to the intersection of the answers
of the queries over the trees in the semantics of the former. The complexity of the al-
gorithms comes from the complexity of computing the representation for the legal trees,
the complexity of finding the representation for the answers over the legal trees and from
the complexity of the intersection. When using sound mappings, the authors show that
the query answering algorithm is PTIME w.r.t. data complexity (i.e. the size of the set of
data sources). On the other hand, when using exact and mixed mappings, the algorithm is
NP-complete w.r.t. data complexity.

[54] This work deals with the problem of checking the existence of an equivalent rewriting, as
well as the problem of computing this rewriting. Moreover, during the computation of the
equivalent rewriting, a minimization technique is applied, making the final result of the
rewriting algorithm a minimal equivalent rewriting. For the rewriting existence problem,
CONP-hardness is shown, and an upper bound of Σp

3 for the computation of minimal
rewritings is asserted. However, the proof of the upper bound used results that have been
refuted in [31]. For the three fragments XP{/,//,[]}, XP{/,[],∗}, XP{/,//,∗}, it is shown that
the problem of existence of a rewriting and computing a minimal one are in P.

Conclusion In this section, we have overviewed approaches that use the expressive power of
the XML LAV mapping assertions. We have seen that the works on XPath query rewriting using
XPath views use the LAV mapping assertions based on extended tree patterns, while the data
integration system from [41] uses the LAV mapping assertions based on ps-queries. Upon iden-
tifying the different works on XPath query rewriting using XPath views, we can see that although
there exist many different rewriting algorithms, they are based on the same idea of computing
a compensation pattern. In Example 5.2.1, we showed how to translate the setting of XPath
query answering using XPath views in an XML LAV mapping assertion based on extended tree
patterns. On the left-hand side of this assertion we used a simple view schema, and on the
right-hand side we have the view definition. Also, we have seen a data integration system that
uses XML LAV mapping assertions based on ps-queries. Although this data integration system
is formalized in a similar way as a data integration system for relational databases, in essence
it does not perform query reformulation, but rather answers global queries by materializing a
global instance and computing certain answers over such an instance.

GLAV Mapping Assertions

In this section we consider works that utilize the expressive power of our XML GLAV mapping
assertions. We give insights on one approach that addresses XML data integration [56] and two
works on XML data exchange [9, 12]. A summary on the features of the works we are going to
overview in this section is given in Table 5.2. In the second column, CQ denotes the core query
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language (fragment of XQuery) used as a query language in [56]. Example 5.2.3 shows what
kind of mapping assertions we will be dealing with in the remainder of this section.

Table 5.2: Works that use GLAV mapping assertions

work problem mapping granu- number interpre- type of use of preser-
addressed language larity of tation of query con- vation

sources mappings answering straints of order

[9] complexity of SM(⇓,⇒,Fun,∼) scalar single sound answering yes, yes

CAtuple
M (q, t) and subclasses values over a schema

materialized

target

instance

[12] complexity of SM(⇓) scalar single sound answering yes, yes

CAtuple
M (q, t) values over a schema

materialized

target

instance

[56] ERCQ,CQ
M (q) SM(↓,=) scalar multiple sound rewriting yes, key no

values constraints

Example 5.2.3. We take the following example of a GLAV mapping assertion from [12]. Con-
sider the following source and target schema.

Source DTD
db → book∗

book → author∗

attlist(book) = {@title}
attlist(author) = {@name,@aff }

Target DTD
bib → writer∗

writer → work∗

attlist(writer) = {@name}
attlist(work) = {@title,@year}

We can specify the following GLAV mapping assertion, with the output variables xval1 and
xval2 :

db[book [x val1 : @title, author [x val2 : @name]]]→
∃yval1 bib[writer [x val2 : @name,work [x val1 : @title, yval1 : @year ]]]

This GLAV mapping assertion is extracting tuples of book titles and author names from the
source XML tree and transforms them into work titles of writer and writer names respectively.
Given the source XML tree in Figure 5.3a and the mapping assertion, the target XML tree in
Figure 5.3b is obtained.

Note that in the target XML tree we have occurrences of null values, denoted by ⊥1 and
⊥2. 4
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db

book book

@title
"Combinatorial

Optimization"

author author @title
"Computational

Complexity"

author

@name
"Papadimitriou"

@aff
"UCB"

@name
"Steiglitz"

@aff
"Princeton"

@name
"Papadimitriou"

@aff
"UCB"

(a) Source XML tree

bib

writer writer

@name
"Papadimitriou"

work work @name
"Steiglitz"

work

@title
"Combinatorial

Optimization"

@year
⊥1

@title
"Computational

Complexity"

@year
⊥2

@title
"Combinatorial

Optimization"

@year
⊥1

(b) Target XML tree

Figure 5.3: Source XML tree and the obtained target XML tree using the XML GLAV mapping
assertion

In [56], the authors propose an algorithm for XML query rewriting of queries posed over a
global schema, provided that the mapping assertions between the global schema and the sources
are previously known, and provided that the data is stored at the sources. The query rewriting is
based on the mapping assertions, which despite that their syntax resembles XQuery, can easily
be translated into XML GLAV mapping assertions. The query language used for posing queries
over the data integration system is called core query language (CQ) and is a fragment of XQuery
that allows nested subqueries. The output of the query can either be a tuple of label-value pairs,
or a nested structure. The CQ language also supports the use of Skolem function symbols, but
does not support the descendant relation. The descendant relation is not allowed in the schema
mappings either. For the schemas, a nested-relational representation is used, which can describe
both relational and XML schemas.

In [9, 12], a framework that performs transformation of an XML document that conforms to
one DTD into an XML document that conforms to a different DTD is proposed. An XML data
exchange setting is defined as a triple 〈DS, DS,ΣST〉, whereDS is a source DTD,DT is a target
DTD and ΣST is a set of source-to-target dependencies that specify the correspondence between
DS and DT. Target dependencies are not taken into account. Given an XML data exchange
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setting 〈DS, DS,ΣST〉 and an XML tree S conforming to the source DTD DS, a solution for
S is an XML tree T that conforms to the target DTD DT, such that S and T together satisfy
all the source-to-target dependencies in ΣST. As a query language for posing queries over the
target data in [9, 12], conjunctive tree queries, denoted by CT Q, and unions of conjunctive tree
queries, denoted by UCT Q as defined in Section 3.2, are used.

Granularity of the Mapping Assertions Although syntactically, the mapping assertions in
[56] and the source-to-target dependencies from [9, 12] differ, in fact they coincide in terms
of granularity. We can see the source-to-target dependencies as GLAV mapping assertions,
and thus in all of the three approaches, the mapping assertions transfer tuples of values. In
[56], the mapping assertions are expressed in a language that does not support descendants or
wildcards, and can be easily translated into XML GLAV mapping assertions. The source-to-
target dependencies from [9, 12] are expressions of the form ψT(x, z) :- ϕS(x, y) where ϕS

and ψT are tree pattern formulae over the source and target schema respectively. In [12], a
restricted version of the tree pattern formulae is used for specifying the dependencies. These
tree pattern formulae allow wildcards and vertical navigation (including descendants), but they
do not support horizontal navigation. Amano et al. [9] present schema mappings that are an
extension of the ones defined in [12]. Their aim is to define more expressive languages for
specifying XML mapping assertions, which will support ideally all structural characteristics of
XML documents, such as horizontal and vertical navigation, use of descendants and wildcards,
and allow techniques which are extensively used in relational schema mappings, such as joins
of variables. The language for schema mappings presented in [9] coincides with the tree pattern
formulae we introduced in Section 3.2. Additionally, the authors in [9] propose a classification
of the schema mappings which then allows for a study of their complexity. The most general
class of schema mappings discussed is SM(⇓,⇒,∼,Fun). The class SM(⇓) corresponds to
the schema mappings described in [12]. As this mapping language from [56] transfers atomic
values, we will use the same notation to refer to it. Hence, the schema mappings from [56] are
in the class SM(↓,=).

Using our XML GLAV mapping formalism, we can straightforwardly describe the GLAV
mappings used in [56]. The mapping assertions used in this work describe which data values
from the source instances correspond to which elements of the global schema. The query rewrit-
ing consists of reformulating the query over the global schema into a query over the sources
using the mapping assertions. Example 5.2.4 shows the mapping assertions considered in this
work, as well as their translation into our XML GLAV mapping formalism.

Example 5.2.4. As an example of a data integration system, the authors consider a setting with
two sources and one global schema. The DTDs corresponding to the schemas are as follows:
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src1 : src2 :
src1 → students src2 → students,

students → student∗ courseEvals
attlist(student) = {@studentID , students → student∗

@name,@course, attlist(student) = {@studentID ,
@grade} @name,

@courseID}
courseEvals → courseEval∗

attlist(courseEval) = {@courseID ,
@course,@file}

tgt :
tgt → students, evals

students → student∗

student → courses
attlist(student) = {@studentID ,@name}

courses → courseInfo∗

attlist(courseInfo) = {@course,@evalID}
evals → eval∗

attlist(eval) = {@evalID ,@grade,@file}

Given the two source documents, two mapping assertions are defined:

M1 foreach s in src1.students
exists s′ in tgt .students, c′ in s ′.students.courses, e′ in tgt .evals
where c′.courseInfo.@evalID = e ′.eval .@evalID
with s ′.student .@studentID = s.@studentID and s ′.student .@name = s.@name

and c′.courseInfo.@course = s.@course and e ′.eval .@grade = s.@grade

M2 foreach s in src2.students.student , c in src2.courseEvals.courseEval
where s.@courseID = c.@courseID
exists s′ in tgt .students, c′ in s ′.students.courses, e ′ in tgt .evals
where c′.courseInfo.@evalID = e ′.eval .@evalID
with s ′.student .@studentID = s.@studentID and s ′.student .@name = s.@name

and c′.courseInfo.@course = c.@course and e ′.eval .@file = c.@file

Although these mapping assertions use a different syntax, essentially they are mapping asser-
tions from SM(↓,=). The foreach and the exists parts of such a mapping assertion correspond
to the left- and right-hand side of an XML GLAV mapping assertion based on EP{/,//,[],∗} . The
where and with parts give a more precise definition of which variables should be existentially
and universally quantified, respectively. The universally quantified variables are those whose
values are transferred by the mapping assertion, while the existentially quantified ones are used
for expressing join conditions. Hence, M1 and M2 can be translated into XML GLAV mapping
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assertions based on EP{/,//,[],∗} as follows:

M′1 : src1[students[student [x 1
val : @studentID , x 2

val : @name, x
val
3 : @course, x val

4 : @grade]]]

→ ∃yval
1 , yval2 tgt [students[student [x

val
1 : @studentID , x val

2 : @name,

courses[courseInfo[x
val
3 : @course, yval

1 : @evalID ]]]]]

evals[eval [y
val
1 : @evalID , x val

4 : @grade, yval
2 : @file]]

M′2 : src2[students[student [x
val
1 : @studentID , x val

2 : @name, x val
3 : @courseID ]],

courseEvals[courseEval [x
val
3 : @courseID , x val

4 : @course, x val
5 : @file]]]

→ ∃yval1 , yval2 tgt [students[student [x
val
1 : @studentID , x val

2 : @name,

courses[courseInfo[x
val
4 : @course, yval

1 : @evalID ]]]]]

evals[eval [y
val
1 : @evalID , yval

2 : @grade, x val
5 : @file]]

The graphical representation of the split XML GLAV mapping assertions can be seen in
Figure 5.4 and 5.5. We only show the mapping assertion M ′1, as the other one is analogous. 4

src1

students

student

@studentID @name @course @grade
xval
1 xval

2 xval
3 xval

4

→

view

tuple

t1 t2 t3 t4

@value @value @value @value
xval
1 xval

2 xval
3 xval

4

Figure 5.4: GAV part of the XML GLAV mapping M ′1

view

tuple

t1 t2 t3 t4

@value @value @value @value
xval
1 xval

2 xval
3 xval

4

→ ∃yval1 , yval2

tgt

students

student

@studentID @name
xval
1 xval

2

courses

courseInfo

@course @evalID
xval
3 yval

1

evals

eval

@evalID @grade @file
yval
1 xval

4 yval
2

Figure 5.5: LAV part of the XML GLAV mapping M ′1

We can apply our XML GLAV mapping formalism to represent the dependencies in the
XML data exchange setting as well. As we have seen, [9] uses a more expressive language
for specifying the source-to-target dependencies. This language supports horizontal navigation,
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which is not supported by the extended tree patterns that we have defined in Section 3.2. Thus,
a source-to-target dependency ψT(x, z) :- ϕS(x, y) that does not use horizontal navigation can
be seen as an XML GLAV mapping assertion based on EP{/,//,[],∗}:

∀x (∃y ϕ′S(x, y)→ ∃z ψ′T(x, z))

where ϕ′S and ψ′T are the translations to extended tree patterns of the tree pattern formulae ϕS

and ψT respectively. The two extended tree patterns have a tuple of output variables x, each one
corresponding to an attribute node, and bound to its value. We describe the translation in more
detail in Example 5.2.5.

Example 5.2.5. We take an example schema mapping assertion from [9] that does not use hori-
zontal navigation. Consider the following source DTD D1 and target DTD D2:

D1 : europe → country∗ D2 : europe → succession∗

country → ruler∗ succession → country , ruler ,
successor

attlist(country) = {@name} attlist(country) = {@name}
attlist(ruler) = {@name} attlist(ruler) = {@name}

attlist(successor) = {@name}

For the given DTDs, the following source-to-target dependency can be specified (in the
language of tree pattern formulae):

europe[country(xc)[ruler(xr )]]→ ∃ys europe[succession[country(xc), ruler(xr ), successor(ys)]]

If we translate this source-to-target dependency that uses tree pattern formulae into a XML
GLAV mapping assertion based on extended tree patterns, we obtain the following:

europe[country[xval1 : @name, ruler[xval2 : @name]]]→
∃yval1 europe[succession[country[xval1 : @name, ruler[xval2 : @name], successor[yval1 : @name]]]]

This XML GLAV mapping assertion can be further split into two GAV and LAV mapping
assertions, depicted in Figure 5.6 and 5.7.

europe

country

@name
xval
1

ruler

@name
xval
2

→

view

tuple

t1 t2

@value
xval
1

@value
xval
2

Figure 5.6: GAV part of the XML GLAV mapping
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view

tuple

t1 t2

@value
xval
1

@value
xval
2

→ ∃yval1

europe

succession

country ruler successor

@name @name @name
xval
1 xval

2 yval
1

Figure 5.7: LAV part of the XML GLAV mapping

The extended tree patterns used in the XML GLAV mapping assertion have two output
variables, bound to the values of the attributes @name of country (xval1 ) and @name of ruler
(xval2 ). The variable yval1 is existentially quantified and is used to represent the attribute @name
of successor. 4

Interpretation of the Mapping Assertions The mapping assertions in the three works we
consider in this section are interpreted as sound. Although this is not explicitly stated, the
soundness of the mapping assertions in [9, 12] follows from their definition, i.e. from the form
of the source-to-target dependencies. The mapping assertions in [56] are also sound due to the
fact that they specify the relationship between the data in the sources and the global schema only
in one direction, from the sources to the global schema.

Type of Query Answering In contrast to the XML data integration system from [41] we
discussed in the previous section, the XML data integration system from [56] performs query
answering by rewriting the query over the global schema into a query over the sources (which
coincides with the definition of a data integration system in the case of relational databases). The
XML data exchange settings proposed by [9, 12] perform query answering over a materialized
target instance. Certain answers are defined as in the relational case: the set of certain answers
for a UCT Q queryQw.r.t. the XML tree S conforming to the source DTDDS is the intersection
of the answers of Q over all possible solutions T for S.

Number of Sources The XML data integration system in [56] supports multiple source doc-
uments. The sources are specified using nested relational schemas, which provides support for
both XML and relational sources. On the other hand, the XML data exchange settings from
[9, 12] take into account a single source, which they use to build a materialized target instance.

Use of Constraints All of the three approaches that we overview in this section take into
account constraints when addressing the respective problems. We can go into further detail and
identify the type of constraints used in each of them. In [9, 12], the constraints come from the
definition of the structure of the documents, i.e. from the DTDs that represent the source and
the target schema. In [56], as a part of the mapping between the source and the global schema,
the authors take constraints on the global schema into account. They refer to these constraints
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as target constraints, and they are in the form of key constraints. The target constraints allow
expression of data merging rules. A need for data merging arises when the data from different
sources coincide.

Preservation of Order The XML data integration system from [56] does not respect the order
of the document when performing query rewriting. In [9, 12], the source document is defined as
an ordered labeled tree. Moreover, [9] allows horizontal navigation through the document, while
[12] does not. However, in the restricted tractable case of query answering in [12], the order is
not preserved. Also, in [9] it has been shown that horizontal navigation, even only next-sibling
navigation, makes query answering intractable. Hence, in the XML data exchange settings, the
tractability of query answering can be achieved if the document order is not taken into account.

Description of the Query Answering Algorithms As mentioned earlier, the XML data ex-
change settings perform (U)CT Q query answering using a materialized target instance. On the
other hand, the XML data integration system performs query rewriting of a query expressed in
an XQuery fragment using a set of mapping assertions. Here we outline more details on the
query answering algorithms used in the XML data integration system and the two XML data
exchange settings based on GLAV mapping assertions.

[12] In [12], the authors show that the upper bound for answering UCT Qs is CONP. However,
a restricted setting of query answering is tractable. The restrictions are imposed on the
source-to-target dependencies and on the DTDs. In particular, the source-to-target depen-
dencies are restricted to be fully-specified, i.e. the target pattern of the dependency has
to start at the root of the target schema and must not include descendants and wildcards.
The other restriction is that the target DTD contains univocal regular expressions. The
precise definition of univocal regular expressions can be found in [12]. It is important to
note that DTDs that contain univocal regular expressions extend nested-relational DTDs.
Thus, given this restricted setting, it has been proved that computing the certain answers
for a UCT Q can be done in PTIME.

[9] This work extends the query answering setting presented in [12]. Their aim is to get
a tractable result by examining fragments of the mapping specification and the query
language, while not breaking the CONP upper bound. They show that for a query in
UCT Q(⇓,=) and a schema mapping in SM(⇓,⇒,∼,Fun) which is fully specified, non-
bounding and ∼-monotonic, the problem of checking whether a tuple t is in the certain
answers of Q is in PTIME. They also show that the upper bound remains CONP when
the schema mapping is from the class SM(⇓,⇒,∼,Fun) and the query is from the class
UCT Q(⇓,⇒,=). Additionally, they study the consistency of the extended data integra-
tion setting, as well as the complexity of composition of schema mappings, which is a
usual operation in the relational case.

[56] Two original algorithms for query rewriting are introduced in [56]. The first algorithm
does not consider constraints, while the second one does. The first rewriting algorithm
presented in this article is called the basic query rewriting algorithm. It consists of four
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phases: rule generation, query translation, source query optimization and query assembly.
The first phase transforms the mapping assertions into mapping rules which are needed in
the query translation phase. In the second phase, the target query is translated into a set
of source queries, where the queries containing a subquery in the return part are decor-
related (i.e. the subquery is replaced by a Skolem term and translated separately). This
set of source queries is then optimized in the third phase. Finally, in the query assembly
phase, the queries that were decorrelated in the second phase are reassembled, by replac-
ing the Skolem terms in the return by the corresponding translation of the subqueries.
The authors show that the rewritings obtained with this algorithms produce answers that
correspond to the answers of the original target query obtained over a materialized target
schema, i.e. the query rewriting algorithm is sound and complete. Moreover, they show
that the number of rewritings generated in the second phase is O(nk), where n is the
number of mappings and k is the size of the query.

The second algorithm is an extension of the first one by including query resolution, which
handles the target constraints. When taking the target constraints into account, complete-
ness is lost, i.e. it may happen that some answers of the original query over a materialized
target schema might not be obtained as an answer of the rewritten queries over the sources.
The query resolution algorithm first translates the target constraints using the translation
algorithm for the queries, used in the second phase of the basic query rewriting algo-
rithm. Also, minimization is applied to the translated target constraints. The result is a
set of source constraints which introduce new equalities between Skolem terms. These
constraints are used to generate new rewritings in which the equalities between Skolem
terms are resolved. This is called a resolution step. The rewriting of a query by taking
the target constraints into account is obtained by exhaustively applying resolution steps.
Termination of the resolution steps is guaranteed by imposing acyclicity on the target con-
straints. The authors show that the extended query rewriting algorithm that handles the
target constraints is sound, but not complete.

Conclusion The approaches that we have compared in this section use mapping assertions
that can be translated into our XML GLAV mapping formalism based on EP{/,//,[],∗}. We have
seen two works on XML data exchange and one on XML data integration. The former focus on
computing certain answers for XML queries returning tuples, over a materialized target instance
built using the source XML tree and the mapping assertions. The latter computes an equivalent
rewriting of a query in a language that is subsumed by XQuery. Two novel query rewriting
algorithms are proposed, one of which takes into account constraints on the global schema. The
granularity of the mapping assertions in all the three approaches is the same, although they differ
in the syntax.

Nested GLAV Mapping Assertions

In this section we give an overview of two works [37, 40] on XQuery query rewriting using
XQuery views. As query language in [37], a fragment of XQuery is used. This fragment allows
returning (i.e. storing) information (such as the value, content or identifier) from several vari-
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ables, and value joins, but allows neither nested queries nor the specification of nested views.
In [40], query rewriting is tackled for both the full XQuery language, as well as a fragment
of XQuery that includes nesting, duplicate elimination, existential quantification and equalities
between values and identifiers. This sublanguage, referred to as OptXQuery, has first been in-
troduced in [20]. Table 5.3 summarizes the features of these two works. In the second column
of the table, XQ is a shorthand notation for the XQuery fragment used in [37], and OptXQ for
the OptXQuery.

Table 5.3: Works that use nested GLAV mapping assertions

work problem mapping granu- number interpre- type of use of preser-
addressed language larity of tation of query con- vation

sources mappings answering straints of order

[37] ERXQ,XQ
M (q) expressive subtrees multiple sound rewriting no no

fragment that can be

of XQuery modified

[40] EROptXQ,OptXQ
M (q) OptXQuery subtrees multiple exact rewriting no yes

and full that can be

XQuery modified

Granularity of the Mapping Assertions The XQuery view specifications used in both works
require the expressive power of the nested GLAV mapping assertions. Based on granularity,
these mapping assertions transfer subtrees and scalar values and are able to modify the subtrees
by renaming the elements and adding new ones. Since our XML GLAV mapping formalism
is unable to express modification of the subtrees, we are unable to represent the nested GLAV
mapping assertions, and hence the XQuery views using it.

Interpretation of the Mapping Assertions The XQuery views in [37] are interpreted under
the sound semantics. On the contrary, in [40], the views are interpreted under the exact seman-
tics.

Type of Query Answering The two works that we summarize here perform query answering
by rewriting an XQuery query using a set of XQuery views. They propose original rewriting
algorithms, which will be explained in more detail in the rest of the section.

Number of Sources Both approaches on XQuery query rewriting using XQuery views allow
multiple views to be taken into account by the respective rewriting algorithms. Moreover, [37]
addresses the problem of computing minimal rewritings in the sense that the authors are inter-
ested in computing the rewriting that uses the minimal number of views, and is equivalent to the
original query.
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Use of Constraints In these two works on query rewriting using views for XQuery, no con-
straints are taken into account.

Preservation of Order The query rewriting algorithm in [37] does not consider the sibling
order when computing a rewriting of the original query. On the other hand, in [40], a query
rewriting setting where the sibling order is respected can be supported. As we will see in the next
paragraph, the query rewriting algorithm from [40] involves finding an isomorphism between the
return trees of the original query and the rewriting. The isomorphism can be either ordered (if
the sibling ordering is preserved) or unordered (if the sibling ordering is not taken into account),
and hence there may exist either ordered or unordered rewritings.

Description of the Query Answering Algorithms Here we provide more details on the two
original algorithms for XQuery query rewriting using XQuery views.

[37] The goal of [37] is to obtain minimal equivalent rewritings, which is achieved by an itera-
tive bottom-up approach for query rewriting, which at each step creates a partial rewriting
by combining a smaller rewriting with a previously unused view. A minimal rewriting of
a query Q using views V is defined as a rewriting Q′ s.t. no other rewriting of Q using V
uses a proper subset of the views referenced inQ′. As previously mentioned, the fragment
of XQuery used in this work allows view joins, which is not possible with the rewriting
algorithm from [40]. This is due to the possibility of storing and returning node identi-
fiers. The rewriting algorithm has exponential complexity in the total size of the query
and the views, which the authors show that in practice is not a problem through a set of
experiments.

[40] In [40] the authors propose an approach for rewriting an XQuery query Q given a set of
XQuery views V , following the definition from the relational case presented in [29]. The
presented algorithm is sound for full XQuery queries and views, and completeness of the
algorithm is guaranteed for queries from the OptXQuery fragment. When rewriting an
OptXQuery query using views defined in the same language, an equivalent rewriting is
obtained, whenever one exists. In an XQuery context, the obtained rewriting is equivalent
to the original query if the trees that they return are isomorphic.

Conclusion In this section we have seen two approaches that do not fit our comparison frame-
work. This is because they use query and mapping languages that have a higher expressive
power than the extended tree patterns. These two works focus on finding equivalent rewritings
for queries in XQuery and some of its fragments. One of the challenges that remain as future
work is to try to adapt and add new functionalities in our framework, and thus make it able to
express mapping assertions of this kind.

5.3 Summary

So far, we have seen several approaches that deal with either XML data integration, data ex-
change or query rewriting using views. Here, we summarize the similarities and differences
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between the approaches.

Most of the works we have considered in this section directed their attention to adapting the
scenario of answering queries using views as defined in [29] to the XML setting. A survey on
the issues of defining views in the XML context, alongside informal motivations behind their
usability are presented in [1]. Key issues in answering queries using views include: selecting
which views are going to be incorporated in the rewriting, actually performing the rewriting
of the original query and obtaining the answer of the rewriting using the (materialized) views.
The work presented in [44] deals with the view selection process in query rewriting. The authors
propose an approach for view selection based on nondeterministic finite automata when multiple
views are available. This approach efficiently filters out those views that are not significant for
the query rewriting, and based on its output, a minimal view subset is determined. Based on this
minimal subset of views, a rewriting of the query is obtained. Other works [7, 8, 37, 40, 54] have
proposed algorithms for producing equivalent rewritings of XML queries using views, while [33]
has proposed an algorithm for producing a maximally contained rewriting. Table 5.4 summarizes
the works on query rewriting using views in the XML case, by showing which problems are
tackled by each work and the results of the corresponding solutions that they propose.

As we have already argued, we are able to express the various approaches using the XML
mapping assertion formalisms introduced in Section 3.2. We also proposed different criteria
based on which we can compare separate works. Since, in general, we have shown that schema
mappings play a crucial role in XML data management, an important feature of each approach
is the type of schema mappings used. The expressive power of a mapping language is a crucial
characteristic of each of the approaches, and it can be used for determining the performance of
the query answering algorithms.

First and foremost, the question that arises is what kind of values are transferred using such
schema mappings. One type of schema mappings consists of mapping assertions that extract
tuples of atomic (string) values from the sources and fit them correspondingly in the global
schema. Such schema mapping assertions are used in [9, 12, 56]. As we have already outlined,
the mapping assertions in [9, 12] are quite similar. In fact, the ones in [9] build upon the ones in
[12]. They are based on a restriction imposed on the XML document, stating that the only place
where atomic values can be stored is as attribute values. This yields that they transfer tuples of
attribute values from the source to the target schema. Although they use quite a different syntax,
the schema mappings in [56] in fact are very similar to the ones in [9, 12]. In [56], the assumption
that the atomic values are stored in the attributes is dropped, hence the schema mappings extract
values stored at text nodes. Another type of schema mappings considers mapping assertions that
copy a structure of a node along with the values stored in its descendants. This type of mappings
corresponds to the setting of answering XPath queries using XPath views. In this case, only one
tree (rooted at the output node of the XPath expression) is transferred by the mapping assertion.
This tree remains intact, in the sense that it is not allowed to neither change the structure of
the subtree nor to rename its elements. The schema mappings in the XPath query rewriting
setting are slightly more expressive than the schema mappings which copy tuples of atomic
values. The most expressive kind of schema mappings that we have come across with are the
ones that transfer (single or multiple) trees and support modification of the structure, renaming
of the elements, as well as introducing new element names. This kind of schema mapping
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assertions are used in XQuery query rewriting using XQuery views. We have previously seen
that our XML GLAV mapping assertion formalism is not expressive enough to capture this kind
of schema mappings. One of the reasons for this is that the XQuery language is procedural,
while our extended tree patterns are declarative. Moreover, the approaches that we discussed,
such as [40], allow definition of nested views and rewriting of nested queries. This is yet another
construct which is common in the XQuery language, but cannot be expressed in the language of
the extended tree patterns.

The schema mappings can further be used to differentiate the approaches, by taking into
account the semantics of the mapping assertions, i.e. whether the mapping assertions are in-
terpreted as sound or exact. In other words, sound semantics corresponds to the open world
assumption (OWA), while the exact semantics to the closed world assumption (CWA). Most of
the works that we have considered so far implicitly use sound mapping assertions. However, in
[41], explicit use of sound, exact and mixed mapping assertions is studied. In [40], equivalent
rewriting of nested XQuery queries using XQuery views under the exact semantics is examined.

The approaches that we mention can also be classified by the type of query answering they
perform. Namely, we can distinguish two types of query answering: (1) query answering by
reformulation of the query (rewriting); or (2) query answering over a materialized target in-
stance. As the name suggests, the approaches on XML query rewriting using views perform
query answering by reformulation. Moreover, the data integration system in [56] also reformu-
lates queries into the vocabulary of the sources. On the contrary, the data integration system
proposed in [41] does not reformulate the queries, and performs query answering over a ma-
terialized instance that conforms to the global schema, in particular a global DTD. The works
on XML data exchange also answer queries by materializing a target instance. This is due to
the fact that the main task in XML data exchange is to transform a source XML document into
a new target document conforming to a target DTD, by materializing the corresponding target
document.

Another criterion that can be used to characterize the works that have been discussed so
far, is the question of whether a single source or multiple sources are used as input to the cor-
responding problems addressed in each of the works. As sources, we take into account either
source XML documents when dealing with XML data integration or exchange, or views when
discussing XML query rewriting using views. Following the definition of XML data exchange,
we classify [9, 12] as works where a single source is used. Naturally, in data exchange, the
source document is transformed into a target one, using the schema mappings. Other works that
consider XPath query rewriting using views also use a single view (i.e. a source) when comput-
ing a compensation pattern. Such works include [7, 33, 54]. On the other hand, there are works
focused on XPath query rewriting that consider multiple views (sources), such as [8, 13]. The
two works on XQuery query rewriting that we have mentioned ([37, 40]) also consider multiple
views. Furthermore, the XML data integration systems in [41, 56] by definition support multi-
ple source documents. Consequently, the answers of the queries posed over the data integration
systems are coming from multiple different XML documents.

An important feature when addressing XML data management problems is the usage of
constraints. Some works consider constraints as additional input of the corresponding problems,
while others do not. The latter include [7, 8, 12, 37, 40, 54]. Among the works that consider
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constraints, we can further specialize by considering the types of constraints used. The most
common constraints applicable in XML data management tasks are constraints imposed by the
definition of the structure of the XML documents (i.e. by the DTDs), as well as integrity con-
straints. [9, 12] use constraints that come from the definition of the structure of a document
using a DTD. The data integration systems in [41, 56] consider both DTDs and integrity con-
straints. In [41] both key and foreign key constraints are taken into account, while [56] define
target constraints, which resemble key constraints. In [33], two flavors of an XPath query rewrit-
ing algorithm are proposed: one without and one with the presence of constraints imposed by a
DTD.

By definition, XML documents can be seen as ordered1 labeled trees. However, in some
cases when dealing with XML data it is useful to disregard the order, and hence not to allow
horizontal navigation through the document. From the aforementioned approaches, the ones
that disregard the order in the XML documents include [7, 8, 12, 37, 41, 54, 56]. In [40] the
produced equivalent rewritings of XQuery queries using views can either respect the order of
the document, or not take it into account, if the keyword unordered is present in the query.
[33] generates maximally contained rewritings of XPath queries using XPath views without
violation of the element order. In [9], schema mappings that perform horizontal navigation are
proposed. However, it has been shown that query answering in a setting where the schema
mapping assertions perform next-sibling navigation is intractable. Thus, in order to achieve
tractability, one has to restrict the query answering setting, and not take horizontal navigation
into account.

Table 5.5: Overview of works, and the mapping and query languages used in them

work mapping language granularity type query language

[7] XP{/,//,[],∗} subtrees LAV XP{/,//,[],∗}

[8] XP{/,//,∗} subtrees LAV XP{/,//,∗}

[9] SM(⇓) atomic values GLAV CT Q(⇓,=)

[12] SM(⇓,⇒,Fun,∼) atomic values GLAV UCT Q(⇓,⇒,=)

[33] XP{/,//,[]} subtrees LAV XP{/,//,[]}

[37] XQuery fragment subtrees that can be modified nested GLAV XQuery fragment

[40] OptXQuery subtrees that can be modified nested GLAV OptXQuery

[41] ps-queries subtrees LAV ps-queries

[54] XP{/,//,[],∗} subtrees LAV XP{/,//,[],∗}

[56] SM(↓,=) atomic values GLAV XQuery fragment

So far, we have mainly focused on pointing out the features of the works that use XML
mapping assertions in their attempts to adapt various well known database problems into the

1When speaking about order, we consider the sibling order between the nodes appearing on the same level in the
XML tree.
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XML setting. We concentrated on those approaches whose schema mapping assertions transfer
either atomic values or subtrees w.r.t. the granularity. We only briefly mentioned two approaches
whose schema mapping assertions are the most expressive ones w.r.t. the granularity, since their
expressive power goes beyond the one of the XML mapping assertions defined in our framework.
Table 5.5 summarizes the type of mapping assertions and query languages used in the different
approaches that we consider. From the works that we studied in this thesis, we can draw the
following conclusions about the granularity of the mapping assertions:

• the works that use XML LAV mapping assertions based on EP{/,//,[],∗} transfer subtrees
and have exactly one output variable;

• the works that use XML GLAV mapping assertions based on EP{/,//,[],∗} transfer atomic
values and have multiple output variables;

• none of the works that we consider utilizes XML LAV mapping assertions based on
EP{/,//,[],∗} that transfer atomic values or XML GLAV mapping assertions based on
EP{/,//,[],∗} that transfer subtrees;

• the XML LAV mapping assertions based on ps-queries can only transfer subtrees. Tuples
of atomic values cannot be transferred by ps-queries.

Considering the problems on which the approaches are concentrated, it is interesting to men-
tion which problems have been considered for which types of XML mapping assertions, and to
indicate those that still remain as open questions.

The solved problems include:

• computation of equivalent and maximally contained rewritings w.r.t. XML LAV mapping
assertions based on EP{/,//,[],∗} that transfer subtrees. These problems are addressed in
the works on XPath query rewriting using XPath views;

• computation of equivalent rewritings w.r.t. XML GLAV mapping assertions based on
EP{/,//,[],∗} that transfer atomic values. This problem is addressed in [56];

• computation of certain answers to queries in (U)CT Q w.r.t. XML GLAV mapping asser-
tions based on EP{/,//,[],∗} that transfer atomic values;

• computation of certain answers to ps-queries, i.e. computation of a certain prefix w.r.t.
XML LAV mapping assertions based on ps-queries.

To the best of our knowledge, XML LAV and XML GLAV mapping assertions based on
EP{/,//,[],∗} that transfer atomic values and subtrees respectively have not been used. Hence,
we identify the problems of finding certain answers, equivalent rewriting and maximally con-
tained rewriting of a query w.r.t. a set of mapping assertionsM as open problems for these types
of mapping assertions. Also, computing certain answers of queries w.r.t. XML LAV mapping as-
sertions based on EP{/,//,[],∗} is a problem that has not been considered yet. Moreover, the prob-
lems of computing an equivalent and maximally contained rewriting w.r.t. XML LAV mapping
assertions based on ps-queries have not been solved either. Table 5.6 gives an overview of the
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problems of query answering under a set of mapping assertionsM that contains different types
of mapping assertions. In the column labeled CAtype

M (q, a), type is one of {tuple, ps, tree} and
a one of {t, p, π} respectively, depending on the expressive power of q. In the columns labeled
ERL1,L2M (q) and MCRL1,L2M (q, a), L1,L2 are one of {XP,XP1,UXP1,XP2, CQ,XQ,OptXQ}2,
depending on the approach.

Table 5.6: Overview of the problems addressed in the works that we consider

type of assertions inM
problem

CAtype
M (q, a) ERL1,L2

M (q) MCRL1,L2

M (q)

XML LAV assertions based on
open

considered in considered in
EP{/,//,[],∗} that [7, 8, 54] [33]
transfer subtrees

XML LAV assertions based on
open open openEP{/,//,[],∗} that

transfer atomic values

XML GLAV assertions based on
open open openEP{/,//,[],∗} that

transfer subtrees

XML GLAV assertions based on considered in considered in
openEP{/,//,[],∗} that [9, 12] [56]

transfer atomic values

XML LAV assertions based on considered in
open openps-queries [41]

2For the definition of the shorthand notations, see Section 5.2, Section 5.2 and Section 5.2.

72



CHAPTER 6
Conclusion

In this thesis, we have focused on uniformly representing different solutions to a multitude of
data management problems, addressed in the context of XML. We have overviewed works on
XML data integration, XML data exchange and answering XML queries using XML views.
We have illustrated similarities and differences between the works by introducing a unified
framework for comparing the different approaches. This framework incorporates a new query
language for XML trees, called extended tree patterns, that successfully captures the expres-
sive power of several query languages that have been extensively used for querying XML trees
throughout the literature on XML data management. We have introduced translation algorithms
between these query formalisms and our formalism of extended tree patterns. Moreover, based
on the extended tree patterns, we have defined schema mapping assertions for XML, that can be
either LAV or GLAV mapping assertions. The translation algorithms, together with the mapping
assertions for XML based on extended tree patterns, have allowed us to make approaches that
tackle different problems using different query languages comparable. Furthermore, we have
proposed a classification of the existing works in three different classes inside which we addi-
tionally characterize each approach by comparing them along several dimensions. By using our
unified framework, we have been able to identify different open problems in XML data man-
agement. We have seen that there is still plenty of space for examining different variants of the
problems connected with XML data management.

What remains as future work is to try to further extend and develop the unified framework
we have proposed. Namely, it is of great interest to enhance the extended tree patterns and
the XML mapping assertions based on them in order to enable them to capture the expressive
power of the mapping assertions used in the context of XQuery query rewriting using XQuery
views. Another interesting direction for future research is to propose a way of answering more
expressive queries such as XQuery using mapping assertions based on extended tree patterns.
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