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Abstract

This thesis deals with the interplay between people and nature, especially with the mu-
tual dependences and implications of people and rivers. Using a hypothetical city, which
settles near a river due to economic advantages, a mathematical model is developed. This
model is used to constitute the dynamics in this sociohydrological interplay.

The following work consists of three parts. Firstly, we look at a model of Di Baldas-
sarre et al. in Socio-hydrology: conceptualising human-flood interactions, of which we
provide an overview and reproduce the simulations. The model contains the damage
due to flooding and the distance to the river. Additionally, it deals with the height of
levees, which people can build, and the psychological aspect of flooding events, which is
incorporated in the awareness of flood risk.

Based on this work, the second part describes the development of an optimal control
model with two control and three state variables. The distance to the river, the awareness
of floods, and the height of the levees are used as state variables. The control variables
are the additional height of the levees and a parameter measuring the risk preference of
people living in this community. We give different specifications of the functional forms
and dynamics, and step by step we try to improve the model and make it more realistic.

Moreover, some preliminary steps to optimal control theory are taken. We look at a
situation, where a social planner has to choose constant control variables over a finite
time horizon. Additionally, we give an overview, on how this decision depends on initial
conditions. Finally, we consider relative differences of the objective function, if not the
best constant control is chosen.



Zusammenfassung

Die vorliegende Diplomarbeit beschäftigt sich mit dem Zusammenspiel von Mensch und
Natur, im speziellen mit den gegenseitigen Abhängigkeiten und Einflüssen der Faktoren
Mensch und Wasser. Anhand einer fiktiven Stadt, welche sich aufgrund ökonomischer
Vorteile in der Nähe eines Flusses ansiedelt, wird ein mathematisches Modell entwickelt.
Dieses soll dazu dienen, die dynamischen Entwicklungen in diesem sogenannten soziohy-
drologischen Zusammenspiel möglichst gut abzubilden.

Die Arbeit besteht aus drei Teilen. Als erster Schritt wird ein Modell von Di Bal-
dassarre et al. aus Socio-hydrology: conceptualising human-flood interactions erläutert,
und die Simulationen aus dieser Studie werden reproduziert. Zu diesem Zweck werden
Schäden durch Hochwasser modelliert sowie die Reaktion der Bewohner, die Hochwasser-
schutz bauen und erhöhen können. Die Stadt hat die Möglichkeit, die Distanz zum Fluss
zu verändern, um den Trade-Off zwischen ökonomischen Vorteilen und dem monetären
Nachteil aufgrund der Schäden durch Hochwasser entsprechend zu gestalten. Schlussendlich
modellieren die Autoren hier auch eine psychologische Komponente, welche in der Erin-
nerung an vergangene Überflutungen enthalten ist.

Aufbauend auf diesem Modell behandelt der zweite Teil der vorliegenden Diplomarbeit
die Entwicklung eines optimalen Kontrollmodells. Als Zustandsvariablen dienen die Dis-
tanz zum Fluss, die Erinnerung an vergangene Schäden und die Höhe der Dämme. Die
beiden Kontrollen sind die Erhöhung der Dämme und ein Parameter, der die Risiko-
präferenz dieser Stadt misst. Dementsprechend handelt es sich um ein Modell mit zwei
Kontrollvariablen und drei Zustandsvariablen. Es werden verschiedene Ansätze für die
Dynamiken und funktionalen Zusammenhänge entwickelt und schrittweise verbessert.

Der letzte Teil der Diplomarbeit stellt eine Vorstufe zur optimalen Kontrolltheorie dar.
Es wird die beste konstante Kontrolle für einen endlichen Zeithorizont bestimmt. Da-
rauf aufbauend wird einerseits dargestellt, wie diese Entscheidungen von der Wahl der
Startwerte abhängen. Anderseits geben wir einen Überblick, wie stark sich Unterschiede
zum optimalen Zielfunktionswert ergeben, wenn man geringfügige Abweichungen von der
optimalen Kontrolle zulässt.
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Chapter 1

Introduction

People have always tried to settle along rivers. There is a great number of examples of
this observed behaviour. One of the best is the river Nile in Egypt, which you can see
in Figure (1.1). Obviously, there is great attraction to settle along the river. A second
example is the region of former Mesopotamia, where ancient cities like Babylon arose
long time ago in the area of the Tigris-Euphrates river system.

Figure 1.1: The river Nile at night with Cairo at the top, see
http://commons.wikimedia.org/wiki/File:Nile_River_Delta_at_Night.JPG
(last accessed on 7 November 2014)

One advantage of this behaviour is the possibility to transport produced goods and com-
modities on the water. It also influences agriculture in a good way, because the soil close
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Figure 1.2: Levees for high water levels in Grein (Austria) in 2013, see
http://images.derstandard.at/t/12/2013/06/05/1369406555724-wall.jpg
(last accessed on 7 November 2014)

to rivers tends to be more fertile. However, living in a floodplain implies the disadvantage
of more or less regular flooding events, which can bring great or even total destruction of
the infrastructure. So people always have to live with the trade-off between taking the
risk of flooding and the will to settle near rivers for economic reasons. A possible response
to lower the risk is the construction of levees, which entails negative effects as well. First
of all, there are costs to build them, but more important, they make flooding events rarer,
but in case of such an event more damage is caused. There are even countries, which
remove at least parts of levees because of this situation.

An Austrian example can be seen in Figure (1.2), where safety can be guaranteed up
to a pretty high level of water. Fortunately, in this case of 2013 the river did not get over
this threshold level, but the destruction would have been enormous.

In this thesis, we want to incorporate these dynamics and dependences into a mathe-
matical model. Di Baldassarre et al. present such a model in [1], which we summarize in
Chapter 2. Based on their approach, in Chapter 3 we develop an optimal control model,
which we will gradually improve in Chapter 4 in order to increase the closeness to reality.
In Chapter 5 we give some preliminary steps to optimal control. The final Chapter 6
concludes by summarizing the obtained results and suggesting possible extensions of this
thesis.
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Chapter 2

The Model of Di Baldassarre et al.

2.1 Introduction

In the past, much effort has been put on the study of humans’ reaction to flooding events,
for example in [2] or even going back to 1945 in [3]. Scientists have gained good insights
into the impact of these human interventions on the frequency and magnitude of flood-
ing, as documented in [4], [5], and in [6]. Only very recently, M. Sivapalan et al. created
the term sociohydrology in [7], which establishes a link between the mutual influences
between flooding and socioeconomic conditions. In what follows, we will take a closer
look at the dynamics of this socio-hydrological interplay between people and nature and
how Di Baldassarre et al. investigated them mathematically in [1].

The idea is to get insights by the use of a hypothetical community, which settles down
close to a river realizing economic benefits due to the location until a first flooding event
occurs. At that moment, a certain awareness of the the risk of flooding emerges, people
move the centre of the settlement away from the river and build levees, as illustrated
in Figure (2.1). A greater distance to the river lowers the magnitude of destruction in
future flooding events, the higher levees lead to a decreased frequency of such events,
but with more damage once a flooding occurs. The community suffers from negative
economic effects because of the greater distance, but also due to the costs caused by the
construction of levees. Over time the awareness declines because people forget about past
flooding events. Overall, we have many impacts on and interplay between the different
parameters and variables, which are presented in a mathematical way in what follows.
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Figure 2.1: Levee building (from [8])

2.2 The Model

In the model of Di Baldassarre et al. there are five main variables, which can also be seen
in the overview in Figure (2.3) on Page 7. There is the distance between the settlement
and the river D, the size or wealth of the hypothetical community G, the height of the
levees H, and the awareness of flood risk, M . In the centre of the figure, as well as
of the model, there is the intensity of flooding F . The arrows in the figure show the
influences of these variables on each other. The definitions and dynamics of the model in
the mathematical sense will be outlined first, and then each of the arrows in Figure (2.3)
will be discussed in detail.

The proportion of the damage due to flooding is defined as

F =

1− e−
W+ξHH−
αHD if W + ξHH− > H− ,

0 otherwise ,
(2.1)

which takes values between 0 (no destruction) and 1 (total destruction). The water level
W is exogenously given as time series in this model. In general, we will denote variables
with a ’–’ as subscript as the values immediately before the flooding event. The height
of the levees influences the actual water level W + ξHH, where ξH indicates the pro-
portion of additional water levels because of the levees. As you can see in Figure (2.2),
the river is wedged between the levees and therefore gets higher, which describes this
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Figure 2.2: Additional height due to levees (from [8])

assumption technically. Finally, we have a topographical parameter αH , which measures
the decrease in damage with increasing distance. There is no damage, if the actual water
level W + ξHH− is lower than the height of the levees H−.

Now the reaction of the community in the case of flooding is investigated. Let

R =


εT (W + ξHH− −H−) if (F > 0) ∧ (FG− > γER

√
G−)

∧(G− − FG− > γER
√
G−) ,

0 otherwise

(2.2)

denote the additional height of levees. It depends on how much the real water was above
the levees, which is the difference between W + ξHH− and H−. For example, in [9] it is
shown that people take into account some safety measures, described by a safety factor
εT , which we set to 1.1.

Equation (2.2) states that we assume that people only react if three constraints are
fulfilled. First, there actually has to be damage F > 0 because of a flooding event. Next,
in FG− > γER

√
G− the right-hand side describes the costs to build levees. If the size

or wealth of the economy is G, then
√
G is used as measure for the length of the border

of this community. So R
√
G− gives the vertical area of additional levees. We assume

costs of γE for one unit of this area. Since F describes the proportional damage, the
term FG− denotes the damage in absolute terms due to flooding. So people only build
new levees if the total construction costs are lower than the damage FG− of the flooding
event. Finally, the third condition G− − FG− > γER

√
G− indicates the fact that it has

to be financially feasible for the community to build higher levees, where G− − FG− is
the remaining wealth after the flooding event.

The next variable in the model to be discussed is the awareness of flood risk M . The

5



main influencing factor for awareness is the shock

S =

αSF if R > 0 ,

F otherwise ,
(2.3)

which people suffer from in the case of flooding. It is assumed that if additional levees are
built, the shock is dampened with a factor αS between 0, where the shock is completely
removed due to building new levees, and 1, where the shock is not reduced at all. In
case of no additional levees, people suffer from psychological shock of the full size of the
damage F .

The dynamics of the system are described in form of four differential equations:

Ġ(t) = ρE

(
1− D(t)

λE

)
G(t)−∆(γ(t))

(
F (t)G(t) + γER(t)

√
G(t)

)
, (2.4a)

Ḋ(t) =
(
M(t)− D(t)

λP

)
ϕP√
G(t)

, (2.4b)

Ḣ(t) = ∆(γ(t))R(t)− κTH(t) , (2.4c)

Ṁ(t) = ∆(γ(t))S(t)− µSM(t) , (2.4d)

where ∆(γ(t)) is 0 in times of no flooding and 1 when a flooding event happens. Note
that from now on the time argument t will often be omitted for the sake of convenience.

The dynamics of G (describing the economy) in (2.4a) depends on a maximum rela-
tive growth rate ρE, which is lowered by the factor

(
1− D

λE

)
, representing the influence

of the distance on economic growth. There is a critical distance λE where the growth
is exactly 0. Moving further away, even negative growth can occur. This continuous
dynamic evolution is instantaneously reduced by FG + γER

√
G in the case of flooding,

which denotes the decline of G because of the damage on the one hand, and the costs to
build the higher levees on the other hand.

In (2.4b) the evolution of D (describing the politics) positively depends on the awareness
of the risk of flood M . Feeling more unsafe, represented by a higher value of M , people
move further away from the river. However, they are also aware of the economic benefits
from the river, which is contained in D

λP
. The parameter λP can be seen as perception of

risk, as it describes people’s attitude in the trade-off between gaining economic benefits
and avoiding damage. The remaining parameter ϕP is a technical one to incorporate how
fast new houses can be built. Finally,

√
G in the denominator should represent the fact
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Figure 2.3: Loop diagram of the dynamics of the model in [1]

that a big economy takes longer time to be moved than a smaller one.

The height H (describing the technology) in (2.4c) is continuously lowered through decay,
represented by the rate of decay κT . In case of flooding, the additional height R is added.
In (2.4d), the awareness of risk M (describing the society) is on the one hand lowered by
the memory loss rate µS, but on the other hand instantaneously soared in the amount of
the shock S in case of a flooding event.

Having presented all variables and dynamics we now can obtain a further understanding
referring to Figure (2.3). Firstly, the solid thin arrows will be explained. Distance D has
two outgoing arrows with ’–’. One of them goes to size G, incorporating the negative
connection between distance and economic growth. This can be seen in the differential
equation in (2.4a). The other one goes to flooding F , because we assumed lower damage
with greater distance in (2.1). The arrow from awareness M to distance D comes from
(2.4b), representing the willingness to move further away with higher awareness of risk.
Finally, there is one arrow with ′+′ from height H of the levees to flooding F , because
higher levees imply higher damage in the case of flooding.

The bold solid arrows show the effects, which occur instantaneously in case of flood-
ing. The three arrows pointing away from F illustrate that the damage through flooding
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lowers the size or wealth G, but raises both the awareness M and the height of levees H.
These three effects are all incorporated in the differential equations (2.4a), (2.4c), and
(2.4d). A greater level of H lowers the wealth of the economy G because of the costs due
to R, but it has also a reducing effect on the awareness M due to the diminished shock
S.

Finally, it is harder to settle away a big community than a small one. Therefore we
have a dashed arrow from size G to distance D, which can also be seen in (2.4b). A
greater size of the wealth influences the height as well, because costs of R depend on
G, see (2.2). The last arrow, the dashed one from height to flooding, represents, as seen
in the definition of F in (2.1), that we have less flooding events, when the levees are higher.

Summing up, the model of Di Baldassare et al. in [1] contains the following functions
and dynamics:

F =

1− e−
W+ξHH−
αHD if W + ξHH− > H− ,

0 otherwise ,

R =


εT (W + ξHH− −H−) if (F > 0) ∧ (FG− > γER

√
G−)

∧(G− − FG− > γER
√
G−) ,

0 otherwise ,

S =

αSF if R > 0 ,

F otherwise ,

Ġ = ρE

(
1− D

λE

)
G−∆(γ(t))

(
FG+ γER

√
G
)
,

Ḋ =
(
M − D

λP

)
ϕP√
G
,

Ḣ = ∆(γ(t))R− κTH ,

Ṁ = ∆(γ(t))S − µSM .

2.3 Simulations

In [1] the authors present a few simulations to illustrate the dynamics and outcome
of their model. For this purpose they consider a hypothetical community called Wet-
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Town which settles near the river WildWaters. At the beginning, the town has a size of
G(0) = 10000 m2 and is settled D(0) = 2000 m away from the river. No experience of
flooding events has been gained so far, nor have levees been built, which impliesM(0) = 0
and H(0) = 0.

We look at both a situation with fast decay of levees (κT = 0.003) and slow decay
(κT = 0.0003). In each of the two cases we use three values for γE, which incorporate
different cost scenarios for the building of levees. All the parameters are summarized in
Table (2.1). The simulations were made with the software R for statistical computing (see
http://www.r-project.org for further information), which we reproduced with MATLAB.
The data-set for the water levelsW can be found in Table (2.2) and the results are shown
in Figure (2.4). In Figure (2.4a) the results for low decay are shown and in Figure (2.4b)
those for high decay, respectively. In each we present the three cost scenarios γE = 0.5
(red), γE = 50 (blue), and γE = 5000 (green).

Table 2.1: Model parameters in [1]

Parameter Value
ζH 0.5
αH 0.01
ρE 0.02
γE 0.5, 50, 5000
λP 12000
ϕP 10000
εT 1.1
κT 0.0003, 0.003
αS 0.5
µS 0.05
λE 5000

The six figures contain the water levels W , the height of the levees H, the distance D,
the size G, the intensity of flooding F , and finally the awareness of risk M . The data-set
contains 40 flooding events. Obviously at the given points of time we see the instanta-
neous changes in the graphs. Concerning the cost scenarios, in both graphs one can find
the same behaviour. When the costs for levees are small (red), from the beginning on
people start to build levees and settle closer to the river. The size of the community G
increases continuously during periods with no flooding, but it is disturbed by the sudden
setbacks due to flooding events. Because of the high levees, the town only suffers from a
few flooding events, and therefore the awareness of riskM stays at a fairly moderate level.

With increased costs (blue), the starting point for building levees occurs later. This is

9



(a) The case of κT = 0.0003

(b) The case of κT = 0.003

Figure 2.4: The simulations in [1] with data set Wevents.txt
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Table 2.2: Data-set Wevents.txt

t 10 60 110 160 210
W (t) 4.4513 4.2012 3.2881 9.1504 7.0966
t 260 310 360 410 460
W (t) 5.4519 3.1900 8.4174 5.1970 6.5924
t 510 560 610 660 710
W (t) 5.7604 5.9216 5.9977 2.2996 3.9348
t 760 810 860 910 960
W (t) 2.8799 8.4838 4.2616 6.5402 3.3003
t 1010 1060 1110 1160 1210
W (t) 8.8951 4.3969 4.9934 4.3163 7.6233
t 1260 1310 1360 1410 1460
W (t) 2.9636 6.0565 5.3243 1.9834 0.4061
t 1510 1560 1610 1660 1710
W (t) 7.8053 6.8754 7.1046 6.0855 7.8367
t 1760 1810 1860 1910 1960
W (t) 2.4323 3.1908 10.3746 5.2563 2.8682

the result from the fact that people cannot afford levees earlier. The decrease in distance
because of the higher security due to levees starts later and it converges to a comparably
higher value. Wealth G increases at a slower rate with more flooding events than in the
case of lower costs. Consequently, M rises more often.

In the last case (green), where γE = 5000, we assume extremely high costs to build
levees. So people do not even start to build them, therefore F > 0 holds in every single
point covered by the data set. As a consequence, D converges to a distance of about
1500 m (compared to 1200 m and 700 m in the other cases with relatively lower costs).
When we look at the size G, there is no unique effect due to higher costs. A possible
explanation is that the negative effect by the greater distance is compensated by the sav-
ings of the absence of levees. This simulation illustrates the assumption that lower levees
(blue) or even no levees (green) lead to flooding more often, but with lower intensity than
in the red case of high levees.

In Figure (2.4b), where greater decay of the levees is assumed, we can gain two fur-
ther insights. Firstly, levees are not built up to such a high level as in Figure (2.4a) for a
smaller decay. The evolution of G in the high-cost scenario seems to be relatively better
compared to the other cost-scenarios. One reason could be that with the higher decay of
the levees it becomes even more expensive to keep them at a certain height. So the effect
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of the savings due to absence of levees is higher than before.
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Chapter 3

An Optimal Control Model

3.1 Introduction

The model presented in the previous chapter is the basis for an optimization model.
Different to Di Baldassarre et al. in [1], where W enters the model as an input factor in
a stochastic way, in the following, the water levels will be modelled as a deterministic
function. Some of the other functions and dynamics will be rather similar to that in [1].
Where mathematically necessary, new variables and functions will be introduced. The
goal of this chapter is to build up an optimal control problem, where the stream of the
sum of damages and the costs of building levees is minimized over some planning horizon.
For that purpose, two control variables will be used. Firstly, it is assumed that people are
able to choose the additional height of levees, which is defined as v. As a second control
variable we use the perception of risk λP in (2.4b), in the following denoted by u.

3.2 The Model

3.2.1 Water Levels

Let W be the exogenously given fluctuating water levels that are assumed to follow the
deterministic time-dependent function

W (t) = γ1 sin2(ktπ) + γ2 . (3.1)

The period length of the fluctuations is described by k, the minimum water level is γ2,
and the maximum level is γ1 + γ2. Two examples for this function are illustrated in
Figure (3.1).
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(a) (γ1, γ2) = (5, 5)

(b) (γ1, γ2) = (10, 0)

Figure 3.1: Water levels W (t) for k = 0.1, 0.2, 0.3 for two different sets of minimum and
maximum water levels
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3.2.2 Damage

Di Baldassarre et al. defined the damage in [1] by

F =

1− e−
W+ξHH−
αHD if W + ξHH− > H− ,

0 otherwise

with the height of the levees H− immediately before a flooding event and the distance
of the settlement to the river D (cf. (2.1)). The actual water level is W + ξHH− and
therefore higher than the water level W due to the presence of levees, where ξH is the
exacerbation parameter. The parameter αH measures the decrease in damage for increas-
ing distance. On the one hand, we want to maintain the fact that there is only damage
if W + ξHH− > H− holds. On the other hand, for the analysis afterwards continuity
and differentiability are required. So the idea is to define a continuous and differentiable
function which has its inflection point at (1 − ξH)H and is convex before and concave
after this inflection point.

We adopt the approach

f(x) = x2

ax2 + b

with the derivatives f ′(x) = 2bx
(ax2+b)2 and f ′′(x) = 2b(b−3ax2)

(ax2+b)3 , implying f(0) = f ′(0) = 0.
For the (positive) inflection point x̃ we conclude that

f ′′(x̃) = 0⇔ x̃ =
√
b

3a .

This implies f(x̃) = 1
4a , f

′(x̃) = 3
√

3
8
√
ab
, and limx→∞ f(x) = 1

a
.

With this approach, f(x) is a continuous S-shaped function, which convexly approaches
its inflection point and then converges concavely to its asymptote at 1

a
. Keeping in mind

the fact that (1 − ξH)H should be the inflection point,
√

b
3a = (1 − ξH)H has to hold,

which leads to b = 3a(1− ξH)2H2.

Inserting all this information into the initial approach for f(x) and renaming the variables,
the result is

F̃ (W,H) = W 2

aW 2 + b
= W 2

a [W 2 + 3(1− ξH)2H2] .
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For simplicity, but also for the asymptote to be 1, we set a = 1. Assuming exponentially
decreasing damage F in distance D we define

F (W,H,D) = W 2

W 2 + 3 (1− ξH)2 H2
· exp (−αHD) , (3.2)

which is a both continuous and differentiable approximation for the damage function used
by Di Baldassarre et al. in [1]. We provide examples of F (W,H,D) expressing them as
functions of the water levels W in Figure (3.2) and of time t in Figure (3.3), for several
parameter sets.

3.2.3 Output

We define the output of the economy as

Y = (1− βF )
(
D

λE

)−αY
, (3.3)

which is qualitatively different to the formulation of [1]. While Di Baldassarre et al.
modelled the change of the size G by

Ġ = ρE

(
1− D

λE

)
G−∆(γ(t))

(
FG+ γER

√
G
)

in the form of a differential equation, see (2.4a), here we use a function for the output Y .
We assume that the distance D is the input factor for the production function and λE

measures the importance of the river for the economy. A higher λE, therefore, means that
the river is more important for the settlement than otherwise. Moreover, the production
is lowered due to the damages of flooding events, which is contained in the factor (1−βF ).
Here β is a parameter between 0 and 1, which describes the intensity of the influence of
flooding events on production. If the economy was more service-orientated, there would
be a lower β than for an economy which mainly produces, for example, agricultural goods.

3.2.4 Costs

We present three different specifications for the cost function. The first two are proposed
by Chahim et al. in [10], where the authors use an impulse control approach to dike
height optimization. Depending on the actual height h and the additional height v, an
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(a) H = 1

(b) H = 5

Figure 3.2: Damage F (W ) for (αH , ζH) = (0.01, 0.5) for H = 1 and H = 5 for different
values of D
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(a) (γ1, γ2, H) = (7, 3, 3)

(b) (γ1, γ2, H) = (10, 0, 10)

Figure 3.3: Damage F (t) for different sets of parameters
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Figure 3.4: Adding height v to the levees

exponential form

C1(h, v) =

(c0 + b0v)eao(h+v) for v > 0 ,

0 for v = 0
(3.4)

with positive constants a0, b0, c0, and quadratic costs in the form of

C2(h, v) =

a1(h+ v)2 + b1v + c1 for v > 0 ,

0 for v = 0
(3.5)

are considered, where again a1, b1, c1 are positive constants.

Later on, when we formulate the optimal control model where the costs are contained
in the objective function, we will better understand the disadvantage of these two for-
mulations because of the inherent discontinuity in v. Therefore we consider a third form
based on the geometrical representation in Figure (3.4).

Assuming that the costs are proportional to the cross sectional area of the levees, we
calculate the difference between the green trapezoid before and the red one after the
heightening of the levees. We assume that the angle α at the bottom and the length at
the top of the levees c stay constant because of technical issues. Focusing on the trian-
gles in the right corner of the two trapezoids, we get tan(α) = 2h1

a1−c and tan(α) = 2h2
a2−c ,
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respectively. As a result we obtain

a2 = (h1 + v)(a1 − c)
h1

+ c ,

a1 = 2h1

tan(α) + c .

The difference of the cross sectional areas, A1 and A2, used as a measure for the costs, is
then calculated by

A2 − A1 = (a2 + c)h2

2 − (a1 + c)h1

2

=

(
(h1+v)(a1−c)

h1
+ c+ c

)
(h1 + v)

2 − a1h1 + ch1

2

= (h1a1 − h1c+ va1 − cv + 2ch1)(h1 + v)− a1h
2
1 − ch2

1
2h1

= 1
2h1

(
2a1h1v + a1v

2 − cv2
)

=
(

2h1

tan(α) + c

)
v + v2

2h1

(
2h1

tan(α) + c− c
)

=
(

2h1

tan(α) + c

)
v + v2

tan(α) .

For convenience, we assume α = 45◦, which implies tan(α) = 1, which finally leads to the
cost function

C3(h, v) = 2hv + cv + v2 . (3.6)

Contrary to (3.4) and (3.5), this cost function is continuous and differentiable, which is
necessary for solving an optimal control problem.

3.2.5 Objective Function and Dynamics

Finally, we formulate an optimal control model by

min
u,v

r∞
0 e−rt (ρF (W,H,D) + C(H, v)) dt (3.7)

s.t. Ḋ =
(
M − D

u

)
ϕp√
Y
, (3.8)

Ṁ = αF − µMM , (3.9)

Ḣ = v − µHH . (3.10)

20



The objective function (3.7) contains the damage F (W,H,D) and the costs C(H, v) to
build new levees. Costs do not only depend on the additional height v, but also on the
actual height H. Technically, a bigger basement is needed for the levees if they already
have a greater height. Mathematically, not only ∂C(H,v)

∂v
> 0 but also ∂C(H,v)

∂H
> 0 holds.

The parameter ρ represents the weight of damage in the objective function, and finally
we use a discount rate r. People have to decide about risk-taking u and how much to
increase the height of the levees v to maximize the discounted present value of future
damage and costs.

Distance depends on the awareness of floods M , reduced by D
u
, where u is a control

parameter representing the risk attitude of society. A higher value of u implies less risk
taking of the economy, since the distance to the river will be reduced to a lesser extent.
With ϕP , we again include a technical parameter to measure how fast new houses can be
built. We also take into account that a larger economy is harder to move, so we have

√
Y

in the denominator. The change in memory or awareness M depends positively on the
damage F , where α is the same reducing parameter as in the shock function of [1], low-
ered by forgetting at the rate µM . Finally, the height H increases by the control variable
v, which is the additional height, and decreases by the decay rate µH , respectively.

3.3 Analytical Calculations in the Uncontrolled Model

3.3.1 Evolution of the State Variables

In this section we take a closer look at the system of differential equations (3.8)-(3.10),
which is given by

Ḋ =
(
M − D

u

)
ϕp√
Y
,

Ṁ = αF − µMM ,

Ḣ = v − µHH .

Taking into account the definitions of W , Y , and F , we obtain the system

Ḋ =
(
M − D

u

)
ϕp√[

1− β W 2

W 2+3(1−ξH)2H2 · exp (−αHD)
] (

D
λE

)−α ,
Ṁ = α

W 2

W 2 + 3 (1− ξH)2 H2
· exp (−αHD)− µMM ,

Ḣ = v − µHH .
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To get a first insight, we will consider the uncontrolled model. For that purpose, we
let the two control variables, namely the additional height of levees v and the social
risk parameter u, be exogenously given and constant, and we set the three differential
equations to zero to get equilibrium points. From the third equation we then easily get
H∗ = v

µH
, which we can insert into the other two equations. Since ϕP 6= 0, obviously

D = uM is necessary for Ḋ = 0 to hold. Putting all these expressions together into the
second equation, we get

0 = α
W 2

W 2 + 3 (1− ξH)2
(
v
µh

)2 · exp (−αHuM)− µMM .

It is important to notice that the water level W depends on time t. Hence, in general the
solutionM∗ will be no equilibrium point, because it fluctuates over time. We could speak
of an equilibrium function M∗(t), and since D∗(t) = uM∗(t), also D∗(t) will behave in a
similar manner.

Thus, in the uncontrolled model an equilibrium will be represented by a triple (D∗(t),M∗(t), H∗),
where H∗ is an equilibrium point and both D∗ andM∗ are some kind of equilibrium func-
tions. This behaviour can be seen in the simulations in the following section.

3.3.2 Possible Paths of the Height H

Now we look at Equation (3.10), which is the linear differential equation

Ḣ = v − µHH

with constant coefficients. Reformulating to Ḣ+µHH = v yields the standard form. The
general solution of the homogeneous equation and the particular integral are, respectively,

Hhom(t) = C · e−µH ·t, where C ∈ R+ ,

Hpart(t) = v

µH
,

where the latter is computed with the method of variation of parameters. Therefore the
general solution H(t) = Hhom(t) +Hpart(t), after inserting H(0) = H0, is

H(t) = v
µH

+
(
H0 − v

µH

)
e−µH ·t .
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Figure 3.5: The evolution of H(t)

In general, H(t) converges to v
µH

, and there are three cases for the evolution of H(t):

H0 >
v

µH
⇒ exponentially decreasing to v

µH
,

H0 = v

µH
⇒ constant at v

µH
,

H0 <
v

µH
⇒ exponentially increasing to v

µH
.

Graphical presentations of these functions with v = 0.015 and µH = 0.003 (these values
are also used for simulations in the following chapters) are given in Figure (3.5).

3.3.3 The Jacobian of the System

For future work, the calculations of the Jacobian for the system of differential equations
are outlined. Using the notation Y = Y (F ) = Y (F (W,H,D)) in Equations (3.8)-(3.10),
the system of differential equations
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Ḋ =
(
M − D

u

)
ϕp√

Y (F (W,H,D))
,

Ṁ = αF (W,H,D)− µMM ,

Ḣ = v − µHH

is given in a more compact way. The components of the Jacobian

J =


∂Ḋ
∂D

∂Ḋ
∂M

∂Ḋ
∂H

∂Ṁ
∂D

∂Ṁ
∂M

∂Ṁ
∂H

∂Ḣ
∂D

∂Ḣ
∂M

∂Ḣ
∂H


are calculated as

∂Ḋ

∂D
= −

(
M − D

u

)
· ϕP

2 ·
√
Y (F (W,H,D))3

· ∂Y (F (W,H,D))
∂F (W,H,D) · ∂F (W,H,D)

∂D

− ϕP

u ·
√
Y (F (W,H,D))

,

∂Ḋ

∂M
= ϕP√

Y (F (W,H,D))
,

∂Ḋ

∂H
= −

(
M − D

u

)
· ϕP

2 ·
√
Y (F (W,H,D))3

· ∂Y (F (W,H,D))
∂F (W,H,D) · ∂F (W,H,D)

∂H
,

∂Ṁ

∂D
= α · ∂F (W,H,D)

∂D
,

∂Ṁ

∂M
= −µM ,

∂Ṁ

∂H
= α · ∂F (W,H,D)

∂H
,

∂Ḣ

∂D
= 0 ,

∂Ḣ

∂M
= 0 ,

∂Ḣ

∂H
= −µH .
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In an equilibrium with Ḣ = 0 we have H∗ = v
µH

. Using Ḋ = 0 it follows that D∗ = u ·M∗.
In this case (M − D

u
) = 0 holds and for the remaining Jacobian

Jequ =


− ϕP

u·
√
Y (F (W,H,D))

ϕP√
Y (F (W,H,D))

0

α · ∂F (W,H,D)
∂D

−µM α · ∂F (W,H,D)
∂H

0 0 −µH


we can compute the leading principal minors

∆1 = − ϕP

u·
√
Y (F (W,H,D))

< 0 ,

∆2 = ϕP

u·
√
Y (F (W,H,D))

· µM − ϕP√
Y (F (W,H,D))

· α · ∂F (W,H,D)
∂D

> 0 ,

∆3 = ∆2 · (−µH) < 0 .

Because of the fact that ∂F (W,H,D)
∂D

< 0, these leading principal minors are alternating
with ∆1 < 0, and hence the Jacobian is negative definite. As the trace of the Jacobian
is negative, all the eigenvalues are negative, too. As a result, all equilibria of this system
are stable.

3.4 Simulations of the Dynamics

3.4.1 The Combination of the Two Models

In this section we want to find out, how the model of Di Baldassarre et al. in [1] reacts
if we use (3.1) as water function. So we look at

F =

1− e−
W+ξHH−
αHD if W + ξHH− > H− ,

0 otherwise ,

R =


εT (W + ξHH− −H−) if (F > 0) ∧ (FG− > γER

√
G−)

∧(G− − FG− > γER
√
G−) ,

0 otherwise ,

S =

αSF if R > 0 ,

F otherwise ,
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Ġ = ρE

(
1− D

λE

)
G−∆(γ(t))

(
FG+ γER

√
G
)
,

Ḋ =
(
M − D

λP

)
ϕP√
G
,

Ḣ = ∆(γ(t))R− κTH ,

Ṁ = ∆(γ(t))S − µSM ,

with

W (t) = γ1 sin2(ktπ) + γ2 ,

and run the simulations as in [1].

For a few different sets of (γ1, γ2, k) the results are shown in what follows. To get a
better understanding we additionally plot the real water levels W + ξHH as dashed lines
in the top right figure with the height of the levees. We omit the green case, because it
gives exactly the same results as the blue case. So the only difference to the parameter
set before is that we only look at γE = 0.5 in red and γE = 50 in blue. In Figure (3.6)
and Figure (3.7) we present results for fast (κT = 0.003) and slow decay (κT = 0.0003),
respectively. In both cases the water levels fluctuate between 5 and 10 at the top and
between 2 and 10 at the bottom.

Firstly, we examine the case in blue, which represents the case with high costs at γE = 50.
In all of the four plots, the line for the height does not even move a single time, so there
are never levees built. As a consequence, the real water levels W + ζH ·H behave exactly
like the water levelsW . After a period of adaption in the beginning the distance oscillates
around 10000 m, while M fluctuates around 0.75. Since no levees are built and therefore
W + ζH · H > H always holds, F shows qualitatively the same behaviour as the water
levels and is positive all the time. The economy decreases continuously with the same
rate, since G is approximately a line in the plot with logarithmic scale.

The red case shows a few differences. People begin to build levees from the beginning
on, and after a short period of adaption, the height reaches its peak at nearly 20 m. In
the case of high κT in Figure (3.6), after about 100 years the height begins to fall. One
possible reason could be that people cannot afford the maintaining costs of the levees
due to the falling wealth G. In consequence, they move away from the river and D rises.
Lower levees lead to more regular but less intensive flooding events, which is seen in
the evolution of F . Almost the same happens if we switch to a lower rate of decay in
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(a) (γ1, γ2, k) = (5, 5, 0.05)

(b) (γ1, γ2, k) = (8, 2, 0.05)

Figure 3.6: The simulations with W (t) = γ1 sin2(ktπ) + γ2 and κT = 0.003
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(a) (γ1, γ2, k) = (5, 5, 0.05)

(b) (γ1, γ2, k) = (8, 2, 0.05)

Figure 3.7: The simulations with W (t) = γ1 sin2(ktπ) + γ2 and κT = 0.0003
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Figure (3.7). The only difference is the timing. As levees do not decay so fast, people
can afford the maintaining for a longer time, so all the consequences described above are
qualitatively the same but begin later in time.

3.4.2 Simulations of the Uncontrolled Model

In this chapter we present simulations of the dynamics of the optimal control model. So
we simulate the system of functions

W (t) = γ1 sin2(ktπ) + γ2 ,

F (W,H,D) = W 2

W 2 + 3 (1− ξH)2 H2
· exp (−αHD) ,

Y = (1− βF )
(
D

λE

)−αY
with the dynamics

Ḋ =
(
M − D

u

)
ϕp√
Y
,

Ṁ = αF − µMM ,

Ḣ = v − µHH .

The parameters we used in this simulation are summarized in Table (3.1). To get a first
insight, these are the same as in the other simulations before for the purpose of getting
comparable results. We want to emphasize that the additional height of the levees v
and the risk parameter u are set to constant values in these simulations. Therefore, the
following results show the dynamics for given and constant pairs of (u, v), while there is
no optimization involved.

With the parameter set from Table (3.1), v
µH

= 5 holds and therefore, we distinguish
between four cases with H0 = 0, 3, 5, and 10. This allows us to consider the three differ-
ent situations with exponentially falling, constant, and exponentially growing height H,
see Chapter 3. The case H(0) = 0 is interesting to compare the results with the former
simulations. In each case we plotted the graphs in the short run for 100 years at the top,
and in the long run for 1000 years on the bottom. The six small figures are always the
same. In the top left we plot the function W (t) = γ1 sin2(ktπ) + γ2, which is the same
for all examples. At the top right, the different cases for the evolution of the height H
are given. Distance D, Output Y , flood intensity F , and finally the awareness of risk M
follow in the remaining figures.
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(a) Short run t ∈ (0, 100)

(b) Long run t ∈ (0, 1000)

Figure 3.8: Simulations of the system of differential equations for (D0,M0, H0) = (1, 0, 0)
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(a) Short run t ∈ (0, 100)

(b) Long run t ∈ (0, 1000)

Figure 3.9: Simulations of the system of differential equations for (D0,M0, H0) = (1, 0, 3)
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(a) Short run t ∈ (0, 100)

(b) Long run t ∈ (0, 1000)

Figure 3.10: Simulations of the system of differential equations for (D0,M0, H0) = (1, 0, 5)

32



(a) Short run t ∈ (0, 100)

(b) Long run t ∈ (0, 1000)

Figure 3.11: Simulations of the system of differential equations for (D0,M0, H0) =
(1, 0, 10)
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Table 3.1: Model parameters for Chapter 3

Parameter Value
u 12000
v 0.015
ϕP 10000
β 1
ζH 0.5
λE 5000
αY 0.1
α 0.5
αH 0.01
µM 0.05
µH 0.003
γ1 3
γ2 1
k 0.05

Even in the short run, in all four cases very fast convergence to a state is seen, where
the variables oscillate around a certain level. In the long run, the height of the levees
rises over time in Figure (3.8) and Figure (3.9). Distance D and awareness M show
the opposite reaction, both fall. Lower distance leads to higher flood intensities F . But
these flooding events seem to be less frequent, so that the risk awareness M also goes
down. We do not see a big reaction in size Y . There are oscillations due to the period-
icity in the whole system, but neither the amplitude nor the frequency change remarkably.

The third case, with constant height H is rather unspectacular. After a few changes
in the short run, all variables come to a state of oscillations with constant amplitude and
frequency. In the last Figure (3.11), with falling height, exactly the opposite of the first
two cases appears in the long run. The distance and awareness of risk increase and Y
again shows no reaction in the long run.

Overall it can be said, that independent of the starting value H0, the fluctuation of
the water levels seems to have only a small effect, if we take the same parameters as in
the model of [1]. Especially the small units in the y-axis are notable in the long run to
make the fluctuations in the variables even observable.
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3.5 Summary

In this chapter we introduced an optimal control model based on the model of Di Bal-
dassare et al. in [1]. Their model consists of three main variables, namely the damage
through flooding F , the additional height of levees after flooding R, and the shock due
to the damage S. The dynamics are given by four differential equations, which describe
the evolutions of the size of the economy G, the distance to the river D, the height of
the levees H, and the memory of past flooding events M . Additionally, they present a
few simulations in the programme R with different cost scenarios. We reproduced these
simulations using MATLAB.

The next step was to take this model as a starting point and introduce an optimal
control model. After redefining the functions for the water levels and the damage in a
continuous and differentiable deterministic way, the most important aspect for an optimal
control model is to formulate an objective function, which we introduced in (3.7) as the
discounted present value of future damage and costs.

Another difference to the model of Di Baldassarre et al. in [1] concerns the dynamics
of the system. We changed the differential equation for the size G and modelled this
variable by defining the output Y explicitly. Our dynamics therefore consist of the re-
maining three differential equations, except for some notational conventions. So finally
we stated an optimal control model with two control variables, namely the additional
height of levees v and the risk parameter u, and three state variables D, M , and H.

To combine the two models, we simulated the dynamics of Di Baldassarre et al. in [1]
using the deterministic function for the water levels, which we defined in this chapter.
Finally we provided a few simulations of the uncontrolled dynamics of the optimal control
model.
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Chapter 4

Adaptations of the Optimal Control
Model

In this chapter we make a few adaptations in the functions defined in the previous chap-
ters. On the one hand, we present two other formulations for the water levels and a
second function for the damage. On the other hand, we repeat the simulations we carried
out in the previous chapters and compare the results.

4.1 Functional Forms

4.1.1 Water Levels

Previously, the water levels were modelled in Equation (3.1) as a deterministic time-
dependent function

W1(t) = γ1 sin2(ktπ) + γ2 ,

where k represents the length of the fluctuations, while the minimum and maximum water
levels are given by γ2 and γ1 + γ2, respectively. Since water levels always have to be non-
negative, we had to choose the parameters appropriately. Except for 40 points of time
with positive values, all the water levels were zero in the model of Di Baldassarre et al.
in [1]. In our formulation, W1(t) > 0 always holds, so there is flooding all the time. As
a result, in all simulations the size of the economy fell dramatically. A possible way to
deal with this is to reformulate the function of the water levels as

W2(t) = max
{

0, γ1 sin2(ktπ) + γ2
}

(4.1)
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Figure 4.1: W2(t) = max {0, γ1 sin2(ktπ) + γ2}

and to choose other values for γ1 and γ2. A few examples of the new formulation are given
in Figure (4.1). In this case periods with W (t) = 0 occur, which can give the economy
the chance to build up some size without the disturbance of flooding events.

Additionally, we also investigate a third formulation of the form

W3(t) = a
k∑
j=1

cos(jt) + b with k ∈ 2N , (4.2)

and choose a, k, and b appropriately, so that the values of this function do not exceed a
certain value. An example can be seen in Figure (4.2) with a = 0.5, k = 10, and b = 1.5.
This formulation can be interpreted as follows. Naturally there are always some fluc-
tuations in the water levels due to rainy days. In some periods the water reaches high
values, which is represented in the three peaks in Figure (4.2). With this formulation, the
economy has the chance to recover during periods with lower water levels to withstand
times with higher water levels.
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Figure 4.2: W3(t) = 0.5∑10
j=1 cos(jt) + 1.5

4.1.2 Damage Function

In (3.2) the function

F1 (W,H,D) = W 2

W 2 + 3 (1− ξH)2 H2
· exp (−αHD)

fulfilled the condition that the inflection point should be at (1 − ξH)H. This function
was a first approximation for the step function from Di Baldassarre et al. in [1]. As
compared to the old damage function, see Figures (3.2) and (3.3), we want to improve
the approximation of the jump discontinuity.

For that purpose, we make use of the approach

f(x) = a+ b arctan (cx+ d) .

Since arctan (x) ∈ (−π
2 ,

π
2 ) we choose a := 1

2 and b := 1
π
to obtain 1

2 + 1
π

arctan (x) ∈ (0, 1).
The inflection point of arctan (cx+ d) is at cx+ d = 0, which yields to x = −d

c
.

Analogously to the approach in Section (3.2.2) we set −d
c

= (1 − ξH)H to get d =
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−c(1 − ξH)H. Inserting all these expressions and taking into account that with higher
distance to the river the damage should exponentially decrease we define

F2 (W,H,D) =
(1

2 + 1
π

arctan (c(W − (1− ξH)H))
)

exp (−αHD) . (4.3)

The parameter c is a measure for the slope in the inflection point. If we set c sufficiently
high, we get a good approximation for the damage function used by Di Baldassarre et al.
in [1]. Two illustrations are given in Figure (4.3).

Starting with c = 1, the quality of the approximation improves pretty fast, and already
c = 20 yields a very good approximation. The two figures were produced for heights of
the levees of 3 and 9, therefore different inflection points occur in the two figures.

4.2 Results and Simulations

Finally, we repeat the simulations of Di Baldassarre et al. in [1] using the two new
functions for the water levels. Then we simulate the uncontrolled dynamics of the optimal
control model with the new functions.

4.2.1 Simulations of Di Baldassarre et al.

We look at the system of Di Baldassarre et al., which is described by

F =

1− e−
W+ξHH−
αHD if W + ξHH− > H− ,

0 otherwise ,

R =


εT (W + ξHH− −H−) if (F > 0) ∧ (FG− > γER

√
G−)

∧(G− − FG− > γER
√
G−) ,

0 otherwise ,

S =

αSF if R > 0 ,

F otherwise ,
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(a) Damage at H = 3

(b) Damage at H = 9

Figure 4.3: Damage function F2 (W,H,D) for ζH = 0.5, αH = 0.01, D = 10, and different
values for c and H
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Ġ = ρE

(
1− D

λE

)
G−∆(γ(t))

(
FG+ γER

√
G
)
,

Ḋ =
(
M − D

λP

)
ϕP√
G
,

Ḣ = ∆(γ(t))R− κTH ,

Ṁ = ∆(γ(t))S − µSM ,

using

W2(t) = max
{

0, γ1 sin2(ktπ) + γ2
}

as well as

W3(t) = a
k∑
j=1

cos(jt) + b with k ∈ 2N

as functions for the water levels.

Starting with W2(t) we get the results in Figures (4.4) and (4.5) for κT = 0.0003 and
κT = 0.003, respectively, corresponding to different rates of decay of the levees. In both
figures we look at the case with (γ1, γ2, k) = (6,−5, 0.01) at the top and (γ1, γ2, k) =
(8,−5, 0.01) at the bottom. Qualitatively the same things happen for both high and low
values of κT .

If the water levels are rather low, like in Figures (4.4a) and (4.5a), the size of the econ-
omy increases, since there is less money required when building lower levees. People can
settle closer to the river and the damage by floods is lower, which therefore yields more
moderate levels of risk awareness M .

Using W3(t) = 0.5∑10
j=1 cos(jt) + 1.5 we get the results in Figure (4.6), where we again

distinguished between low and high decay κT . Since there are qualitatively the same
results in these two cases, we concentrate on Figure (4.6a). Most of the time, the water
levels remain at a low level, but peaks occur regularly. In all figures, the red line corre-
sponds to low costs, whereas the blue line indicates high costs, respectively. Higher levees
are built if the costs are lower. Together with the higher levees, people are not forced
to move away from the river as far as in the blue case with higher costs. This smaller
distance avoids a rapid decrease of the size of the economy as observed in the blue case.

A lower distance combined with higher levees, has implications concerning the dam-
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(a) (γ1, γ2, k) = (6,−5, 0.01)

(b) (γ1, γ2, k) = (8,−5, 0.01)

Figure 4.4: The simulations with W2(t) = max {0, γ1 sin2(ktπ) + γ2} and κT = 0.0003
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(a) (γ1, γ2, k) = (6,−5, 0.01)

(b) (γ1, γ2, k) = (8,−5, 0.01)

Figure 4.5: The simulations with W2(t) = max {0, γ1 sin2(ktπ) + γ2} and κT = 0.003
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age due to flooding events. In the red case, there are less often flooding events but with
higher damage. As a result the awareness M stays at a lower level, but jumps in the case
of flooding events are higher than in the blue case.

4.2.2 Simulations of the Optimal Control Model

Finally, we look at the dynamics of the optimal control model using the two new functions
for the water levels W2 and W3 together with the newly defined damage function F2. So
we simulate the system

Ḋ =
(
M − D

u

)
ϕp√
Y
,

Ṁ = αF − µMM ,

Ḣ = v − µHH

with

F2 (W,H,D) =
(1

2 + 1
π

arctan (c(W − (1− ξH)H))
)

exp (−αHD) ,

Y = (1− βF )
(
D

λE

)−αY
using each of the water level functions

W2(t) = max
{

0, γ1 sin2(ktπ) + γ2
}

and

W3(t) = 0.5
10∑
j=1

cos(jt) + 1.5 .

In Figures (4.7)-(4.10) the results are plotted for W2, whereas the results for W3 are
shown in Figures (4.11)-(4.14). It has to be mentioned that these are the results of the
uncontrolled model, which means that the two control variables u and v are held constant.
Like in the previous simulations, we look at the four cases with H0 = 0, 3, 5, and 10,
therefore, exponentially growing, constant, or exponentially falling heights of the levees
occur.

All these figures deliver rather similar results. The distance D grows very fast to a
high value of about 60000 m, but because of this great distance, the economy hardly ben-
efits from the economic effects due to the proximity of the river. Therefore, the size of
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(a) Low κT = 0.0003

(b) High κT = 0.003

Figure 4.6: The simulations with W3(t) = 0.5∑10
j=1 cos(jt) + 1.5
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the city converges to a low level of about 0.8 after some ups and downs in the beginning.
A positive aspect is that this behaviour of living far away from the river leads to very
low damage due to flooding. In all cases, the graph of F is not even visible after some
periods, because it is too low. The memory M reaches a quite high level of about 5.

With the chosen parameters, the height of the levees always converges to 5 m, inde-
pendently of the starting value H0 and the fluctuations of the water levels. If we consider
the restriction of constant control variables, it is no surprise that the results do not show a
remarkable reaction due to fluctuating water levels. Like in the simulations we presented
in Chapter 3, the fluctuations in the variables due to the fluctuating water levels can only
be seen within a small range.
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(a) Short run t ∈ (0, 100)

(b) Long run t ∈ (0, 1000)

Figure 4.7: The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 0) for
W2(t) = max {0, γ1 sin2(ktπ) + γ2}
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(a) Short run t ∈ (0, 100)

(b) Long run t ∈ (0, 1000)

Figure 4.8: The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 3) for
W2(t) = max {0, γ1 sin2(ktπ) + γ2}
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(a) Short run t ∈ (0, 100)

(b) Long run t ∈ (0, 1000)

Figure 4.9: The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 5) for
W2(t) = max {0, γ1 sin2(ktπ) + γ2}
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(a) Short run t ∈ (0, 100)

(b) Long run t ∈ (0, 1000)

Figure 4.10: The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 10) for
W2(t) = max {0, γ1 sin2(ktπ) + γ2}
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(a) Short run t ∈ (0, 100)

(b) Long run t ∈ (0, 1000)

Figure 4.11: The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 0) for
W3(t) = 0.5∑10

j=1 cos(jt) + 1.5
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(a) Short run t ∈ (0, 100)

(b) Long run t ∈ (0, 1000)

Figure 4.12: The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 3) for
W3(t) = 0.5∑10

j=1 cos(jt) + 1.5
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(a) Short run t ∈ (0, 100)

(b) Long run t ∈ (0, 1000)

Figure 4.13: The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 5) for
W3(t) = 0.5∑10

j=1 cos(jt) + 1.5

53



(a) Short run t ∈ (0, 100)

(b) Long run t ∈ (0, 1000)

Figure 4.14: The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 10) for
W3(t) = 0.5∑10

j=1 cos(jt) + 1.5
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Chapter 5

Preliminary Steps for Optimal
Control

In this chapter we give the results of some preliminary steps to optimization for this
model. The optimal control model we developed in Chapter 3 is described by

min
u,v

r∞
0 e−rt (ρF (W,H,D) + C(H, v)) dt

s.t. Ḋ =
(
M − D

u

)
ϕp√
Y
,

Ṁ = αF − µMM ,

Ḣ = v − µHH

with

F (W,H,D) = F2 (W,H,D) =
(1

2 + 1
π

arctan (500(W − (1− ξH)H))
)

exp (−αHD) ,

Y = (1− βF )
(
D

λE

)−αY
,

C(H, v) = C3(H, v) = 2Hv + 10v + v2

and the two water level functions

W2(t) = max
{

0, γ1 sin2(ktπ) + γ2
}
,

W3(t) = 0.5
10∑
j=1

cos(jt) + 1.5 .

Where possible, we used the same parameters as in the previous simulations, which are
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summarized in Table (5.1).

Table 5.1: Model parameters

Parameter Value
ϕP 10000
β 1
ζH 0.5
λE 5000
αY 0.1
α 0.5
αH 0.01
µM 0.05
µH 0.003
γ1 10
γ2 −5
k 0.05
r 0.04
ρ 5000, 10000

Firstly, we want to calculate the best constant pair of (u, v) chosen at t = 0, so that
J =

r 100
0 e−rt (ρF (W,H,D) + C(H, v)) dt is minimized. We look at values for the addi-

tional height of the levees v within a range from 0 m to 10 m with steps of 0.1 m. The
risk parameter u is located within [0.01; 5000] with steps of 500. This range has to be
chosen because in the differential equation (3.8) the risk parameter is in the denominator,
so u 6= 0 has to hold. For all these pairs of (u, v) we calculate the finite integral in the
objective function, assuming the control variables to be constant over the first 100 years.

The resulting contour plots for these values are presented both for W2 in Figures (5.1)
and (5.2), and for W3 in Figures (5.3) and (5.4), respectively. In both cases we start with
D0 = 10, M0 = 1, and H0 varying from 0 to 10 while distinguishing between ρ = 5000
and ρ = 10000. Note that the risk parameter u is only a critical factor for the objective
function up to a certain value. For bigger values of the risk parameter u the objective
function does not show any further remarkable reaction. There is great sensitivity of the
value of the objective function with respect to the additional height v. There seems to
be a minimizing pair (u∗, v∗), where u∗ is at a very low level and v∗ is somewhere in the
range between 0 m and 3 m. We calculate the optimal pair (u∗, v∗) and summarize the
results in Table (5.2) for W2 and in Table (5.3) for W3, respectively.

Analyzing these tables, two results can be concluded. Firstly, the objective function gets
higher when H0 is lower. This is obviously due to the fact that the costs are higher if
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(a) (D0,M0, H0) = (10, 1, 0) (b) (D0,M0, H0) = (10, 1, 3)

(c) (D0,M0, H0) = (10, 1, 5) (d) (D0,M0, H0) = (10, 1, 10)

Figure 5.1: Values of J =
r 100

0 e−rt (ρF (W,H,D) + C(H, v)) dt for W2(t) =
max {0, γ1 sin2(ktπ) + γ2} and ρ = 5000

57



(a) (D0,M0, H0) = (10, 1, 0) (b) (D0,M0, H0) = (10, 1, 3)

(c) (D0,M0, H0) = (10, 1, 5) (d) (D0,M0, H0) = (10, 1, 10)

Figure 5.2: Values of J =
r 100

0 e−rt (ρF (W,H,D) + C(H, v)) dt for W2(t) =
max {0, γ1 sin2(ktπ) + γ2} and ρ = 10000
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(a) (D0,M0, H0) = (10, 1, 0) (b) (D0,M0, H0) = (10, 1, 3)

(c) (D0,M0, H0) = (10, 1, 5) (d) (D0,M0, H0) = (10, 1, 10)

Figure 5.3: Values of J =
r 100

0 e−rt (ρF (W,H,D) + C(H, v)) dt for W3(t) =
0.5∑10

j=1 cos(jt) + 1.5 and ρ = 5000
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(a) (D0,M0, H0) = (10, 1, 0) (b) (D0,M0, H0) = (10, 1, 3)

(c) (D0,M0, H0) = (10, 1, 5) (d) (D0,M0, H0) = (10, 1, 10)

Figure 5.4: Values of J =
r 100

0 e−rt (ρF (W,H,D) + C(H, v)) dt for W3(t) =
0.5∑10

j=1 cos(jt) + 1.5 and ρ = 10000
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Table 5.2: Optimal decision for (u∗, v∗) if chosen at t = 0, using W2 (large-meshed)

ρ = 5000 J∗ u∗ v∗

(D0,M0, H0) = (10, 1, 0) 1676 0.01 1.1
(D0,M0, H0) = (10, 1, 3) 1045 0.01 0.8
(D0,M0, H0) = (10, 1, 5) 716 0.01 0.6
(D0,M0, H0) = (10, 1, 10) 121 0.01 0.1

ρ = 10000 J∗ u∗ v∗

(D0,M0, H0) = (10, 1, 0) 1763 0.01 1.1
(D0,M0, H0) = (10, 1, 3) 1084 0.01 0.8
(D0,M0, H0) = (10, 1, 5) 754 0.01 0.6
(D0,M0, H0) = (10, 1, 10) 162 0.01 0.1

Table 5.3: Optimal decision for (u∗, v∗) if chosen at t = 0, using W3 (large-meshed)

ρ = 5000 J∗ u∗ v∗

(D0,M0, H0) = (10, 1, 0) 8639 0.01 2.2
(D0,M0, H0) = (10, 1, 3) 1005 0.01 0.6
(D0,M0, H0) = (10, 1, 5) 738 0.01 0.5
(D0,M0, H0) = (10, 1, 10) 228 0.01 0.2

ρ = 10000 J∗ u∗ v∗

(D0,M0, H0) = (10, 1, 0) 11459 0.01 2.2
(D0,M0, H0) = (10, 1, 3) 1388 0.01 0.6
(D0,M0, H0) = (10, 1, 5) 964 0.01 0.5
(D0,M0, H0) = (10, 1, 10) 272 0.01 0.2

people have to build up the levees first. The second observation is that u∗ = 0.01 always
holds, which is the bottom border of the range we examined for u. So the question arises
if there is an optimal decision at all because maybe the best decision would be to choose
u as low as possible but it must not be 0.

To obtain insights into the way, how the values of the finite integral depend on small
changes in u, we repeat the calculations from before, but for a more accurate range for
the additional height v from 0 to 10 m with steps of 0.01 m. Additionally, we let the risk
parameter u range from 0.001 to 0.030 with steps of 0.001. A summary of these results
can be found in Table (5.4) and Table (5.5), where we can find hints that J∗ does not
always decrease if u decreases. Nevertheless, we interpret these values (u∗, v∗) as optimal
and continue with investigating the impact of the starting values.

In what follows, we compare the results not only for four cases of starting values (D0,M0, H0)
but rather for a wider range. In particular, we set M0 = 1 and calculate J∗, if we vary
the starting height H0 between 0 and 10 m with steps of 0.5 m and the starting distance

61



Table 5.4: Optimal decision for (u∗, v∗) if chosen at t = 0, using W2 (fine-meshed)

ρ = 5000 J∗ u∗ v∗

(D0,M0, H0) = (10, 1, 0) 1355 0.020 0.96
(D0,M0, H0) = (10, 1, 3) 697 0.013 0.60
(D0,M0, H0) = (10, 1, 5) 477 0.013 0.43
(D0,M0, H0) = (10, 1, 10) 77 0.013 0.04

ρ = 10000 J∗ u∗ v∗

(D0,M0, H0) = (10, 1, 0) 1469 0.020 0.96
(D0,M0, H0) = (10, 1, 3) 771 0.013 0.60
(D0,M0, H0) = (10, 1, 5) 538 0.006 0.45
(D0,M0, H0) = (10, 1, 10) 118 0.013 0.05

Table 5.5: Optimal decision for (u∗, v∗) if chosen at t = 0, using W3 (fine-meshed)

ρ = 5000 J∗ u∗ v∗

(D0,M0, H0) = (10, 1, 0) 8099 0.011 2.05
(D0,M0, H0) = (10, 1, 3) 786 0.004 0.55
(D0,M0, H0) = (10, 1, 5) 321 0.003 0.25
(D0,M0, H0) = (10, 1, 10) 137 0.010 0.11

ρ = 10000 J∗ u∗ v∗

(D0,M0, H0) = (10, 1, 0) 11111 0.011 2.05
(D0,M0, H0) = (10, 1, 3) 1030 0.004 0.55
(D0,M0, H0) = (10, 1, 5) 453 0.003 0.26
(D0,M0, H0) = (10, 1, 10) 183 0.010 0.11

D0 between 0 and 100000 m with steps of 5000 m. Both ρ = 5000 and ρ = 10000 bring
qualitatively the same results, so we concentrate on the first one, see Figure (5.5).

In this figure we can see that in general values for J∗ decrease when H0 is higher. This
reinforces the assumption made by looking at the tables from above. However, there is
an interesting fact in this figure, namely that J∗ does hardly show differences when D0

varies. If we look at a fixed value for H0 and vary D0, we do not see a monotone reaction
in J∗, although there are two areas with strong local deviations. This is an interesting
point, because one of the most important assumptions in this field in general is the fact,
that the distance of the settlement to the river affects the economic situation of the peo-
ple crucially. But our result is that, at least with constant controls for t = 100, initial
distance does not affect the objective function significantly.

Finally, we want to consider the relation Ĵ−J∗

J∗ , if not the optimal pair of constant controls
is chosen, but a pair (û, v̂) with û ∈ {0.9u∗, 1.0u∗, 1.1u∗} and v̂ ∈ {0.9v∗, 1.0v∗, 1.1v∗},
respectively. For each of these possible combinations we calculate the percentual changes
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(a) (b)

Figure 5.5: Best value for the objective function with constant controls

of the values of the objective function. We present the results for varying ρ for W2 in
Tables (5.6) and (5.7), and for W3 in Tables (5.8) and (5.9), respectively.

Table 5.6: Percentual Changes 100 · Ĵ−J∗

J∗ for W2 = max {0, γ1 sin2(ktπ) + γ2} and ρ =
5000

(10, 1, 0) 0.9v∗ 1.0v∗ 1.1v∗ (10, 1, 3) 0.9v∗ 1.0v∗ 1.1v∗
0.9u∗ 1019 755 20 0.9u∗ 1965 1656 1283
1.0u∗ 1017 0 296 1.0u∗ 1964 0 1283
1.1u∗ 1015 749 16 1.1u∗ 1967 1656 1280

(10, 1, 5) 0.9v∗ 1.0v∗ 1.1v∗ (10, 1, 10) 0.9v∗ 1.0v∗ 1.1v∗
0.9u∗ 2425 2049 1584 0.9u∗ 26 16 19
1.0u∗ 2435 0 1578 1.0u∗ 4 0 −1
1.1u∗ 2428 2045 1581 1.1u∗ 21 18 18

Table 5.7: Percentual Changes 100 · Ĵ−J∗

J∗ for W2 = max {0, γ1 sin2(ktπ) + γ2} and ρ =
10000

(10, 1, 0) 0.9v∗ 1.0v∗ 1.1v∗ (10, 1, 3) 0.9v∗ 1.0v∗ 1.1v∗
0.9u∗ 1894 1392 20 0.9u∗ 3565 2995 2307
1.0u∗ 1891 0 531 1.0u∗ 3564 0 2306
1.1u∗ 1888 1383 14 1.1u∗ 3570 2994 2301

(10, 1, 5) 0.9v∗ 1.0v∗ 1.1v∗ (10, 1, 10) 0.9v∗ 1.0v∗ 1.1v∗
0.9u∗ 4029 3269 2268 0.9u∗ 28 25 24
1.0u∗ 4036 0 11 1.0u∗ 1 0 1
1.1u∗ 4053 3272 2256 1.1u∗ 24 27 27
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Table 5.8: Percentual Changes 100 · Ĵ−J∗

J∗ for W3 = 0.5∑10
j=1 cos(jt) + 1.5 and ρ = 5000

(10, 1, 0) 0.9v∗ 1.0v∗ 1.1v∗ (10, 1, 3) 0.9v∗ 1.0v∗ 1.1v∗
0.9u∗ 90 31 139 0.9u∗ 184 194 217
1.0u∗ 27 0 25 1.0u∗ 200 0 225
1.1u∗ 120 138 71 1.1u∗ 125 160 158

(10, 1, 5) 0.9v∗ 1.0v∗ 1.1v∗ (10, 1, 10) 0.9v∗ 1.0v∗ 1.1v∗
0.9u∗ 950 1967 8 0.9u∗ 5692 5372 5705
1.0u∗ 1589 0 5 1.0u∗ 3312 0 7
1.1u∗ 368 3799 3455 1.1u∗ 7135 6747 3165

Table 5.9: Percentual Changes 100 · Ĵ−J∗

J∗ for W3 = 0.5∑10
j=1 cos(jt) + 1.5 and ρ = 10000

(10, 1, 0) 0.9v∗ 1.0v∗ 1.1v∗ (10, 1, 3) 0.9v∗ 1.0v∗ 1.1v∗
0.9u∗ 140 45 193 0.9u∗ 289 296 322
1.0u∗ 48 0 28 1.0u∗ 313 0 334
1.1u∗ 183 200 94 1.1u∗ 198 244 231

(10, 1, 5) 0.9v∗ 1.0v∗ 1.1v∗ (10, 1, 10) 0.9v∗ 1.0v∗ 1.1v∗
0.9u∗ 2767 2866 11 0.9u∗ 8524 8578 8533
1.0u∗ 109 0 3018 1.0u∗ 4962 0 5
1.1u∗ 3923 5001 10 1.1u∗ 10684 10097 4731

Looking at these tables we observe rather high numbers in most cases. Looking, for
example, at Table (5.6) in the case with (D0,M0, H0) = (10, 1, 3) we see that the best
value for the objective function is 13 to 20 times higher if we choose the different pairs of
(û, v̂). For (D0,M0, H0) = (10, 1, 5) we even get values for the different objective function
up to 25 times the values for the pair (u∗, v∗). This means that in most cases the optimal
value of the objective function is very sensitive to changes in the control variables. A
possible explanation is that since the control variables have to be chosen constantly for
100 years, the changes of J∗ take on a dramatic scale if u∗ and v∗ are varied. Interestingly,
one negative value occurs in Table (5.6), which is obviously the result of the too large
grid used for the initial conditions and makes clear that (u∗, v∗) are only close to the truly
optimal levels.

Comparing the results for W2 and W3, we see that in the first case the sensitivity of
J∗ increases, when H0 rises from 0 to 5, but in the case of H0 = 10 the relative dif-
ferences are much smaller than in the other cases. Starting with high levees, it lasts a
few years of decay of the levees until the first possible occurrence of a flooding event.
This is a possible reason for the lower sensitivity in this case. A big fraction of the 100
years the additional height v∗ only affects the cost function, but has no impact on the
damage function because in these years there is no damage anyway. The results for W3
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are different. In this case the sensitivity of J∗ increases if H0 does.

Another difference in the results for the two water functions concerns v∗. J∗ is more
sensitive when v∗ is chosen too low rather than too high in the case of W2, whereas we
do not see a unique reaction looking at W3. Moreover, for neither water level function a
unique reaction concerning the magnitude of relative differences can be observed, if u∗ is
chosen 10% too low or too high.
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Chapter 6

Summary and Possible Extensions

The goal of this thesis was to analyze the mutual implications and dependences of a river
and people living close to this river. For this purpose, we developed an optimal control
model, based on the model by Di Baldassarre et al. in [1]. Firstly, we want to sum up
the results obtained in the previous chapters.

6.1 Summary

In the first part of this thesis the main results and simulations of [1] by Di Baldas-
sarre et al. were discussed. Given a stochastic time series for the water levels, functions
for the damage due to floods, the additional height in that case, and a psychological
shock were defined. The dynamics were given by four differential equations for the size
of the city, the distance to the river, the height of the levees, and the awareness of floods.
Finally, the authors provided results in the form of several simulations, which we also
carried out, but with the programme MATLAB instead of R.

Based on this model, we defined an optimal control model, where the objective func-
tion contains the damage due to floods and the costs of building levees. The water level
function was changed from a stochastic formulation to a deterministic one. We reduced
the number of differential equations to three by defining the wealth of the community
explicitly instead of in the form of a differential equation. So finally, this optimal control
model consisted of the two control variables, describing the additional height of the levees
and a risk parameter, and three differential equations for the state variables, namely the
distance to the river, the awareness of floods, and the height of the levees.

We next carried out simulations and compared the qualitative results of using the dy-
namics and functions of [1] on the one hand, and using the dynamics and functions of
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the optimal control model, on the other hand. In the next part we tried to improve the
model by providing two new functions for the water levels, and a new function for the
damage, since the steepness of the first function in the inflection point was not sufficiently
high. Then again we carried out the simulations to analyze the development of our model.

Finally, we presented some preliminary steps for optimal control. A pair of control vari-
ables was calculated, which is the best constant pair until t = 100, chosen at t = 0. For
each of the different water level functions, we presented the results and calculated the
optimal values with varying accuracy, looking at a few different triples of starting values
(D0,M0, H0). The next step was to compare the optimal values of the objective function,
varying these starting values. For this purpose, we kept M0 fixed and varied the other
two in certain ranges, for which we calculated the minimized objective function. Finally,
we analyzed situations, in which not the optimal pair of control variables was chosen, but
a pair, where both of the variables were 10% too high or too low, respectively. In these
calculations, a very strong sensitivity of the objective function could be observed.

6.2 Possible Extensions

Although we achieved several improvements within this thesis, there seem to be many
highly interesting issues, which should be taken into account in future work. We want to
conclude this thesis by proposing some possible extensions:

• Obviously, the most important extension would be to actually look at the optimal
control model, since we only calculated constant controls for a finite time horizon
of 100 years.

• In this thesis, we mostly worked with the parameters, which Di Baldassarre et al.
used in [1], because we wanted to compare the results of the two models. In future
work, however, one should go through all these parameter values and see if for
example the fluctuations of the water levels can have a stronger influence on the
model.

• In the last chapter, where we made preliminary steps for optimal control, we con-
cluded that the value of the objective function did not show remarkable changes,
when we looked at different starting distances D0. As already mentioned, one of
the crucial assumptions in this field is the economic advantage due to the proximity
to the river. Thus, D0 should play a bigger role in the model than it seemed to play
throughout our simulations.
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• A solution to that issue and also a possible extension could be to redefine the
objective function by letting the production Y be of more importance. On the one
hand, we did not consider a budget constraint, which implies unrestricted costs.
On the other hand, the production Y is not considered in the objective function
directly. Thus, it would be a good idea to change the objective function in this
direction.

68



List of Figures

1.1 The river Nile at night with Cairo at the top . . . . . . . . . . . . . . . . 1
1.2 Levees for high water levels in Grein (Austria) in 2013 . . . . . . . . . . 2

2.1 Levee building (from [8]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Additional height due to levees (from [8]) . . . . . . . . . . . . . . . . . . 5
2.3 Loop diagram of the dynamics of the model in [1] . . . . . . . . . . . . . 7
2.4 The simulations in [1] with data set Wevents.txt . . . . . . . . . . . . . . 10

3.1 Water levels W (t) for k = 0.1, 0.2, 0.3 for two different sets of minimum
and maximum water levels . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Damage F (W ) for (αH , ζH) = (0.01, 0.5) for H = 1 and H = 5 for different
values of D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Damage F (t) for different sets of parameters . . . . . . . . . . . . . . . . 18
3.4 Adding height v to the levees . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 The evolution of H(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 The simulations with W (t) = γ1 sin2(ktπ) + γ2 and κT = 0.003 . . . . . . 27
3.7 The simulations with W (t) = γ1 sin2(ktπ) + γ2 and κT = 0.0003 . . . . . 28
3.8 Simulations of the system of differential equations for (D0,M0, H0) = (1, 0, 0) 30
3.9 Simulations of the system of differential equations for (D0,M0, H0) = (1, 0, 3) 31
3.10 Simulations of the system of differential equations for (D0,M0, H0) = (1, 0, 5) 32
3.11 Simulations of the system of differential equations for (D0,M0, H0) =

(1, 0, 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 W2(t) = max {0, γ1 sin2(ktπ) + γ2} . . . . . . . . . . . . . . . . . . . . . . 37
4.2 W3(t) = 0.5∑10

j=1 cos(jt) + 1.5 . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Damage function F2 (W,H,D) for ζH = 0.5, αH = 0.01, D = 10, and

different values for c and H . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 The simulations with W2(t) = max {0, γ1 sin2(ktπ) + γ2} and κT = 0.0003 42
4.5 The simulations with W2(t) = max {0, γ1 sin2(ktπ) + γ2} and κT = 0.003 . 43
4.6 The simulations with W3(t) = 0.5∑10

j=1 cos(jt) + 1.5 . . . . . . . . . . . . 45
4.7 The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 0) for

W2(t) = max {0, γ1 sin2(ktπ) + γ2} . . . . . . . . . . . . . . . . . . . . . . 47
4.8 The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 3) for

W2(t) = max {0, γ1 sin2(ktπ) + γ2} . . . . . . . . . . . . . . . . . . . . . . 48
4.9 The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 5) for

W2(t) = max {0, γ1 sin2(ktπ) + γ2} . . . . . . . . . . . . . . . . . . . . . . 49
4.10 The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 10)

for W2(t) = max {0, γ1 sin2(ktπ) + γ2} . . . . . . . . . . . . . . . . . . . . 50

69



4.11 The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 0) for
W3(t) = 0.5∑10

j=1 cos(jt) + 1.5 . . . . . . . . . . . . . . . . . . . . . . . . 51
4.12 The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 3) for

W3(t) = 0.5∑10
j=1 cos(jt) + 1.5 . . . . . . . . . . . . . . . . . . . . . . . . 52

4.13 The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 5) for
W3(t) = 0.5∑10

j=1 cos(jt) + 1.5 . . . . . . . . . . . . . . . . . . . . . . . . 53
4.14 The simulations of the uncontrolled system for (D0,M0, H0) = (1, 0, 10)

for W3(t) = 0.5∑10
j=1 cos(jt) + 1.5 . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Values of J =
r 100

0 e−rt (ρF (W,H,D) + C(H, v)) dt forW2(t) = max {0, γ1 sin2(ktπ) + γ2}
and ρ = 5000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Values of J =
r 100

0 e−rt (ρF (W,H,D) + C(H, v)) dt forW2(t) = max {0, γ1 sin2(ktπ) + γ2}
and ρ = 10000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Values of J =
r 100

0 e−rt (ρF (W,H,D) + C(H, v)) dt forW3(t) = 0.5∑10
j=1 cos(jt)+

1.5 and ρ = 5000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Values of J =

r 100
0 e−rt (ρF (W,H,D) + C(H, v)) dt forW3(t) = 0.5∑10

j=1 cos(jt)+
1.5 and ρ = 10000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Best value for the objective function with constant controls . . . . . . . . 63

70



List of Tables

2.1 Model parameters in [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Data-set Wevents.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Model parameters for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Optimal decision for (u∗, v∗) if chosen at t = 0, using W2 (large-meshed) . 61
5.3 Optimal decision for (u∗, v∗) if chosen at t = 0, using W3 (large-meshed) . 61
5.4 Optimal decision for (u∗, v∗) if chosen at t = 0, using W2 (fine-meshed) . 62
5.5 Optimal decision for (u∗, v∗) if chosen at t = 0, using W3 (fine-meshed) . 62
5.6 Percentual Changes 100 · Ĵ−J∗
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J∗ for W2 = max {0, γ1 sin2(ktπ) + γ2} and
ρ = 10000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.8 Percentual Changes 100 · Ĵ−J∗
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