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1 Deutsche Kurzfassung

Das Falicov-Kimball-Modell ist eines der einfachsten Modelle für Elektronen, das Phasenübergänge
in Gittersystemen beschreibt. Es wurde eingeführt, um Metall-Halbleiter Übergänge theoretisch
zu beschreiben [1]. Die Elektronen werden auf diskreten Gitterplätzen behandelt und in zwei
Typen von Elektronen unterteilt, leichte, mobile Bandelektronen, oft auch als c-Elektronen be-
zeichnet und immobile f -Elektronen, welche stark an die Atomkerne des Gitters gebunden sind
und daher nicht in der Lage sind, sich durch das System zu bewegen. Die Wechselwirkung zwis-
chen den verschiedenen Arten von Elektronen wird im Modell in Form eines Wechselwirkungspa-
rameters U behandelt, der die zusätzliche Energie angibt, die das System hat, wenn ein c und
ein f -Elektron sich am selben Gitterplatz aufhalten. Der Hopping-Parameter t beschreibt die
Mobilität der Bandelektronen. Dabei handelt es sich im Wesentlichen um die Übergangsampli-
tude für c-Elektronen zwischen benachbarten Gitterplätzen. Während das Verhalten der meisten
wechselwirkenden quantenmechanischen Modelle entweder trivial oder extrem kompliziert ist,
kann das Falicov-Kimball Modell teilweise analytisch behandelt werden, zeigt aber selbst dann
noch eine nichttriviale Dynamik.
Das Ziel dieser Diplomarbeit war eine theoretische Behandlung des Falicov-Kimball Modells,
welche über eine reine Molekularfeldnäherung hinausgeht. Dazu wurden auf Basis von Re-
sultaten der dynamischen Molekularfeldtheorie Zweiteilchengrößen, sogenannte Vertexfunktio-
nen, berechnet. Neben dem vollen Vertex, der die totale Streuamplitude zweier Elektronen
beschreibt, konnte auch eine Zerlegung dieser Streuprozesse nach der topologischen Struktur
vorgenommen werden, um irreduzible Vertices zu gewinnen. Diese wurden wiederum zur Berech-
nung von nicht-lokalen Suszeptibilitäten verwendet. Speziell die Ladungs-Ladungs Suszepti-
bilität beschreibt einen Phasenübergang des Systems von einer ungeordneten Phase in eine
”Schachbrett”-Ordnung, bei der abwechselnd c- und f -Elektronen auf einem kubischen Gitter
verteilt sind.
Zusätzlich wurde die one-particle-irreducible (1PI) Methode auf das Falicov-Kimball ange-
wandt, um nichtlokale Korrelationen und Selbstenergien zu berechnen. Der Vorteil der Methode
liegt, im Gegensatz zu anderen Erweiterungen der DMFT, in der kontrollierten Behandlung der
Aufteilung zwischen lokaler und nichtlokaler Dynamik, so dass die Ergebnisse der dynamischen
Molekularfeldtheorie als Basis für 1PI Rechnungen verwendet werden können. Es war möglich
geschlossene Ausdrücke auch für die Vertices der 1PI-Fermionen zu gewinnen und dadurch
die Selbstenergiekorrekturen in der 1PI-Theorie zu berechnen. Viele der Ergebnisse konnten
ohne numerische Rechnungen, also auf rein anaylytischem Wege, gewonnen werden. Neben
den Einsichten zum Falicov-Kimball-Modell können so auch die Eigenschaften der verwendeten
Methoden besser verstanden werden.
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2 Introduction

The Falicov-Kimball model is one of the simplest models for electron systems where correla-
tion effects can be observed. It was first introduced by Falicov and Kimball [1] to describe
semiconductor-metal transitions. The idea was to have two types of electrons, tightly bound
ones and moveable band electrons. The Coulomb repulsion between the two different types
of electrons is treated in the model, while there is no interaction between the band electrons;
the Falicov-Kimball model can be treated as an effective one-particle model for the itinerant
electrons. In contrast to the similar Hubbard model [2], the behaviour of the mobile electrons
in the Falicov-Kimball model can be predicted qualitatively, which is a consequence of the sim-
ple one-particle structure. Anyhow, there are correlations between the two types of electrons,
indirectly leading to correlations between band electrons just as well. Such correlation effects
make an analytical or numerical treatment of this system very difficult, since static mean-field
like methods, like Density Functional Theory cannot describe the relevant physics. In this re-
spect, dynamical mean field theory (DMFT) is a big step forward for its capability of describing
correlations which are purely local in space, yet not necessarily in time. DMFT achieves this
feat by regarding an impurity site with the full local interaction, instead of the whole lattice.
The effect of the lattice is included as a hopping-reservoir from where electrons can hop to the
impurity site and back into the bath. Analytical results for applying Dynamical Mean Field
Theory to the Falicov-Kimball model in infinite dimensions exist [3], but they cannot describe
spatial correlations. The focus of this thesis was hence to extend the DMFT by including non-
local correlations through diagrammatic techniques, based on local quantities extracted from
the DMFT calculations. Examples for such methods are the dynamical vertex approximation
(DΓA), the Dual-Fermion theory (DF) and the one-particle irreducible approach (1PI). While
DMFT assumes the locality of a one-particle object, the self-energy Σ, the DΓA, DF and 1PI
methods are based on two-particle vertices. Thus the approximation is made at a much deeper
level, including purely local correlations between two electrons. In contrast to DMFT, which
uses the same self-energy for all electrons when returning from the impurity problem to the
lattice problem, the vertex-based methods include two-particle objects in their description of
the lattice as well. Anyhow, even DΓA and similar approximations are not expected to describe
the checkerboard-ordered phase of the Falicov Kimball model, which occurs at low tempera-
tures [4], as the lattice is not homogeneous any more. To treat the model in this regime, the
symmetry breaking has to be introduced manually into the calculation, necessitating either a
symmetry-broken calculation or the use of cluster extensions of the impurity for the mean-field
theory.
Since the Falicov-Kimball can be treated analytically in some respects, the obtained results are
analytical as well, allowing for easier interpretation and comparison with numerical results for
similar models, for example the Hubbard model. The thesis is organized as follows: First a
discussion of general features of the Falicov-Kimball model will be given, before discussing the
applicability and results of perturbation theory as well. Then, the results of DMFT calculations
are presented, being used later on as basis for the calculation of vertices and derived quanti-
ties. Those vertices are employed for the calculation of physical susceptibilities and as building
blocks for a one-particle-irreducible treatment of the Falicov-Kimball system. The obtained
two-particle objects are also used for a 1PI-treatment of the Falicov-Kimball model, a method
which allows for a controlled inclusion of calculated local quantities into the description of the
full lattice.
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3 The Falicov-Kimball model

The Hamilton operator for the Falicov-Kimball model is as follows:

HFC = −t
∑
〈i,j〉

c†icj + εf
∑
i

f †i fi + U
∑
i

f †i fic
†
ici − µ

∑
i

(f †i fi + c†ici). (1)

Where the sums over i are performed over all lattice sites and the indices 〈i, j〉 go over all
pairs of nearest neighbours. The chemical potential µ is assumed to be equal for all electrons,
but possible deviations can be absorbed into the value of εf . Nearest-neighbour hopping only is
assumed, with the hopping amplitude t defining the bare dispersion relation. Extensions beyond
nearest-neighbour hopping are possible without introducing further complications. The on-site
energy for localized electrons is given by εf , while a possible on-site energy for band electrons

can be absorbed in the chemical potential. The c
(†)
i and f

(†)
i operators are the creation and

annihilation operators at the lattice site i for localized and itinerant electrons, respectively; U
is the Coulomb interaction between them. The model was proposed by Falicov and Kimball in
1969 for a description of metal-insulator transitions. The system is much simpler to treat than
the Hubbard model, as the c-electrons do not interact with each other and the f -electrons cannot
move. For these reasons, exact eigenstates could, in principle, be calculated by distributing the
f -electrons and then solving the effective one-particle problem for the itinerant electrons. An
important consequence is that actual many-electron eigenstates can be written as a single Slater
determinant. Thus, the Falicov-Kimball model is an example of a disorder model, not a fully
interacting model.
While the construction of eigenstates is straightforward, a full diagonalization for a given lattice
is not feasible. For a lattice with N distinct sites, there are 2N distinct configurations of f
electrons. For each of these configurations, the resulting N ×N matrix for the c-electrons would
have to be diagonalized to get all the eigenstates of the resulting Hamilton operator for the c-
electrons. Those c-Eigenstates can have Eigenvalues in the ranges 0±nnnt and U±nnnt only, with
nnn being the number of nearest neighbours a lattice site has. Any way, some analytic results
for the Falicov-Kimball model exist. In the limit of infinite dimensions, dynamical mean field
theory was successfully applied, yielding Green’s functions for both c and f electrons [3]. The
System is known to condense into periodic configurations of f -electrons at low temperatures [5],
specifically into checkerboard-ordering at half-filling and in two [4] or three dimensions (see 5.4).
When U is very small, perturbation theory can be used to approximate the solutions for the
Falicov-Kimball model. A perturbative treatment of 1-particle states and energies for small
values of t breaks down at the choice of a basis to perform the perturbation theory in, as there
are abundant degenerate eigenstates, at least away from half-filling, but can be performed for
the self-energy [6]. Within the degenerate subspaces, the eigenstates for the U -only part of the
Hamilton operator would have to be orthogonalized under the hopping part of the Hamilton
operator, for the perturbation theory to have any meaningful results.

3.1 Perturbation theory in the case of small U

If U is assumed to be small compared to t, perturbation theory can be used to calculate the
behaviour of the system. The ~k-eigenstates are used as a starting point, as the kinetic part of the
Hamilton operator is diagonal in this basis. For performing the perturbation theory calculations,
k and j are used as symbols to denote vectors in the reciprocal and real space, respectively. In
this section, i is not used as index for lattice sites since it is needed as imaginary unit. The
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creation and annihilation operators in the k basis are defined as:

c†k =
1√
N

∑
j

c†je
ikj (2a)

ck =
1√
N

∑
j

cje
−ikj (2b)

With the summations being performed over all lattice sites, N being the total number of lattice
sites and kj the inner product between k and j. Rewriting the Hamiltonian (1) into the new
basis gives:

HkFC =
∑
k

(εk − µ)c†kck + εf
∑
j

f †j fj + U
∑
j,k,k′

1

N
f †j fjc

†
kck′e

i(k′−k)j − µ
∑
j

f †j fj . (3)

Here, εk, the energy of k-eigenstates was introduced. In the case of nearest-neighbour-hopping
only, εk is given by:

εk = −2t
D∑
i=1

cos(ki). (4)

If f †j fj is considered to be just a position-dependent number nfj which can be either 0 or 1,
depending on whether the site i is occupied by a f -electron, with no spatial correlations, it
is possible to calculate expectation values for the energy corrections by applying perturbation
theory on a single-electron level, as there is no interaction between the itinerant electrons. The
first order energy correction becomes:

ε
(1)
k = 〈〈0c|ckU

∑
j,k′,k′′

1

N
nfj c
†
k′ck′′e

i(k′′−k′)jc†k|0c〉〉f . (5)

Here, |0c〉 is the vacuum state with respect to the c-electrons. The influence of the f electrons is

included in nfj and 〈〉f , the mean value over all configurations of f -electrons. Explicit evaluation
gives:

ε
(1)
k = U〈

∑
j

1

N
nfj 〉f . (6)

It is convenient to introduce the probability of an arbitrary lattice site being occupied by an
f -electron as

p1 = 〈
∑
j

1

N
nfj 〉f . (7)

ε
(1)
k can then be expressed as:

ε
(1)
k = Up1 (8)

To perform a second order perturbation theory calculation, it would be necessary to orthogonal-
ize all degenerate states for a given energy under the perturbation part of the Hamilton operator.
As the system size increases, the number of degenerate states becomes small compared to the
total number of states. Hence, their relative importance for the energy corrections decreases.
For this reason, the orthogonalization has been neglected, which is a good approximation for
sufficiently large systems. The corrections become:

ε
(2)
k = 〈

∑
k′ 6=k
|〈0c|ckU

∑
j,k′′,k′′′

1

N
nfj c
†
k′ck′′e

i(k′′′−k′′)jc†k′ |0c〉|
2 1

εk − εk′
〉f (9)
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ε
(2)
k = 〈

∑
k′ 6=k
|U
∑
j

1

N
nfj e

i(k−k′)j |2 1

εk − εk′
〉f (10)

To evaluate 〈〉f acting on the sum, let us consider nfj
2

= nfj . This is obviously true since nfj is
either 0 or 1. One can then write ∑

j

nfj :=
∑
j

nfj
2

(11)

For the expectation value 〈〉f of the equation, by using eq. (7) to rewrite the left hand side and

introducing the Fourier series representations for nfj :

nfk =
∑
j

nfj e
−ikj 1√

N
(12)

nfj =
∑
k

nfke
ikj 1√

N
(13)

One arrives at:

p1N = 〈
∑
j,k,k′

nfkn
f
k′e

i(k+k′)j 1

N
〉f (14)

Performing the summation over j, one gets δk,−k′N from the oscillatory phase.

p1N = 〈
∑
k

nfkn
f
−k〉f (15)

Since nfj is a real function, nf−k is the conjugate complex of nfk and nfkn
f
−k = |nfk |

2
. Thus the

expectation value of the sum of all |nfk |
2

is known. The second order energy corrections in

perturbation theory contain a sum over all |nfk |
2

, except for k = 0. While an approximation

〈|nfk |
2
〉f ≈ p1 might seem tempting, when regarding equation (15) and considering there are

N summands in the right hand side, not all values of 〈|nfk |
2
〉f are equal. Specifically, |nfk=0| is

different from the others. This is a consequence of nfj being either 0 or 1 and thus introducing

a positive bias. Calculating 〈|nfk=0|
2
〉f gives:

nfk=0

2
=
∑
j,l

nfj n
f
l

1

N
(16)

This sum can be decomposed into a part where j = l and the rest.

nfk=0

2
=
∑
j

nfj n
f
j

1

N
+
∑
j 6=l

nfj n
f
l

1

N
(17)

The expectation value of nfk=0

2
can be calculated analytically, if the nfj are assumed to be

independent of each other, which they are in the original eigenbasis when U = 0. The first
summand can then be expressed using (7).

〈nfk=0

2
〉f = p1 + 〈

∑
j 6=l

nfj n
f
l

1

N
〉f (18)
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For the second summand, there are N possible values for j and N − 1 possible values for l for
each j. The term in the sum becomes 1 only if nfj = nfl = 1, for which the probability is p1

2.

〈nfk=0

2
〉f = p1 + (N − 1)p1

2 = Np1
2 + p1(1− p1) (19)

It is convenient to introduce p2 = 1−p1, the probability of a given lattice site not being occupied
by an f electron. Subtracting this term from eq. (15) yields

〈
∑
k 6=0

nfkn
f
−k〉f = Np1 −Np1

2 − p1p2 = (N − 1)p1p2 (20)

Thus each of the N − 1 summands on the left side can be approximated as p1p2 if the mean
value over all possible configurations of f -electrons is taken. When inserted into eq. (10) one
gets:

ε
(2)
k = U2p1p2

∑
k′ 6=k

1

εk − εk′
(21)

These results can be used to predict the behaviour of the real part of the self-energy Σ in the
DMFT calculation when U is small, or equivalently, p1 is small. They can also be applied if p2 is
small, which can be easily seen by replacing f †i fi with 1−fif †i in the original Hamilton operator,
in which case the perturbation theory starts from the system filled with stationary electrons
where Σ = U . From the results of perturbation theory, Σ is expected to be ≈ p1U +p1p2U

2f(ω)
to leading order in p1 and U , with f(ω) being a function depending on the frequency ω. It is
also evident, that for the particle-hole symmetric case, there are no real corrections in second
order perturbation theory if εk = 0 as a counter-term with opposite sign exists for every term
in the sum. Additionally, Energies that are situated at edges of the original band are pushed
outwards: if εk > εk′ , then all the summands are positive, while εk < εk′ leads to all terms being
negative. This is consistent with a beginning separation of Hubbard bands.

3.2 Derivation of the c-electron Green’s function

In this section, some analytic results for the one-particle Green’s function of the c electrons is
to be derived. We start from the definition of the one-particle imaginary-time Green’s function
for itinerant electrons:

Gcj,i(τ) = 〈(cj(τ) c†i )Θ(τ)− (c†i cj(τ))Θ(−τ)〉 (22)

Here, Θ is the step function and the brackets 〈〉 denote teh calculation of a (thermal) mean
value, including, but not being restricted to 〈〉f . This object describes the propagation of
electrons through the system. The imaginary-time Green’s function has the advantage of being
anti-periodic in the variable τ with a anti-periodicity length of 1/β. This causes only discrete
frequencies to appear in its Fourier transform, the so-called fermionic Matsubara frequencies

νn = (2n+ 1)
π

β
(23)

Differentiation of the Green’s function with respect to the imaginary time variable yields:

d

dτ
Gcj,i(τ) = 〈( d

dτ
cj(τ) c†i )Θ(τ)− (c†i

d

dτ
cj(τ))Θ(−τ) + (cj c

†
i + c†i cj)δ(τ)〉, (24)

the equation of motion for the one-particle Green’s function. The imaginary time-derivative of
cj(τ) is [cj(τ),H], while (cj c

†
i + c†i cj) = δi,j . The commutator [cj(τ),H] can be evaluated with

8



relative ease. The total expression for the derivative becomes:

d

dτ
Gcj,i(τ) = 〈(−t

∑
〈l〉

cl(τ) + Uf †j (τ)fj(τ)cj(τ)− µcj(τ))c†iΘ(τ)−

c†i (−t
∑
〈l〉

cl(τ) + Uf †j (τ)fj(τ)cj(τ)− µcj(τ))Θ(−τ) + δi,jδ(τ)〉 (25)

Here, the sum over l includes all lattices sites which are neighbours to the site with index j.
The equation can be expressed in terms of Green’s functions:

d

dτ
Gcj,i(τ) = −t

∑
〈l〉

Gcl,i(τ)− µGcj,i(τ) + UGfcj,j,j,i(τ, τ, τ) + δi,jδ(τ) (26)

Where the (mixed) two-particle Green’s function,

Gfci,j,k,l(τ1, τ2, τ3) = 〈f †i (τ1)fj(τ2)c†k(τ3)cl(τ4)〉, (27)

has been introduced. This equation is considered once for the on-site Green’s function with
i = j, Gon−site, and once for a nearest-neighbour Green’s function, Gnn, assuming that the
mixed two-particle Green’s function Gfcj,j,j,i(τ, τ, τ) is just p1 · Gcj,i(τ) when the thermal mean
value is calculated. The discussion should provide a scaling law when going to infinite dimensions
or, equivalently, numbers of nearest neighbours (also called coordination numbers).

d

dτ
Gcon−site(τ) = −t

∑
〈l〉

Gcnn(τ)− µGcon−site(τ) + Up1G
c
on−site(τ) + δ(τ) (28)

d

dτ
Gcnn(τ) = −t

∑
〈l′〉

Gcnnn(τ)− tGcon−site(τ)− µGcnn(τ) + Up1G
c
nn(τ) (29)

Now, the summation over l′ includes all the neighbours to the lattice site j, apart from i, thus
including next-nearest-neighbour (nnn) sites, with according Green’s functions, Gnnn, to i and
i itself. The summand which results in a on-site Green’s function is treated separately. For
Gon−site to have an effect on the time evolution in eq. (29), without dominating it completely,
tGon−site has to be of the order of magnitude of (µ − p1U)Gnn. If µ − U is assumed to be of
order 1, Gnn has to be ∼ tGon−site. Knowing this and regarding eq. (28), there are Nnn,with
Nnn being the coordination number, nearest-neighbour Green’s functions, which are added for
the time evolution of Gon−site. Then NnntGnn has to be of the order of magnitude of Gon−site.
From this, one can see that t2Nnn has to be of the order of 1, which provides the scaling of t
with Nnn.

tNnn =
t0√
Nnn

(30)

The hopping amplitude has to be scaled with the number of neighbours to make sure results
with different numbers of neighbours are comparable [7]. tNnn is the hopping amplitude when
there are Nnn nearest neighbours, with t0 being a constant.

3.3 Ordering of the non-interacting Falicov-Kimball model

Due to the antisymmetric nature of fermionic wave functions, the Pauli exclusion principle,
fermionic systems show non-vanishing correlations even when they are non-interacting (bosonic
systems also show correlations, even tough they are symmetric instead of antisymmetric). These
correlations are usually called exchange correlations and not considered to be ”true correlations”.
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In the following, the explicit expressions for the charge-charge correlation function for c-electrons
at zero temperature and half-filling are calculated for the one- and two-dimensional Falicov-
Kimball model. This shows that the tendency of the Falicov-Kimball model for checkerboard-
ordering is an effect of the band-structure. While the repulsion between c- and f -electrons drives
the system towards localization and ordering, the band structure accounts for the specific choice
of ordering. The object that needs to be investigated is the charge-charge correlation function,

χCC(∆) = 〈c†jcjc
†
j+∆cj+∆〉 − 〈c†jcj〉〈c

†
j+∆cj+∆〉, (31)

where c
(†)
j are again the creation and annihilation operators for band electrons at the site labelled

j, ∆ is a distance between two sites here and 〈〉 denotes the calculation of an expectation value.
So far, no assumptions on the dimensionality of the problem were made. Since the model shows
translational invariance, the correlation function was assumed to depend on the distance between
the two sites only and not on their explicit positions. It is now possible to write the creation
and annihilation operators in terms of Fourier-transformed creation and annihilation operators,
using the relations (see also eq (2) )

c†j =
1√
N

∑
k

e−ikjc†k (32a)

cj =
1√
N

∑
k

eikjck. (32b)

χCC then takes the form

χCC(∆) =
1

N2
〈
∑

k1,k2,k3,k4

ei(k4−k3+k2−k1)jei(k4−k3)∆c†k1
ck2c

†
k3
ck4〉−

1

N2
〈
∑
k1,k2

ei(k2−k1)jc†k1
ck2〉〈

∑
k1,k2

ei(k2−k1)(j+∆)c†k1
ck2〉. (33)

At zero temperature, the occupation of each state is known to be 0 if the states energy is larger
than the chemical potential and 1 if it is smaller. This allows for an easy calculation of the
correlation function by Wick’s theorem. For the two expectation values containing only one
creation and annihilation operator each, this is trivial, yielding

〈c†k1
ck2〉 = δk1,k2Θ(−εk1). (34)

Here, δ is the Kronecker-delta, Θ is the step-function and εk being the k-dependent band-electron
energy. The chemical potential is zero at the desired half-filling. For the term containing four
creation and annihilation operators, more than one pairing is possible. In total, two cases have
to be considered:

〈c†k1
ck2c

†
k3
ck4〉 = δk1,k2Θ(−εk1)δk3,k4Θ(−εk3) + δk1,k4Θ(−εk1)δk3,k2Θ(+εk3) (35)

Note the sign in the step function for the exchange term, originating from the ordering of the
operators. Inserting these expressions into the original expression for χCC yields:

χCC(∆) =
1

N2

∑
k1,k3

Θ(−εk1)Θ(−εk3) +
1

N2

∑
k1,k3

ei(k1−k3)∆Θ(−εk1)Θ(+εk3)−

1

N2

∑
k1

Θ(−εk1)
∑
k1

Θ(−εk1) (36)

10



Since the first sum factorizes and is, up to a sign, equal to the last one, they cancel each other.
Hence, only the term

1

N2

∑
k1,k3

ei(k1−k3)∆Θ(−εk1)Θ(+εk3) (37)

has to be considered. The cancelling and vanishing due to scaling are not specific to the choice
of dispersion relation and chemical potential, but hold for general non-interacting fermionic
systems. The remaining term will be calculated analytically in 1 and 2 dimensions. While
functions, which have their Fourier transform’s amplitudes clustered around 0 are expected to
”cluster”, in the sense that if the amplitude of the function at a certain position in real space
is known, that the (real-space) amplitudes in the region are expected to be similar, the sign
in the fermionic exchange term actually pushes other electrons away, even more than might be
expected by Pauli’s principle alone.

3.3.1 Ordering in the one-dimensional system

The charge-charge correlation function in one dimension is easily calculated if the summation in

1

N2

∑
k1,k3

ei(k1−k3)∆Θ(−εk1)Θ(+εk3) (38)

is replaced by an integration, thus yielding

1

N2

∫
dk1dk3

N2

(2π)2
ei(k1−k3)∆Θ(−εk1)Θ(+εk3). (39)

If we consider a dispersion relation where the k-states between ±π/2 are filled at zero temper-

ature, Θ(−εk) restricts the integration to the area where |k| < π

2
or |k| > π

2
for k1 and k2

respectively, resulting in the expression

χ1D
CC(∆) =

1

(2π)2

(∫ π/2

−π/2
dk1e

ik1∆

)(∫ 3π/2

π/2
dk3e

−ik3∆

)
(40)

χ1D
CC(∆) =

(
sin(∆π/2)

∆π

)2

(−1)∆ (41)

One might argue that the factor (−1)∆ can be replaced by −1 since sin(∆π/2) only con-
tributes for uneven values of ∆. This is correct everywhere, except when the limes ∆ → 0 is
taken and the correlation function suddenly becomes positive. The result implies that an elec-
tron displaces nearest neighbouring electrons, third-nearest neighbouring electrons and other
uneven-numbered-nearest-neighboured electrons, but does not affect even-numbered ones, since
sin(∆π/2) becomes 0 for even values of ∆. χCC is also associated with the exchange-hole induced
by any given electron. The exchange hole gives the difference between the probability of finding
an electron at a position and finding an electron at the same position, under the assumption
that another electron is found at a given relative position. Up to a factor 1/2, χCC and the
exchange hole are equal for all values of ∆ 6= 0. χCC is smaller by a factor 1/2 because it does
not assume a-priori that an electron is found and for half-filling the probability of finding an
electron at any site is 1/2. The value of the exchange hole is −1/2 for ∆ = 0 as two electrons
cannot occupy the same state. When performing a summation over the exchange hole over all
sites in the limit of a large system:

∑
∆ 6=0

−2

(
sin(∆π/2)

∆π

)2

− 1

2
= −4

1

π2

∞∑
n=0

1

(2n+ 1)2
− 1

2
= −1, (42)
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the total electron-deficit in the rest of the system becomes 1. Below, the influence on the electron
density caused by the exchange hole is plotted.

Figure 1: effect of the exchange hole on the
probability of finding an electron

Figure 2: enlarged version of figure 1, show-
ing unaffected sites

In figure 1 and 2, one can see how a localized electron displaces other ones. The dashed
line gives the unperturbed probability of finding an electron at any site, i.e. 1/2. The full
line shows the behaviour of the exchange-hole function, including non-integer values of ∆. The
chain-dotted line is a representation of the auxiliary probability function Faux(∆),

Faux(∆) =
1

2
− 1

(π∆)2
, (43)

which gives the same probability as the exchange hole for finding an electron at uneven-numbered
neighbours. The dots emphasize the values of the probability for integer values of ∆, where
lattice sites are located.

3.3.2 Ordering in the two-dimensional system

For the two-dimensional system, the non-interacting correlation function is calculated similarly
to the one dimensional case. The k-summation is again replaced by an integral,

1

N2

∫
d2k1d

2k3
N2

(2π)4
ei(k1−k3)∆Θ(−εk1)Θ(+εk3), (44)

where k1, k3 and ∆ are now vectors. The integrals over k1 and k3 now factorize and will be
investigated in the following. First the k1-integration is considered:∫

d2k1e
ik1∆Θ(−εk1) (45)

The Fermi-surface, actually Fermi-line, of a half-filled, nearest-neighbour-hopping model in two
dimensions is a square whose corners lie on the centres of the edges of the Brillouin-zone, as
seen in figure 3.

12



Figure 3: The filled region in the Brillouin zone for a two dimensional system with nearest
neighbour Hopping on a square lattice at half-filling

The integration is now explicitly written as∫ 0

−π
dkxe

ikx∆x

∫ π+kx

−kx−π
dkye

iky∆y +

∫ π

0
dkxe

ikx∆x

∫ π−kx

kx−π
dkye

iky∆y , (46)

where k and ∆ have been split into their components. One can see that for each point (kx, ky)
included in the first integral in the above expression, (−kx,−ky) is included in the second. This
is equivalent to a complex conjugation of the integrand exp(i(kx∆x + ky∆y)). Thus, two times
the real part of one integral equals the sum of both of them. For this reason, only the second
integral is evaluated, yielding:

2
cos(∆yπ)− cos(∆xπ)

∆2
x −∆2

y

, (47)

if only the real part is considered. It has to be multiplied with another factor 2, as twice the
real part is needed as solution to equation (45). Now, the second integral in equation (44) needs
to be evaluated. ∫

d2k3e
−ik3∆Θ(+εk3) (48)

can be transformed by a shift of k3 → k3 + Π, with Π being defined as (π, π). The integral then
reads

e−iΠ∆

∫
d2k3e

−ik3∆Θ(−εk3). (49)

This is the factor e−iΠ∆ times the complex conjugate of equation (45), which has in turn already
been established as real and being solved by (47) times 2. The total correlation function is then
given by

χ2D
CC(∆x,∆y) =

(
cos(∆yπ)− cos(∆xπ)

(∆2
x −∆2

y)π
2

)2

eiπ(∆x+∆y). (50)

The factor exp(iπ(∆x + ∆y)) is always −1 when the other term is non-zero as either ∆x or ∆y

needs to be even while the other one is odd for the difference of the cos(∆xπ) and cos(∆yπ) to
be non-zero, making their sum odd and expπ(∆x+∆y) = −1. The exception to this behaviour

13



occurs in the limes ∆ → (0, 0), where χ2D
CC again goes to 1/4. The case ∆x = ∆y needs to be

treated separately, but the correlation function can be shown to converge towards

χ2D
CC(∆x = ∆y) =

(
sin(∆xπ)

2∆xπ

)2

ei2∆xπ, (51)

which is zero for all integer values of ∆x, except when ∆x = ∆y = 0, where it goes to 1/4.
With the correlation function known, the probabilities of finding an electron at a site, given that
another on is located at a known relative position has been calculated.

Figure 4: effect of the exchange hole on the
probability of finding an electron

Figure 5: enlarged version of figure 4, show-
ing unaffected sites

The probabilities where plotted in a similar fashion to the one-dimensional case, but for the
detailed view, the continuation of the probability for non-integer values was omitted. Instead,
the points where coloured black and white for affected and non-affected sites, respectively. The
points associated with affected sites are connected to the plane of undisturbed probability by a
line.
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4 Dynamical mean field theory

While a solution for the finite-dimensional Falicov-Kimball model can not be obtained analyt-
ically, it can be treated exactly when the coordination number goes to infinity [3] [8]. When
going to infinite dimension, it is necessary to scale the hopping parameter t with a factor 1/

√
N ,

with N being the new coordination number, to avoid a trivial limit where one of the terms in
the Hamilton operator can be neglected completely. In principle, U and µ could equivalently be
scaled with the inverse of the factor, but this approach is less intuitive and leads to all terms
diverging. Why this scaling is necessary can be seen from eqs. (25) to (29). A full diagonal-
ization of the Hamiltonian for an interacting system with more than just a few particles is not
feasible. Approximative methods, such as density functional theory (DFT) (which only gives
mean-field like results, but allows for reliable calculations in weakly correlated materials) and
dynamical mean field theory (DMFT), have been developed to be able to treat such problems.
Here, a DMFT approach to the Falicov-Kimball model will be presented, as this model allows
for the calculation of correlations in time (albeit not in space). The idea of replacing the finite-
dimensional non-local problem by an infinite-dimensional local one was described in [9]. DMFT
has become a well accepted theory for description of site-local electronic correlations.

4.1 Dynamical mean field theory and infinite dimensions

It has already been established that a straightforward diagonalization of the Falicov-Kimball
Hamiltonian is not feasible for systems of a reasonable size. Since interesting phenomena occur
when the kinetic and interaction term in the Hamiltonian are of similar size, there is no small
parameter to build a perturbation theory on, either. Dynamical mean field theory offers the
means of treating such systems. The basic premise of mean field theories is to treat most of
the system as a bath, in which a single site is investigated more closely. The bath is treated as
non-interacting, but coupled to the site in question and it has to behave consistently with the
closely investigated site.
For the Falicov-Kimball model, such an approach may not seem applicable as a single site will
either be occupied by an f -electron or not, and depending on this it will show completely different
features. Indeed, DMFT fails at describing microscopic quantities for the Falicov-Kimball model
and is only applicable if one is interested in spatial mean values. In this section, the assumptions
DMFT builds on for the Falicov-Kimball model will be discussed, along with the limitations this
causes for the extracted results.
Considering a system described by the Falicov-Kimball model, there certainly is a probability
of finding an f -electron at a site, called p1. If one assumes that the system is homogeneous
and that the f -electrons are distributed randomly, any site has a chance p1 of being occupied
and p2 = 1 − p1 of being unoccupied by an f -electron. One can now investigate two sites, an
occupied and an unoccupied one. If the system is large and disordered enough, their baths
should be similar. As the rest of the system consists of a mix of occupied and unoccupied sites,
it should not be consistent with neither the occupied nor the unoccupied one, instead being
consistent with a weighted average of them.
As a next step, the role of the ”bath” and the term ”consistent” have to be defined. The
bath should mimic the effects the rest of the system has on a single site, it should allow for
transport of c-electron amplitudes. In principle, the Hamiltonian of the remaining system could
be diagonalized and the eigenstates calculated. When the site is then connected to the bath
again, those states have to hybridize with the localized state at the site, leading to a term∑

l

((εl − µ)c†l cl − tlc
†
l ci − t

∗
l c
†
icl) (52)
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in the Hamiltonian describing the site coupled to the bath. l labels the bath-states, εl are the
bath-energies, tl is the hybridization between the bath state l and the localized electron state

at the site i. c
(†)
l are operators associated with the creation and annihilation of bath states and

c
(†)
i are the operators for the localized state.

Defining ”consistency” is trickier. For the exemplary system described by a mean field theory,
an Ising spin-system, the choice is clear, as the only interesting variable in the system is the
magnetization and the mean bath-magnetization can be equalled to the expectation value of the
local one, thus giving an obvious self-consistency condition. Most of the interesting expectation
values of the Falicov-Kimball model can be expressed in terms of Green’s functions, so they are a
natural choice as a consistent variable. The local model can obviously only be used to calculate
local Green’s functions, containing information about local interactions, while the bath has to
simulate the effects of the remaining lattice, thus carrying the information about the kinetic
part of the Hamiltonian. However, this separation is not strict, it only gives an idea about
which part of the calculation has to become trivial when either the interaction or the kinetic
energy part in the Hamiltonian vanish-if t is zero, there is no hybridization and the bath has no
effect on the site, if there is no interaction, the self-energy is identically 0 and one recovers the
non-interacting dispersion relation for the system. In practice, the purely local self-energy, Σ [8]
is extracted from the impurity problem. Then the local Green’s function is calculated from the
dispersion relation of the lattice in question and the local Green’s function, updating the bath
for the impurity.

4.2 The Resonant Level Model

In DMFT the full lattice is within DMFT approximated by a single site [3] [10], embedded in
a non-interacting bath of one-particle states. For the Falikov-Kimball model, the corresponding
Hamilton operator is of the form of a resonant level model:

HRLM = εff
†
i fi + Uf †i fic

†
ici − µ(f †i fi + c†ici) +

∑
l

((εl − µ)c†l cl − tlc
†
l ci − t

∗
l c
†
icl) (53)

Where i denotes the interacting lattice site one is currently interested in, and the summation
over l including all the bath states. tl is the hybridization between the on-site and the bath states
and is related to the hopping parameter t. It is possible to choose all tl to be real by adjusting
the phase of the state associated with c†l . A calculation of the imaginary time derivative of the
on-site Green’s function, called GRLM (τ) ,

GcRLM (τ) = 〈(ci(τ) c†i )Θ(τ)− (c†i ci(τ))Θ(−τ)〉, (54)

yields:

d

dτ
GRLM (τ) = 〈(

∑
l

−t∗l cl(τ) + Uf †i (τ)fi(τ)ci(τ)− µci(τ))c†iΘ(τ)

− c†i (
∑
l

−t∗l cl(τ) + Uf †i (τ)fi(τ)ci(τ)− µci(τ))Θ(−τ) + δ(τ)〉 (55)

upon introducing the mixed c-f 2-particle Green’s function,

G2
fc,i,i(τ, τ, τ) = 〈f †i (τ)fi(τ)ci(τ)ciΘ(τ)− cif †i (τ)fi(τ)ci(τ)Θ(−τ)〉, (56)

one can rewrite equation (56).

d

dτ
GRLM (τ) =

∑
l

−t∗lGl,i(τ) + UG2
fc,i,i(τ, τ, τ)− µGRLM (τ) + δ(τ) (57)
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G2
fc,i,i(τ, τ, τ) is either GRLM (τ) or 0, depending on the whether f †i (τ)fi(τ) is 1 or 0, which is a

conserved quantity. To get rid of the off-diagonal Green’s function Gl,i(τ) in this expression, one
can calculate its imaginary time derivative and transform the resulting and the original equation
into Fourier series.

d

dτ
Gl,i(τ) = −tlGRLM (τ) + (εl − µ)Gl,i(τ) (58)

iν Gl,i(ν) = −tlGRLM (ν) + (εl − µ)Gl,i(ν) (59)

iν GRLM (ν) =
∑
l

−t∗lGl,i(ν) + U(0 ∨ 1)GRLM (ν)− µGRLM (ν) + 1 (60)

Now, eq. (59) allows for Gl,i(ν) to be eliminated from eq. (60). The total expression for
GRLM (ν) then becomes

GRLM (ν) =
∑
l

t∗l tl
iν − εl + µ

GRLM + U(0 ∨ 1)GRLM (ν)− µGRLM (ν) + 1 (61)

The sum
∑

l

t∗l tl
iν − εl + µ

is called the hybridization function ∆(ν).

∆(ν) =
∑
l

t∗l tl
iν − εl + µ

. (62)

Introducing ∆, one can write:

GRLM (ν) =
1

iν −∆(ν)− U(0 ∨ 1) + µ
. (63)

4.3 Calculation of one-particle objects

With the Green’s function from eq (63) as starting point, the full Green’s function and self-
energy can be calculated. If p1 is the average f -electron occupation, the local Green’s function
can be written as:

G(ν) = 〈GRLM (ν)〉 = p1
1

iν −∆(ν)− U + µ
+ (1− p1)

1

iν −∆(ν) + µ
. (64)

To avoid lengthy expressions, the two parts are called:

G
∼

(ν) =
1

iν −∆(ν) + µ
, (65a)

∼
G(ν) =

1

iν −∆(ν)− U + µ
. (65b)

These are the one-particle Green’s functions depending on the f -occupation at the site (0 or 1).
To extract the self-energy, the Dyson equation can be used.

G−1
0 (ν) = G−1(ν) + Σ(ν) (66)

In this context, G0 is G
∼

, the Green’s function for U = 0. Inserting for G and G
∼

yields:

Σ(ν) = p1U
1

1− p2G∼
(ν)U

. (67)

Also, the following useful expressions can be derived:

∼
G(ν) =

G(ν)Σ(ν)

p1U
, (68a)

G
∼

(ν) =
G(ν) (U − Σ(ν))

p2U
, (68b)

G(ν) (U − Σ(ν)) Σ(ν) = −(p1U − Σ(ν)). (68c)
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4.4 Calculation of two-particle objects

Let us turn our attention to the two-particle Green’s functions which are needed to calculate
the desired vertex functions. Wick’s theorem [11] allows for calculating the two-particle Green’s
function G2 for the c-electrons,

G2(τ ′′, τ ′, τ) = 〈Tc†i (τ
′′)c†i (τ

′)c(τ)c〉 (69)

for non-interacting systems from a given one-particle Green’s function. Here, the Fourier trans-
form to frequency space of Wick’s theorem is expressed in particle-hole notation.

G2(ν, ν ′, ω) = βG(ν)G(ν ′ + ω)(δω,0 − δν,ν′) (70)

To apply Wick’s theorem to the Falicov-Kimball model in infinite dimensions, one must treat
the case of presence and absence of f -electrons separately, adding them up with weights p1 and
p2 respectively.

G2
FC(ν, ν ′, ω) = β(p1

∼
G(ν)

∼
G(ν ′ + ω) + p2G∼

(ν)G
∼

(ν ′ + ω))(δω,0 − δν,ν′) (71)

At this point in the calculation, correlation effects arise. With G2
FC , which is called just G2

from here on, available, one can now proceed to calculate the full vertex F , the vertices Γν ,
irreducible in the channels ν = ph, ph and pp as well as the fully irreducible vertex Λ. The full
vertex is easily obtained from:

G2(ν, ν ′, ω) = βG(ν)G(ν ′ + ω)(δω,0 − δν,ν′) +G(ν)G(ν + ω)F νν
′ωG(ν ′)G(ν ′ + ω) (72)

when inserting the known quantities G2 and G(ν). After a lengthy evaluation it can be written
as

F νν
′ω = β(δω,0 − δν,ν′)

(Σ(ν)− U)Σ(ν)(Σ(ν ′ + ω)− U)Σ(ν ′ + ω)

p1p2U2
(73)

or, equivalently

F νν
′ω = β(δω,0 − δν,ν′)

(Σ(ν)− p1U)(Σ(ν ′ + ω)− p1U)

G(ν)G(ν ′ + ω)p1p2U2
. (74)

The next step is to calculate the irreducible vertices in the pp, ph and ph channels by inserting
F in the appropriate Bethe-Salpeter equations. Starting with the particle-particle irreducible
vertex Γpp, this will be elaborated on in the following. For the calculation of Γpp it is advanta-
geous to adopt particle-particle notation. To get F ’s representation in particle-particle notation,

one has to replace all references to ω with ω− ν− ν ′. In the following, we will relabel
︷︸︸︷
ω → ω.

The corresponding Bethe-Salpeter equation [12] can be written as

F νν
′ω

pp = Γνν
′ω

pp +
1

2β

∑
ν1

F ν(ω−ν1)ω
pp G(ν1)G(ω − ν1)Γν1ν′ω

pp (75)

in particle-particle notation. F νν
′ω

pp is proportional to (δω−ν−ν′,0−δν,ν′), so that for a given value
of ω it only has non-zero entries in the main diagonal and one skew diagonal. When regarding
eq. (75) as a matrix equation in the indices ν and ν ′, one can see that Γpp has to inherit this
structure from F . Thus, with an Ansatz

Γνν
′ω

pp = (δω−ν−ν′,0 − δν,ν′)Γ̃νν
′ω (76)

it is possible to solve eq. (75) for Γ̃ by applying the crossing symmetry relations

Γνν
′ω

pp = −Γν(ω−ν′)ω
pp (77)
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and
F νν

′ω
pp = −F ν(ω−ν′)ω

pp . (78)

Upon inserting the Ansatz, there are two differences of Kronecker-deltas in the sum, which have
to be multiplied with each other. This yields 4 terms, of which 2 are equivalent and can be
summed up when considering the crossing symmetry. Finally, Γpp becomes

Γνν
′ω

pp = β(δω−ν−ν′,0 − δν,ν′)
(Σ(ν)− U)Σ(ν)(Σ(ω − ν)− U)Σ(ω − ν)

p1p2U2 + (Σ(ν)− p1U)(Σ(ω − ν)− p1U)
(79)

in particle-particle, and

Γνν
′ω

pp = β(δω,0 − δν,ν′)
(Σ(ν)− U)Σ(ν)(Σ(ν ′ + ω)− U)Σ(ν ′ + ω)

p1p2U2 + (Σ(ν)− p1U)(Σ(ν ′ + ω)− p1U)
(80)

in particle-hole notation.
Let us now turn to the particle-hole and transverse particle-hole channel. These do not need to
be treated separately, as they are related via the crossing relation

Γνν
′ω

ph
= −Γ

ν(ν+ω)(ν′−ν)
ph . (81)

Thus, only Γνν
′ω

ph is derived explicitly. The corresponding Bethe-Salpeter equation, expressed in
particle-hole notation, reads:

F νν
′ω = Γνν

′ω
ph − 1

β

∑
ν1

Γνν1ω
ph G(ν1)G(ν1 + ω)F ν1ν′ω (82)

As F νν
′ω ∼ (δω,0− δν,ν′), it is a diagonal matrix in ν and ν ′ for the case ω 6= 0 and the equation

above is easily solved. Γ then becomes a diagonal matrix as well and can be written as:

Γνν
′ω 6=0

ph =
F νν

′ω

1− 1
βG(ν)G(ν ′ + ω)F νν′ω

(83)

Note that the summation over ν1 has already been performed and it has been replaced either
by ν or ν ′. Explicit evaluation gives:

Γνν
′ω 6=0

ph = −βδν,ν′
(Σ(ν)− U)Σ(ν)(Σ(ν ′ + ω)− U)Σ(ν ′ + ω)

p1p2U2 + (Σ(ν)− p1U)(Σ(ν ′ + ω)− p1U)
(84)

This expression can be shown to be equivalent to the one given in [3].
In the case ω = 0, F becomes a full matrix, which makes solving the Bethe-Salpeter equation
for Γph harder. It remains possible, even analytically, due to F factorizing.

F νν
′0 = β(1− δν,ν′)

(Σ(ν)− U)Σ(ν)(Σ(ν ′)− U)Σ(ν ′)

p1p2U2
= (1− δν,ν′)a(ν)a(ν ′) (85)

Where a(ν) is given by:

a(ν) =
√
β

(Σ(ν)− U)Σ(ν)
√
p1p2U

. (86)

Inserting this special form into (82) gives us

(1− δν,ν′)a(ν)a(ν ′) = Γνν
′0

ph −
1

β

∑
ν1

Γνν10
ph G(ν1)G(ν1)(1− δν1,ν′)a(ν1)a(ν ′). (87)
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The summation can be performed for the term ∼ δν1,ν′ , yielding

(1− δν,ν′)a(ν)a(ν ′) = Γνν
′0

ph +
1

β
Γνν

′0
ph G(ν ′)G(ν ′)a(ν ′)a(ν ′)− 1

β

∑
ν1

Γνν10
ph G(ν1)G(ν1)a(ν1)a(ν ′).

(88)
Which, in the case ν 6= ν ′ and after a division by a(ν ′) can be rewritten as:

(a(ν) +
1

β

∑
ν1

Γνν10
ph G(ν1)G(ν1)a(ν1)) = Γνν

′0
ph (

1

a(ν ′)
+

1

β
G(ν ′)G(ν ′)a(ν ′)) (89)

As the left hand side of the equation does not depend on ν ′, neither can the right hand side.
The consequence is, that Γνν

′0
ph must factorize when ν 6= ν ′ and moreover, if represented as

Γνν
′0

ph = b(ν)b(ν ′)− u(ν)δν,ν′ (90)

where the term u(ν)δν,ν′ is intended to absorb the case ν = ν ′, that

b(ν ′) =
Ca(ν ′)

1 + 1
βG(ν ′)G(ν ′)a(ν ′)a(ν ′))

. (91)

The constant C is left to be determined by entering the expression back into the Bethe-Salpeter
equation. Inserting Γph back into (82) and evaluating for ν 6= ν ′ and ν = ν ′ yields:

a(ν)a(ν ′) = b(ν)b(ν ′)− 1

β

∑
ν1

(b(ν)b(ν1)− u(ν)δν,ν1)G(ν1)G(ν1)(1− δν1,ν′)a(ν1)a(ν ′), (92)

0 = b(ν)b(ν)− u(ν)− 1

β

∑
ν1

(b(ν)b(ν1)− u(ν)δν,ν1)G(ν1)G(ν1)(1− δν1,ν)a(ν1)a(ν). (93)

From these equations, it is possible to derive

u(ν) =
a2(ν)

1 +
1

β
a2(ν)G2(ν)

. (94)

by setting ν = ν ′ in 93 and taking the difference of the two equations. Upon introducing the
constant K

K =
1

β

∑
ν1

b(ν1)G(ν1)G(ν1)a(ν1) (95)

and inserting the expression 91 into 93, one finds

C2 − CK = 1 (96)

and, expressing K via eq. (91) as

K =
1

β

∑
ν1

Ca(ν1)

1 + 1
βG(ν1)G(ν1)a(ν1)a(ν1))

G(ν1)G(ν1)a(ν1), (97)

C can be written as

C =

√√√√√√
1

1−
∑

ν1

1
βG(ν1)G(ν1)a(ν1)a(ν1)

1 + 1
βG(ν1)G(ν1)a(ν1)a(ν1)

. (98)
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The choice of sign for C does not matter, as the quantity appears only squared. As a and G are
already known, Γph can now be written as:

Γνν
′ω

ph = β(δω,0 − 1)δν,ν′
(Σ(ν)− U)Σ(ν)(Σ(ν ′ + ω)− U)Σ(ν ′ + ω)

p1p2U2 + (Σ(ν)− p1U)(Σ(ν ′ + ω)− p1U)
+ βδω,0[

p1p2U
2C2 (Σ(ν)− U)Σ(ν)

p1p2U2 + (Σ(ν)− p1U)2

(Σ(ν ′)− U)Σ(ν ′)

p1p2U2 + (Σ(ν ′)− p1U)2
−

δν,ν′(Σ(ν)− U)2Σ2(ν)

p1p2U2 + (Σ(ν)− p1U)2

]
.

(99)

If the contributions from ω = 0 and ω 6= 0 are kept separate. They can, however be added to
give:

Γνν
′ω

ph = −βδν,ν′
(Σ(ν)− U)Σ(ν)(Σ(ν ′ + ω)− U)Σ(ν ′ + ω)

p1p2U2 + (Σ(ν)− p1U)(Σ(ν ′ + ω)− p1U)
+

βδω,0p1p2U
2C2 (Σ(ν)− U)Σ(ν)

p1p2U2 + (Σ(ν)− p1U)2

(Σ(ν ′)− U)Σ(ν ′)

p1p2U2 + (Σ(ν ′)− p1U)2
(100)

As Γνν
′ω

ph can be related to Γνν
′ω

ph
via the crossing relation, all the irreducible vertices for the

Falicov-Kimball model in infinite dimensions are known at this point and the fully irreducible
Vertex, Λ, can be expressed.

Λνν
′ω = F νν

′ω −
∑
c

Φνν′ω
c (101)

where the summation is performed over all channels c, and Φc denotes the reducible vertex in
the respective channel. Since the reducible and irreducible vertex in a given Channel are related
via

Γνν
′ω

c + Φνν′ω
c = F νν

′ω, (102)

it is possible to express Λ in terms of the irreducible vertices and the full vertex:

Λνν
′ω =

∑
c

Γνν
′ω

c − 2F νν
′ω. (103)

If the explicit expressions are inserted, one gets

Λνν
′ω = (δω,0 − δν,ν′)β(Σ(ν)− U)Σ(ν)(Σ(ν ′ + ω)− U)Σ(ν ′ + ω)·[

C2 p1p2U
2

(p1p2U2 + (Σ(ν)− p1U)2)(p1p2U2 + (Σ(ν ′ + ω)− p1U)2)
+

2
(Σ(ν)− p1U)(Σ(ν ′ + ω)− p1U)

p1p2U2(p1p2U2 + (Σ(ν)− p1U)(Σ(ν ′ + ω)− p1U))

]
. (104)

Usually, for applying DΓA, one would assume this local Λ to be a good approximation for the
fully irreducible Vertex of the non-local model and construct the full (non-local) vertex from
this and non-local DMFT Green’s functions by means of Parquet and Bethe-Salpeter equations.
For a fully interacting system, the self-energy could be written in terms of the full vertex by
means of the Schwinger-Dyson equation of motion. In the Falicov-Kimball model, this is not
possible, as the equation of motion for the self-energy does not contain the interaction vertex
for the mobile electrons c but rather the interaction vertex of mobile and localized electrons.
For this reason, other ways of generating a non-local self energy out of the known vertex have
to be explored.
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4.5 Projecting bath states out of the Hamilton operator

The impurity Hamilton operator contains not only site-local terms, but also bath states and
couplings with them. It is possible to get rid of the bath states, albeit at the cost of introducing
interactions which are non-local in time. To do so, time-dependent creation and annihilation
operators have to be Fourier transformed, finding algebraic relations between the transformed
operators, allowing for elimination of some of them. The transformation is defined as

o (ν) =
1

β

∫ β

0
dτeiντo (τ), (105a)

o†(ν) =
1

β

∫ β

0
dτe−iντo†(τ). (105b)

Here, o(†)(τ) can be any annihilation (or creation) operator and ν are the fermionic Matsubara
frequencies. The inverse transformation is given by

o (τ) =
∑
ν

e−iντo (ν), (106a)

o†(τ) =
∑
ν

eiντo†(ν). (106b)

The equations of motion for the bath-state creation and annihilation operators are given by:

d

dτ
cl (τ) =

[
HRLM , cl (τ)

]
, (107a)

d

dτ
c†l (τ) =

[
HRLM , c†l (τ)

]
. (107b)

which, when explicitly evaluated, yield:

d

dτ
cl (τ) = (µ− εl)cl (τ) + tlci (τ), (108a)

d

dτ
c†l (τ) = (εl − µ)c†l (τ)− t∗l c

†
i (τ). (108b)

After a Fourier transformation, it is possible to express cl (ν) and c†l (ν) respectively with ci (ν)

and c†i (ν)

cl (ν) =
−tlci (ν)

iν − εl + µ
, (109a)

c†l (ν) =
−t∗l c

†
i (ν)

iν − εl + µ
. (109b)

The Hamilton operator contains c
(†)
l (τ = 0), which can now be replaced by:

cl (τ = 0) =
∑
ν

−tlci (ν)

iν − εl + µ
, (110a)

c†l (τ = 0) =
∑
ν

−t∗l c
†
i (ν)

iν − εl + µ
. (110b)

As the frequency-dependent c
(†)
i (ν) can be written as imaginary time integrals of c(τ) according

to (105b), the hybridization becomes a term which is local in space, at the cost of being non-
local in (imaginary) time. The possibility of rewriting the bath operators in terms of the site
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operators is not surprising, as knowledge of an actual solution for c(†)(τ) would be sufficient to
render all remaining equations describing the system trivial. The Hamilton operator becomes

HRLM = εff
†
i fi + Uf †i fic

†
ici − µ(f †i fi + c†ici) +

∑
l

(εlc
†
l cl)+

∑
l

∑
ν

t∗l tl
iν − εl + µ

1

β

∫ β

0
dτ ′
(
c†ici(τ

′)e−iντ
′
+ c†i (τ

′)cie
iντ ′
)
. (111)

Where the ”bath-diagonal” part of the Hamilton operator was deliberately not replaced by an
integral expression. One can easily see that above expression contains the definition of the
hybridization function, ∆(ν), see eq. (62).

HRLM = εff
†
i fi + Uf †i fic

†
ici − µ(f †i fi + c†ici) +

∑
l

(εlc
†
l cl)+

∑
ν

∆(ν)
1

β

∫ β

0
dτ ′
(
c†ici(τ

′)e−iντ
′
+ c†i (τ

′)cie
iντ ′
)
. (112)

While this form of the Hamilton operator is not very useful for actual calculations as formal
problems can arise because the terms c(†i)(τ ′) again depend on the full Hamiltonian. Anyway, the
Hamiltonian allows for a interpretation of what a time non-local interaction might mean. Before
the substitutions were performed, electrons could move, in the sense that their amplitudes were
transported, between the bath- and on-site-states. This possibility is replaced by a transport
of amplitudes through time, skipping the explicit amplitudes for being in bath-states. A very
similar concept, yet without the issue of definition for c(†i)(τ ′), will be applied to arrive at a
time non-local path integral representation for the same problem in section 6.

4.6 Numerical dynamical mean field theory results

In the following section, DMFT results for the Falicov-Kimball model are presented. A DMFT
code was written and applied to a Falicov-Kimball model on a three-dimensional lattice with
nearest neighbour hopping only. The hopping parameter, t was set to the value 1/(2

√
6). Since

the impurity model associated with the Falicov-Kimball model can be easily solved analytically
as demonstrated in section 4.3, the usual bottleneck of DMFT calculations, i.e. the local impurity
solver, does not cause problems here. For high enough temperatures, or equivalently, low enough
values of β, the calculations yielded stable and reliable results. Instabilities would appear in the
form of the f -electrons vanishing and the c-occupation increasing or vice-versa. This process
turned out to be highly sensitive to small changes in the on-site energy for the f -electrons, Ef
and the starting conditions. In the paramagnetic phase, both occupations are expected to be at
1/2 if the chemical potential, µ, and the on-site energy of the f -electrons, Ef are set to

µ =
U

2
(113a)

Ef = 0. (113b)

This is a consequence of the particle-hole symmetry in such a half filled system. Since the
Falicov-Kimball model is known to exhibit phase transitions to charge-ordered phases in 1 and
2 dimensions, the same behaviour is expected in 3 dimensions. DMFT surely is not suitable to
describe non-local correlations or properly treat the predicted checkerboard ordering [4], where
symmetry breaking occurs. Below, The difference between local c- and f -electron occupation
is shown, depending on β and U . A grid of 60 · 60 points for β and U values was covered,
including the first 3000 (positive) Matsubara frequencies and 313k-points for the evaluation
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of the local Green’s function. Since fulfilment of equation (113) leads to conservation of the
occupations by both c- and f -electrons at a value of 1/2, the reaction of the system to small
perturbations was investigated. To this end, separate calculations were initialized with initial
values of p1 = 0.5± 0.025, Ef = 0 and µ = U/2. After convergence of the c-electron behaviour
was achieved, p1 was updated via

p1 new =
1

1 + eεf+Ucocc−µ (114)

with cocc being the mean c-electron occupation calculated from the c-electron Green’s functions.
This caused a chain reaction at high enough values of U and at low temperatures, where the f
electrons either displaced most of the c-electrons, or were displaced by c electrons themselves.
At other sets of parameters, the system converged towards half-filling.

Figure 6: Results of the DMFT calculation for local occupations nf − nc starting the iteration
from p1 = 0.475 as a function of the interaction U and the inverse temperature β

In Figure 6, one can see where the DMFT calculations show reliable results. When the local
occupations by c- and f -electrons are of a similar value, the system is in the paramagnetic,
unordered phase. Then, no charge-ordering occurs and DMFT gives reasonable results for the
behaviour of the system. When comparing the effects of slightly increased or decreased p1

as starting condition, one can see a symmetry in the behaviour, depicted in figure 7 . Note
that, while the the occupation of f -electrons changes relatively fast from 1/2 to either 0 or
1, the mean occupation by c-electrons is more stable due to the extended density of states.
At low temperatures, these grand-canonical calculations at fixed µ showed a tendency towards
”ferro” ordering with predominantly c- or f -electrons. Those solutions of the DMFT cycle do
not conserve the total occupancy nf + nc of the system, which makes them less stable, they
are a consequence the single-site treatment of the problem DMFT offers which facilitates such
ordering.
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Figure 7: Same as figure 6, but for a starting value of p1 slightly smaller and greater than 1/2

Another set at calculations was performed, this time at fixed half filling,

nf = nc =
1

2
, (115)

for the particle-hole symmetric case µ = U/2, Ef = 0. The converged results where used as raw
data for the self-energy when investigating the vertices calculated in section 4.4.
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5 Structure of the vertices in local approximation and derived
quantities

Using the local vertices from section 4, one can devise different approximations for describing
the vertices of the actual Falicov-Kimball model. The aim of this chapter is to investigate the
structure of the vertices resulting from the DMFT approach as well as the results of different
approximations for the full problem. The behaviour of the vertices is relevant especially when
considering the effects of approximations necessitated by the use of computers, for example
finite Matsubara-frequency ranges and their influence on the total result. The discussions of
the vertices will be accompanied by heat-plots of the real parts of the vertices in question for
the energy transfer ω = 0, resulting from a DMFT calculation at β = 25 and U = 0.2 at fixed
f -electron filling p1 = 1/2, as well as a second set at β = 72, illustrating the main features of the
vertices and how they change when approaching the phase transition towards a checkerboard-
ordered phase. Our energy scale is set by t = 1/(2

√
6). When p1 is fixed to a value of 1/2 and

µ is set to µ = U/2, the vertices are purely real.

5.1 Asymptotic behaviour of the local vertices from the DMFT calculation

5.1.1 Full vertex F

First, the full local vertex F is investigated. The analytic expression for the vertex, according
to section 4 is given by:

F νν
′ω = β(δω,0 − δν,ν′)

(Σ(ν)− U)Σ(ν)(Σ(ν ′ + ω)− U)Σ(ν ′ + ω)

p1p2U2
. (116)

Obviously, the vertex is only non-zero when either ω = 0 or ν = ν ′. Thus, only the limits of
ω → ±∞ when ν = ν ′, or either ν → ±∞, ν ′ → ±∞ or both, when ω = 0 are regarded in the
following. As this behaviour is common to all of the calculated vertices, i.e. the reducible as
well as irreducible ones, the same procedure will be followed for all of them.
When ω is set to zero, one needs to investigate the asymptotic behaviour of

(Σ(ν)− U) Σ(ν). (117)

As ν → ±∞, Σ(ν) approaches p1U as can be seen from equation (67). The asymptotic form of
the full Vertex then becomes:

F±∞ ν′0 = −β(Σ(ν ′)− U)Σ(ν ′) (118)

When ν ′ → ±∞ as well, F converges to a constant value of

F±∞±∞ 0 = βp1p2U
2, (119)

which means that a truncation of a summation over F will not yield meaningful results unless
other terms cause convergence.
When ν is set equal to ν ′, the asymptotic behaviour in ω is described by:

F νν±∞ = β(Σ(ν)− U)Σ(ν) (120)

When investigating the limit ν → ±∞ as well, F approaches

F±∞±∞±∞ = −βp1p2U
2 (121)

It is worth mentioning that the asymptotic behaviour of the full vertex deviates from what one
might expect when considering the vertices of the Hubbard model. The constant term that the
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vertex converges to is βp1p2U
2 instead of just U . This is a consequence of the c-electrons, which

are described by this vertex, not interacting directly; two ”messenger” f -electron propagators
are needed to connect c-electron lines to each other.

Figure 8: Full vertex when ω = 0 and β =
25, nν and nν′ give the number
of the Matsubara frequencies, ac-
cording to eq. (23)

Figure 9: Full vertex when ω = 0 and β =
72, nν and nν′ give the number
of the Matsubara frequencies, ac-
cording to eq. (23)

In figure 8 and 9 one can see the features of F . It is identically equal to zero along the main
diagonals and converges towards a value of 0.25 or 0.72 for large ν and ν ′, as predicted by the
value of βp1p2U

2. Note that the scales are different for the figures and a lower cut-off was
introduced on the colour scale, allowing for a better recognizability of the values which are not
0.

5.1.2 Particle-particle irreducible vertex Γpp

The particle-particle irreducible vertex is given by:

Γνν
′ω

pp = β(δω,0 − δν,ν′)
(Σ(ν)− U)Σ(ν)(Σ(ν ′ + ω)− U)Σ(ν ′ + ω)

p1p2U2 + (Σ(ν)− p1U)(Σ(ν ′ + ω)− p1U)
(122)

Setting ω to zero, the vertex is

Γνν
′0

pp = β
(Σ(ν)− U)Σ(ν)(Σ(ν ′)− U)Σ(ν ′)

p1p2U2 + (Σ(ν)− p1U)(Σ(ν ′)− p1U)
, (123)

yielding, for ν → ±∞
Γ±∞ ν′0
pp = −β(Σ(ν ′)− U)Σ(ν ′). (124)

In the limes of ν ′ → ±∞ this expression approaches the value for the asymptotic full vertex:

Γ±∞±∞ 0
pp = βp1p2U

2 (125)

When regarding the term proportional to δν,ν′ for ω → ±∞, the expression

Γνν±∞pp = β(Σ(ν)− U)Σ(ν) (126)

is recovered. When taking the limit of ν → ±∞ as well, one gets:

Γ±∞±∞±∞pp = −p1p2U
2 (127)
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Figure 10: same as 8 but for the particle-
particle irreducible vertex

Figure 11: same as 9 but for the particle-
particle irreducible vertex

Figures 10 and 11 display the features of the particle-particle irreducible vertices. They are
very similar to the according full vertices and thus have been plotted utilizing the same scaling.

5.1.3 Particle-hole irreducible vertex Γph

The local particle-hole irreducible vertex Γph is given by

Γνν
′ω

ph = −βδν,ν′
(Σ(ν)− U)Σ(ν)(Σ(ν ′ + ω)− U)Σ(ν ′ + ω)

p1p2U2 + (Σ(ν)− p1U)(Σ(ν ′ + ω)− p1U)
+

βδω,0p1p2U
2C2 (Σ(ν)− U)Σ(ν)

p1p2U2 + (Σ(ν)− p1U)2

(Σ(ν ′)− U)Σ(ν ′)

p1p2U2 + (Σ(ν ′)− p1U)2
(128)

While the contribution proportional to δν,ν′ approaches

Γνν±∞ph = β(Σ(ν)− U)Σ(ν) (129)

as ω goes to infinity, the one stemming from δω,0 leads to the following expression in the limes
ν → ±∞:

Γ±∞ ν′0
ph = −βδω,0p1p2U

2C2 (Σ(ν ′)− U)Σ(ν ′)

p1p2U2 + (Σ(ν ′)− p1U)2
. (130)

If ν ′ → ±∞ as well, Γph becomes

Γ±∞±∞ 0
ph = βC2p1p2U

2. (131)

Because Γph and Γph are related via equation (81), the limit of Γph need not be treated explicitly.
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Figure 12: same as 8 but for the particle-
hole irreducible vertex

Figure 13: same as 9 but for the particle-
particle irreducible vertex

Figures 12 and 13 illustrate the behaviour of the particle-hole irreducible vertex. It converges
towards a different value than the full vertex and the pp-irreducible one.
Also, the factor C2 appearing in the direct part (proportional to δω,0 ) of the ph-irreducible
vertex and by extension, the ph-irreducible and fully irreducible vertex, has been plotted on the
same grid as figure 7 in figure 14

Figure 14: Results of the DMFT calcula-
tion for C2

Figure 15: Results of the DMFT calcula-
tion for C2 · β

It is to be noted, that when plotting C2 in Figure 14, a cut-off was introduced, setting values
larger than 5 to 5, thus allowing for better recognisability. As C2 appears only with a pre-factor
of β, this quantity was plotted as well. As Figure 15 shows, C2 · β diverges for high values of U .
Thus, the local fully irreducible vertex is also enhanced in these regions. A similar phenomenon
has been observed in the literature for the Hubbard [13] and the Falicov-Kimball [14] models.

5.1.4 Fully irreducible vertex Λ

As established in section 4, Λ can be written as:

Λνν
′ω = (δω,0 − δν,ν′)β(Σ(ν)− U)Σ(ν)(Σ(ν ′ + ω)− U)Σ(ν ′ + ω)[

C2 p1p2U
2

(p1p2U2 + (Σ(ν)− p1U)2)(p1p2U2 + (Σ(ν ′ + ω)− p1U)2)
+

2
(Σ(ν)− p1U)(Σ(ν ′ + ω)− p1U)

p1p2U2(p1p2U2 + (Σ(ν)− p1U)(Σ(ν ′ + ω)− p1U))

]
. (132)
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When ω is again set to zero, the asymptotic behaviour for large ν is given by:

Λ±∞ ν′0 = −βp1p2U
2(Σ(ν ′)− U)Σ(ν ′) C2 1

(p1p2U2 + (Σ(ν ′)− p1U)2)
(133)

When ν ′ → ±∞ as well, Λ yields the already familiar expression:

Λ±∞±∞ 0 = βp1C
2p2U

2 (134)

A treatment of large values of ω when ν = ν ′ results in

Λνν±∞ = βp1p2U
2(Σ(ν)− U)Σ(ν) C2 1

(p1p2U2 − (Σ(ν)− p1U)2)
(135)

Figure 16: same as 8 but for the fully irre-
ducible vertex

Figure 17: same as 9 but for the fully irre-
ducible vertex

The main features of the local fully irreducible vertex can be seen in figures 16 and 17. The
fully irreducible vertex, in contrast to the full vertex and the channel-irreducible ones, displays
larger deviations from the value it approaches in its limits where one of the fermionic Matsubara
frequencies is small, but the other one is not. The scales have been chosen consistently with the
ones for the corresponding ph-irreducible vertices.

5.2 Ladder approximations for the full momentum dependent vertex F

If the vertex irreducible in a given channel c, Γc, is assumed to be local, the corresponding Bethe-
Salpeter equation can be used to construct a momentum dependent vertex out of Γc and non-
local DMFT Green’s functions. For convenience, the calculations are performed in momentum,
instead of real space. Approximating Γc by its local counterpart means that Γc scatters two
incident particles equally into all pairs of states which obey conservation of momentum. This
in turn causes the full vertex to be dependent on the momentum transfer only, but not on
the explicit momenta of the incoming or outgoing particles, when building a particle-hole or
transverse particle-hole ladder, while a particle-particle ladder leads to a dependency on the total
momentum of the involved particles. Assuming one knows the explicit form of the momentum
dependent Green’s functions, G(ν, k), the Bethe-Salpeter equations can be solved analytically in
the approximation of a local Γc. Starting with the ladder approximation in the particle-particle
channel, this will be done in the following section. As special interest exists for the k-points
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(0, 0, 0), usually called Γ, and (π, π, π), they are defined as:

q = 0 =

 0
0
0

 (136a)

q = Π =

 π
π
π

 (136b)

Where Γ was relabelled as 0 to avoid confusion with the irreducible vertices.

5.2.1 Particle-particle ladder

Assuming the local Γpp as derived for the resonant level model is a good approximation for the
particle-particle irreducible vertex of the full Falicov-Kimball model, the Bethe Salpeter equation
in the particle-particle channel, in particle-particle notation takes the form:

F νν
′ω

q,pp = Γνν
′ω

pp +
1

2β

∑
ν1,k1

F ν(ω−ν1)ω
q G(ν1, k1)G(ω − ν1, q − k1)Γ(ν1)ν′ω

pp (137)

Where Γpp is understood to be the particle-particle irreducible vertex and q is the total momen-
tum transfer. In particle-particle notation, Γpp is known to have a ”cross-structure” in ν and
ν ′. Inserting the known form from equation (79) for Γpp leads to:

F νν
′ω

q,pp =
Γνν

′ω
pp

1− 1

2β
Γ̃νν′ωpp

∑
k1

(G(ω − ν ′, k1)G(ν ′, q − k1) +G(ν ′, k1)G(ω − ν ′, q − k1))
(138)

Transforming back to particle-hole notation, except for the parameter q, which is left in its
pp-notation meaning, the total momentum of the particles involved into the scattering process,
gives us

F νν
′ω

q ph =
Γνν

′ω
pp

1− 1

2β
Γ̃νν′ωpp

∑
k1

(G(ω + ν, k1)G(ν ′, q − k1) +G(ν ′, k1)G(ω + ν, q − k))
. (139)

The resulting, momentum-dependent full vertex has the same structure regarding the frequencies
ν,ν ′ and ω as the original, local one. Note that the expression∑

k1

(G(ω + ν, k1)G(ν ′, q − k1) +G(ν ′, k1)G(ω + ν, q − k1)) (140)

can easily be shown to be equal to

2
∑
k1

G(ω + ν, k1)G(ν ′, q − k1) (141)

by performing an index shift k1 → q − k′. It turns out to be convenient to define

χ0(ν, ν ′, ω, q) =
1

β

∑
k1

G(ν, k1)G(ν ′ + ω, k1 + q), (142)

allowing for rewriting the expression for the full vertex in the particle-particle approximation as

F νν
′ω

q ph =
Γνν

′ω

1− Γ̃νν′ωχ0(ν, ν ′, ω, q)
(143)
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if the system shows space-inversion symmetry.

Figure 18: Full vertex in pp-ladder approxi-
mation when ω = 0, β = 25 and
q = 0, nν and nν′ give the num-
ber of the Matsubara frequen-
cies, according to eq. (23)

Figure 19: Full vertex in pp-ladder approxi-
mation when ω = 0, β = 72 and
q = 0, nν and nν′ give the num-
ber of the Matsubara frequen-
cies, according to eq. (23)

Figure 20: same as 18 but for q = Π Figure 21: same as 19 but for q = Π

Figures 18 - 21 display the full vertex one obtains from pp-ladder approximation. The vertices
look very similar to the original local ones, despite being momentum-dependent objects now.
Also, hardly any difference is noticeable between evaluation for the total momentum being 0
or Π. This weak dependence on q is a consequence of the minor role pp-effects play for the
Falicov-Kimball model in this parameter regime, while a more pronounced dependency would
be expected when describing Anderson localization.

5.2.2 Particle-hole ladder

The Bethe-Salpeter equation in the particle-hole channel, using non-local DMFT Green’s func-
tions, but keeping Γph local (i.e. the DMFT Γph) has the following form:

F νν
′ω

q = Γνν
′ω

ph − 1

β

∑
ν1,k1

Γνν1ω
ph G(ν1, k1)G(ν1 + ω, k1 + q)F ν1ν′ω

q (144)
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The equation can be solved, using the analytic expression for Γph derived in section 4.4. It can
be shown that, due to Γph being of the form

Γνν
′ω

ph = δω,0b(ν)b(ν ′)− δν,ν′u(ν, ω), (145)

F νν
′ω

q must have the structure

F νν
′ω

q = δω,0
∼
a(ν, q)

∼
a(ν ′, q)− δν,ν′f(ν, ω, q) (146)

by similar arguments as those leading to equation (90). Note that the function
∼
a is now different

from, albeit similar to, the function a in section 4.4. Inserting this form for F and Γph, which
is already known, then proceeding with similar calculations to the ones yielding Γph in section
4.4, one arrives at:

f(ν, ω, q) =
u(ν, ω)

1− u(ν, ω)χ0(ν, ν, ω, q)
, (147)

and
∼
a(ν, q) = Cq

b(ν)

1− u(ν, 0)χ0(ν, ν, 0, q)
, (148)

with the quantity Cq defined as:

Cq
2 =

1

1 +
∑

ν1

b2(ν1)χ0(ν1, ν1, 0, q)

1− u(ν1, 0)χ0(ν1, ν1, 0, q)

. (149)

This leads to the following expression for the full vertex:

F νν
′ω

q = δω,0Cq
2 b(ν)b(ν ′)

(1− u(ν, 0)χ0(ν, ν, 0, q))(1− u(ν ′, 0)χ0(ν ′, ν ′, 0, q))
−δν,ν′

u(ν, ω)

1− u(ν, ω)χ0(ν, ν, ω, q)
(150)

Note that this specific approximation leads to a F which breaks the crossing symmetry. Such an
F surely cannot always be a good approximation for the actual full vertex of the Falicov-Kimball
model, and, hence, one has to be careful about the restrictions on the described physics.

Figure 22: Full vertex in ph-ladder approxi-
mation when ω = 0, β = 25 and
q = 0, nν and nν′ give the num-
ber of the Matsubara frequen-
cies, according to eq. (23)

Figure 23: Full vertex in pp-ladder approxi-
mation when ω = 0, β = 72 and
q = 0, nν and nν′ give the num-
ber of the Matsubara frequen-
cies, according to eq. (23)
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Figure 24: Same as 22 but for q = Π Figure 25: Same as 23 but for q = Π

The full, momentum-dependent vertices extracted from a particle-hole ladder are given in
figures 22 - 25 . Their behaviour differs from the local full vertices, even inverting the trend
for which values of nν and nν′ to expect larger values of the vertex. Unlike the pp-ladder, the
ph-ladder shows pronounced momentum-dependence in the full vertex near the phase transition.

5.3 Susceptibilities

From the full vertices calculated by the different ladder approximations, it is possible to extract
susceptibilities for c-electrons. Since, these susceptibilities are given by

χν,ν
′,ω

k,k′,q = −βG(ν, k)G(ν+ω, k+q)δν,ν′δk,k′+G(ν+ω, k+q)G(ν ′, k′)F νν
′ω

q G(ν ′+ω, k′+q)G(ν, k),
(151)

their behaviour will depend mainly on the structure of F . Specifically, divergence of the sus-
ceptibilities is to be expected whenever F diverges. Thus, the denominators of the different
expressions for F are investigated. Two types of divergences can occur, when either Cq goes to
infinity at a certain value of q, or when the expression

1− χ0(ν, ν ′, ω, q)
(Σ(ν)− U)Σ(ν)(Σ(ν ′ + ω)− U)Σ(ν ′ + ω)

p1p2U2 + (Σ(ν)− p1U)(Σ(ν ′ + ω)− p1U)
(152)

comes close to 0, since it appears as a denominator in the full vertex extracted from the particle-
particle, as well as the particle-hole ladder. To extract physically observable, macroscopic sus-
ceptibilities, one has to sum over all values of ν , ν ′ , k and k′, since one is typically only
interested in the correlation effects for probabilities of finding electrons at given relative posi-
tions in space and time. A Fourier transform in these relative coordinates leads to a momentum
and frequency dependence.

χphysicalq (ω) =
1

β2N

∑
ν,ν′,k,k′

χν,ν
′,ω

k,k′,q (153)

N is the total number of distinct lattice sites, or equivalently, k-points. When investigating
phase transitions, ω can be set to 0. For the half-filled system, divergences in the susceptibility
are expected to occur at the q-vector

q = Π =

 π
π
π

 (154)

when the system condenses into checkerboard ordering.

34



5.4 Numerical results

In this subsection, numerical results obtained from inserting converged quantities resulting from
DMFT into the expressions already derived will be discussed. These calculations have been
performed at a fixed f -electron filling of 1/2, thus ensuring the c-occupation is fixed at 1/2 as
well and precluding a DMFT phase separation in the system from occurring. First, the purely
DMFT charge susceptibility

χν,ν
′,ω

k,k′,q = −βG(ν, k)G(ν+ω, k+q)δν,ν′δk,k′+G(ν+ω, k+q)G(ν ′, k′)F νν
′ωG(ν ′+ω, k′+q)G(ν, k),

(155)
is calculated, using the self-consistent results from the DMFT calculation for Σ to express G and
F . While the dispersion relation of the system is used for updating the Green’s function within
the DMFT-self consistency, the full vertex is replaced by its local counterpart for the calculation
of the susceptibility. Such a calculation can be performed very fast, yet the results carry little
information. Better results are expected when using a momentum-dependent full vertex, such
as the ones extracted from local Γs and Bethe-Salpeter equations above. Divergencies can occur
here, as Γ is a part of a geometric series in this context. Generally, the particle-hole ladder
approximation is used, as one is interested in charge order instabilities. Since the operator of
electron-occupation at the (real) time t and position i is given by c†i (t)ci(t), the physical suscep-

tibility one is interested in, is given by the expectation value of the operator c†i (t)ci(t)c
†
j(t
′)cj(t

′).
In terms of propagators, the connected parts of this expectation value consist of correlated
transport of an electron and an electron-hole.

Figure 26: Charge susceptibility at the wave vector (π, π, π) , χΠ, calculated using the full local
vertex F as basis

In figure 26 one can clearly see that no divergencies occur in the susceptibility χΠ when the
purely local (full) vertex is used for the calculation. Note that values above 5 have been set to 5
for the sake of a better readability of the plot. The system does however show a first tendency
of ordering, recognizable by the χΠ becoming larger at high values of U and low temperatures.
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Figure 27: Charge susceptibility at the wave vector (π, π, π), χΠ, calculated using the full vertex
calculated from the ph-ladder Fq as basis

Figure 27 shows divergencies for χΠ when a ph-ladder approximation is made for the full
vertex. After the divergence occurs, the susceptibility shifts to negative, non-physical values.
Besides the low-temperature and small U limits described so far, the charge density wave sus-
ceptibility was calculated on a T -U grid for an extended region. Points of divergence where
calculated and a second order spline was used to interpolate the curve of diverging suscepti-
bility. The resulting phase diagram, figure 28 is the DMFT phase diagram since the leading
term for the physical susceptibility in 1/d with d being the dimensionality of the system, is the
ph-ladder based on the local ph-irreducible vertex. For low temperatures, the value of U where
a transition occurs varies linearly with T , in agreement with the 1/β behaviour observed before.
A critical value of U , Ucrit, exists, where the critical temperature reaches its maximum.

Figure 28: Phase diagram of the Falicov-Kimball model within DMFT using the ph-ladder ap-
proximation with the local ph-irreducible vertex
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The behaviour of the Falicov-Kimball model is intuitive for low values of U and T , where
an increase in U can cause the system to order, while an increase of temperature increases the
tendency of disorder. When increasing U beyond the value Ucrit ∼ 2dt, the critical temperature
becomes lower again. Ucrit has a value similar to the bandwidth of the non-interacting system.
When the Hubbard-bands begin separating, movement of c-electrons between sites occupied and
unoccupied by f -electrons is hindered, thus preventing long-ranged order from arising.
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6 Path integral approaches

A controlled way of using DMFT results as a starting point for calculation of non-local correlation
effects for a finite-dimensional (typically in two or three dimensions) Falicov-Kimball model is
possible when adopting a path integral formulation of the Green’s functions. To this end,
because fermions are to be described, Grassmann numbers and integration have to be introduced.
Instead of writing products over integrals for different Matsubara Frequencies, a capital D is
used as shorthand notation for the multi-dimensional infinitesimal Volumes element. The grand-
canonical partition function Z for the Falicov-Kimball model in Path integral representation
reads:

Z =

∫ ∏
i

Dc†iDciDf
†
iDfie

−S(c†,c,f†,f) (156)

with S being the action of the Falicov-Kimball model,

S =

∫ β

0
dτ

[∑
i

(
c†i
d

dτ
ci + f †i

d

dτ
fi + Uc†icif

†
i fi

)
− t
∑
〈i,j〉

c†icj

]
. (157)

The index i again goes over all lattice sites, while 〈i, j〉 includes all pairs of nearest neighbours.
The Grassmann fields c(†) and f (†) are functions of the imaginary time. While this integral
cannot be performed analytically, it is possible to rewrite the exponent in terms of the action
of the associated resonant level model and additive correction terms. While the solution of the
first part is known, a controlled approximation for the second one can be derived. The action
of the resonant level model for a single site i can be written as

S =

∫ β

0
dτ

[
(c†i

d

dτ
ci + f †i

d

dτ
fi + Uc†icif

†
i fi +

∑
l

(c†l
d

dτ
cl + εlc

†
l cl − tlc

†
l ci − t

∗
l c
†
icl)

]
. (158)

Where i is the index of the site in question and l are the indices of the bath-states.

6.1 Integrating out bath states from the action of the resonant level model

Just as the resonant level model Hamilton operator allows for elimination of bath-state opera-
tors, the action functional allows one to integrate out their Grassmann fields. To this end, it
is convenient to transform the time-dependent Grassmann fields associated with creation and
annihilation operators to frequency space. The transformation is defined as

o (ν) =
1

β

∫ β

0
dτeiντo (τ), (159a)

o†(ν) =
1

β

∫ β

0
dτe−iντo†(τ). (159b)

Here, o(†)(τ) can be any Grassmann field and ν are the fermionic Matsubara frequencies. The
inverse transformation is given by

o (τ) =
∑
ν

e−iντo (ν), (160a)

o†(τ) =
∑
ν

eiντo†(ν). (160b)

The action, expressed in frequency-dependent Grassmann fields, except for the interaction part
between c and f electrons, then becomes

SRLM =
∑
ν

[
−iνc†ici−iνf

†
i fi+

∑
l

(
−iνc†l cl + εlc

†
l cl − tlc

†
l ci − t

∗
l c
†
icl

)]
+

∫ β

0
dτUc†i (τ)ci(τ)f †i (τ)fi(τ).

(161)
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In equation (161), all fields which are not explicitly denoted as time-dependent are assumed
to be frequency-dependent. Since the bath-states now appear in a Gaussian way, they can be
integrated out, leading to multiplicative factors in the partition function, which can be neglected
when calculating expectation values, and a modification of the remaining part of the action.

Sred =

∫ β

0
dτ

[
c†i
d

dτ
ci + f †i

d

dτ
fi + Uc†icif

†
i fi+

∑
ν

∆(ν)
1

β

∫ β

0
dτ ′
(
c†ici(τ

′)e−iν(−τ ′+τ) + c†i (τ
′)cie

iν(−τ ′+τ)
)]

(162)

Where the hybridization function ∆(ν) is defined as in equation (62). The hybridization part
of the action can easily be written in terms of frequency dependent Grassmann fields.

∑
ν

∆(ν)
1

β

∫ β

0
dτ

∫ β

0
dτ ′
(
c†ici(τ

′)e−iν(−τ ′+τ) + c†i (τ
′)cie

iν(−τ ′+τ)
)

=∑
ν

∆(ν)β
(
c†i (ν)ci (ν) + c†i (ν)ci (ν)

)
(163)

This simpler form will be used when relating the action of the Falicov-Kimball model and
localized resonant level models.

6.2 Transformation of the Falicov-Kimball action

It is possible to add the hybridization part of the action for the resonant level model to the
action for every single site of the Falicov-Kimball model and then subtract it again, leaving, of
course, the Falicov-Kimball action unchanged.

S =

∫ β

0
dτ

[∑
i

(
c†i
d

dτ
ci + Uc†icif

†
i fi

)
− t
∑
〈i,j〉

c†icj

]
+
∑
i,ν

∆(ν)βc†i (ν)ci (ν)

−
∑
i,ν

∆(ν)βc†i (ν)ci (ν) (164)

This allows us to express the action of the Falicov-Kimball model as the sum of the actions of a
set of resonant level models and the difference between the original kinetic and the hybridization
terms.

S =
∑
i

SRLM −
∫ β

0
t
∑
〈i,j〉

c†icj −
∑
i,ν

∆(ν)βc†i (ν)ci (ν) (165)

It is easy to see that since the hybridization contribution to the action is position independent,
it will not change if a Fourier transformation in space is performed. This allows us to perform
such a transformation, diagonalizing the kinetic term in the action. The kinetic term can then
be also transformed into frequency space, yielding:

S =
∑
i

SRLM +
∑
k,ν

(εk −∆(ν))c†k(ν)ck (ν) (166)

A Hubbard-Stratanovich transformation allows us now to rewrite e
∑
k,ν(εk−∆)c†k(ν)ck (ν) as a Gaus-

sian Grassmann integral over auxiliary fields ζ(†). Using the expression for Gaussian Grassmann
integrals from [15], ∫ ∏

i

dζ†i dζi e
−ζ†iAijζj+ζ

†
i ηi+η

†
i ζi = det(A)eη

†
iA
−1
ij ηj , (167)
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allows us to rewrite

e
∑
k,ν(εk−∆(ν))c†k(ν)ck (ν) =∫ ∏

k,ν

dζ†k(ν)dζk(ν) (εk −∆)e
−ζ†k(ν)

1

εk −∆(ν)
ζk(ν)+ζ†k(ν)ck(ν)+c†k(ν)ζk(ν)

. (168)

Then the c-electron part of the action of the system is written in terms of two different fields
coupling to each other, c fields which appear only locally in the action and ζ fields, so called
dual fermions [16], carrying the information about kinetic energy. A controlled approximation in
the coupling between the fields is possible, resulting in the ζ fields interacting via many-particle
Green’s functions of local resonant level systems. The partition function for the system is then
given by:

Z = F

∫ ∏
i,k

Dc†iDciDf
†
iDfiDζ

†
kDζk


e
−
∑
i SRLM [ci,c

†
i ,fi,f

†
i ]−

∑
k ζ
†
k(ν)

1

εk −∆(ν)
ζk(ν)+ζ†k(ν)ck(ν)+c†k(ν)ζk(ν)

. (169)

The factor F at the beginning of the expression originates from the Hubbard-Stratanovich
Transformation performed, but can be neglected for the calculation of Green’s functions as it
cancels out due to the normalization anyway. The couplings between the original fermions and
the newly introduced dual fermions,∑

k

ζ†k(ν)ck(ν) + c†k(ν)ζk(ν), (170)

can be rewritten as sum over all lattice sites∑
i

ζ†i (ν)ci(ν) + c†i (ν)ζi(ν), (171)

as a consequence of Parseval’s theorem, because a summation over all values of k is performed.
In this way, the localized resonant level systems provide a potential in which the dual fermions
move.
Formally, the part ∫ ∏

i

Dc†iDciDf
†
iDfi e

−SRLM [ci,c
†
i ,fi,f

†
i ]+ζ†i (ν)ci(ν)+c†i (ν)ζi(ν) (172)

is equivalent to the integrals appearing when introducing source fields to calculate Green’s
functions [12]. Thus, a controlled expansion in orders of the fields ζi and ζ†i leads to many-body
Green’s functions coupling to them.

6.3 One Particle Irreducible approach

It has been argued [17], that the Dual Fermion approach, when truncating the expansion for
the self-energy at the two-particle vertex level, can lead to inclusion of one-particle reducible
contributions to the self-energy of the Hubbard model. While those contributions would be
cancelled by others if one continued the expansion to the three-particle vertex level, a truncation
at the two-particle vertex level leads to errors. The one particle irreducible (1PI) approach
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allows for a transformation of the action, getting rid of the one-particle-reducible terms of two-
and more particle vertices. Defining

ZRLM

[
ζ, ζ†

]
=

∫
Dc†DcDf †Dfe−SRLM+

∑
ν ζ
†(ν)c(ν)+c†(ν)ζ(ν), (173)

one can easily see that a formal differentiation of the integral above by the fields ζ and ζ† leads
to factors c† and c in the integrand, thus yielding the Green’s functions of the system. The term
ZRLM allows for the definition of the generating functional of connected diagrams, WRLM :

ZRLM

[
ζ, ζ†

]
= eWRLM [ζ,ζ†]. (174)

The problem with WRLM is that, when differentiated with respect to ζ and ζ†, it yields full,
connected vertices, which contain reducible contributions. In dual fermion theory, one would
expand W in orders of ζ and ζ†, resulting in full local vertices appearing in the action (169). The
inclusion of one-particle reducible contributions in the expansion can be thwarted by performing
a suitable transformation before the differentiations. Note that on the two-particle level, the
full, connected diagrams and the one-particle irreducible diagrams coincide, essentially due to
particle conservation. This is, however, not the case for three- or higher-order diagrams. The
one-particle irreducible generating functional Γ, is given by

Γ
[
Φ†,Φ

]
= W

[
ζ, ζ†

]
− ζ†

(
δζ†W

[
ζ, ζ†

])
+
(
δζW

[
ζ, ζ†

])
ζ, (175)

the Legendre transformation of W . Here, δζ(†) has been used as symbol for differentiation by

ζ(†). The dependency of W on ζ(†) has been omitted when differentiated for better readability.
The new fields introduced, Φ(†) are given by

Φ = −δζ†W
[
ζ, ζ†

]
(176a)

Φ† = δζW
[
ζ, ζ†

]
. (176b)

The inverse transformation is defined by

ζ = δΦ†Γ
[
Φ,Φ†

]
(177a)

ζ† = −δΦΓ
[
Φ,Φ†

]
. (177b)

Besides the transformation of the integrand, one should also transform the integration variables
from ζ(†) to Φ(†). With Grassman integration, transformations of the integration variables are
performed by the rule

dΦ δζ(Φ) = dζ. (178)

Thus, when transforming
dζ†dζ → dΦ†dΦ, (179)

a factor ∣∣∣∣ δζ(Φ) δζ†(Φ)

δζ(Φ
†) δζ†(Φ

†)

∣∣∣∣ (180)

must be included in the integrand. In the following, we apply this transformation to the Falicov-
Kimball model after the Hubbard-Stratanovich decoupling in equation (168).

Z = F

∫ ∏
k

Dζ†kDζk e

∑
iWRLM i[ζ,ζ†]−

∑
k ζ
†
k(ν)

1

εk −∆
ζk(ν)

(181)
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To this end, we insert source fields η(†) for the original fermions.

Z
[
η, η†

]
= F

∫ ∏
i,k

Dζ†kDζk e
WRLM i[ζ+η,ζ†+η†]−ζ†k(ν)

1

εk −∆
ζk(ν)

(182)

A linear shift in the integration variables ζ(†) by η(†) can easily be treated, yielding

Z
[
η, η†

]
= F

∫
Dζ†Dζ e

WRLM

[
ζi,ζ
†
i

]
−
(
ζ†k(ν)−η†k(ν)

) 1

εk −∆
(ζk(ν)−ηk(ν))

. (183)

It should be noted, that the local quantities WRLM and Γ, when written in momentum space,
scatter with equal amplitudes between all states which obey conservation of total momentum.
Specifically, this means that up to second order in their fields, their k representation is given by∑

k

Ψ†kGlocΨk, (184)

While up to fourth order it becomes

1

2

∑
k,k′,q

Ψ†kΨ
†
k′VlocΨk+qΨk′−q. (185)

Here, Ψ(†) are the fields associated with either WRLM or Γ and V is the corresponding vertex
(either the connected or 1PI vertex). Now, WRLM can be replaced by it’s Legendre transdorm
Γ, substituting the integration variables as well.

Z
[
η, η†

]
= F

∫ ∏
i,k

DΦ†kDΦk

e
Γi[Φ,Φ†]+(δΦΓ)Φ−Φ†(δ

Φ†Γ)−
(
η†k(ν)+(δΦkΓ)

) 1

εk −∆

(
ηk(ν)−(δ

Φ
†
k

Γ)
)

det(M) (186)

Another Hubbard-Stratanovich transformation allows for the replacement of the quadratic term(
η†k(ν) + δΦkΓ

) 1

εk −∆

(
ηk(ν)− δ

Φ†k
Γ
)
. It turns out to be convenient to choose the multiplicative

factor in the transformation in a fashion so as to get rid of remnants of 1/(εk −∆) in the new
mixed terms in the integrand. After the Hubbard-Stratanovich-transformation, the partition
function of the system takes the form

Z
[
η, η†

]
= F ′

∫ ∏
k

DΦ†kDΦkDΨ†kDΨke
∑
k Ψ†k(εk−∆)Ψk

e

∑
i Γi[Φ,Φ†]+(δΦiΓi)Φi−Φ†i (δΦ†

i

Γi)−
(
η†i (ν)+(δΦiΓ)

)
Ψi−Ψ†i

(
ηi(ν)−(δ

Φ
†
i

Γi)
)

det(M). (187)

It is possible to make the source fields couple symmetrically to the Ψ(†) and Φ(†) fields and get
rid of the terms (δΦΓ)Φ and Φ†(δΦ†Γ) in the exponent by introducing a linear shift of Ψ(†) by
Φ(†).

Ψ† →Ψ† + Φ† (188a)

Ψ→Ψ + Φ (188b)
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After the substitution, the generating functional reads:

Z
[
η, η†

]
= F ′

∫ ∏
k

DΦ†kDΦkDΨ†kDΨke

∑
i Γi[Φ,Φ†]−(δΦiΓi)Ψi+Ψ†i (δΦ†

i

Γi)

e
∑
k −η

†
k(ν)(Ψk+Φk)−(Ψ†k+Φ†k)ηk(ν)+(Ψ†k+Φ†k)(εk−∆)(Ψk+Φk) det(M) (189)

Diagrammatically, this action can be interpreted as describing two particles, which can change
their character freely via one-particle Green’s functions. This can be seen from the term (Ψ†k +

Φ†k)(εk − ∆)(Ψk + Φk) which couples Φ(†) and Ψ(†) fields. These particles interact via the
terms Γ

[
Φ,Φ†

]
, Ψ†(δΦ†Γ) and (δΦΓ)Ψ. This means that terms of arbitrary order in the fields

Φ(†) appear, while Ψ† appears either in first order, or not at all. As discussed in [12], the
contributions stemming from det(M) would lead to purely local terms and represent double-
counting corrections, as they cancel corresponding purely local self-energy corrections. So far,
all the transformations applied to the functional integral representation of the Falicov-Kimball
action were exact. A widespread approximation is the consideration of terms up to the two-
particle level only in the expansions of Γ and det(M). The expansion of Γ in second order in
the fields Φ(†) yields the inverse of the local DMFT Green’s function, G−1

loc and the one particle
irreducible, full local vertex F in fourth order.

Γi

[
Φ,Φ†

]
=

C +
∑
ν

Φ†i (ν)G−1
loc(ν)Φi(ν) +

1

4

∑
ν,ν′,ω

Φ†i (ν + ω)Φ†i (ν
′)F νν

′ωΦi(ν
′ + ω)Φi(ν) +O

(
Φ(†)6

)
(190)

In this context, C is ln(ZRLM ) but the value is irrelevant, as it cancels out from all expectation
values anyway. The terms containing functional derivatives of Γ give very similar expressions,
albeit replacing one of the Φ(†) fields by Ψ(†):

−
(
δΦiΓi

[
Φ,Φ†

])
Ψi =∑

ν

Φ†i (ν)G−1
loc(ν)Ψi(ν) +

1

2

∑
ν,ν′,ω

Φ†i (ν + ω)Φ†i (ν
′)F νν

′ωΦi(ν
′ + ω)Ψi(ν) +O

(
Φ(†)5

Ψ
)

(191)

Ψ†i

(
δ

Φ†i
Γi

[
Φ,Φ†

])
=∑

ν

Ψ†i (ν)G−1
loc(ν)Φi(ν) +

1

2

∑
ν,ν′,ω

Φ†i (ν + ω)Ψ†i (ν
′)F νν

′ωΦi(ν
′ + ω)Φi(ν) +O

(
Φ(†)5

Ψ†
)

(192)

In total, one gets quadratic contributions to the action, coupling Φ(†) and Ψ(†) via Gk
−1 or

Gk
−1 −G−1

loc . The full local vertex assumes the role of a bare interaction for the system.

6.3.1 Ladder approximation for the one particle irreducible approach

As the bare interaction for the 1PI approach is known to be the full local vertex of the associated
resonant level model, a diagrammatic expansion of the 1PI system can be conducted. It should
be noted that the decomposition of the full local vertex into the different two-particle irreducible
ones, with respect to real electrons, bears no meaning for the 1PI formalism. The full vertex
is considered to be the bare interaction, thus even being fully irreducible with respect to the
dual electrons. This justifies building ladders with Floc as basic building block. It should be
noted, however, that such a ladder construction is equivalent to the one conducted with Γph

43



and GDMFT . The corresponding Bethe-Salpeter equation in the particle-hole channel, adapted
from [12] is given by:

F νν
′ω

q = F νν
′ω

loc − 1

β

∑
ν1,k1

F νν1ω
loc Gred(ν1, k1)Gred(ν1 + ω, k1 + q)F ν1ν′ω

q . (193)

Where Gred is given by
Gred(ν, k) = G(ν, k)−Gloc(ν), (194)

i.e. the difference between the DMFT Green’s function and the local Green’s function of the
RLM problem. Floc is already known to be, for the Falicov-Kimball model, of the form

F νν
′ω

loc = (δω,0 − δν,ν′)a(ν)a(ν ′ + ω). (195)

Where a(ν) is defined in equation (86). For ω 6= 0, the equation becomes

F νν
′ω 6=0

q = −δν,ν′a(ν)a(ν+ω) +
1

β

∑
k1

a(ν)a(ν+ω)Gred(ν, k1)Gred(ν+ω, k1 + q)F νν
′ω 6=0

q . (196)

It can be rewritten as

F νν
′ω 6=0

q

1− a(ν)a(ν + ω)
1

β

∑
k1

Gred(ν, k1)Gred(ν + ω, k1 + q)

 = −δν,ν′a(ν)a(ν + ω). (197)

Thus justifying the definition of the function u as :

u(ν, ω, q) =
a(ν)a(ν + ω)

1− a(ν)a(ν + ω)
1

β

∑
k1
Gred(ν, k1)Gred(ν + ω, k1 + q)

, (198)

which yields, with a(ν) from equation (86):

u(ν, ω, q) =

β(Σ(ν)− U)Σ(ν)(Σ(ν + ω)− U)Σ(ν + ω)

p1p2U2 − (Σ(ν)− U)Σ(ν)(Σ(ν + ω)− U)Σ(ν + ω)
∑

k1
Gred(ν, k1)Gred(ν + ω, k1 + q)

(199)

when inserting the explicit expression for a. This allows for F νν
′ω 6=0

q to be written as:

F νν
′ω 6=0

q = −δν,ν′u(ν, ω, q). (200)

As next step, the case ω = 0 needs to be investigated. Without loss of generality, F νν
′ω

q can be
assumed to be of the form

F νν
′ω

q = δω,0f(ν, ν ′, q)− δν,ν′u(ν, ω, q), (201)

where f is some function which needs to be determined by evaluating the Bethe-Salpeter equation
(193) for the case ω = 0.

f(ν, ν ′, q)− δν,ν′u(ν, 0, q) = (1− δν,ν′)a(ν)a(ν ′)

− 1

β

∑
ν1k1

(1− δν,ν1)a(ν)a(ν1)Gred(ν1, k1)Gred(ν1, k1 + q)
(
f(ν1, ν

′, q)− δν1,ν′u(ν ′, 0, q)
)

(202)
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Evaluation of the sum gives rise to four terms.

f(ν, ν ′, q)− δν,ν′u(ν, 0, q) = (1− δν,ν′)a(ν)a(ν ′)

− 1

β

∑
ν1k1

a(ν)a(ν1)Gred(ν1, k1)Gred(ν1, k1 + q)f(ν1, ν
′, q)

+ a(ν)a(ν)f(ν, ν ′, q)
1

β

∑
k1

Gred(ν, k1)Gred(ν, k1 + q)

+ a(ν)a(ν ′)u(ν ′, 0, q)
1

β

∑
k1

Gred(ν
′, k1)Gred(ν

′, k1 + q)

− δν,ν′a(ν)a(ν)u(ν, 0, q)
1

β

∑
k1

Gred(ν, k1)Gred(ν, k1 + q). (203)

The terms that are proportional to δν,ν′ in equation (203) cancel each other, as can be easily
verified from equation (198) for ω = 0 . This does not come as a surprise since those are exactly
the terms constituting the equation for ω 6= 0, which is fulfilled. The remaining terms are:

f(ν, ν ′, q) = a(ν)a(ν ′)− a(ν)
1

β

∑
ν1k1

a(ν1)Gred(ν1, k1)Gred(ν1, k1 + q)f(ν1, ν
′, q)+

a(ν)a(ν)f(ν, ν ′, q)
1

β

∑
k1

Gred(ν, k1)Gred(ν, k1+q)+a(ν)a(ν ′)u(ν ′, 0, q)
1

β

∑
k1

Gred(ν
′, k1)Gred(ν

′, k1+q)

(204)

It is possible to solve this equation in a very similar fashion to the ph-ladder in section 5.2.2.
To do so, the terms have to be rearranged:1− a2(ν)

1

β

∑
k1

Gred(ν, k1)Gred(ν, k1 + q)

 f(ν, ν ′, q) = a(ν)·

(
a(ν ′)

1 + u(ν ′, 0, q)
1

β

∑
k1

Gred(ν
′, k1)Gred(ν

′, k1 + q)

−
1

β

∑
ν1k1

a(ν1)Gred(ν1, k1)Gred(ν1, k1 + q)f(ν1, ν
′, q)

)
(205)

The right hand side of equation (205) factorizes into a part depending on ν and a part depending
on ν ′. This implies that the left hand side of the equation has to do the same. This means that
f has to factorize as well. It is convenient to assume a symmetric factorization for f :

f(ν, ν ′, q) = b(ν, q)b(ν ′, q) (206)

Note that this function b is different to the function with the same name appearing in section
5.2.2. Inserting this expression into the Bethe-Salpeter equation gives the condition

b(ν, q) = Cq
a(ν)

1− a(ν)a(ν)
1

β

∑
k1
Gred(ν, k1)Gred(ν, k1 + q)

. (207)

The Bethe-Salpeter equation (205) then gives the condition for Cq:

C2
q =

1

1 +
∑

ν1

a(ν1)a(ν1)
1

β

∑
k1
Gred(ν1, k1)Gred(ν1, k1 + q)

1− a(ν1)a(ν1)
1

β

∑
k1
Gred(ν1, k1)Gred(ν1, k1 + q)

(208)
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The structure of the equations leading to the resulting full ladder vertex for the 1PI (and dual)
fermions is very similar to the ph-ladder for the real c-electrons. One can indeed show, that the
two are equivalent. Also, for the dual fermions, the full local vertex of the real electrons is used
as an approximation for the ph-irreducible, local vertex. The full dual electron vertex (201) in
the ladder approximation is given by:

F ν,ν
′,ω

q = δω,0C
2
q

a(ν)

1− a(ν)a(ν)
1

β

∑
k1
Gred(ν, k1)Gred(ν, k1 + q)

a(ν ′)

1− a(ν ′)a(ν ′)
1

β

∑
k1
Gred(ν ′, k1)Gred(ν ′, k1 + q)

− δν,ν′u(ν, ω, q). (209)

6.3.2 1PI corrections for the self energy

In [12], an expansion for the real electron self-energy within 1PI theory was derived. This was
done for the Hubbard model, but the same derivation is also applicable to the Falicov-Kimball
model, as only a dispersion relation and the full local vertex within a DMFT calculation are
needed as input, putting no constraints on the actual nature of the interaction within the original
system. The corrections for the self energy are given by:

Σ
(1)
1 (ν, k) = − 2

β2

∑
ν1,ω,k1,q

F νν1ω
loc Gred(ν1, k1)Gred(ν1 + ω, k1 + q)F ν1νω

q Gred(ν + ω, k + q) (210a)

Σ
(2)
1 (ν, k) =

1

β2

∑
ν1,ω,k1,q

F νν1ω
loc Gred(ν1, k1)Gred(ν1 + ω, k1 + q)F ν1νω

loc Gred(ν + ω, k + q) (210b)

Σ2(ν) = − 2

β2

∑
ν1,ω,k1,q

F νν1ω
loc Gred(ν1, k1)Gred(ν1 + ω, k1 + q)F ν1νω

q Gloc(ν + ω) (210c)

The sum over the three terms gives the total correction to the self-energy within the 1PI

theory when restricting oneself to inclusion of two particles vertices only. The term Σ
(1)
1 (ν, k) is

responsible for the non-local corrections and Σ2(ν) gives corrections to the local, k-independent,

self-energy. Σ
(2)
1 (ν, k) accounts for double counting of the second-order terms in Σ

(1)
1 (ν, k).

Equation (193) allows for rewriting

− 1

β

∑
ν1,k1

F νν1ω
loc Gred(ν1, k1)Gred(ν1 + ω, k1 + q)F ν1νω

q = F ννωq − F ννωloc . (211)

The corrections can then be written as:

Σ
(1)
1 (ν, k) =

2

β

∑
ω,q

(
F ννωq − F ννωloc

)
Gred(ν + ω, k + q) (212a)

Σ
(2)
1 (ν, k) =

1

β2

∑
ν1,ω,k1,q

F νν1ω
loc Gred(ν1, k1)Gred(ν1 + ω, k1 + q)F ν1νω

loc Gred(ν + ω, k + q) (212b)

Σ2(ν) =
2

β

∑
ω,q

(
F ννωq − F ννωloc

)
Gloc(ν + ω). (212c)

Since Floc does not depend on q, and the sum over all values of k of Gred equals zero per
definitionem, the local vertex can be dropped from equation (212a). Inserting the explicit
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expressions for Fq and Floc yields, after some simplifications:

Σ
(1)
1 (ν, k) =

2

β

∑
q

C2
q

a2(ν)(
1− a2(ν)

1

β

∑
k1
Gred(ν, k1)Gred(ν, k1 + q)

)2Gred(ν, k + q)−

2

β

∑
q,ν1

a(ν)a(ν1)

1− a(ν)a(ν1)
1

β

∑
k1
Gred(ν, k1)Gred(ν1, k1 + q)

Gred(ν1, k + q) (213)

Σ
(2)
1 (ν, k) =

2

β

∑
ν1,k1,q

a2(ν)a2(ν1)Gred(ν1, k1)Gred(ν1, k1 + q)Gred(ν, k + q)−

2

β

∑
k1,q

a4(ν)Gred(ν, k1)Gred(ν, k1 + q)Gred(ν, k + q) (214)

Σ2(ν) =
2

β

∑
q

C2
q

a2(ν)(
1− a2(ν)

1

β

∑
k1
Gred(ν, k1)Gred(ν, k1 + q)

)2Gloc(ν)−

2

β

∑
q,ν1

a(ν)a(ν1)

1− a(ν)a(ν1)
1

β

∑
k1
Gred(ν, k1)Gred(ν1, k1 + q)

Gloc(ν1)+

2

β

∑
ν1

a(ν1)Gloc(ν1)a(ν)− 2

β
a2(ν)Gloc(ν). (215)

6.3.3 Numerical results for the self-energy corrections

A numerical evaluation of these equations is possible, allowing for description of effects beyond
purely local correlations in the c-electron self-energy. Below, results for 1PI corrections of the
self energy on a cubic lattice with nearest neighbour hoping are given. The calculations were
performed based on converged DMFT calculations at (fixed) f -density nf = 1/2. In particular,
the behaviour in the vicinity of the transition to the charge ordered phase has been investigated.
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Figure 29: 1PI corrections to the self-
energy near the phase transition

Figure 30: 1PI corrections for the self-
energy at a slightly higher tem-
perature

In figure 29 and 30, the real and imaginary parts of the DMFT-self-energy, the dual-fermion
and the 1PI corrections to the self-energy at the k-point (0, π/2, π) are plotted as functions of
the fermionic Matsubara frequency ν. The dual-fermion corrections are the same as the 1PI-
ones, just neglecting Σ2(ν). (Note that only the self-energy corrections for the dual fermions
are considered, without transforming the dual self-energy to a real fermion self-energy) The
calculations were performed at U = 0.25 and β = 62.15 and 60 respectively. Green lines show real
parts and red imaginary ones. Full lines give the DMFT-self-energy, dashed ones the corrections
within a 1PI-ph-ladder approximation and chain-dotted ones the corrections obtained from a
Dual-Fermion ph-ladder. One can see that the real part of the self-energy is fixed at U/2 = 0.125
and the corrections give 0. This is a consequence of the particle-hole symmetry for the half-filled
Falicov-Kimball model. The corrections to the imaginary part are small when one is far enough
away from the phase transition, but increase in value when approaching it. This indicates the
enhanced nonlocal scattering of electrons at charge fluctuations when approaching the charge
density wave instability. The 1PI corrections are larger in magnitude than the Dual-Fermion
ones, which is a consequence of the allowed propagators. The high-frequency behaviour is
also different: While the 1PI-corrections have a contribution of order 1/ν, the dual fermion
corrections decay faster as the frequency increases.
For the numerical evaluation of the self-energy corrections, the summands were distributed as
follows: The terms which involve summations over ν1 but which are not part of Σ(2), originally
stemming from terms proportional to δ(ν, ν ′), i.e. the second term on the right hand side of
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equation (213) and the fourth from (215) , were expressed in terms of:

Σν,ν
k (ν, k) =

2

β

∑
q,ν1

a2(ν)a2(ν1)
1

β

∑
k1
Gred(ν, k1)Gred(ν1, k1 + q)

1− a(ν)a(ν1)
1

β

∑
k1
Gred(ν, k1)Gred(ν1, k1 + q)

G(ν1, k + q), (216a)

Σν,ν
loc (ν) =

2

β

∑
q,ν1

a2(ν)a2(ν1)
1

β

∑
k1
Gred(ν, k1)Gred(ν1, k1 + q)

1− a(ν)a(ν1)
1

β

∑
k1
Gred(ν, k1)Gred(ν1, k1 + q)

Gloc(ν1). (216b)

Here, the name ν, ν implies the origin of the terms. The enumerator stems from the difference

2

β

∑
q,ν1

a(ν)a(ν1)

1− a(ν)a(ν1)
1

β

∑
k1
Gred(ν, k1)Gred(ν1, k1 + q)

G(ν1, k + q)−

2

β

∑
q,ν1

a(ν1)G(ν1, k + q)a(ν), (217)

which can be written as

2

β

∑
q,ν1

 a(ν)a(ν1)

1− a(ν)a(ν1)
1

β

∑
k1
Gred(ν, k1)Gred(ν1, k1 + q)

− a(ν)a(ν1)

G(ν1, k + q), (218)

when using Gred(ν, q) = G(ν, q) − Gloc(ν) and
∑

q G(ν, q) = Gloc(ν). This yields (216a) when
expanding to the same denominator and the same is true when using the local Green’s function
Gloc instead of G. While the loc-terms are not needed for calculating the 1PI-corrections, they
must be subtracted to arrive at the dual-fermion ones. The terms turned out not to change
very much when varying the k-mesh for the summation or the number of included Matsubara
frequencies, as long as a sufficient number was taken into account ( about 50 frequencies and
173 k-points ).
The two terms containing C2

q (i.e. the first terms on the right hand sides of equations (213) and
(215)), originating from terms originally proportional to δω,0 were calculated together, specifi-
cally

Σω,0
k (ν, k) =

2

β

∑
q

C2
q

a2(ν)(
1− a2(ν)

1

β

∑
k1
Gred(ν, k1)Gred(ν, k1 + q)

)2G(ν, k + q), (219a)

Σω,0
loc (ν) =

2

β

∑
q

C2
q

a2(ν)(
1− a2(ν)

1

β

∑
k1
Gred(ν, k1)Gred(ν, k1 + q)

)2Gloc(ν). (219b)

The computational time for the Σω,0-corrections for a given k-value scales like N2
νN

2
k , where

Nν is the total number of Matsubara-frequencies taken into account and Nk is the number of
k-points on the mesh used for the summations. The number of Matsubara frequencies turned
out not to be critical as a sufficient number could be easily included in the calculation. The
number of k-points could not be adjusted as easily, as a cubic lattice was assumed and Nk ∝ n3

k,
with nk being the number of different k-points in a given direction. The lattice could only be
increased in size by increments of 4 in every direction as π/2 was needed as point on the mesh.
Below, figure 31 shows the dependency of the imaginary part of the 1PI corrections to the
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self-energy for the k-point (0, π/2, π), Σ1PI(ν1, (0, π/2, π)) at the first Matsubara frequency for
U = 0.5, µ = 0.25 and β = 30.28 as function of 1/nk, using constant values for the remaining
summands Σν,ν and Σloc.

Figure 31: Dependency of 1PI corrections to the imaginary part of the self-energy on the inverse
number k-points per direction

One can see that a large amount of k-points is needed to predict the behaviour of Σω,0. This
stems from the multiplicative factors C2

q which become very large at specific values of q. If the
k-point mesh is not fine enough, those q-points are weighted too much and dominate the whole
sum.
The last terms (i.e. the ones from quation (214)) to be calculated were

Σloc
k (ν, k) =

2

β

∑
ν1,k1,q

a2(ν)a2(ν1)Gred(ν1, k1)Gred(ν1, k1 + q)G(ν, k + q)−

2

β

∑
k1,q

a4(ν)Gred(ν, k1)Gred(ν, k1 + q)G(ν, k + q), (220a)

Σloc
loc(ν) =

2

β

∑
ν1,k1,q

a2(ν)a2(ν1)Gred(ν1, k1)Gred(ν1, k1 + q)Gloc(ν)−

2

β

∑
k1,q

a4(ν)Gred(ν, k1)Gred(ν, k1 + q)Gloc(ν). (220b)

Leaving only the term

− 2

β
a2(ν)Gloc(ν) (221)

from equation (215) to be added. It is physically justifiable to treat the Σloc terms separately,
as they correspond to diagrams that take care of double counting in the 1PI-ladder. They can
be treated by a simple summation, and do not change very much upon increasing either nk or
Nν .
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7 Conclusion

In this thesis, local vertex functions for the Falicov-Kimball model were calculated analytically
within DMFT, including the full vertex, the vertices irreducible in a given channel and the fully
irreducible vertex. Based on the full local vertex, the 1PI-theory was applied to calculate non-
local corrections for the self-energy.
In chapter 3, general features of the Falicov-Kimball model have been discussed, including per-
turbation theory for the disordered phase and a justification of the lattice model’s tendency
towards checkerboard ordering. Also, a brief introduction to the Green’s function in quantum
field theory is given, as a necessary tool for most of the calculations performed in this thesis.
Dynamical mean field theory has successfully been applied to the Falicov-Kimball model in
chapter 4. The full local vertex was calculated and a decomposition into irreducible ones was
performed. To the best of my knowledge, this is the first time the full decomposition was per-
formed analytically. From the divergence of the particle-particle susceptibility in DMFT, the
phase transition towards an ordered state was determined. Trying to describe the behaviour
near the phase transition better, Feynman-diagrammatic methods were employed, including
some correlations beyond purely mean values of interaction in the treatment.
Chapter 5 is devoted to a discussion of the local vertices obtained from DMFT and ladder ap-
proximations of the full vertex based on irreducible vertices. The full vertex and the irreducible
vertices were expressed in closed form and their general features were discussed. Some of the
analytical features of the vertices exist in similar form for some fully interacting models, like
the Hubbard model in the atomic limit. Also, divergences in the irreducible vertices where
observed, appearing in a similar form for the Hubbard model. Thus, the results can provide a
useful comparison.
The application of the 1PI-theory to the Falicov-Kimball model yielded analytical results when
a ladder approximation was performed as shown in chapter 6. Because a mayor part of the
calculations was performed without falling back to numerical methods, the results can be inter-
preted more easily. This may allow for a better understanding of the behaviour of the employed
methods. The thesis is concluded by a numerical evaluation of the corrections to the self-energy,
including a brief discussion of convergence behaviour for the different contributions.
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