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Abstract
In recent years, our cavity coupled ultra-cold 87Rb cloud experiment was

used to investigate the Dicke phase transition in a 2D checkerboard lattice.
In a next step, an optical lattice potential in the third dimension is being
added, which increases the requirements on the stability of the probe laser
and creates the need for a stabilization tool of the lattice laser.
A new type of carbon-fiber based transfer cavity with active temperature
stabilization, high mechanical stability and low thermal expansion used for
the Pound-Drever-Hall laser lock of the probe laser is presented.
By using the low coefficient of thermal expansion of unidirectional carbon
fiber tubes and by suppressing the thermal expansion of aluminum and glues
used in the cavity assembly along the optical axis of the cavity, a very low
coefficient of thermal expansion of αT = 1.7 × 10−6 K−1 of the assembled
cavity was reached.
The remaining coefficient of thermal expansion was used to tune the cavity
resonance by heating and convection cooling. Using a Toptica DLpro 780
diode laser, the cavity was locked to a wavemeter as an absolute frequency
reference with a very slow feedback loop to the cavity heater reacting on
a timescale of minutes. As a result of this very slow reference lock, the
transfer cavity locked probe laser showed stable single mode operation over
the course of several weeks of operation. A standard deviation of 1.8 MHz
from the set point wavelength was observed in a 16 h measurement, while
frequency deviations stayed below 10 MHz at all times.
The transfer cavity with a Finesse of 2× 103 and a linewidth of 4× 102 kHz
was used to narrow down the relative linewidth of the probe laser to a few
tens of kilohertz.
The design presented was also used in a second cavity to stabilize the lattice
laser and to consequently reduce heating of the atoms.



Kurzfassung
In den letzten Jahren wurden der Dicke-Phasenübergang in einem 2D

Schachbrett-Gitterpotential in unserem ”Cavity”-gekoppelten ultrakalten 87Rb-
Gasexperiment untersucht. In einem weiteren Schritt wird nun ein optis-
ches Gitterpotential in der dritten Dimension hinzugefügt, welches die An-
forderungen an die Stabilität des ”Probe”-Lasers erhöht und die Frage nach
einer Möglichkeit der Stabilisierung des Gitterlasers aufwirft.
Ein neuer Typ einer karbonfaserbasierten ”Trasfer-Cavity” mit aktiver Tem-
peraturstabilisierung, einer hohen mechanischen Stabilität und einer geringen
Wärmeausdehnung wird vorgestellt.
Durch Ausnutzung des geringen Wärmeausdehnungskoeffizienten von unidi-
rektional aufgebauten Karbonfaserrohren und der Unterdrückung der Wärmeaus-
dehnung des verbauten Aluminiums und Klebstoffs entlang der optischen
Achse der ”Cavity” wurde ein sehr geringer Wärmeausdehnungskoeffizient
der zusammengebauten ”Cavity” von αT = 1.7× 10−6 K−1 erreicht.
Der verbliebene Wärmeausdehnungskoeffizient wurde zum Durchstimmen
der ”Cavity”-Resonanz durch Erhitzen und Konvektionskühlen genutzt. Unter
Verwendung eines Toptica DLpro 780 Diodenlasers wurde die ”Cavity” an
ein Wavemeter als absolute Frequenzreferenz gekoppelt, wobei die sehr träge
Rückkopplung auf das ”Cavity”-Heizelement auf einer Zeitskala von Minuten
reagiert. Als Resultat dieser sehr trägen Rückkopplung lief der Transfer-
”Cavity” gekoppelte ”Probe”-Laser stabil einmodigen während mehrwöchi-
gen Betriebs. In einer 16 h Langzeitmessung betrug die Standardabweichung
von der eingestellten Laserfrequenz 1.8 MHz, wobei die Frequenzabweichun-
gen stets kleiner als 10 MHz blieben.
Die Transfer-”Cavity” mit einer Finesse von 2 × 103 und einer Linienbreite
von 4×102 kHz wurde zur Reduktion der relativen Linienbreite des ”Probe”-
Lasers auf einige Zehn Kilohertz verwendet.
Das vorgestellte Design wurde auch in einer zweiten ”Cavity” zur Stabil-
isierung des Gitterlasers sowie zur einhergehenden Reduktion der Heizrate
der Atome genutzt.
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1. INTRODUCTION

Nearly two decades ago, the breakthrough in the realization of a Bose-
Einstein condensate [1, 2] paved the way towards a new kind of tool to
investigate the fundamental laws of quantum mechanics, BEC-based quan-
tum simulators. In our experiment, a cigar shaped cloud of ultra-cold 87Rb
atoms is overlapped with the light field of an optical high Finesse cavity
to increase the light-matter interaction [3]. In recent experiments [4, 5] the
cloud was pumped by a laser transverse to the optical axis of the cavity. The
laser was far detuned from atomic resonance but close to a cavity resonance.
The cloud scatters photons into the cavity and above a critical pump power,
the atoms self-organize in the checkerboard-shaped optical potential created
by the pump beam and the cavity light field. Via long-range atom-atom
interactions, the atoms self-organize in tubes on either the even or odd sites
of the checkerboard pattern, so that the competition between kinetic and
potential energy leads to a Dicke phase transition [6, 7].

Now we extend this work by bringing yet another energy scale into play,
the on-site interaction energy. The tubes of self-organized atoms are cut
into single lattice sites, where on-site interaction is important. While the
checkerboard lattice was based on a 2D optical potential, the new optical
lattice introduces a potential in the third dimension. Stable lasers of nar-
row linewidth play a crucial role in these experiments as a tool to prepare,
manipulate and probe the atomic cloud. The introduction of a lattice po-
tential in our setup increases the requirements on the stability of both the
probe laser and the laser used to generate the lattice potential. Lasers can
be narrowed down and stabilized with respect to each other with the help
of high finesse optical cavities. Until now cavities in our experiment were
limited by thermal drifts which lead to frequent un-locking of the probe laser
during measurements. Newly designed cavities used to reduce the sensitivity
to these thermal drifts, to narrow down the laser which creates the lattice
potential and accordingly, to reduce heating on the atoms, were needed as a
crucial tool to successfully realize a 3D optical lattice potential in the system.

We report on the development, characterization and implementation of a
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new temperature tuned transfer cavity and the corresponding electronic reg-
ulation into our quantum simulator setup. The probe laser at a wavelength
of 780 − 785 nm and a second laser at a wavelength of 830 nm, which is
far detuned from atomic resonance, are both locked to the transfer cavity.
The transfer cavity is locked to a wavemeter as a frequency reference via
the transmission of the probe laser, while the high Finesse science cavity is
locked to the 830 nm laser. By introducing this locking chain, the probe
laser and the 830 nm laser are both stabilized to an absolute frequency and
with respect to each other and can be both resonant with the science cavity
at the same time. The transfer cavity therefore transfers the stability of one
laser to the other.

The new transfer cavity is designed to combine high mechanical and ther-
mal stability by using a carbon fiber tube as the mirror spacer. The cav-
ity mirrors are mounted in such a way as to minimize thermal expansion
of the cavity along the optical axis. The remaining thermal expansion is
used to tune the resonance frequency of the cavity by heating and convec-
tional cooling the system with the help of temperature control electronics,
while previous generations of transfer cavities featured a piezo-electric tube
for this purpose, which is prone to electric noise. The design developed for
the transfer cavity was re-used in a second cavity to stabilize the lattice laser.

This work is split into three sections. Chapter 2 reports on the mechani-
cal design of the new transfer cavity and explains the specific materials used
as well as the detailed assembly of the system. It presents the characteristic
properties of the cavity with a particular focus on the thermal and mechanical
stability. In chapter 3, the laser lock is explained and characterized. Various
noise present in the system is investigated and frequency noise of the locked
laser is discussed in detail. Chapter 4 reports on the implementation of the
new transfer cavity in the existing experiment and chapter 5 finally concludes.

A general theoretical description on optical cavities, laser beams and the
Pound-Drever-Hall laser lock [8] is appended, where most of the theory used
is derived and summarized in a self-consistent manner. The reader new to
the field of optical cavities may find the appendix helpful to quickly gain
insight into the basic underlying theory needed and to understand and link
the equations used.



2. CAVITY DESIGN

The frequency stability of a cavity based laser lock is mainly determined by
two factors, the regulation quality of the laser lock and the mechanical and
thermal stability of the optical cavity. In this chapter we want to introduce
a new design approach for the third generation transfer cavity used in our
experiment with high mechanical stability and low thermal expansion. While
the first generation transfer cavity was built from aluminum, the second gen-
eration was based on a carbon fiber (CFK) tube as suggested in [9]. The
third generation transfer cavity will follow a similar approach which is also
based on a CFK tube.

The excellent mechanical and thermal properties make CFK a good candi-
date for a cavity spacer material, which was successfully tested in the second
generation transfer cavity. In the third generation, we want to improve the
design to minimize the thermal expansion and maximize the mechanical sta-
bility of the cavity. While both the first and second generation transfer cavity
featured a piezo electric tube to stabilize the length and accordingly, the res-
onance frequency of the cavity, the third generation is actively temperature
controlled to do so. The mechanical designs and many physical properties
of the third generation transfer cavity resemble those of the first and second
generation, as they were all designed as iterative upgrades with respect to
each other, placed in the same optical setup in the experiment.

In the following, we first want to report on the general design and assem-
bly of the new transfer cavity. A more detailed description of the materials
used and the thermal and mechanical properties is presented in the second
half of this chapter. Before focusing on these details, we want to present a
compact theoretical framework which is used to describe the core properties
of the optical cavities used. We will calculate the theoretical properties of the
third generation transfer cavity and compare them with measurements. Ex-
perimental results of the first and second generation cavities are also shown
for comparison. The measured properties of the three cavities are expected to
be approximately comparable, as they have roughly the same length and fea-
ture mirrors coated in the same batch, although of different radii of curvature.
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Throughout this work, the first generation transfer cavity will be labeled
as C1, the second generation as C2 and the third generation as C3. All three
generations of transfer cavities were built of two identical mirrors. We assume
them to be lossless, the theory presented in this chapter is adapted to these
specifics. A more general and more detailed review on the theory of cavities
and light fields in resonators is given in appendix A and B.

2.1 Design of the cavity

”[In a general sense, an optical cavity] is a group of mirrors aligned in such a
way that the beam of light is reflected in a closed path, such that after one
round trip it interferes perfectly with the incident wave” [10]. In the sim-
plest case a cavity consist of two mirrors facing each other, which are aligned
on an optical axis. The incident light beam gets exactly retro-reflected and
bounces back and forth between the mirrors. This geometry is called linear
cavity. All cavities used in this work are of this simplest type, therefore other
designs will be neglected, for more information see e.g. [10, 9].

2.1.1 Cavity stability condition

Depending on the geometry and position of the cavity mirrors, one distin-
guishes between stable and unstable optical cavities, where in this context
stability refers to the capability of the cavity to successfully trap light. Before
designing a (stable) optical cavity, one should check the so-called cavity sta-
bility condition. An overview on the theoretical description of this property
is given in [11] and the cavity stability condition

0 ≤ g1g2 ≤ 1 (2.1)

for stable cavities is derived, where g1/2 are the so called mirror parameters
[10] given by

g1/2 = 1− L

Rc
1/2

(2.2)

where Rc
1/2 is the radius of curvature of mirror 1/2, respectively. The first

and second generation cavities feature mirrors of Rc
1 = Rc

2 = 250 mm, while
the third generation transfer cavity features mirrors of curvature Rc

1 = Rc
2 =

500 mm. A graphical analysis of the stability of all three transfer cavities is
shown in figure 2.1. All three cavities are stable cavities.
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Fig. 2.1: The cavity stability plot is shown. The blue dot represents the first and
second generation transfer cavities, while the red dot represents the third
generation. All three cavities are positioned well in the stable region
which is given by the shaded area.

2.1.2 Mechanical assembly of the cavity

The mechanical design approach taken is based on former versions of trans-
fer cavities used in the experiment. The new third generation transfer cavity
should replace the second generation variant with as little adjustments as
possible on the laser table, hence the physical dimensions were largely pre-
defined. A CAD-rendering of the third generation transfer cavity is shown
in figure 2.3.

Mirrors: The mirrors used were high reflectivity coated concave spher-
ical mirrors with a focal length of f = −Rc/2 = −250 mm, see table 2.1.
They were positioned 144.7 mm apart from each other, the result is a cross-
over between a confocal and near-planar stable cavity. For an overview on
the different types of stable cavities see e.g. [9].

Radius Rc
1/2 500 mm

Diameter 12.7 mm
Intensity reflectivity 99.88 %
Reflection coating 780 nm (0◦)

Tab. 2.1: Cavity mirrors: Laser Optic L-05962, Batch 22040p1
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Fig. 2.2: Assembly of the mirror to the mirror mount, the position and design of
the glue is shown in red.

Mechanical design: The cavity is built from a CFK spacer tube which
holds the mirrors at a fixed distance with respect to each other. Since it
is difficult to manufacture complex physical shapes from CFK, we chose to
build the mirror mounts from aluminum. A mirror mount with the mirror
glued in is shown in figure 2.2. The mounts were subsequently glued to the
CFK spacer tube. The design was made such that the glue and the aluminum
mirror mounts do not introduce thermal expansion issues, see section 2.2.
The CFK-tube is wrapped in brass shells, which add weight and feature good
thermal conductivity. The shells are screwed together with feather washers
to avoid mechanical stress which could lead to enhanced transverse beam
modes. A heating wire is wrapped around large parts of the cavity to ensure
homogenous heating. The assembled model of the cavity on a cavity mount
is shown in figure 2.4.
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Fig. 2.3: CAD-rendering of the third generation transfer cavity (top), with the
brass shells added (middle) and with the heating wire wrapped around
the brass shells (bottom) is shown. The shells are screwed together with
M2 screws and feather washers to avoid mechanical stress.
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Fig. 2.4: The assembled cavity including the mount is shown. The heating wire
around the cavity is wrapped in paper tape for reasons of mechanical
protection, the cavity is placed on a V-shaped aluminum mount with
Sorbothane shock absorbers in between, the mount rests on a Teflon
post. The electric components are first connected to a luster terminal on
top of the cavity and in the following, to a Sub-D9 plug on the backside
of the mount (not shown).



2. Cavity design 9

2.1.3 Characteristic cavity parameters

If and only if the wavelength of the incident beam is an integer multiple
of twice the optical length of the cavity, constructive interference inside the
cavity will occur, in all other cases the beam will be damped by destructive
interference. Accordingly, if we shine a laser with power Pin onto the cavity,
the power Pt transmitted through and the power Pr reflected by the cavity
will show a periodic behavior

Pt =
1(

1 + (2F/π)2 sin2(π ν̃
∆νax

)
)Pin (2.3)

Pr =
(2F/π)2 sin2(π ν̃

∆νax
)(

1 + (2F/π)2 sin2(π ν̃
∆νax

)
)Pin (2.4)

where F is the Finesse of the cavity, which we will describe in more detail
later, and ν̃ is the frequency of the laser relative to a cavity resonance. We
will write most formulas in terms of ν̃ = ν−νc for readability. The periodicity
results from constructive interference of the light field inside the cavity and
it is a phase dependent quantity, see appendix A. The period of (2.3) and
(2.4) is the so called free spectral range (FSR) and given by

∆νax =
c

2L
= 1036 MHz (C3) (2.5)

where c = c0/n is the speed of light in air (index of refraction of air at
room temperature n ≈ 1.00029) and L is the length of the cavity. The
length of the third generation transfer cavity is derived from the length of
the second generation transfer cavity of L = 144.7 mm. The length of the
first generation transfer cavity is also about 150 mm. We can measure the
FSR by applying sidebands of known frequencies to the laser and scanning
the laser over at least two cavity resonances. The cavity transmission will be
peaked at resonance and also at the sideband frequencies, where the relative
height of the transmission peaks is given by the beam power in the carrier and
in the sidebands. The spacing between two carrier peaks corresponds to the
FSR. The FSR measurement of C1 is exemplary shown in figure 2.5. From a
calibration of the scanning time to the known laser sideband frequencies, we
obtain the FSR

C1 : ∆νax = 960(2)MHz

C2 : ∆νax = 998(1)MHz

C3 : ∆νax = 1057(7)MHz (2.6)
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Fig. 2.5: The power transmitted through C1 is shown in red. The blue signal cor-
responds to the PDH-error signal which will be discussed in section 3.3.
The sidebands ν ′ of the laser in the transmission signal are quite small,
we therefore calibrate the frequency axis to the PDH-error signal reso-
nances (see section 3.3 which occur at the same frequencies. The largest
transmission peaks correspond to the TEM00 modes, while a higher or-
der transverse mode with smaller amplitude is visible, this behavior is
discussed in section 2.1.4. All signals are normalized to their maximum
value.

The data of (2.6) is an average of three measurements. One known source
of error in this measurement are non-linearities in the frequency scan of the
laser. The scan is performed by applying a saw-tooth voltage to the piezo-
controlled laser grating which tunes the laser frequency. At the maxima and
minima of the sawtooth, the piezo, which has a maximum scanning frequency
of about 1 kHz, will show a non-linear behavior which broadens the signal
at these positions. This can lead to an over-estimate of the FSR. Great care
was taken to avoid this behavior.

The Finesse F introduced before is a measure for ”the quality of a cavity”
[10] or ”the resolving power” [9]. It is, for all three generations of transfer
cavities, given by

F =
π
√
R

1−R = 2616 (2.7)

where R is the mirror intensity reflectivity. R = 99.88 % is the same for all
mirrors of the three transfer cavities. Close to a resonance, we can expand
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Fig. 2.6: The power transmitted through C1 is shown in red. By calibrating the
x-axis on the known laser sideband frequencies (not shown) we obtain the
cavity linewidth Γc. All signals are normalized to their maximum value.

(2.3) and obtain a Lorentzian cavity transmission lineshape

Pt =
1[

1 +
(

ν̃
Γc/2

)2
]Pin (2.8)

where Γc is the linewidth of the cavity, i.e. the full width at half maximum
of the cavity resonance, which is in a good approximation given by

Γc ≈
∆νax
F

= 396 kHz (C3) (2.9)

We can again measure the cavity linewidth Γc from a frequency scan over
the cavity resonance, where the frequency axis is calibrated to laser side-
bands of known frequencies, see figure 2.6. The resulting Lorentzian trans-
mission curve given by (2.8) contains the cavity linewidth Γc, but the cavity
transmission signal is convoluted with the laser emission spectrum which has
a certain linewidth Γl itself. Assuming a Gaussian lineshape for the laser
emission spectrum which is dominated by technical noise and a Lorentzian
frequency spectrum for the cavity transmission, we can fit a Voigt-function
to the data of the scan. From [12] we can approximate the linewidth with a
precision of 2× 10−4 to

Γ ≈ 0.5346Γc +
√

0.2166Γ2
c + Γ2

l = 425 kHz (2.10)

where Γc ≈ 400 kHz and Γl ≈ 100 kHz on a timescale of 5 µs [13]. The final
accuracy in (2.10) is much lower than the quoted 2× 10−4 and is limited by
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the uncertainties in the laser linewidth and cavity linewidth. From a fit of a
Voigt profile to the data of the resonance scan, where we extract the width
of the Lorentzian component which is associated to the cavity linewidth, we
obtain

C1 : Γc = 424(24) kHz

C2 : Γc = 443(20) kHz

C3 : Γc = 418(57) kHz (2.11)

in good agreement with our estimate. The data (2.11) was averaged over
seven measurements. The linewidth measurement of C1 is exemplary shown
in figure 2.6. The laser linewidth of Γl ≈ 100 kHz from [13] strongly depends
on the measurement time and is an average quantity for the laser model used.
Due to these huge uncertainties we will neglect the finite laser linewidth and
assume that (2.11) represents solely the cavity linewidth Γc. This approach
seems justified if we compare the measured results of the cavity linewidth
(2.11) with the theoretical prediction (2.9), which deviate by less than 10 %
with respect to each other. Using (2.9) we calculate the Finesse from the
measured frequencies (2.11) and (2.6) to

C1 : F = 2274(130)

C2 : F = 2176(98)

C3 : F = 2355(343) (2.12)

and by inverting (2.7) we obtain the mirror intensity reflectivities

C1 : R = 99.86(1) %

C2 : R = 99.86(1) %

C3 : R = 99.86(2) % (2.13)

The measured Finesse agree fair enough with the theoretical calculation, the
intensity mirror reflectivities are close to the specified R = 99.86(1) %.

The cavity ring-down time measures the timescale on which the cavity
reacts to changes in the power of the incoming beam. On timescales shorter
than the ring-down time, fluctuations in the power of the transmitted and
the cavity field are low pass filtered and accordingly correlated. The ring



2. Cavity design 13

down time is given by

τc =
1

2πΓc
= 0.42 µs (C3) (2.14)

and the cavity cut-off frequency

νc =
1

τc
= 2.4 MHz (C3) (2.15)

which represents a threshold above which intensity fluctuations are corre-
lated. From the measurement results of the cavity linewidths (2.11) we cal-
culate the measured ring-down times to

C1 : τc = 0.38(2) µs

C2 : τc = 0.36(2) µs

C3 : τc = 0.38(6) µs (2.16)

and we obtain measured cut-off frequencies of

C1 : νc = 2.7(2) MHz

C2 : νc = 2.8(2) MHz

C3 : νc = 2.8(2) MHz (2.17)

A direct ring-down measurement would determine the cavity linewidth Γc
independently of the laser linewidth Γl, but it increases the complexity of the
measurement setup. We see that the cut-off frequencies are on the order of
several MHz, therefore a direct ring-down measurement requires fast beam
on/off switching and a fast photo diode to detect the transmission signal
which should both react on the order of < 100 ns. An attempt of a ring-
down measurement failed due to the effective photo diode bandwidth of about
1 MHz, where the diode showed a reliable linear behavior, and the inaccurate
switch-off process which was done by first locking and then quickly unlocking
the laser. The ring-down measurement of C2 is exemplary shown in figure
2.7, the resulting ring down time of τc = 1.11 µs from an exponential fit is
largely overestimated.
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Fig. 2.7: Ring-down measurement of C2, the signal tail is fitted with (A.36). The
cavity transmission signal is normalized to the maximum transmission.
The measurement was limited by the effective photo diode bandwidth of
about 1 MHz and the inaccurate switch-off process.

2.1.4 Higher order transverse cavity modes

In addition to the axial field modes, which are separated by the free spectral
range, a cavity also supports different transverse field modes, see appendix
B. Each transverse field mode has a different phase relation. This leads
to different resonance frequencies of these modes in the cavity. Depending
on the mirror geometry, we distinguish between Hermite - Gaussian and
Laguerre - Gaussian field modes. In practice the Hermite - Gaussian field
modes dominate and we can neglect the Laguerre - Gaussian field modes.
In the cavity design, we try to avoid an overlap between the transverse and
the axial field modes. As the amplitude of the transverse field modes in a
well coupled cavity decrease rapidly with the mode number, we only need to
take into account a frequency range of one or two FSR. The frequencies with
respect to a cavity resonance of the transverse field modes are then given by
[10]

∆νnm =
(n+m+ 1) cos−1(±√g1g2)c

2πL
(2.18)

where the sub index corresponds to the nm-th Hermite polynomial. The
transverse mode frequency spacing then is

∆νtr =
c

2πL
cos−1(±√g1g2) = 257 MHz (C3) (2.19)

The fourth-order transverse field mode is located at 1029 MHz above the
cavity resonance, which is still 7 MHz or 16 × Γc from the next axial field
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Fig. 2.8: Transverse electric field modes (TEMnm) captured with a camera when
coupling into the cavity. The higher order transverse modes result from
a misalignment of the beam with respect to the cavity. The transverse
modes of TEM03 upwards are a superposition of several modes, which
are a result of the wide laser frequency scan over several cavity modes
during the alignment. The halo present on the pictures is an artifact of
the camera.

mode at 1036 MHz. We do therefore have no critical mode overlap in the
third generation transfer cavity. For the purpose of building a cavity based
lock, we try to suppress higher order field modes as much as possible. This
is done by carefully mode matching the laser beam which is coupled into
the cavity to the cavity. Some measured higher order modes are exemplary
shown in figure 2.8.

2.1.5 Cavity incoupling and mode matching

When coupling into an optical cavity, we scan the laser emission frequency
over at least one FSR and monitor the transmission through the cavity with
a camera. We can improve the coupling by reducing the power in higher
transverse modes. In practice this means a reduction of the number of trans-
mission maxima or equally, going from high TEMnm to lower ones, which
is equal to going from right to left in figure 2.8. Once a good coupling is
reached and most of the power is in the TEM00 fundamental mode, we scan
the laser over one FSR and send the transmitted light onto a photo diode.
This way, we can optimize the coupling through the cavity and reduce the
power in the higher order transverse modes further. The quality of coupling
reached is indicated by the higher order mode suppression, which gives the
factor of power in the largest higher order transverse mode compared to the
power in the fundamental mode.

To investigate the coupling of light into the cavity, we need some more
theory on the spatial behavior of laser beams. A laser beam inside an optical
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Fig. 2.9: The beam waist at varying distances from the center of the third genera-
tion transfer cavity is shown. We obtained a waist of w0 = 230 mm and
a Rayleigh range of z0 = 215 mm from a fit of a Gaussian beam to the
field distribution measured by a Point Gray camera.

cavity is well described by a Gaussian beam, see appendix B. We now intro-
duce the beam waist w which is half of the beam diameter. In our symmetric
cavity, the beam has a minimal waist w0 at the center of the cavity which is
given by [11]

w0 =

√√√√λ

L

√
(Rc

1 − L)(Rc
2 − L)(Rc

1 +Rc
2 − L)

(Rc
1 +Rc

2 − 2L)2
= 209 µm (C3) (2.20)

The waist w(z) at a position z from the center given by

w(z) = w0

√
1 +

(
z

z0

)2

(2.21)

where we introduced the Rayleigh length

z0 =
πw2

0

λ
= 176 mm (C3) (2.22)

with λ being the wavelength of the laser. The Rayleigh length is often thought
of as the limit between the non-linear Gaussian expansion and the linear ex-
pansion in the asymptotic limit. We determine the beam waist w0 at the
center of the cavity by measuring the beam which is coupled out of the cav-
ity, see figure 2.9, and fitting (2.21) to it. We obtain a waist of w0 = 230 µm
and a Rayleigh range of z0 = 215 mm.
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To achieve optimal mode matching, we have to hit the cavity with a beam
of the right size and angle. The so called far field divergence angle of the
cavity field is given by

θ ≈ λ

πw0

= 0.068 ◦ (C3) (2.23)

and from the measurement we obtain 0.1 ◦. In the following, we want to
show the experimental measures taken to optimize the mode matching of the
laser beam to the cavity.

The beam directed at the cavity was first coupled out of an optical
fiber with a Thorlabs LT110P-B outcoupling lens with a focal length of
f = 6.24 mm. The outcoupled beam had a waist of 0.61 mm, we would
have therefore needed a cavity coupling lens of f ≈ 500 mm positioned at
about 500 mm from the cavity center, as can be deducted from figure 2.9.
To be able to exchange the third generation transfer cavity with the second
generation in the experiment, we have to keep the cavity coupling lens of
f = 300 mm. Accordingly, we would need a beam waist of about 0.4 mm to
keep the f = 300 mm coupling lens at the current position of about 300 mm
from the cavity center and to achieve a good mode match. By knowing that
a f = 6.24 mm fiber outcoupler yields a beam waist of 0.61 mm, we can
calculate the focal length of an outcoupler which would yield a beam waist
of 0.4 mm and obtain a desirable focal length of f = 4.09 mm, which was not
available. We therefore used a Thorlabs LT230P-B outcoupling lens with a
focal length of f = 4.5 mm. By tuning the outcoupling lens slightly out of
focus, we were able to achieve a good mode match.

After optimizing the input coupling into the cavity, we could suppress the
power in the higher transverse modes compared to the fundamental mode by
a factor of > 250. The position of the beam was about 2 mm off from the
center on both cavity mirrors after repeated optimization. This did not affect
the higher mode suppression noticeable.



2. Cavity design 18

Fig. 2.10: The CFK tube used in uni-directional configuration is shown. The tube
is wrapped in woven carbon fiber.

2.2 Thermal properties of the cavity

We now want to focus on the thermal properties of the cavity. Our goal was
to build a frequency stable, temperature tuned cavity. To achieve the desired
tune ability of a few FSR for a change in temperature of a few Kelvin and to
decouple the cavity from environmental temperature changes, we designed
the cavity in such a way as to minimize thermal expansion. This was done
by choosing materials with a low coefficient of thermal expansion as well as
an elaborate mechanical design to cancel or suppress the remaining thermal
expansion. In this section we want to present the design approach taken and
show the results obtained.

2.2.1 Materials and design

The heart of the cavity is a carbon fiber spacer tube which separates the
cavity mirrors. Carbon fibers have a very low coefficient of thermal expan-
sion (CTE) along the direction of the fiber of αT = −(0.1 − 1) × 10−6 K−1

at room temperature, which varies slightly depending on the exact mixture
of the composite fiber materials used [14]. In contrast to most other materi-
als, CFK slightly shrinks when heated. Perpendicular to the direction of the
fiber, the CTE of CFK is about αT = (10− 20)× 10−6 K−1 [15]. There exist
many different types of CFK composites on the market, where one of the
most common ones consists of woven carbon fiber which mixes the CTE in
the direction of the fiber and perpendicular to it. To minimize the CTE, we
chose a CFK tube which was built of uni-directional CFK, where the carbon
fibers lie in parallel with respect to each other. The carbon fibers are cast in
epoxy or similar glue and wrapped by woven CFK, see figure 2.10. Due to
the stiffness of the carbon fibers in the direction of the fiber, we assume that
the mechanical and accordingly, the thermal properties of the uni-directional
CFK largely transfer to the complete structure.
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Fig. 2.11: Rendering of the assembly of the mirror to the mirror mount and sub-
sequently to the CFK-cavity spacer tube. The position and design of
the glue is shown in red.

If we compare the CTE of CFK to the CTE of aluminum of αT =
(22 − 24) × 10−6 K−1 and commonly used glues like epoxy with αT =
(50 − 80) × 10−6 K−1, we see that CFK is by far less temperature sensi-
tive. Due to this huge difference in the CTE, 150 mm of CFK tube, 7 mm of
aluminum or 2 mm of glue show roughly the same thermal expansion. The
three materials are used in approximately these quantities in our transfer
cavity, it is therefore crucial to minimize the effect of the aluminum and the
glue on the total thermal expansion of the system, as they would largely
diminish the positive effect of the CFK on the CTE of the complete system.

We see that we can improve the most in the CTE of the glue, as it is
by far the largest. We chose to use MasterBond EP21TCHT-1 to glue the
mirrors to the mirror mounts, which has a very low CTE for a glue with
αT = (18 − 20) × 10−6 K−1 [16]. In addition, we try to keep the thermal
expansion of aluminum and glue along the cavity axis close to zero. This is
done by gluing the mirrors to the aluminum mounts in the radial direction
using small dots of glue. Any thermal expansion of the glue should therefore
only apply a negligible stress on the mirrors without moving them in the
axial direction as it can only expand in the radial direction. The thermal
expansion of 1 mm of MasterBond EP21TCHT-1 glue when heated by 10◦C
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is only

∆L = L0αT∆T ≈ 200 nm (2.24)

The mirrors are glued to the aluminum mounts in such a way that the alu-
minum expands in both directions. While the mirrors are pushed inwards
when the aluminum expands, the mounts are pushed outwards. If the gluing
position is chosen carefully at the height of the end of the CFK tube, these
expansions should exactly cancel, see figures 2.2 and 2.11.

The mirror mounts are also glued in the radial direction to the CFK
tube. Here standard two component epoxy glue with a CTE of about
αT = (50 − 80) × 10−6 K−1 was used and applied in 10 mm stripes. Where
glued together, the stiff CFK should hinder the thermal expansion of the soft
aluminum. We therefore glued the aluminum mirror mounts up to the end of
the CFK-tube, which together with the central gluing position of the mirrors
should eliminate the thermal expansion of the aluminum all together. The
assembly of mirror, mirror mount, CFK-spacer tube and the gluing positions
are shown in figures 2.2 and 2.11.

2.2.2 Sensitivity to length and temperature change

To evaluate the effectiveness of the cavity design presented in section 2.2,
we need to link changes in the resonance frequency of the cavity to length
changes and subsequently, to temperature changes. From (2.3) and (2.5) we
see that the positions of the resonances mainly depend on the length of the
cavity. It is therefore useful to introduce the sensitivity of a cavity resonance
to length change, SL. It can be derived from the principle that a resonance
in the cavity occurs when the wavelength of the field is an integer multiple
of the round trip length of the light in the cavity 2 L.

Nλ = 2L

−N c

ν2
c

δνc = 2δL

−2Lνc
c

c

ν2
c

δνc = 2δL

SL :=
δνc
δL

= −νc
L

(2.25)
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By integrating (2.25), we can compute the frequency change with respect to
the length change, see (2.26).

∫ νc+∆νc

νc

1

ν ′
dν ′ = −

∫ L0+∆L

L0

1

L′
dL′

∆νc = − νc
L0 + ∆L

∆L ≈ − νc
L0

∆L = SL∆L (2.26)

Assuming linear thermal expansion of the cavity with a CTE of αT we get
the axial expansion of the cavity

L(T ) = L0(1 + αTT ) (2.27)

We can now derive the thermal frequency sensitivity ST of the optical cavity
from (2.26)

∆νc = − νc
1 + αT∆T

αT∆T ≈ −νcαT∆T (2.28)

For most materials, αT is on the order of 10−6 K−1, we can therefore approx-
imate 1 + αT∆T ≈ 1. We obtain the sensitivity of a cavity to temperature
changes

ST :=
δνc
δT
≈ −νcαT (2.29)

From a measurement of ∆νc and ∆T we obtain the coefficient of thermal
expansion

αT ≈ −
1

νc

∆νc
∆T

(2.30)

We measure a frequency change of about one free spectral range when the
temperature changes by 1.6 K for the third generation transfer cavity when
hit with a 780 nm laser. We therefore obtain a coefficient of thermal expan-
sion of αT = 1.7×10−6 K−1. This value is larger than what we would expect
of pure CFK, but more then ten times small than the CTE of aluminum and
the MasterBond glue, and about 40 times smaller then the CTE of epoxy.
We therefore conclude that the thermal expansion of the glues and the alu-
minum in the axial direction has been largely suppressed. The residual CTE
is desirable, as we need some sensitivity to temperature changes to be able
to thermally tune the cavity resonance frequency on the order of a few FSR.
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Fig. 2.12: The noise spectral density of the third generation transfer cavity is
shown, a background measurement with the laser switched off was sub-
tracted. An average of 31 measurements is shown. The measurement
with the aluminum post is shown in red, while the measurement with
the Teflon post is shown in black. We see a clear reduction in the noise
spectral density over the whole frequency range, the small enhancement
at 500 kHz results from a non-optimally adjusted laser current feedback
loop close to the lock bandwidth of about 800 kHz.

In day to day operation, the largest source of thermal noise on the cavity
is airflow. To suppress airflow and to add thermal isolation, we put a wooden
housing on top of the cavity. The wooden box largely suppresses fast tem-
perature changes from convection. This improves the thermal stability of
the system a lot and largely eliminates the influence of people moving in the
room. In addition, the cavity is encased by brass shells which serve as a ther-
mal reservoir and are therefore equivalent to a thermal low pass. The CFK
tube and the brass shells were connected together with thermal compound.

2.3 Mechanical properties of the cavity

Carbon fibers are very stiff in the direction of the fiber with an ultimate
tensile stress of about 4000 N/mm2, while the mechanical properties perpen-
dicular to the fiber direction are largely determined by the type of carbon
fiber composite (CFK) used. They show in general a much lower ultimate
tensile stress. We already saw a similar behavior when we investigated the
thermal properties of the cavity. To achieve the largest ultimate stress in the
axial direction, we again want a CFK tube made from an uni-directional fiber
assembly. If we compare the ultimate stress of CFK to the ultimate stress



2. Cavity design 23

of aluminum, we see that CFK is much stiffer. Aluminum has an ultimate
tensile stress of about 45 N/mm2 (pure) to (300-700) N/mm2 (alloy). This
stiffness makes CFK an ideal material to protect the cavity against mechan-
ical deformation like acoustic or vibrational oscillations.

The cavity mount was designed to reduce the coupling of mechanical vi-
brations from the optical table to the cavity. To do so, the CFK-spacer tube
was first encased by brass shells. This adds weight to the cavity and to-
gether with Sorbothane shock absorbers positioned between the cavity and
the cavity mount, functions as a mass-spring system, which serves as a low
pass filter for vibrational excitations. The cavity was placed on a 40 mm
diameter Teflon post which is a bad acoustic conductor. The Teflon post
damps vibrations which couple to the cavity from the optical table, the ef-
fect is shown in figure 2.12. We could lessen the spectral noise density in the
ten kilohertz range by roughly 25% by switching from an aluminum post to
a Teflon post, as well as noise around 250 Hz. The evaluation of the spectral
noise density shown here will be explained in chapter 3, it is directly corre-
lated to mechanical noise.

The wooden box placed around the cavity further decouples the system
from the environment. It adds acoustic damping to the system with a combi-
nation of dense and heavy MDF-wood on the outside and a light foam lining
on the inside. The whole system was positioned on an actively stabilized
optical table with a resonance frequency of about 1 Hz. The table decouples
the cavity from the ground floor, but vibrations coupled from the air to the
table as well as vibrations generated on the table will not be damped.

Both spectra in figure 2.12 show a significant amount of mechanical noise
in the acoustic region around 4 kHz, which was damped by the Teflon post
but is still present.



3. CAVITY LOCK CHARACTERISTICS

A free running laser always shows a finite amount of frequency instability.
This instability can be separated into various frequency regions which have
to be treated quite differently. A rough but practical approach is to separate
slow changes in the emission wavelength, which usually occur on a timescale
of several seconds to days, from fast frequency changes, which usually occur
on a timescale of < 1 s. While slow frequency changes affect the long term
stability of the laser, fast changes affect the short term stability and deter-
mine the linewidth of the laser.
To improve the long term stability of the laser, we can stabilize it to a
frequency reference like a spectroscopy cell, a wavemeter, a GPS-signal, a
frequency comb, etc., which has a stable frequency resonance on a large
timescale.
In a similar manner, we can improve the short term stability and narrow
down the linewidth of the laser by actively stabilizing the laser to a fre-
quency reference that is more stable than the laser, like an optical cavity.

This stabilization of a laser onto a frequency reference is called locking
and is a standard procedure to produce a frequency stable laser, for more
information see e.g. [9, 10].

3.1 Laser fluctuations and noise

A laser system shows various types of noise. In this section, we want to
look at intensity, polarization and frequency fluctuations. These types of
fluctuations are quite different in nature and will be discussed in detail in
the following sections.

3.1.1 Amplitude/intensity fluctuations

Fluctuations in the amplitude of the field emitted by the laser E(r, z) will
cause intensity fluctuations → I(r, z) ∝ |E(r, z)|2. These fluctuations are
caused by various sources like fast current or temperature fluctuations, me-
chanical oscillations or a change in the dominant transverse emission field
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(a) Normalized raw intensity spectrum of the laser (red) and the background
(black).
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(b) Normalized intensity spectrum of the laser, the background was subtracted.

Fig. 3.1: The normalized intensity noise spectrum of the laser locked to the first
generation transfer cavity averaged over ten measurements is shown. The
signal was normalized to the mean intensity. We see enhanced intensity
noise between 3 - 4 kHz and at 82 kHz. The noise at 800 kHz results
from the bandwidth of the lock laser current feedback loop, while the
enhancement at 3 MHz corresponds to the DC-photo diode bandwidth
which is specified up to a maximum of 10 MHz.
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mode.

It is possible to strongly suppress amplitude fluctuations of a laser by an
active temperature control, a vibration-damped optical table and by opera-
tion at a single longitudinal mode. These measures are commonly used and
very effective. They have been implemented in our laser setup and suppress
amplitude fluctuations to 10−7 standard deviation normalized to the mean
intensity, while the maximum deviation is 10−3. In stable single mode oper-
ation, amplitude fluctuations happen on the order of fractions of a second,
while long term drifts are usually quite small. Most measured long term
drifts in intensity arise from beam alignment drifts and consecutive decreas-
ing coupling efficiencies through various optical elements.

Intensity fluctuations can be measured directly with a photo diode, the
output voltage Vel is directly proportional to the photo current Iel which is
directly proportional to the beam power P and intensity I(r, z)

Vel ∝ Iel ∝ P ∝ I(r, z) ∝ |E(r, z)|2 (3.1)

The output voltage can be measured with high temporal resolution by an
oscilloscope. The normalized raw spectrum of the intensity noise and a
background measurement with the photo diode covered are shown in fig-
ure 3.1a. We see that the features in the intensity spectrum above 100 Hz
indeed result from the laser intensity noise, as they are not present in the
background. The background measurement is shown as a reference of the
behavior of the photo diode. The normalized intensity spectrum with sub-
tracted background is shown in figure 3.1b. We see enhanced intensity noise
in the region of 3 - 4 kHz.

3.1.2 Polarization fluctuations

Our laser system contains polarization sensitive elements like polarizing beam
splitters and waveplates. These elements transform changes in polarization
into intensity changes. One source of error are optical fibers which trans-
form mechanical and temperature variations into polarization variations. It
is possible to strongly suppress these variations by using polarization main-
taining fibers, where the axis of polarization has to be aligned along one of
the two polarization maintaining fiber axes. Therefore circular polarization
components have to be canceled. This was done by placing a λ/2 and a
λ/4 waveplate in front of the fiber and adjusting the axis of polarization
accordingly. The ratio of circular to linear polarization was measured with a
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Schaefter + Kirchhoff SK010PA polarization analyzer and a circular polar-
ization suppression of 99.5% was achieved.

The resulting beam had a stable axis of polarization and the influence
of polarization changes in the optical setup could be accounted for by care-
ful adjustments. The residual drifts were small in amplitude and slow in
frequency and were therefore neglected in our measurements.

3.1.3 Phase/frequency fluctuations

Phase fluctuations ∆Φ and frequency fluctuations ∆ν are linked by

∆ν :=
1

2π

d(∆Φ)

dt
(3.2)

We will usually talk about frequency fluctuations when characterizing the
laser and the cavity as they are a more convenient quantity to work with.
”Both the short-term frequency jitter and the long-term frequency drift of a
laser oscillator usually result primarily from mechanical vibrations and noise,
thermal expansion, and other effects that tend to chance the length L of the
laser cavity.” [9]

The very limit on the laser frequency linewidth is given by the Schawlow-
Townes formula, where the linewidth is only limited by quantum noise fluc-
tuations resulting from the spontaneous emission from the lasing atoms. The
original form of the Schawlow-Townew formula [17] was later on modified to
give the correct linewidth for lasing operation above the lasing threshold [18].
The modified form of the Schawlow-Townew formula reads

Γl =
2πhνΓ2

c

Pl
(3.3)

Here Γl is the laser emission linewidth (full width at half-maximum), ν is the
photon frequency, Γc is the cavity linewidth and Pl is the output power of the
laser. The Schawlow-Townes limit ”[...] can be observed with great difficulty
only on the very best and most highly stabilized laser oscillators.” [9] For
the laser used [13] the Schawlow-Townes limit equates to 1 - 10 µHz for a
laser output power of 10-100 mW. Accordingly, the system built certainly
operates above the Schawlow-Townes limit, we are not limited by quantum
fluctuations but by fluctuations from mechanical vibrations and thermal ex-
pansion.
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We now want to focus on short-term frequency jitter as we can com-
pensate for long term drifts by locking our system to an absolute frequency
reference, in our case a HighFinesse WS/7 wavemeter [19]. In accordance
to the central limit theorem we assume a Gaussian distribution for the me-
chanical vibrations and thermal noise amplitudes, the sources of short-term
frequency fluctuations.

In accordance to [18], we assume the phase and frequency of the laser to
be

ν(t) :=
dΦ

dt
= G(t) cos(Φ + 2πν0t) (3.4)

where ν0 is the frequency of the laser, Φ+2πν0t is the total phase and G(t) is
a random variable linearly proportional to the input noise source. The noise
and subsequently G(t) is assumed to be approximately white and Gaussian
distributed. From [18] we further see that this type of noise results in a
Lorentzian line broadening of the laser resonance with

G(ν) =
Gmax

1 +
(
ν−ν0
Γl/2

)2 (3.5)

In general, we would expect this Lorentzian frequency distribution for a laser
limited by quantum noise [20, 21], while under certain conditions of low-pass
filtered input noise the laser will have a Gaussian line shape [20]. In the
experiment, the laser is usually limited by technical noise which yields a
Gaussian frequency distribution.

A more intuitive definition which combines amplitude, phase and fre-
quency fluctuations is given in [22]

E(t) = [E0 + ε(t)] sin [2πνt+ Φ(t)] (3.6)

where ε(t) accounts for amplitude fluctuations and Φ(t) accounts for phase
fluctuations. Frequency fluctuations are given by

ν(t) = ν +
1

2π
Φ̇(t) (3.7)

where we again assume the frequency noise to be approximately white and
Gaussian distributed.
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3.2 Temperature lock

We want to compensate for very slow drifts of the laser emission wavelength
on a timescale of minutes and more by locking it to an absolute frequency
reference. Our reference is a HighFinesse WS/7 wavemeter with an absolute
accuracy of 60 MHz [19]. The wavemeter outputs a PID error signal of -4 V
to 4 V based on the frequency offset of the laser from a set frequency. We
feed this error signal to a home built cavity temperature controller (CTC)
which is connected to the heating wires wrapped around the cavity. To con-
trol the temperature of the cavity, the heating wire and radiative cooling
were used. The wire was wrapped around the brass shells of the cavity to
achieve a uniform temperature distribution.

3.2.1 Heating wire

To determine the material and the dimensions of the heating wire, several
factors had to be taken into account:

• maximum supply voltage of the power supply: 9 V or 15 V, selectable

• maximum supply current: ≈1 A, limited by the power amplifier of the
CTC and the power supply

• wire length: very long wires increase the complexity of manufacturing
the heater, a maximum of 100 m is therefore reasonable

• wire diameter: very thin wires easily break while thick wires are hard
to wind, a diameter of 0.2-1 mm seems therefore reasonable

• wire material: only few materials are commonly used for wires which
include copper, aluminum, constantan or Manganin

• wire isolation: for winding the wire without creating short circuits, a
good isolation is required. Commonly used isolation include coatings
(danger of scratch damage), plastics (thick) and silk (rare).

In the following derivation, a supply voltage of 15 V was assumed. 9 V
supply voltage operation is also possible, but this will decrease the available
output power by 50 %. The power amplifier of the CTC was realized by a
Darlington transistor. The minimum collector-emitter voltage is 1.2V, while
an additional transistor of the same type was used for power switching. This
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Fig. 3.2: The maximum heating power shows a maximum for a resistance of Rc =
12.6 Ω. The maximum heating power for the cavity heating wire with
R = 13.3 Ω of P = 11.9 W is shown.

decreases the maximum available output voltage to 12.6V. Theoretically, the
maximum heating power therefore is

Pmax = Vmax × Imax = 12.6 (V)× 1 (A) = 12.6 (W) (3.8)

In reality, the maximum current and accordingly, the maximum heating
power are determined by a careful impedance matching of the resistance
of the heating wire to the CTC shown in (3.9) and figure 3.2.

P = I2 ×R with I < 1 (A)

V = R× I with V < 12.6 (V) (3.9)

To illustrate the meaning of (3.9), let us assume that the heater tries
to supply the maximum possible power at a certain wire resistance, with
the maximum current always at I = 1 A (the power amplifier in the CTC
is built from a transistor which behaves as a current source, therefore these
assumptions are justified). Then the power P = I2×R scales linearly with R
for small resistances, and so does the voltage drop on the resistor, V = R×I.
At a certain critical resistance Rc the voltage drop reaches the maximum
supply voltage of 12.6 V, where Rc is simply given by Ohm’s law

Rc =
Vmax
Imax

= 12.6 Ω (3.10)

If we increase the resistance further, the voltage drop on the resistor would
be larger than the supply voltage, which is unphysical. While the supply
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voltage will stay at the maximum level of 12.6 V, the CTC will supply less
current so that

R× I = Vmax (3.11)

is always fulfilled. Therefore for a resistance R above Rc we expect the
heating power P to behave as 1/R given by

P =
V 2
max

R
(3.12)

This behavior is shown in figure 3.2. The wire used was a 1 mm diameter
Manganin wire (ρ = 0.533 Ω/m, specified) with silk isolation. Manganin is
an alloy of copper, manganese and nickel. The wire was wrapped around
the brass shells of the cavity in two counter propagating layers to cancel any
arising magnetic fields. The calculated length of the wire is 30 m with a
measured total resistance of R = 13.3 Ω. We therefore reach a theoretical
maximum heating power of 11.9 W, see figure 3.2, which is close to the
maximum possible heating power of 12.6 W. In the end, we want to mainly
ensure that the wire and the amplifier impedance are properly matched. If
this was not the case, most of the power would be lost on the amplifier,
which would need additional cooling, while only little power would be left to
temperature control the cavity.

3.2.2 Cavity temperature controller (CTC)

We now want to take a closer look at the electronic design and the temper-
ature regulation of the CTC, a view from the front is shown in figure 3.3.
The main purpose of the CTC was to supply the heating wire with power, to
show the current cavity temperature and to include safety features to prevent
overheating of the cavity or the power amplifier in the CTC. The tempera-
ture measurement was done with three PT1000 thermo elements which are
positioned in the cavity as shown in figure 3.4. The temperatures are shown
on a 4x16 LCD, powered by an Arduino micro controller.

The safety features include a software based interlock which triggers if
one of the three temperatures sensors measures a temperature of T > 35◦C,
and a bi-metal switch on the power transistor which cuts the power supply
if the temperature on the transistor exceeds 100◦C.

The temperature regulation was done via the software of a HighFinesse
WS/7 wavemeter with built in digital PID regulator, where only the PI regu-
lator was used. Depending on the difference of the measured laser wavelength
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Fig. 3.3: The cavity temperature controller is shown, placed in a 19 inch rack.

to a certain nominal wavelength, the output signal ranges from -4096 mV to
+4096 mV and is fed to the CTC, which amplifies the signal and outputs it to
the heating wire. To be able to heat and cool the cavity with a single heating
source, the reference temperature has to be higher than room temperature.
This was achieved by adding an adjustable offset voltage to the PI signal
in the CTC which heats the cavity to 26-28◦C without a PI signal present,
i.e. VPI = 0 V, while the offset temperature can be freely chosen between
room temperature and the interlock shut-off temperature. The circuit which
pre-amplifies the input signal and adds the offset voltage in shown in figure
3.5.

Fig. 3.4: The brass shells which enclose the cavity are shown. The positions of the
three PT1000 temperature sensors are highlighted. The PT1000 sensors
are glued to the brass with a very thin layer of fast setting superglue.
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Fig. 3.5: Input circuit of the CTC. The error signal is low pass filtered with R28
and C2, IC1d works as a buffer amplifier. Ref02 is a 5 V precision source
which generates an adjustable offset voltage at the non-inverting input
of the inverting amplifier IC1a by varying the potentiometer R17. The
output of IC1a is connected to the power amplifier stage.

3.2.3 CTC electronics

The input circuit shown in figure 3.5 was subsequently connected to the power
amplifier which is shown in figure 3.6. An Arduino micro controller was used
to monitor the transistor output, it is also able to interrupt the supply volt-
age of the power amplifier. The interrupt is software controlled and triggered
if the cavity temperature exceeds a predefined threshold temperature (35◦C).

The micro controller was mainly used to monitor the cavity temperature
with three PT1000 sensors and to output the measured temperatures on a
16x4 character LCD. The circuit shown in figure 3.7 was used to convert the
resistance of a PT1000 sensor into a voltage signal for the micro controller’s
analog input. The analog inputs feature a 10 bit analog-digital converter
(ADC), which divides the input voltage of 0 - 5 V into 1024 steps à 4.88 mV.

The temperature region of interest is about 20 - 40◦C. We can convert
these temperatures to resistances using the PT1000 datasheet [23]. The
Ref200 100 µA precision source then induces a voltage drop through these
resistances according to Ohm’s law.
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Fig. 3.6: Power amplifier circuit of the CTC. IC3c works as a pre-amplifier and
non-inverting regulator for the power transistor T3. The amplifier can be
powered by +9V or +15V depending on the jumper position. Further-
more there is a heater-ON/OFF switch S2, a micro controller controlled
interlock which is realized by the pre-amplifier T1 and the transistor T2,
which works as a switch. The bi metal is an overheat protection for T3
and interrupts the power if the temperature of T3 exceeds 100◦C. Ar-
duino monitor is a monitor output to monitor if the amplifier is on or
off.

20◦C → 1078 Ω → 107.8 mV
}

∆V = 7.7 mV
40◦C → 1155 Ω → 115.5 mV

The voltage difference ∆V = 7.7 mV is amplified by the INA118 instru-
mental amplifier. To protect the TTL inputs of the micro controller, we need
to limit the output voltage to -0.5 - 5.5 V. This is done by adding a voltage
divider to the instrumental amplifier output (Vto arduino = 1/3 VINA118) and
a Schottky diode, which has a low threshold voltage of 0.4 V, see figure 3.7.
The INA118 amplifies the differential voltage linearly up to 13 V, with 14 V
being the highest output voltage. These limits set the voltage gain G (3.13),
the according resistor to set the gain of the INA118 can be calculated from
(3.14).
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Fig. 3.7: PT1000 sensor circuit of the CTC. The precision current source Ref200
outputs a current of 100 µA, which yields a small differential voltage
between R39/R40 and the temperature sensor PT1000. The instrumental
amplifier INA118P amplifies this differential voltage depending on the
gain set by R5/R33. R2, R3 and D5 limit the output voltage to -0.5 -
4.7 V to protect the TTL inputs of the micro controller.

G =
Vmax
∆V

(3.13)

The equation for the gain resistor is given in the datasheet of the instrumental
amplifier INA118 [24]

G = 1 +
50 kΩ

RG

⇒ RG =
50 kΩ

G− 1
(3.14)

Due to the finite stepping of resistances available, the final performance of the
circuit is slightly altered to the theoretical one. For the lower temperature
measurement bound we arranged a 1.8 kΩ and a 2.7 kΩ resistor in parallel to
get a resistance of Rlow = 1080 Ω which corresponds to the resistance of the
PT1000 at Tlow = 20.5◦C. Keeping ∆V = 7.7 mV, the upper temperature
measurement bound shifts to 40.5◦C. From (3.13) we get G = 1688 using
Vmax = 13 V and from (3.14) we get RG = 29.6 Ω. For RG two 62 Ω resistors
in parallel were chosen (see figure 3.7) which yields a total resistance of
RG = 31 Ω and a gain of G = 1614, see (3.14). The theoretical results and
the parameters used are summarized in table 3.1.
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theoretical value value used
Rlow 1078 Ω 1080 Ω
Tlow 20◦C 20.5◦C
Vlow 107.8 mV 108.0 mV

Rhigh 1155 Ω 1157 Ω
Thigh 40◦C 40.5◦C
Vhigh 115.5 mV 115.5 mV

∆V 7.7 mV 7.7 mV
G 1688 1614
RG 29.6 Ω 31 Ω
Vto arduino(Tlow − Thigh) 0 - 4.33 V 0 - 4.14 V
ADC 0 - 887 0 - 848
ADC/◦C 44.37 42.42

Tab. 3.1: Overview on the parameters and properties used in the cavity tempera-
ture controller (CTC).
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Fig. 3.8: Frequency deviations around the set point of 384.1950000 THz are shown.
The mean is 8 kHz below the set frequency, while the standard devia-
tion from the mean is 1.8 MHz. The laser stayed locked throughout the
measurement.
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3.2.4 Long term frequency stability

The main goal of this work was to develop a PDH lock which stays ”in lock”
on a timescale of 12 h+. The resonance of the previous generation transfer
cavity was tuned with a piezo tube which had a limited tuning range. In
the course of several hours, the piezo would reach the maximal elongation
and no more tuning would be possible - accordingly the laser fell out of lock.
The new transfer cavity built is tuned by thermal expansion by which we
obtained a much higher tuning range. During several weeks of operation, no
”un-locking” of the laser was observed. A 16 h long term frequency mea-
surement recorded with a HighFinesse WS/7 wavemeter is shown in figure
3.8. The laser frequency stayed within ±10 MHz of the set frequency at
ν = 384.1950000 THz, with a standard deviation of 1.8 MHz, while the
mean of the recorded signal was 8 kHz below the set frequency. The fre-
quency stability reached fits the desired needs.

Note: The wavemeter has a specified accuracy of 60 MHz [19] assuming
recent calibration. We observe drifts on the order or ±20 MHz per day from
measurements of the frequency comb resonance.

3.2.5 Discussion

One of the main reasons to exchange the second generation transfer cavity
was the limited frequency tuning range of the piezo electric tube. As a result,
repeated re-locking of the laser during a measurement was needed. The new
third generation transfer cavity is actively temperature controlled and lifts
the limitations of the piezo electric tube. We did not observe an un-locking
of the laser during several weeks of operations. A 16 h measurement showed
a standard deviation of the laser frequency from the set point of 1.8 Mhz
which has a negligible effect on our experiments, where the laser is detuned
by terahertz from atomic resonance. The stable lock increases the stability
of the experiment and reduces the time needed to prepare measurements sig-
nificantly.

The cavity temperature controller opens up the option of always re-
locking the laser to the same cavity resonance, as we can set a certain temper-
ature offset to hold the temperature of the cavity at approximately the same
level, even if the error signal from the wavemeter is switched off. This implies
that temperature changes in the lab are low enough. We measure a cavity
resonance frequency drift of about one FSR per 1.6 K, reliable re-locking
to the same resonance therefore implies lab temperature changes below this
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level.

The compact physical dimensions of the CTC and the temperature con-
trol on a software level largely simplified and compactified the electronics
needed to control our transfer cavity setup. The CTC replaces the high volt-
age driver for the second generation transfer cavity piezo electric tube and
the lock box used to control the piezo.

The CTC measures the temperature of the cavity at three positions. We
see a mostly uniform temperature distribution, where the temperature at the
center of the cavity is about 0.1− 0.2 K above the temperature at the sides,
which was expected.

3.3 Pound-Drever-Hall lock

In this section we want to introduce the Pound-Drever-Hall (PDH) locking
technique [8] which generates an error signal proportional to the frequency
offset of a laser from an optical cavity resonance. The error signal is fed
back to the laser to counteract the frequency offset. The cavity resonance in
general shows a much better frequency stability than the laser, therefore the
PDH frequency stabilization can be used to improve the frequency stability
of an existing laser system. A closer look at the theory is given in appendix
C, while we only want to present the results and implications on our mea-
surements here.

The PDH error signal is given by (C.13)

Ve ∝ Im {F (ν)F ∗(ν + ν ′)− F ∗(ν)F (ν − ν ′)} (3.15)

where F (ν) is the reflection coefficient of the cavity given by (A.18)

F (ν) =
grt(ν)−R√
R(1− grt(ν))

(3.16)

The calculated PDH error signal is shown in figure C.3. The slope of the PDH
error signal close to the cavity resonance frequency depends on the Finesse of
the cavity and scales as ∝ F−2. As long as the quality of the PDH frequency
stabilization is given by the signal to noise ratio of the electronics, which is
in general the case, we can improve the lock quality by improving the Finesse.

The slope of the PDH error signal close to the cavity resonance frequency
is difficult to measure, as a frequency scan over the cavity resonance yields
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a noisy signal due to frequency fluctuations of the laser, which quickly scan
the laser back and forth over the resonance. A measured PDH signal at res-
onance is shown in figure 3.9.

To circumvent the noise caused by laser fluctuations, we calculate the
PDH slope at resonance from (3.15), using the measured mirror intensity
reflection coefficient (2.13) and the measured FSR (2.6). We then only need
to measure the peak-peak voltage V p−p

e of the PDH error signal, which is
nearly unaffected by the laser noise, to obtain the slope at resonance. We
obtain a slope of

C1 : s =
212

V p−p
e

(
kHz

V

)

C2 : s =
230

V p−p
e

(
kHz

V

)

C3 : s =
230

V p−p
e

(
kHz

V

)
(3.17)

We measure V p−p
e = 92 mV for all three generations of transfer cavities. We

will later use the slope to estimate the laser linewidth, see section 3.5.
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(a) The PDH error signal with the carrier and the sidebands at ν ′ = ±89.60 MHz
is shown. Residual DC components offset the signal slightly from zero.
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(b) This edge of the PDH error signal at the cavity resonance was used for the
laser frequency feedback regulation. The noise on the signal resulting from
laser frequency fluctuations is clearly visible.

Fig. 3.9: The measured PDH error signal of the first generation transfer cavity is
exemplary shown, the amplitude was normalized to the maximum am-
plitude.
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3.4 Measurement setup

To test and characterize the cavity and the electronics built, a measurement
setup was assembled. This section will explain the setup in detail and serves
as a guide to enable reproducibility of the measurements. The optics were
placed on an optical table with active vibration isolation. The whole setup is
shown in figure 3.10. We will discuss the optical and the electronic setup sep-
arately. We include details on the realization of a laser beam with a Gaussian
mode profile and a stable amplitude and polarization. The electrical compo-
nents used will also be explained in detail.
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Fig. 3.10: The optical and electrical measurement setup is shown. The specified
frequency range of the DC photo diodes (DC PD) is DC - 10 MHz and
0.5 - 500 MHz for the AC photo diode (AC PD)
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(a) Uncollimated beam at 10 cm (left)
and 2 m (right) from the laser, the
ellipticities are 1.79 and 1.46, re-
spectively.

(b) Beam collimated with a 2:1
anamorphic prism pair at 10 cm
(left) and 2 m (right) from the
laser, the ellipticities are 0.96 and
0.70, respectively.

Fig. 3.11: Beam profile of the initially elliptical and the quasi-Gaussian laser beam
close to the source and far away. Red color corresponds to regions of high
intensity while blue color corresponds to regions of low intensity. The
fringes and image distortions result from dust and dirt on the neutral
density filter which was placed in the camera focus.

3.4.1 Optical setup

The laser source used was a Toptica DL pro 780 which was operated at a
temperature T = 20.1◦C and a diode current I = 48 mA with an output
power of P = 6.6 mW. The laser beam profile was an elliptically distorted
TEM00 mode, see figure 3.11a. We used an anamorphic prism pair with an
aspect ratio of 2:1 to correct for the distortion and obtained a quasi-Gaussian
field distribution, see figure 3.11b.

A beam splitter with a reflectivity of 2 % was used to direct some of the
laser light to a DC-photo diode to monitor the laser intensity. Another iden-
tical beam splitter was used to direct light to a HighFinesse WS/7 wavemeter
to monitor the wavelength of the laser. The wavemeter has a nominal fre-
quency accuracy of 60 MHz [19], while the frequency precision is much higher
and in the sub-MHz region.

The light was then directed through an EOM operated at ν ′ = 89.60 MHz
to create the sidebands needed for the PDH frequency stabilization. In the
following, a polarization maintaining single mode fiber was used to obtain a
purely Gaussian beam profile and to simulate the setup in the experiment.
The EOM in front of the fiber turned the polarization of the laser beam to
a partially circularly polarization which resulted in power oscillation from
about (50 − 100) % behind a polarization selective element after the fiber.
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Fig. 3.12: The optical measurement setup is shown. The laser beam is shown in
red. A 50:50 beam splitter directs parts of the beam into a fiber to
another measurement, shown in yellow. This beam was not used in this
setup and hence it is not shown in figure 3.10. The gray-brown box is
the wooden cavity shielding and contains the optical cavity.

The period of the oscillation was about 20 min, strongly depending on the
thermal and vibrational stability of the polarization maintaining fiber. To
obtain a highly linearly polarized beam in front of the fiber, a λ/4 waveplate
was used to suppress the circular polarization component and a λ/2 wave
plate was used to turn the polarization axis to the polarization maintaining
axis of the fiber. The optimization was done using a Schaefter + Kirchhoff
SK010PA polarization analyzer and a circular polarization suppression of
99.5% was achieved.

Behind the fiber, another λ/2 waveplate was used to maximize transmis-
sion through the polarizing beam splitter (PBS). The λ/4 waveplate behind
the PBS turns the polarization of the beam reflected back from the cavity by
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2x45◦, which reflects the cavity reflected beam to the AC-photo diode used
to monitor the reflected power and to generate the PDH error signal.

The combination of a f = 4.51 mm fiber outcoupling lens and a f =
300 mm convex lens on a translation stage was used to optimally couple the
beam into the cavity. The coupling was optimized by slightly varying the
position of the collimation lens of the outcoupler at different positions of the
convex lens to minimize higher order transverse modes in the cavity trans-
mission spectrum of the cavity built. Due to the different mirror curvatures
of the mirrors used in the previous transfer cavities (R = 250 mm) compared
to the new transfer cavity (R = 500 mm), it was not possible to optimally
couple into the first and second generation transfer cavities with this setup,
which lead to more power in higher order transverse modes. This can be seen
in figure 2.5. This effect was irrelevant to the measurements performed on
these cavities for comparison to the new transfer cavity.

After coupling through the optical cavity, the transmitted beam was mea-
sured with a DC photo diode. A neutral density filter (ND) was used to
keep the beam power within the measurement range of the photo diode of
(0 − 2) mW when experimenting at higher laser powers. The optical cavity
was enclosed by a wooden box made from 20 mm MDF board lined with
acoustic foam. The heavy MDF-box is used for thermal isolation as well as
acoustic isolation. The acoustic foam added additional acoustic isolation.
The wooden box is shown in figure 3.12.

3.4.2 Electronic setup

The cavity temperature controller (CTC) is described in detail in section
3.2. In this section, we want to focus on the electronics used in the PDH
lock and the electronics used to characterize the cavity built. The RF fre-
quency of ν ′ = 89.60 MHz used in the PDH lock was generated with a home
built local oscillator (LO). This signal was split with a resistive splitter. The
branch directed to the left in figure 3.10 was amplified to 9 dBm at which
the EOM is specified to create sidebands with an optical power of 4 % of the
carrier power each. Throughout the setup, additional attenuators in front of
the amplifiers, which have a fixed amplification of +28 dBm, were used to
achieve the desired electrical power levels.

The branch directed to the right was directed to the PDH signal mixer.
To optimize the mixer output signal, the LO signal was also amplified and
an adjustable home built phase shifter was implemented to vary the relative
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phase between the measured cavity reflection signal and the original LO sig-
nal.

The mixer output was split into three branches. One was directed to
the home built lock box which generated the slow laser feedback (< 1 kHz)
directed to the laser piezo. The second branch, the fast laser feedback
(< 1 MHz), was phase shifted and attenuated and then directed directly
to the current input of the laser. The cut-off frequencies of the slow and the
fast feedback are visible in the error signal spectrum, see figure 3.16. A third
branch was implemented to measure the unfiltered full-spectrum PDH error
signal. This branch was needed as the PDH error signal output of the lock
box is low-pass filtered with a cut-off frequency of about 10 kHz.

The photo diode signals and the PDH error signal were measured with
a PicoScope 4227 oscilloscope which features up to 250 MSamples/s and a
frequency range of DC -100 MHz [25]. The oscilloscope was connected to a
computer via USB 2.0.

3.5 Laser lock characterization and laser linewidth

The linewidth of a laser is important from several perspectives. In spec-
troscopy it determines the resolution with which one can resolve resonances
like e.g. hyper-fine energy levels of an atom. When exciting an atomic tran-
sition, we want the laser linewidth to be on the order of the atomic transition
linewidth or smaller, as all off-resonant light will not take part in the transi-
tion.

To achieve a narrow linewidth laser one often locks the laser system to a
frequency reference. A common locking-technique is the Pound-Drever-Hall
lock which is described in section 3.3. The PDH technique is built on locking
the laser to an optical cavity. To characterize the quality of the lock one
can calculate the laser linewidth from an in-situ measurement of the cavity
transmission or from the lock error signal, both signals are shown in figure
3.13. While the method of calculating the laser linewidth from the cavity
transmission signal is only applicable for a cavity based lock, the method
of determining the laser linewidth from the lock error signal is in principle
applicable to any lock.
The methods described in this section represent a tool to measure the rel-
ative stability of the laser with respect to the cavity, while they are only
partially sensitive to frequency fluctuations of the cavity. The only method
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which can evaluate the absolute frequency stability of the complete system
reliably would be a beat note measurement [26], preferable from beating the
unknown laser with a spectrally very narrow reference laser, as noise correla-
tions are intrinsically very low in this measurement. When such a reference
laser system is not available, it is in general not possible to achieve a (reli-
able) final number for the laser linewidth. The required additional hardware
for a beat note measurement was not available, but the in-situ measurement
of the cavity transmission and the PDH error signal is quite convenient to
implement and provides an estimate for the quality of the lock and a tool to
compare different locks with respect to each other. It fit our needs very well.

The issue of measuring a laser linewidth turns out to be quite complex, as
typical laser frequencies are in the hundreds of Terahertz, while state of the
art electronics is able to measure tens of Gigahertz. The laser frequency is
therefore not directly accessible, but there are several methods which measure
the linewidth in an indirect way. The most common ones will be explained
in more detail in the following sections. The underlying source of the line
broadening of lasers is noise from various sources. A measurement of a laser
linewidth is in that sense always also a noise measurement. The complexity
of measuring linewidths therefore comes from the understanding and inter-
pretation of the statistics of the measured noise. We therefore need as much
information on the nature of the noise as possible and we have to account for
noise correlations. In general, the noise will be correlated in some frequency
regions, while it is uncorrelated in others. We have to be very precise in the
interpretation of what we measure when we evaluate a certain noise signal.

In our PDH stabilized laser system, there are two main sources which
contribute to the laser noise, the laser itself and the cavity the laser is locked
to. Even if we had a laser with a perfectly delta peaked frequency spectrum
which follows the resonance of the cavity, any noise in the cavity frequency
spectrum will be transferred onto the laser frequency. Hence it is important
to distinguish between the precision and accuracy of the laser, where the
precision describes how narrow the frequency noise is spread around a cer-
tain frequency, while accuracy describes by how much this frequency changes
in time. Accordingly, we have to quote the timescale on which we measure
a linewidth. With the methods used in this chapter, we can only measure
relative laser linewidths, while little information on the stability of the abso-
lute laser frequency is obtained. An exception is the case where the cavity
resonance is very stable. Then the measured relative laser linewidth will be
approximately equal to the absolute laser linewidth.



3. Cavity lock characteristics 47

−0.0010 −0.0005 0.0000 0.0005 0.0010

ν̃/∆νax

0.0

0.2

0.4

0.6

0.8

1.0

C
av

it
y

tr
an

sm
is

si
on

si
gn

al

−1.0

−0.5

0.0

0.5

1.0

P
D

H
-e

rr
or

si
gn

al

Fig. 3.13: The laser power transmitted through the cavity (red) and the PDH error
signal (blue) are shown. Both signals are normalized to their peak value.
The mirror reflectivity is R = 99.88 % which corresponds to the mirrors
used in all three generations of transfer cavities.

From all these limitations, we see that we will not be able to quote a
unique, final number for the laser linewidth, but we can compare the differ-
ent transfer cavity systems with respect to each other and set certain limits
on the laser linewidths. We now want to determine the laser linewidth of the
laser locked to the transfer cavity. We will first use a direct method where
we on the one hand calculate the frequency distribution of the laser from
the PDH error signal, see figure 3.14, and on the other hand from the cav-
ity transmission signal, see figure 3.15. Then we will use an indirect method
where we calculate the spectral density Sν of the laser from both these signals
and then deduce an upper limit of the spectral density which corresponds to
an upper limit of the laser linewidth, see figure 3.17 and 3.16. A discussion
on the results follows after.
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3.5.1 PDH error signal

We first take a look at the cavity reflection signal, more specifically at the
PDH error signal which is derived from the cavity reflection signal, see sec-
tion 3.3. Close to the cavity resonance, the PDH error signal is linear and
we can linearly map the histogram of the PDH error signal noise to the
laser frequency distribution. From a Gaussian fit of the histogram with the
probability distributions

f(Ve) = C × exp
(
−∆V 2

e

2 σ̃2
l

)
(3.18)

f(ν̃) = C × exp
(
− ln(2) s2 ν̃2

(Γl/2)2

)
(3.19)

we get the laser linewidth Γl and the Gaussian standard deviation of the laser
noise σl. Here we used that for a Gaussian distribution,

Γ = 2
√

2 ln(2)σ (3.20)

The results obtained for the relative laser linewidth are shown in figure 3.14.

3.5.2 Cavity transmission signal

Next we want to determine the relative laser linewidth from the cavity trans-
mission signal. If the laser is locked to the cavity resonance, the transmission
through the cavity should be maximal. We know that the cavity transmission
signal distribution with respect to the frequency has a Lorentzian profile, see
(2.8) and figure 3.13. If we now measure the transmitted beam with a photo
diode, frequency deviations of the laser will lead to power fluctuations on the
photo diode. The measured voltage signal of the transmission photo diode
can be connected to the laser frequency by

Vt(ν̃) =
V0

1 +
(

ν̃
Γc/2

)2 (3.21)

Here V0 is the maximum photo diode voltage which corresponds to the voltage
signal exactly on resonance with Vt(ν̃) ≤ V0. In section 3.5.1 we have seen
that the PDH stabilized laser has a Gaussian frequency distribution. The
laser with a Gaussian frequency distribution can therefore be written as

f(ν̃) = C × exp
(
− ν̃2

2 σ2
l

)
(3.22)
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where f(ν) is the frequency probability distribution, σl is the standard devia-
tion of the laser frequency distribution and C is an arbitrary scaling constant.
We can now derive the probability distribution for the measured transmission
signal by inverting (3.21) and plugging the result into (3.22)

ν̃ =

√(
V0

Vt(ν̃)
− 1

)
Γc
2

(3.23)

f(Vt) = C × exp
[
− ν̃(Vt)

2

2 σ2
l

]

= C × exp
[
− Γ2

c

8 σ2
l

(
V0

Vt(ν̃)
− 1

)]

= C × exp
[
− ln 2

Γ2
c

Γ2
l

(
V0

V0 + ∆Vt(ν̃)
− 1

)]
(3.24)

In the last step we used (3.20) and we introduced the transmission signal
voltage deviation

∆Vt(ν̃) = Vt(ν̃)− V0 (3.25)

which will be the quantity that we actually measure. ∆Vt(ν̃) corresponds
to an oscilloscope measurement in AC mode and should only take negative
values, since ∆Vt(ν̃ represents the voltage deviations from the maximum
voltage of the cavity transmission signal. To determine the width of the
cavity resonance Γc, we scan the frequency over the cavity resonance and
calibrate the frequency axis using the EOM-sidebands which appear at ν ′ as
a reference. From a fit of (3.24) to the histogram of the transmission noise
signal measured by the photo diode we obtain the relative laser linewidth Γl.
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Fig. 3.14: Histogram of the PDH error signal fluctuations (red), an average of ten
measurements is shown. The histogram is normalized to the highest
value. Voltage deviations have been converted to frequency deviations
using the PDH error signal slope. A Gaussian fit (black) yields laser
linewidths of Γl(C1) = 45.2(3) kHz, Γl(C2) = 51.8(3) kHz and Γl(C3) =
57.1(5) kHz. The measurement time was 1 s.
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Fig. 3.15: Histogram of the cavity transmission signal fluctuations (red), an av-
erage of ten measurements is shown. The histogram is normalized to
the highest value. A fit of (3.24) (black) to the voltage distribution for
negative voltages ∆Vt yields laser linewidths of Γl(C1) = 24.2(1) kHz,
Γl(C2) = 26.1(1) kHz and Γl(C3) = 25.7(1) kHz. Positive voltage values
are assumed to come from additional noise of unknown origin. They are
ignored as they would correspond to a transmission Vt > V max

t . The
measurement time was 1 s.
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3.5.3 Spectral noise density

Another approach to determine the laser linewidth is based on determining
upper limits of the cavity transmission and PDH error signal spectral noise
density (SND) Sν̃(ν). The SND is given by the square root of the one-sided
power spectral density (PSD) as Sν̃(ν) =

√
Sν̃ν̃(ν). From these limits on the

SND we can calculate an upper bound for the laser linewidth [21]. Knowledge
on the SND is in so far favorable as we can identify the frequency regions
which show the highest noise levels. This knowledge was used to improve the
stability of the system.

In the case of the PDH error signal voltage noise can be converted to
frequency noise with (3.17). We get

ν̃(t) = s∆Ve(t) (3.26)

To evaluate the cavity transmission signal, we first need to convert the mea-
sured voltage noise to frequency noise through the cavity transmission func-
tion, compare (3.23)

ν̃(t) =

√(
V0

V0 + ∆Vt(t)
− 1

)
Γc
2

(3.27)

where ∆Vt(t) is again given by the AC voltage deviations of the measured
voltage signal, compare (3.25). Performing a discrete fast-Fourier transform
(DFFT) on the data obtained from (3.26) and (3.27) yields the SND. To be
able to derive limits on the laser linewidth from the SND we need not only
qualitative but quantitative results of the SND. To this reason, we want to
take a closer look at the normalization of the DFFT.

DFFT: From the amplitude signal in time space one can calculate the
spectrum in frequency space using a DFFT. The maximum frequency is given
by the sampling rate of the measurement in time space, i.e. fmax = 1/dt.
The total measurement time determines the frequency resolution which is
given by df = 1/T , the frequency range is therefore 1/T - 1/dt.

Due to technical reasons, the sampling rate should always be at least 2.5x
the frequency to measure. If higher frequencies are present, these need to
be cut by a low pass before digitization to prevent aliasing effects. Aliasing
happens if the frequency to measure is higher than 2x the maximum mea-
surement frequency, the measured frequency will then be mirrored at the
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maximum frequency. For e.g. 1000 Hz sampling rate, the maximum mea-
sured frequency is 500 Hz. If we now try to measure 730 Hz, this frequency
would appear as 270 Hz after digitization.

The Fourier transform of noise in general diverges, as the noise extends
over the whole frequency range. We can think of the noise as a random walk
process, where the variance 〈ν2〉 scales as the number of steps, which in our
case equals the total measurement time T. Accordingly,

√
〈ν2〉 scales as

√
T

and we introduce the ”windowed” Fourier transform [27]

VT (ν) =
1√
T

∫ T/2

−T/2
dt ei2πνtV (t) (3.28)

which avoids the divergence of the integral. The unit of the windowed Fourier
transform of a voltage signal then is V/

√
Hz. The two-sided power spectral

density (PSD) is given by [27]

S
(2)
V V (ν) = lim

T→∞

〈
|VT (ν)|2

〉
= lim

T→∞
〈VT (ν)VT (−ν)〉 (3.29)

where we used that VT (ν) is symmetric in frequency space, VT (ν) = VT (−ν).

The two-sided PSD is also symmetric in frequency space, S
(2)
V V (ν) = S

(2)
V V (−ν).

Subsequently, we now define the one-sided spectral noise density, where we
assume uncorrelated noise, as

S
(1)
V V (ν) = lim

T→∞
2| 〈VT (ν)〉 |2 with ν > 0 (3.30)

So far we assumed VT (t) to be continuous. When measuring a noise signal,
we can only measure a finite amount of N discrete values of VT (t)→ V (tn).
We will therefore in the next step change from an integral over t to a sum of
discrete values. To get to the spectral noise density, we take the square root

of the one-sided power spectral density, S
(1)
V (ν) =

√
S

(1)
V V (ν), which is now

given by

S
(1)
V (ν) =

√
2

T

1

N

N−1∑

n=0

ei2πtnν/T |V (tn)| (3.31)

with the total measurement time T and a measurement of N data points.
With the appropriate transformations between the measured voltage V (t)
and ν̃(t) (3.26) and (3.27) we now obtain the (one-sided) spectral noise den-
sity Sν̃(ν).
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Finally, we have to calibrate the SND that we obtained from the PDH
error signal to gain the correct result. So far we only took into account the
linear region of the PDH error signal at the cavity resonance, see figure 3.13.
At noise frequencies above the cavity linewidth Γc, a 10-dB/decade roll-off
in the SND is expected, which corresponds to a 20-db/decade roll-off in the
power spectral density (PSD) [21]. We therefore calibrate the SND with the
factor

√
1 +

(
ν̃

Γc

)2

(3.32)

No further calibration is needed for the transmission signal as (3.27) already
takes into account the full shape of the transmission signal.

To be able to determine an upper bound of the laser linewidth from the
SND we need to link the two. This has been done in [22] and [28]. For
Gaussian distributed white noise which is low pass filtered with a cut-off
frequency νc >> Sν̃(ν) there exists, after elaborate derivations, the simple
solution

Γl = π [Sν̃(ν)]2 (3.33)

Γl is the full width at half maximum laser linewidth, where we took care of
the appropriate normalizations and definitions of the SND and the linewidth.
The results for the SND of the three generations of transfer cavities are shown
in figure 3.16 and 3.17.
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Fig. 3.16: Spectral density of the PDH error signal fluctuations (red), a back-
ground measurement with the laser switched off was subtracted. An
average of ten measurements is shown. A Gaussian distributed white
noise level is shown (gray) which corresponds to an upper bound of the
laser linewidth Γl. The enhancement at the AC-line frequency of 50 Hz
of C1 is ignored. The measurement time was 1 s.
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Fig. 3.17: Spectral density of the cavity transmission signal fluctuations (red), a
background measurement with the laser switched off was subtracted. An
average of ten measurements is shown. A Gaussian distributed white
noise level is shown (gray) which corresponds to an upper bound of the
laser linewidth Γl. The enhancement at low frequencies is ignored as
it is a result of vibrations on the laser table due to the measurement
procedure. The measurement time was 1 s.
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3.5.4 Laser beat note

We now want to take a look at the beat-note laser linewidth measurement
as well, because it is the standard method and the best technique known to
measure the linewidth of a laser [26]. We beat the unknown laser with another
laser of approximately the same frequency. Their beams are overlapped and
are measured with a photo diode, which measures the squared amplitude of
the incoming beams

P ∝ |E1(ν1) + E2(ν2)|2 (3.34)

The resulting signal will contain terms which are proportional to the sum and
the difference of ν1 and ν2, see (C.7), (C.8), (C.9), (C.10). All terms oscillat-
ing at ν1, ν2 or higher frequencies are not accessible to direct measurement
and can be filtered by a low-pass filter, but for lasers with approximately the
same frequency, ν1− ν2 is directly measurable. In general E1(ν1) and E2(ν2)
will not be delta-peaked at ν1 and ν2 but they will both have an unknown
resonance linewidth. The beat-note constitutes the convolution of these res-
onances and the distinct linewidths can not be distinguished.

There are, however, several cases where it is possible to distinguish the
resonances and linewidths of the two beams.

• In the limiting case where one of the two beams has a much smaller
resonance linewidth than the other one we can describe the narrow
resonance by a delta-peak. We can then scan the delta-peaked beam
over the resonance of the unknown beam and directly resolve the res-
onance and linewidth. Although this approach is straight forward in
the implementation, we would need a laser at the same frequency with
a much narrower linewidth than the one of the unknown laser.

• Another method is to calculate the linewidth of the unknown laser from
the resonance width of the convoluted beat-not signal. To be able to
deconvolve the beat-note we need a laser at the same frequency as the
unknown one with a known resonance linewidth and lineshape.

• One can beat an unknown laser with itself using a self-heterodyne tech-
nique [29]. In this approach the laser beam is split by a 50:50 beam
splitter and one optical path is delayed by sending the light through
a long fiber of several kilometers length. Then a beat-note is created
by the unknown laser and an earlier version of itself, shifted in time.
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A deconvolution of the beat-note is possible as both beams have the
same underlying lineshape. This approach can only measure noise that
occurs on a timescale shorter than the time delay created by the fiber
c/L, where c is the speed of light in the fiber and L is the length of the
fiber. Noise occurring on larger timescales will be correlated and can
not be measured. Although this approach is quite straight forward in
the implementation, one needs a fiber of several kilometers of length,
also this method is sensitive to noise created by the fiber.

• An approach that can be used for unknown reference laser systems
which have a narrower linewidth than all other systems available is the
beating of two identical systems with each other. As with the self-
heterodyne technique, a deconvolution of the beat-note is possible as
both beams should have the same underlying lineshape. The obvious
drawback is the need of two identical systems, in addition noise which
is correlated between the two laser systems can not be measured [26].

The lineshape of a laser is usually well described by a convolution of a
Gaussian and a Lorentzian frequency distribution, the resulting distribution
is called Voigt profile. The Lorentzian frequency distribution is predicted by
elementary laser theory [9] while the Gaussian contribution originates mainly
from electronic noise. To deconvolve the beat-note created from two identical
lasers or by a self-heterodyne technique we need to know if the underlying
resonance lineshape is rather Gaussian or rather Lorentzian. For a Gaussian
lineshape the width of the beat-note resonance is

Γ2
beat = Γ2

1 + Γ2
2 = 2 Γ2

l (3.35)

and we can calculate the linewidth of the unknown laser to

Γl =
1√
2

Γbeat (3.36)

For a Lorentzian lineshape the width of the beat-note resonance is

Γbeat = Γ1 + Γ2 = 2Γl (3.37)

and we can calculate the linewidth of the unknown laser to

Γl =
1

2
Γbeat (3.38)
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3.5.5 Discussion

We have shown four different methods to characterize the linewidth of a PDH
stabilized laser for the three generations of transfer cavities, using two data
sets each. We see that the results obtained by the different methods differ
from each other, while the linewidths of the three generations of transfer
cavities are roughly consistent within one method of analysis.

The four methods each have their strengths and weaknesses:

• The derivation of the laser linewidth from the PDH error signal is
straight forward. Yet, the results do not represent the complete laser
linewidth but a relative linewidth. They are a measure for how well
the PDH lock stabilizes the laser frequency to the cavity resonance,
but fluctuations in the cavity resonance frequency are only partially
measured. This method averages the noise over all spectral components
and can resolve noise at high frequencies.

• As with the derivation of the linewidth from the PDH error signal, the
derivation of linewidth from the cavity transmission signal is relatively
straight forward, yet again the results for the laser linewidth are not
intrinsically accurate. The measured linewidth again represents a rela-
tive linewidth. As the PDH error signal analysis, this method averages
the noise over all spectral components, while it can only resolve noise
up to the cut-off frequency. It showed the highest level of consistency
of all methods during our experiments.

• The spectral noise density from both these measurements highlights
the regions where the noise is most prominent. Although this method
is also not guaranteed to be accurate in the final results of the laser
linewidth and it only yields an upper limit for the relative laser linewidth,
it has the advantage of working with frequency resolved data. It can
therefore be used as a frequency resolved comparison tool for different
measurements and different systems with respect to each other. There,
the strengths and weaknesses of different laser stabilization approaches
can be analyzed in specific frequency regions, see e.g. figure 2.12.

In this context, we need to explain what the relative linewidth that we mea-
sure represents. In a first step, we see that the higher the Finesse, the steeper
the slope of the PDH error signal, and thus the higher the gain of the lock.
Therefore, the lock can counter-act small frequency deviations more easily.
We find that the PDH slope s ∝ F and accordingly, the spectral density
Sν̃ ∝ F−1. The relative laser linewidth therefore depends on Γl ∝ F−2.
Laser systems with a very narrow relative linewidth can be achieved by PDH
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systems based on very high Finesse cavities, see e.g. [21]. The absolute fre-
quency accuracy then strongly depends on the mechanical stability of the
cavity used and has to be measured with a beat note.

A very narrow relative linewidth can be thought of as a delta-peaked res-
onance fluctuating from the noise added by the cavity. If the Finesse is not
too high as in our system, then the laser will not always be able to follow the
movement of the cavity and the noise of the cavity will be partially present in
the PDH error and the cavity transmission signal. The measured linewidth
is then closer to the absolute linewidth of the system.

In this context, it is important to focus on the purpose of the transfer
cavity built. We want to achieve a high relative frequency stability between
the 780 - 785 nm probe laser and the resonance of the science cavity in the ex-
periment. The frequency noise levels of the second generation transfer cavity
were already on an acceptable level for our measurements in the experiment.
With the third generation transfer cavity being on a comparable level, we
are not limited by the cavity-noise and probe laser noise in our experiment.

We conclude that the short term frequency stability of the three gener-
ations of transfer cavities is approximately comparable, with a final relative
linewidth in the tens of kilohertz for a measurement time of 1 s. The long
term stability of the third generation transfer cavity, on the other hand, is
vastly improved due to the elimination of thermal drifts. These results should
enable the implementation of a 3D optical lattice potential in our experiment.



4. IMPLEMENTATION OF THE CAVITY IN THE
CURRENT EXPERIMENT SETUP

In the experiment, the transfer cavity is used to indirectly lock the 780 −
785 nm probe laser to the science cavity. In a first step, both the probe laser
and a transfer laser at 830 nm are locked via PDH to the transfer cavity.
The cavity length is stabilized against slow drifts via the temperature lock
using a wavemeter to produce the error signal. In a final step, the science
cavity is frequency stabilized via PDH to the the 830 nm laser, which is far
detuned from any resonance of the 87Rb atoms used. By implementing this
locking chain, both the probe laser and the 830 nm transfer laser can simul-
taneously be resonant with the science cavity. The locking chain is shown in
figure 4.1. The science cavity is piezo tuned, it can therefore follow frequency
fluctuations of the probe laser on the kilohertz level and below, while noise
of higher frequencies is unaffected.
s In a final step, the second generation transfer cavity was exchanged against
the third generation. In the course of this exchange, we also switched the
old aluminum cavity mount to a cavity mount with a Teflon post to decrease
the mechanical coupling of the cavity to the optical table, see figure 2.4.
The required adjustments in the optical setup were taken into account in
the design of the third generation transfer cavity from the start. We could
therefore mostly keep the current optical setup in the experiment unaltered.
To optimize the mode matching of the new cavity, which was built from mir-
rors of different curvature, we had to exchange the fiber outcoupling lenses
from Thorlabs LT110P-B with a focal length of f = 6.24 mm to Thorlabs
LT230P-B with a focal length of f = 4.5 mm.

Throughout the course of several weeks of operation, the third generation
transfer cavity showed a stable locking performance and no signs of additional
noise in the experiment.
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Fig. 4.1: The implementation of the locking chain is shown. The science cavity is
indirectly locked to the probe laser via an additional off-resonant laser
to be able to achieve locking without perturbing the 87Rb atoms in the
science cavity by almost resonant 780 nm light. The transfer cavity is
locked to the wavemeter, which generates an error signal based on the
frequency deviation of the probe laser transmitted through the cavity
from a set frequency.



5. CONCLUSION AND OUTLOOK

We have presented a new design for a temperature-tuned optical transfer
cavity. The new transfer cavity was successfully tested and implemented in
the ultra-cold atomic 87Rb cloud experiment, where it is used to indirectly
lock the 780− 785 nm probe laser to the optical high Finesse science cavity.
The experimental results are summarized in the following:

• The assembled cavity shows a very low coefficient of thermal expansion
of αT = 1.7 × 10−6 K−1, which is more than an order of magnitude
below the coefficient of thermal expansion of aluminum and the glues
used. We accordingly conclude that we successfully canceled undesired
thermal expansion of the cavity along the optical axis, the remaining
thermal expansion is desired and used to tune the resonance of the
cavity. We obtained a sensitivity to temperature change of the cavity
resonance frequency of 1 GHz per 1.6 K.

• The relative linewidth of the 780 nm laser locked to the cavity was
evaluated to several tens of kilohertz. We have seen a performance
comparable to the previous generations of the transfer cavity. The
mechanical stability of the cavity was improved by exchanging the post
which the cavity is placed on from aluminum to Teflon, the net effect
is a 25% reduction in the relative laser linewidth.

• A new slow lock electronic for the cavity temperature lock was devel-
oped and implemented. The laser stayed locked throughout several
weeks of operation. A 16 h frequency measurement with a wavemeter
showed a standard deviation of 1.8 MHz from the set frequency, while
the laser frequency stayed continuously within 10 MHz to the set fre-
quency. The improved locking stability opens up the opportunity of
long, uninterrupted measurements on the experiment.

• We could implement the new transfer cavity into the experiment keep-
ing the optical setup largely unaltered. By only exchanging the fiber
outcoupling lenses, the higher order mode suppression relative to the
fundamental TEM00 mode was improved from 80 to > 250.
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Fig. 5.1: The cavity used to narrow the linewidth of the 670 nm lattice laser is
shown. It is of the same design as the third generation transfer cavity,
but shorter and with an order of magnitude higher Finesse. Based on
the mechanical noise characterization presented in this work, the cavity
mount was redesigned for higher vibrational damping. The mount rests
on Sorbothane absorbers which are placed on four Teflon posts.

During the process of writing up, an optical lattice potential obtained
from a 670 nm laser was implemented in the experiment. This lattice will be
used to reduce the dimensionality of our BEC to two-dimensional layers or
one-dimensional tubes. For deep lattices, this will also increase the impor-
tance of short-range interactions. To lower the heating rate of the atoms in
the lattice potential, the lattice laser will be narrowed down by locking it to
a cavity. The cavity features the same design as the third generation transfer
cavity, see figure 5.1. With the PDH-lock of the lattice laser in place, we are
finishing the final step towards introducing an optical lattice in our quantum
simulator system.



ACKNOWLEDGMENTS

This thesis would not have been possible without the support of many peo-
ple:
I want to thank, on an equal footing, Tilman Esslinger from the ETH Zurich
for giving me the opportunity to carry out exciting research in his group, and
Thorsten Schumm from the TU Vienna for his great support of my work, and
both for their inspiring enthusiasm for the world of physics. I also want to
thank Renate Landig and Tobias Donner for proof-reading this thesis, as well
as the rest of the group. They shared their vast experience in theory and
experiment with me, which came in handy more than once.

Most important of all, I want to thank my family, and in particular my
parents Eva Maria and Richard for enabling me to attend university, and for
their support in all sorts of ways throughout the time of my studies. None
of this work would have been possible without them.

I would also like to thank my fellow students and friends for the many
elaborate discussions, wonderful teamwork and a great time. Specifically
I want to thank (in no particular order) Tobias, Bernhard, Ali, Martin,
Michael, Lukas, Andreas and Daniel.

Finally I want to thank my great love Thekla for being there for me and
for her kindness and appreciation. To all that I might have mistakenly omit-
ted: thank you!

”Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.” - Winston Churchill



Appendices

66



Appendix A

GENERAL THEORY ON OPTICAL CAVITIES

There exists a huge amount of literature that deals with optical cavities, see
e.g. [9, 10, 11]. Unfortunately, the literature is often not very consistent in
the nomenclature and description of the effects involved. Furthermore, most
authors present the theory in an either very compact form focusing on the
end results, or in a very general and exhaustive form that can overwhelm the
uneducated reader. We therefore decided to include a review of the general
theory on many of the most important properties needed to describe and
understand the working principle of a cavity. We try to present the theory in
a (mostly) closed form with consistent nomenclature, where a special focus
lies on the description of simple two-mirror linear cavities. For more exotic
types and further theory on cavities see e.g. [9]. We hope to offer readers who
are new to this field of physics a convenient and informative introduction.
The equations derived in this chapter were used throughout this work and
are referenced where appropriate.

A.1 The light field in the cavity

If and only if the wavelength of an incident beam is an integer multiple of
twice the optical length of a cavity, constructive interference will occur, for
all other cases the beam will be damped by destructive interference. This
can be shown in purely classical model. In the following derivation we follow
[10, 9]. The process is shown in figure A.1, the parameters and properties
used are defined in table A.1.

For the description of many effects involved in the description of the cavity
or light field it is important to take the phase of the laser field into account,
we therefore work with the complex electric field amplitude E(x, y, z) of the
field.

To describe macroscopic effects like the absorption by a medium, it is
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Fig. A.1: The electric field in the cavity is shown. For a definition of the quantities
shown, see table A.1. e−iδφ is the phase shift of the beam per round trip
and e−αp accounts for internal absorption and scattering losses.

ν laser frequency
p round trip length, p is two times the length for a linear cavity
α loss coefficient of the cavity, taking into account internal ab-

sorption and scattering
n refractive index, for a gaseous medium it depends on various

external properties like temperature, pressure or humidity
c speed of light in a medium, which is given by c0

n
where c0 is

the speed of light in vacuum
Ein the electric field of the incoming beam
Et the electric field of the transmitted beam
Er the electric field of the reflected beam
Ec the total electric field inside the cavity
Ej complex field amplitude of the j-th round trip
I field intensity
P field power
grt loss parameter of round trip gain
T,R,X mirror intensity transmission, reflection and absorption co-

efficient respectively, which are connected to the amplitude
coefficients by T = t2, R = r2 and X = x2

F Finesse, measures ”the quality of a cavity” [10] or ”the re-
solving power” [9]

Tab. A.1: Overview on the parameters and properties used to describe a linear
cavity.
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often convenient to work with the intensity I(x, y, z) of the beam. For
a monochromatic propagating wave like a plane wave or Gaussian beam,
I(x, y, z) is given by

I(x, y, z) =
c0ε0n

2
|E|2 (A.1)

where ε0 is the vacuum permeability. We will switch between these two quan-
tities depending on the effects discussed.

Another important quantity used in the description of light fields is the
beam power P which can be calculated by integrating the beam intensity I
over the beam surface area

P =

∫

A

I(x, y, z)dA (A.2)

We assume that we work in the linear regime where we lose intensity linearly
during each round trip due to continuous absorption losses. The intensity of
the incoming beam then decreases as

dI

dp
= −αI ⇒ I(p) = I0e−αp (A.3)

Mirror losses due to absorption and transmission are collected in

R = 1− T −X (A.4)

In this section we do not take the spatial x, y, z dependance of the light field
into account, we therefore suppress these indices for convenience. The pa-
rameters used in the following can be found in table A.1 if not explicitly
written. The amplitude of the incoming beam Ein will be partially transmit-
ted through the first mirror and become

E0 =
√
T1Ein (A.5)

The beam will circulate back and forth inside the cavity. During each round
trip, the amplitude will be reduced by a factor of

grt =
√
R1R2e−αp (A.6)

which is called the round trip gain or loss parameter, and the wave picks up
a phase shift of

δφ = φc − φin = 2πν̃
p

c
(A.7)
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with respect to the incoming beam, where

ν̃ = ν − νc (A.8)

is the frequency detuning of the beam, relative to a cavity resonance at νc.
We will write most equations and plots in this work with respect to ν̃. The
electric field of the wave then changes by

Ej+1 = grte
−iδφEj = grt(ν̃)Ej (A.9)

from one round tip to the next. The cumulative field amplitude circulating
in the cavity is then given by the sum over the amplitudes of all circulating
waves

Ec =
∞∑

j=0

Ej (A.10)

Inserting (A.9) into (A.10) yields an equation for the overall amplitude of
the field inside of the cavity

Ec =
∞∑

j=0

grt(ν̃)jE0 =
E0

1− grt(ν̃)
(A.11)

Thus, the power of the field inside the cavity builds up as

Pc ∝ |Ec|2 =
|E0|2

|1− grt(ν̃)|2

=
|E0|2

|1− grte−iδφ|2

=
|E0|2

(1− grt cos(δφ))2 + (grt sin(δφ))2

=
|E0|2

(1− grt)2 + 2grt(1− cos(δφ))

=
|E0|2

(1− grt)2 + 4grt sin2(πν̃ p
c
)

(A.12)

where we have used the trigonometric identity

2 sin2(x/2) = 1− cos(x) (A.13)
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Fig. A.2: The power of the laser field circulating in a cavity with identical mirrors
with intensity reflectivities of R = 50 %, R = 90 % and R = 99.5 % is
shown. The powers shown are with respect to the incoming beam power.

and the multiplicativeness of absolute values

|z1z2| = |z1| |z2| ⇒
∣∣∣∣
z1

z2

∣∣∣∣ =
|z1|
|z2|

(A.14)

where z1 and z2 are arbitrary complex numbers.

A.2 Maximum power and Finesse

We now introduce the maximum power and the Finesse

Pmax = a

(
E0

1− grt

)2

, F =
π
√
grt

(1− grt)
(A.15)

where a takes into account all coefficients resulting from (A.1) and (A.2).
The power built up in the cavity as a function of the laser field frequency is
then given by

Pc = Pmax
1

1 + (2F/π)2 sin2(πν̃ p
c
)

(A.16)

Pc is plotted in figure A.2 for different mirror reflectivities R.

A.3 Transmitted, reflected and cavity light field

We now link the amplitudes of the incoming and outgoing field through
boundary conditions, here Ec is the amplitude of the internal field just on
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the inside of the incoupling mirror M1, Et is the transmitted field behind
mirror M2 and Er is the reflected field in front of mirror M1.

Et =
√
T2e−αp/2+iδφ/2Ec

=

√
T1T2

R1R2

grt(ν̃)

1− grt(ν̃)
Ein (A.17)

The transmitted field first travels from mirror M1 to M2 and gets attenu-
ated and phase shifted before it couples out of the cavity at mirror M2 with
transmission coefficient

√
T2.

Er = −
√
R1Ein +

grt(ν̃)√
R1

√
T1Ec

= −
√
R1Ein +

T1√
R1

grt(ν̃)

1− grt(ν̃)
Ein

=
−R1 + (R1 + T1)grt(ν̃)√

R1(1− grt(ν̃))
Ein

= F (ν̃)Ein (A.18)

Here we introduced the reflection coefficient F (ν̃). The reflected field is a
superposition of the incoming beam and the cavity field that left the cavity
one round-trip earlier. The incoming beam is reflected at mirror M1 with
reflection coefficient

√
R1, which also adds a phase shift of π from the reflec-

tion on an optical denser medium, hence the minus sign. The cavity field
travels one round-trip starting at mirror M1, excluding the reflection

√
R1 at

M1, before it is out-coupled through M1 with
√
T1.

From equations (A.11), (A.17) and (A.18) it is straight forward to cal-
culate the transmitted and reflected power as well as the power built up
in the cavity in relation to the input power. We want to discuss the spe-
cial case of the loss less linear cavity here, as all cavities used in this work
are well described by this model. Therefore, the loss coefficient α = 0 and
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R1 + T1 = R2 + T2 = 1. We then arrive at

Pt
Pin

=
T1T2

R1R2

|grt(ν̃)|2

|1− grt(ν̃)|2

=
T1T2

(1− grt)2

1(
1 + (2F/π)2 sin2(πν̃ p

c
)
) (A.19)

Pr
Pin

=
1

R1

|R1 − grt(ν̃)|2

|1− grt(ν̃)|2

=

1
R1

(
R1−grt
1−grt

)2

+ (2F/π)2 sin2(πν̃ p
c
)

1 + (2F/π)2 sin2(πν̃)p
c
)

(A.20)

Pc
Pin

=
T1

|1− grt(ν̃)|2

=
T1

(1− grt)2

1(
1 + (2F/π)2 sin2(πν̃ p

c
)
) (A.21)

One can also extract the relative phase relations between the transmit-
ted/reflected/cavity field and the input field from the equations (A.11),
(A.17) and (A.18). Using the identity arg(x) − arg(y) = arg(x

y
) yields the

following relations for the relative phases

δφt = arg(Etrans)− arg(Ein)

= arg

(√
T1T2

e−iδφ

1− grt(ν̃)

)
(A.22)

δφr = arg(Erefl)− arg(Ein)

= arg

( −R1 + grt(ν̃)√
R1(1− grt(ν̃))

)
(A.23)

δφc = arg(Ecav)− arg(Ein)

= arg

( √
T1

1− grt(ν̃)

)
(A.24)

The calculated transmitted, reflected and cavity powers and phase responses
of the cavity are shown in figure A.3.
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A.4 Axial cavity mode frequencies

In this section we will examine the axial-mode spacing and the resonance
linewidth of an optical cavity. From (A.16) we can derive the resonance
condition for the light field with respect to the cavity

ν
p

c
= N (A.25)

From (A.25) we see that the cavity resonances show a periodic behavior. The
spacing of these equally spaced resonances ∆νax is commonly referred to as
the free spectral range (FSR) and is given by

∆νax =
c

p
=

c

2L
(A.26)

With (A.26) we can now rewrite (A.16) as

Pc = Pmax
1

1 + (2F/π)2 sin2(πν̃/∆νax)
(A.27)

The width of a single resonance of the optical cavity is given by the full width
at half maximum Γc, where Pc = 1

2
Pmax. Using (A.27) we get

1 + (2F/π)2 sin2

(
πΓc/2

∆νax

)
= 2

Γc =
2

π
sin−1

( π

2F

)
∆νax (A.28)

In general, the attenuation of the field during one round trip is small, there-
fore grt is close to 1 and from (A.15) we see that F >> 1. Therefore we can
expand sin−1

(
π

2F

)
≈ π

2F
in (A.28) and arrive at the defining equation for the

width of the resonance

Γc ≈
∆νax
F

(A.29)

From (A.26) we see that the axial-mode spacing mainly depends on the length
of the cavity, while the width of the resonance depends on the axial-mode
spacing and the Finesse of the cavity. Therefore the width of the resonance
mainly depends on the length of the cavity and the reflectance of the mirrors.
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A.5 Cavity ring-down time

An optical cavity stores energy by capturing a light field by multiple reflec-
tion. This behavior very much resembles the working principle of an electric
capacitor. In analogy to a capacitor, we want to look at the temporal behav-
ior of the cavity field. We assume that we abruptly switch on the laser field
at t = 0, then we can model the time evolution of the intensity built up in
the cavity as

dIcav(t)

dt
= T1Iin − Icav(t) (T1 + T2 +X1 +X2 + 2αL)

c

2L
(A.30)

= T1Iin − Icav(t) (2−R1 −R2) ∆νax (A.31)

where Icav(t) is the intensity inside the cavity, Iin is the intensity of the in-
coming beam and ∆νax = c

2L
is the inverse of the round-trip time, which

equals the FSR. This is a simple inhomogeneous first order differential equa-
tion which can be solved with an exponential Ansatz Ih(t) = C1e−t/τc for
the ordinary part and a constant Ansatz Ip = C2 for the partial part. From
(A.31) and the boundary condition Icav(0) = 0, i.e. not light in the cavity at
t = 0, we obtain

Icav(t) = (1− T1) τc Iin(1− e−t/τc) (A.32)

with the cavity-ring-down time given by

τc =
1

(2−R1 −R2) ∆νax
=

1

2πΓc
(A.33)

When switching off the laser, the intensity of light in the cavity will decay
as

dIcav(t)

dt
= −Icav(t) (2−R1 −R2) ∆νax (A.34)

This time, only a homogeneous part is present. With Ih(t) = C3e−t/τc and
Icav(0) = (1− T1) τc Iin, i.e. the cavity light field is saturated, we obtain

Icav(t) = (1− T1) τc Iine−t/τc (A.35)

where the cavity-ring-down time is again given by (A.33).

We have seen that the intensity of light inside the cavity follows an expo-
nential build up and decay process, as does the the stored energy, accordingly.
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If we send light into the cavity which changes its amplitude quickly, the out-
coupled light

Itrans(t) ∝ T2 Icav(t) = T2 (1− T1) τc Iine−t/τc (A.36)

will only follow these changes if they occur on a larger timescale than τc. The
cavity therefore behaves like a low pass with a cut-off frequency of

νc =
1

τc
(A.37)
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Fig. A.3: The transmitted (top), reflected (middle) and cavity (bottom) powers
(solid) and phase responses (dotted) of the cavity are shown. The power
inside the cavity shows a large amplifications at resonance. The phase
response of the cavity field and the transmitted field change continuously
from −π/2 to π/2, while the phase response of the reflected signal ranges
from −π to π and shows a discontinuity of height π at resonance.



Appendix B

WAVE ANALYSIS OF BEAMS AND CAVITIES

The properties of Gaussian beams is not restricted to the application on op-
tical cavities. As with the theory on cavities, this topic is covered well in
the literature, see e.g. [11]. Nevertheless it seems useful to review the parts
which are of interest here and include some basic derivations and motivations
which are of specific interest for the treatment of optical cavities. We try to
be consistent in the nomenclature with chapter A.

In this chapter, we want to look at the transverse field properties and
modes of cavities and lasers. As the transverse mode properties of the laser
field described here emerge from the fact that the active laser medium is
trapped in an optical cavity, we will from here on only talk about the trans-
verse modes of cavities, while all results are naturally also true for laser fields.
We will follow [11, 9, 10] in the description of the transverse field modes.

The field distribution of the fundamental cavity mode is very well de-
scribed by a Gaussian beam. Depending on the underlying geometry of the
cavity, the transverse field distribution of the higher order modes will show
an additional structure. Box-shaped cavities (rectangular mirrors) gener-
ate a Hermite - Gaussian, cylindrical cavities (circular mirrors) a Laguerre -
Gaussian field distribution.

B.1 Gaussian beams

In many applications one is interested in beams with a Gaussian transverse
field distribution or mode. Due to it’s importance it is often called the
”fundamental mode” [11]. The fundamental mode has the smallest spacial
extension of all transverse modes. In this work we always work with the
fundamental mode and try to suppress higher transverse modes, yet they are
introduced for completeness.
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Coherent cavity fields with a field amplitude E(x, y, z) satisfy the scalar
wave equation

∇2E(x, y, z) + k2E(x, y, z) = 0 (B.1)

where the propagation constant in a medium is given by k = 2π/λ. In
analogy to a plane wave, one can write

E(x, y, z) = ψ(x, y, z)e−ikz (B.2)

where ψ(x, y, z) describes the slowly varying non-uniform field distribution
that distinguishes u from a plane wave. Inserting (B.2) into (B.1) yields

∂2ψ

∂x2
+
∂2ψ

∂y2
− 2ik

∂ψ

∂z
= 0 (B.3)

Here we have assumed that ψ varies only slowly in the direction of propaga-
tion z and we can therefore neglect the second derivative ∂2ψ

∂z2
. One solution

of (B.3) is

ψ(r, z) = Ẽ0 exp

[
−i
(
P (z) +

k

2q(z)
r2

)]
(B.4)

where Ẽ0 is the field amplitude, P (z) represents a complex phase shift asso-
ciated to the propagation of the beam and q(z) is a complex beam parameter
which describes the variation of the intensity and phase with the distance r
from the optical axis

r2 = x2 + y2 (B.5)

Inserting (B.4) into (B.3) one obtains

(
∂2

∂x2
+

∂2

∂y2

)
e−i(P (z)+ k

2q(z)
r2) − 2ik

∂

∂z
e−i(P (z)+ k

2q(z)
r2) = 0

(
−2i

k

q
− k2

q2
r2

)
−
(

2k
∂P

∂z
− k2

q2

∂q

∂z
r2

)
= 0

−2k

(
∂P

∂z
+
i

q

)
+
k2

q2
r2

(
∂q

∂z
− 1

)
= 0 (B.6)

By collecting terms of the same power in r we get

∂P

∂z
= − i

q
(B.7)
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and

∂q

∂z
= 1 (B.8)

and from integration of (B.8)

q2 = q1 + z (B.9)

which relates the beam parameter of the output plane z2 to the beam param-
eter of the input plane z1, separated by a distance z. To assign a physical
meaning to the beam parameter q we introduce two real parameters, the ra-
dius of curvature of the wavefront R(z) and the beam radius or spot size w(z),
where 2w(z) is the beam diameter, see (B.10). w(z) measures the decrease
in field amplitude with the distance from the optical axis. The nomencla-
ture and meaning of R(z) and w(z) become clear when we insert (B.10) into
(B.4), we then obtain obtain

1

q
=

1

R
− i λ

πw2
(B.10)

ψ(r, z) = Ẽ0 exp

[
−i
(
P (z) +

k

2R
r2

)
− r2

w2

]
(B.11)

We see that R(z) and w(z) depend on the position along the optical axis.
At one point, the spatial extent of the Gaussian beam will be minimal with
w(z) = w0 and the phase front will be plane 1

R
→ 0. w0 is called the beam

waist of the Gaussian beam. It is convenient to measure distances z from
this point, and the beam parameter at z = 0 becomes purely imaginary

q0 = i
πw2

0

λ
(B.12)

If we insert (B.12) into (B.9) we obtain the beam parameter at position z

q(z) = q0 + z = i
πw2

0

λ
+ z (B.13)

By inserting (B.13) into (B.10) and equating the real and imaginary parts

(
z

R
+
w2

0

w2
− 1

)
+ i

(
πw2

0

Rλ
− λz

πw2

)
= 0 (B.14)
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we obtain expressions for R(z) and w(z)

w(z) = w0

√
1 +

(
λz

πw2
0

)2

= w0

√
1 +

(
z

z0

)2

(B.15)

R(z) = z

[
1 +

(
πw2

0

λz

)2
]

= z

[
1 +

(z0

z

)2
]

(B.16)

where we have introduced the Rayleigh length

z0 =
πw2

0

λ
(B.17)

The expansion of a Gaussian beam shows an asymptotic behavior far away
from the beam waist. The Rayleigh length is often thought of as the limit
between the non-linear Gaussian expansion and the linear expansion in the
asymptotic limit. For z >> z0, w(z) becomes

w(z) = w0

√
1 +

(
z

z0

)2

≈ w0z

z0

=
λz

πw0

(B.18)

and the far field divergence angle can be defined as

θ = tan−1

(
w(z)

z

)
≈ λ

πw0

(B.19)

To get a full theoretical description of a Gaussian beam we need to calculate
the complex phase shift P (z). We therefore insert (B.13) into (B.7) and
integrate the result to obtain

∂P

∂z
= − i

q
= − i

iπw2
0/λ+ z

(B.20)

iP (z) = ln

[
1− i

(
λz

πw2
0

)]

= ln

√
1 +

(
λz

πw2
0

)2

− i tan−1

(
λz

πw2
0

)

= ln

(
w(z)

w0

)
− i tan−1

(
z

z0

)
(B.21)
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The real part of P (z) corresponds to a phase shift

Φ(z) = tan−1

(
λz

πw2
0

)
(B.22)

between the Gaussian wave and a plane wave, the imaginary part resembles
the damping of the intensity of the beam on the optical axis due to an ex-
pansion of the beam. We obtain the full theoretical description of a Gaussian
beam in accordance to (B.2), where E(x, y, z) = E(r, z) satisfies the wave
equation (B.1).

E(r, z) = ψ(r, z)e−ikz

= Ẽ0 exp

[
−i
(
P (z) +

k

2q(z)
r2 + kz

)]

= Ẽ0
w0

w(z)
exp

[
−i (kz − Φ(z))− r2

(
1

w(z)2
+

ik

2R(z)

)]

(B.23)
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(a) TEM00 (b) TEM10 (c) TEM20 (d) TEM30 (e) TEM40 (f) TEM50

(g) TEM01 (h) TEM02 (i) TEM11 (j) TEM22 (k) TEM33 (l) TEM44

Fig. B.1: Transverse electric field modes (TEMnm) for a rectangular cavity geom-
etry. TEM00 is the fundamental mode.

B.2 Hermite - Gaussian beams

Box-shaped cavities with rectangular mirrors are best described in a Carte-
sian coordinate system. The transverse mode profile can be described by a
combination of Hermite polynomials and a Gaussian beam [11].

E(r, z) = Hm

(√
2
x

w

)
Hn

(√
2
y

w

)
e−

r2

w2

× Ẽ0
w0

w(z)
exp

[
−i (kz − Φ(z))− r2 ik

2R(z)

]
(B.24)

The different modes are indexed by the mode numbers m and n, correspond-
ing to the m-th and n-th Hermite polynomial. A sample of the lowest order
Laguerre - Gaussian transverse field modes is shown in figure B.1. The radius
of curvature of the phase front R(z) is the same for all modes, but the phase
shift Φ depends on the mode number [11].

Φ(m,n; z) = (m+ n+ 1) tan−1

(
λz

πw2
0

)
(B.25)

The resonance condition of an optical cavity is phase sensitive, therefore
(B.25) leads to different resonance frequencies for the different transverse
field modes.



Appendix B. Wave analysis of beams and cavities 84

(a) TEM00 (b) TEM10 (c) TEM11 (d) TEM20 (e) TEM21 (f) TEM22

(g) TEM30 (h) TEM31 (i) TEM32 (j) TEM33 (k) TEM44 (l) TEM55

Fig. B.2: Transverse electric field modes (TEMnm) for a cylindrical cavity geome-
try. TEM00 is the fundamental mode.

B.3 Laguerre - Gaussian beams

Cylindrical cavities with circular mirrors are best described in a cylindrical
coordinate system. The conceptual treatment is quite similar to box-shaped
cavities. The transverse mode profile can be described by a combination of
Laguerre polynomials and a Gaussian beam [11].

E(r, z) =
(√

2
r

w

)l
Llp

(
2
r2

w2

)
e−

r2

w2

× Ẽ0
w0

w(z)
exp

[
−i (kz − Φ(z))− r2 ik

2R(z)

]
(B.26)

The different modes are indexed by the mode numbers p and l, corresponding
to the Llp-th Laguerre polynomial. A sample of the lowest order Laguerre -
Gaussian transverse field modes is shown in figure B.2. Again, the radius of
curvature of the phase front R(z) is the same for all modes, but the phase
shift Φ depends on the mode number [11].

Φ(p, l; z) = (2p+ l + 1) tan−1

(
λz

πw2
0

)
(B.27)

As stated before, the resonance condition of an optical cavity is phase sen-
sitive, and (B.27) therefore also leads to different resonance frequencies for
the different transverse field modes.
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POUND-DREVER-HALL LASER LOCK

The PDH lock [8] is very important for the evaluation of the laser linewidth
in this work. We therefore want to take a closer look at the theory behind
the PDH lock. We try to be consistent with our notation with appendices A
and B. This chapter will follow the introduction to the PDH frequency stabi-
lization given in [30]. In analogy to section A we do not explicitly write the
spatial dependance of E(x, y, z) while we also neglect the spatial distribution
introduced in section B for convenience.

The basic idea: We tune a laser close to a resonance of an optical cavity
and send the laser beam through the cavity. The power of the transmitted
beam is given by (A.19) and is measured by a photo diode. In the region of
a cavity resonance we can expand the transmission signal to

Pt
Pin

=
T1T2

(1− grt)2

1

1 + (2F/π)2 sin2(πν̃ p
c
)

≈ T1T2

(1− grt)2

1

1 +
(

2 νax
πΓc

)2 (
πν̃
νax

)2

=
T1T2

(1− grt)2

1

1 +
(

ν̃
Γc/2

)2 (C.1)

From (C.1) we see that the cavity transmission signal has a Lorentzian pro-
file, the transmission signal close to a cavity resonance is shown in figure C.1.

We could now try to generate an error signal from the transmission signal,
but we run into trouble as the transmission signal is symmetric with respect
to the resonance. We therefore do not know if we need to increase or decrease
the laser frequency if the laser is off-resonant to tune the laser back on to
the resonance. One solution used in the past was to slightly detune the laser
frequency from the cavity resonance which yields an asymmetric signal that
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Fig. C.1: The laser power transmitted through the cavity (solid line) and the power
reflected from the cavity (dotted line) are shown. Both powers shown are
with respect to the incoming beam power. The mirror reflectivity is R =
99.88 % which corresponds to the mirrors used in all three generations
of transfer cavities.

distinguishes between frequencies above and below the cavity resonance [30].
The downside of this approach comes from the fact that we are now sensitive
to intensity fluctuations, the system can not distinguish between intensity
deviations resulting from a frequency detuning of the laser with respect to
the cavity and intensity fluctuations of the laser.

To decouple frequency and intensity fluctuations we could detect the re-
flected beam from the cavity with a photo diode and try to keep the reflected
power (A.20) close to zero, see figure C.1. The downside of this approach
is that the measured signal is still symmetric with respect to the resonance.
However, the derivative of the reflected power signal is antisymmetric, see
figure C.2.

To access the derivative of the reflected power signal, we vary the laser
or carrier frequency ν of the incoming beam

Ein = Ẽ0ei2πνt (C.2)

by a small amount. This is done by modulating the phase of the carrier with
an electro-optic modulator (EOM)

Ein = Ẽ0ei[2πνt+β sin(2πν′t)] (C.3)

where ν ′ is the EOM frequency and β is the EOM modulation depth. We
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Fig. C.2: The derivative of the power reflected from the cavity is shown, the ampli-
tude was normalized to the maximum amplitude. The mirror reflectivity
is R = 99.88 % which corresponds to the mirrors used in all three gen-
erations of transfer cavities.

can expand (C.3) using the Bessel functions to

Ein ≈ Ẽ0 [J0(β) + 2iJ1(β) sin(2πν ′t)] ei2πνt

= Ẽ0

[
J0(β)ei2πνt + J1(β)ei2π(ν+ν′)t − J1(β)ei2π(ν−ν′)t

]
(C.4)

From (C.4) we see that in addition to the carrier with frequency ν and power
Pca = J2

0 (β)P0 the EOM generates two sidebands at ν ± ν ′ with a power of
Psb = J2

1 (β)P0 each. Here we assumed a sufficiently low modulation depth β
so that Jn(β) ≈ 0 for n ≥ 2, where n corresponds to the n-th order sideband.
In this case we can neglect higher order sidebands which is true for our sys-
tem. In addition we do not have to take these higher order sidebands into
account for our derivation of the PDH error signal as they will be filtered out
by a low pass.

With (C.4) and (A.18) we can calculate the reflected complex beam am-
plitude Er by multiplying each of the three beams created by the EOM (see
(C.4)) with the appropriate reflection coefficient F (ν̃)

Erefl =Ẽ0[F (ν)J0(β)ei2πνt + F (ν + ν ′)J1(β)ei2π(ν+ν′)t

− F (ν − ν ′)J1(β)ei2π(ν−ν′)t] (C.5)

From (C.5) and some algebra we can calculate the reflected beam power
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Pr ∝ |Er|2, we get

Pr =Pca |F (ν)|2 + Psb |F (ν + ν ′)|2 + Psb |F (ν − ν ′)|2

+ 2
√
PcaPsbRe {F (ν)F ∗(ν + ν ′)− F ∗(ν)F (ν − ν ′)} cos(2πν ′t)

+ 2
√
PcaPsbIm {F (ν)F ∗(ν + ν ′)− F ∗(ν)F (ν − ν ′)} sin(2πν ′t)

+O(2ν ′) (C.6)

We are interested in the terms oscillating with ν ′ because these terms are
phase dependent. The phase is contained in F (ν). These terms can be ex-
tracted using a mixer and mixing the reflected power signal with the original
EOM signal. By introducing a time delay to the EOM signal input of the
mixer we have control over the phase of the EOM signal with respect to the
measured reflected power signal phase. The mixed forms the product of the
two signals. To interpret the results, we need the following relations

sin(2πνt) sin(2πν ′t) =
1

2
{cos [2π(ν − ν ′)t]− cos [2π(ν + ν ′)t]} (C.7)

cos(2πνt) sin(2πν ′t) =
1

2
{sin [2π(ν + ν ′)t]− sin [2π(ν − ν ′)t]} (C.8)

sin(2πνt) cos(2πν ′t) =
1

2
{sin [2π(ν + ν ′)t] + sin [2π(ν − ν ′)t]} (C.9)

cos(2πνt) cos(2πν ′t) =
1

2
{cos [2π(ν − ν ′)t] + cos [2π(ν + ν ′)t]} (C.10)

We can adjust the relative phase between ν and ν ′, where ν is the frequency
of the reflected beam power signal and ν ′ is the EOM frequency, so that we
only have terms proportional to sin(2πν ′t), namely (C.7) and (C.8). Then
we can neglect terms proportional to cos(2πν ′t), namely (C.9) and (C.10).
The mixer therefore multiplies (C.6) by sin(2πν ′t) and the mixer output is
proportional to

Pmixer
r =

√
PcaPsb Im {F (ν)F ∗(ν + ν ′)− F ∗(ν)F (ν − ν ′)}+O(ν ′) (C.11)

We can also adjust the phase shift between ν and ν ′ so that we only have
terms proportional to cos(2πν ′t), namely (C.9) and (C.10). The mixer then
multiplies (C.6) by cos(2πν ′t) and the mixer output is proportional to

Pmixer
r =

√
PcaPsb Re {F (ν)F ∗(ν + ν ′)− F ∗(ν)F (ν − ν ′)}+O(ν ′) (C.12)
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For high modulation frequencies ν ′ compared to the cavity resonance width
the imaginary part in (C.6) will be much bigger than the real part, which
will be close to zero, while for low modulation frequencies the opposite is
true [30]. All modulation frequencies used in this work are high compared to
the cavity resonance width and we will work only with the imaginary part.
(C.11) contains a DC term and terms oscillating at ν ′ or higher. The phase
information is contained in this DC term, we therefore low pass filter the
mixer output and we receive the PDH error signal

V Im
e ∝

√
PcaPsbIm {F (ν)F ∗(ν + ν ′)− F ∗(ν)F (ν − ν ′)} (C.13)

where Ve is the voltage signal from the mixer output. The error signal is
shown in figure C.3.
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(a) The PDH error signal with the carrier and the sidebands at ν ′ = ±89.60 MHz
is shown.
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(b) This edge of the PDH error signal at the cavity resonance was used for the
laser frequency feedback regulation.

Fig. C.3: The calculated error signal generated by the PDH lock is shown, the
amplitude was normalized to the maximum amplitude. The mirror re-
flectivity is R = 99.88 % which corresponds to the mirrors used in all
three generations of transfer cavities.
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