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1 Abstract

Stereo vision is a part of the broad field Computer vision. It deals with the three-
dimensional reconstruction of a scene. Therefore usually two cameras are mounted in
parallel and capturing simultaneously. Furthermore, correspondences are searched be-
tween the different views using a stereo matching method in order to calculate depth by
triangulation.

This thesis is about a special stereo vision system, a projector-camera sensor. Unlike
classical stereo vision sensors where two cameras are used, one camera is replaced by a
pattern projector. The three dimensional reconstruction is based on the same algorithms
and processes. The only difference is, that not two camera images are used for the
calculations but only one where the projected pattern is visible and in addition the
pattern which is projected.

First, such a sensor has to be calibrated accurately. Since only one camera is available,
the calibration method differs slightly from the classical stereo calibration procedure.
In this thesis a projector-camera calibration method is presented where a precalibrated
camera is needed to calculate all the intrinsic and extrinsic calibration parameters. If this
information is available the rectification and stereo matching procedure can be performed
and furthermore, depth can be computed by triangulation. The stereo matching method
that is discussed here, is a pixel-based approach called census.

Furthermore, an extension of a classical two-camera stereo system by a pattern pro-
jector is presented. This special sensor, consisting of two cameras and a projector is
therefor a combination of a two-camera system and a projector-camera system. The pur-
pose of this combined sensor is to reduce the reconstruction difficulties of both individual
systems to result in a denser combined depth map.

Next, the implemented software, including the projector-camera calibration, the rec-
tification and stereo matching in MATLAB as well as the extensions of the existing
High Speed Stereo Engine S3E developed by the Austrian Institute of Technology, is
documented. Especially for the projector-camera calibration an automatic approach is
developed and presented in this thesis which is based on the feature detection algorithm
SIFT.

Finally, the projector-camera system is tested and verified. For that purpose, real-
world scenes are measured and compared with the calculated results. Additionally the
matching quality is analysed and it is shown that the best results are achieved by using
a blurred version of the projected pattern for the stereo matching calculations. Further-
more, the depth maps of the projector-camera system are compared with the maps of the
two-camera system as well as with the maps of the combined sensor.
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2 Kurzfassung

Stereo Vision ist ein Teilgebiet von Computer Vision, das sich mit der dreidimensionalen
Rekonstruktion einer Szene beschäftigt. Dies geschieht üblicherweise mit Hilfe von zwei
Kameras, welche parallel zueinander montiert sind und zeitgleich aufnehmen. Des weit-
eren werden dann Punktkorrespondenzen zwischen diesen beiden Ansichten gesucht um
Tiefenwerte durch Triangulierung zu berechnen.

In dieser Arbeit wird ein ganz spezielles Stereo Vision System vorgestellt, nämlich
ein Projektor-Kamera Sensor. Im Gegensatz zu klassischen Stereo Vision Sensoren, bei
denen zwei Kameras verwendet werden, wird hierbei eine der zwei Kameras durch einen
Musterprojektor ersetzt. Die dreidimensionale Rekonstruktion basiert jedoch auf den
selben Algorithmen und Prozessen, der einzige Unterschied besteht darin, dass nicht die
zwei Kamerabilder einer Szene für die Berechnungen verwendet werden, sondern lediglich
eines, in dem das projizierte Muster sichtbar ist. Statt dem zweiten Kamerabild wird das
Muster selbst verwendet.

Zu aller erst muss dieser Stereo Vision Sensor genau kalibriert werden. Da nur eine
Kamera im Einsatz ist, unterscheidet sich die Projektor-Kamera Kalibrierung ein wenig
von der üblichen Stereo-Kamera Kalibrierung. In dieser Arbeit wird eine Projektor-
Kamera Kalibriermethode vorgestellt, welche eine bereits kalibrierte Kamera benötigt
um die entsprechenden intrinsischen und extrinsischen Parameter zu berechnen. Wenn
diese Informationen vorhanden sind, kann die Rektifizierung und anschließend das Stereo
Matching durchgeführt werden. Die Stereo Matching Methode, welche hier verwendet
wird, Census genannt, ist ein Pixel-basierter Ansatz.

Weiters wird in dieser Arbeit eine Erweiterung eines klassischen Zwei-Kamera Sys-
tems mit einem Musterprojektor vorgestellt. Dieser spezielle Sensor, bestehend aus zwei
Kameras und einem Projektor, ist daher eine Kombination eines Zwei-Kamera Sensors
mit einem Projektor-Kamera Sensor. Der Grund, warum man solche Sensoren betra-
chtet, ist, dass Schwierigkeiten bei der Rekonstruktion beider Systeme reduziert werden
können, um somit ein dichteres Tiefenbild zu erhalten, welches aus der Kombination der
beiden Tiefenbilder berechnet wird.

Anschließend wird die implementierte Software, welche aus der Projektor-Kamera
Kalibrierung, Rektifizierung und Stereo Matching in MATLAB als auch aus den Er-
weiterungen der bestehenden High Speed Stereo Engine S3E, welche vom Austrian Insti-
tute of Technology entwickelt wurde, dokumentiert. Im Detail wird in dieser Arbeit eine
automatische Projektor-Kamera Kalibriermethode vorgestellt, welche auf dem Algorith-
mus SIFT, der zur Extraktion von Bildmerkmalen verwendet wird, basiert.

Zuletzt wird der Projektor-Kamera Sensor getestet und verifiziert. Zu diesem Zweck,
werden reale Szenen vermessen und mit den berechneten Ergebnissen verglichen. Zusätzlich
wird die Matching Qualität untersucht, wobei gezeigt wird, dass die besten Resultate
erzielt werden, wenn eine verschwommene Version des projizierten Musters für die Stereo
Matching Berechnungen verwendet wird. Weiters werden die Tiefenbilder des Projektor-
Kamera Systems mit jenen des Zwei-Kamera Systems verglichen, als auch mit den Tiefen-
bildern des kombinierten Sensors.
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3 Introduction

Three-dimensional reconstruction of a scene is a non-trivial problem. Human beings
achieve this, by viewing their environment with two eyes, hence two different views of
the same scene are available. The brain processes these impressions in order to obtain
a three-dimensional image. But how does a computer reconstruct a three-dimensional
scene, since it is not able to see what we see? One possible approach is to use optical
measuring methods. Capturing a scene with a camera, means projecting the 3D points
onto a two-dimensional image plane. This implies, that one dimension gets lost, a 3D
point can be located only along a ray. Therefore additional information is necessary to
recover the missing dimension. Today many different methods exist to deal with that
problem. High reconstruction accuracy for example is provided by laser scanners, but
they are expensive and mostly not usable in dynamic scenes. A modern and relatively
cheap approach of optical 3D measurement is stereo vision or in other words the binocular
viewing of a scene. If the visual perception of human beings is taken as an example, a
second camera, which captures the scene simultaneously, has to be added. This view
also provides the rays, where the 3D points are located. To reconstruct the coordinates
of one such point, the two rays, that correspond to that point in each view, have to be
intersected. This process is called triangulation. The problem here, is the identification of
one and the same point within the different views, which is also called the correspondence
problem. There exist different approaches to solve this problem. During this work, the
rectification and stereo matching process will be discussed in detail. Rectification is the
procedure that rotates the two images in such a way that corresponding image lines are
aligned on the same row which simplifies the stereo matching procedure. Classical stereo
vision sensors consist of two cameras. To perform the stereo algorithms, they have to
be calibrated accurately. Camera calibration is the process of calculating the camera
specific parameters which are necessary for 3D reconstruction. Stereo camera calibration
is the procedure of computing the geometrical relationship between the two cameras,
which is also needed to computationally measure a scene. In section 4, all the necessary
information and details concerning camera calibration, the geometry, on which stereo
vision is based, and the reconstruction procedure will be explained.

Classical two-camera stereo vision sensors suffer from different conditions. First of all
the so-called occlusions, which are areas that are only visible in one of the two images,
cannot be matched. Furthermore, textureless or repetitive areas make it difficult to
achieve accurate results. One approach to overcome this, is to use structured light. Here,
one camera is replaced by a pattern projector which illuminates the scene to be measured.
Now correspondences are not searched between the two camera images, but between the
projected pattern and the camera’s image of it. Therefore some areas, which were not
visible by the other camera can also be reconstructed as well as textureless parts of the
scene due to the structure that comes from the projected pattern. In section 5 different
structured light methods are presented as well as the most common procedures, called
stereo matching algorithms, to find corresponding points between two images.

Since structured light sensors usually consist of a projector and a camera, they are
also called projector-camera sensor. As with classical stereo vision systems, it has to
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be calibrated before stereo vision algorithms, such as rectification, stereo matching and
reconstruction, can be performed. A projector can be modeled as a camera with the only
difference, that it is not able to capture the scene, but to illuminate it. Therefore the
classical camera calibration procedure has to be modified slightly. The whole process is
explained in section 6. Furthermore, a special stereo matching algorithm is depicted in
detail and improvements are introduced.

What has not been taken into account up to now, is that projector-camera systems also
have measuring difficulties. They differ from the ones of two-camera sensors, but does not
have to be ignored. One of these problems is the ambient light. If it is too bright and the
luminosity of the projector too low, the projected pattern is hardly visible in the camera’s
image and correspondences are difficult to find. A possible solution to overcome this, is
to combine a two-camera sensor with a projector. This creates two or even three separate
stereo vision systems, the two-camera system and the two projector-camera systems, one
with the left camera and the second with the right one. Since the improvements, that
are achieved by using two systems, are adequate and another additional system requires
another calibration procedure and stereo matching stage, which also generates additional
error sources, usually only the two-camera sensor is combined with one projector-camera
system. This combined setup reduces the measuring problems from both sensors and
leads to denser reconstruction results. The required modifications and algorithms are
explained in section 6.

In section 7 all the implementations of the previously described algorithms are intro-
duced. This includes the individual calibration procedures, the rectification and stereo
matching algorithms. Furthermore, the existing High Speed Stereo Engine S3E developed
by the Austrian Institute of Technology is depicted and the modifications and additional
functions that were implemented during this work are explained.

Since the projector calibration method, described in section 6.1, is a semi-automatic
procedure, which needs a lot of input from the user, a completely automatic procedure
was developed during this work as well. It is based on the feature extracting algorithm
SIFT and requires a precalibrated two-camera sensor, whereby one of the cameras is used
for the projector-camera sensor as well. The details of this method are also explained in
section 7.

To prove that the implemented algorithms provide accurate and correct results some
evaluation setups are created and verification tests are performed. First of all the re-
construction results from the projector-camera system are evaluated. This includes the
correctness, the measuring quality and the accuracy. Further the measuring outputs
from the two-camera sensor and the projector-camera sensor are compared an their re-
construction difficulties are shown. Last some results of the combined stereo vision sensor
are introduced. The whole evaluation and verification can be found in section 8.

10



4 Fundamentals of Stereo Vision

Stereo vision or stereo imaging describes the geometry and the relationships between two
different views of one scene. It makes it possible to reconstruct the three-dimensional
scene like our eyes do. Basically this is achieved by solving the so-called correspondence
problem, which is the challenge to find corresponding points in both images. Once they
are found, the depth of the scene can be calculated through triangulation. This stereo
matching procedure can be simplified by rectifying both images, which means that the
image planes are rotated as long as they get parallel. The main advantage of this proce-
dure is, that the correspondence search only has to be performed along the image rows.
To perform rectification, the stereo system has to be calibrated to get to know about
the geometrical relationship between the two cameras and also the internal geometry of
each one. So firstly the process of camera calibration is described before going into detail
about the underlying geometry and 3D reconstruction.

4.1 Camera Calibration

Camera calibration is an important task in mathematically modeling a camera and it is
used to calculate the camera’s parameters. There are two types of parameters that should
be known, the intrinsic and the extrinsic. The intrinsic parameters describe the internal
camera geometry and the extrinsic the geometrical relationship between the camera co-
ordinate system and the world coordinate system. These values will be calculated during
the calibration process, but first it is important to understand how a camera is being
modeled.

4.1.1 Camera Model

The simplest model of a camera is the pinhole camera model. Here, it is assumed that
every point in space produces a single ray, which is projected on the image plane. This is
illustrated in Figure 1. All these rays intersect in one point, called the optical center of
the camera. This point is part of the focal plane. The distance between the image plane
and the focal plane is called focal length. The distance Z between the camera and one
object point can be easily calculated by similar triangles:

−x
f

=
X

Z
⇒ Z = f

X

−x
where f is the focal length.

To make illustration and calculation easier the image plane and the focal plane are
swapped. This doesn’t affect the mathematical model, only the negative sign of x disap-
pears so Z can be calculated as

Z = f
X

x
.

Now the projection of a point on the image plane is the intersection of the ray between
that point and the optical center and the image plane.
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focal planeimage plane

optical center

f

Z X

x

Figure 1: Pinhole camera

The camera coordinate system consists of the three orthogonal axes XC , YC and ZC
and the origin C, which is the optical center of the camera. ZC is pointing in the viewing
direction and is called optical axis. Its intersection with the image plane is called principle
point. The whole setup is shown in Figure 2.

XC

YC

ZC
C

optical center

im
age plane

principle point

focal length

(XC,YC,ZC)

(x, y, f)

optical axis

Figure 2: Camera model

The transformation between the world coordinate system, with axes Xw, Yw and Zw
and origin Ow, and the camera coordinate system can be modeled by a rotation matrix R
and a translation vector T and these two parameters are the so-called extrinsic parameters
of the camera. The matrix R is defined by three normalized row vectors rx, ry and rz,
which represent the orientation of the three axis of the camera coordinate system with
respect to the world coordinate system.

Given an object point P and its coordinates (Xw, Yw, Zw) relative to the world coor-
dinate system, the coordinates (Xc, Yc, Zc) can be calculated as Xc

Yc
Zc

 = R

 Xw

Yw
Zw

+ T

or in homogeneous coordinates
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
Xc

Yc
Zc
1

 =

(
R T
0 1

)
Xw

Yw
Zw
1


Next, the intrinsic parameters of the camera, which will model the projection of the

point on the image plane onto the screen, will be described. One of these parameters
has already been mentioned, the focal length, the distance from the optical center to the
image plane. As explained above the 2D coordinates (x, y) of the point P on the image
plane are (

x
y

)
=

f

Zc

(
Xc

Yc

)
which can be summarized to U

V
S

 =

 f 0 0
0 f 0
0 0 1

 Xc

Yc
Zc

 ,

where S = Zc, hence x = U
S

and y = V
S

.

Since the coordinate origin of the image plane is set at the principle point (u0, v0)
and not at the corner of the screen, (u0, v0) has to be added. Another fact to mention is,
that pixels often are not square as it would be thought, but rectangular. Therefore the
physical focal length f is split into fx and fy, the focal lengths in units of pixels. So the
matrix above changes to

A :=

 fx 0 u0
0 fy v0
0 0 1


All together there are four intrinsic parameters, fx, fy, u0 and v0. So the projection of

a 3D point (Xw, Yw, Zw) onto the screen can be summarized to

S

 x
y
1

 = A
(
R T

)
Xw

Yw
Zw
1

 ,

where A
(
R T

)
is the corresponding projection matrix.

What has not been taken into account up to now, is, that all cameras have a lens and
so lens distortion has to be considered. There are two types of distortion, the radial and
the tangential distortion. The radial distortion is caused by the curvature of the lens and
causes for example that straight lines are curved on the image plane. We use a 6th order
polynomial to model the distortion as it is proposed by [5]. The corrected point on the
image plane has the coordinates
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(
xcorr
ycorr

)
=

(
x+ xk1r

2 + xk2r
4 + xk3r

6

y + yk1r
2 + yk2r

4 + yk3r
6

)
,

where r is the distance of

(
x
y

)
from the origin, so r =

√
x2 + y2 and k1, k2 and k3 are

the radial distortion parameters. If k1 is positive the distortion is called barrel distortion
and otherwise it is called pincushion distortion. The effects are shown in Figure 3.

(a) Barrel (b) Pincushion

Figure 3: Different, distortion models (a) Barrel distortion and (b) Pincushion distortion.

The tangential distortion is an affect of the design of the lens, for example that the
lens is not exactly parallel to the image plane. Here there are two parameters, p1 and p2
which model the distortion and the corrected coordinates are(

xcorr
ycorr

)
=

(
x+ 2p1xy + p2(r

2 + 2x2)
y + p1(r

2 + 2y2) + 2p2xy

)

4.1.2 Single Calibration

When calibrating a single camera the two extrinsic parameters, R and T , the four intrinsic
parameters, fx, fy, u0 and v0, and the five distortion parameters, k1, k2, k3, p1 and p2, have
to be calculated. This is usually achieved with the help of a calibration object, for example
a chessboard, which is a plane object and part of the model plane. It is assumed, that the
plane’s equation is Zw = 0. So the origin of the world coordinate system is also part of this
plane. Usually it is equivalent to one of the outer chessboard corners. The 3D coordinates
of the other chessboard corners are easy to calculate, when the size in millimeters or
centimeters of one square within the chessboard is known as well as the number of squares
within the chessboard. During the calibration procedure the chessboard is viewed from
different angles, hence the orientation of the world coordinate system changes with every
different view. Each time all of the corners have to be detected in the camera’s image.
Afterwards the correspondences between the 3D-chessboard corners and the chessboard
corners on the camera image plane are known, the camera’s parameters can be estimated
as it is proposed in [6].
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First it is pretended, that there is no radial and tangential distortion so the image
coordinates are

 U
V
1

 = s · A
(
r1 r2 r3 T

)
Xw

Yw
0
1

 = s · A
(
r1 r2 T

) Xw

Yw
1


Set H = [h1 h2 h3] := s · A

(
r1 r2 T

)
, where s is an arbitrary scale factor. Then

the three 3× 1 vectors h1 = sAr1, h2 = sAr2 and h3 = sAT have to be calculated. There
are two constraints that have to be taken into account. We can use the fact that r1 and
r2 are rotation vectors, so their dot product is zero, rT1 r2 = 0, and their magnitudes are
equal, rT1 r1 = rT2 r2. In both equations the scale factor λ = 1

s
is extracted. Substituting

r1 and r2 gives the two constraints

hT1A
−TA−1h2 = 0 and hT1A

−TA−1h1 = hT2A
−TA−1h2

Set B = A−TA−1. It follows that

B =


1
f2x

0 −u0
f2x

0 1
f2y

−v0
f2y

−u0
f2x

−v0
f2y

u20
f2x

+
v20
f2y

+ 1


Combined with the two constraints it gives

hTi Bhj =



hi1hj1

hi1hj2 + hi2hj1

hi2hj2

hi3hj1 + hi1hj3

hi3hj2 + hi2hj3

hi3hj3



T

︸ ︷︷ ︸
:=vTij



B11

B12

B22

B13

B23

B33


︸ ︷︷ ︸

:=b

i, j ∈ {1, 2}

and so (
vT12

(v11 − v22)T
)
b = 0.

So when the calibration object is viewed from n different angles, we get n such equa-
tions and can then build the 2n× 6 matrix V by putting them together and having the
following equation

V b = 0

which can be solved for b. The solution is the eigenvector of V TV associated with the
smallest eigenvalue. Now it is easy to calculate the intrinsic parameters:
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v0 = b2b4−b1b5
b1b3−b22

λ = b6 − b24+v0(b2b4−b1b5)
b1

fx =
√

λ
b1

fy =
√

λb1
b1b3−b22

u0 = −b4f2x
λ

The extrinsic parameters can also be computed:

r1 = λA−1h1
r2 = λA−1h2
r3 = r1 × r2
T = λA−1h3

where λ = 1
||A−1h1|| . Here, it should be noticed that these parameters are different for

every different view of the chessboard because the world coordinate system changes.

The next step during the calibration process is the calculation of the lens distortions.
Once we know the intrinsic and extrinsic parameters, the pixel coordinates for every 3D
point can be computed, but this calculated 2D point does not conform to the actual cor-
responding 2D point because of distortion. As explained above the relationship between
the calculated point and the correct point is

(
xcorr
ycorr

)
=

(
x+ xk1r

2 + xk2r
4 + xk3r

6

y + yk1r
2 + yk2r

4 + yk3r
6

)
+

(
2p1xy + p2(r

2 + 2x2)
p1(r

2 + 2y2) + 2p2xy

)
Many of these equations together form a system of equations which can be solved in

order to obtain the distortion parameters k1, k2, k3, p1 and p2.

4.1.3 Stereo Calibration

Stereo systems usually consist of two cameras which are used to reconstruct a 3D scene.
For this task it is very important to know the geometrical relationship between the
two cameras. Stereo calibration is the process which handles this. In fact the goal is
to calculate the rotation R and the translation T between the two different coordinate
systems.

First, both cameras have to be calibrated on their own, with the only constraint that
they are viewing the calibration object simultaneously, so that the rotations Rl and Rr

and the translations Tl and Tr for each camera and every different view refer to the
same world coordinate system. Given a 3D point P in the world coordinate system its
corresponding point Pl in the left camera coordinate system and Pr in the right camera
coordinate system can be calculated as

Pl = RlP + Tl and Pr = RrP + Tr

This implies
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RT
l (Pl − Tl) = RT

r (Pr − Tr) ⇒ Pr = RrR
T
l Pl −RrR

T
l Tl + Tr

⇒ R = RrR
T
l and T = Tr −RrR

T
l Tl

So the rotation and translation that maps the right camera coordinate system to
the left camera coordinate system can easily be calculated when the two cameras are
calibrated. As explained in the previous section Rl and Rr are different for every different
view during the calibration process of the left camera and the right camera, hence R and
T also differ slightly. To obtain the final extrinsic parameters, the median of all resulting
R′s and T ′s could be taken.

The reference coordinate system here is fixed at the left camera coordinate system.
So the left projection matrix is Al

(
I 0

)
and the right is Ar

(
R T

)
.

4.2 Epipolar Geometry

The epipolar geometry is the basic geometry when working with stereo systems. It
combines the geometry of the two cameras and makes 3D reconstruction easier. The
matrix, which describes the whole epipolar geometry, is called fundamental matrix and
will be explained in this section. Also a special stereo camera setup where the image
planes of the cameras are parallel will be described.

4.2.1 Definitions

Before going into detail on the mathematical issues of the epipolar geometry, some terms
have to be defined. As explained in the previous section each camera has an optical
center, let Cl be the optical center of the left camera and Cr the one of the right. The
line b, that connects these points is called baseline. This line intersects the image plane of
the left camera as well as the image plane of the right camera. These intersection points,
el and er, are called epipoles and the plane formed by them and a point P in space is
called epipolar plane. This plane intersects the two image planes in the epipolar lines,
which also contain the epipoles. So all the epipolar lines of one image plane intersect in
this special point. The whole geometry is illustrated in Figure 4.

P

Cl Cr

epipolar plane

pr

erbaseline

epipolar li
ne

el

pl

epipolar line

Figure 4: Epipolar geometry
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A very useful fact concerning epipolar geometry is, that it makes it easier to find point
correspondences in the left and right image. Let pl be the projection of the point P on
the left image plane. What we are searching for is the corresponding projection pr on the
right image plane. The epipolar geometry makes this search easy, because of the so called
epipolar constraint, which says that pr must lie along the corresponding epipolar line on
the right image plane. Therefore the correspondence search becomes a one-dimensional
search once the epipolar geometry of the stereo system is known.

4.2.2 The Essential and Fundamental Matrix

To solve the correspondence problem for a 3D point P considering the epipolar constraint,
the epipolar lines have to be calculated. For this purpose two matrices, the essential
matrix E and the fundamental matrix F are introduced.

Given an object point P , we already know that the points

Pl =

 Xl

Yl
Zl

 and Pr =

 Xr

Yr
Zr


in the corresponding camera coordinate systems are related according to a rotation R
and a translation T , Pr = RPl + T . The coordinates of the appropriate points on the
image planes are

pl = Sl

 xl
yl
1

 =
fl
Zl

 Xl

Yl
Zl

 and pr = Sr

 xr
yr
1

 =
fr
Zr

 Xr

Yr
Zr


Using the relationship between left and right coordinate system it follows that

Srpr = SlRpl + T or pr =
fr
Zr

(
Zl
fl
Rpl + T )

⇒ T × pr =
fr
Zr

Zl
fl
T ×Rpl ⇒ 0 = pTr (T × pr) = pTr (

fr
Zr

Zl
fl
T ×Rpl)

and finally
pTr (T ×Rpl) = 0

The cross product T ×R can be rewritten as E := [T ]xR with

[T ]x =

 0 −Tz Ty
Tz 0 −Tx
−Ty Tx 0


leading to the final epipolar equation

pTr Epl = 0

where E is the previous mentioned essential matrix. It contains all the information about
the geometrical relationship between corresponding image points. So with this equation
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it is possible to calculate the epipolar line on the right image plane of a given point pl
on the left image plane, which contains all possible corresponding points pr on the right
image plane. It is simple ll = Epl and the one on the left image plane is lr = ETpr. Since
all the epipolar lines ll contain the epipole el, it follows that 0 = eTl (ETpr) = (eTl E

T)pr for
all pr and further Eel = 0. The equation for the right epipole can be computed analog,
eTr E = 0. If we use the fact, that one epipole is the corresponding point of the optical
center of the other camera, the right epipole can be computed easily. The optical center
of the left camera has the coordinates ( 0 0 0 )T, so the epipole er can be computed
as follows

pl = Sl

 xl
yl
1

 =

 0
0
0

⇒ Sl = 0⇒ Srer = 0 ·R + T

⇒ er = λT

To calculate the left epipole we take a closer look at the equation Eel = 0. Let us
rewrite it to 0 = SRel = T ×Rel. What follows is that T and Rel are parallel, so we can
set T = Rel and therefore el = RTT .

In practice we are interested in pixel coordinates, so some information about the
camera’s geometries have to be added. Let Al be the left camera’s intrinsic matrix and
Ar the one of the right. The screen coordinates, ql and qr, can be calculated as Alpl and
Arpr. Now the epipolar equation can be rewritten as

qTr (A−1r )TEA−1l ql = 0.

The fundamental matrix F is defined as (A−1r )TEA−1l and therefore we have the relation-
ship for the pixel coordinates:

qTr Fql = 0.

The epipolar lines in pixel coordinates can be computed as Fql and FTqr and the
epipoles are ArT and AlR

TT .

If we use the equality (A−1r )T[T ]x = 1
det(Ar)

[ArT ]xAr, we get another form for F :

0 = qTr (A−1r )T[T ]xRA
−1
l ql =

1

det(Ar)
qr[ArT ]xArRA

−1
l ql

⇒ qr[ArT ]xArRA
−1
l ql = 0 ⇒ F = [ArT ]xArRA

−1
l

F = [er]xArRA
−1
l

4.2.3 Parallel Camera Setup

When the image planes of the two cameras are parallel, we are talking about a parallel
camera setup. It is a special configuration and makes some calculations easier. Since the
image planes are parallel, the rotation matrix R is equal to the identity matrix and the
optical centers are horizontal translated according to the translation vector T , which is
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therefore parallel to the x-axis. So its coordinates are ( b 0 0 )T, where b is the length
of the baseline. It follows, that the epipole er is ( 1 0 0 )T. Further it is assumed,
that the two intrinsic matrices, Al and Ar are equal. Then the left projection matrix is
Al( I 0 ) and the right is Al

(
I T

)
.

Now the fundamental matrix can be computed using all of this information:

F = [er]xAlRA
−1
l = [er]xAlA

−1
l = [er]x =

 0 0 0
0 0 −1
0 1 0


Let pl = ( xl yl 1 )T be a point on the left image plane. Then the corresponding

epipolar line on the other image is

Fpl =

 0
−1
yl


which can be written in implicit form ax + by + c = 0 with a = 0, b = −1 and

c = yl, leading to the final explicit form y = yl. A consequence is, that the corresponding
epipolar line has the same y-coordinate as the given image point and that every epipolar
line is parallel to the x-axis. Since the epipole is the intersection of all the epipolar lines
of one image, it follows, that this point is at infinity. The epipole is also the intersection
of the baseline and one image plane and therefore the baseline is parallel to the x-axis
as well. As a consequence the correspondence problem is easier to solve, because the
epipolar lines doesn’t have to be calculated explicitly, we only have to search along the
line with the same y-coordinate parallel to the x-axis. So it would be desirable, that
every camera setup can be transformed to this parallel setup and this will be explained
in the following section.

P

Cl Cr

epipolar plane

baseline

pl
pr

epipolar line epipolar line

Figure 5: Parallel camera setup

4.3 Rectification

Rectification is the process of transforming the two image planes of any stereo system to
a parallel setup, where corresponding epipolar lines are aligned on the same row and all of
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them are parallel to the x-axis. It is assumed, that the stereo rig is calibrated, hence the
intrinsic parameters of both cameras are known, as well as the rotation and translation
between them. The two projection matrices have the form Al( I 0 ) and Ar( R T ).
To perform the rectification procedure, two new projection matrices A1( R1 T1 ) and
A2( R2 T2 ) have to be calculated in order to get epipolar lines parallel to the x-axis and
further to align corresponding epipolar lines on the same row. The new intrinsic matrices
are the same for both cameras, since the parallel image planes imply same focal lengths
and principle points. There exist different methods to calculate the new parameters.
Some set the new intrinsic matrices equal to one of the old ones, while others take care
about the visible area after rectification to be maximal. The second approach will be
described in section 7.2.3.

The rotation matrices R1 and R2 are composed of two rotation matrices, R1 = RnewRl

and R2 = RnewRr. Rl and Rr are the matrices that rotate left and right image planes to
be parallel. Here, we fix the left camera, hence Rl is equal to the identity matrix and Rr

is the inverse of the rotation matrix R between the two image planes.
Rnew represents the rotation matrix, that turns the image lines to be parallel to the

x-axis. The three normalized row vectors of Rnew represent the orientations of the three
axes. Because we want the new x-axis to be parallel to the baseline, the first row of Rnew

is rx = (Cr−Cl)T
||Cr−Cl||

= TT

||T || . The second vector has to be orthogonal to the first one, but has

otherwise no constraints, so set ry =
( −Ty Tx 0 )T√

T 2
x+T

2
y

. The third row is then rz = rx×ry.
Another approach to calculate the rotation matrix, takes the angle between the base-

line, i.e. Cr −Cl = T , and the x-axis into account. The rotation axis is equal to the unit
normal vector of the plane, which is spanned though the x-axis and T . In general the
matrix for a rotation by an angle α around an axis

(
x y z

)
, which is represented by

an unit vector, is given by

R =

 (1− cos(α))x2 + cos(α) (1− cos(α))xy − sin(α)z (1− cos(α))xz + sin(α)y
(1− cos(α))xy + sin(α)z (1− cos(α))y2 + cos(α) (1− cos(α))yz − sin(α)x
(1− cos(α))xz − sin(α)y (1− cos(α))yz + sin(α)x (1− cos(α))z2 + cos(α)



Here, the rotation axis is equal to
T×
(
−1 0 0

)T
||T || =

(
0 −Tz√

T 2
y+T

2
z

Ty√
T 2
y+T

2
z

)T
and

the angle α = arccos

(
T ·
(
−1 0 0

)T
||T ||

)
= arccos

(
−Tx
||T ||

)
.

It follows that cos(α) = − Tx
||T || and

sin(α)z =

√
1− T 2

x

||T ||2
Ty√

T 2
y + T 2

z

=

√
T 2
y + T 2

z

||T ||
Ty√

T 2
y + T 2

z

=
Ty
||T ||

and

sin(α)y =

√
1− T 2

x

||T ||2
−Tz√
T 2
y + T 2

z

=

√
T 2
y + T 2

z

||T ||
−Tz√
T 2
y + T 2

z

=
−Tz
||T ||
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Therefore the first row of the corresponding rotation matrix R is given by(
− Tx
||T || −

Ty
||T || −

Tz
||T ||

)
which is equal, up to the factor -1, to the first row of the rotation

matrix using the first calculation approach, but this is not surprising, since the first row
of R represents the orientation of the x-axis.

The last step of the rectificaton procedure is the calculation of the two transla-
tion vectors T1 and T2. The optical center C of one camera satisfies the equation

A( R T )(
C
1

) = ( 0 0 0 0 )T. Rewriting this equation it follows that T = −RC.

Because the optical center of the left camera is ( 0 0 0 )T, T1 has the same coordi-
nates. Cr is equal to T and therefore T2 = −RnewR

−1T . The final new projection
matrices are A( Rnew 0 ) and A( RnewR

−1 −RnewR
−1T ). The two rectification steps

are illustrated in Figure 6.

Left image plane
Right im

age plane

baseline

Cl Cr
R-1

(a) Rotation of right image plane

Left image plane

baseline

Cl Cr

Right image plane

Rnew

(b) Rotation of left and right image plane

Figure 6: Rectification process, (a) Rotation of the right image plane to be parallel to
the left image plane, (b) Rotation of the image planes to be parallel to the baseline

Let us check, if the camera setup is parallel now. There are two facts to verify,
the rotation matrix between the two camera coordinate systems has to be equal to the
identity matrix and the translation vector should be parallel to the x-axis. If we look
at the new projection matrices, the rotation matrix can easily be estimated. Because
both coordinate systems are rotated according to the matrix Rnew, the image planes are
parallel now, thus the matrix, which rotates one coordinate system to the other, is the
desired identity matrix. The new translation vector is −RnewT . It is easy to proof,
that this vector is parallel to the x-axis because of the construction of Rnew. The first
row vector is TT

||T || and both of the other rows are orthogonal to it. What follows is that

−RnewT is equal to ( −T
TT
||T || 0 0 )T.

Since the distortion parameters of the two cameras are usually different, it is rec-
ommended to undistort the rectified images according to the individual values. This
improves the stereo matching results and further the 3D reconstruction.

4.4 Stereo Matching

To reconstruct a three-dimensional scene using stereo vision, point correspondences be-
tween the two different views are required. This is the goal of stereo matching. As
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explained in the previous section, the corresponding point of one image point has to be
part of the appropriate epipolar line in the other image. Therefore the correspondence
search is reduced to a search along the epipolar line. Are the images in addition also
rectified, the corresponding point only has to be searched along the same row in the
other image. If the left image is the reference image, the corresponding pixel to a pixel
(x, y) in the left image has to be searched in the right image and has the coordinates
(x − d, y). If the right image is the reference image, the corresponding pixel in the left
image has the coordinates (x+ d, y). The associated value of d is defined as the disparity
of (x, y). With this information a so-called disparity map or disparity image can be cal-
culated, where the pixel at position (x, y) has the value of the appropriate disparity d.
There are numerous stereo matching methods, but basically they can be classified into
two categories: pixel-based and feature-based techniques.

Pixel-based methods compare intensity or color of pixels to find corresponding points.
Mostly not only single pixels are considered, but small blocks around one pixel. That is
the reason why these approaches are often called block-matching methods. The structure
of one pixel block in the first image is searched in the other one. For the position (x, y)
in the first image a block with size (m,n) around this point is compared with a block
the same size around the position (x − d, y) or (x + d, y), depending which image is
the reference image, in the second image, where d varies in a predefined searching range
[dmin, dmax]. The point (x− d, y) resp. (x+ d, y), where the block surrounding it is most
similar to the reference block, according to some predefined similarity measure, is referred
to as the corresponding one. So dense disparity maps are computed, which takes much
time.

In feature-based approaches certain features are extracted in both images to find
corresponding ones. Therefore both images have to be preprocessed to extract these
features. This is an additional effort, but afterwards correspondence search is much easier
and faster. The calculated disparity maps are usually more sparse than in pixel-based
methods. Possible features could be edges, corners, lines, curves or others.

(x, y)(x, y) (x - d, y)

Figure 7: Stereo matching

Nevertheless some cases may arise, where it is very difficult or impossible to find
the appropriate point. First of all there are areas, which cannot be viewed by both
cameras or are hidden behind any object. These areas are called occlusions. Here, point
correspondences are impossible to find as it is illustrated in Figure 8. Furthermore, the
structure of the scene can cause problems. For example if there is a low textured area
like a white wall, every point in the surrounding area could be a matching candidate.
Another example is repetitive texture. The problem with such areas is, that multiple
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correspondences exist and therefore wrong matches occur. Furthermore, photometric
variation causes problems during the stereo matching procedure. This means, that if two
cameras are viewing the scene from different angles, the captured light and intensity are
different, hence correspondences are difficult to find.

occlusion occlusion

Figure 8: Occlusions that occur using a two-camera sensor

4.5 3-D-Reconstruction

After solving the correspondence problem, it is easy to reconstruct the three-dimensional
scene. We already know, how a point P = ( X Y Z )T is projected onto the screen:

S

 x
y
1

 = A( R T )


X
Y
Z
1


Assume that fx = fy = f and that the stereo system is already rectified, hence R = I
and T = ( b 0 0 )T, so the left and right projection matrices are simplified to A

0
0
0

 and

 A
fb
0
0

 .

Therefore the pixel coordinates of corresponding points in the left and right image are(
fX
Z

+ u0
fY
Z

+ v0

)
and

(
fX
Z

+ u0 + fb
Z

fY
Z

+ v0

)
.
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Through triangulation it follows that fb
Z

= d, as we have expected.

P

Cl Cr

(x, y) (x - d, y)

b

Z

f f

Figure 9: Triangulation

To reproject a point uniquely, corresponding points have to be found. The stereo
matching procedure solves this problem. More precisely, it calculates the disparity of
every pixel (x, y) in the first image, which means, that the corresponding point in the
second image has the pixel coordinates (x−d, y). The according depth Z of the 3D point
can again be calculated using triangulation, Z = fb

d
. Looking at the formulas for the

pixel coordinate calculation, X and Y are easy to compute, X = (x−u0)Z
f

= (x−u0)b
d

and

Y = (y−v0)Z
f

= (y−v0)b
d

. This can be combined by using homogeneous coordinates:
X
Y
Z
W

 =


1 0 0 −u0
0 1 0 −v0
0 0 0 f
0 0 1

b
0




x
y
d
1


The final 3D coordinates are then ( X

W
Y
W

Z
W

)T.

4.6 Summary

In this chapter it is presented how to reconstruct a three-dimensional scene using two
cameras. First of all some details about a camera’s geometry as well as its mathemati-
cal model are explained. Furthermore, two camera calibration methods are introduced,
first the method for a single camera and second the method for a stereo camera system
consisting of two cameras. The geometry which models such a stereo system is called
epipolar geometry, which is also discussed in detail.

An ideal stereo camera setup is formed by two cameras mounted in parallel, therefore
a process called rectification is performed when using systems where the cameras do not
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form such a parallel setup. The main advantage is, that point correspondences now can
be searched along image rows which is performed by a stereo matching method. When
the so-called correspondence problem is solved, the disparity values for most of the pixels
are available which enables the three-dimensional reconstruction through triangulation.

This chapter gives an overview of the fundamentals of stereo vision, further informa-
tion can be found in [7] or [8].
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5 Related Work

Stereo vision systems are basically divided into two categories, passive and active stereo
vision. Passive approaches use two or more cameras to reconstruct the scene without
actively controlling the scene’s illumination. Textureless areas cause problems in the
stereo matching process there. For this purpose active stereo vision systems, which are
also known as structured light systems, are advised. Here, one camera is replaced by
a projector, which illuminates the scene with a specially designed pattern. Therefore
two camera images are no longer considered for the correspondence problem, but every
point in the pattern is searched in the camera’s image of this pattern. Depending on the
used structured light technique the correspondence problem is solved differently. In some
cases classical stereo matching methods, pixel-based or feature-based, are used. Here,
only pixel-based approaches are considered.

5.1 Structured Light

Today numerous structured light techniques are available, which are all based on the
same principle, projecting some sort of light, capturing it with a camera and searching
correspondences. They are classified into multi shot or single shot categories. Multi shot
techniques are limited to static scenes and occupy much time, but the results are often
more accurate. Single shot techniques are preferred, when measuring moving targets. It
would be impossible to present all state of the art techniques based on structured light in
this section, instead some interesting methods are picked out, which give a good overview
about projection opportunities and technical principles.

A very popular and inexpensive projector-camera system is Microsoft’s Kinect, which
is also based on structured light and will be depicted as well.

5.1.1 Multi Shot Technique

The simplest structured light method is a zero-dimensional approach, where a single
light point is projected onto the scene. Usually a laser-light source is used due to its high
focusing capability. The position of this dot in the camera image can be calculated very
accurately, but lots of shots have to be taken to measure the whole scene, because scanning
along both axes is required. Another possibility is to project a single slit, which is a one-
dimensional method. For this purpose also laser emitters are used, although the numbers
of shots are reduced, because the scanning procedure only has to be executed along one
axis. A last solution uses plan-based patterns, hence it is a two-dimensional approach. In
general, whole areas can be scanned and so this method is much faster than the previous
ones, but is not as accurate as them. Another aspect is, that also a correspondence search
is necessary to reconstruct the scene. Therefore most bi-dimensional pattern projectors
are based on coded structured light, which means that a sequence of patterns is projected
such that every illuminated point gets its own unique codeword and can be easily identified
in the camera image. The three multi shot approaches are illustrated in Figure 10.

One coded structured light approach is proposed by Posdamer and Altschuler [9].
They used binary patterns to produce the unique codewords. These patterns consist of
white and black stripes and during every shot one pixel gets either the value 0 or the value
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Projector Camera Projector Camera Projector Camera

Figure 10: Zero-, one- and two-dimensional projection

1, depending if it is covered by a white or a black stripe. After n sequences every pixel
possesses a codeword of n bits. Figure 11 shows a pattern sequence with 5 stages and
the corresponding 5-bit codewords. This technique is very robust to surface structures,
because only binary values are used, but it needs log2(n) different patterns to uniquely
encode n positions.

To reduce the number of patterns, gray codes are provided as in [10]. The scanning
procedure is exactly the same as for binary patterns with the only difference, that the
patterns now contain more than two intensities. If m gray intensities are used and n
positions have to be coded, only logm(n) patterns are required.

1 1 1 1 1 

1 1 1 1 0 

1 1 1 0 1 

1 1 1 0 0  

1 1 0 1 1 

1 1  0 1 0 

1 1 0 0 1 

1 1 0 0 0 

1 0 1 1 1 

1 0 1 1 0 

1 0 1 0 1 

1 0 1 0 0 

1 0 0 1 1 

1 0 0 1 0 

1 0 0 0 1 

1 0 0 0 0 

0 1 1 1 1 

0 1 1 1 0 

0 1 1 0 1 

0 1 1 0 0 

0 1 0 1 1 

0 1 0 1 0 

0 1 0 0 1 

0 1 0 0 0 

0 0 1 1 1 

0 0 1 1 0 

0 0 1 0 1 

0 0 1 0 0 

0 0 0 1 1 

0 0 0 1 0 

0 0 0 0 1 

0 0 0 0 0 

Figure 11: Binary pattern sequence and associated codewords

Another different and very popular multi shot technique is called phase shift. It is
often used, because of its speed and accuracy. The scene is illuminated by some sinusoidal
pattern with a constant phase-shift angle θ. Take for example a three step phase-shifting
with θ = 2π

3
, as it is proposed in [11]. The intensity values, I1, I2 and I3 in every pattern,

make it possible to compute the phase angle of every pixel. They can be calculated as

I1(x, y) = I0 + Imod cos(φ(x, y)− 2π

3
)

I2(x, y) = I0 + Imod cos(φ(x, y))

I3(x, y) = I0 + Imod cos(φ(x, y) +
2π

3
)

28



where I0 is the background’s intensity, Imod is the modulation of the intensity by the
object and φ is the phase to be solved for. To extract φ, three trigonometric identities
are used:

cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

tan(
α

2
) =

1− cos(α)

sin(α)

Then we get I1−I3
2I2−I1−I3 = tan(φ)

tan(π
3
)

= tan(φ)√
3

and finally

φ = arctan(
√

3
I1 − I3

2I2 − I1 − I3
)

The values of φ are within the range of 0 and 2π, with a discontinuity at 2π. In
order to obtain a continuous phase function Φ, which identifies the exact position of one
pixel, multiples of 2π have to be added, dependent on the period(stripe) where the pixel is
located, Φ(x, y) = φ(x, y)+2πk(x, y). So if there are n projected periods, k(x, y) is within
the range of 0 and n. The process, which solves this problem, is called phase unwrapping.
Usually phase unwrapping can only be performed precisely, if it is combined with other
methods. One approach is to combine phase shifting with gray code patterns, which
requires additional projections, as it is proposed by Bergmann [12]. Another possibility,
which is introduced in [13], is to use a second camera to perform stereo matching between
the two cameras in order to solve for k(x, y).

Once the phase Φ for a pixel at location (x, y) is determined, the depth Z of the
corresponding point in space can be calculated by means of a reference plane at known
distance Zref , where its phase has the value Φ0(x, y). This is shown in Figure 12.

Projector Camerab

Zref

Z

Reference plane

Figure 12: Triangulation using phase shift

Zref − Z
Φ(x, y)− Φ0(x, y)

=
Z

b
⇒ Z ≈ Zrefb

Φ(x, y)− Φ0(x, y)
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5.1.2 Single Shot Technique

Single shot techniques have big advantages in dynamic scenes, because only one picture
has to be taken for reconstruction. There are lots of patterns, that can be used, which
are all based on different coding strategies. The first method that will be described here,
uses multiple slits with random cuts, as it is introduced by Maruyama and Abe [1]. Due
to the cuts, each line is separated into multiple slits. A sector of the pattern is shown in
Figure 13. One slit is identified by its length and the six adjacent slits. The correspon-
dence search starts with matching segments of equal length. Because this usually results
in many matches, the six nearby slits of the observed one have to be considered. The
problem of this technique is, that it only provides good results for measuring smooth and
continuous surfaces because otherwise the length of the segments can vary due to strong
deformations of the pattern.

Figure 13: Pattern proposed by Maruyama and Abe [1]

Another approach, that uses coded strips, is proposed by Boyer and Kak [14]. The
pattern is composed by some unique subpatterns, which are designed by vertical colored
strips (red, green and blue), separated by black bands. To match each slit in the cam-
era image with the projected slit, a four-step stripe indexing algorithm is performed to
identify each stripe by its unique index. The four main components are called correla-
tion, crystal-growing, crystal-fitting and ordinal assignment. During the first step each
subpattern of the projected pattern is compared with the camera’s image of it and pos-
sible matching candidates are listed. This list may contain more than one or no entries.
The following steps have to decide, which match is the correct one. The crystal-growing
process tries to find as many correspondences of slits within the subpatterns, which are
referenced to be possible matches. Therefore a so-called crystal grows with every found
correspondence. Afterwards some slits are indexed redundantly, some are indexed incor-
rectly and some are not indexed at all. The goal of the crystal-fitting stage is to eliminate
false matches and keep the correct ones. For this purpose the decision criterion is the size
of the crystals, if two crystals overlap, the larger one is accepted. The last component,
ordinal assignment, simply takes the results from the previous stages to index all the
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matched stripes.

Vuylsteke and Oosterlinck [2] presented a method, which uses a column coded binary
pattern. The structure of the pattern is a checkerboard, where each grid point is marked
with a single codebit. A part of the pattern is shown in Figure 14.

Figure 14: A detail of the pattern design by Vuylsteke and Oosterlinck [2]

The observed grid points are those points, where four squares of the chessboard meet
and each of them is either marked with a bright or a dark spot, representing the binary
values 1 and 0. There are two possible configurations, how the surrounding squares are
painted, Vuylsteke and Oosterlinck denoted them as + or −, as Figure 15 shows. The
whole pattern consists of 63 coded columns. The underlying code is based on two binary
sequences, ck and bk, of 63 bits length. ck represents the grid points that are marked as
0+ and 1+ and bk those that are labeled 0− and 1−. Since there are only two binary
sequences, the assignment of every second row is repeated, but it can be proofed that ck
and bk can be chosen, in a way that every 2×3 window carries its unique 6-bit codeword.

Figure 15: Grid point labeling [2]

Le Moigne and Waxman [15] proposed to use a grid pattern with several included dots.
There are some parameters, which have to be chosen to design the accurate pattern, for
example the thickness of the lines, the number of dots and the location of the dots.
Especially the line thickness has to be chosen dependent on the smoothness of the scene,
very thin lines show lots of discontinuities, which complicates the matching procedure
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whereas too thick lines display not enough range variation at all. To identify each imaged
point of the pattern in the projected one, several steps are performed. First the vertical
lines are extracted, because Le Moigne and Waxman decided to use a vertical baseline,
which implies, that vertical lines are approximately parallel and hardly deformed, which
makes them easy to detect. Afterwards a so-called albedo normalization is performed
along every vertical line. This means, that the gray level distribution is adjusted to
reduce albedo and highlight effects. Then the intersections of the horizontal lines and
dots with the vertical lines are searched by scanning the vertical lines. Once they are
found, they can be labeled by combining and interpolating two initial labelings, wherefore
the positions of the dots are used. Le Moigne and Waxman indicated, that their proposed
method works very well in dynamic scenes, since it was developed for the navigation of
a mobile robot.

A very interesting one shot technique was given by Morano et al. [3]. Their method is
based on a pseudorandom coded pattern. The associated code is generated by a square
pseudorandom matrix M , in which every 3 × 3 submatrix appears exactly once. The
elements of M are letters of an alphabet A and the position of every element mij is
determined by the letters of itself and its neighboring letters, which is stored in a nine-
element vector and composes a 3 × 3 submatrix. Since all of them are unique within
M , the Hamming distance, which is the number of positions at which the corresponding
elements differ, of two such vectors is always larger than one. When generating the
pseudorandom matrix there are three criteria, which have to be fixed, the size of M ,
the size of A and the minimal Hamming distance, each pair of vectors has to exceed.
Different elements of A appear as different colors, different shape or different texture.
The code generation starts with a 3× 3 matrix, which is located at the top left corner of
M . It is filled with random letters of A. The generation continues by considering three
positions each time and also labeling them with random values. During every iteration
the Hamming distances are checked and if some does not exceed the predefined minimum,
other letters have to be chosen. This procedure keeps going, as long as the whole matrix
M is filled. If at any iteration no valid letter is left, the generation is discarded and the
process starts at the beginning. Figure 16 illustrates the first code generation steps.

Figure 16: Code generation [3]
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Once the pattern is designed, the correspondence search can be performed. For each
dot within the pattern its eight neighboring dots are viewed, all of them labeled with
a letter of A. A nine-letter codeword is generated, which indicates the position of the
observed dot in the pattern. If this position is found within the projection, the neigh-
borhood is compared and a correspondence value, depending on the number of found
correspondences, is assigned to the dot. As each dot is contained in nine different win-
dows, there are nine possible correspondence values and the codeword that provides the
highest value labels the dot.

5.1.3 Microsoft Kinect

Microsoft’s Kinect is a special structured light sensor. Originally it was developed as
a gaming gadget, but due to its high accuracy in depth calculation and since it is an
inexpensive 3D sensor compared to other ones, the Kinect has become a wide-spread
device in computer vision and robotic areas. The sensor consists of three elements, an
infrared projector, an infrared camera and a color camera, whereby only the infrared
devices are used for 3D reconstruction. Since the Kinect projects infrared light, it is
recommended to reduce ambient light, which implies, that the depth calculation only
works well indoor. In [16] it is explained, that the pattern is not directly projected, but
contained on a transparency, which is illuminated by optical rays. More precisely, two
diffractive optical elements are used, as it is explained in [4]. The first one applies the
pattern to the beam and the second splits the beam. The pattern stays constant during
depth calculation, so it is based on the one-shot technique. What is very interesting
about this structured light sensor, is the special design of the projected pattern. Lots of
researchers tried to uncover it, which turned out to be not as simple as it seemed. For
example [17] shows a picture of the speckled pattern, which can be seen in Figure 17.
It is recognizable, that it is basically rectangular but deformed because of a pin-cushion
distortion.

What researchers have been discovered so far, is that the pattern is constructed of
a 3 × 3 repetition of a 211 × 165 subpattern and that it is 180◦- rotation invariant. In
fact this is not important for depth calculation but allows to mount the transparency,
which includes the pattern, upside down. Within every subpattern there are some bright
and some dark spots and the number of them varies. A detailed discussion can be found
in [18]. Another interesting fact is, that within all of the nine subpatterns a bright spot,
nearly at the center of the field, can be detected. According to [19], this spot does not
have an affect on the depth calculation, it is simple a side effect of the diffraction, the
so-called zero-order beam. There are certain guesses how the Kinect actually calculates
depth. In [18] it is assumed, that there are small regions that are unique and can therefore
be used to identify the location within the pattern that is projected. Another approach
is assumed in [20]. It is guessed that disparity is computed through area-based stereo
matching.
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Figure 17: Kinect’s pattern deformed by pin-cushion distortion [4]

5.2 Stereo Matching methods

Apart from multi shot structured light techniques or coded structured light methods some
active stereo vision approaches use pixel-based methods to calculate correspondences. As
already explained not single pixels are compared, but small blocks surrounding them.

The initially introduced disparity calculation methods have the following in common.
A block in the first image I1 is compared to a block in the second image I2, according to
some similarity measure. During every iteration the block in the second image is moved
in x-direction in steps of one pixel according to a particular searching range. The shift,
which minimizes the matching costs, is the desired disparity.

The first common used measure is the Sum of Absolute Differences (SAD). The costs
of a block B in the images I1 and I2, surrounding (x, y), are calculated as∑

(i,j)∈B

|I1(x+ i, y + j)− I2(x+ i+ d, y + j)|

As can be seen, the absolute difference between the intensities of the neighborhood of
(x, y) are considered. The computational effort is low, because only additions and sub-
tractions are used. The size of the block B is important for the accuracy of the disparity
calculation, because a greater neighborhood is considered, which ensures, that the correct
corresponding block is found. On the other hand larger blocks imply a higher computa-
tional effort as well as difficulties in measuring small structures and edges, so a suitable
compromise has to be chosen.

Another similarity measure is the Sum of Squared Differences (SSD), where the costs
are computed according to∑

(i,j)∈B

(I1(x+ i, y + j)− I2(x+ i+ d, y + j))2

Here, the effort is much higher, because of the additional multiplications. Furthermore,
this measure is more sensitive to outliers, because large errors are higher weighted.
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The matching costs can also be calculated according to the Normalized Cross Corre-
lation (NCC): ∑

(i,j)∈B I1(x+ i, y + j) · I2(x+ i+ d, y + j)√∑
(i,j)∈B I

2
1 (x+ i, y + j) ·

∑
(i,j)∈B I

2
2 (x+ i+ d, y + j)

This measure is independent of the intensities of the compared blocks and only calculates
the relative difference between them.

All of these similarity measures do not take into account, that the two images I1 and
I2 are recorded or produced by two different devices. Therefore the mean brightness can
differ. To overcome this problem, the mean brightness in every image, I1(x+ i, y + j) =
1
|B|2
∑

(i,j)∈B I1(x + i, y + j) and I2(x+ i+ d, y + j) = 1
|B|2
∑

(i,j)∈B I2(x + i + d, y + j),
is subtracted. The resulting measures are called Zero-mean Sum of Absolute Differ-
ences (ZSAD), Zero-mean Sum of Squared Differences (ZSSD) and Zero-mean Normal-
ized Cross Correlation (ZNCC).

ZSAD :
∑

(i,j)∈B

|I1(x+ i, y+ j)− I1(x+ i, y + j)− I2(x+ i+d, y+ j)+ I2(x+ i+ d, y + j)|

ZSSD :
∑

(i,j)∈B

(I1(x+ i, y+j)−I1(x+ i, y + j)−I2(x+ i+d, y+j)+I2(x+ i+ d, y + j))2

ZNCC :
∑

(i,j)∈B(I1(x+i,y+j)−I1(x+i,y+j))·(I2(x+i+d,y+j)−I2(x+i+d,y+j))√∑
(i,j)∈B(I21 (x+i,y+j)−I21 (x+i,y+j))·

∑
(i,j)∈B(I22 (x+i+d,y+j)−I22 (x+i+d,y+j))

The last matching cost calculation method, that will be mentioned here, is called Sum
of Hamming Distances (SHD). Here, the cost formula for a block B is∑

(i,j)∈B

h(I1(x+ i, y + j), I2(x+ i+ d, y + j))

where h is the function which computes the Hamming distances. The Hamming distance
of two bitstrings is the number of different bits between the two strings. Usually this
measure is employed for census-transformed images, which will be introduced next.

The previous methods all compare the intensity values of the matching blocks. An-
other possibility is to compare the relative positions of the intensities within these blocks.
Therefore both images are transformed, according to a special transformation instruction
first, and then applied to one of the already introduced similarity measures. Two impor-
tant transformation methods are called census and rank [21].

The census C((x, y)) assigns every pixel (x, y) a string of zeros and ones, a bit-string.
Every pixel’s intensity within a block surrounding a pixel (x, y), let us call it census
block, is compared to the intensity of (x, y). If it is less, one is attached to the bit-string,
otherwise zero is attached. The related formula for Ck((x, y)), k ∈ {1, 2}, and a block B
is

Ck((x, y)) =
⊗

(i,j)∈B

ξk((x, y), (i, j))
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where ξk is defined as

ξk((x, y), (i, j)) =

{
1 Ik(x, y) > Ik(i, j)

0 Ik(x, y) ≤ Ik(i, j)

and
⊗

is the bit concatenation. An example of a census block and the resulting
bit-string is shown in Figure 18. Once both images are census transformed, the matching
costs are computed using SHD, whereby Ik(x, y) = Ck((x, y)).
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Figure 18: Matching block with intensities and resulting bit-string

The rank R((x, y)) works as follows. For every pixel (x, y) in one image and a n×m
block surrounding it, the number of pixels within that block are counted, whose intensities
are smaller than the intensity of (x, y). This will be a number between 0 and nm − 1.
Here, the related formula for Rk((x, y)), k ∈ {1, 2}, is

Rk((x, y)) = |{Ik((i, j)) : Ik(i, j) < Ik(x, y), (i, j) ∈ B}|.

An example is illustrated in Figure 19. To calculate the disparity of the transformed
images, one of the previous introduced similarity measures can be used.
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Figure 19: Matching block with intensities and resulting number

5.3 Summary

In this chapter various structured light methods are introduced. Basically they are divided
into multi and single shot techniques. There are three multi shot approaches, zero-, one-
and two-dimensional projection, whereby all of them provide accurate results but are not
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recommended for dynamic scenes. Therefore single shot techniques are proven to provide
better results in such scenes. In this chapter a few single shot approaches as well as a
special structured light sensor, Microsoft’s Kinect, are presented.

Furthermore, some stereo matching methods, more precise pixel-based stereo match-
ing methods, are explained. First, some approaches are introduced which compare inten-
sity values, for example SAD of SSD, and second some approaches which compare the
relative positions of intensity values, for example census.

37



6 Projector-Camera System

A projector-camera system contains, as the name implies, of some sort of a light projec-
tor and a camera and forms a stereoscopic or structured light system. It is a different
approach to passive stereo vision, where usually two cameras are viewing the scene. If
classical stereo matching methods are used to solve the correspondence problem, it is
necessary to calibrate the setup first in order to reconstruct the scene successfully and to
simplify the stereo matching procedure. If the system is calibrated, the camera’s image
of the projected pattern and the pattern itself are rectified and correspondences can be
searched along the same image rows.

Projector-camera systems have a big advantage in comparison to classical two-camera
stereo vision sensors: Measurement is independent of the surface’s structure. As already
explained, conventional stereo vision systems have problems in measuring textureless or
repetitive areas, because it is difficult to find the correct point correspondences. Since the
projector illuminates the scene with a random pattern, it creates the necessary texture and
irregularity and so projector-camera systems do not have any difficulties in measuring such
areas. On the other hand these sensors are not able to calculate depth, if the projected
pattern is not visible by the camera. This case may arise for example if the lighting
conditions are bad. To overcome this, a combination of both sensors, a two-camera
system and a projector-camera system, can be used. In this section it will be described,
which calculations are necessary to combine them and furthermore, the advantages are
discussed.

6.1 Projector-camera Calibration

Projector-camera calibration is an important task when working with structured light
systems, which use area- or feature-based stereo matching procedures. It makes rectifica-
tion possible and therefore simplifies the correspondence search. Theoretically a projector
can be modeled as a pinhole camera, only the direction of projection differs. This means,
that the projector is not able to capture the scene it is illuminating, which implies that it
is impossible to compute the three-dimensional coordinates of one point in the projected
pattern on its own. Hence an additional device, such as a camera, has to be used to
calibrate the projector. What has to be calculated are the intrinsic parameters of the
projector as well as the rotation and translation between the camera’s and the projector’s
image plane. Therefore, it is some sort of a stereo calibration procedure, with the only
difference that only one camera is capturing.

There exist different methods to solve this problem. Some of them require a pre-
calibrated camera in order to calibrate the projector and their geometrical relationship,
while others calculate this simultaneously. Here, the first method will be introduced. It
is similar to the procedure proposed by G. Falcao et al. [22].

First, a pre-calibrated camera is required. It is very important, that the camera is
calculated properly, because the accuracy of the projector calibration is dependent on
the accuracy of the camera calibration. Furthermore, a planar projection surface, where
the projector’s calibration pattern is projected, is needed. This plane has to be identified
by the camera. Therefore some markers are fixed on this surface, which can be uniquely
detected in the camera’s image.
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Because the camera is already calibrated, 3D coordinates of every 2D point in the
camera’s image can be calculated, what is important for this calibration method, since
it makes it possible to calculate the 3D coordinates of the markers on the calibration
plane. To get rid of the camera’s distortion, the camera’s images are undistorted, before
further calculations are performed. During the calibration procedure the plane is viewed
from different angles, as it is done in camera calibration. The main task in calibrating
the projector is to calculate the 2D-3D correspondences of the calibration points of the
projected pattern in order to solve for the desired parameters. The whole work-flow of
this calibration method is illustrated in Figure 20.

Calculation of the
calibration plane's 
equation

Ray-plane
intersection

Identification of the
calibration plane in 
the camera image

Identification of the
projected pattern in
the camera image

Projector-calibration
using 2D-3D point 
correspondences

Figure 20: Projector-calibration work-flow

The first step is to calculate the equation of the projection surface in the camera’s co-
ordinate system. Therefore the fixed markers are used. These markers could be the outer
corners of a chessboard or something else, where special points can be detected reliably.
It is recommended that the outermost markers form a rectangle, because they deter-
mine the world coordinate system(the axes will be rectangular in a Cartesian coordinate
system. The detailed calculation is described in the following.

The x- and y-axis of the world coordinate system are defined by the fixed pattern,
hence the calibration plane is equal to the x-y-plane in the world coordinate system. Since
the z-axis is orthogonal to both axes, it is equal to the normal vector of the calibration
surface. So once the calibration pattern is identified in the camera’ s image, it is possible
to compute the rotation and translation between the camera coordinate system and the
world coordinate system, because the camera is already calibrated. Here, the reference
coordinate system is set at the camera’s coordinate system. The corresponding extrinsic

matrix is

(
r1 r2 r3 T
0 0 0 1

)
, where r1, r2 and r3 are the three columns of the rotation

matrix and T is the translation vector. In order to obtain the equation of the calibration
plane, a point P on the plane and its normal vector −→n have to be known. The equation
is given by

−→n ( x y z )T = −→n P
Since the camera coordinate origin is translated to the world coordinate origin at the
calibration plane according to the translation T , a point of the plane is already known,
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T . The normal vector is equal to the z-axis of the world coordinate system, as already
explained. Because the three vectors of the rotation matrix represent the orientations of
the three axes, the normal vector is equal to r3. Altogether we get the following equation
for the calibration plane:

r3( x y z )T = r3T ⇒ r31x+ r32y + r33z = r31T1 + r32T2 + r33T3

The next step is the detection of the pattern, that is projected by the projector and
the calculation of the corresponding 3D coordinates in the camera coordinate system.
Therefore the camera’s image of the pattern is used as well as the previously calculated
equation of the projection plane. First some points within the pattern have to be identified
in the camera’s image, let (x, y) be the coordinates of one such point. Because the camera
is calibrated, the intrinsic matrix A and the rotationR and translation T are known, hence
the coordinates ( X Y Z )T of the corresponding 3D point can be calculated up to a
scale factor s:

s


X
Y
Z
1

 = ( AR AT )−1

 x
y
1


This means, that the corresponding 3D point can be localized everywhere along the ray
that goes through the origin of the camera coordinate system and the 2D point in the
camera image. To calculate the coordinates of the 3D point uniquely, the equation of
the projection plane is used. What has to be computed more exactly, is the intersection
with the ray, that goes through the camera coordinate origin and the detected point in
the camera image. This intersection is the projected point on the calibration surface.

s(r31X + r32Y + r33Z) = r31T1 + r32T2 + r33T3

⇒ s =
r31T1 + r32T2 + r33T3
r31X + r32Y + r33Z

In this way it is possible to obtain the 3D coordinates for all points within the projected
pattern. The whole calibration setup is illustrated in Figure 21.

The last step in projector-camera calibration is to use the 2D-3D correspondences of
some special points within the pattern to perform the main calibration procedure, as it
is done in camera calibration. Therefore the 2D coordinates of the special calibration
points have to be identified within the pattern first. These coordinates are part of the
projector image plane. After the previous steps, the corresponding 3D coordinates in the
camera coordinate system are available. For every different view of the plane different 3D
coordinates are obtained. The input for the final calibration procedure are two matrices,
the first contains all the calculated 3D points of the calibration points of all different
views, while the second is filled with the corresponding 2D coordinates, whereby for every
different view the same coordinates are used, because they always stay the same within
the projected pattern. This procedure outputs the intrinsic and extrinsic parameters
of the projector. Since the reference coordinate system is fixed at the camera and the
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geometrical relationship between projector and camera always stays the same, only one
rotation and one translation is calculated, which is in fact the rotation and translation
between the camera coordinate system and the projector coordinate system.

calibration plane

camera image plane projector image plane

projected pattern

camera coordinate system projector coordinate system

(x, y)

(X, Y, Z)

fixed pattern
X

Y

Z

Figure 21: Projector calibration setup

Let us compare this step with the same procedure in camera calibration. In projector
calibration the used 3D coordinates are calculated within the camera coordinate system.
Therefore they differ when the viewing angle changes. The corresponding 2D coordinates
are calculated within the projector image plane and always stay the same. What has to be
calculated is the rotation and translation between the camera coordinate system and the
projector coordinate system, which stays the same as long as the geometrical orientation
between camera and projector stays the same. In camera calibration the coordinates
of the used 3D points are computed belonging to the world coordinate system, which is
identified by a calibration object. Since this object always stays the same, independent of
the viewing angle, the 3D coordinates also stay the same for every different view. In this
procedure the 2D points are part of the camera image plane, hence they differ, when the
viewing angle changes. Here, the rotation and translation between the world coordinate
system and the camera coordinate system has to be computed. This implies that the
rotation and translation is different for every view.

The proposed projector-camera calibration procedure assumes that the camera, where
the reference coordinate system is defined, is on the left side of the projector. Therefore
the projection matrices have the form Ac( I 0 ) and Ap( R T )

If the setup is reverted, hence the projector is on the left side of the camera and the
reference coordinate system is fixed at the projector, the matrices have to be modified to
Ap( I 0 ) and Ac( R

−1 −R−1T )

6.2 Rectification and Undistortion

If the projector-camera system is calibrated, the intrinsic parameters of camera and pro-
jector are known as well as the rotation and translation between their image planes. Since
the last step of this calibration method is equal to the camera calibration, the distortion
parameters of the projector’s lens are also available. Altogether the same information is
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obtained, that is available after stereo calibration of two cameras, which is not surprising,
because the projector-camera calibration is some sort of a stereo calibration procedure.
Now it is possible to rectify the two image planes. Since the camera is viewing the pro-
jected pattern, it can be found anywhere on the camera’s image plane. The projector’s
image plane is usually covered by the whole pattern. After the rectification process the
images are always undistorted in order to get rid of the different distortions, that deform
the images. When working with projector-camera systems, one of the two processing
images is the camera’s image, while the other one is the projected pattern. The rectified
camera image is undistorted as usual. Since the pattern is not deformed anyway, one
might think, it does not have to be undistorted. But what modifies the image, is the
distortion of the projector, which deforms the pattern during the projection process. So
this is another difference between the model of a camera and a projector. A camera
captures an undistorted image and due to its lens distortion a distorted one is obtained.
The distortion model of the projector influences in the other direction, an undistorted
image is projected, but a distorted one is put out. So in order to consider this fact, the
undistorted and rectified pattern has to be distorted, which works the same way as the
process of distortion correction. Altogether an undistorted and rectified camera image of
the pattern, as well as a distorted and rectified pattern are available now and can be used
for further calculations. The rectification matrices are computed as it is explained in the
second chapter. In Figure 22 the rectification and distortion/undistortion procedure are
shown.

original pattern

rectified original 
pattern

camera image of
projected pattern

undistorted rectified
camera image of
projected pattern

RECTIFICATION

rectified camera 
image of projected 

pattern

rectified
projected pattern

Camera undistortion Projector distortion

Figure 22: Distortion and undistortion procedure

6.3 Disparity Calculation

After the rectification procedure the rows of the pattern are aligned to the corresponding
rows in the camera’s image. Now the stereo matching process can be performed in order
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to calculate the disparity image. Which method is used depends for example on the scenes
that will be reconstructed or on the pattern that is projected. Here, census combined with
SHD will be explained in more detail, especially some modifications and improvements
will be introduced.

Stereo matching using census first performs a transformation of the input images,
where every pixel obtains a bit-string, whose size depends on the size of the concerned
neighborhood block. An increase in this size allows to gather more information, since a
wider neighborhood is considered. This may improve the quality of the matching proce-
dure, but results in higher computational effort and memory occupation. One possible
compromise could be the so-called sparse census. It is called sparse, because not every
neighboring pixel within the census block is used for the calculation of the bit-string.

This allows to increase the size of the census block, but keep the computational effort
the same. Let us choose for example a census block size of 8. Using the standard census,
64 pixels have to be compared with the reference pixel, which results in a bit-string of
size 64. The sparse census transformation, where every second row and column within
the census block is considered, needs only 16 compares, as it is illustrated in Figure 23.

Figure 23: Whole census block and sparse census block

One way to improve the correctness of the disparity values for every pixel, is to
calculate subpixel disparities. By now all the occurring values are integers, since the
matching block moves along an epipolar line in steps of pixels. But cases may arise,
where the real disparity of one pixel lies between two integer values. The calculation of the
disparity is done after the images are census transformed, using SHD. More precisely, the
minimum of the matching cost function is searched and exactly this can cause some errors,
if only integers are considered. Therefore a parabola, y = Ax2 + Bx + c, is calculated,
that goes through the minimum integer disparity, dmin and its two neighboring disparity
values, dprev = dmin − 1 and dnext = dmin + 1. This parabola is an approximation of the
matching cost function SHD(d) in the interval [dprev, dnext]. What we are looking for, is
the minimum of this parabola, which is the root of its first derivate, y′ = 2Ax+B.

⇒ xmin =
−B
2A

The coefficients, A and B, of the parabola are calculated as follows.

SHD(dprev) = Ad2prev +Bdprev + C
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Figure 24: Subpixel disparity calculation

SHD(dmin) = Ad2min +Bdmin + C

SHD(dnext) = Ad2next +Bdnext + C

⇒ SHD(dprev)− SHD(dmin) = A(d2prev − d2min) +B(dprev − dmin) = A(d2prev − d2min)−B

⇒ SHD(dmin)− SHD(dnext) = A(d2min− d2next) +B(dmin− dnext) = A(d2min− d2next)−B

Solving this system of equations we get

A =
SHD(dprev)− 2SHD(dmin) + SHD(dnext)

2

and

B =
−SHD(dprev)(1 + 2dmin) + 4SHD(dmin)dmin + SHD(dNext)(1− 2dmin)

2

and further

xmin = dmin +
SHD(dprev)− SHD(dnext)

2(SHD(dprev)− 2SHD(dmin) + SHD(dnext))

As can be seen, the subpixel disparity xmin does not have exactly the same value as
the minimal integer disparity dmin and therefore calculating subpixel disparities increases
the accuracy and results in much smoother disparity maps.

Another way to check and improve the correctness of the calculated disparity values,
is called Left-Right-Consistency Check. Therefore two disparity images have to be calcu-
lated, first the left image is the reference image and corresponding pixels are searched in
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the right image and second the right image is the reference image and correspondences
are searched in the left image. If (x, y) is one pixel in the left image, the corresponding
pixel in the right image is (x−d1, y), where d1 is the calculated disparity, if the left image
is the reference image. For the pixel (x− d1, y) in the right image an own disparity value
d2 is calculated, if the right image is the reference image. The corresponding pixel in the
left image is (x− d1 + d2, y) and hopefully this pixel is equal to (x, y), hence d2− d1 = 0.
The Left-Right-Consistency Check accepts disparity values, if this difference is less than
a given threshold δ, otherwise the disparity value is invalid. Formally this can be written
as:

d =

{
|d1+d2|

2
if |d1 − d2| < δ

0 else

6.4 A multiple baseline sensor

Depth calculation using two-camera stereo vision sensors often suffers from different fac-
tors. First of all occlusions, which are areas, that are not visible in both camera images,
lead to imperfect disparity and depth images. Second, the structure of the scene is a ma-
jor factor, that causes problems. Measuring textureless areas is difficult, because point
correspondences are not obvious as in the case of repetitive areas.

Projector-camera systems would be a good alternative, since the projection of an
irregular and random pattern produces the necessary structure and irregularity. But
these sensors also have some measuring problems. Point correspondences between the
pattern and the camera’s image of it are impossible to find, if the pattern is not visible
by the camera. Such a case may happen, if the lighting conditions are bad, for example
if the ambient light is too bright to identify the projected pattern in the camera’s image.
Another example is a dark scene, where it is difficult to recognize the structure and shape
of the pattern. Projector-camera systems are also dependent on the projector’s depth of
field. Hence, if the projector has a shallow depth of field, scenes with large depth ranges
can be measured only partly.

One possible solution, that eliminates both disadvantages, is a combination of a stereo
camera pair and a projector-camera system. The combined setup might look like it is
shown in Figure 25, two cameras and in the middle a pattern projector. Both sensors
have to be precalibrated accurately on their own, hence two independent stereo systems
are available to measure the scene.

The problems that occur during reconstruction using two-camera systems with mea-
suring textureless and repetitive areas are eliminated due to the pattern projection.
Furthermore, this combined sensor is less sensitive to bad lighting conditions than a
projector-camera system, in which under these circumstances the pattern would not be
visible by the camera. Depth can be reconstructed anyway, due to the two-camera head,
which does not have problems with these scenes.

Since there are two calibrated stereo sensors available, two depth images of the same
scene can be calculated. Both of them are not completely dense and suffer from individual
matching difficulties. A major problem is the reconstruction of areas, that are not visible
by both cameras when using the two-camera sensor or areas that aren’t illuminated by
the projected pattern or visible by the associated camera when using projector-camera
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Figure 25: Stereo cameras combined with pattern projector

systems, the so-called occlusions. These areas are impossible to reconstruct. Since there
are two different stereo systems, the occlusions are also different and occur on variable
areas, hence the ones that appear in only one depth image can be reduced.

Another aspect, that should be considered, is the availability of two different baselines,
a longer baseline, in the setup shown in Figure 25 this is the distance between the two
cameras, and a shorter baseline, the distance between the left camera and the projector.
A shorter baseline could result in imprecise depth reconstruction for large depth ranges,
due to the narrow triangulation, while a long baseline requires a larger disparity search
range, which leads to higher computational effort. So if two baselines of various length
are available, the advantages of both can be deployed. For example the possible uncertain
results of the disparity calculation using the shorter baseline can be used to constrain the
disparity search range for the computation using the longer one.

But which steps are necessary to calculate this combined depth image of the two
depth images, that are available from the two stereo systems?

Let’s recap briefly how a depth image is calculated. If a stereo sensor is calibrated,
the two images, that are used for reconstruction, are rectified, i.e., corresponding lines
are aligned on the same row and parallel to the x-axis. The needed rotation matrices
for the left and for the right image, R1 and R2 are composed by two rotation matrices,
R1 = Rnew and R2 = RnewR

−1, where R represents the rotation matrix between the two
image planes and Rnew rotates both of them to be parallel to the x-axis. Afterwards
disparities can be calculated and then the depth values are computed, using the formula
Z = fb

d
.

These depth values are calculated with respect to the left camera’s coordinate system,
so one might think, that the two depth images can be compared directly, but this is
not true. The reason for this is, that the two stereo systems are oriented differently,
since the rectification matrices turn the image planes parallel to the individual x-axis,
or in other words parallel to the baseline. Therefore the left camera’s coordinate system
is also orientated differently and the depth values are computed with respect to two
diverse coordinate systems. The two differently orientated stereo systems are illustrated
in Figure 26.

To solve this problem, one of the coordinate systems has to be transformed to the other
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(a) Two-camera (b) Projector-camera

Figure 26: Stereo setups: (a) Two-camera setup and (b) Projector-camera setup

coordinate system or the calculated 3D points have to be rotated. Here, the reference
system is set to the two-camera sensor, hence the found 3D points of the projector-camera
system have to be transformed. Before calculating depth, the left camera’s coordinate
systems have been rotated according to the rectification matrices Rc

1 and Rp
1. Therefore

the calculated points of the projector-camera system have to be multiplied with the
inverse of Rp

1 and further with Rc
1 to get the coordinates with respect to the left camera’s

coordinate system of the two-camera system. This is shown in Figure 27.
Next the related depth image can be calculated by projecting the 3D coordinates on

the screen. The appropriate projection matrix is ( A 0 ), where A is the new intrinsic
matrix of the left camera after rectification. The 3D point ( X Y Z )T has the pixel

coordinates ( f ·X
Z

+ cx
f ·Y
Z

+ cy )T, hence the value of the depth image at this position
is Z.

Left camera

Left camera

Right camera

Projector

x

x

y

y

z

z

Figure 27: Coordinate system transformation

If all these modifications are performed, every pixel in the first depth image corre-
sponds to exact the same pixel in the second modified depth image and now they can be
combined. The whole procedure is illustrated in Figure 28.
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Figure 28: Depth map combination procedure

A possible approach for the combination is to check each pixel in the individual depth
images. If the depth value at that position is not available in both images, the combined
depth map also stays empty there. If one value is available, it is directly inserted at that
position and if both depth images are filled, the location in the combined depth map is
filled with the mean value.

6.5 Summary

In this chapter a projector-camera system is presented. It is a special stereo vision system,
where one of the two cameras is replaced by a pattern projector. The main advantage is,
that textureless areas, which are difficult to measure with two-camera systems, can also be
reconstructed, since it is covered by the projected pattern, which produces the necessary
structure. To measure depth, the projector-camera system have to be calibrated, hence
a projector-camera calibration method, which is a special stereo calibration method, is
introduced here. Correspondences are no longer searched between two camera images
but the projected pattern is compared with the camera’s image of it.

Furthermore, a particular stereo matching method, census, is discussed in detail and
some improvements, for example sparse census or subpixel disparity calculation, are in-
troduced. Last, a multi baseline sensor consisting of two cameras and a projector is
presented. This sensor includes two stereo systems, the two-camera system and the
projector-camera system, which enables the availability of two different depth maps.
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These maps can then be combined in order to reduce measuring problems of both sen-
sors.
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7 Experimental Setup and Implementation

In this section the experimental setup consisting of the hardware and software we devel-
oped during this work, is described. Furthermore, all the existing software, for example
the Camera Calibration Toolbox for MATLAB, the Camera Projector Calibration Tool-
box or the Stereo Vision Engine S3E, is presented. Next the implementations and modi-
fications, that are developed during this work are explained and described in detail. This
includes the modifications of the Camera Projector Calibration Toolbox in MATLAB,
the stereo matching algorithms in MATLAB and the modifications of the S3E software
concerning the projector-camera integration and depth map combination. Last an auto-
matic projector calibration is presented, that needs a precalibrated stereo camera system
and is implemented in MATLAB with additional information, which is received from the
S3E software.

7.1 Hardware

The cameras used during this work are all devices from iDS [23], in detail USB 2 uEye
cameras, with a resolution of 752×480 or 640×480. All of them are monochrome imagers
and are connected by USB 2 cables with the processing PC. The used lenses have a focal
length of 3.6 mm.

The projector-camera calibration and further algorithms were tested with different
projectors. The first one was a standard video and presentation projector from BenQ,
BenQ MP624. This projector has a resolution of 1024× 768, but since the resolution of
the projected pattern and the combined cameras has to be the same, only a part of the
projection field is used. Working with this projector provides accurate results, since it is
not very sensitiv to bad lighting conditions, because of its high luminous intensity of 3000
lumen. But what is not ideal about this projector in combination with an iDS camera,
is the vertical offset between the projector’s lens and the camera’s lens. First of all, this
results in rectified images which are much more tilted than it is shown in Figure 29. The
reason is the tilted baseline, since the rectification procedure rotates the image planes
parallel to the baseline. The second effect of the vertical offset is that not the whole
projected pattern is visible by the camera, which can also be seen in Figure 29.

Figure 29: Tilted rectified images

Therefore another projector was also used, Philips Pico Pix, with a resolution of
854 × 480, where according to the combined camera only 752 × 480 or 640 × 480 are
used. This beamer has much less luminance, 55 lumen, which makes it necessary to work
with less background luminance. But the main advantage is the practical size and the
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compatibility with the iDS cameras to a nearly perfect stereo sensor system, with barely
any vertical offset. The resulting rectified images are shown in Figure 30. It can be seen
that they are not tilted as much as the ones from the previous projector.

Figure 30: Less tilted rectified images

The used setup, consisting of an iDS camera and the Philips Pico Pix projector, is
illustrated in Figure 31.

Figure 31: Projector-camera setup

7.2 Implementation

7.2.1 Camera Calibration in MATLAB

To calibrate a single camera accurately some calibration software is needed to calculate
the intrinsic parameters, i.e. the focal length, the principle point and the distortion
parameters. In this work, the Camera Calibration Toolbox for MATLAB from J. Y.
Bouguet, [24], is used. This software includes a graphical user interface, which makes the
whole procedure simple and clear. It is illustrated in Figure 32.

What is required to calibrate a camera using this toolbox? First of all a planar
chessboard with known chessboard square size is needed. This is fixed somewhere at a
planar surface and several pictures with different viewing angles are captured with the
camera to be calibrated. Afterwards the chessboard corners have to be found in every
image. Therefore the user has to identify the four outer corners, while the software
calculates the other ones. This outer corners also define the origin and axes of the world
coordinate system. If all the 2D coordinates of the corners in every image are available
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Figure 32: Camera Calibration Toolbox from Bouguet

the parameters are calculated as it is described in section 4.1. Since the viewing angle
is different for every image, the extrinsic parameters, i.e., the rotation and translation
between camera and world coordinate system, also vary.

Additionally there are some refinement functions included to post process the cali-
bration results. For example it is possible to remove some images, so that they are not
included in the calibration calculations. Furthermore, the chessboard corners for single
images can be recomputed, if the results for some images are not satisfying.

Figure 33: Calibration images

A possible output of the software might be:

Calibration results (with uncertainties):

Focal Length: fc = [ 718.86203 721.45018 ]

Principal point: cc = [ 305.53215 251.41131 ]

Skew: alpha_c = [ 0.00000 ] => angle of pixel axes = 90.00000 degrees

Distortion: kc = [ -0.43351 0.13072 0.00263 -0.00148 0.37500 ]

Pixel error: err = [ 0.06274 0.05722 ]

Note: The numerical errors are approximately three times the standard deviations (for reference).

There exists also an extension of this toolbox to calibrate a stereo camera system,
also with an included graphical user interface, which is shown in Figure 34.

For this calibration procedure both cameras have to capture the calibration chessboard
simultaneously. These images are used to calibrate both cameras on their own. Since
the world coordinate system is defined by the planar chessboard and the cameras are
capturing at the same time, the extrinsic parameters for both cameras refer to the same
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Figure 34: Stereo Calibration Toolbox

world coordinate system. Therefore the rotation R and the translation T between them
can be calculated, as it is also explained in section 4.1. The software does not directly
output the rotation matrix R, but the corresponding rotation vector om, which represents
the rotation axis and its norm represents the rotation angle. The matrix R can be
calculated as follows:

om =
(
x y z

)
and α = ||om||

⇒ R =

 (1− cos(α)) x
2

α2 + cos(α) (1− cos(α))xy
α2 − sin(α) z

α
(1− cos(α)) xz

α2 + sin(α) y
α

(1− cos(α))xy
α2 + sin(α) z

α
(1− cos(α)) y

2

α2 + cos(α) (1− cos(α)) yz
α2 − sin(α) x

α

(1− cos(α)) xz
α2 − sin(α) y

α
(1− cos(α)) yz

α2 + sin(α) x
α

(1− cos(α)) z
2

α2 + cos(α)



Here, a possible output might look like:

Stereo calibration parameters:

Intrinsic parameters of left camera:

Focal Length: fc_left = [ 718.86203 721.45018 ]

Principal point: cc_left = [ 305.53215 251.41131 ]

Skew: alpha_c_left = [ 0.00000 ] => angle of pixel axes = 90.00000

Distortion: kc_left = [ -0.43351 0.13072 0.00263 -0.00148 0.37500 ]

Intrinsic parameters of right camera:

Focal Length: fc_right = [ 721.32566 723.84952 ]

Principal point: cc_right = [ 312.85926 254.12161 ]

Skew: alpha_c_right = [ 0.00000 ] => angle of pixel axes = 90.00000

Distortion: kc_right = [ -0.44225 0.25683 0.00210 0.00022 -0.10160 ]

Extrinsic parameters (position of right camera wrt left camera):

Rotation vector: om = [ -0.00323 -0.00553 -0.01247 ]

Translation vector: T = [ -208.84569 1.84183 3.77565 ]
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Note: The numerical errors are approximately three times the standard deviations (for reference).

7.2.2 Projector-camera Calibration in MATLAB

For the projector-camera calibration the basic functions as well as the graphical user
interface of the toolbox from G. Falcao et al. [22], are used, while some of the functions
are modified during this work. The GUI is shown in Figure 35.

Figure 35: Camera Projector Toolbox

As it is described in section 6.1, a precalibrated camera is needed for this calibration
method. It is recommended, that the camera calibration is done using Bouguet’s toolbox,
since the parameters are named and needed exactly as they are outputted from this
toolbox. Also a planar calibration surface with some fixed markers is necessary. The
original software requires a fixed chessboard as well as a projected chessboard in order to
calibrate the projector. The camera should capture some pictures with different viewing
angles, whereon the fixed chessboard as well as the projected pattern should be visible.

First of all the parameters of the camera calibration have to be loaded. By pressing the
button Load Camera Calibration, the MATLAB function loading calib is called, which
loads all the necessary parameters into the workspace. Next the button Set Projector’s
calib images has to be pressed, which executes the function define Projector Images.
This function prompts the user for the names of the projector calibration images, that
should show the fixed chessboard on the calibration plane as well as the projected one.
An example of such a calibration image is shown in Figure 36.

Figure 36: Fixed and projected calibration chessboard

The user has to identify the outer corners of the fixed chessboard in the camera’s
image, just as in camera calibration, while the software finds the other corners. Then the
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equation of the calibration plane can be calculated, as it is described in chapter four. By
pressing the button Ray plane intersection the function cam proj 3d points is called.
Again the user is asked for identifying the outer chessboard corners in the camera’s image,
but now the ones of the projected pattern, while the others are also found automatically.
The software calculates the 3D coordinates of all these points by calling the function
obtain3Dpoints from knownPlane, which uses the equation of the calibration plane for
the calculations. Last the outer corners of the original pattern has to be indicated in order
to obtain the corresponding 2D coordinates. Then the button Calibrate the projector has
to be pressed to call the function calibrate projector, which calculates the intrinsic
parameters of the projector as well as the rotation and translation between the camera’s
and the projector’s image plane and outputs the final calibration results, for example:

Calibration results (with uncertainties):

Focal Length: fc = [ 1634.04251 1641.13557 ]

Principal point: cc = [ 312.93471 442.69443 ]

Skew: alpha_c = [ 0.00000 ] => angle of pixel axes = 90.00000

Distortion: kc = [ -0.03112 0.22608 -0.00007 -0.00381 0.00000 ]

Pixel error: err = [ 1.04880 1.00317 ]

Note: The numerical errors are approximately three times the standard deviations (for reference).

The modifications, that were implemented concern the functions
define Projector Images and extract grid. They accelerate the whole calibration
procedure and enable the calibration of the projector without the projection of a calibra-
tion chessboard, i.e., calibration is possible with every pattern, especially with random
patterns, that are used here. The main advantage is, that every projector can be cali-
brated, even if its projected pattern is not changeable. The calibration method imple-
mented here, is adopted to the projection of rectangular patterns, but is easily expandable
to other forms. It is important, however, that somewhere within the pattern are some
clearly identifiable points. Further it is not necessary to fix a whole chessboard to identify
the calibration plane. Only four markers, that are arranged in a rectangle with known
distances between them, are required. Another fact that has changed for the calibration
procedure is, that the calibration images have to be undistorted first, before they are used
for the projector calibration. This results in more precise projector parameters, since the
distortion of the camera is eliminated. An example of such a calibration image is shown
in Figure 37.

The function define Projector Images is modified in such a way, that every calibra-
tion image is shown only once. The user has to identify the four markers as well as the
four corners of the projected pattern. For the identification of the corners of the pattern,
the modified function extract grid is called. Since the pattern does not include any
chessboard corners any more, the other calibration points are just interpolated between
them, depending on the number of points in x and y direction. This only works for pro-
jectors with hardly any distortion, because the distortion would influence the position of
the interpolated points within the projected pattern. Otherwise some additional points
have to be identified. Figure 38 shows the interpolated points within the pattern for an
undistorted projector.
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Figure 37: Fixed markers on calibration plane

Figure 38: Interpolated calibration points

The 2D coordinates of the corresponding points within the original pattern does not
have to be identified, because they could be calculated, since the four outer points are
(0, 0), (w, 0), (w, h) and (h, 0), where w is the width of the pattern and h the height.
The inner points are interpolated equidistant between them. The remaining calibration
processes and functions stay the same.

7.2.3 Rectification and Stereo Matching in MATLAB

Once the projector-camera system is calibrated using the software described in the pre-
vious section, the rectification procedure can be performed. Therefore the MATLAB
function rectify stereo pair from the Camera Calibration Toolbox from Bouguet was
used. The required input parameters comprise the intrinsic parameters of camera and
projector, the rotation and translation vector between their image planes and some special
informations about the images to be rectified.

First of all, the rotation matrices R1 = Rnew and R2 = RnewR
−1, that turn the image
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planes to be parallel, are calculated. R is the rotation matrix between the two image
planes before rectification, hence it is part of the input parameters. To calculate Rnew, the
rotation matrix, that aligns the image rows parallel, the unit normal vector n and the rota-

tion angle α are needed. As it is described in section 4.3, n =
(
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
Next the new projection matrices A1 and A2 are calculated. Therefore the new focal

lengths and the new principle points have to be computed. Since the two image planes
are parallel after rectification, the focal lengths and the principle points of both devices
should be the same. For simplicity it is assumed, that pixels are square now, which
implies fx = fy = f . The original intrinsic matrices are

Al =

 f lx 0 ul0
0 f ly vl0
0 0 1

 and Ar =

 f rx 0 ur0
0 f ry vr0
0 0 1

 .

The initial guess for f is f ly. Then it is distinguished, if the first of the three radial
distortion parameters, k1, is less or greater than 0. In the first case, f is multiplied with
1 + kl1 · W

2+H2

4·f2 , where W is the width of the images, H the height and kl1 the first radial
distortion parameter of the left camera. In the second case f remains the same.

The second guess for f is f ry and again the two cases are considered. The final value
for f is the minimum of the two calculated focal lengths.

Next the principle point (cx, cy) is computed as follows. The four corners of the screen
in pixel coordinates, (0, 0), (H, 0), (H,W ) and (0,W ), are transformed on the left image
plane as well as on the right. Further they are rotated according to the previous calculated
rotation matrices R1 and R2. Then the mean value of this calculated coordinates is
subtracted from the center of the screen, H+W

2
. The results are two principle points, one

for the left image plane clnew, and one for the right, crnew, which maximize the visible
areas in the rectified images. Since we want equal principle points for both new intrinsic

matrices, the final principle point is the mean value clnew+c
r
new

2
. Now all the rectification

parameters are available to warp the left input images as well as the pattern, which is
projected.

In Figure 39 the original camera image and pattern are shown as well as the results
from the rectification process. The old intrinsic matrices are

Al =

 718.862 0 305.5321
0 721.4502 251.4113
0 0 1

 andAr =

 1634.492 0 304.6246
0 1635.0373 454.9134
0 0 1

 ,
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and the new ones are

A1 = A2 =

 711.8361 0 322.0776
0 711.8361 301.4767
0 0 1



(a) Left camera image (b) Pattern

(c) Rectified left camera
image

(d) Rectified pattern

Figure 39: Stereo images before and after rectification, (a) and (b) Original images, (c)
and (d) Rectified images

Next the stereo matching procedure can be performed on the rectified images. Here,
the census transformation in combination with SHD is used. It is modified as explained
in section 6.3, the sparse transformation is implemented and subpixel disparities are
calculated. The MATLAB functions censusSparseL2R and censusSparseR2L take as
input parameters the two images to be matched, the census block size, the size of the
matching window and the minimum and maximum disparity, which define the disparity
search range [dmin, dmax]. The difference of the two functions is the reference image.
In censusSparseL2R it is the left image and correspondences are searched in the right
image, while in censusSparseR2L it is reversed.

First of all, the function censusTransformSparse is called for both images. It per-
forms the sparse census transformation and outputs an image the same size as the input
image, but filled with the census bitstrings, whose size is dependent on the census block
size.

Next, the matching cost function SHD(d) for every pixel and d ∈ [dmin, dmax] is
calculated. Therefore a pixel block surrounding a pixel (x, y) in the left image, whose
size is defined by the matching window size, is compared with a pixel block the same
size surrounding the pixel (x−d, y) in the other image, if the function censusSparseL2R

is called. The value of d, that minimizes SHD is the integer disparity. If the function
censusSparseR2L is executed, the pixel block surrounding (x, y) in the right image is
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compared with the one surrounding the pixel (x+ d, y) in the left image. This calculated
integer disparity d is then added with

SHD(d− 1)− SHD(d+ 1)

2(SHD(d− 1)− 2SHD(d) + SHD(d+ 1))

to get the subpixel disparity.

In Figure 40 the integer and subpixel disparity maps can be compared. As it can be
seen, the subpixel calculations result in much smoother images.

(a) Integer disparity map (b) Subpixel disparity map

(c) Integer disparity map (d) Subpixel disparity map

Figure 40: Comparison of integer and subpixel disparities, (a) and (c) Integer disparity
maps, (b) and (d) Subpixel disparity maps

If both functions, censusSparseL2R and censusSparseR2L, are called, two disparity
maps are available, hence the Left-Right-Consistency Check can be performed. Here, a
threshold of 0.5 is chosen and the results are shown in Figure 41. The pixels colored
black indicate a mismatch, which means that the subpixel disparity values differ more
than 0.5. As can be seen, edges and occlusions cause most of the problems.

7.2.4 S3E Software

The S3E Stereo Vision Engine is a software module, developed for calculating depth
using stereo vision algorithms in real time. It is devided into three stages, a two or three
camera system, which captures the scene and is connected to the processing PC, the
stereo matching software, which is based on census in combination with the Hamming
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Left to right matching Right to left matching

Left-Right-Consistency Check

Figure 41: Left-Right-Consistency Check

distance and a data visualization tool called PfeDxHost, which shows the results of the
stereo matching algorithms and communicates via Ethernet. For every image, that should
by shown, an own DX-channel has to be created, for example the rectified images are
sent via the channels named left rect and right rect.

In general, the whole stereo matching calculation process is the same, as it is imple-
mented in MATLAB. Furthermore, lots of quality improvements, post-processing steps
and speed enhancements are performed, which results in dense depth images. In detail
it is explained in [25] and [26]. The information, that is necessary to perform the stereo
algorithms, for example the internal and external camera parameters as well as the recti-
fication matrices and the new camera matrices, are stored in an INI-file, which is loaded
at the beginning of the program call. This file also contains other configuration settings,
which are explained in [27]. An example of such an INI-file is listed below:

[S3E]

ptInputRoiOrigin.x = -50

ptInputRoiOrigin.y = -20

szInputRoiSize.u32Width = 800

szInputRoiSize.u32Height = 500

ptInputRoiOrigin.x = 20

ptInputRoiOrigin.y = 50

szInputRoiSize.f32Width = 640

szInputRoiSize.f32Height = 512

u32Vergence = 150

szOutputImg.u32Width = 320

szOutputImg.u32Height = 256

CamLeft = left

CamRight = right

u32CensusType = 0x0b000000

szAggregation.u32Width = 5

szAggregation.u32Height = 5
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u32MinDisp = 20

u32MinValidDisp = 1

u32MaxDisp = 100

pfe3DFileType = esvXYZ

u8ConfidThrshld = 10

u8TextureThrshld = 0

u16CCThreshold = 12

u16CCMinNrOfPix = 150

u32NumThreads = 6

u32DispScaleExp = 0

[left]

CM= 718.862031 0.0 305.532149 0.0 721.450182 251.411314 0.0 0.0 1.0

DC= -0.433507 0.130720 0.374995 0.002626 -0.001480

RM= 0.999714 0.00371767 -0.0236071 -0.003717679 0.9999930 0.00004 0.023607 0.000043 0.99972

PM= 711.8361 0.0 322.0776 0.0 711.8361 259.1078 0.0 0.0 1.0

BL= 0.2088879

CamSerNo = 4002841299

[right]

CM= 721.325664 0.0 312.859263 0.0 723.849515 254.121606 0.0 0.0 1.0

DC= -0.442249 0.256826 -0.101597 0.002104 0.000220

RM= 0.999797 -0.008817 -0.01807499 0.00876 0.999956 -0.0031732 0.018102 0.003014 0.9998314

PM= 711.8361 0.0 322.0776 0.0 711.8361 259.1078 0.0 0.0 1.0

BL= 0.2088879

CamSerNo = 4002841300

The parameters in the section [left] and [right] concern the camera parameters
of left and right camera. CM defines the camera matrix, DC the distortion coefficients, RM
the rectification matrix, PM the camera matrix after rectification, BL the baseline between
the two cameras in meters and CamSerNo the serial number of the used camera.

If an iDS camera is connected, the software also needs a second INI-file, which includes
the camera specific information, for example the camera driver, the actual used image
width and height or the frame rate. This file is necessary for the software to communicate
with the used camera.

An extract of this file is shown below:

[Versions]

ueye_api.dll=3.90.0011

ueye_usb.sys=3.90.0009

ueye_boot.sys=3.90.0009

[Sensor]

Sensor=UI124xSE-M

[Image size]

Start X=320
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Start Y=256

Start X absolute=0

Start Y absolute=0

Width=640

Height=480

Binning=0

Subsampling=0

[Scaler]

Mode=0

Factor=1.000000

[Multi AOI]

Enabled=0

Mode=1

x1=0

x2=0

x3=0

x4=0

y1=0

y2=0

y3=0

y4=0

[Shutter]

Mode=2

Linescan number=0

[Timing]

Pixelclock=20

Framerate=17.644480

Exposure=1.787930

Long exposure=0

During this work the S3E software was extended to work with projector-camera sys-
tems. Therefore some functions have to be modified as well as some sections in the
INI-file have to be added. The existing software is capable to work with two or three
camera systems, which requires at least two cameras connected to the processing PC. For
projector-camera systems just one camera is needed but nevertheless also two or three
cameras could be connected. So first of all the function IdsUsb Init, which loads the
connected iDS cameras and their individual specifications, was modified in the way, that
it also accepts one connected camera.

The second important process step of the software, which was changed, was the input
of the images, that are used for the stereo calculations. The existing software uses the
camera’s images therefore. They are captured and stored by the function CaptureImages
for futher calculations. When working with projector-camera systems one image of the
stereo pair comes from the camera and the second one is the pattern, which is projected.
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Therefore the pattern has to be provided to the software. For this purpose the visual-
ization tool PfeDxHost was used, it is, namely, not just able to receive images, but also
to send images. An own DX-channel has to be created, where the pattern is put in and
sent. The software receives this image and performs the stereo calculations on the related
camera’s image and the pattern. But to perform rectification and stereo matching the
necessary parameters have to be available. They are also stored in the INI-file. This file
was modified as well as the function EsvUpdateFromConfFile, which loads the INI-file
and stores the including informations. Therefore the INI-file got an own section called
[Projector] and for every projector-camera pair two additional sections, that include
the parameters necessary for rectification and stereo matching. The modified file is listed
below:

[S3E]

ptInputRoiOrigin.x = -50

ptInputRoiOrigin.y = -20

szInputRoiSize.u32Width = 800

szInputRoiSize.u32Height = 500

ptInputRoiOrigin.x = 20

ptInputRoiOrigin.y = 50

szInputRoiSize.f32Width = 640

szInputRoiSize.f32Height = 512

u32Vergence = 150

szOutputImg.u32Width = 320

szOutputImg.u32Height = 256

CamLeft = left

CamRight = right

u32CensusType = 0x0b000000

szAggregation.u32Width = 5

szAggregation.u32Height = 5

u32MinDisp = 20

u32MinValidDisp = 1

u32MaxDisp = 100

pfe3DFileType = esvXYZ

u8ConfidThrshld = 10

u8TextureThrshld = 0

u16CCThreshold = 12

u16CCMinNrOfPix = 150

u32NumThreads = 6

u32DispScaleExp = 0

[Projector]

bUseProjector = 1

ProjectorCalibl = projleft

CameraCalibl = camprojleft

ProjectorCalibr = projright

CameraCalibr = camprojright

PatternSource = proj_input

bSwapLR = 1
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[left]

CM= 718.862031 0.0 305.532149 0.0 721.450182 251.411314 0.0 0.0 1.0

DC= -0.433507 0.130720 0.374995 0.002626 -0.001480

RM= 0.999714 0.00371767 -0.0236071 -0.003717679 0.9999930 0.00004 0.023607 0.000043 0.99972

PM= 711.8361 0.0 322.0776 0.0 711.8361 259.1078 0.0 0.0 1.0

BL= 0.2088879

CamSerNo = 4002841299

[right]

CM= 721.325664 0.0 312.859263 0.0 723.849515 254.121606 0.0 0.0 1.0

DC= -0.442249 0.256826 -0.101597 0.002104 0.000220

RM= 0.999797 -0.008817 -0.01807499 0.00876 0.999956 -0.0031732 0.018102 0.003014 0.9998314

PM= 711.8361 0.0 322.0776 0.0 711.8361 259.1078 0.0 0.0 1.0

BL= 0.2088879

CamSerNo = 4002841300

[camprojright]

CM= 721.325664 0.0 312.859263 0.0 723.849515 254.121606 0.0 0.0 1.0

DC= -0.442249 0.256826 -0.101597 0.002104 0.000220

RM= 0.987977 -0.0195901 0.153352 0.0172335 0.999712 0.0166817 -0.1536347 -0.0138384 0.9880307

PM= 743.0000 0.0 169.2886 0.0 743.0000 291.9651 0.0 0.0 1.0

BL= 0.080904

CamSerNo = 4002841300

[projright]

CM= 1628.0 0.0 348.7 0.0 1637.4 451.7 0.0 0.0 1.0

DC= -0.0426 0.2741 0.0 0.0018 0.0030

RM= 0.9783302 -0.012187 0.206691 0.0121871 0.9999249 0.0012732 -0.2066914 0.001273 0.9784053

PM= 743.0 0.0 169.2886 0.0 743.0 291.9651 0.0 0.0 1.0

BL= 0.080904

[camprojleft]

CM= 718.862031 0.0 305.532149 0.0 721.450182 251.411314 0.0 0.0 1.0

DC= -0.433507 0.130720 0.374995 0.002626 -0.001480

RM= 0.9924 0.0225 -0.1214 -0.0225 0.9997 0.0014 0.1214 0.0014 0.9926

PM= 711.8361 0.0 322.0776 0.0 711.8361 259.1078 0.0 0.0 1.0

BL= 0.1270019

CamSerNo = 4002841299

[projleft]

CM= 1634.0 0.0 312.9 0.0 1641.1 442.7 0.0 0.0 1.0

DC= -0.0311 0.2261 0 -0.0001 -0.0038

RM= 0.9956 0.0115 -0.0934 -0.0140 0.9996 -0.0259 0.0931 0.0271 0.9953

PM= 711.8361 0.0 322.0776 0.0 711.8361 259.1078 0.0 0.0 1.0

BL= 0.1270019

In the section [Projector] some definitions and settings are stored. bUseProjector
is a boolean, which decides, if the projector is consulted for the further calculations.
Only if this value is set, the pattern is loaded from the PfeDxHost and the stereo algo-
rithms are performed on the projector-camera pair. ProjectorCalibl, CameraCalibl,
ProjectorCalibr and CameraCalibr define the sections, which include the projector and
camera parameters for the stereo system consisting of left camera and projector as well
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as right camera and projector. If only one camera is connected just one section pair has
to be defined. With the boolean bSwapLR the projector camera setup can be defined. The
default setting is bSwapLR = 0, which means that the camera is on the left side and the
projector on the right. If it is set one, the software performs the calculations the other
way round. This boolean only has an influence if one camera is connected. Otherwise
it is assumed that the projector is placed in the middle of the two cameras, hence for
the pair left camera and projector bSwapLR is zero and for the pair projector and right
camera it is one. The default setup is illustrated in Figure 42. PatternSource defines
the name of the DX-channel, which sends the pattern from the PfeDxHost. The further
calculations, which include rectification, stereo matching and all the post processing steps
are performed the same as it is done by the existing S3E software.

Left camera Right camera
Projector

CameraCalibl
ProjectorCalibl

CameraCalibr
ProjectorCalibr

Figure 42: Default setup

An image of the visualization tool is shown in Figure 43. In the top row the left cam-
era’s image and the blurred pattern is shown. The second row illustrates the results from
the stereo matching procedure: the left camera’s rectified image, the rectified pattern,
the resulting disparity and depth map.

Figure 43: PfeDxHost platform
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A further function, which has been integrated in the S3E software during this work,
concerns the depth map combination. Therefore it is necessary, that two cameras are
connected and that the projected pattern is sent from the PfeDxHost, in order to obtain
two depth images, one from the two-camera sensor and one from the projector-camera
sensor. All the processes, which are performed by the software to result in a depth
image, have to be executed twice. To illustrate both outcomes, different DX-channel
have to be created for the rectified, disparity or depth images, here they are named,
left rect, right rect, disparity and depth for the two-camera results and left rect projl,
right rect projl, disparity projl and depth projl for the corresponding images from the
projector-camera sensor using the left of the two cameras. The function CombineDepth
performs the combination of the two depth images. It takes as input parameters the
image structure, which will be filled with the combined depth values, the depth image of
the two-camera sensor, the 3D point set of the projector-camera sensor, the individual
calibration parameters for the left camera of the two-camera system and for the left
camera of the projector-camera setup and the predefined value for the pixels, whose depth
is not available. The function transforms the 3D points to the coordinate system according
to the left camera of the two-camera sensor, by multiplying them with Rc(Rp)−1, where
Rc is the rectification matrix of the first calibration input parameters and Rp the one
of the second. Furthermore, the final combined depth map is filled, as it is explained in
section 6.4. For the resulting depth image, an own DX-channel, depth final is created.
The output within the PfeDxHost is illustrated in Figure 44. The first row shows the
left and right camera’s image as well as the projected pattern, the second row illustrates
the two-camera and projector-camera disparity images, while the third row shows the
corresponding depth images as well as the combined depth image. As can be seen, the
combined depth image is the densest one since it contains depth values from both sensors.
More evaluation will be presented in section 8.

Figure 44: PfeDxHost output
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7.3 Automatic projector-camera calibration

The existing projector-camera calibration, as it is implemented in MATLAB and ex-
plained in section 7.2.2, needs input from the user, the calibration plane has to be identi-
fied in the camera’s images as well as the projected pattern. Therefore a window is opened
for every image, where the user has to click on the necessary points. This is not very
practical, since it is time consuming and dependent on the accuracy of the user’s input.
To make this calibration method more practical, some automation would be desirable.
For this purpose, it is important to know the structure of the used pattern, since the
implemented software has to find some calibration points within this pattern. Therefore
such an automation cannot be generalized for every projector. The methods which are
implemented here, can deal with pointed patterns, an example is shown in Figure 45.

Figure 45: Pointed pattern

The first step of every calibration procedure is the capturing of the calibration im-
ages. The existing projector-camera calibration expects pictures, where the identification
markers of the plane as well as the projected pattern are visible. The markers are nec-
essary to calculate the equation of the planar surface. For the automatic calibration
procedure implemented here, another device is used to achieve that, namely a second
camera. The two cameras build an own stereo system, which also needs to be calibrated
first, but with the help of it, the equation of the plane can be calculated. Therefore
the calibration images have to be captured by both cameras simultaneously and with
different viewing angles. It should be taken care that most of the points of the pattern
are visible in both images. As it is done by the existing projector calibration, the pattern
is projected onto a planar surface and since the two cameras are calibrated, they build a
stereo system, hence it is possible to calculate the 3D coordinates of the matched point
correspondences. Here, the existing S3E software is used to achieve that. A binary file is
written by the software, which includes these coordinates for all found correspondences,
where the reference coordinate system is set at the left camera’s one. The MATLAB
function ReadCameraBinary reads this file and the 3D points P are further taken as an
input to the MATLAB function PlaneFittingLTS(P), which calculates the best fitting
plane, expressed by its normal vector and distance from the coordinate system’s origin for
this set of points. In this manner every image pair is processed and the plane’s equations
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with respect to the left camera’s coordinate system are calculated. What has to be taken
into account is, that the left camera’s image plane has already been rotated, according to
the related rectification matrix R before the 3D coordinates of the point correspondences
are calculated. Therefore the left camera’s coordinate system is not orientated, as it was
originally. To reverse this rotation, the normal vector of every calibration plane has to
be multiplied by the inverse of R, which transforms the vector back to the left camera’s
original coordinate system.

The next step during the automatic projector-camera calibration is the identifica-
tion of some points within the projected pattern. The original pattern is illustrated in
Figure 46.

Figure 46: Original pointed pattern

The point identification is based on the SIFT algorithm, which is an algorithm to de-
tect image features and which describes their local neighborhood with vectors called de-
scriptors [28]. This feature detection method is chosen because of its scale and rotational
invariance. Especially the rotational invariance is important here, since the calibration
images are captured from different angles. The software used for this work is a MATLAB
implementation from A. Vedaldi and B. Fulkerson [29]. First of all, every calibration
image of the left camera is processed and the found SIFT features and the appropriate
descriptors are saved. To get rid of the camera’s distortion, the images are undistorted
before the feature extraction is executed. Next, the original pattern is processed. For
this purpose it is recommended to blur the binary pattern. Especially for the pointed
pattern used here, it improves the quality of the feature extraction procedure because the
pattern consists of many black areas, which do not provide any information and features
are difficult to find. The software from Vevaldi and Fulkerson also provides a function
which matches the descriptors of two images, here, the descriptors of each camera image
are matched with the ones of the pattern. According to the different viewing angles, dif-
ferent points and as a result, different matches are found within each image. Therefore,
the matches which are found within every image have to be filtered. An example of the
remaining matches is shown in Figure 47.

Basically the projector calibration could be performed using these points, but since
the found matches do not coincide with the dots of the pattern, the correspondences are
inaccurate. To overcome this, a rectangular neighborhood is scanned for the white dots.
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(a) Camera image (b) Pattern

Figure 47: Found matches within (a) camera image and within (b) pattern

For every feature point exactly one neighboring point is chosen. These points are defined
within the pattern first. For every found match, (x, y) a rectangular neighborhood,
[x− 20, x+ 20]× [y − 20, y + 20] is scanned using the MATLAB function regionprops,
which finds the centers of every white dot within the neighborhood. This function works
best for binary images, hence for the local neighborhood of each feature point the binary
version of the pattern is chosen. The dot, which is closest to the SIFT feature point, is
defined as its neighboring pattern point. This is illustrated in Figure 48. The feature
point is colored yellow, the found neighboring dots red, and the neighboring pattern point
is colored green.

Figure 48: Neighborhood of pattern feature point

Next, exactly the same neighboring dots have to be found within all camera images.
Therefore, also a rectangle neighborhood surrounding each feature point is scanned. Here,
a binary image should be taken as well to extract the neighboring points. The binarisation
of the neighborhood blocks is based on a predefined threshold δ, hence the values of the
binary image Ibin are calculated as

Ibin(x, y) =

{
1 I(x, y) > δ

0 I(x, y) ≤ δ

Since the image intensities within the camera’s images are varying, a global threshold
for all neighborhood blocks cannot be defined. If it is too high, the dots within less
intense regions cannot be identified and if it is too low, additional points could be arise
within more intense areas due to the image noise, hence for every local neighborhood an
own threshold has to be defined according to its intensity. Here, the MATLAB function
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graythresh provides this value. In Figure 49, a less intensive neighborhood and a more
intensive neighborhood together with their binary images are shown. The threshold of
the first one is 0.0510, while the threshold of the second image is 0.3804.

(a) Less intensive (b) Corresponding binary

(c) More intensive (d) Corresponding binary

Figure 49: Different neighborhood blocks, (a) and (b): Less intensive neighborhood and
corresponding binary image (δ = 0.0510), (c) and (d): More intensive neighborhood and
corresponding binary image (δ = 0.3804)

For the selection of the neighboring image point it is not advisable to chose the
dot, which is closest to the feature point, because the camera’s images of the projected
pattern are all oriented differently and therefore different neighboring image points could
be chosen. A better approach is to chose these ones which are closest to the previously
found neighboring pattern points. This is shown in Figure 50.

Figure 50: Neighborhood of image feature point

Here, the feature point is also colored yellow, the found neighboring dots red, and
the neighboring image point is colored green. The cyan star marks the location of the
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previously defined neighboring pattern point. In this example it is recognizable that
another dot is closer to the feature point, hence a wrong neighboring image point would
have been chosen.

In Figure 51 the final neighboring image and pattern points which are used for the
further calculations can be seen.

(a) Neighboring image points (b) Neighboring pattern points

Figure 51: Chosen dots within (a) camera image and within (b) pattern

Now all the information which is necessary for the projector-camera calibration is
available, hence the remaining calibration procedure can be performed the same way as
it is done in the implemented projector-camera calibration in MATLAB.

The calibration results are listed below:

Calibration results (with uncertainties):

Focal Length: fc = [ 594.66509 594.63885 ]

Principal point: cc = [ 356.90350 234.93515 ]

Skew: alpha_c = [ 0.00000 ] => angle of pixel axes = 90.00000 degrees

Distortion: kc = [ -0.50345 0.35287 0.00386 0.00007 -0.20264 ]

Pixel error: err = [ 0.67358 1.27117 ]

Note: The numerical errors are approximately three times the standard deviations (for reference).

If you look at the calibration results in section 7.2.2, which is the result of the pre-
vious calibration procedure, it can be seen that the error values are much smaller now.
This is due to the higher accuracy in identifying the calibration points, since they are
found by the algorithm and not clicked by the user. An important fact concerning this
automatic calibration method is, that the two-camera stereo system has to be calibrated
accurately since its 3D reconstruction results are used during the projector calibration
for the calculation of the equation of the illuminated plane. So the better this system is
calibrated, the more accurate are the results of the projector-camera calibration.

7.4 Summary

In this chapter the used hardware as well as the used software for this work is presented.
This concerns the camera calibration and the projector-camera calibration in MATLAB as
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well as the stereo vision engine S3E. Furthermore, the implemented software is described
in detail. This concerns modifications of the projector-camera calibration, the rectifi-
cation and stereo matching in MATLAB as well as modifications of the S3E software
to integrate projector-camera systems. Last an automatic projector-camera calibration
method which is implemented in MATLAB is presented. It can deal with pointed patterns
and is based on the feature detection algorithm SIFT. First, the calibration points have
to be detected in all calibration images and in the pattern. Then some refinement proce-
dures are processed in order to select the same points within all images. Last, the already
existing calibration method can be performed on this set of point correspondences. The
calibration results of this method are proven to result in more accurate parameters, since
it is independent of the user’s input like the other projector-camera calibration method.
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8 Evaluation

In this section the algorithms, used and developed in this work, are evaluated. First of
all, it is proven that the projector-camera calibration implemented in MATLAB provides
correct results. This is achieved by measuring a planar surface from different known
distances, documenting the percentage of calculated points, which do not fulfill the plane’s
equation and comparing the calculated 3D coordinates of the plane with its real ones.
Furthermore, the matching quality is analysed according to the density of the resulting
depth map. Next, the accuracy of the proposed calibration method is determined by
evaluating the discrepancies in measuring the dimensions of a selected test object and
last the reconstruction results of the projector-camera stereo system are compared with
the ones of a classical two-camera stereo sensor. It is shown in which cases the first one
provides better results and in which the second is more accurate.

8.1 Verification and measuring accuracy

To prove that the projector-camera calibration method, which is implemented in MAT-
LAB, works and its outputted parameters provide correct results for 3D reconstruction, a
plane is measured. Therefore, the projector-camera system is placed in front of a planar
surface, the projector illuminates it, and the camera captures an image of it. This is done
from different distances, the left camera’s images are illustrated in Figure 52 and ordered
from near to far.

(a) Nearest (b) Second nearest (c) Second farthest (d) Farthest

Figure 52: Plane test images from near to far, (a) - (d)

These images together with the blurred pattern are processed by the S3E software
and the calculated 3D coordinates are stored in a binary file. Next, the 3D coordinates
are read in MATLAB with the function ReadCameraBinary. For the first verification
test, the equations of the planes according to the computed 3D points at each distance
are calculated. The MATLAB function PlaneFittingLTS calculates the normal vector
and the distance from the origin as well as a vector, which encodes the points which do
not fulfill the plane’s equation. Those are the points whose absolute distances to the
calculated planes are higher than a predefined bound. Since only planar surfaces are
measured, all of the calculated coordinates should be situated on these planes, hence, the
number of the outliers indicates how exact the 3D coordinates are computed. The results
are listed in Table 1.

Since only at most 1.65 % of the calculated 3D points do not fulfill the plane’s equa-
tions, it can be said that the calibration procedure and the subsequent stereo matching
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calculated points outliers %

Figure 52, (a) 15018 247 1.6447
Figure 52, (b) 15254 224 1.4685
Figure 52, (c) 15477 172 1.1113
Figure 52, (d) 15409 155 1.0059

Table 1: Plane measuring results

algorithms provide accurate results.
Next, the measuring accuracy is analysed. Therefore, the 3D coordinates of the

four corners of the pattern are considered. The 3D coordinates stored in a binary file
are calculated with respect to the rotated coordinate system of the left camera after
rectification. Therefore, they have to be multiplied with the inverse rectification matrix to
get the coordinates in the original left camera’s coordinate system. Then, the calculated
coordinates of the four corners of the pattern have to be found and their Euclidean
distances have to be computed. To verify these calculated points, the distances of the four
corners of the pattern to the left camera are also measured with a measuring tape. These
distances can then be compared with the computed distances. The whole verification
workflow is illustrated in Figure 53 and the results are shown in Table 2.

Capture image

Calculate 3D 
coordinates of corners

Transform them back
to original coordinate system

Compare them with
measured ones

Figure 53: Verification workflow

The four values for every image in the table are the Euclidean distances between the
camera and the four corners of the pattern, in the order top left, top right, bottom right,
and bottom left. All of them are given in the unit centimeters. The theoretical error is
calculated as follows.

Depth is calculated by Z(d) = b·f
d

, where b is the length of the baseline in centimeters,
f the focal length in pixel, and d the value of the disparity also in the unit of pixel. The
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measured calculated disparity error theoretical error

Figure 52, (a)

62.2 61.47 310 0.73 0.7552
67.5 66.82 292 0.68 0.8512
66.1 64.79 290 1.31 0.8630
60.9 59.07 309 1.83 0.7601

Figure 52, (b)

78.8 77.91 246 0.89 1.1993
84.6 83.72 231 0.88 1.3601
82.8 81.2 229 1.6 1.384
76.9 75.27 244 1.63 1.219

Figure 52, (c)

109.5 108.53 178 0.97 2.2906
114.9 112.26 171 2.64 2.482
112 109.18 169 2.82 2.5411

106.7 104.57 177 2.13 2.3166

Figure 52, (d)

138.5 137.7 141 0.8 3.6506
144.7 141.68 135 3.02 3.9823
140.8 138.15 133 2.65 4.1029
134.7 133.85 139 0.85 3.7564

Table 2: Measuring accuracy

modulus of the first derivation, b·f
d2

, describes the change of depth near every disparity
value. The camera used for this test has a focal length of 711.09 pixel and the baseline
between camera and projector amounts to 12.758 centimeters. The resolution of the
camera images is 640 × 480 and since the output images, the rectified, disparity and
depth images, have a width of 320 pixel, the value of the derivation has to be multiplied
by 320

640
= 0.5. Another fact which has to be taken into account is, that the disparity

values are calculated with subpixel accuracy, the setting in the INI-file used here is 22,
which means that every outputted disparity value has to be divided by 22 to determine
the floating-point value. So in this test case the formula for the theoretical error is

12.758 · 711.09 · 0.5
(d
4
)2

As can be seen, within the table, the error values are mostly smaller than the the-
oretical error values. Only for a few entries the calculated distances are not within the
theoretical range, which can also be the result of inaccuracies during the measurement
with the measuring tape.

Another accuracy test is performed by measuring the dimensions of a rectangular
box. Two images are captured, one from the front and one from the side, in order to
obtain the height, the width, and the length. They are shown in Figure 54. Again,
the 3D coordinates are stored in a binary file and read in MATLAB by the function
ReadCameraBinary. Next, the necessary coordinates are extracted. Chosen are those two
points for each distance which are in exactly the same line or row of the depth image and
where a valid depth value is available. The 3D coordinates of these points are extracted
and the length of the vector is calculated. In Figure 55, the chosen vectors for distance
calculations are shown and in Table 3 the calculated results can be compared with the
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measured results. As can be seen, the error values are not higher than 3 millimeters, which
shows that the projector-camera system is calibrated correctly and provides accurate
results.

(a) Test image 1 (b) Test image 2

Figure 54: Dimension measuring test images

1

2

1

2

(a) Distances 1 and 2

3

(b) Distance 3

Figure 55: Calculated distances: (a) Distances 1 and 2, (b) Distance 3

measured calculated error

Distance 1 15.5 15.35 0.15
Distance 2 18 17.78 0.22
Distance 3 7.3 7.29 0.01

Table 3: Dimension measuring results

8.2 Matching quality

An important detail concerning the matching quality has to be taken into account, when
measuring with projector-camera systems. Since the camera’s images of the projected
pattern are not as sharp as the original pattern, which is usually a binary image, the
density of the resulting depth map is not as high as it could be. Therefore the pattern,
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which is sent from the PfeDxHost, has to be blurred first. Here, this is achieved by using
the MATLAB functions fspecial, which creates an image filter, and imfilter, which
applies this filter to the pattern. The blurred pattern and a comparison of the calculated
depth maps, using the binary pattern and the blurred are illustrated in Figure 56. As
can be seen, the reconstruction using the blurred pattern results in a denser depth map.
In Table 4 the numbers of calculated points are listed.

(a) Blurred pattern

(b) Depth map using bi-
nary

(c) Depth map using
blurred

(d) Depth map using bi-
nary

(e) Depth map using
blurred

(f) Depth map using bi-
nary

(g) Depth map using
blurred

Figure 56: Calculation results with binary and blurred pattern, (a) Blurred pattern, (b),
(d) and (f) Depth maps using the binary pattern, (c), (e) and (g) Depth maps using the
blurred pattern
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binary blurred difference

Figure 56
(b) and (c) 15845 16173 328
(d) and (e) 13296 14442 1146
(f) and (g) 12810 13891 1081

Table 4: Number of matching points

The pointed pattern, which is used for the automatic calibration procedure, explained
in section 7.3, is also blurred before the stereo matching procedure is performed. If the
binary pattern would have been used, hardly any matches could be found due to the
huge black fields that cover most of the pattern. Therefore a greater matching block size
would be necessary which would decelerate the whole procedure. The blurred pattern
and a comparison of the matching results is illustrated in Figure 57 and in Table 5 the
number of calculated points is listed.
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(a) Blurred pointed pat-
tern

(b) Depth map using 7×7
binary

(c) Depth map using 11×
11 binary

(d) Depth map using 7×7
blurred

(e) Depth map using 7×7
binary

(f) Depth map using 11×
11 binary

(g) Depth map using 7×7
blurred

(h) Depth map using 7×7
binary

(i) Depth map using 11×
11 binary

(j) Depth map using 7× 7
blurred

Figure 57: (a) Blurred pointed pattern, (b), (e) and (h) Depth maps using 7× 7 binary
pointed pattern, (c), (f) and (i) Depth maps using 11×11 binary pointed pattern, (d),(g)
and (j) Depth maps using 7× 7 blurred pointed pattern

bin.(7× 7) bin.(11× 11) bl.(7× 7) diff.(7× 7) diff.(11× 11)

Figure 57
(b) - (d) 0 14117 60362 60362 46245
(e) - (g) 789 10233 39661 38872 29428
(h) - (j) 258 13236 47034 46776 33798

Table 5: Number of matching points
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8.3 Depth map comparison

As already explained in this work, there are scenes and setups, which are difficult to
measure with classical two-camera stereo systems, for example textureless areas. In these
cases projector-camera systems provide better results. On the other hand such systems
have difficulties, if the projected pattern is not visible sufficiently. Since two different
baselines are used for measuring, different occlusions occur, hence there are scenes, where
the resulting depth maps are denser when using the projector-camera setup and others
where the two-camera sensor creates better results.

For the first depth map comparison a near textureless area, a white wall, is measured.
The two-camera stereo system is not able to find any point correspondences, as it is
illustrated in Figure 58. The same scene does not make any problems to the projector-
camera system, since the projected pattern structures the white wall, it is also possible
for the two cameras to measure the illuminated part of it, as it can be seen in Figure 59.

(a) Left camera image (b) Right camera image

(c) Two-camera depth map

Figure 58: Textureless area, (a) and (b) Left and right camera image, (c) Resulting
two-camera depth map
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(a) Left camera image (b) Right camera image

(c) Two-camera depth map (d) Projector-camera depth
map

Figure 59: Textureless area with projected pattern, (a) and (b) Left and right camera
image, (c) Resulting two-camera depth map, (d) Resulting projector-camera depth map

Next, a paper box is placed in front of the white wall. Here, the classical stereo sensor
finds some correspondences, but in comparison to the illuminated scene, the depth image
is barely filled. The test images and results are shown in Figure 60 and 61.
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(a) Left camera image (b) Right camera image

(c) Two-camera depth map

Figure 60: Paper box, (a) and (b) Left and right camera image, (c) Resulting two-camera
depth map

(a) Left camera image (b) Right camera image

(c) Two-camera depth map (d) Projector-camera depth
map

Figure 61: Paper box with projected pattern, (a) and (b) Left and right camera image,
(c) Resulting two-camera depth map, (d) Resulting projector-camera depth map

The third setup includes a black book in front of the white wall. The book is a
nearly textureless area, hence the two-camera sensor has difficulties in measuring it. The
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projected pattern is hardly identifiable in the camera’s image, hence the projector-camera
system has also problems to calculate a dense depth map. In Figure 62 these results are
shown.

(a) Left camera image (b) Right camera image

(c) Two-camera depth map (d) Projector-camera depth
map

Figure 62: Black book with projected pattern, (a) and (b) Left and right camera image,
(c) Resulting two-camera depth map, (d) Resulting projector-camera depth map

Next, some scenes are analysed, where the pointed pattern is used. Figure 63 and
Figure 65 show the left and right camera images. As can be seen, there are areas which
are visible in the left camera image but not in the right camera image, due to the different
viewing angles of the two cameras. These areas are the so-called occlusions, where it is
impossible for the two-camera sensor to calculate depth, but the projector-camera system
does not have any difficulties, since the original pattern is always completely available.
The resulting depth maps are illustrated in Figure 64 and 66.

(a) Left camera image (b) Right camera image

Figure 63: Images of test object, (a) and (b) Left and right camera image
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(a) Two-camera depth map (b) Projector-camera depth
map

Figure 64: Calculation results, (a) and (b) Two-camera and projector-camera depth maps

(a) Left camera image (b) Right camera image

Figure 65: Images of test object, (a) and (b) Left and right camera image

(a) Two-camera depth map (b) Projector-camera depth
map

Figure 66: Calculation results, (a) and (b) Two-camera and projector-camera depth maps
of test object

Furthermore, some results of the depth combination of the images from the two-
camera sensor and the projector-camera system are shown. As can be seen, the final
combined depth image is always denser than the first and the second one. The occlu-
sions are eliminated due to the availability of depth values in the projector-camera result
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and areas, where the projected pattern is not sufficiently visible in the left camera’s im-
age can also be measured, because the two-camera sensor provides the necessary depth
information.

(a) Two-camera depth map (b) Projector-camera depth
map

(c) Combined depth map

Figure 67: Calculation results, (a), (b) and (c) Two-camera, projector-camera and com-
bined depth maps of test object

(a) Two-camera depth map (b) Projector-camera depth
map

(c) Combined depth map

Figure 68: Calculation results, (a), (b) and (c) Two-camera, projector-camera and com-
bined depth maps of test object
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(a) Two-camera depth map (b) Projector-camera depth
map

(c) Combined depth map

Figure 69: Calculation results, (a), (b) and (c) Two-camera, projector-camera and com-
bined depth maps of test object

(a) Two-camera depth map (b) Projector-camera depth
map

(c) Combined depth map

Figure 70: Calculation results, (a), (b) and (c) Two-camera, projector-camera and com-
bined depth maps of test object

In Table 6, the number of calculated points can be compared. It is recognizable,
that the combined depth image is always the densest one, hence the effort of additional
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calculation costs is worth it.

two-camera projector combination difference(cameras) difference(projector)

Figure 67 37141 39692 46626 9485 6934
Figure 68 20563 22383 27842 7279 5459
Figure 69 33584 40001 42762 9178 2761
Figure 70 51898 47160 52552 654 5392

Table 6: Number of matching points

8.4 Summary

In this chapter the implemented algorithms are tested. First of all, the projector-camera
calibration is verified and proven to output accurate calibration parameters. First, this
is done by measuring a plane, fitting a plane through all the calculated 3D points and
documenting the percentage of outliers. Next, the 3D coordinates of the corners of the
projected pattern are calculated and compared with the results of measuring with a
measuring tape. Last, the dimensions of a rectangular box are measured and compared
with the real dimensions.

Furthermore, the matching quality of the projector-camera system is analysed. It is
shown that a blurred pattern results in denser depth maps. Last, the depth maps of a two-
camera system are compared with the depth maps of a projector-camera system and also
with the combined depth maps. Some setups are shown where the two-camera system is
not able to measure depth but in combination with the projection of the random pattern
it has no measuring difficulties. Furthermore some results of the depth map combination
are documented which show that missing depth values of the two-camera system as well
as of the projector-camera system are reduced.

87



9 Conclusion and Future work

In this work a special stereo vision system is presented, a projector-camera system. This
sensor is similar to classical stereo vision systems where two cameras are used. The only
difference is, that one camera is replaced by a pattern projector. Usually two-camera
systems are calibrated. This means, that both cameras are capturing a calibration object,
while the calibration software computes the camera parameters, that are needed for
further stereo calculations. Therefore also projector-camera sensors have to be calibrated,
whereby the challenge here is, that the projector is not able to capture the scene, hence
classical camera calibration methods cannot be used. In this work a projector calibration
method is introduced, which is implemented in MATLAB and provides the information,
that is necessary for three-dimensional reconstruction of a scene. This procedure works
best, when rectangular patterns are projected. It is shown, that the proposed calibration
method works correctly and provides accurate results for the reconstruction procedure.
A disadvantage of this calibration approach is, that it needs much input from the user,
hence the accuracy of the calculation results is depended on the user’s input accuracy.
Therefore a different method is introduced here, which performs the projector calibration
processes automatically and is adopted to pointed patterns. Also this procedure is proven
to result in dense and accurate depth images.

Furthermore, the census, which is used for the disparity calculation in combination
with SHD, is discussed. This method is chosen here, because it compares relative positions
of local intensity values between the two images used for stereo matching, rather than
the intensities themselves. Since one of the images is the projected pattern and the other
one is the camera’s image of it, the global intensities are different, hence matches would
be difficult to find. If the relative intensity positions are compared, it does not matter,
which values the pixels have. In connection with this method some improvements are
also discussed and implemented.

It is shown, that projector-camera sensors improve the reconstruction quality in areas
or scenes, where classical stereo vision systems have measuring problems. It is also
discussed, when projector-camera sensors have difficulties. In this context a multiple
baseline sensor is introduced. It is a combination of a two-camera stereo system with
a projector-camera setup. The two baselines are the distances between left and right
camera and between left camera and projector. Both of these two calibrated stereo
systems provide a depth image and each of them has different measuring problems, hence
a combination of the depth images eliminates both difficulties. It is shown, that the
combined sensor improves the reconstruction density significantly, hence the additional
calibration and calculation effort is worth it.

The future work could include an improvement of the projector-camera calibration
method. Up to now, a precalibrated camera is necessary to perform the calibration.
The accuracy of the projector calibration is therefore depended on the accuracy of the
previously executed camera calibration. A desirable solution could be a method, where
the parameters of both, camera and projector, are calculated simultaneously, without
the need of different calibration images. Another disadvantage is, that the implemented
projector calibration methods are adapted to particular patterns. It would be desirable,
to develop an universally usable procedure, which can deal with all kinds of patterns and
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performs all processes automatically.
Furthermore, the calculations concerning the multiple baseline sensor could be studied

more closely. Especially the combination of two available depth values could be improved.
Up to now, the mean value is inserted, but due to the different lengths of the two baselines,
the depth value of one system may be more accurate than the other one. Therefore more
precise values should be weighted higher.
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