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Abstract

Symmetric environments pose a potential risk to mobile robots in

estimating their pose correctly, especially after a global localization

procedure or displacement by an external force (i.e. a kidnapped

robot situation).

This work presents a system for mobile robots which minimizes the

risk of an incorrect pose estimate by using a novel room-awareness

module. The module which mimics a human-like belief in the current

pose and triggers a so-called spontaneous reorientation in order to

solve pose ambiguities in rotationally symmetric environments. Unlike

classical approaches, the robot is able to use the symmetric properties

of an environment to, firstly, detect an incorrect pose estimate, and,

secondly, to maintain local pose information after the system has de-

tected an incorrect pose. This is possible because the room-awareness

module evaluates the current pose, independent of the robot’s self-

localization module, based on an online trained model of the visual

background which is composed of a spatial colour-histograms features.

The evaluation result is fed into the robot’s behaviour controller,

which uses a novel interface for the robot’s particle-filter-based self-

localization to selectively move particle clusters between pose am-

biguities in rotationally symmetric environments. In addition, the

room-awareness module is able to directly support the self-localization

module by involving the visual background in particle generation in

order to prevent particle injection on pose ambiguities.

Tests on a humanoid robot within simulated and real RoboCup Stan-

dard Platform League environments demonstrate, on the one hand,

the specific challenges to self-localization which generally occur in

other robotic set-ups, and on the other hand, the performance gain

in pose estimation resulting from the approach presented here.
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1

Introduction

Mobile robots have to localise themselves in order to navigate reliably and effi-

ciently. Projects like the museum tour-guide robot [BCF+99] in 1997 in Achen/Ger-

many or the DARPA Challenges in 2004-2012 [TMD+06] have shown the capa-

bility of a robot to localize itself efficiently and to complete its tasks. However,

these projects also showed the importance of tuning the underlying technique

used to best suit the robot, sensors and the environment. Therefore, as a subject

of research, self-localization will never be a closed book, because new sensors are

always being developed and new environments have to continually be explored.

In this work we are investigating humanoid robots without a compass as a

sensor in man-made environments. The combination of a compass-less robot in

a man-made environment poses a challenging problem: man-made environments

are typically symmetric, and humanoid robots tend to lose their orientation when

they fall, which causes the system to fail and to converge to a pose ambiguity.

The only way to deal with these ambiguities is to perfectly track the robot’s

pose, which is not always possible, or to collect information on the features in the

environment to break the environment’s symmetry. This work trains a simple

model of the environment to estimate the robot’s view direction. By doing so,

the robot is able to spontaneously reorientate its pose if it detects an incorrect

pose estimate. Unlike other classical approaches [TBF05], [SNS11], the robot is

able to use the symmetric properties of the environment to maintain the local

pose information compiled up to that moment. The RoboCup Standard Platform

League (SPL) robot and playing field, with its rotationally symmetric properties,

were selected as the testing platform for demonstrating this approach on both a

1



1. INTRODUCTION

real and simulated robot.

1.1 Motivation

The Austrian-Kangaroos (AK)1 is a joint interdisciplinary SPL2 RoboCup3 soccer

team with three partners involved: The University of Applied Sciences Technikum

Wien (UASTW), and two institutes directly involved at the Vienna University

of Technology, Technische Universität Wien (TUW): The Automation and Con-

trol Institute (ACIN)4, and the Institute of Computer Languages Compilers and

Languages Group (COMPLANG)5. The team has successfully participated in all

RoboCup World Cups since 2009 [BHK+09, BHK+10, BHK+11, BHK+12], and

even won the Mediterranean Open6 in 2011 in Rome.

The SPL distinguishes itself from other leagues by restricting all teams to one

type of robot, which was selected by the league’s Technical Committee (TC).

The TC decided to switch from Sony’s four-legged Artificial Intelligence roBOt

(AIBO)7 dog to a humanoid robot called NAO, produced by a french company

called Aldebaran8. This decision was necessary because Sony discontinued the

production of the robot dog in 2006. Figure 1.1 shows the old four-legged SPL and

the new Humanoid league. Every year the TC revises the league’s rule book to

challenge teams and to keep the league appealing to viewers. In 2010, the league

increased the number of players up to four robots per team. The punishment

for player pushing was increased in severity a year later, to removal of a player

for the remaining playing time upon its third infraction. In 2011 the discussion

started to use only yellow goals, leading to a rotationally symmetric environment.

2012 was the first year that games were played with only yellow goals. Therefore,

each robot player has to keep track of the surrounding environment in order to

prevent own goals, which is a challenge due to their lack of internal sensors, such

as compasses. The league had to switch from a classical localization algorithm

1AK: http://www.austrian-kangaroos.com
2SPL: http://www.tzi.de/spl
3RoboCup: http://www.robocup.org
4ACIN: http://www.acin.tuwien.ac.at
5COMPLANG: http://www.complang.tuwien.ac.at
6Mediterranean Open: www.robocup-mediterranean-open.org
7AIBO: http://en.wikipedia.org/wiki/AIBO
8Aldebaran: http://www.aldebaran-robotics.com
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1.1 Motivation

(a) SPL in 2005 with AIBO Robots, image source: http://en.wikipedia.org/

wiki/AIBO

(b) SPL in 2010 with NAO Robots

Figure 1.1: RoboCup evolution
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1. INTRODUCTION

Figure 1.2: A single simulated Nao robot on a symmetric playing field

to a Self Localization and Mapping (SLAM) approach [TBF05] to cope with this

new condition. Figure 1.2 shows a simulated version of the playing field used in

2012.

1.2 Problem Statement

Symmetric environments are, in general, a challenging problem for robots, be-

cause typical self-localization methods are unable to deal with pose ambiguities

caused by symmetry. The test platform selected, an SPL playing field, is rota-

tionally symmetric and poses therefore a localization problem which cannot be

solved by using a symmetric map. Keeping track of the robot’s movement helps to

minimise the problem, but two challenges to localization still remain unresolved:

• A fallen robot near the center

Humanoid robots tend to fall and a fallen robot loses its bearings. This

poses a serious problem if the robot falls near the symmetric center, because

the probability of the localization converging to the incorrect pose rises.

Figure 1.3(a) shows in red the critical area for re-localization.

• A penalised robot

This case poses the biggest problem. Soccer robots are penalised for not

4



1.2 Problem Statement

playing by the rules or for a malfunction due to a soft- or hardware break-

down. A penalised robot is removed for at least thirty seconds and placed

back on the out-of-bounds line, at the center line, on the side furthest from

the game ball. During the penalty period, the robot is placed at the edge

the playing field, facing away from the playing field, in order to prevent

any interaction. Again, in such a situation, the localization would run a

50% risk of converging to the wrong pose if it were only relying on static

features. Figure 1.3(b) shows the two possible robot locations after being

penalized.

In general, these two challenges are present in any rotationally symmetric envi-

ronment, also outside of the realm of RoboCup, in which a robot has to expect

unforeseen position changes, like a penalised robot, or where he is able to identify

critical areas for self-localization, like a fallen robot near the center.

5
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po

(a) In red: problem area for robot re-localization.

pr …  reflection of po

po

(b) Re-entry scenario after penalisation. The robot (in blue) is placed on the side-

line furthest from the game ball. A pose ambiguity occurs with the rotationally

symmetric pose, on the opposite side of the field, shown in gray.

Figure 1.3: Two problematic cases would cause the localization to fail: a fall near

the center (a) and a post-penalisation scenario (b).
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1.3 Proposed Solution

1.3 Proposed Solution

The only way to solve the aforementioned challenges is by using features beyond

the environmental symmetry to break the symmetry. The solution proposed in

this work is inspired by psychological research and recent results from experi-

ments on symmetric environments [HS94], [HL07] and [LWRS12], which proved

the existence of spontaneous reorientation in animals and humans. These exper-

iments showed that the geometric structure of a room has a strong influence on

reorientation capabilities. Lee et al. [LWRS12] proved that the geometric im-

pression of a room can be altered by using 2D shapes (dots of two sizes) printed

on walls, supporting or suppressing the subjective geometric impression. Three-

year-old children spontaneously reoriented in these experiments to the correct

corner when the larger-sized dots were on the longer wall of a rectangular room,

emphasising the 3D impression. The influence of the geometric impression of a

space on the ability to reorient, as proven in the aforementioned psychological

experiments, was integrated into the approach here through the mapping of the

visual background of the robot’s surroundings beyond the known playing field.

This is done by using colour histograms in order to keep track of the robot’s view

direction in the room-awareness module, which estimates the robot’s view in a

separate module. Figure 1.4 shows the integration of the module developed for

an existing framework. This enables the computation of independent confidence

values for the current pose, generated by the self-localization module. The robot’s

main controlling component, the Behaviour Controller (BC) is therefore able to

detect an incorrectly estimated pose and to correct it by sending reorientation

commands to the self-localization component.

Self-Localization

reorientation 
commands

pose confidences

Room-Awareness

pose

Behaviour Controller

Figure 1.4: The room-awareness module and its placement relative to the robot’s

BC and self-localization.
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1.4 Scientific Contribution

The scientific contributions of this thesis are, on the one hand, the psycholog-

ically inspired integrated room-awareness module as an independent module to

the self-localization module [BPV13] and, on the other hand, the computation of

a subjective geometric impression mimicking a human-like belief of one’s orien-

tation, as published at the 2013 RoboCup Symposium [BV13]. Unlike classical

approaches, the approach presented here uses the geometric properties of ro-

tationally symmetric environments to preserve local pose information after the

robot has detected an incorrect pose estimate. This means that the local pose

information valid for all of the pose ambiguities collected is transferred to the

new best pose hypothesis. On the other hand, if the new room awareness module

confirms the current pose estimate, local pose information gathered from pose

ambiguities are fused into this best pose estimate, thus stabilising the system. In

this way, local pose information is always preserved.

1.5 Outline

The following chapter, Related Work, will offer insight into the current state-

of-the-art self-localization approaches and details of other attempts at resolving

the aforementioned challenges caused by symmetric environments. Chapter 3

discusses in detail the approach developed in this study and its implementation

variations, as well as the mathematical background needed to understand it.

Tests on the system and its parts are performed in Chapter 4. This chapter also

includes the final results of this system using a simulator and a real robot. A

detailed discussion on the scientific contributions and on possible further studies

can be found in Chapter 5.
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2

Related Work

Self-localization for mobile robotics is a broad research field with a variety of

subtopics because estimating the robot’s own pose or the pose of an object is

vital to nearly all mobile robotics tasks. Classical approaches using laser range

sensors and probabilistic methods are well documented in text books like [TBF05]

and [SN04]. These also include the research field Self Localization and Mapping

(SLAM), which focuses on the problem of simultaneously establishing a map

and the robot’s pose [SSC90]. However, even with new sensors like the MS-

Kinect1, three types of localization problems are immanent and of interest for

research. New sensors, techniques and environments just move the following

three localization problems, as defined by [SNS11], onto an different level, without

completely solving them.

Position tracking. In position tracking, the robot’s current localisation is up-

dated based on the knowledge of its previous position (tracking). This im-

plies that the robot’s initial location is known. Additionally, the uncertainty

of the robot pose has to be minimal. If the uncertainty is too great, the

position tracking might fail to localize the robot. ....

Global localization. Global localization, conversely, assumes that the robot’s

initial location is unknown. This means that the robot can be placed any-

where in the environment without prior knowledge of that environment, and

is able to localize globally within it. In global localization, the robot’s initial

belief is usually a uniform distribution.

1MS-Kinect is a depth sensor developed by Microsoft http:\www.microsoft.com
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Kidnapped robot problem. The kidnapped robot problem describes a case where

the robot gets kidnapped and moved to another location. The kidnapped robot

problem is similar to the global localization problem only if the robot realizes

it has been kidnapped. Difficulty arises when the robot does not know that

it has been kidnapped. The ability to recover from kidnapping is a necessary

precondition for the operation of any autonomous robot, and even more so

for commercial robots.

Autonomous Mobile Robots [SNS11] on Classification of localization problems

The related work presented here shows different approaches and techniques the

community uses to deal with the aforementioned problems. The most common

and most practical approach in preventing a robot from getting lost is the usage of

additional sensors. Sensors like Global Positioning System (GPS) are commonly

used on outdoor ground [TMD+06] and airborne robots, such as Pelican and

Hummingbird quadrotors1, as well as Inertial Measurement Units (IMUs). IMUs

are also suitable for indoor environments because no external signal is required,

in contrast to GPS. However, the integration of such sensors into a localization

system only minimizes the chances of a robot getting lost, without fully eliminat-

ing those chances.

Other approaches use visual features and image descriptors such as Scale Invari-

ant Feature Transform (SIFT) [Low99], Speeded Up Robust Features (SURF)

[BTVG06], Efficient Maximally Stable Extremal Region (MSER) [DB06] to map

the environment and/or to track the robot’s pose using SLAM-like approaches.

The robotic hardware used and its computational power limit, however, the

robot to few image descriptors such as Anderson’s 1D-SURF [AH13] which is not

as reliable as the classical SURF [BTVG06].

Furthermore, the test environment used here is rotationally-symmetric and the

robot is not equipped with a sensor such as an internal compass. This means

that if a robot performs a global localization procedure in a symmetric environ-

ment with pose ambiguities, the robot’s pose belief will be, at best, incorrect but

stable, which means that the robot will be able to perform tasks, at the wrong

location, but nevertheless able to act. The worst case happens if the robot’s pose

belief oscillates between pose ambiguities, meaning that the robot is not able to

1Pelican quartcopter http://www.asctec.de
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2.1 Non-Static Features

do anything because its pose jumps continuously. It is stuck in a state of indeci-

sion. A similar problem happens to robots after they realize that they have been

kidnapped, since most systems handle detected kidnapped robot situations with

global localization procedures.

Related work on rotationally-symmetric environments are primarily published

in communities which deal with such environments as that of RoboCup. The

Standard Platform League (SPL), has developed different strategies for estimating

the correct pose of a robot in a symmetric environment. It should be kept in mind

that some of those strategies are specially-designed for RoboCup competition

scenarios, which is not the target of this paper. Of these related works, two

groups of approaches are distinguishable:

• Strategies using non-static features in the environment

• Strategies using static features in the background

However, general approaches can also be classified in these two categories.

2.1 Non-Static Features

This strategy is related to multi-robot localization [FBKT00]. Non-static fea-

tures, like other robots or, in SPL, the game ball, are observed by multiple robots

and used to break the rotational symmetry. Figure 2.1 shows two possible poses

on an SPL playing field, and the robot can determine its correct pose by knowing

the ball position. This idea works with single robots tracking objects of interest,

but it works even better using team communication to share perceived ball and

robot locations. The system starts to fail if the SPL team has only one player

left and this robot falls, because the stability of the non-static features cannot be

guaranteed after a certain period of time. Some teams (e.g. the Dortmund Devils)

have already integrated non-static features in their Kalman-Filter-based localiza-

tion [CR10]. The results of the RoboCup-WC 2012 proved that this strategy is

the most competitive one for the SPL.
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pr …  reflection of po

po

game ballreflection of the 
game ball

Figure 2.1: The localization fails if the game ball position is unknown.

2.2 Static Features

Similar to humans, this strategy uses features beyond the symmetric environ-

ment. The idea is to identify outstanding features in the background and map

them using Self Localization and Mapping SLAM [SNS11] approaches. Typical

visual features are based on interest points, i.e. salient image regions, and a de-

scriptor. For example the most popular interest points are Lowes’ SIFT [LE06]

and Bays’ SURF [BTVG06]. Anati et al. [ASDD12] trained a vision system to

recognize objects such as clocks and trash cans and used this information to cre-

ate hypotheses about poses and to refine them through particle filtering. But

because of the limited computational power of the NAO robot, it is impossible to

use such object detection algorithm during a soccer game. Alternatively, Ander-

son [AYHS12] presented a simplified 1D SURF descriptor to map the background.

Bader et al. [BBH+12] used colour histograms as a descriptor. But they did not

propose a reliable strategy for matching and training those descriptors over time,

and more importantly, no strategy was presented for integrating the new features

into an existing localization system.

Another approach which uses static features in the background uses colour in-

formation as well for localization. Sturm et al. [SvV06, SV09] presented a visual

12
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compass and a localization approach which is purely based on the detected colour

classes above the horizon. They used a segmented image discretized into colour

classes and mapped vertical changes among these classes. In contrast to the work

presented here, Sturm used a static map of the background which was trained

once in advance, and incorporated the result of the matching into the robot’s

localization algorithm. Therefore, he was able to build a localization algorithm

based on the background and the robot’s odometry only by using multiple static

maps of the background from different positions. The disadvantage is that the

workspace is limited to the area between the positions of the mapped locations.

He demonstrated his work on an AIBO robot and published his source code,

which works in real-time with the AIBO’s camera frame rate.

2.3 Summary

There is limited research available regarding rotationally-symmetric environments,

but numerous possible publications on how one can solve the localization prob-

lem in a more general way by using a SLAM approach. The paper here proposes

a colour-histogram-based descriptor linked to virtual tiles surrounding the envi-

ronment for mapping, and a strategy for reliably matching those descriptors by

involving the robot’s pose and motion. The information gained is then used to

enhance the BC knowledge base in order to control the robot’s self-localization

without altering the measurement step of the self-localization. Details about the

proposed technique are presented in the next chapter.
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Room-Awareness

Chapter 2, Related Work states that the unforeseen relocation of a robot and

the recognition of such a position change is challenge to self-localization. These

situations are called kidnapped robot problems/situations [SNS11] and classic ap-

proaches deal with them in two ways:

Random Sampling. The system devotes continuous computational power in

testing random pose hypotheses in order to sample the robot’s correct new

pose after it has been kidnapped.

Reinitialization. The system detects a kidnapped robot situation by using a

threshold on the self-localization pose confidence and treats the situation

as it would a global localization problem1, in which the robot establishes a

new pose belief without prior knowledge.

In both of these approaches, all of the information gained up to the point of

recognition of an incorrect pose is lost.

However, symmetric environments such as many man made rooms as well as

the Standard Platform League (SPL) playing field would allow a robot’s system

to maintain some of its local pose information. For example, a robot’s local pose

information relative to a door in a symmetric room with multiple doors might be

correct, but it has just perceived the incorrect door on the opposite side of the

room. A soccer-playing robot on a playing field could similarly misunderstand

1Localization problems such as position tracking, global localization and kidnapped robot

are described in Chapter 2
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its position when it detects a goal. The loss of information in the aforemen-

tioned classic approaches to a kidnapped-robot situation becomes more of a risk

in rotationally symmetric environments with pose ambiguities. A rotationally

symmetric environment makes both of these random sampling strategies faulty

because there always exists the possibility of sampling one of the pose ambiguities

and converging to the incorrect pose.

It is important that the reader understand that environments which are asym-

metric for humans might be symmetric for robots. Robots use simplified maps

with landmarks for orientation, and even if a room is rich in objects distinguish-

able to humans, a robot may just use a map with walls as features to localize

itself.

This Chapter describes, on the one hand, a technique for disambiguating ro-

tationally symmetric environments using the visual background beyond known

landmarks, and on the other hand, a technique which allows the system to keep

local position information after the robot has recognized a rotationally symmet-

ric incorrect pose. The latter technique is able to keep local pose information

because the room-awareness module establishes confidence values for pose am-

biguities independently of the self-localization module. The robot’s Behaviour

Controller (BC) uses these confidence values to control the self-localization. This

is made possible in the self-localization module only through enhancement, based

on external commands, allowing for the rearrangement or the movement of inter-

nal pose beliefs. These commands are called reorientation controls/commands.

Figure 3.1 shows the integration of the room-awareness module and the control

channels into an existing self-localization algorithm.

back projected wall/tiles

background model

perceived histograms

background evaluation

Room-Awareness

camera image

robot pose

Behaviour Controller

Self-Localization

reorientation 
commands

pose confidences

goal view confidences

Figure 3.1: Room-awareness and its internal sub-modules
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The room-awareness module captures the subjective geometric room impres-

sion by mapping the surrounding colours with colour histograms. The matching

algorithm uses a particle-filter involving the robot’s pose and motion, as was

shown to be important in research by psychologists [LWRS12], because it cap-

tures the room’s geometry. The approach itself requires for its initialization ini-

tial knowledge such as the robot’s pose or a previously learned visual background

model in order to have a starting point.

This chapter covers the following items to describe the approach developed and

cover different implementation details which are evaluated in the next Chapter

4.

Notation and Coordinate Frames 3.1. At least four coordinate systems are

used and needed to be described.

Rational Symmetry 3.2. Man made environments are primary symmetric or

have symmetric parts. Rotationally symmetric environments can be for-

mally described which is needed to identify pose ambiguities.

Reorientation commands/controls 3.3. Reorientation controls must be pro-

vided by the self-localization. This controls are triggered by the robots BC

to correct an incorrect pose caused throw an pose ambiguity.

Visual Background 3.4. The visual background represents the new proposed

feature to identify a incorrect pose caused throw an pose ambiguity.

• Perceived histograms and the

• colour histograms,

• background model

are parts of the visual background.

Background Filter 3.5. The colour histograms perceived are holding too less

information to base a decision on it. The background filter fuses the robot

movements and the perceived information into a history of perception and

robots. This and only because of this the background filter becomes a

stable information source. The parts of the underlying particle filter for the

background filter such as

17
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• Particle/Hypothesis representation

• Measurement

• Motion model

• Re-sampling strategy

are also presented in this section.

Confidence Values 3.6. Confidence values for pose ambiguities are the result

of the filter process.

Orientation Behaviours 3.7. Orientation behaviours are the action combina-

tions a robot should or can take if it realized something did not went as

expected.

Now let us start by describing the notation used.

3.1 Notation and Coordinate Frames

This section explains the type of notation used throughout this work and some

basic mathematical terms frequently used such as translation, rotation and pro-

jection.

Point. A point in 3D space defined by p = [px, py, pz]
′ ∈ R3×1 and in 2D by

pW = [pWx , p
W
y ]′ ∈ R2×1

Translation. A translation is defined by a vector d = [dx, dy, dz]
′ ∈ R3×1 in 3D

or dW = [dWx , d
W
y ]′ ∈ R2×1 in 2D. A point can be moved from pa to pb by

using a translation vector dab.

pb =pa + dabpbxpby
pbz

 =

paxpay
paz

+

dabxdaby
dabz

 (3.1)

Rotation. A rotation R ∈ R3×3 in 3D space is defined by three rotations about

the x,y and z axis.

R =

1 0 0
0 cos(γ) −sin(γ)
0 sin(γ) cos(γ)


︸ ︷︷ ︸

Rx

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)


︸ ︷︷ ︸

Ry

cos(φ) −sin(φ) 0
sin(φ) cos(φ) 0

0 0 1


︸ ︷︷ ︸

Rz
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(3.2)

A two dimensional rotation is just defined by the 2× 2 sub matrix of Rz

Transformation. The transformation describes a rotation and a translation of

point in space. The following equation describes the rotation R of a point

pa about the coordinates system center followed by translation d

pb = Rpa + d. (3.3)

A rotation around an arbitrary point pc looks as follow.

pb = R(pa − pc) + pc + d. (3.4)

Pose. A pose has a location an orientation information. This can be described

by a point p ∈ R3×1 and a rotation matrix R ∈ R3×3.

Homogeneous coordinates. A homogeneous system [DHS00] allows the repre-

sentation of points at infinity and normally used in projective geometry. A

point in normal space is mapped into a homogeneous system by increasing

the dimensionality about one [x, y]′ → [x, y, 1]′, the additional component

is zero if the point lies at infinity. Using this systems allows us to write a

pose and a transformation into one matrix and to combine multiple trans-

formations to into one matrix for computation. Like a translation defined

by R of a point d applied to point pa can be re-written and summarized

into M ∈ R4×4 .

pb =

[
R d
0 1

]
︸ ︷︷ ︸

M

[
pa

1

]
(3.5)

and a pose can be written as P ∈ R4×4.

P =

[
R p
0 1

]
(3.6)

Now, four coordinate frames must be distinguished, as shown in Figure 3.2.

World Coordinate Frame. A point pW = [pWx , p
W
y , p

W
z ]′ ∈ R3×1 in word co-

ordinates is defined relative to the playing field center pW0 in Cartesian
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World Frame

Robot Frame

Image Frame

RW
R ,d

W
R

Camera Frame

RR
C ,d

R
C

fx, fy, ox, oy

pW0
pWr

pWc

(a) Coordinate frames used with their translations and rotations in a three-dimensional

space.

opponent sideown side

φ

x

y

World Frame

Robot Frame

x

y

pwr

pw0

dwr = [dx, dy]
′

(b) Two dimensional coordinate frames used to define objects on the playing field.

Figure 3.2: Coordinate frames in two and three dimensions.
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coordinates, or when necessary, in cylindrical polar coordinates pW
C

=

[pW
C

θ , pW
C

r , pW
C

z ]′. The transformation between them is defined by

pW =

pWxpWy
pWz

 =

pWC

r cos(pW
C

θ )

pW
C

r sin(pW
C

θ )

pW
C

z

←→ pW
C

=

pWC

θ

pW
C

r

pW
C

z

 =

 atan2(pWy , p
W
x )√

(pWy )2 + (pWx )2

pWz

 .
(3.7)

Robot Coordinate Frame. The location of a world point pW in robot coor-

dinates pR = [pRx , p
R
y , p

R
z ]′ ∈ R3×1 is defined by the robot’s pose, which is

represented by the translation vector dWR ∈ R3×1 and the rotation matrix

RW
R ∈ R3×3,

pR = RW
R pW + dWR . (3.8)

Camera Coordinate Frame. The camera coordinate frame is defined by the

camera used and the robot’s limb lengths and the series of joint values

from the supporting foot up to the camera. All of these parameters are

used to compute a translation vector dRC ∈ R
3×1 and rotation matrix

RR
C ∈ R3×3. A point in this system is denoted by pC = [pCx , p

C
y , p

C
z ]′ ∈ R3×1.

It is common in computer vision to use a homogeneous representation

for the camera frame the matrix is than typically called extrinsic cam-

era matrix Mext ∈ R4×4 [TV98]. Mext combines the transformation form a

world → robot → camera coordinates into one matrix.

Mext =

[
RR
C dRC

0 1

]
︸ ︷︷ ︸

MR
C

[
RW
R dWR
0 1

]
︸ ︷︷ ︸

MW
R

(3.9)

This simplifies the transformation of a point into camera coordinates by

just using one combined matrix.

Image Coordinate Frame. Throughout this work a perfect pinhole camera

without lens distortions is assumed. A point pC defined in the three di-

mensional camera frame is projected onto the image frame by using the

camera’s intrinsic parameters, such as focal lengths fx, fy in and the image

center ox, oy.
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Projection. The projection shown in (3.10) defines a point pI ∈ R2×1 in a two

dimensional space.

pI =

[
pIx
pIy

]
=


−fx

pCx
pCz

+ ox

−fy
pCy
pCz

+ oy

 (3.10)

A homogeneous representation simplifies the projection of points form a

world coordinate frame into the image plane because the transformation

chain can be combined to one matrix
pÎx
pÎy
pÎz
1

 =


−fx 0 ox 0

0 −fy oy 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

Mint

Mext


pWx
pWy
pWz
1


︸ ︷︷ ︸

pC

(3.11)

and the projecting done by dividing throw with the pÎz at the end.

pI =

pIxpIy
1

 =

pÎxpÎy
pÎz

 1

pÎz
(3.12)

Two vs. three dimensional space. Since the robot moves only on an XY-

plane, poses and points in world and robot coordinate frames are occa-

sionally simplified from a 3D to a 2D space, see Figure 3.2(b). A pose

on the playing field in two dimensional space has tree degrees of freedom

< Px, Py, Pφ > and can also be represented as homogeneous pose matrix

P ∈ R3×3.

P =

cos(Pφ) −sin(Pφ) Px
sin(Pφ) cos(Pφ) Py

0 0 1

 . (3.13)

3.2 Rotational Symmetry

Rotational symmetry means that an object looks the same after rotating it a

specific angle φ. n represents the number of equal appearances made possible by

rotating the object a certain number of degrees. Thus, n is used to classify the
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pc

(a) Rectangle:

2-fold rotationally symmetric

pc

(b) Triangle:

3-fold rotationally symmetric

pc

(c) Pentagon:

5-fold rotationally symmetric

Figure 3.3: 2D basic shapes with rotational symmetry.

object as n - fold rotationally symmetric. Figure 3.3 shows basic shapes with

various rotational symmetries. The SPL playing field has a rectangular shape

and, due to the placement of the lines and goals, a rotational order of two.

The mth reflection Pm of a pose P0 on an n-folded rotationally symmetric 2D

environment is computed by a rotation of α = m
2π

n
of the position information

P0x and P0y around the rational center point pc = [pcx , pcy ]
′, and by adding α to

P0φ . Equation (3.14) describes the computation of 2D pose reflections in matrix

format Mrm.

Pm =

1 0 pcx
0 1 pcy
0 0 1

cos(α) −sin(α) Pmx
sin(α) cos(α) Pmy

0 0 1

1 0 −pcx
0 1 −pcy
0 0 1


︸ ︷︷ ︸

Mrm

P0 (3.14)

However, since we are dealing with a 2-fold rotationally symmetric playing field

throughout this work, the Equation (3.14) can be reduced to Equation (3.15).

This simplifies the matrix equation to a single rotation because the origin of the

euclidean coordinative system used lies at the rotational center. Therefore the

translation components of Equation (3.14) can be ignored. The rotation matrix

inverts only the signs because the rotation angle of a 2-fold rotational symmetry

is 180 degrees and cos(π) = −1.

Pm =

−1 0 0
0 −1 0
0 0 1


︸ ︷︷ ︸

Mr

P0 (3.15)
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φ
x

y

reflection

PW
r

dwr = [dx, dy]
′

PW
rr

Mr

robot

Figure 3.4: 2-fold rotational symmetry on the playing field, computed by PW
rr =

MrP
W
r

.

Figure 3.4 shows a rotational symmetric reflection of an robot on the playing

field. The reflection PW
rr was computed by multiplying robot pose PW

r with Mr.

3.3 Reorientation Commands/Controls

The visual background filter presented later provides confidence values for poses

reflections defined by (3.14- 3.15). The reorientation commands presented here

enables the robot’s BC to react in a proper way to problems caused by an rota-

tional symmetric environment. The two problem cases can be observed in Fig-

ure 3.5. Reorientation controls are provided by the robots self-localization and

designed to rearrange the pose hypothesis according to three possible commands

triggered by the robot’s BC.

Flip pose. This command changes the robot’s belief in being in a symmetric

reflection, like a human who thinks they are wrong.

Purge reflection. This command triggers the self-localization algorithm to re-

move beliefs in symmetric reflections, like a human who is sure of their
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Prr .. reflection

Pr .. robot

cluster around reflection

(a) All pose hypotheses of the self-localization are on the incorrect

pose near the refection Prr

Prr .. reflection

Pr .. robot

second cluster

(b) Most pose hypotheses of the self-localization are on the correct

pose Pr but some are near the reflection Prr and could cause the

localization to fail in the near future.

Figure 3.5: Two problem cases with rotationally symmetric enviroments
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position.

Reset orientation. This command resets the self-localization algorithm’s belief

in the robot’s orientation, and the robot’s position belief remains untouched,

e.g. after the internal sensors detect a fall.

These reorientation controls were integrated into the existing particle-filter-based

self-localization algorithm [RLM+11] used, but it would have also been possible

to enhance a Kalman-filter-based self-algorithm to react similarly. By using these

reorientation commands, the BC is able to optimise the particle distribution of

the self-localization algorithm within a single measurement cycle. An incorrect

particle cluster, for example, is removed using the purge reflection command if

the confidence (computed using the approach described in Section 3.6) for the

current pose wins over the reflected pose’s confidence. A flip pose is triggered if

the reflected pose wins.

If a flip or a purge is triggered, the system has to apply a decision function in

order to identify which hypotheses should be moved. This preserves the particle’s

local property. A line Ld perpendicular to the vector −−→p0pr through the rotational

center is sufficient to split poses without rotational components, see Figure 3.6(a).

If the cluster approaches the rotational center, a line on the xy-plane cannot be

used to divide clusters which differ in their rotation, see Figure 3.6(b). Because

of this, if the current pose is near the rotational center, a threshold is used which

splits the distribution by the rotation of the hypotheses. Figure 3.6(c) shows two

particle clusters near the playing field center plotted in a 3D space where the

z-axis corresponds to the rotation component of a particle. It is obvious to see

that one can divide those clusters by the rotational component.
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Prr .. reflection

Pr .. robot

Ld

(a) A line serving as decision function is suf-

ficient if the clusters are not near the center.

Prr .. reflection

Pr .. robot Ld

incorrect split

(b) Hypotheses near the center cannot be cor-

rectly split by a line. Hypotheses in light blue

are not considered to be moved, which is in-

correct. A solution to his problem is shown in

Figure 3.6(c).

-4 -3 -2 -1 0 1 2 3 4 -3
-2

-1
0

1
2

0

1

prr

pr

-1

-2

-3

2

3

x y

Φ

(c) This figure draws the pose hypotheses in a three dimen-

sional space with the hypothesis orientation φ on z-axis.

Dark blue indicates a φ near +π and read near −π. The

split problem shown in gure 3.6(b) can now be solved by

using the angular value on the φ-axis to split the pose hy-

potheses.

Figure 3.6: The figure (a) shows that a line can be used to identify pose hypothe-

ses to apply purge or flip action, but we can also see in (b) that a line cannot be

used if the estimated pose is near the playing field center. (c) presents the solution

to this problem by using the pose orientation to distinguish two clusters.
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3.4 Visual Background

This section presents the proposed background feature to identify the robots view

direction. The information recovered by a single measurement holds a vague

estimate of the robots view direction. In order to establish a stable view estimate

a filter is introduced in the next Section 3.5 which combines the robots motion

with information gained by the feature described in this section.

3.4.1 Perceived histograms

The projection function presented before (3.11 - 3.12) allows the robot to identify

a virtual surrounding wall in it environmen. This wall is modelled as a cylinder

with multiple rows and columns of quadrangular tiles. A configuration with 52

tiles in two rows placed on a cylinder with a radius of four meters around the

center is shown in Figure 3.7.

The perceived histograms are linked to tiles on a virtual surrounding wall

projected in the robots camera image, see Figure 3.8(c) and 3.8(c). A perceived

colour histogram relates to the image area surrounded by a projected tile and

partially visible tiles are excluded from the process.

3.4.2 Colour Histogram

The histogram is computed by counting the pixels corresponding to a colour class

within the perceived tile. Figure 3.8 shows the colour reduced images and the

projected tiles. The sum of perceived pixels per histogram/tile is always nor-

malized to one in order to allow for comparison of different view points. The

histogram used has two bins for black and white and 12 colour bins. This allows

for fast computation because only three thresholds c1, c2, c3 and the sign of the

colour channel are required to divide the YCbCr-colour space into 12 regions. c1

and c2 slice the YCbCr-colour-space into three layers. c3 defines a cylinder to

cut out the black and white component from the top and bottom layers, see Fig-

ure 3.9. It shows the three layers and explains the details of the chosen histogram

representation throughout this work. The algorithm to classify a YCbCr colour

is shown in Listing 3.1.
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1
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x[m]

y[m]

z[m]

virtual surrounding wall

tiles

Figure 3.7: Surrounding wall modelled as a cylinder composed of tiles in multiple

rows and columns.

1int binYCbCr ( int Y , int Cb , int Cr , int c1 , int c2 , int c3 ) {
2// Y, Cb and Cb must be between −128 and +128

3if ( (Cb∗Cb + Cr∗Cr ) < c3 )

4if (Y < 0) return 0 ; /∗ black ∗/ else return 1 ; /∗ white ∗/

5else // check c o l o r

6int bin = 2 ;

7if (Cr <= 0) bin += 6 ; if (Cb <= 0) bin += 3 ;

8if (Y >= c2 ) bin += 2 else if (Y >= c1 ) bin += 1 ;

9return bin ;

10}

Listing 3.1: Function to compute the colour bin for a YCbCr colour

Hence the colour histogram can be blurred, assuming that every bin has four

neighbours, in order to suppress noise. Perceived histograms are shown in the

viewing direction outside of the background model in Figure 3.11, but since it

is a perception, without variance. The performance gain of blurring the colour

histograms is documented at the experiment Chapter 4.
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(a) Colour reduced image to generate his-

tograms facing opponent’s goal

(b) Colour reduced image to generate his-

tograms facing own goal

(c) Projected background facing opponent’s

goal

(d) Projected background facing own goal

virtual wall

(e) Visualised virtual wall

virtual wall

(f) Visualised virtual wall

Figure 3.8: These figures present the robot’s scene perception. (a, b) shows

projected tiles related to the robot locations in (e, f) which are the same for both

locations, but the underlying histograms related to the color reduced image shown

in (c, d) are different.
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Cr

Cb

Cr

Cb Cb
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0
C

3

Values
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Figure 3.9: A colour histogram and bin values are drawn upwards. Histograms

used to model the background are augmented with a variance value drawn down-

wards. The bins are defined by the regions, drawn on the three YUV colour space

slices.

(a) Tiles are ignored because the angle of the

view to the tile is acute (yellow cross).

(b) Tiles are ignored because the system de-

tected an obstacle/robot.

Figure 3.10: Two cases in which tiles are excluded from the process.

3.4.3 Background Model

The background model is trained online with perceived histograms by using a

moving average update strategy. In order to stabilize the model, tiles which

are too close to the robot, blocked by other robots/obstacles or observed from

too steep of a viewing angle, are ignored. This is possible because, on the one

hand, the system uses the robot’s sonar sensors to detect obstacles, and on the

other hand, the system is able to detect other robots visually, see Figure 3.10.

The moving average update strategy for each colour bin allows the variance to

be computed, thus detecting unstable areas. The equations for computing the

moving average µ and variance σ are shown in Eq. (3.16) and (3.17), but if a tile

is seen for the first time, the perception is copied. Increasing N leads to a more
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stable model but to a lower rate of adaptation to environmental changes. µnew and

σnew represent the new computed average and distribution values, and similarly

µlast and σnew are the values before the update with the new measurement xmess.

µnew =
Nµlast + xmess

N + 1
(3.16)

σ2
new =

1

N + 1

(
Nσ2

last +
N

N + 1
∗ (µlast − xmess)2

)
(3.17)

Training can be interrupted by the robot’s BC to avoid learning from incorrect

perceptions, for example in the case of a robot falling or during a penalty in

the soccer game. A trained background model with colour histograms around

the playing field is shown in Figure 3.11. The two circles of histograms indicate

the two rows of tiles cylindrically arranged around the playing field, as shown

in Figure 3.7. A subdivided half icosahedron-shaped wall with triangle tiles to

cover the room’s ceiling was considered for this study, but since the robot looks

primarily horizontally, it was decided to use a cylinder, for simplicity’s sake.
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background model

perceived histograms
without variances

robot

a single background colour histogram 
with variances

Figure 3.11: A trained background model corresponding to a virtual wall shown

in Figure 3.7 with perceived colour histograms.
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3.5 The Background Filter

This sub-module uses robot pose information and perceived colour histograms to

estimate current viewing direction based on the background model. This estima-

tion is done by using a particle-filter where each particle describes a viewpoint

hypothesis on the virtual cylindrically modelled wall, Figure 3.12.

-4
-2

0
2

4

-2

0

2

0

2

PW .. robot pose

perceived tilesparticles / viewpoint hypothesis

virtual surrounding wall

Figure 3.12: This snapshot of the background filter process shows particles, blue

circles, which are representing possible view targets on a virtual surrounding wall.

The red quadrangles are the perceived tiles within the robots currents field of view

also shown in the robots camera image.

A classical non linear filter is described by the following two equations [KK11]

xt+1 = Ft(xt,ut,wt)

ht = gt(xt,ut,wt,vt)
(3.18)

xk+1 is the state to estimate which corresponds to the robot view direction rep-

resented by pst

Ft is a function which estimates the next state based on the last state by taking

into account the current state xt, the apply actions ut as well as the system

disruption wt. This will be the motion model used.

yt is the observable measurement which corresponds in this case to perceived

colour histograms h
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3.5 The Background Filter

gt(xt,ut,wt,vt) estimates the measurement at a system state xt with the apply

actions ut, the system disruption wt and the measurement noise vt. The

trained background model substitutes in this approach this function and

delivers a combination of histograms to a given view direction.

The particle filter used minimizes the difference dhm between the observable mea-

surement h, represented as a perceived colour histograms, and the estimated

measurement m, represented as histograms trained in a model around a particle.

Do do so the following components are needed:

Distance measurement. The distance measurement computes a weight value

for every particle, particles with a heigh weight value are correlating more

likely with the real viewpoint. The distance function dhm will be described

there.

Re-sampling strategy. The re-sampling clones particles with a heigh weight

value and removes low weighted particles.

Motion update. The motion update F moves all particles according to the

robots motion and introduces motion noise to cover for system distortions.

The Figure 3.13 shows the steps just described on a flowchart diagram. The

Figure 3.13: The background filter loop. The real robot state is unknown and

the filter loop uses particles to estimate the robots view direction in an iteratively

by replacing particles with a high distance measurement value more likely with one

with a low distance value.

following subsection describes the particle filter used starting with the particle

representation followed by the distance measurement function, the motion model

and the re-sampling strategy used.
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3.5.1 Background Particles and Hypotheses

View hypotheses are represented as particles located on the virtual cylindrical

surrounding wall. Each particle represents a potential target point at which

the robot possibly looks. A particle also called sample can therefore described

by cylindrical coordinates pW
C

s = [pW
C

sθ
, pW

C

sr , pW
C

sz ]′, or by Cartesian coordinates

pWs = [pWsx , p
W
sy , p

W
sz ]′, the transformation between the two systems is described in

(3.7). Every particle corresponds to the tile within whose boundaries it lies, see

Figure 3.14. The shape of the tiles chosen allows us to find the corresponding tile

-4

-2

0

2

-4

-2

0

2

4

0

1

pW
C

sz

pW
C

sr

z [m]

particle at pW
C

s and it’s related tile

x [m]

y [m]

pW
C

sθ

Figure 3.14: A view hypothesis as a particle on the virtual wall and its related

tile.

closest to the nearest center point, instead of checking all of the boundaries to

confine the particle. In addition, every particle needs to hold a probability value

to be used during particle filtering. Therefore, the state of a particle is composed

of its location pWs in space, tile id ti and a probability value ρi. The estimated

view direction PW
v can be treated as pose because it is composed of an view vector

vs dependent on the particle pWs and on the robot’s current camera center pWc in

world coordinates and this defines a rotation matrix and a translation vector.

vs = pWs − pWc (3.19)
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(a) View direction based on a robot at < x = 1.5, y = −1.5 >.
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pWc .. camera location
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r .. robot pose

pWs .. particle location

vs .. view vector

(b) View direction based on a robot at < x = −1.5, y = 1.5 >.

Figure 3.15: Two possible view directions with one view point/particle si.
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The camera center in world coordinates is computed by using the robot’s position

pWr ∈ R3×1 and the current available camera matrix with its rotation RC
R ∈ R3×3

and translation dRC ∈ R3×1, estimated by (3.20).

pWc = dWr −RC
RpRc ; (3.20)

This relationship can be observed in Figures 3.15, which shows one particle with

two possible view directions, caused by two different robot locations.

3.5.2 Distance Measurement

The robot’s measurement is based on the robot’s perceived tiles and the previously-

trained background model. During a measurement cycle the robot perceives a

series of tiles with colour histograms. Those perceived colour histogram are com-

pared to the trained model of the background to compute distance values for es-

timating the robot’s view direction. A simplified computation of such a distance

values dhi is shown in Figure 3.16. The index i denotes the background model tile

index. dhi corresponds therefore to the computed distance between the perceived

colour tiles combination to the trained colour histograms around the tile index i

of the background model. Two distance measurements where implemented and

5 10 15 20

5 10 15 20

perceived histograms h

background model m

result of the distance function d

5 10 15 20

tile id

tile id

tile id
local minima

Figure 3.16: Simplified Comparison of perceived background tiles with the trained

background using a single row model. If the index is correct, as in this figure, the

computed distance value will have a local minimum near the perceived tile index.

tested for this approach together with one artificial ideal measurement to com-

pare parts of the view direction filter without sensor noise. [DKN08] as well as
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[PW10] are comparing distance measurements for colour histograms but only the

following distance norms where tested and implemented:

• dχ2 ... Quadratic-Chi (χ2)

• dssd ... Sum of Squared Differences (SSD)

• dai ... An artificial ideal measurement

The benefit of χ2 distances to SSD are is reduced effect of large bins having undo

influence. The SSD between two histograms m and h are computed by summing

up the squared differences over all histogram bins B.

fhssd(m,h) =
B∑
b

(mb − hb)2 (3.21)

fhssd(m,h) denote further the SSD between two histograms m and h.

The χ2 treats large bin as less important than the difference between small bins,

which is in many natural histograms the case [PW10].

fhχ2(m,h) =
1

2

B∑
b

(mb − hb)2

mb + hb
(3.22)

fhχ2(m,h) denote further the SSD between two histograms m and h. Utilising

fhχ2(m,h) or fhssd(m,h) allows us to compute the distance value to every tile loca-

tion by comparing and normalizing the distance of a perceived tile combination

of histograms h with the trained histogram of the background model m.

Figure 3.16 shows a simplified distance values related to a background model

composed of one row but the real and finally background model used has at least

two rows which can be seen in Figure 3.17. Hence the perceived histograms are

spatial ordered hk,l in rows k and columns l as well as the background histograms

mr,c. Therefore the distance value di,j to a background tile is computed by com-

paring and shifting two dimensional patches along the cylindrical wall (3.23).

dt =
∑
r

∑
c

∑
k

∑
l

fh(mr,c, hk,l) (3.23)

Important to mention is that (3.23) takes not into account that the column value

must be treated modulo the maximum number of columns and that the center
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Figure 3.17: This figure shows an ideal distance measurement with perceived his-

tograms and a trained background model composed of two rows. The time instance

corresponds to Figure 3.18, in which the robot is looking towards background tile

number five. The top two rows represent the trained background model with tile

number/id. In rows three and four, the perceived colour histograms surrounding

and including tiles five and thirty are drawn. The area covered by a single colour

histogram is always normalized to one. The last two figures present the results of

the artificial distance function dai, which has a minimum near the view center at

tiles five and thirty.
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Figure 3.18: Physical distance along the cylinder dcit between a tile and the view

point pW
C

vt at the time t with the cylinder for tile number 34 as example. Current

perceived tiles are drawn in red.

of perception is not h0,0. dχ2 and dssd is therefore defined utilized (3.23) with

the two distance functions (3.22) and (3.21). The idealistic distance function

dai can be seen as inverse normal distributed (3.24) with its minimum at µ the

perceived part of background model independent to the perceived histograms and

with sigma σ defining the accuracy of the detection.

1− pdf(x | µ, σ) = 1− 1

σ
√

2π
e

−(x− µ)2

2σ2 (3.24)

But such an ideal artificial distance function can only be computed using

ground truth data which includes real robots view center pW
C

vt on the Cylinder at

every time instance t. The idealistic distance value will defined by inverse density

function (3.24) at the distance dct of a background tile t to the view center pW
C

vt .

So let pW
C

vt = [pW
C

vtθ
, pW

C

vtr
, pW

C

vtz
] and pW

C

ti
= [pW

C

tiθ
, pW

C

tir
, pW

C

tiz
] be the center of each

tile in polar coordinates than the physical distance along the cylinder dci to each

tile can be computed by (4.6)1 assuming that all tiles are on the same cylinder

and r belongs to the radius of the virtual wall.

dct =
√

(| pWC

vtθ
− pWC

tiθ
|min r)2 + (pWC

vtz
− pWC

tiz
)2 (3.25)

Figure 3.18 sketches the physical distance measurement dcit for a specific back-

ground tile. The σ value choose with a value of one tile length to approximate a

detection accuracy of one tile.

1| pWC

vtθ
− pWC

tiθ
|min denotes the minimal angle difference.
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The weight value for a particle is assigned using the distance value of the closest

tile of the background model as previous shown in Figure 3.14

3.5.3 Motion Models

The goal of the motion model is to update all particles/view point hypotheses

according to the robots motion and to introduce noise to cover for system discrep-

ancy between the motion model the real robot. To do so three types of motion

model/functions F where considered:

FR Rotation along the estimated robots location. FR considers the robot

pose and rotates all particles along the current robot location.

FW Rotation along the playing field center. FW just considers the robot

head motions and rotates all particles along the playing field center which

corresponds the origin of the world coordinate system used, see Section 3.1.

F S Static. F S is not considering any robot motions, the particle is moved by

the motion noise only.

3.5.3.1 Rotation along the estimated robots location FR

During a typical motion, the robot changes its pose PW
r and its camera rotates

due to a search pattern controlled by the robot’s BC. This system assumes that

robot’s pose change can be neglected between two measurement cycles, in contrast

to the head motions, which are primarily rotational and therefore a dominant part

in the reconstruction of the robot’s view direction. Therefore only the rotational

change in the robots Y and Z axes, described by 4φ and 4θ are used to update

all of the particles. Hence the update of a particle s at pWst−1
from a time instance

t− 1 to t can be described by creating a temporary view target point pWs̃t with a

rotation of pWst−1
around the camera center in pitch and yaw directions

pWs̃t =

cos(4φ) −sin(4φ) 0
sin(4φ) cos(4φ) 0

0 0 1


︸ ︷︷ ︸

RzWc

 cos(4θ) 0 sin(4θ) 0
0 1 0

−sin(4θ) 0 cos(4θ) 0


︸ ︷︷ ︸

RyWc

(pWst−1
−pWct )+pWct

(3.26)
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vdtview direction

vdt−1

4φt

4φt + α

λvW
d̃

pWst−1

pWs̃tpWst
pWct

pWvt view center

Figure 3.19: Simplified 2D sketch of a motion update using the robots pose as

rotational center. The rotational change 4θ is not covered in this Figure it just

precents the update on the XY-plane using 4φ.

and then extending the estimated view direction

vW
d̃

= pWs̃t − pWct (3.27)

to intersect with the cylinder C again, Figure 3.19. The intersection is computed

by creating a line starting at camera center pWct with direction λvW
d̃

, where λ has

to be selected to fulfil the following equation.

0 = (pWcx + λvW
d̃x

)2 + (pWcy + λvW
d̃y

)2 − r2 (3.28)

But the since (3.28) is quadratic, there are two solutions due to the quadratic

equation sequence.

0 = ((vW
d̃x

)2 + (vW
d̃y

)2)︸ ︷︷ ︸
a

λ2 + (vW
d̃x
pWcx + vW

d̃y
pWcy )︸ ︷︷ ︸

b

λ+ ((pWcx)2 + (pWcy )2)︸ ︷︷ ︸
c

−r2 (3.29)

λ1,2 =
b±
√
b2 − 4ac

2a
(3.30)

The λ to select is the one which generates the point nearest to the temporary

view target point. The new particle location will then be as follows.

pWst = pWct + λvW
d̃

(3.31)

The chain of operations between (3.26-3.31) is denoted as FR.
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vdtview direction

vdt−1

4φt

pWst−1

pWct

4φt + α

pWst
pW0

pWvt view center

Figure 3.20: Simplified 2D sketch of a motion update using the playing field as

rotational center.

3.5.3.2 Rotation along the playing field center FW

FW rotates each particle pWs around the playing field center pW0 and because the

playing field center lays at the origin [0, 0, 0]′ the translation term can be ignored.

The vertical motion is approximated by projecting the vertical angular change

onto the surface of the cylindrically surrounding wall using a tan-function. α

denotes a normal distributed angular motion noise. Equation 3.32 describes this

motion and the Figure 3.20 sketches it in 2D.

pWst =

cos(4φ+ α) −sin(4φ+ α) 0
sin(4φ+ α) cos(4φ+ α) 0

0 0 1

 (pWst−1
− pW0 ) + pW0︸ ︷︷ ︸
pWst−1

+

 0
0

tan(4θ + α)pCsr


(3.32)

3.5.3.3 Static or no motion F S

F S does neither relay on the robot’s movement nor on the robot’s location. The

motion noise α to manipulate a particle position pCs = [pCsθ , p
C
sr , p

C
sz ]
′ in cylindrical
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vdtview direction

vdt−1

4φt
pWct

Isotropic noise α on the cylinder surface

pWst pWst−1

pWvt view center

Figure 3.21: Simplified 2D sketch of a of the static motion update FS . The

Gaussian noise causes the particle move on the cylindrical wall. The static model

is fully independent to the robots motion and to the robots pose.

coordinates along the cylindrical surface.

pCŝ = pCs

 α
0

tan(α)pCsr

 (3.33)

Figure 3.21 captures this idea. A comparison between motion models can be

found in Chapter 4.

3.5.4 Re-sampling

Throughout this approach a low variance re-sampling strategy as described in

[TBF05] was used to resample particles. Getting stuck in a local minima during

the filtering is prevented by injecting new particles during every update cycle.

With the distance values between perceived histograms and the background model

produced during the measurement step, it is possible to identify a most likely view

direction by the various minima shown in Figure 3.16. These are the locations

where new particles are injected. A typical rate of replacement of particles with

new injected ones was one percent.
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3. ROOM-AWARENESS

3.6 Confidence Values

The filter used here is designed to predict the robot’s view direction. However,

the underlying particle filter represents the view direction as a multi-modal distri-

bution of hypotheses. The computation of the actual best hypothesis is normally

done by clustering particles and by finding and selecting the cluster supported

by the majority of the particles. Another approach to clustering particles is doc-

umented in [LR09].

But the room awareness module is only secondarily interested in the view direc-

tion. More important for the goal of this work is the computation of confidences

for a given view direction. The robot’s self-localization already estimates the

robot’s view direction, and the filter should return a confidence value of how

likely this view is. This is done by counting particles within a given range around

the direction of interest. Directions of interest are:

• The robot’s current view direction

• The robot’s rotationally symmetric view direction

• Goal view directions

3.6.1 View Confidences

View confidence values are used by the robot’s BC to decide if the current pose

estimation by the self-localization is correct or if the BC should interfere to correct

or optimize it. The view directions of interest are the current view direction

and the rotationally symmetric view direction, shown as current view centre and

opposite view centre in Figure 3.22. The view confidence values are smoothed by a

moving average value and set to zero by the robot’s BC after the BC has interfered

with the self-localization. This causes a type of hysteresis function and prevents

the system from oscillating between rotationally symmetric poses. A sequence of

recorded view confidence values is shown in 3.23 with the corresponding trigged

reorientation commands.

3.6.2 Goal Confidences

The current self-localization implementation injects new particles only if parts of a

goal are perceived. However, this leads to a 50% chance of a particle being injected
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background particles

virtual field of view for
pose confidence evaluation

background model
histograms

perceived histograms

areas for goal view evaluation

opposite view centre

current view centre

self-localization particles
and current robot pose

virtual wall

(a)

(b)

Figure 3.22: The robot’s internal world view and related camera image. (a)

Background model and background particles drawn on the robot’s internal world

view around the playing field. Particles of the self-localization are drawn in gray on

the playing field. (b) Camera image with particles and tiles with colour histograms.

Detected landmarks like field lines and goal posts are drawn as overlay.
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Confidence Values:

current pose

mean: current pose

opposite pose

mean: opposite pose

BC Commands:

flip pose

purge reflection

reset orientation

Figure 3.23: History of past confidence values and BC command signals. The

BC recently triggered a flip because the robot had been mistakenly placed at the

rotationally reflective pose. This was followed by a purge reflection because the

awareness module then indicated a high current pose confidence relative to the

reflected pose confidence.

at the rotationally symmetric incorrect pose. The computed goal confidence

values are used to disambiguate the symmetry in order to inject new particles

correctly. New particles are only injected if the room-awareness module is able

to identify the perceived goal. This is done by counting the particles within the

areas for goal view evaluation, shown in Figure 3.22.

3.7 Orientation Behaviours

The purpose of the robot designed is not only to localise itself, but also to fulfil

certain tasks. It is the role of the robot’s BC to juggle these tasks by taking the

appropriate actions. For example, the BC has to recognize if the system has been

initialised with a pose and not with a pre-learned background, in which case the

background evaluation process needs to be stopped, and a sequence of actions

which brings the robot into a position to train the background must be triggered.

The room-awareness approach presented here does not work if there is no BC

or similar module because its interaction is too intertwined with other modules.

The technique proposed here improves upon exiting self-localization algorithm by

adding additional control channels to help the algorithm to converge to the most

likely robot pose and prevents local minima.
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3.8 Summary

3.8 Summary

This chapter presented the room-awareness module developed in this study, which

enables a robot to localize itself in rotationally-symmetric environments. The

basic idea behind the approach is to simplify the environment with a trained

model composed of colour histograms which are linked to areas on a virtual wall.

Strategies, techniques and implementation variations selected for integrating and

realising the approach were shown to create a spectrum of variations, the best

of which one can select for certain tasks. Tests on the variations presented were

then shown, in order to identify a suitable implementation for the test platform,

an SPL-robot.
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4

Experiments

The evaluation of the approach proposed here was done using the 2012 RoboCup

SPL playing field [Rob12]. The significant difference between it and the playing

field from previous years is the color of the goals: previously, there was one blue

goal and one yellow, whereas the 2012 goals are both yellow. For the tests con-

ducted, both a simulated environment and the real playing field of the Austrian-

Kangaroo RoboCup team at the Automation and Control Institute (ACIN) were

used.

4.1 Enviroment

The simulated and the real environment are shown in Figure 4.1. The playing

field is 6 m × 4 m, edged with white lines, and has a white center circle line with

an outside diameter of 1.25 m. All lines on the playing field are 0.05 m (5 cm)

wide. The field itself is a thin green carpet to facilitate a stable biped walk. The

lighting conditions are defined by the room’s lighting, with no additional light

source. Natural sunlight is not expected on the playing field.

4.1.1 Robot

The robot used is a Aldebran NAO v.3.3, which is a humanoid biped robot with

a height of 0.57 m. The motherboard of the robot is equipped with an x86

AMD GEODE 500MHz CPU and has 256 MB SDRAM / 2 GB flash memory. A

Linux-based Operating System (OS) with a real time kernel patch installed on the

motherboard in the head of the robot controls all of the robot’s joints and sensors
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Figure 4.1: RoboCup WC SPL playing field, according to the 2012 rules, mea-

sured in millimetres. Image source [Rob12]
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4.1 Enviroment

via a sensor board located in the robot’s chest. The cameras, microphones and

loudspeakers are directly connected to the motherboard. The robot’s cameras

are connected to the motherboard via Serial Peripheral Interface (SPI). All of the

robot’s joints1 are controlled and monitored via a time-triggered memory which

is updated every 8 ms. Aldebran names this memory Device Communication

Manager (DCM). The DCM provides read and write elements to control and

read sensor values from the robot’s sensors, such as:

• Buttons on the robot’s chest and feet tips

• Inertial Measurement Unit (IMU), measuring velocity changes

• Sonar: two sonar emitters and two receivers for distance measurements,

and for detection of obstacles

• Force Sensitive Resistors (FSRs) on the robot’s feet, for measuring ground

contact forces

• Magnetic Rotary Encoders (MRE), for measuring joint angles

The lack of rotational velocity measurement component in the IMU used and the

fact that this robot has no compass make the approach presented here especially

suitable for this robot, because the room awareness approach supports the robot

in estimating its view direction. Figure 4.2 shows the robot’s sensors and their

locations.

4.1.2 Simulation and Software Framework

Aldebaran sells the NAO robot with interfaces to multiple programming lan-

guages e.g. C++, Python. This library is called NAOqi. The NAOqi library

is currently the only allowed software interface for controlling the robot’s hard-

ware. This library ensures a safe operation of all joints for warranty reasons.

However, other libraries are available on an open source basis with bridges to the

NAOqi which are more suitable for soccer competitions. The B-Human software

framework used is one such free available collection of software library packages

[RLM+11]. The software can be roughly divided into two parts:

• Control Framework

• Simulation Framework

The border between these two parts is not always clear.

1The NAO v.3.x RoboCup edition has 21 joints. The academic version of the robot has

four extra joints to twist the robot’s forearm and to actuate the robot’s fingers.
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Figure 4.2: NAO with all sensors indicated. Image source NAO Software 1.12.5

documentation

4.1.2.1 Control Framework

The control framework is based on a base class for communication called ’black-

board’. All modules integrated into the framework are able to share information

via this blackboard and can be monitored. The framework can be downloaded

with already-working modules, as it was used by the B-Human RoboCup team

in 2011, including:

• Walk Engine

• Self-Localization for the SPL 2011 (yellow and blue goal)

• Behaviour Controller

• Debugging Interface
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4.1 Enviroment

• 3D Simulator with Physics

4.1.2.2 Simulation

The simulator is very tightly coupled with the control framework and allows the

simulation of multiple robots, including physics. It simulates the robot’s sensory

perception, from the robot’s sonar up through the cameras. The Graphical User

Interface (GUI) of the B-Human framework serves, on the one hand, as control

interface of the simulation, and on the other hand, as debugging and control

interface for the real and simulated robots, in order to visualize what is going on

in a robot. The proposed module was integrated as a separate module and can

be used with the simulator and the real robot as well. Figure 4.3 shows a screen

shot of the running framework.

Figure 4.3: B-Human Code Release Software Framework, simulating a robot.
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4.2 Room-Awareness

The visual background is evaluated in this section by using a recorded data stream

on the simulator and a reimplemented version of the approach in Matlab1. The

stream starts with a robot on the playing field border which then walks to and

between the penalty positions. The robots oscillates its head between −π
2

and

+π
2

over the horizon to observe the environment for localize it self and to map

the visual background. Figure 4.4 shows the recorded track of the robot. The

data stream includes more than of three-thousand measurement cycles and every

cycle holds information such as the robot’s:

Real pose. PW
r provided by the simulator.

Estimated pose. PW
r̄ provided by the robots localization.

Transformation between the robots base and its camera. RW
C and dWC pro-

vided by the the robots kinematic.

Perceived colour histograms. h provided by the robot’s room-awareness mod-

ule.

Trained colour histogram model. m provided by the robot’s room-awareness

module.

Running the approach in Matlab on a recorded data stream allows the evaluation

of components offline and to visualize results in a convenient way. The particle

filter used to estimate the view direction, is evaluated step by step to identify

optimal parameters and the optimal implementation variation presented in Sec-

tion 3. To reference significance moments the data stream was separated into

parts shown in Figure 4.5.

The filter to estimate the view direction involves multiple component which

are evaluated separately. However this results are indicators of the performance

of the the filter and not of the overall system because the a real system closes

the loop by controlling the robots actions, the overall performance is discussed

in Section 4.3. This section performs test on implantation variations with dif-

ferent parameters to identify an optimal settings. The following components of

1Matlab https://www.mathworks.com
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Figure 4.4: Path of the robot in the evaluation stream. The bright white robot

pose symbols marks the start and the with the dark, black symbols the end of the

data stream with more than 3000 measurement cycles.

the background particle filter described in Section 3.5 are evaluated here with

experiments and statistical results.

Motion model. The motion models are compared with and without a closed

measurement loop

Distance Measurement. The colour histogram distance function as well as the

proposed colour histogram blurring was evaluate.

Re-sampling strategy. The number of particles as well as the influence of par-

ticle injections are observed.

But fist an error function must be defined in order to compare measurement

results.

4.2.1 Error Function em:

In order to conduct experiments, an error measurement had to be defined and

this section explains this error function. The error function em and it’s variance

serves as indicator for all test conducted in this section. em can only be computed

with available ground truth data because it describes the distance between the

real view center pW
C

v and the estimated pW
C

s̄ = [pW
C

s̄θ
, pW

C

s̄r , pW
C

s̄z ]′ view center by
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(a) Cycle 0-3050: Full track.
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(b) Cycle 1-700: Robot at playing field bor-

der.
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(c) Cycle 700-1000: Entering the playing

field.
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(d) Cycle 1000-1700: Walking towards oppo-

nent side.
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(e) Cycle 1700-2400: Walking towards own

side.
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(f) Cycle 2400-3050: Walking towards oppo-

nent side.

Figure 4.5: Recorded tracks, 50 measurement cycles are between drawn robot

poses.

58



4.2 Room-Awareness

pW
C

v view center

pW
C

s̄ estimated view center

robot

em error along cylinder
emθ angular error on XY-plane

Figure 4.6: Error measurement/function em

the particle filter along the virtual cylindrically wall, Figure 4.6 visualizes the

error function and the following equation describes it1. .

pW
C

s̄ =

pWC

s̄θ

pW
C

s̄r

pW
C

s̄z

atan2(
∑

i sin(pW
C

siθ
),
∑

i cos(p
WC

siθ
))

1
n

∑
i p

WC

sir
1
n

∑
i p

WC

siz

 (4.1)

emθ =| pWC

vθ
− pWC

s̄θ
|min (4.2)

em =
√

(emθpsr)
2 + (pWC

vz − pW
C

s̄z )2 (4.3)

But since the error along the cylinder is a distance measurement, and there-

fore scale depended, we will refer to the angular component emθ in all further

discussion. This decision is also founded on the fact that the angular component

is the most dominant part in (4.3).

4.2.2 Motion Model

The first compares the motion models without nose and not measurement update

applied on a single particle. On the beginning of every test sequence the particle

is placed on the correct start position at the view point pWvt0 . p
W
vt0

which denotes

the intersection of the view direction PW
v with the cylindrical virtual wall at

1| pWC

vθ
− pWC

s̄θ
|min denotes the minimal angle difference.
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the beginning of the data sequence at t0. Observed is the misplacement of the

particle pWs after an motion update to the real view center pWv included in the

data stream. Since the motion noise α was set to zero, the third motion model

will not the particle at all. The error shown in Figure 4.7 changes over time and

can be described by the motion models use:

• FR Motion around robot, drawn in green.

The angular error emθ observed using this motion model increases if the

robot moves because the motion model does not include any translational

component but the model approximates the view center pv is with it’s

estimates ps̄ and is able to follow the center. But still the model does

not take the robots translational component into account which causes the

increasing error.

• FW Motion around center/world, drawn in magenta.

The angular error emθ observed using this motion model oscillates because

the motion model is only correct if the robot stays at the playground center.

If the robots stay not at the center the estimated view center ps̄ moves to

fast or to slow depending on the view angle and on the robots location. The

overall error averages over time if the robot oscillates constantly between

the penalty positions.

• F S No motion, drawn in blue. A estimated view center which is placed

only ones an not updated will produce an error which averages to π over

time.

This test showed that the motion of the view point can be described in greater

or lesser detail. A detailed motion model performs well in tracking a target state

over a short period of time but performs poorly over a longer period.
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(a) Cycle 100-700: Robot at playing

field border.
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(b) Cycle 700-1000: Robot entering the

playing field.
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(c) Combination between (a) and (b)

but without reinitialization at cycle 700.
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(d) Cycle 100-3050: full track.

FR motion model, around robot
FW motion model. around center/world
F S motion model, static / no motion

N = 1, resample rate = 0, α=0, injection = off, initialized on pCv

Figure 4.7: Comparison between motion models by plotting the angular error emθ
shown in Figure 4.6 using the estimated view direction computed by one particle

initialized on the optimal position pWvt0 at each data stream subset. The head

movement can be recognized in all four plots by the rising and shrinking error

amplitudes. The smaller spikes in between the bigger waves can be interpreted

where the robot’s head turns over an angle defined by throw the motion model and

the robot’s pose which results in a change of error. This phenomenon is suppress

by the first motion model FR because the particles are rotated around the robot’s

pose. Using longer (c-d) and shorter data (a-b) sets show that the average error of

the rotation around the playground center FW is the smallest but the local motion

error within a time frame as in (a) or (b) is smaller using the FR which rotates

around the robot’s location. And ’of course’ not moving using FS the particle

produces the biggest motion error.
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4.2.3 Motion Noise

The motion models used are not perfect, because to many parameters are un-

known, but the imperfection can be models by the motion noise to cover at least

parts of it. The motion models are using a single noise parameter α to describe

the imperfection of the model cause by the robots motion. The Figures 4.8 shows

the influence of the motion noise of an motion model using two differenct values

for α. A higher α-value causes the particles to spread wider which leads still to

the same view point estimate pCs̄ but with a higher variance.
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(a) alpha = 0.02

-4
-2

0
2

4

-2

0

2

0

2

(b) alpha = 0.24

Figure 4.8: Motion model rotating around the robots center with two motion α

after 125 update cycles. The cluster center pW
C

s̄ stays the same but the distribution

of the particles differs significant.

The Figures 4.9 and 4.10 are visualizing the growing particle distribution over

time of all three motion models. The growing distribution can be observe by the

cluster of particles, blue circles. The average angle pW
C

s̄θ
is be computed using the

(4.1). The computation of the variance is shown in (4.4)1.

var(pW
C

sθ
)2 =

∑
i

(| pWC

siθ
− pWC

s̄θ
|min)2 (4.4)

4.2.4 Artificial ideal Measurement for Evaluation

All three presented motion models can be used to approximated the motion of

view particles with the right motion noise parameter α in a more or less trusting

1| pWC

siθ
− pWC

s̄θ
|min denotes the minimal angle difference.
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Motion Noise α = 0.02
FR around robot FW around center FS static
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Figure 4.9: This figure shows a direct comparison of three motion models pre-

sented with a normal distributed motion noise α with a sigma of 0.02 applied on

100 particles initialized on the correct view center. The top row shows the motion

error eθ over a interval of 200 cycles with its variance caused by multiple view

center hypothesis. The motion model shown in the last column ’FS static’ is not

able to follow the visible tiles drawn with red rectangles.
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Motion Noise α = 0.24
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Figure 4.10: In contrast to Figure 4.10 shows this Figure the three motion models

with a ten times bigger motion noise with a sigma of 0.24. The applied motion

noise dominates the motion, the original motion is unrecognisable and the particles

are nearly uniform distributed around the playing field.
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4.2 Room-Awareness

way. The purpose of a sensor update during a particle filtering process is the re-

duction or confined of the growing particle distribution introduced by the motion

model with motion noise. The goal of this section is to create a perfect sensor

update with an artificial ideal measurement to test the motion models without

influence of a real colour histogram distance measurement. The captured data

stream allows us to generate a ideal sensor model output by assuming a that

the distance measurement between the perceived histograms and the background

model is Gaussian distributed (4.5.

pdf(x | µ, σ) =
1

σ
√

2π
e

−(x− µ)2

2σ2 (4.5)

The ideal histogram distance measurement ˆdit
h for each tile of background model

tilemi at time instance t is generated by first computing the distance of each tile to

the view direction pCvt along the cylinder dCi and second by normalizing the inverse

probability density function value at this distance given µ = 0 and σ ≈ 1. Figure

4.11 sketches the physical distance measurement dcit for a specific background tile.

The σ value choose with a value of one m to approximate a detection accuracy
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pW
C

vt

vst

pct

dCit

Figure 4.11: Physical distance along the cylinder dcit between a tile and the view

point pCvt at the time t with the cylinder for tile number 34 as example. Current

perceived tiles are drawn in red.

of one tile length. Let pW
C

vt = [pW
C

vtθ
, pW

C

vtr
, pW

C

vtz
] and pW

C

mi
= [pW

C

miθ
, pW

C

mir
, pW

C

miz
] the

center of each tile in polar coordinates the physical distance along the cylinder

dci to each tile can be computed by

dcit =
√

(| pWC

vtθ
− pWC

miθ
|min r)2 + (pWC

vtz
− pCmiz )2 (4.6)
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assuming that all tiles are on the same cylinder. | pWC

vtθ
− pWC

miθ
|min denotes the

minimal angle difference and r belongs to the radius of the virtual wall. The final

artificial histogram distance d̂hit to the perceived histograms at t is then computed

by

d̂hit =
1− pdf(dcit , µ, σ)∑
n(1− pdf(dcnt , µ, σ))

(4.7)

where
∑

n inter rates over all tiles of the background model. The result of such an

artificial distance function can be seen in Figure 4.12. A similar figure was already

shown in Section 3.5.2 with Figure 3.16 to describe the distance measurement

using a background model of only one row. This artificial distance measurement

can now be used to compare the proposed motion models with different update

parameters.

4.2.5 Resampling

This section tests a particle filter with a closed filter loop by re-sampling parti-

cles using the artificial distance measurement which was introduced in Section

4.2.4. This ideal measurement enables us to show the influence of the following

parameters and options

• particle initialization

• resampling rate

• particle injection

• motion noise

• motion model

on the particle filter, independent of disturbances caused by the colour histogram

distance measurement. The following tests demonstrate the influence of the fol-

lowing parameters

4.2.5.1 Re-sampling Rate

Figure 4.13 shows the importance of resampling by comparing two tests conducted

with one hundred particles initialized to the correct view point location pCv . A

motion noise of α = 0.02 was selected, and performance was measured both with

and without resampling.
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Figure 4.12: This figure shows the robots trained background model m, current

perceived histograms h and the result of an ideal histogram distance measurement

d̂h. Model, perception and distance function are represented with two rows because

the the virtual cylindrical wall around the playing field is composed of to rows. The

distance value has it’s minimum at the tiles corresponding to the current robot view

direction vd as shown in Figure 4.11 which also corresponds with the perceived tiles.

It is important to mention that the distance function here is computed as ideal

distance measurement based on a gaussian distribution around the view direction

intersection with the virtual wall described in (4.5-4.7), it is NOT computed by

comparing the perception with the model. A computed distance measurement will

be shown in Figrue 4.16.

4.2.5.2 Motion Noise

Figure 4.14 shows the impact of motion noise on the motion models presented.

One hundred particles are initialized to the correct view point pCv . Two parti-

cles were resampled after every cycle and no particles were injected. The figure

compares the angular error and variance with a motion noise of α = 0.02 with

α = 0.24
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4.2.5.3 Particle Injection

The purpose of injecting new particles is to help the filter to recover from local

minima or to converge more quickly to the target value. Figure 4.15 compares two

tests conducted, each with one hundred particles, with a motion noise of α = 0.02,

a resample rate of 0.02, and with and without particle injection, respectively. All

particles are uniformly distributed at the beginning of the sequence.

4.2.6 Measurement

All of the aforementioned tests where performed using the artificial ideal distance

measurement dai, but the ideal measurement cannot be applied without external

information about the robot’s pose, e.g. ground truth data from the simulator.

The tests in this section compare the performance of the colour histogram distance

measurements described in Section 3.5.2:

• dai ... An artificial ideal measurement,

• dχ2 ... Quadratic-Chi (χ2) and

• dssd ... SSD

in order to identify any weaknesses. In addition, the influence of using blurred

colour histograms as described in Section 3.4.2 is tested.

4.2.6.1 Colour Histogram Distance Measurement

Figure 4.16 shows a comparison of the three distance measurements. The artificial

ideal measurement has of course only one minimum while the other have multiple

local minima. Hence the figure also shows the effect of blurred histograms.

4.2.6.2 Distance Measurement in Closed Loop

The different performance in a closed filter loop and the gain between the distance

measurements can be seen in Figure 4.17.
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(a) error eCmθ , motion noise α = 0.02
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(b) variance var(pCsθ ), motion noise α = 0.02
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(c) error eCmθ , motion noise α = 0.02
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(d) variance var(pCsθ ), motion noise α = 0.02

FR motion model, around robot
FW motion model. around center/world
FS motion model, static / no motion

N = 100, resample rate → see figure, α = 0.02, injection = off, distance = artificial,

initialized on pCv

Figure 4.13: Influence of motion type, shown first without and then with re-

sampling. The angular error eCmθ and angular variance over all particles var(pCsθ)

increases if there is no resampling because the measurement step cannot influence

the filter shown in (a,b). (c,d) shows the filter with the same parameters but with a

resample rate of 0.02 which means two out of one hundred particles are resampled

using the artificial distance function. The performance gain in accuracy, on the

angular error eCmθ , and the angular variance var(pCsθ) is clearly visible. Still, the

perfomance of the motion model, which moves particles only based on a normal

distribution around on the cylindrical wall, performs badly and not recognizably

better with these resampling parameters and a motion noise of α = 0.02. The

variance corresponding to FS increases due only to motion noise (and exclusive of

motion itself), and is therefore low.
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Motion Noise α = 0.02
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(a) error eCmθ
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(b) variance var(pCsθ )

Motion Noise α = 0.32

500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

time index [cycles]

an
gl

e 
[r

ad
]

(c) error eCmθ
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(d) variance var(pCsθ )

FR motion model, around robot
FW motion model. around center/world
FS motion model, static / no motion

N = 100, resample rate = 0.02, motion noise → see figure, injection = off, distance =

artificial, initialized on pCv

Figure 4.14: Influence of motion noise on motion models. Increasing the motion

noise on models which are based on the robot’s motion causes these models to fail.

On the contrast if the motion model is based on a statistical distribution these

motion models are starting to perform better if the noise parameter reaches a level

to cover the robots motion.

70



4.2 Room-Awareness

Injection off

100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

time index [cycles]

an
gl

e 
[r

ad
]

(a) error eCmθ

100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

time index [cycles]

an
gl

e 
[r

ad
]

(b) variance var(pCsθ )
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(c) error eCmθ
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(d) variance var(pCsθ )

FR motion model, around robot
FW motion model. around center/world
FS motion model, static / no motion

N = 100, resample rate = 0.02, α = 0.02, injection → see figure, distance = artificial,

initialized = uniform

Figure 4.15: Influence of particle injection on converging to the target value

starting with an uniform distribution. This figure (c,d) shows the performance

gain within the first cycles when particle injection is performed. A single particle

got injected after every measurement cycle on the best measured position. This

leads to a faster converging rate but also to a wider variance.
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Figure 4.16: This figure shows three colour histogram distance measurements

with and without blurred input data. The top two rows show a trained background

model composed of colour histograms related to a virtual wall with two rows and

twenty-six columns. Rows three and four are the current perceived histograms

drawn on the correct location because of the exiting ground truth data. Rows

five and six show the results of the three distance functions presented, with and

without blurred image data. First, we can see that both strategies dχ2 and dssd

produce similar results. The dχ2 distance produced a slightly smoother output and

the blurred color histograms amplify the maximum values more than minima with

dχ2 and dssd. Of course the blurring has no effect on dai.
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(a) eCmθ , left and its variance, right. N = 100, resample rate = 0.02, α = 0.02, injection

= on, initialized = uniform, motion = FR
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(b) eCmθ , left and its variance, right. N = 100, resample rate = 0.02, α = 0.08, injection

= off, initialized = uniform, motion = FS

dai ... An artificial ideal measurement
dχ2 ... Quadratic-Chi
dssd ... SSD
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dχ2 ... Quadratic-Chi
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Figure 4.17: This figure shows background particle filter performance using the

proposed distance measurements in two filter configurations with a static motion

model FS and a robot-center-based motion model FR. The performance gain of the

Quadratic-Chi (χ2) distnace is clearly visible in both configurations, especially after

initialization with a uniform distribution. On the contrary the desired performance

gain via histogram blurring is not visible. Blurring the histogram causes the system

to perform not as well as without the histogram blur.
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4.3 Spontaneous Reorientation

This section observes the overall system performance on a real and simulated

robot with an integrated visual room-awareness. Two test scenarios were con-

ducted to measure the improvement over a system without a room-awareness

module. For both tests the robot was placed on the default soccer start posi-

tion next to the playing field but the particle-filter-based self-localization was

initialized with the incorrect rotational symmetric pose and switched sides after

half of the trials. Based on the results of the experiments before the system was

configured with a motion alpha of 0.02 and a resample rate of 0.02 with active

injection. The distance measurement was set to dssd and the motion model which

FR was used. A system which uses only a symmetric playing field for localization

converges only coincidentally to the correct pose and normally fails. In the first

test the robot was only allowed to move its head. In the second test the robot

had to walk from one penalty position to the other and vice versa, based on its

own localization. During the first round of tests, the self-localization injected new

particles if a goal was detected. In the second round of tests, new injections were

allowed only if the room-awareness module indicated clear confidence values to

identify which goal had been detected. During all of the trials, the time it took for

the BC to trigger a control command to optimize or correct the self-localization’s

particle distribution was measured. For both the simulation and the real robot,

Table 4.1: Timings and rates until a reorientation command was executed.

Robot Test Goal trails flip purge failed

S
im

u
la

ti
o
n

h
ea

d
o
n

ly unknown
20 trials 70% 15% 15%

18.1 sec 12.9 sec 57.5 sec > 200 sec

known
20 trials 80% 10% 10%

22.1 sec 16.0 sec 42.0 sec > 200 sec

m
o
v
in

g unknown
10 trials 80% 20% 0%

20.2 sec 17.1 sec 34.5 sec > 200 sec

known
10 trials 80% 20% 0%

27.0 sec 19.6 sec 56.5 sec > 200 sec

R
ea

l
R

o
b

o
t

h
ea

d
o
n

ly unknown
20 trials 90% 0% 10%

23.1 sec 23.1 sec - sec > 200 sec

known
20 trials 65% 25% 10%

34.3 sec 23.1 sec 63.4 sec > 200 sec

m
o
v
in

g unknown
10 trials 100% 0% 0%

33.5 sec 33.5 sec - > 200 sec

known
10 trials 50% 40% 10%

45.4 sec 37.2 sec 55.7 sec > 200 sec
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Figure 4.18: This chart shows the selected command in different test scenarios,

related to Table 4.1. One can see the increase of purges when the goal was identified

using the goal confidence values.

the same room-awareness parameters were used to generate comparable results.

One can see in Table 4.1 that the system tends to fail in up to 15% of the trials if

the robot is not moving. This happens because the background is trained online

and the wrong background is assumed as correct after a certain period of time.

In Fig. 4.19 we can see two ways in which the BC corrects the self-localization’s

particle distribution. If the particles are on the wrong pose, the system triggers a

flip. A purge is called for if the filter accidentally forms a correct growing particle

cluster. Since clusters are primarily the result of new injected particles, and the

system only creates new particles if a goal has been seen, the tests with goal con-

fidences differ from those without. Without any indication of which goal has been

perceived, the system injects poses which might be rotational-symmetrically in-

correct. The room-awareness module identifies goal views and the system is able

to inject a most likely hypothesis. We can see this effect in Fig. 4.18 because the

BC triggered a purge more often, indicating that the self-localisation was able

to recover the correct pose on its own and the purge cleared possible incorrect

clusters. The Table 4.1 also shows that if a purge was the selected signal, the time

it took for this signal to be triggered was significantly longer. This was caused

by the self-localization because the estimated pose starts to jump if there are

75



4. EXPERIMENTS

robot

(a) All particles of the self-localization

are on the incorrect pose.

robot

(b) Most particles of the self-

localization are on the correct pose.

measurement

(c) A flip solved the problem, of an in-

correct pose, recorded on a real robot.

measurement

(d) A purge optimized the distribution,

recorded on a simulated robot.

Figure 4.19: Two instances observed to optimize the particle distribution after

an incorrect initialization.

two or more nearly equally-sized clusters. In general, smoother confidence values

were experienced with the real robot than with the simulated one, as visible in

Fig. 4.19(c), due to the image being noisier and smoother. Overall, the proposed

room-awareness module improves an existing self-localization algorithm.

4.4 Summary

This chapter presented experiments and results on the room-awareness system

developed. First the reader was introduced to the robot hardware and the en-

vironment used, followed by an extensive comparison of the possible system im-
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plementation variations presented in Chapter 3. Lastly, an overall gain in per-

formance to a system without room-awareness was demonstrated on a real and

simulated robot. It showed clearly that the new proposed method enhances a

robot’s self-localization capabilities in rotationally-symmetric environments, but

it also demonstrated that the system parameters are important and must be se-

lected with care. The conclusion of this chapter is that one has to run experiments

to identify a suitable configuration. The final configuration used for integration

may not be the optional configuration in terms of performance, but as stated in

Section 3.7, in most cases the robot’s self-localization task is not the robot’s only

task and one has to find a balance in order to share the computational power with

other modules. For our test platform, this meant using the SSD instead of the

Quadratic-Chi (χ2) distance for the colour histogram matching in order to save

computational power, even though the χ2 distance would have produced better

results.
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Conclusion

In this PhD thesis a psychologically-inspired room-awareness module was pre-

sented, which mimics a human-like belief in current pose and triggers a so-called

spontaneous reorientation to solve pose ambiguities in symmetric environments

for mobile robots. Experiments with a humanoid robot in a rotationally sym-

metric environment proved the effectiveness of room-awareness in recognising an

incorrectly-estimated pose by mapping the surrounding environment with colour

histograms.

In addition, an optimized particle distribution within the particle-filter-based

self-localization was achieved. The optimization was realized by allowing the

Behaviour Controller (BC) to interfere with the self-localization module to se-

lectively move pose beliefs (particle clusters) between pose ambiguities in ro-

tationally symmetric environments. The BC’s decision to interfere is based on

confidence values for a pose ambiguity computed by the room-awareness module.

The room-awareness module was also able to directly support the self-localization

module using the visual background to generate new correct pose beliefs (i.e. par-

ticle injection) in order to break an environment’s symmetry.

5.1 Discussion

The test environment used, a RoboCup Standard Platform League (SPL) playing

field and the humanoid NAO robots, demonstrated the practical advantage of a

system with spontaneous reorientation in estimating a robot’s pose capability,

as compared to a system without such a capability. The advantage lies within
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the structural knowledge of a symmetric environment’s reuse of local information

gathered from estimations at pose ambiguities. This fundamental idea is not lim-

ited to the RoboCup domain a context for application; man-made environments

pose similar self-localization challenges, as most rooms and buildings are sym-

metric or partially symmetric and can be analysed offline to identify pose ambi-

guity. These pose ambiguities can then be used together with the proposed room-

awareness module to identify incorrect pose estimations and to prevent the sys-

tem from failing. Clearly, the underlying features used within the room-awareness

module to compute confidence values for pose ambiguities must be adapted to

suit each environment. The approach presented here uses colour histograms, but

depending on the computational power, one could concievably use more sophisti-

cated features, such image descriptors or even a more advanced scene description

language. The beauty of the room-awareness approach lies within its indepen-

dence from self-localization. The goal of self-localization is to determine the pose

of the robot, from all possible poses, in contrast to the room-awareness module,

which has to deliver confidence values only for pose ambiguities to a higher level

BC, which then selects appropriate actions. Therefore, one can use features for

the room-awareness which are not practicable for classical self-localization ap-

proaches, e.g. the colour histograms proposed here, because the information gain

per measurement cycle is too low to influence the self-localization’s pose beliefs

(particles), while at the same time being large enough to establish confidence

values for a few pose ambiguities over time. One could also consider features

with a high information gain per measurement, which would influence the self-

localization’s pose beliefs in such a way that the pose beliefs would de-converge

due a single false positive measurement.

5.2 Open Research Work

Possible further research could be, on the one hand, to extend the basic idea

of room-awareness by using other filter techniques or better features than the

proposed colour histograms, such as whole-detected objects or image gradients,

but then the model training would have to be expanded and adapted. The average

strategy used here for training the background model proved sufficient for this test

platform, but was not investigated in detail. Applying other training methods to

the proposed colour histogram model could increase the reliability of this specific
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system, but at an increase to computational costs. One could also remove parts of

the trained model when the robot realizes that it has trained something observed

from an incorrect pose. It is noteworthy to mention that for the room-awareness

approach presented here, the following two key aspects need to be considered if

it is adopted, e.g. new features or different training methods:

• The existence of spontaneous reorientation,

• local pose information must be kept after a reorientation has been per-

formed.

All of the underlying techniques presented in this PhD thesis can be replaced and

eventually must be replaced in order to establish a working system in a different

environment.
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